Technische Universitat Minchen
Fakultat fur Informatik “-m
Lehrstuhl 11 — Datenbanksysteme

Efficient Access Control for Service-oriented I T
| nfrastructures

Diplom-Informatiker Univ.
Martin Rudolf Wimmer

\ollstandiger Abdruck der von der Fakultat fir Informatik der Technischen Universitat
Minchen zur Erlangung des akademischen Grades eines

Doktorsder Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

\orsitzender: Univ.-Prof. Dr. Helmut Krgmar

Prifer der Dissertation:
1. Univ.-Prof. Alfons Kemper, Ph. D.
2. Univ.-Prof. Dr. Joachim Posegga,
Universitdt Hamburg

Die Dissertation wurde am 18.12.2006 bei der Technischen Universitat Miinchen eingereicht
und durch die Fakultat fir Informatik am 08.05.2007 angenommen.







Acknowledgments

Above all, 1 would like to thank Prof. Alfons Kemper, Ph.D., my supervisor at the TU
Minchen. He supported me with valuable comments and provided encouragement and guid-
ance throughout my work on this thesis. | enjoyed working with his research group and appre-
ciated the very pleasant working atmosphere created by my colleagues Stefan Aulbach, Daniel
Gmach, Benjamin Gufler, Stefan KrompaB, Richard Kuntschke, Angelika Reiser, Tobias Scholl,
Stefan Scholz, Stefan Seltzsam, and Bernhard Stegmaier. Not to forget the research group of
Prof. Dr. Torsten Grust, Jan Rittinger and Jens Teubner, and my former colleagues at the Univer-
sity of Passau, Markus Keidl, Christian Wiesner, and Bernhard Zeller. | also would like to thank
Evi Kollmann, the good soul of the group.

| also thank Martina-Cezara Albutiu, Daniela Eberhardt, Pia Ehrnlechner, Armin Fischer,
Jakob Gajdzik, and Alexander Schuster, whose theses | supervised. They did an excellent work
on implementing prototypes which allowed me to test and improve the access control concepts
presented in this thesis. Policy consolidation strategies have been put to the test in the context of
a cooperation with SAP Research, for which | want to thank Volkmar Lotz and Maarten Rits of
SAP Research, Sophia Antipolis. | also thank Prof. Dr. Joachim Posegga for being the second
supervisor of my thesis.

| thank all the people who gave me helpful criticism and advice on my doctoral thesis. In
particular, 1 want to thank Richard Kuntschke for his thorough and fast proofreading, giving me
valuable support to improve my phrasing.

Finally, I want to say thanks to my family and especially to my wife Andrea for supporting
me in all my endeavors and for reminding me that there are still other things out there apart from
computers and work.

Minchen, June 2007 Martin Wimmer






Abstract

Web services represent the emerging technology for many enterprise application architec-
tures. Due to widely accepted standards for the specification of service interfaces and commu-
nication protocols, they constitute the preferred approach for integrating resources and legacy
systems, easing the reusability of modules and the reconfiguration of higher-order business pro-
cesses. Furthermore, inter-organizational value creation chains can be realized by the seam-
less integration of distributed services. Besides these amenities, the emerging service-oriented
computing concepts also introduce new security challenges. In this thesis, we present flexi-
ble authorization techniques providing efficient access control for service-oriented IT infrastruc-
tures. In particular, the proposed authorization strategies (1) provide efficient access control for
intra-organizational service compositions, (2) support the reliable integration of resources like
database systems into service-oriented architectures, and (3) enable optimized policy enforce-
ments in dynamic Web service coalitions.

As Web services represent self-contained modules that autonomously enforce security, user
requests are iteratively authorized and evaluated by service compositions. Apart from repeated
and possibly redundant authorization checks, performance drawbacks can arise due to unnec-
essary service executions. This happens, for example, if users are allowed to execute certain
sub-processes but lack authorizations for later stages of a workflow. Furthermore, considering
the execution of Web service transactions, this can demand for rollbacks or costly compensating
transactions. These drawbacks can be avoided through the early filtering of ultimately unautho-
rized requests, thus, providing solutions for issue (1). Our contributions are a formal model and
algorithmic solutions for consolidating the access control of composite applications. We demon-
strate by means of Web service workflows how access control can be shifted to the layer of the
composite application, thus, reducing policy enforcement costs.

Considering issue (2), we propose a security engineering approach for the reliable imple-
mentation of database backed Web services. Today, often over-privileged database authorities
are used to realize the interaction between services and underlying database systems. In case of
security vulnerabilities on the services’ side, confidential data is in danger of being disclosed.
In this thesis, we describe our approach for the semi-automatic generation of service interfaces
that realize the principle of least privilege. Based on the specification of the service-to-database
interaction, the access control of Web services is defined and consolidated with the security con-
figuration of the underlying database systems.

In order to provide access on local resources within larger collaboration networks, privileges
need to be granted to entities of cooperating domains. We present our authorization infrastruc-
ture supporting the delegation of privileges and roles across organizations. Access control in
loosely coupled federations is performed through the interplay of local and distributed policy en-
forcements. By use of adequate caching techniques, our proposed access control strategy is also
applicable for large-scale and dynamically growing coalitions, as addressed by issue (3). Hence,
the combination of the proposed techniques is an approach to provide efficient and flexible access
control for service-oriented IT infrastructures.
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CHAPTER 1

Introduction and Overview

A company’s economic success depends to a great extent on its possibilities to quickly react upon
market changes by adapting its portfolio and services to the customers’ needs. This demand for
flexibility is also reflected by the design of current and future information systems. Monolithic
middleware systems are increasingly replaced by service-oriented architectures. One of the most
prominent representatives confirming this development is SAP’s Enterprise Service Architec-
ture (ESA) with its enterprise services repository and the integration platform NetWeaver which
are aiming to supersede SAP R/3.! In the course of this technological trend, applications are
decomposed into their basic functionalities which are provided in form of self-contained soft-
ware components. These can flexibly be linked to realize higher-order business processes. Thus,
service-oriented architectures often better support the reuse of modules and the reconfiguration
of business processes than traditional middleware architectures.

Apart from e-commerce, the service-oriented computing paradigm also found its way into
e-science and e-health applications. Massively distributed applications can be realized through
inter-organizational service orchestrations. For instance, astrophysical observations can be orga-
nized via grid technology or diagnostic findings can be exchanged among physicians and medical
specialists. The most widely used technology for the realization of service-oriented middle-
wares are Web services that excel in high interoperability. They allow higher-order business
processes to be realized via compositions of specialized services. Thereby, service composi-
tions can include local as well as distributed services of various service providers as indicated in
Figure 1.1(b). This is enabled by widely adopted standards for service description and discov-
ery as well as communication protocols.? The most important specifications in this regard are
the XML-based Web Services Description Language (WSDL), Universal Description, Discovery
and Integration (UDDI), and the Simple Object Access Protocol (SOAP).

1See [Woods (2004)].
2See [Weerawarana et al. (2005)].
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Figure 1.1: Traditional and upcoming service-oriented middleware infrastructures

On the one hand, service-oriented computing enables high interoperability and flexibility. On
the other hand, it also brings about new security concerns. In his talk at the ETRICS 2006 con-
ference, Sachar Paulus, chief security officer of SAP, pointed out that the emergence of service-
oriented architectures, in particular the decomposition of applications into autonomous services,
led to

“A system security mindset shift:
From building and managing elephants
to maintaining and directing ant colonies.”

As services are accessible via Internet protocols like HTTP, they demand for secure execution,
in particular, secure messaging over potentially insecure channels. Thus, similar to classical
Web applications, message integrity and confidentiality have to be ensured.® By use of existing
security standards like the Security Assertion Markup Language (SAML) and the WS-Security
framework, security for service-oriented architectures can be implemented reliably.* Neverthe-
less, efficiency remains an open issue. In the above allegory, the ants (i.e., the services) represent
autonomous individuals. From the security viewpoint this denotes that services have their own
security requirements which they enforce on their own. Thus, access control of business pro-
cesses that are realized by means of service compositions is conducted iteratively. Many busi-
ness processes like order processing or financial accounting are rarely modified. Hence, they
constitute more or less static workflows which are executed frequently. For such processes, one
obvious drawback of the separation of security enforcements is its negative impact on perfor-
mance. Therefore, new strategies are required to make policy evaluation of service compositions
efficient enough for large-scale applications.

As Web services are used to integrate existing applications and legacy systems into service-
oriented middlewares,® security not only needs to be ensured on the services’ layer, but also for
the underlying resources. Typically, as highlighted in Figure 1.1(b), many enterprise services

3See [Wimmer et al. (2006c¢)].
“See [Cantor et al. (2005)] and [Nadalin et al. (2006)].
5See, for example, [Linthicum (2001, 2003)] and [Weilbach and Herger (2005)].
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rely on database functionality. While it can be meaningful for traditional application servers
to provide full access on underlying database systems, the same does not hold for services that
usually only require access to a rather limited extract of the data. In case over-privileged ac-
counts are used to interface with the database systems, malicious users succeeding in exploiting
security flaws in service implementations will also obtain comprehensive access permissions on
the database systems. In order to avoid such threats, the access control of services needs to be
restricted to the least required privileges.

Web services not only provide the technological basis for the mentioned intra-company appli-
cation integration but, above all, are particularly suitable for realizing inter-organizational value
creation chains. Handling requests on distributed resources in a network of cooperating organi-
zations demands for a flexible and capable authorization framework. Many distributed e-science
networks are examples of dynamic virtual organizations where partners can join and resign on
demand. In order to enter a community, access rights have to be granted to members of the new
partner organizations. Depending on the assumed trust relationships, various privilege delegation
schemes and designs of collaboration networks are possible. For instance, access control can be
realized by a central authority in case of tightly coupled partners that trust each other. Differ-
ent access control strategies are required for dynamic service coalitions where the organizations
have to retain their authorization autonomy. To give an example, access control that is based
on the identity of users usually constitutes a limiting factor for dynamically growing collabora-
tion networks. Instead, authorization has to be enforced based on the requesters’ characterizing
attributes like their job profiles.

1.1 Classification of Service Compositions

Web service choreographies and generic composite applications can be classified with regard to
the dimensions locality and coupling as illustrated in Figure 1.2. Locality denotes the differenti-
ation between intra- and inter-organizational composite applications, depending on whether only
local services or also distributed resources of cooperating service providers are used. Due to sub-
activities autonomously enforcing security, additional overhead arises when performing access
control of composite applications. Furthermore, the individual security policies might be con-
flicting, hindering the successful execution of a composite application. Hence, a prerequisite for
the reliable implementation of intra-organizational composite applications is the consolidation
of access control policies. In order to enable inter-organizational workflows, the authorization
infrastructure has to support the integration of distributed authorization schemes. For members
of a federation being able to access distributed resources, access rights need to be assigned across
administrative boundaries. Thus, by means of privilege delegations, collaboration networks can
be established.

Access control of composite applications can be performed either in a centralized or de-
centralized manner, depending on the type of coupling. A system is called tightly coupled if
its underlying resources are permanently integrated. For example, classical enterprise resource
planning systems are rather monolithic middleware systems with the underlying database sys-
tems usually being tightly integrated. Analogously, database backed services can be regarded
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Figure 1.2: Classification of composite applications depending on locality and coupling

as tightly coupled composite applications as well. Loosely coupled systems on the other hand
allow dynamic substitutions of services and integrated resources. That is, services can flexibly
be integrated and replaced on demand, which is also referred to as dynamic service selection.®
While in tightly coupled systems access control can often be realized in a centralized manner,
resources and services that are loosely interlinked need to retain their authorization autonomy. In
loosely coupled distributed systems, these characteristics demand for decentralized, distributed
policy evaluation.

The various design principles have a strong impact on the efficiency of access control and on
the autonomy of authorization. Referring to Figure 1.2, efficiency decreases from the lower left
corner to the upper right corner, while flexibility increases in the same direction. Access con-
trol for tightly coupled intra-organizational composite applications can be realized efficiently as
authorizations can be inferred by means of a centralized policy evaluation. However, tightly cou-
pled inter-organizational coalitions imply that cooperating partners give up at least part of their
authorization autonomy by delegating access control to a trusted authority. In contrast to this,
authorization autonomy is preserved within dynamic coalitions that provide high levels of adapt-
ability and interoperability. Therefore, dynamic coalitions are well applicable for cooperations
with unstable trust relationships but flexibility has to be traded for increased policy evaluation
complexity.

6See [Keidl (2004)].



1.2 Contributions 5

1.2 Contributions

In this thesis, we present flexible authorization techniques providing efficient access control for
service-oriented IT infrastructures. In particular, we present an optimization approach for re-
ducing policy evaluation costs of intra-organizational composite applications and Web service
workflows. Furthermore, we describe best practices for the reliable integration of database func-
tionality into service-oriented middleware systems. Based on these techniques, we present our
authorization framework for distributed Web service workflows. Altogether, the described mod-
els and enforcement strategies support the reliable integration of data sources into tightly and
loosely coupled Web service federations.

We start with analyzing the access control of intra-organizational composite applications
whose sub-activities are self-contained software components that autonomously conduct autho-
rization checks. We arrive at the conclusion that this access control separation in general leads to
redundant and therefore possibly inefficient policy enforcements. Performance drawbacks due
to superfluous executions can be caused by users that are allowed to execute some sub-processes
but are not entitled to perform later stages of a service choreography. Moreover, they can even
demand for transaction rollbacks or the execution of compensating transactions. Our contri-
butions are a formal model and algorithmic solutions for the consolidation of access control
policies. Consolidated policies allow to shift access control to the composite application’s layer,
thus, making authorization checks by the individual sub-activities unnecessary and enabling the
pre-filtering of requests. Hence, the mentioned drawbacks can be avoided and access control for
composite applications can be realized more efficiently.

Many Web services rely on the data processing capabilities of database backend servers.
In this regard, often over-privileged profiles are used to realize the service-to-database interac-
tion, e.g., to keep administrative overhead low. Therefore, in case security vulnerabilities of
service implementations are abused, confidential data are in danger of disclosure. In this thesis,
we present a security engineering approach for the reliable implementation of database backed
Web services. Our approach is based on the semi-automatic generation of security policies and
database authorization profiles that are restricted to the required service functionality, thus, ful-
filling the necessary principle of least privilege.

Providing shared access to local resources demands for possibilities to grant privileges to
entities of cooperating domains. We present our authorization framework supporting tightly
and loosely coupled Web service coalitions. The underlying authorization scheme supports the
delegation of access rights to subjects of cooperating organizations, employing a flexible dis-
tributed role based access control model. Within loosely coupled coalitions, access control is
performed by an interplay of local and distributed policy evaluation steps. The use of secure
caching strategies makes this approach also suitable for large-scale and dynamically growing
coalitions. Therefore, the proposed security concepts provide efficient and flexible access con-
trol for service-oriented IT infrastructures, supporting various designs of composite applications
as depicted in Figure 1.2.
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1.3 Outline

The thesis is organized as follows:

Chapter 2 — Access Control Models and Ter minology

gives an overview of existing access control models like mandatory access control, discretionary
access control, and role based access control. Based on this outline, we discuss the security
requirements of service-oriented architectures and present the basic principles of our own autho-
rization scheme.

Chapter 3— Optimized Access Control for Composite Applications and Wor kflows

introduces the syntax and semantics of our policy model. We describe how policies of com-
posite applications can be consolidated with the access control schemes of their underlying au-
tonomous sub-activities. Policy consolidation constitutes the basis for optimizing access control.
We demonstrate this by means of Web service workflows.

Chapter 4 — Security Engineering for Database Backed Web Services

presents best practices for the reliable integration of database functionality into service-oriented
IT infrastructures. Thereby, our main objective is to reduce security risks for the underlying
database systems. We achieve this goal through semi-automatically consolidating the access
control of database systems with the security configuration of the service frontends.

Chapter 5— Access Control in Dynamic Service Coalitions

presents our authorization infrastructure for distributed Web service applications. The underlying
access control model supports cross-domain assignments and role delegations and is an extension
of the authorization scheme presented in Chapter 3. The proposed framework allows to realize
tightly as well as loosely coupled federations. Policy evaluation for loosely coupled coalitions is
optimized by means of secure caching techniques.

Chapter 6 — Conclusion

summarizes the thesis and shows how the combination of the proposed techniques provides effi-
cient access control for service-oriented IT infrastructures.



CHAPTER 2

Access Control Models and Terminology

Access control is the process of intercepting user requests for evaluating whether the requested
activities can be granted according to the system’s security policy. In this chapter, we elaborate
on basic access control models and terminology. After presenting the role of access control and
its relationships to further security services in Section 2.1, we give an overview over widely
used access control models in Section 2.2. The access control requirements of service-oriented
architectures are discussed in Section 2.3. Subsequently, in Section 2.4, we motivate the basic
design decisions of our authorization framework which we present in detail in the remainder of
this thesis.

2.1 TheRoleof Access Control

The objective of access control is to prevent illegitimate access to protection objects, whereby
access for authorized requesters must be ensured at the same time, of course. For that purpose,
requests are intercepted and evaluated against applicable policies. A policy consists of individ-
ual authorization rules according to which access control is performed. Such access rules declare
relationships between subjects and objects. They are categorized into privileges and denials, de-
pending on whether they grant or prohibit actions on protection objects. In this context, subjects
are active entities like human users. Examples for protection objects (which represent passive
entities) are files managed by a file system or tables, views, or stored procedures of a database
system. Applications can represent subjects as well as objects. They act as objects in case their
execution is regulated by access rules. Applications represent active entities in case they access
protection objects during their execution, thereby potentially acting on behalf of other subjects,
e.g., human users.

Figure 2.1(a) schematically illustrates the access control process. Access control is subdi-
vided into authentication and authorization. The function of authentication is to verify that the
identity of a subject indeed coincides with the identity it claims to have. In the following, we
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Figure 2.1: Policy enforcement strategies

will concentrate on authorization and assume that authentication has been correctly achieved. In
service-oriented architectures, authentication of requesters is, for example, implemented by use
of the Security Assertion Markup Language (SAML), specified by Cantor et al. (2005), or the
WS-Security framework, introduced by Nadalin et al. (2006).

Authorization is the process of evaluating requests against applicable policies ascertaining
that requested actions can be granted. This process is initiated by the so-called policy enforce-
ment point (PEP), which can be the invoked service itself. The functionality for evaluating re-
quests is provided by the policy decision point (PDP), e.g., realized as a dedicated authorization
service. The PDP relies on the policy administration point (PAP) to determine the applicable
policies. For instance, the PAP can realize the interface to a centralized policy repository. Fur-
thermore, a PAP has to ensure that only legitimate entities can access policy information. From
the software engineering perspective, it is recommended to separate PEP, PDP, and PAP func-
tionality. In order to ensure maintainability, security functionality should be separated from the
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application logic.

Figure 2.1(b) sketches two examples for realizing the access control of database backed Web
services: In the left part of the figure, the service and the underlying database system are au-
tonomously enforcing access control. In contrast to this, the right part of the figure illustrates
a configuration where only the Web service enforces access control. As we will point out in
Chapter 3 and 4, as a prerequisite for this optimization, the authorization policies of the service
and the authorization configuration of the database system have to be consolidated.

As shown in Figure 2.1(a), access control is closely related to further important security
services, like auditing. For auditing, user requests have to be logged. The evaluation of log in-
formation allows detecting flaws in the security system. Furthermore, it provides possibilities to
detect and prove violation attempts. As most attacks and compromises are conducted from inside
organizations,® auditing helps to supervise the behavior of users and to hold them accountable
for their activities.

Often, authorization rules are defined in an informal way — at least at the initial phase of
specifying access control. In order to compare policies and to enable their validation and eval-
uation by means of programs, they have to be expressed in a formal policy language. In the
following, we briefly describe widely used access control schemes like mandatory access con-
trol, discretionary access control, and role based access control. Further (historical) background
information concerning these access control models are, for example, provided by Castano et al.
(1994), and Samarati and de Capitani di Vimercati (2001).

2.2 Access Control Models

2.2.1 Mandatory Access Control

Mandatory access control (MAC) regulates access on protection objects based on the sensitiv-
ity level of the information (also called the objects’ classification) and the authorization level
of subjects (the so-called clearance). Mandatory policies typically represent multilevel security
schemes. The main field of application for mandatory policies are the military and governmental
sectors because of stringent security requirements. The sensitivity of information can, for exam-
ple, be classified as confidential, secret, and top secret, depending on whether their disclosure
to unauthorized subjects is expected to cause some, serious, or grave damage. The classification
of objects and subjects defines a partial order expressing dominance relationships. Subjects are
authorized to access objects in case their clearance dominates the classification of the objects.

In order to ensure the secrecy of information, the information flow among subjects of differ-
ent classification levels has to be controlled strictly. Bell and LaPadula (1973, 1976) proposed
the so-called no-write-down and the no-read-up rules to regulate the propagation of sensitive
information. The no-write-down paradigm dictates that subjects can only perform write access
on protection objects whose classification dominates the subjects’ clearance. No-read-up pro-
hibits subjects to read information in case their clearance level does not dominate the protection
objects’ classification.

!See, for example, [Rosenberg and Remy (2004)], page 35.
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While these rules ensure the secrecy of information, they cannot guarantee their integrity.
Subjects with lower clearance could still indirectly initiate improper modifications to higher clas-
sified objects, leading to misinformation. Therefore, Biba (1977) proposed the no-read-down and
no-write-up principles for enforcing information integrity: A subject is allowed to read an object
only if the object’s classification dominates the subject’s clearance; and a subject is allowed to
write an object only if the subject’s clearance dominates the object’s access class. These rules
represent the contrary to the principles of the Bell LaPadula model. While the Bell LaPadula
principles allow the information flow from lower to higher secrecy levels, the Biba model allows
the information flow from higher to lower integrity levels. If both concepts have to be enforced,
subjects and objects need to be classified individually for secrecy and integrity.

Though mandatory policies provide ways to control the information flow, they are often con-
sidered to be too restrictive and rigid for commercial scenarios, hindering operational procedures.
Furthermore, MAC models can lead to the so-called polyinstantiation problem which denotes that
the same real world fact is present in form of multiple instances that differ with regard to their
classification, thus, violating data integrity constraints. Jajodia and Sandhu (1990, 1991) address
this issue for multilevel database systems.

2.2.2 Discretionary Access Control

In discretionary access control (DAC) models, access rights restrict access on protection objects
based on the identity of subjects or, in order to improve scalability, groups they belong to. The
access matrix, which was proposed by Lampson (1974) and formalized by Harrison et al. (1976)
declares for each combination of subjects and objects the set of allowed actions. It is called
access matrix model as the access rights can be stored in a matrix with the columns and rows
representing objects and subjects, respectively, and the entries being the granted privileges. Such
policies are typically employed for operating systems. The model is called discretionary as
subjects with certain control permissions are allowed passing privileges to other subjects (at their
discretion). Often, the ownership paradigm is applied, denoting that the creator of an object is its
owner who, by default, is granted control privileges for that object.

Several extensions of DAC models have been proposed like (hierarchical) group schemes
for subjects, objects, and actions and the formulation of conditions and exceptions. Object hi-
erarchies and privilege implications are for example treated by Rabitti et al. (1991) and group
schemes for actions have been proposed by Shen and Dewan (1992). Conditions restrict the ap-
plicability of access rules. For instance, a condition can constrain access on a protection object to
the working hours of a day, e.g., to the time between 8 am and 6 pm. The concept of exceptions
leads to the differentiation between positive and negative access control rules, i.e., privileges and
denials. Therefore, positive authorization systems, where only privileges can be defined, are to
be distinguished from negative systems, where each rule represents a denial. Also mixed sys-
tems where policies can consist of a mixture of negative and positive access rules are possible. In
general, policy specifications are not complete, i.e., cases can arise where neither privileges nor
denials apply which have to be handled by a closure assumption. In this regard, the closed world
assumption, where everything is denied unless a privilege can be inferred, or the open world
assumption, where everything is allowed unless a denial is derived, can be applied. Positive sys-
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Figure 2.2: Example role hierarchies

tems are compatible with the closed world assumption and negative systems with the open world
assumption. For mixed systems, both combinations are meaningful.

Mixed systems also demand for conflict resolution techniques, i.e., strategies that specify
how situations when positive and negative rules apply at the same time are to be handled. Various
approaches like privileges-take-precedence, denials-take-precedence or the most-specific-takes-
precedence have been proposed. An overview over conflict resolution techniques is provided
by Jajodia et al. (2001).

2.2.3 RoleBased Access Control

The administration of DAC policies can easily become unmanageable if privileges are indepen-
dently assigned to each user. Better scalability is provided by role based access control (RBAC)
schemes which, for instance, have been proposed by Sandhu et al. (1996), Osborn et al. (2000),
and Ferraiolo et al. (2001). In 2004, an official standard for RBAC has been released.> Using
RBAC, privileges required for performing certain jobs are grouped by roles. Subjects acquire
privileges via the indirection of being granted the needed roles. Therefore, as discussed by
Sandhu (1996), (user) groups and roles describe two different concepts. Groups denote sets of
users that can be described through the same attributes like their membership characteristics,
while roles represent sets of privileges.

Role based access control is a means of mapping organizational structures onto access control
policies. Not the identities of users determine their authorizations, but their job profiles. Users
changing their jobs within a company are revoked their old roles and granted those roles which

2Confer [ANSI INCITS 359-2004].
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are aligned to their new area of activity. Thus, RBAC provides high levels of flexibility, ease
of administration, and, which is of particular importance, allows realizing the concept of least
privilege which is a way to limit the potential risk of compromise or misuse.

In addition to the core RBAC model, roles can be organized in hierarchies defining a partial
order “C”. Senior roles which are at higher levels in the hierarchy inherit all privileges that are
granted to their junior roles. To give an example, the role Internist in Figure 2.2(a) is senior to
Physician, denoted as Internist 2 Physician. The other way round, Physician is called junior role
of Internist.

In RBAC, two types of associations must be managed. One is the assignment of privileges to
roles and the second is the assignment of roles to subjects. If users(r) represents the membership
function for a role r and permissions(r) the set of privileges that are assigned to r, the following
holds for two roles r and " with 7’ being a junior role of r, i.e., 7' C 7:

e users(r’) D users(r) and
e permissions(r’) C permissions(r).

A role ' is called immediate descendant of a role r if 7/ C r and there is no »” with » # r” and
r" 2 v’ such that " C " C r. A role hierarchy is called limited if each role has at most one
immediate descendant. This is the case for the example hierarchy illustrated in Figure 2.2(a).
In contrast to this, general role hierarchies like the one shown in Figure 2.2(b) support the con-
cept of multiple (access right) inheritance. As shown in the figure, the role Manager has two
immediate descendants, namely Health Personnel and Administrative Personnel.

2.2.4 Administration of Authorization

The discussed access control models specify how access rights are defined and evaluated. An-
other important issue is the administration of access control policies, denoting who is allowed to
define and modify access rights.

Regarding multilevel mandatory access control, subjects are assigned authorization levels by
the security administrator. The sensitivity levels of objects are deferred based on the classifica-
tion of the subjects creating the respective objects. Thus, in mandatory access control, there is
typically one central authority that is responsible for administering security policies.

In contrast to this, a wide range of administration schemes exists for discretionary and role
based access control. The following is an excerpt of possible administration schemes taken from
[Sandhu and Samarati (1994)]:

e Ownership: According to the ownership paradigm, the creator of an object can grant and
revoke access rights for that object.

e Centralized: This approach is akin to the administration of mandatory access control,
meaning that one central authority is concerned with the administration of access control
rules.
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e Decentralized: The owner of an object can delegate the administration to other subjects
that themselves can then grant and revoke access rights for that object.

e Hierarchical: The responsibility for administering policies is assigned to several admin-
istrators that are organized in a hierarchy. For example, the security officer of a company
can delegate the administration to the security officers of the company’s subsidiaries.

e Cooperative: In cooperative administration schemes, some access rights can not be granted
by a single authorization entity, i.e., need to be granted by a group of authorizers, instead.

2.3 Access Control Requirements of Service-oriented Archi-
tectures

Service-oriented computing paradigms reveal the following characteristics which have to be
taken into account when designing appropriate authorization infrastructures:

Autonomy of Authorization

Web services, as the predominant technology for realizing service-oriented architectures, are
fine grained, modular software components that independently enforce access control. Thus, in
contrast to monolithic architectures, no single point of administration is given in service-oriented
IT infrastructures.

Multilayered Authorization

Service-oriented architectures can be used to integrate existing enterprise applications and legacy
systems by use of standardized service interfaces. Services can on their part be combined to
realize higher order services, thus, leading to composite applications. Regarding service compo-
sitions, access control is enforced in a multilayered manner.

Coalition-based Access Control

Via service compositions, intra- and inter-organizational value creation chains can be realized.
In order to enable inter-organizational cooperations, the authorization framework needs to sup-
port the delegation of access rights across administrative boundaries and the evaluation of au-
thorizations within collaboration networks. Through service invocations, users like customers,
suppliers, and partners are able to directly access business relevant data from outside the organi-
zation. This is what Lord (2002) refers to as “disintermediation” as requests are directly passed
to the company’s information system instead of being mediated by employees who supervise the
execution.
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Demand for Scalability

The employed access control models and mechanisms need to be scalable. In particular, identity
based authorization is not meaningful in dynamic coalition environments. Instead, authorizations
should be inferred based on the requesters’ attributes.

2.4 Design Principlesof our Authorization Framework

Samarati and de Capitani di Vimercati (2001) point out that the conceptual specification and re-
alization of an access control framework is a three-phased approach consisting of the specifica-
tion of the underlying security model, the (informal and formal) definition of policies, and the
implementation of the policy enforcement mechanisms. Based on the overview of policy models
(Section 2.2) and the previous discussion on security requirements of service-oriented architec-
tures (Section 2.3), we now motivate the design principles of our access control framework which
we present in detail in the following chapters.

Access Control M odel

Atluri (2001) and Lopez et al. (2004) emphasize that mandatory policies are oftentimes consid-
ered to be impractical for many scenarios other than military applications. Instead, discretionary
policies are typically used to realize access control of commercial applications. Furthermore,
mandatory access control can hardly be realized in distributed environments as this would re-
quire all cooperating partners to use consolidated classification schemes for subjects and objects.
Otherwise, rules can become inconsistent, in case confidential and secret information is clas-
sified differently by the partners. Therefore, we employ discretionary and role based access
control policies. Furthermore, the employed policy model should also support the dynamic set-
up of collaboration networks. That’s why we realize a distributed RBAC scheme supporting role
delegations and cross-domain assignments. Thereby, access control rules can be administered
in a distributed manner. Nevertheless, as trust relationships in dynamic coalitions can change,
policy administration is preserved for the owners of protection objects. Thus, if necessary, inter-
actions can be canceled at any time. Our model relies on positive authorization and the closed
world assumption. This supports the reliable and clear administration of security in distributed
systems, in particular dynamic coalitions.

Policy Language

Policy language candidates suitable for our authorization framework must provide the following
characteristics:

e They must support discretionary and role based access control schemes. Furthermore,
attribute based policy specifications need to be supported.

e They need to be capable of realizing multilayered access control which demands for the
specification of combined policies.
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e They need to be easily integrable into existing Web service architectures.

Several good policy languages have been proposed in the past and our intention was not to rein-
vent the wheel by specifying yet another one. Our choice fell on XACML which is a widely
adopted XML-based security standard that can be seamlessly integrated into Web service envi-
ronments and fulfills the above requirements.®

Policy Enforcement M echanisms

Policy evaluation needs to be efficient and scalable as discussed in the previous section. For intra-
organizational composite applications, we propose a policy consolidation technique that reduces
the cost of policy enforcement. With regard to distributed Web service workflows, access control
is realized as an interplay of local and distributed authorization checks. We complement this
enforcement strategy with secure caching techniques making this approach applicable for large-
scale dynamic service coalitions.

3See [Moses (2005)].






CHAPTER 3

Optimized Access Control for Composite
Applications and Workflows

With the advent of service-oriented computing principles, monolithic enterprise resource plan-
ning (ERP) systems are decomposed into their basic functionalities which are then provided
in the form of autonomous Web services. New business processes can be realized on demand
through Web service compositions, bringing about higher levels of flexibility and adaptability.
In general, the individual services or generic sub-applications autonomously enforce access con-
trol. Nevertheless, for the sake of security and efficiency, consolidated access control policies
for composite applications should be provided. Such policies are based on the policies of the
corresponding autonomous sub-applications and have the following properties: On the one hand,
they are as restrictive as possible to block requests which do not comply with the integrated
sub-applications’ policies. Thus, ultimately unauthorized requests can be detected at an early
stage and unnecessary service executions can be avoided. On the other hand, the combined poli-
cies must grant all privileges necessary to make the intended functionality available to legitimate
users.

This chapter presents our formal model and algorithmic solutions for consolidating the access
control of composite applications. The generated policies conform to the paradigm of least re-
quired privileges and, thus, allow the revision and optimization of the access control of composite
applications. We demonstrate these issues by means of Web service workflows that constitute
the state-of-the-art of science and technology for realizing business processes.

Parts of this chapter have already been presented at the International Conference on Emerging
Trends in Information and Communication Security (ETRICS 2006, [Wimmer et al. (2006a)])
and at the 20" Annual IFIP WG 11.3 Working Conference on Data and Applications Security
(DBSec 2006, [Wimmer et al. (2006b)]).

This chapter is organized as follows: Section 3.1 motivates the need for policy consolidation
for tightening and optimizing the access control of composite applications. In Section 3.2, we
introduce our policy algebra which constitutes the basis for the consolidation approach that is
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Figure 3.1: Multilayered architecture of a hospital’s accounting system

presented in Section 3.3. Algorithmic solutions for analyzing and combining access rules are
discussed in Section 3.4. In Section 3.5, we describe an efficient policy enforcement technique
for Web service workflows. Section 3.6 presents some related work before we summarize in
Section 3.7.

3.1 Motivation

Composite applications rely on further sub-applications — also called sub-activities in the fol-
lowing — to implement their functionality. There are numerous examples including quite simple
Web applications as well as large scale enterprise resource planning (ERP) systems that depend
on database backends. Also, business processes that are realized as Web service workflows rep-
resent complex composite applications. In general, sub-applications themselves can constitute
composite applications.

As an example of a composite application consider the hospital accounting system illustrated
in Figure 3.1.1 It is implemented as the sequence of four sub-activities: In order to draw up an
account, first of all, the patient’s personal data like his/her name, insurance policy number, etc.
has to be fed into a user interface (Insert Patient Data, step 1 in Figure 3.1). Afterwards, the pa-
tient’s medical record is queried and the costs of his/her therapy are determined (steps 2 and 3).
After the costs for the medical treatment have been calculated, the cost overview is generated in
step 4. As illustrated in the figure, the sub-activities Query Treatment, Query Cost Schedules, and
Generate Cost Overview rely on database backends, hence representing composite applications
themselves.

Suppose that Alice as an administrative employee of the hospital is responsible for balancing
accounts with the health insurance funds. For being allowed to execute the accounting system,
she must be granted execution rights for all of these sub-activities and requires access rights on
the underlying database(s). In case of lacking some of these privileges, e.g., the permission to
insert the results into the BillingTab, she will proceed until step 4 and be blocked then. Thus,
previous steps will be executed ineffectively. Besides, ultimately unauthorized requests can even

1See Appendix A for details on the employed graphical notation.



3.1 Motivation 19

demand for transaction rollbacks or costly compensating transactions. To avert this, one possible
approach is to provide Alice with comprehensive access rights on the database. In this regard,
one extreme would be to grant full access on the tables PatientTab, CostsTab, and BillingTab to
her. However, the system will get vulnerable to avoidable security threats that might origin from
the inside as well as from the outside of the organization: Alice intentionally or unintentionally
can modify data she shall not be able to do according to her job profile. Furthermore, attackers
succeeding in disclosing Alice’s account acquire substantial control over corporate assets.

The solution to this problem is to grant users exactly those privileges they require to perform
their work. In the literature, this concept is referred to as the principle of least privilege or as
the least authority paradigm [Bishop (2002); Curtin (2001); Stiegler et al. (2006)]. Considering
composite applications, fulfilling this principle is a non-trivial task in general as the access con-
trol configurations of several autonomous sub-applications have to be taken into account. The
key to success is a consolidated view onto the access control of composite applications, provid-
ing answers to the following questions: (1) What are the least required privileges?, (2) Who is
allowed to execute the composite application?, and (3) Are there possibilities to reduce policy
evaluation costs?

Issue (1) refers to the principle of least privilege, denoting that only those privileges are
granted that are required for performing the sub-activities. Following this design paradigm re-
duces security vulnerabilities as it guarantees that no business resources other than the ones
needed by the composite application can be accessed.

Knowing the set of authorized users facilitates the detection of unintended configurations. For
instance, if only highly privileged users like the hospital manager are authorized to execute the
process, this might be an indication that the design of the application itself needs to be revised.
We are addressing issue (2) from the single-user /single-role perspective, meaning that a user
can execute the application by the activation of one task specific role. This complies with many
business processes which are typically representing job specific functions and are thus designed
for specific groups of employees. Therefore, composite applications are to be distinguished from
multi-user workflows which are business processes that are executed by several users as a team.

The access control of composite applications can be optimized as follows (confer issue (3)):
On the one hand, a consolidated policy allows the early-filtering of requests. Application invo-
cations which will lead to aborts at later stages in the process due to missing privileges can be
detected and averted. On the other hand, repeated and possibly redundant authorization checks
by the individual sub-activities are avoided in case the authorization decision can be inferred on
the composite application’s layer.

Practical use cases might consider some of these issues in isolation. In Section 3.5, we
propose an efficient policy enforcement strategy for Web service workflows concentrating on
issues (2) and (3). Other enterprise application integration projects have their focus on issues (1)
and (3). For example, the security engineering approach introduced in Chapter 4 is a methodical
approach for determining least required privileges for database backed Web services.
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3.2 Policy Model

First, we introduce the policy algebra which constitutes the basis for the formal specification of
the proposed policy consolidation technique. In our model, entities like subjects are specified
through characterizing attributes like role-membership, age, profession skills, etc. The policy
model allows to express discretionary access control (DAC) rules and supports role based access
control (RBAC) models which are suitable security concepts for almost all commercial applica-
tions. The formal syntax and semantics of our policy model are based on those introduced by
Bonatti et al. (2002). We adapted and extended this model where necessary, e.g., by introducing
additional operators.

3.2.1 Notation
3.2.1.1 Predicates

Predicates represent attribute comparisons of the form (attribute-identifier o constant). Depend-
ing on the attribute’s domain, the comparison operator o is in {<, <, =, >, >} for totally ordered
setsand in {, C, =, 3, 1} for partially ordered finite sets.

For instance, the predicate (role = Physician) states that the role Physician is assigned to the
attribute identifier named role. The predicate (role 2 Physician) describes the set of all possible
role assignments, with role being equal to the role Physician or any senior role of it.

3.2.1.2 Subjects, Objects, Actions, and Conditions

Let Attr be the set of distinguished attribute identifiers. Attr is subdivided into disjoint sets of
subject, object, action, and environment attribute identifiers (denoted as S-Attr, O-Attr, A-Attr,
and E-Attr, respectively).
A set of subjects S is represented by a disjunction of predicate conjunctions over S-Attr. That
is,
S:((31,1/\-H/\Sl,l)\/---\/(Sk,l/\-“/\sk,l))a

with each s, ;, (1 <@ < kand 1 < d < [) being a predicate conjunction that applies to one
attribute of S-Attr. Examples are (age > 18) and (age > 18 A age < 65), representing the inter-
vals [18, co[ and [18, 65], respectively. The cardinality of S-Attr is denoted by I. The elements of
S-Attr are also called dimensions of subject specifications.

Objects O and actions A are represented in an analogue way. S, O, and A are inequality-free.
A condition ¢ is a boolean formula defined over attributes of E-Attr that can include user defined
functions with Boolean codomain (e.g., isWeekday(date), for date being an element of E-Attr).

3.21.3 Rules

Arule R is a quadruple (S, O, A, ¢), consisting of subjects S, objects O, and actions A. A rule
assigns privileges specified by (O, A) to subjects S. The scope of the assignment is restricted
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Figure 3.2: Employed policy model

through c. For example, a rule declaring that physicians with permanent employment can read
and modify medical records between 8 am and 6 pm looks as follows

R; = ((role O Physician A employment = permanent), (table = MedicalRecordsTab),
(method = select v method = update), (time > 8am A time < 6 pm))

This simplified example already shows that the policy model supports the expression of role
based access control. Figure 3.2 illustrates the different kinds of assignments that can be ex-
pressed. For any assignment, the cardinalities are many-to-many. For example, more than one
action can be granted on one object and one action (e.g., read) can be granted on one or many
objects (e.qg., files, directories, etc.). Privileges can be assigned directly to users. Roles play two
parts in our policy model. On the one hand, role attributes are part of the subject specification
when being used to group privileges. On the other hand, roles can be assigned to other subjects —
which then could be users (role assignment, RA) or further roles (role hierarchy, RH). Then the
role identifiers will also be part of the object specification. The following rule R, states that the
role ChiefPhysician is a senior role of the role Physician:

Ry = ((role = ChiefPhysician), (granted-role = Physician), (method = enable), (true))

That way, roles can be organized in a hierarchy. As illustrated in the figure, the applicability of
the assignments PA, RA, and RH can be constrained through conditions.

3.2.1.4 Policies

Individual rules Ry, ..., R, can be aggregated in a policy P = { Ry, ..., R, }.
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3.2.1.5 Evaluation Context

If Dy,...,D,, are the domains of the attributes in Attr, then £ is defined as Di- x ... x D+,
with Dj- = D; U {L}. The symbol L stands for “unspecified”. An evaluation contexte € £ isa
partial mapping of the attributes defined in Attr.

3.2.2 Semantics
3.2.2.1 Evaluation of Rules

An evaluation context e € £ is evaluated against the individual components of rules. A subject
specification .S applies to e Iff S maps to true w.r.t. the attribute values of e. That is,

[S]e := S(e) = (true | false).

Thereby, a predicate that is defined on attribute a will evaluate to false if a is not specified in e
(i.e., equal to L). The semantics of O, A and c are defined analogously. The applicability of a
rule R w.r.t. e is defined as

[R]e := [S]e A [O]e A [A]e A [c]e-

As an example assume that at 1 pm Dr. Kerry Weaver, who is a chief physician, intends to access
the medical records of her patients which are stored in the table MedicalRecordsTab. Thus, the
evaluation context would look as follows:

e = (role = ChiefPhysician, employment = permanent,
table = MedicalRecordsTab, method = select, time = 1pm)

As the role ChiefPhysician is a senior role of the role Physician, the evaluation result of e against
the previously introduced role R; is [R;]. = true.

3.2.2.2 Evaluation of Policies

The semantics of a policy P depends on the employed policy evaluation algorithm (abbreviated
pe-alg). We define the evaluation algorithms pe-any and pe-all:

o any rule applies: [P]P*?" .= \/,_,[R].

e all rules apply: [P]Pea := A, _p[R]..

When runtime information has to be taken into account, pe-any can be used to gradually perform
access control. Under the assumption that for each sub-activity a unique rule is defined, access
control can autonomously be performed by each sub-activity. In this case, any rule must be
determined that authorizes the execution of the respective sub-activity. This policy enforcement
strategy is illustrated in Figure 3.3(a).
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Figure 3.3: Policy enforcement strategies

In the following sections, we concentrate on centralized policy enforcements as depicted in
Figure 3.3(b). In cases when access control can be performed in advance on the layer of the
composite application, authorization checks for sub-activities are combined by applying pe-all.

In the following, we use the symbol T to represent unrestricted policies. That means,
Ve € £ : [Y]Pe19 = true.

3.2.3 Policy Combining Operators
3.2.3.1 Conjunction

Let S and S’ be two subject specifications. The conjunction of S and S’ is denoted as S' A S” with
[S A S]e = [S]e A [S]e. The conjunction operator is analogously defined on objects, actions,
conditions, and rules.

3.2.3.2 Subtraction

The subtraction of two subject specifications S and S’ is defined as S — S’ with
[S—5"]e = [S]eA—([S"]e). The subtraction operator is analogously defined on objects, actions,
conditions, and rules.

3.2.3.3 Projection

Let R = (5,0, A, c) be arule. The projection on the subjects of R is defined as IIs(R) = S. Pro-
jections on objects, actions, conditions, and privileges are accordingly defined as
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H@(R) =0, HA(R) = A, Hc(R) = ¢, and H@}A(R) = (O,A)

Let P ={Ry,...,R,} beapolicy. IIs(P) is defined as [1s(P) = {IIs(R1),...,Is(R,)}. The
remaining projection operators Il (P), I14(P), IIc(P), and I1p_4(P) are defined analogously.

We use the abbreviation S(P) = A, ..., ILs(R;) to denote those subjects that are granted all
privileges defined in P. o

3.23.4 Privilege, Rule, and Policy Relaxation

A privilege (O, A’) relaxes a privilege (O, A), denoted as (O, A) T (O, A’), iff it applies to
more (or the same) actions on more (or the same) objects. That is, ([(O, A)]. = true) implies
([(O0'; A")]. = true) for any evaluation context e. Accordingly, a rule R’ relaxes a rule R,
R C R/, iff it grants more or the same privileges to more or the same subjects under the same or
less restrictive conditions. That is, Ve € &£ with ([R]. = true) = ([R']. = true). In the same
way, P CPeal9 Priff Ve € £ @ ([P]P*29 = true) = ([P']P*29 = true).

3.2.3.5 Reduced Policies

In order to efficiently consolidate policies of composite applications, we are focusing on reduced
policies (see Section 3.3.1). Let the applied policy evaluation algorithm be pe-all. A policy P is
called reduced iff

(1) VR,R € PR#R :fec & : ([Upa(R) Alpa(R)]. = true) and
(2) VR e P: S(P) = Is(R)

A policy fulfilling (2) but not (1) can be transformed into an equivalent reduced policy by elimi-
nating overlapping rules:

Let R,, Ry € P, R, # Ry : Je € € : ([Uo a(Ry) Al a(Ry)]. = true). Substitute the two
rules R,, R, through the three combined rules R, _;, Rop, Rp—o With

o Ry y = (S(P),llpa(Ra) — o a(Ry), e (Ra)),
o Ry = (Ry N Ryp), and

o Ryo=(S(P),Hoa(Ry) — o a(Ra), e(Ry)).

3.3 Policy Consolidation

Access control policies of composite applications specify the privileges which apply to the com-
posite applications’ sub-activities. The aim of policy consolidation is to determine minimized
policies that are restricted to the functionality of the composite applications.
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3.3.1 Problem Specification

Let ApPy, ..., APPy be N > 1 (autonomous) sub-activities of the composite application Arp,
and P; be the policy that applies to App; (for 1 < i < N). We equate the permission to execute
the ™" sub-activity with the set of privileges needed for performing the actions of App;. This set
is defined by II» 4(F). In order to enforce all of these access rights, we use pe-all as evaluation
algorithm. We assume P, to be a reduced policy. Thus, as defined in Section 3.2.3.5, P; has the
following two characteristics: First, the privileges defined in II» 4(F;) are disjoint. Second, the
rules of P; apply to the same set of subjects. In some cases it might be required that the privileges
IIp 4(P;) are granted to different groups of users under varying conditions. For instance, subjects
S1 might be able to execute the application only during the day, while for subjects S, access
is restricted to the night. In such cases, P; will not fulfill the second criterion. In order to
efficiently process the set of constraints, the policy is decomposed into reduced policies which
are evaluated independently. The reducedness-property allows us to give a concise definition of
policy consolidation without restriction of the general case.

Let P, be the reduced policy for APP,. In many cases there might be no predefined policy
for ApPy, meaning that F, is equal to Y. This, for instance, is typically the case for Web ser-
vice workflows as we will see in Section 3.5. Nevertheless, the application developer might as
well provide a predefined policy that specifies the intended configuration. This approach can,
for example, be applied regarding database backed Web services, which will be discussed in
Chapter 4. The objective of policy consolidation is to evaluate P, against the policies of the
sub-applications. Its result is an optimized policy P°* that fulfills the following two criteria:

Least privilegescriterion (L P)

Each privilege defined in P°P must also be defined in at least one policy P, with1 < i < N. The
privileges defined in P°P must be sufficient to perform App, and its sub-activities.

Maximum set of subjectscriterion (MS)

Each subject that is authorized based on the original policy configurations (P;)o<;<x must also
be authorized by P, Each subject that is defined in P°"' must also be defined in at least one
policy P, with 1 <i < N and in F,.

3.3.2 Workflow Dependencies

The control flow of a composite application determines the execution order of its sub-activities.
Figure 3.4(a) sketches the structure of a composite application. Sub-activities can be executed
in sequence or in parallel.? From an access control point of view these two control patterns
denote that all sub-activities are invoked. We represent this fact through the SEQUENCE pattern
(Figure 3.4(b)). Furthermore, conditional and event based executions are possible. From the

2|terations, i.e., loops, are discussed in Section 3.3.5.
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access control perspective this denotes that only one sub-activity will be invoked, which we
represent through the so-called SwiTCcH template illustrated in Figure 3.4(c). SEQUENCE and
SwiITCH templates can be nested to model complex workflows. Apart from these kinds of control
flow dependencies further interdependencies influencing access control can exist:

a) Data-flow dependencies are given if an output parameter = of a sub-activity APp; is input to
App; and the value of x determines the result of the evaluation of policy P;.

As an example consider the accounting system introduced in Section 3.1. Let’s assume that
Alice, who is still in training, is not allowed to draw up an account if the total costs exceed
10,000$. As the total amount is determined in step 3 of Figure 3.1, its outcome determines
Alice’s authorization for the fourth sub-activity.

b) External dependencies are dependencies by parameters external to the system, like time. For
example, P, and P; might define time constraints that restrict the execution of App; and APP,
to disjoint time frames. That is, the conjunction of conditions defined in P, and P; constitute
a contradiction. Nevertheless, the control-flow can be consistent due to the execution order
(e.g., think of delays during long-running transactions).

In Section 3.3.3 and Section 3.3.4 we describe the consolidation of access control policies for the
two patterns SEQUENCE and SwWITCH. In case no interdependencies in the form of a) or b) exist,
it is sufficient to perform access control solely through App, based on the consolidated policy
PPt Otherwise, the sub-activities still need to enforce access control on their own. In any case,
PPt allows to revise the security configuration of ApPp, by determining appropriate user and role
profiles as shown in Section 3.3.6.

3.3.3 Analysisof SEQUENCE Patterns

For a SEQUENCE pattern to be consistent from the access control perspective, the following
two conditions must be met: First, the access rights defined in 7, must include those privileges
defined in the policies (P;),<;<n. Second, there must be at least one subject that is granted these
privileges. Otherwise, the access specifications are conflicting, preventing the execution of ApPy,.
Formally:

V1<i<N:VRe P, :3R € Py :llp a(R) C lp 4(R) (3.1)
Je € € : [Saile = true for Sy = /\ S(P) (3.2)
0<i<N

These prerequisites are schematically illustrated in Figure 3.5. The consolidated policy P(‘;ﬁ’,t) is
defined as:

Paiy = {(San, o a(R), (Tle(R) ATIe(R')) |Vi € {1,....N}: Re P, R € Py:
Mo 4(R) C o 4(R)}

The evaluation algorithm used for P(‘;ﬂt) is pe-all. If the policies (P;);<;<x fulfill LP, then LP can
also be inferred for Py, This is due to the privileges of gy being restricted to those defined

(3.3)
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Figure 3.4: Composite patterns

in (P;)1<;<n and its rules being constrained through conjunctions of the respective conditions
defined in these policies and P,. Thus, P(‘;ﬂt) will not contain privileges which do not apply to the
underlying sub-activities.> Sub-activities can perform similar access on the same objects, like
scans of the same tables of a database. Thus, P(Zﬁ’,t) — which aggregates the privileges defined in
(P;)1<i<n —might contain redundant access rules. Redundancies, i.e., overlapping privileges can
be eliminated according to the optimization described in Section 3.2.3.5.

3Functionality directly provided by Appy is also modeled as a sub-activity for the consolidation process.
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Condition (3.1) Condition (3.2)

Figure 3.5: Prerequisites for the consolidation of F, w.r.t. P, and P,

3.34 Analysisof SwiTCH Patterns

The access control configurations of SwiTCH patterns can be consolidated from two different
perspectives. The full authorization approach enforces that each subject which is defined in the
consolidated policy is authorized for any of the (APP;)1<;<, independent of which sub-activity
will actually be executed at runtime. As a consequence, the consolidated policy corresponds to
Pgyy defined in the previous section.

On the other hand, partial authorization distinguishes the different execution paths. Subjects
might be authorized to execute APP, in case a particular App; is invoked next, but will be blocked
in any other case. Thus, in order to efficiently evaluate a SwiTCH pattern, the distinguished ex-
ecution branches have to be analyzed separately. Consequently, up to /V security configurations
have to be considered. In order to specify the optimized policy for the ™" branch, the policies P,
and P, are consolidated and the following must be true:

VReP;: IR € By HO’A<R) C HQA(R/) (34)
Je € £:[SY], = true for S = S(Py) AS(P) (3.5)
The consolidated policy for the i branch is defined as:
P = {(8Y, Ho.a(R), (e(R) ALle(R))) |R € P, R € Py : Loa(R) E Hoa(R)} (36)
Again, the evaluation algorithm is pe-all.
Note that non-executability of an application due to conflicting and / or unsatisfiable conditions
is beyond the scope of this analysis. As conditions can contain user defined functions (see Sec-
tion 3.2), satisfiability is undecidable in the general case. The objectives of the proposed policy

consolidation are to determine the least required privileges (LP) and the maximum set of autho-
rized subjects (MS).

3.3.5 Structural Analysis

As mentioned above, from the access control perspective, control flow structures denoting the
execution of all sub-activities have to be differentiated from those denoting the execution of a
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Figure 3.6: Tree representation of the composite application ApP, illustrated in Figure 3.4(a)

single sub-activity. These concepts are represented by the SEQUENCE and SWITCH patterns,
respectively. SEQUENCE and SwWITCH patterns can be nested. The control flow of a composite
application can then be described by means of a tree whose nodes are SEQUENCE and SWITCH
patterns and whose leaves represent invocations of sub-activities. Figure 3.6 shows the tree
representation of the composite application illustrated in Figure 3.4(a).

Determining the consolidated policy for App, proceeds by means of a bottom-up analysis of
the tree representation. In the given example, first the consolidated policy for the SEQUENCE
node that combines Aprps and APP, is determined by evaluating P; and P, as described in Sec-
tion 3.3.3. The resulting policy and P, are then input to the policy consolidation of the SwiTCH
node according to Section 3.3.4. Finally, the consolidated policy for ApPp, is the result of the
analysis of the topmost SEQUENCE node.

The complexity for performing the structural analysis depends on whether the full authoriza-
tion or the partial authorization approach is employed. In case of the full authorization approach,
the number of policy comparisons depends linearly on the number of nodes. Worst case com-
plexity increases significantly if partial authorizations are determined. Considering an n-ary tree
of height m, up to n™ cases have to be evaluated in the worst case. This upper bound is attained
if each inner node is a SwiTCH node and for each such SwiTcH node the maximum number of
subcases has to be considered.

When determining partial authorization, we also need to take into account loop nested
switches, i.e., SWITCH patterns which can be executed in a loop. Figure 3.7 illustrates the basic
structure of a loop nested switch. The possible execution paths can be described through the
regular expression A(B|C)+. But, regarding policy consolidation, that does not mean that an
uncountable number of cases needs to be differentiated. For instance, the paths A — B — C,
A— C — B,andeven A — B — (' — ... are equivalent from the access control point
of view. Subjects authorized to execute any of these paths need to be granted execution rights
for all three sub-activities. That is, for a static analysis, execution order and reoccurrences are
irrelevant. In the given example, distinguished partial authorizations have to be evaluated for
the paths A — B, A — C'and A — B — C. In general, if a switch of k£ sub-activities is nested
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Figure 3.7: Example of a loop nested switch

within a loop, then up to

k
> ( k ) —2F 1
i=1 !

partial authorization cases have to be distinguished.

The partial authorization approach will be of minor practical relevance if the top-level poli-
cies include an unmanageable number of case distinctions, reducing its interpretability by the
software engineer. Therefore, it is reasonable to consider partial authorization only if the work-
flow size and the number of switches are limited. That means, the partial authorization approach
will only be applied for selected scenarios. For instance, it is meaningful for business processes
that consist of sub-processes which are designed for specific job profiles. For example, the finan-
cial accounting system of a company might include a sub-process for the calculation of salaries
and a sub-process for the booking of goods receipt and issue. If the individual sub-processes
are to be executed by different accountants, the partial authorization approach can be applied to
determine the different job profiles.

3.3.6 Evaluation of the Policy Consolidation Approach

We assume that the policies (P;)o<;<x Of the sub-activities are static, meaning that they are not
modified at runtime (which might be the case for some mobile application scenarios). Otherwise,
in case of policy updates, the consolidation process has to be rerun. The result of the consolida-
tion process is a policy P° that applies to ApP, and all its sub-activities (if PP = P(‘;ﬂt)) or only
to specific branches App, — APP; (if PP = P(Of)’t), respectively.

3.3.6.1 Static Optimization

In case external and dataflow dependencies are excluded, P allows to adjust the access control
of the composite application ApPy and to reduce policy enforcement costs. As each execution
which is granted based on PP will also be granted by the sub-activities, it is sufficient to en-
force access control solely at APP, thus, saving repeated and potentially redundant enforcements
through the sub-activities. The other way round, subjects that are not authorized by the policies
of the sub-activities are not authorized according to P either. This is because (1) each sub-
ject which is defined in P° is also defined in the respective sub-activities’ policies and (2) each
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privilege granted to these subjects based on the sub-activities’ policies is also granted based on
PP These claims are justified through the definition of policy P(‘;ﬁ’,t) (equation (3.3)) and pol-
icy P(‘f)’t (equation (3.6)), respectively. In particular, (1) is justified through conditions (3.1) and
(3.4), while (2) is true due to conditions (3.2) and (3.5). The static analysis allows to receive a
consolidated view onto the set of authorized users (MS) and the least required privileges (LP),

enabling the following optimizations:

Evaluation of MS;  S(P°") specifies those subjects that are authorized to execute the workflow
(branch) or general composite application, respectively. The aggregated information S(P°") al-
lows application developers to check whether the policy complies with the intended security
specifications, which is less time-consuming than an exhaustive evaluation of the sub-activities’
policies. They can detect over-privileged users or conflicts if the conditions defined in Sec-
tion 3.3.3 and Section 3.3.4 are not fulfilled. Furthermore, it allows to infer least required roles
if role based access control is employed. In this regard, a least required role is a minimal role
that grants process execution without demanding for further intermediary role activations. This
“one role will do”-approach is especially relevant for business processes that are typically de-
vised for specific job functions. Least required roles are unique for limited role hierarchies but
not necessarily for general role hierarchies. As an example consider the following role hierarchy:

rg\ % r5
r-1 r2

The infima of the role hierarchy are r; and r5. If users need to be members of r; and r, in order
to be allowed to execute the composite application, least required roles are the least common
senior roles, i.e., r4, and r5 in the given example.

Evaluation of LP:  TIp _4(P°") represents the set of privileges needed for executing the com-
posite application and corresponding sub-activities. In the meaning of a reverse security engi-
neering, this information allows to define task specific roles. They are called task specific as they
group exactly those privileges that are required for the composite application’s functionality —
which is not necessarily the case for more generic least required roles. Least required roles are
roles that are already defined in a role hierarchy, while task specific roles are newly defined roles
that are tailored to the security requirements of the composite application.

3.3.6.2 Filtering Requests

In case dataflow and temporal dependencies have to be taken into account, access control has to
be performed by the autonomous sub-activities. For instance, reconsider the use case discussed
in Section 3.3.2: Only after step 3 has been executed, the respective amount due is known so
that Alice’s authorization for step 4 can be determined. Thus, Alice cannot be authorized for
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all sub-activities of the accounting system in advance. Though security checks by the individ-
ual sub-activities cannot be saved completely, consolidated policies still provide optimization
capabilities: As we known that only subjects in S(P°") are candidates for the execution of the
workflow, other requesters can be blocked immediately and unnecessary executions be avoided.

3.4 Algorithmic Solutions

For an implementation of the described policy consolidation technique, algorithmic solutions
for the evaluation of predicate conjunctions and subtractions and for the validation of privilege
relaxation are required.

3.4.1 Implementing the Conjunction Operator

Equations (3.2) and (3.5) introduce Sy and S as conjunctions of subject specifications. The
conjunction operator is semantically equivalent to the set theoretical intersection operator. That
is, Sai and S@ can be interpreted as the intersection of subject sets. Let S and S” be two subject
specifications. According to the policy model, S and S’ are represented via disjunctions of
predicate conjunctions over attributes in S-Attr:

S=s1V...Vsg=(s110N...As1))V...V(sg1 A...Asg;) and
S =8\ V.. Vs = (i AN AS )V V(S A Asyy)

The attributes in S-Attr are also called the dimensions. We assume all dimensions in .S and S’ to
be specified. If a conjunction s; is not constrained in dimension d, then the respective predicate
s;.q represents the whole domain of d. According to Section 3.2.3, the intersection of .S and .S
contradictory, i.e., unsatisfiable by any evaluation context. Such terms constitute unnecessary
parts of a policy and shall be omitted to keep policy specifications clear. Figure 3.8 presents an
pseudo-code implementation for computing a condensed representation of S A S’. Algorithm
intersect is of polynomial time complexity w.r.t. the number of conjunctive subterms and the
number of dimensions [. We illustrate the algorithm by means of an example. Consider the
following two subject descriptions (based on the example role hierarchy shown in Figure 2.2(a)
on page 11):

S = (s1) = (role J Nurse Ayop > 1) and
S" = (s} Vv s,) = (role J Admin. Pers. A yop > 0) V
(role 1 Health Pers. A yop > 2 Ayop < 4)

S represents all subjects that are granted the Nurse role and that have at least one year of practice
(abbrev. yop). S’ represents administrative employees and all subjects that are granted senior
roles of the Health Personnel role with at least two and at most four years of practice. Thus,
the dimensions are role and yop. While the domain of role is a finite lattice (defined by the role
hierarchy), the domain of yop is [0, +-o0], i.e., an interval.
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Input : Subject specifications S, .S’ in disjunctive normal form:
S=s1V...Vs,andS" =5, V...Vs),

Output: The reduced representation of
SAS = V ( A <5i7d A s}d))

1<d<l

U = false;
foreach conjunction s; of S do
foreach conjunction s’ of S” do
foreach dimensiond =1...7do
Yq = reduce(s;q A s} 4);
endfch
=0V (@A Ay,
endfch
endfch
return ;

© 00 N O OO B~ W N P
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o

Figure 3.8: Algorithm intersect

As 51 0e = {Nurse, Head Nurse} and s} . = {Admin. Pers.}, s; and s are disjoint in the
role-dimension. That is, the conjunction (sy role A S'1,m|e) is a contradiction and the overlap in the
yop dimension is ineffectual as the conjunctive add-on in line 7 of the algorithm in Figure 3.8
evaluates to false and can be omitted.

In contrast to this, s; and s, overlap in each dimension as illustrated in Figure 3.9. The
conjunction (yop > 1) A (yop > 2 Ayop < 4) is reduced to (yop > 2 Ayop < 4). The predicates
S1,role aNd s} e define the two finite sets

¢, = {Nurse, Head Nurse} and
@), = {Nurse, Head Nurse, Physician, Internist, Surgeon}.

Thus, (s1ole A\ 85 01e) 1S €Quivalent to &; N &, = {Nurse, Head Nurse}. The intersection can be
represented through the predicate (role J Nurse), as the role Nurse is the infimum of ®; N @
according to the example role hierarchy. Thus, S; A S; = (role 2 Nurse A yop > 2 Ayop < 4),
i.e., the intersection consists of those subjects that are granted the Nurse role and that have at
least two and at most four years of practice.

3.4.2 Checking Privilege Relaxation

Let (O, A) and (O’, A’) be two privileges. As objects and actions are defined on disjoint sets
of attribute identifiers (O-Attr and A-Attr, see Section 3.2.1.2) and according to the definition of
privilege relaxation (Section 3.2.3.4), (O’, A) relaxes (O, A) if the following holds:

Ve € £ : ([O]. = true A [A]. = true) = ([O']. = true A [A"]. = true).
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Years of practice s, = (role 7 Health Personnel A yop 22 A yop<4) [
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Figure 3.9: Matching conjunctive terms

Therefore, the privilege relaxation problem can be reduced to the implication problem:

“Let T = (t4 V... Vix)and T" = (¢} vV ... V ') be disjunctions of predicate
conjunctions. 7' implies 7", denoted as 7" = 7", if and only if every evaluation
context which is satisfying 7" is also satisfying 7"

Guo, Sun, and Weiss (1996)

Informally, 7" = 7" means that 7" is more generic than 7". To evaluate whether 7" = 7"
holds, each predicate conjunction ¢; of 7" is compared to the predicate conjunctions ¢ of 7". The
following three cases can occur:

1. t; implies ¢, i.e., t; = t’. Then a match for ¢; has been found.

2. t; and ¢} are incomparable, meaning that (¢; A =) = ¢;. Then ¢; has to be compared with the
remaining predicate conjunctions of 7" to find possible matches.

3. t; and ¢} describe partially overlapping data sets: The overlap is (¢; A ¢}). The remainder
(t; A —t}) is separately compared with the predicate conjunctions of 7"

Figure 3.10 shows a pseudo-code implementation of implies for evaluating predicate implica-
tions. 7" implies 7" if all predicate conjunctions ¢; of 7" are subsumed by 7. In this case, the
remainder A is equal to false. In line 6, the sub-procedure subtract is invoked which calculates
the remainder of ¢; w.r.t. ¢}, i.e.,, § = (t; A —t}) given in disjunctive normal form (DNF). The
individual predicate conjunctions of ¢ are compared separately to the remaining conjunctions of
T’ through recursive invocations of implies in line 8 of the algorithm in Figure 3.10.

A pseudo-code implementation of subtract is depicted in Figure 3.11. Computing the predicate
subtraction is done in a way similar to intersect by comparing the conjunctive terms ¢; and ¢’ in
each dimension d (line 2-11). If ¢; and ¢} do not overlap in any dimension d, ¢; and ¢’; represent
disjoint data sets and the remainder is ¢;. The overall overlap of ¢; and ¢’ is iteratively constructed
by the helping variable work. The non-matching parts of ¢; are aggregated in .
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Input : 7, 7" in disjunctive normal form:
T:tl\/\/tkandT/:tll\/\/t/k/
Output: 7" — T

if ¥ =0 then
returnT;
endif
A = false;
foreach conjunctive term ¢; of T'= (¢, V... V t;) do
d = subtract(t;, t});
if 0 # false then
A = AVvimplies(o,ty, V...V t.);
endif
endfch
1 return A;
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Figure 3.10: Algorithm implies

Input : Predicate conjunctions ¢ and t':
ti=tia A Atgandth =t AL AL,

Output : ¢t — ¢

Remark: We use the variable work to represent the stepwise computation of the
intersection of ¢ and ¢'.

1 0 = false,work = t; ; // work=wiA...\w;
2ford=1...1do

3 wh = (tig /\t;d) ; // the overlap of t;4 and t}d
4 work = (Wi Ao AW AW A Wag - A wy);

5 if w), = false then

6 returnt; ; // ti and t; represent disjoint data sets
7 dseif w), #t; 4 then

8 w="tig —|t;~7d; // the remainder of t;4 minus t;d
9 =0V (Wi A... AW | ANwAwgyr ... \Nw)

10 endif

11 endfor

12 return DNF of ¢; // w in line 8 is a predicate disjunction

Figure 3.11: Algorithm subtract

As an example assume a relational database with the table Employees which has the attributes
Name, Gender, Salary, and Job (abbreviated na, ge, sa, and jo). Possible job values are the
categories health personnel, administrative personnel, and technical personnel (for short HP, AP,
and TP). Two privileges are defined on this table: The first one states that the complete table can
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Job (jo)
d,
Admin. Pers.
Gender (ge)
Health Pers. 7
male
Tech. Pers. female
Salary (sa)

50' 100’ 150"

Figure 3.12: Visualization of predicate subtraction

be accessed via the select-operator. The second privilege restricts selections exclusively to the
data of female health care employees that earn more than 50’ $ and less than 100" $. We use the
symbol L to represent unrestricted attribute values. The object specifications of both privileges
are represented by the following two predicate conjunctions:

t=Ma=LAge=LAsa=LAjo=1)
t'= (na=_ A ge="female A sa> 50" A sa < 100’ A jo=HP)

Obviously, t is more generic than ¢/, i.e., t relaxes ¢/, but not the other way round. Whether
t’' relaxes t can be evaluated by subtracting ¢’ from ¢, i.e., by calling subtract(t, ), and testing
whether the remainder is empty. The following table shows the evaluation steps if the attributes
are evaluated in the order Name, Gender, Salary, and Job:

Eval.
attr.

na (na=L Age=1l Asa=L Ajo=1)

Variable work Remainders

ge (na=1 Age=femaleA sa=L Ajo=1) | 6 =(na=L Age=maleA sa=1 Ajo=1)
sa (na =1 A ge = female A do = (na=1 Age="female A sa <50 A jo=1)
sa > 50" A sa < 100’ A jo=L1) 63 = (na=1 Age="female A sa> 100" A jo=1)
jo (na =L A ge = female A 44 = (na =L A ge = female A sa > 50'A
sa > 50’ A sa < 100" A jo = HP) sa < 100’ A jo € {TP,AP})

Figure 3.12 illustrates the comparison of ¢ and ¢’ in the dimensions Gender, Salary, and Job. It
shows that in the Salary-dimension, ¢ divides work into 3 components — the overlapping part
and two remainder predicates d, and d3. This is the maximum number of remainder predicates
that can be generated in one step if the attribute’s domain is a totally ordered set (the domain of
Salary is [0, +oo[). Things are different if the attribute’s domain is a partially ordered finite set,
as is the case for the dimension Job. In the figure, it is shown that 6, ; and d4» are the remainder
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predicates of the comparison in the Job-dimension. Instead of enumerating all attribute values
(AP and TP) in distinct predicates, the remainder is internally represented as an aggregate of the
form (jo € {AP, TP}) as illustrated in the table above.

Policy consolidation is performed at the time a composite application is developed or when the
underlying sub-activities’ policies are modified. Although policy consolidation is not considered
to be a mission critical task, its usability nevertheless depends on the used algorithms’ com-
plexity. Unfortunately, the worst case time complexity of privilege relaxation is exponential with
regard to the input parameter &’. The described privilege implication problem is closely related to
other well known computationally hard issues like query subsumption or the satisfiability prob-
lem which, for example, have been analyzed by Rosenkrantz and Hunt (1980), Sun et al. (1989),
and Guo et al.