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Abstract—In this paper we focus on Multi User Multiple
Input Single Output (MU-MISO) systems where one centralized
transmitter with multiple antennas serves several decentralized
single-antenna receivers. Precoding is an attractive way to
combat multiuser interferences because it reduces cost and
power consumption in the user equipment. When implementing
precoding, however, the Channel State Information (CSI) should
be available at the base station. In Frequency Division Duplex
(FDD) systems, the CSI is sent from the receivers by means of a
feedback channel whose data rate is often severely limited. Thus,
CSI is imperfect because it is affected by the errors caused by
channel estimation, feedback delay, truncation, and quantization
of the Karhunen-Loève coefficients. In this paper, we explain
how to model these errors which is the basic premise to design
both robust linear precoding and robust Tomlinson Harashima
precoding, whose performance will be compared.

I. INTRODUCTION

Preequalization at transmission to combat the interuser

interference is necessary in a Multi-User (MU) system with

decentralized receivers. Different Linear Precoding (LP) so-

lutions can be obtained by means of a joint optimization of

the receive and transmit filters according to different criteria.

This optimization has been extended to obtain the Tomlinson-

Harashima Precoding (THP) solution, whose performance is

clearly higher for perfect Channel State Information (CSI).

Therefore, the design of these systems is already known for

the ideal case where CSI is perfectly known at the transmitter.

However, the situation is different where there is erroneous

CSI. Additionally, the application of the SINR criterion is

questionable since it is unclear up to now how to include the

uncertainties in the SINR in a systematic way. Consequently,

it is inevitable to resort to an MSE criterion together with

these precoding schemes for the case of partial CSI.

Most work on precoding with erroneous CSI has mainly

focused on Time Division Duplex (TDD) systems. Contrarily,

in this work we focus on the more extended case of Frequency

Division Duplex (FDD) systems where the transmitter cannot

obtain the CSI from the received signals, even under the

assumption of perfect calibration, because the channels are not

reciprocal. Instead, the receivers estimate their channels and

send the CSI back to the transmitter by means of a feedback

channel. Since the data rate of the feedback channels is often

limited [1], the CSI must be compressed to ensure that the

tight scheduling constraints are satisfied. To limit the CSI sent

to the transmitter we will use a truncation of the Karhunen-

Loève (KL) decomposition in this paper that is optimum in the

sense that it provides dimensionality reduction based on the

channel’s covariance matrix with the smallest possible MSE.

The following sources of errors are considered for the

proposed precoding designs: channel estimation, truncation

of the KL transform, quantization of the KL coefficients, and

feedback channel delay. With the obtained error model, we

develop robust schemes, one for LP and another one for THP,

that take into account the statistical properties of the errors in

the filters design.

This paper is organized as follows. Sections II and III

describe the signal and channel models, respectively, and

in Section IV, the models for the CSI error sources are

developed. Section V presents our robust designs. Illustrative

computer simulations are presented in Section VI and some

concluding remarks are made in Section VII.

II. SYSTEM MODEL

We consider a MU-MISO system with Nt transmit antennas

and K single antenna receivers as depicted in the Fig. 1.

The precoder generates the transmit signal x from all data

symbols u = [u1, . . . , uK ] belonging to the different users

1, . . . , K . The signal xℓ from transmit antenna ℓ propagates

over the channel with the coefficient hk,ℓ to the k-th receiver,

superimposes with the signals of the other transmit antennas,

and is perturbed by the additive white Gaussian noise nk with

variance σ2
n, i.e.,

yk =

Nt
∑

ℓ=1

hk,ℓxℓ + nk = hT
k x + nk (1)

where (•)T denotes transpose and hk = [hk,1, . . . , hk,Nt
]T ∈

CNt×1 represents the flat fading vector channel corresponding

to the k-th user. The transmit signal x must satisfy an average

total transmit power constraint, i.e., E[‖x‖2
2] = Etx.

In THP, the received signal yk is then multiplied by a

gain control factor 1/β. As you can see in Fig. 1, a modulo

operator is applied to the weighted received signal to remove

the ambiguities introduced by the precoder. The resulting

estimate of uk is denoted by ûk. At the transmitter, the

feedforward filter F H suppresses parts of the interference

linearly, whereas the feedback loop with the strictly lower

triangular feedback filter BH − I subtracts the remaining

interferences non-linearly. Note that (•)H indicates conjugate

transpose. Since the order of precoding has an effect on

performance, the data signal u is reordered by means of the
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Fig. 1. Block diagram of the precoding schemes: THP and LP.

permutation filter Π [2]. The signal Πu is passed through the

feedback loop, where the modulo operator M(•) limits the

amplitude of v and thus, the power of the transmit signal x.

In LP, as you can see too in Fig. 1, the data symbols u

are passed through the transmit filter P to form the transmit

signal x = Pu. After multiplying by the gain control g, we
get the estimate ûk = gyk.

III. CHANNEL MODEL

We model the k-th user’s channel vector as a vector of

zero-mean circularly symmetric complex Gaussian distributed

random variables, i.e., hk ∼ NC(0, Ch,k), where Ch,k is the

covariance matrix of the k-th user’s channel. The channels of

the different users are statistically independent.

In the q-th time slot, our model for the k-th user channel

vector is

hk(q) = C
1/2
h,k hw,k(q). (2)

with hw,k(q) being a vector of stationary circularly symme-

tric complex white Gaussian processes (with unit variance

elements) and where (•)1/2 represents the Cholesky decom-

position. According to the modified Jakes model described

in [3], temporal channel correlations are modeled by hw,k(q)
whereas the spatial correlations are introduced by the multi-

plication by C
1/2
h,k [4].

Notice that, according to our model, the channel hk is

stationary because hw,k is stationary. But realistic channels are

often non-stationary and the channel’s covariance matrix has

to be tracked in real situations. However, since the covariance

matrix changes very slowly compared to the channel itself, it

is realistic to assume that it is constant and perfectly known

at both the receiver and the transmitter.

IV. IMPERFECT CSI

In realistic situations, the CSI that is available at the

transmitter is not perfectly known. In this case, it is a matter

of discussion what kind of information has to be sent to the

transmitter and the way of recovering it from the receiver

side. In the system that we propose in this paper, we start

estimating the channel at the receivers using the observations

of the pilot symbols. Then, we project the resulting channel

estimation onto the eigenvectors of the channel’s covariance

matrix to obtain the Karhunen-Loève transformation of the

channel vector which optimally provides a dimensionality

reduction with the smallest possible MSE. The coefficients

of the truncated KL expansion are then quantized prior to

transmission over the feedback channel which introduces a

delay. Taking into account the delay of the feedback channel

as an additional error source, the partial CSI is then used at

the transmitter to reconstruct the channel vector and to design

the filters.

Along this section we will assume that the signals and

errors are uncorrelated.

A. Statistical model for channel estimation errors

We use the heuristic estimator based on Ntr pilot symbols

per time slot q so that the least-squares channel estimates are

hLS,k(q) = S†yk(q) = hk(q) + S†n(q) = hk(q) + nLS,k(q)
(3)

with S† = (SHS)−1SH and S ∈ C
Ntr×Nt containing the

training symbols, nk(q) ∈ CNtr×1 being the AWGN with

variance σ2
n, and where

nLS,k(q) ∼ NC(0, σ2
n(SHS)−1). (4)

B. Statistical model for Karhunen–Loève errors

The eigenvalue decomposition of Ch,k reads as

Ch,k = E[hk(q)hH
k (q)] =

rk
∑

i=1

λk,ivk,iv
H
k,i = V

′

k ΛkV
′

k

H

(5)

where rk is the rank of Ch,k and vk,i and λk,i are, respec-

tively, the i-th eigenvector (or i–th column of the matrix V
′

k )

and the i-th eigenvalue of Ch,k (or the i–th entry of the

diagonal matrix Λk).

Applying the KL transform, the channel vector in the time

slot q can be obtained as V
′

k ck(q), where ck(q) are the coef-

ficients of the KL transform given by ck(q) = V
′H

k hLS,k(q).
No errors are added to our channel estimation if all the

coefficients of the KL transform are employed. To compress

the channel information and taking into account the good

energy compaction properties of the KL decomposition, we

can approximate the vector channels hk(q) by

hKL,k(q) = Vkck(q) = VkV H
k hLS,k(q)

= VkV H
k hk(q) + VkV H

k nLS,k(q)

(6)

where Vk = [vk,1, . . . , vk,r,0Nt×Nt−r
] and r denotes the

number of KL coefficients sent from the receiver after trun-

cation. The noise VkV H
k nLS,k(q) and the signal VkV H

k hk(q)



hk(D) = hQ,k(D) + nQ,k(D) + nKL,k(D) + h
′′

k (D)
where hQ,k(D) is the quantized version of VkV H

k hLS,k(D)
and

CQ,k(D) = E[nQ,k(D)nH

Q,k(D)] = ∆
2

6
VkV H

k

nKL,k(D) ∼ NC

“

0, VkV H

k

“

σ2
n(SHS)−1 + 2

“

1 − J0

“

2π
fD,k
fslot

D

””

Ch,k

”

VkV H

k

”

h
′′

k (D) ∼ NC

`

0, (I − VkV H

k )Ch,k(I − VkV H

k )
´

TABLE I
THE ERRORS MODEL.

lie in the same subspace spanned by the columns of Vk. The-

refore, hKL,k(q) gives us no information about the properties

of hk(q) lying in range(Vk)⊥.
The resulting error contribution due to the KL truncation

reads as

h
′′

k (q) = (I − VkV H
k )hk(q)

∼ NC(0, (I − VkV H
k )Ch,k(I − VkV H

k )). (7)

Note that VkV H
k nLS,k(q) is orthogonal to h

′′

k (q).
So, we have

hk(q) = h
′

k(q) + h
′′

k (q) (8)

with

h
′

k(q) = hKL,k(q) + nKL,k(q) (9)

and nKL,k(q) ∼ NC(0, σ2
nV V H(SHS)−1V V H).

C. Statistical model for quantization errors

The uniform quantizer is the most common of the scalar

quantizers whose principle is rather simple. After the nor-

malization of the KL coefficients ck,i(q), the process of

quantization is as follows. Before transmission, we choose

representants to construct an initial set of codebooks that are

stored at both transmitter and receiver. The receivers perform

a search to find for the components (real and imaginary parts)

of the KL coefficients obtained in each time slot the element

in the codebook that is closest. Then, the corresponding

codebook index is fed back to the transmitter. Finally, the

transmitter simply looks at its codebook and builds the pre-

coder parameters from the selected codeword [5]. Therefore,

hKL,k lies somewhere in the respective cell, i.e.,

hKL,k(q) = hQ,k(q) + nQ,k(q) (10)

where hQ,k is the representant and where nQ,k(q) is assumed

uniformly distributed over the cell, for simplicity reasons.

Remember that hKL,k(q) only lies in the subspace spanned

by the columns of Vk. Under the assumption that also the

quantizer works in this subspace, i.e., hQ,k(q) = Vkh
′

Q,k(q),
we can follow that nQ,k(q) lies also in the subspace spanned

by the columns of Vk. Therefore, we get the rank deficient

covariance matrix for the quantization error

CQ,k = VkCQ
′V H

k (11)

where CQ
′ = ∆2

6 INt×Nt
. Since the KL coefficients are

uncorrelated and consequently, the quantization errors are too,

the variance is 2E[|ǫ|2], where ǫ is the error in the uniform

quantizer and ∆ the quantizer step size [6].

D. Statistical model for feedback delay errors

The transmission over the feedback channel introduces a

delay of D slots. This delay can equivalently be modeled as

follows. The estimator gets outdated training data, i.e., the

observation of the estimator is delayed by D slots. Then, the

respective feedback channel has no delay. The LS estimate

for delayed training data reads as

hLS,k(D) = hk(0) + nLS,k(D) (12)

where nLS,k(D) has the same statistical properties as descri-

bed above in (4). Clearly,

hLS,k(D) = hk(D) + hk(0) − hk(D) + nLS,k(D)

= hk(D) + n
′

LS,k(D) (13)

being n
′

LS,k(D) = hk(0) − hk(D) + nLS,k(D). With the

properties of hk(q) and hw,k(q) showed in Section III, and

taking into account that

Chw,k(D) = E[hw,k(q)hH
w,k(q − D)]

= J0

(

2π
fD,k

fslot
D

)

INt×Nt
(14)

where J0 denotes the zero–th order Bessel function of the first

kind, fD,k is the maximum Doppler frequency, and fslot the
slot rate, we obtain

E[eDeH
D] = 2Ch,k − E[hk(0)hH

k (D)] − E[hk(D)hH
k (0)]

= 2

(

1 − J0

(

2π
fD,k

fslot
D

))

Ch,k. (15)

Here eD = hk(0) − hk(D).
Hence, the new LS error has the property

n
′

LS,k(D) ∼ NC

(

0, C
′

)

(16)

with C
′

= σ2
n(SHS)−1 + 2

(

1 − J0

(

2π fD,k

fslot
D

))

Ch,k).

Therefore, at the end, we find the model of the errors des-

cribed in Table I.

V. ROBUST DESIGNS

The performance of precoding schemes strongly degrades

due to imperfect CSI at the transmitter. However, better

performance can be obtained if the error modeling made in

Section IV is used to design average robust precoding schemes

[7].

Our model for the channel matrix is given by

H(q) = Ĥ(q) + ΘT(q) (17)



where Ĥ(q) is the quantized version of the channel matrix

and ΘT(q) is the error matrix.

To obtain the corresponding filters for each scheme, we

minimize the MSE averaged over ΘT under the transmit

energy constraint. Thus, for THP, the robust transmit Wiener

THP filters can be written as

β =

√

√

√

√

Etx

tr
(

ĤHĤ + CΘT
+ tr(Rn)

Etx
I
)−2

ĤHRsĤ

BH = L−1

F H = βA−1ĤHP TLHD (18)

where ‘tr’ denotes the trace operator, symbols and noise are

white, i.e., Rs = I and Rn = σ2
nI, A is equal to CΘT

+
tr(Rn)

Etx
I and

CΘT
= E[ΘT

H
ΘT] =

K
∑

i=1

E[θ∗
i θT

i ] =

K
∑

i=1

C∗
error,i. (19)

Here, θi is the error vector for the i-th user and Cerror,i is the

corresponding error covariance matrix.

For LP, the robust transmit Wiener filter is given by

P = g−1

(

ĤHĤ + CΘT
+

tr(Rn)

Etx

I

)−1

ĤH (20)

with g−1 = β.
Thus, by considering the statistical properties derived for

the errors in the previous section, we can compensate in

advance the performance degradation due to imperfect CSI

at the transmitter.

VI. SIMULATIONS

In this section, we present the results of computer simu-

lations that we carried out to validate the proposed system.

The results are the mean of 5000 channel realizations and 200
symbols were transmitted per channel realization. The input

bits are QPSK modulated and Nt = K = 8. We consider an

fslot of 1500 Hz at a center frequency of 2 GHz. We have also

considered errors due to the feedback delay, being D equal

to 1 for all users. The Doppler frequency normalized to the

slot period is of 0.037 (v= 30 km/h) which is a relatively fast

fading. The Signal to Noise Ratio (SNR) is defined as the

ratio between the total transmitted energy, Etx, and the noise

spectral density.

You can see in [8] how each type of error degrades

the system more and more. For the feedback channel we

considered, a compression ratio of 12.8 is obtained with a

codebook of 1024 entries, r = 2 KL coefficients and L = 32
bits to encode the real and imaginary value of each channel

coefficient. Fig. 2 shows the poor performance obtained with

non-robust precoding designs. You can see how the non-

robust curves go up for high SNR due to imperfect CSI.

The figure plots the improvement in performance when the

proposed robust schemes for LP and THP are applied. Thus,

we can compensate the channel effects when the mismatch is

caused by the different error sources that have been shown

in this paper. Note that the effect of imperfect CSI is more

pronounced for THP than for LP, but obviously the THP

performance goes beyond the LP performance due to its better

exploitation of the channel characteristics.
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Fig. 2. Comparison between LP and THP: Robust and non-robust schemes

VII. CONCLUSIONS

In this paper, we have shown how an adequate modeling

of CSI errors due to limited feedback channel can be used

to design robust linear and non linear precoders for MU-

MISO systems showing a superior performance with respect

to conventional precoders. We conclude that robust designs

are particularly useful when considering nonlinear precoding

since more performance gains are obtained. This is because

THP are more sensitive against CSI errors than LP.
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