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ABSTRACT operator does not affect the last stream which therefore has

. : L .. adifferent variance. Both GTD and GMD are matrix factor-
We address the nonlinear transceiver design in a point-ta-

; . . . . izations where a matrix is decomposed into a the product of
point MIMO system withTomlinson-Harashima precoding P b

- N ; . a unitary matrix, an upper/lower triangular matrix with pre-
(THP). By jointly optimizing both transmitter and receiver, eribed main diagonal, and another unitary matrix.

capacity can be achieved up to the shaping loss and eac In Section 2, we discuss the system model and briefly re-

stream can be decoded separately. In contrast to linear fi\I/_iew thelinear capacity achieving filtering in Section 3. Af-
tering, THP allows for uniform stream properties renderin pactly 9 9 )

. . ..o Sterwards, we show in Section 4 that the capacity achievin
bit-loading unnecessary and allows to span an arbitrarily hlgﬁrecoder in THP has enough degrees of frgedo?/n left to Iegt

number of streams for the sake of a reduced cardinality mod-, """ . L
ulation alphabet. Existing work studied either the decisio all individual streams have uniform properties in the relevant
: NR region. To this end, the GTD is utilized, the properties

feedback equalizer version with the nonlinearity located a nd construction of which are exolained in Section 5. Finall
the receiver or the perfect dirty paper precoding where thé" . : . P ‘ Y,
. - . Simulation results in Section 6 show that THP can clearly out-
geometric mean decompositi@@MD) can be applied. We . . .
. . . perform the decision feedback aided system despite the power
explicitly take the modulo operator into account leading to :
. X o loss and the modulo loss since THP does not suffer from error
the fact that thegyeneralized triangular decompositidvas to

be applied instead of the GMD. propagat.mn. .
Notation: Matrices and vectors are denoted by upper and

lower case bold italic letters, respectively. The operaiis
1. INTRODUCTION (), ()T, tr(-), det(:), and[];; denote expectation with
respect to the noisg and the signab, conjugate transpo-
Recently, decision feedback aided nonlinear filtering wasstion, transposition, trace, determinant, and the matrix ele-
shown to achieve capacity in point-to-point systems with thenent in theith row andjth column, respectively. The set
nice characteristic of uniform stream properties and minimuny X <K - CKxK contains allk x K strictly upper triangular
sum mean square error [1,2]. Thus, undesirable bit-loadingatrices A represents the discrete or continuous modulation
and different coding on each stream, which is necessary fQilphabetSfXK c CE*K denotes the cone of thE x K

linear filtering to achieve capacity, become obsolete. The NOMsositive semidefinite matrice®)’< =" ¢ Ri(.é'r‘ is the set of

linear structure can al.so be shif_ted to the transmitter:.in [2lan (not necessarily square) diagonal matrices, and the set of
the authors also consider perfelitty paper(DP) precoding 4 i x K unitary matrices is denoted By <K ¢ CK*K.

fqr which stream-coding must be done.jointly Ieading to aR{.}, 3{-1, andj denote real and imaginary part of the com-
highly complex precoder. We depldpmlinson Harashima plex argument, and the imaginary ugit_1, respectively.=

Precoding(THP) as a low-complexity practical implementa- js 4 partial order on the proper cone of positive semidefinite
tion of DP. For the THP system, we show that capacity iSnatrices.

achieved except for the shaping loss [3]. Moreover, a uniform

stream property is achieved in the relevant SNR region and an

arbitrarily high number of streams can be transmitted for the 2. SYSTEM MODEL

sake of a reduced cardinality modulation alphabet. However,

the main difference to the work [1, 2] is that for THP, the soWe consider a point-to-point MIMO communication link as
called generalized triangular decompositid@®TD) [4] has  depicted in Figure 1 where the zero-mean data vector\ ©

to be applied instead of thgeometric mean decomposition with identity covariance matrix contains the modulated sym-
(GMD) [5] which in contrast to the GMD not necessarily ex- bols of theK streams. The feedback filtdt ¢ TX>X van-

ists. The GTD must be used due to the fact that the modulshes in case of linear precoding whereas it is restricted to
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Fig. 2. Modulo-operator free precoder and receiver representation.

Fig. 1. Nonlinear point-to-point system model.

a signal processing point of view and highlight key properties

bestrictly uppet triangular (with zeros on its main diagonal) of the resulting transmission chain.
when THP is applied. The modulo operatbt(-) : CX —

VEWithV ={zecC|-7<2R{z} <7, —7<23{z} <  3.1. Information Theoretic Point of View
7} is an element-wise many-to-one mapping from the entire

K-dimensional complex hyper-plane into the half-open comapacity is defined as the maximum mutual information be-

plex hyper-cube by an element-wise addition of integer muI:[V,Veen the transmit signat 7\, Ps € (CNTX_ a_nd t_he receive
tiples of the modulo constant to both real and imaginary S9"aly = HPs +n € C=, and maximization is done
parts of its argument such that its image lie¥ifi. We make with respectho the 'np}lft d|stNr|Tbg%ch afa_md Its covarlance
the common statistical assumptions on the outpat VX of ~ Ce= = Elza’] = PP7 € S;777 subject to an average
the modulo operator [6], i.(;{., \;(ve assume that the covariand&®Ve' constraintr(Cz) < Frx:

matrix C, = E[vof] € S£*% is diagonal which means _
that the individu[al en]tries are uncorrelgted. Furthermore, the max log, det (INTx +Co.H"C, IH)

last stream is not_ affected by the_ modulo operator \_Nhen _the s.t.: tr(Cy) < Pry andCy, 5= 0
modulo constant is chosen sulfficiently large, hence its vari-

ance remains one. In case of an-ary QAM modulation  First of all, Gaussian signaling has to be chosen such that the
with M = 4", n € N, the first K — 1 diagonal entries of utility in (1) represents not only an upper bound, but also the
C,, are assumed to have variance = % see [6],if the truly achievable sum-rate. Telatar [7] came up with the well
respective feedback active This follows from the assump- known result that the input covarian€g, needs to have the
tion that[v]y,1,.. ., [v]x—1,1 are uniformly distributed over same eigenspace " C, 'H. Moreover, the water-filling

V. The signal is linearly precoded by? ¢ C¥»*X and  policy guarantees optimum power allocation. The optimum
propagates over the frequency flat chankEN>*N, At  covarianceC, directly follows from the KKT conditions as-
the receiver side, zero-mean additive white Gaussian noisggned to (1) and can compactly be expressed as

1)

n € C"~is superimposed and the receive filgK * V= gen- . . Hort o 1
eratesd € CK representing an estimate for the virtual signal Co= [ 'Iny, — (H'C,'H) Y] |, (@)
d € AX + 77K +j77X < CK. Inthe end, the modulo op-

where i In 2 is the Lagrangian factor which is chosen such

erator generates the estimated symbol veetoy performing . the constraintr(C,) < Pry is fulfilled with equality.
the remapping ont&y*.

Fia. 2 sh dul tor f tati '{he operatof-] , performs the orthogonal projection of its
9. 2 Shows a modulo operator free representation ofq yjan argument onto the proper cone of positive semidef-
the transmitter with the additive signal(s, F') from a K-

. . N . inite matrices by setting all negative eigenvalues to zero [8].
dimensional infinite lattice ZX + j 7ZX such that € V¥ y 9 9 9 (8]

ins th As th qul ¢ i simpl It can be thought of as the multi-dimensional extension of the
remains the same. As the modulo operators avold simpie r?ﬁax(o, -) operator known from scalar water-pouring. How-
lations betweers and §, all our optimizations are based on

. . 5 ever, this compact notation already tells us which eigenspace
the virtual signalsi andd. needs to be chosen and the optimum power allocation follows
as well, cf. [9].

3. CAPACITY ACHIEVING LINEAR FILTERING

REVISITED 3.2. Signal Processing Point of View

If the precoder is restricted to act linearly, the feedback filteSolution (2) is important from an information theoretic point
F = 0 is inactive and all modulo operators are removed. Irof view. However, from a signal processing perspective, it is
the following, we shortly review the capacity achieving linearmore relevant to know how to realize the precofeinstead
filtering from an information theoretic point of view and from of its covarianceC,, = PP" and how to design the receiver.
In conjunction with an MMSE-typeeceiver B recovering

1in general, any symmetripally permgted.s'trictly upper triangular matrixs’ the utility in (1) can also be expressed aiogQ det C,
may be chosen since causality and realizability are ensured by means of E?e .
resulting matrix structure. We choose the strictly upper triangularity due t see [10]) with
the fact that the general triangular decomposition, which we will make use of _1
later, was introduced for upper triangular matrices first. C. = (IK + PHHHCJIHP)




denoting the covariance matrix of the error veetce s — 3. SNR region. No more streams can be spanned for the sake of
In order to find the optimum transmit filter, we intro- a reduced cardinality of the modulation alphabet if separate
duce thesortedreduced eigenvalue decompositibPAU  stream decoding is preferred.
of HEC,'H with U € C"*" containing the first- unit-
norm eigenvectors and € D"*" containing ther non-
zero eigenvalues\, ..., A\, in non-increasing order. Set-
ting P = U®S, whered ¢ D"*X is diagonal but not
necessarily square with entrids, ..., ., x) € R, the
water-filling policy leads to a power allocation according toFor THP, the modulo operator limits the real and imaginary
P = max(O,l% — ), k € {1,...,min(K,r)}. Inorder part of each entry in € V¥ and hence prevents Gaussian
to let the covariance matri€,, — P PY achieve the rank of Signaling. The induceshaping los43] leads to the fact that
the optimum covariance matri,, from (2), the number of the channel capacity can only be obtained up to this_ 1.53 _dB
streamsk has to be chosen at least as large as the rank of tH12ping loss [3]. Nonetheless, we focus on the maximization
optimum covariance matrid = rank(C,) < Nry. Other- of the upper.bound. Inserting the MMSE receiver, de_pendmg
wise, capacity cannot be achieved. Finally, a unitary matri" £ andP, into the covariance matri’. of the error signal
S € UK*K can be chosen as a degree of freedom as it doeg= d — d yields
not change the obtained sum-rate.

4. OPTIMUM THP TRANSCEIVER DESIGN

4.1. Precoder Structure for Near-Capacity Transmission

C.=(I-F)(P"H"C,'HP+C,") "I-F)". (3

3.3. Key Properties of the Transmission Chain Again, the obtained rate can be expressed as a function of the

Choosinall and ® as in the previous section. capacity is determinant olC,, see [10]. However, as mentioned in Sec-
9 P » capactly 1S 4, 2, the covariance matrik’, of v is no longer an identity

achieved. The rgsultmg impacts on the transmission Chalrrr]1atrix and the obtained rate, neglecting the shaping loss, now
are now summarized:

a reads adog, det(C,) — log, det(C.). Due to the fact that
b 15) For § 7 '[III(If:I ﬂ:f num_k;erfc;m;] stre:;mK has hto Fis strictly upper triangular, the determinant@f does not
te chosen eqtu?( © Ie |m;n5| r[c)l € su .tspace Wt %re depend onF, i.e.,det(Ix — F') = 1. This means that, no
rakr:.smlzspfr}(a ez pl?ce.d ¢ < o catpau y canno ”e matter howF' is chosen, capacity up to the shaping loss can
catet. So108 — L andK — d, the error covariance matrix 2125 DS reached by properly choosify The opimum
' LK o . recoderP follows from a determinant maximization prob-
C. = (Ix +®"AP)~! gets diagonalized and all streams P P

: .~ lem [12] with covariance matriK, and reads as
can be decodeskeparately which has an enormous practical
relevancy and drastically reduces complexity. However, the
K streams have differentindividual MSEs and hence different

signal-to-noise ratios in general. The MSE of strdamreads wherelU and® are defined as in Section 3.2 afids UK *K

- B i ; : N
aslsk K AkAand obviously depegdtshc;n the a_;soma;[jed 1geng again an arbitrary unitary matrix. Summing up, capacity-
value Ax. AS a consequence, both ransmitter and receive chieving precoding, except from the non-Gaussianity, does
must be capable of handling different coding schemes and di ot uniquely determine the feedforward filt a unitary ma-

ferent coding rates in order to achieve capacity. Furthermor@rix S remains as degree of freedom. Moreover, the feedback
different modulation schemes must be available if the theoﬁlter F does not have any influence on the throughput

retical limit which is based on Gaussian signaling shall be ap-
proached by a practical QAM modulation scheme. Whereas
one stream may require QPSK, another stream might demadd2. MSE Minimization and Uniform Stream Properties
for 64QAM i.n order to come close to the Qaussian Iim.it. Defining thearithmeticMSE ¢ 4 as the sum MSE via
2.) Identical stream MSEs and SINRs, i.e., equal diagonal
elements of the error covariance maté, can be achieved ea=E[|d—d|2] = tr (Elee™]) = tr(C.),
by choosingS as a DFT or Hadamard matrix [11]. For this

case,K > d would also make sense, since power for thejt becomes evident thaty corresponds to the trace of the error
additional K' — d streams is allocated by the unitary matrix covariance matrixC,. A lower bound on the arithmetic MSE
S. Despite the fact that capacity is still obtained, the pricecan be derived from the trace-determinant inequality
one has to pay is that the error covariance matrix is no longer
diagonal. Since all streams are coupled then, they have to be ea = tr(Co) > K X/det(Ce) = K Y/det(cg)  (5)
decoded jointly, leading to an intractable complexity.

3.) The number of transmitted streadsss therefore lim-  relating the arithmetieneanto the geometrienean Here,

ited by the dimensiod = rank(C,) and reaches the rank e = det(C.) denotes thgeometriAMSE. The lower bound
of the channel = rank(H) < min(Ntx, Nrx) in the high  is obtained if, and only ifC. is a scaled identity matrix. The

P-U®SC,*, (4)



authorsin [1,2] were the first to introduce this framework. In-andS can be chosen real-valued as well. Additionalyand
stead of directly minimizing the sum-MSE in a decision feed-D have the same determinant from which we can compute
back system at the receiver, they minimized the lower boundhe common MSE level

i.e., the geometric MSE, and showed that the minimum lower

bound can also be achieved by means ofgbemetric mean K Ko K1) T
decompositiofGMD) [5]. The GMD is a matrix factoriza- ol =% H[Cv]k,k H[D]k,i =\ Uv( ) H[D]k,iv
tion where an arbitrary matrix is decomposed into the product k=1 k=1 k=1

of a unitary matrix, an upper triangular matrix wittentical ©)

main diagonal entries, and a second unitary matrix. But sinc¥Nere we exploged the fact that the fidst— 1 diagonal en-
ies of C,, areo; and the last entry equals one. Given the

we employ THP at the transmitter and not decision feedback “
at the receiver, the signal covariance ma@ixis nota scaled Unfavorable conditions at very low SNR that the GTD does
identity matrix. This follows from the fact that the power loss "°t eX_'Sht’ tTJe Imml_mumf I\/:IS_Edga_gno} be achieved in combina-
does not affect that last stream which is not influenced by thion With a balancing of all individual MSEs. As soona@sSis
modulo operator. As we will see later, we have to decompos@"€: €., the sum-MSE reach&s a further reduction of the

a matrix in a similar way except that the main diagonal enlransmit power prevents the GTD to exist, and cons_equer)tly,
tries of the upper triangular matrix have (different) prescribed®!l Stréams cannot be balanced any more. Interestingly, it is
values now. As a consequence, the GMD cannot be app"é:bossmle to switch off the last stream such that its MSE is one,
and the more powerfeneralized triangular decomposition and balance the remaining streaips. ., K — 1 E_lt an MSE
(GTD) [4] must be utilized. Its existence and properties as€Ve! Pelow one. Doing so, th&’ — st stream is precoded
well as a very fast implementation are discussed in Section 31€arly. and therefore, th&” — 1st diagonal entry irC’, re-

M 2 H
As P from (4) achieves capacity up to the shaping |oss,duces fromo? to one, as the feedback for the linearly pre-

it maximizes— log, det C, and thus minimizes the geomet- coded streank’ — 1 is disabled. This change in the variance

fic meansi = det(C,). In order to let the arithmetic mean leads to the fact that the MSE level of the remaining streams
= ) - -2

£4 = tr(C.) merge with this minimum lower bound, the er- €anges, cf. (9). If this level has dropped beldwj; ., the

ror covariance matricC, has to boil down to a scaled identity "€MaiNingk” — 1 streams can be balanced at this level, other-

matrix. Plugging the optimum precodErinto the covariance wise, theK — 1st stream will also be switched off, changing
expression (3), we get the variance of thé( — 2nd stream to one, and so on. If only

a single stream is active in the end, the covariance métgix

has been transformed to the identity matrix, and the modulo
operators become obsolete. From this procedure it becomes
obvious that the sum-MSE can never grow above the num-
ber of streamd no matter how small the transmit pow@yy

gets.

C.=(Ix — F)C:S"D2SCi(1x — F),  (6)

whereD = (Ix +®TA®)= is diagonal and positive def-
inite. If a unitary S and and a strictly upper triangular
F € TEXK exist such thaC. = 02Ix = 02Q"Q with

unitary @ € UX*X e, C, becomes a scaled identity, the
arithmetic mean achieves its global minimum. To this end, #.3. Key Properties of the Nonlinear Transmission

unitary decompositiof The following statements hold under the assumption that the

GTD exists.

1.) Except for the shaping loss due to the non-Gaussianity
of v, the precoder achieves capacity. At high SNRs, the mod-
ulo operator at the receiver side does not significantly change
the Gaussianity of the receive noise. These propositions re-
main valid even if the GTD does not exist.

the diagonal of which corresponds to the diagonaC@fdi-  2:) The error covariance matrit, reduces to a scaled
vided by o. and therefore has different entries on its main'd€ntity matrix, meaning that all streams have the same prop-
diagonal. That's why the GMD cannot be used and the GTC?!ti€S, especially the same MSEs and the same rates. Hence,
has to be employed. In Section 5, exact conditions for its ex20 bit-loading is necessary which is the major advantage com-
istence are presented. From simulations, we find that these fig&red to capacity achieving linear filtering. Moreover, each
quirements are only violated for very low SNR values belowStréam can be decoded separately which has a drastically
-10 dB. More precisely, the common MSE level cannot lower complexity than a joint decoding of all streams simul-
grow above one, see Section 5. Rsfollows from two uni-  aneously. _

tary transformations applied B (cf. Eq. 7), and since both ~ 3:) The number’ of active streams must be larger than

v

R andD have positive real-valued main diagonal entrigs, ©f €dual to the dimensiod = rank(C’;) of the optimum
covariance matrix from (2). Capacity is achieved for an arbi-

2Remember thaD = (I +&T A®)? is diagonal. trary high number of streams. Larger stream numbers facili-

D =Q(Ix — F)o-'Cg 8" = QRS" (7)

should exist with unitaryS and @ and an upper triangular
matrix )
R=o ' (Ix - F)CZ, 8)




tate the use of small cardinality modulation alphabets making Similar to the GMD [5], the GTD is not unique if it ex-
this approach very important with respect to the practical imists. In particular, infinitely many decompositions exist but
plementation. Clearly, the MSE per stream is increased whete Frobenius norm of all those matricés is identical to
increasing the number of streams. | D|lr. One type of invariance are unitary diagonal matrices:
4) In contrast to decision-feedback equalization (DFE)Let D = QRS be a GTD decomposition of the diagonal
based nonlinear filtering [1,2], THP does not suffer from erromatrix D, and letV and W be unitary diagonal matrices.
propagation. Thus, considerable gains can be achieved in théith R = VRV, Q = wQV", andS = WSV, we
mid-SNR region despite the modulo loss implicating the genfind thatD = WDW!" = WQRS"WH" = QRS is
eration of new nearest neighbors and despite the power los$so a valid GTD decomposition dP. Furthermore, a com-
(C» # Ik) since the crucial assumption of perfect decisionpletely different off-diagonal structure iR can be obtained
in DFE is not fulfilled in this SNR region, see the simulationfor K > 2 by changing the order selection of the Givens ro-

results in Section 6. tations, see the following section.
5. THE GENERALIZED TRIANGULAR 5.2. Efficient and Stable Computation of the GTD
DECOMPOSITION

Independently from but similar to [2, 4], we found a low com-
5.1. Existence and Uniqueness plexity and extremely stable way to compute the GTD when
trying to recude the complexity of the GMD from quartic or-
Taking a closer look at (7), we find fro® = QDS that  der in [15] to quadratic order. This goal was achieved by the
the diagonal matrixD comprises the singular values of the yse of Givens rotations as in [2]. We interpret the unitary ma-
matrix R, which itself has the eigenvalues on its diagonaltrices S andQ as the product of< — 1 real-valued Givens
since itis upper triangular. Weyl [13] proved that the singularrotations@; ands;, respectively:
values multiplicatively majorizethe eigenvalues of a matrix,
and Horn [14] stated that an upper triangular maf@with S — HK_l S;. and Q = HK_l Q.
prescribed diagonal and a specific singular value set exists, if =1 =1
the diagonal is majorized by the singular values, see [5].

> I\ (real-valued) Givens rotatio6; , is a rank-two perturba-
our context, this means that ’

tion of the K -dimensional identity matrix withG ], ; =

0 9 0 9 ) [Gj,k]k,k = a, [Gj,k]j,k = b, and[G]-_,k]k,j = —b holds. Im-
szl[R]kvk < szl[D]k,kW' l<ti<K (10) posing the constrainig b € R, -1 <a <1,-1<b < 1,

K B2 _ K 9 anda? 4+ b* = 1 leads to the fact tha®; x, is orthogonal. We
Hk:l[ Jie = Hk:l[ Jie assume that < k. Note thatG, , performs a counterclock-

because the diagonal entries of bdihand D are already wise rotation in thej, k plane witha andb corresponding to

sorted in an non-increasing fashion. Hor this follows from the cosine and the sine of the rotation angle [16].

the water-pouring policy and the fact that we made use of Multiplying G . from the right-hand side (RHS) onto a

thesortedeigenvalue decomposition. The second row in (1012;:[;:;?;;;”2?533 r(:IrL]Jlﬁt/i OI?C;T%;?:;Q{]“ ar;ifov;/]hrir_ea: da
is always fulfilled due to the choice of in (9). Since the b P a

entries inD are non-increasing and the filst— 1 entries in k- only. Hence, we can focus on roysandk and columng

C, are identical, we may replace (10) in conjunction with (S)ELdé ;eﬁ?r?ézltyc')nEg:rfC;'ggﬁzi;?g. eg:'erzggf I;HSI_e;réd
by the necessary and sufficient condition uitiplicatl wo di Vens lons appl

to the matrixD vyields
1
poi [D% x (11) a b zi 0 c d _
€ —b a 0 z —d ¢ | )
for the existence of the GTD. Note thﬁit)];fK < 1 and acz; — bdzy adz; + bezy (12)
hences? < 1 must hold. In the following, we show that the [ —(bczj + adzy)  —bdz; + aczy ]

transmit powerPry can always be chosen so small that the

GTD does not exist. To this end, we assume that the transmit; andz;, are thejth and thekth diagonal entries of the ma-
power is already so small thdt= 1 holds, i.e.,.#? = Pr,  trix Z which is initialized with the matrixD and to which
and®, = 0Vk # 1. Moreover, K = 2 streams shall be the Givens rotations are applied such that aifer 1 rota-
transmitted. ThedD]3;, = 1+ A Pry, [D]3, = 1, and tions,Z = R holds. Since the upper triangular structure of

Z must be preserved, the lower left entry in (12) has to be

2_ [ a2 i b 2
¢ =\ T2 P hold. Eq. 10 now requires th% < D1, zero. W.l.o.g., we set the upper fetlement to the desired
which is violated forPry < A\; ' (02 — 1).

4It is also possible to set the lower right element to the desired value.
3In this context, majorization is related to an non-increasing ordering. However, the order selection changes then.



1
values; = o-1[C¢];,;, see (8). The set of equations 10 »

aczj — bdzy = B;, bezj +adz, =0
a2+ =1, A4+d®=1

o
1]
leads to the solutions @ 9
8 \‘u
32 2 2_ 32 , J 8 .
_ J k _ j J _ %€ _ Rk Q A
c= 3 7, d=— 5 5, 4= ——, b=———. 5
z5 — 7, z5 — 7, B; Bj
L ) _4][——DFE-GMD 1
The verification of the constrains< 1 — »? < 1 and0 < 0 tHp-cTD
d? < 1 tells us how to choose the indicgsindk: MMSE-THP
-+ -Linear MMSE|
-10 -5 0 5 10 15 20
zj < Bj < 2 OF 25 2 B 2 2. (13) 101og,0[Prx/ tr(Cn)]

Apparently, we need to fjnld such that the desired vall@ Fig. 3. QPSK transmission o = 4 streams over a system with
is enclosed by the two diagonal elementsandz;. Starting  n ' 4 yransmit andViy — 4 receive antennas (uncorrelated chan-
with j = 1, we search for an indek > j for which (13) is  pgy).

fulfilled. If the majorization criterion (10) is fulfilled, such a

k always exists. After the application of the Givens rotations

to Z, j is increased by one andka> j satisfying (13) has streams raises from one &g = % = % for QPSK bring-

to be found again. This procedure terminates afte- 1 ing an increased MSE levef with it compared to the case

steps and during the last step= K — 1 andk = K hold  whens? = 1 would hold, see the definition aof? in Sec-
since the determinants @ and R are the same. The overall tjon 4.2.

complexity to compute bot®), S, andR is only O(K?). This changes when we switch the modulation alphabet to
16-QAM, see Fig. 4. All other parameters are left unchanged.
6. SIMULATION RESULTS First, we notice that all filters perform slightly worse. In the

previous figure, the transmit signal-to-noise ratiQ/ tr(C),)

In our simulation results, we compare the THP GTD-basedvas to small to see that the MMSE THP with non-cooperative
joint transmitter and receiver design (cross marker) presenteéceiver (square marker) from [17] flattens due to the fact that
in this paper, with the joint transmitter and receiver GMD-it does not achieve the full diversity order. In Fig. 4, this can
based decision feedback equalization (circle marker) fromalready be anticipated, and in fact, the square marker curve
[1,2]. Both versions guarantee uniform stream properties (thachieves the diversity ordér+ min(N7x, Nrx) — K = 1,
GTD requires the common MSE level to be below one forsince one stream is precoded linearly. By contrast, both the
stream balancing). For purposes of comparison, we also sinésMD (circle marker) and therefore also the GTD based (cross
ulated the nonlinear MMSE THP (square marker) from [17]marker) version have the full diversity order, see [2]. An-
and the linear MMSE filter (dashed curve) from [18] whereother interesting observation is the intersection between the
the receive filters are forced to be scaled identity matricedDFE-GMD curve (circle marker) and the MMSE THP curve
Clearly, these filters only exist fdk = Ngy but they do not  (square marker). It results from the error propagation of the
balance the individual streams’ MSEs. Nonetheless, we pld®FE in the small and moderate SNR range. The assumption
stream-averaged uncoded bit-error ratios (BERS). of perfect interference subtraction is clearly violated in this

Fig. 3 shows a QPSK transmission &f = 4 streams in  region. Furthermore, the generation of next neighbors due to
a system with\t, = 4 transmit andVgy = 4 receive anten- the modulo operator is not so severe for the THP-GTD (cross
nas averaged over uncorrelated channels. Linear MMSE praiarker) in case of 16-QAM, since only the outer symbol get
coding (dashed curve) [18] with a non-cooperative receiver i§ew nearest neighbors. In addition, the power loss induced by
clearly inferior to nonlinear THP-based precoding or nonlin-o2 > 1 is very small for 16-QAM, since? = 4 = 1.
ear DFE-based equalization. Both the GMD-based and thBoth effects are not as detrimental as the error propagation in
GTD-based schemes clearly outperform the MMSE THP fil-case of decision feedback equalization. For an uncoded BER
ter [17] with a non-cooperative receiver being a scaled idenof 10~*, a gain of 2 dB can be achieved if THP is applied
tity matrix. There are two reasons why the DFE-based systemstead of the DFE.
performs better than the GTD-based one. First, the generation Even larger gains can be obtained when the channel be-
of next neighbors due to the modulo operator is quite cruciatomes correlated as in Fig. 5. Herk, = 8 streams are
for QPSK, since every symbol now has four nearest neightransmitted from aVyx = 8 antenna sender to &rx = 8
bors instead of two. Second, the variangeof the first three  antenna receiver. Due to the correlated scenario, error propa-
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Fig. 4. 16-QAM transmission ofX = 4 streams over a system Fig. 5. 16-QAM transmission ofK = 8 streams over a system
with Nty = 4 transmit andVrx = 4 receive antennas (uncorrelated with Nty = 8 transmit andNgx = 8 receive antennas (correlated

channel).

channel).

gation turns out to be even more severe. For an uncoded BERO] P. Stoica, Y. Jiang, and J. Li, “On MIMO Channel Capacity:
of 10~1, 3 dB can be gained by the THP-GTD compared to
the DFE-GMD, and ifl0~2 is the desired operation point, we

can still save 1 dB.
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