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Erich Kästner, Der Zauberlehrling





Contents

Contents vii

List of Figures ix

1 Introduction and outline 1
1.1 Polymers close to solid surfaces . . . . . . . . . . . . . . . . . . . . . 1
1.2 Theoretical descriptions of polymers . . . . . . . . . . . . . . . . . . 4
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Single polymer adsorption in equilibrium 11
2.1 The diffusion equation approach . . . . . . . . . . . . . . . . . . . . 11
2.2 The Poland-Scheraga framework . . . . . . . . . . . . . . . . . . . . 14
2.3 Adsorption in Brownian dynamics simulations . . . . . . . . . . . . . 19

2.3.1 Brownian dynamics simulation details . . . . . . . . . . . . . 19
2.3.2 Finite size effects and timescales in the adsorption transition 20

2.4 Strong and weak adsorption of ideal & non-ideal polymers . . . . . . 24

3 Friction of single polymers on solid surfaces 29
3.1 Pulling on adsorbed polymers with the AFM . . . . . . . . . . . . . 29

3.1.1 Fixed contact point . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 The sticky case . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.3 The slippery case . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.4 A minimal model for polymer friction at a flat wall . . . . . . 37

3.2 Polymer friction in a Frenkel-Kontorova type model . . . . . . . . . 38
3.3 Polypeptide friction on a hydrophobic and a hydrophilic surface . . . 45

3.3.1 Molecular dynamics simulation details . . . . . . . . . . . . . 47
3.3.2 Peptide mobilities on surfaces and in bulk water . . . . . . . 49
3.3.3 Dissipation mechanisms on hydrophobic and hydrophilic surfaces 50

4 Non-equilibrium adsorption of single polymers 61
4.1 Polymer response to flow fields in bulk solution . . . . . . . . . . . . 62
4.2 Laterally pulled polymers . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Polymers in simple shear flow . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Hydrodynamic interactions in non-equilibrium adsorption . . . . . . 76

vii



CONTENTS

4.5 Adsorption on corrugated surfaces . . . . . . . . . . . . . . . . . . . 79

5 Elasticity of single polymers 89
5.1 A discrete extensible semi-flexible chain model . . . . . . . . . . . . 90

5.1.1 The transfer matrix treatment of DESC . . . . . . . . . . . . 91
5.1.2 Classical and new chain models in the DESC formalism . . . 95

5.2 Polypeptides as alternating copolymers . . . . . . . . . . . . . . . . . 101
5.3 Rotational rigidity in polypeptides and a modified FRC model . . . 105

6 Summary 111

Bibliography 115

Personal Acknowledgements – Persönliche Danksagung 125

Zusammenfassung 127

viii



List of Figures

1.1 Polycarboxylates as incrustation inhibitors . . . . . . . . . . . . . . . 2
1.2 Principle of AFM single polymer experiments . . . . . . . . . . . . . 4
1.3 Visual representations of polymer models used in this work . . . . . 8

2.1 The Poland-Scheraga model as applied to DNA denaturation and
polymer adsorption on a solid surface . . . . . . . . . . . . . . . . . 14

2.2 Polymer adsorption in the Poland-Scheraga model . . . . . . . . . . 18
2.3 Mean inverse height and adsorption potential as functions of the sur-

face interaction parameter . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Adsorption potential as a function of time for a 128mer close to the

desorption transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Mean normalized adsorption energy as a function of the surface in-

teraction parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Overcritical adsorption parameter as a function of the inverse length

1/N and 1/N1/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Schematic geometry of a single polymer adsorbed with a single train

to a surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Schematic geometry of a single polymer AFM experiment . . . . . . 31
3.2 Time evolution of the angle and the force in vertical polymer pulling

for different friction coefficients as obtained from the rod model . . . 35
3.3 Stationary angle and force in horizontal polymer pulling as a function

of the pulling height and the friction coefficient as obtained from the
rod model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Time evolution of the angle in vertical polymer pulling for different
friction coefficients obtained from mechanistic simulations . . . . . . 39

3.5 Time evolution of the angle in horizontal polymer pulling for different
friction coefficients obtained from mechanistic simulations . . . . . . 39

3.6 The Frenkel-Kontorova model for single polymer friction . . . . . . . 41
3.7 Average mobility as a function of the pulling force for a monomer and

a decamer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.8 Average mobility as a function of the pulling force for a decamer on

different lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.9 Average mobility as a function of the polymer length . . . . . . . . . 44

ix



LIST OF FIGURES

3.10 Average single particle mobility as a function of the pulling force . . 46
3.11 Hydrophobic and hydrophilic diamond surfaces as used in MD simu-

lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.12 Time evolution of the friction forces on a polypeptide on hydrophobic

and hydrophilic diamond . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.13 Time evolution of the polypeptide displacement on hydrophobic and

hydrophilic diamond . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.14 Average polypeptide mobilities in bulk water and on hydrophobic and

hydrophilic diamond surfaces . . . . . . . . . . . . . . . . . . . . . . 52
3.15 Average polypeptide end-to-end extension in bulk water and on a

hydrophobic diamond surface . . . . . . . . . . . . . . . . . . . . . . 53
3.16 Average polypeptide radius of gyration in ŷ direction in bulk water
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Chapter 1

Introduction and outline

1.1 Polymers close to solid surfaces

A large number of technological applications makes use of polymers adsorbed to solid
substrates. Especially polyelectrolytes which are polymers with charged or ionizable
monomers can stabilize colloidal suspensions as employed in pharmaceutical or cos-
metic products, or by the food industry [1–5]. Also modern water soluble paints
and anti-limestone washing powder rely on polymer technology. The use of polycar-
boxylates as incrustation inhibitors is explained in Fig. 1.1. On the other hand, via
bridging or depletion forces polymers provide means to control phase separation and
flocculation as used in waste water treatment, oil recovery or mining [5–8]. Poly-
mers function as adhesives and strength enhancing agents, e.g. in paper making,
for adhesive tapes or even glueing metal parts together as used in the automotive
industry [5, 9]. Polymers in the form of thin films adsorbed to substrates or cement
particles can greatly reduce friction forces and are thus widely used as lubricants
[5, 10]. Medical applications such as implants make use of tailor-made combinations
of biological polymers and solid substrates. Biosensors and biologically functional-
ized chips are expected to have great impact not only in the medical sector but also
for other technologies [11]. From a different point of view, many of the biologically
active molecules are macromolecules or polymers, such as the nucleic acids DNA and
RNA, sugar molecules, or the huge families of proteins and polypeptides [12]. Both
to understand their functioning in natural environments and to build up powerful
analysis and separation tools it is vital to learn about the interaction of biopoly-
mers with solid substrates. These extensive fields of industrial applications as well
as fundamental questions in biosciences form the central motivation to investigate
polymers close to surfaces.

In practically all cases mentioned above, the polymer-substrate system is in con-
tact with a solution; other applications involve the presence of a liquid at some
preparatory stage. Biopolymers in contact with solid substrates are virtually always
also immersed in a liquid solvent, usually water. In a large number of applica-
tions and problems these systems are characterized by a small concentration of the
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Figure 1.1: Polycarboxylates, i.e. negatively charged block copolymers mainly de-
rived from acrylic and maleic acid, see a), are common incrustation inhibitors and
are thus widely used in washing powders, desalination plants and other applications
involving heat transfer in solution [5]. These functional polymers make up between
3 and 8 percent by weight of modern washing powders corresponding to a market
of about 2 × 104 tons per year in Germany [13, 14]. Polycarboxylates function as
cobuilders and carriers, i.e. they build complexes with metal ions such as Ca2+ or
Mg2+ and pass these ions on to builders with a larger ion uptake capacity, such
as zeolites. Thus, they support the sequestration of these metal ions and thereby
reduce the formation of calcite crystals. However, recently it has been found that
inhibition of incrustation is also accomplished through the complexation of crystal
nuclei by the polycarboxylates (see b), taken from Ref. [5]) and by the adsorp-
tion of the polycarboxylates on crystallites or on growth surfaces of larger crystals
inhibiting further growth (see c), taken from Ref. [5]) [15, 16]. This process is a
perfect example for the application of functional polymers in conjunction with solid
surfaces of colloidal particles. The progress in understanding the complexation and
adsorption processes has indeed been complemented by simulation tools [15, 17].
d)-f) Electron micrographs demonstrate the efficiency of incrustation inhibition
(taken from Ref. [15]); they show d) a cotton fabric, e) a cotton fiber after a 5
minute exposure to CaCO3 precipitation when calcite deposition is clearly visible
and f) a fiber after 5 minute exposure in the presence of polycarboxylates where
no calcite deposition is observed.
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1.1. POLYMERS CLOSE TO SOLID SURFACES

polymers in the solvent. The so-called dilute regime is reached when characteristic
dimensions of size, such as the range of interaction or the radius of gyration of the
polymer, are smaller than the typical distance between any two polymer molecules
in solution. In other words, in the dilute regime interactions of polymers between
each other need not to be taken into account. Applicationwise, this is an impor-
tant limit, again sometimes due to the dilute character of initial stages in polymer
accumulating systems. On the scientific side so-called single polymer experiments
have become available with the rather recent advent of single molecule probes such
as the atomic force microscope (AFM) [18], optical and magnetic tweezers [19], and
confocal optical methods, e.g. confocal fluorescence microscopy or fluorescence cor-
relation spectroscopy (FCS) [20]. These experimental methods have tremendously
improved the understanding of dilute systems, and in some cases go far beyond
methods averaging over whole ensembles.

One of the most direct experimental means to follow the adsorption of poly-
mers to solid surfaces is to partly pull off the polymer from the surface which it is
adsorbed to and simultaneously measure the force needed to do that. In thermody-
namic equilibrium this process of desorption is reversible and perfectly resembles the
reverse situation of adsorption. A polymer can be forced to desorb from a surface
by increasing the distance of two surfaces which the polymer is bridging. Experi-
mental realizations have been achieved with the surface force apparatus (SFA) with
micrometer sized surfaces and in the single polymer regime with the AFM force
spectroscopy and the tweezers technology [10, 21]. The situation in a typical AFM
experiment is depicted in Fig. 1.2. At the substrate side the polymer can be either
adsorbed by weak interactions, also called physisorbed, or grafted by strong covalent
bonds. At the other side it is covalently bound to the surface of the AFM cantilever
tip whose position can be controlled with a precision between one Ångstrom and
one nanometer along the surface normal, which will in this work be denoted as the
ẑ direction, and in the lateral directions x̂ and ŷ. The bending of the cantilever tip
is detected through the deflection of a laser light beam and can be converted into a
force acting on the cantilever once its bending stiffness has been determined. Using
commercial setups the force resolution is in the piconewton range. By moving the
AFM cantilever in any dimension it is possible to record response forces of the poly-
mer caused by e.g. stretching the polymer, desorbing it from the surface or moving
it across the surface. Since these experiments are typically conducted in solution,
AFM force spectroscopy provides excellent access to many questions of polymer-
surface systems in the dilute polymer regime. Many, but not all of the problems
discussed in the following chapters are related to AFM single molecule experiments
or could be tackled with that approach.

Many applications of polymers that are mentioned above have in common their
inherent non-equilibrium state. Often, such situations are less well understood from
the theoretical point of view and despite great efforts in the past still lack under-
standing in many areas. Also due to the advent of experimental techniques with
sufficient time resolution such as FCS, the theoretical description of single polymer
systems far from equilibrium and their dynamics is an active research area. In this
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controller
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z-distance

IR laser

piezo scanner
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mirror

split photodiode
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Figure 1.2: Principle of AFM single polymer experiments. The polymer is at-
tached to both a solid substrate and the cantilever tip. Using a laser light beam,
the cantilever deflection is recorded. The force acting on the cantilever tip is calcu-
lated from the previously calibrated cantilever spring constant. At the same time
the cantilever position can be controlled in all three dimensions by piezo elements.

work, both equilibrium states and the non-equilibrium dynamics of single polymers
close to surfaces are explored.

1.2 Theoretical descriptions of polymers

Many of the relevant biological macromolecules and industrially used polymers are
so-called linear polymers, i.e. they have an essentially sequential backbone in which
one monomer unit is attached to the next and so forth as schematically depicted
in Fig. 1.2. In this work we will solely focus on this linear type of polymers as
opposed to e.g. branched polymers or comb-like polymers. Even in the case of
very simple systems consisting of only linear polymers in the dilute regime, the
theoretical approaches to polymers at solid-liquid interfaces can be very demanding.
This is connected to the softness of these systems which are mainly characterized
by two facts. Firstly they are typically composed of a large number of molecular
constituents, and secondly the energies that govern the intra- and intermolecular
interactions of these constituents are comparably low. Commonly, the energy scale
is of the order of the thermal energy kBT , where kB and T are the Boltzmann
constant and the absolute temperature, respectively. These two facts cause a huge
number of conformations and realizations to be statistically relevant [22–24], and
make the system very susceptible to perturbations — in a more general sense the
system is soft. Large fluctuations in many observables and the seemingly random
Brownian motion, which both are not typical for phenomena in the macroscopic
world, are two further consequences [25].

From a physical point of view, the interaction forces between solvent and poly-
mer molecules and surface atoms are due to the chemical properties and electron

4



1.2. THEORETICAL DESCRIPTIONS OF POLYMERS

distributions of these molecules. For all of the most relevant systems the rather
fundamental approach solving for these interactions is in principle known. However
this ab initio approach in which basically the Schrödinger equation is solved is cur-
rently only feasible for system in the range of a few hundreds to thousands of atoms
[26]. With very few outstanding exceptions, the calculation of dynamic properties is
limited to the tens of picoseconds timescale and to systems of less than one hundred
atoms [27, 28].

In order to go beyond these limitations, a common approach is to coarse-grain
the system and describe it solely by its constituting atoms instead of the full coupled
set of nuclei and electrons. The energy of the system is calculated using empirically
fitted or ab initio based force fields and potentials, the time evolution in these so-
called atomistic molecular dynamics (MD) simulations is usually done in a classical
Newtonian way [29]. With systems as large as some 104 to 105 atoms, current com-
puter power can be used to tackle problems in the tens to hundreds of nanoseconds
regime.

Considering our interest in the properties of a solute, namely the polymer, it
is worthwile seeking to simplify the description of the comparably huge number of
solvent molecules. In a first step, the solvent molecules can be taken into account
by continuum fields of momentum and mass in the case that the length scale of
interest is larger than the typical solvent length scale. The foundation for that is
the Navier-Stokes equation which is an application of Newton’s equation of motion
to the mass and momentum fields of the solvent [30]. At ambient conditions or under
perturbations of typically moderate magnitude, the solvent properties are virtually
equilibrated and homogeneous. If secondly the dynamics of the problem are slow
enough as compared to the propagation speed of a sound wave, we can assume
instantaneous solvent rearrangements and thus a quasi-stationary situation for the
solute. Hence, the solvent is to a good approximation incompressible, and inertial
forces acting on the solvent molecules can be neglected as compared with viscous
forces. This is the case for non-turbulent flow or vanishing Reynolds number, which
is the ratio of the inertial term and the viscous term. It is given by Re = ρV L/η
where L is a typical length scale of the problem, V a typical solute or flow field
velocity, and ρ and η the density and viscosity of the solvent, respectively. Using
characteristic values from the area of soft matter and biological physics, V ∼ 1 µm/s,
L ∼ 1 µm, and taking the viscosity and density of water, the Reynolds number
amounts to Re ∼ 10−6, and the inertial term can indeed be dropped. With these
three assumptions we arrive at a linear equation for the solvent flow field at position
r in space, the Stokes equation, which reads

∇rp(r)− η∇2
rv(r) = f(r) , (1.1)

where p is the pressure field, v the fluid velocity field, and f the field containing
all external forces, such as gravitational forces on the solvent. Together with the
condition of incompressibility of the fluid,

∇r · v(r) = 0 , (1.2)
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CHAPTER 1. INTRODUCTION AND OUTLINE

the Stokes equation describes the flow response of the solvent, given that the above
three assumptions of a low Reynolds number, fluid incompressibility, and quasi-sta-
tionary flow fields apply.

In a similar way, the equation of motion for a solute i can be written as [31, 32]

mi
d2Ri

dt2
= −ζi

[
dRi

dt
− v(Ri, t)

]
−∇RiU + ξi(t) , (1.3)

which is the Langevin equation that incorporates the particle-solvent interactions
via random noise and a friction term into Newton’s equation of motion. Here, Ri

is the position of particle i, t is the time, mi the particle mass, U an external
potential, and ξi the fluctuating random force due to collisions with the solvent
whose characteristics are chosen such that the Langevin equation obliges Boltzmann
statistics in thermal equilibrium. ζi is the friction coefficient or the inverse mobility
which for a spherical particle of diameter ai can be approximated by the Stokes
formula ζi = µ−1

i = 3πηai [30]. If the timescale of the problem is larger than the
momentum relaxation time τ ∼ mi/ζi ∝ mi/ηai, the inertial term can be dropped
yielding the overdamped version of the Langevin equation,

dRi

dt
− v(Ri, t) = µi [−∇RiU + ξi(t)] . (1.4)

By integrating this simplified equation of motion, which is done in so-called Brownian
dynamics (BD) simulations, the previous problem of solving the dynamics of the
whole solute-solvent system is solved. All further complications due to the solvent
molecules are contained in the solvent flow field v. As for the derivation of the Stokes
equation necessary, we assume an instantaneous solvent relaxation as compared to
the particle relaxation timescale. Even so, the flow field depends on the velocities
and positions of all solute particles in solution, v(R, t) = v(R, t, {Rj ,dRj/dt}),
in addition to any external space and time variation in the flow field caused by
e.g. an imposed shear flow. In a very limited number of cases, it is possible to
calculate the solvent flow profile due to the solutes exactly by solving the Stokes
equation (1.1) with the appropriate boundary conditions. On the contrary it is very
often a good approximation to completely neglect the flow field perturbation caused
by other solutes and hence the hydrodynamic interactions of two or more solute
molecules mediated by solvent collisions. This is called the free-draining case which
is particularly justified in the vicinity of most solid surfaces. There, the presence
of a no-slip boundary interface causes the hydrodynamic interactions between the
solutes to decay faster than they do in bulk solution. This can be seen from the
Oseen and the Blake tensors which are the solutions of the Stokes equation at a
point in space ri for a unit point force acting at another point rj . The Oseen tensor
is the solution for the bulk case and its components read [30, 31]

8πηGO
αβ(ri, rj) =

δαβ

r
+
rαrβ
r3

, (1.5)

where α and β each denote a component of Cartesian coordinates, and the mutual
distance between the points is given by r = |ri − rj |. The decay is to leading
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1.2. THEORETICAL DESCRIPTIONS OF POLYMERS

order given by 1/r, hence the hydrodynamic interaction is of long-ranged nature.
Using the method of images, Blake derived the solution to the same problem with
a no-slip boundary plane situated at z = 0 [33]. For two points in space, which are
near the surface such that their mutual distance is greater than that to the surface,
zi < r > zj , the diagonal components of the Blake tensor in the lateral directions
are given up to leading order by [34]

GB
xx(ri, rj) = GB

yy(ri, rj) =
2zizj
r3xy

+O
(
r−5
xy

)
, (1.6)

where r2xy = (xi−xj)2+(yi−yj)2 is the squared distance of the points projected to the
surface. For the perpendicular direction a similar relationship can be derived. Thus,
the hydrodynamic interaction of two solute particles at Ri and Rj with a mutual
distance of rij = |Rj −Ri| decays to leading order and within scaling precision as
1/rij in the bulk case and 1/r2ij or 1/r3ij for solutes near a surface. Hence specifically
at surfaces free-draining BD simulations capture the essential parts of the physical
picture, and we can even to a quantitative level assume the solvent flow field v(R, t)
to be solely given by the externally applied flow field.

On the side of the solutes, i.e. in our case the polymer, another coarse-graining
can be employed to simplify the picture. The atomistic chain can be coarse-grained
to a discrete chain in which usually spherical beads represent groups of atoms. These
beads are often, but not necessarily identical with chemical monomers, cf. Ref. [35].
Of course, further re-parameterization of the interaction potentials is necessary. One
commonly used model to describe flexible polymers is the freely jointed chain (FJC)
in which the nearest-neighbor monomers are connected by bonds of the same length
a, but where the bonds are uncorrelated along the chain [22]. Excluded volume
effects and other type of non-nearest neighbor interactions can optionally be taken
into account in such ‘bead-necklace’ strings. Simplified polymer models have found
their application both in coarse-grained BD simulations as well as in non-numerical
theoretical approaches, e.g. in the path integral formulation of polymers [35].

Considering available computer resources, it has become apparent over the last
few decades that in order to pursue both equilibrium and dynamic studies in the
biological and soft matter context an appropriate compromise must be chosen from
the numerical and analytical methods present. Within this work we follow this ap-
proach. Besides analytical methods and scaling arguments, three main numerical
tools are used, a) ab initio quantum chemistry to calculate the realistic equilibrium
force response of particular polymers, b) atomistic molecular dynamics to elucidate
dynamic processes and friction of a polypeptide molecule on hydrophobic and hy-
drophilic surfaces, and c) Brownian dynamics simulations for a number of dynamic
problems such as polymer friction and non-equilibrium adsorption of polymers. As
illustrative examples, we show in Fig. 1.3 three visual representations of these meth-
ods. In a) a static ab initio calculation of the electrostatic potential on an electron
density isosurface of a glycine-cysteine-glycine tripeptide is shown, b) is a simula-
tion snapshot of an atomistic MD simulation of a polypeptide in aqueous solution.
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a)

b)

c)

Figure 1.3: Visual representations of polymer models used in this work. a) Elec-
trostatic potential on an iso-surface of the electron density of a glycine-cysteine-
glycine tripeptide as calculated using an ab initio quantum chemistry package.
Red denotes low, blue high values of the potential. b) Simulation snapshot of an
atomistic molecular dynamics (MD) simulation showing a polypeptide consisting
of 15 amino acids in aqueous solution. c) Coarse-grained polymer chain in which
self-avoiding monomer beads are connected to their neighbors by harmonic bonds
of equilibrium length a0. Such models are closely related to analytically treat-
able bond vector polymer models such as the freely jointed chain (FJC). Pictures
throughout this work were generated using GaussView [36], VMD [37], POV-Ray
[38], Adobe Illustrator [39], and CorelDRAW [40]. Graphs were produced using
Origin [41].

Finally, c) shows the underlying idea of a coarse-grained polymer model as used in
Brownian dynamics simulations.

1.3 Thesis outline

This work treats non-equilibrium and equilibrium aspects of polymers in the vicinity
of surfaces, i.e. polymers attached or adsorbed to surfaces and polymers in motion
close to a solid surface. The thesis is divided into chapters according to common
subjects rather than methods. Each chapter starts with a short introduction into
the general topic, which illustrates how this work is related to other contributions
and experiments. At the end of each section its major results are concluded in a
brief summary.
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In Chapter 2 the equilibrium adsorption of a single polymer to a solid, flat sub-
strate is reviewed, which will be useful in later chapters for the understanding of
dynamic, non-equilibrium processes. Two approaches for ideal polymers are de-
scribed. BD simulations and their application to polymer adsorption are discussed.
Special emphasis is put on how simulations of finite duration and system size can
give information on the thermodynamic limit of an infinitely long polymer. The
chapter ends with some remarks on polymer desorption as applied to AFM single
polymer experiments.

The dynamics of adsorption depend on the friction forces that a polymer experi-
ences both in the solvent and on the substrate. The other way around, polymer mo-
bilities on substrates crucially depend on the – usually attractive – polymer-surface
interactions. This interplay is the focus of Chapter 3. It starts with a discussion
on the two regimes of AFM single molecule experiments: polymers firmly attached
to the surface vs. freely sliding ones. The intermediate regime of finite polymer
friction on a solid substrate is analyzed. It is then shown that a well-known sys-
tem, the Frenkel-Kontorova model, can serve as a simplified model for the friction
of a polymer at a corrugated substrate. Finally, the atomistic details of the dissipa-
tive mechanisms in polypeptide motion over solid substrates are studied with MD
simulations. Fundamental differences are shown for an important type of substrate
classification: hydrophobic vs. hydrophilic surfaces.

In Chapter 4 a related non-equilibrium situation is studied, namely the influence
of external flow fields on polymer adsorption. Among other methods BD simula-
tions serve as a valuable tool. For the simple case of a pulled polymer close to a flat,
homogeneous surface it is shown that pulling enhances adsorption. A similar mech-
anism comes into play for simple shear flow. Hydrodynamic effects are studied using
a hydrodynamic coupling formalism which takes the vicinity of a no-slip boundary
caused by the substrate into account. Further it is shown how surface corrugation
affects non-equilibrium adsorption.

Many cases considered in this thesis are far from equilibrium, where linear re-
sponse treatments such as the Gaussian chain approximation usually fail. In a
context going beyond linear response theory, the elastic response of polymers to
stretching forces is treated in Chapter 5. Existing chain models for the elastic-
ity of polymers are extended by a discrete, but extensible and semi-flexible chain
model. Its numerical implementation in a transfer matrix formalism is presented.
The transfer matrix method is extended for alternating copolymers and applied
to polypeptides. Realistic microscopic parameters are determined from ab initio
quantum chemistry calculations. The consequences of rotational rigidity on poly-
mer elasticity are discussed and another chain model is proposed to cope with such
situations. Its application to polypeptides is shown.

In the summary, Chapter 6, the most important conclusions are presented and
possible extensions are briefly discussed.
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Chapter 2

Single polymer adsorption in
equilibrium

The equilibrium adsorption of polymers on solid substrates is a long-studied phe-
nomenon with diverse applications as discussed in Section 1.1. Experimental and
theoretical investigations are numerous, cf. Refs. [1, 35] for references. Important
theoretical contributions in the dilute and semi-dilute regimes have been made by
de Gennes [42, 43] and Eisenriegler et al. [44, 45]. More recent works addressed the
adsorption of polyelectrolytes [46, 47], the decomposition of adsorption forces into
chemical, electrostatic and hydrophobic contributions [48, 49], dynamics of adsorbed
chains [50], and the influence of patterned surfaces [51], just to mention a few. In
this chapter two different methods to treat the adsorption of ideal polymers are
reviewed, the diffusion equation approach in Section 2.1 and the Poland-Scheraga
model in Section 2.2. In Section 2.3 Brownian dynamics (BD) simulations are used
to discuss the equilibrium adsorption of flexible polymers of finite length and finite
monomer exclusion volume. Finally, Section 2.4 analyzes forced partial desorption
as applicable to AFM experiments.

2.1 The diffusion equation approach

In the limit of very long, unperturbed or weakly perturbed chains all coarse-grained
polymer models coincide with the ideal Gaussian chain [31]. This polymer model
has been used in numerous studies, mainly due to its simplicity often leading to
solutions in closed form and due to its generality. Also for the case of polymer
adsorption this approach has been used [52–54]. Here we review some aspects of the
adsorption of an ideal Gaussian chain.

In an external potential U(R) a differential equation for the polymer end-to-end
probability distribution function or Green’s function can be derived which is called

11



CHAPTER 2. SINGLE POLYMER ADSORPTION IN EQUILIBRIUM

the polymer diffusion equation and which resembles the Schrödinger equation for
quantum mechanical systems, but with imaginary time [31, 35, 55],(

a2

6
∇2 − U(R)

kBT

)
Pt(R;R0) =

∂Pt(R;R0)
∂t

, (2.1)

where a is the diameter of one monomer or the so-called Kuhn length, t is the
continuous contour variable with 0 < t < N , and Pt(R;R0) is the probability
distribution function for a chain of length t to end at R given that it starts at R0.
The boundary condition is given by

P0(R;R0) = δ(R−R0) . (2.2)

After solving the eigenvalue equation independent of the contour length,(
a2

6
∇2 − U(R)

kBT
−Ak

)
φk(R) = 0 , (2.3)

for the eigenvalues Ak and eigenfunctions φk(R), we can now write the probabil-
ity distribution function for the end-to-end distance of a chain with N monomers
starting at R0 and ending at RN as

PN (RN ;R0) =
1
Q

∑
k

exp (−AkN)φk(R0)φk(RN ) , (2.4)

where Q is a normalization constant. In the thermodynamic limit N →∞, ground
state dominance (GSD) applies, i.e. only the solution with the lowest eigenvalue A0

contributes. It can be shown that the expectation value of the free energy is within
GSD given by A0kBT . Also, Eq. (2.4) can be solved for vanishing external potential
yielding the well-known Gaussian distribution function

PU=0
N (RN ;R0) =

(
3

2πNa2

)3/2

exp
(
−3(RN −R0)2

2Na2

)
. (2.5)

In a similar fashion we can expand the equilibrium probability distribution func-
tion of finding any monomer of a polymer with N monomers at the position in space
R, WN (R), in the eigenfunctions as

WN (R) =
1
Q′

∫ N

0
dt
∫

d3R0

∫
d3RN

∞∑
k=0

exp (−Akt)φk(R)φk(R0)

×
∞∑
l=0

exp (−Al(N − t))φl(R)φl(RN ) , (2.6)

where Q′ is another normalization constant. Under GSD, this equation simplifies
into

WGSD
N (R) =

1
Q′′

φ2
0(R) , (2.7)
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2.1. THE DIFFUSION EQUATION APPROACH

where Q′′ again provides proper normalization. Using formalisms known from stan-
dard quantum mechanics, one can now solve Eq. (2.3) for an attractive square well
potential at a hard wall with rescaled depth χ and range κ−1,

U(R) =


∞ for Z ≤ 0 (region 0),
−χkBT for 0 < Z < κ−1, (region I) and
0 for κ−1 ≤ Z (region II),

(2.8)

where Z is the component of R in the direction of the surface normal ẑ. After
imposing proper boundary conditions at Z = 0 and Z = κ−1 for both φ0 and its
first spatial derivative dφ0

dZ , we arrive at the standard solution,

φ0
0 = 0 ,

φI
0 = CI sin(KIZ) , and (2.9)

φII
0 = CII exp

(
−KIIZ

)
,

where Ki and Ci are constants to be determined. In all cases the upper indices
i ∈ {0, I, II} denote the regions defined in Eq. (2.8). Using the boundary conditions
the constants Ki are obtained as

KI =
κ−1

a

√
6(χ+A0) , and (2.10)

KII =
κ−1

a

√
−6A0 . (2.11)

Hence, a discrete spectrum or in other words a bound state is only obtained for a
negative free energy, A0 < 0. More precisely, the desorption transition is located at
a finite value of the adsorption internal energy, namely

χ∗ =
π2a2

24κ−2
, (2.12)

as suggested by the boundary conditions. For the adsorbed state we define ∆ =
χ−χ∗ as the rescaled distance from the desorption transition. Expanding Eq. (2.10)
for small ∆ and using Eq. (2.12) we arrive at

〈A〉
NkBT

= A0 = −3κ−2

2a2
∆2 , (2.13)

for the rescaled free energy per monomer in the case of GSD. Close to the desorption
transition, φ0 is dominated by conformations far away from the surface, φII

0 , and we
can write for the expectation value of the adsorption energy per monomer in the
asymptotic limits ∆ → 0 and N →∞

− 〈U〉
NkBT

∼ χ

∫ κ−1

0 dZ (φI
0)

2∫∞
0 dZ (φII

0 )2
∼ 3κ−2

a2
∆ +O

(
∆2
)
, (2.14)
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a) b)

Figure 2.1: The Poland-Scheraga model as applied to a) DNA denaturation and
b) polymer adsorption on a solid surface. The polymer consists of bound, helical
parts or trains with Υi base pairs or monomers and loops or tails with Ωi unbound
pairs of bases or monomers.

where we used Eqs. (2.13) and (2.9). Similarly, the inverse of the mean height is
asymptotically given by

〈Z〉−1 ∼

(∫ κ−1

0 dZ Z(φI
0)

2∫∞
0 dZ (φII

0 )2

)−1

∼
(
κ−1a2

∆
+O

(
∆2
))−1

. (2.15)

Hence, within GSD for both the inverse mean height and the adsorption energy per
monomer, linear scaling in ∆ = χ− χ∗ is obtained.

Summarizing, the diffusion equation approach provides means to calculate the
adsorption behavior of Gaussian polymers in the thermodynamic limit. Methods
already established in quantum physics can be applied and already provide solutions
for simple potentials such as the square well potential, Eq. (2.8).

2.2 The Poland-Scheraga framework

DNA molecules which are the carriers of genetic information consist of phosphate-
linked sugar rings to which one of four nucleotides, abbreviated as A, T, C, and G,
are bound [12]. Two of these nucleotides can bind to each other, A-T and C-G. These
pairs allow two DNA strands of complementary bases to bind and form the typical
double helix. A classical description of the denaturation of a double stranded (ds-)
DNA molecule which can by parts or entirely unbind into its comprising strands
has been formulated by Poland and Scheraga [56]. Considering only complementary
strands in their model, the molecule is comprised of loops or unbound parts and of
bound or helical parts, see Fig. 2.1a). In the simplest form, all loops are assumed
to be symmetric, i.e. the number of bases in both parts of one loop is the same.
Here we shortly review the basics of the Poland-Scheraga model and its application
to the adsorption of a polymer on a solid surface as shown in Fig. 2.1b). The close
resemblance in the formulation will be described in more detail later.

The canonical partition function ZN for a ds-DNA molecule with k symmetric
loops, where one strand of loop i is comprised of Ωi bases, and k bound parts with
Υi base pairs is given by

ZN =
∞∑

k=0


k∏

j=1

[∫ ∞

0
dΥj Zb

Υj

∫ ∞

0
dΩj Zu

Ωj

]
δ

(
N −

k∑
i=1

(Υi + Ωi)

) , (2.16)
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where N =
∑k

i=1(Υi + Ωi) is the total number of monomers on one DNA strand,
i.e. bound or unbound base pairs, δ(x) is the Dirac delta function, and Zu

n and Zb
n

are the canonical partition functions for loops and bound pieces with n monomers,
respectively. The grand-canonical partition function follows as

Zλ =
∫ ∞

0
dN λNZN = (1−ZbZu)−1 , (2.17)

where the grand-canonical partition functions of a loop and a bound part are given
by Zu =

∫∞
0 dΩλΩZu

N and Zb =
∫∞
0 dΥλΥZb

Υ. The statistical weight of a bound
base pair is given by w = expχ where χ is the absolute value of the binding energy
in units of kBT . For simplicity kBT × χ is assumed to be temperature independent
and independent of the bound or non-bound status of the neighboring base pairs.
Thus we can write

Zb =
∫ ∞

0
dΥ (λw)Υ = − [ln(λw)]−1 , (2.18)

which is defined only for λ < w−1. The form of the canonical loop partition function
is taken as

Zu
Ω = V αΩ/(1 + Ω)υ , (2.19)

where V is the fugacity taking into account the loop initiation energy and α is the
fugacity of a free segment which is supposed to be independent of the length of the
loop. The partition function is inversely weighted by a term proportional to the
number of monomers in the loop Ω to the power of υ where υ can be viewed as
the return exponent. Consider now a Gaussian chain with Ω monomers with the
end-to-end probability distribution given by (2.5). For a loop beginning and ending
at the same point in space it follows that PΩ(R,R) =

(
3

2πΩa2

)3/2 ∝ Ω−3/2, and
hence for an ideal polymer in three dimensions υ = 3/2. For non-ideal polymers
and other situations the return exponent differs from 3/2, thus we do not limit the
discussion to υ = 3/2 yet. The grand-canonical partition function of a loop then is

Zu = V

∫ ∞

0
dΩ

(λα)Ω

(1 + Ω)υ
=

V

αλ
Eυ(ln[1/λα]) , (2.20)

where the exponential integral function is defined as En(x) =
∫∞
1 dt exp (−xt)/tn.

The expectation value of the number of bases in the DNA molecule is given by

〈N〉 = λZ ′λ = λ
Zb′Zu + ZbZu′

1−ZbZu
, (2.21)

where dashed functions denote their derivatives with respect to λ, e.g. Z ′λ = ∂Zλ
∂λ .

For λ < α−1 which can always be fulfilled, the bound partition function and its
derivative are finite, 0 < Zu,Zu′ < ∞. Thus, in the thermodynamic limit, 〈N〉 →
∞, either due to Eq. (2.21)

ZuZb = 1 (2.22)
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or due to Eq. (2.20)
λα = 1 , (2.23)

has to hold. The thermodynamic minimization principle states that the phase with
the smallest value of the fugacity λ, and accordingly the lowest chemical potential
is realized. Inspection of (2.20) shows that we have

for λ→ α−1:


Zu →∞,Zu′ →∞ for υ ≤ 1,
Zu <∞,Zu′ →∞ for 1 < υ ≤ 2, and
Zu <∞,Zu′ <∞ for 2 < υ.

(2.24)

Hence, for any υ and large enough w the thermodynamic behavior is determined
by Eq. (2.22), but for υ > 1 there is a phase transition located at a critical value
of w∗, below which (w < w∗) Eq. (2.22) can no longer be satisfied and where the
thermodynamic limit is obtained by Eq. (2.23). From the expression for the fraction
of bound monomers,

〈Υ〉
〈N〉

=
w

〈N〉
∂ lnZλ

∂w
=
(

1 +
Zu′Zb

ZuZb′

)−1

, (2.25)

it is seen that the phase with w < w∗ is completely unbound, 〈Υ〉/〈N〉 = 0. In
conjunction with Eq. (2.24) we infer that for υ ≤ 1 the DNA is always bound with
a finite fraction of helical segments irrespective of the temperature or conversely the
value of w. For 1 < υ ≤ 2 there is a continuous phase transition with the fraction
of bound monomers decreasing to zero for λ→ α−1. For υ > 2 the phase transition
is of discontinuous type with a jump in the fraction of bound monomers at λ = α−1

from a finite value to zero.
The binding and unbinding of DNA segments is indeed closely related to polymer

adsorption to a flat wall. The height probability distribution function for an ideal
polymer in one dimension with a contour length t and starting at height Z0 reads
Pt(Z;Z0) = 1/(

√
2πta2) × exp

(
−[Z − Z0]2/2ta2

)
, see also Eq. (2.5). This suggests

υ = 1/2 and an always bound state for an adsorbing polymer in the vicinity of
a penetrable wall, e.g. a polymer at an interface between immiscible fluids. For
the case of an impenetrable wall, as depicted in Fig. 2.1b), the method of images
is used to construct the height probability distribution function close to the wall
with the boundary condition Pw

t (Z = 0;Z0) = 0, yielding Pw
t (Z;Z0) ∝ Pt(Z;Z0)−

Pt(Z;−Z0). Expanding for small starting heights Z0 we get

Pw
t (Z;Z0) =

√
2ZZ0√
πt3a3

exp
(
− Z2

2ta2

)
, (2.26)

confirming the result from Section 2.1 that polymer adsorption to an impenetrable
wall is a continuous transition since 1 < υ = 3/2 ≤ 2. The expectation value of
the height averaged over all monomers in one loop of length Ωi starting at Z0 = 0,
〈ZΩi〉, is given by

〈ZΩi〉 =
1
Ωi

∫ Ωi

0
dt

∫∞
0 dZ ZPw

t (Z; 0)Pw
Ωi−t(Z; 0)∫∞

0 dZ Pw
t (Z; 0)Pw

Ωi−t(Z; 0)
=
a

2

√
πΩi

2
, (2.27)
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which shows that the loops perform a rescaled ideal Gaussian random walk in the ẑ
direction, 〈ZΩi〉 ∝ Ω1/2

i . Thus the mean height of any polymer loop, 〈Z〉, is obtained
via

〈Z〉 =
a

2

√
π

2

〈
Ω1/2

〉
〈k〉

=
a

2 〈k〉

√
π

2
ZbV

1−ZbZu

∫ ∞

0
dΩ

(αλ)Ω Ω1/2

(1 + Ω)υ , (2.28)

where the latter expression can be approximately written as V
∫∞
0 dΩ (αλ)ΩΩ1/2

(1+Ω)υ ≈

V
∫∞
0 dΩ (αλ)Ω

(1+Ω)υ−1/2 ≡ Zu(υ − 1/2). With the average number of loops,

〈k〉 = V
∂ lnZλ

∂V
=

ZbZu

1−ZbZu
, (2.29)

the final result for the average height of the loops is simply

〈Z〉 =
a

2

√
π

2
Zu(υ − 1/2)
Zu(υ)

. (2.30)

Other quantities of interest are the mean number of monomers per train, 〈Υ〉/〈k〉,
and the mean number of monomers per loop, 〈Ω〉/〈k〉. In the adsorbed regime, we
can use Eqs. (2.18) and (2.22) to show that

〈Υ〉
〈k〉

= λ
Zb′

Zb
= Zb =

1
Zu

. (2.31)

Using the notation introduced for Eq. (2.30), we can write λZu′ = V
∫∞
0 dΩ (αλ)ΩΩ

(1+Ω)υ ≈

V
∫∞
0 dΩ (αλ)Ω

(1+Ω)υ−1 ≡ Zu(υ − 1), and get

〈Ω〉
〈k〉

= λ
Zu′

Zu
=
Zu(υ − 1)
Zu(υ)

. (2.32)

With the same notation and applying the thermodynamic limit one can simplify
Eq. (2.25) and write short-hand for the fraction of adsorbed monomers

〈Υ〉
〈N〉

= (1 + Zu(υ − 1))−1 . (2.33)

As discussed previously, in the adsorbed phase we have λ < α−1, or in general

λ = α−1(1− δ) , (2.34)

where 0 < δ < 1 is a measure for the distance from the phase transition. Using
Eq. (2.20) we plot in Fig. 2.2 the rescaled average height of the loops, 〈Z〉/a (solid
line), the mean number of monomers per loop, 〈Ω〉/〈k〉 (dot-dashed line), the mean
number of monomers per train, 〈Υ〉/〈k〉 (dotted line), and the fraction of adsorbed
monomers, 〈Υ〉/〈N〉 (dashed line), in the adsorbed regime as a function of δ. For

17



CHAPTER 2. SINGLE POLYMER ADSORPTION IN EQUILIBRIUM

Figure 2.2: Polymer adsorption in the Poland-Scheraga model. Shown is the
rescaled average height of the loops, 〈Z〉/a (solid line, Eq. (2.30)), the mean number
of monomers per loop, 〈Ω〉/〈k〉 (dot-dashed line, Eq. (2.32)), the mean number of
monomers per train, 〈Υ〉/〈k〉 (dotted line, Eq. (2.31)), and the fraction of adsorbed
monomers, 〈Υ〉/〈N〉 (dashed line, Eq. (2.33)), in the adsorbed regime. δ measures
the distance from the desorption transition (δ = 0) and is defined by Eq. (2.34).
For 〈Υ〉/〈k〉 and 〈Υ〉/〈N〉 we use V = 1 as an exemplary case. δ = 0 corresponds
to the adsorption transition where T = T ∗; δ = 1 corresponds to T → 0; hence
only the adsorbed, low-temperature phase is shown.

〈Υ〉/〈N〉 and 〈Υ〉/〈k〉 we use V = 1. More intuitively, δ can also be related to
the reduced temperature of the system T̃ = (T − T ∗)/T ∗ for a given value of the
adsorption energy χ, or conversely to the reduced value of the adsorption energy
∆ = χ − χ∗ for a given temperature. Again, symbols with asterisks denote their
value at the critical adsorption transition. Close to the phase transition in the
adsorbed regime we write w = expχ ≈ w∗(1 + ∆) from which follows ∆ ≈ χ∗T̃ .
Using the thermodynamic limit Eq. (2.22) and an expansion of Eq. (2.20) for small
δ, we get for the case of 1 < υ ≤ 2 to leading order in δ

∆ = V δυ−1Γ(1− υ) +O (δ) , (2.35)

where Γ(x) is the Euler Gamma function. As one exemplary case for the adsorption
of an ideal polymer at a hard wall (υ = 3/2) we mention that via an expansion for
small δ the critical exponent for the average fraction of adsorbed monomers turns
out to be 1,

〈Υ〉 / 〈N〉 ∼ δ2−υ ∼ ∆−υ−2
υ−1 = ∆ , (2.36)

which is strong evidence for the criticality of polymer adsorption and its universality
since the result of Section 2.1, Eq. (2.14), is recovered.
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2.3. ADSORPTION IN BROWNIAN DYNAMICS SIMULATIONS

Concluding, the Poland-Scheraga model turns out to be a useful method to
study Gaussian polymers close to surfaces with a contact adsorption potential as in
Eq. (2.18). This makes it possible to unequivocally define tails, trains and loops in
a similar fashion as for lattice models [24] and to calculate their properties in the
thermodynamic limit.

2.3 Adsorption in Brownian dynamics simulations

There is a long tradition to use BD and Monte Carlo simulations to investigate
polymer adsorption. One reason is that exactly treatable models like the Gaussian
chain lack certain features of real polymers such as a finite polymer extensibility,
excluded volume interactions, semi-flexibility or frozen disorder just to mention a
few. Including these properties often means that analytical solutions beyond the
mean field level are no longer achievable. Additionally, with BD simulations dynamic
properties as well as non-equilibrium effects can be studied. This procedure will be
followed in Chapter 4. Here we take a look at the case of equilibrium adsorption in
BD simulations.

2.3.1 Brownian dynamics simulation details

The simplified polymer model adopted in our BD simulations consists of N monomer
beads interacting with each other via a potential Upoly and with a flat wall via a
potential U surf , resulting in a total potential of U = Upoly + U surf . For the moment
hydrodynamic effects are neglected since close to a solid surface screening makes
hydrodynamic interaction short-ranged. Neglecting the inertial term, the position
of the ith monomer, Ri = (Xi, Yi, Zi), is given by the position Langevin equation

dRi

dt
= µ [−∇RiU(t) + ξi(t)] , (2.37)

where ξi is a vectorial random force satisfying〈
ξp
i (t)ξq

j (t
′)
〉

= 2kBTδijδpqδ(t− t′)/µ , (2.38)

and µ is the bare monomer mobility (p and q denote vector components). A sketch
of the model including symbol definitions is shown in Fig. 4.1 on page 62.

The simulations are done via discretizing Eq. (2.37) with a time step ∆t and
rescaling all length scales by the equilibrium bond length between two monomers,
a, leading to R̃i = Ri/a. The discretized Langevin equation as a function of the
discrete time step variable n = t/∆t reads

R̃i(n+ 1) = R̃i(n) + µ̃
[
−∇R̃i

Ũ(n) +
√

2/µ̃ξ̃i(n)
]
, (2.39)

where we used the dimensionless potential, Ũ = U/kBT , and the rescaled random
force with unity variance, 〈ξ̃p

i (n)ξ̃q
j (n

′)〉 = δijδpqδnn′ . The rescaled mobility µ̃ =
µkBT∆t/a2 is the diffusion constant in units of the bond length a and time step ∆t.
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The intramolecular potential Ũpoly contains two terms,

Ũpoly = k̃/2
∑

i

(r̃i − 1)2 + ε
∑
i<j

(
r̃−12
ij − 2r̃−6

ij

)
, (2.40)

where r̃ij =
∣∣∣R̃j − R̃i

∣∣∣ is the rescaled monomer distance and r̃i = r̃i,i+1 the distance
of nearest neighbors. The first term ensures the chain connectivity by harmonic
bonds around the equilibrium length a with a rescaled spring constant k̃ = 200,
the second is a truncated Lennard-Jones potential with a rescaled parameter ε = 2
which is only used for r̃ij < 1 to avoid self-intersection of the chain. Since the spring
constant is rather large, our model of a flexible polymer is very closely related to a
FJC taking excluded volume into account.

The attractive monomer-surface interaction potential decays exponentially with
the distance from the surface,

Ũ surf = −χ
∑

i

exp
(
−κ̃Z̃i

)
, (2.41)

where κ̃−1 = κ−1/a and χ are the rescaled decay length and the rescaled interaction
parameter, respectively. For electrostatically driven adsorption, the interaction pa-
rameter χ can be written as χ = 2πσsurfσpoly`B/κa

2 = σsurfσpolye
2/2εkBTκa

2, where
we used the surface charge density measured in units of the elementary charge e per
unit area a2, σsurf , the polymer line charge density measured in units of e and a,
σpoly, and the decay length κ−1 as the screening length. `B is the Bjerrum length
`B = e2/4πεkBT where ε is the dielectric constant of water. However, in this work
we use the exponential potential as a generic form to study short-ranged surface at-
traction and have in mind also hydrophobic or van-der-Waals interactions. To make
it very short-ranged, we use κ̃−1 = 1/2. We also include a hard wall interaction of
the monomers at the wall-liquid boundary, i.e. Ũ surf(Z̃i < 0) = ∞.

We use a rescaled time step of µ̃ = 10−4 and simulate for at least n ≥ 108 sim-
ulation steps. The first 20% of these steps are disregarded for equilibration. Every
1000 steps the configuration is recorded. Data are obtained by block averaging, sta-
tistical errors are obtained from the standard deviation of the block means and are
only shown when larger than the symbol size. Simulations are performed for poly-
mers of different length (1 ≤ N ≤ 512) and for different values of the adsorption
strength (10−4 ≤ χ ≤ 100).

2.3.2 Finite size effects and timescales in the adsorption transition

The simulations are started with an adsorbed (Z̃i = 0, for all i ∈ {1 . . . N}) and lin-
early aligned polymer. In thermodynamic equilibrium, any polymer of finite length
will due to entropic reasons be driven into the semi-infinite half-space, no matter
how strong the adsorption strength is. On the other hand, a dynamic simulation of
necessarily finite duration only probes a small part of the configurational space. It
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2.3. ADSORPTION IN BROWNIAN DYNAMICS SIMULATIONS

turns out that by carefully choosing the polymer length and the simulation dura-
tion, information about polymer adsorption in the asymptotic limit of an infinitely
long polymer can be gained, as we discuss now. On the scaling level we approxi-
mate the adsorption kinetics of a polymer consisting of N monomers in the surface
potential Eq. (2.41) by a Kramers escape problem [57] from a simplified potential
characterized by a constant force −Nχκ̃ and finite range κ̃−1. In this simplified
case, the Kramers escape time turns out to be τK = 2τD(exp (α)−α− 1)/α2, where
τD = Nκ−2/2µkBT is the time needed for diffusing a distance κ−1 assuming Rouse
dynamics and α = Nχ the dimensionless work along the escape coordinate. The
ratio of τK/τD increases exponentially with the number of monomers and the po-
tential strength, which means that escape from the adsorption potential requires
exponentially long simulation time. This opens up a finite time window in the do-
main τD < t < τK within which a polymer of finite length has enough time to diffuse
over the relevant length scale set by the potential range κ−1, but at the same time
stays adsorbed in the potential. Clearly, this time window widens with increasing
monomer number N , or, conversely, shrinks for too short polymers; in the simula-
tions we made sure to stay inside this window. Note that this calculation neglects the
conformational polymer entropy since we model the escape barrier by the internal
energy and not the free energy, and thus the argument only serves as a rough guide.
Another important timescale is the relaxation time of the longest normal mode,
which in the free-draining case or Rouse dynamics is given by τR = N2a2/3π2µkBT .
The duration t of our simulations satisfies the more stringent condition t > τR for all
polymer lengths, though we stress that the actual relaxation time in the adsorbed
state, τD, is much shorter than τR.

The transition between the adsorbed and desorbed state can be quantified with
different observables, e.g. the adsorption potential energy [44], the polymer mean
height [47], the number of adsorbed monomers [50], or the radius of gyration per-
pendicular to the surface [51]. In Fig. 2.3 we plot the mean adsorption potential per
monomer, 〈−Ũ surf〉/N , calculated from Eq. (2.41), and the mean inverse height of
the polymer from the surface, 〈h̃−1〉 = 〈1/(

∑N
i=1 Z̃i/N)〉, for a 128mer as a function

of χ. The number of simulation steps is n = t/∆t = 108. In the thermodynamic
limit N → ∞ both observables are expected to go to zero in a continuous fashion
at the adsorption transition χ∗, as predicted in Sections 2.1 and 2.2, cf. Eqs. (2.14),
(2.12), and (2.15). However, as rationalized above, it is impossible to pinpoint the
adsorption transition with a finite-duration simulation of a finite-length polymer.
We illustrate this in Fig. 2.4 where we plot the time evolution of −Ũ surf/N for an
extended simulation consisting of n = t/∆t = 6× 108 simulation steps for χ = 0.94
which is close to the estimated critical adsorption strength. During a process of
“equilibration” within 0 < t < τR the average adsorption energy decreases and
reaches a mean value of about −〈Ũ surf〉/N ≈ 0.08 for an intermittent time range.
After t ≈ 70τR the polymer desorbs from the surface and freely diffuses in the
half space. This shows the general problem in determining the critical adsorption
strength unequivocally since irreversible desorption from the surface will happen
eventually in the long-time limit for any adsorption strength.
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Figure 2.3: Mean inverse height 〈h̃−1〉 (stars) and mean adsorption potential
〈−Ũ surf〉/N (filled circles) for a 128mer as functions of the surface interaction
parameter χ without pulling force. Inset shows an excerpt on a linear scaled axis.

Figure 2.4: Adsorption potential −Ũ surf/N for a 128mer close to the desorption
transition (at χ = 0.94) as a function of time in units of the Rouse relaxation time
t/τR. Inset shows the late desorption event on a linear scaled axis.
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Figure 2.5: Mean normalized adsorption energy W̃ = −〈Ũ surf〉/Nχ for a dimer
(diamonds) and a 128mer (circles) as a function of the surface interaction parameter
χ. The simulation time is t/τR ≈ 7.4 · 105 and 18.1, respectively. The lines depict
the definition of the overcritical adsorption strength, χocrit ≡ χ(W̃ = 1/2), which
is found to be χocrit = 4.46 and 2.55 for N = 2 and 128, respectively.

In Fig. 2.5 we plot the mean adsorption potential per monomer normalized by the
adsorption strength, W̃ = −〈Ũ surf〉/Nχ, for a 128mer and a dimer, obtained from
simulations over n = t/∆t = 108 (128mer) and n = 109 (dimer) iteration steps. This
is a function between 0 (desorbed regime) and 1 (zero temperature adsorbed ground
state). Close to the desorption transition at χ∗, W̃ scales linear in log (χ− χ∗), i.e.
for small ∆ = χ− χ∗ the results for a Gaussian polymer, Eqs. (2.14) and (2.36) are
recovered.

To circumvent the problem of irreversible polymer desorption close to the crit-
ical transition, we define as an ‘overcritical’ adsorption strength the value of χ, at
which the mean normalized adsorption potential is half its maximum value, i.e.
χocrit ≡ χ(W̃ = 1/2). This quantity can be determined with high precision since the
escape time τK at these rather elevated adsorption strengths is much higher than
the relaxation time τD and it is easy to perform a simulation in the intermediate
time window τD < t < τK . We carefully checked that the use of this heuristic over-
critical parameter does not influence our main conclusion in an essential way. The
overcritical values of the adsorption strength are presented in Fig. 2.6 for polymers
of different length. The results can be fitted linearly in 1/N and give the asymp-
totic result χocrit(N → ∞) = 2.5 ± 0.15. For the longest polymers a fit linear in
1/N1/2 works equally well (shown in the inset of Fig. 2.6), yielding the equivalent
result χocrit(N → ∞) = 2.4± 0.1, in agreement with previous arguments [58]. The
precise finite-length scaling behavior is disputed in the literature, cf. Ref. [59] and
references therein, but is relevant to our results neither in the equilibrium nor the
non-equilibrium case.
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Figure 2.6: Overcritical adsorption parameter χocrit ≡ χ(W̃ = 1/2) as a function
of the inverse length 1/N . A linear fit to the data is also shown and gives χocrit(N →
∞) = 2.5±0.15. The inset shows the overcritical adsorption parameter as a function
of N−1/2 where the fit gives χocrit(N →∞) = 2.4± 0.1.

Summarizing, we have demonstrated that the careful use of BD simulations of
necessarily finite polymer length and simulation time does provide information on
the adsorption transition which itself is only well-defined in the thermodynamic limit
of infinite polymer length. The scaling behavior of some observables is preserved as
compared to predictions of Gaussian chain models, see Sections 2.1 and 2.2.

2.4 Strong and weak adsorption limits of ideal and non-
ideal polymers

As described in Section 1.1, AFM technology can be used to partly desorb a polymer
from a surface and measure the force needed to do that, cf. Fig. 1.2. The confor-
mation of a partly adsorbed polymer which is being held with one end at some
height D in solution depends on the adsorption strength with which the polymer is
(reversibly) bound to the surface and on its intrinsic stiffness. In the case of strong
adsorption the force needed to desorb the polymer is large compared to thermal
forces. For weak enough adsorption, thermal fluctuations of the free chain need to
be taken into consideration.

For simplicity we assume that the polymer consists of a single train with Υ
monomers adsorbed to the surface at Z = 0 and a polymer part in solution having
Ω monomers, see also Fig. 2.7. The total number of monomers is given byN = Υ+Ω.
The position of the free end of the polymer is assumed to be perfectly controlled
and given by the vertical distance Z = D of the ‘first’ monomer with respect to
surface. The stretching free energy Astretch of a polymer made of Ω monomers and
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Figure 2.7: Schematic geometry of a single polymer adsorbed with a single train
to a surface. The number of monomers in the train (from the end of the chain I
to the contact point C) is Υ, the number of monomers in the tail (between C and
the start of the chain J) is Ω = N −Υ. The height of the first monomer is denoted
by D.

fixed with its end points to a distance D can in general be written as an integral
over a stretching force, Fstretch,

Astretch(Ω, D) =
∫ D

0
dZ Fstretch(Ω, Z) . (2.42)

Similarly, one can define a free energy of adsorption Aads which in general is a
function of all monomer positions. When the attractive interaction is short ranged,
e.g. by screening of electrostatic attraction between monomers and the surface, the
free energy of adsorption can be written as a contact potential,

Aads(Υ) = −ωakBTΥ , (2.43)

where ω is the adsorption free energy per unit length and kBT . The total free energy
of the system is given by the sum of the terms, Atot = Astretch(Ω, D)+Aads(N −Ω).
The equilibrium number of monomers in the desorbed part, Ω∗, is determined by

∂Atot(Ω, D)
∂Ω

∣∣∣∣
Ω=Ω∗

!= 0 , (2.44)

which in the case of the contact potential (2.43) gives ωakBT +
∫ D
0 dZ Fads(Ω∗, Z) =

0. The total force needed for desorbing Ω monomers, Ftot, is given by

Ftot(D) =
dAtot(Ω, D′)

dD′

∣∣∣∣
Ω=Ω∗,D′=D

=
(
∂Atot(Ω, D′)

∂D′
+
∂Atot(Ω, D′)

∂Ω
∂Ω
∂D′

)
Ω=Ω∗,D′=D

,

(2.45)
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where the second term vanishes by definition, see Eq. (2.44). For a contact potential,
i.e. if and only if ∂Aads/∂D = 0, the total desorption force is solely given by the
force needed for stretching a polymer of Ω∗ monomers to length D,

Ftot(D) =
∂Astretch(Ω∗, D′)

∂D′

∣∣∣∣
D′=D

. (2.46)

In all other cases one has possibly other contributions in addition to the stretching
term. These additional terms can be relevant for long-ranged attractive or repulsive
interactions between the surface and the monomers or for inhomogeneous solvent
properties due to the presence of the wall such as ion distributions at a wall. In
the following we assume Eqs. (2.43) and (2.46) to be valid. Eq. (2.46) suggests that
for low adsorption energy, i.e. ωa < kBT , an ideal elastic response of the desorbed
polymer strand can be assumed since this is the elastic behavior of any polymer
chain in the small force limit. Using the free energy of an ideal Gaussian chain,
Astretch(Ω, D) = 3kBTD

2/2Ωa2, the equilibrium number of monomers of the des-
orbed chain becomes Ω∗ =

√
3/2ωaD/a. Thus the desorption force is independent

of the height D and proportional to the square root of the adsorption energy,

Ftot/kBT =
√

6ω/a , (2.47)

as suggested earlier [52]. In the opposite limit of a very stiff chain, a rod, the number
of monomers in the desorbed strand is fixed as Ω∗ = Ω = D/a, and hence the force
is again independent of D and shows a plateau value equal to the adsorption free
energy per unit length,

Ftot/kBT = ω . (2.48)

This result is obtained for stiff rods, e.g. due to the electrostatic stiffness of poly-
electrolytes [21, 60], but also for strong adsorption, ωa � 1, in which high forces
are necessary to desorb the polymer. As an exemplary case, this is demonstrated
using the mean extension of a freely jointed chain (FJC) stretched by a large force,
and valid for D → aΩ. Here, the mean extension reads D = aΩ (1− kBT/aFstretch).
Integration yields the stretching free energy, and the equilibrium condition on the
number of desorbed monomers is obtained as

0 != ω − D/a

Ω∗ −D/a
− ln (1−D/aΩ∗) . (2.49)

In the limit of D → aΩ∗ we get Ω∗ = (1/ωa+ 1)D/a. Reinserting this expression
into the stretching law yields

Ftot/kBT = (1 + 1/ωa)ω , (2.50)

which is the previously known result with a small thermal correction. Higher order
correction terms can be obtained by expanding q = (ωa− ln (1−D/aΩ∗)) (1 −
D/aΩ∗) in 0 != q − D/aΩ∗ around its minimum with respect to Ω∗. To put in
some numbers, for AFM experiments desorption forces between tens and hundreds
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of piconewtons, say 40 pN, are reported [61], which is also close to the detection limit
of this technique [62]. For synthetic polymers and also many of the more flexible
biopolymers the monomer diameter or Kuhn length is in the range of a = 1nm.
This implies adsorption free energies of the order of ωakBT ≈ 40 pN nm ≈ 10 kBT .
Hence, for AFM experiments one is typically in the high-force regime and Eq. (2.48)
is valid within 10 %. The opposite regime with ωa . 1 which can be realized e.g. in
the case of electrostatically driven adsorption with surfaces of sufficiently low charge
density, currently cannot be probed using AFM force spectroscopy. However, the
better resolution limit of optical and magnetic tweezers would in principal allow this
regime to be investigated.
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Chapter 3

Friction of single polymers on
solid surfaces

Under non-equilibrium conditions it is often crucial to understand the dissipative
mechanisms governing the energy fluxes in the system. Numerous studies exist
on the rheology of polymers, ranging from dilute solutions over melts to polymer
networks [63–66]. In the area of tribology, i.e. friction at solid surfaces, theoretical
studies conducted during the last fifty years involving polymers or low molecular
weight substances have mainly focused on hydrodynamic and elasto-hydrodynamic
lubrication, boundary lubrication, and friction of small adsorbates on surfaces [67–
69]. Extensive progress has also been achieved in the understanding of thin polymer
films and polymer brushes [10, 69]. On the contrary, much less is known about the
sliding friction of polymers on solid surfaces in the dilute or single polymer regime.
Both experimental [70–77] and theoretical studies [50, 78–86] are rare. Related topics
such as the friction of polymers embedded in membranes [87] and of polymers driven
on surfaces with geometric obstacles, cf. references in Ref. [76], are not covered here.

In this chapter we extend these studies by proposing a model how to measure
single polymer friction by AFM force spectroscopy, Section 3.1, by a discussion
of a microscopic Frenkel-Kontorova type model on the origin of polymer friction,
Section 3.2, and by a molecular dynamics (MD) study pointing out fundamen-
tal differences between polymer friction on hydrophobic and hydrophilic surfaces,
Section 3.3.

3.1 Pulling on adsorbed polymers with the AFM

As mentioned in the previous chapters, single polymer experiments using AFM
force spectroscopy have nowadays become a reliable tool to probe polymer-surface
interactions, cf. Ref. [61] for a recent review, and Refs. [88, 89].

Depending on the adsorption strength between the polymer and the substrate,
AFM single polymer studies split into two classes: In the first, the applied forces
are relatively weak so that the attachment on the cantilever tip and on the sub-
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strate is irreversible up to a certain maximal force and over the typical experimen-
tal timescales; in this case the measured distance-force traces contain information
on the polymer that is being stretched and can be used to extract the polymer
elasticity by comparison with molecular models [90, 91]. In the second class, the
applied force is strong enough to detach the polymer from the substrate. In this
case, the measured force-distance relation contains information about the strength
of the surface-polymer interaction and about the nanoscopic friction effects at the
substrate. In fact, assuming that the polymer glides very easily over the surface
and surface friction can be neglected, plateau forces are measured the heights of
which correspond to the adsorption free energy per unit length, cf. Section 2.4 and
Ref. [61]. In the presence of finite surface-polymer friction, the force-distance curves
exhibit more complex behavior.

In the interpretation of force-distance curves it is often implicitly assumed that
the polymer is vertically attached between the cantilever tip and the surface. This
is not necessarily true, and here we point out the consequences of a non-zero at-
tachment angle φ as defined schematically in Fig. 3.1. In the case of irreversible
attachment between the polymer and the substrate, where the polymer-substrate
contact point is immobile, the angle φ is fixed for a given vertical distance be-
tween the polymer-substrate and polymer-cantilever contact points and determined
by their lateral distance. This distance is typically not controlled in experiments,
but the resulting force-distance curve decisively depends on this angle. In the case
of reversible attachment between the polymer and the substrate, the resultant be-
havior depends crucially on the surface friction coefficient of the polymer: For very
large friction coefficient, the polymer is peeled off from the substrate segment by
segment but does not slide; here the angle is dictated by geometric considerations
and changes as the polymer is peeled from the surface. Force-distance curves in
this case depend sensitively on the lateral surface configuration of the polymer. For
small friction coefficient or, equivalently, for small pulling rates, on the other hand,
the polymer portion in contact with the surface is sliding over the surface and the
angle adjusts according to a balance of friction and adsorption forces at the con-
tact point. All these geometric considerations have a bearing on the force-distance
curves. Proper analysis of the non-equilibrium features of the force curves allows
to extract friction coefficients of single polymers on surfaces and thus an important
parameter characterizing the nano-tribology of adsorbed polymers.

3.1.1 Fixed contact point

We first consider a polymer attached to the surface at some fixed contact point
along the polymer contour length. Experimentally, this can be achieved by covalent
bonding between reactive surface groups and polymer monomers [91]. The schematic
geometry is given in Fig. 3.1a), where the extension of the polymer stretched between
the contact point C and the cantilever tip is denoted by R, and its lateral and
vertical components by Rx and Rz, respectively. Clearly, R2 = R2

x + R2
z. We

denote the elastic free energy of the polymer in units of kBT by Ãstretch(R), which
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Figure 3.1: Schematic geometry of a single polymer experiment with the AFM.
The polymer is bound between a planar surface and the cantilever tip. a) Tilted
geometry with the adsorbed polymer strand exhibiting a self-similar, crumpled
conformation, b) idealized geometry where the adsorbed polymer strand is linearly
stretched and aligned in parallel with the detached polymer section.

contains entropic as well as energetic contributions due to the deformation of bonds.
We neglect the coupling to the probing device, as is justified for sufficiently stiff
cantilevers or optical traps [92]. In the presence of an external force Fz acting along
the vertical direction, the total free energy in units of kBT , Ãtot becomes

Ãtot = Ãstretch(R)−RzFz/kBT = Ãstretch(
√
R2

x +R2
z)−RzFz/kBT . (3.1)

The equilibrium extension of the polymer follows from the minimization of the free
energy, ∂Ãtot/∂Rz = 0, leading to

Fz

kBT
=
Ã′stretch(Rzα)

α
, (3.2)

where Ã′stretch(x) = ∂Ãstretch(x)/∂x is the derivative of the elastic polymer energy.
As a measure of the chain orientation we define the geometric factor

α = 1/ cosφ =
√

1 +R2
x/R

2
z = (1−R2

x/R
2)−1/2 . (3.3)

For perfect vertical alignment one has α = 1, for a slanted chain one finds α > 1.
For small stretching forces, any polymer behaves like a Gaussian polymer, i.e. like
a harmonic entropic spring with a spring constant of

K = 3kBT/R
2
0 , (3.4)

where R2
0 is the mean-squared end-to-end radius of the unperturbed chain. The

elastic free energy reads Ãstretch(x) = Kx2/2 and thus Ã′stretch(x) = Kx. In this

31



CHAPTER 3. FRICTION OF SINGLE POLYMERS ON SOLID SURFACES

case, the geometric factors in Eq. (3.2) exactly cancel and the force-distance relation
becomes independent of the chain orientation, Fz/kBT = KRz. This cancellation
only occurs for a harmonic elastic free energy; in general, a non-trivial dependence
arises. For the case of a FJC, characterized by a bond length a and contour length
RL, the elastic force at large stretching reads Ã′stretch(x) = (1/a)(1− x/RL)−1 [93].
Insertion into Eq. (3.2) yields αaFz/kBT = (1−αRz/RL)−1. For a worm-like chain
characterized by a persistence length ` ≈ a/2, the force in the large-stretching
limit is given by Ã′stretch(x) = 1/(4`)(1− x/RL)−2 [93]. The force-distance relation
becomes 4α`Fz/kBT = (1− αRz/RL)−2. In both cases, the geometric factor α can
be interpreted as renormalizing either the bond length a or persistence length `, and
the chain contour length RL. To get an estimate for the typical values of α, we
assume the chain to perform a random walk on the surface prior to pick-up by the
cantilever, characterized by a swelling exponent ν. Further assuming that the chain
extension R approximately equals the contour length RL of the stretched segment,
R ≈ RL, we can write Rx ' a(R/a)ν and thus obtain α = (1 − (a/R)2−2ν)−1/2 ≈
1 + (a/R)2−2ν/2. For a self-avoiding walk on the surface, one has ν = 3/4 and thus
α ≈ 1 + (a/R)1/2/2. For a ds-DNA chain with Kuhn length a = 100 nm and total
length R = 10 µm, the geometric factor evaluates to α ≈ 1.05, and thus leads to a
substantial variation in fitted values for the persistence length and the chain length.
The effect drops with increasing polymer length and decreasing Kuhn length and
is in fact negligible in many practical cases. On the other hand, the renormalized
force-distance relation Eq. (3.2) can be directly checked by AFM experiments with
lateral position resolution.

3.1.2 The sticky case

We now turn to the case where the adsorption of the polymer on the substrate is
reversible and thus the contact point can move via de- or adsorption. For simplicity,
we assume that the adsorption free energy per monomer satisfies ωa� 1 where ω is
the adsorption free energy per kBT and unit length. This implies that we are in the
strong adsorption regime and the polymer forms a flat quasi-two-dimensional layer
on the surface [35]. The total free energy of the adsorbed polymer strand of contour
length S is

Ã = −ωS . (3.5)

As rationalized in Section 2.4 we neglect elastic deformations of the desorbed poly-
mer strand which is assumed to be fully stretched to its contour length, i.e. R = RL,
thus preventing monomer-monomer contacts. To highlight connections to Chapter 2,
note that for the inextensible, stretched polymer considered here we have L = Na,
S = Υa, and R = Ωa. Note also the resemblance between the adsorption free energy
for a monomer, ωa, and the adsorption (internal) energy per monomer χ.

We first consider infinite friction of the polymer at the surface: the polymer will
thus stick on the surface and a sufficiently strong force will peel the polymer off
from the surface. As the contact point moves over the surface, what is the resultant
vertical force on the cantilever? The initial geometry is specified by arbitrary values

32



3.1. PULLING ON ADSORBED POLYMERS WITH THE AFM

S0, R0, Rz0, and Rx0. We define the polymer contour length that has been peeled off
as P ≡ S0−S = R−R0, and parameterize all other variables by P . Again assuming
that the adsorbed polymer shows a self-similar lateral distribution function, we find

R2
x(P ) ' R2

x0 + a2(P/a)2ν . (3.6)

The vertical force acting on the cantilever tip can be calculated from Eq. (3.5) as

Fz

kBT
=

∂Ã

∂Rz

=
∂Ã

∂P

∂P

∂Rz

= ω
∂P

∂Rz

, (3.7)

where we used S = S0 − P . From Eq. (3.6) and R2(P ) = R2
x(P ) +R2

z(P ) it follows
that

∂Rz(P )
∂P

=
R0 + P − νa(P/a)2ν−1

Rz
=

R0 + P − νa(P/a)2ν−1√
(R0 + P )2 −R2

x0 − a2(P/a)2ν
. (3.8)

For a crumpled polymer, characterized by ν < 1, and for a large peeling length P →
∞, the above relation crosses over to ∂Rz/∂P ' 1. The vertical force thus reaches a
finite plateau value Fz/kBT = ω. On the contrary, for a polymer which is adsorbed
straight on the substrate, characterized by ν = 1, one has ∂Rz(P )/∂P = R0/Rz,
and thus

Fz/kBT = ωRz/R0 (3.9)

implying that in this case the force increases linearly with the vertical distance.

3.1.3 The slippery case

We now assume a finite polymer-surface friction coefficient so that sliding of the
polymer on the substrate is possible when the cantilever is moved either vertically
or horizontally. On the cantilever tip the polymer is supposed to stick. When the
polymer follows the cantilever motion and glides over the surface, friction forces lead
to partial alignment; we therefore simplify the discussion by assuming the polymer
to be completely stretched on the surface, as shown in Fig. 3.1b. In experiments,
this can be achieved by prior lateral AFM pulling. We define S and R as the contour
lengths of the adsorbed and desorbed polymer parts, while L = S + R is the total
contour length. The end-point position of the polymer relative to the tip is denoted
as X = S + Rx. The geometry is fully determined by two length scales, which
we choose to be the end-point position X and the cantilever height Rz. The total
friction force is supposed to be proportional to the sliding velocity, Ẋ = dX/dt, and
the length of the adsorbed part S, and acts parallel to the sliding direction,

F fric
x

kBT
= ẊSζ = Ẋ

L2 −X2 −R2
z

2(L−X)
ζ . (3.10)

Here, ζ is the sliding friction coefficient per unit length and kBT . It depends on
all polymer and surface characteristics and is in addition influenced by pH, ionic
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strength, etc. Throughout Section 3.1 it is assumed to be independent of the ad-
sorption strength ω and the pulling velocity. The friction force is balanced by the
horizontal component of the adsorption force, which we associate with the spatial
derivative of the adsorption energy Eq. (3.5). We neglect any dependence of the
adsorption energy on the gliding velocity and note that Eq. (3.5) in the present non-
equilibrium context is not a free energy but rather corresponds to the non-dissipative
contribution to the work of desorption. It follows that

F ads
x

kBT
= −

(
∂Ã

∂X

)
Rz

=
ω

2
L2 +X2 − 2LX −R2

z

(L−X)2
= ω

Rx

Rx −R
. (3.11)

Equating the friction and the adsorption force yields a differential equation for the
polymer geometry

˜̇X =
dX̃

dt̃
= ω̃

1 + X̃2 − 2X̃ − R̃2
z

(1− X̃)(1− X̃2 − R̃2
z)
, (3.12)

where we have rescaled all lengths by the total contour length according to R̃z =
Rz/L and X̃ = X/L, and introduced the characteristic timescale t̃ = t/(L3ζ) and
adsorption energy ω̃ = ωL. In deriving Eq. (3.12) we implicitly assume micro-
scopic relaxation processes such as molecular bending or stretching, as considered
in Ref. [94], to equilibrate on much faster timescales than the global polymer geom-
etry. The two poles in Eq. (3.12) correspond to the asymptotic limits of complete
adsorption (X = L) and complete desorption (L2 = X2 + R2

z). The force acting in
the vertical direction, which is the force measured by the AFM, is

Fz

kBT
=

(
∂Ã

∂Rz

)
X

= ω
R̃z

1− X̃
= ω

Rz

R−Rx
= −Rz

Rx

Fx

kBT
, (3.13)

where the latter relation is equivalent to the observation that a flexible string can
only support a force along the string contour.

In a typical single molecule force spectroscopic experiment the AFM ẑ piezo
element is moved with a constant velocity Vz. The temporal change in the tip
displacement is given by Vz (kc/F

′
z(Rz) + 1)−1 where kc is the cantilever bending

constant, and F ′z(x) = ∂F (x)/∂x the curvature of the polymer interaction po-
tential. For typical potential landscapes and typical cantilever bending constants,
(kc/F

′
z(Rz) + 1)−1 � 1. We therefore can consider the velocity of the cantilever tip

to be constant and equal to the cantilever driving velocity, and hence write

Rz = Vzt+Rz0 . (3.14)

The differential equation derived from the balance between the friction and the
adsorption force, Eq. (3.12), is still valid if Eq. (3.14) is inserted. It proves useful to
rewrite the differential equation slightly,

dX̃
dR̃z

=
dX
dt

dt
dRz

=
Ẋ

Vz
= γ−1

z

1 + X̃2 − 2X̃ − R̃2
z

(1− X̃)(1− X̃2 − R̃2
z)
, (3.15)
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a) b)

Figure 3.2: Vertical pulling: Evolution of a) the polymer angle φ and b) the
vertical force in units of the adsorption energy per unit length Fz/(ωkBT ) as func-
tions of the normalized tip height R̃z = Rz/L and as obtained from the piecewise
rod model Eq. (3.15). Results are shown for different values of the rescaled friction
coefficient γz = VzζL/ω, including the limiting cases of pure slip (γz = 10−5, solid
line) and pure stick (γz = 106, broken line).

where γz = Ṽz/ω̃ = VzζL/ω is the only material parameter remaining, measuring
the ratio of friction versus adsorption strength. The differential equation is solved
using standard finite difference techniques [95]. In Fig. 3.2 we show results a) for
the polymer angle φ and b) for the vertical force Fz as a function of the cantilever
height for different values of γz. In the very slippery case (solid line, γz = 10−5) the
desorbed polymer stays vertical and thus φ ' 0 since the polymer can freely glide
over the surface; the force shows a perfect plateau. In the very sticky case (upper
broken line, γz = 106), the force grows linearly with the distance, as predicted
by Eq. (3.9). In the intermediate case, the angle shows non-monotonic behavior:
initially, the constantly moving cantilever exerts a growing force on the polymer,
but as more polymer is desorbed the friction force decreases. Likewise, the vertical
forces are much higher than the plateau force observed in the quasistatic limit which
is due to a combination of dissipative and geometric effects.

Friction effects are most clearly exhibited when a surface-adsorbed molecule is
moved laterally over the surface which is realizable using standard AFM technology
[75]. With a finite lateral cantilever velocity Vx, the differential equation for the
lateral polymer extension X, Eq. (3.12), is slightly modified

˜̇X = ω̃
1 + X̃2 − 2X̃ − R̃2

z

(1− X̃)(1− X̃2 − R̃2
z)

+ Ṽx , (3.16)

where Ṽx = VxζL
2. The stationary geometry for horizontal pulling is achieved for

long enough pulling times t → ∞ and can be derived from the above equation by
setting ˜̇X = 0. For a given pulling height, R̃z, this fully determines the geometry
of the adsorbed polymer and thus the force that is acting on the cantilever tip.

35



CHAPTER 3. FRICTION OF SINGLE POLYMERS ON SOLID SURFACES

a) b)

Figure 3.3: Results for horizontally moving cantilever as obtained from the piece-
wise rod model Eq. (3.16). a) Stationary polymer angle φstat and b) stationary
vertical force in units of the adsorption energy per unit length, F stat

z /ωkBT as func-
tions of the constant, normalized pulling height R̃z = Rz/L. Results are shown for
a set of different values of the friction parameter γx = VxζL/ω, i.e. for different
pulling speeds Vx, polymer lengths L or sliding friction coefficients ζ. The inset
shows the time evolution of the angle φ for fixed γx = 1 and R̃z = 0.6 for starting
geometries with different angles as a function of the rescaled time t̃ = tL3/ζ.

In Fig. 3.3 a) the angle and b) the (vertical) force acting on the cantilever in the
stationary state, φstat and F stat

z respectively, are shown as functions of varying height
Rz for different friction to adsorption energy parameters γx = Ṽx/ω̃ = VxζL/ω.
Both decrease with increasing pulling height because the alignment becomes more
vertical, and increase with increasing friction parameter γx in a monotonic but non-
trivial way. The time evolution of the angle for different starting geometries is
shown in the inset of Fig. 3.3a). From measurements of the stationary force acting
at different pulling velocities or heights, the frictional coefficient can be inferred,
once ω has been determined in sufficiently slowly performed vertical desorption
experiments carried out under the same conditions. L can be determined in the
same experiments as final height before complete desorption. By this procedure,
measurements of frictional coefficients of single molecules on solid surface could be
conducted, allowing for mapping out the dependence on parameters such as pH
or added salt concentration. In AFM experiments where the maximal speed V is
of the order of µm/s there is reason to believe that for many polymer-substrate
combinations the friction parameter is quite small, i.e. γx = Ṽx/ω̃ � 1. In a
small-γx expansion we obtain for the stationary vertical force

F stat
z

ωkBT
= 1 + γx(1− R̃z) +O

(
γ2

x

)
= 1 + (VxLζ/ω)(1−Rz/L) +O

(
γ2

x

)
.

(3.17)
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Similarly, the lateral force becomes

F stat
x

ωkBT
= γx(1− R̃z) +O

(
γ3

x

)
. (3.18)

These limiting laws allow for straightforward fitting of experimental data. Note
that even in the case when the friction coefficient ζ is small, the effective friction
parameter γx = VxLζ/ω can be made sufficiently large by choosing very long poly-
mers or increasing the pulling velocity. Thus there is hope that indeed AFM data
can be used to extract friction coefficients of adsorbed single polymers, which is an
important parameter in the context of adsorption and desorption kinetics. What re-
mains to be elucidated is the microscopic mechanism behind the friction of adsorbed
polymers, i.e. the dependence on the range of the surface-monomer interaction, the
surface shape, and the distribution and density of interacting surface groups. Some
of these questions will be approached in the following sections.

Note that in contrast to AFM or SFA studies on the nano-friction between two
solid surfaces [68, 96], in our case the normal force is self-adjusted by the surface-
polymer attraction forces and not a free parameter. There is an intimate coupling
between the adsorption strength ω and the friction coefficient ζ, and it is the in-
terplay embodied in the effective friction parameters γx,z, which determines the
resulting behavior. Interesting physics is expected as ωa→ 1 when polymer confor-
mational fluctuations are modified due to the forced surface sliding; AFM methods,
however, cannot probe this regime.

3.1.4 A minimal model for polymer friction at a flat wall

To test some of the conclusions of the simplistic analytical model, we propose a
discrete model for polymer friction at a flat wall, similar to the BD model introduced
in Section 2.3.1. Eq. (2.37) is adapted neglecting the thermal random term which
is called the zero-temperature limit. In this context neglecting the thermal random
noise term is used to obtain a discrete analog of the mechanistic, piecewise rod model
used in the preceding sections. However, more generally, dropping the random force
is also justified for strong external fields, i.e. strong adsorption and friction. In
addition, the mechanistic nature allows us to use very long polymers because time
consuming sampling is avoided; in this study we use N = 500. The equation of
motion for the position of the ith monomer, Ri = (Xi, Yi, Zi), becomes

dRi

dt
= −µ(Ri)∇RiU(t) , (3.19)

where µ(Ri) is the bare monomer mobility depending on the monomer position Ri.
The potential energy is modeled in the same way as before, i.e. the intramolecular
term Eq. (2.40) ensures chain connectivity but prevents self-intersection, the interac-
tion with an attractive, hard wall is taken into account using Eq. (2.41). Analogously
to the exponentially decaying adsorption potential, the increased polymer friction

37



CHAPTER 3. FRICTION OF SINGLE POLYMERS ON SOLID SURFACES

close to the wall is incorporated into the bare monomer mobility also assuming an
exponential form and lateral homogeneity,

µ(Ri) = µb + (µs − µb) exp (−κµZi) , (3.20)

where µb and µs are the bulk (Zi → ∞) and surface (Zi = 0) bare mobilities, and
κµ is the mobility decay constant. The decay constant is chosen to be the same as
that of the adsorption potential, in rescaled units κ̃µ = κ̃ = 2. After rescaling, the
bulk mobility can be arbitrarily chosen as an effective integration time step, where
we use µ̃b = 10−4. The simulations are done for different values of the effective
surface mobility (0.01 ≤ µs/µb ≤ 1.0) which is the second new parameter. The first
monomer is moved either normal or parallel to the surface with a constant rescaled
velocity Ṽx = Vxa/kBTµ = 0.1 and 1 or Ṽz = 1, respectively. Other parameters are
chosen as described in Section 2.3.1, except for χ = 100 and k̃ = 5000.

In Fig. 3.4 we show the angle φ defined in Fig. 3.1 as a function of the rescaled
height of the first monomer, R̃z = Rz/L ≈ Z̃1/N . The pulling velocity is Ṽz = 1;
the starting geometry is the same as for Fig. 3.2, i.e. a linearly aligned polymer with
the free part normal to the surface and ending at R̃z = 0.1. The effective surface
mobility is changed from rather sticky conditions (µs/µb = 0.01, broken line) to no
additional surface friction (µs/µb = 1, dotted line). Even in the case of vanishing
surface effect and homogeneous mobility, µ = µb = µs, the angle does not stay zero
as it does in the rod model. This is due to a combination of a geometric effect,
see Fig. 3.1, and the homogeneous, but necessarily non-zero friction experienced by
the polymer. Accordingly, in this BD model even for µs = µb, the vertical force is
larger than its equilibrium value (not shown) as opposed to the rod model. Overall,
a very similar picture is obtained as compared with the rod model of the preceding
sections.

A similar result is obtained for horizontal pulling. In Fig. 3.5 we plot the time
evolution of the angle φ for pulling with a constant lateral velocity Ṽx = 0.1. The
rescaled time in simulation units reads t̃ = nµ̃ = tµkBT/a

2 where n is the number of
simulation steps. The ratio of surface vs. bulk mobility is changed in the simulations
in the same regime as for vertical pulling, cf. the legends. The pulling height is in all
cases fixed to R̃z/L ≈ Z1/N = 0.4, whereas other parameters are kept unchanged.
The starting configuration is in all cases with the free strand vertically upright from
the surface. Summarizing, we again find good qualitative agreement with the results
from the analytical, piecewise rod-model. We expect the discrete simulation model
to be of further use for more complicated geometries than the simplified stretched
out geometry considered here. In a similar fashion, a related Monte Carlo model
has been used for studying the adsorption dynamics of flexible polymers [81, 82].

3.2 Polymer friction in a Frenkel-Kontorova type model

A simplistic model for the plastic deformation of solids has been introduced by
Frenkel and Kontorova as early as 1938. Their model consists of a string of particles
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Figure 3.4: Vertical pulling: Evolution of the polymer angle φ as a function of the
normalized tip height R̃z ≈ Z̃1/N and as obtained from mechanistic simulations.
Results are shown for different values of the ratio between the surface and bulk
mobilities, µs/µb, see also the legend. Here, χ = 100, κ̃−1 = κ̃−1

µ = 0.5, and
Ṽz = Vza/kBTµ = 1, for other parameters see text. The simulation results compare
qualitatively well with the analytical model, cf. Fig. 3.2.

Figure 3.5: Evolution of the polymer angle φ as a function of the rescaled time
variable t̃ = tµkBT/a

2 for horizontal pulling and as obtained from mechanistic
simulations. Results are shown for different values of the ratio between the surface
and bulk mobilities, µs/µb, see also the legend. In the simulations we employ
χ = 100, R̃z/L ≈ Z1/N = 0.4, and Ṽx = Vxa/kBTµ = 0.1, for other parameters
see text. The simulation results compare qualitatively well with the analytical
model, cf. Fig. 3.3.
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interconnected by harmonic springs which is situated in a one-dimensional sinusoidal
potential. One of the particles is driven by an external force, see also Fig. 3.6.
Despite its simplicity this model has also been applied among others for the dry
friction between two solids [32, 69, 97, 98]. In this case the string of particles
represents the interfacial atoms of one of the two surfaces, and the periodic potential
constitutes a minimal description of the interfacial atoms of the other surface. For
monomer i which here is supposed to be the one driven by the external force F the
equation of motion reads

mi
d2Xi

dt2
= − 1

µi

dXi

dt
− ∂U

∂Xi

+ ξi(t) + F , (3.21)

where Xi is the particle position, mi its mass, and µi its intrinsic mobility. ξi(t)
is a random thermal force, U the total potential, and F the external pulling force.
As discussed in Section 1.2 the inertial term can be neglected in solution giving the
overdamped equation of motion analogous to Eq. (2.37),

dXi

dt
= µi

[
− ∂U

∂Xi

+ ξi(t) + F

]
. (3.22)

Here, ξi(t) again fulfills Eq. (2.38). The total potential is the sum of the external
potential exerted by the second surface and the intramolecular potential, U = U surf+
Upoly. The latter is constructed by intramolecular harmonic bonds between nearest
neighbors with a force constant k around the equilibrium value of the bond length
a, see also Eq. (2.40). For a string of N particles, the spatially and temporally fixed
external potential stemming from the second surface is given by

U surf =
N∑

i=1

[U0 − U0 cos (2πXi/l))] , (3.23)

where U0 is the potential corrugation and l the lattice spacing of the surface. Again,
a rescaling by kBT and l is done as introduced in Section 2.3 yielding rescaled values
Ũ = U/kBT , X̃i = Xi/l, F̃ = Fl/kBT etc. As easily seen from the discussion in the
previous chapter, this model can also be used to describe the situation of a polymer
driven over a surface. The commensurability or incommensurability of the system is
known to have a great impact on the friction [69, 97]. Commensurability is defined
as a/l being a rational number; incommensurability occurs when this quotient is an
irrational number. For two and three dimensional systems the angular arrangement
of the lattices also plays a role. Here, we only consider commensurable systems, and
mostly restrict the discussion to the simplest case with l = a.

The physics of the Frenkel-Kontorova model is quite well understood in terms
of mechanic instabilities or pops which add to the intrinsic damping stemming from
e.g. solvent friction. The mean normalized mobility is defined as

µ̄ =
N 〈µ〉
µ

=
N
〈
Ẋ1

〉
Fµ

, (3.24)
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x̂

U(x)

F

l

U
0

Figure 3.6: The Frenkel-Kontorova model as used for the friction of a single
polymer on a corrugated surface. The model is one-dimensional and incorporates a
sinusoidal potential energy landscape with depth U0 and lattice constant l. Nearest
neighboring monomers are connected via harmonic springs with a spring constant
k and a equilibrium distance a. An external force F acts on the first monomer.

where 〈µ〉 = 〈Ẋ1〉/F is the average polymer mobility and Ẋ1 is the velocity of the
first particle on which the external force F is exerted. For exemplary parameter
values l = a, Ũ0 = 5, k̃ = 4000, and N = 10 we show in Fig. 3.7 the average
normalized mobility as a function of the rescaled pulling force F̃ /N (crosses). In the
same graph the mobility of a single particle (N = 1) is also presented (circles).

Crudely summarizing the interpretation of the Frenkel-Kontorova model, the
particle or the particle string is trapped and sticks to favorable potential sites, and
the relatively large velocities generated by sudden partial or concerted movements
over the potential barriers is quickly damped by exciting faster degrees of freedom
which are implicitly incorporated in the intrinsic friction coefficient, µ−1. Thus,
the motion is largely characterized by a stick-slip nature where virtual bonds to
the substrate, i.e. trapping in potential minima, are broken and re-formed. Hence
the solvent friction is increased. In the limit of zero velocity or vanishing external
pulling force, the effective mobility is solely determined by thermally activated dif-
fusion processes. With increasing external forces the mean mobility approaches its
intrinsic value µ/N , since the corrugation of the external potential becomes negligi-
ble as compared with the potential tilt introduced by the pulling force. The motion
gradually switches from a stick-slip nature to a continuous, smooth motion.

The virtually static friction with an exponentially small rescaled mobility is over-
come at values of F̃ /N which are smaller for the monomer than for the decamer, see
Fig. 3.7. For pulling forces larger than the intersection point at about F̃ /N ≈ 25,
the rescaled mobility of the decamer is larger than for the monomer and reaches
unity at smaller values of the pulling force. These observations are in correspon-
dence with the idea of concerted motion in the case of the decamer. For purely
thermal motion, i.e. in the low-force limit, the necessarily concerted motion of the
decamer is suppressed and the mobility is reduced. In the high-force limit, pops of
chain segments can act as promoters of motion. This effect strongly depends on the
ratio of the force constant and the potential strength, l2k/U0, but also on the com-
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Figure 3.7: Average normalized mobility µ̄ = N〈µ〉/µ as a function of the rescaled
pulling force F̃ /N = Fl/NkBT for a monomer (circles) and a 10mer (crosses). The
potential depth is the same for both cases, Ũ0 = 5. Additional parameters in the
decamer case are a = l, k̃ = 4000.

mensurability of the lattices a and l as already discussed in the literature [69, 97].
The simple rationale described here is only true for the commensurable case a = l.

To demonstrate the impact of the lattice structure we show in Fig. 3.8 the
rescaled mobility of the decamer on lattices with a = n × l, where n = 1, 2, 4,
and on a lattice with a = l/2. While the polymers with a bond length that is an
integer multiple of the lattice constant have identical mobilities, the mobilities for
the polymer with a = l/2 approach unity much faster, i.e. for much smaller values
of the external force. Also, in the latter case the fluctuations are comparably large.
Note that it is hard to approach the true incommensurable case in simulations due to
their finite numerical precision. Also, proper scaling behavior of incommensurable
systems is only found for N → ∞. However, the simpler commensurable case with
a = l/2 indeed shows greatly reduced friction due to out-of-phase monomer positions
as in contrast to an all-in-phase motion when the bond length is an integer multiple
of the potential lattice constant. Similar trends are expected for incommensurable
lattices for large enough N [69].

As demonstrated in Fig. 3.7 a relative mismatch of the normalized mobility as
a function of the normalized force F̃ /N for chains of different length persists even
in the simplest commensurable case with a = l. This suggests non-trivial and
non-universal scaling of the mobility with the length of the polymer for all but the
high-force regime where the intrinsic mobility is reached and thus the mobility scales
as 〈µ〉 ≈ µ/N ∝ N−1 in consistency with a Rouse model. To test the hypothesis
of non-universal scaling, the scaling dependence is checked for a pre-selected value
of the force and for the lattices with l = a and l = 2a as shown in Fig. 3.9. The
force for the case with l = 2a is chosen as F̃ = 188. Indeed, we observe the high-
force regime with linear scaling 〈µ〉 ∝ N−1.00. For the simple commensurable case,
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Figure 3.8: Average normalized mobility µ̄ = N〈µ〉/µ as a function of the rescaled
pulling force F̃ /N = Fl/NkBT for a 10mer on lattices with a = l (crosses), a = 2l
(diamonds), a = 4l (squares), and a = l/2 (stars). Other parameters are the same,
k̃ = 4000 and Ũ0 = 5. Error bars are shown when larger than the symbol size. The
mobilities of polymers with a bond length that is a multiple integer of the lattice
constant superimpose to the same curve for the decamer presented in Fig. 3.7. For
a = l/2, the mobilities are comparably large at already small values of the external
force and fluctuate extensively.

l = a, the force is F̃ = 628, and hence covers both the high- and the medium-force
regime over the polymer length investigated here. Still, the scaling found here only
marginally differs from linear scaling, we find 〈µ〉 ∝ N−1.07. Obviously this result
depends on both the range of polymer lengths and the pulling force, in addition to
the parameters describing the polymer-surface interaction, i.e. the potential depth
and the ratio of the polymer and surface lattice constants. Nonetheless, we conclude
that for small polymers with N < 100 the assumption of inverse linear scaling of
the average polymer mobility in the polymer length is well justified. This will be of
further use in Section 3.3.

Following Persson [67, 99] we now discuss the low- and high-force limit of the
overdamped motion of a single particle in the periodic potential Eq. (3.23) defined by
Eq. (3.22). For small pulling forces Fl� kBT � U0, the motion is solely controlled
by thermally activated diffusion and can be described by a Kramers rate process
where the normalized mobility of the particle is given by [32, 57]

µ̄ =
〈µ〉
µ

=
2πŨ0

F̃
exp

(
−2Ũ0

) [
exp

(
F̃ /2

)
− exp

(
−F̃ /2

)]
. (3.25)

Hence, the motion is exponentially damped. In the high-force regime, i.e. for Fl�
U0, we rewrite the particle motion as

X = vt+ u , (3.26)
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Figure 3.9: Average normalized mobility 〈µ〉/µ as a function of the polymer
length N for the simplest commensurable lattice with l = a (crosses, solid line)
and a lattice with l = 2a (stars, broken line). In both cases, Ũ0 = 5 and k̃ = 4000.
For a = l, the external force is F̃ = 628, i.e. it covers both the high- and medium-
force regime over the polymer length considered here; for a = l/2, F̃ = 188 which is
in the high-force regime throughout the polymer length checked here. Also shown
are linear fits on the log-log scale leading in both cases to approximately linear
scaling, i.e. 〈µ〉 ∝ N−1.07 for a = l and 〈µ〉 ∝ N−1 for a = l/2.

where v = 〈Ẋ〉 is the average velocity of the particle, and u = u(t) is a time-
dependent contribution due to the thermal noise and the substrate potential. With
that, Eq. (3.22) becomes

µ−1 dX
dt

= µ−1

[
v +

du
dt

]
= −2πU0

l
sin ([vt+ u]2π/l) + ξ(t) + F . (3.27)

Using 〈µ〉 = v/F and expanding to first order in u we get

µ−1 du
dt

= −2πU0

l
sin(2πvt/l)− 4π2U0u

l2
cos(2πvt/l)+ ξ(t)+ v(〈µ〉−1−µ−1) . (3.28)

Choosing u(t = 0) = 0 gives 〈u〉 = 0 since 〈du/dt〉 = 0. Time averaging of Eq. (3.28)
and rearranging terms yields

v(〈µ〉−1 − µ−1) =
4π2U0

l2
〈u cos(2πvt/l)〉 . (3.29)

The leading contribution of Eq. (3.28) is given by µ−1 du
dt = −(2πU0/l) sin(2πvt/l)+

ξ(t), integration of which yields

u = uT +
U0µ

v
[cos(2πvt/l)− 1] . (3.30)
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where we split u into a thermal contribution uT due to ξ (with uT(t = 0) ≡ 0), and
a substrate contribution. Substitution of Eq. (3.30) into Eq. (3.29) and subsequent
time averaging and rearranging gives

µ

〈µ〉
= 1 + 2

(
πµU0

vl

)2

. (3.31)

For the high-force limit we again use 〈µ〉 → µ on the right-hand side of the equation
and rearrange to

µ̄ =
〈µ〉
µ
≈

(
1 + 2π2 Ũ

2
0

F̃ 2

)−1

. (3.32)

Hence, for the overdamped motion of a single particle we find the effective mobility to
asymptotically approach the intrinsic mobility as 〈µ〉/µ ∼ 1−2π2U2

0 /F
2l2. This is in

contrast to the case of a particle with finite mass m where a similar procedure gives
〈µ〉/µ ∼ 1− U2

0 /2F
4µ4m2 to leading order [67]. In Fig. 3.10 we plot BD simulation

data for Ũ0 = 5 (circles) together with the asymptotic limits of the low-force regime
(Eq. (3.25), broken line) and of the high-force regime (Eq. (3.32), dotted line) as
well as the full solution (solid line) which is given by [32]

µ̄ =
〈µ〉
µ

= 1 +
2πŨ0

F̃
=

(
I1+iF̃ /2π(Ũ0)

IiF̃ /2π(Ũ0)

)
, (3.33)

where In(x) are modified Bessel functions of the first kind. The simulation data are
in excellent agreement with the analytic predictions. However, given the complexity
of realistic potential energy landscapes and timescales of particle interactions and
motions in solution, such simplified models can only grasp very basic concepts of
friction. In the following section we will illustrate this with a microscopic model in
which both the polymer and the solid-liquid interface are taken into account with
atomistic resolution.

3.3 Polypeptide friction on a hydrophobic and a hydro-
philic surface

Up to now, little is known about the microscopic origin of single polymer friction
on an atomistic level of detail. In experiments, usually diffusion coefficients are
determined which are defined as

D = lim
t→∞

〈
(R(0)−R(t))2

〉
/2dt , (3.34)

where d is the dimensionality and R(t) the center of mass position of the molecule at
time t. Using simulations it is often difficult to determine small diffusion coefficients
due to long simulation times. In many cases it is more convenient to apply a force
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Figure 3.10: Average normalized mobility 〈µ〉/µ in a sinusoidal potential as a
function of the rescaled pulling force F̃ = Fl/kBT . The rescaled potential depth is
Ũ0 = U0/kBT = 5. Shown are BD simulation results (circles), the low-force regime
asymptotics Eq. (3.25) (broken line), the high-force regime asymptotics Eq. (3.32)
(dotted line), and the full solution Eq. (3.33) (solid line).

and to look at the polymer mobility µ. Interconversion can be done via the Einstein
relation,

D = µkBT . (3.35)

In the following it will be shown how atomistic MD studies in which an external force
is applied to a polymer molecule can help understanding its friction on a solid-water
interface.

One class of experimentally as well as theoretically attractive polymers are pep-
tides which are the main constituents of proteins [12]. Proteins then again represent
one of the classic examples in the soft matter area where the interplay between co-
valent bonds, partial and ionic charges, and hydrophobic interaction plays a decisive
role, e.g. in protein folding or adsorption [100, 101]. A well-defined model system
due to its high degree of monodispersity and comparably large polymerization index
is the mildly hydrophobic polypeptide C16 derived from the silk protein ADF-4 of
the garden spider Araneus diadematus. The polypeptide chain consists of 16 repeat
units each of which is 35 amino acids long. It has recently been achieved to measure
single polymer adsorption forces of C16 on hydrophobic, H-terminated diamond sur-
faces, and on hydrophilic, OH-terminated diamond substrates [102]. At the same
time, MD simulations can serve as a theoretical tool to probe the adsorption and fric-
tion forces acting on the peptide molecule. The differences between the hydrophobic
and hydrophilic surfaces play an important role in this context. Readers unfamiliar
with the concept of hydrophobicity and hydrophobic interactions are referred to the
literature [101, 103, 104], since a detailed introduction into this field is out of the
scope of this work.
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a) b)

Figure 3.11: Snapshots of atomistic models for a) hydrophobic and b) hydrophilic
diamond surfaces as used in MD simulations. The hydrophobic surface is 100 %
terminated with H atoms, for the hydrophilic surface half of the H atoms are
substituted by OH groups. See text for details.

3.3.1 Molecular dynamics simulation details

The Gromos96 force field parameterization [105] is used to model a diamond slab of
approximate dimensions dx × dy × dz = 6 nm × 3 nm × 1.8 nm whose (100) surface
is fully terminated with hydrogen atoms. In the case of a hydrophilic surface, half
of the hydrogen atoms are replaced by hydroxyl groups, using the Gromos96 bond
and partial charge parameterization of the COH group as defined in a serine residue.
The partial charges for COH hence are 0.266 e for C, −0.674 e for O, and 0.408 e for
H; all other partial charges in the diamond are set to zero. Note that in both the CH
groups in the case of the hydrophobic diamond surface and in the COH groups for
the hydrophilic surface each atom is modeled by the full Gromos96 potential which
in addition to partial charges includes Lennard-Jones interactions and potentials
for bond stretching, as well as bond angle and dihedral angle deformation. The
wetting properties of the surfaces have been determined by simulations [102]; the
hydrophobic surface gives a contact angle of 106◦ with water, the hydrophilic surface
is completely wet by water. Top views of the two surface types are shown in Fig. 3.11.
About 3000 SPC water molecules [106] are added above and below the diamond slab
filling the simulation box of approximate size bx × by × bz = 6nm× 3 nm× 7 nm.

One repetitive unit of the C16 motif of spider silk contains 35 amino acids which
is too long for an efficient simulation with explicit solvent. Therefore we consider
only the terminal part containing the residues 21-35, NQGPSGPGGYGPGGP; for
amino acid abbreviations see Ref. [107]. This mildly hydrophobic peptide part is
in the following referred to as ‘the polypeptide’. The force field parameters for the
polypeptide atoms are taken from the Gromos96 force field, version 53A6 [108].
Initially, the peptide is placed in the simulation cell above the surface before the cell
is filled with water.

Our standard MD procedure consists of NPT simulations using the Gromacs
package [109, 110], i.e. MD simulations performed at constant particle number N ,
pressure P = 1bar and temperature T = 300K using a time step of 2 fs. To

47



CHAPTER 3. FRICTION OF SINGLE POLYMERS ON SOLID SURFACES

equilibrate the system, we first carry out an energy minimization of the simulation
system, followed by a 50 ps NVT relaxation and a 500 ps NPzAT relaxation. Here,
V, A, and Pz denote the total volume of the simulation box, the area of the slab,
and the pressure along the direction of the surface normal ẑ, respectively, which
are held constant. During this initial relaxation, the polypeptide adsorbs readily
onto the surface. For data acquisition NPT simulations under periodic boundary
conditions and with a duration between t = 5 ns and 20 ns are performed using
Berendsen’s schemes for temperature and semi-isotropic pressure coupling [111].
The compressibilities are adjusted to the bulk diamond and bulk water values, κxy =
2.5× 10−8 bar−1 and κz = 4.5× 10−5 bar−1, respectively. The particle-mesh Ewald
method [112] is used for the periodic treatment of Coulombic interactions, the LINCS
algorithm [113] for constraining covalent bonds involving hydrogen atoms. The
center of mass translation and the rotation around the center of mass are removed.

A virtual cantilever is attached to the center of mass of the first amino acid via
a harmonic spring with a force constant between 50 kJ/(mol nm2) ≈ 20 kBT/nm2

and 3000 kJ/(mol nm2) ≈ 1200 kBT/nm2 and moved with velocities between V =
0.1 m/s and 250m/s in the x̂ direction. The spring potential is independent of the
polymer height and only acts in the plane parallel to the surface, i.e. the x̂ and ŷ
directions. For the case of bulk water, simulations are conducted in a bx× by × bz =
10 nm×4 nm×4 nm simulation box filled with about 5400 water molecules. Average
mobilities 〈µ〉 are calculated from the displacement of the first amino acid, ∆X, and
the force measured by the spring extension, Fx, according to

〈µ〉 =
∆X

〈Fx〉∆t
. (3.36)

The dissipated power P i is calculated in an analogous fashion,

P i =
∆X

〈
F i

x

〉
∆t

, (3.37)

where in this approach the forces F i
x are the forces exerted by all atoms of a group i

on all peptide atoms. These forces are calculated explicitly from the force field using
either all atoms of the diamond slab (Psurf and F surf

x ) or all atoms belonging to water
molecules (PH2O and FH2O

x ). Necessarily, after reaching a steady state and then time
averaging, the sum of these forces equals the external pulling force in magnitude but
points in the opposite direction. For convenience we define the dissipative force
contribution by group i as positive values of F i

x, and hence 〈Fx〉 =
∑

i〈F i
x〉.

For all time averaged quantities error estimates are obtained via block averag-
ing, where the block size typically is ∆t = 3.8 ns and for which the first ns of the
simulation is disregarded for equilibration. Error bars are only shown when larger
than the symbol size. The number of hydrogen bonds, nHB, is analyzed in terms of
a distance criterion between donor and acceptor atoms as defined elsewhere [114].
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3.3.2 Peptide mobilities on surfaces and in bulk water

The laterally driven polypeptide shows distinctly different behavior on the hy-
drophilic surface as compared with the hydrophobic diamond. In Fig. 3.12 we show
two exemplary force traces, one for pulling with V = 10 m/s over the hydrophobic
H-terminated diamond surface (grey data points), the other for the hydrophilic 50 %
OH-terminated surface and a pulling speed of V = 0.5 m/s (black). Although the
pulling velocity on the hydrophobic surface is larger by a factor of 20, we observe a
mean force on the hydrophobic substrate of about 〈Fx〉 = 170 pN, while the averaged
force on the hydrophilic substrate is as large as 〈Fx〉 = 600 pN. Also the type of
motion is entirely different. On time and length scales investigated here, the force
on the polymer adsorbed to the hydrophobic substrate varies only little. On the
hydrophilic surface pronounced stick-slip behavior is found, with force peaks of up
to Fx = 1.5 nN. The same features, smooth movement on the hydrophobic surface
and stick-slip motion on the hydrophilic substrate, are observed in the displacement
of the first amino acid which we plot for both cases in Fig. 3.13 using the same color
coding. From analogous force and displacement traces the average mobilities are
calculated for different pulling speeds and are shown in Fig. 3.14. The black circles
correspond to simulations with the hydrophilic surface, the grey diamonds denote
values for the hydrophobic diamond, and the crosses represent measurements in bulk
water. Overall, the presence of the hydrophobic surface leads to slightly larger mo-
bilities at high pulling velocities than in bulk water and up to threefold increased
friction or lower mobilities at low pulling rates. For these two cases extrapolation to
the linear response limit, V → 0, is possible and yields µbulk = (6±1)×1010 s/kg and
µphob = (2±1)×1010 s/kg for bulk water and the hydrophobic surface, respectively.
On the hydrophilic surface only an upper bound of about µphil < 6 × 108 s/kg can
be established assuming that µ monotonically decreases to its value in the linear
response limit as V → 0.

The precise length scaling of the mobilities or diffusion coefficients for polymers
adsorbed to surfaces is disputed in the literature. Rouse type µ ∝ N−1 [70], sublinear
µ ∝ N−3/4 [86] as well as superlinear scaling µ ∝ N−3/2 [72] have been found. For
short enough chains such as ours we expect Rouse type behavior on the surfaces as
also discussed in Section 3.2, and only marginal deviations even in the bulk case, if
at all. For a comparison with literature values we therefore rescale all mobilities with
the number of amino acids in the polypeptide to get the monomer mobility, µmono =
Nµ, with N = 15. Hence we also neglect slight differences in the types of amino
acids. In Table 3.1 we compare our results to values published in the literature.
The data are grouped in mobilities measured in bulk water, mobilities of polymers
adsorbed to a hydrophobic surface but measured in solution, and mobilities measured
at the water-hydrophilic substrate interface. All literature values are converted into
monomer mobilities using the linear Rouse scaling, with the following exceptions:
For the data on peptides in bulk water by Danielsson et al. [115] we use the scaling
presented there and the molar mass of the polypeptide in our simulations; for the
data on ds-DNA in bulk water by Nkodo et al. [116] the authors’ scaling as N−0.57 is
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employed. For PEG polymers, which were adsorbed to silica hydrophobized with a
self-assembled monolayer (SAM), the data by Sukhishvili et al. [72, 73] is converted
using the N−3/2 scaling proposed by the authors due to reptation. Again, the use
of different scaling functions also for the data in bulk water is justified due to the
much longer polymers used in the experimental studies than in our simulations.
Summarizing, our mobility compares astonishingly well for the bulk water case.
Also the mobilities on surfaces are within reasonable agreement considering that
experimental data is only available for other types of polymers.

Using our mobility values, the friction force for pulling the polypeptide (N = 15)
over a surface at a speed of V = 0.1 m/s is given by Fx ≈ 5 pN for a hydrophobic
and Fx ≈ 170 pN for a hydrophilic surface. Even for velocities as high as that, in the
hydrophobic case friction is smaller than the typical desorption force of F = 55 pN
which has been determined by AFM experiments and complementary MD simula-
tions [102] in which the polymer was vertically pulled off from the substrate. This
fact allows reaching equilibrium on typical MD simulation timescales. In the hy-
drophilic case friction dominates and prevents equilibration in simulations. The sit-
uation is much more favorable in AFM experiments, since there the pulling speeds
are smaller by five orders of magnitude. The estimated friction forces in a typical
AFM experiment with V = 1 µm/s for a complete C16 polypeptide, which is ap-
proximately comprised of 16×2.3 units of the polypeptide considered here, would be
2 fN on the hydrophobic diamond and 60 fN on the hydrophilic surface. Compared
to the desorption force of F = 55pN or to the typical AFM force resolution of about
one piconewton, the friction forces are irrelevant.

Note that for both surfaces the mobilities obtained here can only serve as upper
bounds since surface heterogeneity, impurity, and roughness on all length scales are
expected to increase polymer friction. In the following section the mobility data is
rationalized in more depth and the dissipative mechanisms are analyzed in detail.
For that we start with the hydrophobic substrate and later turn to the hydrophilic
surface.

3.3.3 Dissipation mechanisms on hydrophobic and hydrophilic sur-
faces

In the case of the hydrophobic surface and of bulk water the large uncertainties in
the mobilities obtained for pulling velocities of V ≤ 1 m/s are due to relatively small
friction forces as compared to entropic stretching forces and hence large fluctuations
of the chain geometry. For a crude estimate the regime of strong deformation for
a Gaussian chain with a harmonic spring constant given by Eq. (3.4) is reached
when the extension in the direction of the force xN1 = X1 − XN is of the order
of the unperturbed end-to-end distance, xN1 ≈ Ree =

√
Na. Hence, the force

needs to exceed Fx ≥ 3kBT/Ree ≈ 40 pN using N = 15 and a = 0.8 nm. This
rough estimate is in agreement with the more rigorous treatment in Section 4.1. In
the above-mentioned cases the friction forces are smaller or just about this threshold
which suggests only weak perturbations of the peptide random coil configuration and
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Table 3.1: Linear response (V → 0) monomer mobilities of polymers in bulk
water and adsorbed onto hydrophobic and hydrophilic substrates.

polymer bulk water or surface type
µmono/

1010 (s/kg) Ref.

peptidea bulk water 94 [115]
peptide bulk water 90 this work
ds-DNAb bulk water 4.7 [116]

peptide on hydrophobic diamond 30 this work
PEGc on hydrophobized silica (SAM) 8.0 [72, 73]

ds-DNA on cationic lipid bilayer 1.2 [70, 71]
peptide on hydrophilic diamond < 0.9 this work
ds-DNA on mica 0.17 [74]

a mobility of 15mer is calculated using the scaling law given in Ref. [115]
with the molar mass of the polypeptide used here, Mr = 1298 g/mol;
scaling from polymer to monomer mobility is in all cases done via
µmono = Nµ except for b µmono = N0.57µ and c µmono = N3/2µ

Figure 3.12: Time evolution of the friction forces Fx on a polypeptide pulled
laterally over a hydrophobic H-terminated diamond surface (grey) and over a hy-
drophilic 50 % OH-terminated diamond surface (black) as obtained from MD sim-
ulations. Pulling speeds are V = 10m/s and V = 0.5 m/s, respectively.
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Figure 3.13: Time evolution of the displacement of the first amino acid cen-
ter of mass ∆X where the polypeptide is pulled laterally over a hydrophobic
H-terminated diamond surface (grey, left axis) and over a hydrophilic 50 % OH-
terminated diamond surface (black, right axis). Pulling speeds are V = 10m/s
and V = 0.5 m/s, respectively. Traces correspond to those shown in Fig. 3.12. On
time and length scales smaller than presented here or for smaller velocities, the
motion over the hydrophobic substrate is still smooth and in strong contrast to the
observed stick-slip motion over the hydrophilic surface.

Figure 3.14: Average polypeptide (15mer) mobilities 〈µ〉 as obtained by MD
simulations for different pulling speeds V . Data are taken in bulk water (crosses),
on a hydrophobic diamond surface (grey diamonds), and on a hydrophilic diamond
surface (black circles). Error estimates are only shown when larger than the symbol
size.
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Figure 3.15: Average polypeptide (15mer) end-to-end extension xN1 as obtained
by MD simulations for different pulling speeds V . Data are taken in bulk water
(crosses) or on a hydrophobic diamond surface (grey diamonds). Error estimates
are only shown when larger than the symbol size.

hence large conformational fluctuations. This is confirmed by the observation that
the extension xN1 increases sharply and shows much smaller fluctuations at about
V > 1 m/s as depicted for the bulk case (crosses) and the hydrophobic surface (grey
diamonds) in Fig. 3.15. Similarly, both the fluctuations and the value of the radius
of gyration perpendicular to both the pulling direction and the surface normal,
Ry

g = [ 1
N

∑N
i=1(Yi − 〈Y 〉)2]1/2, decrease at V ≈ 1 m/s for pulling in bulk water,

and at V ≈ 10 m/s for the hydrophobic surface as can be seen in Fig. 3.16, coded
using the same symbols. In all cases, the monomer positions Ri = (Xi, Yi, Zi) are
represented by the position vectors of the Cα atom of each of the N = 15 amino
acids. The change in preferred conformations is reflected in simulation snapshots
shown in Fig. 3.17 with a representative surface conformation each for V = 1 m/s
and V = 10m/s. Note that irrespective of the pulling speed, the polymer is strongly
adsorbed to the surface in a flat configuration with water molecules completely
replaced in that surface region by the peptide. The time- and number-averaged
height of the Cα atoms as measured by their distance from the first peak in the
diamond C atom density profile is given by 〈Z〉phob = (0.45± 0.02) nm and does not
considerably depend on the pulling speed in the range investigated here.

The dissipation mechanism on the hydrophobic surface is analyzed in more detail
by splitting the total force on the polypeptide into solvent and surface contributions
as described above. For low pulling speeds V ≤ 1 m/s, insufficient statistics prohibit
a more detailed analysis. Limiting our considerations to velocities V ≥ 1.8 m/s, it is
seen that both the hydrophobic surface as well as the solvent molecules contribute
in a dissipative way. The relative contribution of the surface (left axis) and the
water molecules (right-hand side axis) is shown in Fig. 3.18. With increasing veloc-
ity the surface contribution to friction decreases from about 50 % at V = 1.8 m/s
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Figure 3.16: Average polypeptide (15mer) radius of gyration in ŷ direction, Ry
g ,

as obtained by MD simulations for different pulling speeds V . The ŷ direction is
normal to both the pulling direction x̂ and the surface normal ẑ. Data are taken in
bulk water (crosses) or on a hydrophobic diamond surface (grey diamonds). Error
estimates are only shown when larger than the symbol size.

down to 5 % at V = 250 m/s. Considering the only small change in the mobility
for even smaller pulling velocities, V ≤ 1.8 m/s, we anticipate the friction in the
linear response regime on a hydrophobic surface to originate about half from direct
interactions with the surface, and half from peptide-solvent interactions. Despite the
fact that in the linear response regime the mobility on the hydrophobic substrate is
only reduced by a factor of three with respect to the bulk water case we conclude
that the surface directly adds to friction effects on the peptide. Interestingly, the
friction of the adsorbed peptide mediated by water molecules decreases at high ve-
locities as compared with the bulk water case. For V = 50 m/s we get a dissipative
power by the surrounding water molecules of PH2O

phob = 26 nW on the hydrophobic
surface and PH2O

bulk = 33nW in bulk water. For V = 250m/s we find PH2O
phob = 370 nW

and PH2O
bulk = 560 nW. Hence the water contribution to friction on a hydrophobic

surface drops from 79 % to 68 % of the friction in bulk water for V = 50m/s and
V = 250m/s, respectively. This decrease is possibly due to geometric effects reflect-
ing a decrease of the contact area between the polypeptide and the water at larger
pulling speeds and thus an effective lubrication layer brought about by the presence
of the hydrophobic surface.

At the hydrophilic surface the situation is quite different as the peptide is strongly
stretched and its extension amounts to Rx ≥ 4 nm even for pulling speeds as low
as V = 0.5 m/s and 1 m/s. The pronounced fluctuations and hence relative uncer-
tainties in the mobility are based firstly on the stick-slip nature of the motion and
secondly on the desorption and adsorption of small parts of the peptide. This is
demonstrated in Fig. 3.19a) where the time evolution of the average height of the
peptide Cα atoms, 〈Z〉phil, as measured by their distance from the O atom peak in
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a) b)

c)

d)

Figure 3.17: Representative conformations of a polypeptide chain adsorbed onto
a hydrophobic diamond surface for two different lateral pulling speeds; a) and
b) top and side view at V = 1 m/s, c) and d) top and side view at V = 10 m/s.
At low pulling speeds V ≤ 1 m/s, the 15mer coils up, see a) and also Figs. 3.15
and 3.16; at higher pulling speeds it adopts a stretched configuration, see c) and
d). Note that in all cases the polymer effectively replaces water molecules directly
bound to or located at the surface and is hence tightly bound to the surface at a
distance of about 〈Z〉phob = 0.45 nm, see text for details.

55



CHAPTER 3. FRICTION OF SINGLE POLYMERS ON SOLID SURFACES

Figure 3.18: Separation of the frictional forces and the dissipative power into
surface and solvent contributions for a polypeptide dragged over a hydrophobic
diamond surface as a function of the pulling velocity V . Relative contribution of
the surface is shaded and indicated on the left axis, for solvent contribution see
axis on the right-hand side. The shading and the line are drawn to guide the eye.
For velocities V ≤ 1 m/s, poor statistics prevent a splitting of the contributions.

the substrate density profile, (black data points, left axis) is plotted together with
the corresponding displacement trace (grey, right-hand side axis) for V = 0.5 m/s.
In equilibrium and during the beginning of pulling, any water is driven away from
the interface and the polypeptide is adsorbed flat onto the surface with a mean
height of about 〈Z〉phil ≈ 0.34 nm. When pulling, partial desorption events coincide
with slip instabilities and point to the rupture of adhesive bonds. This interpretation
is confirmed by the time evolution of the number of hydrogen bonds between the
surface hydroxyl groups and the polypeptide, nHB, as shown in Fig. 3.19b). Again,
also the displacement trace is shown. On the other hand, the number of hydrogen
bonds between peptide and water molecules stays rather constant over time at 55±3.
The decline in the number of hydrogen bonds with the surface atoms confirms our
interpretation that neither a steady state nor the linear response regime have been
reached for the hydrophilic substrate simulations and only an upper bound of the
mobility can be given. Note that partial de- and subsequent adsorption of the poly-
mer is probable even in the linear response limit, V → 0, but does not lead to total
desorption, especially for long enough polymers as will be discussed in Section 4.5.
Finally, we present the force and displacement traces for the hydrophilic substrate
and V = 0.5 m/s already shown in Figs. 3.12 and 3.13 together in Fig. 3.19c), again
emphasizing the mutual timewise cross-correlation of force peaks, the stick-slip mo-
tion, hydrogen bond breaking, and partial desorption, see Fig. 3.19a)-c).

An analysis of the total forces exerted on the peptide molecule by atoms belong-
ing either to the surface, F surf

x , or to water molecules, FH2O
x , shows that these forces

are approximately Gaussian distributed. For pulling the peptide with a speed of
V = 0.5 m/s over the hydrophilic surface, these forces average to 〈F surf

x 〉 = 620 pN
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a)

b)

c)

Figure 3.19: Mutual time cross-correlation between the average polymer height,
the number of hydrogen bonds with the substrate, the friction force peaks and the
stick-slip nature of motion for a polypeptide dragged over a hydrophilic diamond
surface. In all cases, the displacement of the center of mass of the first amino acid,
∆X, is shown in grey and on the right-hand side axis as a function of time. The left
axis denotes a) the number averaged height of the Cα atoms, 〈Z〉phil, b) the number
of hydrogen bonds between the polypeptide and the surface hydroxyl groups, nHB,
and c) the total frictional force exerted by the cantilever spring, Fx, which in
each case is shown in black. The number of hydrogen bonds is smoothed using
a moving average method over ten adjacent data points. Abrupt changes, i.e.
partial desorption events noted by a height increase or a decrease in the number of
hydrogen bonds, by force peaks or slip events occur in a concerted fashion.
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Figure 3.20: Separation of the total frictional force, Fx, (black) into surface
F surf

x (red) and solvent FH2O
x (blue) contribution for a polypeptide dragged over a

hydrophilic diamond surface as a function of the simulation time t. The pulling ve-
locity is V = 0.5 m/s. The contributions of the surface and the water are smoothed
using a moving average method over 100 adjacent data points.

and 〈FH2O
x 〉 = −34 pN. However, the force contributions are governed by enormous

fluctuations with standard deviations of σ(F surf
x ) = 1.6 nN and σ(FH2O

x ) = 2.5 nN.
Using a moving average method over 100 adjacent data points for 〈F surf

x 〉 and 〈FH2O
x 〉

reveals that the major dissipative contribution indeed stems from peptide-surface
interactions. The solvent contribution rarely makes up more than 30 % of the to-
tal interaction force Fx, and, more interestingly, mostly acts in a non-dissipative,
‘pushing’ way, as can be seen in more detail in Fig. 3.20. There we plot the total
dissipative force Fx in black, the surface contribution, F surf

x , in red, and the solvent
contribution, FH2O

x , in blue. Note that the contributions FH2O
x and F surf

x only add to
the total force Fx after time averaging which is due to inertial effects. A qualitatively
similar picture is obtained for the simulation at V = 1m/s. At even higher velocities
the peptide desorbs irreversibly a possible cause of which will be discussed in more
detail in Section 4.5. The interpretation of hydrogen bond ruptures as the main
source of friction is supported by simulation movies and snapshots. In Fig. 3.21 we
present snapshots of the peptide pulled at V = 0.5 m/s taken at simulation times of
t = 7.0 ns and t = 17.7 ns. It is seen that hydrogen bond donor and acceptor atoms
both in the backbone of the peptide and the side chains participate in hydrogen
bonding.

Summarizing our results, polypeptides experience high lubricity on hydrophobic
surfaces with mobilities close to those in bulk water. Even so, friction is generated
by interactions of the peptide molecule with both the solvent and the surface atoms.
In contrast, for a hydrophilic surface hydrogen bonds transiently lock the peptide
leading to a stick-slip type of motion and to mobility coefficients orders of magnitude
lower than in the bulk water and the hydrophobic surface cases. With current
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a)

b)

c)

Figure 3.21: Representative conformations of a polypeptide chain adsorbed onto
a hydrophilic diamond surface and laterally pulled at V = 0.5 m/s at simulation
time t = 7.0 ns (a) side and b) top view), and c) at time t = 17.7 ns (side view).
Hydrogen bonds are formed between surface hydroxyl groups and hydrogen bond
acceptors or donors in both the polypeptide backbone and the side chains. For
lateral pulling on the hydrophilic substrate the pulling velocities are comparably
large and beyond the linear response regime. Hence a stationary state is not reached
but instead partial desorption occurs, see also Fig. 3.19.
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computational resources, hydrophilic friction can be probed in atomistic simulations
including solvent molecules only in the non-linear regime. As opposed to peptides
adsorbed on hydrophobic diamond surfaces, simulations cannot reach the linear
response regime or equilibration. The difference in polymer surface friction between
hydrophobic and hydrophilic substrates has numerous consequences for the dynamics
of polymer adsorption, but also for the interior dynamics of peptides. Specifically,
one can speculate that the kinetics of the initial stage of protein collapse, which is
driven by hydrophobic attraction, is accelerated because of the small friction forces
involved.
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Chapter 4

Non-equilibrium adsorption of
single polymers

Non-equilibrium adsorption of polymers is characterized by the behavior of a poly-
mer close to an adsorbing surface when either very long timescales in e.g. diffusion
or binding and unbinding processes prohibit a full equilibration of the system on
typical experimental or simulation timescales or when energy dissipation occurs by
some external force or field. In contrast to equilibrium adsorption as discussed in
Chapter 2 and the references given there, non-equilibrium adsorption of polymers is
by far less well studied, even in the dilute or single polymer regime. This is rather
surprising since many technological applications of polymer adsorption are in some
way accompanied with dissipative processes, such as strong stirring of solutions or
convection as outlined in Section 1.1. A very important aspect of non-equilibrium
adsorption is given by the adsorption under shear flow which at the same time is the
best studied case both from the experimental [117–126] and the theoretical point of
view [127–133].

To point out the importance of far-from-equilibrium effects we investigate a sim-
ple and educative case in Section 4.2, namely a single polymer that is pulled laterally
over an adsorbing surface by a force exerted at one end. Experimentally this sce-
nario is accessible through the use of the AFM and tweezers techniques [61, 134] by
which also pulling polymers parallel to a surface has been achieved [75]. Using the
conclusions from lateral pulling, the adsorption in simple shear flow is studied in
Section 4.3, which is a generic situation for adsorbing surfaces in sheared solutions
as found in e.g. processing of colloidal solutions. A related scenario is a laterally
moving, dilute polymer brush that is pushed against a solid substrate [10]. The
influence of hydrodynamic interactions, which are excluded in the parts before for
systematic reasons, is examined in Section 4.4. Finally, the adsorption of a single
particle on a corrugated surface under a lateral force is analyzed and its implications
on the polymer case are discussed in Section 4.5. The chapter starts with an analysis
of conformational changes of polymers under external flow fields, Section 4.1. The
polymer model used in this chapter is the same as that introduced for BD simula-
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Figure 4.1: The coarse-grained polymer model as used for (non)equilibrium
adsorption and bulk flow deformation. For polymer adsorption, the ẑ axis al-
ways coincides with the surface normal. The position of monomer i is de-
noted as Ri = (Xi, Yi, Zi), the distance between two monomers i and j as
rij = (xij , yij , zij) = Rj − Ri. Nearest neighbor bond vectors are abbreviated
as rm = rm,m+1. Similarly, the force acting on the mth bond is defined as
Fm = Fm,m+1 where Fm,m+1 is the force exerted by monomer m+ 1 on monomer
m. The end-to-end height difference is ∆ZN = z1N . Also shown are two cases of
non-equilibrium adsorption, Case (I) in which a polymer is pulled at one end in x̂
direction through solution and Case (II) in which a simple shear flow in x̂ direction
acts with a velocity gradient in ẑ direction of γ̇z.

tions of equilibrium adsorption, cf. Section 2.3. The definition of symbols is shown
in Fig. 4.1.

4.1 Polymer response to flow fields in bulk solution

In this section we develop some simple arguments for the response of a polymer to
simple flow fields in bulk solution. The results are later applied to the situation of
a polymer close to an adsorbing surface. The deformation of polymers in flows has
gained much interest both from the experimental and the theoretical side [63, 64,
135, 136]. Even in the absence of turbulence and in the zero Reynolds number limit
many studies employing simulations as well as continuum theories have been used to
tackle this issue for all kinds of flows, e.g. purely elongational and purely rotational
flows or combinations thereof as in simple shear flow, or plug flows just to mention
a few. Focusing solely on observables that will later turn out to be important for
polymer adsorption we extend these studies by the treatment of a polymer in the
flow field caused (I) by applying a unidirectional force on one end of a polymer and
pulling it through solution, and (II) by exerting a simple shear flow with a constant
shear rate in one direction, see also Fig. 4.1. Here we assume the polymer to be
located in bulk solution and hence at the moment neglect the effects of a surface.
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In addition excluded volume interactions are neglected in the analytical treatment.
This formulation is even appropriate for the case of more realistic polymer models
with excluded volume interactions if the flow field perturbations are strong enough.
In that case the polymer is mostly stretched and monomer interactions between
non-nearest neighbors occur rarely.

Starting point for the more general Case (II) of a polymer consisting of N
monomers in shear flow, is the overdamped Langevin equation for the position of
monomer bead i, Ri,

~0 = ζi + Ffric + Fi,i−1 + Fi,i+1 , (4.1)

where Ffric = (Ṙi − v(Ri))/µ is the friction force on monomer i against the solvent
fluid field with velocity v(R) = γ̇ · R at position R. As in Rouse dynamics, µ is
the bulk mobility of the monomer which is supposed to be constant over space and
monomer index and, in particular, independent of the other monomer positions and
velocities (cf. Section 1.2), and γ̇ is the shear field tensor. The last two terms are
the vectorial forces of monomers i − 1 and i + 1 on monomer i. Rearranging we
obtain

Ṙi/µ = ζi + γ̇ ′Ri + Fi,i−1 + Fi,i+1 , (4.2)

where in the dashed shear tensor all components are divided by µ. In the case of
simple shear flow we write

v(Ri) = γ̇Ri = (γ̇zZi, 0, 0) . (4.3)

By time averaging the random contribution in Eq. (4.2) vanishes. The surviving
terms in the x̂ direction are given by〈

Ẋ1

〉
/µ = γ̇z 〈Z1〉 /µ+ F1 , (4.4)〈

Ẋi

〉
/µ = γ̇z 〈Zi〉 /µ− Fi−1 + Fi for 2 ≤ i ≤ N − 1, and (4.5)〈

ẊN

〉
/µ = γ̇z 〈ZN 〉 /µ− FN−1 . (4.6)

Here Fj is the short-hand notation of the averaged force in x̂ direction exerted by
monomer j + 1 on monomer j, Fj ≡ 〈(Fj)x〉 = 〈(Fj,j+1)x〉. By using the fact that
after averaging over a long enough time period the monomer velocities must be
equal, 〈Ẋi〉 = 〈Ẋj〉, we get a set of N − 1 equations each of which is the right-hand
side of Eqs. (4.5), (4.4), or (4.6). Hence we can rearrange each equation to solve for
an unknown force. To give two examples, using the equations for i = 1 and i = 2,
and solving for F2 yields F2 = 2F1 + γ̇z〈Z1 − Z2〉/µ. Similarly we obtain for the
third bond, F3 = 2F2 − F1 + γ̇z〈Z2 − Z3〉/µ = 3F1 + γ̇z〈2Z1 − Z2 − Z3〉/µ. The
general equation for 1 ≤ i ≤ N − 1 turns out to be

Fi = iF1 −
γ̇z

µ

i∑
j=1

〈∆Zj〉 , (4.7)
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where we defined ∆Zj = Zj −Z1. Using Eqs. (4.7), (4.6), and (4.5) for bond N − 2
we can now eliminate F1 and obtain for the force on bond i with 1 ≤ i ≤ N − 1

Fi =
γ̇z

µ

 i

N

N∑
j=1

〈∆Zj〉 −
i∑

j=1

〈∆Zj〉

 . (4.8)

To check consistency, the mean polymer velocity can be calculated by e.g. Eq. (4.4)
and yields the expected result V ≡ 〈Ẋ1〉 = γ̇z

µN

∑N
j=1〈Zj〉.

For pulling a polymer at its first monomer through bulk solution, Case (I), we
can simply set the shear rate to zero, γ̇z = 0, or equivalently the solvent flow field,
v(Ri) = 0. Also the equation of motion for the first monomer is modified to take the
pulling force F which acts in x̂ direction into account such that Eq. (4.4) becomes〈

Ẋ1

〉
/µ = F1 + F . (4.9)

A similar approach as described above and elimination of the force on the last bond
N − 1 yields the force on any bond i as

Fi = (N − i)FN−1 = −N − i

N
F . (4.10)

Hence, the mean force on the bonds linearly decays from F (N − 1)/N at the pulled
end down to F/N at the other end. The average velocity of the polymer is given by
V = µF/N consistent with a Rouse picture.

In the following we calculate the roughness of the polymer perpendicular to the
direction of the external forces which are caused by either pulling or shearing. For
simplicity, we switch from the general discussion in the previous paragraphs to a
FJC polymer model. To further proceed we assume the mean forces calculated
above, 〈Fj〉 = (Fj , 0, 0), as the variable of control. By neglecting fluctuations in any
direction x̂, ŷ, and ẑ, the Gibbs ensemble, for which the force extension relations are
simple, becomes the relevant ensemble. Setting forces in the ẑ direction identical zero
is an approximation for the shear case since torsional components and tumbling do
arise. For both the shear and the pulling case another approximation is later given
by the neglect of the adsorbing surface which breaks the symmetry between the
lateral ŷ and ẑ directions. Nevertheless the results later turn out to be of appealing
simplicity, and excellently describe the simulation data. Note that a more detailed
description and introduction into polymer models and specifically the FJC can be
found in Section 5.1.

For a FJC under force control, i.e. in a Gibbs ensemble [92], the polymer partition
function factorizes into N − 1 partition functions of single FJC bonds, Z, each
evaluating to [93]

Z(F̃i) = F̃−1
i sinh F̃i , (4.11)

where we introduced rescaled forces F̃i = Fia/kBT . The standard result for the
mean extension along the pulling direction is obtained by taking the logarithmic
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derivative, 〈x̃i〉 ≡ 〈X̃i+1 − X̃i〉 = ∂ lnZ/∂F̃i = L(F̃i) where L(x) = cothx − x−1

is the Langevin function. The second moment is given by a double derivative,
〈x̃2

i 〉 = Z−1∂2Z/∂F̃ 2
i = 1 − 2L(F̃i)/F̃i. The two perpendicular directions, ŷ and ẑ,

are equivalent and the mean squared extension perpendicular to the pulling direction
is 〈

z̃2
i

〉
=
(
1−

〈
x̃2

i

〉)
/2 = (coth F̃i − F̃−1

i )/F̃i = L̃(F̃i) , (4.12)

where we have defined a new function L̃(x) = L(x)/x. We are particularly interested
in the height difference between the pulled end of the chain and monomer i, ∆Z̃i ≡
Z̃i − Z̃1 =

∑i−1
j=1 z̃j . Since all bonds are decorrelated from each other we obtain for

its second moment

〈
∆Z̃2

i

〉
=

〈 i−1∑
j=1

z̃j

2〉
=

i−1∑
j=1

〈
z̃2
j

〉
=

i−1∑
j=1

L̃(F̃j) ≈
∫ i−1/2

1/2
dj L̃(F̃j) . (4.13)

Let us examine the two limits of very strong and weak pulling in more detail. For
weak pulling, F̃i = F̃ (N − i)/N ≤ F̃1 < 1, we can use the asymptotic limit L̃(x) x�1−→
1/3. On the other hand, for very strong pulling, 1 < F̃i ≤ F̃1, we have L̃(x) x�1−→ 1/x.
In summary we get

〈
∆Z̃2

i

〉
−→

(i− 1)/3 for F̃1 < 1 and
N
F̃

ln N−1/2
N−i+1/2

i�N−→
1�N

(i− 1)/F̃ for 1 < F̃i ≤ F̃1.
(4.14)

Hence, for weak pulling we recover the standard random walk result and the mean
squared extension scales linearly with the number of bonds i−1. For strong pulling,
on the other hand, the mean squared extension is still linear in i−1 but proportional
to the inverse force. This can be interpreted as an effective renormalized Kuhn
length in ẑ direction given by aeff = (3/F̃ )1/2a. For intermediate pulling forces,
F̃i < 1 < F̃1, the situation is more complex with trumpet and stem-flower regimes
as discussed in the literature [136]. It is useful to define the mean, renormalized
Kuhn length as

aeff =

3
〈
∆Z̃2

N

〉
N − 1

1/2

a , (4.15)

where 〈∆Z̃2
N 〉 is defined by Eq. (4.13).

For illustration we show in Fig. 4.2 characteristic simulation snapshots of a 32mer
pulled in bulk with rescaled velocities of Ṽ = V a/kBTµ = 0, 0.1, and 1. In Fig. 4.3
we show simulation data for the rescaled mean squared perpendicular extension,
3〈∆Z̃2

N 〉/(N − 1), as a function of the pulling speed Ṽ for a 64mer both with (black
circles) and without excluded volume (grey diamonds, Lennard-Jones parameter
ε = 0). The numerical solution to Eq. (4.13) is shown as a solid line. For pulling
with Ṽ ≥ 1 both polymer models coincide due to alignment of the chain. At lower
pulling rates excluded-volume interactions become relevant and the self-avoiding
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Figure 4.2: Simulation snapshots for pulling a 32mer through bulk solution to
the left with increasing velocity Ṽ = V a/kBTµ. Also shown is the definition of
∆Z̃N .

polymer is more swollen than the phantom chain. It transpires that Eq. (4.13) is
accurate for large enough pulling forces.

In the following sections the non-equilibrium adsorption of a single, non-grafted
pulled or sheared polymer will be discussed. We start with the simpler problem (I)
in which the polymer is pulled with a constant velocity at one end.

4.2 Laterally pulled polymers

For the situation (I) where the first monomer of the polymer is pulled with a constant
velocity Ẋ1 = V parallel to the surface, we determine the overcritical adsorption
potential as described for the equilibrium case in Section 2.3. In the ẑ direction, i.e.
normal to the surface, the first monomer is moving without constraints according to
Eq. (2.37). We use rescaled velocities in the range of 10−4 ≤ Ṽ = V a/kBTµ ≤ 100.
For higher pulling velocities and larger polymers, NṼ ≥ 100, the spring constant
k̃ is increased sufficiently so that all bond lengths are well below 1.15 a. The other
parameters such as the time step and the number of simulation steps are adjusted
accordingly.

For pulled polymers, we observe stronger attachment of the chains to the surface.
This is demonstrated for a 128mer in Fig. 4.4 where we plot the mean normalized
adsorption potential W̃ = −〈Ũ surf〉/Nχ as a function of the interaction parameter
χ and compare the equilibrium case (filled circles) with pulling at Ṽ = 1 (open dia-
monds). Clearly, the (over)critical adsorption strength is decreased by pulling. We
associate this enhanced adsorption with the flattening of the chain in the ẑ direc-
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Figure 4.3: Rescaled mean squared perpendicular extension 3〈∆Z̃2
N 〉/(N − 1) for

pulling a self-avoiding polymer (black circles) and a phantom chain (no excluded
volume, grey diamonds) with N = 64 at different velocities Ṽ = V a/kBTµ through
bulk solution. For Ṽ ≥ 1 the results for the two models coincide, for Ṽ ≤ 0.1 the
self-avoiding chain swells strongly. Also shown is the numerical solution to (4.13).

tion perpendicular to the surface. To test this hypothesis we conduct simulations at
different velocities and extract the overcritical adsorption strength. In Fig. 4.5 we
show the overcritical adsorption strengths normalized by the values at equilibrium
χocrit(Ṽ )/χocrit

eq as a function of the pulling speed. Presented are three models of
64mers: (i) the self-avoiding polymer as described in the simulation details, (ii) the
phantom chain, i.e. without excluded volume (ε = 0), and (iii) a Gaussian chain
without excluded volume and with ideal chain elasticity Ũpoly = 3/2

∑
i r̃

2
i . The

results presented in Fig. 4.5 show no influence of the pulling force on the Gaussian
chain; this is easily understood since the chain conformations in the pulling direction
x̂ are decoupled from the polymer fluctuations in the ẑ direction perpendicular to
the surface, clearly an artifact of the ideal chain model. In contrast, we observe
stronger adsorption for the FJC model, where the orthogonal bond directions are
coupled as in a real polymer chain. It turns out that there is hardly any effect by
excluded volume interaction. For the non-rescaled values of the critical adsorption
strength, we find in the equilibrium case χocrit

eq = 2.63 ± 0.15 for the self-avoiding
chain and χocrit

eq = 2.45± 0.15 for the phantom chain. This small difference vanishes
for higher pulling speeds due to increasing chain stretching.

The general dependence of the critical adsorption strength on the potential range
κ−1 and Kuhn length a for a polymer in equilibrium is χ∗ ∝ a2κ2, as can be shown
by scaling analysis [35, 42] or by explicit solution of the polymer path integral, cf.
Section 2.1 and Eq. (2.12). As shown in the previous section, pulling on one end of
a polymer reduces its effective Kuhn length perpendicular to the pulling direction.
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Figure 4.4: Mean normalized adsorption potential W̃ = −〈Ũ surf〉/Nχ for a
128mer as a function of the surface interaction parameter χ in equilibrium (filled
circles) and being pulled with Ṽ = V a/kBTµ = 1 (open diamonds). For pulling the
curve is shifted to lower adsorption energies. The overcritical adsorption strengths
are χocrit = 2.55 and 0.48 for the equilibrium case and Ṽ = 1, respectively.

Figure 4.5: Overcritical adsorption parameter χocrit normalized by its equilibrium
value as a function of the pulling velocity Ṽ = V a/kBTµ for different types of
64mer models: (i) self-avoiding polymer (crosses), (ii) phantom chain (no excluded
volume, diamonds), and (iii) Gaussian chain (circles) which shows no effect due to
decoupling of the pulling direction from other directions.
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Figure 4.6: Overcritical adsorption parameter χocrit normalized by its equilibrium
value as a function of the pulling force F̃ = NṼ = NV a/kBTµ for a monomer up
to a 512mer. Also shown is the scaling argument Eq. (4.16) for N →∞.

On the scaling level, the decrease of the critical adsorption potential depends on the
pulling force solely via the renormalized Kuhn length according to

χ∗(F̃ )/χ∗eq ≈ χocrit(F̃ )/χocrit
eq ≈ a2

eff/a
2 , (4.16)

where aeff is available through Eq. (4.15) using the mean pulling force on the first
monomer, F̃ = NṼ . In Fig. 4.6, where we plot the normalized overcritical adsorp-
tion energy χocrit(F̃ )/χocrit

eq as a function of the mean pulling force F̃ , the simulation
data are compared with Eq. (4.16) for N → ∞ . Note that the dependence of the
scaling prediction on N is rather small and therefore not shown in the figure. As
expected, for a single monomer pulling has no effect on the adsorption transition.
Polymers consisting of more than 64 monomers display limiting behavior that is
very well predicted by our scaling theory. Deviations are expected due to the disre-
gard of the surface and the idealization by an FJC model in deriving the polymer
pulling response. More seriously, the flattening of the chain along its contour is
inhomogeneous, and it is not clear how this affects the overall desorption threshold.

The adsorption-enhancement effect described here does not result from enhanced
friction of the polymer close to the surface; in fact, a possible variation of the
polymer mobility close to the surface (which occurs in reality) is not considered in
our simplified model. However, in a constant velocity experiment a smaller mobility
of the polymer close to the surface leads to an increase in the forces needed to pull
with the same velocity and therefore shifts the critical adsorption strength to even
smaller values.

Note that the enhancement effect is already quite pronounced at forces of F̃ ≥ 10.
Although this means rather large velocities for small polymers, the desorption behav-
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ior of very large polymers can be strongly influenced at already small velocities. To
put in numbers, assuming Stokes friction in water with viscosity η and using F̃ = 10
we have V = F̃ kBTµ/Na = F̃ kBT/3πηNa2 ≈ 0.4 mm/s for a synthetic polymer
with a = 1nm and N = 104, or V ≈ 4 µm/s for phage DNA of length of the order of
10 µm (a = 100 nm, N = 100). Polymer velocities of µm/s are easily reached in the
biological or technological context, the pulling-enhanced adsorption mechanism is
therefore relevant to a host of different systems. Note that in certain flow situations
very high velocities are present, e.g. in polymer applications for paper making or
plug flows on end-tethered polymers. In a different context, the dependence of the
adsorption shift on the applied velocity Ṽ = F̃ /N leads to preferential adsorption
of polymers with a high polymerization index in a constant velocity experiment and
thus could be used for length separation. In a related but conceptually simpler equi-
librium situation, a surface-anchored polymer is pulled by an external force at its
free end, in which case the force is homogeneous along the polymer contour. Fol-
lowing our earlier reasoning leading to Eq. (4.15) and using Eq. (4.13), the effective
Kuhn length in this case is given by a2

eff/a
2 = 3L̃(F̃ ). As before, the force flattens

the chain, the effective Kuhn length and the critical adsorption strength decrease.
In summary, we have shown that laterally pulling a polymer by one end reduces

its perpendicular roughness and the entropic cost of adsorption, and thus enhances
polymer adsorption. On the scaling level, this behavior is explained by a renormal-
ized Kuhn length in the direction normal to the surface. The influence of bending
stiffness, electrostatic interactions between the polymer and the surface, surface
patterns and more complicated flow geometries constitute possible extensions of the
present study but will most likely not change the general mechanism for pulling-
enhanced adsorption. The case of simple shear flow, the influence of hydrodynamic
coupling of the monomers, and the effects of a corrugated surface will be discussed
in the following three sections.

4.3 Polymers in simple shear flow

In the Case (II) a polymer is located close to an adsorbing surface and the solvent
is perturbed by a simple shear flow normal to the surface as given by Eq. (4.3). The
BD simulations are adapted using a modified version of Eq. (2.39), i.e.

R̃i(n+ 1) = R̃i(n) + µ̃
[
(γ̃Zi, 0, 0)−∇R̃i

Ũ(n) +
√

2/µ̃ξ̃i(n)
]
, (4.17)

where the rescaled shear rate takes values in the range of 10−4 ≤ γ̃ = γ̇za
2/µkBT ≤

100. Other parameters are the same as described in Sections 2.3.1 and 4.2. In a
similar fashion as for the pulled polymer we find enhanced adsorption by shear flow
as checked for N = 32, 64, and 128. The results are qualitatively the same, so we
limit the discussion to the 128mer. As exemplary case we show in Fig. 4.7 the mean
normalized adsorption potential W̃ = −〈Ũ surf〉/Nχ for a 128mer as a function of the
adsorption strength χ and compare the equilibrium case (filled circles) with shearing
at γ̃ = 10 (open squares). For low values of the adsorption strength χ we note a
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Figure 4.7: Mean normalized adsorption potential W̃ = −〈Ũ surf〉/Nχ for a
128mer as a function of the surface interaction parameter χ in equilibrium (filled
circles) and being sheared with γ̃ = γ̇za

2/kBTµ = 10 (open squares). When shear-
ing, the curve in the low-χ regime is shifted to lower adsorption energies. For
intermediate to high values of χ there is no considerable shift detectable. The lines
denote the value of χocrit for the equilibrium case which coincides with its value
for the sheared case within the simulation accuracy.

shift of the curve to smaller values of χ, i.e. enhanced adsorption. At values of χ
above its ‘overcritical’ value defined by W̃ (χocrit) = 1/2, the curves start to overlap,
and enhanced adsorption is no longer detectable. This is easily understood when
taking the results for pulling an adsorbing polymer into account. For high adsorption
strengths χ & χocrit, the polymer adopts a flat configuration with long trains and
only few, small loops, cf. Section 2.2 and Fig. 2.2. The stretching forces acting on
the polymer are low and no flattening in the ẑ direction occurs. Accordingly, the
enhanced adsorption mechanism discussed previously does not come into play. On
the other hand, close to the desorption transition, i.e. for small enough values of
the surface interaction parameter χ < χocrit, the loop length diverges and the loops
further away from the no-slip boundary surface experience stronger solvent flow,
and the extensible flow component stretches the polymer; in this regime polymer
adsorption is enhanced. The dependence of the shear influence on the adsorption
strength is a fundamental difference to the case of pulling the polymer on one end as
described in Section 4.2. There, the chain stretching and reduction in its roughness
normal to the surface was rather independent of the adsorption strength. Hence, the
effect of shearing cannot be identified only using the overcritical adsorption strength,
as shown by the fact that these values hardly change with imposing shear flow. The
mere analysis of the true critical adsorption strength, for which W̃ (χ∗) → 0, is
prohibited due to the uncertainty in pinpointing χ∗ as discussed in Section 2.3.2.
An attempt to take the variation of the shear effect with the adsorption strength
into account is presented in the following.
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a) b)

Figure 4.8: The mean rescaled and averaged lateral force F̃i/γ̃ = Fiµ/γ̇za as a
function of the bond index i ∈ {1 . . . 127} for a 128mer. The profiles are obtained
from height distributions {Z̃j}, j ∈ {1 . . . 128}, recorded from equilibrium BD
simulations at the adsorption strengths a) χ = 0.63 and b) χ = 6.28. Standard
deviations serve as error estimates.

For weak shear rates, we estimate the influence by a first order perturbation
of the equilibrium conformation of the polymer. The polymer height distributions
at equilibrium but under specific values of the adsorption strength, {Z̃j}(χ), j ∈
{1 . . . N}, are taken from BD simulations. Using Eq. (4.8), the expected shear force
on each bond in x̂ direction is calculated. In Fig. 4.8 we show as exemplary cases the
distribution of the mean rescaled stretching forces {F̃i/γ̃}(χ), i ∈ {1 . . . N − 1}, for
a 128mer for a) χ = 0.63 and b) χ = 6.28. The distributions are roughly bell shaped
indicating that on average the largest forces act in the middle of the polymer. For
χ = 0.63, both the forces and their fluctuations are much larger than for χ = 6.28
as rationalized before.

Using Eq. (4.15) the effective Kuhn length aeff is calculated for a set of shear
rates 10−4 ≤ γ̃ ≤ 100 using the distributions {F̃i/γ̃}(χ) each obtained for the set
of interaction parameters χ, which are available from the equilibrium simulation.
Hence, we get a rough, first order perturbative estimate of the effective Kuhn length
for chosen values of γ̃ and χ, aeff(γ̃, χ). This quantity describes the flattening of
a chain with a geometry or height distribution determined by χ in equilibrium,
and sheared in bulk solution with a rate of γ̇z hypothetically in the linear response
regime.

We now assume that the renormalization which we used for the overcritical value
of χ in the pulling case, Eq. (4.16), roughly holds for any point on the W̃ (χ) curve.
Hence, we obtain the new curve for the sheared case by shifting the equilibrium val-
ues W̃eq(χ) by a2

eff(γ̃, χ)/a2, and thus W̃γ̃(χ′) = W̃eq(χ), where χ′ = χ×a2
eff(γ̃, χ)/a2.

In Fig. 4.9 we show adsorption curves for a 128mer using shear rates of γ̃ = 0 (equi-
librium case, solid line), γ̃ = 0.1 (grey diamonds), γ̃ = 1 (black stars), and γ̃ = 10
(open squares), where a) shows explicit BD simulation results and b) the predic-
tions of the aforementioned procedure. Data for shear rates lower than 0.1 are not
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shown since they largely reproduce the equilibrium curve in both the simulations
and the predicted values. The predictions qualitatively capture the mechanism of
shear-induced adsorption enhancement. Due to the simplicity of the model the cal-
culation overestimates the effect of shearing. In addition to the approximations
already discussed in Section 4.2 for the pulling case this is mainly due to the fol-
lowing shortcomings: The disregard of the forces perpendicular to the x̂ direction
in deriving Eq. (4.8) and hence the disregard of tumbling motion leads to an over-
rating of the stretching motion. Secondly, the first order perturbative nature of the
ansatz breaks down at too strong shear flows, i.e. the flattening of the chain height
distribution by the shear forces further decreases the effect of the shear flow. This
shortcoming is even more severe because increased adsorption also flattens the chains
and hence reduces the flattening effect. Lastly, the assumption that the scaling re-
lation Eq. (4.16) is valid not only for the critical and overcritical value, but for any
value of χ, is a crude approximation. At the moment a more self-consistent model
is under construction. Still, considering the clear results obtained from Section 4.2
we are confident to have identified a mechanism how shearing can lead to stronger
adsorption in the weakly adsorbed regime.

In previous contributions discussing free draining BD simulations of polymers
near adsorbing walls, Manias et al. [130] and Panwar et al. [133], have also found
a flattening of the chain due to shear flow. Panwar et al. basically arrive at similar
conclusions as presented here where they mostly argue on the basis of the distribution
of trains, tails and loops, or the different spatial components of the radius of gyration.
From our point of view, this procedure either involves a somewhat arbitrary height
threshold for defining trains or contacts or is a rather indirect measure of the chain
adsorption. Similarly, this applies to the work of Manias et al. who mostly use the
number of contacts and the different spatial components of the diffusion coefficient
to identify changes in the adsorption behavior. We feel that using the average
adsorption energy U surf as our main measure for the adsorption of the chain gives
the most unequivocally defined quantity to analyze the influence on the adsorption
behavior of the polymer chain.

Manias et al. also conclude that shear flow increases the diffusion coefficient
normal to the surface which together with some peeling and tumbling mechanism
leads to reduced adsorption due to shearing [130]. Following our previous reasoning
with increased adsorption in the weakly adsorbing regime, this might take place for
strongly adsorbed polymers or polymers in the intermediate adsorption range. In
Fig. 4.10 we take a closer look at that regime, again for the 128mer. In a) we present
an excerpt of Fig. 4.9a), where we plot the normalized adsorption potential W̃ as
a function of the adsorption strength χ. In b) we show the fraction of adsorbed
monomers or trains, 〈Υ〉/N , where a monomer counts as adsorbed when its height
is less than the adsorption screening length, Z̃ < κ̃−1. Both data series do not
suggest decreased adsorption in the medium to strong adsorption regime; however,
for a definite statement more data with higher precision is needed. Using a similar
analysis for loops and tails, we arrive at the same conclusion.
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a)

b)

Figure 4.9: Mean normalized adsorption potential W̃ = −〈Ũ surf〉/Nχ for a
128mer as a function of the surface interaction parameter χ at shear rates of γ̃ = 0
(equilibrium case, solid line), γ̃ = 0.1 (grey diamonds), γ̃ = 1 (black stars), and
γ̃ = 10 (open squares). a) Results from BD simulations, b) predictions from a first
order perturbation ansatz in which the lateral force distribution due to the shear
flow is calculated from the monomer height distribution in equilibrium. That force
distribution is used in Eq. (4.15) to calculate the effective Kuhn length which in
turn allows a mapping of the equilibrium curve to that of the sheared case, see text
for details. The predictions capture the effect qualitatively, but overestimate it, cf.
text for possible reasons.
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a)

b)

Figure 4.10: a) Mean normalized adsorption potential W̃ = −〈Ũ surf〉/Nχ and
b) fraction of adsorbed monomers 〈Υ〉/N for a 128mer as functions of the surface
interaction parameter χ at shear rates of γ̃ = γ̇za

2/µkBT = 0 (equilibrium case,
solid line), γ̃ = 0.1 (grey diamonds), γ̃ = 1 (black stars), and γ̃ = 10 (open squares).
In both cases, the excerpt focuses on the strongly adsorbed regime, χ ≥ χocrit.
Note the different scales on the χ axes. Adsorbed monomers (trains) are defined
by Z̃ < κ̃−1. No substantial changes in the quantities are found upon shearing.
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Summarizing, shearing of dilute polymer solutions results in polymer configura-
tions stretched and extended in the direction of the shear flow for the case of weakly
adsorbed polymers. Similarly to the case of a laterally driven polymer, this leads to
a decreased roughness in the direction normal to the surface, and hence increased
polymer adsorption. In the strongly adsorbed regime, there is no pronounced effect
due to flat polymer configurations hardly subject to the shear flow.

4.4 Hydrodynamic interactions in non-equilibrium ad-
sorption

In Sections 2.3, 4.2, and 4.3, the hydrodynamic interaction of the monomers as well
as the effect of a no-slip boundary of the wall have been neglected. For the equilib-
rium case this is fully justified, since the equilibrated system must not depend on
the mobilities of the particles. In the case of non-equilibrium adsorption, it is often
well justified to neglect hydrodynamic interactions since they drop rapidly enough
close to a wall with no-slip boundary condition, cf. Section 1.2. From a technical
point of view it is also a convenient way to separate different non-equilibrium effects
from each other. In this section we follow a systematic approach and extend the
non-equilibrium adsorption studies presented in the preceding sections by taking the
hydrodynamic interaction into account.

The Langevin equation Eq. (2.37) is modified and now reads

dRi

dt
=

N∑
j=1

[
−µij∇RjU(t) + ∇RjµijkBT

]
+ ξ′i(t) , (4.18)

where ξ′i is a vectorial random velocity satisfying〈
ξ′i(t)⊗ ξ′j(t

′)
〉

= 2kBTµijδ(t− t′) . (4.19)

The coupling of the monomer motion is incorporated on the Stokes level, i.e. for
zero Reynolds number, via the mobility tensor for the particles i and j, µij . It also
includes the effect of the no-slip boundary, planar wall using the stationary Green’s
function GB of the Stokes equation derived by Blake [33]. The multipole expansion
of the mobility tensor reads within second order

µij(Ri,Rj) =
(
1 + (a2/24)∇2

Ri

) (
1 + (a2/24)∇2

Rj

)
GB(Ri,Rj) for i 6= j. (4.20)

The self-mobility µii is obtained from Eq. (4.20) by taking the limit Ri → Rj and
regularization with the intrinsic Stokes mobility of a sphere, µ = 3πηa [34]. Note that
this procedure is computationally far more demanding than the method using free
draining mobilities, and the maximum system size feasible on standard computers is
limited to about N ≤ 100 for simulations with high external fields. For the cases of
pulling at one polymer end with velocity V , Case (I), the balancing force of varying
direction and magnitude which is needed to move the first monomer with a rescaled

76



4.4. HYDRODYNAMIC INTERACTIONS IN NON-EQUILIBRIUM ADSORPTION

velocity Ṽ in x̂ direction is calculated and added into Eq. (4.18). For exposing the
polymer to shear flow of rate γ̇z, Case (II), Eq. (4.18) is extended by a shear term
with a rescaled shear rate γ̃ as in Section 4.3.

The simulations are done for a 64mer with the same parameters as described in
Sections 4.2 and 4.3. In Fig. 4.11 we plot the rescaled adsorption potential W̃ =
−〈Ũ surf〉/Nχ as a function of the adsorption strength χ for the equilibrium case
and various pulling velocities. In a) we show the results from simulations with
free draining (FD) mobilities as in Section 4.2, b) are the data using hydrodynamic
interaction (HI). As expected, the equilibrium results (solid lines) from both methods
coincide within the precision of the simulations. For moderate pulling velocities, Ṽ ≤
0.1, the HI simulations quantitatively confirm the results obtained in the FD case.
For elevated velocities, Ṽ ≥ 1, the transition into the desorbed state changes from
continuous (FD) to discontinuous (HI). In the HI case we find a critical adsorption
energy larger than in the pulled, free draining case but still smaller than in the
equilibrium case, χ∗eq > χ∗HI(Ṽ ) > χ∗FD(Ṽ ), at which the internal energy drops
discontinuously to zero. With further increasing pulling velocities, the hydrodynamic
effect becomes more important; still the critical adsorption strength is smaller in the
HI case than in equilibrium, i.e. in the HI case the adsorption is still enhanced with
respect to the equilibrium situation, but this enhancement is smaller than in the FD
case.

It has recently been shown by Sendner and Netz that a homogeneously and
laterally driven rod close to a flat, non-adsorbing surface, e.g. a homogeneously
charged rod electrophoretically driven parallel to a wall or a sedimenting rod close
to a vertical wall, experiences a repulsive lift force away from the surface [137]. This
lift force is due to the anisotropy of the hydrodynamic mobility parallel and normal
to a rod [31] and due to an anisotropically distributed orientation of the rod in the
vicinity of the no-slip boundary [137]. The authors showed that the corresponding
potential decays as slowly as a Coulomb potential, ∝ 1/Z. The combination of such
a possibly weak, but long-ranged repulsive potential with the short-ranged attractive
adsorption potential of the wall is known to change the adsorption transition type
into discontinuous [138]. Although the situation can be expected to be different for
long, flexible polymers that are solely driven at one end as studied here, the concept
of the lift force still applies. Our simulations confirm the predicted change in the
nature of the transition.

In another contribution, the same authors have showed a very similar mechanism
to be active for polymers in shear flow [139]. Equivalently, an anisotropic angular
distribution gives rise to a lift force decaying with the same power, i.e. like 1/Z2

in the force or like 1/Z in the potential. We test the influence of that lift force
in HI simulations and show the results in Fig. 4.12, where the rescaled adsorption
potential W̃ is shown as a function of the surface interaction parameter χ. a)
shows FD results, b) are HI simulation data points. Again we observe the onset
of a discontinuous adsorption transition with increasing shear rate. Due to the
relative weakness of the adsorption enhancement by shearing in the FD case, the
repulsive hydrodynamic effect dominates in the HI simulations. At rescaled shear
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a)

b)

Figure 4.11: Mean normalized adsorption potential W̃ = −〈Ũ surf〉/Nχ for a
64mer as a function of the surface interaction parameter χ in equilibrium (solid
lines) and being pulled with Ṽ = V a/kBTµ. Results from BD simulations using
a) free draining (FD) and b) hydrodynamic interaction (HI) of the monomer beads,
where the rescaled velocities range from 0.1 (grey diamonds) to 40 (open stars, HI)
or 100 (crosses, FD). HI simulations confirm the mechanism of enhanced adsorption
by pulling, but also show a discontinuous desorption transition for higher pulling
rates at some elevated critical adsorption energy of χ∗eq > χ∗HI(Ṽ ) > χ∗FD(Ṽ ).
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rates of γ̃ = 1, where in the FD case slight adsorption enhancement is observed, the
critical adsorption energy is already shifted to larger values in the HI case than for
equilibrium adsorption, χ∗HI(γ̃) > χ∗eq > χ∗FD(γ̃). Hence, in the HI simulations we
observe net reduced adsorption under shearing.

Concluding this section, Brownian dynamics simulations including hydrodynamic
interactions (HI) among the monomers taking the hydrodynamic no-slip boundary
condition at the wall into consideration have confirmed the mechanism of enhanced
adsorption by lateral pulling or simple shear flow as found by free draining (FD)
simulations. For elevated pulling velocities and shear rates, a hydrodynamic lift force
changes the adsorption transition from continuous to discontinuous type and shifts
the critical adsorption strength to larger values. Hence, this effect counteracts the
enhanced adsorption. In the case of shearing, the hydrodynamic effect dominates
and leads to a net increase of the critical adsorption strength; for lateral pulling the
resulting net adsorption is still enhanced.

4.5 Adsorption on corrugated surfaces

In the preceding sections the adsorbing wall has been supposed to be flat and ho-
mogeneous. This is a good approximation for atomistically flat surfaces with an
attractive adsorption potential that is homogeneous on the length scale experienced
by the polymer. Good examples for this are hydrophobic substrates where the hy-
drophobic interaction between a monomer and an individual surface site decays fast
enough, such that only the surface and to some extent bulk integrated interaction,
i.e. the Hamaker constants of the materials, are of importance. For charged sub-
strates a homogeneous potential can only be assumed if the screening length is larger
than the typical monomer bond length, and the bond length itself is larger than the
typical distance of attractive sites on the substrate, κ−1 > a > l. For polyelec-
trolytes with large spatial distances between their charged groups, e.g. polymers
with a low degree of sulfonation, this is accurate for highly charged surfaces such as
mica at medium to high pH and at an ionic strength of less than 10−2 M. On the
contrary, in many relevant cases polymers do experience corrugated potentials on
charged surfaces.

In this section we investigate the effect of strongly localized attractive surface
sites in the context of non-equilibrium adsorption, where we here focus on lateral
pulling. To simplify the situation, we will only look at single particles, N = 1, and
limit our considerations to a one-dimensional surface or a line. The corrugation
is supposed to be periodic and to impose a similar lateral potential as used in the
Frenkel-Kontorova model, Section 3.2. For better comparison, we choose the vertical
part to be of the same analytical, short-ranged form as in the adsorption models
before, Sections 2.3 and 4.2 to 4.4 and so introduce a model potential with different
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a)

b)

Figure 4.12: Mean normalized adsorption potential W̃ = −〈Ũ surf〉/Nχ for a
64mer as a function of the surface interaction parameter χ in equilibrium (solid
lines) and being sheared with γ̃ = γ̇za

2/µkBT . Results from BD simulations using
a) free draining (FD) and b) hydrodynamic interaction (HI) of the monomer beads,
where the rescaled shear rates range from 0.1 (grey diamonds) to 100 (crosses). HI
simulations show a discontinuous desorption transition for higher shear rates, γ̃ ≥ 1,
at some elevated critical adsorption energy of χ∗HI(γ̃) > χ∗eq > χ∗FD(γ̃).
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Figure 4.13: Total potential energy Ũ tot from Eq. (4.22) of a single particle at
fixed height Z̃ = 0 in a surface potential Eq. (4.21) and pulled with a rescaled force
of F̃ = 0.1. Surface interaction parameter is chosen as χ = 1, corrugation power is
β = 6. The particle is pulled to the left with −F̃ to provide better convergence in
numerical integration routines.

interaction ranges in the lateral direction than in the vertical direction. In the two
dimensions accessible to the particle x̂ and ẑ, the rescaled surface potential reads

Ũ surf(X̃, Z̃) = −χ exp
(
−κ̃Z̃

)cos
(
2πX̃

)
+ 1

2

β

, (4.21)

where the length rescaling is done via the surface site distance l, thus X̃ = X/l and
Z̃ = Z/l. For the vertical decay length we take κ̃ = 1; the corrugation power is
chosen as β = 6, to produce strongly localized attractive sites, see also Fig. 4.13.
The total potential energy is given by the sum of the surface energy and a pulling
term,

Ũ tot(X̃, Z̃, F̃ ) = Ũ surf(X̃, Z̃) + F̃ X̃ , (4.22)

where F̃ = Fl/kBT is the rescaled pulling force. Note that pulling with −F̃ is
advantageous for the numerical integration in the analytical treatment. In Fig. 4.13
we plot Ũ tot for Z̃ = 0 and χ = 1. BD simulations following Eqs. (2.37) and (3.22)
are done with a rescaled time step of µ̃ = 10−6 over n = 1010 time steps using
different values of the adsorption strength, 0.1 ≤ χ ≤ 1000, and of the external
pulling force 1 ≤ F̃ ≤ 1000.

To make the connection to Section 3.2, we first conduct simulations at fixed
particle height Z̃ = 0. In Fig. 4.14 we plot the normalized mobility 〈µ〉/µ as a
function of the external pulling force F̃ = Fl/kBT . Data is presented for χ = 6.28
(circles) and χ = 62.8 (crosses). The general form of the curves is the same as of
those shown in Section 3.2. For low enough external force, the particle sticks to the
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Figure 4.14: Average mobilities 〈µ〉/µ for a single particle pulled through a
strongly corrugated potential Eq. (4.21) as a function of the rescaled pulling force
F̃ = Fl/kBT . The particle height is fixed at Z̃ = 0, the corrugation power is chosen
as β = 6, the surface interaction strength is χ = 6.28 (circles and solid line) and
χ = 62.8 (crosses and dotted line). Data points are taken from simulations, the
lines from theory, Eq. (4.26).

attractive surface sites apart from short escapes caused by thermal collisions. The
average mobility is exponentially damped and practically static fraction is observed.
At much larger forces the average mobility approaches its bulk value and the motion
is uniform regardless of the potential corrugation. Similarly, the average surface
potential experienced by the particle has the reverse form, as seen in Fig. 4.15.
For low pulling forces, F̃ → 0, the normalized adsorption potential −〈Ũ surf〉/χ,
approaches the Boltzmann weighted average over the adsorption energy Eq. (4.21).
For χ = 6.28 this equilibrium average is −〈Ũ surf〉F̃→0/χ = 0.90, for χ = 62.8 we
have −〈Ũ surf〉F̃→0/χ = 0.98; only in the limit of χ → ∞ a normalized equilibrium
potential of unity is reached, −〈Ũ surf〉F̃→0/χ = 1. On the other hand, for large
enough pulling forces, F̃ →∞, the particle probes each point along the x̂ coordinate
with equal probability. The average normalized surface potential in all cases reaches
the arithmetic average over Eq. (4.21), −〈Ũ surf〉F̃→∞/χ = 0.23 indicated in Fig. 4.15
by the horizontal, dashed line.

The simulation data in Figs. 4.14 and 4.15 coincide perfectly with predictions
shown for χ = 6.28 as solid lines and for χ = 62.8 as dotted lines. These predictions
are obtained by numerical integration of the distribution function at constant Z̃
which can be formulated exactly for this simple system. The distribution function
for finding the particle at rescaled time t̃ = tµkBT/l

2 and position X̃, P (X̃, t̃),
is available from the Fokker-Planck equation which in the stationary case reads
[32, 140]

0 =
∂P (X̃, t̃)

∂t̃
=
∂
(

∂Ũtot

∂X̃
P (X̃, t̃)

)
∂X̃

+
∂2P (X̃, t̃)
∂X̃2

. (4.23)
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Figure 4.15: Average surface potential −〈Ũ surf〉/χ for a single particle pulled
through a strongly corrugated potential Eq. (4.21) as a function of the rescaled
pulling force F̃ = Fl/kBT . The particle height is fixed at Z̃ = 0, the corrugation
power is β = 6, the interaction strength is chosen as χ = 6.28 (circles and solid line)
and χ = 62.8 (crosses and dotted line). Data points are taken from simulations,
the lines from theory, Eq. (4.27). The dashed, horizontal line denotes the large
force limit and arithmetic average over the surface potential −〈Ũ surf〉F̃→∞/χ =
0.23. The low force limits are given by the Boltzmann averages over the potential,
−〈Ũ surf〉F̃→0/χ = 0.90 (χ = 6.28) and −〈Ũ surf〉F̃→0/χ = 0.98 (χ = 62.8).

For potentials consisting of a linear and a periodic part, Ũ surf(X̃) = Ũ surf(X̃ + 1),
both of which are independent of time, the formal stationary solution is given by

P (X̃) =
exp

(
−Ũ tot(X̃)

)
Q

×

 ∫ 1
0 dX̃ ′ exp

(
Ũ tot(X̃ ′)

)
1− exp

(
Ũ tot(1)− Ũ tot(0)

) − ∫ X̃

0
dX̃ ′ exp

(
Ũ tot(X̃ ′)

) , (4.24)

where Q is a constant for normalizing
∫ 1
0 dX̃ P (X̃) to unity. We also keep in mind

that both the total potential energy and the probability distribution function depend
on the fixed parameters Z̃, F̃ , and χ, but simplify the notation to Ũ tot(X̃) and
P (X̃). For F̃ → 0, the distribution function Eq. (4.24) simplifies into the Boltzmann
distribution,

PB(X̃) = exp
(
−Ũ surf(X̃)

)
/Q′ , (4.25)

where Q′ is needed for proper normalization. The rescaled mobility is available as

〈µ〉 /µ =
1

−Fµ

〈
dX
dt

〉
=

1
F̃Q

∫ 1

0
dX̃

∂Ũ tot(X̃; Z̃, F̃ )
∂X̃

P (X̃; Z̃, F̃ ) . (4.26)
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a) b)

Figure 4.16: Average surface potential −〈Ũ surf〉 for a single particle as a function
of its rescaled height Z̃. The curves are obtained from Eq. (4.27) using the fixed
surface potential parameters κ̃ = 1, β = 6, and a) χ = 6.28 and b) χ = 62.8.
Both cases show equilibrium data (F̃ = 0, solid lines) and data for the particle
being laterally pulled with F̃ = 100 (transient regime, dotted lines) and F̃ = 1000
(high-force regime, dashed lines).

The average surface potential at fixed force, height, and adsorption strength is sim-
ilarly obtained as

−
〈
Ũ surf

〉
/χ = − 1

χQ

∫ 1

0
dX̃ Ũ surf(X̃; Z̃)P (X̃; Z̃, F̃ ) . (4.27)

Using Eq. (4.27), it is now easy to construct an effective potential energy profile
for the pulled particle. For that, we keep the surface attraction χ and the pulling
force F̃ constant and calculate −〈Ũ surf〉 as a function of the particle height Z̃. In
Fig. 4.16 we show these profiles for the equilibrium case (solid lines), and for pulling
forces of F̃ = 100 (dotted lines) and F̃ = 1000 (dashed lines). The plots are
for a) χ = 6.28 and b) χ = 62.8. For F̃ = 1000 the corrugation in both cases,
i.e. for low and high surface attraction, is weak enough and the large-force limit
−〈Ũ surf〉 = 0.23χ exp

(
−κ̃Z̃

)
is obtained at all height values Z̃. With F̃ = 100

an intermediate case applies: For χ = 6.28 the average adsorption potential drops
to values close to those of the high-force limit. However, at χ = 62.8 the particle
sticks to the adsorption sites as in the equilibrium case for small distances from
the surface. With increasing height the drop in the maximum interaction potential
leads to weaker corrugation and hence, at a height between 0.5 < Z̃ < 2 a transition
occurs for F̃ = 100 from the low-force into the high-force limit.

The decrease in the average experienced adsorption potential with increasing
pulling force points to the possibility of shifting the adsorption transition on a cor-
rugated substrate to higher adsorption strengths by lateral pulling. This hypothesis
is tested in simulations by relaxing the height constraint on the particle. As de-
scribed in Sections 2.3 and 4.2 to 4.4, the average adsorption energy is measured as
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Figure 4.17: Mean normalized adsorption potential −〈Ũ surf〉/Nχ for a single
particle as a function of the surface interaction parameter χ. The particle is subject
to the laterally corrugated surface potential Eq. (4.21) (β = 6, κ̃ = 1); data is for
the equilibrium case (black circles), and for lateral pulling with a rescaled force
of F̃ = 100 (grey diamonds) and F̃ = 1000 (crosses). Upon pulling, the average
experienced adsorption potential is reduced with respect to the equilibrium case,
hence the (over)critical adsorption strength is shifted towards larger values of χ,
and reduced adsorption is observed.

a function of the adsorption strength and shown in Fig. 4.17, both in equilibrium
(black circles) and at fixed lateral pulling forces of F̃ = 100 (grey diamonds) and
F̃ = 1000 (crosses). Indeed, we observe a decrease of the average normalized adsorp-
tion energies −〈Ũ surf〉/χ with increasing pulling force. Accordingly, pulling leads to
an increase of the critical and overcritical adsorption strengths and hence to reduced
adsorption.

In principle, it is possible to use the height profiles of the effective substrate
potential energy from Fig. 4.16 to calculate adsorption isotherms for fixed adsorption
strength χ and pulling force F̃ . For that, appropriately normalized Boltzmann
averages of these energies over the height have to be performed. In the case of
a single particle in semi-infinite space, as applies to the BD simulations shown in
Fig. 4.17, there is no adsorption transition and the equilibrium particle position is
always at infinite distance from the surface, cf. Section 2.3. However, for finite
particle concentration, the potential energy profiles can be converted into density
profiles [24]. In a similar fashion, for finite simulation box sizes in the ẑ direction
the average adsorption energies obtained from simulations are expected to reproduce
the effective surface potentials Boltzmann-averaged over the finite ẑ range. We leave
this procedure to works going beyond the single polymer and single particle regime.

Relating the observed decrease in adsorption to other non-equilibrium effects dis-
cussed in this chapter, reduced adsorption can only be effective when the corrugation
of the substrate is large enough such that the particle experiences different average
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adsorption potentials in the equilibrium and in the pulled case. For this study, we
used a hypothetical model potential with different decay length scales in the vertical
and in the lateral direction. Apart from this being a simple way to produce a lat-
erally strongly corrugated potential landscape, this toy model might be of physical
relevance in situations where the interaction does not only depend on the mere dis-
tance between the solute and the surface site, but also on their mutual orientation,
as in hydrogen bonds. Limited orientational freedom of surface hydroxyl groups
might result in different potential range length scales for the distinct directions with
respect to the surface normal.

In a similar fashion we can assume that a polymer dragged over a corrugated
surface is subject to reduced adsorption. As discussed in Section 3.2, such a mecha-
nism would crucially depend on the commensurability of the two lattices defined by
the polymer bond length and the surface site distance. For disordered surfaces we
expect this effect to be of minor importance or even to vanish. More importantly,
pulling on one end of a polymer also flattens it and enhances adsorption as discussed
in Section 4.2. As our analysis has shown there, this effect grows with increasing
pulling force regardless of the length of the polymer once very short oligomers are ne-
glected, cf. Fig. 4.6. This is in contrast to the desorption effect observed here, where
the total force needed to pull a polymer over a corrugated surface with the same ve-
locity and uniform motion increases about linearly in N , as suggested in Section 3.2.
Hence, for fixed external force, we expect the enhancement in adsorption caused by
the flattening of the chain to dominate over the adsorption reduction through sur-
face corrugation with increasing length of the chain. Preliminary BD simulations in
model potentials such as the one used here have confirmed this hypothesis already
with only short oligomers (N = 10). Likewise, at highly corrugated surfaces with a
strong potential in the non-equilibrium desorption effect, very high forces are needed
for pulling the polymer or adsorbent smoothly, see Eq. (3.32), again suggesting a
strong flattening of the chain and hence adsorption increase. Nonetheless, we suspect
the laterally corrugated potential energy landscape to be the cause of the partial
desorption observed in the MD simulations for the polypeptide on the hydrophilic
diamond surface, see Section 3.3 and Fig. 3.19. However, a fundamental difference
between the BD and MD simulation models is the competitive binding of explicit
water molecules to the surface hydroxyl groups which adds another timescale for
the MD simulations. On the contrary, the surface potential in the BD simulations is
constant over time. Again, for long enough polypeptides we expect non-equilibrium
desorption due to surface corrugation to be negligible even though the situation is
more complicated.

Summarizing, we have used BD simulations to investigate the changes in the
adsorption of a single particle when the particle is laterally pulled over a corru-
gated surface. We have identified a mechanism how the pulling leads to a reduced
average adsorption potential experienced by the solute. Thus, pulling leads to re-
duced adsorption. This effect is suggested to be irrelevant for long polymers. The
average mobility and surface potential energy at fixed height and pulling force is
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well described by a Fokker-Planck formalism which has been solved by numerical
integration.
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Chapter 5

Elasticity of single polymers

Understanding polymer conformations both with and without external fields is a key
element to the field of polymer science. In fact, the combination of the monomer
connectivity and hence the restriction of their spatial positions on the one hand and
the vast number of possible spatial configurations of these polymer molecules on the
other hand bring about interesting phenomena such as phase transitions and self-
similarity. For this reason the elasticity of polymers and thus their configurational
entropy have been long-studied subjects. Interconnected chains as simplified models
for polymer molecules mark the introduction of polymers into the field of statistical
physics and date back into about the middle of the twentieth century [22, 23, 141,
142]. Put in another way, these models have established the foundation of theoretical
polymers physics.

In the context of this thesis, it is in most cases of polymers far from equilibrium
not sufficient to apply ideal, Gaussian polymer models as we have also shown in
Chapter 4. Appropriate models must go beyond the level of linear response theory.
Since we are mostly interested in non-equilibrium but stationary states, equilib-
rium elasticity theory is an appropriate tool and a reasonable starting point. For
the explicit time evolution of polymer conformations see e.g. Refs. [143, 144] and
references therein.

From a practical point of view, single polymer elasticity is an important feature
for many aspects of polymer applications such as the (visco-)elastic response of dense
and dilute polymer networks, e.g. rubber [145], the dynamics of polymer brushes [10],
or biomolecular interactions and recognition [12]. Protein ubiquitination and protein
translocation by the signal recognition particle into the endoplasmatic reticulum are
two such biological processes where polypeptides are believed to be stretched into
extended configurations.

On the single molecule level, the use of AFM force spectroscopy and optical or
magnetic tweezers [61, 134] has enabled to probe the elasticity of single polymers to
an extremely high resolution. This includes unfolding of biomolecules with specific
folding patterns and conformational transitions such as the protein titin, polysac-
charides or DNA [146]. Synthetic macromolecules with elasticities that are mostly
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captured by the conformational diversity of chain molecules rather than involving
specific folding interactions have also been studied [61, 91, 147, 148]. Considering
the great advance in single molecule technology and accordingly the measurement
precision, we develop improved descriptions of equilibrium single polymer elastic-
ity on the microscopic scale. In the first part, Section 5.1, the classical discrete
models are briefly reviewed and a freely rotating chain (FRC) model with exten-
sible monomers and finite bending rigidity is introduced. Section 5.2 discusses the
transfer matrix implementation for microscopic alternating copolymers and its ap-
plication to polypeptides. In Section 5.3 the rotational rigidity of polypeptides is
investigated and a modified FRC model is proposed to deal with such situations.

5.1 A discrete extensible semi-flexible chain model

The classical model for polymer elasticity is named after its authors Kratky and
Porod [141, 142]. Its continuum version, the so-called worm-like chain (WLC) model
is used throughout the biological physics community to describe the elasticity of
semi-flexible biopolymers [23]. Because of the popularity of one interpolation for-
mula that has been introduced by Marko and Siggia [149] it is often also used for
modeling the elasticity of synthetic, rather flexible polymers although its connec-
tion with a microscopic model has only recently been shown [93]. In this treatise
we will not consider the WLC due to its lack of a microscopic foundation and its
particularly bad performance for most polymers with a simple, single-stranded back-
bone at intermediate to large stretching forces. The interested reader is referred to
Refs. [18, 23, 150] and references therein.

All polymer models that we will discuss in the following take into account bonded
nearest neighbor interactions only. They neglect next-nearest neighbor interactions
via the backbone and e.g. repulsive Coulomb or attractive van-der-Waals interac-
tions between any two monomers. These idealizations are appropriate for uncharged
polymers in good solvent, for other treatments see e.g. Refs. [151–153]. Excluded
volume effects are also neglected which is justifiable for forces perturbing the polymer
F ≥ kBT/a ≈ 4 pN, following a similar reasoning as in Section 3.3.3 and assuming
a typical bond length of 1 nm. The force range experimentally studied is usually
well above this threshold, hence neglecting finite monomer volumes is a valid ap-
proximation. The same is true for the disregard of the surfaces which the polymers
are attached to. It is possible to include non-penetrable surfaces into the numerical
treatment we introduce here, but at already small stretching forces no deviations
from the case of an isolated chain can be found. This is so, because the return prob-
ability of a chain becomes vanishingly small if an external force is applied. In the
literature this point is commonly neglected by using the free chain models without
further notice.

The simplest of any discrete microscopic polymer models is the freely jointed
chain (FJC) [22, 23]. In a FJC with N monomers, N − 1 bonds of constant length
a are used to model the polymer, cf. Fig. 5.1a). Both the bond angle γ and the
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rotational angle ψ are free, Fig. 5.1c). A next step is to take into account the typical
bond angles of the polymer, but still assuming free rotation around the preceding
bond, Fig. 5.1d). Hence, γ and a are fixed, but ψ is free. This model is called
freely rotating chain (FRC) and has been analyzed in detail only recently [93]. It is
quite useful for modeling e.g. linear alkane chains in which typically a tetrahedral
angle is appropriate for the bond angle, γ ≈ 70.5◦ = π − 109.5◦. Allowing the bond
length a in a FRC to vary introduces extensibility, Fig. 5.1e). The bond is possi-
bly also compressed, but this does not contribute significant conformations when a
stretching force is applied. Fig. 5.1f) shows a FRC model into which flexibility of
the bond angle γ has been introduced. Deformations of microscopic polymer bonds
are important in the strong stretching regime, D → L, as has been shown in several
contribution, see e.g. Ref. [91]. Here, D = ZN −Z1 is the distance between the first
and the last monomer in the direction of the force ẑ, and L = (N − 1)a0 cos(γ0/2)
is the FRC contour length. With very few exception [154] most studies have incor-
porated enthalpic extensibility by separating the entropic from the enthalpic contri-
butions [18, 91, 150]. Here we go beyond this approximation and introduce a FRC
model which is extensible and semi-flexible: the discrete extensible semi-flexible
chain (DESC) model. The equilibrium thermodynamics of the model are exactly
solved using a numerical transfer matrix approach [22, 93, 155].

5.1.1 The transfer matrix treatment of DESC

For a FRC or DESC polymer under an external force F in ẑ direction it is sufficient
to know the position of each monomer projected to the ẑ axis, Zi (i ∈ {1 . . . N}),
and the angle which the bond leading to monomer i takes with that axis, θi, cf. also
Fig. 5.1b). Note that we renumber bonds as compared to Chapter 4 and now have a
virtual bond r1 leading to the first monomer whose meaning will become clear later.
For shorthand notation we introduce Γi = {Zi, θi}. The polymer configuration
with i monomers is formulated in terms of its end-to-end probability distribution or
Green’s function, Pi(Γi;Γ′1), which gives the probability of monomer i being in state
Γi given that the first monomer 1 is in state Γ′1. Considering only nearest-neighbor
bonds along the polymer molecule, we can use a propagation operator T (Γi,Γi−1)
called the transfer operator or transfer matrix, such that the Green’s function for
the ith monomer can be constructed from the Green’s function of the preceding
(i− 1)th monomer as

Pi(Γi;Γ′1) =
∫

dΓi−1T (Γi,Γi−1)Pi−1(Γi−1;Γ′1) . (5.1)

In thermal equilibrium, the transfer operator reads

T (Γi,Γi−1) =
∫ ∞

0
dai

∫ π

0
dγi C(Γi,Γi−1; ai, γi) exp

(
−E(ai, γi)

kBT

)
, (5.2)

where C(Γi,Γi−1; ai, γi) is the connectivity operator containing the geometry of the
polymer model and is of purely entropic origin. ai and γi are the length and the
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x̂
ŷ
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a) b) c)

d) e) f)

Figure 5.1: Sketches of microscopically based polymer models. a) Freely jointed
chain (FJC), interconnected monomers are presented as small spheres. b) Coor-
dinate system useful for discrete polymer models; the ẑ axis coincides with the
direction of an externally applied force, z = 0 = Z1 is the position of the first
monomer; the current bond ri (solid arrow) is characterized by its azimuthal an-
gle with the ẑ axis, θi, and the height positions of monomer i − 1, Zi−1, and of
monomer i, Zi. Note that a renumbering of bonds has occurred as compared with
Chapter 4, we now have N monomers and N bonds, where bond 1 is a virtual bond
(see text). For shorthand notation, Γi = {Zi, θi} is introduced. c)-f) Graphical
representation of different polymer models with only nearest neighbor interactions
along discrete bonds. The preceding bond ri−1 is shown by a dashed arrow, one
possible next bond ri is presented by the solid arrow. The azimuthal angle of bond
i with respect to bond i− 1 is denoted as γ, the zenithal or rotational angle is ψ,
and the bond length is a. c) FJC model: a is fixed to a0, both γ and ψ are free;
monomer i + 1 is situated anywhere on a sphere of radius a0 around the position
of monomer i with equal probability. d) Freely rotating chain (FRC) model: a
and bond angle γ are fixed, ψ is free; monomer i + 1 lives on a circle of radius
a0 cos γ0. e) extensible FRC: like FRC, but a varies; monomer i+ 1 is found on a
cone with opening angle 2θ. f) semi-flexible FRC: like FRC, but γ varies; monomer
i + 1 sits on surface sectors of a sphere, for full variability of γ the FJC is recov-
ered. The chain model developed in Section 5.1 is a combination of e) and f): a
discrete extensible semi-flexible chain (DESC). Its extended (a = a0 + ∆a) and
bent (γ = γ0 −∆γ) configurations of nearest neighbor bonds are not of the same
probability as the equilibrium configuration, but are Boltzmann weighted using the
microscopic energy obtained from ab initio calculations or ad-hoc energy functions.
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angle of bond i, respectively. The exponential term introduces a thermal weight via
the energy of the state where we assume that in addition to a free rotation around
the preceding bond axis, the bond ri can distort and form an individual bond angle
γi and bond length ai, but only under an energy penalty of E(ai, γi).

Using passive rotation matrices [22, 93] one can show that the connectivity op-
erator evaluates for our model to

C(Γi,Γi−1; ai, γi) =
∫ 2π

0
dψi δ (θi − g(θi−1, γi, ψi))

× δ ((Zi − Zi−1)− aig(θi−1, γi, ψi)) , (5.3)

where δ(x) is the Dirac delta function. The characteristic function g(θ, γ, ψ) is given
by

g(θ, γ, ψ) = arccos (cos θ cos γ + sin θ sin γ cosψ) . (5.4)

Using a discretized Γ space, we calculate the transfer matrix to arbitrary precision
for any given potential E(a, γ). With that, it is possible to numerically integrate and
iterate Eq. (5.1). For a polymer consisting of N monomers and N − 1 real bonds,
the final Green’s function elaborates to

PN (ΓN ;Γ′1) =
∫
. . .

∫ N∏
i=2

[dΓi T (Γi,Γi−1)]P1(Γ1;Γ′1) , (5.5)

i.e. the transfer matrix is applied N − 1 times on the Green’s function of the initial
monomer P1(Γ1;Γ′1). For the starting configuration Γ′1, the monomer position is
chosen to be at z = Z1 = 0. The virtual bond r1 points from all directions to the
first monomer 1, hence the distribution function P1 becomes a delta function in ẑ
space and a uniform distribution in θ space. By that, all orientations of the first real
bond r2 are equally probable. In principle, it is possible to use an explicit starting
bond direction. This can be useful for describing the bending rigidity of rigid chains
with very stiff chain anchors.

External potentials and forces, such as the pulling force in an AFM or a tweezers
experiment, are included by a convolution of an additional Boltzmann factor. For
the Gibbs ensemble, in which the variable of control is the external force on the last
monomer, F , the Green’s function becomes

PG
N (ΓN ;Γ′1, F ) = PN (ΓN ;Γ′1)× exp

(
FD

kBT

)
. (5.6)

When the height of the AFM cantilever, Zc, or accordingly the tweezer focus is
controlled, a convolution with the term exp

(
−kc(Zc − ZN )2/2kBT

)
can be done,

where kc is the bending force constant of the cantilever or the optical trap. This is
often slightly inaccurately called a Helmholtz ensemble [92]. In this work, we limit
the discussion of force-extension relations to those obtained in the Gibbs ensemble.
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Observables of interest can now be calculated using the Green’s function as a dis-
tribution weight. In the Gibbs ensemble the mean polymer extension as a function
of the applied force, 〈D〉 = 〈ZN − Z1〉, elaborates to

〈D〉 (F ) =
∫

dΓN DPG
N (ΓN ;Γ′1, F )∫

dΓN PG
N (ΓN ;Γ′1, F )

. (5.7)

Equivalently, but for numerical reasons less favorable, the observables can be
obtained from the partition function

ZG(F ) =
∫

dΓN PG
N (ΓN ;Γ′1, F ) (5.8)

by its logarithmic derivative with respect to the conjugate variable,

〈D〉 (F ) = kBT
∂ lnZG(F )

∂F
. (5.9)

Other observables and their fluctuations can be obtained accordingly.
Instead of using a convolution as in Eq. (5.6), it is possible to directly include

the thermal weights due to any external field or potential into the transfer process
Eq. (5.5) by using a modified transfer operator,

T ′(Γi,Γi−1) = T (Γi,Γi−1) exp
(
−E(Γi,Γi−1)

kBT

)
, (5.10)

which includes an additional energy weight due to the bond configurations Γj =
{Zj , θj}. This is necessary for inhomogeneous external fields, e.g. those exerted by an
impenetrable wall (E(Zj < 0) = ∞) or any other situation with ẑ dependent force.
An external force imposed on one end of the polymer chain while the other end is held
fixed is equivalent to a homogeneous field F independent of the monomer position
Zj or the bond orientation θj , thus both methods are applicable. With Eq. (5.10), a
denser integration grid and hence higher precision is possible which is advantageous
for obtaining the asymptotic elastic behavior [93]. For our rather sophisticated
model we have two dimensions in the Pi integration space (Γj = {Zj , θj}) and three
additional dimensions in the T space (ψ, b and γ). The typical discretization in the
T space is done as ∆Zi−1/amax = 401 and ∆(cos θi−1) = ∆(cos θi) = 401; typical
integration grids are ∆ψ/2π = 104, ∆a/(amax−amin) = 100, and ∆γ/(γmax−γmin) =
100. Here ∆x denotes the integration or discretization step size in quantity x, and
xmin and xmax are the minimum and maximum value in that quantity, respectively.
With the number of bonds being of the order of 50 ≤ N −1 ≤ 450, it is with current
computer power not feasible to perform highly discretized transfer matrix procedures
using Eqs. (5.5) and (5.10), since the time consuming iteration process needs to be
done for each value of the force. We therefore only report results obtained by the
method using a subsequent force convolution, i.e. Eqs. (5.5), (5.2), and (5.6).
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5.1.2 Classical and new chain models in the DESC formalism

The form of the potential energy in Eq. (5.2), E(a, γ), can be freely chosen. We
perform tests mimicking a FJC with E(a, γ) = ∞ for all a 6= a0 and different FRCs
with E(a, γ) = ∞ for all a 6= a0 or γ 6= γ0. Thus, the bond length is fixed to a0,
and for the FRCs also the bond angle is fixed to γ0. In Fig. 5.2 we compare the
results by DESC with the exact and asymptotic solutions of the FJC. Its partition
function is given by Eq. (4.11) and its force-extension relation for a polymer with
N monomers and N − 1 bonds reads

〈D〉 = (N − 1)a0 L
(
Fa0

kBT

)
, (5.11)

where L(x) = cothx− x−1 is the Langevin function, cf. also Section 4.1, and (N −
1)a0 = L can be identified with the contour length of the polymer. For clarity, the
DESC data points (crosses) have been reduced in density. The exact FJC relation
(solid line) is shown together with its asymptotic solution for small forces (dotted
line),

〈D〉 = (N − 1)a0
Fa0

3kBT
, (5.12)

and the asymptotic solution for large forces (dashed line),

〈D〉 = (N − 1)a0

(
1− kBT

Fa0

)
, (5.13)

As usual, we use rescaled units F̃ = Fa0/kBT and D/L = D/(N − 1)a0. The
agreement of the numerical DESC data points, whose density is reduced for clarity,
with the exact solution proves to be excellent.

We further check FRC models in the DESC code against an independent nu-
merical code [93, 156]. The results are equivalent. In Fig. 5.3 we show FRC force-
extension data for γ = 10◦ (short-dashed line), 30◦ (dot-dashed), 45◦ (finely dotted),
60◦ (dot-dot-dashed), 70.529◦ (solid), and 80◦ (dotted). For comparison, the FJC
solution (dashed) is also included, and for clarity the results of the benchmark code
are omitted. We use N − 1 = 100 bonds, for which the FRC models yield results
converged to the N → ∞ limit. Fig. 5.3 shows the intuitive result that FRC poly-
mers with smaller bond angle are more easily stretched into their maximal length
than those with larger bond angle or than an FJC.

Similarly we test the DESC performance using a FJC with a harmonic bond
potential V (a) = k/2(a− a0)2. Its exact partition function for one bond is given by

Z(F ) =
∫ π

0
dθ sin θ

∫ ∞

0
da a2 exp

(
Fa cos θ
kBT

− k

2kBT
(a− a0)2

)
∝ 1
F

(
kBT

k

)3/2

exp
(
F 2 − 2Fka0

2kkBT

)
J(F ) , (5.14)
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Figure 5.2: Rescaled force F̃ = Fa0/kBT as a function of the average rescaled
polymer end-to-end distance in the force direction, 〈D〉/L = 〈D〉/a0(N − 1), for a
FJC. The exact solution Eq. (5.11) is shown as solid line, the asymptotic behav-
ior for the low force regime Eq. (5.12) as dotted line, the high force asymptotic
solution Eq. (5.13) as dashed line. The numerical FJC data produced with the
DESC formalism is reduced in density and shown as crosses; the exact solution is
reproduced.

Figure 5.3: Rescaled force F̃ = Fa0/kBT as a function of the average rescaled
polymer end-to-end distance in the force direction, 〈D〉/L, for a FJC and various
FRC chains. In the case of the FJC the polymer contour length is L = (N−1)a0, for
the FRC models it is L = (N −1)a0 cos(γ/2). The number of bonds is N −1 = 100
for which the FRC curves converge to the N → ∞ limit. The FRC bond angles
range from 10◦ to 80◦, see legend. 70.529◦ is the tetrahedral angle applicable to
most alkanes.
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where we use

J(F ) = exp
(

2Fa0

kBT

)[
1 + Erf

(
F + ka0√

2kkBT

)]
(F + ka0)

+
[
1− Erf

(
F − ka0√

2kkBT

)]
(F − ka0) , (5.15)

and the error function Erf(x) = 2/
√
π
∫ x
0 dt exp

(
−t2
)
. Thus the exact force-exten-

sion law becomes

〈D〉 =
N − 1
Fk J(F )

exp
(
−F

2 + k2a2
0

kkBT

)
×

{
2Fa0k

3/2

√
2kBT

π
exp

(
(F + ka0)2

2kkBT

)
+exp

(
(F + ka0)2

kkBT

)
[F (F + ka0)2 − k2a0kBT ]

[
1 + Erf

(
F + ka0√

2kkBT

)]
+exp

(
F 2 + k2a2

0

kkBT

)
[F (F − ka0)2 + k2a0kBT ]

[
1− Erf

(
F − ka0√

2kkBT

)]}
. (5.16)

In the literature, the approximation of splitting the entropic FJC part from the
enthalpic stretching contribution is often applied, cf. Refs. [18, 150] and references
therein, and a force law according to

〈D〉 = (N − 1)a0

(
1 +

F

ka0

)
L
(
Fa0

kBT

)
(5.17)

is used. In Fig. 5.4 we show the results for the extensible FJC model in the DESC
formalism (circles, reduced in density), its analytical solution Eq. (5.16) (red line),
the approximation Eq. (5.17) (green dashed line), and the inextensible standard FJC
solution Eq. (5.11) (blue line). In Ref. [91] stretching moduli for different polymer
backbones are calculated. Considering only the harmonic contribution and rescaling
the force constants, these authors give k̃ = ka2

0/kBT = 4940 for polypeptides, k̃ =
1820 for alkanes, and k̃ = 1480 for ss-DNA. For the extensible FJC test case we
choose a stretching force constant of k̃ = 1000 which is a lower bound of a realistic
polymer bond stretching modulus. The DESC data nicely reproduces the exact
solution. Additionally the approximation of independent entropic and enthalpic
stretching, Eq. (5.17), works very well for k̃ = 1000 in the FJC case. Pronounced
deviations in the regime 0 ≤ D/(N − 1)a0 ≤ 1.5 only occur for k̃ < 100 which is
not relevant for polymers. As an exemplary case we show in Fig. 5.5 the breakdown
of the approximative formula (dashed line) with respect to the exact solution (solid
line) for k̃ = 10. In the inset, the rescaled force is drawn on a logarithmic scale.

In a similar way as for the FJC, bond elasticity has been taken into account in
FRC models by a separation of the entropic and enthalpic contributions [91, 148,
157]. With the DESC method we test this approximation, again using k̃ = 1000
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Figure 5.4: Rescaled force F̃ = Fa0/kBT as a function of the average rescaled
polymer end-to-end distance in the force direction, 〈D〉/(N−1)a0, for a FJC and an
extensible FJC with Ṽ = V/kBT = k̃(a/a0−1)2/2, where we choose k̃ = 1000. Data
is shown for the FJC, Eq. (5.11), as blue line, for the exact solution of the extensible
FJC, Eq. (5.16), as red line, for the approximative extensible FJC, Eq. (5.17), as
dashed green line. Numerical data for the extensible FJC is produced with the
DESC formalism and shown reduced in density as solid circles; the exact solution
is reproduced. For k̃ = 1000 which is a lower realistic bound for polymers, the
approximative formula coincides with the exact solution and the DESC data.

Figure 5.5: Rescaled force F̃ = Fa0/kBT as a function of the average rescaled
end-to-end distance in the force direction, 〈D〉/(N − 1)a0, for an extensible FJC
with Ṽ = V/kBT = k̃(a/a0 − 1)2/2. A rather weak elastic modulus of k̃ = 10 is
chosen as not applicable to polymers. The exact solution, Eq. (5.16), is shown as
solid line, the approximative formula, Eq. (5.17), as dashed line. The inset shows
the force on a logarithmic scale.
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and bond angles of 30◦ ≤ γ ≤ 80◦ for extensible FRC chains with N − 1 = 100
bonds. In Fig. 5.6 we show the exact DESC results as data points which we reduce
in density for clarity. The lines denote force-extension relations that are obtained
from the data for an inextensible FRC, 〈D〉inext, by a convolution with an enthalpic
stretching part to yield the values for the extensible FRC, 〈D〉ext, as

〈D〉ext = 〈D〉inext

(
1 +

F

ka0

)
. (5.18)

The numerically exact force relation for the inextensible FRC is taken from the
DESC calculations presented before. In Fig. 5.6a) a generally good agreement of
the approximative formula (lines) with the exact data (data points) is observed. In
b) we present an excerpt on a linearly scaled force axis indicating slight deviations
in the range 0.875 < 〈D′〉 < 1.0, where D′ = D/(N − 1)a0 cos(γ/2) is the maximum
contour length of the corresponding inextensible FRC. These deviations increase
with decreasing bond angle and hence increasing entropic stiffness. For γ = 30◦

and 〈D′〉 = 0.975 we have F̃ = 12.5 from Eq. (5.18) and F̃ = 11.5 from the exact
treatment and hence a 9% overestimate by the use of the approximative approach.
As expected, the deviation also decreases when going to very large forces and end-
to-end distances, 〈D′〉 > 1.0, and also with increasing enthalpic chain stiffness.
The latter is checked by using k̃ = 1820 and k̃ = 5000 as has been suggested for
alkanes and polypeptides, respectively [91]. At the same point in the force-extension
curve and again for γ = 30◦, the relative deviation drops from 9 % (k̃ = 1000) over
6 % (k̃ = 1820) to 2 % (k̃ = 5000). We conclude that splitting the elasticity into
entropic and enthalpic contributions as in Eq. (5.18) is a valid approximation for
many polymers. However, in the case of polymers with small bond angles such as
poly-p-phenylenes and poly-pyrroles [158, 159] an exact treatment becomes more
important. How well scaling formulae [93] perform with extensible FRCs has yet to
be determined.

In this section we limit our considerations to the cases described above. The
full capability of the DESC model is still to be explored since virtually any po-
tential energy function in the a-γ space can be used. We have performed further
calculations with different chains models, such as the elastically jointed chain (a
fixed, V ∝ − cos γ) [93, 160], the discrete persistent chain (V ∝ γ2) [161] and their
extensible variants. We have also verified the functionality of potential energy func-
tions including semi-flexibility with models such as the semi-flexible harmonic chain
(V ∝ cos γ + k/2(a− a0)2) [154]. Taking higher order terms than harmonic stretch-
ing and bending constants into account is easily done as will be demonstrated in
Section 5.2 where alternating copolymers are discussed. For the case of alkanes, for
which DESC can be assumed to include all important elasticity features, ab initio
calculations are currently performed to map out the microscopic bond potentials in
great detail. These will later be introduced into the DESC formalism.

To summarize, the discrete extensible semi-flexible chain (DESC) model allows
for the thermodynamically exact treatment of bond elasticity going beyond the freely
rotating chain (FRC) model. A slight overestimation of the common approximative
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a)

b)

Figure 5.6: Rescaled force F̃ = Fa0/kBT as a function of the average rescaled
end-to-end distance in the force direction, 〈D′〉 = 〈D〉/(N − 1)a0 cos(γ/2) for an
extensible FJC with Ṽ = V/kBT = k̃(a/a0 − 1)2/2. The microscopic elasticity
constant is chosen as k̃ = 1000, which serves as an approximate lower bound for
polymers [91]. The exact DESC data is reduced in density and shown as data
points, see also legend. DESC data for inextensible FRCs are converted using
the approximative formula Eq. (5.18) and shown as lines. Generally reasonable
agreement between the approximation and the exact data is observed. An excerpt
of a) is presented in b) on a linear force scale indicating a maximal deviation of the
approximation from the exact result of about 9 % for γ = 30◦ at 〈D′〉 = 0.975 where
F̃ = 12.5 from the approximation and F̃ = 11.5 from the exact DESC treatment.
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Figure 5.7: a) Homopolymer with N units of the same type A and end groups.
b) poly(ethylene), homopolymer where only one bond type along the backbone
appears: RCH2 − CH2R. c) Alternating copolymer with regularly alternating
monomers A, B, and C. d) Polypeptide; concerning chemical monomers or coarse-
grained monomers, i.e. the amino acids, it belongs to the class of homopolymers;
concerning chemical bond types, it is an example of an alternating copolymer.

approach based on the splitting of entropic and enthalpic elasticities is revealed for
extensible FRCs with small bond angles.

5.2 Polypeptides as alternating copolymers

Homopolymers are polymers that consist of only one type of monomer, as schemat-
ically depicted in Fig. 5.7a). The classical example for such a macromolecule is
poly(ethylene), the simplest alkane polymer, Fig. 5.7b). From a chemical point of
view there are many macromolecules considered as homopolymers which do involve
different bonds along the backbone, e.g. polypeptides, see Fig. 5.7d). This is so
because the chemical unit considered as a monomer is in this case a peptide unit
consisting of different atoms. Although coarse-graining procedures taking into ac-
count the enthalpic elasticity of the whole chemical monomer, such as the peptide
unit, are quite successful [91, 148], it is straightforward to generalize the transfer ma-
trix formalism introduced in Section 5.1.1 for the case of microscopic copolymers. In
the simplest case these copolymers have regularly alternating bonds, see Fig. 5.7c).
In a microscopic picture in which we take account of each bond along the backbone,
polypeptides can be regarded as one example of an alternating copolymer.

To describe the elastic behavior of polypeptides, their side chains R, are of mi-
nor importance as has been shown before [91]. Following these findings we take
poly(glycine) (R = H) as our generic model for polypeptide elasticity, cf. Fig. 5.8a)
and b). Three different bonds types are identified: the RC(O)−NHR bond (1), the
RHN− CH2R bond (2), and the RH2C− C(O)R bond (3) with each a corresponding
bond angle γ(i) and a bond length a(i). Three fragments with each three backbone
atoms are built, see Fig. 5.8c)-e). The corresponding bond potential is assumed to
be additive, V (i)(γ, a) = V

(i)
γ (γ) + V

(i)
a (a). These potentials are determined by den-
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sity functional theory (DFT) calculations [26] using Gaussian03 [162]. The hybrid
potential B3LYP [163, 164] together with the basis set 6-311++G** [165, 166] is
employed. The geometries are optimized into minima. These optimized structures
are then again optimized using a single constraint on one of the bond lengths a(i)

or one angle γ(i). This procedure is repeated for a series of values for both the
bond length and the angle to obtain a detailed energy landscape. Note that our ab
initio calculations are done at zero temperature. However, the dependence of the
microscopic moduli on the temperature is estimated to be much smaller than the
entropic effects, which are later taken into account by the DESC model. Also, the ab
initio calculations only include the polymer fragment and hence reflect the situation
in vacuo. Still, the results prove to be quantitatively useful [91]. Small deviations
only occur in polar solvents such as water and can be used to extract solvent effects
quantitatively [157].

The energy profiles for the three different bonds are plotted in Fig. 5.9. a) shows
the coordinate system: The previous bond rj−1 and the actual bond rj are rotated
into the x̂-ŷ plane. Bond rj−1 points in the ŷ direction and the monomer connecting
bonds rj−1 and rj is at the origin (0, 0). The orientation and the end point of the
actual bond are thus coded by an inverse polar coordinate transformation. The same
coordinate system is used in Fig. 5.9b) to d) showing the potential energy by color
coded contours for the bonds (1), (2), and (3), respectively.

The bond energies obtained from ab initio quantum chemistry calculations now
serve as input to calculate the transfer matrix for each bond type (i), T (i)(Γj ,Γj−1).
Eq. (5.5) is modified by applying the transfer matrices in alternating order, thus

PN (ΓN ;Γ′1) =
∫
...

∫ N∏
j=2

[
dΓj T (3)(Γj ,Γl)

dΓl T (2)(Γl,Γk) dΓk T (1)(Γk,Γj−1)
]
P1(Γ1;Γ′1) , (5.19)

where the indices k, l are different for each j. This procedure has been followed in
the DESC formalism with the above bond potentials for polypeptides. The resulting
force-extension data for polymers with N = 50 (dashed line), N = 100 (solid line),
and N = 150 (dotted line) are shown in Fig. 5.10a). In b) we plot the normalized
force curves, i.e. F as a function of 〈D〉/N . All data is collapsed indicating that the
limit N →∞ is reached and suggesting that the DESC/alternating copolymer code
yields useful results. A more detailed analysis of the data including a comparison
with experimental data is in progress.

In summary, the transfer matrix formalism can be extended for the case of alter-
nating copolymers. Under a microscopic interpretation, polypeptides are examples
of alternating copolymers since their constitutents, the amino acids have three differ-
ent backbone atoms. Quantum chemistry has been used to obtain the polypeptide
bond stretching and bending potential. This potential energy landscape has been
used to generate force-extension data for polypeptides within the DESC/alternating
copolymer formalism. The ease of implementing different bonds into the transfer
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Figure 5.8: a) and b) Poly(glycine) as a generic form of polypeptides. c), d), and
e) Polypeptide fragments from which bond potentials are calculated. Three bonds
with V (i)(γ(i), a(i)) = V

(i)
γ (γ(i)) + V

(i)
a (a(i)), i ∈ {1, 2, 3}, are defined. Quantum

chemistry is used to calculate these bond potentials: In each of the fragments the
angle is bent to obtain the bond angle potential, and in each of the fragments both
bond lengths are stretched and compressed in independent calculations.
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Figure 5.9: Microscopic bond potentials for a polypeptide molecule. a) Coordi-
nate system: Both previous bond rj−1 and actual bond rj are in the x̂− ŷ plane;
rj−1 points in the ŷ direction; the monomer connecting both bonds is at the origin
(0, 0). The actual bond is of type (i), with i ∈ {1, 2, 3}. Different bond lengths aj

and angles γj of the actual bond are coded by an inverse polar coordinate trans-
formation a2

j = x2
j + y2

j , tan γj = xj/yj . b) Energy for bond (1), c) for bond (2),
d) for bond (3). For definitions of bond numbering, see Fig. 5.8.
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a) b)

Figure 5.10: Force extension data for a generic polypeptide (polyglycine). Data
is calculated using the alternating copolymer formalism and the DESC method
(FRC with bendable and stretchable bonds). The bond potentials of the three
individual bond types are calculated from ab initio quantum chemistry, see also
Fig. 5.9. a) Force F as a function of the end-to-end distance, 〈D〉, for chains of
different length: N = 50 (dashed line), N = 100 (solid line), N = 150 (dotted line),
where N is the number of amino acids in the chain. b) F on a logarithmic scale
vs. the rescaled length, 〈D〉/N . Curves for different N collapse indicating that the
limit N →∞ is reached.

matrix method might prove useful for calculating the elastic properties of block
copolymers, and even statistic or random copolymers, given that sufficient compu-
tational resources are present.

5.3 Rotational rigidity in polypeptides and a modified
FRC model

In the previous sections we have assumed that free rotation around the previous
bond axis is a valid approximation. All of the discrete models studied and reviewed
in this chapter so far rely on the assumption of evenly distributed values of ψ, see
Fig. 5.1. Indeed, for many classes of polymers this procedure is legitimate. In the
case of alkanes, e.g., it is known that their cis and gauche conformations have dif-
ferent energies [107, 152]; however for already small pulling forces these rotational
barriers are overcome and hence extensible FJC and FRC models reproduce exper-
imental data within high precision [91]. For the case of proteins and polypeptides
it is known that a much larger rotational barrier exists [167, 168]. This is due
to a partial double bond character of the RC(O)−NHR bond (1) caused by me-
someric states and resonance effects, see Fig. 5.11. The hindrance of rotation and
the mostly planar N− C(O)− C group is also one of the reasons for β sheet forma-
tion. From nuclear magnetic resonance (NMR) studies and crystallographic analysis
Ramachandran plots can be generated [167]. They show that in the native forms
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Figure 5.11: Resonance effect leading to increased rotational rigidity in polypep-
tides. Rotation around the RC(O)−NHR bond (1) is hindered due to its partial
double bond character. In the case of native and crystallized proteins, the cis state
depicted here is known to be less populated than the trans configuration.

of proteins the cis conformation that is depicted in Fig. 5.11 is less populated than
the trans conformation in which the chain adopts a zig-zag form. However, at least
in the native state and the crystallized form, other conformations than these planar
configurations, play only a negligible role.

At this point it is interesting to see if rotational barriers are still of concern for
polypeptides when an external force is applied. This might have severe consequences
for folding and unfolding events in vivo, since these processes could in principle
be greatly enhanced in their kinetics and even the equilibrium could be shifted
from one structure to another. The rotational barrier can be checked, again using
quantum chemistry methods. Following the same procedure as in Section 5.2, ab
initio calculations are performed where one of two dihedral angles ψ(1) or ψ(2) is
constrained, cf. also sketch in Fig. 5.12a). Note that rotating bond (1) probes the
ψ(2) potential, and rotation of bond (3) changes ψ(1), see also Fig. 5.1c) for the
nomenclature. The torsional potential is shown in b) as a dotted line and filled
diamonds for ψ(1), and as a solid line and empty circles for ψ(2). As expected,
bond (1) is much more inelastic with respect to torsional strain and thus rotation of
ψ(2) is hindered. Not only are the minima in the case of ψ(2) separated by barriers
considerably larger than 10 kBT , but the curve is also much steeper indicating higher
restoring forces. We conclude that it is an oversimplification to freely rotate bond
(1) in a FRC model or a DESC analogue.

A further improvement addressing this issue is the incorporation of an effective,
stiff bond into the DESC or FRC formalism. This is demonstrated in Fig. 5.13. We
introduce a new effective bond with a bond length a(e) and two bond angles γ(e) and
β(e), which spans two microscopic, real bonds, cf. Fig. 5.13c). The first of these two
bonds merged into the effective bond is the RC(O)−NHR bond (1) around which
rotation is prohibited. A new bond angle β(e) is needed which rotates the axis of
the previous bond to that of the second microscopic bond within the effective bond.
Which second bond merges into the effective bond depends on the direction A or
B of building up the polymer, see Fig. 5.13a) and b). To keep the methodology
simple in the beginning, we start parameterizing DESC with fixed bond lengths and
angles, i.e. with an effective bond FRC. The parameters are taken from the ground
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ψ

ψ(1)

(2)

a) b)

Figure 5.12: a) Dimer molecule for which the ab initio calculations are done
and the numbering of the torsional angles. b) Torsional potentials of the bonds
at the carbonyl C, bond (1) with ψ(2) and bond (3) with ψ(1). Rotation around
the RC(O)−NHR bond (1), is strongly hindered due to its partial double bond
character, see also Fig. 5.11. It is a poor approximation to freely rotate the dihedral
angle ψ(2), rather it is fixed at either ψ(2) ≈ 0◦ or ≈ 180◦.

state of the dimer calculation shown in Fig. 5.13 and are a(e) = 2.45 Å, γ(e) = 7.19◦,
β(e) = 35.47◦, a(f) = 1.53 Å, and γ(f) = 70.97◦ for the building direction A. For
direction B we have a(e) = 2.44 Å, γ(e) = −7.19◦, β(e) = 23.46◦, a(f) = 1.44 Å, and
γ(f) = 70.97◦. Bond (f) is in both cases a standard FRC bond, so the only change
in the transfer matrix formalism has to be done in the connectivity operator for the
effective bond (e). Eq. (5.3) is modified and reads for the effective bond

C(Γi,Γi−1; ai, γi, βi) =
∫ 2π

0
dψi δ (θi − g(θi−1, βi, ψi))

× δ ((Zi − Zi−1)− aig(θi−1, γi, ψi)) . (5.20)

The effective bond model is tested in the FRC implementation of the effective
bond algorithm using N = 150 and N = 200 amino acids. Both building directions
A and B, cf. Fig. 5.13, are used and give identical results. In Fig. 5.14a) the force
extension data is shown for the effective FRC model with N = 150 (solid line) and
N = 200 (dashed line). The DESC curve for N = 150 is also presented (dotted
line). Since there is no enthalpic elasticity included in the effective bond algorithm
yet, the force in that model diverges at the maximal polymer length. The results
after rescaling by N are shown in b) where all effective FRC curves, i.e. for both
building direction and both monomer numbers, collapse into the solid line suggesting
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Figure 5.13: The effective bond model for the FRC or DESC formalism. Since
rotation around the RC(O)−NHR bond (1) must be prevented, we introduce
an effective bond which spans bond (1) and a second bond. In all cases, the
new effective bonds are highlighted by green, dashed arrows. The cyan colored
solid arrow denotes the remaining, normal FRC or DESC bond. a) and b) show
the position of the effective bond depending on the building direction A (from C
terminus to N terminus) and direction B (vice versa). The new parameterization
of the effective bond is explained in c). The new bond length a and angle γ are
effective in the sense that they span two real bonds. A second bond angle β is
needed which rotates the axis of the previous bond onto the axis of the second
microscopic bond within the effective bond. For the second bond in the model
(cyan) no changes in the FRC parameterization are needed.
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a) b)

Figure 5.14: Force extension data for a generic polypeptide (polyglycine). a)
Data is calculated using the FRC model extended by an effective bond addressing
the torsional rigidity of the RC(O)−NHR bond: N = 150 amino acids (solid line),
N = 200 amino acids (dashed line). DESC data as from Fig. 5.10 is also shown for
N = 150 (dotted line). The effective bond FRC model has two inextensible and
stiff bonds, one of which spans two microscopic bonds to account for the torsional
rigidity, see text and Fig. 5.13 for details. The DESC model includes all three
microscopic bonds with a bending and stretching potential for each. In b) we show
the force as a function of the rescaled end-to-end distance, 〈D〉/N . All effective
FRC versions collapse (solid line), i.e. those for the building direction A and B (see
Fig. 5.12) and for both monomer numbers. The DESC curve is also shown (dotted
line).

a properly working algorithm and the N →∞ limit. The DESC curve (dotted line)
is also shown.

In summary, we have shown how to calculate polymer elasticities taking ro-
tational barriers into account. Such hindrance of torsional rotation is present in
polypeptides, but also many other polymers involving double or triple bonds in
their backbone, such as polyacetylenes or azobenzene. We anticipate further im-
provement of polymer elasticity theory when taking stiff bonds as well as enthalpic
extensibility and semi-flexibility as realized in the DESC model into account.
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Chapter 6

Summary

The dynamics of single polymers at solid-liquid interfaces and their response to
external fields are discussed using a wide arsenal of theoretical and numerical tools.

Chapter 1 highlights the motivation for studying these phenomena and describes
the theoretical and experimental framework in this field. A short introduction into
the theoretical methods used in this work is given.

In Chapter 2 we give an introductory view on the adsorption of an ideal polymer
onto a flat, homogeneous surface. The diffusion equation approach is shown to be
equivalent to a Poland-Scheraga description. Brownian dynamics (BD) simulations
are described in which the adsorption of coarse-grained polymer chains to a flat
surface is studied. Although the simulations have a finite duration and the polymer
models are of finite length, we identify a regime in which the polymer is adsorbed
strongly enough to the substrate and where it is possible to map the adsorption
transition of a single, infinitely long polymer. A discussion on polymer adsorption
as studied by force spectroscopy with atomic force microscopes (AFM) closes the
chapter. We find that in the absence of friction effects, it is a good approximation
to associate the desorption force with the free energy of adsorption per unit length.

Chapter 3 discusses the translational friction of polymers adsorbed to solid sub-
strates, and in particular starts with an analysis of the influence of friction on the
desorption forces measured with an AFM. It is shown by how much these forces in-
crease with respect to the equilibrium value, and an experiment of how to measure
frictional coefficients of polymers on surfaces is proposed. BD simulations with a
Frenkel-Kontorova type model show how the interaction of a polymer with a cor-
rugated surface potential increases the solvent drag and thus the friction forces on
the polymer. The effect of (in)commensurability and the dependence on the poly-
mer length is checked. Molecular dynamics simulations with atomistic models of
a polypeptide, water, and a diamond surface are conducted. The simulations re-
veal a high lubricity of the polypeptide on a hydrophobic surface with mobilities
comparable to the case of bulk water. On a hydrophilic, OH-terminated surface a
pronounced stick-slip motion is found which is caused by the periodic breaking and
formation of hydrogen bonds. As a result, the polypeptide mobility is reduced by a
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factor of at least thirty as compared to the hydrophobic surface. This is remarkable
since the adsorption energies are of the same order of magnitude on both surfaces.

The adsorption of polymers far from equilibrium is studied in Chapter 4. We find
that when a polymer is pulled on one end parallel to an adsorbing surface, it adsorbs
more easily. The flattening of the chain due to pulling corresponds to a decrease
of the effective Kuhn length normal to the surface. A calculation taking the Kuhn
length into account reproduces the observed increase in adsorption within scaling
precision. A similar effect is found for polymers in sheared solutions. Polymers
close enough to the adsorption transition extend into the solution and are subjected
to a flattening drag by the shear flow, hence they adsorb more strongly. For low
temperatures or high adsorption strengths, the polymer is adsorbed to the surface
in a flat configuration, thus the shear flow has no effect. Hydrodynamic interactions
between the monomers and with a no-slip boundary wall have a reverse effect for
both a polymer pulled at one end and a polymer in shear flow: The polymer is
driven away from the surface and hence adsorption is reduced. At the same time the
adsorption transition turns from a continuous into a discontinuous type. A single
particle which is pulled parallel to a corrugated surface experiences on average a
smaller adsorption energy than at equilibrium. As a result, the particle adsorption
is reduced by pulling. A corresponding mechanism for a polymer pulled at one end
over a corrugated surface is expected to be much weaker and to be dominated by
the flattening effect.

The elasticity of single polymers is discussed in Chapter 5 on the basis of discrete
polymer models incorporating microscopic bond parameters. A discrete extensible
semi-flexible chain (DESC) is introduced extending the freely rotating chain (FRC)
model by extensible and bendable bonds. The transfer matrix approach provides
numerical solutions for DESC using bond potentials of any choice. For rod-like FRC
polymers we show the breakdown of approaches separating entropic from enthalpic
elasticity. The transfer matrix approach is extended to the case of alternating copoly-
mers. Bond stretching and bending potentials are calculated for polypeptides with
an ab initio method and applied in the alternating copolymer scheme. Polypeptide
torsional rigidity is analyzed with quantum chemistry calculations, and one bond
along the backbone is found to be hindered for rotation. A FRC model with an effec-
tive bond spanning two microscopic bonds is established for such cases. Polypeptide
parameters are applied in this effective FRC formalism to obtain force-extension
relations.

Future work on the discrete polymer models will consider a combination of the
DESC model and the effective bond methodology. The effects of geometric surface
corrugations on non-equilibrium polymer adsorption need to be further considered.
When driven polymers are stretched by obstacles interesting adsorption phenomena
are expected. A subtle interplay between geometric and chemical heterogeneity
for patterned surfaces is likely. The friction of polymers on solid surfaces requires
further studies, especially when it comes to more complicated geometries, such as
pores or channels. For the detailed understanding of such processes models on the
atomistic level are ultimately needed and require further improvement.
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von Kollegen, mit denen es immer größten Spaß gemacht hat, Fachgespräche auch
einmal sportlich und dennoch am grünen Tisch auszutragen. Joachim kann es sogar
auf dem echten Rasen am besten. Dabei sind Hannes Lüling, Javier Madronero,
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Zusammenfassung

In der vorliegenden Arbeit mit dem Titel

Dynamik einzelner Polymere an Oberflächen

wird das Antwortverhalten einzelner Polymeren auf externe Kräfte in der Nähe von
Oberflächen untersucht.

In Kapitel 1 wird die Motivation für die bearbeiteten Themen erläutert, und
Bezüge zu theoretischen und experimentellen Methoden sowie technischen Anwen-
dungen werden hergestellt.

Kapitel 2 gibt eine Einführung in die Adsorption von idealen Polymeren auf ebe-
nen, homogenen Oberflächen. Es wird gezeigt, dass die Methode der Polymerpfadin-
tegrale und das Poland-Scheraga-Modell äquivalente Beschreibungen darstellen. In
Brownschen Dynamik-Simulationen wird die Adsorption von grobgekörnten Poly-
mermodellen an ebenen Oberflächen simuliert. Das wegen endlich langer Polymere
notwendige Fenster für Simulationszeiten, das die Abbildung auf den thermody-
namischen Grenzfall eines unendlich langen Polymers ermöglicht, wird diskutiert.
Weiterhin wird die Methode der Kraftspektroskopie mittels Atomkraftmikroskope
(AFM) und ihre Anwendung auf Polymeradsorption besprochen.

In Kapitel 3 wird die Reibung eines einzelnen Polymers analysiert, das an eine fe-
ste Oberfläche adsorbiert ist. Der Einfluss solcher Reibung auf AFM-Kraftmessungen
wird erläutert und ein Experiment zur Messung von Reibungskonstanten vorgeschla-
gen. Das Frenkel-Kontorova-Modell wird im Zusammenhang mit Polymerreibung
besprochen. Mittels dieses Modelles wird erläutert, wie inhomogene Oberflächen in
Form einer gewellten Potenziallandschaft die Reibung des Lösungsmittels verstärken.
Der Einfluss der (In-)Kommensurabilität und der Polymerlänge wird aufgezeigt.
Molekulardynamik-Simulationen mit atomistischer Auflösung werden verwendet, um
die Reibung eines Polypeptids an der Wasser-Diamant-Grenzfläche zu untersuchen.
Auf hydrohob terminiertem Diamant ist die Mobilität nur geringfügig gegenüber der
in reinem Wasser verringert. Auf OH-terminierten, hydrophilen Oberflächen hinge-
gen ist die Bewegung wegen des wiederkehrenden Bruchs und der Bildung von Was-
serstoffbrücken durch wechselndes Kleb- und Rutschverhalten gekennzeichnet. Die
Mobilität des Polypeptids ist mehr als dreißigfach verringert gegenüber der auf hy-
drophobem Diamant. Solche drastischen Unterschiede sind aufgrund sehr ähnlicher

127



ZUSAMMENFASSUNG

Adsorptionskräfte auf hydrophobem und hydrophilem Material, die auch experimen-
tell nachgewiesen wurden, völlig unerwartet.

Das Adsorptionsverhalten fern des Gleichgewichts wird in Kapitel 4 diskutiert.
Ein an einem Ende seitlich zur Oberfläche gezogenes Polymer adsorbiert stärker.
Die Rauigkeit der Kette in Richtung der Oberflächennormalen wird durch das Zie-
hen verringert, so dass die Entropiekosten für die Adsorption abnehmen. Mittels
einer effektiven Kuhnlänge wird der Effekt auf skalentheoretischer Ebene quantita-
tiv beschrieben. Für Polymere im Scherfluss und nahe am Adsorptionsübergang wird
ein ähnlicher Effekt beobachtet. Im Bereich starker Adsorption nimmt das Polymer
eine flache Konfiguration auf der Oberfläche an, daher hat hier der Scherfluss kei-
nen Einfluss. Hydrodynamische Wechselwirkungen zwischen den Monomeren sowie
mit der Wand bewirken einen entgegengesetzten Trend; das Polymer wird von der
Wand weggetrieben und die Adsorption vermindert. Gleichzeitig wird statt des sonst
üblichen kontinuierlichen Desorptionsübergangs ein diskontinuierlicher Übergang be-
obachtet. Auf Oberflächen mit gewelltem Potenzial wird durch laterales Ziehen von
einzelnen Teilchen deren Desorption induziert, da sie im Mittel einer geringeren
Adsorptionskraft ausgesetzt sind. Die Analyse dieses Effekts zeigt, dass für seitlich
auf gewellten Oberflächen gezogene Polymere der Effekt der verstärkten Adsorption
durch verminderte Kettenrauigkeit überwiegen sollte.

Die Elastizität einzelner Polymere wird in Kapitel 5 auf der Grundlage von
diskreten Polymermodellen untersucht. Ein solches an ein Freely Rotating Chain-
Polymer (FRC) angelehntes, mit dehn- und biegbaren Bindungen ausgestattetes Mo-
dell wird vorgeschlagen und mittels der Transfermatrixmethode numerisch gelöst.
Mittels dieser numerisch exakten Methode wird gezeigt, dass andere, auf der Se-
paration von entropischer und enthalpischer Elastizität basierende Näherungen in
bestimmten Fällen versagen. Die Transfermatrixmethode wird auf alternierende Co-
polymere erweitert. Dieser Formalismus wird auf Polypeptide angewandt, für die
aus quantenchemischen Rechnungen die mikroskopischen Bindungspotenziale erhal-
ten werden. Die Torsionssteifigkeit eines Bindungstyps in Polypeptiden wird anhand
von ab initio Berechnungen nachgewiesen und ein erweitertes FRC-Modell vorge-
stellt, das die rotationssteife Bindung mittels einer effektiven, zwei mikroskopische
Bindungen umfassenden Bindung überbrückt. Mit Parametern für Polypeptide wird
dieser Formalismus angewandt.
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