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Abstract—We design Tomlinson–Harashima precoding for
decentralized receivers and frequency-selective channels based
on the minimum mean square error criterion, where the feedfor-
ward filter is restricted to have finite length. Contrary to most
other publications on Tomlinson–Harashima precoding which
rely on solutions for decision feedback equalization to find the
corresponding precoding filters in a heuristic manner, we deduce
the optimization for Tomlinson–Harashima precoding from the
optimization for the linear minimum mean square error transmit
filter. Thereby, we include the precoding order explicitly in the
problem formulation and thus obtain the precoding filter solu-
tions, together with the algorithms to compute the latency time,
i.e., the time difference between application of the precoder at the
transmitter and detection at the receiver and the precoding order
from a single optimization.

Since the algorithm for THP filter computation resulting from
the optimization has a high computational complexity, we present
an alternative algorithm to compute the Tomlinson–Harashima
precoding filters based on a Cholesky factorization with sym-
metric permutation, resulting in an order of complexity that is
the same as for the computation of the linear transmit filters.
The simulations reveal that the latency time optimization can
be omitted without performance degradation for most practical
channel models, i.e., the latency time can be chosen to be the order
of the feedforward filter.

Index Terms—Broadcast channel, Cholesky factorization,
decentralized receivers, nonlinear transmit processing, Tom-
linson–Harashima precoding, Wiener filtering.

I. INTRODUCTION

FOR point-to-point multiple input multiple output (MIMO)
systems, the standard solution is the usage of transmit

and receive filters resulting from joint optimizations as in
[1]–[3], which lead to a diagonalization of the channel into
its eigenmodes. However, when considering the multi-user
multiple input single output (MU-MISO) broadcast scenario,
e.g., the downlink of a mobile communication system, several
decentralized (non-cooperative) receivers are served by one
centralized transmitter. Thus, the joint optimization of transmit
and receive filters as in [1]–[3] is impossible, as signals of
different receivers can only be processed separately. Instead,
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we have to use transmit processing (precoding, [4], [5]), where
the receivers are restricted applying scalar weights only, which
are jointly optimized with the filter applied at the transmitter.
A system with precoding clearly outperforms a system with
only receive processing (see, e.g., [6]), where the receivers
have to equalize the received signals separately due to the
decentralization in the broadcast setup. This is because the
number of degrees of freedom available at each of the receivers
is smaller than the number available at the transmitter.

A major problem for systems with precoding is the avail-
ability of the channel state information (CSI) at the transmitter.
The CSI can be easily obtained from the channel estimation
during reception in time division duplex systems [7], [8], since
the channel can be assumed to be reciprocal. However, there is
a time difference between estimation and application of the CSI
leading to erroneous CSI. In frequency division duplex systems,
the only way to obtain the CSI is feedback (e.g., [9]). Again, the
CSI contains errors due to feedback delay and the quantization
in the feedback channel. In either duplex case, a robust design of
the precoding filter must be performed to take into account the
CSI errors [10]–[13]. Note that we do not consider a robust de-
sign in this paper. Instead, we make the popular assumption of
error-free CSI at the transmitter. However, the optimizations de-
veloped in this paper are the necessary basis for a robust design
and can be extended to be robust as shown in [13] for example.

Linear precoding is an approach to deal with MU-MISO
broadcast channels, where the data signals for the different
receivers are linearly transformed to obtain the transmit signal
(see [5] and references therein). Probably due to the simplicity
of the concept, linear precoding based on the zero-forcing
criterion (transmit zero-forcing filter—TxZF) has gained the
most attention [14]–[18]. However, the TxZF is substantially
outperformed by the transmit Wiener filter (TxWF) that min-
imizes the mean square error (MSE) under a transmit power
constraint [5], [18]–[20] and finds a good trade-off between
interference and noise at the receivers. Alternatively, the trans-
mitter can also use a matched filter (e.g., [21]–[23]) that we do
not consider in this paper, since it is interference limited (see,
e.g., [5]). Another well-researched design criterion for linear
precoding is the maximization of the minimum signal-to-in-
terference-plus-noise-ratio (SINR) under a transmit power
constraint (see, e.g., [24] and [25]). Although SINR maximiza-
tion is of high importance, e.g., the possible data rate directly
relates to the SINR, we do not employ the SINR criterion in
this paper because it cannot be solved analytically (iterative
algorithms of high complexity, as in [24] and [25] have to be
utilized) and its application to nonlinear precoding schemes is
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difficult [26] since the optimization of the precoding order is an
open problem [27].

We will focus on nonlinear precoding in this paper due to the
superior performance compared to linear precoders. One type of
nonlinear precoding minimizes the bit error probability (BEP)
[28], [29]. Unfortunately, analytical solutions exist only for spe-
cial channel matrices [29]. Otherwise, the non-convex optimiza-
tion has to be solved numerically [28]. Thus, we do not consider
BEP minimization in this paper. Likewise, we do not consider
vector precoding [30], [31] since it has prohibitive complexity
due to the necessary closest point search in a lattice (non-poly-
nomial in the number of receivers, e.g., [32] and [33]).

The nonlinear Tomlinson–Harashima precoding (THP) is
based on modulo operators at the receivers and has a complexity
comparable to that of linear precoders, as will be shown in this
paper. Note that THP is strongly related to dirty paper coding
[34]. In fact, THP is a suboptimal implementation of dirty
paper coding (see e.g., [35]). THP was originally proposed
in [36] and [37] to combat intersymbol interference (ISI) in
single-user transmission over frequency selective channels (see
also [38] and references therein). Gibbard et al. [39] employed
THP for an asymmetric single-user transmission to simplify
the mobile terminal. In [40], Ginis et al. applied zero-forcing
THP (ZF-THP) to a digital subscriber line (DSL) system
without optimizing the precoding order, and Fischer et al. [41],
[42] performed spatial equalization (or multi-user separation)
with ZF-THP in multi-user transmission over frequency flat
channels, where the precoding order is optimized. In [43],
Liu et al. designed ZF-THP for code division multiple access
(CDMA) systems similar to [41]. Joham et al. introduced THP
based on the minimum mean square error (MMSE) criterion
for decentralized receivers over frequency flat channels [44]
and frequency-selective channels [45], [46], where both the
precoding order and the latency time are optimized. We will
call this the THP type Wiener filter THP (WF-THP) in the
sequel. In [47], Fischer et al. introduced ordered ZF-THP with
an IIR feedforward filter for frequency selective channels.
Choi et al. [48] proposed ZF-THP for multi-user systems with
frequency-selective channels, where the precoding order is
optimized but the obviously suboptimum choice of zero latency
time is made. Degen et al. [49] designed WF-THP for fre-
quency-selective channels in the frequency domain. Schubert
et al. optimized WF-THP for frequency flat channels with
different weights at the receivers in [50], where an iterative
solution for the equal MSE optimization was developed, but an
exhaustive search for the minimization of the total MSE had
to be applied. For both WF-THP types, Schubert et al. could
not give any precoding order optimization. In [51], Shao et al.
derived WF-THP without precoding order in an intuitive way,
and Kusume et al. [52] presented an algorithm to compute or-
dered WF-THP for flat fading channels whose complexity has
the same order as linear precoding. Liu et al. [53] investigated
precoding order algorithms for ZF-THP and designed ZF-THP
with equal weights at the receivers as in [11] and [44]. THP
with erroneous or partial CSI was considered in [11]–[13],
[54], and [55].

Most of the existing literature introduces THP intuitively and
bases the THP filters on a zero-forcing condition without any

optimization. Thus, it is unclear in which sense the THP fil-
ters are optimal. Contrary to the filters, the precoding order is
found with some optimization. However, it is not ensured that
the optimization for the precoding order fits the underlying op-
timization for the filters. For THP with FIR filters, the need for
an optimization of the latency time seems to be unknown.

Our approach to THP is different. We base the design on an
optimization, namely, on MSE minimization. The speciality of
our formulation is the inclusion of the precoding order and the
latency time in the THP optimization. Therefore, we guarantee
that the THP filters, the precoding order, and the latency time
are designed aiming at the same goal. In previous work [45],
[46], we have already published the resulting WF-THP filters,
which are superior to the state-ofthe-art zero-forcing THP fil-
ters. However, the notation used in this paper is simpler com-
pared to [45] and [46], and we propose a low complexity algo-
rithm for WF-THP over frequency-selective channels.

The contributions of this paper are as follows.
1) We design WF-THP with optimized latency time and pre-

coding order based on a single optimization, where the
feedforward filter is restricted to be FIR.

2) We develop a low complexity algorithm to compute the
WF-THP filters. The analysis of the algorithm reveals that
the WF-THP filters with optimized latency time and pre-
coding order can be computed with the same order of com-
plexity as the linear TxWF.

3) From the structure of the WF-THP solution, it becomes
clear that the optimum latency time cannot be smaller than
the order of the feedforward filter. Additionally, we conjec-
ture from the simulations that the latency time optimization
can even be skipped in realistic scenarios.

4) The simulations reveal that WF-THP clearly outperforms
ZF-THP and the linear precoding approaches.

Since we deduce the WF-THP optimization from the TxWF op-
timization, we review the TxWF in Section II. In Section III, we
show how the WF-THP optimization has to be formulated and
derive the WF-THP filters. Then, we show how the WF-THP fil-
ters can be computed efficiently by employing a symmetrically
permuted Cholesky factorization (e.g., [56]) in Section IV. The
simulation results can be found in Section V.

A. Notation

Vectors and matrices are denoted by lower case bold and cap-
ital bold letters, respectively. We use , “ ,” “ ,” ,

, , , , , and for expectation, convo-
lution, Kronecker product, real part of the argument, trace of a
matrix, complex conjugation, transposition, conjugate transpo-
sition, Euclidian norm, and Frobenius norm, respectively. All
random sequences are assumed to be zero-mean and stationary.
The covariance matrix of the vector random process is
denoted by , whereas the variance of the
scalar random process is denoted by .
The identity matrix is , whose th column is .
We use and for the zero matrix and the

-dimensional zero vector, respectively. The block-diagonal
matrix with the blocks on its diagonal is denoted
by . The unit impulse is , which is
one for and zero otherwise.
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We use the same definition for the derivative of a
scalar with respect to the matrix as in [57], i.e.,
each entry of the resulting matrix is the derivative of the
scalar with respect to the respective entry of . Since the
cost functions of the investigated optimizations are not analytic,
we employ the following derivative (e.g., [58]):

where and .

II. TRANSMIT WIENER FILTER (TxWF)

The linear TxWF with the restriction to be FIR for frequency-
selective channels was first derived in [59] and used when in-
vestigating a single-user system. The extension to multi-user
CDMA systems is found in [60]. We use a different notation than
in [59] and [60] in order to be compatible with the later-needed
notation for THP.

A. System Model

In a system with linear precoding, the data signal
is passed through the FIR precoding filter of order :1

where , . Here, denotes the symbol
alphabet, is the number of receivers, and is the number of
transmit antennas. For notational brevity, we make the simpli-
fying assumption that , i.e.,
the symbols are temporally uncorrelated. The resulting transmit
signal

propagates over the channel of order

where , . The channel output is
perturbed by the zero-mean noise with covariance matrix

and weighted with the scalar receive filter
to get the estimate (cf. Fig. 1)

(1)

1We consider a fixed filter order L. When optimizing also with respect to L,
we would end up with L = 1, i.e., PPP [n] is IIR.

Fig. 1. System model for linear precoding.

which is then mapped to the symbol alphabet by the nearest
neighbor quantizer .

By defining

(2)

where is a block Toeplitz matrix,
the coefficients of the convolution of and can be com-
puted by the product , i.e., the th
block element of is the th coeffient of

. Thus, we can rewrite (1)

(3)

Here, we introduced the selection matrix

(4)

which gives the th row up to the th row of a
matrix when applied from the left. Therefore, is the th
coefficient of . Note that .

B. Derivation of the TxWF

The linear TxWF is found by minimizing the MSE between
the data signal and the estimate under a total transmit
power constraint (see [5]):2

(5)

Here, we introduced the latency time , i.e.,
the data signal is estimated time steps after it has been
applied to the input of the precoding filter . With the made
assumptions, the MSE can be written as [see (3)]

2We could also apply an inequality for the transmit power constraint, that is,
E[kyyy[n]k ] � E , as in [11] and [17]. However, the transmit power constraint
would always be active, i.e., the constraint is an equality, because the MSE can
be decreased by using more transmit power. To simplify the derivation of the
TxWF and WF-THP, we use an equality in the transmit power constraint.
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where we used for the last
summand. For the transmit power constraint, we get

With the last two results, the optimization (5) can be solved with
the method of Lagrangian multipliers. We set the derivatives of
the Lagrangian function with respect to the filter and to
zero and incorporate the transmit power constraint, which leads
to [see [5]]

(6)

with

(7)

where we used the matrix inversion lemma (see, e.g. [61]) and
restrict to be positive real. This result for the precoder
and the estimator is an optimizer of (5) for a given latency
time . Since the latency time is discrete valued, we have to try
all possible values for and choose the one with
minimum MSE (cf. [59]):3

The resulting has to be plugged into and to get
the optimum filters and , respectively.

C. Transmit Zero-Forcing Filter (TxZF)

The optimization for the TxZF follows from (5) by incorpo-
rating the constraint , or
equivalently, . Following similar steps as for the
TxWF, it can be shown that the TxZF can be obtained from the
TxWF solution by replacing with . Note
that the TxZF only exists for .

III. WIENER FILTER TOMLINSON HARASHIMA

PRECODING (WF-THP)

THP for decentralized receivers based on the MMSE criterion
was first presented in [45], where frequency flat and frequency-
selective channels were considered. In [46], the WF-THP opti-
mization of [45] was extended such that not only the FIR filter
coefficients but also the latency time and the precoding order
evolve from one optimization. We will basically follow the ap-
proach of [46] but employ a simpler notation, which allows a
straightforward algorithmic solution in the next section.

3SinceAAA has no special structure [contrary toAAA in (23)], any value
for � between 0 and Q + L can be optimal.

Fig. 2. System model for Tomlinson–Harashima precoding.

A. Preliminaries and Principle of THP

When employing THP, the receivers have to be equipped with
the modulo operators

where , is the modulo constant, denotes the floor
operation which gives the largest integer smaller than or equal
to the argument, and

is the fundamental Voronoi region of the lattice corresponding
to . The modulo operators in Fig. 2 are defined element-
wise, i.e.,

Here, denotes the th entry of . Note that the modulo
operation can also be expressed as

(8)

with the auxiliary vector . We can interpret the
modulo operator as a device that chooses the auxiliary
vector from the lattice such that .
Therefore, we have , if . In the sequel, we
make the standard assumption that the modulo constant is suf-
ficiently large (e.g., and for quadrature
phase shift keying (QPSK) and 16QAM symbols with unit vari-
ance, respectively) such that is fulfilled. Thus,

and is not changed when the modulo operator is ap-
plied. Note that is crucial, because we assume that the
receivers apply the same nearest-neighbor quantizer as for
linear precoding. Without , the quantizer must be re-
designed, because all elements of are mapped into , i.e., the
constellation seen by the receiver is different from . This
restriction on , however, does not mean that the modulo op-
erators are inactive and can be dropped, since the input of the
modulo operator at the transmitter is the sum of and the
outputs of the two feedback filters and .
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Fig. 3. System model for Tomlinson–Harashima precoding with auxiliary
signals.

The modulo operators at the receivers introduce additional
degrees of freedom, since any vector can
be added to the modulo input without changing the output, that
is, . Consequently, the transmitter has the
freedom to generate the signals at the receivers in-
stead of , i.e., the transmitter can choose the fundamental
regions of the modulo operators at the receivers by the choice
of some signal . These degrees of freedom
are optimally utilized by vector precoding (see, e.g., [30] and
[31]). However, vector precoding is very complex due to the
necessary closest point search in a lattice. To avoid this compu-
tationally costly search (exponential in the number of receivers;
see, e.g., [32] and [33]), the heuristic which limits the amplitude
of the signal is employed for THP, i.e., the sum of the per-
muted data signal and the outputs of the spatial feed-
back filter and the temporal feedback filter are passed
through the modulo operator (see Fig. 2).4 By limiting
the amplitude of , the power of the transmit signal is
also limited indirectly for a fixed feedforward filter . As the
zero-forcing vector precoding minimizes the transmit power for
a fixed transformation by the choice of the signal (see [30]),
the heuristic employed for THP is reasonable for ZF-THP. Al-
though transmit power minimization is not optimum for MMSE
vector precoding (see [31]), most publications on regularized
vector precoding [30], [51], [62] also heuristically minimize
the transmit power for a fixed transformation, leading to clearly
better results than zero-forcing vector precoding. Therefore, the
heuristic which limits the amplitude of the signal by the
modulo operator is also reasonable for WF-THP.

With the representation (8) of the modulo operator, we get
Fig. 3 from Fig. 2 by introducing the auxiliary signals at
the transmitter and at the receivers, where the summation
of the auxiliary signal at the transmitter has been moved
to the front of the permutation matrix . Note that Figs. 2 and 3
are fully equivalent, as long as the auxiliary signals in Fig. 3 are
chosen according to (8). Based on Figs. 2 and 3, the following
remarks on THP are possible.

1) The modulo operation at the transmitter automatically
computes the desired value for

4Note that the separation of the feedback operation into FFF and TTT [n] is only
done for notational simplicity, becauseFFF has a special structure, i.e., it is strictly
lower triangular, and TTT [n] only has to be strictly causal. As we will see later,
TTT [n] suppresses the interference of the post-cursors, and FFF combats the inter-
ference due to the other scalar entries of ddd[n]

at the receivers following the strategy
to limit the amplitude of the signal . Thereby,
the virtual desired signal for the input of the
modulo operators at the receivers is created by adding the
signal to the data signal (see Fig. 3). Note that

does not exist in Fig. 2.
2) Not only the transmit signal but also the desired part

of the input of the modulo operators at the receivers
linearly depend on the virtual desired signal (see Fig.
3). Hence, the system between and has similar
properties as the system with linear precoding in Fig. 1.
We can infer that the optimization techniques for linear
precoding are also applicable to the system in Fig. 3 when
we use as the estimate and as the desired signal in
the optimization. Note, however, that the system between

and is nonlinear due to the addition of and
.

3) The estimates at the receivers are the same as the
data signal if the inputs of the modulo operators
at the receivers are the same as the virtual desired signal

, since , in this case, is
due to the assumption that . We can conclude
that must be as similar to as possible. This obser-
vation motivates us to employ the MMSE criterion when
designing THP filters. Additionally, Erez et al. showed in
[63] that the Shannon capacity for AWGN channels can be
reached by a system with a modulo receiver if the received
signal is scaled with an MMSE weight prior to the modulo
operation (see also [64]). In [63], an intuitive explanation
can additionally be found as to why such an inflated lattice
decoder outperforms a lattice decoder without the MMSE
weight.

4) To ensure the realizability of the feedback loop with and
, the filter has to be strictly causal, i.e.,

for , and is constrained to be
lower triangular with zero main diagonal.5 Otherwise, we
would end up with a non-causal feedback and/or a delay-
free loop.

5) Usually, it is stated that the feedforward filter is nec-
essary to form a minimum phase channel, i.e., the inter-
ference of preceding symbols is canceled by , and the
feedback filters and remove the remaining inter-
ference. At this point, we can infer this allocation of re-
sponsibilities neither from Fig. 2 nor from Fig. 3. How-
ever, we will see in the following that the filters resulting
from the WF-THP optimization show these properties (see
Section III-D).

6) For ZF-THP, it can be shown (see, e.g., [4, Th. 3.1]) that
the modulo operator at the transmitter in combination with
the feedback filters and lead to a decorrelation of
the entries of , that is, .
Additionally, the entries of are uniformly distributed
over . Thus, . Although this result is only
applicable to WF-THP for medium to high SNR, we make

5The choice of FFF to be lower triangular with zero main diagonal is made for
notational simplicity. Other structures for FFF are possible as well, e.g., upper
triangular with zero main diagonal.
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the assumption that with
holds (see Section III-D). Note that the known

statistics of and the unknown statistics of are key
differences of THP compared to linear precoding.

7) For the argumentation that the receiver can recover the
data signal , the special structure of the transmitter,
i.e., the partitioning into the permutation matrix and
the filters , , and , is irrelevant. We could com-
pute the signal directly by an exhaustive search and
transform the sum of and the data signal by one
linear filter to get the transmit signal . However, the
exhaustive search is prohibitively complex and is avoided
by the successive computation of the elements of with
the THP feedback loop consisting of , , and the el-
ement-wise modulo operator . The structure of the
filters and , together with the element-wise def-
inition of the modulo operator , cause the succes-
sive computation of the signal , that is, the th entry

is computed based on the preceding entries
.

8) Since the signal is found successively, the order of
computing the entries of has an influence on the per-
formance of the precoder. The importance of the precoding
order can also be understood with Fig. 3. As the system be-
tween and is linear, the combination of , ,

, and is a linear TxWF (not FIR due to the feed-
back loop). As the statistics of depend on the feedback
filters and (cf. (10); the statistics of are given),
the linear TxWF and, thus, its performance, depends on
the choice of and , which depend on . The re-
ordering operation is expressed by the permutation matrix

.
9) Besides the advantage of additional degrees of freedom for

the transmitter, the modulo operators at the receivers have
the disadvantage that the system performance is deterio-
rated by the additionally allowed constellation points at
the receivers. These additional points are introduced by the
modulo operator , since two different received signals
can lead to the same modulo output. Especially, the new
neighbors for the outer symbols of the constellation set in-
duce additional errors. Thus, this effect is more pronounced
for small constellations (e.g., QPSK) because most of the
symbols are outer symbols.

Following the above remarks, we will design the THP filters
by minimizing the MSE between the virtual desired signal
and the estimates since the auxiliary signals and
are generated automatically by the modulo operators. In this
optimization, we have to constrain the structure of the feedback
filters to ensure realizability.

B. System Model

As we know the statistical properties of the modulo output
at the transmitter, i.e., , we

will derive expressions for the virtual desired signal and the
estimates based on . From Fig. 3, we can see that

where the spatial feedback filter has to be lower triangular
with zero main diagonal and the temporal feedback filter must
be strictly causal:

with and some filter order to be determined
later. The -tuple

contains the indices of the reordering, i.e., the th entry
of corresponds to the th entry of the data signal

. In the sequel, will be called the precoding order. The
permutation matrix representing the reordering is defined as

(9)

with and . Consequently, we get
for the virtual desired signal

(10)

Comparing Fig. 3 with Fig. 1, we observe that the estimate
has the same dependence on in Fig. 3 as has on in
Fig. 1. Hence, we can reuse (3):

The channel matrix and the feedforward filter matrix can
be found in (2). The selection matrix is defined in (4).
For the development of the efficient algorithm to compute the
WF-THP filters together with the precoding order and the la-
tency time in the next section, it is helpful to define the permuted

block Toeplitz channel matrix

(11)

where we have introduced the permutation matrices
. Note that only defined

in (9) is used by the precoder. The other permutation matrices
, can be chosen arbitrarily and are only introduced

to simplify the developed algorithms in Section IV. By above
multiplication with the block diagonal permutation matrix

, the block rows
of are permuted differently, e.g., the th block row is
permuted with . With , the estimate reads as

(12)

since .
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C. Derivation of the WF-THP Filters

Similar to the TxWF, the WF-THP filters are found by mini-
mizing the MSE between the signals and under the
transmit power constraint. Additionally, we have to constrain
the structure of the feedback filter :

(13)

with the set of the complex lower triangular ma-
trices whose main diagonal is zero. Here, we introduced the la-
tency time . With (10) and (12), the MSE
(i.e., the cost function) can be rewritten as

(14)

where we made use of and
incorporated the fact that is temporally and spatially un-
correlated, i.e., , and that has
a zero main diagonal. By defining the selection matrix

(15)

which gives the first rows of a matrix with rows, when ap-
plied from the left, we can reformulate the constraint on to be
an element of :

(16)

that is, we constrain the structure of column-wise by setting
the first elements of the th column to zero. Since

(see Fig. 3) and , we
get, for the transmit power constraint

(17)

The solution to the WF-THP optimization (13) can be ob-
tained by incorporating (14), (16), and (17) into the optimization
(13) and using the method of Lagrangian multipliers, as shown
in Appendix I. The optimum latency time and precoding order
follow from

(18)

which are needed to compute the WF-THP filters:

(19)

(20)

(21)

for and otherwise. The
permutation matrix can be obtained by inserting
into (9). The WF-THP weight at the receivers is

(22)
For notational brevity, we have introduced

(23)

with the selection matrix

(24)

which gives the first rows of a matrix with
rows, when applied from the left.

D. Discussion of the WF-THP Solution

Based on the WF-THP solution in (18)–(22) [see also
(28)–(30)], we make following remarks.

1) The feedforward filter in (19) depends only on the
first rows of the channel matrix .6 From
(12), we see that these rows of together with
form the coefficients for , and hence,

in the estimate . As
is the desired part, the feedforward filter combats
the signal portions due to the preceding symbols, viz.

. Similarly, combats the
interference caused by
in the estimate of , as the th column
of only depends on the first rows of .

2) Dividing the matrix into blocks, we see that
the lower block elements of the th block column
for are zero. As a consequence, the coeffi-
cients of resulting from the
feedforward filter solution (19) for a latency time
are zero. This corresponds to a reduction of the feedfor-
ward filter order to . It is intuitively clear that the
properties of a feedforward filter are deteriorated by de-
creasing the filter order, i.e., the MSE is increased. In other
words, the MSE for is always smaller than or equal
to the MSE for any . Hence, the latency time must
always be larger than or equal to the filter order, that is,

. For a strict proof of this state-
ment, see [65].

6Multiplying with SSS eee from the right picks out the B� + ith
column. Only the first B� + i elements of the B� + ith column of
AAA are nonzero for i = 1; . . . ; B.
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3) The product in (21)
multiplied with gives the th coefficient of

, i.e., the weight for the signal portion
in the estimate due to the symbol . Thus,
the temporal feedback filter subtracts the interfer-
ence caused by the succeeding symbols.

4) The spatial feedback filter in (20) is constructed from
the th coefficient of , where
the th column of this coefficient is projected by

, which sets the first elements to zero. The resulting
lower triangular combats the interference caused by

in the estimate
for .

5) With decreasing SNR, the ratio [see (7)] increases.
Therefore, the identity matrix in the definition of
in (23) becomes dominant for low SNR. We can con-
clude that , and hence,

for very low
SNR, i.e., the feedback is switched off. Without feedback,
however, the statistical assumptions for the signal
are no longer valid because . As the
variance assumed for the design is usually
larger than the variance of the data symbols , the
wrong assumption for the covariance matrix of leads
to a feedforward filter , which does not use all of the
available transmit power for low SNR.

6) The first step to compute the WF-THP solution, namely,
the latency time and precoding order optimization (18), is
the most expensive step. For all combinations of the in-
teger and the -tuple , we have
to invert the matrices

, . Thus, the complexity of this step
is . In the next subsection, we show
how this complexity can be reduced dramatically.

E. Successive Precoding Order Computation

To avoid the high complexity of for the
optimum latency time and precoding order computation (18),
the standard suboptimum approach is the successive computa-
tion of the precoding order (like V-BLAST for DFE, e.g.,
[66]). To this end, let us rewrite the cost of (18) by employing
the identity :

(25)

with the matrix [see also (2),
(9), and (11)]

The projector is defined
as [see (38)]

else.

We observe that only depends on the indices
of the precoding order . Thus, the th summand of the cost (25)
only depends on the indices . This property of (25)
motivates us to compute the indices successively: First, com-
pute by minimizing the th summand of (25).
Second, compute the th index of the precoding order by
minimizing the th summand of (25) for fixed :

(26)

where is the set of allowed
values for . Note that .

The precoding order must be optimized with (26) for every
possible to find the latency time
minimizing the sum (25). Thus, the complexity of the latency
time and precoding order optimization is .

F. Zero-Forcing Tomlinson–Harashima Precoding (ZF-THP)

Similar to the respective linear precoders (see Section II),
the ZF-THP optimization can be obtained from the WF-THP
optimization (13) by including the zero-forcing constraint

. The steps to solve
the ZF-THP optimization are similar to the ones used in Ap-
pendix I. By replacing with

we get the ZF-THP solution from the WF-THP solution in
(18)–(22), where can be any
invertible matrix, e.g., .

IV. EFFICIENT PRECODING ORDER AND

LATENCY TIME COMPUTATION

As highlighted in the previous section, the first step in finding
the WF-THP filters is the optimization of the latency time and
the precoding order. For fixed latency time, the precoding order
can be found via (26). Consequently, the optimum latency time
can be obtained by performing (26) for all possibly optimum
values for the latency time.

We will show how the order of complexity in solving the pre-
coding order and latency time optimization can be reduced by
employing a Cholesky factorization with symmetrical permuta-
tion. First, the precoding order optimization (26) is reformulated
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to be able to incorporate it into the computation of the Cholesky
factorization. Second, we develop an algorithm where the la-
tency time optimization is also a byproduct of the Cholesky fac-
torization. Interestingly, the resulting order of complexity for
WF-THP is the same as for the linear TxWF.

A. Optimized Latency Time

We start with making the assumption that the following
Cholesky factorization (e.g., [56]) is known:

(27)

where is unit lower triangular,7

is a non-negative real diagonal
matrix, and the permutation
matrix

is block diagonal [cf. (11)]. From the last line of (27), we see
that is the Cholesky factorization with symmetric per-
mutation of [56, p. 147].

The Cholesky factorization (27) can be used to rewrite the
WF-THP filter expressions in (19)–(21):

(28)

(29)

(30)

with . The alternative expression for
follows from (28) and the transmit power constraint (17).

For a detailed derivation of above expressions, see Appendix II.
We see that only depends on the th

block row of and on the th block diag-
onal element of the lower triangular , since (29) is equivalent
to . Due to the inversion of

in (30), we could conclude that the complete Cholesky factor-
ization (27) is necessary to compute the WF-THP filters. How-
ever, the coefficients of the temporal feedback filter can also be
computed via (21). Consequently, we do not need the complete
Cholesky factorization (27) to compute the WF-THP filters. In-
stead, the th up to the th row of and
the th block diagonal of are sufficient to find
the filters with (21), (28), and (29).

More importantly, when inserting (27) into the cost function
of the precoding order optimization (26), we obtain a simple
rule of how the Cholesky factorization (27) has to be computed
to obtain an optimal , i.e., a precoding order op-
timal with respect to (26). Let
denote the cost of (26). Due to (25) and (44), we get

7That is, LLL is lower triangular with unit main diagonal [56, p. 91].

Note that depends on the index . Inserting (42) and (27)
into above cost of (26) yields

(31)

where we employed (46) and (47) for the second line. We ob-
serve that the cost to be minimized for finding ,
is the th diagonal entry of . Therefore, when the th
diagonal block of is computed according
to (27), the following procedure must be used: For fixed per-
mutation of the last rows/columns of the th block
row/column of permute the first
rows/columns of the th block row/column such that the
resulting th diagonal entry of is minimized. Fortunately,
this minimization can easily be included in the Cholesky factor-
ization algorithm.

The result for the cost in (31) is also very important for an
efficient implementation of the latency time optimization. Sum-
ming (31) up for gives the cost to be minimized
by the latency time (cf. (25)):

(32)

Interestingly, the cost for some latency time only depends on
the th diagonal block of . Thus, above optimiza-
tion for the latency time can be incorporated into the Cholesky
factorization (27) as follows: First, compute the th block di-
agonal entry , , of
such that the resulting permutation matrix represents the
optimal precoding order for . Second, choose the op-
timum latency time according to (32).

The resulting algorithm to compute the WF-THP filters with
optimum precoding order and latency time can be
found in Table I. In order to find the latency time with min-
imum MSE, we initialize the minimum cost found so far
with infinity in line 3. The precoding order optimization for the
latency time is performed in line 9. Lines 13–15 are the core
of the plain Cholesky factorization. In line 17, the latency time
optimization can be found. Since the WF-THP filters only de-
pend on parts of the Cholesky factorization, the factorization is
not computed completely (see line 4). Therefore, the first
diagonal blocks of the projector in line 21 are chosen to be iden-
tity matrices.

The incomplete Cholesky factorization performed by the al-
gorithm in Table I has less complexity than the most costly
line 1: the inversion of the positive definite Hermitian matrix

. This inverse is also needed for the linear
TxWF filter [cf. (6) and (7)]. We can conclude that the order of
complexity to compute the WF-THP filters is ,
i.e., it is the same as for the linear TxWF.

B. Fixed Latency Time

As will be demonstrated by simulation in the next section
(see Fig. 6), the latency time can be set to a fixed value for
most scenarios without performance loss. For a fixed latency
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TABLE I
WF-THP FILTER COMPUTATION WITH OPTIMIZED

PRECODING ORDER AND LATENCY TIME

time , the computation of the WF-THP filters can be further
simplified by employing the following Cholesky factorization
with symmetric permutation:

(33)

where is unit lower triangular, and
is a diagonal matrix. The projector

is defined as

that is we simply set for and
. By incorporating (33) into (19) and (20), and with

steps similar to the ones found in Appendix II, we find, for the
WF-THP feedforward and spatial feedback filter

(34)

(35)

respectively. Note that only the last rows of and the last
diagonal block of are needed to compute the WF-THP

filters with the above expressions, since the coefficients of the
temporal feedback filter can be found with (21). Therefore, we
do not have to perform the complete Cholesky factorization

TABLE II
WF-THP FILTER COMPUTATION WITH OPTIMIZED

PRECODING ORDER AND FIXED LATENCY TIME

(33). Inserting (33) into the cost of the precoding order opti-
mization (26) yields

(36)

From this result, we see that the permutation of the Cholesky
factorization (33) has to minimize the diagonal entries of the
lower right diagonal block of .

The algorithm to compute the WF-THP filters with optimized
precoding order but fixed latency time can be found in Table II.
Again, the matrix inversion in line 1 is the most complex oper-
ation, and the order of complexity is .

V. SIMULATION RESULTS

We begin by investigating the performance of THP for fre-
quency flat channels , as in this case, the optimum
precoders for decentralized modulo receivers are known. As
noted in Section III-A, the combination of the feedback loop
and the modulo operator at the transmitter can be interpreted
as a suboptimum procedure for choosing the perturbation vec-
tors , which would be optimally found through an extremely
costly closest point search in a lattice for each precoded symbol.
This is realized by the vector precoders [30], [31], which re-
quire exponential complexity in the number of users . We set

, since only spatial equalization is necessary. In
Fig. 4, the performance of THP is compared to that of the WF
and ZF vector precoders (WF-VP and ZF-VP) and the linear
precoders (lin. WF and lin. ZF) for an i i.d. channel model and
16QAM symbols, where we also assumed perfect channel state
information at the transmitter. First of all, it can be seen that
nonlinear precoding is far superior to linear precoding. Also,
the WF solutions clearly outperform the respective ZF solu-
tions. Remarkably, the performance of WF-THP is close to that
of the optimum WF-VP. For a bit error rate (BER) of ,
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Fig. 4. Tomlinson–Harashima precoding in comparison with vector precoding
and linear precoding, i.i.d. Frequency flat channel, B = 4 users, N = 4
transmit antennas, 16QAM.

the difference between WF-THP and WF-VP is below 0.7 dB,
and WF-THP even outperforms ZF-VP at a complexity compa-
rable to that of the linear filters. For higher signal-to-noise ratios
(SNRs), however, the slope of the WF-THP graph decreases not-
icably. This can be explained by the fact that with spatial THP

, the symbol of the first user in the precoding order
is always precoded linearly, as it is not superimposed by any
feedback and, therefore, is always left unaltered by the modulo
operator. For high SNRs, the performance of this first user dom-
inates the BER, leading to the observed decrease in the slope of
the THP graphs.

Next, we proceed to frequency-selective channels and inves-
tigate the gain that can be achieved by optimizing the precoding
order with WF-THP, which has been done for frequency flat
channels in [52] and [53] and for frequency selective channels
with ZF-THP in [47]. For the results in Fig. 5, we employed the
standardization “Pedestrian A” power delay profile [67], which
is strongly decreasing. The transmit antennas were assumed to
be arranged in a uniform linear array with spacing, and the
receivers were located at random angles around the transmitter
with 10 Laplacian angular spread. We assumed no temporal
correlations. Here, the gain is considerable; at a BER of ,
we can measure about 1.5 dB. For other power delay profiles,
such as the more spread-out “Vehicular A” scenario, the gain
turns out to be lower. In general, the more average energy the
first path of the channel has, the more important the spatial feed-
back component becomes, which benefits from the optimized
precoding order.

As was noted in the previous section, setting the latency time
to a fixed value can be done without performance degradation in
most scenarios, which is demonstrated in Fig. 6, where the per-
formance of different fixed latency times (see Table II) is com-
pared to that of full optimization (Table I). Further simulations
with different system parameters and channel models indicate
that as long as the power delay profile of the channel model
is decaying, constant, or even “U-shaped,” fixed latency time

performs nearly exactly as well as full optimization,
regardless of all other system parameters. Even for increasing
power delay profiles, the filter order can always be chosen
large enough so that latency optimization can be omitted without

Fig. 5. Effect of precoding order optimization, “Pedestrian A” power delay
profile (Q = 3), 10 Laplacian angular spread,B = 3 users,N = 4 transmit
antennas, filter order L = 4, 16QAM.

Fig. 6. Effect of fixed latency time, “Pedestrian A” power delay profile (Q =
3), 10 Laplacian angular spread, B = 3 users, N = 4 transmit antennas,
filter order L = 2, 16QAM.

Fig. 7. Effect of fixed latency time, exponentially increasing power delay pro-
file (3 dB per tap,Q = 5), 10 Laplacian angular spread,B = 3 users,N = 4
transmit antennas, filter order L = 3, 16QAM.

penalty by setting . Degradation was only observed for
“short” feedforward filters in combination with exponentially
increasing power delay profiles. One such scenario is shown in
Fig. 7. Note that increasing power delay profiles do not usually
occur in wireless communications.
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VI. CONCLUSION

We derived closed-form expressions for FIR THP filters
based on the MMSE criterion. Inserting the Cholesky factor-
ization with symmetric permutation of the regularized channel
Gram into the resulting filter expressions enabled us to find an
algorithm for the WF-THP filter computation with optimum
precoding order and latency time, where the complexity is
comparable to linear precoding filters. We also presented a
second algorithm for fixed latency time with further reduced
complexity. The simulation results showed that WF-THP leads
to near-optimum results and that the optimization of the pre-
coding order is crucial for the performance of WF-THP. We
also observed that the latency time optimization can be omitted
in realistic scenarios and that the latency time can be chosen to
be simply the feedforward filter order.

APPENDIX I
SOLUTION OF THE WF-THP OPTIMIZATION

Following the WF-THP optimization (13), the MSE has to be
minimized with respect to the feedforward filter , the spatial
feedback filter , the temporal feedback filter coefficients ,

, the receivers’ weight , the latency time , and
the precoding order . Contrary to the other quantities, the la-
tency time and the precoding order can
only have discrete values. Thus, we have to use following op-
timum strategy.

1) Find expressions for the WF-THP filters depending on the
latency time and the precoding order. As the WF-THP fil-
ters have to fulfill the constraints of (13), we employ the
Lagrangian function for this step.

2) Plug the solutions for the WF-THP filters into the cost
function of (13). Try all possible values for the latency time

and the precoding order , and choose the ones with
minimum cost.

To find the WF-THP filters depending on the latency time and
the precoding order, we form the Lagrangian function for (13)
by employing (16) and (17)

where and , are the Lagrangian
multipliers. The MSE can be found
in (14). Setting the derivatives of the Lagrangian function

with respect to the THP filters to zero yields the
necessary KKT conditions (e.g., [68], [69]), which we will use
to find the WF-THP filters.

The derivative with respect to the th coeffi-
cient of the temporal feedback filter directly leads to (21)

otherwise.

Thereby, we see that the order of the temporal feedback filter
is , i.e., depends on the latency time . From the

derivative of the Lagrangian function with respect to
the spatial feedback filter , we get

Combining this result with the constraint (16) on the structure
of yields, for the Lagrangian multiplier

Since , we have found (20)

With above results for and , the derivative with respect to
the feedforward filter can be written as

(37)

which must be zero, that is, .
When multiplying with and applying the
trace operator, we obtain an expression that helps to find the
Lagrangian multiplier

where the first term follows from the derivative of
the Lagrangian function with respect to the weight
applied by the receivers. Due to the transmit power constraint
(17), we get [see also (7)]

With this result, the th column of the complex conjugate of the
derivative (37) reads

Here, we made the substitution

(38)
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with the selection matrix de-
fined in (24). The above equation enables us to compute the th
column of the feedforward filter . Collecting the columns in
one matrix gives the following expression for the feedforward
filter:

(39)
Finally, the receivers’ weight is found by inserting the result for

into the transmit power constraint (17):

We see that only the amplitude of the weight is deter-
mined. As any value for the phase of is compensated by the
feedforward filter , we choose , i.e., is simply found
by taking the square root of above equation.

Up to now, we have found expressions for the WF-THP filters
, , , , and for some latency time
and precoding order . Since the previous steps hold for any

choice of and , optimality with respect to (13) still holds.
Before we proceed with solving (13), we plug the results for

the WF-THP filters into the cost function (14) of (13). With the
expressions (20) and (21) for the feedback filters, we get

where we incorporated (38) for the second equality. Note that
due to the transmit power constraint (17).

Therefore, we have with (7)

and with the obvious relation , the MSE reads
as

From (39) for the feedforward filter , we see that the last sum-
mand of above MSE expression is simply .
Thus

(40)

Note that

since sets the last rows to zero
but leaves the th up to the th rows unchanged,
which are picked out by . Therefore, the matrix inversion
lemma (e.g.,[61]) can be used to rewrite the expressions for the
feedforward filter and the weight applied by the receivers:8

(41)

where we introduced the block
matrix

(42)

whose th power is denoted by . Note that only the upper

left block of is nonzero, and from (see
(4) and [57])

(43)

we see that multiplying with from the right gives the
th column of a matrix with columns. Con-

sequently, is the right-most nonzero column of

. Since this column of is not influenced by the
lower right block, and the two antidiagonal blocks are zero, we
can make following substitution:

(44)

with the matrix

which is defined more concisely in (23). The filter solutions re-
sulting from above substitution can be found in (19) and (22).
Additionally, we can plug (19) into the MSE expression (40)
and find

8In particular, we use (XXX XXX + �1 ) XXX = XXX (XXXXXX + �1 ) ,
which holds for anyXXX 2 .
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This MSE expression only depends on the latency time and the
precoding order . Thus, the optimum and with respect
to the WF-THP optimization (13) minimize the above MSE,
as expressed by (18), where the constants and have been
dropped.

APPENDIX II
INCORPORATING THE CHOLESKY FACTORIZATION

In the following, we will use the expression for the feedfor-
ward filter in (41), which is fully equivalent to (19). Inserting
the Cholesky factorization (27) into (41), we obtain

(45)

Note that the inverse of a unit upper (lower) triangular matrix
is unit upper (lower) triangular [56, p. 91]. Thus, is unit
lower triangular. Remember that the selection matrix gives
the first rows of a matrix when applied from the left [see
(24)]. Since is lower triangular, the upper right

block of is zero. Hence, following
equality holds:

which helps to rewrite the inverse found in the expression for
the feedforward filter :

(46)

For the last line, we have used the property of triangular ma-
trices9 that the inverse of the upper left block is the respective
upper left block of the inverse of the triangular matrix.10 As

is unit lower triangular by definition, the th column
of is simply , and
since picks out the th column of a matrix [see
(43)], we have

(47)

and

Before substituting this result into (45) for , remember that
is diagonal and is upper triangular. Consequently, the last

9A diagonal matrix is a special case of a triangular matrix.
10This can be seen from the matrix inversion lemma for partitioned matrices

(e.g., [61]) when including the condition that at least one of the off-diagonal
blocks is zero:

AAA BBB

CCC DDD
=

AAA �AAA BDBDBD

�DDD CACACA DDD

for BBB = 0 and/or CCC = 0.

elements of the th column of
both and are zero, and both occurrences of the projector

can be dropped in (45):

Due to , the last line is equivalent to (28).
To obtain (29), we plug (28) into (20):

Remember that the projector sets the first elements
of a -dimensional vector to zero. As only the first elements
of the th column of the matrix are different
from zero ( is upper triangular), we can replace by

and get

Since is unit lower triangular, its th diagonal
block is also unit lower triangular. Thus, the
projection of the th column with
only sets the th element, i.e., the th diagonal element of

to zero. The diagonal of
can also be set to zero by adding an identity matrix, as is done
in (29).

To get the expression (30) of the temporal feedback filter co-
efficients depending on the Cholesky factorization (27), similar
steps as for the spatial feedback filter (29) are necessary.
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