
Technische Universität München
Fakultät für Informatik

Lehrstuhl III – Datenbanksysteme

Efficient Access Control for Service-oriented IT
Infrastructures

Diplom-Informatiker Univ.
Martin Rudolf Wimmer

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Krçmar

Prüfer der Dissertation:
1. Univ.-Prof. Alfons Kemper, Ph. D.
2. Univ.-Prof. Dr. Joachim Posegga,

Universität Hamburg

Die Dissertation wurde am 18.12.2006 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 08.05.2007 angenommen.

Acknowledgments

Above all, I would like to thank Prof. Alfons Kemper, Ph. D., my supervisor at the TU
München. He supported me with valuable comments and provided encouragement and guid-
ance throughout my work on this thesis. I enjoyed working with his research group and appre-
ciated the very pleasant working atmosphere created by my colleagues Stefan Aulbach, Daniel
Gmach, Benjamin Gufler, Stefan Krompaß, Richard Kuntschke, Angelika Reiser, Tobias Scholl,
Stefan Scholz, Stefan Seltzsam, and Bernhard Stegmaier. Not to forget the research group of
Prof. Dr. Torsten Grust, Jan Rittinger and Jens Teubner, and my former colleagues at the Univer-
sity of Passau, Markus Keidl, Christian Wiesner, and Bernhard Zeller. I also would like to thank
Evi Kollmann, the good soul of the group.

I also thank Martina-Cezara Albutiu, Daniela Eberhardt, Pia Ehrnlechner, Armin Fischer,
Jakob Gajdzik, and Alexander Schuster, whose theses I supervised. They did an excellent work
on implementing prototypes which allowed me to test and improve the access control concepts
presented in this thesis. Policy consolidation strategies have been put to the test in the context of
a cooperation with SAP Research, for which I want to thank Volkmar Lotz and Maarten Rits of
SAP Research, Sophia Antipolis. I also thank Prof. Dr. Joachim Posegga for being the second
supervisor of my thesis.

I thank all the people who gave me helpful criticism and advice on my doctoral thesis. In
particular, I want to thank Richard Kuntschke for his thorough and fast proofreading, giving me
valuable support to improve my phrasing.

Finally, I want to say thanks to my family and especially to my wife Andrea for supporting
me in all my endeavors and for reminding me that there are still other things out there apart from
computers and work.

München, June 2007 Martin Wimmer

Abstract

Web services represent the emerging technology for many enterprise application architec-
tures. Due to widely accepted standards for the specification of service interfaces and commu-
nication protocols, they constitute the preferred approach for integrating resources and legacy
systems, easing the reusability of modules and the reconfiguration of higher-order business pro-
cesses. Furthermore, inter-organizational value creation chains can be realized by the seam-
less integration of distributed services. Besides these amenities, the emerging service-oriented
computing concepts also introduce new security challenges. In this thesis, we present flexi-
ble authorization techniques providing efficient access control for service-oriented IT infrastruc-
tures. In particular, the proposed authorization strategies (1) provide efficient access control for
intra-organizational service compositions, (2) support the reliable integration of resources like
database systems into service-oriented architectures, and (3) enable optimized policy enforce-
ments in dynamic Web service coalitions.

As Web services represent self-contained modules that autonomously enforce security, user
requests are iteratively authorized and evaluated by service compositions. Apart from repeated
and possibly redundant authorization checks, performance drawbacks can arise due to unnec-
essary service executions. This happens, for example, if users are allowed to execute certain
sub-processes but lack authorizations for later stages of a workflow. Furthermore, considering
the execution of Web service transactions, this can demand for rollbacks or costly compensating
transactions. These drawbacks can be avoided through the early filtering of ultimately unautho-
rized requests, thus, providing solutions for issue (1). Our contributions are a formal model and
algorithmic solutions for consolidating the access control of composite applications. We demon-
strate by means of Web service workflows how access control can be shifted to the layer of the
composite application, thus, reducing policy enforcement costs.

Considering issue (2), we propose a security engineering approach for the reliable imple-
mentation of database backed Web services. Today, often over-privileged database authorities
are used to realize the interaction between services and underlying database systems. In case of
security vulnerabilities on the services’ side, confidential data is in danger of being disclosed.
In this thesis, we describe our approach for the semi-automatic generation of service interfaces
that realize the principle of least privilege. Based on the specification of the service-to-database
interaction, the access control of Web services is defined and consolidated with the security con-
figuration of the underlying database systems.

In order to provide access on local resources within larger collaboration networks, privileges
need to be granted to entities of cooperating domains. We present our authorization infrastruc-
ture supporting the delegation of privileges and roles across organizations. Access control in
loosely coupled federations is performed through the interplay of local and distributed policy en-
forcements. By use of adequate caching techniques, our proposed access control strategy is also
applicable for large-scale and dynamically growing coalitions, as addressed by issue (3). Hence,
the combination of the proposed techniques is an approach to provide efficient and flexible access
control for service-oriented IT infrastructures.

Contents

1 Introduction and Overview 1
1.1 Classification of Service Compositions . 3
1.2 Contributions . 5
1.3 Outline . 6

2 Access Control Models and Terminology 7
2.1 The Role of Access Control . 7
2.2 Access Control Models . 9

2.2.1 Mandatory Access Control . 9
2.2.2 Discretionary Access Control . 10
2.2.3 Role Based Access Control . 11
2.2.4 Administration of Authorization . 12

2.3 Access Control Requirements of Service-oriented Architectures 13
2.4 Design Principles of our Authorization Framework 14

3 Optimized Access Control for Composite Applications and Workflows 17
3.1 Motivation . 18
3.2 Policy Model . 20

3.2.1 Notation . 20
3.2.2 Semantics . 22
3.2.3 Policy Combining Operators . 23

3.3 Policy Consolidation . 24
3.3.1 Problem Specification . 25
3.3.2 Workflow Dependencies . 25
3.3.3 Analysis of SEQUENCE Patterns . 26
3.3.4 Analysis of SWITCH Patterns . 28
3.3.5 Structural Analysis . 28

viii Contents

3.3.6 Evaluation of the Policy Consolidation Approach 30
3.4 Algorithmic Solutions . 32

3.4.1 Implementing the Conjunction Operator 32
3.4.2 Checking Privilege Relaxation . 33
3.4.3 Implementing the Subtraction Operator 37

3.5 Optimizing the Access Control of Intra-organizational Web Service Workflows . 37
3.5.1 Running Example . 37
3.5.2 Performing Policy Consolidation . 41
3.5.3 Implementation . 44

3.6 Related Work . 46
3.7 Conclusion . 49

4 Security Engineering for Database Backed Web Services 51
4.1 Motivation . 52
4.2 Access Control of Database Systems and Web Services – the two Poles Apart . . 55

4.2.1 Access Control of Database Management Systems 55
4.2.2 Access Control Mechanisms for Web Services 58
4.2.3 Access Control of Database Web Services 60

4.3 Security Engineering for Database Web Services – Bridging the Gap 64
4.3.1 Determining the Least Required Privileges 64
4.3.2 Automated Policy Generation . 75
4.3.3 Extraction of Database Policies . 76
4.3.4 Engineering Adaptable Access Control Policies 76

4.4 Implementation . 79
4.5 Related Work . 82
4.6 Conclusion . 84

5 Access Control in Dynamic Service Coalitions 85
5.1 Motivation . 86
5.2 Extended Policy Model . 88

5.2.1 Terminology and Notation . 88
5.2.2 Multistep Delegations . 91
5.2.3 Policy Representation and Implementation 91
5.2.4 Revocation Schemes . 92

5.3 Policy Evaluation . 96
5.3.1 Local Policy Evaluation . 96
5.3.2 Distributed Policy Evaluation . 97
5.3.3 Example . 99

5.4 Caching of Authorization Paths . 101
5.4.1 Caching Strategies . 103
5.4.2 Experimental Results . 104

5.5 Application Scenarios . 107
5.5.1 Support of Loosely and Tightly Coupled Federations 107

Contents ix

5.5.2 Treating Revocations During (Long-lasting) Transactions 108
5.6 Related Work . 108
5.7 Conclusion . 111

6 Conclusion 113

A Graphical Workflow Notation 115

B Probabilistic Performance Estimation of Policy Comparisons 116

C Policy Representation 119
C.1 Permission Policies . 120
C.2 Base Policies . 121
C.3 Role Assignment Policies . 122
C.4 Role Delegation and Revocation Policies . 123

Bibliography 127

List of Figures

1.1 Traditional and upcoming service-oriented middleware infrastructures 2
1.2 Classification of composite applications depending on locality and coupling . . . 4

2.1 Policy enforcement strategies . 8
2.2 Example role hierarchies . 11

3.1 Multilayered architecture of a hospital’s accounting system 18
3.2 Employed policy model . 21
3.3 Policy enforcement strategies . 23
3.4 Composite patterns . 27
3.5 Prerequisites for the consolidation of P0 w.r.t. P1 and P2 28
3.6 Tree representation of the composite application APP0 illustrated in Figure 3.4(a) 29
3.7 Example of a loop nested switch . 30
3.8 Algorithm intersect . 33
3.9 Matching conjunctive terms . 34
3.10 Algorithm implies . 35
3.11 Algorithm subtract . 35
3.12 Visualization of predicate subtraction . 36
3.13 Example of an e-health (Web service) workflow 38
3.14 BPEL4WS-extract and workflow tree representation of the e-health process . . . 40
3.15 Optimizing the access control through policy enforcements at the workflow layer 43
3.16 Processing steps of the policy consolidation prototype 45
3.17 SAP Research’s workflow management system 46
3.18 Policy consolidation within SAP Research’s workflow management tool-suite . . 47

4.1 Reducing security vulnerabilities through access corridors 53
4.2 Architecture of a simple database service . 54
4.3 Access control granularity levels of RDBMS . 55

List of Figures xi

4.4 Control flow of the policy enforcement process 59
4.5 XACML policy model . 60
4.6 Parse tree . 73
4.7 Dependency graph . 74
4.8 Semi-automatic security engineering for database Web services 78
4.9 Adaptive policy management . 79
4.10 Example for integrating database queries into XACML policies 81
4.11 Policy evaluation process of the ServiceGlobe security system 82

5.1 Intra-organizational and remote service executions 87
5.2 Extended policy model supporting role delegations 90
5.3 Effects of different revocation schemes . 94
5.4 Distributed policy evaluation . 99
5.5 Distributed policy evaluation in a dynamic coalition scenario 100
5.6 Experimental settings and results . 106

CHAPTER 1

Introduction and Overview

A company’s economic success depends to a great extent on its possibilities to quickly react upon
market changes by adapting its portfolio and services to the customers’ needs. This demand for
flexibility is also reflected by the design of current and future information systems. Monolithic
middleware systems are increasingly replaced by service-oriented architectures. One of the most
prominent representatives confirming this development is SAP’s Enterprise Service Architec-
ture (ESA) with its enterprise services repository and the integration platform NetWeaver which
are aiming to supersede SAP R/3.1 In the course of this technological trend, applications are
decomposed into their basic functionalities which are provided in form of self-contained soft-
ware components. These can flexibly be linked to realize higher-order business processes. Thus,
service-oriented architectures often better support the reuse of modules and the reconfiguration
of business processes than traditional middleware architectures.

Apart from e-commerce, the service-oriented computing paradigm also found its way into
e-science and e-health applications. Massively distributed applications can be realized through
inter-organizational service orchestrations. For instance, astrophysical observations can be orga-
nized via grid technology or diagnostic findings can be exchanged among physicians and medical
specialists. The most widely used technology for the realization of service-oriented middle-
wares are Web services that excel in high interoperability. They allow higher-order business
processes to be realized via compositions of specialized services. Thereby, service composi-
tions can include local as well as distributed services of various service providers as indicated in
Figure 1.1(b). This is enabled by widely adopted standards for service description and discov-
ery as well as communication protocols.2 The most important specifications in this regard are
the XML-based Web Services Description Language (WSDL), Universal Description, Discovery
and Integration (UDDI), and the Simple Object Access Protocol (SOAP).

1See [Woods (2004)].
2See [Weerawarana et al. (2005)].

2 Introduction and Overview

(a) Traditional three-tier architecture (adopted from
[Kemper and Eickler (2006)])

LAN

WAN/
LAN

(b) Three-tier architecture with service-oriented mid-
dleware

Figure 1.1: Traditional and upcoming service-oriented middleware infrastructures

On the one hand, service-oriented computing enables high interoperability and flexibility. On
the other hand, it also brings about new security concerns. In his talk at the ETRICS 2006 con-
ference, Sachar Paulus, chief security officer of SAP, pointed out that the emergence of service-
oriented architectures, in particular the decomposition of applications into autonomous services,
led to

“A system security mindset shift:
From building and managing elephants
to maintaining and directing ant colonies.”

As services are accessible via Internet protocols like HTTP, they demand for secure execution,
in particular, secure messaging over potentially insecure channels. Thus, similar to classical
Web applications, message integrity and confidentiality have to be ensured.3 By use of existing
security standards like the Security Assertion Markup Language (SAML) and the WS-Security
framework, security for service-oriented architectures can be implemented reliably.4 Neverthe-
less, efficiency remains an open issue. In the above allegory, the ants (i.e., the services) represent
autonomous individuals. From the security viewpoint this denotes that services have their own
security requirements which they enforce on their own. Thus, access control of business pro-
cesses that are realized by means of service compositions is conducted iteratively. Many busi-
ness processes like order processing or financial accounting are rarely modified. Hence, they
constitute more or less static workflows which are executed frequently. For such processes, one
obvious drawback of the separation of security enforcements is its negative impact on perfor-
mance. Therefore, new strategies are required to make policy evaluation of service compositions
efficient enough for large-scale applications.

As Web services are used to integrate existing applications and legacy systems into service-
oriented middlewares,5 security not only needs to be ensured on the services’ layer, but also for
the underlying resources. Typically, as highlighted in Figure 1.1(b), many enterprise services

3See [Wimmer et al. (2006c)].
4See [Cantor et al. (2005)] and [Nadalin et al. (2006)].
5See, for example, [Linthicum (2001, 2003)] and [Weilbach and Herger (2005)].

1.1 Classification of Service Compositions 3

rely on database functionality. While it can be meaningful for traditional application servers
to provide full access on underlying database systems, the same does not hold for services that
usually only require access to a rather limited extract of the data. In case over-privileged ac-
counts are used to interface with the database systems, malicious users succeeding in exploiting
security flaws in service implementations will also obtain comprehensive access permissions on
the database systems. In order to avoid such threats, the access control of services needs to be
restricted to the least required privileges.

Web services not only provide the technological basis for the mentioned intra-company appli-
cation integration but, above all, are particularly suitable for realizing inter-organizational value
creation chains. Handling requests on distributed resources in a network of cooperating organi-
zations demands for a flexible and capable authorization framework. Many distributed e-science
networks are examples of dynamic virtual organizations where partners can join and resign on
demand. In order to enter a community, access rights have to be granted to members of the new
partner organizations. Depending on the assumed trust relationships, various privilege delegation
schemes and designs of collaboration networks are possible. For instance, access control can be
realized by a central authority in case of tightly coupled partners that trust each other. Differ-
ent access control strategies are required for dynamic service coalitions where the organizations
have to retain their authorization autonomy. To give an example, access control that is based
on the identity of users usually constitutes a limiting factor for dynamically growing collabora-
tion networks. Instead, authorization has to be enforced based on the requesters’ characterizing
attributes like their job profiles.

1.1 Classification of Service Compositions

Web service choreographies and generic composite applications can be classified with regard to
the dimensions locality and coupling as illustrated in Figure 1.2. Locality denotes the differenti-
ation between intra- and inter-organizational composite applications, depending on whether only
local services or also distributed resources of cooperating service providers are used. Due to sub-
activities autonomously enforcing security, additional overhead arises when performing access
control of composite applications. Furthermore, the individual security policies might be con-
flicting, hindering the successful execution of a composite application. Hence, a prerequisite for
the reliable implementation of intra-organizational composite applications is the consolidation
of access control policies. In order to enable inter-organizational workflows, the authorization
infrastructure has to support the integration of distributed authorization schemes. For members
of a federation being able to access distributed resources, access rights need to be assigned across
administrative boundaries. Thus, by means of privilege delegations, collaboration networks can
be established.

Access control of composite applications can be performed either in a centralized or de-
centralized manner, depending on the type of coupling. A system is called tightly coupled if
its underlying resources are permanently integrated. For example, classical enterprise resource
planning systems are rather monolithic middleware systems with the underlying database sys-
tems usually being tightly integrated. Analogously, database backed services can be regarded

4 Introduction and Overview

ti
g
h
tl
y
 c
o
u
p
le
d

lo
o
se
ly
 c
o
u
p
le
d

Figure 1.2: Classification of composite applications depending on locality and coupling

as tightly coupled composite applications as well. Loosely coupled systems on the other hand
allow dynamic substitutions of services and integrated resources. That is, services can flexibly
be integrated and replaced on demand, which is also referred to as dynamic service selection.6

While in tightly coupled systems access control can often be realized in a centralized manner,
resources and services that are loosely interlinked need to retain their authorization autonomy. In
loosely coupled distributed systems, these characteristics demand for decentralized, distributed
policy evaluation.

The various design principles have a strong impact on the efficiency of access control and on
the autonomy of authorization. Referring to Figure 1.2, efficiency decreases from the lower left
corner to the upper right corner, while flexibility increases in the same direction. Access con-
trol for tightly coupled intra-organizational composite applications can be realized efficiently as
authorizations can be inferred by means of a centralized policy evaluation. However, tightly cou-
pled inter-organizational coalitions imply that cooperating partners give up at least part of their
authorization autonomy by delegating access control to a trusted authority. In contrast to this,
authorization autonomy is preserved within dynamic coalitions that provide high levels of adapt-
ability and interoperability. Therefore, dynamic coalitions are well applicable for cooperations
with unstable trust relationships but flexibility has to be traded for increased policy evaluation
complexity.

6See [Keidl (2004)].

1.2 Contributions 5

1.2 Contributions

In this thesis, we present flexible authorization techniques providing efficient access control for
service-oriented IT infrastructures. In particular, we present an optimization approach for re-
ducing policy evaluation costs of intra-organizational composite applications and Web service
workflows. Furthermore, we describe best practices for the reliable integration of database func-
tionality into service-oriented middleware systems. Based on these techniques, we present our
authorization framework for distributed Web service workflows. Altogether, the described mod-
els and enforcement strategies support the reliable integration of data sources into tightly and
loosely coupled Web service federations.

We start with analyzing the access control of intra-organizational composite applications
whose sub-activities are self-contained software components that autonomously conduct autho-
rization checks. We arrive at the conclusion that this access control separation in general leads to
redundant and therefore possibly inefficient policy enforcements. Performance drawbacks due
to superfluous executions can be caused by users that are allowed to execute some sub-processes
but are not entitled to perform later stages of a service choreography. Moreover, they can even
demand for transaction rollbacks or the execution of compensating transactions. Our contri-
butions are a formal model and algorithmic solutions for the consolidation of access control
policies. Consolidated policies allow to shift access control to the composite application’s layer,
thus, making authorization checks by the individual sub-activities unnecessary and enabling the
pre-filtering of requests. Hence, the mentioned drawbacks can be avoided and access control for
composite applications can be realized more efficiently.

Many Web services rely on the data processing capabilities of database backend servers.
In this regard, often over-privileged profiles are used to realize the service-to-database interac-
tion, e.g., to keep administrative overhead low. Therefore, in case security vulnerabilities of
service implementations are abused, confidential data are in danger of disclosure. In this thesis,
we present a security engineering approach for the reliable implementation of database backed
Web services. Our approach is based on the semi-automatic generation of security policies and
database authorization profiles that are restricted to the required service functionality, thus, ful-
filling the necessary principle of least privilege.

Providing shared access to local resources demands for possibilities to grant privileges to
entities of cooperating domains. We present our authorization framework supporting tightly
and loosely coupled Web service coalitions. The underlying authorization scheme supports the
delegation of access rights to subjects of cooperating organizations, employing a flexible dis-
tributed role based access control model. Within loosely coupled coalitions, access control is
performed by an interplay of local and distributed policy evaluation steps. The use of secure
caching strategies makes this approach also suitable for large-scale and dynamically growing
coalitions. Therefore, the proposed security concepts provide efficient and flexible access con-
trol for service-oriented IT infrastructures, supporting various designs of composite applications
as depicted in Figure 1.2.

6 Introduction and Overview

1.3 Outline

The thesis is organized as follows:

Chapter 2 – Access Control Models and Terminology
gives an overview of existing access control models like mandatory access control, discretionary
access control, and role based access control. Based on this outline, we discuss the security
requirements of service-oriented architectures and present the basic principles of our own autho-
rization scheme.

Chapter 3 – Optimized Access Control for Composite Applications and Workflows
introduces the syntax and semantics of our policy model. We describe how policies of com-
posite applications can be consolidated with the access control schemes of their underlying au-
tonomous sub-activities. Policy consolidation constitutes the basis for optimizing access control.
We demonstrate this by means of Web service workflows.

Chapter 4 – Security Engineering for Database Backed Web Services
presents best practices for the reliable integration of database functionality into service-oriented
IT infrastructures. Thereby, our main objective is to reduce security risks for the underlying
database systems. We achieve this goal through semi-automatically consolidating the access
control of database systems with the security configuration of the service frontends.

Chapter 5 – Access Control in Dynamic Service Coalitions
presents our authorization infrastructure for distributed Web service applications. The underlying
access control model supports cross-domain assignments and role delegations and is an extension
of the authorization scheme presented in Chapter 3. The proposed framework allows to realize
tightly as well as loosely coupled federations. Policy evaluation for loosely coupled coalitions is
optimized by means of secure caching techniques.

Chapter 6 – Conclusion
summarizes the thesis and shows how the combination of the proposed techniques provides effi-
cient access control for service-oriented IT infrastructures.

CHAPTER 2

Access Control Models and Terminology

Access control is the process of intercepting user requests for evaluating whether the requested
activities can be granted according to the system’s security policy. In this chapter, we elaborate
on basic access control models and terminology. After presenting the role of access control and
its relationships to further security services in Section 2.1, we give an overview over widely
used access control models in Section 2.2. The access control requirements of service-oriented
architectures are discussed in Section 2.3. Subsequently, in Section 2.4, we motivate the basic
design decisions of our authorization framework which we present in detail in the remainder of
this thesis.

2.1 The Role of Access Control

The objective of access control is to prevent illegitimate access to protection objects, whereby
access for authorized requesters must be ensured at the same time, of course. For that purpose,
requests are intercepted and evaluated against applicable policies. A policy consists of individ-
ual authorization rules according to which access control is performed. Such access rules declare
relationships between subjects and objects. They are categorized into privileges and denials, de-
pending on whether they grant or prohibit actions on protection objects. In this context, subjects
are active entities like human users. Examples for protection objects (which represent passive
entities) are files managed by a file system or tables, views, or stored procedures of a database
system. Applications can represent subjects as well as objects. They act as objects in case their
execution is regulated by access rules. Applications represent active entities in case they access
protection objects during their execution, thereby potentially acting on behalf of other subjects,
e.g., human users.

Figure 2.1(a) schematically illustrates the access control process. Access control is subdi-
vided into authentication and authorization. The function of authentication is to verify that the
identity of a subject indeed coincides with the identity it claims to have. In the following, we

8 Access Control Models and Terminology

Subject
Objects

Authentication Authorization

PEP

PDP PAP

Auditing

(a) Authentication, authorization and auditing services

Preserving authorization autonomy
for the database

Using the Web service as
gatekeeper for the database

DBMS

Web service

request

query

PDP

acts as
PEP

trusted environment

DBMS

Web service

request

query

acts as
PEP

PDP

PDP

acts as
PEP

(b) Possibilities to realize multilayered access control

Figure 2.1: Policy enforcement strategies

will concentrate on authorization and assume that authentication has been correctly achieved. In
service-oriented architectures, authentication of requesters is, for example, implemented by use
of the Security Assertion Markup Language (SAML), specified by Cantor et al. (2005), or the
WS-Security framework, introduced by Nadalin et al. (2006).

Authorization is the process of evaluating requests against applicable policies ascertaining
that requested actions can be granted. This process is initiated by the so-called policy enforce-
ment point (PEP), which can be the invoked service itself. The functionality for evaluating re-
quests is provided by the policy decision point (PDP), e.g., realized as a dedicated authorization
service. The PDP relies on the policy administration point (PAP) to determine the applicable
policies. For instance, the PAP can realize the interface to a centralized policy repository. Fur-
thermore, a PAP has to ensure that only legitimate entities can access policy information. From
the software engineering perspective, it is recommended to separate PEP, PDP, and PAP func-
tionality. In order to ensure maintainability, security functionality should be separated from the

2.2 Access Control Models 9

application logic.
Figure 2.1(b) sketches two examples for realizing the access control of database backed Web

services: In the left part of the figure, the service and the underlying database system are au-
tonomously enforcing access control. In contrast to this, the right part of the figure illustrates
a configuration where only the Web service enforces access control. As we will point out in
Chapter 3 and 4, as a prerequisite for this optimization, the authorization policies of the service
and the authorization configuration of the database system have to be consolidated.

As shown in Figure 2.1(a), access control is closely related to further important security
services, like auditing. For auditing, user requests have to be logged. The evaluation of log in-
formation allows detecting flaws in the security system. Furthermore, it provides possibilities to
detect and prove violation attempts. As most attacks and compromises are conducted from inside
organizations,1 auditing helps to supervise the behavior of users and to hold them accountable
for their activities.

Often, authorization rules are defined in an informal way – at least at the initial phase of
specifying access control. In order to compare policies and to enable their validation and eval-
uation by means of programs, they have to be expressed in a formal policy language. In the
following, we briefly describe widely used access control schemes like mandatory access con-
trol, discretionary access control, and role based access control. Further (historical) background
information concerning these access control models are, for example, provided by Castano et al.
(1994), and Samarati and de Capitani di Vimercati (2001).

2.2 Access Control Models

2.2.1 Mandatory Access Control

Mandatory access control (MAC) regulates access on protection objects based on the sensitiv-
ity level of the information (also called the objects’ classification) and the authorization level
of subjects (the so-called clearance). Mandatory policies typically represent multilevel security
schemes. The main field of application for mandatory policies are the military and governmental
sectors because of stringent security requirements. The sensitivity of information can, for exam-
ple, be classified as confidential, secret, and top secret, depending on whether their disclosure
to unauthorized subjects is expected to cause some, serious, or grave damage. The classification
of objects and subjects defines a partial order expressing dominance relationships. Subjects are
authorized to access objects in case their clearance dominates the classification of the objects.

In order to ensure the secrecy of information, the information flow among subjects of differ-
ent classification levels has to be controlled strictly. Bell and LaPadula (1973, 1976) proposed
the so-called no-write-down and the no-read-up rules to regulate the propagation of sensitive
information. The no-write-down paradigm dictates that subjects can only perform write access
on protection objects whose classification dominates the subjects’ clearance. No-read-up pro-
hibits subjects to read information in case their clearance level does not dominate the protection
objects’ classification.

1See, for example, [Rosenberg and Remy (2004)], page 35.

10 Access Control Models and Terminology

While these rules ensure the secrecy of information, they cannot guarantee their integrity.
Subjects with lower clearance could still indirectly initiate improper modifications to higher clas-
sified objects, leading to misinformation. Therefore, Biba (1977) proposed the no-read-down and
no-write-up principles for enforcing information integrity: A subject is allowed to read an object
only if the object’s classification dominates the subject’s clearance; and a subject is allowed to
write an object only if the subject’s clearance dominates the object’s access class. These rules
represent the contrary to the principles of the Bell LaPadula model. While the Bell LaPadula
principles allow the information flow from lower to higher secrecy levels, the Biba model allows
the information flow from higher to lower integrity levels. If both concepts have to be enforced,
subjects and objects need to be classified individually for secrecy and integrity.

Though mandatory policies provide ways to control the information flow, they are often con-
sidered to be too restrictive and rigid for commercial scenarios, hindering operational procedures.
Furthermore, MAC models can lead to the so-called polyinstantiation problem which denotes that
the same real world fact is present in form of multiple instances that differ with regard to their
classification, thus, violating data integrity constraints. Jajodia and Sandhu (1990, 1991) address
this issue for multilevel database systems.

2.2.2 Discretionary Access Control

In discretionary access control (DAC) models, access rights restrict access on protection objects
based on the identity of subjects or, in order to improve scalability, groups they belong to. The
access matrix, which was proposed by Lampson (1974) and formalized by Harrison et al. (1976)
declares for each combination of subjects and objects the set of allowed actions. It is called
access matrix model as the access rights can be stored in a matrix with the columns and rows
representing objects and subjects, respectively, and the entries being the granted privileges. Such
policies are typically employed for operating systems. The model is called discretionary as
subjects with certain control permissions are allowed passing privileges to other subjects (at their
discretion). Often, the ownership paradigm is applied, denoting that the creator of an object is its
owner who, by default, is granted control privileges for that object.

Several extensions of DAC models have been proposed like (hierarchical) group schemes
for subjects, objects, and actions and the formulation of conditions and exceptions. Object hi-
erarchies and privilege implications are for example treated by Rabitti et al. (1991) and group
schemes for actions have been proposed by Shen and Dewan (1992). Conditions restrict the ap-
plicability of access rules. For instance, a condition can constrain access on a protection object to
the working hours of a day, e.g., to the time between 8 am and 6 pm. The concept of exceptions
leads to the differentiation between positive and negative access control rules, i.e., privileges and
denials. Therefore, positive authorization systems, where only privileges can be defined, are to
be distinguished from negative systems, where each rule represents a denial. Also mixed sys-
tems where policies can consist of a mixture of negative and positive access rules are possible. In
general, policy specifications are not complete, i.e., cases can arise where neither privileges nor
denials apply which have to be handled by a closure assumption. In this regard, the closed world
assumption, where everything is denied unless a privilege can be inferred, or the open world
assumption, where everything is allowed unless a denial is derived, can be applied. Positive sys-

2.2 Access Control Models 11

Head Nurse

Health Personnel Technical Staff

Hospital Personnel

Administrative
Personnel

Surgeon Internist

Nurse Physician

is senior role of

(a) Limited role hierarchy

Hospital Personnel

Health Personnel

Physician SecretaryManager

Admin. Personnel

(b) General role hierarchy

Figure 2.2: Example role hierarchies

tems are compatible with the closed world assumption and negative systems with the open world
assumption. For mixed systems, both combinations are meaningful.

Mixed systems also demand for conflict resolution techniques, i.e., strategies that specify
how situations when positive and negative rules apply at the same time are to be handled. Various
approaches like privileges-take-precedence, denials-take-precedence or the most-specific-takes-
precedence have been proposed. An overview over conflict resolution techniques is provided
by Jajodia et al. (2001).

2.2.3 Role Based Access Control

The administration of DAC policies can easily become unmanageable if privileges are indepen-
dently assigned to each user. Better scalability is provided by role based access control (RBAC)
schemes which, for instance, have been proposed by Sandhu et al. (1996), Osborn et al. (2000),
and Ferraiolo et al. (2001). In 2004, an official standard for RBAC has been released.2 Using
RBAC, privileges required for performing certain jobs are grouped by roles. Subjects acquire
privileges via the indirection of being granted the needed roles. Therefore, as discussed by
Sandhu (1996), (user) groups and roles describe two different concepts. Groups denote sets of
users that can be described through the same attributes like their membership characteristics,
while roles represent sets of privileges.

Role based access control is a means of mapping organizational structures onto access control
policies. Not the identities of users determine their authorizations, but their job profiles. Users
changing their jobs within a company are revoked their old roles and granted those roles which

2Confer [ANSI INCITS 359-2004].

12 Access Control Models and Terminology

are aligned to their new area of activity. Thus, RBAC provides high levels of flexibility, ease
of administration, and, which is of particular importance, allows realizing the concept of least
privilege which is a way to limit the potential risk of compromise or misuse.

In addition to the core RBAC model, roles can be organized in hierarchies defining a partial
order “�”. Senior roles which are at higher levels in the hierarchy inherit all privileges that are
granted to their junior roles. To give an example, the role Internist in Figure 2.2(a) is senior to
Physician, denoted as Internist � Physician. The other way round, Physician is called junior role
of Internist.

In RBAC, two types of associations must be managed. One is the assignment of privileges to
roles and the second is the assignment of roles to subjects. If users(r) represents the membership
function for a role r and permissions(r) the set of privileges that are assigned to r, the following
holds for two roles r and r′ with r′ being a junior role of r, i.e., r′ � r:

• users(r′) ⊇ users(r) and

• permissions(r′) ⊆ permissions(r).

A role r′ is called immediate descendant of a role r if r′ � r and there is no r′′ with r �= r′′ and
r′′ �= r′ such that r′ � r′′ � r. A role hierarchy is called limited if each role has at most one
immediate descendant. This is the case for the example hierarchy illustrated in Figure 2.2(a).
In contrast to this, general role hierarchies like the one shown in Figure 2.2(b) support the con-
cept of multiple (access right) inheritance. As shown in the figure, the role Manager has two
immediate descendants, namely Health Personnel and Administrative Personnel.

2.2.4 Administration of Authorization

The discussed access control models specify how access rights are defined and evaluated. An-
other important issue is the administration of access control policies, denoting who is allowed to
define and modify access rights.

Regarding multilevel mandatory access control, subjects are assigned authorization levels by
the security administrator. The sensitivity levels of objects are deferred based on the classifica-
tion of the subjects creating the respective objects. Thus, in mandatory access control, there is
typically one central authority that is responsible for administering security policies.

In contrast to this, a wide range of administration schemes exists for discretionary and role
based access control. The following is an excerpt of possible administration schemes taken from
[Sandhu and Samarati (1994)]:

• Ownership: According to the ownership paradigm, the creator of an object can grant and
revoke access rights for that object.

• Centralized: This approach is akin to the administration of mandatory access control,
meaning that one central authority is concerned with the administration of access control
rules.

2.3 Access Control Requirements of Service-oriented Architectures 13

• Decentralized: The owner of an object can delegate the administration to other subjects
that themselves can then grant and revoke access rights for that object.

• Hierarchical: The responsibility for administering policies is assigned to several admin-
istrators that are organized in a hierarchy. For example, the security officer of a company
can delegate the administration to the security officers of the company’s subsidiaries.

• Cooperative: In cooperative administration schemes, some access rights can not be granted
by a single authorization entity, i.e., need to be granted by a group of authorizers, instead.

2.3 Access Control Requirements of Service-oriented Archi-
tectures

Service-oriented computing paradigms reveal the following characteristics which have to be
taken into account when designing appropriate authorization infrastructures:

Autonomy of Authorization

Web services, as the predominant technology for realizing service-oriented architectures, are
fine grained, modular software components that independently enforce access control. Thus, in
contrast to monolithic architectures, no single point of administration is given in service-oriented
IT infrastructures.

Multilayered Authorization

Service-oriented architectures can be used to integrate existing enterprise applications and legacy
systems by use of standardized service interfaces. Services can on their part be combined to
realize higher order services, thus, leading to composite applications. Regarding service compo-
sitions, access control is enforced in a multilayered manner.

Coalition-based Access Control

Via service compositions, intra- and inter-organizational value creation chains can be realized.
In order to enable inter-organizational cooperations, the authorization framework needs to sup-
port the delegation of access rights across administrative boundaries and the evaluation of au-
thorizations within collaboration networks. Through service invocations, users like customers,
suppliers, and partners are able to directly access business relevant data from outside the organi-
zation. This is what Lord (2002) refers to as “disintermediation” as requests are directly passed
to the company’s information system instead of being mediated by employees who supervise the
execution.

14 Access Control Models and Terminology

Demand for Scalability

The employed access control models and mechanisms need to be scalable. In particular, identity
based authorization is not meaningful in dynamic coalition environments. Instead, authorizations
should be inferred based on the requesters’ attributes.

2.4 Design Principles of our Authorization Framework

Samarati and de Capitani di Vimercati (2001) point out that the conceptual specification and re-
alization of an access control framework is a three-phased approach consisting of the specifica-
tion of the underlying security model, the (informal and formal) definition of policies, and the
implementation of the policy enforcement mechanisms. Based on the overview of policy models
(Section 2.2) and the previous discussion on security requirements of service-oriented architec-
tures (Section 2.3), we now motivate the design principles of our access control framework which
we present in detail in the following chapters.

Access Control Model

Atluri (2001) and Lopez et al. (2004) emphasize that mandatory policies are oftentimes consid-
ered to be impractical for many scenarios other than military applications. Instead, discretionary
policies are typically used to realize access control of commercial applications. Furthermore,
mandatory access control can hardly be realized in distributed environments as this would re-
quire all cooperating partners to use consolidated classification schemes for subjects and objects.
Otherwise, rules can become inconsistent, in case confidential and secret information is clas-
sified differently by the partners. Therefore, we employ discretionary and role based access
control policies. Furthermore, the employed policy model should also support the dynamic set-
up of collaboration networks. That’s why we realize a distributed RBAC scheme supporting role
delegations and cross-domain assignments. Thereby, access control rules can be administered
in a distributed manner. Nevertheless, as trust relationships in dynamic coalitions can change,
policy administration is preserved for the owners of protection objects. Thus, if necessary, inter-
actions can be canceled at any time. Our model relies on positive authorization and the closed
world assumption. This supports the reliable and clear administration of security in distributed
systems, in particular dynamic coalitions.

Policy Language

Policy language candidates suitable for our authorization framework must provide the following
characteristics:

• They must support discretionary and role based access control schemes. Furthermore,
attribute based policy specifications need to be supported.

• They need to be capable of realizing multilayered access control which demands for the
specification of combined policies.

2.4 Design Principles of our Authorization Framework 15

• They need to be easily integrable into existing Web service architectures.

Several good policy languages have been proposed in the past and our intention was not to rein-
vent the wheel by specifying yet another one. Our choice fell on XACML which is a widely
adopted XML-based security standard that can be seamlessly integrated into Web service envi-
ronments and fulfills the above requirements.3

Policy Enforcement Mechanisms

Policy evaluation needs to be efficient and scalable as discussed in the previous section. For intra-
organizational composite applications, we propose a policy consolidation technique that reduces
the cost of policy enforcement. With regard to distributed Web service workflows, access control
is realized as an interplay of local and distributed authorization checks. We complement this
enforcement strategy with secure caching techniques making this approach applicable for large-
scale dynamic service coalitions.

3See [Moses (2005)].

CHAPTER 3

Optimized Access Control for Composite
Applications and Workflows

With the advent of service-oriented computing principles, monolithic enterprise resource plan-
ning (ERP) systems are decomposed into their basic functionalities which are then provided
in the form of autonomous Web services. New business processes can be realized on demand
through Web service compositions, bringing about higher levels of flexibility and adaptability.
In general, the individual services or generic sub-applications autonomously enforce access con-
trol. Nevertheless, for the sake of security and efficiency, consolidated access control policies
for composite applications should be provided. Such policies are based on the policies of the
corresponding autonomous sub-applications and have the following properties: On the one hand,
they are as restrictive as possible to block requests which do not comply with the integrated
sub-applications’ policies. Thus, ultimately unauthorized requests can be detected at an early
stage and unnecessary service executions can be avoided. On the other hand, the combined poli-
cies must grant all privileges necessary to make the intended functionality available to legitimate
users.

This chapter presents our formal model and algorithmic solutions for consolidating the access
control of composite applications. The generated policies conform to the paradigm of least re-
quired privileges and, thus, allow the revision and optimization of the access control of composite
applications. We demonstrate these issues by means of Web service workflows that constitute
the state-of-the-art of science and technology for realizing business processes.

Parts of this chapter have already been presented at the International Conference on Emerging
Trends in Information and Communication Security (ETRICS 2006, [Wimmer et al. (2006a)])
and at the 20th Annual IFIP WG 11.3 Working Conference on Data and Applications Security
(DBSec 2006, [Wimmer et al. (2006b)]).

This chapter is organized as follows: Section 3.1 motivates the need for policy consolidation
for tightening and optimizing the access control of composite applications. In Section 3.2, we
introduce our policy algebra which constitutes the basis for the consolidation approach that is

18 Optimized Access Control for Composite Applications and Workflows

Figure 3.1: Multilayered architecture of a hospital’s accounting system

presented in Section 3.3. Algorithmic solutions for analyzing and combining access rules are
discussed in Section 3.4. In Section 3.5, we describe an efficient policy enforcement technique
for Web service workflows. Section 3.6 presents some related work before we summarize in
Section 3.7.

3.1 Motivation

Composite applications rely on further sub-applications – also called sub-activities in the fol-
lowing – to implement their functionality. There are numerous examples including quite simple
Web applications as well as large scale enterprise resource planning (ERP) systems that depend
on database backends. Also, business processes that are realized as Web service workflows rep-
resent complex composite applications. In general, sub-applications themselves can constitute
composite applications.

As an example of a composite application consider the hospital accounting system illustrated
in Figure 3.1.1 It is implemented as the sequence of four sub-activities: In order to draw up an
account, first of all, the patient’s personal data like his / her name, insurance policy number, etc.
has to be fed into a user interface (Insert Patient Data, step 1 in Figure 3.1). Afterwards, the pa-
tient’s medical record is queried and the costs of his / her therapy are determined (steps 2 and 3).
After the costs for the medical treatment have been calculated, the cost overview is generated in
step 4. As illustrated in the figure, the sub-activities Query Treatment, Query Cost Schedules, and
Generate Cost Overview rely on database backends, hence representing composite applications
themselves.

Suppose that Alice as an administrative employee of the hospital is responsible for balancing
accounts with the health insurance funds. For being allowed to execute the accounting system,
she must be granted execution rights for all of these sub-activities and requires access rights on
the underlying database(s). In case of lacking some of these privileges, e.g., the permission to
insert the results into the BillingTab, she will proceed until step 4 and be blocked then. Thus,
previous steps will be executed ineffectively. Besides, ultimately unauthorized requests can even

1See Appendix A for details on the employed graphical notation.

3.1 Motivation 19

demand for transaction rollbacks or costly compensating transactions. To avert this, one possible
approach is to provide Alice with comprehensive access rights on the database. In this regard,
one extreme would be to grant full access on the tables PatientTab, CostsTab, and BillingTab to
her. However, the system will get vulnerable to avoidable security threats that might origin from
the inside as well as from the outside of the organization: Alice intentionally or unintentionally
can modify data she shall not be able to do according to her job profile. Furthermore, attackers
succeeding in disclosing Alice’s account acquire substantial control over corporate assets.

The solution to this problem is to grant users exactly those privileges they require to perform
their work. In the literature, this concept is referred to as the principle of least privilege or as
the least authority paradigm [Bishop (2002); Curtin (2001); Stiegler et al. (2006)]. Considering
composite applications, fulfilling this principle is a non-trivial task in general as the access con-
trol configurations of several autonomous sub-applications have to be taken into account. The
key to success is a consolidated view onto the access control of composite applications, provid-
ing answers to the following questions: (1) What are the least required privileges?, (2) Who is
allowed to execute the composite application?, and (3) Are there possibilities to reduce policy
evaluation costs?

Issue (1) refers to the principle of least privilege, denoting that only those privileges are
granted that are required for performing the sub-activities. Following this design paradigm re-
duces security vulnerabilities as it guarantees that no business resources other than the ones
needed by the composite application can be accessed.

Knowing the set of authorized users facilitates the detection of unintended configurations. For
instance, if only highly privileged users like the hospital manager are authorized to execute the
process, this might be an indication that the design of the application itself needs to be revised.
We are addressing issue (2) from the single-user / single-role perspective, meaning that a user
can execute the application by the activation of one task specific role. This complies with many
business processes which are typically representing job specific functions and are thus designed
for specific groups of employees. Therefore, composite applications are to be distinguished from
multi-user workflows which are business processes that are executed by several users as a team.

The access control of composite applications can be optimized as follows (confer issue (3)):
On the one hand, a consolidated policy allows the early-filtering of requests. Application invo-
cations which will lead to aborts at later stages in the process due to missing privileges can be
detected and averted. On the other hand, repeated and possibly redundant authorization checks
by the individual sub-activities are avoided in case the authorization decision can be inferred on
the composite application’s layer.

Practical use cases might consider some of these issues in isolation. In Section 3.5, we
propose an efficient policy enforcement strategy for Web service workflows concentrating on
issues (2) and (3). Other enterprise application integration projects have their focus on issues (1)
and (3). For example, the security engineering approach introduced in Chapter 4 is a methodical
approach for determining least required privileges for database backed Web services.

20 Optimized Access Control for Composite Applications and Workflows

3.2 Policy Model

First, we introduce the policy algebra which constitutes the basis for the formal specification of
the proposed policy consolidation technique. In our model, entities like subjects are specified
through characterizing attributes like role-membership, age, profession skills, etc. The policy
model allows to express discretionary access control (DAC) rules and supports role based access
control (RBAC) models which are suitable security concepts for almost all commercial applica-
tions. The formal syntax and semantics of our policy model are based on those introduced by
Bonatti et al. (2002). We adapted and extended this model where necessary, e.g., by introducing
additional operators.

3.2.1 Notation

3.2.1.1 Predicates

Predicates represent attribute comparisons of the form (attribute-identifier ◦ constant). Depend-
ing on the attribute’s domain, the comparison operator ◦ is in {<,≤,=,≥, >} for totally ordered
sets and in {�,�,=,�,�} for partially ordered finite sets.

For instance, the predicate (role = Physician) states that the role Physician is assigned to the
attribute identifier named role. The predicate (role � Physician) describes the set of all possible
role assignments, with role being equal to the role Physician or any senior role of it.

3.2.1.2 Subjects, Objects, Actions, and Conditions

Let Attr be the set of distinguished attribute identifiers. Attr is subdivided into disjoint sets of
subject, object, action, and environment attribute identifiers (denoted as S-Attr, O-Attr, A-Attr,
and E-Attr, respectively).

A set of subjects S is represented by a disjunction of predicate conjunctions over S-Attr. That
is,

S = ((s1,1 ∧ . . . ∧ s1,l) ∨ . . . ∨ (sk,1 ∧ . . . ∧ sk,l)),

with each si,d (1 ≤ i ≤ k and 1 ≤ d ≤ l) being a predicate conjunction that applies to one
attribute of S-Attr. Examples are (age ≥ 18) and (age ≥ 18 ∧ age ≤ 65), representing the inter-
vals [18,∞[and [18, 65], respectively. The cardinality of S-Attr is denoted by l. The elements of
S-Attr are also called dimensions of subject specifications.

ObjectsO and actions A are represented in an analogue way. S, O, and A are inequality-free.
A condition c is a boolean formula defined over attributes of E-Attr that can include user defined
functions with Boolean codomain (e.g., isWeekday(date), for date being an element of E-Attr).

3.2.1.3 Rules

A rule R is a quadruple (S,O,A, c), consisting of subjects S, objects O, and actions A. A rule
assigns privileges specified by (O,A) to subjects S. The scope of the assignment is restricted

3.2 Policy Model 21

Figure 3.2: Employed policy model

through c. For example, a rule declaring that physicians with permanent employment can read
and modify medical records between 8 am and 6 pm looks as follows

R1 = ((role � Physician ∧ employment = permanent), (table = MedicalRecordsTab),

(method = select ∨ method = update), (time > 8 am ∧ time < 6 pm))

This simplified example already shows that the policy model supports the expression of role
based access control. Figure 3.2 illustrates the different kinds of assignments that can be ex-
pressed. For any assignment, the cardinalities are many-to-many. For example, more than one
action can be granted on one object and one action (e.g., read) can be granted on one or many
objects (e.g., files, directories, etc.). Privileges can be assigned directly to users. Roles play two
parts in our policy model. On the one hand, role attributes are part of the subject specification
when being used to group privileges. On the other hand, roles can be assigned to other subjects –
which then could be users (role assignment, RA) or further roles (role hierarchy, RH). Then the
role identifiers will also be part of the object specification. The following rule R2 states that the
role ChiefPhysician is a senior role of the role Physician:

R2 = ((role = ChiefPhysician), (granted-role = Physician), (method = enable), (true))

That way, roles can be organized in a hierarchy. As illustrated in the figure, the applicability of
the assignments PA, RA, and RH can be constrained through conditions.

3.2.1.4 Policies

Individual rules R1, . . . , Rn can be aggregated in a policy P = {R1, . . . , Rn}.

22 Optimized Access Control for Composite Applications and Workflows

3.2.1.5 Evaluation Context

If D1, . . . , Dm are the domains of the attributes in Attr, then E is defined as D⊥
1 × . . . × D⊥

m,
with D⊥

j = Dj ∪ {⊥}. The symbol ⊥ stands for “unspecified”. An evaluation context e ∈ E is a
partial mapping of the attributes defined in Attr.

3.2.2 Semantics

3.2.2.1 Evaluation of Rules

An evaluation context e ∈ E is evaluated against the individual components of rules. A subject
specification S applies to e iff S maps to true w.r.t. the attribute values of e. That is,

[[S]]e := S(e) = (true | false).

Thereby, a predicate that is defined on attribute a will evaluate to false if a is not specified in e
(i.e., equal to ⊥). The semantics of O, A and c are defined analogously. The applicability of a
rule R w.r.t. e is defined as

[[R]]e := [[S]]e ∧ [[O]]e ∧ [[A]]e ∧ [[c]]e.

As an example assume that at 1 pm Dr. Kerry Weaver, who is a chief physician, intends to access
the medical records of her patients which are stored in the table MedicalRecordsTab. Thus, the
evaluation context would look as follows:

e = (role = ChiefPhysician, employment = permanent,

table = MedicalRecordsTab, method = select, time = 1pm)

As the role ChiefPhysician is a senior role of the role Physician, the evaluation result of e against
the previously introduced role R1 is [[R1]]e = true.

3.2.2.2 Evaluation of Policies

The semantics of a policy P depends on the employed policy evaluation algorithm (abbreviated
pe-alg). We define the evaluation algorithms pe-any and pe-all:

• any rule applies: [[P]]pe-any
e :=

∨
R∈P [[R]]e

• all rules apply: [[P]]pe-all
e :=

∧
R∈P [[R]]e.

When runtime information has to be taken into account, pe-any can be used to gradually perform
access control. Under the assumption that for each sub-activity a unique rule is defined, access
control can autonomously be performed by each sub-activity. In this case, any rule must be
determined that authorizes the execution of the respective sub-activity. This policy enforcement
strategy is illustrated in Figure 3.3(a).

3.2 Policy Model 23

(1) Insert

Patient

Data

(2) Query

Treatment

Accounting System

PPDP eval.

(pe-any)

Request

(a) Iterative policy evaluation through the
sub-activities

(1) Insert

Patient

Data

(2) Query

Treatment

Accounting System

PPDP eval.

(pe-all)

Request

(b) Gathered policy evaluation through the
composite application

Figure 3.3: Policy enforcement strategies

In the following sections, we concentrate on centralized policy enforcements as depicted in
Figure 3.3(b). In cases when access control can be performed in advance on the layer of the
composite application, authorization checks for sub-activities are combined by applying pe-all.

In the following, we use the symbol Υ to represent unrestricted policies. That means,
∀e ∈ E : [[Υ]]pe-alg

e = true.

3.2.3 Policy Combining Operators

3.2.3.1 Conjunction

Let S and S ′ be two subject specifications. The conjunction of S and S′ is denoted as S∧S ′ with
[[S ∧ S ′]]e = [[S]]e ∧ [[S ′]]e. The conjunction operator is analogously defined on objects, actions,
conditions, and rules.

3.2.3.2 Subtraction

The subtraction of two subject specifications S and S′ is defined as S − S ′ with
[[S−S ′]]e = [[S]]e∧¬([[S ′]]e). The subtraction operator is analogously defined on objects, actions,
conditions, and rules.

3.2.3.3 Projection

LetR = (S,O,A, c) be a rule. The projection on the subjects ofR is defined as ΠS(R) = S. Pro-
jections on objects, actions, conditions, and privileges are accordingly defined as

24 Optimized Access Control for Composite Applications and Workflows

ΠO(R) = O, ΠA(R) = A, ΠC(R) = c, and ΠO,A(R) = (O,A).

Let P = {R1, . . . , Rn} be a policy. ΠS(P) is defined as ΠS(P) = {ΠS(R1), . . . ,ΠS(Rn)}. The
remaining projection operators ΠO(P), ΠA(P), ΠC(P), and ΠO,A(P) are defined analogously.

We use the abbreviation S(P) =
∧

1≤i≤n ΠS(Ri) to denote those subjects that are granted all
privileges defined in P .

3.2.3.4 Privilege, Rule, and Policy Relaxation

A privilege (O′, A′) relaxes a privilege (O,A), denoted as (O,A) � (O′, A′), iff it applies to
more (or the same) actions on more (or the same) objects. That is, ([[(O,A)]]e = true) implies
([[(O′, A′)]]e = true) for any evaluation context e. Accordingly, a rule R′ relaxes a rule R,
R � R′, iff it grants more or the same privileges to more or the same subjects under the same or
less restrictive conditions. That is, ∀e ∈ E with ([[R]]e = true) ⇒ ([[R′]]e = true). In the same
way, P �pe-alg P ′ iff ∀e ∈ E : ([[P]]pe-alg

e = true) ⇒ ([[P ′]]pe-alg
e = true).

3.2.3.5 Reduced Policies

In order to efficiently consolidate policies of composite applications, we are focusing on reduced
policies (see Section 3.3.1). Let the applied policy evaluation algorithm be pe-all. A policy P is
called reduced iff

(1) ∀R,R′ ∈ P,R �= R′ : �e ∈ E : ([[ΠO,A(R) ∧ ΠO,A(R′)]]e = true) and

(2) ∀R ∈ P : S(P) = ΠS(R)

A policy fulfilling (2) but not (1) can be transformed into an equivalent reduced policy by elimi-
nating overlapping rules:

Let Ra, Rb ∈ P , Ra �= Rb : ∃e ∈ E : ([[ΠO,A(Ra) ∧ ΠO,A(Rb)]]e = true). Substitute the two
rules Ra, Rb through the three combined rules Ra−b, Ra∧b, Rb−a with

• Ra−b = (S(P),ΠO,A(Ra) − ΠO,A(Rb),ΠC(Ra)),

• Ra∧b = (Ra ∧Rb), and

• Rb−a = (S(P),ΠO,A(Rb) − ΠO,A(Ra),ΠC(Rb)).

3.3 Policy Consolidation

Access control policies of composite applications specify the privileges which apply to the com-
posite applications’ sub-activities. The aim of policy consolidation is to determine minimized
policies that are restricted to the functionality of the composite applications.

3.3 Policy Consolidation 25

3.3.1 Problem Specification

Let APP1, . . . ,APPN be N ≥ 1 (autonomous) sub-activities of the composite application APP0

and Pi be the policy that applies to APPi (for 1 ≤ i ≤ N). We equate the permission to execute
the ith sub-activity with the set of privileges needed for performing the actions of APPi. This set
is defined by ΠO,A(Pi). In order to enforce all of these access rights, we use pe-all as evaluation
algorithm. We assume Pi to be a reduced policy. Thus, as defined in Section 3.2.3.5, Pi has the
following two characteristics: First, the privileges defined in ΠO,A(Pi) are disjoint. Second, the
rules of Pi apply to the same set of subjects. In some cases it might be required that the privileges
ΠO,A(Pi) are granted to different groups of users under varying conditions. For instance, subjects
S1 might be able to execute the application only during the day, while for subjects S2 access
is restricted to the night. In such cases, Pi will not fulfill the second criterion. In order to
efficiently process the set of constraints, the policy is decomposed into reduced policies which
are evaluated independently. The reducedness-property allows us to give a concise definition of
policy consolidation without restriction of the general case.

Let P0 be the reduced policy for APP0. In many cases there might be no predefined policy
for APP0, meaning that P0 is equal to Υ. This, for instance, is typically the case for Web ser-
vice workflows as we will see in Section 3.5. Nevertheless, the application developer might as
well provide a predefined policy that specifies the intended configuration. This approach can,
for example, be applied regarding database backed Web services, which will be discussed in
Chapter 4. The objective of policy consolidation is to evaluate P0 against the policies of the
sub-applications. Its result is an optimized policy P opt that fulfills the following two criteria:

Least privileges criterion (LP)

Each privilege defined in P opt must also be defined in at least one policy Pi with 1 ≤ i ≤ N . The
privileges defined in P opt must be sufficient to perform APP0 and its sub-activities.

Maximum set of subjects criterion (MS)

Each subject that is authorized based on the original policy configurations (Pi)0≤i≤N must also
be authorized by P opt. Each subject that is defined in P opt must also be defined in at least one
policy Pi with 1 ≤ i ≤ N and in P0.

3.3.2 Workflow Dependencies

The control flow of a composite application determines the execution order of its sub-activities.
Figure 3.4(a) sketches the structure of a composite application. Sub-activities can be executed
in sequence or in parallel.2 From an access control point of view these two control patterns
denote that all sub-activities are invoked. We represent this fact through the SEQUENCE pattern
(Figure 3.4(b)). Furthermore, conditional and event based executions are possible. From the

2Iterations, i.e., loops, are discussed in Section 3.3.5.

26 Optimized Access Control for Composite Applications and Workflows

access control perspective this denotes that only one sub-activity will be invoked, which we
represent through the so-called SWITCH template illustrated in Figure 3.4(c). SEQUENCE and
SWITCH templates can be nested to model complex workflows. Apart from these kinds of control
flow dependencies further interdependencies influencing access control can exist:

a) Data-flow dependencies are given if an output parameter x of a sub-activity APPi is input to
APPj and the value of x determines the result of the evaluation of policy Pj .

As an example consider the accounting system introduced in Section 3.1. Let’s assume that
Alice, who is still in training, is not allowed to draw up an account if the total costs exceed
10,000 $. As the total amount is determined in step 3 of Figure 3.1, its outcome determines
Alice’s authorization for the fourth sub-activity.

b) External dependencies are dependencies by parameters external to the system, like time. For
example, Pi and Pj might define time constraints that restrict the execution of APPi and APPj

to disjoint time frames. That is, the conjunction of conditions defined in Pi and Pj constitute
a contradiction. Nevertheless, the control-flow can be consistent due to the execution order
(e.g., think of delays during long-running transactions).

In Section 3.3.3 and Section 3.3.4 we describe the consolidation of access control policies for the
two patterns SEQUENCE and SWITCH. In case no interdependencies in the form of a) or b) exist,
it is sufficient to perform access control solely through APP0 based on the consolidated policy
P opt. Otherwise, the sub-activities still need to enforce access control on their own. In any case,
P opt allows to revise the security configuration of APP0 by determining appropriate user and role
profiles as shown in Section 3.3.6.

3.3.3 Analysis of SEQUENCE Patterns

For a SEQUENCE pattern to be consistent from the access control perspective, the following
two conditions must be met: First, the access rights defined in P0 must include those privileges
defined in the policies (Pi)1≤i≤N . Second, there must be at least one subject that is granted these
privileges. Otherwise, the access specifications are conflicting, preventing the execution of APP0.
Formally:

∀1 ≤ i ≤ N : ∀R ∈ Pi : ∃R′ ∈ P0 : ΠO,A(R) � ΠO,A(R′) (3.1)

∃e ∈ E : [[Sall]]e = true for Sall =
∧

0≤i≤N

S(Pi) (3.2)

These prerequisites are schematically illustrated in Figure 3.5. The consolidated policy P opt
(all) is

defined as:

P opt
(all) = {(Sall,ΠO,A(R), (ΠC(R) ∧ ΠC(R′))) | ∀i ∈ {1, . . . , N} : R ∈ Pi, R

′ ∈ P0 :

ΠO,A(R) � ΠO,A(R′)} (3.3)

The evaluation algorithm used for P opt
(all) is pe-all. If the policies (Pi)1≤i≤N fulfill LP, then LP can

also be inferred for P opt
(all). This is due to the privileges of P opt

(all) being restricted to those defined

3.3 Policy Consolidation 27

(a) General design of a composite application APP0

(b) SEQUENCE pattern

(c) SWITCH pattern

Figure 3.4: Composite patterns

in (Pi)1≤i≤N and its rules being constrained through conjunctions of the respective conditions
defined in these policies and P0. Thus, P opt

(all) will not contain privileges which do not apply to the
underlying sub-activities.3 Sub-activities can perform similar access on the same objects, like
scans of the same tables of a database. Thus, P opt

(all) – which aggregates the privileges defined in
(Pi)1≤i≤N – might contain redundant access rules. Redundancies, i.e., overlapping privileges can
be eliminated according to the optimization described in Section 3.2.3.5.

3Functionality directly provided by APP0 is also modeled as a sub-activity for the consolidation process.

28 Optimized Access Control for Composite Applications and Workflows

(), 2PΠ
O A

(), 1PΠ
O A

(), 0PΠ
O A

2P

allS

0P

1P

Condition (3.1) Condition (3.2)

Figure 3.5: Prerequisites for the consolidation of P0 w.r.t. P1 and P2

3.3.4 Analysis of SWITCH Patterns

The access control configurations of SWITCH patterns can be consolidated from two different
perspectives. The full authorization approach enforces that each subject which is defined in the
consolidated policy is authorized for any of the (APPi)1≤i≤N , independent of which sub-activity
will actually be executed at runtime. As a consequence, the consolidated policy corresponds to
P opt

(all) defined in the previous section.
On the other hand, partial authorization distinguishes the different execution paths. Subjects

might be authorized to execute APP0 in case a particular APPi is invoked next, but will be blocked
in any other case. Thus, in order to efficiently evaluate a SWITCH pattern, the distinguished ex-
ecution branches have to be analyzed separately. Consequently, up to N security configurations
have to be considered. In order to specify the optimized policy for the ith branch, the policies P0

and Pi are consolidated and the following must be true:

∀R ∈ Pi : ∃R′ ∈ P0 : ΠO,A(R) � ΠO,A(R′) (3.4)

∃e ∈ E : [[S(i)]]e = true for S(i) = S(P0) ∧ S(Pi) (3.5)

The consolidated policy for the ith branch is defined as:

P opt
(i) = {(S(i),ΠO,A(R), (ΠC(R) ∧ ΠC(R′))) |R ∈ Pi, R

′ ∈ P0 : ΠO,A(R) � ΠO,A(R′)} (3.6)

Again, the evaluation algorithm is pe-all.

Note that non-executability of an application due to conflicting and / or unsatisfiable conditions
is beyond the scope of this analysis. As conditions can contain user defined functions (see Sec-
tion 3.2), satisfiability is undecidable in the general case. The objectives of the proposed policy
consolidation are to determine the least required privileges (LP) and the maximum set of autho-
rized subjects (MS).

3.3.5 Structural Analysis

As mentioned above, from the access control perspective, control flow structures denoting the
execution of all sub-activities have to be differentiated from those denoting the execution of a

3.3 Policy Consolidation 29

Figure 3.6: Tree representation of the composite application APP0 illustrated in Figure 3.4(a)

single sub-activity. These concepts are represented by the SEQUENCE and SWITCH patterns,
respectively. SEQUENCE and SWITCH patterns can be nested. The control flow of a composite
application can then be described by means of a tree whose nodes are SEQUENCE and SWITCH

patterns and whose leaves represent invocations of sub-activities. Figure 3.6 shows the tree
representation of the composite application illustrated in Figure 3.4(a).

Determining the consolidated policy for APP0 proceeds by means of a bottom-up analysis of
the tree representation. In the given example, first the consolidated policy for the SEQUENCE

node that combines APP3 and APP4 is determined by evaluating P3 and P4 as described in Sec-
tion 3.3.3. The resulting policy and P2 are then input to the policy consolidation of the SWITCH

node according to Section 3.3.4. Finally, the consolidated policy for APP0 is the result of the
analysis of the topmost SEQUENCE node.

The complexity for performing the structural analysis depends on whether the full authoriza-
tion or the partial authorization approach is employed. In case of the full authorization approach,
the number of policy comparisons depends linearly on the number of nodes. Worst case com-
plexity increases significantly if partial authorizations are determined. Considering an n-ary tree
of height m, up to nm cases have to be evaluated in the worst case. This upper bound is attained
if each inner node is a SWITCH node and for each such SWITCH node the maximum number of
subcases has to be considered.

When determining partial authorization, we also need to take into account loop nested
switches, i.e., SWITCH patterns which can be executed in a loop. Figure 3.7 illustrates the basic
structure of a loop nested switch. The possible execution paths can be described through the
regular expression A(B|C)+. But, regarding policy consolidation, that does not mean that an
uncountable number of cases needs to be differentiated. For instance, the paths A → B → C,
A → C → B, and even A → B → C → . . . are equivalent from the access control point
of view. Subjects authorized to execute any of these paths need to be granted execution rights
for all three sub-activities. That is, for a static analysis, execution order and reoccurrences are
irrelevant. In the given example, distinguished partial authorizations have to be evaluated for
the paths A → B, A → C and A → B → C. In general, if a switch of k sub-activities is nested

30 Optimized Access Control for Composite Applications and Workflows

Figure 3.7: Example of a loop nested switch

within a loop, then up to
k∑

i=1

(
k
i

)
= 2k − 1

partial authorization cases have to be distinguished.
The partial authorization approach will be of minor practical relevance if the top-level poli-

cies include an unmanageable number of case distinctions, reducing its interpretability by the
software engineer. Therefore, it is reasonable to consider partial authorization only if the work-
flow size and the number of switches are limited. That means, the partial authorization approach
will only be applied for selected scenarios. For instance, it is meaningful for business processes
that consist of sub-processes which are designed for specific job profiles. For example, the finan-
cial accounting system of a company might include a sub-process for the calculation of salaries
and a sub-process for the booking of goods receipt and issue. If the individual sub-processes
are to be executed by different accountants, the partial authorization approach can be applied to
determine the different job profiles.

3.3.6 Evaluation of the Policy Consolidation Approach

We assume that the policies (Pi)0≤i≤N of the sub-activities are static, meaning that they are not
modified at runtime (which might be the case for some mobile application scenarios). Otherwise,
in case of policy updates, the consolidation process has to be rerun. The result of the consolida-
tion process is a policy P opt that applies to APP0 and all its sub-activities (if P opt = P opt

(all)) or only
to specific branches APP0 → APPi (if P opt = P opt

(i)), respectively.

3.3.6.1 Static Optimization

In case external and dataflow dependencies are excluded, P opt allows to adjust the access control
of the composite application APP0 and to reduce policy enforcement costs. As each execution
which is granted based on P opt will also be granted by the sub-activities, it is sufficient to en-
force access control solely at APP0, thus, saving repeated and potentially redundant enforcements
through the sub-activities. The other way round, subjects that are not authorized by the policies
of the sub-activities are not authorized according to P opt either. This is because (1) each sub-
ject which is defined in P opt is also defined in the respective sub-activities’ policies and (2) each

3.3 Policy Consolidation 31

privilege granted to these subjects based on the sub-activities’ policies is also granted based on
P opt. These claims are justified through the definition of policy P opt

(all) (equation (3.3)) and pol-
icy P opt

(i) (equation (3.6)), respectively. In particular, (1) is justified through conditions (3.1) and
(3.4), while (2) is true due to conditions (3.2) and (3.5). The static analysis allows to receive a
consolidated view onto the set of authorized users (MS) and the least required privileges (LP),
enabling the following optimizations:

Evaluation of MS: S(P opt) specifies those subjects that are authorized to execute the workflow
(branch) or general composite application, respectively. The aggregated information S(P opt) al-
lows application developers to check whether the policy complies with the intended security
specifications, which is less time-consuming than an exhaustive evaluation of the sub-activities’
policies. They can detect over-privileged users or conflicts if the conditions defined in Sec-
tion 3.3.3 and Section 3.3.4 are not fulfilled. Furthermore, it allows to infer least required roles
if role based access control is employed. In this regard, a least required role is a minimal role
that grants process execution without demanding for further intermediary role activations. This
“one role will do”-approach is especially relevant for business processes that are typically de-
vised for specific job functions. Least required roles are unique for limited role hierarchies but
not necessarily for general role hierarchies. As an example consider the following role hierarchy:

1r 2r

4r 5r3r

The infima of the role hierarchy are r1 and r2. If users need to be members of r1 and r2 in order
to be allowed to execute the composite application, least required roles are the least common
senior roles, i.e., r4 and r5 in the given example.

Evaluation of LP: ΠO,A(P opt) represents the set of privileges needed for executing the com-
posite application and corresponding sub-activities. In the meaning of a reverse security engi-
neering, this information allows to define task specific roles. They are called task specific as they
group exactly those privileges that are required for the composite application’s functionality –
which is not necessarily the case for more generic least required roles. Least required roles are
roles that are already defined in a role hierarchy, while task specific roles are newly defined roles
that are tailored to the security requirements of the composite application.

3.3.6.2 Filtering Requests

In case dataflow and temporal dependencies have to be taken into account, access control has to
be performed by the autonomous sub-activities. For instance, reconsider the use case discussed
in Section 3.3.2: Only after step 3 has been executed, the respective amount due is known so
that Alice’s authorization for step 4 can be determined. Thus, Alice cannot be authorized for

32 Optimized Access Control for Composite Applications and Workflows

all sub-activities of the accounting system in advance. Though security checks by the individ-
ual sub-activities cannot be saved completely, consolidated policies still provide optimization
capabilities: As we known that only subjects in S(P opt) are candidates for the execution of the
workflow, other requesters can be blocked immediately and unnecessary executions be avoided.

3.4 Algorithmic Solutions

For an implementation of the described policy consolidation technique, algorithmic solutions
for the evaluation of predicate conjunctions and subtractions and for the validation of privilege
relaxation are required.

3.4.1 Implementing the Conjunction Operator

Equations (3.2) and (3.5) introduce Sall and S(i) as conjunctions of subject specifications. The
conjunction operator is semantically equivalent to the set theoretical intersection operator. That
is, Sall and S(i) can be interpreted as the intersection of subject sets. Let S and S′ be two subject
specifications. According to the policy model, S and S′ are represented via disjunctions of
predicate conjunctions over attributes in S-Attr:

S = s1 ∨ . . . ∨ sk = (s1,1 ∧ . . . ∧ s1,l) ∨ . . . ∨ (sk,1 ∧ . . . ∧ sk,l) and

S ′ = s′1 ∨ . . . ∨ s′k′ = (s′1,1 ∧ . . . ∧ s′1,l) ∨ . . . ∨ (s′k′,1 ∧ . . . ∧ s′k′,l)

The attributes in S-Attr are also called the dimensions. We assume all dimensions in S and S′ to
be specified. If a conjunction si is not constrained in dimension d, then the respective predicate
si,d represents the whole domain of d. According to Section 3.2.3, the intersection of S and S′

is S ∧ S ′ =
∨

1≤i≤k,1≤j≤k′(
∧

1≤d≤l(si,d ∧ s′j,d)). Nevertheless, conjunctions (si,d ∧ s′j,d) can be
contradictory, i.e., unsatisfiable by any evaluation context. Such terms constitute unnecessary
parts of a policy and shall be omitted to keep policy specifications clear. Figure 3.8 presents an
pseudo-code implementation for computing a condensed representation of S ∧ S′. Algorithm
intersect is of polynomial time complexity w.r.t. the number of conjunctive subterms and the
number of dimensions l. We illustrate the algorithm by means of an example. Consider the
following two subject descriptions (based on the example role hierarchy shown in Figure 2.2(a)
on page 11):

S = (s1) = (role � Nurse ∧ yop ≥ 1) and

S ′ = (s′1 ∨ s′2) = (role � Admin. Pers. ∧ yop ≥ 0) ∨
(role � Health Pers. ∧ yop ≥ 2 ∧ yop ≤ 4)

S represents all subjects that are granted the Nurse role and that have at least one year of practice
(abbrev. yop). S′ represents administrative employees and all subjects that are granted senior
roles of the Health Personnel role with at least two and at most four years of practice. Thus,
the dimensions are role and yop. While the domain of role is a finite lattice (defined by the role
hierarchy), the domain of yop is [0,+∞[, i.e., an interval.

3.4 Algorithmic Solutions 33

Input : Subject specifications S, S ′ in disjunctive normal form:
S = s1 ∨ . . . ∨ sk, and S ′ = s′1 ∨ . . . ∨ s′k′

Output: The reduced representation of

S ∧ S ′ =
∨

1≤i≤k,1≤j≤k′

(∧
1≤d≤l

(
si,d ∧ s′j,d

))
Ψ = false;1

foreach conjunction si of S do2

foreach conjunction s′j of S ′ do3

foreach dimension d = 1 . . . l do4

ψd = reduce(si,d ∧ s′j,d);5

endfch6

Ψ = Ψ ∨ (ψ1 ∧ . . . ∧ ψl);7

endfch8

endfch9

return Ψ;10

Figure 3.8: Algorithm intersect

As s1,role ≡ {Nurse,Head Nurse} and s′1,role ≡ {Admin. Pers.}, s1 and s′1 are disjoint in the
role-dimension. That is, the conjunction (s1,role ∧ s′1,role) is a contradiction and the overlap in the
yop dimension is ineffectual as the conjunctive add-on in line 7 of the algorithm in Figure 3.8
evaluates to false and can be omitted.

In contrast to this, s1 and s′2 overlap in each dimension as illustrated in Figure 3.9. The
conjunction (yop ≥ 1)∧ (yop ≥ 2∧ yop ≤ 4) is reduced to (yop ≥ 2∧ yop ≤ 4). The predicates
s1,role and s′2,role define the two finite sets

Φ1 = {Nurse,Head Nurse} and

Φ′
2 = {Nurse,Head Nurse,Physician, Internist,Surgeon}.

Thus, (s1,role ∧ s′2,role) is equivalent to Φ1 ∩ Φ′
2 = {Nurse,Head Nurse}. The intersection can be

represented through the predicate (role � Nurse), as the role Nurse is the infimum of Φ1 ∩ Φ′
2

according to the example role hierarchy. Thus, S1 ∧ S2 = (role � Nurse ∧ yop ≥ 2 ∧ yop ≤ 4),
i.e., the intersection consists of those subjects that are granted the Nurse role and that have at
least two and at most four years of practice.

3.4.2 Checking Privilege Relaxation

Let (O,A) and (O′, A′) be two privileges. As objects and actions are defined on disjoint sets
of attribute identifiers (O-Attr and A-Attr, see Section 3.2.1.2) and according to the definition of
privilege relaxation (Section 3.2.3.4), (O′, A′) relaxes (O,A) if the following holds:

∀e ∈ E : ([[O]]e = true ∧ [[A]]e = true) ⇒ ([[O′]]e = true ∧ [[A′]]e = true).

34 Optimized Access Control for Composite Applications and Workflows

()2 Health Personnel 2 4s role yop yop′ = ∧ ≥ ∧ ≤�

()1 Nurse 1s role yop= ∧ ≥�

Figure 3.9: Matching conjunctive terms

Therefore, the privilege relaxation problem can be reduced to the implication problem:

“Let T = (t1 ∨ . . . ∨ tk) and T ′ = (t′1 ∨ . . . ∨ t′k′) be disjunctions of predicate
conjunctions. T implies T ′, denoted as T ⇒ T ′, if and only if every evaluation
context which is satisfying T is also satisfying T ′.”

Guo, Sun, and Weiss (1996)

Informally, T ⇒ T ′ means that T ′ is more generic than T . To evaluate whether T ⇒ T ′

holds, each predicate conjunction ti of T is compared to the predicate conjunctions t′j of T ′. The
following three cases can occur:

1. ti implies t′j , i.e., ti ⇒ t′j . Then a match for ti has been found.

2. ti and t′j are incomparable, meaning that (ti ∧ ¬t′j) = ti. Then ti has to be compared with the
remaining predicate conjunctions of T ′ to find possible matches.

3. ti and t′j describe partially overlapping data sets: The overlap is (ti ∧ t′j). The remainder
(ti ∧ ¬t′j) is separately compared with the predicate conjunctions of T ′.

Figure 3.10 shows a pseudo-code implementation of implies for evaluating predicate implica-
tions. T implies T ′ if all predicate conjunctions ti of T are subsumed by T ′. In this case, the
remainder Δ is equal to false. In line 6, the sub-procedure subtract is invoked which calculates
the remainder of ti w.r.t. t′1, i.e., δ = (ti ∧ ¬t′1) given in disjunctive normal form (DNF). The
individual predicate conjunctions of δ are compared separately to the remaining conjunctions of
T ′ through recursive invocations of implies in line 8 of the algorithm in Figure 3.10.

A pseudo-code implementation of subtract is depicted in Figure 3.11. Computing the predicate
subtraction is done in a way similar to intersect by comparing the conjunctive terms ti and t′j in
each dimension d (line 2–11). If ti and t′j do not overlap in any dimension d, ti and t′j represent
disjoint data sets and the remainder is ti. The overall overlap of ti and t′j is iteratively constructed
by the helping variable work. The non-matching parts of ti are aggregated in δ.

3.4 Algorithmic Solutions 35

Input : T , T ′ in disjunctive normal form:
T = t1 ∨ . . . ∨ tk and T ′ = t′1 ∨ . . . ∨ t′k′

Output: T − T ′

if k′ = 0 then1

return T;2

endif3

Δ = false;4

foreach conjunctive term ti of T = (t1 ∨ . . . ∨ tk) do5

δ = subtract(ti, t′1);6

if δ �= false then7

Δ = Δ ∨ implies(δ, t′2 ∨ . . . ∨ t′k′);8

endif9

endfch10

return Δ;11

Figure 3.10: Algorithm implies

Input : Predicate conjunctions t and t′:
ti = ti,1 ∧ . . . ∧ ti,l and t′j = tj,1 ∧ . . . ∧ tj,l

Output : t− t′

Remark: We use the variable work to represent the stepwise computation of the
intersection of t and t′.

δ = false,work = ti ; // work = w1 ∧ . . . ∧ wl1

for d = 1 . . . l do2

w′
d = (ti,d ∧ t′j,d) ; // the overlap of ti,d and t′j,d3

work = (w′
1 ∧ . . . ∧ w′

d−1 ∧ w′
d ∧ wd+1 . . . ∧ wl);4

if w′
d = false then5

return ti ; // ti and t′j represent disjoint data sets6

else if w′
d �= ti,d then7

ω = ti,d ∧ ¬t′j,d ; // the remainder of ti,d minus t′j,d8

δ = δ ∨ (w′
1 ∧ . . . ∧ w′

d−1 ∧ ω ∧ wd+1 . . . ∧ wl)9

endif10

endfor11

return DNF of δ; // ω in line 8 is a predicate disjunction12

Figure 3.11: Algorithm subtract

As an example assume a relational database with the table Employees which has the attributes
Name, Gender, Salary, and Job (abbreviated na, ge, sa, and jo). Possible job values are the
categories health personnel, administrative personnel, and technical personnel (for short HP, AP,
and TP). Two privileges are defined on this table: The first one states that the complete table can

36 Optimized Access Control for Composite Applications and Workflows

Job ()jo

Health Pers.

Admin. Pers.

Tech. Pers.

Salary ()sa

female

male

Gender ()ge

50 ' 100 ' 150 '

�1

�2

�4,1

�4,2

�3

't

Figure 3.12: Visualization of predicate subtraction

be accessed via the select-operator. The second privilege restricts selections exclusively to the
data of female health care employees that earn more than 50′ $ and less than 100′ $. We use the
symbol ⊥ to represent unrestricted attribute values. The object specifications of both privileges
are represented by the following two predicate conjunctions:

t = (na =⊥ ∧ ge =⊥ ∧ sa =⊥ ∧ jo =⊥)

t′ = (na =⊥ ∧ ge = female ∧ sa > 50′ ∧ sa < 100′ ∧ jo = HP)

Obviously, t is more generic than t′, i.e., t relaxes t′, but not the other way round. Whether
t′ relaxes t can be evaluated by subtracting t′ from t, i.e., by calling subtract(t, t′), and testing
whether the remainder is empty. The following table shows the evaluation steps if the attributes
are evaluated in the order Name, Gender, Salary, and Job:

Eval.
attr.

Variable work Remainders

na (na =⊥ ∧ ge =⊥ ∧ sa =⊥ ∧ jo =⊥) —–
ge (na =⊥ ∧ ge = female ∧ sa =⊥ ∧ jo =⊥) δ1 = (na =⊥ ∧ ge = male ∧ sa =⊥ ∧ jo =⊥)

(na =⊥ ∧ ge = female ∧ δ2 = (na =⊥ ∧ ge = female ∧ sa ≤ 50′ ∧ jo =⊥)sa
sa > 50′ ∧ sa < 100′ ∧ jo =⊥) δ3 = (na =⊥ ∧ ge = female ∧ sa ≥ 100′ ∧ jo =⊥)
(na =⊥ ∧ ge = female ∧ δ4 = (na =⊥ ∧ ge = female ∧ sa > 50′∧jo
sa > 50′ ∧ sa < 100′ ∧ jo = HP) sa < 100′ ∧ jo ∈ {TP, AP})

Figure 3.12 illustrates the comparison of t and t′ in the dimensions Gender, Salary, and Job. It
shows that in the Salary-dimension, t divides work into 3 components – the overlapping part
and two remainder predicates δ2 and δ3. This is the maximum number of remainder predicates
that can be generated in one step if the attribute’s domain is a totally ordered set (the domain of
Salary is [0,+∞[). Things are different if the attribute’s domain is a partially ordered finite set,
as is the case for the dimension Job. In the figure, it is shown that δ4,1 and δ4,2 are the remainder

3.5 Optimizing the Access Control of Intra-organizational Web Service Workflows 37

predicates of the comparison in the Job-dimension. Instead of enumerating all attribute values
(AP and TP) in distinct predicates, the remainder is internally represented as an aggregate of the
form (jo ∈ {AP,TP}) as illustrated in the table above.

Policy consolidation is performed at the time a composite application is developed or when the
underlying sub-activities’ policies are modified. Although policy consolidation is not considered
to be a mission critical task, its usability nevertheless depends on the used algorithms’ com-
plexity. Unfortunately, the worst case time complexity of privilege relaxation is exponential with
regard to the input parameter k′. The described privilege implication problem is closely related to
other well known computationally hard issues like query subsumption or the satisfiability prob-
lem which, for example, have been analyzed by Rosenkrantz and Hunt (1980), Sun et al. (1989),
and Guo et al. (1996). As we have to determine exact results, heuristics cannot be applied. An
estimation of the complexity of implies is given in Appendix B. The worst case complexity re-
sults from the recursion in line 8 of algorithm implies and depends on the number of subterms
that are generated by the predicate subtraction (see line 6 of the algorithm in Figure 3.10). In
our case, T and T ′ stand for objects or actions of two privilege specifications. For the worst
case to occur, each ti needs to be split into the maximum number of remainder predicates during
each comparison with any t′j (estimated by the upper bound 2l). The same applies to each of the
produced remainder predicates. However, the worst case is unlikely to arrive in practice, since it
would demand for highly unstructured and almost unmanageable policies.

3.4.3 Implementing the Subtraction Operator

The semantics of the subtraction of two terms T and T ′ is [[T − T ′]]e = [[T]]e ∧ ¬([[T ′]]e). Thus,
the subtraction operator can be realized through the already presented algorithm implies (Fig-
ure 3.10), as the remainder Δ of implies(T , T ′) is equivalent to T − T ′.

3.5 Optimizing the Access Control of Intra-organizational Web
Service Workflows

So far, policy consolidation has been presented at an abstract level by means of a generic formal
model. In this section, we show how it can be applied to analyze and optimize the access control
of Web service workflows.

3.5.1 Running Example

Figure 3.13 illustrates a simplified e-health workflow which we assume to be executed when a
patient is transferred to the cardiology department of a hospital.4 Depending on the diagnostic

4The example workflow and the later modeled policies are fictitious and do not represent a real-world e-health
business process configuration. We use this simplified workflow to demonstrate the basic principles of policy con-
solidation for general Web service workflows. Details about the security requirements of e-health applications are,

38 Optimized Access Control for Composite Applications and Workflows

Figure 3.13: Example of an e-health (Web service) workflow

findings, either an in-patient treatment is applied or an electrocardiogram (ECG) is made in order
to acquire further insight. Sub-activities of the workflow on the one hand represent practical
activities that require human interaction like a medication. On the other hand, they stand for
information processing tasks like an update of the stock of pharmaceuticals in the database. In
the following, we concentrate on the technical aspects of the workflow and assume the subsequent
informal security policies:

• The policy PMR applies to the sub-activity Query medical records. It states:

Health personnel with permanent employment and administrative employees are allowed
to access the medical records of patients. These are stored in the table MedicalRecordsTab
of the hospital’s database.

• The policy PECG that applies to Make stress electrocardiogram declares:

Nurses of the cardiology and internists are allowed to update medical records, e.g., by
inserting ECG results.

• Policy PApp applies to Apply monitoring devices and is defined as:

Internists are allowed to apply monitoring devices by marking them as in use in the table
DevicesTab.

• Policy PMed applies to Apply medications (PMed) and is defined as:

Nurses and physicians can apply medications if the patient is not allergic concerning the
respective pharmaceutical. This Web service updates the table PharmaceuticalsTab.

Access control is usually performed at the services’ layer, because services are self-contained
software modules that autonomously enforce security. Unfortunately, this authorization auton-
omy can bring about performance drawbacks: Firstly, security checks are performed redundantly.
That is, authentication and authorization of the same client will be done repeatedly, which might
be very costly considering, for example, certificate evaluation and verification. Secondly, further

for example, provided by Evered and Bögeholz (2004) and Blobel and Pommerening (1997). Neuhaus et al. (2006)
and Caumanns et al. (2006) describe the telematics infrastructure of the German e-health card, which is realized as
a service-oriented architecture.

3.5 Optimizing the Access Control of Intra-organizational Web Service Workflows 39

performance drawbacks can emerge if services are needlessly invoked by ultimately unautho-
rized subjects. For instance, querying the medical records of a patient will be done unnecessarily
if the workflow is called by an administration employee that is neither able to pursue the ECG-
nor the In-patient-treatment-branch of the workflow. Regarding Web service transactions, even
rollbacks or compensating transactions might be required.

Therefore, it is beneficial to determine the set of authorized users before executing the work-
flow, blocking unauthorized requests as soon as possible. Hence, this optimization is based on
evaluating the MS property of consolidated policies. Considering our example, the subjects that
are authorized for the workflow are those that are in the intersection of the subject sets specified
in the policies PMR, PECG, PApp, and PMed. To give an example, subjects allowed to execute the
In-patient-treatment-branch need to be granted privileges for the services Query medical records,
Apply monitoring devices, and Apply medication. Consequently, these subjects are in the inter-
section S(PMR)∩S(PApp)∩S(PMed). With regard to our informal policy specification, this applies
to internists. As internists are also allowed to Make stress electrocardiograms, they are granted
the privileges to invoke any branch within the workflow, i.e, they possess full authorization.

In contrast to this, nurses are only granted partial authorization, as they are only allowed
to execute the ECG-branch of the workflow. Other subjects, like administrative employees, –
though being able to invoke Query medical records – do not possess the required privileges to
execute a complete branch and can be blocked right from the beginning.

3.5.1.1 Workflow Model

As shown by Weerawarana et al. (2005), Web service workflows can be described by use of
the Business Process Execution Language for Web Services, BPEL4WS or simply BPEL for
short. This specification introduces five patterns to model the control flow of business processes,
namely flow, while, sequence, switch, and pick. We refer to [Andrews et al. (2003)] for their
specifications. It is relevant to the consolidation of access control policies whether all or only
some of the sub-activities grouped by these control patterns will be executed. As the first three
control patterns require all sub-activities to be invoked,5 we group them together and represent
them through the SEQUENCE template, which we have introduced in Section 3.3.2. The re-
maining patterns specify that at most one sub-activity will be called, e.g., depending on certain
conditions or the arrival of events. Thus, they can be represented by the SWITCH template.

Starting from the BPEL4WS specification, a Web service choreography can be represented
through a workflow tree as illustrated in Figure 3.14. As shown in the figure, the workflow tree is
closely related to the tree view of the XML representation. Inner nodes of the tree either represent
SEQUENCE or SWITCH nodes, while leaves represent individual Web services. In order to obtain
a consolidated view onto the access control settings of a workflow, we perform a bottom-up
structural analysis over the workflow tree, gathering access control information.

5We assume that sub-activities of while-activities will be executed at least once. Furthermore, conditional execu-
tion steps that are nested in while-constructs need a different treatment regarding partial authorization as discussed
in Section 3.3.5.

40 Optimized Access Control for Composite Applications and Workflows

Figure 3.14: BPEL4WS-extract and workflow tree representation of the e-health process

3.5.1.2 Preliminary Remarks

Web services are autonomous software components that can be supplied by varying service
providers. Thus, access control is administered by different authorities, in general. Moreover,
services need not be exclusively used, i.e., can be integral parts of different workflows. In order
to be able to consolidate access control policies, the following conditions must be met:

(i) The access control specifications of the Web services fulfill the principle of least privilege.

(ii) Policies can be expressed in one common policy language and rely on DAC and RBAC
models.

(iii) The subject specifications are based on the same description language.

If the first condition holds, we can infer compliance with the least privilege principle for the
consolidated policies. The principle of least privilege criterion can often be attained (semi-) au-
tomatically, as we will show in the next chapter by means of database backed Web services. The
second and third assumption refer to homogeneous policy representations. The proposed consol-
idation approach requires policies to rely on the same access control model. This precondition is
typically met for intra-organizational business processes that only include local services.

Wiehler (2004) points out that enterprises will adopt Web services step by step. First, Web
services will be used for intra-organizational enterprise application integration (EAI) tasks, e.g.,
in order to efficiently integrate legacy systems into business processes. Inter-organizational Web
service workflows will at first be realized with a few selected and well-known partners until this
new technology has proven to be reliable and secure. Later on, partner communities and dynamic
collaborations will come along. The proposed policy consolidation approach is intended for
composite applications that belong to the first phase.

3.5 Optimizing the Access Control of Intra-organizational Web Service Workflows 41

3.5.2 Performing Policy Consolidation

3.5.2.1 Policy Representation

We show by means of the introduced e-health workflow, how policy consolidation for Web ser-
vice choreographies proceeds. Based on the role hierarchy shown in Figure 2.2(a) on page 11
the informal access rules introduced above are represented as follows:

PMR ={(((role � Health Personnel ∧ employment = permanent)∨
(role � Administrative Personnel)),

(table = MedicalRecordsTab), (action = select), (true))}
PECG ={(((role � Nurse ∧ field of activity = cardiology) ∨ role � Internist),

(table = MedicalRecordsTab), (action = select ∨ action = update), (true))}
PApp ={((role � Internist), (table = DevicesTab),

(action = select ∨ action = update), (true))}
PMed ={((role � Nurse ∨ role � Physician), (table = PharmaceuticalsTab),

(action = select ∨ action = update),

(HighAnaphylaxisRisk(patient,drug) = false))}
As each of these policies include only one rule, it can easily be shown that they are reduced
policies according to the definition given in Section 3.2.3.5.

3.5.2.2 Structural Analysis

BPEL provides no integrated mechanism to specify security policies for business processes.
Therefore, policies of inner nodes in the workflow tree are equal to Υ. Hence, no relaxation
tests are necessary for generating consolidated policies. Instead, privileges defined in the poli-
cies of the Web services are gathered. Therefore, we focus on determining the set of authorized
users. Performing the policy consolidation for our running example starts with analyzing the
policies PApp and PMed that apply to the activities Apply monitoring devices and Apply medica-
tion which are linked in sequence as illustrated in Figure 3.13 and Figure 3.14. The subjects
allowed to execute both are those granted the Internist role. The consolidation process is contin-
ued by analyzing the SWITCH node. The following cases have to be distinguished:

1. Internists are in the intersection of the subject sets that are allowed to execute both branches
(ECG and in-patient treatment).

2. Nurses working at the cardiology are only granted privileges for the ECG-branch.

The last step is to analyze the topmost SEQUENCE node for both cases. We compute the con-
junction

((role � Health Personnel ∧ employment = permanent) ∨ role � Administrative Pers.)

∧ (role � Internist)

=(role � Internist ∧ employment = permanent)

42 Optimized Access Control for Composite Applications and Workflows

Thus, subjects granted the Internist role are allowed to execute the complete workflow. The
applicable consolidated policy is P opt

(all) with

P opt
(all) ={((role � Internist ∧ employment = permanent), (table = MedicalRecordsTab),

(action = select ∨ action = update), (true)),

((role � Internist ∧ employment = permanent), (table = DevicesTab),

(action = select ∨ action = update), (true)),

((role � Internist ∧ employment = permanent), (table = PharmaceuticalsTab),

(action = select ∨ action = update), (HighAnaphylaxisRisk(patient, drug) = false)))}
Additionally, according to the definition of PMR and the role hierarchy depicted in Figure 2.2(a),
the subjects that are allowed to execute the ECG-branch are those that are granted the Nurse role.
The consolidation for this branch results in

P opt
(ECG) ={((role � Nurse ∧ employment = permanent ∧ field of activity = cardiology),

(table = MedicalRecordsTab), (action = update ∨ action = select), (true))}

3.5.2.3 Interpretation

The conclusions to be drawn from the structural analysis are

1. Internists and nurses are authorized to execute the workflow: Internists are granted full
authorization, while nurses are granted partial authorization restricted to the ECG-branch.
These two roles constitute least required roles according to Section 3.3.6.

Other subjects, like those granted the Administrative Personnel role, can be blocked right
from the beginning.

2. ΠO,A(P opt
(all)) and ΠO,A(P opt

(ECG)) entail the least required privileges for full and partial-au-
thorization, respectively. This information can be used to define task specific roles.

3. The number of policy enforcement points (PEP) can be reduced as illustrated in Fig-
ure 3.15:

• Realizing the full authorization-approach, policy P opt
(all) will be enforced on the work-

flow layer through the first PEP. In this case, only internists will be authorized for the
execution of the workflow.

• Partial authorizations need to be validated by two PEPs. In addition to P opt
(all), P

opt
(ECG)

needs to be enforced before the invocation of the Query medical records sub-activity
and when entering the switch.

Policy enforcement costs can be reduced if access control of the sub-activities can be delegated to
the workflow management system. That is, the security system of the workflow engine / service
platform has to be capable of performing access control at the workflow layer.

3.5 Optimizing the Access Control of Intra-organizational Web Service Workflows 43

Type of referral
Query medical

records

Make stress

electrocardiogram

Apply monitoring

devices
Apply medication

ECG

In-patient

treatment

First PEP Second PEP

Administrative

employees
Nurses Internists

Execution paths:

()
opt
allP

Filter requests

based on

()
opt
ECGPUse

for partial

authorization

()
opt
ECGPBlock nurses due to

if they try to enter

the lower branch

Figure 3.15: Optimizing the access control through policy enforcements at the workflow layer

Web services are self-contained software components, so that by default access control is
performed at the services’ layer. Nevertheless, enforcement costs can be reduced by includ-
ing workflow relevant access rules into service policies. Instead of repeatedly initiating subject
identification, only certain “pass-through”-credentials (e.g., realized as SAML assertions) are
employed, allowing better performing security evaluation. Such “pass-through”-credentials are
issued if access control at the workflow layer succeeds. Another possibility is to set up a security
context between the workflow execution system and the autonomous services, e.g., by employ-
ing WS-SecureConversation [Gudgin and Nadalin (2005)]. This way, the access control of core
business processes that are implemented as stateful Web service workflows can be realized ef-
ficiently. These approaches can often be realized for intra-organizational business processes,
when workflow architects have the possibility to optimize the Web services’ policies. In any
case, policy enforcement at the workflow layer helps to reduce unnecessary service executions,
transaction rollbacks, and compensating transactions.

Furthermore, policy consolidation allows to check the consistency of security configurations.
Through the consolidation of the access control rules, dead paths, i.e., branches of the workflow
that will never be executable, can be detected. Dead paths are identified via nodes with empty
policies in the workflow tree.

44 Optimized Access Control for Composite Applications and Workflows

3.5.3 Implementation

3.5.3.1 Policy Consolidation Library

We implemented the proposed policy consolidation approach in Java, providing a library that is
based on the policy and workflow specification standards XACML and BPEL:

XACML The eXtensible Access Control Markup Language is an XML based declarative pol-
icy language. It allows to formulate discretionary access control rules and to model the
core RBAC functionality. XACML will be presented in Section 4.2.2. As we will show
there, our policy model can seamlessly be expressed in XACML: The core components of
rules, i.e., subjects, objects, and actions, are described through conjunctions of predicates.
XACML Rule and Policy (respectively PolicySet) elements correspond to the introduced
rule and policy definitions. Due to the extensibility of XACML, the rule combining algo-
rithms presented in Section 3.2.2 can be implemented as well.

BPEL The Business Process Execution Language for Web Services (BPEL4WS or simply
BPEL) is the emerging standard for specifying Web service choreographies. The language
is currently getting standardized by OASIS and supposed to be renamed to WSBPEL.

Figure 3.16 illustrates the functionality of our policy consolidation tool. It generates consolidated
workflow policies based on the original policies of the integrated Web services and a BPEL
specification of the control flow:

1. First, the workflow tree is generated based on the BPEL description and the SEQUENCE

and SWITCH patterns are identified.

2. For the individual Web services, the applicable policies are identified. XACML policies
can be defined in a hierarchy. For the internal Java representation, hierarchies are flattened
and distinguished rules according to our policy model are generated.

3. Then, policy consolidation as described in Section 3.3 is performed.

4. Finally, the resulting consolidated workflow policy is transformed into its XACML repre-
sentation.

3.5.3.2 Integration into SAP Research’s Workflow Management System

The policy consolidation approach has been integrated into SAP Research’s workflow manage-
ment system consisting of the three components Maestro, Nehemiah, and Gabriel. Maestro is
used to model business processes by specifying sub-activities and their interdependencies, i.e.,
the control flow [Aiouche (2005)]. Via drag-and-drop, components like sub-activity nodes and
control flow nodes can be inserted and connected. Nehemiah is the workflow management en-
gine that allows to execute business processes which have been designed using Maestro [Lippe
(2004)]. At runtime, Nehemiah allows to supervise the state of the workflow by keeping track

3.5 Optimizing the Access Control of Intra-organizational Web Service Workflows 45

optP

Figure 3.16: Processing steps of the policy consolidation prototype

of the active sub-activities. Thus, Maestro and Nehemiah are used for workflow modeling and
activation. Individual sub-activities, on the other hand, are modeled and activated by Gabriel
[Schaad and Spadone (2005)]. By use of Gabriel the roles needed to execute sub-activities are
specified. At design time, sub-activity profiles are defined that describe which actions have to
be performed when executing a certain task. For instance, an action can be the invocation of a
Web service. When modeling a workflow with Maestro, sub-activity nodes can be associated
with the corresponding sub-activity by means of the profile. Furthermore, subjects like roles and
users can be modeled and these subjects can be granted the privileges required to execute the
corresponding sub-activities.

The relationships between the three tools are illustrated in Figure 3.17. At runtime, Nehemiah
interacts with Gabriel giving notification about active sub-activities. Then, Gabriel figures out
users that are allowed to execute the respective sub-activities. These sub-activities can then be
reserved by legitimate users. After a sub-activity has been executed, Gabriel notifies Nehemiah
to continue with the business process execution.

Nehemiah supports the execution of multi-user workflows, denoting that sub-activities can
be executed by varying users. We complemented the workflow execution engine with the special
treatment of single-user workflows and composite applications, integrating the full-authorization
approach [Albutiu (2006)]. Figure 3.18 illustrates the interplay of SAP Research’s workflow
management tools and the policy consolidation library. The consolidation is initiated by Ne-
hemiah evaluating the workflow specification provided by Maestro. The access control policies
of the individual sub-activities are queried from Maestro. The consolidated policy is used by
Nehemiah to enforce access control for single-user workflows. Sub-activities of a single-user
workflow are still activated by Gabriel, but, policy enforcement at this layer is no longer nec-
essary. Instead, policy enforcement proceeds at the workflow level. The single-user execution

46 Optimized Access Control for Composite Applications and Workflows

Nehemiah
•Workflow administration
•Workflow execution

Maestro
Workflow modeling Process description

(exported as BPEL4WS)

Role hierarchy,

user authorizations

(exported as XACML policies)

Sub-activity

information

Gabriel
•Task administration / execution
•User and role administration

Figure 3.17: SAP Research’s workflow management system

is conceptually closely related to SAP Guided Procedures which is a flexible workflow envi-
ronment easing the development of (collaborative) business processes by use of reusable tem-
plates. Weilbach and Herger (2005) emphasize that SAP Guided Procedures excels in usability
and auto-configuration. Our proposed policy consolidation approach allows to detect authoriza-
tion templates for single-user workflows. These templates can be used to safeguard the execution
of single-user workflows.

3.6 Related Work

In Section 3.2, we defined the policy model that constitutes the formal basis of our proposed pol-
icy consolidation technique. Bonatti et al. (2000, 2002) and Wijesekera and Jajodia (2001, 2002,
2003) present policy algebras that allow combining and comparing access control policies on a
formal basis, building upon previous work on the composition and secure behavior of program
modules by Abadi and Lamport (1993) and Jaeger (1999). Backes et al. (2004, 2003) present an

3.6 Related Work 47

Process Level

R
u
n
ti
m
e

D
es
ig
n
 T
im

e

Policy

Consolidation

Sub-activity Level

Business

Process

Modeling

Business

Process

Enactment

Maestro

Nehemiah

Business Process

Repository

Sub-activity

Enactment

Sub-activity

Modeling

Gabriel

Sub-activity

Repository

Gabriel

(adapted from [Schaad and Spadone (2005)])

Figure 3.18: Policy consolidation within SAP Research’s workflow management tool-suite

algebra for the composition of enterprise privacy policies. Syntax and semantics of our model
are closely related to the model proposed by Bonatti et al. We extended it where necessary by
adding additional operators and definitions of policy and rule relaxation.

The model is very expressive by allowing entities like subjects and objects to be expressed in
an attribute based way, rather then relying on identity based descriptions. Therefore, the model is
well applicable for (Web) applications that demand for fine-grained access control. The individ-
ual attributes are defined on partially or totally ordered sets. Thus, for instance, general and lim-
ited role hierarchies as introduced in Section 2.2.3 as well as partial orders on objects and actions
can be defined. According to the database object hierarchy, privileges defined on generic levels
(e.g., a complete table in a database) include privileges for subordinate levels (like columns or in-
dividual tuples). Our definition of privilege and rule relaxation is also related to early work on ac-
cess control for object-oriented database systems. Rabitti et al. (1991, 1988) and Fernandez et al.
(1994) introduce concepts like authorization inheritance into the specification and enforcement
of access control rules. The access control schemes proposed by Richardson et al. (1992) and
Ahad et al. (1992) realize the encapsulation concept, denoting that objects are accessed by use
of methods. Users can be granted privileges for executing these methods but need not be granted
comprehensive privileges for the objects themselves.

48 Optimized Access Control for Composite Applications and Workflows

Access control policies of composite applications are composed of rules that codify the in-
dividual access rights relating to the underlying sub-activities. The enforcement of such poli-
cies depends on the applied evaluation algorithm. Logical frameworks for the specification and
enforcement of access control are, for example, presented by Jajodia et al. (1997a,b). If neg-
ative or mixed authorization should be employed, which could be expressed in our model as
well by means of the subtraction operator, conflict resolution techniques have to be employed.
Jajodia et al. (2001) and Bertino et al. (2001, 1999b) deal with policy evaluation strategies for
mixed authorization systems. A high diversity of evaluation algorithms is also offered by the
XACML standard [Moses (2005)]. Different policy evaluation algorithms have been presented
in this chapter when defining the consolidation of the access control policies of composite ap-
plications. Concerning the optimization of workflows including autonomous sub-activities like
individual Web services, we focused on positive authorization which is suitable for almost all
enterprise applications as stated by Atluri (2001).

Our work is also related to research on models for the specification and analysis of workflow
processes [Altunay et al. (2005); Kang et al. (2001)]. Adam et al. (1998) use Petri-nets to model
and evaluate control flow dependencies and to infer secure execution configurations. Policy
consolidation allows to optimize the access control of workflow systems by providing a con-
solidated policy that can be enforced at the workflow layer. The enforcement of access rules
at the workflow layer is also proposed by Gudes et al. (1999). But in contrast to our approach,
the authors focus on multi-user workflows where each step is executed by different individuals.
Access control models and architectures for workflow systems are, for example, proposed by
Atluri and Huang (1996), Huang and Atluri (1999) and Bettini et al. (2002). Bettini et al. iden-
tify temporal constraints that can cause inconsistencies restricting the executability of workflows.
Temporal constraints must also be considered when interpreting the result of the static policy
analysis. Nevertheless, even if dynamic dependencies have to be evaluated at runtime, policy
consolidation still offers optimization potential. This technique allows to improve the perfor-
mance of workflow systems since unauthorized execution attempts can be filtered at an early
stage and runtime policy enforcement costs can be reduced based on consolidated policies.

Atluri et al. (1997, 2000) examine the security requirements of multilevel secure workflows,
i.e., workflows where the individual sub-activities can be assigned to varying security levels.
Bertino et al. (1999a) introduce a formal model and framework for the enforcement of static
and dynamic separation of duties in workflows. Schaad et al. (2005) describe separation of duty
requirements by means of a case study based on the legislative procedure in Austria. These
approaches are somehow orthogonal to ours, as we are performing the consolidation process
from the single-user /single-role viewpoint. That is, we are focusing on composite applications
that are implemented for specific jobs and, thus, do not rely on user / role switching.

In Section 3.5, we showed how the consolidation approach can be applied to Web service
compositions. Khalaf and Leymann (2003) give an overview over service composition strategies.
Robinson et al. (2006) describe how the access control configuration of business processes can be
inferred from the control flow. With the aim of fulfilling the principle of least privilege, policies
are enabled and disabled depending on the workflow state. In all probability, due to widely
accepted standards, like XML, SOAP, UDDI, and WSDL (to name the most important ones),

3.7 Conclusion 49

enterprise application integration challenges (EAI, [Linthicum (2001, 2003); Ruh et al. (2000)])
will increasingly be solved by use of Web services. We also built our prototypical implementation
on the predominant workflow and access control standards in this area, especially BPEL4WS
and XACML. Identifying the set of authorized users of composite applications for access control
optimization is also addressed by Rits et al. (2005). They present an approach for determining
task-specific user profiles and roles by analyzing the source code of composite applications.
The approach we present in this chapter is more generic and implementation independent. It
also supports the reverse engineering of appropriate user / role profiles by determining the least
required privileges. Compliance with the principle of least privilege can be inferred if the policies
of the underlying sub-activities are preprocessed and minimized. How this can be achieved for
database backed Web services is shown in the next chapter.

3.7 Conclusion

Security and usability are often experienced as counteracting objectives [Cranor and Garfinkel
(2005)]. However, the policy consolidation approach presented in this chapter is an example
for both being able to be synergistic as well. Through the consolidation of the access control
configurations of autonomous sub-activities, authorization complexity is reduced. Application
developers and security officers receive a top-level view that allows them to detect possible secu-
rity vulnerabilities more easily. For example, over-privileged user accounts can be substituted by
task-specific role profiles and predefined access rights for a composite application can be tailored
to the respective functionality. Furthermore, access control that is performed on the workflow
layer based on a consolidated policy can reduce policy enforcement costs. Additionally, it helps
to avoid transaction rollbacks and compensating transactions through detecting and blocking in-
sufficiently authorized execution attempts early.

Policy consolidation was introduced on the basis of a formal policy algebra that allows DAC
and RBAC models to be expressed. Due to the attribute based description of entities like subjects
and resources, the model is very expressive and useful for business applications that demand for
fine-grained access control specifications. The calculation of consolidated policies is reduced
to a structural analysis of the workflow tree. Through a bottom-up analysis, intermediary con-
solidated policies are calculated for the inner nodes of the workflow tree until a consolidated
workflow policy is obtained, finally. The resulting policy either applies to the complete work-
flow or to the execution of selective workflow branches, depending on whether the full or partial
authorization approach is employed.

In order to consolidate policies, privilege relaxation checks and subject intersections have to
be calculated, for which algorithmic solutions were presented. The complexity of policy con-
solidation is subdivided into the complexity that is determined by the structural analysis and the
complexity of policy comparisons. The complexity of the structural analysis depends on whether
partial authorizations have to be analyzed and the number of SWITCH nodes that are included
in the control flow. The complexity of privilege relaxation checks is closely related to the pred-
icate implication problem. Whether the exponential worst case complexity arises, depends on
the degree of partial overlaps between the conjunctive subterms of privilege specifications. The

50 Optimized Access Control for Composite Applications and Workflows

worst case is attained if policies are described in a rather unstructured manner what is assumed
to arrive rarely in practice.

The benefits of policy consolidation for composite applications were demonstrated by the
example of Web service workflows. We emphasized that for Web service workflows typically
no predefined policies have to be adjusted. Instead, the focus of consolidation is on determining
the set of authorized users. In the following chapter, we will also give an example for the second
consolidation objective by presenting a security engineering approach for tightening the access
control of database backed Web services. Our aim is to avoid security vulnerabilities that arise
due to failure to comply with the principle of least privilege.

CHAPTER 4

Security Engineering for Database Backed Web
Services

Many enterprise services rely on database backends to store and process business relevant data.
Thus, (the contents of) databases in many cases constitute the heart of a company’s information
processing systems, determining its value and success. With the advent of the service-oriented
computing paradigm, a change in the design of enterprise resource planning (ERP) systems is
recognizable. Database functionality is appreciably provided over Web service interfaces used
to realize intra- and increasingly also inter-organizational value creation chains. In general,
database systems in this case are no longer guarded by the security system of a wrapping mono-
lithic middleware system. Hence, new approaches are required to ensure security of database
systems that are integrated over lightweight Web services.

The access control of database backed services can be defined from two extreme viewpoints.
On the one hand, security can be enforced by the underlying database systems which then have
to realize application specific access control. On the other hand, authorization can be enforced
solely by the services. This requires the services to run under control of the database admin-
istrator as service-to-database connections are established by use of highly privileged database
profiles. None of these approaches appears to be satisfactory. Instead, application specific secu-
rity has to be realized at the application layer, i.e., the services, while autonomy of authorization
for the underlying database systems is preserved at the same time. Therefore, multilayered ac-
cess control appears to be promising. But, in case access control policies of services are defined
without correlation to the database policies, authorization mismatches are likely to be induced.
This demands for a methodical approach that achieves the consolidation of both security config-
urations.

The remainder of this chapter is structured as follows: In Section 4.1, we discuss the security
requirements of database Web services, i.e., services that rely on database interactions for pro-
viding their functionality. Section 4.2 presents an overview of access control concepts for Web
services and database systems. In Section 4.3, we present our security engineering approach for

52 Security Engineering for Database Backed Web Services

consolidating the access control of database backed Web services, before introducing our proto-
typical realization in Section 4.4. Finally, we give an overview over related work in Section 4.5
and conclude in Section 4.6. Parts of this chapter have already been published in [Wimmer et al.
(2004)] and [Wimmer et al. (2005a)].

4.1 Motivation

Currently, a change of the architecture of ERP applications is becoming apparent. Because of
increased demand for flexibility, adaptability, and the need to quickly react to market shifts, more
and more enterprises are migrating to service-oriented architectures. Nevertheless, this architec-
tural change also brings about new challenges concerning the security of business applications
and respective underlying resources. In the past – and still today –, databases have often been
integrated into large-scale monolithic ERP systems, like SAP R/3-installations. Classical ERP
systems represent single points of administration, typically supplied with a robust security sys-
tem which has been evaluated over the years in practice. Usually, database systems are fully
integrated into the middleware layer, meaning that in many cases, database connections are es-
tablished over ‘root’-like accounts and fine-grained authorization is enforced on the middleware
and application layer.

Applying this approach one-to-one to database backed Web services – in the following also
referred to as database services for short – can result in significant security vulnerabilities for
the underlying resources. Web services are lightweight software components – possibly even
mobile code – that can be executed on various service hosts. Typically, services only demand
a restricted portion of the data processing capabilities of database systems. Hence, providing
comprehensive access on databases is not meaningful from the security viewpoint. Nonetheless,
service-to-database connections are often established by the use of over-privileged database ac-
counts. The reason for this is that determining adequate database user profiles for a given service
functionality is a non-trivial task, in general. Moreover, more generic accounts can be reused for
the realization of varying services, reducing database administration effort, thus, easing service
implementations.

Figure 4.1 sketches an example of two services accessing the same database. Each service
requires access to only an extract of the database content, expressed via the access corridors AC1
and AC2. The term ‘access corridor’ represents the privileges which are granted by the employed
database connections. In the figure, both corridors overlap. Thus, it appears beneficial to use only
one database account like dbuser for realizing both service interfaces. In case security leaks of
the services or the service platform are disclosed, confidential data (which is not provided via the
services) is in danger of being accessible, like � and � in the figure. Two extreme approaches
concerning the specification and enforcement of the access control of database services can be
observed.

On the one hand, following the database-centric approach, access control for database ser-
vices can be realized by the underlying database systems. Consequently, security enforcements
on the services’ side are not implemented and policy evaluation costs (like the browsing of XML
policy files) can be saved. However, the application’s security policy has to be implemented by

4.1 Motivation 53

Figure 4.1: Reducing security vulnerabilities through access corridors

the database which appears to be impractical in many cases. Moreover, service implementations
can demand for fine-grained access control, which cannot be realized satisfactorily, depending
on the employed database system.

On the other hand, authorization can be enforced solely on the application layer. This service-
centric approach brings about the security risks discussed above. The common practice lies
in-between these two extreme approaches, denoting a multilayered access control scheme. Con-
sequently, two access control systems have to be taken into consideration, namely the security
system of the service and the security system of the database. But, in case the two are adminis-
tered independently, authorization mismatches are likely to occur.

In this chapter, we propose a best-practice for the implementation of database services.
Based on the service specification, Web service policies, policy enforcement points, and opti-
mal database user profiles can be generated semi-automatically. To ensure the compatibility of
service policies with database security policies, we perform a policy compliance check that relies
upon the techniques presented in the previous chapter.

Running Example

We will demonstrate our security engineering approach by means of a simplified e-health sce-
nario. Figure 4.2 sketches a Web service portal called MedRecords-WS which physicians can use
to change the medication of patients. The signature of updateTreatment and the corresponding
update statement are illustrated in the upper right corner of the figure. The lower half shows an
extract of the hospital’s database. For the sake of simplicity, we assume patients and physicians
to be identified by their names.

Usually, access control takes place in two phases: First, requests are authorized by the Web
service. Afterwards, a connection to the underlying database is established that is authorized by
the database system. Thereby, service clients typically differ from the database accounts used to
set up the service-to-database connection.

For the implementation of (database) Web services, the ability to realize fine-grained access
control (FGAC) is of particular importance. For instance, the authorization of subjects often

54 Security Engineering for Database Backed Web Services

J
D
B
C

Web service method:

updateTreatment(
p <string>, // patient name

d <string>, // disease

m <string>) // new medication

SQL-query:

update MedicalRecords
set Medication = m
where Patient = p
and Diagnosis = d;

Extract of the database schema:

Physicians
Name Department

John Carter Emergency Room
Kerry Weaver Cardiology
Mark Greene Surgery

...
...

Patients
Name Health Insurance

Philip Watters ABC Insurance
Kate Austin Private HI

...
...

MedicalRecords
Patient Diagnosis Medication AttendingPhysician

Philip Watters Cold Cough Syrup John Carter
Kate Austin Corn Band-aid Kerry Weaver

...
...

...
...

Figure 4.2: Architecture of a simple database service

depends on their attributes like age, reliability, and customer relationship. Furthermore, the
applicability of access rules can depend on conditions. In our scenario we want to realize the use
case that only attending physicians can decide about the medication of patients.1

In the next section, we give an overview of the access control schemes of (relational) database
management systems. Afterwards, we discuss policy enforcement techniques for Web services
and propose a best-practice for the implementation of database backed services.

1FGAC requirements of e-health applications, in particular in the context of the German e-health card, are
discussed by Caumanns (2006).

4.2 Access Control of Database Systems and Web Services – the two Poles Apart 55

RDBMS
system / server

Database objects

System administration rights, e.g.,
system shutdown, create database …

Database administration, e.g., creating
and dropping tables, indices …

For instance, select, update, insert
privileges on tables; execution rights for
stored procedures …

Database instances

G
ra

nu
la

rit
y

coarse

fine

Figure 4.3: Access control granularity levels of RDBMS

4.2 Access Control of Database Systems and Web Services –
the two Poles Apart

4.2.1 Access Control of Database Management Systems

Recent Gartner reports state that there is still an “ongoing demand for relational database man-
agement systems” [Pettey (2006)] in the upcoming years. According to Graham (2006), the top
3 vendors accounting for approximately 85 percent of the total market are Oracle, IBM, and
Microsoft. In the following, we give a brief overview of the basic access control concepts of
relational database management systems (RDBMS), focusing on the three commercial RDBMS
IBM DB2 UDB 8.2, Microsoft SQL Server 2005, and Oracle Database 10g. Details about the
presented security concepts can be found in the listed literature and software manuals.

In order to perform activities on a database, database users must be granted respective priv-
ileges. This can be done either explicitly or implicitly, e.g., via group or role membership.
Regarding the three RDBMS, privileges can be assigned at different granularity levels. These
are illustrated in Figure 4.3. At the topmost level, users can be granted system administration
rights, like the privileges to start or shut down the RDBMS server or to create or delete user
accounts. The medium level is the database instance level. For example, users can be allowed to
modify the database scheme by creating, altering or dropping tables. At the lowermost and most
fine-grained level, users can be granted access to individual database objects like tables, columns
of tables, and stored procedures. In general, privileges granted at higher levels in the hierarchy
are more powerful and can include privileges for underlying levels. To give an example, system
administration privileges imply privileges to create and access databases and respective database
objects.

4.2.1.1 Access Control Concepts of IBM DB2 UDB 8.2

In IBM DB2, users are authenticated by the security system of the operating system or dedi-
cated security systems like Kerberos. According to Orhanovic et al. (2004), users can be granted

56 Security Engineering for Database Backed Web Services

privileges by the following three possibilities:

1. They are the owners of the respective database objects. Owners are granted the CONTROL-
privilege, which allows them to perform any action on it, like modifying or deleting it.

2. They are explicitly authorized. In order to get explicitly authorized, users need to be as-
signed privileges by authorized users by use of the grant-statement. For instance, the user
carter (which is the database profile of the physician John Carter) can be granted read
and write access on the table MedicalRecords via

grant select, update, insert on MedicalRecords to carter;

By use of the with grant option, John Carter will also be authorized to delegate the
privileges. Some privileges can be refined and restricted to single columns. For instance,
if John Carter shall only be allowed to update the diagnosis of a treatment, the following
statement can be used:

grant update (Diagnosis) on MedicalRecords to carter;

3. They are implicitly authorized. For instance, privileges can be granted to all users (through
assigning them to PUBLIC). Furthermore, users can inherit privileges by being members
of authorized (operating system) groups.

Fine-grained access control can be realized by use of restricted views which allow restricting
access on tables to certain rows (horizontally) or columns (vertically). Assume that John Carter is
a surgeon and that we want to restrict access on the MedicalRecords table for him to information
on patients that are treated by surgeons. This can be achieved by use of the following view:

create view SurgicalTreatments as
select mr.*
from MedicalRecords mr, Physicians p
where mr.AttendingPhysician = p.Name
and p.Department = "Surgery";

grant select on SurgicalTreatments to carter;

Using the keyword CURRENT_USER, views can be defined restricting access to records that refer
to the currently logged on user.

create view OwnTreatments as
select mr.*
from MedicalRecords mr
where mr.AttendingPhysician = CURRENT_USER;

grant select on OwnTreatments to carter;

As a prerequisite for this example to work, the database accounts need to be stored in the
AttendingPhysician column (i.e., carter instead of John Carter as shown in Figure 4.2).

It is also possible to grant predefined bundles of privileges to users by assigning them certain
database authority profiles. For example, SYSADM is the highest authority with full access to

4.2 Access Control of Database Systems and Web Services – the two Poles Apart 57

the RDBMS. On the database level, the DBADM authority grants comprehensive access rights on
a specific database. Authorities and individual privileges can be withdrawn using the revoke
command. A comprehensive presentation of the access control features of IBM DB2 is given by
DB2’s SQL Reference (1993 – 2004).

4.2.1.2 Access Control Concepts of Microsoft SQL Server 2005

The access control of Microsoft SQL Server 2005 covers the basic access control concepts of
IBM DB2. That is, the ownership paradigm is realized and users can be granted privileges
explicitly and implicitly as stated above. Additionally, SQL Server 2005 realizes (hierarchical)
RBAC. On the one hand, there exist predefined server roles, like the SYSADMIN role which is
quite similar to DB2’s SYSADM authority. Furthermore, also predefined database roles exist. For
example, DB_DATAREADER and DB_DATAWRITER grant read and write access on all tables of a
database. On the other hand, the security system of SQL Server 2005 supports the specification
of new user-defined roles. By use of the grant statement, privileges are assigned to roles. Roles
are assigned to users by means of the sp_addrolemember method. Thus, job specific roles
can be realized, easing the administration of security policies. For instance, in the context of
our example, distinguished roles like Surgeon, Internist, etc. (see Figure 2.2 on page 11) can be
defined. To give an example, the role Surgeon is assigned to the database user carter via:

sp_addrolemember Surgeon, carter;

Using RBAC, access on the view SurgicalTreatments can be granted to the role Surgeon, instead
of granting this privilege to each individual surgeon.

One specific feature of Microsoft SQL Server 2005 is its support of negative authorization
by means of the deny statement. The syntax of deny is similar to the grant statement. In case
of conflicts, i.e., situations where permissions and denials apply at the same time, denials take
precedence.

To sum up, according to Bauder (2006), database accounts can be classified into one of the
following groups:

• Accounts with access to all tables, views and procedures of a database. For them, autho-
rization can be arranged by use of predefined database roles.

• Accounts with access to many but not all tables, views and user defined procedures of a
database. Then, predefined database roles like DB_DATAREADER and DB_DATAWRITER
can be used as starting basis and respective authorizations can be denied.

• Accounts with access to only a restricted set of database objects. The respective privileges
can be assigned to these accounts individually or by means of user-defined roles.

Further details about the access control of Microsoft SQL Server 2005 are, for example, provided
by DeBetta (2004), Dröge and Raatz (2005), and online at MSDN2.

2http://msdn.microsoft.com/sql/learning/Security/

http://msdn.microsoft.com/sql/learning/Security/

58 Security Engineering for Database Backed Web Services

4.2.1.3 Access Control Concepts of Oracle Database 10g

Oracle Database supports the basic authorization concepts provided by IBM DB2. Like SQL
Server 2005, it also provides role based access control. Advanced access control configurations
are possible by use of Oracle VPD and OLS:

• With Virtual Private Database (VPD), data in a database can be masked so that users can
only access data that are relevant for their job profiles and comply with their classification.
VPD allows to restrict access through declarative policies. At runtime, VPD policies are
transcribed into WHERE-clauses in queries. In principle, policy enforcement is similar to
constraining access through restrictive views. It’s advantage is that the specification of
access control is separated from the application logic.

• Oracle Label Security (OLS) realizes multilevel security concepts. In OLS, database ob-
jects like rows of a table are classified (e.g., as sensitive or confidential) and users are
assigned to security levels. The enforcement of OLS policies refers to mandatory access
control as described in Section 2.2.1.

Details about the access control features of Oracle Database 10g are, for example, provided by
Loney (2005), Fröhlich et al. (2005), and Haas (2006).

4.2.2 Access Control Mechanisms for Web Services

Priebe et al. (2005) state that modern e-commerce and e-government applications (as well as
other Web-based fields of applications like e-science and e-health) demand for flexible and fine-
grained access control schemes. This is due to the multitude and heterogeneity of users and the
diversity of resources (e.g., different granularity levels of information). A modern policy lan-
guage which is well suited for specifying the access control of Web services is the eXtensible
Access Control Markup Language, XACML [Moses (2003, 2005)]. XACML is a declarative
policy language that allows to express DAC and RBAC rules and supports positive, negative,
and mixed authorization. Since it is based on XML, XACML seamlessly fits into the Web ser-
vices’ technology stack. That is, existing parser technologies can be utilized and basic language
constructs are well known to the community.

XACML provides a request / response mechanism. The enforcement process complies with
the ISO/IEC 10181-3 framework. In Figure 4.4, this approach is shown for the security enforce-
ment of Web services. Services act as policy enforcement points, PEP. Incoming SOAP-requests
are transformed into appropriate XACML-requests, eventually enriched with additional context
information. This, for instance, can be done by the Web service itself or through a dedicated
Context Handler. XACML-requests are then passed to the policy decision point, PDP. The PDP
functionality is typically provided by the underlying Web service platform. The PDP evaluates
requests against applicable policies that are supplied by a policy administration point (PAP). Fi-
nally, decisions are sent back to the Web service that either executes as demanded or aborts and
returns an error message in case authorization failed.

Figure 4.5 shows the XACML policy model. An XACML Policy consists of a Target, a set of
Rules, and optional Obligations specifying access conditions. Rules contain most of the logic of

4.2 Access Control of Database Systems and Web Services – the two Poles Apart 59

Figure 4.4: Control flow of the policy enforcement process

a Policy. A single Rule is set up by a Target, an optional Condition, and an Effect which is either
Permit or Deny. The way several rules are combined in a Policy is specified by the rule combining
algorithm. This is needed in particular to resolve conflicts in mixed authorization systems. To
give some examples, denials take precedence by use of the algorithm deny-overrides, while
permissions take hold when using permit-overrides. In case a processing error occurs during
policy evaluation, the result will be Indeterminate. A Policy evaluates to NotApplicable if none
of its Rules applies. The XACML standard defines several combining algorithms and allows
the specification of new ones. Several Policy instances can be aggregated in PolicySets that are
evaluated according to the policy combining algorithm, which is the policy-analogon to the rule
combining algorithm.

If the authorization decision depends on further constraints, these are coded by the optional
Condition of a Rule that either evaluates to True, False or Indeterminate. Conditions can be quite
complex and allow arbitrary Boolean terms to be expressed.

The Target of a Policy or Rule is composed of Subjects, Resources, and Actions. The Tar-
get thus constitutes the actor, the module to be accessed, and the operation to be performed.
The child-elements of Subjects are Subject nodes. Each individual Subject is described through
a conjunction of attribute comparisons. In case (part of) a Target is undetermined, i.e., unre-
stricted, AnySubject, AnyResource, and AnyAction are used. The refinement of a Rule takes
place by imposing further constraints on its Target, thus, restricting the Rule’s applicability.

Policies are evaluated against requests. An XACML Request is composed of one or many Sub-
ject elements that represent the initiator of a Request, e.g., the identity and / or characterizing
attributes of human requesters. Further elements of a Request are the Resources and the re-
quested Action that together specify the activity, i.e., the resource that shall be accessed and the
way the access shall be performed. A Request is evaluated against applicable Policy and Rule
instances whose Target matches with the Request. A Subjects specification is evaluated dis-
junctively, while an individual Subject consists of SubjectMatch conjunctions that specify its
attributes. Thus, for the match of the Subjects defined in a Target with the attributes of a Re-
quest, at least one of the Subject elements must apply, while for the match of one Subject it is
necessary that all associated attributes match with the Request. Analogous considerations apply
to Resources and Actions.

XACML is a quite expressive declarative policy language and well suited for realizing the access

60 Security Engineering for Database Backed Web Services

(adapted from [Moses (2005)])

Figure 4.5: XACML policy model

control of Web services. Apart from the core XACML specification, further additional specifica-
tions exist. Anderson (2005) presents the core and hierarchical role based access control profile
of XACML, which is of particular relevance for our work. Other security standards like SAML
can as well be employed to specify and enforce security of Web services (see Section 4.5). Since
our policy model introduced in Section 3.2 can seamlessly be represented in XACML, we use
XACML as policy language and enforcement mechanism for our prototype.

According to Section 3.2.1, subjects, objects, and actions are defined through attribute com-
parisons given in disjunctive normal form (DNF). Thus, their specification and semantics match
with those of Subjects, Resources, and Actions of the XACML standard: The individual con-
junctive subterms of a DNF are represented as child elements, i.e., Subject, Resource, and Ac-
tion elements. Elementary attribute comparisons are represented by the XACML counterparts
SubjectMatch, ResourceMatch, and ActionMatch for attributes in S-Attr, O-Attr, and A-Attr, re-
spectively. Analogously, conditions of rules are represented by Condition elements in XACML.
Thus, rules and policies of our policy model can be represented by XACML Rule and Policy ele-
ments. The evaluation of policies as described in Section 3.2.2 can be expressed as well, because
XACML supports the definition of new rule combining algorithms. Therefore, unless explicitly
indicated, we equate terms like policy and subject with the corresponding XACML element tags,
i.e., Policy and Subject, and vice versa.

4.2.3 Access Control of Database Web Services

In this section, we compare different approaches for realizing the access control of database ser-
vices. The approaches can be evaluated with regard to (1) their support for fine-grained access
control (FGAC), (2) possibilities to flexibly adopt changes of the security policy, (3) the im-
plementation costs, and (4) the expected risk of security flaws – which appears to be the most

4.2 Access Control of Database Systems and Web Services – the two Poles Apart 61

crucial evaluation criterion. We compare the approaches by means of the previously introduced
example of the service MedRecords-WS, whereby the following authorization constraint should
be realized: Physicians shall only be granted access to medical records of patients they are the
attending physicians of. Access to any other medical record has to be denied.

4.2.3.1 Access Control as Part of the Application Logic

One possible approach is to include security checks into database query statements. Assume
that wsuser is the client invoking the service method. The client is only allowed to change the
medication of a patient if he or she is the attending physician. Therefore, we modify the SQL
statement illustrated in Figure 4.2 to

update MedicalRecords
set Medication = m
where Patient = p and Disease = d
and AttendingPhysician = wsuser;

This approach can be characterized as follows:

(1) In general, FGAC is supported, as it is not restricted by the expressiveness of any policy lan-
guage or the capabilities of an underlying policy model. Nevertheless, as this approach is not
based on an established (formal, declarative) policy framework, application implementation
is made difficult, thus, demanding for versed developers.

(2) Modifications of the security policy are hard to realize, as these imply the modification and
recompilation of the service.

(3) Security functionality is only realized on the side of the service. Hence, database admin-
istration effort is low. But this approach typically brings about significant overhead for the
implementation of the service if the security functionality has to be coded by hand.

(4) The risk of security holes is relatively high, as the approach demands for an experienced pro-
grammer, who has to realize all security requirements and needs to be aware of all possible
exceptional cases – which is a nontrivial and error-prone task.

We discuss this approach only for the sake of completeness, as it does not follow good cod-
ing principles. Implementing access control as part of the application logic makes the tasks of
verification, modification and adequate enforcement difficult.

4.2.3.2 Enforcing Access Control through the Database System

An alternative is to shift access control for database services to the underlying database manage-
ment system (DBMS). Then, depending on the security system of the employed DBMS, access
control mechanisms like role based access control, user restricted views or DBMS specific con-
cepts like Oracle VPD can be used. This approach can be classified as follows:

62 Security Engineering for Database Backed Web Services

(1) The way FGAC is supported depends on the employed DBMS. The previous overview of the
access control models of IBM DB2, Microsoft SQL Server, and Oracle Database shows that
database systems support varying access control concepts and provide different possibilities
to realize FGAC. Also, concepts that are supported by several systems can vary with regard
to the employed syntax, so that access control schemes are not platform independent, in
general.

In many scenarios, the FGAC functionality offered by database systems is inappropriate, i.e.,
not sufficient for realizing the required application security. For example, FGAC rules that
evaluate properties of the requesters, while their plain identity is of secondary interest, usu-
ally cannot be modeled. As another example consider the following condition: A first-year
resident should only be allowed to change the therapy of patients in case a chief physician
agrees to the resident’s decisions. This constraint cannot be enforced with common database
access control mechanisms since it specifies the evaluation of security credentials of more
than one subject.

(2) Changes of a service’s security policy imply changes of the access control scheme of the un-
derlying DBMS. Although modifications are possible, they might be hampered if the service
developer only has restricted administrative privileges for the DBMS.

(3) The same applies to service deployment. Administration overhead is caused when the appli-
cation developer does not have database administration rights and, thus, needs to cooperate
with the DBMS administrator.

Furthermore, considering our sample database service, implementing the security function-
ality can be impractical: Let’s assume that fine-grained access control is realized by means
of views that are restricted to the identity of the logged on user – as an example consider
the view OwnTreatments presented in Section 4.2.1.1. In the given example, each user of
MedRecords-WS requires an account for the database. This clearly disqualifies this approach
for applications with dynamic user basis, e.g., e-business applications where users can regis-
ter and deregister on demand. Moreover, it is no useful concept for hiding the DBMS to the
service users.

(4) In case this approach is carried through thoroughly, security vulnerabilities for the database
and the service can be avoided as it relies upon the security system of the underlying DBMS.

Altogether, this approach can provide a high level of security for the underlying database system
if the database connections are restricted to the least required privileges. Unfortunately, realizing
the security functionality can be impractical as it demands service developers and database ad-
ministrators to cooperate closely. It’s main disadvantages are on the one hand restricted FGAC
capabilities and on the other hand a potentially high administration overhead. The latter can also
induce security shortcomings in cases when relaxed database security policies are used in order
to ease the implementation.

4.2 Access Control of Database Systems and Web Services – the two Poles Apart 63

4.2.3.3 Performing Multilayered Access Control

Multilayered access control describes the process of enforcing database specific security require-
ments through the database and application specific authorization through the service. In the
context of our example Web service MedRecords-WS, the connection to the database is estab-
lished by use of a (potentially more generic) database account, say dbuser. This account is at
least granted the privileges to set up connections to the database and to perform updates on the
table MedicalRecords. Our example FGAC rule declares that only attending physicians can alter
a patient’s medication. This application specific rule is enforced at the service layer. In XACML,
this rule can be expressed by means of a Condition:

<Condition FunctionId="string-equal">
<Apply FunctionId="string-one-and-only">
<SubjectAttributeDesignator DataType="string"
AttributeId="wsuser" />

</Apply>
<Apply FunctionId="string-one-and-only">
<AttributeSelector RequestContextPath=
"//attendingPhysician[./patientName/text()=patient]/text()" />

</Apply>
</Condition>

The Condition checks whether the service requester’s identity (which is the value of the attribute
wsuser) is equal to the patient’s attending physician. The example is simplified and does not
fulfill all of our requirements as the relationship between patient and physician is retrieved from
an XML document (e.g., the XACML Request document), while in the given scenario this in-
formation is stored in a database. How security policies and databases can be linked is discussed
in Section 4.4. For the moment, we put this issue on hold and focus on the pros and cons of this
approach:

(1) As presented in Section 4.2.2, modern declarative policy languages like XACML are well
suited for the specification and enforcement of FGAC rules.

(2) In case the security requirements of database services change, service policies have to be
updated and exchanged. Thereby, in case the service-to-database interaction remains un-
changed, modifications of the database security schemes as well as the service implementa-
tion are not required. Therefore, policy updates are well supported by this approach.

(3) The implementation is straightforward, as business logic and security functionality are con-
cisely separated. On the database side, only little administration and implementation effort
is necessary, as generic database accounts can be used to establish service-to-database con-
nections.

(4) Security vulnerabilities for the DBMS may arise if database accounts providing more privi-
leges than required with regard to the service functionality are used.

Enforcing security on the services’ layer supports fine-grained access control and, moreover, is
flexibly adaptable. Nevertheless, security risks for the underlying database systems can arise, in

64 Security Engineering for Database Backed Web Services

case the database connection does not fulfill the least privileges paradigm. In other words, the
service-to-database interaction then realizes an access corridor which is too relaxed for providing
a reliable security configuration.

4.3 Security Engineering for Database Web Services – Bridg-
ing the Gap

None of the proposed approaches presented in Section 4.2.3 clearly outperforms the others. Each
of them features characteristics that limit their use in practice. The first suggestion of including
security checks in the program logic disqualifies itself due to the expected security risks that arise
from intermingling security functionality and application logic. The second proposal of shifting
access control to the database side implies high administration effort and will thus be impractical
for many applications. Furthermore, the possibility to realize FGAC is restricted to the access
control capabilities of the employed database system. Fine-grained access control can well be
realized by the third approach, which appears to be most preferable. Unfortunately, security leaks
for the database systems arise if the service-to-database interaction is run over insecure access
corridors. In case security vulnerabilities of the service or the service platform are exploited,
information not provided through the service interfaces will also become accessible. Thus, the
question remains what a best practice for the specification and enforcement of database service
access control could look like.

In the following, we present a pragmatic approach for designing the access control of database
Web services. The basic concept is to perform multilayered access control as proposed by the
third approach. This allows to meet the application specific security requirements. In order to
reduce the discussed security threats for the underlying database systems, access on databases
has to be restricted with regard to the service functionality. We do this by generating adequate
database accounts based on the service specification, hence, realizing aligned access corridors.
We determine the corresponding least required privileges through the analysis of the service-
database interactivity. This information is used to semi-automatically prepare the service poli-
cies. Through a comparison of database and Web service policies – based on the techniques
presented in Chapter 3 – policy compliance is ensured.

4.3.1 Determining the Least Required Privileges

Before presenting our process model for specifying the access control of database Web services,
we first of all give an overview of the security requirements which can automatically be deter-
mined: On the one hand, by analyzing the service specification, we are able to generate initial
Web service policies and database profiles. On the other hand, access control configurations of
database systems can be preprocessed to enable policy compliance checks.

According to our definition, database backed Web services are services that strongly depend
on the data processing capabilities of underlying database systems. Thus, service methods are
closely related to database operations, e.g., given as XQuery / XPath statements which are exe-

4.3 Security Engineering for Database Web Services – Bridging the Gap 65

cuted on XML databases or SQL queries which are run on relational database systems. Instead of
writing service policies from scratch, security policies that follow the principle of least privilege
can be generated by preprocessing query statements.

In the following, we describe how access control information can be extracted from SQL
statements. We use an attribute grammar3 that represents an extract of the SQL grammar4 to
formalize our approach. Thereby, we focus on manipulative queries, i.e., selections, updates,
insertions, deletions, and function calls / stored procedure calls, which we consider to be the type
of queries that are mainly used by database services. Privileges required to execute data definition
statements (like create table statements) can be determined in an analogous way. Our attribute
grammar provides the following characteristics:

• Select, insert, and update privileges are determined on the granularity of columns.

• Delete privileges are determined on the granularity of tables.

• Execute privileges refer to functions and procedures.

For the sake of simplicity, the presented grammar handles qualified attribute names, i.e., columns
are specified in the form table-alias.column and database objects belong to the same schema.
Otherwise, schema information has to be provided or retrieved in a preprocessing step.

When specifying semantic rules, recurrences of nonterminals on the right hand side of a
production are numbered. For example, given a production P : T → xTyT and a synthesized
attribute a of the nonterminal T, we can define the following semantic rule: T.a = T1.a + T2.a.
This rule denotes that T.a is determined through the sum of the a values of T-occurrences on the
right hand side of P. This notation corresponds to the one used by Aho et al. (1986). Our attribute
grammar includes the following attributes:

privs is a synthesized attribute representing a set of privileges, i.e., tuples (O,A). In other
words, T.privs consists of all privileges required to execute the operations that are inferred
from the nonterminal T.

tids is a synthesized attribute consisting of (table-alias, table-name)-tuples.

lexval is a synthesized attribute representing the lexical value of nonterminals.

act is an inherited attribute specifying the action (i.e., select, insert, update, delete, or execute)
that is specified by the current context.

env is an inherited attribute consisting of the (table-alias, table-name) pairs that are in the current
scope of the nonterminal.

Table 4.1 presents the attribute grammar for manipulative SQL query statements. The start sym-
bol of our attribute grammar is SQL_LISTS. Thus, the least required privileges of manipulative
SQL statements are specified by SQL_LIST.privs.

3Confer [Kühnemann and Vogler (1997)].
4See, for example, [Date and Darwen (1997)].

66 Security Engineering for Database Backed Web Services

Remark: In order to shorten the specification of the attribute grammar, we omitted the declaration
of semantic rules for lexval attributes. The values of lexval attributes are determined by the
lexical fields that are deduced from the corresponding nonterminals.

4.3.1.1 Example

Assume that due to a bonus program every patient with private insurance shall be treated by
the chief physician Jeffrey Geiger. Based on the database schema illustrated in Figure 4.2, this
adaptation is realized by the following SQL statement:

update MedicalRecords m
set m.AttendingPhysician = "Jeffrey Geiger"
where m.Patient in (select p.Name

from Patients p
where p.HealthInsurance = "Private HI");

Figure 4.6 shows the parse tree for this query statement. The dependency graph in Figure 4.7
illustrates the evaluation of the attribute values. Inherited attributes are propagated top-down.
They represent context information like table aliases (env) and operation types (act). The follow-
ing abbreviations are used in the figure:

m = (m,MedicalRecords), p = (p,Patient),

s = select, and u = update

Synthesized attributes are evaluated in a bottom-up manner. The least required privileges to
perform the update are specified by the privs-value of the topmost SQL_LIST node. In our
example, four privileges are required, namely:

P1 = ((table = MedicalRecords, column = AttendingPhysician), action = update)

P2 = ((table = MedicalRecords, column = Patient), action = select)

P3 = ((table = Patients, column = Name), action = select)

P4 = ((table = Patients, column = HealthInsurance), action = select)

4.3
Security

E
ngineering

for
D

atabase
W

eb
Services

–
B

ridging
the

G
ap

67
Productions Semantic Rules
P1: SQL_LIST → SQL’;’ SR1: SQL_LIST.privs = SQL.privs
P2: SQL_LIST → SQL_LIST SQL’;’ SR2: SQL_LIST.privs = SQL_LIST1.privs ∪ SQL.privs
P3: SQL → QUERY_STMT SR3: SQL.privs = QUERY_STMT.privs
P4: SQL → UPDATE_STMT SR4: SQL.privs = UPDATE_STMT.privs
P5: SQL → INSERT_STMT SR5: SQL.privs = INSERT_STMT.privs
P6: SQL → DELETE_STMT SR6: SQL.privs = DELETE_STMT.privs
P7: SQL → CALL_STMT SR7: SQL.privs = CALL_STMT.privs
P8: QUERY_STMT → QUERY_TERM SR8: QUERY_STMT.privs = QUERY_TERM.privs
P9: QUERY_STMT → QUERY_STMT SR9: QUERY_STMT.privs = QUERY_STMT1.privs ∪

(’union’ | ’union all’ | ’intersect’ | ’except’) QUERY_TERM.privs
QUERY_TERM

P10: QUERY_TERM → QUERY_SPEC SR10: QUERY_TERM.privs = QUERY_SPEC.privs
P11: QUERY_TERM → ’(’ QUERY_SPEC ’)’ SR11: QUERY_TERM.privs = QUERY_SPEC.privs
P12: QUERY_SPEC → ’select’ (’all’ | ’distinct’)? SR12,1: QUERY_SPEC.privs = SCALAR_EXP_LIST.privs ∪

SCALAR_EXP_LIST TABLE_EXP TABLE_EXP.privs
SR12,2: SCALAR_EXP_LIST.env = TABLE_EXP.tids ∪

QUERY_SPEC.env
SR12,3: TABLE_EXP.env = QUERY_SPEC.env

P13: TABLE_EXP → ’from’ TABLE_REF_LIST (WHERE)? SR13,1: TABLE_EXP.privs = TABLE_REF_LIST.privs ∪
(GROUP_BY)? (HAVING)? (ORDER_BY)? WHERE.privs ∪ HAVING.privs

SR13,2: TABLE_EXP.tids = TABLE_REF_LIST.tids
SR13,3: WHERE.env = TABLE_REF_LIST.tids ∪

TABLE_EXP.env
SR13,4: HAVING.env = TABLE_REF_LIST.tids ∪

TABLE_EXP.env
SR13,5: TABLE_REF_LIST.env = TABLE_EXP.env

P14: TABLE_REF_LIST → TABLE_REF SR14,1: TABLE_REF_LIST.privs = TABLE_REF.privs
SR14,2: TABLE_REF_LIST.tids = TABLE_REF.tids
SR14,3: TABLE_REF.env = TABLE_REF_LIST.env

P15: TABLE_REF_LIST → TABLE_REF_LIST ’,’ TABLE_REF SR15,1: TABLE_REF_LIST.privs = TABLE_REF_LIST1.privs ∪
TABLE_REF.privs

SR15,2: TABLE_REF_LIST.tids = TABLE_REF_LIST1.tids ∪

68
Security

E
ngineering

for
D

atabase
B

acked
W

eb
Services

Productions Semantic Rules
TABLE_REF.tids

SR15,3: TABLE_REF.env = TABLE_REF_LIST.env
SR15,4: TABLE_REF_LIST1.env = TABLE_REF_LIST.env

P16: TABLE_REF → TABLE SR16: TABLE_REF.tids = TABLE.tids
P17: TABLE_REF → ’(’ QUERY_STMT ’)’ NAME SR17: TABLE_REF.privs = QUERY_STMT.privs

SR17,1: QUERY_STMT.env = TABLE_REF.env
P18: TABLE → NAME (’as’)? NAME SR18,1: TABLE.tids = {(NAME2.lexval, NAME1.lexval)}
P19: WHERE → ’where’ SEARCH_CND SR19,1: WHERE.privs = SEARCH_CND.privs

SR19,2: SEARCH_CND.env = WHERE.env
P20: SEARCH_CND → SEARCH_CND (’and’ | ’or’) SR20,1: SEARCH_CND.privs = SEARCH_CND1.privs∪

SEARCH_CND, SEARCH_CND2.privs
SR20,2: SEARCH_CND1.env = SEARCH_CND.env
SR20,3: SEARCH_CND2.env = SEARCH_CND.env

P21: SEARCH_CND → ’not’ SEARCH_CND SR21,1: SEARCH_CND.privs = SEARCH_CND1.privs
SR21,2: SEARCH_CND1.env = SEARCH_CND.env

P22: SEARCH_CND → ’(’ SEARCH_CND ’)’ SR22,1: SEARCH_CND.privs = SEARCH_CND1.privs
SR22,2: SEARCH_CND1.env = SEARCH_CND.env

P23: SEARCH_CND → PREDICATE SR23,1: SEARCH_CND.privs = PREDICATE.privs
SR23,2: PREDICATE.env = SEARCH_CND.env

P24: PREDICATE → SCALAR_EXP COMPARISON SR24,1: PREDICATE.privs = SCALAR_EXP1.privs ∪
SCALAR_EXP SCALAR_EXP2.privs

SR24,2: SCALAR_EXP1.env = PREDICATE.env
SR24,3: SCALAR_EXP2.env = PREDICATE.env

P25: PREDICATE → SCALAR_EXP COMPARISON SR25,1: PREDICATE.privs = SCALAR_EXP.privs ∪
’(’ QUERY_SPEC ’)’ QUERY_SPEC.privs

SR25,2: SCALAR_EXP.env = PREDICATE.env
SR25,3: QUERY_SPEC.env = PREDICATE.env

P26: PREDICATE → SCALAR_EXP (’not’)? ’between’ SR26,1: PREDICATE.privs = SCALAR_EXP1.privs ∪
SCALAR_EXP ’and’ SCALAR_EXP SCALAR_EXP2.privs ∪ SCALAR_EXP3.privs

SR26,2: SCALAR_EXP1.env = PREDICATE.env
SR26,3: SCALAR_EXP2.env = PREDICATE.env
SR26,4: SCALAR_EXP3.env = PREDICATE.env

4.3
Security

E
ngineering

for
D

atabase
W

eb
Services

–
B

ridging
the

G
ap

69
Productions Semantic Rules
P27: PREDICATE → SCALAR_EXP (’not’)? ’like’ SR27,1: PREDICATE.privs = SCALAR_EXP1.privs ∪

SCALAR_EXP SCALAR_EXP2.privs
SR27,2: SCALAR_EXP1.env = PREDICATE.env
SR27,3: SCALAR_EXP2.env = PREDICATE.env

P28: PREDICATE → COLUMN_REF ’is’ (’not’)? ’null’ SR28,1: PREDICATE.privs = COLUMN_REF.privs
SR28,2: COLUMN_REF.act = select
SR28,3: COLUMN_REF.env = PREDICATE.env

P29: PREDICATE → SCALAR_EXP (’not’)? ’in’ SR29,1: PREDICATE.privs = SCALAR_EXP.privs ∪
’(’ QUERY_SPEC ’)’ QUERY_SPEC.privs

SR29,2: SCALAR_EXP.env = PREDICATE.env
SR29,3: QUERY_SPEC.env = PREDICATE.env

P30: PREDICATE → SCALAR_EXP (’not’)? ’in’ SR30,1: PREDICATE.privs = SCALAR_EXP.privs ∪
’(’ SCALAR_EXP_LIST ’)’ SCALAR_EXP_LIST.privs

SR30,2: SCALAR_EXP.env = PREDICATE.env
SR30,3: SCALAR_EXP_LIST.env = PREDICATE.env

P31: PREDICATE → (’not’)? ’exists’ ’(’ QUERY_SPEC ’)’ SR31,1: PREDICATE.privs = QUERY_SPEC.privs
SR31,2: QUERY_SPEC.env = PREDICATE.env

P32: PREDICATE → SCALAR_EXP SR32,1: PREDICATE.privs = SCALAR_EXP.privs
SR32,2: SCALAR_EXP.env = PREDICATE.env

P33: SCALAR_EXP → SCALAR_EXP (’+’ | ’-’ | ’*’ |’/’) SR33,1: SCALAR_EXP.privs = SCALAR_EXP1.privs ∪
SCALAR_EXP SCALAR_EXP2.privs

SR33,2: SCALAR_EXP1.env = SCALAR_EXP.env
SR33,3: SCALAR_EXP2.env = SCALAR_EXP.env

P34: SCALAR_EXP → COLUMN_REF SR34,1: SCALAR_EXP.privs = COLUMN_REF.privs
SR34,2: COLUMN_REF.act = select
SR34,3: COLUMN_REF.env = SCALAR_EXP.env

P35: SCALAR_EXP → LITERAL
P36: SCALAR_EXP → ’(’ SCALAR_EXP_LIST ’)’ SR36,1: SCALAR_EXP.privs = SCALAR_EXP_LIST.privs

SR36,2: SCALAR_EXP_LIST.env = SCALAR_EXP.env
P37: SCALAR_EXP → SCALAR_EXP ’as’ NAME SR37,1: SCALAR_EXP.privs = SCALAR_EXP1.privs

SR37,2: SCALAR_EXP1.env = SCALAR_EXP.env
P38: SCALAR_EXP → FUNCTION_CALL SR38,1: SCALAR_EXP.privs = FUNCTION_CALL.privs

70
Security

E
ngineering

for
D

atabase
B

acked
W

eb
Services

Productions Semantic Rules
SR38,2: FUNCTION_CALL.env = SCALAR_EXP.env

P39: SCALAR_EXP_LIST → SCALAR_EXP SR39,1: SCALAR_EXP_LIST.privs = SCALAR_EXP.privs
SR39,2: SCALAR_EXP.env = SCALAR_EXP_LIST.env

P40: SCALAR_EXP_LIST → SCALAR_EXP_LIST ’,’ SR40,1: SCALAR_EXP_LIST.privs =
SCALAR_EXP SCALAR_EXP_LIST1.privs ∪ SCALAR_EXP.privs

SR40,2: SCALAR_EXP_LIST1.env = SCALAR_EXP_LIST.env
SR40,3: SCALAR_EXP.env = SCALAR_EXP_LIST.env

P41: UPDATE_STMT → ’update’ TABLE ’set’ ASSIGN_LIST SR41,1: UPDATE_STMT.privs = ASSIGN_LIST.privs ∪
(WHERE)? WHERE.privs

SR41,2: ASSIGN_LIST.env = TABLE.tids
SR41,3: WHERE.env = TABLE.tids

P42: ASSIGN_LIST → COLUMN ’=’ SCALAR_EXP SR42,1: ASSIGN_LIST.privs = COLUMN.privs ∪
SCALAR_EXP.privs

SR42,2: COLUMN.act = update
SR42,3: COLUMN.env = ASSIGN_LIST.env
SR42,4: SCALAR_EXP.env = ASSIGN_LIST.env

P43: ASSIGN_LIST → ASSIGN_LIST ’,’ SR43,1: ASSIGN_LIST.privs = ASSIGN_LIST1.privs ∪
COLUMN ’=’ SCALAR_EXP COLUMN.privs ∪ SCALAR_EXP.privs

SR43,2: COLUMN.act = update
SR43,3: ASSIGN_LIST1.env = ASSIGN_LIST.env
SR43,4: COLUMN.env = ASSIGN_LIST.env
SR43,5: SCALAR_EXP.env = ASSIGN_LIST.env

P44: INSERT_STMT → ’insert into’ TABLE SR44,1: INSERT_STMT.privs = COLUMN_LIST.privs ∪
’(’ COLUMN_LIST ’)’ VAL_OR_QUERY, VAL_OR_QUERY.privs

SR44,2: COLUMN_LIST.env = TABLE.tids
SR44,3: VAL_OR_QUERY.env = TABLE.tids

P45: COLUMN_LIST → COLUMN SR45,1: COLUMN_LIST.privs = COLUMN.privs
SR45,2: COLUMN.act = insert
SR45,3: COLUMN.env = COLUMN_LIST.env

P46: COLUMN_LIST → COLUMN_LIST ’,’ COLUMN SR46,1: COLUMN_LIST.privs = COLUMN_LIST1.privs ∪
COLUMN.privs

SR46,2: COLUMN.act = insert

4.3
Security

E
ngineering

for
D

atabase
W

eb
Services

–
B

ridging
the

G
ap

71
Productions Semantic Rules

SR46,3: COLUMN_LIST1.env = COLUMN_LIST.env
SR46,4: COLUMN.env = COLUMN_LIST.env

P47: VAL_OR_QUERY → ’values’ ’(’ SCALAR_EXP_LIST ’)’ SR47,1: VAL_OR_QUERY.privs = SCALAR_EXP_LIST.privs
SR47,2: SCALAR_EXP_LIST.env = VAL_OR_QUERY.env

P48: VAL_OR_QUERY → QUERY_SPEC SR48,1: VAL_OR_QUERY.privs = QUERY_SPEC.privs
SR48,2: QUERY_SPEC.env = VAL_OR_QUERY.env

P49: DELETE_STATEMENT → ’delete from’ TABLE SR49,1: DELETE_STATEMENT.privs = WHERE.privs ∪
(WHERE)? {(table = t, action = delete) | t ∈ TABLE.tids}

SR49,2: WHERE.env = TABLE.tids
P50: CALL_STATEMENT → ’call’ FUNCTION_CALL SR50: CALL_STATEMENT.privs = FUNCTION_CALL.privs
P51: FUNCTION_CALL → NAME SR51,1: FUNCTION_CALL.privs = {(procedure =

’(’ (SCALAR_EXP_LIST)? ’)’ NAME.lexval, action = execute)} ∪ SCALAR_EXP_LIST.privs
SR51,2: SCALAR_EXP_LIST.env = FUNCTION_CALL.env

P52: COLUMN_REF → COLUMN SR52,1: COLUMN_REF.privs = COLUMN.privs
SR52,2: COLUMN.act = COLUMN_REF.act
SR52,3: COLUMN.env = COLUMN_REF.env

P53: COLUMN_REF → NAME ’.*’ SR53: COLUMN_REF.privs = {(table = t, action = a) |
(NAME.lexval, t) ∈ COLUMN_REF.env ∧
a = COLUMN_REF.act}

P54: COLUMN → NAME ’.’ NAME SR54: COLUMN.privs = {((table = t, column = NAME2.lexval),
action = a) | (NAME1.lexval, t) ∈ COLUMN.env ∧
a = COLUMN.act}

P55: ORDER_BY → ’order by’ ORDER_LIST
P56: GROUP_BY → ’group by’ GROUP_LIST
P57: HAVING → ’having’ SEARCH_CND SR57,1: HAVING.privs = SEARCH_CND.privs

SR57,2: SEARCH_CND.env = HAVING.env
P58: ORDER_LIST → COLUMN_REF (’asc’ | ’dsc’)?
P59: ORDER_LIST → ORDER_LIST ’,’

COLUMN_REF (’asc’ | ’dsc’)?
P60: GROUP_LIST → COLUMN_REF
P61: GROUP_LIST → GROUP_LIST ’,’ COLUMN_REF
P62: LITERAL → (STRING | INTEGER | FLOAT | ’null’)

72
Security

E
ngineering

for
D

atabase
B

acked
W

eb
Services

Productions Semantic Rules
P63: NAME → [’a’-’z”A’-’Z’]+ ([’a’-’z”A’-’Z’]+ | NUMBER)*
P64: STRING → ’"’ ([’a’-’z”A’-’Z’]+ | ’ ’) ’"’
P65: INTEGER → ([’+’,’-’])? NUMBER
P66: NUMBER → (’0’ | [’1’-’9’][’0’-’9’]*)
P67: FLOAT → ([’+’,’-’])? NUMBER ’.’ [’0’-’9’]+
P68: COMPARISON → ’<’ | ’<=’ | ’=’ | ’>=’ | ’>’ | ’<>’

Table 4.1: Attribute grammar for extracting access control information from manipulative SQL queries

4.3 Security Engineering for Database Web Services – Bridging the Gap 73

SQ
L_

LI
ST

SQ
L;

U
PD

A
TE

_S
TM

T

St
rin

g

up
da

te
TA

B
LE

se
t

A
SS

IG
N

_L
IS

T
W

H
ER

E

C
O

LU
M

N
=

SC
A

LA
R

_E
X

P
w

he
re

SE
A

R
C

H
_C

N
D

N
A

M
E

N
A

M
E

N
A

M
E

N
A

M
E

.
PR

ED
IC

A
TE

LI
TE

R
A

L
M

ed
ic

al
R

ec
or

ds
m

SC
A

LA
R

_E
X

P
in

(Q
U

ER
Y

_S
PE

C
)

m
A

tte
nd

in
g

Ph
ys

ic
ia

n
“J

ef
fr

ey
 G

ei
ge

r’
’

se
le

ct
SC

A
LA

R
_E

X
P_

LI
ST

TA
B

LE
_E

X
P

C
O

LU
M

N
_R

EF

SC
A

LA
R

_E
X

P
TA

B
LE

_R
EF

_L
IS

T
fr

om
W

H
ER

E
C

O
LU

M
N

TA
B

LE
_R

EF
w

he
re

SE
A

R
C

H
_C

N
D

C
O

LU
M

N
_R

EF
N

A
M

E
N

A
M

E
.

PR
ED

IC
A

TE
C

O
LU

M
N

TA
B

LE
m

Pa
tie

nt

SC
A

LA
R

_E
X

P
SC

A
LA

R
_E

X
P

C
O

M
PA

R
IS

O
N

N
A

M
E

N
A

M
E

.
N

A
M

E
N

A
M

E

=
C

O
LU

M
N

_R
EF

LI
TE

R
A

L
Pa

tie
nt

s
p

p
N

am
e

C
O

LU
M

N
St

rin
g

N
A

M
E

N
A

M
E

.
“P

riv
at

e
H

I’
’

p
H

ea
lth

In
su

ra
nc

e

Figure 4.6: Parse tree

74 Security Engineering for Database Backed Web Services

pr
iv
s=
{P
1,P

2,P
3,P

4}

pr
iv
s=
{P
1,P

2,P
3,P

4}

pr
iv
s=
{P
1,P

2,P
3,P

4}
SQ

L_
LI

ST

SQ
L;

U
PD

A
TE

_S
TM

T

St
rin

g

up
da

te
TA

B
LE

se
t

A
SS

IG
N

_L
IS

T
W

H
ER

E

C
O

LU
M

N
=

SC
A

LA
R

_E
X

P
w

he
re

SE
A

R
C

H
_C

N
D

N
A

M
E

N
A

M
E

N
A

M
E

N
A

M
E

.
PR

ED
IC

A
TE

LI
TE

R
A

L
M

ed
ic

al
R

ec
or

ds
m

SC
A

LA
R

_E
X

P
in

(Q
U

ER
Y

_S
PE

C
)

m
A

tte
nd

in
g

Ph
ys

ic
ia

n
“J

ef
fr

ey
 G

ei
ge

r’
’

se
le

ct
SC

A
LA

R
_E

X
P_

LI
ST

TA
B

LE
_E

X
P

C
O

LU
M

N
_R

EF

SC
A

LA
R

_E
X

P
TA

B
LE

_R
EF

_L
IS

T
fr

om
W

H
ER

E
C

O
LU

M
N

TA
B

LE
_R

EF
w

he
re

SE
A

R
C

H
_C

N
D

C
O

LU
M

N
_R

EF
N

A
M

E
N

A
M

E
.

PR
ED

IC
A

TE
C

O
LU

M
N

TA
B

LE
m

Pa
tie

nt

SC
A

LA
R

_E
X

P
SC

A
LA

R
_E

X
P

C
O

M
PA

R
IS

O
N

N
A

M
E

N
A

M
E

.
N

A
M

E
N

A
M

E

=
C

O
LU

M
N

_R
EF

LI
TE

R
A

L
Pa

tie
nt

s
p

p
N

am
e

C
O

LU
M

N
St

rin
g

N
A

M
E

N
A

M
E

.
“P

riv
at

e
H

I’
’

p
H

ea
lth

In
su

ra
nc

e

tid
s=
{m
}

en
v=
{m
}

en
v=
{m
}

en
v=
{m
}

ac
t=
u

pr
iv
s=
{P
1}

pr
iv
s=
{P
1}

en
v=
{m
}

pr
iv
s=
{P
2,P

3,P
4}

pr
iv
s=
{P
2,P

3,P
4}

en
v=
{m
}

en
v=
{m
}

pr
iv
s=
{P
2,P

3,P
4}

pr
iv
s=
{P

2}
en
v=
{m
}

en
v=
{m
}

en
v=
{m
}

ac
t=
s

en
v=
{m
}

ac
t=
s

pr
iv
s=
{P

2}

pr
iv
s=
{P

2}
en
v=
{m
,p
}

en
v=
{m
}

tid
s=
{p
}

tid
s=
{p
}

tid
s=
{p
}

tid
s=
{p
}

en
v=
{m
}

en
v=
{m
}

en
v=
{m
,p
}

en
v=
{m
,p
}

ac
t=
s

en
v=
{m
,p
}

ac
t=
s

pr
iv
s=
{P
3}

pr
iv
s=
{P
3}

pr
iv
s=
{P
3}

pr
iv
s=
{P
3}

en
v=
{m
,p
}

pr
iv
s=
{P

4}

pr
iv
s=
{P
4}

pr
iv
s=
{P
4}

pr
iv
s=
{P

3,P
4}

en
v=
{m
,p
}

en
v=
{m
,p
}

en
v=
{m
,p
}

en
v=
{m
,p
}

en
v=
{m
,p
}

ac
t=
s

en
v=
{m
,p
}

ac
t=
s

pr
iv
s=
{P
4}

pr
iv
s=
{P
4}

pr
iv
s=
{P

4}

pr
iv
s=
{P
4}

Figure 4.7: Dependency graph

4.3 Security Engineering for Database Web Services – Bridging the Gap 75

4.3.2 Automated Policy Generation

The extracted access control information is used to generate XACML policies. In particular,
database objects like tables and columns constitute the Resources of a Rule’s Target, while op-
erations like selections and updates represent the Actions. Besides policies, XACML requests
and corresponding security pointcuts can be generated. Service developers can use the gener-
ated code and policies as starting basis for implementing the security functionality of database
services. For example, by including subject specifications and additional constraints, security
policies can be refined and adjusted.

Furthermore, the determined least required privileges can be used to specify adequate database
user profiles by generating corresponding database specific grant statements (see Section 4.2.1).
The extracted privileges represent the least required “vertical” access control rights, i.e., select,
update, and insert privileges on individual columns of tables. Our approach can be extended to
also determine statically defined “horizontal” access control restrictions, i.e., restrictions on rows
of tables. In the above example, read access on the Patients table can be restricted to rows whose
value of the attribute HealthInsurance is “Private HI”. Thus, access on tables can be restricted
via adequate views. Vertical and horizontal access control information in combination allow to
realize optimized access corridors for database services.

Web service policies and database profiles are determined through a static analysis of the service-
to-database interaction. Using dynamic SQL, SQL statements can be constructed and executed
at runtime.5 In cases when nothing is known about the SQL statements, e.g., programs providing
access to arbitrary tables of a database, this approach is not applicable. Obviously, the least re-
quired privileges are not known in such a scenario and the traditional approach has to be applied,
granting the union of privileges for all possible types of supported queries. Nevertheless, a static
analysis can be performed when the input and the output of statements are known beforehand
and only parameter values are set during program execution (like the names of patients when
querying their medical records).

As stated above, the extracted least required privileges allow the realization of optimized
access corridors for database services. In order to improve performance, the repeated setup and
termination of database connections is circumvented by connection pooling, i.e., applications can
request ready-to-use connections of such pools and return them after use. Such connection pools
can be realized for each application, i.e., each application can have its own pool of connections
that follow the principle of least privilege. Some application servers like, for instance, BEA
WebLogic6, also support applications to be deployed side-by-side within the same application
server process, thus, sharing the same connection pools. In general, following this approach, the
principle of least privilege is given up from the point of view of one application.

In order to minimize security risks, connection pools should only be shared by applications
that demand similar authorizations. For instance, administrative applications should share other
pools than those used by data processing services. The generation of service clusters demands
for a metric to compare privileges. Measuring the dissimilarity of privileges P1 and P2 can, for

5See [Cannan and Otten (1993)].
6See the BEA WebLogic Server and WebLogic Express manual, version 8.1 (2006).

76 Security Engineering for Database Backed Web Services

example, be done by use of the subtraction operator, e.g., determining δ(P1, P2) = (P1 − P2) ∪
(P2−P1). Thereby, privileges in δ(P1, P2) should be weighted depending on whether the misuse
of them is expected to cause some, serious or grave damage. The exact formal definition of such
a metric is beyond the scope of this thesis, but, nevertheless, represents an interesting direction
for future research.

4.3.3 Extraction of Database Policies

How access rules can be extracted from a DBMS depends on the employed database system. Tak-
ing Oracle Database as an example, privileges are stored in data dictionary views like
user_tab_privs. In order to provide a clear manageable policy structure, we generate policies
of the following categories:

Permission policies: The rules of permission policies are representing individual privileges.
That is, resource and action declarations of such rules specify database objects and the
way they can be accessed. Section C.1 illustrates the representation of formal privilege
specifications in XACML. Targets of such policies are not restricted, using AnySubject,
AnyResource, and AnyAction as presented in Section 4.2.2. Thus, permission policies (re-
spectively the privileges they represent) can be granted to arbitrary users and / or roles.
This is done by means of base policies.

Base policies: Policies of this category assign privileges to users or roles. The grantees’ at-
tributes are included in the subject specification of the Target. The granted privileges
are referenced by permission policies which are included by the use of PolicyIdReference
(cf. the XACML specification, [Moses (2005)]). Section C.2 describes the XACML layout
of base policies.

Role assignment policies: This type of policy is used to assign roles to users or senior roles,
thus, supporting hierarchical RBAC. Following the recommendation of Anderson (2005),
policies are generated consisting of rules whose target is composed as follows: The granted
role constitutes the Resource, while the grantee (any subject specification or senior role)
is given by the Subject. The Target’s Action is enable which is the fixed keyword used
for role assignments. In Section C.3, we show the XACML representation of formal role
assignments.

Referring to the policy model illustrated in Figure 3.2 on page 21, permission policies correspond
to privilege definitions (PD) and privilege assignments (PA) are represented by base policies. Fi-
nally, role assignments (RA) and role hierarchies (RH) are expressed by role assignment policies.

4.3.4 Engineering Adaptable Access Control Policies

The reliable definition of service policies can proceed from two different directions. On the one
hand, initial service policies can be defined based on the authorization settings of the database
account used to establish the service-to-database connections. These can later on be refined.

4.3 Security Engineering for Database Web Services – Bridging the Gap 77

On the other hand, service policies can be generated based on the specification of the service’s
functionality.

4.3.4.1 Adapting Database Policies

This approach is particularly useful for revising the access control of existing database services,
i.e., scenarios when service and database interaction are already implemented. Then, the priv-
ileges granted to the database accounts used for interacting with the database can be extracted
and preprocessed as XACML policies. These define the maximum set of privileges that can be
granted to the Web service clients. The privileges are stored in permission policies as described
above. The Web service developer is then able to select those permission policies that apply to
the respective service methods and use them for defining the service’s policy. The privileges
to execute service methods are assigned to Web service users via base policies. Thereby, the
developer is able to use the FGAC capabilities of XACML.

4.3.4.2 Defining Policies – Starting from the Service’s Point of View

Figure 4.8 illustrates the process of defining the access control of database services when starting
from scratch. Web service interfaces are typically defined by means of WSDL. As database
services interact with one or more underlying databases, service operations are closely related
to database queries, e.g., formulated in XQuery, XPath or SQL. If the queries are included in
the service specification, the least required privileges can be extracted automatically (step 2) as
shown in Section 4.3.1. These can be employed to specify a database profile that is tailored to
the service functionality (step 3a). Alternatively, the database connection can be predefined (step
3b). In any case, the database account’s authorizations can be extracted automatically (step 4),
which will later be used for compliance checks with the service policies. The right branch of
the process diagram illustrates the specification of initial versions of service policies based on
the extracted authorization information (step 5). These policies can manually be refined (step 6),
e.g., by restricting the service policy through additional conditions and subject declarations.

Now that the access control policies of the service as well as the policies for the employed
database account are available, a compliance check (step 7) can be performed. It is checked if the
database policies cover the authorization requirements of the service, i.e., whether the database
policies are a relaxation of the service policies (cf. Section 3.2.3.4).

• In case some service privileges are not relaxed by the database policy, the service is inop-
erable denoting that some of the queries are not executable. Thus, the service-to-database
connection has to be adjusted, e.g., by realizing the account proposed in step 3a.

• If the service privileges are subsumed by the database policy, but the database policies do
not follow the principle of least privilege, the database profile should be confined in order
to avoid security vulnerabilities. Again, this can be achieved by performing step 3a.

• If the database policies already fulfill the least required privileges principle, the access
control configuration is optimal from the databases’ security viewpoint.

78 Security Engineering for Database Backed Web Services

(5) Prepare Web
service policies

(6) Refine Web
service policies

(1) Specifiy the database Web service
Interface declaration (WSDL)
Database interactions (e.g., SQL queries)

(3a) Generate
DBMS user profile

(3b) Use predefined
DBMS user profile

(6) Verify that Web service policies are
relaxed by database policies

(7) Release service policies

(4) Extract database policies

performed

by Web service developer

automatically

(2) Analyse queries and extract
privilege specifications

Figure 4.8: Semi-automatic security engineering for database Web services

In case compliance is achieved, the service policies can be released. As illustrated in the diagram,
the refinement process can be repeated iteratively and additional application specific rules can be
implemented. Each modification demands for a revalidation of policy compliance.

The benefits of the presented methodical approach are that security risks for the underlying
database systems can be averted and fine-grained access control concepts can be realized. As
illustrated in the figure, many of the steps can be performed automatically. That is, the develop-
ment process can be supported by tools as presented in Section 4.4, easing the implementation
of database services.

4.3.4.3 Adaptive Policy Management

Web service environments can be highly dynamic. For example, dynamic service compositions
allow the replacement of sub-activities. Moreover, also the group of authorized users can change
over time. For example, consider services which are only executable for software engineers dur-
ing the development phase before being released publicly. As another example, suppose a Web

4.4 Implementation 79

P
E
m
p
lo
ye
e

P

E
m
e
r
g
e
n
c
y

Hospital-DB

JDBC

(dbuser2)

Hospital

employee

Emergency

coordinator

reduce Policy,

switch to db_user1

add Policy,

switch to db_user2

Hospital-DB

P
E
m
p
lo
ye
e

JDBC

(dbuser1)

Hospital

employee

Emergency

coordinator

Management-WS Management-WS

Access denied

Figure 4.9: Adaptive policy management

service called Management-WS which allows administrative employees to manage the alloca-
tion of beds and the assignments of attending physicians (i.e., the service provides two methods
for these functionalities). As shown in Figure 4.9, the Employee Policy regulates authorizations
for hospital employees. Connections to the hospital’s database system are established via the
account of dbuser1.

Under certain circumstances, like emergency situations, designated experts might require
gathering information about human resources and free capacities from institutions like police
and fire departments, aid organizations, and hospitals in order to manage catastrophic events.
Given the initial configuration, access for external clients is denied. By temporarily adding an
appropriate policy that is tailored to the requirements of such Emergency coordinators, access can
be granted as long as the emergency situation persists. After normality is achieved, the additional
policy can be revoked again. In Figure 4.9, an additional switch of the database connection (from
dbuser1 to dbuser2) is shown, too. This approach is advisable for cases in which the required
privileges for the database Web service vary in both situations – e.g., for realizing mandatory
access control policies.

Thus, instead of developing partially redundant services for different situations, existing im-
plementations can be reused by dynamically adapting the access control configuration.

4.4 Implementation

We integrated the presented access control optimizations for database Web services into our
research Web service platform ServiceGlobe [Keidl et al. (2002)]. ServiceGlobe is a lightweight,
distributed, and extensible Web service platform. It is completely implemented in Java and based
on standards like XML, SOAP, WSDL, and UDDI. ServiceGlobe specific services are mobile

80 Security Engineering for Database Backed Web Services

code. They can be loaded from code repositories and executed on so-called service hosts that
are participating in ServiceGlobe federations. Service hosts are standard Internet servers that are
additionally running the ServiceGlobe runtime engine.

In order to support the execution of mobile code, ServiceGlobe’s security system provides
protection mechanisms to monitor and control the execution of potential erroneous or even ma-
licious code. As presented by Seltzsam et al. (2001) and Seltzsam (2005), security for service
hosts is based on the Java security architecture, in particular the Java sand-box mechanism.7

Secure messaging including authentication of requesters and secure communication is provided
by WS-Security that relies on XML-Encryption and XML-Signature and specifies how security
information is embedded into SOAP-messages.

ServiceGlobe’s security system provides the core policy evaluation functionality. That is,
ServiceGlobe acts as policy decision point (PDP) as illustrated in Figure 4.4. The implemen-
tation is based on Sun’s XACML implementation.8 We extended Sun’s XACML engine with
support for core and hierarchical role based access control and specified the (hierarchical) repre-
sentation of database objects and actions in XACML. Moreover, we realized the policy engineer-
ing approach which was presented in Section 4.3. That includes the preparation of Web service
policies based on the service specification, the extraction of database access control configura-
tions, the specification of database user profiles to realize optimized access corridors, and the
comparison of XACML policies.

We evaluated the feasibility of our approach by means of database Web services that rely
on Oracle Database instances and provided a tool called WSDL2SG which eases the develop-
ment of database Web services. Its input are service interface descriptions in the form of WSDL
documents and corresponding specifications of the database interactions (also in XML format).
Of course, because of security and privacy concerns, declarations of the database functionality
and service specifications are separated. WSDL2SG generates initial Web service policies and
a service framework, i.e., a Java based implementation that complies to the service description.
In case the Web service developer assigns a database account that shall be used to run the inter-
action with the underlying database, WSDL2SG extracts corresponding database authorizations
and performs a policy compliance check. Furthermore, the basic policy enforcement function-
ality is automatically prepared, meaning that policy enforcement points are inserted at the entry
points of service methods. This also includes the preparation of corresponding XACML requests,
thus, realizing context handler functionality according to Section 4.2.2.

The core XACML specification does not specify the evaluation of attribute values that are stored
in data sources other than XML documents. When implementing fine-grained access control
rules for database services, it is sometimes necessary to evaluate information provided by database
systems. We realized this requirement by adjusting the functioning of AttributeSelector elements
which are part of the XACML specification. Our version allows to connect to database systems
and to query data, which can then be processed during further policy evaluation steps. Figure 4.10
illustrates an XACML Condition that evaluates whether John Carter is an attending physician of

7An overview over the security mechanisms of Java is, for example, provided by Posegga (1998).
8Project page: http://sunxacml.sourceforge.net/

http://sunxacml.sourceforge.net/

4.4 Implementation 81

<Condition FunctionId="string-equal">
<Apply FunctionId="string-one-and-only">
<AttributeSelector

RequestContextPath="dbUri=HospitalDB
dbUser=dbuser
dbPassword=pwd
dbDriver=oracle.jdbc.OracleDriver
dbFrom=MedicalRecords
dbSelect=AttendingPhysician
dbWhere=Patient
rqWhere=patient-name"

DataType="string"/>
</Apply>
<AttributeValue DataType="string">John Carter</AttributeValue>

</Condition>

Figure 4.10: Example for integrating database queries into XACML policies

the patient who is identified by patient-name in the XACML request.9 For this purpose, the
following query will be executed and its result be compared with the string “John Carter”:

select AttendingPhysician
from MedicalRecords
where Patient = <patient-name>;

In order to post this query, a connection to the database needs to be established. The required
connection information is included in the RequestContextPath attribute.10 As policies are not
publicly accessible and policy evaluation is performed by the trusted ServiceGlobe runtime en-
vironment, database connections are protected against malicious user requests.

As stated above, ServiceGlobe acts as PDP for (database) Web services. Policy evaluation pro-
ceeds as illustrated in Figure 4.11: First of all, the requester’s role memberships are evaluated
(step 1) to determine all roles that are granted to the user. The user-role and role-role assign-
ments are encoded in the role assignment policies that are introduced in Section 4.3. Based on
the requester’s attributes (represented by the subject attributes in the request) and the gathered
role information, the applicable base policies are determined (step 2). Next (in step 3), the base
policies’ references to the applicable permission policies – i.e., the granted privileges – are re-
solved. Finally, in step 4, the request is evaluated against the preprocessed policy information.
This can involve database queries to resolve AttributeSelector specifications as presented above.
In case the policy applies to the request, service execution is granted.

9In order to improve readability, we shortened the DataType attribute identifiers. We also simplified the example
through restricting the Condition to the physician John Carter. However, it can easily be adjusted to apply to
arbitrary requesters.

10Proceeding this way, the XACML specification does not need to be modified. In future versions, we intend to
extend the XACML schema for providing better ways to consistently integrate database queries into policies.

82 Security Engineering for Database Backed Web Services

Decision

Request

Policy

evaluation

(2) Determine the applicable base policies

(3) Resolve policy references to determine

the applicable permission policies

(4) Evaluate the request against the

preprocessed policies

Policy

preprocessing

(1) Evaluate the role assignment policies

to determine the granted roles

Figure 4.11: Policy evaluation process of the ServiceGlobe security system

4.5 Related Work

In order to reliably integrate database functionality into service-oriented IT infrastructures, the
access control of database services has to be consolidated with the security configuration of
database systems. Castano et al. (1994) give an overview of access control models of database
management systems, including discretionary access control (DAC) and mandatory access con-
trol (MAC). While MAC is essential in environments with very stringent security requirements
such as the military, commercial applications typically rely on DAC models. In Section 4.2.1, we
briefly discussed the access control of the leading commercial RDBMS Oracle Database, IBM
DB2, and Microsoft SQL Server. Despite many similarities, the syntax for declaring access con-
trol rules is database specific, in general. Therefore, access control configurations are typically
not platform independent. Hence, a security engineering approach as described in this chapter is
necessary to ease the reliable integration of database systems and the reconfiguration of database
services.

Bhatti et al. (2004, 2003) present an XML-based access control specification language for
Web services. Despite their substantial research contributions, generally accepted standards are
of paramount importance for platform independent Web service applications. That is, as Web
services are used to realize cross-organizational application integration processes (we will re-
turn to this aspect in detail in the next chapter), service providers have to agree on common
security standards. Galbraith et al. (2002), O’Neill (2003), and Rosenberg and Remy (2004)
provide comprehensive overviews over security models and specifications for Web services.
Widely accepted standards are the Security Assertions Markup Language (SAML, [Cantor et al.
(2005)]) and the Web Services Security framework (WS-Security, [IBM and Microsoft (2002);

4.5 Related Work 83

Nadalin et al. (2006)]). These specifications focus on the exchange of security credentials, en-
abling authentication, authorization, message integrity, and confidentiality. For the specification
and enforcement of access control we employ XACML. Several extensions of the core specifica-
tion exist. Anderson (2005) shows how RBAC rules can be specified in XACML. A profile for
the specification of Web service policies is presented by Moses (2003). Anderson and Lockhart
(2005) focus on the interaction of XACML and SAML, describing how SAML protocol mecha-
nisms can be used to query XACML policies from policy administration points.

Many Web service platforms and development toolkits like Bea WebLogic, IBM WebSphere,
and the freely available Java Web Services Developer Pack (Java WSDP) employ Java security
technology, supporting the realization of sophisticated authentication and authorization function-
ality for Web service applications. Implementing security functionality in an unstructured man-
ner and without tool support often leads to mixing business logic and security logic. Kehr et al.
(2001) and Walter et al. (2004) present an approach for securing Web applications through the
use of tamper-resistant hardware like smart cards which store security credentials and provide
encryption processing capabilities. For them, the separation of business logic and security logic
is also in the main focus. Our security engineering approach decouples access control from the
service implementation, thus, improving code quality and easing code maintenance. The tools
presented in this chapter facilitate the identification of security requirements and the implementa-
tion of access control functionality – which, according to Gutiérrez et al. (2005), are fundamental
characteristics of a reliable implementation of Web services’ security.

Our approach is also related to Grid technology like the proposed Grid Services architecture of
the Open Grid Forum (OGF11). The main objective of Grid initiatives, in particular of the Data
Access and Integration working group (DAIS-WG), is to share resources in wide area networks,
connecting numerous data providers and individual consumers. The Community Authorization
Service (CAS, [Welch et al. (2003)]) of the Open Grid Services Architecture (OGSA) allows to
set up Grid collaborations by enforcing security through a trusted authority. To do so, resource
administrators can delegate the authorization management to the community. Keahey and Welch
(2002) and Keahey et al. (2003) describe an approach for the specification and enforcement of
fine-grained access control in Grid environments. However, resource administrators have to
ensure that the deployed access control policies conform with the authorization of the underlying
resources on their own. They point out that declarative policy languages like XACML would be
meaningful alternatives to their preliminary policy language.

The DAIS-WG working group is concerned with the specification of interfaces for data re-
sources, enabling the sharing of data in Grid environments. Distinguished specifications exist
for the integration of relational database systems (WS-DAIR) and for XML data sources (WS-
DAIX), see [Antonioletti et al. (2005a,b,c, 2006)]. Users are able to post their own queries to
OGSA-DAI Grid services which are closely related to the specifications issued by DAIS-WG.
For example, they are able to retrieve data from relational databases that are wrapped by re-
spective Grid services. As Grid services rely on the Web services technology stack, security
mechanisms for Web services can seamlessly be applied to them. The security system of the

11Project page: http://www.ogf.org/

http://www.ogf.org/

84 Security Engineering for Database Backed Web Services

OGSA-DAI framework offers several possibilities for administering security of Grid services.12

Based on the security framework of the Globus13 toolkit, authorizations for OGSA-DAI Grid
services can be configured. Furthermore, authorizations can be administered for resources like
XML and relational databases or files that are integrated by Grid services. Privileges can also
be granted on the level of individual operations. Moreover, distinguished database accounts can
be used for different clients by use of so-called role map documents. These specify resource-
specific mappings from X.509 certificate credentials to database usernames and passwords. Our
approach complements access control administration of Grid services by supporting the extrac-
tion of the least required privileges for the underlying databases. Compliance of service and
database policies is ensured through policy comparisons as presented in Chapter 3.

4.6 Conclusion

In this chapter, we analyzed the access control of database services. Database services are Web
services that rely on database systems for providing their functionality. We discussed and eval-
uated the different possibilities of realizing the access control of such services. The security
enforcement can be shifted either more on the side of the underlying database systems or on the
side of the services, i.e., the application layer. Our conclusion is that only the thorough con-
solidation with the access control of the underlying database systems constitutes a reliable and
flexible way of implementing the multilayered security functionality of database services.

In this regard, we presented our security engineering approach for the specification of the
access control of database services. Service policies and policy enforcement points are semi-
automatically generated. Security vulnerabilities for the underlying database systems are avoided
through the automatic specification of adequate database user profiles. That way, access to the
database systems is restricted to those privileges required for providing the service functional-
ity. Hence, security and privacy threats for database systems in case of service infiltrations are
reduced.

This approach is also well suited for the specification of fine-grained access control (FGAC)
rules which is required by many Web based applications. In order to realize FGAC, we take
advantage of modern declarative policy languages like XACML. By verifying that the access
control policies of database services constitute valid refinements of the corresponding database
policies, services can be deployed reliably. Moreover, database Web services can operate as
gatekeepers for the underlying database systems by blocking unauthorized requests on the service
layer, thus, reducing the threat of denial of service attacks on the underlying databases.

A further benefit of our security engineering approach is the strict separation of security logic
and application logic. Because of the application logic not being mixed with the security func-
tionality, a concise software design is enabled. This design also supports dynamic modifications
of security requirements by simply adapting the respective access control policies instead of
demanding for changes of the service implementation or the database schema.

12Project page: http://www.ogsadai.org.uk/documentation/ogsadai-wsrf-2.2/doc
13Project page: http://www.globus.org

http://www.ogsadai.org.uk/documentation/ogsadai-wsrf-2.2/doc
http://www.globus.org

CHAPTER 5

Access Control in Dynamic Service Coalitions

In the previous chapters, we presented best practices for the reliable integration of business appli-
cations and resources into service-oriented IT infrastructures. Wiehler (2004) refers to this kind
of integration processes as the initial phase of adopting service-oriented computing paradigms
by enterprises. In this chapter, we extend our policy framework by role delegation and cross-
domain assignment capabilities. These concepts allow the specification and enforcement of dy-
namic access control policies and the set-up of inter-organizational collaborations that, according
to Wiehler, constitute oncoming application areas of Web services.

Our proposed security architecture supports both, tightly as well as loosely coupled federa-
tions. For the realization of loosely coupled Web service federations, the authorization autonomy
of the participating organizations has to be preserved. In order to enable dynamic federations,
the employed authorization infrastructure needs to be scalable and has to provide efficient pol-
icy enforcement mechanisms. In our framework, access control within collaboration networks
proceeds as an interplay of local and distributed policy enforcement steps. On the one hand,
scalability and performance are provided through the realization of role based access control. On
the other hand, we devise caching strategies for the goal-oriented validation of assignments. The
use of caches allows to optimize distributed authorization checks by reducing communication
and policy evaluation costs. As authorizations must not succeed based on outdated cache entries,
we employ caching techniques that provide the required strong cache consistency and analyze
them with regard to their applicability in the authorization context.

First, we motivate the need for cross-domain assignments and role delegations in Section 5.1.
These concepts demand for an extension of our policy model, which we present in Section 5.2. In
Section 5.3, we describe our policy enforcement strategy supporting dynamic service coalitions.
In Section 5.4, we present caching strategies for the optimization of distributed policy evaluation
processes. The support of loosely and tightly coupled federations by means of our proposed
authorization architecture is discussed in Section 5.5. Section 5.6 presents related work, before
we summarize in Section 5.7. Excerpts of this chapter have been presented in [Wimmer et al.
(2005a,b)] and [Wimmer and Kemper (2005)].

86 Access Control in Dynamic Service Coalitions

5.1 Motivation

Henning Kagermann, CEO of SAP, emphasizes that

“Organizations have to pay special attention to processes that are based on a service-
oriented IT architecture: They consist of a number of enterprise services whose
origin is not completely known. In addition, they transcend traditional company
borders and often run in distributed environments. Customers, suppliers, partners –
they all play a part in innovative business scenarios.”

(from SAP Info vol. 136, 2006)

This citation points out that Web service compositions will increasingly integrate remote services
and resources. A prerequisite for the realization of inter-organizational workflows is a flexible
authorization architecture supporting the delegation of trust across closed trust domains and the
enforcement of access control in service federations.

Figure 5.1 illustrates three collaborating hospitals, namely the Cook County General hospi-
tal (CCG), the Chicago Hope hospital (CH) and the Sacred Heart hospital (SH).1 Each hospital
offers services for the administration of the medical records of their patients. To simplify mat-
ters, we assume that each hospital provides a service interface that complies to MedRecords-WS
which was introduced in Figure 4.2 on page 54. We showed that the consolidation of the access
control of multilayered applications based on the policy model and the techniques presented in
Chapters 3 and 4 allow the reliable integration of applications into service-oriented architectures.
Since our policy model supports attribute-based specifications of access rules, it is well suited
for the security requirements of Web service scenarios.

So far, the presented policy model provides static administration concepts for closed trust
domains, denoting that only security officers can change the policy configuration of an organi-
zation. Nevertheless, in many real world scenarios, ordinary users have to be able to change
policies as well, e.g., for the purpose of delegating jobs to other users. For example, the physi-
cian Kerry Weaver of the Cook County General hospital may want to delegate the treatment of
some of her patients to one of her colleagues, say John Carter. The reason for this can be that
John Carter is specialized on particular diseases, or just because Kerry Weaver is busy and has
to hand over part of her workload. In order to realize this delegation, John Carter needs to be
assigned the respective privileges to access the medical records of the transferred patients. Since
Kerry Weaver herself is not able to delegate the permissions on her own, the security officer has
to add corresponding delegation rules to the policy repository of the CCG hospital. In order
to overcome this limitation and to enable a flexible policy management, we add the concept of
(role) delegation to our policy model.

A further extension of our policy model is the support of cross-domain assignments. By
means of cross-domain assignments, users acquire authorizations in foreign domains. Thus, by
passing over privileges to federating parties, inter-organizational collaboration networks can be
realized. As an example consider the service PatientInfo-WS shown in Figure 5.1. This ser-
vice provides access on the medical records of patients housed in any of the three cooperating

1In the examples, names of hospitals and physicians are borrowed from the television shows ER, Chicago Hope,
and Scrubs.

5.1 Motivation 87

Cook County General

(CCG)

CCG.MedRecords-WS

Kerry Weaver

Sacred Heart Hospital

(SH)

SH.MedRecords-WS

DB

DB

Chicago Hope

(CH)

CH.MedRecords-WS

DB

PatientInfo-WS

local WS-call

remote WS-call

Web service invocation

Request

Response

Figure 5.1: Intra-organizational and remote service executions

hospitals. Such a service portal allows to share results of new medications, e.g., in the course
of a research collaboration, or to exchange diagnoses of patients who are treated in more than
one hospital. As illustrated in the figure, PatientInfo-WS relies on the local MedRecords-WS in-
stances. That means, users querying PatientInfo-WS require permissions for the local services,
too. We distinguish two approaches for realizing access control in coalition environments. On the
one hand, access control can be performed by PatientInfo-WS, which then operates as a central
policy enforcement point. That is, any request authorized for PatientInfo-WS is implicitly autho-
rized for the local services. As a precondition, the cooperating organizations have to transmit
application specific policies to the central enforcement point. This configuration is referred to
as tightly coupled and typically demands for a high level of trust among the cooperating parties,
since sensitive access control information needs to be shared. On the other hand, cooperating
organizations retain their authorization autonomy in loosely coupled systems, meaning that ac-
cess control is enforced by the individual domains. In our scenario, this implies a distributed
access control strategy. Loosely coupled systems are usually employed for short-term coalitions
or coalitions with dynamic trust relationships.

Cross-domain assignments in combination with role delegations result in networks of dis-
tributed authorization interdependencies. In such settings, requests are authorized if applicable
delegation chains can be derived. In case of loosely coupled systems, access control is performed
in a distributed manner. Though distributed policy evaluation strategies can be realized in highly
dynamic networks with changing trust relationships, they usually offer less performance than
their tightly coupled counterparts. This is due to additional communication costs. In order to
optimize distributed policy evaluations, we devise a caching strategy for the goal-oriented vali-

88 Access Control in Dynamic Service Coalitions

dation of assignments. As authorizations must not be based on outdated cache entries, we employ
caching techniques that provide the required strong cache consistency and analyze them with re-
gard to their applicability in the authorization context.

5.2 Extended Policy Model

5.2.1 Terminology and Notation

In this section, we extend our policy model presented in Section 3.2 by cross-domain assignment
and role delegation capabilities. A cross-domain assignment grants access on resources to sub-
jects of foreign domains. In this context, a domain is an entity with the following characteristics:

1. It is uniquely identifiable.

2. It administrates resources, user identities and roles. That is, resources, e.g., database sys-
tems, are uniquely assigned to the domain that hosts them. Analogously, domains manage
identities of registered users, for instance, the employees of a company. Moreover, a do-
main provides its own local role management.

3. A domain autonomously administrates the security policies for its assigned resources.

Domains represent closed trust realms. Concerning the use case illustrated in Figure 5.1, the
hospitals represent three distinguished domains. Domains can also be organized in hierarchies.
For instance, the CCG domain can be subdivided into sub-domains for its departments, like
cardiology, surgery, or emergency room. Each sub-domain administrates its own resources like
the medical records of treated patients. Through the concept of delegation, administration of
shared resources can also be granted to authorities of the superordinate domain.

Delegation is the process whereby an entity authorizes another entity to access certain re-
sources. The delegating entity is also called grantor and the delegated entity is referred to as
grantee. Delegation allows users to act on behalf of someone else. For example, a chief physi-
cian delegates jobs (and therewith the required privileges) to subordinates so that the workload
is balanced among the employees. Due to delegation, grantees can perform the assigned jobs
without referring back to the grantor. Delegations can be restricted temporarily. For instance,
shared access on therapy results within the hospital network can be constrained to the duration
of the joint research collaboration.

In Section 3.2, we defined access rules as tuples (S,O,A, c) specifying the authorized sub-
jects S, the accessible objects O, and the granted operations A. The assignment is restricted
through the condition c. In order to support role delegations, we have to protocol the entities that
released delegations, i.e, the issuers. This information is needed when delegations are revoked.
Therefore, issuers need to be uniquely identifiable, like individual users that are identified by
their user-id. Hence, we extend the specification of a rule (S,O,A, c) by the issuer flag, meaning
that a rule is represented by a tagged tuple (S,O,A, c)I , with I representing the issuer. In case
a rule is generally accepted – i.e., it is not issued by an individual user –, the issuer is the local
domain.

5.2 Extended Policy Model 89

In the following, we use a specific notation for representing assignments, improving readabil-
ity and easing the description of the distributed policy evaluation strategy. However, the formal
notation does not introduce new policy semantics and can be expressed in the extended policy
model.

The assignment of a privilege (O,A) to subjects S, issued by I and constrained by the op-
tional condition c is represented through

[S →P (O,A)]cI (5.1)

Thus, assertion (5.1) corresponds to the rule (S,O,A, c)I . We provide special notations for the
assignment of privileges to roles and for the representation of role hierarchies. The assignment
of a privilege (O,A) to a role r is represented by

[(role = r) →P (O,A)]cI (5.2)

The assignment of a role r to users that are characterized by subject attributes S, constrained by
c and issued by I , is expressed by

[S →R (granted-role = r)]cI (5.3)

Analogously, dependencies in role hierarchies can be expressed. Via the following assertion,
rsenior is declared to be a senior role of the role rjunior

[(role = rsenior) →R (granted-role = rjunior)]cI (5.4)

An example for representing expressions (5.3) and (5.4) in our policy model is shown in Sec-
tion 3.2.1.3, e.g., by means of rule R2.

Assertions in the form of (5.1) to (5.4) realize a static rights management which – apart from
the issuer information – was already supported by our original policy model. The following
assertions provide role management privileges, i.e., represent the rights to delegate and revoke
roles, which are the basis for a dynamic rights management:

[S →delegate
R (d-role = r)]cI (5.5)

[S →revoke
R (d-role = r)]cI (5.6)

The revocation of role assignments can follow various strategies. For instance, revocations can
be performed in a cascading or non-cascading manner. An overview over revocation strate-
gies is given in Section 5.2.4. In our policy model, expressions (5.5) and (5.6) are represented
analogously to role assignments. For instance, expression (5.5) is represented by (S, (d-role =
r), (method = delegate), c)I .

Role delegation and revocation privileges can also be granted to further roles. The following
assertions provide role r′ with administration rights for role r:

[(role = r′) →delegate
R (d-role = r)]cI (5.7)

[(role = r′) →revoke
R (d-role = r)]cI (5.8)

90 Access Control in Dynamic Service Coalitions

Privileges

Objects ActionsUsers PD
RA

RH

PA

Constraints

PD privilege definition
PA privilege assignment
RH role hierarchy
RA role assignment

RMP

RAD
Roles

Function

RMA

RAD delegated role assignment
RMP role managment permission
RMA role management assignment

RMA

PA

Figure 5.2: Extended policy model supporting role delegations

Cross-domain assignments require users (respectively user identities), resources, and roles to be
uniquely identifiable. This is achieved through domain affiliations that are denoted through prefix
notation. For instance, the assertion

[(uid = CCG.Kerry Weaver) →R (granted-role = SH.CoopPhysician)]trueSH

states that Kerry Weaver who is registered at the Cook County General hospital is granted the
CoopPhysician (cooperating physician) role of the Sacred Heart domain. The assertion is an ex-
ample for a static rule that is issued by the SH domain. In this example, the subject’s affiliation is
CCG. Thus, it varies from the domain of the granted role, which is SH. Therefore, the assignment
represents a cross-domain role-assignment as mentioned above. Analogous considerations apply
to cross-domain assignments of privileges. The privilege to delegate or revoke a role does not
presuppose issuers to be members of the role themselves. Self-delegations can be prohibited by
use of conditions.

Figure 5.2 illustrates the augmented policy model. In addition to the policy model shown in
Figure 3.2 on page 21, it supports the described role delegation concepts: A role management
permission (RMP) specifies the privilege to delegate or revoke roles. RMPs can be granted to
subjects via role management assignments (RMAs). With regard to the assignment of roles to
subjects, we differentiate between assignments that are issued by domains (RA) and third party
delegations through authorized users (RAD).

5.2 Extended Policy Model 91

The extended policy model supports a variety of administration schemes (see Section 2.2.4),
e.g., including centralized administration schemes that were already supported by the basic ac-
cess control model. Additionally, because of the delegation mechanism, the ownership paradigm
and hierarchical schemes are enabled. Since inter-organizational assignments are supported, also
a decentralized policy administration can be applied.

5.2.2 Multistep Delegations

Via role delegations and cross-domain assignments, privileges can be granted to users of foreign
domains. A role can be delegated to individual users or roles of cooperating domains – whereby
delegations are possibly restricted through conditions. In case the grantee of a role delegation is
a role (cf. assertion (5.7)) and this recipient role can be further delegated, multistep delegations
are realizable. That is, due to transitivity, roles defined at a domain D can be granted to roles and
users of a domain D′ through several intermediary delegation steps. Thus, through cross-domain
role assignments, networks of trust relationships can be realized. As an example consider the
three assertions

[(uid = CCG.Kerry Weaver) →R (granted-role = CCG.ChiefPhysician)]trueCCG

[(role = CCG.ChiefPhysician) →R (granted-role = SH.CoopPhysician)]trueSH

[(role = SH.CoopPhysician) →R (granted-role = CH.ProjectMember)]trueCH

The first assertion states that Kerry Weaver is working as a chief physician at the Cook County
General hospital, therefore being granted the corresponding role. Because of a collaboration
with the Sacred Heart hospital, chief physicians of the Cook County General are granted the
CoopPhysician role through the second assertion. The third assertion declares that members of
the role CoopPhysician are granted the role ProjectMember of the Chicago Hope domain. Thus,
through multistep cross-domain assignments, Kerry Weaver is granted access rights within the
Chicago Hope domain. The authorization is justified through the delegation chain

CCG.Kerry Weaver →R CCG.ChiefPhysician →R SH.CoopPhysician →R CH.ProjectMember

In general, a delegation chain is a sequence of role assignments expressing role inheritances.
Delegation chains represent authorization proofs, stating that the subjects specified by the be-
ginning of the chain are granted the roles which are linked in the chain. A delegation chain can
include roles of various domains. The delegation depth declares the number of domain hops. In
the given example, the delegation depth is two. In general, the delegation depth of the chain

D0.S →R D1.r1 →R D2.r2 →R . . .→R Dn−1.rn−1 →R Dn.rn

is the cardinality of {i | 0 ≤ i < n,Di �= Di+1}.

5.2.3 Policy Representation and Implementation

In Sections 4.3 and 4.4, we described the representations of formal policy specifications in
XACML. In order to also represent cross-domain assignments and role delegations, we made

92 Access Control in Dynamic Service Coalitions

the following adjustments: We introduced new subtypes of permission policies representing
role delegation and role revocation rights. For instance, the delegation permission for the role
CCG.AttendingPhysician is specified by a permission policy whose Resource references the role
and whose Action is the keyword delegate. The XACML representation of this policy is outlined
in Appendix C.4. Delegation permission policies are assigned to users or roles via base poli-
cies. Permission policies for role revocations are defined and applied analogously, using the
keyword revoke. A role delegation is carried out through the generation of a corresponding role
assignment policy. Let’s assume that Kerry Weaver is granted the privilege to delegate the role
CCG.AttendingPhysician, i.e.,

[(uid = CCG.Kerry Weaver) →delegate
R (d-role = CCG.AttendingPhysician)]trueCCG

If she delegates this role to John Carter, denoted as

[(uid = CCG.John Carter) →R

(granted-role = CCG.AttendingPhysician)]trueCCG.Kerry Weaver

a role assignment policy as shown in Appendix C.4 is generated. As illustrated there, Issuer tags
identify the issuer of a delegation and declare domain affiliations of objects and users. Following
the ownership paradigm, the generated policies are added to the policy repository of the domains
that administer the delegated roles. Considering two requests with the first one performing a
delegation of any role r, while the second initiates the revocation of the respective delegation
permission, policy repositories will become inconsistent. Therefore, policy repositories have
to be modified exclusively, meaning that they have to be locked during updates. Otherwise,
concurrency conflicts can arise.

We integrated the described inter-organizational delegation mechanism into our research Web
service platform ServiceGlobe. So-called delegation services supervise the policy repositories
of domains and provide role delegation and revocation functionality. Furthermore, they act as
policy decision points within dynamic service coalitions, building the backbone for realizing
distributed policy enforcement (see Section 5.3).

5.2.4 Revocation Schemes

In order to delegate a role, a respective role assignment policy is issued. The reverse operation,
i.e., the revocation of a delegation, implies the invalidation of the corresponding role assignment
policies. Thereby, attention has to be drawn to the revocation of role assignments that include the
right to delegate the same or further roles. The question arises what to do with role delegations
that have been issued based on the revoked role.

We present different revocation schemes by means of an example. Assume that the following

5.2 Extended Policy Model 93

is an excerpt of the policy repository of the Cook County General hospital:

[(role = CCG.ChiefPhysician) →delegate
R (d-role = CCG.ChiefPhysician)]true CCG

[(role = CCG.ChiefPhysician) →delegate
R (d-role = CCG.Surgeon)]true CCG

[(role = CCG.ChiefPhysician) →delegate
R (d-role = CCG.Internist)]true CCG

[(uid = CCG.Mark Greene) →R (granted-role = CCG.ChiefPhysician)]true CCG

These assertions state that chief physicians of the Cook County General can delegate the roles
ChiefPhysician, Surgeon and Internist. That is, someone who is granted the ChiefPhysician role
is allowed to perform further delegations. For instance, Mark Greene, who is granted this role,
can initiate the following delegations:

• Grant ChiefPhysician to Douglas Ross.

• Grant Internist to Kerry Weaver.

Due to the first delegation, Douglas Ross is also authorized to delegate the three roles. He, for
example, can issue the following assignments:

• Grant Internist to Kerry Weaver.

• Grant Surgeon to Kerry Weaver.

Therefore, the following assertions are added to the policy repository of the CCG domain:

[(uid = CCG.Douglas Ross) →R (granted-role = CCG.ChiefPhysician)]true CCG.Mark Greene

[(uid = CCG.Kerry Weaver) →R (granted-role = CCG.Internist)]true CCG.Mark Greene

[(uid = CCG.Kerry Weaver) →R (granted-role = CCG.Internist)]true CCG.Douglas Ross

[(uid = CCG.Kerry Weaver) →R (granted-role = CCG.Surgeon)]true CCG.Douglas Ross

Figure 5.3(a) illustrates the delegation interdependencies that arise from these rules. As can be
seen, Kerry Weaver is granted the role Internist according to two independent assignments – the
first issued by Mark Greene and the second by Douglas Ross.

The concept of role delegation needs to be accompanied with possibilities of role revoca-
tions. For instance, if Douglas Ross resigns, his authorizations at the Cook County General
hospital have to be deleted, meaning that he should be revoked from the delegated role Chief-
Physician. In this case, it is reasonable to keep delegations issued by Douglas Ross unchanged.
If Douglas Ross is fired because he is suspected of being disloyal, the delegations he issued
should be removed from the system as well. Thus, the authorization system has to control revo-
cations, guaranteeing that only authorized entities can revoke assignments and that revocations
are performed according to a predefined revocation scheme.

94 Access Control in Dynamic Service Coalitions

Mark Greene, CP

Douglas Ross, CP Kerry Weaver, I

Kerry Weaver, I

CCG

Kerry Weaver, S

CP ChiefPhysician
I Internist
S Surgeon

(a) Role delegation dependencies

Mark Greene, CP

Douglas Ross, CP Kerry Weaver, I

Kerry Weaver, I

CCG

Kerry Weaver, S

(b) Non-dominating revocation

Mark Greene, CP

Douglas Ross, CP Kerry Weaver, I

Kerry Weaver, I

CCG

Kerry Weaver, S

(c) Dominating revocation

Mark Greene, CP

Douglas Ross, CP Kerry Weaver, I

Kerry Weaver, I

CCG

Kerry Weaver, S

(d) Non-cascading revocation

Mark Greene, CP

Douglas Ross, CP Kerry Weaver, I

Kerry Weaver, I

CCG

Kerry Weaver, S

(e) Cascading revocation

Figure 5.3: Effects of different revocation schemes

5.2.4.1 Grant-dependency

According to our policy model, users are explicitly authorized to revoke assignments by being
granted revocation permissions. For instance, chief physicians that are able to delegate the roles
ChiefPhysician, Surgeon, and Internist are granted the privilege to revoke these roles according

5.2 Extended Policy Model 95

to the following rules

[(role = CCG.ChiefPhysician) →revoke
R (d-role = CCG.ChiefPhysician)]true CCG

[(role = CCG.ChiefPhysician) →revoke
R (d-role = CCG.Surgeon)]true CCG

[(role = CCG.ChiefPhysician) →revoke
R (d-role = CCG.Internist)]true CCG

As these assertions are not restricted by any condition, any user who is granted the ChiefPhysi-
cian role can revoke any of these assignments. This is also referred to as grant-independent
revocation. For instance, the chief physician Mark Greene can revoke the assignment of the role
Surgeon to Kerry Weaver, although this assignment was issued by Douglas Ross.

According to Barka and Sandhu (2000a), a revocation scheme is grant-dependent if delega-
tions can only be repealed by the grantors. In our model, this is realized via conditions in the
form of (issuer = requester) if issuer is the grantor (stored in the role assignment policy, see
Section 5.2.3 and Appendix C.4) and requester is the subject that requests to revoke the delega-
tion. Hence, grant-dependent as well as grant-independent revocation schemes are supported by
our authorization framework.

5.2.4.2 Dominance and Propagation

Hagström et al. (2001) provide a classification of revocation schemes, introducing the three di-
mensions resilience, dominance, and propagation. The first dimension, resilience, describes the
technical realization of revocations. Possible approaches are the deletion of assignments and the
publication of negative assertions, i.e., denials that overrule grants. As negative authorization is
not considered by our approach, we focus on the dimensions dominance and propagation.

The dominance dimension describes the handling of conflicts which arise when subjects are
delegated the same roles by several grantors. In our example, Kerry Weaver is granted the role In-
ternist by Mark Greene and by Douglas Ross. Figure 5.3(b) shows the result of a non-dominating
(also called weak) revocation of the role Internist induced by Mark Greene: As illustrated, only
his delegation is deleted. Hence, Kerry Weaver is still granted this role due to a separate assign-
ment by Douglas Ross. In contrast to this, the revocation is called dominating or strong if the
delegation of Douglas Ross (who received the right to delegate the role from Mark Greene) is
removed as well. The result is illustrated in Figure 5.3(c). Dominating revocation schemes have
to take into account delegation dependencies, meaning that only assignments which are along a
path from the root to a leaf in the tree can be deleted. Regarding our example scenario, Douglas
Ross will not succeed in revoking all assignments of the role Internist from Kerry Weaver, as the
delegation by Mark Green does not depend on a delegation of Douglas Ross – but arguably the
other way round.

The last dimension, propagation, distinguishes between non-cascading and cascading revo-
cations. Considering our example, Figure 5.3(d) illustrates a non-cascading revocation of the
role ChiefPhysician from Douglas Ross by Mark Greene. As shown in the figure, delegations
issued by Douglas Ross are not affected. A non-cascading revocation would, for instance, be
applied if Douglas Ross retires. Privileges and roles he was granted in the context of the Cook
County General hospital need to be revoked then. Nevertheless, delegations he issued during

96 Access Control in Dynamic Service Coalitions

the time of his employment will not lose validity. Applying a recursive revocation scheme to
this scenario would lead to the undesired effect of deleting all assignments Douglas Ross issued
and, recursively, all the delegations that were performed based upon them. Figure 5.3(e) shows
the result of the cascading revocation of the role ChiefPhysician from Douglas Ross. Cascading
revocations induce global updates of role assignments and offer possibilities to clear all effects
of malicious users.

Consequently, eight revocation schemes can be realized through possible combinations in
the dimensions grant-dependency, dominance, and propagation. Nevertheless, these configu-
rations vary with regard to their usability in dynamic coalitions. As cooperating domains are
autonomously administrating their policy repositories, dominating revocation schemes might not
be acceptable and can imply high communication costs. Furthermore, the implementation has
to handle exceptions like the temporal unavailability of nodes in the network. Similar consider-
ations apply to cascading revocations. However, dominating and / or cascading revocation vari-
ants can be used in the context of tightly coupled federations, where authorization is performed
centrally. The authorization system of ServiceGlobe provides the basis for loosely coupled fed-
erations, performing non-dominating and non-cascading revocations by default.

5.3 Policy Evaluation

In dynamic service coalitions, access control is performed through the interplay of local and
distributed policy evaluation steps. If a user invokes a Web service which is provided by domain
D, first of all the policy repository of D is browsed, evaluating whether a local authorization
decision can be inferred. This is referred to as local policy evaluation. If the request cannot
be authorized based on the D-local rules, distributed policy evaluation is initiated. Through
distributed policy evaluation it is checked whether D participates in a collaboration network
that grants the privileges needed to execute the service to the requester. In this regard, our
authorization model does not depend on a central authority (also called trusted third party), which
acts as central policy decision point within the network. Instead, in loosely coupled federations,
the cooperating domains retain their authorization autonomy.

In the following, e denotes a request specifying the subject, the activity (i.e., resource and re-
quested operation), and context information. In our scenario, the request applies to the execution
of a Web service hosted by domain D.

5.3.1 Local Policy Evaluation

Local policy evaluation denotes that only policies of D’s policy repository are evaluated. The
evaluation process based on the augmented policy model proceeds similar to the process de-
scribed in Section 4.4:

1. First of all, the set Rlocal which consists of roles administered by domain D that are as-
signed to the requester (specified by e) are determined:

Rlocal
def
= {D.r | D.r is a role : ∃ [S →R D.r′]c I ∧ [[S]]e = true, [[c]]e = true, D.r′ �e

D D.r}

5.3 Policy Evaluation 97

That is, Rlocal consists of those roles of the D-local role hierarchy which are granted to the
requester. Rlocal is determined by analyzing the role assignment policies of domain D.

In the above definition, �e
D represents the order defined by the D-local role hierarchy,

whereby only role inheritances applying to e are taken into account. That is, D.r′ �e
D D.r

holds, in case r′ is equal to r or r′ is a senior role of the role r and any condition c restricting
the applicability of any role inheritance is fulfilled by the request e. Formally,D.r′ �e

D D.r
if there exists a sequence of assignments [D.ri → D.ri−1]ci

Ii, with 1 ≤ i ≤ n, r0 = r,
rn = r′ and [[ci]]e = true for all i.

In general, the topmost roles in the D-local role hierarchy can be defined in foreign do-
mains, i.e., there can beD′.r′ �e

D D.r withD′ �= D. But there can be no further roleD′′.r′′

with D′′ �= D and D′′.r′′ �e
D D′.r′ �e

D D.r. This is due to the ownership paradigm which
requires the assignment D′′.r′′ � D′.r′ to be stored in the policy repository of domain D′.

2. Second, the set P of granted privileges is determined, which is defined as

P = {(O,A) |(∃ [S →P (O,A)]cI ∧ [[S]]e = true, [[c]]e = true) ∨
(∃ [D.r →P (O,A)]cI ∧ [[c]]e = true, r ∈ Rlocal)}

P is calculated by scanning the base policies of D.

3. If any privilege (O,A) ∈ P applies, i.e., [[(O,A)]]e = true, the request e is locally autho-
rized. This last evaluation step is performed by checking the permission policies of the
D-local policy repository.

5.3.2 Distributed Policy Evaluation

If local policy evaluation fails, the request might still be authorized due to cross-domain assign-
ments. For instance, if domainD collaborates with domainD′, roles ofD are assigned to entities
(users or roles) of domain D′ and vice versa. Due to the ownership paradigm, the respective role
assignment policies are administered by the domains the assigned roles belong to. Thus, the eval-
uation of authorizations within a federation implies a distributed policy evaluation as illustrated
in Figure 5.4(a):

1. First, those domains are determined which are candidates for authorizing e. As local policy
evaluation failed, we know that the requester cannot be granted the execution rights due to
an assignment of the form [S →P (O,A)]cI with [[(S,O,A, c)]]e = true. The only pos-
sibility left is that the requester is granted a role D.r that authorizes the request, whereby
this authorization is based on a cross-domain role assignment. The set Rforeign is defined
as follows:

Rforeign
def
= {D′.r′ |D′.r′ is a role, D′ �= D : ∃D.r with [D.r →P (O,A)]cI such that

[[(O,A)]]e = true, [[c]]e = true, D′.r′ �e
D D.r}

Rforeign is calculated based on the evaluation of the D-local policy repository.

98 Access Control in Dynamic Service Coalitions

2. The request e is authorized if at least one role D′.r′ ∈ Rforeign is assigned to the requester.
Distributed authorization is initiated by evaluating the policy repository of domain D′:

a) A D′-local policy evaluation is performed to find out whether the requester is granted
the role D′.r′ due to the D′-local role hierarchy. That is, in case there exists an assign-
ment [S →R D′.r̃]cI with [[S]]e = true, [[c]]e = true, and D′.r̃ �e

D′ D′.r′, the request is
granted because of transitivity. In this case, distributed policy evaluation terminates.

b) Otherwise, authorization can still be inferred based on a further delegation step. There-
fore, we calculate the set R′

foreign of senior roles of D′.r′ which belong to cooperating
domains. R′

foreign is defined as:

R′
foreign = {D′′.r′′ | D′′.r′′ is a role, D′′ �= D′, D′′.r′′ �e

D′ D′.r′}

Distributed evaluation branches by evaluating the policy repositories of the domains
D′′, querying whether the requester is granted any role D′′.r′′. Thus, each branch can
lead to further distributed policy evaluations, denoting that step 2.b) will be executed
repeatedly. Distributed policy evaluation terminates unsuccessfully at domain D′, in
case R′

foreign = ∅.

Therefore, distributed policy evaluation corresponds to the evaluation of distributed role rela-
tionships which are defined through cross-domain role assignments. That is, trust relationships
among cooperating domains are represented by a graph of distributed role assignments. In this
graph, nodes stand for individual roles and edges represent (potentially distributed) role assign-
ments that are labeled with conditions. There is a directed edge from D′.r′ to D.r annotated with
c if and only if there exists a role assignment policy [D′.r′ →R D.r]cI . As explained before, this
assignment is stored as a role assignment policy at domain D which is the owner of role r.

An authorization is inferred if a delegation chain is derived which applies to the request e.
Figure 5.4(b) illustrates that applicable delegation chains are determined by means of a back-
wards oriented depth first search (DFS) on the distributed role assignment graph. Whenever
foreign policy repositories have to be evaluated, the search-depth is increased by one. In our
prototype, delegation services provide the functionality to query distributed role assignments. It
can be assumed that real-world collaborations tend to reveal short delegation depths, denoting
that collaboration networks are likely to span only few trust domains and that organizations are
usually cooperating with a reduced number of partners. Consequently, a breadth first search
(BFS) algorithm is supposed to be particularly suitable by providing better response times than
DFS. One possibility for realizing BFS is to compute a local copy of the role assignment graph
which is then evaluated by a central authority. However, this contradicts security requirements
of dynamic service coalitions. Alternatively, a breath first search can be realized on the dis-
tributed graph by iteratively increasing the search-depth. That is, first, delegations spanning two
domains are evaluated. Then, in case authorization did not succeed, delegations involving three
domains are checked, etc. However, due to the iterative enlargement of the search range, this
strategy results in high network load. Hence, a BFS-variant can hardly be realized. Techniques
for improving the performance of distributed policy enforcements are discussed in Section 5.4.

5.3 Policy Evaluation 99

P

DS

D
request (e)

P

DS

3D

P

DS

2D

P

DS

1D
P

DS

4D

1sd =

1sd =

1sd =

2sd =

2sd =

sd

DS

D
local policy evaluation

distributed policy evaluation

search-depth

delegation service

domain identifier

(a) Distributed policy evaluation in a network of collaborating domains

.D r

.D r′

.D r′′

kc

ic ic′.i iD r .i iD r′
.f fD r

jc

fc

.n nD r Snc
1 1.D r1c

.j jD r

.k kD r

(b) Evaluation of the distributed role assignment graph

Figure 5.4: Distributed policy evaluation

5.3.3 Example

We demonstrate the distributed policy evaluation process by means of the scenario introduced in
Section 5.1. We model a collaboration network consisting of the three hospitals Chicago Hope
(CH), Sacred Heart (SH), and Cook County General (CCG). In the example, we focus on the
execution of PatientInfo-WS by the physician Kerry Weaver who works at the Cook County Gen-
eral. Assuming that she queries the medical record of the patient Mr. Geiger who is housed at the

100 Access Control in Dynamic Service Coalitions

1,1 true: [(CCG.Kerry Weaver) (- CCG.ChiefPhysician)] CCG RCCG uid granted role= → =

1,1 true

1,2 true

: [(CH.Bob Kelso) (SH.ChiefPhysician)] SH

: [(CCG.ChiefPhysician) (- SH.CoopPhysician)] SH
R

R

SH name role

SH role granted role

= → =
= → =

1,1 true

delegate
1,2 true

1,3

: [(CH.ProjectMember) ((CH.database), (select))] CH

: [(SH.ChiefPhysician) (- CH.ProjectMember)] CH

: [(SH.CoopPhysician) (- CH.Pr

P

R

R

CH role db method

CH role d role

CH role granted role

= → = =

= → =
= → = trueojectMember)] SH.Bob Kelso

d
el
eg
a
ti
o
n
 c
h
a
in

(a) Extracts of the policy repositories

Sacred Heart

Chicago Hope

P

Bob Kelso

DB

P

Cook County

General

Kerry Weaver P

direct trust

relationship

(CH1,2)

delegated trust

relationship

(CH1,3 and SH1,2)

(b) Trust relationships

Figure 5.5: Distributed policy evaluation in a dynamic coalition scenario

Chicago Hope hospital, the Web service PatientInfo-WS delegates her request to the MedRecords-
WS service of the CH-domain. In order to retrieve Mr. Geiger’s data, Kerry Weaver needs to be
granted access rights on the Chicago Hope medical database. In the following, we assume a
loosely coupled federation, so that access control is performed by means of a distributed policy
evaluation process.

Figure 5.5 illustrates extracts of the policy repositories of the three domains and the trust
relationships which are defined through these access control rules. To keep the example sim-
ple, we disregard further conditions like the restriction that only medical records of patients who

5.4 Caching of Authorization Paths 101

agreed publishing their data within the federation would be accessible. The privilege to access
the medical records of patients of the Chicago Hope hospital is given by the permission to ex-
ecute a query statement on the hospital’s database. Kerry Weaver’s request that is forwarded
to the MedRecords-WS instance of the Chicago Hope hospital cannot be granted based on a
CH-local policy evaluation. However, the policies contain rules for the cross-domain assign-
ments of roles: Rule CH1,2 states that chief physicians of SH are allowed to delegate the role
CH.ProjectMember. This delegation permission is applied by the physician Bob Kelso who as-
signs the role to the role SH.CoopPhysician of the Sacred Heart hospital, which is represented by
the generated assignment CH1,3. Through SH1,2 this role in turn is assigned to chief physicians
of the Cook County General. Because of rule CCG1,1, the CCG.ChiefPhysician role is granted
to Kerry Weaver. Thus, the rules specify the delegation chain

CCG.Kerry Weaver →R CCG.ChiefPhysician →R SH.CoopPhysician →R CH.ProjectMember

If Kerry Weaver tries to read the medical record of a patient housed at the Chicago Hope hos-
pital, this authorization chain has to be traversed in reverse order. Therefore, as described
above, the first step is to determine the roles of foreign domains which are senior roles of
CH.ProjectMember. In our simplified scenario, this applies to SH.CoopPhysician. As Kerry
Weaver is not granted the role based on the local policies, the policy repository of the Sacred
Heart hospital is evaluated. For that purpose, the delegation service of SH is invoked, query-
ing whether Kerry Weaver possesses the role SH.CoopPhysician. Again, this cannot be an-
swered SH-locally, so that distributed policy enforcement is initiated at the CCG domain. Due
to CCG1,1, distributed authorization succeeds at the CCG domain and, thus, Kerry Weaver is al-
lowed to execute the MedRecords-WS of the Chicago Hope domain and therewith also the service
PatientInfo-WS.

5.4 Caching of Authorization Paths

The described policy evaluation strategy conforms to a depth first search (DFS) on the distributed
role assignment graph. Thus, in the worst case, the complete collaboration network has to be
analyzed sequentially. If m is the number of domains in the collaboration network and n the
maximum number of roles administered by any domain, then O(m2 · n2) is an upper bound for
the number of distributed role delegations. The worst case complexity is attained if each role is
assigned to each role of the federating domains.

While long execution times might be tolerable for unsuccessful policy enforcements, success-
ful authorizations have to proceed as quickly as possible. Most collaborations can be assumed to
span only few organizations. Therefore, delegation chains are likely to be rather short. However,
as outlined before, breadth first search (BFS) strategies cannot be realized effectively. Response
times of the DFS variant can be reduced substantially through parallelizing the search by asyn-
chronously evaluating the distributed policy repositories. Unfortunately, lower response times
then have to be traded for an increase of network traffic.

Both objectives, i.e., low response times and low network traffic can be obtained by caching
authorization results of frequently and / or recently used requests. If a cache hit occurs, a depth

102 Access Control in Dynamic Service Coalitions

first search on the distributed role assignment graph can be avoided. Hence, the use of caches
provides three main advantages, as there are reduced bandwidth consumption, reduced server
load, and reduced latency. We supplied delegation services with authorization caches, storing
entries of the form

〈S cn+1−→Dn.rn
cn−→Dn−1.rn−1 . . .

c2−→D1.r1
c1−→D.r〉

Such a cache entry represents the delegation chain which asserts that the role D.r is assigned to
subjects that comply with the specification S. To put it another way, a cache entry represents a
path in the distributed role assignment graph, whereby its applicability depends on the combined
condition

∧
1≤i≤n+1 ci.

Creation of Cache Entries

A new entry is added to the cache of the delegation service of domain D if a positive distributed
policy evaluation result has been achieved. The cache entry is created when a requester who
complies to the subject specification S invokes a Web service of D for which the privileges of
role D.r are required and S is granted D.r. Authorization evidence is given in the form of an
authorization path as discussed above. In order to store the complete delegation chain as a cache
entry, cooperating delegation services have to return the history of distributed policy evaluations.
This can contradict the security requirements of loosely coupled federations. In the next section,
we present a modified design of caches which meets these concerns.

In the following, we refer to delegation services as clients in case they consume information
by storing results of distributed authorization checks in their local cache. If delegation services
return successful evaluation results which can be cached at collaborating organizations, they act
as servers in the caching scenario.

Evaluation of Caches

Caches are evaluated prior to the initiation of a distributed policy evaluation. In the first step of
the distributed authorization process, those roles are determined that would authorize the request.
Thus, for a request e, those cache entries are determined that apply to e and that include one of
these roles. Thereby, not only exact matches can be handled. For example, if the role D.r′

authorizes the request e, cache entries 〈S cn+1−→Dn.rn
cn−→Dn−1.rn−1 . . .

c2−→D1.r1
c1−→D.r〉 with

the following characteristics are determined:

• [[S]]e = true,

• [[
∧

1≤i≤n+1 ci]]e = true, and

• D.r �e
D D.r′

Cache entries are evaluated according to the employed caching strategy. If no applicable cache
entry is found, distributed policy evaluation takes place as described in Section 5.3.2.

5.4 Caching of Authorization Paths 103

5.4.1 Caching Strategies

The caching of relevant access control data demands for caching strategies providing strong
cache consistency. Authorization must not succeed based on outdated, i.e., invalidated access
control information. Cao and Özsu (2002) give an overview of strong consistency Web caching
techniques. In the following, we describe three Web caching strategies which can be applied
in the authorization scenario, namely client validation, server invalidation, and lease based ap-
proaches.

5.4.1.1 Client Validation

Employing client validation, client-delegation services have to ensure the validity of cached en-
tries. In case a cache hit occurs, the cache entry is validated before authorization is granted.
Let ε = 〈S cn+1−→Dn.rn

cn−→Dn−1.rn−1 . . .
c2−→D1.r1

c1−→D.r〉 be a cache entry that applies to the
request e. The delegation service of D evaluates the validity of ε by checking the D-local poli-
cies, whether there is still a valid assertion of the form [D1.r1 →R D.r′]c1I with D.r′ �e

D D.r.
Subsequently, the evaluation is continued at the delegation service of D1 for verifying the next
extract of the authorization path, i.e., D2.r2

c2−→D1.r1. Thus, the individual assertions are itera-
tively checked. Verification succeeds if each link of the delegation chain is still valid. Otherwise,
the cache entry is removed from the local cache and further applicable entries of the cache are
evaluated. Usual distributed policy evaluation proceeds if no applicable valid cache entry is
found.

Client validation allows to reduce policy evaluation costs significantly because exhaustive
evaluations of the distributed role assignment graph can be avoided. The caching of authorization
paths differs from common Web caching scenarios: In general, the location of the requested
Web content remains unchanged and performance is enhanced by reducing the transferred data
volume. In our case, execution time is saved as the validation of authorization paths corresponds
to a goal-oriented “walk” through the distributed role assignment graph, rather than a complete
analysis of the graph in the worst case. Thus, lookup-time of distributed policy evaluation is
reduced.

According to the above description, a cache entry represents a complete delegation chain.
This design enables the efficient validation of cache entries, but demands for the cooperating
organizations to agree on the exchange of access control information. If the cooperating organi-
zations trust each other, this assumption might hold. In dynamic coalitions, the information flow
is kept at a minimum by caching authorization path fragments of the form 〈S � D1.r1

c1−→D.r〉
at domain D. Because of the ownership-paradigm, the assignment [D1.r1 →R D.r]c1I is con-
tained in the repository of D and the dissemination of security relevant data is confined. The
complete authorization path is restored iteratively through a goal-oriented search starting at
D1. The delegation service of D1 either authorizes the request through a local policy eval-
uation, determines the subsequent fragment of the authorization path in its local cache (i.e.,
〈S � D2.r2

c2−→D1.r1〉), or – in the worst case – triggers distributed policy enforcement.

104 Access Control in Dynamic Service Coalitions

5.4.1.2 Server Invalidation

Using server invalidation, server-delegation services have to inform adjacent clients in case of
policy updates that would invalidate cache entries of clients. Therefore, server-delegation ser-
vices have to log the request type and the URL of client-delegation services which received
positive authorization responses. Modifications of policies must not be fixed before all affected
cache entries have been invalidated and the invalidation has been acknowledged by the clients.
Consequently, this approach is vulnerable regarding the unreachability of services, e.g., because
of network failures. Malicious nodes can even misuse this shortcoming for attacks. These draw-
backs clearly disqualify server invalidation for being applied in highly dynamic federations.

One further disadvantage of server invalidation is its limited scalability. Server-delegation
services have to log requests in order to notify clients in case of policy updates. This is not
considered to be a crucial drawback, however, as for many use cases the collaboration networks
would be of manageable size. The advantage of server invalidation compared to client validation
is its low bandwidth consumption and latency, as cache hits lead to the immediate authorization
of requests without demanding for further validation checks.

5.4.1.3 Lease-based Approach

In 1989, Gray and Cheriton introduced the lease-based caching approach which constitutes a
compromise between client validation and server invalidation. Leases are contracts between
client and server-delegation services. Servers assert not to modify the administered access control
policies as long as leases are valid. After the leases have expired, the duty to ensure the validity
of cache entries is shifted to the clients. When updating policies, servers have to wait until
each client has acknowledged the invalidation of cache entries or, in case of any of them being
unreachable, until the respective leases have expired. Consequently, the lease-based approach is
parameterizable by means of the validity periods of leases. Setting them close to zero results in
a behavior similar to client validation. On the other hand, server invalidation is approximated
when using long lease periods. Thus, depending on the parametrization, the pros and cons of
client validation and server invalidation apply to lease-based caching, too.

5.4.2 Experimental Results

To the best of our knowledge there do not exist any standardized benchmarks for measuring and
comparing the performance of access control information caching. Therefore, we developed test
cases which illustrate the performance of distributed policy enforcement depending on the size
of the collaboration network and the employed caching strategy. Performance is measured as
system throughput, i.e., the number of authorization checks that can be performed per time unit.
Another criteria is the network load, denoting communication costs. In a homogeneous network,
the time consumption of sequential distributed authorization is approximately proportional to
the number of messages that are exchanged among collaborating delegation services. Server
invalidation provides the best performance, as no messages are exchanged in case of cache hits.

A collaboration network can be classified by means of the number of outgoing connections

5.4 Caching of Authorization Paths 105

per domain (degree d) and the maximum delegation depth h. The outgoing degree specifies
the number of domains direct collaborations are established with – through some of the partner
members being granted local access rights (and potentially vice versa). The (maximum or mean)
delegation depth denotes the number of trust domains a delegation chain spans (at maximum or
mean).

In general, collaboration networks are represented as directed graphs. In our experiments,
we analyzed collaboration networks that constitute balanced d-ary trees of height h as illustrated
in Figure 5.6(a). That is, we are looking at federations from the point of view of one domain
that is represented by the root node. We posted requests to this node, measuring the time needed
to perform access control. Thereby, we differentiate between requests being authorized locally
and those requiring distributed policy evaluation. In the latter scenario, positive access rules
are distributed among the policy repositories of the remaining delegation services. In the worst
case, authorization requires the complete tree to be examined. Thus, O

(
dh
)

constitutes an upper
bound for the complexity.

The experiments were performed on a cluster of ServiceGlobe installations running on HP
ProLiant BL20p Blade server systems with 2.8 GHz Intel Xeon processors. For each test sce-
nario, we measured the performance of authorization when no caching, client validation, and
server invalidation were used. Benchmark results are listed relative to the performance measures
of server invalidation. The performance of the lease-based approach depends on the expiration
period of leases and resides between the performance of client validation and server invalidation.
Therefore, performance measures for this caching technique were not conducted separately. On
average, the execution of a delegation service lasted 650 ms. About 30 % of this time are re-
quired for local policy evaluation and cache examination (with caches being realized as XML
documents), while the predominant amount is needed for service loading and initialization.

5.4.2.1 Variation of the Network Dimensions

The parameter d and the maximum delegation depth h determine the complexity of the tree-like
collaboration network. We performed experiments varying both dimension parameters. Fig-
ure 5.6(b) illustrates the results for the variation of h, when only one positive access rule exists in
one of the undermost policy repositories. As expected, the execution time of the standard policy
enforcement strategy approximates an exponential curve. In case of cache hits, client validation
is linear with respect to h (and invariant with respect to d), while server invalidation requires
constant time. Already at a depth of h = 4, execution times without caching are more than five
times higher compared to the results of client validation and more than 40 times higher compared
to those of server invalidation.

In order to measure cache reorganization costs, we also performed tests assuming a dynamic
rights management. For that purpose, a varying number of positive rules were inserted into the
graph and some of them were modified regularly. When increasing the update ratio, both curves
converge to the non-optimized case. Nevertheless, using server invalidation, policy enforcement
times are still lower compared to the usage of client validation.

106 Access Control in Dynamic Service Coalitions

0D

10D 11D 12D

110D 111D 112D 122D121D120D100D 101D 102D

3d =

D

2h =

(a) In the experiments, collaboration networks are modeled as d-ary trees

0

20

40

60

80

100

120

2 3 4 5

No Caching Client Validation Server Invalidation

ru
n
 t
im

e
 r
e
l.
 t
o
 s
e
rv
e
r
in
v
.

(b) Variation of the delegation depth

0

1

2

3

4

5

6

7

0.75 0.9 0.95 0.97 0.98

No Caching Client Validation Server Invalidation

ru
n
 t
im

e
 r
e
l.
 t
o
 s
e
rv
e
r
in
v
.

(c) Variation of the request characteristics

Figure 5.6: Experimental settings and results

5.5 Application Scenarios 107

5.4.2.2 Variation of the Request Characteristics

Figure 5.6(c) illustrates the results of a benchmark varying the relation of local and distributed
policy enforcements. The proportion of requests that are evaluated locally is given by the param-
eter p. We simulated a static collaboration network with d = 2 and a maximum delegation depth
of h = 5. Thus, a network of 63 collaborating organizations was simulated.

In our experiments, 50 different request types were simulated with p ·50 positive access rules
being inserted in the topmost policy repository, i.e., a portion of p requests can be authorized
locally. The (1 − p) · 50 access rules that apply to the remaining part of the request types were
inserted in the other repositories according to a Zipf distribution. When sorting the levels of
the collaboration network according to the frequency with which access rights are assigned to
them, Zipf’s law states that the frequency of rights being assigned to a level l (frq (l)) is inversely
proportional to its ranking following a power law: frq(l) ∼ 1/lα. Typically, α ∈ [0, 1]. A
uniform distribution is modeled through α = 0, while a highly skewed distribution is achieved at
α = 1. By setting α = 0.85, we simulated a scenario with the predominant part of requests being
authorized after a few delegation steps, while only some require the enforcement of policies
of the undermost policy repositories. For each value of p, 2000 requests were posted to the
delegation service of the root domain and the average evaluation time was measured. The 2000
requests are separated into clusters of those requiring local policy evaluation and those requiring
distributed policy evaluation with a ratio of p to (1− p) – analogous to the distribution of access
rights. Adamic and Huberman (2002) showed that Zipf-like distributions are useful for modeling
the request characteristics of many Web applications. Therefore, we modeled the distribution of
request types by a Zipf distribution with α = 0.85.

In contrast to the caching of arbitrary Web content, the space requirements for the caching of
authorization paths can be estimated in advance quite well. Thus, cache replacement strategies
are of minor interest and were not considered in these experiments. In many real-world appli-
cations, p is assumed to be close to 1. Figure 5.6(c) illustrates the performance measurements
relative to the results for server invalidation. As the presented experimental results show, re-
sponse times for requests requiring distributed policy enforcement can be reduced significantly
by the use of authorization caches.

5.5 Application Scenarios

5.5.1 Support of Loosely and Tightly Coupled Federations

The presented authorization framework supports both loosely and tightly coupled federations. A
characteristic of loosely coupled networks is that cooperating domains retain their authorization
autonomy. Access rules applying to roles or resources of domain D are solely administered by
the security framework of D and not mirrored elsewhere within the network. Thus, domains pre-
serve the decisive control over their resources and can autonomously terminate interconnections
with other domains by revoking the applicable rules from their policy repository.

This paradigm also has to be taken into account when employing caches in dynamic coali-
tions. In order to support ad hoc networks with dynamically changing trust relationships, we

108 Access Control in Dynamic Service Coalitions

presented an alternative design of cache entries. Cache entries then only represent succeeding
steps of the validation process but not complete paths. In case subsequent steps are stored in
the caches of the cooperating domains, the modified design shows similar performance bene-
fits as the original design of cache entries. Both approaches support the efficient goal-oriented
revalidation of repeated requests.

In contrast to loosely coupled systems, tightly coupled networks are typically based on long-
term and stable trust relationships. An example for a tightly coupled federation is a holding
company and the relationships to its affiliates. Processes can be rationalized by passing the
management functionality to the holding. Therefore, the affiliated companies give up the autho-
rization autonomy over the shared operating resources. Access control is then performed by the
delegation service of the holding company or a dedicated authorization authority. Following this
design guideline, no distributed authorization is carried out within the collaboration network.
Instead, access control for shared resources is performed by a local policy evaluation point at the
central authority, so that access control for tightly coupled systems can be realized efficiently.
Hence, the decision to either realize a loosely coupled or a tightly coupled network is also a
choice between authorization autonomy and efficiency.2 Nevertheless, as shown in the previous
section, higher policy evaluation costs for loosely coupled federations can be compensated to
some extent by adequate caching techniques.

5.5.2 Treating Revocations During (Long-lasting) Transactions

Another important issue is the interaction of the authorization system with (distributed) transac-
tion management systems. Before fixing the effects of a transaction, all subtasks have to acknowl-
edge their ability to terminate correctly. Usually, the reliable execution of a transaction is super-
vised using the two-phase-commit protocol. For Web service scenarios, the two-phase-commit
protocol can be implemented by means of the WS-Coordination, WS-BusinessActivity, and in
particular the WS-AtomicTransaction framework (described by Cabrera et al. (2005a,b,c)). One
potential reason for the abort and rollback of a transaction can be that required authorizations
have been revoked in the meantime. This can be realized by integrating authorization checks into
the transaction workflow and by performing access control at the workflow layer as motivated in
Chapter 3. Prior to the start of a transaction, authorization proceeds as described above. Before
the services commit, access control is performed once again, e.g., by verifying the authorization
path that was found during the initial authorization check. If authorization fails, the delegation
service sends an abort message to the coordinator, initiating a rollback of the transaction.

5.6 Related Work

Several security systems supporting inter-organizational collaboration networks have been pro-
posed in the past, e.g., PolicyMaker and KeyNote presented by Blaze et al. in 1996 and in 1999,
respectively. These architectures are also called trust management systems as with them dynamic

2Confer Figure 1.2 on page 4.

5.6 Related Work 109

coalitions – i.e., networks of trust – can be established. In a trust management system, security
policies are specified by means of security credentials like digital certificates. That is, creden-
tials represent delegations of trust by binding public keys to authorizations. In contrast to this,
traditional certificates bind keys to names and identities. In PolicyMaker, authorizations are in-
ferred by the evaluation of delegation chains, with the algorithms being presented and analyzed
by Blaze et al. (1998b). While in PolicyMaker applications had to realize significant parts of the
policy evaluation process, usability, in particular, the integration into existing software systems
has been improved by KeyNote. Blaze et al. (1999) give an overview over trust management
systems which had a significant impact on the design of upcoming distributed security infras-
tructures. Further well known trust management system are REFEREE presented by Chu et al.
(1997), DL presented by Li et al. (2003a, 2000), the Simple Distributed Security Infrastructure
(SDSI) by Rivest and Lampson (1996), and the Simple Public Key Infrastructure (SPKI) pro-
posed by Ellison et al. (1999). The two last mentioned projects were later on combined and led
to the joint research architecture SPKI / SDSI presented by Clarke et al. (2001). We borrow from
the early trust management systems the basic idea of delegating trust (i.e., privileges) to entities
of collaborating domains. In the same way as trust is assigned to credentials, we delegate autho-
rizations by means of cross-domain role assignments. By employing scalable RBAC schemes
for distributed applications, our approach is also usable for large scale systems. Though our
approach is generic, it is particularly feasible for Web service applications. It can be realized
by state of the art Web services technology and languages like XACML for authorization and
WS-Security and SAML for secure messaging, in particular authentication.

Cohen et al. (2002) and Tolone et al. (2005) provide an overview over access control schemes
that are suitable for realizing inter-organizational federations. As these surveys show, RBAC
models like the one we employ in our authorization system are well applicable for such scenar-
ios. Models and architectures of distributed role based access control profiles have, for example,
been proposed by Barka and Sandhu (2000b), Demurjian et al. (2001), Phillips et al. (2002a),
and Zhang et al. (2003). Flexible trust negotiation models have been presented by Li et al. (2002,
2003b). Our access control architecture is closely related to these research projects and illustrates
how basic concepts addressed by them can be realized in modern service-oriented software ar-
chitectures. Freudenthal et al. (2002) also employ a distributed RBAC scheme. They present a
publish-and-subscribe algorithm for countering the costs and the complexity of the distributed
policy evaluation process. Their approach is closely related to server invalidation caching tech-
niques. As our comparison of caching strategies shows, server invalidation is not reliable for
highly dynamic and / or large scale coalitions, since it is vulnerable with regard to the unreacha-
bility of domains. Instead, we recommend the use of client validation. For the caching of access
control results we used and adapted caching techniques that are established in the Web caching
domain. Cao and Liu (1998) and Cao and Özsu (2002) present surveys of caching strategies
providing strong cache consistency which is essential for their applicability in the authorization
context. As discussed in Section 5.4, the caching of authorization requests provides optimization
capabilities for distributed policy evaluations. Typically, distributed authorizations constitute the
smaller portion of requests that have to be handled by the security system. Therefore, the major-
ity of requests can be evaluated locally. Breslau et al. (1998, 1999) and Adamic and Huberman
(2002) analyzed the request characteristics of Web applications, coming to the conclusion that

110 Access Control in Dynamic Service Coalitions

these can be modeled reliably via Zipf distributions. Therefore, we also employed Zipf-like dis-
tributions when modeling the request characteristics of our experiments which we presented in
Section 5.4.2.

IT infrastructures supporting dynamic and distributed services require new security mechanisms
as discussed by Posegga (1999) and Karjoth and Posegga (2000). By means of our research Web
service platform ServiceGlobe we showed how the proposed authorization mechanisms can be
integrated into upcoming service-oriented architectures. Birrell et al. (1986) present a central
authorization service which can be employed in dynamic coalitions. Entities like users can be
described by means of their characterizing attributes. If subjects have to be uniquely identifiable
– which, for instance, is required to denote the issuers of role delegations –, a federated identity
management (FIM) as proposed by Ahn et al. (2004), Ahn and Lam (2005), and Gaedke et al.
(2005) can be employed. Hommel and Reiser (2005) compare different FIM initiatives like Lib-
erty Alliance3 and Microsoft Passport4. As stated above, our generic authorization framework
is particularly suitable for service-oriented architectures where a federated identity management
can, for example, be realized by means of SAML (see [Cantor et al. (2005)]) and WS-Federation
(see [Bajaj et al. (2003)]).

Biskup and Leineweber (2001) and Biskup et al. (2003) present the SDSD system (abbrevi-
ation for State-Dependent Security Decisions) which is a security infrastructure that allows to
regulate access on distributed objects. They present protocols for defining the sequential control
of allowed activities on shared resources. Our proposed authorization framework in combination
with a federated identity management provides the technological basis for sharing data within
Web service federations. The framework is very flexible and allows the realization of tightly as
well as loosely coupled systems. Examples for tightly coupled systems are the distributed coali-
tion service registry (DCSR) presented by Mukkamala et al. (2006) and Warner et al. (2005) and
the community authorization service (CAS) of the Globus Toolkit presented by Pearlman et al.
(2002) and Welch et al. (2003). Tightly coupled federations building upon central authorization
services can seamlessly be realized in our architecture by shifting policy enforcement to a trusted
authority, thus breaking authorization down to local policy enforcement. The CAS uses a push
model for inferring authorizations while our approach relies on a pull model to determine the
roles and privileges that are granted to users. A pull model is also used in Akenti that is related
to the X.509 certification technique as presented by Thompson et al. (2003, 1999). Policies, con-
ditions, and attribute statements can be encapsulated in certificates. Akenti allows access control
for one resource to be administered by multiple authorities. Yu et al. (2003) propose an auto-
mated mechanism for establishing trust using digital credentials. In our access control model,
trust propagation is supported by means of role delegations. Hence, these approaches can be
combined well, e.g., by using public key credentials to represent roles.

Throughout this chapter, we described the functionality of our authorization framework by
use of a simplified example from the healthcare domain. Bhatti et al. (2005) elaborate on the se-
curity requirements of e-health applications – e.g., with regard to the reliable exchange of clinical

3Project page: http://www.projectliberty.org/
4Project page: http://www.passport.net

http://www.projectliberty.org/
http://www.passport.net

5.7 Conclusion 111

data records between physicians of cooperating hospital departments. Networks of cooperating
autonomous partners can be set up in many fields of applications, including e-commerce where
enterprises tend to realize inter-organizational value creation chains. Moreover, the ubiquitous
computing paradigm is more and more adopted by e-science applications to interconnect re-
search communities. Phillips et al. (2002b) present example scenarios of international coalitions
for managing disasters, humanitarian relief and terrorist incidents. Such scenarios demand for
dynamic coalitions as the cooperating organizations are partners during such crisis but can be
adversaries in another, thus requiring flexible ways to define and revoke trust relationships in an
ad hoc manner.

5.7 Conclusion

Because of standardized interface descriptions and communication protocols, Web services pro-
vide the technological basis for realizing inter-organizational workflows and for sharing data
in collaboration networks. Depending on the trust relationships of cooperating organizations,
tightly and loosely coupled federations can be differentiated. Therefore, in order to enable the
sharing of data in dynamic coalitions, a capable and flexible security system is required.

In this chapter, we presented the model and architecture of our authorization framework sup-
porting distributed service compositions. The underlying policy model is based on a distributed
RBAC scheme which makes this approach feasible for large scale applications. Due to the in-
terplay of local and distributed policy enforcements, authorization autonomy of cooperating do-
mains is preserved. Hence, the proposed techniques are suitable both for tightly and loosely
coupled federations. Tightly coupled federations demand for stable trust relationships among the
participating organizations, allowing access control to be performed efficiently by means of local
policy evaluations at a central authorization service.

A characteristic of dynamic service coalitions is that trust relationships among the cooperat-
ing partners can change. Therefore, the distributed policy evaluation strategy has to preserve the
authorization autonomy of the individual organizations. Distributed authorization is less efficient
than centralized access control in tightly coupled systems. The performance of the proposed pol-
icy enforcement mechanism is improved through the use of adequate caching techniques. Cache
entries represent positive authorization results of recently or frequently posted requests. We
presented three caching approaches providing the required strong cache consistency. Our rec-
ommendation for highly dynamic federations with frequent policy updates and unreliable trust
relationships is to use client validation. Employing this strategy, cache hits are validated by
means of goal-oriented walks through the distributed role assignment graph. The benefits of
caching compared to the traditional distributed policy evaluation mechanism comprise reduced
network traffic and reduced latency. An interesting future research direction is the caching of
negative authorization results. This would help to reduce network load caused by illegitimate
requests, in particular with regard to potential denial of service attacks.

CHAPTER 6

Conclusion

Security for service-oriented architectures is a relatively new but nonetheless fundamental topic.
In this thesis, we proposed a package of authorization techniques providing flexible access con-
trol for service-oriented IT infrastructures, whereby efficiency of the presented approaches con-
stitutes a cross-cutting concern. In this regard, we presented a security engineering approach
which supports the reliable integration of applications – in particular database systems – into
service-oriented middleware systems. Thereby, the integration was addressed both, for intra-
and inter-organizational business processes. In particular, distributed service compositions are
supported by our flexible authorization scheme for dynamic coalitions.

In Chapter 3, we presented our approach for optimizing the access control of Web service
workflows and generic composite applications. The basic idea is to shift access control to the
layer of the composite application, thus, avoiding repeated and potentially redundant authoriza-
tion checks by the autonomous sub-activities. The optimization relies on the combination of
the sub-activities’ security policies and the preparation of a consolidated view onto the access
control configuration of composite applications. Based on an expressive access control model,
we presented a generic formal policy consolidation strategy and respective algorithmic solu-
tions. In our model, entities are specified by means of attributes. For instance, subjects can be
characterized by their age, profession skills and so on. This is particularly necessary to ensure
scalability of service-oriented infrastructures, where identity-based access control is often inad-
equate. Hence, the proposed approach supports the optimization of business processes which,
for example, are realized as service compositions. Furthermore, considering the execution of
Web service transactions, the early evaluation of requests helps avoiding transaction rollbacks
and costly compensating transactions. Without our optimization, these effects can be caused by
ultimately unauthorized requests which lead to aborts at later phases of the execution.

Policy consolidation is also an integral part of the implementation of secure service inter-
faces. Security vulnerabilities and risks for integrated applications are avoided by realizing the
principle of least privilege. Many enterprise services rely on database backends for providing

114 Conclusion

their functionality. In Chapter 4, we presented our security engineering approach for the specifi-
cation and implementation of secure service interfaces for database systems. Using our approach,
the principle of least privilege can be ensured for database services. Thus, service developers are
relieved from the burden of implementing and verifying the security functionality by hand. This
allows them to concentrate their efforts on the realization of the application logic.

As proof of concept, the presented authorization concepts have been integrated into our re-
search Web service platform ServiceGlobe. ServiceGlobe is based on common Web service
standards like SOAP, WSDL, and UDDI. These specifications constitute the technological basis
of service interoperability, enabling inter-organizational Web service compositions. From the
security viewpoint, mechanisms for the delegation of trust across domains and the enforcement
of access control in virtual organizations are needed. As presented in Chapter 5, these issues are
addressed by the authorization framework of ServiceGlobe that realizes a distributed role based
access control scheme. It allows assigning privileges and roles to subjects of organizations that
participate in the ServiceGlobe federation. Cross-domain assignments and role delegations en-
able dynamic service coalitions in which access control is performed as an interplay of local and
distributed policy evaluation steps. Using this approach, cooperating organizations retain their
authorization autonomy and no central policy enforcement point needs to be realized. In order to
optimize distributed policy enforcements and, thus, to make this approach suitable for large-scale
dynamic coalitions, we devised access control caching techniques. The proposed caching strat-
egy realizes a goal-oriented validation of authorization proofs in the distributed role assignment
graph. By avoiding the dissemination of sensitive access control information, data can be shared
reliably within dynamic virtual organizations.

In ongoing work, the presented security principles and techniques are enhanced. Optimizing
the access control of composite applications was done from the single-user / single-role perspec-
tive. Therefore, this approach is of particular relevance for job-specific business processes. Cur-
rently, we are developing efficient enforcement strategies for partial authorizations that rely on
compact labels for the representation of access paths and the evaluation of authorizations. Fur-
thermore, future research deals with the efficient and reliable execution of multi-user workflows.
In such workflows, sub-processes can be executed by varying subjects, whereby the independent
tasks should be performed by experts in order to obtain good work results. The optimization
objective can be described by the term quality of execution, relating to quality of service. Con-
cerning quality of service, appropriate service instances are selected to achieve good results.
Quality of execution on the other hand stands for the process of assigning users to tasks, aiming
at the reliable execution of the overall business process and good load balancing characteristics.
Obviously, besides scheduling, security is a key factor for this optimization issue, for which the
spadework has been presented in this thesis.

APPENDIX A

Graphical Workflow Notation

Workflow States

Start state End state

Sub-activities, Resources, and Policy Files

(Composite) application

Database object P Policy file

Control flow Components

APPENDIX B

Probabilistic Performance Estimation of Policy
Comparisons

In the following, we present a probabilistic complexity evaluation1 for the algorithm implies
which is shown in Figure 3.10 on page 35. In each iteration of the recursive algorithm implies, a
number of remainder subterms is generated. These are evaluated against the remaining conjunc-
tive subterms of T ′ in subsequent iterations. Let t be a conjunctive subterm of T . We make the
following estimation:

The likelihood of t being subsumed by any t′1 of T or not matching with T ′ at all
is (1 − p) ∈ [0, 1] (cases 1 and 2 in Section 3.4.2). Then, p is the probability of t
overlapping partially with any t′1, i.e., (t ∧ ¬t′1) �= false (case 3).

If k is the number of conjunctive subterms of T , then (1−p) ·k terms are either subsumed by any
conjunctive subterm of T ′ or do not match with T ′ at all. Consequently, p ·k terms are subdivided
into remainder terms. We estimate the number of remainder terms through the upper bound 2l.
Again, the relation of those terms that are not subdivided into subterms to those being split is
(1− p)/p. The recursion terminates at a maximum depth of (k′ − 1). We estimate the number of
predicate conjunctions that are evaluated in the best case (p = 0) and in the worst case (p = 1).
The following variables are used:

k The number of conjunctive terms of T .
k′ The number of conjunctive terms of T ′.
l The number of distinguished attributes.
p The likelihood for t and t′1 overlapping partially.

1See, for example, [Ausiello et al. (2003)], chapter 9.

117

Reasoning

At each recursion level r, where #Terms terms are compared with T ′, ((1 − p) · #Terms) terms
are subsumed by one of the k′ − r terms of T ′ or do not match with T ′. The first r subterms of
T ′ need not be considered due to comparisons at earlier stages. That leads to

(1 − p) · #Terms · (k′ − r)︸ ︷︷ ︸
for comparisons

with up to (k′ − r) terms

comparisons of predicate conjunctions. The remaining (p · #Terms) terms are evaluated in sub-
sequent iterations. Thus,

p · #Terms · (1︸︷︷︸
each term is compared with t′r

+[costs of recursive evaluations])

comparisons of predicate conjunctions will be performed.
Initially, i.e., at recursion level 0, #Terms = k. The number of branches generated per

recursion are 2l at most. Hence, the number of comparisons can be estimated by

(1 − p)k · k′︸ ︷︷ ︸
first part matches with

one of the k′ terms of T ′

+ pk︸︷︷︸
second part is

split through subtract

·(1 + (1 − p)2l · (k′ − 1)︸ ︷︷ ︸
first part matches with one

of the rem. (k′ − 1) terms of T ′

+ p2l·︸︷︷︸
second part is

split again

(1 + (1 − p)2l · (k′ − 2)︸ ︷︷ ︸
match . . .

+ p2l︸︷︷︸
split . . .

·(. . . (1 + (1 − p)2l(k′ − (k′ − 1)) + p2l︸ ︷︷ ︸
=2l

))))
(B.1)

= (1 − p)kk′ + pk(1 + (1 − p)2l(k′ − 1) + p2l(1 + (1 − p)2l(k′ − 2)+ (B.2)

p2l(. . . (1 + (1 − p)2l(k′ − (k′ − 2)) + p2l(1 + 2l)) . . .)))

= (1 − p)kk′ + pk(1 + p2l + (p2l)2 + . . .+ (p2l)k′−2 + (1 − p)2l(k′ − 1) (B.3)

+ (1 − p)p(2l)2(k′ − 2) + . . . (1 − p)pk′−3(2l)k′−2(k′ − (k′ − 2))

+ pk′−2(2l)k′−1)

Because of pk′−2(2l)k′−1 = (p2l)k′−2 · ((1 − p)(k′ − (k′ − 1))2l + p2l)

= (1 − p)(k′ − (k′ − 1))pk′−2(2l)k′−1 + (p2l)k′−1 we receive:

(B.3) = (1 − p)kk′ + pk

(
k′−1∑
i=1

(1 − p)pi−1(2l)i(k′ − i) +
k′−1∑
i=0

(p2l)i

)
(B.4)

= (1 − p)kk′ + (1 − p)k

(
k′−1∑
i=1

(p2l)i(k′ − i)

)
+ pk

(
k′−1∑
i=0

(p2l)i

)
(B.5)

118 Probabilistic Performance Estimation of Policy Comparisons

We substitute p2l with x and receive:

(B.5) = (1 − p)kk′ + (1 − p)k

(
k′−1∑
i=0

xi(k′ − i) − k′
)

+ pk

(
k′−1∑
i=0

xi

)
(B.6)

We then use the series formulae

k′∑
i=0

xi =
x(k′+1) − 1

x− 1

and

k′∑
i=0

(k′ − i)xi =
x(k′+1) − (k′ + 1)x+ k′

(x− 1)2

and rewrite equation (B.6)

(B.6) =(1 − p)kk′ + (1 − p)k

(
xk′ − k′x+ (k′ − 1)

(x− 1)2
− k′

)
+ pk

xk′ − 1

x− 1
(B.7)

Resubstituting x with p2l results in:

(B.7) =(1 − p)kk′ + (1 − p)k

(
(p2l)k′ − k′p2l + (k′ − 1)

(p2l − 1)2
− k′

)
+ pk

(p2l)k′ − 1

p2l − 1
(B.8)

Lower Bound and Upper Bound Estimates

We can estimate lower and upper bounds for the number of comparisons of predicate conjunc-
tions through setting the likelihood p to 0 and 1, respectively. Thus, from estimation (B.8), we
can infer the lower bound

Ω (kk′ − k)

An estimate for the upper bound is

O

(
k · (2l)k′ − 1

2l − 1

)

APPENDIX C

Policy Representation

In the following, we sketch how access control rules specified in our formal policy model are
represented in XACML syntax. The XACML fragments shown in this chapter are simplified in
order to ease their readability. For instance, function and type identifiers are abbreviated and
attributes that are of minor relevance for the conceptual presentation are omitted. Further details
about the syntax of XACML are provided by Moses (2005).

Representation of Attribute Comparisons As shown in Section 3.2, subjects, objects, and
actions are represented by means of attribute comparisons given in disjunctive normal form. At-
tribute comparisons are predicates of the form (attribute-identifier ◦ constant), where attribute-
identifier is an element in Attr = S-Attr ∪ O-Attr ∪ A-Attr ∪ E-Attr. In XACML, predicates
are represented via attribute matches. In particular, predicates defined over elements in S-Attr
are represented by SubjectMatch elements. Analogously, object predicates are represented by
ResourceMatch elements and action predicates by ActionMatch elements. For example, the pred-
icate

(role = Physician)

with role ∈ S-Attr is represented by the following SubjectMatch element:

<SubjectMatch MatchId="function#role-equal">
<AttributeValue DataType="Role">
<Role>

<RoleName>Physician</RoleName>
</Role>

</AttributeValue>
<SubjectAttributeDesignator DataType="Role"

AttributeId="role"/>
</SubjectMatch>

120 Policy Representation

As another example consider the predicate

(column = Hospital-DB.MedicalRecords.Medication)

It represents the column Medication of the MedicalRecords table that is part of the Hospital-
DB database. The attribute identifier column is defined in O-Attr. In XACML, the predicate is
represented as follows:

<ResourceMatch MatchId="function#dbObject-equal">
<AttributeValue DataType="DBObject">
<DBObject>
<Database>Hospital-DB</Database>
<Table>MedicalRecords</Table>
<Column>Medication</Column>

</DBObject>
</AttributeValue>
<ResourceAttributeDesignator DataType="DBObject"

AttributeId="column"/>
</ResourceMatch>

In XACML, the type of attributes must be declared explicitly, like Role and DBObject in the
examples. Attributes that are not restricted by any predicate (i.e., equal to ⊥) are not transformed
into XACML. In the following, let |S-Attr| = l, |O-Attr| = l′, and |A-Attr| = l′′ and constants
k, k′, k′′ > 0. As introduced in Section 4.3, we differentiate between permission policies, base
policies, and role assignment policies. Administrative policies are provided by role delegation
and role revocation policies.

C.1 Permission Policies

Let (O,A) be a privilege, with

O = (o1,1 ∧ . . . ∧ o1,l′) ∨ . . . ∨ (ok′,1 ∧ . . . ∧ ok′,l′) and

A = (a1,1 ∧ . . . ∧ a1,l′′) ∨ . . . ∨ (ak′′,1 ∧ . . . ∧ ak′′,l′′)

We represent the privilege (O,A) by a permission policy of the form:

<Policy RuleCombiningAlgId="permit-overrides">
<Target>
<Subjects><AnySubject/></Subjects>
<Resources><AnyResource/></Resources>
<Actions><AnyAction/></Actions>

</Target>
<Rule Effect="Permit">
<Target>
<Subjects>
<AnySubject/>

</Subjects>
<Resources>

C.2 Base Policies 121

<Resource>
<ResourceMatch>o1,1</ResourceMatch>
. . .
<ResourceMatch>o1,l′</ResourceMatch>

</Resource>
. . .
<Resource>
<ResourceMatch>ok′,1</ResourceMatch>
. . .
<ResourceMatch>ok′,l′</ResourceMatch>

</Resource>
</Resources>
<Actions>
<Action>
<ActionMatch>a1,1</ActionMatch>
. . .
<ActionMatch>a1,l′</ActionMatch>

</Action>
. . .
<Action>
<ActionMatch>ak′′,1</ActionMatch>
. . .
<ActionMatch>ak′′,l′′</ActionMatch>

</Action>
</Actions>

</Target>
</Rule>

</Policy>

C.2 Base Policies

Via base policies, privileges are assigned to subjects like users or roles. Hence, they correspond
to rules (S,O,A) with S = (s1,1 ∧ . . . ∧ s1,l) ∨ . . . ∨ (sk,1 ∧ . . . ∧ sk,l) representing subjects
and (O,A) representing the privilege. As illustrated before, a privilege (O,A) is expressed by
a permission policy. This permission policy is included in a base policy by means of a policy
reference as illustrated below:

<PolicySet PolicyCombiningAlgId="permit-overrides">
<Target>
<Subjects>

<Subject>
<SubjectMatch>s1,1</SubjectMatch>
. . .
<SubjectMatch>s1,l</SubjectMatch>

</Subject>
. . .
<Subject>
<SubjectMatch>sk,1</SubjectMatch>

122 Policy Representation

. . .
<SubjectMatch>sk,l</SubjectMatch>

</Subject>
</Subjects>
<Resources>
<AnyResource/>

</Resources>
<Actions>
<AnyAction/>

</Actions>
</Target>
<PolicyIdReference>

Reference to the XACML permission policy of (O, A), confer [Moses (2005)].
</PolicyIdReference>

</PolicySet>

C.3 Role Assignment Policies

Role assignment policies represent rules of the form

(S, (granted-role = Granted Role), (method = enable), c)

with S = (s1,1 ∧ . . .∧ s1,l)∨ . . .∨ (sk,1 ∧ . . .∧ sk,l). Such a rule expresses the assignment of the
role Granted Role to all subjects that fulfill the specification of S. The following extract sketches
the representation of this rule in XACML-format:

<Policy RuleCombiningAlgId="permit-overrides">
<Target>
<Subjects><AnySubject/></Subjects>
<Resources><AnyResource/></Resources>
<Actions><AnyAction/></Actions>

</Target>
<Rule Effect="Permit">
<Target>
<Subjects>
<Subject>
<SubjectMatch>s1,1</SubjectMatch>
. . .
<SubjectMatch>s1,l</SubjectMatch>

</Subject>
. . .
<Subject>
<SubjectMatch>sk,1</SubjectMatch>
. . .
<SubjectMatch>sk,l</SubjectMatch>

</Subject>
</Subjects>
<Resources>

C.4 Role Delegation and Revocation Policies 123

<Resource>
<ResourceMatch MatchId="function#role-equal">
<AttributeValue DataType="Role">
<Role><RoleName>Granted Role</RoleName></Role>

</AttributeValue>
<ResourceAttributeDesignator
AttributeId="granted-role" DataType="Role"/>

</ResourceMatch>
</Resource>

</Resources>
<Actions>
<Action>
<ActionMatch MatchId="function#roleAction-equal">
<AttributeValue DataType="RoleAction">
<ActionValue>

<RoleAction>enable</RoleAction>
</ActionValue>

</AttributeValue>
<ActionAttributeDesignator AttributeId="method"

DataType="RoleAction"/>
</ActionMatch>

</Action>
</Actions>

</Target>
<Condition FunctionId="depends on c">

XACML representation of c.
The representation of conditions is shown by Moses (2005).

</Condition>
</Rule>

</Policy>

C.4 Role Delegation and Revocation Policies

Role delegation policies define the privilege to delegate roles to other subjects. For instance,

((d-role = CCG.AttendingPhysician), (method = delegate))

represents the privilege to delegate the role AttendingPhysician (of the domain CCG). In the
same way, role revocation permissions are defined. For example, the privilege to revoke the role
AttendingPhysician is given by

((d-role = CCG.AttendingPhysician), (method = revoke)).

Role delegation permissions are represented in XACML similar to usual permission policies:

124 Policy Representation

<Policy RuleCombiningAlgId="permit-overrides">
<Target>
<Subjects><AnySubject/></Subjects>
<Resources><AnyResource/></Resources>
<Actions><AnyAction/></Actions>

</Target>
<Rule Effect="Permit">
<Target>
<Subjects><AnySubject/></Subjects>
<Resources>
<Resource>
<ResourceMatch MatchId="function#role-equal">

<AttributeValue DataType="Role">
<Role><RoleName>AttendingPhysician</RoleName></Role>

</AttributeValue>
<ResourceAttributeDesignator Issuer="CCG"
AttributeId="d-role" DataType="Role" />

</ResourceMatch>
</Resource>

</Resources>
<Actions>
<Action>
<ActionMatch MatchId="function#roleAction-equal">

<AttributeValue DataType="RoleAction">
<ActionValue><RoleAction>delegate</RoleAction>
</ActionValue>

</AttributeValue>
<ActionAttributeDesignator DataType="RoleAction"

AttributeId="method" />
</ActionMatch>

</Action>
</Actions>

</Target>
</Rule>

</Policy>

If a legitimate subject delegates a role, a role assignment policy is generated. Correspond-
ingly, in case of a revocation, the respective role assignment policy is deleted, depending on
the used revocation scheme (cf. Section 5.2.4). For example, if Kerry Weaver delegates the role
AttendingPhysician to John Carter, the following role assignment policy is generated:

[(uid = CCG.John Carter) →R

(granted-role = CCG.AttendingPhysician)]trueCCG.Kerry Weaver.

We represent this assignment by:

C.4 Role Delegation and Revocation Policies 125

<Policy RuleCombiningAlgId="permit-overrides">
<Target>
<Subjects><AnySubject/></Subjects>
<Resources><AnyResource/></Resources>
<Actions><AnyAction/></Actions>

</Target>
<Rule Effect="Permit">
<Target>

<Subjects>
<Subject>
<SubjectMatch MatchId="function:string-equal">
<AttributeValue DataType="string">John Carter
</AttributeValue>
<SubjectAttributeDesignator DataType="string"

AttributeId="uid" Issuer="CCG"/>
</SubjectMatch>

</Subject>
</Subjects>
<Resources>
<Resource>
<ResourceMatch MatchId="function#role-equal">
<AttributeValue DataType="Role">
<Role><RoleName>AttendingPhysician</RoleName></Role>

</AttributeValue>
<ResourceAttributeDesignator DataType="Role"

AttributeId="granted-role" Issuer="CCG" />
</ResourceMatch>

</Resource>
</Resources>
<Actions>
<Action>
<ActionMatch MatchId="function#roleAction-equal">
<AttributeValue DataType="RoleAction">
<ActionValue>

<RoleAction>enable</RoleAction>
<Issuer>CCG.Kerry Weaver</Issuer>

</ActionValue>
</AttributeValue>
<ActionAttributeDesignator AttributeId="method"

DataType="RoleAction" />
</ActionMatch>

</Action>
</Actions>

</Target>
</Rule>

</Policy>

Bibliography

Abadi, M. and L. Lamport (1993). Composing Specifications. In ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), volume 15, no. 1 pages 73–132.

Adam, N. R., V. Atluri, and W.-K. Huang (1998). Modeling and Analysis of Workflows Using
Petri Nets. In Journal of Intelligent Information Systems, volume 10, no. 2 pages 131–158.

Adamic, L. A. and B. A. Huberman (2002). Zipf’s Law and the Internet. In Glottometrics,
volume 3 pages 143–150.

Ahad, R., J. Davis, S. Gower, P. Lyngbaek, A. Marynowski, and E. Onuegbe (1992). Supporting
Access Control in an Object-oriented Database Language. In Proceedings of the 3rd Interna-
tional Conference on Extending Database Technology (EDBT). Springer-Verlag, London, UK,
pages 184–200.

Ahn, G.-J. and J. Lam (2005). Managing Privacy Preferences for Federated Identity Manage-
ment. In Proceedings of the 2005 Workshop on Digital Identity Management (DIM). Fairfax,
VA, USA, pages 28–36.

Ahn, G.-J., D. Shin, and S.-P. Hong (2004). Information Assurance in Federated Identity Man-
agement: Experimentations and Issues. In Proceedings of the 5th International Conference
on Web Information Systems Engineering (WISE), volume 3306 of Lecture Notes in Computer
Science (LNCS). Brisbane, Australia, pages 78–89.

Aho, A. V., R. Sethi, and J. D. Ullman (1986). Compilers – Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, USA, 1st edition.

Aiouche, O. (2005). Auxiliary BPEL Support for a Java-based Workflow Engine. Technical
report, SAP Research, Sophia Antipolis, France.

128 Bibliography

Albutiu, M. C. (2006). Optimization of Workflow Access Control – Integration of Single User
Workflow Execution in Gabriel / Nehemiah. Technical report, SAP Research, Sophia Antipolis,
France.

Altunay, M., D. Brown, G. Byrd, and R. Dean (2005). Trust-based Secure Workflow Path Con-
struction. In Proceedings of the 3rd International Conference on Service Oriented Comput-
ing (ICSOC), volume 3826 of Lecture Notes in Computer Science (LNCS). Amsterdam, The
Netherlands, pages 382–395.

Anderson, A. (editor) (2005). Core and Hierarchical Role Based Access Control (RBAC) Profile
of XACML, Version 2.0, last visited December ’06.
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf

Anderson, A. and H. Lockhart (editors) (2005). SAML 2.0 Profile of XACML, Version
2.0, last visited December ’06.
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-saml-profile-spec-os.pdf

Andrews, T., F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana (2003). Business Process Execution
Language for Web Services (BPEL4WS), Version 1.1, last visited December ’06.
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

ANSI INCITS 359-2004 (2004). Role Based Access Control. American National Standards
Institute, Inc. (ANSI), Washington, DC, USA.

Antonioletti, M., M. Atkinson, A. Krause, S. Laws, S. Malaika, N. W. Paton, D. Pearson, and
G. Riccardi (2005a). Web Services Data Access and Integration – The Core (WS-DAI) Speci-
fication, Version 1.0.

Antonioletti, M., B. Collins, A. Krause, S. Laws, J. Magowan, S. Malaika, and N. W. Paton
(2005b). Web Services Data Access and Integration – The Relational Realisation (WS-DAIR)
Specification Version 1.0.

Antonioletti, M., S. Hastings, A. Krause, S. Langella, S. Laws, S. Malaika, and N. W. Paton
(2005c). Web Services Data Access and Integration – The XML Realization (WS-DAIX) Spec-
ification Version 1.0.

Antonioletti, M., A. Krause, N. W. Paton, A. Eisenberg, S. Laws, S. Malaika, J. Melton, and
D. Pearson (2006). The WS-DAI Family of Specifications for Web Service Data Access and
Integration. In ACM SIGMOD Record, volume 35, no. 1 pages 48–55.

Atluri, V. (2001). Security for Workflow Systems. In Information Security Technical Report,
volume 6, no. 2 pages 59–68.

Atluri, V. and W.-K. Huang (1996). An Authorization Model for Workflows. In Proceedings of
the 4th European Symposium on Research in Computer Security (ESORICS), volume 1146 of
Lecture Notes in Computer Science (LNCS). Rome, Italy, pages 44–64.

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-saml-profile-spec-os.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

Bibliography 129

Atluri, V., W.-K. Huang, and E. Bertino (1997). An Execution Model for Multilevel Secure Work-
flows. In Proceedings of the IFIP TC11 WG11.3 11th International Conference on Database
Security (DBSec), volume 113 of IFIP Conference Proceedings. Lake Tahoe, California, USA,
pages 151–165.

Atluri, V., W.-K. Huang, and E. Bertino (2000). A Semantic-based Execution Model for Multi-
level Secure Workflows. In Journal of Computer Security, volume 8, no. 1.

Ausiello, G., P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi
(2003). Complexity and Approximation – Combinatorial Optimization Problems and their
Approximability Properties. Springer, 2nd edition.

Backes, M., M. Dürmuth, and R. Steinwandt (2004). An Algebra for Composing Enterprise
Privacy Policies. In Proceedings of the 9th European Symposium on Research Computer
Security (ESORICS), volume 3193 of Lecture Notes in Computer Science (LNCS). Sophia
Antipolis, France, pages 33–52.

Backes, M., B. Pfitzmann, and M. Schunter (2003). A Toolkit for Managing Enterprise Privacy
Policies. In Proceedings of the 8th European Symposium on Research Computer Security
(ESORICS), volume 2808 of Lecture Notes in Computer Science (LNCS). Gjøvik, Norway,
pages 162–180.

Bajaj, S., G. Della-Libera, B. Dixon, M. Dusche, M. Hondo, M. Hur, C. Kaler, H. Lockhart,
H. Maruyama, A. Nadalin, N. Nagaratnam, A. Nash, H. Prafullchandra, and J. Shewchuk
(2003). Web Services Federation Language (WS-Federation).
http://www-128.ibm.com/developerworks/library/specification/ws-fed/

Barka, E. and R. Sandhu (2000a). Framework for Role-based Delegation Models. In Proceed-
ings of the 16th Annual Computer Security Applications Conference (ACSAC). New Orleans,
Louisiana, USA, pages 168–176.

Barka, E. and R. Sandhu (2000b). A Role-based Delegation Model and some Extensions. In
Proceedings of the 23rd National Information Systems Security Conference. Baltimore, MD,
pages 101–110.

Bauder, I. (2006). Microsoft SQL Server 2005 für Administratoren. Carl Hanser Verlag, Munich,
Germany, 1st edition.

BEA (2006). BEA WebLogic Server and WebLogic Express – Programming WebLogic
JDBC, last visited December ’06. BEA Systems, Inc.
http://e-docs.bea.com/wls/docs81/jdbc/index.html

Bell, D. E. and L. J. LaPadula (1973). Secure Computer Systems: Mathematical Foundations.
Technical Report 2547, volume 1, MITRE, Bedford, MA, USA.

Bell, D. E. and L. J. LaPadula (1976). Secure Computer Systems: Unified Exposition and Multics
Interpretation. Technical Report ESD-TR-75-306, MITRE, Bedford, MA, USA.

http://www-128.ibm.com/developerworks/library/specification/ws-fed/
http://e-docs.bea.com/wls/docs81/jdbc/index.html

130 Bibliography

Bertino, E., B. Catania, E. Ferrari, and P. Perlasca (2001). A Logical Framework for Reasoning
about Access Control Models. In Proceedings of the 6th ACM Symposium on Access Control
Models and Technologies (SACMAT). Chantilly, Virginia, United States, pages 41–52.

Bertino, E., E. Ferrari, and V. Atluri (1999a). The Specification and Enforcement of Authorization
Constraints in Workflow Management Systems. In ACM Transactions on Information and
System Security (TISSEC), volume 2, no. 1 pages 65–104.

Bertino, E., E. Ferrari, F. Buccafurri, and P. Rullo (1999b). A Logical Framework for Reason-
ing on Data Access Control Policies. In Proceedings of the 1999 IEEE Computer Security
Foundations Workshop (CSFW). Mordano, Italy, pages 175–189.

Bettini, C., X. S. Wang, and S. Jajodia (2002). Temporal Reasoning in Workflow Systems. In
Distributed and Parallel Databases, volume 11, no. 3 pages 269–306.

Bhatti, R., E. Bertino, A. Ghafoor, and J. B. D. Joshi (2004). XML-based Specification for Web
Services Document Security. In IEEE Computer, volume 37, no. 4 pages 41–49.

Bhatti, R., J. B. D. Joshi, E. Bertino, and A. Ghafoor (2003). Access Control in Dynamic XML-
based Web Services with X-RBAC. Technical Report 2003-36, CERIAS.

Bhatti, R., B. Shafiq, M. Shehab, and A. Ghafoor (2005). Distributed Access Management in
Multimedia IDCs. In IEEE Computer, volume 38, no. 9 pages 60–69.

Biba, K. J. (1977). Integrity Considerations for Secure Computer Systems. Technical Report
TR-3153, MITRE, Bedford, MA, USA.

Birrell, A., B. W. Lampson, R. M. Needham, and M. D. Schroeder (1986). A Global Authenti-
cation Service without Global Trust. In Proceedings of the IEEE Symposium on Security and
Privacy. Oakland, CA, USA, pages 223–230.

Bishop, M. (2002). Computer Security: Art and Science. Addison-Wesley, Reading, MA, USA,
1st edition.

Biskup, J. and T. Leineweber (2001). State-Dependent Security Decisions for Distributed Object-
Systems. In Proceedings of the 15th Working Conference on Data and Applications Security
(DBSec), volume 215 of IFIP Conference Proceedings. Niagara on the Lake, Ontario, Canada,
pages 105–118.

Biskup, J., T. Leineweber, and J. Parthe (2003). Administration Rights in the SDSD-System.
In Proceedings of the 17th Working Conference on Data and Applications Security (DBSec).
Estes Park, Colorado, USA, pages 149–162.

Blaze, M., J. Feigenbaum, J. Ioannidis, and A. D. Keromytis (1999). The Role of Trust Man-
agement in Distributed Systems Security. In Proceedings of Secure Internet Programming,
Security Issues for Mobile and Distributed Objects, volume 1603 of Lecture Notes in Com-
puter Science (LNCS). pages 185–210.

Bibliography 131

Blaze, M., J. Feigenbaum, and A. D. Keromytis (1998a). KeyNote: Trust Management for Public-
Key Infrastructures. In Proceedings of the 1998 Security Protocols International Workshop,
volume 1550 of Lecture Notes in Computer Science (LNCS). Cambridge, UK, pages 59–63.

Blaze, M., J. Feigenbaum, and J. Lacy (1996). Decentralized Trust Management. In Proceedings
of the IEEE Conference on Security and Privacy (SP). Oakland, CA, USA, pages 164–173.

Blaze, M., J. Feigenbaum, and M. Strauss (1998b). Compliance Checking in the PolicyMaker
Trust Management System. In Proceedings of the 2nd International Conference on Financial
Cryptography (FC), volume 1465 of Lecture Notes in Computer Science (LNCS). Anguilla,
British West Indies, pages 254–274.

Blobel, B. and K. Pommerening (1997). Datenschutz und Datensicherheit in Informationssyste-
men des Gesundheitswesens. In IT-Sicherheit, volume 97, no. 3 pages 2–8.

Bonatti, P., S. de Capitani di Vimercati, and P. Samarati (2000). A Modular Approach to Com-
posing Access Control Policies. In Proceedings of the 7th ACM Conference on Computer and
Communications Security (CCS). Athens, Greece, pages 164–173.

Bonatti, P., S. de Capitani di Vimercati, and P. Samarati (2002). An Algebra for Composing
Access Control Policies. In ACM Transactions on Information and System Security (TISSEC),
volume 5, no. 1 pages 1–35.

Breslau, L., P. Cao, L. Fan, G. Phillips, and S. Shenker (1998). On the Implications of Zipf’s
Law for Web Caching. In Proceedings of the 3rd International WWW Caching Workshop.
Manchester, England, pages 1–11.

Breslau, L., P. Cao, L. Fan, G. Phillips, and S. Shenker (1999). Web Caching and Zipf-like
Distributions: Evidence and Implications. In Proceedings of the 18th Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM). New York, NY, USA,
pages 126–134.

Cabrera, L. F., G. Copeland, M. Feingold, R. W. Freund, T. Freund, J. Johnson, S. Joyce, C. Kaler,
J. Klein, D. Langworthy, M. Little, A. Nadalin, E. Newcomer, D. Orchard, I. Robinson,
J. Shewchuka, and T. Storey (2005a). Web Services Coordination (WS-Coordination), Ver-
sion 1.0, last visited December ’06.
ftp://www6.software.ibm.com/software/developer/library/WS-Coordination.pdf

Cabrera, L. F., G. Copeland, M. Feingold, R. W. Freund, T. Freund, J. Johnson, S. Joyce, C. Kaler,
J. Klein, D. Langworthy, M. Little, A. Nadalin, E. Newcomer, D. Orchard, I. Robinson,
T. Storey, and S. Thatte (2005b). Web Services Atomic Transaction (WS-AtomicTransaction),
Version 1.0, last visited December ’06.
ftp://www6.software.ibm.com/software/developer/library/WS-AtomicTransaction.pdf

Cabrera, L. F., G. Copeland, M. Feingold, R. W. Freund, T. Freund, S. Joyce, J. Klein, D. Lang-
worthy, M. Little, F. Leymann, E. Newcomer, D. Orchard, I. Robinson, T. Storey, and

ftp://www6.software.ibm.com/software/developer/library/WS-Coordination.pdf
ftp://www6.software.ibm.com/software/developer/library/WS-AtomicTransaction.pdf

132 Bibliography

S. Thatte (2005c). Web Services Business Activity Framework (WS-BusinessActivity), Ver-
sion 1.0, last visited December ’06.
ftp://www6.software.ibm.com/software/developer/library/WS-BusinessActivity.pdf

Cannan, S. and G. Otten (1993). SQL – the Standard Handbook. McGraw-Hill, Inc., New York,
San Francisco, Washington, DC, 1st edition.

Cantor, S., J. Kemp, R. Philpott, and E. Maler (editors) (2005). Assertions and Protocols for the
OASIS Security Assertion Markup Language (SAML), Version 2.0, last visited December ’06.
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

Cao, L. Y. and M. T. Özsu (2002). Evaluation of Strong Consistency Web Caching Techniques.
In World Wide Web, volume 5, no. 2 pages 95–123.

Cao, P. and C. Liu (1998). Maintaining Strong Cache Consistency in the World Wide Web. In
IEEE Transactions on Computers, volume 47, no. 4 pages 445–457.

Castano, S., M. G. Fugini, G. Martella, and P. Samarati (1994). Database Security. Addison-
Wesley, Reading, MA, USA, 1st edition.

Caumanns, J. (2006). Der Patient bleibt Herr seiner Daten. In Informatik-Spektrum 29 (5) pages
323–331.

Caumanns, J., H. Weber, A. Fellien, H. Kurrek, O. Boehm, J. Neuhaus, J. Kunsmann, and
B. Struif (2006). Die eGK-Lösungsarchitektur Architektur zur Unterstützung der Anwendun-
gen der elektronischen Gesundheitskarte. In Informatik-Spektrum 29 (5) pages 341–348.

Chu, Y.-H., J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss (1997). REFEREE: Trust
Management for Web Applications. In Computer Networks, volume 29, no. 8–13 pages 953–
964.

Clarke, D., J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L. Rivest (2001). Certificate
Chain Discovery in SPKI/SDSI. In Journal of Compututer Security, volume 9, no. 4 pages
285–322.

Cohen, E., R. K. Thomas, W. Winsborough, and D. Shands (2002). Models for Coalition-based
Access Control (CBAC). In Proceedings of the 7th ACM Symposium on Access Control Models
and Technologies (SACMAT). Monterey, CA, USA, pages 97–106.

Cranor, L. F. and S. Garfinkel (editors) (2005). Security and Usability. O’Reilly & Associates,
Sebastopol, CA, USA, 1st edition.

Curtin, M. (2001). Developing Trust: Online Privacy and Security. Apress, Berkeley, CA, USA,
1st edition.

Date, C. J. and H. Darwen (1997). A Guide to the SQL Standard. Addison-Wesley, Reading,
MA, USA, 4th edition.

ftp://www6.software.ibm.com/software/developer/library/WS-BusinessActivity.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

Bibliography 133

DeBetta, P. (2004). Introducing Microsoft SQL Server 2005 for Developers. Microsoft Press,
Buffalo, NY, USA, 1st edition.

Demurjian, S., T. C. Ting, J. Balthazar, C. E. Phillips, and P. Barr (2001). A User Role-based
Security Model for a Distributed Environment. In Research Advances in Database and Infor-
mation Systems Security.

Dröge, R. and M. Raatz (2005). Microsoft SQL Server 2005 – Konfigurierung, Administration,
Programmierung. Microsoft Press Deutschland, Unterschleißheim, Germany, 1st edition.

Ellison, C., B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen (1999). Simple Public
Key Certificate. Internet Draft, last visited December ’06.
http://theory.lcs.mit.edu/~rivest/simple-public-key-certificate.txt

Evered, M. and S. Bögeholz (2004). A Case Study in Access Control Requirements for a Health
Information System. In Proceedings of the 2nd Workshop on Australasian Information Secu-
rity, Data Mining and Web Intelligence, and Software Internationalisation (ACSW Frontiers).
Dunedin, New Zealand, pages 53–61.

Fernandez, E. B., E. Gudes, and H. Song (1994). A Model for Evaluation and Administration
of Security in Object-oriented Databases. In IEEE Transactions on Knowledge and Data
Engineering, volume 6, no. 2 pages 275–292.

Ferraiolo, D. F., R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli (2001). Proposed NIST
Standard for Role-based Access Control. In ACM Transactions on Information and System
Security (TISSEC), volume 4, no. 3 pages 224–274.

Freudenthal, E., T. Pesin, L. Port, E. Keenan, and V. Karamcheti (2002). dRBAC: Distributed
Role-based Access Control for Dynamic Coalition Environments. In Proceedings of the 22nd
IEEE International Conference on Distributed Computing Systems (ICDCS). Vienna, Austria,
pages 411–420.

Fröhlich, L., C. Czarski, and K. Maier (2005). Oracle 10g – Kompendium. Markt+Technik
Verlag, Munich, Germany, 1st edition.

Gaedke, M., J. Meinecke, and M. Nussbaumer (2005). A Modeling Approach to Federated Iden-
tity and Access Management. In Special Interest Tracks and Posters of the 14th International
Conference on World Wide Web (WWW). Chiba, Japan, pages 1156–1157.

Galbraith, B., W. Hankison, A. Hiotis, M. Janakiraman, D. V. Prasad, R. Trivedi, and D. Whitney
(2002). Professional Web Services Security. Wrox Press Ltd, Birmingham, UK, 1st edition.

Graham, C. (2006). Market Share: Relational Database Management Systems by Operating
System, Worldwide, 2005. Survey, Gartner, Stamford, USA.

http://theory.lcs.mit.edu/~rivest/simple-public-key-certificate.txt

134 Bibliography

Gray, C. and D. Cheriton (1989). Leases: An Efficient Fault-tolerant Mechanism for Distributed
File Cache Consistency. In Proceedings of the 12th ACM Symposium on Operating Systems
Principles (SOSP). Litchfield Park, AZ, USA, pages 202–210.

Gudes, E., M. S. Olivier, and R. P. van de Riet (1999). Modelling, Specifying and Implementing
Workflow Security in Cyberspace. In Journal of Computer Security, volume 7, no. 4 pages
287–315.

Gudgin, M. and A. Nadalin (editors) (2005). Web Services Secure Conversation Language (WS-
SecureConversation), last visited December ’06.
ftp://www6.software.ibm.com/software/developer/library/ws-secureconversation.pdf

Guo, S., W. Sun, and M. A. Weiss (1996). Solving Satisfiability and Implication Problems in
Database Systems. In ACM Transactions on Database Systems (TODS), volume 21, no. 2
pages 270–293.

Gutiérrez, C., E. Fernández-Medina, and M. Piattini (2005). Web Services Enterprise Security
Architecture: A Case Study. In Proceedings of the 2005 Workshop on Secure Web Services
(SWS). Fairfax, VA, USA, pages 10–19.

Haas, F. (2006). Oracle Security in der Praxis. Carl Hanser Verlag, Munich, Germany, 1st
edition.

Hagström, A., S. Jajodia, F. Parisi-Presicce, and D. Wijesekera (2001). Revocations – A Clas-
sification. In Proceedings. of the 14th IEEE Computer Security Foundations Workshop. Nova
Scotia, Canada, pages 44–58.

Harrison, M., W. Ruzzo, and J. Ullman (1976). Protection in Operating Systems. In Communi-
cations of the ACM, volume 19, no. 8 pages 461–471.

Hommel, W. and H. Reiser (2005). Federated Identity Management: Die Notwendigkeit zen-
traler Koordinationsdienste. In Kommunikation in Verteilten Systemen KiVS Kurzbeiträge und
Workshop, volume 61 of Lecture Notes in Informatics (LNI). GI, Kaiserslautern, Germany,
pages 65–72.

Huang, W.-K. and V. Atluri (1999). SecureFlow: a Secure Web-enabled Workflow Management
System. In Proceedings of the 4th ACM Workshop on Role-based Access Control (RBAC).
Fairfax, VA, USA, pages 83–94.

IBM (1993 – 2004). IBM DB2 Universal Database – SQL Reference 2 Version 8.2. IBM Corpo-
ration.

IBM and Microsoft (2002). Security in a Web Services World: A Proposed Architec-
ture and Roadmap. A joint security whitepaper from IBM Corporation and Microsoft
Corporation, last visited December ’06.
http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/

ftp://www6.software.ibm.com/software/developer/library/ws-secureconversation.pdf
http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/

Bibliography 135

Informatik-Spektrum 29(5) (2006). Informatik-Spektrum, volume 29. Springer Berlin / Heidel-
berg.

ISO/IEC (1997). 10181-3: Information technology – Open Systems Interconnection – Security
frameworks for open systems: Access control framework.

Jaeger, T. (1999). Access Control in Configurable Systems. In Secure Internet Programming,
Security Issues for Mobile and Distributed Objects, volume 1603 of Lecture Notes in Computer
Science (LNCS). pages 289–316.

Jajodia, S., P. Samarati, M. L. Sapino, and V. S. Subrahmanian (2001). Flexible Support for
Multiple Access Control Policies. In ACM Transactions on Information and System Security
(TISSEC), volume 26, no. 2 pages 214–260.

Jajodia, S., P. Samarati, and V. S. Subrahmanian (1997a). A Logical Language for Expressing
Authorizations. In Proceedings of the 1997 IEEE Symposium on Security and Privacy (SP).
Oakland, CA, USA, pages 31–42.

Jajodia, S., P. Samarati, V. S. Subrahmanian, and E. Bertino (1997b). A Unified Framework
for Enforcing Multiple Access Control Policies. In Proceedings of the 1997 ACM SIGMOD
International Conference on Management of Data. Tucson, Arizona, United States, pages
474–485.

Jajodia, S. and R. Sandhu (1990). Polyinstantiation Integrity in Multilevel Relations. In Proceed-
ings of the 1990 IEEE Symposium on Security and Privacy (SP). Oakland, CA, USA, pages
104–115.

Jajodia, S. and R. Sandhu (1991). Toward a Multilevel Secure Relational Data Model. In Pro-
ceedings of the 1991 ACM SIGMOD International Conference on Management of Data. pages
50–59.

Kang, M. H., J. S. Park, and J. N. Froscher (2001). Access Control Mechanisms for Inter-
organizational Workflow. In Proceedings of the 6th ACM Symposium on Access Control Mod-
els and Technologies (SACMAT). Chantilly, VA, United States, pages 66–74.

Karjoth, G. and J. Posegga (2000). Mobile Agents and Telcos’ Nightmares. In Annales des
télécommunications, volume 55, no. 7-8 pages 388–400.

Keahey, K. and V. Welch (2002). Fine-Grain Authorization for Resource Management in the Grid
Environment. In Proceedings of the 3rd International Workshop on Grid Computing, volume
2536 of Lecture Notes in Computer Science (LNCS). Baltimore, MD, USA, pages 199–206.

Keahey, K., V. Welch, S. Lang, B. Liu, and S. Meder (2003). Fine-Grain Authorization Policies
in the GRID: Design and Implementation. In Workshop Proceedings of the International
Middleware Conference. Rio de Janeiro, Brazil, pages 170–177.

136 Bibliography

Kehr, R., J. Posegga, R. Schmitz, and P. Windirsch (2001). Mobile Security for Internet Ap-
plications. In Arbeitskonferenz Kommunikationssicherheit 2001, Lecture Notes in Computer
Science (LNCS).

Keidl, M. (2004). Metadata Management and Context-based Personalization in Distributed
Information Systems. Ph.D. thesis, Technische Universität München.

Keidl, M., S. Seltzsam, K. Stocker, and A. Kemper (2002). ServiceGlobe: Distributing E-
Services across the Internet (Demonstration). In Proceedings of the International Conference
on Very Large Data Bases (VLDB). pages 1047–1050.

Kemper, A. and A. Eickler (2006). Datenbanksysteme – Eine Einführung. R. Oldenbourg Verlag,
Munich, Germany, 6th edition.

Khalaf, R. and F. Leymann (2003). On Web Services Aggregation. In Proceedings of the 4th
International Workshop on Technologies for E-Services (TES), volume 2819 of Lecture Notes
in Computer Science (LNCS). Berlin, Germany, pages 1–13.

Kühnemann, A. and H. Vogler (1997). Attributgrammatiken – Eine grundlegende Einführung.
Vieweg, 1st edition.

Lampson, B. (1974). Protection. In ACM SIGOPS Operating Systems Review, volume 8, no. 1
pages 18–24.

Li, N., B. Grosof, and J. Feigenbaum (2003a). Delegation Logic: A Logic-based Approach to
Distributed Authorization. In TISSEC 2003 v.6 pages 128–171.

Li, N., B. N. Grosof, and J. Feigenbaum (2000). A Practically Implementable and Tractable
Delegation Logic. In Proceedings of the 2000 IEEE Symposium on Security and Privacy (SP).
Berkeley, CA, USA, pages 27–42.

Li, N., J. C. Mitchell, and W. H. Winsborough (2002). Design of a Role-based Trust Management
Framework. In Proceedings of the 2002 IEEE Symposium on Security and Privacy (SP).
Oakland, CA, USA, pages 114–130.

Li, N., W. H. Winsborough, and J. C. Mitchell (2003b). Distributed Credential Chain Discovery
in Trust Management. In Journal of Computer Security, volume 11, no. 1 pages 35–86.

Linthicum, D. S. (2001). B2B Application Integration: E-Business – Enable Your Enterprise.
Addison-Wesley, Reading, MA, USA, 1st edition.

Linthicum, D. S. (2003). Next Generation Application Integration: From Simple Information to
Web Services. Addison-Wesley, Reading, MA, USA, 1st edition.

Lippe, S. (2004). How to Create Cool Models with Maestro. . . and how to Execute them in
Nehemiah. Technical report, SAP Research, Brisbane, Australia.

Bibliography 137

Loney, K. (2005). Oracle Database 10g – Die umfassende Referenz. Carl Hanser Verlag, Munich,
Germany, 1st edition.

Lopez, J., R. Oppliger, and G. Pernul (2004). Authentication and Authorization Infrastructures
(AAIs): a Comparative Survey. In Computers & Security, volume 23, no. 7 pages 578–590.

Lord, P. (2002). Managing E-Business Security Challenges. Technical report, Oracle Corpora-
tion, Redwood Shores, CA, USA.

Moses, T. (editor) (2003). XACML Profile for Web-services, last visited December ’06.
http://www.oasis-open.org/committees/download.php/3661/draft-xacml-wspl-04.pdf

Moses, T. (editor) (2005). eXtensible Access Control Markup Language (XACML), Version
2.0, last visited December ’06.
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

Mukkamala, R., V. Atluri, J. Warner, and R. Abbadasari (2006). A Distributed Coalition Service
Registry for Ad-Hoc Dynamic Coalitions: A Service-oriented Approach. In Proceedings of
the 20th Working Conference on Data and Applications Security (DBSec), volume 4127 of
Lecture Notes in Computer Science (LNCS). Sophia Antipolis, France, pages 209–223.

Nadalin, A., C. Kaler, R. Monzillo, and P. Hallam-Baker (editors) (2006). Web Services Security:
SOAP Message Security 1.1 (WS-Security 2004), last visited December ’06.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Neuhaus, J., W. Deiters, and M. Wiedeler (2006). Mehrwertdienste im Umfeld der elektronischen
Gesundheitskarte. In Informatik-Spektrum 29 (5) pages 332–340.

O’Neill, M. (2003). Web Services Security. McGraw-Hill, Inc., New York, San Francisco,
Washington, DC, 1st edition.

Orhanovic, J., I. Grodtke, and M. Tiefenbacher (2004). DB2 Administration – Einführung, Hand-
buch und Referenz. Addison-Wesley, Munich, Germany, 1st edition.

Osborn, S., R. Sandhu, and Q. Munawer (2000). Configuring Role-based Access Control to
Enforce Mandatory and Discretionary Access Control Policies. In ACM Transactions on In-
formation and System Security (TISSEC), volume 3, no. 2 pages 85–106.

Paulus, S. (2006). Collaborative Workflow Security. Key Note at the International Conference
on Emerging Trends in Information and Communication Security (ETRICS 2006), Freiburg,
Germany.

Pearlman, L., I. F. V. Welch, C. Kesselman, and S. Tuecke (2002). A Community Authorization
Service for Group Collaboration. In Proceedings of the 3rd International Workshop on Policies
for Distributed Systems and Networks (POLICY). Monterey, CA, USA, pages 50–59.

http://www.oasis-open.org/committees/download.php/3661/draft-xacml-wspl-04.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

138 Bibliography

Pettey, C. (2006). Gartner Says Worldwide Relational Database Market Increased 8 Percent in
2005, last visited December ’06.
http://www.gartner.com/press_releases/asset_152619_11.html

Phillips, C. E., S. Demurjian, and T. C. Ting (2002a). Security Engineering for Roles and Re-
sources in a Distributed Environment. In Proceedings of the 3rd Annual Information Systems
Security Engineering Conference. page 12.

Phillips, C. E., T. C. Ting, and S. Demurjian (2002b). Information Sharing and Security in
Dynamic Coalitions. In Proceedings of the 7th ACM Symposium on Access Control Models
and Technologies (SACMAT). Monterey, CA, USA, pages 87–96.

Posegga, J. (1998). Die Sicherheitsaspekte von Java. In Informatik Spektrum, volume 21, no. 1
pages 16–22.

Posegga, J. (1999). Jini: Infrastruktur für dynamische Dienste in verteilten Systemen – Aktuelles
Schlagwort. In Informatik-Spektrum, volume 22, no. 1 pages 43–44.

Priebe, T., W. Dobmeier, B. Muschall, and G. Pernul (2005). ABAC – Ein Referenzmodell für
attributbasierte Zugriffskontrolle. In Proceedings of Sicherheit 2005: Sicherheit - Schutz und
Zuverlässigkeit, volume 62 of Lecture Notes in Informatics (LNI). GI, Regensburg, Germany,
pages 285–296.

Rabitti, F., E. Bertino, W. Kim, and D. Woelk (1991). A Model of Authorization for Next-
Generation Database Systems. In ACM Transactions on Database Systems (TODS), vol-
ume 16, no. 1 pages 88–131.

Rabitti, F., D. Woelk, and W. Kim (1988). A Model of Authorization for Object-oriented and Se-
mantic Databases. In Proceedings of the 1st International Conference on Extending Database
Technology (EDBT), volume 303 of Lecture Notes in Computer Science (LNCS). Venice, Italy,
pages 231–250.

Richardson, J., P. Schwarz, and L.-F. Cabrera (1992). CACL: Efficient Fine-grained Protection
for Objects. In Proceedings of the Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA). Vancouver, Canada, pages 263–275.

Rits, M., B. De Boe, and A. Schaad (2005). XacT: a Bridge between Resource Management
and Access Control in Multi-layered Applications. In Proceedings of the 2005 Workshop on
Software Engineering for Secure Systems (SESS). St. Louis, MO, USA, pages 1–7.

Rivest, R. L. and B. Lampson (1996). SDSI – A Simple Distributed Security
Infrastructure, last visited December ’06.
http://research.microsoft.com/Lampson/59-SDSI/WebPage.html

http://www.gartner.com/press_releases/asset_152619_11.html
http://research.microsoft.com/Lampson/59-SDSI/WebPage.html

Bibliography 139

Robinson, P., F. Kerschbaum, and A. Schaad (2006). From Business Process Choreography to
Authorization Policies. In Proceedings of the 20th Working Conference on Data and Applica-
tions Security (DBSec), volume 4127 of Lecture Notes in Computer Science (LNCS). Sophia
Antipolis, France, pages 297–309.

Rosenberg, J. and D. Remy (2004). Securing Web Services with WS-Security: Demystifying WS-
Security, WS-Policy, SAML, XML Signature, and XML Encryption. Pearson Education, 1st
edition.

Rosenkrantz, D. J. and H. B. Hunt (1980). Processing Conjunctive Predicates and Queries. In
Proceedings of the International Conference on Very Large Data Bases (VLDB). Montreal,
Canada, pages 64–72.

Ruh, W. A., F. X. Maginnis, and W. J. Brown (2000). Enterprise Application Integration. John
Wiley & Sons, New York, NY, USA, 1st edition.

Samarati, P. and S. de Capitani di Vimercati (2001). Access Control: Policies, Models, and
Mechanisms. In Foundations of Security Analysis and Design, volume 2171 of Lecture Notes
in Computer Science (LNCS). Italy.

Sandhu, R. (1996). Roles Versus Groups. In Proceedings of the 1st ACM Workshop on Role-
based Access Control (RBAC). page 7.

Sandhu, R. S., E. J. Coyne, H. L. Feinstein, and C. E. Youman (1996). Role-based Access Control
Models. In IEEE Computer, volume 29, no. 2 pages 38–47.

Sandhu, R. S. and P. Samarati (1994). Access Control: Principles and Practice. In IEEE Com-
munications Magazine, volume 32, no. 9 pages 40–48.

SAP Info (2006). Protecting Against Negligence, Fending off Intrusions: IT SECURITY, volume
136 of SAP INFO. SAP AG, Walldorf, Germany.

Schaad, A. and P. Spadone (2005). Gabriel Conceptual Model. Technical report, SAP Research,
Sophia Antipolis, France.

Schaad, A., P. Spadone, and H. Weichsel (2005). A Case Study of Separation of Duty Properties
in the Context of the Austrian "eLaw" Process. In Proceedings of the 2005 ACM Symposium
on Applied Computing (SAC). Santa Fe, New Mexico, pages 1328–1332.

Seltzsam, S. (2005). Security, Caching, and Self-Management in Distributed Information Sys-
tems. Ph.D. thesis, Technische Universität München.

Seltzsam, S., S. Börzsönyi, and A. Kemper (2001). Security for Distributed E-Service Composi-
tion. In Proceedings of the 2nd International Workshop on Technologies for E-Services (TES),
volume 2193 of Lecture Notes in Computer Science (LNCS). Rome, Italy, pages 147–162.

140 Bibliography

Shen, H. and P. Dewan (1992). Access Control for Collaborative Environments. In Proceedings
of the 1992 ACM Conference on Computer-supported Cooperative Work (CSCW). ACM Press,
Toronto, Ontario, Canada, pages 51–58.

Stiegler, M., A. Karp, K.-P. Yee, T. Close, and M. Miller (2006). Polaris: Virus-safe Computing
for Windows XP. In Communications of the ACM, volume 49, no. 9 pages 83–88.

Sun, X.-H., N. Kamel, and L. M. Ni (1989). Solving Implication Problems in Database Applica-
tions. In Proceedings of the 1989 ACM SIGMOD International Conference on Management
of Data. Portland, OR, USA, pages 185–192.

Thompson, M., A. Essiari, and S. Mudumbai (2003). Certificate-based Authorization Policy in
a PKI Environment. In TISSEC 2003 v.6 pages 566–588.

Thompson, M., W. Johnston, S. Mudumbai, G. Hoo, K. Jackson, and A. Essiari (1999).
Certificate-based Access Control for Widely Distributed Resources. In Proceedings of the
8th Usenix Security Symposium. Washington, DC, USA, pages 215–228.

TISSEC 2003 v.6 (2003). ACM Transactions on Information and System Security (TISSEC),
volume 6. ACM Press, New York, NY, USA.

Tolone, W., G.-J. Ahn, T. Pai, and S.-P. Hong (2005). Access Control in Collaborative Systems.
In ACM Computing Surveys, volume 37, no. 1 pages 29–41.

Walter, T., L. Bussard, J. Haller, R. Kilian-Kehr, J. Posegga, and P. Robinson (2004). Secure
Mobile Business Applications: Framework, Architecture and Implementation. In Information
Security Technical Report Journal, volume 9, no. 4 pages 6–22.

Warner, J., V. Atluri, and R. Mukkamala (2005). A Credential-based Approach for Facilitating
Automatic Resource Sharing Among Ad-Hoc Dynamic Coalitions. In Proceedings of the 19th
Working Conference on Data and Applications Security (DBSec), volume 3654 of Lecture
Notes in Computer Science (LNCS). Storrs, CT, USA, pages 252–266.

Weerawarana, S., F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson (2005). Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging, and More. Prentice Hall, Upper Saddle River, NJ, USA, 1st edition.

Weilbach, J. and M. Herger (2005). SAP xApps and the Composite Application Framework.
Galileo Press, Bonn, Germany, 1st edition.

Welch, V., F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kesselman,
S. Meder, L. Pearlman, and S. Tuecke (2003). Security for Grid Services. In Proceedings of the
12th IEEE International Symposium on High Performance Distributed Computing (HPDC).
Seattle, WA, USA, pages 48–61.

Bibliography 141

Wiehler, G. (2004). Mobility, Security und Web Services – Neue Technologien und Service-
orientierte Architekturen für zukunftsweisende IT-Lösungen. Siemens AG, Publicis Corporate
Publishing, Erlangen, 1st edition.

Wijesekera, D. and S. Jajodia (2001). Policy Algebras for Access Control: the Propositional
Case. In Proceedings of the 8th ACM Conference on Computer and Communications Security
(CCS). Philadelphia, PA, USA, pages 38–47.

Wijesekera, D. and S. Jajodia (2002). Policy Algebras for Access Control: the Predicate Case. In
Proceedings of the 9th ACM Conference on Computer and Communications Security (CCS).
Washington, DC, USA, pages 171–180.

Wijesekera, D. and S. Jajodia (2003). A Propositional Policy Algebra for Access Control. In
TISSEC 2003 v.6 pages 286–325.

Wimmer, M., M.-C. Albutiu, and A. Kemper (2006a). Optimized Workflow Authorization in
Service Oriented Architectures. In Proceedings of the International Conference on Emerging
Trends in Information and Communication Security (ETRICS), volume 3995 of Lecture Notes
in Computer Science (LNCS). Freiburg, Germany, pages 30–44.

Wimmer, M., D. Eberhardt, P. Ehrnlechner, and A. Kemper (2004). Reliable and Adaptable
Security Engineering for Database-Web Services. In Proceedings of the 4th International
Conference on Web Engineering (ICWE), volume 3140 of Lecture Notes in Computer Science
(LNCS). Munich, Germany, pages 502–515.

Wimmer, M., P. Ehrnlechner, A. Fischer, and A. Kemper (2005a). Flexible Autorisierung in
Datenbank-basierten Web Service-Föderationen. In Informatik – Forschung und Entwicklung,
volume 20, no. 3 pages 167–181.

Wimmer, M., P. Ehrnlechner, and A. Kemper (2005b). Flexible Autorisierung in Web Service-
Föderationen. In Proceedings of the GI Conference on Database Systems for Business, Tech-
nology, and Web (BTW). Karlsruhe, Germany, pages 185–204.

Wimmer, M. and A. Kemper (2005). An Authorization Framework for Sharing Data in Web
Service Federations. In Proceedings of the 2nd VLDB Workshop on Secure Data Management
(SDM), volume 3674 of Lecture Notes in Computer Science (LNCS). Trondheim, Norway,
pages 47–62.

Wimmer, M., A. Kemper, M. Rits, and V. Lotz (2006b). Consolidating the Access Control of
Composite Applications and Workflows. In Proceedings of the 20th Working Conference on
Data and Applications Security (DBSec), volume 4127 of Lecture Notes in Computer Science
(LNCS). Sophia Antipolis, France, pages 44–59.

Wimmer, M., A. Kemper, and S. Seltzsam (2006c). Security for Web Applications. In Web
Engineering: The Discipline of Systematic Development, John Wiley & Sons, New York, NY,
USA pages 265–292.

142 Bibliography

Woods, D. (2004). Enterprise Services Architecture. Galileo Press, Bonn, Germany, 1st edition.

WSBPEL (2006). OASIS Web Services Business Process Execution Language
(WSBPEL), last visited December ’06.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

Yu, T., M. Winslett, and K. E. Seamons (2003). Supporting Structured Credentials and
Sensitive Policies through Interoperable Strategies for Automated Trust Negotiation. In
TISSEC 2003 v.6 pages 1–42.

Zhang, L., G.-J. Ahn, and B.-T. Chu (2003). A Rule-based Framework for Role-based Delegation
and Revocation. In TISSEC 2003 v.6 pages 404–441.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

	Title Page
	Acknowledgments
	Abstract
	Contents
	1 Introduction and Overview
	1.1 Classification of Service Compositions
	1.2 Contributions
	1.3 Outline

	2 Access Control Models and Terminology
	2.1 The Role of Access Control
	2.2 Access Control Models
	2.2.1 Mandatory Access Control
	2.2.2 Discretionary Access Control
	2.2.3 Role Based Access Control
	2.2.4 Administration of Authorization

	2.3 Access Control Requirements of Service-oriented Architectures
	2.4 Design Principles of our Authorization Framework

	3 Optimized Access Control for Composite Applications and Workflows
	3.1 Motivation
	3.2 Policy Model
	3.2.1 Notation
	3.2.2 Semantics
	3.2.3 Policy Combining Operators

	3.3 Policy Consolidation
	3.3.1 Problem Specification
	3.3.2 Workflow Dependencies
	3.3.3 Analysis of Sequence Patterns
	3.3.4 Analysis of Switch Patterns
	3.3.5 Structural Analysis
	3.3.6 Evaluation of the Policy Consolidation Approach

	3.4 Algorithmic Solutions
	3.4.1 Implementing the Conjunction Operator
	3.4.2 Checking Privilege Relaxation
	3.4.3 Implementing the Subtraction Operator

	3.5 Optimizing the Access Control of Intra-organizational Web Service Workflows
	3.5.1 Running Example
	3.5.2 Performing Policy Consolidation
	3.5.3 Implementation

	3.6 Related Work
	3.7 Conclusion

	4 Security Engineering for Database Backed Web Services
	4.1 Motivation
	4.2 Access Control of Database Systems and Web Services -- the two Poles Apart
	4.2.1 Access Control of Database Management Systems
	4.2.2 Access Control Mechanisms for Web Services
	4.2.3 Access Control of Database Web Services

	4.3 Security Engineering for Database Web Services -- Bridging the Gap
	4.3.1 Determining the Least Required Privileges
	4.3.2 Automated Policy Generation
	4.3.3 Extraction of Database Policies
	4.3.4 Engineering Adaptable Access Control Policies

	4.4 Implementation
	4.5 Related Work
	4.6 Conclusion

	5 Access Control in Dynamic Service Coalitions
	5.1 Motivation
	5.2 Extended Policy Model
	5.2.1 Terminology and Notation
	5.2.2 Multistep Delegations
	5.2.3 Policy Representation and Implementation
	5.2.4 Revocation Schemes

	5.3 Policy Evaluation
	5.3.1 Local Policy Evaluation
	5.3.2 Distributed Policy Evaluation
	5.3.3 Example

	5.4 Caching of Authorization Paths
	5.4.1 Caching Strategies
	5.4.2 Experimental Results

	5.5 Application Scenarios
	5.5.1 Support of Loosely and Tightly Coupled Federations
	5.5.2 Treating Revocations During (Long-lasting) Transactions

	5.6 Related Work
	5.7 Conclusion

	6 Conclusion
	A Graphical Workflow Notation
	B Probabilistic Performance Estimation of Policy Comparisons
	C Policy Representation
	C.1 Permission Policies
	C.2 Base Policies
	C.3 Role Assignment Policies
	C.4 Role Delegation and Revocation Policies

	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

