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Abstract

Ultra-wideband communication systems use radio signals whose bandwidth is in the range of some
hundred MHz to several GHz. The first application of these signals was military radar. The reasons
for using signals with such an extremely large bandwidth aremanifold. The resulting high temoral
signal-resolution is a prerequisit for precise radar systems. Radio channels with dense multipath
propagation achieve high multipath diversity, which can beused to improve the robustness and
capacity of the communication channel. Furthermore, the large bandwidth allows to transmit sig-
nals with a small power spectral density such that, the interference to other radio signals will be
negligible, even if they lie within the same frequency band.

With the advances in integrated circuit technology made in the past years, the opportunity
has come to use these signals also for civil communication, position location, and radar appli-
cations. However, the large signal bandwidth is still an obstacle when it comes to implementing
low power devices that are simple and at the same time take full advantage of the capabilities of
ultra-wideband radio. Therefore, practical systems cannot exploit all the benefits offered by UWB
signals.

In this work the focus is on low-complexity receiver architectures for communication systems.
These architectures are found by identifying the receiver tasks whose implementation is complex
or which require a high signal-processing speed. Accordingly, a simple receiver should not per-
form channel estimation or equalization. As a consequence,the receiver must be noncoherent.
This conclusion is confirmed by deriving the optimum (maximum-likelihood) receiver, under the
assumption that the receiver has no information about the propagation channel. Many important
properties of the noncohrerent receiver are discussed, such as sensitivity, vulnerability to narrow-
band interference, and robustness to synchronization inaccuracies. Furthermore, an approach for
the robust design of a key system parameter, the integrationduration, is derived for some simpli-
fying assumptions on the propagation channel.

A meaningful extension of this simple noncoherent receiveris obtained by assuming that
the receiver knows the power delay profile of the propagationchannel. The resulting maximum-
likelihood receiver is derived and its performance is compared with that of the simpler receiver
which has no channel information. Another extension is to use more than one receiver antenna,
each, leading to a separate noncoherent receiver. The reasonable distance between the receiver an-
tennas is discussed, i.e., whether micro diversity or macrodiversity can be exploited. The optimum
scheme to combine the individual received signals is derived and the performance of this optimum
scheme is compared with the suboptimum selection-combining scheme.

A totally different approach to simplify receivers consists in designing the transmit signal such
that the signal acquisition gets simple. A novel multiple access scheme for uncoordinated users,
called rate division multiple access, follows this idea.



Kurzfassung

Ultra breitbandige (UWB) Kommunikationssysteme verwenden Funksignale deren Bandbreite
zwischen einigen hundert MHz bis zu einigen GHz liegt. Erstmals wurden derart breitbandige
Funksignale für militärische Radaranlagen verwendet. Die Gründe für die Benützung grosser Sig-
nalbandbreiten sind vielfältig: Die resultierende hohe zeitliche Signalauflösung ist Voraussetzung
für Radar mit hoher Genauigkeit. Bei Funkkanälen mit dichter Mehrpfad-Ausbreitung führt Sie zu
einer entsprechend grossen Mehrpfad-Diversität, welche die Robustheit und Kapazität des Kom-
munikationskanals verbessern kann. Die grosse Bandbreite erlaubt es ausserdem, Signal mit einer
geringen spektralen Leistungsdichte auszusenden, sodassdie Interferenz auf Funksignale gering
bleibt auch wenn diese im selben Frequenzband liegen.

In den letzten Jahren wurden auf dem Gebiet der Halbleitertechnik grosse Fortschritte in Rich-
tung höher Schaltgeschwindigkeit bei gleichzeitig geringerer Leistungsaufnahme gemacht. Damit
ist es möglich geworden, UWB Signale auch für Massenanwendungen einzusetzen. Dennoch ist
die grosse Bandbreite von UWB Systemen nach wie vor ein Hindernis beim Bau von günstigen
Geräten die gleichzeitig alle Vorteile von UWB Signalen auszunützen und wenig Energie ver-
brauchen. Deshalb können praktische Systeme nicht alle Vorteile gleichzeitig nützen, die durch
die Verwendung von UWB Signal potenziell zur Verfügung stehen.

Diese Arbeit beschäftigt sich mit einfachen Empfängerarchitekturen für Kommunikationssys-
teme. Solch werden gefunden indem, an sich sinvolle aber aufwendige, Signalverarbeitungsschritte
eines Empfängers identifiziert und vermieden werden. Einerder aufwendigsten Verarbeitungss-
chritte ist die Kanalschätzung und die Korrektur des Kanalsdurch einen Equalizer. Wird auf die
Kanalschätzung verzichtet, so folgt, dass der Empfänger nichtkohärent sein muss. Diese Folgerung
wird bestätigt durch eine mathematische Herleitung des optimalen bzw. Maximum-Likelihood-
Empfängers der den Übertragungskanal nicht kennt.

Der nichkohärente Empfänger unterscheidet sich wesentlich vom kohärenten Empfänger in
den Eigenschaften Sensitivität, Empfindlichkeit gegenüber schmalbandigen Störsignalen und der
Empfindlichkeit gegenüber Ungenauigkeiten in der Synchronisation. Diese Eigenschaften werden
theoretisch und/oder mittels Simulation untersucht. Beim nichtkohärenten Empfänger ist die soge-
nannte Integrationsdauer ein Schlüsselparameter. DieserParameter wird, für einige vereinfachende
Annahmen über den Kanal, so gewählt, dass der Empfänger robust gegenüber Kanaländerungen
ist.

Eine Erweiterung dieses einfachen nichtkohärenten Empfägners erhält man unter der An-
nahme, dass der Empfänger Kenntnis über das power-delay Profil der Kanalimpulsantwort be-
sitzt und ausnützt. Der entsprechende Maximum-Likelihood-Empfänger wird hergeleitet. Eine
andere Erweiterung des einfachen nichtkohärenten Empfängers besteht in der Verwendung von
mehereren Empfangsantennen, von denen jede auf einen separaten nichkohärenten Empfänger
führt. In diesem Zusammenhang wird die sinnvolle Distanz der Antennen untereinander diskutiert,
bzw. ob Makro- oder Mikrodiversität genützt werden kann. Zudem wird das optimale Schema zur
Kombination der Empfangssignale der einzelnen Empfänger hergeleitet und mit dem suboptimalen
Selection-Combining-Schema verglichen.

Ein völlig anderer Ansatz zur Vereinfachung von Empfängernbesteht in einer geziehlten
Gestaltung des Sendesignal, sodass eine einfache Signalerfassung möglich ist. Ein entsprechen-
des neuartiges Zugriffsverfahren für unkoordinierte Nutzer wird vorgestellt.
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1. Introduction

The development of ultra-wideband (UWB) radio technology started in the late 1960’s, but for
decades mainly focused on military RADAR (Radio Detection andRanging) applications [4]. In
the late 1990’s the idea was born to use UWB radio signals for civil communications and position
location applications. The extremely large bandwidth of UWBsystems promises the following
outstanding performance aspects: (i) The power spectral density (PSD) of UWB signals could be
kept very low such that existing inband narrowband serviceswould not be stronger affected by
UWB signals than by any other unintentionally radiated radiosignals, e.g., from a computer or
other household appliances. (ii) Furthermore, the extremely large bandwidth would provide very
high channel capacity, and thus enable multiuser communications at high data rates (iii) Also, this
large bandwidth causes a large diversity which enables robust communication links. (iv) UWB
signals can be generated as a sequence of ultra-short and modulated pulses. This method allows to
circumvent up and down conversion, thus resulting in simpletransmitter and receiver circuits. (v)
Also the possibility was discussed that ultra short pulses,i.e., UWB pulses, are perfectly suited for
high-precision position location.

Stimulated by these promised benefits, a first break-throughfor the success of commercial
UWB applications occurred in 2002, when for the first time a radio spectrum administration al-
lowed an appropriate frequency band to be used without a license [21]. As a result the research
efforts in the field were increased and it soon became clear that the promised benefits cannot all be
achieved at the same time. The reasons are that the large delay spread and high multipath resolu-
tion of the UWB radio channel not only cause the large diversity, but also make it hard to achieve
data rates that approach the channel capacity. The large delay spread and temporal resolution of
the channel require channel estimation, rake or equalizer architectures and accurate synchroniza-
tion. Implementation of corresponding circuits for the ultrawide signal bandwidths is expensive,
and the resulting circuits exhibit a high power consumption. Other effects of the channel, such as
the occasional attenuation of the line-of-sight echo, turned out to be a problem for accurate posi-
tion location. For these reasons it can be concluded that with state-of-the-art or even near-future
technology, it will not be possible to achieve all the goals mentioned at the same time.

1.1 Concept of this Work

According to this insight the focus of this work is put on simple, low-power and robust receivers
for low data-rate communication, i.e., this work does not consider methods that are particularly
aimed to achieve high data rates. Simple receiver architectures can be found by getting aware of
the receiver tasks that require complex and/or fast signal processing. These tasks are channel esti-
mation, equalization, signal acquisition, precise synchronization, rake filtering, multiuser detection
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1.2 Outline and Notation 5

and expensive demodulation of e.g. OFDM signals. A receivertype that works without these tasks
is the noncoherent or energy collecting receiver for M-ary pulse position modulated (PPM) signals.
The data rate that can be achieved with noncoherent receivers and M-ary PPM is investigated in
[64], which mentions the noncoherent receiver concept for the first time in the UWB context. The
simplicity and performance of the noncoherent receiver for2PPM signals is discussed in [73, 71],
in particular, an expression for the bit error probability (BEP) is derived, a simple acquisition and
synchronization algorithm is proposed, and its high tolerance to synchronization inaccuracies of
up to several nanoseconds is pointed out.

Complementary to the practical motivation of noncoherent receivers is a theoretical derivation
which follows the approach of the generalized maximum likelihood (GML) receiver (GMLR).
The fact that the noncoherent receiver is equivalent to the generalized ML receiver in the absence
of channel information is pointed out in [9, 44]. Partial channel state information that can be
obtained relatively easy is the power delay profile (PDP). A receiver architecture with an improved
sensitivity over the GMLR can be achieved by deriving the ML receiver for the assumption that the
PDP is known at the receiver. This receiver is called the maximum likelihood receiver with partial
channel state information (MLRP).

Another tradeoff towards receivers with somewhat higher performance and complexity is to
combine multiple noncoherent receivers to form an improvedreceiver. One of the main reasons
why multiple antennas are proposed for narrowband systems is the increased diversity, which can
be used to improve the link. However, UWB indoor channels offer already an inherently large
frequency diversity such that further diversity improvement does not increase the link quality sig-
nificantly [69]. These considerations are valid for so called small-scale diversity which is obtained
by multiple antennas with an inter antenna spacing on the order of some centimeters to some tens
of a centimeter. If however antennas are distributed over a larger range, e.g., over several rooms,
then the shadow or large-scale fading effect causes an energy per received pulse that depends on
the individual antenna position. This effect is calledlarge-scale diversity. As the received energy is
significant for the performance of a noncoherent receiver, it follows that noncoherent receivers can
exploit large-scale diversity. A broad class of indoor applications allows the usage of multiple an-
tennas with large distances between the elements only at either the receiver or the transmitter side,
i.e., possible applications are of the multiple-input single-output (MISO) or single-input mulitple-
output (SIMO) type. As this work considers the aspect of receivers, the attention is restricted to the
application of noncoherent receivers in a SIMO configuration.

A receiver’s complexity depends last but not least also on the modulation of the received sig-
nals. A modulation scheme that is much discussed in the context of UWB is called time-hopped
pulse-position modulation (TH-PPM) and was proposed in [75]. This scheme is based on pseudo
random time hopping sequences, which require a complex signal acquisition at the receiver. An
alternative modulation scheme for uncoordinated multiuser access called rate division multiple ac-
cess (RDMA) is proposed. In contrast to TH-PPM the RDMA scheme uses signals that have a
deterministic and more regular structure and thus enable relatively easy signal acquisition at the
receiver.

1.2 Outline and Notation

This work consists of two parts. Part I discusses Noncoherent UWB receivers in the Chapters 2 to
4. Chapter 2 gives an overview of the most important properties of the UWB indoor channel and
is a basis to understand the subsequent chapters.
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In Chapter 3 the noncoherent receiver architecture is motivated by practical arguments and by
a detailed derivation of the GMLR based on a detection theoretic approach. Also the MLRP which
forms an improvement over the GMLR is motivated from a practical and a theoretical point of
view. For this purpose a simplified channel model is introduced that enables this derivation and
that is close to realistic channel models at the same time. Furthermore, this chapter contains a
derivation of various properties of the GMLR for binary PPM (2PPM) signals, e.g., the BEP and
the sensitivity to narrowband interference (NBI). Also proposed is a method for a robust design of
the integration duration, which is an essential parameter of the GMLR.

Chapter 4 is motivated by the potential of noncoherent receivers to exploit large-scale diversity,
and discusses the application of noncoherent receivers in aSIMO system. The optimum scheme for
combining noncoherent receivers in a SIMO scheme is derivedand the corresponding performance
is compared with that of a selection combining scheme.

Part II of this work considers the multiple-access scheme RDMA, which is an approach to
reduce the receiver complexity. This subject is independent of the receivers discussed in Part I and
is therefore treated separately.

A legend of the abbreviations, variables and mathematical symbols that are used in this work
is provided in Appendix A.

Notation: Random variables are denoted by upper case roman letters, e.g., X. Variables and
realizations of random variables are denoted by italic lower case letters, e.g.,x. Accordingly, the
realization of a random processB(t) is denoted asb(t). Sets are denoted by calligraphic letters,
e.g.,M. Vectors and realizations of vector-valued random variables are denoted by bold lowercase
italic letters, e.g.,x, whereas random vectors are denoted by uppercase bold romanletters, e.g.,X.
A list of mathematical symbols used in this work is given in Appendix B.

1.3 Contributions

The major contributions of this work are:

• Discussion on the appropriateness of representing UWB signals in complex baseband.

• Derivation of a convenient approximate expression for the BEP of the GMLR for 2PPM signals.

• A method for the robust design of the GMLR by proper choice of the integration duration.

• Computation of the sensitivity of the GMLR to narrowband interference and a comparison
with the coherent ML receiver.

• Derivation of the ML receiver assuming knowledge of the channel’s PDP and the definition of
a channel model that enables this analytical derivation andis close to realistic models at the
same time.

• Derivation of an approximation to the BEP of the aforementioned receiver.

• Derivation of the optimum combiner for SIMO systems with noncoherent receivers.

• Proposal of a novel multiple access scheme for uncoordinated users (RDMA).

• Derivation of optimum pulse rates for the users in a RDMA system.
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2. The UWB Indoor Channel

In this chapter we consider the most important properties ofthe UWB indoor channel, which are
necessary to understand the requirements to the transmitter and the receiver of an indoor commu-
nication system. When writing about channels, implicitly indoor channels are meant. Originally
the bandwidth of UWB signals was thought to start at several100 MHz and end at several GHz
[76]. However, a first regulation for the use of UWB signals limits the signal bandwidth to the
range between3.1 and10.6 GHz [21], in addition, this regulation limits the signal bandwidth to
a minimum of500 MHz. According to this, the bandwidth of UWB signals is considerably larger
than for narrowband or even wideband signals. Therefore, channel models for narrowband and
wideband channels are not suited to describe UWB channels, but provide some fruitful modelling
approaches for the UWB channel. A thorough overview on narrowband and wideband channels is
given in [26].

In the past few years considerable effort has been undertaken to study the UWB channel in
home, office and industrial environments [11, 10, 38, 62, 23,24, 60, 29, 8, 63]. All these con-
tributions investigate exclusively time invariant channels. The speed at which a channel impulse
response (CIR) varies over time for typical UWB indoor channelsis investigated in [59]; it turns
out that this speed is small enough to justify the assumptionof the UWB channel to be quasi static.

The following sections give a summary of the most important UWB channel features and a
basis to understand the contributions of this work. Section2.1 explains propagation effects of
UWB pulses in indoor environments. Section 2.2 presents measures that are used to quantitatively
characterize deterministic and stochastic properties of channel impulse responses. In Section 2.3
the major differences between the UWB and the narrowband channels are pointed out. A discussion
whether complex baseband or passband representation should be used is given in Section 2.4.
Section 2.5 gives a conclusion.

2.1 Indoor Propagation of UWB Pulses

We assume that an isotropic, i.e., non-directed, transmitter and receiver antenna are placed within
a room and the antennas are in line-of-sight (LOS) to each other. A short pulsep(t) with a duration
of T = 1 ns is fed to the transmitter antenna. The bandwidthB of this pulse is approximately
the reciprocal value of the pulse duration, i.e.,B = 1/T . The pulse results in an electromagnetic
wave that propagates from the transmitter antenna with speed c = 3 · 108 m/s and has the length
l = cT = 30 cm. One can imagine the energy of the propagating wave to be concentrated between
the surface areas of two concentric spheres, with the transmitter antenna located in their center.
The radii of the spheres have the constant differencel and grow with speedc.

8



2.2 Properties of the UWB Indoor Channel 9

A portion of the energy of this spherical wave is captured by the receiver antenna and generates
a pulse, called theLOS echo, at its feed point. Where the wave impinges on an obstacle, it is
reflected or scattered. Portions of these reflected or scattered waves will be captured by the receiver
antenna and cause so calledNLOS echoesat its feed point. Clearly, multiple reflections can occur
which cause futher echoes. The energy of an echo decays the more, the longer it takes to arrive
at the receiver. The delay between the rising edge of the LOS echo and the falling edge of the
latest considered echo is calleddelay spread. Theexcess delayis counted from the rising edge of
the LOS echo, i.e., points on the time axis that are on the leftor on the right of the rising edge
correspond to a negative or positive excess delay, respectively. Typically the energy of an LOS
echo is larger than that of an NLOS echo, in this case we speak about an LOS channel. If the LOS
path is obstructed such that the LOS echo is weaker than any NLOS echo we speak about an NLOS
channel.

The pulse shape of the echoes differs strongly from the shapeof the transmitted pulsep(t).
There are two reasons for this effect:
(i) The antennas are considered as a part of the radio channel. Practical antennas have a non-

ideal, i.e., non- flat frequency characteristic, therefore, signal dispersion is introduced. As a
consequence, the received signal component from an LOS pathappears like an oscillating
signal which is spread over several nanoseconds.

(ii) The geometry and the building materials of the reflectors andscatterers influence the shape of
the corresponding NLOS echoes.

These two effects can be modelled by considering the echoes as sequences of weighted and tightly
spaced replicas of the pulsep(t), also calledmultipath components. Therefore, the termmultipath
clusteris synonymously used for the term echo [38].

In practice, several echoes can interfere with each other such that they are hard to be dis-
tinguished. As an example we consider some real CIRs that were recorded during a measurement
campaign in an office building [38]. The measurements were made in the frequency interval from1
to 11 GHz. A network analyzer was used for the channel sounding. Fig. 2.1 shows the correspond-
ing CIR in the time domain, i.e., the inverse Fourier transform of the frequency spectrum that was
recorded by the network analyzer. To reduce the signal bandwidth, a Kaiser window [25] with a
−3 dB bandwidth of2 GHz and a center frequency off0 = 6 GHz was applied before computing
the inverse Fourier transformation. The CIR shows a strong LOS echo and some weaker echoes
that stem from signal reflections. A corresponding CIR for an NLOS channel that was recorded in
an office is shown in Fig. 2.2. It can be observed that the LOS echo is strongly attenuated, such that
it is even weaker than the reflected echoes. In particular forthe CIR of the NLOS channel shown
in Fig. 2.2 individual echoes overlap such that it is not possible to clearly distinguish them.

2.2 Properties of the UWB Indoor Channel

In general the CIR of an UWB channel depends on many unknown parameters, the detailed geom-
etry, the materials of the building, the relative position of the transmitter and the receiver within the
building. It is therefore a complex task to predict properties of realistic CIRs. A common method
to cope with this large set of unknown parameters is statistical channel modeling. According to
this approach, a given CIR is considered as a realization of a random process; the properties of this
process are described by a statistical channel model. The basic measures for UWB channels that
are typically described by statistical models are given in this section. As a basis for the statistical
analysis, typically two sets of CIRs are used to quantify channel properties. A first set of CIRs that
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Fig. 2.1. Measured CIR of an LOS channel with bandwidthB = 2 GHz and center frequencyf 0 = 6 GHz
[Measurement data obtained from IMST GmbH, Kamp-Lintfort, Germany].
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Fig. 2.2. Measured CIR of an NLOS channel with bandwidthB = 2 GHz and center frequencyf 0 = 6
GHz [Measurement data obtained from IMST GmbH, Kamp-Lintfort, Germany].

vary only with large-scale movements (large-scale effects) and a second set of CIRs that vary even
under small-scale movements (small-scale effects) of the antennas. These sets are: (i) a so called
large-scale setL of CIRs that corresponds to a fixed transmitter position and various receiver po-
sitions that are several meters apart from each other; (ii) aso calledsmall-scale setS of CIRs that
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Fig. 2.3. APDP averaged over900 LOS channels with bandwidthB = 2 GHz, and center frequencyf0 = 6
GHz, [Measurement data obtained from IMST GmbH, Kamp-Lintfort, Germany].

corresponds to a fixed position of the transmitter and various receiver positions, where the variable
antenna positions lie within a small range, e.g., within half a square meter.

2.2.1 Average Power Delay Profile

The power delay profile (PDP) of a CIRrn(t) is defined as the squarer2
n(t). The empirical average

power delay profile (APDP) [38] is defined as the average over aset of PDPs,

G(t) =
1

N

N∑

n=1

r2
n(t), (2.1)

wherern(t) with n ∈ {1, . . . , N} are the elements of the small-scale setS. This definition im-
plies that the APDP is a large-scale property, i.e., it is approximately constant under small-scale
movements.

A typical APDP for an LOS channel is shown in Fig. 2.3. The average is computed over a
number of900 CIRs that correspond to transmitter positions within a squareof 30 × 30 cm. We
observe some peaks at low excess delay and an approximately exponential decay at medium and
large excess delay. The reason for the peaks is that individual echoes can be resolved; at larger
excess delay the rate of echoes is increased such that individual echoes cannot be distinguished
any more. The decay of the APDP can roughly be described by a linear regression line. As the
APDP is represented in a semi logarithmic graph, the linear regression line corresponds to an
exponential decay. Numerical values for the correspondingdecay constantγ are specified in [37]
and [23]. Fig. 2.4 shows the APDP for an NLOS channel. As explained above, we can observe that
the first echo, i.e., the LOS echo has lower energy than the reflected echoes. The exponential decay
of the APDP can be observed in this case as well. The APDP playsan important role in Section
3.2.3.
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Fig. 2.4. APDP averaged over 900 NLOS channels with bandwidthB = 2 GHz and center frequency
f 0 = 6 GHz, [Measurement data obtained from IMST GmbH, Kamp-Lintfort, Germany].

2.2.2 Path Gain

The path gain,α, is roughly spoken the ratio of the energyEr of the received pulse over the energy
Et of the transmitted pulse and is an important measure for the link budget analysis. The path gain
is aimed to reflect shadowing phenomena caused by obstacles.As shadowing is typically a large-
scale effect, it is computed by averaging out the small-scale effects, hence, the empirical path gain
is defined as the average ratio

α =
1

N

N∑

n=1

Er,n
Et

(2.2)

whereEr,n is the energy of the CIRrn(t), andrn(t) for n = 1, . . . , N are the elements of the
small-scale setS. Note that the path gain is affected by thelarge-scale fading.

The reciprocal value of the path gainα is called path lossα−1. A statistical model for the path
loss as a function of the transmitter-to-receiver distanced is given in [24] by

α−1(d) = α−1
0

(
d

1m

)ν

s, (2.3)

whereα0 is the free space path gain for a transmitter to receiver distanced = 1 m. The equivalent
of the constantα0 expressed in units of dB is denoted asA0 = 10 log10(α0). The factors is denoted
shadow fading term; it is a lognormal distributed random variable, i.e., its equivalent in units of dB,
S = 10 log10(s), is Gaussian distributed with varianceσ2

S [24]. The varianceσ2
S is again considered

as a random variable. It is assumed that each building is characterized by a specific realizationσ2
S.

The constantν is denotedpath loss exponent. It equals2 for free space propagation, is larger
than2 for most indoor scenarios and smaller than2 e.g. for hallways in which a waveguide effect
occurs. The same statistical path loss model was introducedin [55] for narrowband channels; it
was shown to also be suited for UWB channels in [24].
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2.2.3 Amplitude Distribution

In general, the amplitude of a CIRrn(t0) at a given excess delayt0 is the superposition of multiple
received echoes. There is much discussion in the literatureabout the number of echoes that con-
tribute to the CIR. Some authors report of a single echo only andjustify this with the high temporal
resolution of UWB signals, while others assume a large enoughnumber of echoes such that with
application of the central limit theorem it can be assumed thatrn(t0) is the realization of a Gaussian
random variable. Similarly different are the reported amplitude distributions: Nakagami [10, 11],
Ricean with lowK value (i.e., almost Rayleigh) [38], lognormal distributed [23, 33]. [2] reports
about a Weibull distribution of the PDP. A possible reason for these different findings is given in
[61], where from a set of distributions the one is chosen withthe minimum Kullback distance to
the amplitude statistics of the observed CIRs. It turns out that depending on the excess delay, the
amplitude statistics is either more Rayleigh, lognormal or Weibull distributed.

2.2.4 Average Energy Spectrum

Now we consider the energy spectral density of CIRs. These energy spectra show strong attenua-
tion for some, and weaker attenuation for other signal frequencies. Computing the average energy
spectral density over a sufficiently large set of CIRs, one would expect a constant energy spectral
density for all signal frequencies under observation. However, according to [29, 38] this is not the
case. In [38] the average energy spectrum was evaluated for ameasured small-scale set of CIRs.
Numerical fitting unveiled af−m dependency where them-parameter varies between1.6 and2.8
for different environments. The reason for this effect liesin antenna properties, a detailed explana-
tion is provided in [37] and [38]. Section 3.5 gives a short discussion on the impact of this effect
on the performance of a noncoherent receiver. In the literature about receivers for UWB signals
this aspect has been ignored so far.

2.2.5 Small-Scale Fading

The termsmall-scale fadingdenotes the effect of fluctuating received energy per pulse,when the
receiver or the transmitter is moved within asmall area. Hence, the small-scale fading statistics
together with the large-scale fading statistics of the pathgain provide the total statistics of the
received signal energy.

The small-scale effect can be explained by assuming that echoes form different directions arrive
at the same time at the receiver antenna; the superposition of these echoes results in the received
signal. When the position of the receiver antenna is shifted,then the relative arrival times of the
echoes change so that the superposition of the echoes results in a changed shape of the received
pulse. As explained, an echo comprises multipath components. For signals with a large bandwidth
and thus with a large multipath resolution, the number of resolvable multipath components and the
number of resolvable echoes themselves is large. This effect is known asmultipath diversity, in the
frequency domain this effect is calledfrequency diversity. The multipath components of different
echoes that impinge at the receiver at the same delay are superimposed in a constructive or de-
structive way. However, as the channel’s temporal resolution is high it follows that the number of
echoes and of their resolvable multipath components is large. Thus, the constructive and destruc-
tive interference effects at different time instances cancel each other out to a large degree so that
the energy per received pulse,Er, is almost independent of small scale variations of the antenna
positions; hence, only minor small-scale fading is observed for UWB channels, [53, 38].
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In a communication system deep fades reduce the performance(e.g. the bit error rate) below
the average performance level. Depending on the fading statistics, the transmitted signal power
must be increased to compensate for this performance reduction. This increase in signal power is
calledfading margin. For UWB signals propagating in indoor environments, fadingmargins have
been reported with small values between1 and5 dB [38, 53, 77, 22].

In narrowband systems where multipath or frequency diversity is missing, destructive super-
position of echoes can result in very deep fades. Narrowbandcommunication systems require a
fading margin of up to35 dB [53].

2.3 Basic Difference Between Narrowband and UWB Channels

As mentioned above, signals with very large bandwidth offerthe ability to highly resolve individual
echoes and their multipath components of a CIR. This ability, called multipath resolution, has
several effects that narrowband channels with their much lower temporal resolution do not show:
(i) Because the CIR of a channel is determined by the position of thetransmitter and the receiver

antennas and by the propagation environment, the high temporal resolution implies that the
CIR is like a specific signature of a channel. Hence, for different channels, like the individual
subchannels of a multiple-input multiple-output (MIMO) channel, the CIRs are only weakly
correlated.

(ii) As mentioned in the preceding section, the small-scale fading of the received energy is a minor
effect. In contrast the received energy of a narrowband signal can be completely canceled out
due to destructive overlap of multiple echoes.

(iii) The CIR has a complex signature and therefore many parametersare required for its descrip-
tion. This makes the estimation of a CIR expensive.

Consequences of these features for SIMO communication over the UWB channel and with nonco-
herent receivers are discussed in Chapter 4.

2.4 Complex Baseband or Passband Representation

Narrowband and wideband channels are usually represented in the complex baseband (see Ap-
pendix D), for which there are three reasons:
(i) Communication systems are typically described in the complex baseband domain. This de-

scription is more compact than the passband representationbecause the procedure of up and
down conversion in the transmitter and the receiver, respectively, can be dropped.

(ii) Particularly for simulation purposes there is an advantagefrom the reduced number of signal
samples that can be taken for the complex baseband representation.

(iii) The up and down conversion in communication systems is equivalent to the passband-to-
complex-baseband-transformation and vice versa. Communication systems with up and down
conversion allow the symbol clock to be locked to the carrierphase, i.e., there is no drift be-
tween carrier phase and symbol clock. This drift is assumed to be zero in most of the liter-
ature about digital communications, e.g., in [49, 41]. When the drift is zero it can formally
be ignored. This results in the simple representation of digitally modulated complex baseband
signals given in [49] and [41].
In this work we consider simple UWB transmitters that unlike conventional transmitters di-

rectly generate the transmitted signal as a sequence of UWB pulses, see Chapter 3.1. This approach
implies that a carrier frequency, which must be specified forthe complex baseband transform, is
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not uniquely defined. In order to describe the signals in complex baseband, one could introduce a
virtual carrier signal with an arbitrary frequency. However, in a realistic model, the symbol clock
would not be locked to this virtual carrier’s phase; this would have to be taken into account by
a phase term that changes randomly for each transmitted pulse. Note further that UWB signals
have a bandwidth that is on the order of their center frequency. Thus, a UWB signal in complex
baseband representation requires still a relatively high sampling rate for a discrete-time represen-
tation. Because of this and primarily because of the random phase term to be considered in the
complex baseband representation of pulse UWB signals, in this work, we choose the passband
representation of signals.

2.5 Conclusion

The statistical channel modelling approach discussed in this chapter is based on the time domain
representation of signals. An approach that has gained lessattention models statistical channel
properties in the frequency domain [31, 67, 30].

The subsequent chapters of this work contain simulation results and numerical examples. The
CIRs involved in the corresponding computations are taken from a set of channel realizations
included in the electronic reference [23], which are generated by the statistical channel model
described in [23]. This model is aimed to support the development of the physical layer standard
IEEE802.15.3a and is thus widely used. In this model, the distribution of the amplitude of the
discrete time CIRs is lognormal. The arrival time of pulses is modelled in accordance to the Saleh-
Valenzuela model [58]. The path gain model used in this work is adopted from [24].



3. Noncoherent Receivers

In the literature, there exist different definitions for coherent or noncoherent receivers. In this work
a coherent receiver is distinguished from a noncoherent receiver through its ability to detect the
sign of a received pulse, or the phase of a received pulse in the case of complex baseband demod-
ulation. For a classical coherent narrowband receiver thismeans that the synchronization with the
carrier signal must have a timing error≪ 1/(2f0), wheref0 is the carrier frequency. The same
holds for UWB receivers, wheref0 is the center frequency of the UWB signal; e.g., an admissi-
ble timing error of the symbol synchronization of0.01 ns is specified in [42]. Note, that in this
work UWB signals are represented as passband signals rather than as complex baseband signals
which is usual in the digital communications literature, see 2.4. Therefore, a carrier signal is not
involved, which means that carrier synchronization is neither required nor possible. A receiver for
carrier-less pulsed UWB signals needs to synchronize only tothe symbol clock.

A noncoherent receiver cannot detect the sign or the phase ofa pulse, therefore its decision is
solely based on the amount of energy that is captured per symbol. This must be taken into account
when choosing a modulation scheme for noncoherent reception.

Noncoherent radio receivers have a long history. They were used since the beginning of radio
communications because of their low complexity. Later, noncoherent receivers were employed for
interception and RADAR applications [65, 68, 19, 45]. Noncoherent low complexity architectures
were desirable as long as the technology was not advanced enough for an efficient implementation
of more powerful coherent receiver architectures. Today weface a similar situation when using
UWB signals for communication purposes, because the technology is not advanced enough to
enable cheap low-power coherent receivers. A first paper that mentions noncoherent receivers for
UWB communication is [64]. It points out that this receiver type operates without an estimate of
the received pulse shape and investigates the capacity of a system that includes anM -ary PPM
transmitter and the corresponding noncoherent receiver. The same authors considered noncoherent
receivers for UWB peer-to-peer networks [34], and investigated upper and lower performance
bounds for multiuser interference mitigation techniques.An analytical derivation of the BER of
the noncoherent receiver for2PPM signals is given in [71] and in [52], details are presented in
Section 3.3. The optimum detection threshold for the reception of on-off keyed (OOK) signals and
the corresponding BER is derived in [48]; this paper considers noncoherent receivers for parallel
UWB channels to achieve higher data rates.

A receiver type that from its concept is between the correlation receiver which is coherent,
and the noncoherent receiver is the transmitted reference receiver [27], [80]. The corresponding
transmitter emits a reference pulse prior to each data bearing pulse. The receiver uses the reference
pulse as an estimate of the channel impulse response and as a correlation template to coherently
receive the subsequent data bearing pulse. The major disadvantage of the transmitted reference

16
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receiver is that it requires a mechanism to delay the received reference pulse for some tens of a
nanosecond. For this task delay lines are proposed, however, an elegant and easy to integrate way
to implement this has not been suggested up to now. An exception is short range communication
over a few meters only. In this case, the delay spread of the CIRis a few ns only such that a
reference pulse delay of some ns is sufficient to avoid ISI. A delay of a few ns can, e.g., be realized
with relatively short delay lines.

A hybrid of the noncoherent and the coherent receiver has been investigated in [62]. It is as-
sumed that a part of the received pulse shape is perfectly known, while the rest is unknown. The
energy of the known part is received coherently with a rake, while the remaining energy is cap-
tured noncoherently by energy collection. The considered modulation scheme is M-ary PPM. It is
shown that a receiver with close to full-rake receiver performance typically needs to estimate a few
channel taps only.

In this chapter only noncoherent receivers for2PPM signals are considered; higher order mod-
ulation would require an even more intricate mathematical treatment and therefore go beyond the
scope of this work. The signal model is presented in Section 3.1. Two types of noncoherent re-
ceivers are derived in Section 3.2 on the basis of classical results from detection theory:

(i) The generalized maximum likelihood receiver (GMLR) is derived, which assumes no side in-
formation on the channel. A similar but less in-depth derivation of this GMLR can be found in
[9] and [44].

(ii) Channel parameters that can be estimated with relative ease are the instantaneous average
power of the received impulse response. Optimum exploitation of this channel state information
in the ML sense leads again to a noncoherent receiver type, which in contrast to the GMLR,
performs a weighting of the received signal. This receiver is called the maximum likelihood
receiver for partial channel state information (MLRP). A channel model that has the APDP as
an explicit parameter is introduced and, based on this the MLRP is derived. It turns out that
this receiver is a generalization of the GMLR.

The bit error probability (BEP) of the GMLR and the MLRP is derived in Subsection 3.3 and
subsection 3.3.2, respectively. For the GMLR, an exact as well as an approximate expression for the
BEP is given. The latter allows better insight into the principal mechanisms that determine the BEP.
The BEP of the coherent ML receiver (MLR) is given for referenceand is compared with the BEP
of the GMLR and the MLRP. The basic difference and similarities between the different receiver
architectures are discussed. To derive the BEP of the MLRP analytically we make a simplification,
which results in an approximate expression for the BEP. This expression is the more accurate, the
more the energy of the received pulses is spread over time, i.e., the longer the channel delay spread
is. However, for channel delay spreads of typical indoor UWB channels, which is on the order of
some tens of a nanosecond, this approximate expression is still to inaccurate to be useful. For a
more precise determination of the BEP, numerical evaluations can be perform, e.g, by simulation.

A key parameter in the design of the GMLR is the lengthTI of the time window during which
the energy of the received signal is collected. Section 3.4 proposes a design approach that mini-
mizes the maximum BEP for a given set of received pulse shapes.The impact of the signal band-
width on the GMLR is discussed in Section 3.5. It is shown thatan optimum bandwidth exists if
the1/f path loss characteristic explained in Chapter 2 is assumed. Ameasure for the sensitivity
to narrowband interference (NBI) is derived in Section 3.7. Comparison of the GMLR with the
MLR shows that the latter exhibits much better immunity to NBI. The effect of timing jitter on the
BEP is documented in Section 3.8 for the GMLR and the MLR. In supplement to the theoretical
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motivation of the noncoherent receivers, Section 3.9 givessome practical arguments for using the
GMLR or the MLRP instead of the MLR.

In Section 3.2 and 3.3 extensive use is made of the complex baseband transform. We switch be-
tween two representations because the channel and the considered receivers are given in passband
representation, however, to do a compact mathematical representation of the involved passband
stochastic processes we transform them into complex baseband. To prepare this, Appendix D re-
views in detail some rules for the baseband transform which are used to prove further rules that
could not be found in the literature.

3.1 Received-Signal Model for2PPM Signals

The transmitter modulates the symbol sequence〈ak〉 with ak ∈ {0, 1}, such that each symbol
determines the position of one UWB pulse. The shape of an individual pulse is defined byg(t),
which is the impulse response of an ideal bandpass filter withcenter frequencyf0 and bandwidth
B. The pulseg(t) has energy2B, i.e.,‖g‖2 =

∫∞
−∞ g2(t) dt = 2B. The choice of an ideal bandpass

filter g(t) is made, because in contrast to an implementable but more complex filter, the ideal
bandpass filter results in simpler analytical expressions for the signals involved in the receiver.
From [71] we observed that the receiver characteristics will change within a certain range when
another, more realistic bandpass filter is assumed. The transmitted signal is of the form

u(t) =

√

Et
2B

K−1∑

k=0

ck g(t− kT − ak∆T ) (3.1)

and represents a data block which consists ofK data symbols. The time interval available for the
transmission of an individual symbol isT . The corresponding data symbolak determines whether
the pulse is transmitted at the beginning of this interval orwith a time offset∆T , with ∆T ≤ T/2.

The energy per transmitted pulse isEt. The sequence〈ck〉, ck ∈ {−1,+1}, is an i.i.d. pseudo-
random binary sequence that randomizes the polarity of the transmitted pulses to smoothen the
power spectrum of the signalu(t). Note that the power spectrum of a 2PPM signal shows spec-
tral lines, if however the polarity of each pulse is randomlychosen with equally probable positive
and negative signs, then the power spectrum is proportionalto the energy spectrum of an indi-
vidual transmitted pulse

√

Et/(2B)g(t). [74] discusses requirements to signals that have a power
spectrum that is smooth in the sense of the FCC’s emission rules[21]. According to this,2PPM
signals with a symbol rate higher than1 MHz can exploit the power limit of−41.25 dBm/MHz
only if polarity randomization is used. The sequence〈ck〉 has no impact on the receiver’s design or
performance, as we consider noncoherent receivers which ignore the pulse polarity.

To maintain the orthogonality of the received symbols and toprevent intersymbol interference
it is required that∆T andT − ∆T exceed both the maximum channel delay spreadτc. Note that
this condition limits the maximum data rate to1/(2τc) for 2PPM. The signalb(t) is the received
pulse shape and represents the combined response of transmitter filter g(t), transmitter antenna,
propagation channel, and receiver antenna [23], and can be described by any channel model men-
tioned in Chapter 2. Note that because of the wide bandwidth, the received pulse shape is not only
influenced by the transmitter filter and the channel impulse response but also by the transmitter’s
and receiver’s amplifiers and antennas. For this and variousother reasons, channel models for the
UWB channel include the characteristic of the transmitter and receiver antenna. We assume that
thechannel impulse response(CIR), b(t), corresponds to this convention.
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We assume the received pulse to have the same shape asb(t), because we assume the signal
at the transmitter antenna feedpoint and the impulse response of the receiver frontend to be ideal
bandpass impulse responses with signal bandwidthB. Note that the support time of the CIR is
infinite in theory, because of the strictly bandlimited transmitted pulse,g(t). The bandwidth of
g(t) is B ≫ 1/τc we can therefore assume by approximation that the support time of the CIR
is equal to the channel delay spreadτc. The signal that appears at the feed point of the receiver
antenna and that corresponds to the symbolak is

r(ak, t) = ckb(t− kT − ak∆T ), . (3.2)

This notation shows that the received signal depends on the transmitted symbolak. Subsequently,
the argumentak is omitted where the context does allow this, i.e., we writer(t) instead ofr(ak, t).
The energy of the received pulse within its support interval[0, τc] is

Er =

∫ τc

0

b2(t) dt. (3.3)

We define the path gainα as the ratio of the received to the transmitted energy by

α =
Er
Et
. (3.4)

This ratio incorporates both the small-scale and the large-scale fading effect.

3.2 Derivation of Noncoherent Receivers from Detection Theory

We consider the binary detection problem that corresponds to the type of modulation and channel
described above from a detection theory perspective. The modulation parametersT and∆T are
chosen such that ISI is avoided and that the received symbolsare orthogonal; this allows us to
derive the receiver by solely considering the reception of asingle symbol,ak. The symbolak is
mapped by the2PPM transmitter and the propagation channel to the receivedsignal,r(ak, t), which
depends on the transmitted symbol, on the modulation details and on the actual received pulse or
channel realization, see (3.2). For simplicity and where aneasy understanding is still possible, the
symbolr(t) is synonymously used forr(ak, t). r(ak, t) is a realization of the stochastic process
R(ak, t). The receiver adds a realizationn(t) of the noise processN(t) to the received signal
r(ak, t) and bases its decision̂ak ∈ {0, 1} on the sum signaly(t) = r(ak, t) + n(t), where the
observation time interval is[kT, kT +T ]. The power spectrum of the noise processN(t) is nonzero
and constant only within the signal bandwidth and zero outside. The mappings from the transmitted
symbol to the symbol decision at the receiver are formally indicated by

ak ∈ {0, 1} Modulator and channel7−→ r(ak, t)
Additive noise7−→ r(ak, t)+n(t)

Detector7−→ âk ∈ {0, 1}.

We define the space of received signalsR, which is the set of all possible received signalsr(ak, t)
for ak ∈ {0, 1} and all possible realizationsb(t) of the received pulse shapes. Furthermore, we
defineY as the set of all observable signalsy(t). Not that the functions inR andY are defined
only within the interval[kT, kT + T ], i.e., for the time interval when the symbolak is being
transmitted.

To describe this system in terms of detection theory we adoptthe notation used in [66]. The
hypothesisH0 assumes thatak = 0, while hypothesisH1 assumes thatak = 1. The details of
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the modulator and the actual pulse shapeb(t) are formally contained in the mappingΘ which
maps the symbolak to the received signal spaceR. We define two subspaces,R0 andR1, of the
received signal spaceR; these subspaces are spanned by all possible received signal realizations
r(ak, t) if hypothesisH0 or H1 is true, respectively. Note that the2PPM scheme presented in
Section 3.1 guarantees thatR0 ∩R1 = {} because of the particular parameter choice that satisfies
T − ∆T , ∆T ≥ τm and thus, guarantees orthogonality of the received symbols. The observation
y(t) is the sum of any element ofR added with any realizationn(t) of the receiver noise and
lies within the received signal spaceY. Based on the observationy(t) is the decision whether
hypothesisH0 orH1 is true. These three mappings are expressed by the formulas

ak ∈ {0, 1}; ak Θ7−→ r(ak, t); r(ak, t) ∈ R
r(ak, t)

Channel noise7−→ y(t); y(t) ∈ Y
y(t)

Detector7−→ âk; âk ∈ {H0, H1}.

The detector must separate the observation space into two regions that correspond to hypothesesH0

andH1. The decision is based on whether the observed variable is inthe one or the other region.
When the random noise processN(t) is turned off, the observation spaceY and the parameter
spaceR are identical. In this case, a correct decision is always possible becauseR0 andR1 are
disjoint.

We distinguish three degrees to which the channel impulse response is known to the receiver:
(i) The receiver can measureb(t) perfectly. It is well known that in this case the Maximum Like-

lihood (ML) receiver is feasible and corresponds to the correlation or matched-filter receiver,
which belongs to the class of coherent receivers, see [39, 12, 15, 53].

(ii) The receiver cannot estimate the received pulseb(t) and a statistical description of the corre-
sponding processB(t) is not available either. In [66] two approaches are proposedfor the cor-
responding type of detection problem. The uniformly most powerful (UMP) detector, which is
for any received pulseb(t) as least as good as the ML receiver with perfect channel knowledge.
Unfortunately the UMP test does not exist for this problem. This is because the derivation of
the corresponding ML receiver shows that to minimize the BEP perfect channel knowledge is
required. The other proposal is to use a Generalized MaximumLikelihood (GML) approach.
The basic idea behind this is to use the noisy received signaly(t) as if it was a perfect estimate
for the noiseless signalr(t). A detailed description of this approach and the derivationof the
corresponding receiver are given in Subsection 3.2.2. Thisapproach results in a very simple
noncoherent receiver, the so called energy collecting receiver.

(iii) The receiver knows some statistical properties of the CIR, which can be interpret as partial
channel state information. An ML receiver is derived in 3.2.3 for the case where the receiver
has knowledge about the channel’s APDP.

The detection problem (i) arises due to the non-deterministic mapping of the received signalr(t)
to the observationy(t), this mapping consists in the additiony(t) = r(t) + n(t). The detection
problems (ii) and (iii) belong to the class of composite hypothesis testing problems, the reason for
classifying them as such is that there are two non-deterministic mappings involved, namely the
convolution with the unknown channelb(t) and the addition of the noise signaln(t) [66].

To prepare an easy derivation of the GML receiver and the ML receiver for partial channel state
information, an orthogonal expansion of the involved signals is introduced similar as in [66, 39,
49]. As no ISI occurs, we are allowed to derive the mentioned receivers by only considering the
time interval[kT, kT + T ] during which the symbolak is conveyed.
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3.2.1 Orthogonal Signal Expansion

An arbitrary set of orthonormal basis functionsφn(t), n ∈ {1, . . . , N} is assumed that spans
the signal spaceY of the involved signalsr(ak, t), n(t), andy(t), which have a finite one-sided
bandwidthB. Therefore, the signal space dimensionN can be finite. The assumption of a finite
signal bandwidth implies that the corresponding signals have an infinite support in the time domain.
Despite of this, we assume that these signals are nonzero only within the time interval[kT, kT+T ].
This assumption represents a good approximation because the bandwidthB is typically more than
ten times larger than the reciprocal of the considered time intervalT . The orthogonality of the
basis functions is expressed by the formula

∫ kT+T

kT

φn(t)φm(t) dt = δm,n,

with δm,n = 0 for m 6= n andδm,n = 1 otherwise. A compact notation is obtained by collecting all
basis functionsφn(t) into a vectorφ(t) = [φ1(t), . . . , φN(t)]T ; with this we can write

r(ak, t) = φT (t) r(ak), with r(ak) =

∫ kT+T

kT

φ(t) r(ak, t) dt, (3.5)

y(t) = φT (t) y, with y =

∫ kT+T

kT

φ(t) y(t) dt, (3.6)

n(t) = φT (t) n, with n =

∫ kT+T

kT

φ(t)n(t) dt. (3.7)

The noise process TheN(t) has one sided PSDN0 and one sided bandwidthB. Hence, the com-
ponents of the noise vector processN are statistically independent and identically distributed zero
mean and real gaussian random variables with varianceN0B. With these properties, the PDF ofN

is given by

fN(n) =
1

√
2πN0B

N
e
− n

T
n

2N0B . (3.8)

The introduced signal expansion is a linear operation whichleads to the equivalence

y(t) = r(ak, t) + n(t) ⇐⇒ y = r(ak) + n.

The vectory takes the role of the observation variable and the basis function vectorφ(t) spans
the observation spaceY, while r(ak) lies in the parameter spaceR and at the same time in the
observation spaceY. Note thatr(ak) depends on the modulation parameters and on the received
pulse shapeb(t).

3.2.2 Generalized Maximum Likelihood Detector

The classical ML detector decides for the variableâk ∈ {0, 1} that maximizes the likelihood
function under the assumption of a known received pulse shape b(t) and thus of a known vector
r(ak) for ak ∈ {0, 1}. For the given modulation scheme and channel, the likelihood function or
conditional PDF of the signal vectorY is PY|R,A(y|r(ak), ak). For our example, the classical ML
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decision rule is expressed via the likelihood ratio

Λ(y) =
PY|R,A(y|r(ak), ak = 1)

PY|R,A(y|r(ak), ak = 0)

âk=1

≷
âk=0

1

=
PY|R(y|r(ak = 1))

PY|R(y|r(ak = 0))

âk=1

≷
âk=0

1. (3.9)

This reads as: ‘if the PDF conditioned onak = 1 is larger than the PDF conditioned onak = 0,
than chosêak = 1, and otherwise usêak = 0. From e.g. [39] we know that this decision rule
results in the well known correlation or matched filter receiver that makes use of the knowledge
of the received pulseb(t). We are however interested in the case where no channel information
is known to the receiver, except the information thatb(t) has a finite support or delay spread,τc,
satisfyingτc < ∆T , andτc < T −∆T .

For this type of estimation problem, [66] suggests a method called Generalized Maximum
Likelihood (GML) test. The notion of this test is to estimate the vectorr(ak) on the basis of
the observation variabley and the (possibly wrong) assumption thatak = 0, which means that
r(ak) ∈ R0. This estimate forr(ak = 0) is calledr̂0. The procedure is repeated for the assumption
ak = 1. The corresponding ML estimation procedures are

r̂0 = arg max
r∈R0

{
PY|R(y|r)

}
,

and
r̂1 = arg max

r∈R1

{
PY|R(y|r)

}
.

These estimates are then used in the maximum likelihood ratio test as if they were exact. This is
justified because better estimates are not available. Hence, using the estimateŝr0 andr̂1 instead of
the true vectorsr(ak = 0) andr(ak = 1) in the ML ratio test (3.9) results in the GML ratio test

Λg(y) =
PY|R(y|r̂1)

PY|R(y|r̂0)

âk=1

≷
âk=0

1. (3.10)

Substituting the estimateŝr1 andr̂0 by the estimation procedures which are given above, the GML
detection rule is expressed by

Λg(y) =
max
r∈R1

PY|R(y|r)

max
r∈R0

PY|R(y|r)

âk=1

≷
âk=0

1. (3.11)

Now we derive a simplified and modified expressionΛ′
g(y) for the GML ratioΛg(y), which

results in the same decisions, i.e.,λ′g(y) > 1 ⇔ λg(y) > 1. We use the channel’s additive noise
structure, which results in the expression

n = y − r(ak).

As r(ak) depends deterministically, even though in an unknown fashion, on the data symbolak,
this implies that

PY|R,A(y|r(ak), ak) = PN|R,A(y − r(ak)|r(ak), ak) = PN(y − r(ak)). (3.12)
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An expression for the a-posteriori probability that reveals all the important details for our derivation
is obtained by combining (3.12) and (3.8) which yields

PY|R,A(y|r(ak), ak) =
1

√
2πN0B

N
e
− ‖y−r(ak)‖2

2N0B .

We use this explicit representation of the a-posteriori probability to derive the mentioned simpli-
fied expression forΛ′

g(y). First, some common factors of the nominator and the denominator are
skipped and the logarithm is taken of both of them, i.e.,

Λg(y) > 1 ⇔
max
r∈R1

PY|R(y|r)

max
r∈R0

PY|R(y|r)
> 1

⇔
max
r∈R1

1√
2πN0B

N e
− ‖y−r‖2

2N0B

max
r∈R0

1√
2πN0B

N e
− ‖y−r‖2

2N0B

> 1

⇔ max
r∈R1

−‖y − r‖2
2N0B

> max
r∈R0

−‖y − r‖2
2N0B

⇔ min
r∈R1

‖y − r‖2
2N0B

< min
r∈R0

‖y − r‖2
2N0B

⇔
min
r∈R0

{‖y − r‖2}
min
r∈R1

{‖y − r‖2} > 1; (3.13)

these manipulations don’t impact the inequality at the right hand side. The term‖y − r‖2 can be
expressed as a function of the continuous-time signalsy(t) andr(t):

|y − r(ak)‖2 =

∫ kT+T

kT

[y(t)− r(ak, t)]2 dt, (3.14)

wherer(ak, t) = φT (t)r(ak), see (3.5), which together with the substitution ofy(t) by φT (t)y
results in (3.14). For convenience, we denote the signal space that is spanned by the signalsr(t) =
φT (t)r for r ∈ R1 by R1 and correspondingly byR0 for r ∈ R0. With this we can write the
denominator in (3.13) as

min
r∈R1

{
‖y − r‖2

}
= min

r(t)∈R1







kT+T∫

kT

[y(t)− r(t)]2 dt






. (3.15)

At this point we use the fact thatr(t) ∈ R1, or equivalentlyr(ak = 1, t), is nonzero only for
t ∈ [kT + ∆T , kT + T ]. Note thatr(t) ∈ R0, or equivalentlyr(ak = 0, t), is nonzero only for
t ∈ [kT, kT + ∆T ). Thus, forr(t) ∈ R1 we have

kT+T∫

kT

[y(t)− r(t)]2 dt =

kT+∆T∫

kT

y2(t) dt+

kT+T∫

kT+∆T

[y(t)− r(t)]2 dt. (3.16)
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The two integrals at the right hand side are both greater or equal than zero because of the squared
arguments. The second of them is zero if and only ifr(t) andy(t) are equal fort ∈ [kT+∆T , kT+
T ]. Based on this observation and with (3.15), the numerator in (3.13) is minimized for

r(t) = r̂1(t) :=

{
y(t), for kT + ∆T ≤ t ≤ kT + T,
0, else.

Note, that̂r1(t) = φT (t) r̂1. With this, the numerator in (3.13) becomes

min
r∈R1

{
‖y − r‖2

}
=

kT+∆T∫

kT

y2(t) dt. (3.17)

Note that this minimization is constraint onr ∈ R1. The signal spaceR1 contains any possible
signaly(t) as we assume no knowledge about the channel. This assumptionimplies thatR1 con-
tains any signal that is in the same frequency band as the transmitted signal and whose support is
restricted to the interval[kT + ∆T , kT + T ] .

Making the corresponding derivation for the denominator of(3.13) results in the minimizing
function

r(t) = r̂0(t) :=

{
0, else,
y(t), for kT ≤ t ≤ kT + ∆T ,

and thus the denominator of (3.13) is

min
r∈R0

{
‖y − r‖2

}
=

kT+T∫

kT+∆T

y2(t) dt. (3.18)

With this and (3.17) we can write (3.13) as

Λg(y) > 1⇔

kT+T∫

kT+∆T

y2(t) dt

kT+∆T∫

kT

y2(t) dt

> 1. (3.19)

Hence, the simplified likelihood ratio test is given by

Λ′
g(y) =

kT+T∫

kT+∆T

y2(t) dt

kT+∆T∫

kT

y2(t) dt

âk=1

≷
âk=0

1. (3.20)

This is the decision rule for the noncoherent receiver for2PPM signals without ISI and for additive
white Gaussian noise. An equivalent formulation for this decision rule is

kT+T∫

kT+∆T

y2(t) dt−
kT+∆T∫

kT

y2(t) dt
âk=1

≷
âk=0

0. (3.21)



3.2 Derivation of Noncoherent Receivers from Detection Theory 25

r(t) y(t)

n(t)

∫
(·) dt

s(t) q(t)

dump if
t = kT

t = kT + ∆T

on if
t = kT + TI

and if and if

t = kT + ∆T + TI Delay

∆T −
+

Slicer

âk

← Channel Receiver→

Fig. 3.1. An architecture of the generalized maximum likelihood receiver for2PPM signals.

As the delay spread of the channel may vary from channel to channel, it can be smaller than the
integration duration∆T . Thus, the integrator captures an unnecessarily large amount of noise en-
ergy. To allow an optimization of the integration duration independent of the modulation parameter
∆T , we introduce the integration durationTI wich is smaller than or equal to∆T . With this, the
decision rule becomes:

kT+∆T +TI∫

kT+∆T

y2(t) dt−
kT+TI∫

kT

y2(t) dt
âk=1

≷
âk=0

0. (3.22)

A possible receiver architecture that implements this ruleis shown in Fig. 3.1. This is the classical
noncoherent receiver or energy collecting receiver for2PPM signals, whose equivalence with the
GMLR was already pointed out in [9]. The bit error probability of this receiver is investigated in
Section 3.3.

3.2.3 Maximum Likelihood Receiver for Partial Channel State Information

The ML receiver is derived for a receiver having side information about the channel’s APDP, we
call this receiver the maximum likelihood receiver for partial channel state information (MLRP).
For this purpose, a simplified channel model is introduced, that has the APDP as an explicit param-
eter and thus allows to analytically derive the corresponding ML receiver. This channel model is
transformed into a discrete-time baseband representation. The purpose for this particular represen-
tation is to have statistically independent samples of the received pulse, which allows a compact
and simple mathematical description.

3.2.3.1 Channel Model

Chapter 2 discusses channel models that are aimed to describethe properties of measured channels.
However the models presented have a mathematical structurethat prohibits analytical derivations
of corresponding receivers. For this reason, here a simplified channel model is introduced that
enables analytical derivations and at the same time shares the most important properties of practical
channels.

We rely on [62] and assume that the distribution of channel taps is complex Gaussian for CIRs
in complex baseband representation and thus Gaussian in passband representation. When looking
at typical CIRs of the UWB indoor channel, we observe that the variance of the taps depends on
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the excess delay. According to this observation, we model the CIRb(t) as the product

B(t) = σ(t)V(t), (3.23)

whereV(T) is a bandlimited white Gaussian process, whose two-sided power spectral density
(PSD) is1/(2B) within the signal band and zero outside. Thus, the power of the processV(t),
whose bandwidth equalsB, is E {V2(t)} = 1. Furthermore, the variance isσ2(t) at excess delay
t, and can be interpreted as the APDP [37] because

E
{
B2(t)

}
= E

{
σ2(t)V2(t)

}
= σ2(t).

To bend the support of the CIR to the interval[0, τc] we setσ(t) = 0 for t /∈ [0, τc]. We assume
further thatσ(t) is a lowpass signal with two-sided effective bandwidthBσ which is much smaller
than the bandwidthB of the noise realizationv(t). However, asσ(t) is a time-limited function its
spectrum has an infinite support. To avoid this contradiction, we define the term effective band-
widthBσ as the width of the frequency band that contains most of the energy ofσ(t).

The equivalent baseband transform of the CIR according to (D.1) is given by

bl(t) = [σ(t)v(t) + i {σ(t)v(t)}]e−i2πf0t.

Typically, the support of the signal spectrum is limited to the interval[3.1, 10.6] GHz. With this
and the assumption thatBσ ≪ B we can apply (D.12) which yields

bl(t) = σ(t)vl(t),

with
vl(t) = [v(t) + i {v(t)}] e−i2πf0t.

The small bandwidth of the signalσ(t) allows us to assume that the band of the signalbl(t) is
limited to the same interval as the signalvl(t), i.e., to the interval[−B/2,+B/2]. Therefore the
Nyquist sampling rate for the signalbl(t) is B, and the delay between consecutive samples is
Ts = 1/B. The support constraint ofσ(t) together with its low signal bandwidth causes a smooth
fade-in and fade-out of the CIRb(t), see (3.23). We define the sampled signal

bn = bl(nTs) = σnvn, (3.24)

with σn = σ(nTs) andvn = vl(nTs). The support timeτc of b(t) is smaller than or equal to the
modulation parameter∆T ; therefore, a number ofN∆ = ∆T/Ts samples of the signalbl(t) are
sufficient for its description. We assume for simplicity that ∆T is an integer multiple ofTs. As
only a marginal portion of the energy ofbl(t) spreads outside the frequency interval[−B/2, B/2],
the energy of the sampled signalbn is given by the approximation

Ts

N∆−1∑

n=0

|bn|2 ≈
∫ ∆T

0

|bl(t)|2 dt = 2

∫ ∆T

0

b2(t) dt. (3.25)

The right hand equation follows from (D.10).
Note that the samplesvn are obtained by sampling with Nyquist rate a white Gaussian ran-

dom process with PSD1/(2B) that is filtered by an ideal bandpass filter. Therefore, the samples
vn are statistically independent and identically distributed zero-mean complex Gaussian random
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variables. Thus, the real and imaginary part of the samplesvn have unit variance, [49]. With this
property and with (3.24) the pdf of then-th samplebn is

PBn
(bn) =

1

2πσ2
n

e
− |bn|2

2σ2
n . (3.26)

This description implies the statistical independence of random variablesBn with unequal indices.
Now we want to discuss the energy spectrum of this process. For this purpose we introduce the

Fourier transform of the CIR processBn as

Θm =

N∆−1∑

n=0

Bne
− 2πnm

N∆Ts . (3.27)

We call the expectation value of the squared absolute valueE {|Θm|2} the energy spectrum of
the CIR processBn. The name “energy spectrum” is chosen because the sum of theN∆ terms
E {|Θm|2} equals the expectation value of the energy of the time limited processBn. This energy
spectrum is independent of the frequency indexm, i.e., constant. This can be shown by inserting
the definition (3.27) into the expressionE {|Θm|2} and by using the property of uncorrelated sam-
ples described by (3.26). In contradiction to this result, in Subsection 2.2.4 the energy spectrum of
the CIR processB(t) is reported to be proportional to1/f2. This implies that the assumption of
uncorrelated samples of the processBn is not valid. To assess how strong the correlation between
the samples is, we compute the inverse Fourier transform of the energy spectrum1/f2 in complex
baseband representation, for a center frequencyf0 = 3.85 GHz and a bandwidth of1.5 GHz. We
compute the autocorrelation function (ACF)ϕBB,n,m = E

{
BmB

∗
m+n

}
of the discrete time process

Bn that is obtained by Nyquist rate sampling the processB(t). Numerical evaluation for the speci-
fied parameters shows that the largest value of the normalized ACFmaxm ϕBB,n,m/maxm ϕBB,0,m
is unity as expected and the second largest valuemaxm ϕBB,1,m/maxm ϕBB,0,m is already smaller
than0.13. Furthermore we have observed, that the ACF decays fast with growing absolute index
|n|. From this we conclude that the correlation between adjacent samples of the CIR processBn is
only marginal. Therefore, and to allow a clear analytical derivation of the MLRP, we make an ap-
proximation of the true model. This approximation consistsin ignoring the correlation between the
samples of the processBn that is caused by the1/f2 characteristics of the CIR’s energy spectrum.

3.2.3.2 Received Signal

We assume that no intersymbol interference (ISI) occurs andthat the binary transmitted symbols
are orthogonal at both the transmitter and the receiver. These assumptions imply that both∆T and
T −∆T exceedτc. Thus, without loss of generality, to derive the MLRP we are allowed to consider
only the symbol with indexk = 0. The received signalr(t) has the complex baseband transform
rl(t), it conveys the symbolak within the symbol interval[kT, kT + T ), see (3.2). Hence, for
detecting the symbola0 only the samplesrn = rl(nTs), for n = 0 to N − 1 whereN = T/Ts,
need to be considered. For simplicity we assume thatT as well as∆T are integer multiples ofTs.
Also, for the sake of simplicity, we assume that the factorck in (3.2) is set to the valueck = 1. This
has an effect only on the spectrum of the transmitted signal but not on the receiver architecture
and its performance. With the definitionN∆ = ∆T/Ts, the received2PPM signal described by
(3.2) can be expressed by the samplesrn as a function of the discrete time CIR samplesbn and the
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transmitted symbola0. Fora0 = 0 we have

rn(a0 = 0) =

{
bn, for 0 ≤ n < N∆

0, for N∆ ≤ n < N
, (3.28)

while a0 = 1 yields

rn(a0 = 1) =

{
0, for 0 ≤ n < N∆

bn−N∆
eiϕ, for N∆ ≤ n < N

, (3.29)

where the phaseϕ = −2πf0∆T , which appears in the complex baseband transform when the
corresponding passband pulse,b(t) is shifted in time by∆T ; this is the case fora0 = 1, see (D.6).
With these definitions and with the PDF of the CIR samples, given by (3.26), we can write the
conditional PDF of the discrete-time received signal samplesrn as

PRn|A(rn|a0 = 0) =
1

2πs2
0,n

e
− |rn|2

2s20,n , for 0 ≤ n < N, (3.30)

and

PRn|A(rn|a0 = 1) =
1

2πs2
1,n

e
− |rn|2

2s21,n , for 0 ≤ n < N, (3.31)

for 0 ≤ n < N , where

s0,n =

{
σn, for 0 ≤ n < N∆

0, for N∆ ≤ n < N
(3.32)

and

s1,n =

{
0, for 0 ≤ n < N∆

σn−N∆
, for N∆ ≤ n < N

. (3.33)

The corresponding continuous-time signalss0(t) ands1(t) are given bys0(t) = σ(t) ands1(t) =
σ(t − ∆T ). Note that the signalss0(t) ands1(t) are not directly related to the signals(t) used in
Fig. 3.1, Fig. 3.2, and Fig. 3.3. As expressions (3.30) and (3.31) are discontinuous ats2

0,n = 0 and
s2
1,n, respectively, we define the Gaussian PDF of a circular symmetric complex random variablez

with real partx, imaginary party, and zero-varianceσ2 to be given by

1

2πσ2
e−

|z|2
2σ2

∣
∣
∣
∣
σ=0

:= δ(x)δ(y).

With this, the equations (3.30) and (3.31) provide the statistical description of the random channel
response including the modulation, i.e., (3.30) and (3.31)describe the statistics of the received
signal samples in complex baseband representation.

3.2.3.3 Additive Gaussian Noise

The additive noise signaln(t) is a passband Gaussian noise realization with bandwidthB and
center frequencyf0, the two-sided PSD isN0/2 . The equivalent baseband signal is denoted as
nl(t), its samples arenn = nl(nTs) and are realizations of zero mean Gaussian i.i.d. random
variables that are complex and circularly symmetric. Consequently, both the imaginary and the real
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part have varianceN0B. Thus, the statistical characterization of the discrete-time random-process
is

PN(nn) =
1

2πN0B
e
− |nn|2

2N0B . (3.34)

The baseband transform of the received signalr(t) is denoted byrl(t), its discrete-time represen-
tation isrn = rl(nTs). With this, the discrete-time representation of the observed signal is

yn = rn + nn. (3.35)

For a compact notation we collect the signal samples that blong to the time interval of interest,
i.e., [0, T ), in the respective vectorsr = (r0, r1, . . . , rN−1)

T , n = (n0, n1, . . . , nN−1)
T andy =

(y0, y1, . . . , yN−1)
T . The pdf of the observed signal vector,y, is written asPY|R,A(y|r, a0), which

emphasizes the dependency ofr on a0. For a given received signal sample,rn, we can write the
statistics of the observed signal samples in (3.35). Using the same argumentation as in Section
3.2.2 we have

PYn|Rn,A(yn|rn, a0) = PN|Rn,A(yn − rn|rn, a0) = PN(yn − rn). (3.36)

3.2.3.4 ML Decision Rule

The detection problem is a composite hypothesis testing problem because the signal samplesyn
contain two random components, the channel and the noise. The partial channel knowledge con-
sists of the APDP,σ2(t), and the noisie densityN0 is also assumed to be known. The corresponding
ML decision rule is expressed by

Λ(y) =
PY|A(y|a0 = 1)

PY|A(y|a0 = 0)

â0=1

≷
â0=0

1. (3.37)

In contrast to (3.9), here the received signal vectorr(a0) is unknown; only the instantaneous vari-
ancess0,n ands1,n are known but are not emphasized in (3.37) for simplicity. The conditional PDF
PY|A(y|a0) characterizes the transmission path consisting of the modulator, the channel, and the
additive receiver noise. The modulator and the channel are characterized by (3.30) fora0 = 0 and
(3.31) fora0 = 1, while the receiver noise is described by (3.36). Combining these expressions
results in the desired conditional PDF

PY|A(y|a0) =

∫

R
PY|R,A(y|r, a0)PR|A(r|a0) dr. (3.38)

The components of the random noise vectorN are statistically independent, the same holds for the
components of the received pulse.

Equation (3.38) can be expressed componentwise by exploiting the statistical independence of
the components ofR andN, i.e.,

PY|A(y|a0) =
N−1∏

n=0

PYn|A(yn|a0), (3.39)

where

PYn|A(yn|a0) =

∫ ∞

−∞
PYn|Rn,A(yn|rn, a0)PRn|A(rn|a0) drn.

=

∫ ∞

−∞
PN(yn − rn|a0)PRn|A(rn|a0) drn.
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To evaluate this integral fora0 = 0 we insert (3.30), (3.34), and (3.36), yielding

PYn|A(yn|a0 = 0) =

∫ ∞

−∞

1

2πN0B
e
− |yn−rn|2

2N0B
1

2πs2
n,0

e
− |rn|2

2s2
n,0 drn, for 0 ≤ n ≤ N. (3.40)

This represents the convolution of two Gaussian PDFs, whichyields again a Gaussian PDF whose
variance is the sum of the variances of the two original PDFs.Hence, we can write

PYn|A(yn|a0 = 0) =
1

2π(s2
0,n +N0B)

e
− |yn|2

2(s20,n
+N0B) , for 0 ≤ n ≤ N. (3.41)

Similarly, the evaluation fora0 = 1 requires insertion of (3.31), (3.34), and (3.36) and results in

PYn|A(yn|a0 = 1) =
1

2π(s2
1,n +N0B)

e
− |yn|2

2(s21,n
+N0B) , for 0 ≤ n ≤ N. (3.42)

Inserting the last two expressions into (3.39) yields the a-posteriori probabilities

PY|A(y|a0 = 0) =
N−1∏

n=0

1

2π(s2
0,n +N0B)

e
− |yn|2

2(s20,n
+N0B) , (3.43)

for a0 = 0, and fora0 = 1

PY|A(y|a0 = 1) =
N−1∏

n=0

1

2π(s2
1,n +N0B)

e
− |yn|2

2(s21,n
+N0B) . (3.44)

With these results we can express the ML decision rule (3.37)as

Λ(y) =

N−1∏

n=0

1
2π(s21,n+N0B)

e
− |yn|2

2(s21,n
+N0B)

N−1∏

n=0

1
2π(s20,n+N0B)

e
− |yn|2

2(s20,n
+N0B)

â0=1

≷
â0=0

1

=

N−1∏

n=0

e
− |yn|2

2(s21,n
+N0B)

N−1∏

n=0

e
− |yn|2

2(s20,n
+N0B)

â0=1

≷
â0=0

1. (3.45)

The last simplification is possible because

N−1∏

n=0

1

s2
0,n +N0B

=
N−1∏

n=0

1

s2
1,n +N0B

,

which follows from the sequence〈s0,n〉 being a permutation of the sequence〈s1,n〉, see (3.32) and
(3.33). Now we derive a modified likelihood ratioΛ′(y) that is easier to compute than (3.45). This
modified likelihood ratio will result in the same decisions if both,Λ(y) > 1 andΛ′(y) > 1 are true
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or false at the same time. The simplification consists in taking the logarithm of the denominator
and the numerator and in changing the sign of both, i.e.,

Λ(y) > 1 ⇔

N−1∏

n=0

e
− |yn|2

2(s21,n
+N0)B

N−1∏

n=0

e
− |yn|2

2(s20,n
+N0B)

> 1

⇔
N−1∏

n=0

e
− |yn|2

2(s21,n
+N0)B >

N−1∏

n=0

e
− |yn|2

2(s20,n
+N0B)

⇔ −
N−1∑

n=0

|yn|2
s2
0,n +N0B

> −
N−1∑

n=0

|yn|2
s2
1,n +N0B

⇔

N−1∑

n=0

|yn|2
s20,n+N0B

N−1∑

n=0

|yn|2
s21,n+N0B

< 1. (3.46)

With this, the modified decision rule is

Λ′(y) =

N−1∑

n=0

|yn|2
s20,n+N0B

N−1∑

n=0

|yn|2
s21,n+N0B

â0=1

≷
â0=0

1. (3.47)

This formulation of the decision rule is appropriate for describing the implementation when
discrete-time equivalent baseband signals are available within a receiver. However, we are seeking
a simple continuous-time implementation, therefore, we must represent the numerator and denom-
inator as a function of the continuous time signalsσ(t) andy(t). The sequence〈σn〉 has a much
lower bandwidth than the sequence〈yn〉. As the sampling rate is the Nyquist sampling rate of the
signaly(t), this implies thats0,n ≈ s0,n+1 ands1,n ≈ s1,n+1. Therefore, we can approximate the
sum in the numerator in (3.47) by an integral:

N−1∑

n=0

|yn|2
s2
0,n +N0B

≈ 1

Ts

∫ T

0

|yl(t)|2
s2
0(t) +N0B

dt =
2

Ts

∫ T

0

y2(t)

s2
0(t) +N0B

dt. (3.48)

Making the same approximation for the denominator, and generalizing the result for arbitrary sym-
bol indicesk, we can write an approximation for the decision rule (3.47):

Λ′(y) =

kT+T∫

kT

y2(t)

s20(t−kT )+N0B
dt

kT+T∫

kT

y2(t)

s21(t−kT )+N0B
dt

âk=1

≷
âk=0

1. (3.49)

This rule is equivalent to

kT+T∫

kT

y2(t)

s2
0(t− kT ) +N0B

dt−
kT+T∫

kT

y2(t)

s2
1(t− kT ) +N0B

dt
âk=1

≷
âk=0

0,
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and thus equivalent to
kT+T∫

kT

y2(t)w(t− kT ) dt
âk=1

≷
âk=0

0, (3.50)

where

w(t) =
s2
1(t)− s2

0(t)

(s2
0(t) +N0B)(s2

1(t) +N0B)
=

1

N0B

s2
1(t)− s2

0(t)

s2
0(t) + s2

1(t) +N0B
. (3.51)

The simplification in the last step is based on the propertys1(t)s2(t) = 0, which follows from the
definitions (3.32) and (3.33). The constant factor1/N0B does not influence the decision and can
be skipped. Note that the factorck ∈ {−1,+1} in (3.2) has no impact on the decision because
the sign of the received signal is ignored owing to the squaring of the observed signaly(t). An
architecture for this maximum likelihood receiver with partial channel state information (MLRP)
is given in Fig. 3.2. The signal

∑

k w(t − kT ) in this figure causes a repeated application of the
weighting function in order to receive each symbolsak.

This receiver description can be simplified under the assumption thatσ(t) is a constantcwithin
the time interval[0,∆T ] and zero outside, i.e., that the average power delay profile of the channel
is completely uniform. With the definition of the signalss0(t) ands1(t), and skipping the factor
1/(N0B) in (3.51) we have

w(t) =

{

− c2

c2+N0B
, for kT ≤ t ≤ kT + ∆T ,

c2

c2+N0B
, for kT + ∆T < t ≤ kT + T.

(3.52)

This weighting function makes the decision rule (3.50) equivalent to the decision rule (3.20) of the
GMLR in Section 3.2.2. To show this we insert (3.52) into the decision rule (3.50), which yields

c2

c2 +N0B





kT+T∫

kT+∆T

y2(t) dt −
kT+∆T∫

kT

y2(t) dt




âk=1

≷
âk=0

0,

⇔
kT+T∫

kT+∆T

y2(t) dt −
kT+∆T∫

kT

y2(t) dt
âk=1

≷
âk=0

0,

⇔

kT+T∫

kT+∆T

y2(t) dt

kT+∆T∫

kT

y2(t) dt

âk=1

≷
âk=0

1. (3.53)

This is equivalent to the decision rule of the GMLR (3.20). Remember that the GMLR works
without channel state information. Hence, we conclude thatthe GML decision rule makes the
implicit assumption that the channel’s APDP is a constant within the interval[0,∆T ].

3.3 Performance of Receivers for2PPM Signals

The BEP of the GMLR and MLRP receivers can be discussed on the basis of the decision rule
(3.47) which is based on the discrete-time representation of the equivalent baseband signals. A
unified derivation of the exact BEP for both receiver types is possible only for the special case
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r(t) y(t)

n(t)

∫
(·) dt

s(t) q(t)

dump
at

t = kT

on if
t = kT

Slicer

âk

∑

k

w(t− kT )

← Channel Receiver→

Fig. 3.2. An architecture of the maximum likelihood receiver with partial channel state information for
2PPM signals.

whereσ(t) ≡ c for t ∈ [0,∆T ], i.e., where the MLRP is equivalent to the GMLR, see the paragraph
below (3.51). A simpler, but approximate expression for theBEP of the GMLR can be found by
(i) approximating the exact result for the BEP of the GMLR; and (ii) by deriving an approximate
BEP expression for the MLRP and specializing this result for the GMLR.

In Subsection 3.3.1 we derive an exact and an approximate expression for the BEP of the
GMLR. An approximation for the BEP of the MLRP is derived in Subsection 3.3.2, specialization
for σ(t) ≡ c results in the mentionedapproximation for the BEP of the GMLR.For comparison
we discuss the BEP of the MLR (maximum likelihood receiver with perfect knowledge of the
received pulse shape) in Subsection 3.3.3. The subsequent paragraphs contain a preparation for
these derivations.

The decision rule for the symbolak in (3.47) can be translated into the form

N−1∑

n=0

|yn|2
s20,n+N0B

N−1∑

n=0

|yn|2
s21,n+N0B

â0=1

≷
â0=0

1

⇔
N−1∑

n=0

[ |yn|2
s2
0,n +N0B

− |yn|2
s2
1,n +N0B

]
â0=1

≷
â0=0

0

⇔
N−1∑

n=0

|yn|2
(
s2
1,n − s2

0,n

)

s2
0,n + s2

1,n +N0B

â0=1

≷
â0=0

0

⇔
N−1∑

n=0

|yn|2s2
0,n

s2
0,n + s2

1,n +N0B

â0=0

≷
â0=1

N−1∑

n=0

|yn|2s2
1,n

s2
0,n + s2

1,n +N0B

⇔
N∆−1∑

n=0

|yn|2σ2
n

σ2
n +N0B

â0=0

≷
â0=1

N−1∑

n=N∆

|yn|2σ2
n−N∆

σ2
n−N∆

+N0B
.

(3.54)

For this translation we used the definitions (3.32) and (3.33) and their property thats0,ns1,n = 0.
The symmetry of the2PPM scheme, and the assumption that no ISI occurs, allows us to consider
only the case where the transmitted symbola0 = 0, i.e., to write the bit or symbol error probability



34 3. Noncoherent Receivers

BEP as

Pe = P (â0 = 1|a0 = 0)

= P

(
N∆−1∑

n=0

|yn|2σ2
n

σ2
n +N0B

<

N−1∑

n=N∆

|yn|2σ2
n−N∆

σ2
n−N∆

+N0B

∣
∣
∣
∣
∣
a0 = 0

)

, (3.55)

where the received signal samples,yn, for a0 = 0 areyn = σnvn + nn andyn = nn for 0 ≤ n ≤
N∆ − 1 andN∆ ≤ n ≤ N , respectively, see (3.24) and (3.35). With this we have

Pe = P

(
N∆−1∑

n=0

σ2
n

σ2
n +N0B

|σnvn + nn|2 <

N∆−1∑

n=0

σ2
n

σ2
n +N0B

|nn+N∆
|2
)

. (3.56)

One way to compute this probability is to derive the PDFsPF(f) andPG(g) of the terms

f :=

N∆−1∑

n=0

σ2
n

σ2
n +N0B

|σnvn + nn|2, (3.57)

and

g :=

N∆−1∑

n=0

σ2
n

σ2
n +N0B

|nn+N∆
|2, (3.58)

and to evaluate the integral

Pe = P (f < g) =

∞∫

0

g∫

0

PF,G(f, g) df dg.

The variablesf andg are realizations of the statistically independent random variablesF and
G. Thus,PF,G(f, g) = PF(f)PG(g) and hence,

Pe =

∞∫

0

g∫

0

PF(f)PG(g) df dg. (3.59)

The expressions for the PDFsPF(f) andPG(g) are very complex; [54] gives a series expansion
for them. To stay within the scope of this work, in 3.3.2 we derive only an approximate expression
for Pe.

3.3.1 Bit Error Probability of the GMLR

We consider again the error probabilityPe = P (â0 = 1|a0 = 0). For the special case whereσ(t) is
constant, i.e.,σ(t) = c for t ∈ [0,∆T ], or equivalentlyσn = c for n ∈ [0, N∆−1], the above PDFs,
PF (f) andPG(g) become non-central and central chi-square distributions with identical degree of
freedomN∆, and are described by relatively simple analytical expressions given in Appendix E.
Furthermore, we assume that the factorck in (3.2) is set to the valueck = 1. This has an effect
only on the spectrum of the transmitted signal but not on the receivers performance. We define the
simplified expressions

fs := f
c2 +N0B

c2
=

N∆−1∑

n=0

|cvn + nn|2, (3.60)
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and

gs := g
c2 +N0B

c2
=

N−1∑

n=N∆

|nn|2, (3.61)

which are scaled versions of the variablesf andg defined in (3.57) and (3.58). Thus, under the
assumption thatak = 0 and with (E.3), the distribution offs is

PFs
(fs) =

1

2N0B

(
fs
s2

)N∆−1

2

e
− s2+fs

2N0B IN∆−1

(
√

fs
s

N0B

)

,

where

s2 =

N∆−1∑

n=0

|bn|2, (3.62)

andbn = cvn, see (3.24),µfs
= 2N∆N0B + s2, andσ2

fs
= 4N∆(N0B)2 + 4N0Bs

2. The function
Iα(x) ist theα th-order modified Bessel function of the first kind. The distribution of gs is for
ak = 0 and with (E.4)

PGs
(gs) =

1

(2N0B)N∆ Γ (N∆)
gN∆−1
s e

− gs
2N0B ,

whereµgs
= 2N∆N0B andσ2

gs
= 4N∆(N0B)2. We compute the BEP from (3.59), i.e.,

Pe =

∞∫

0

gs∫

0

PFs
(fs)PGs

(gs) dfs dgs

=
e
− s2

2N0B

(2N0B)N∆+1 Γ (N∆)

∞∫

0

gs∫

0

IN∆−1

(
√

fs
s

N0B

)

e
− fs+gs

2N0B

(
fs
s2

)N∆−1

2

gN∆−1
s dfs dgs

=
e
− s2

2N0B

(2N0B)N∆+1 Γ (N∆)

∞∫

0

gN∆−1
s e

− gs
2N0B

gs∫

0

IN∆−1

(
√

fs
s

N0B

)(
fs
s2

)N∆−1

2

e
− fs

2N0B dfsdgs.

(3.63)

A closed-form expression for this integral has not been found by the author. A numerical evaluation
is shown in Fig. 3.7 through 3.10.

3.3.1.1 Approximation

We derive an approximate expression for (3.63) that resultsin a closed-form expression and thus
provides more insight into the qualitative behavior of the BEP. The approximation is based on
the following observation: The expressionPe = P (fs < gs) is equivalent toPe = P (z < 0)
with the decision variablez := fs − gs. Both fs andgs are chi-square distributed; each of them
is the sum of2N∆ statistically independent and real random variables, see (3.60) and (3.61). One
characteristic of the the chi-squared PDF is its asymmetry around the peak value. The variablez
however, which is the difference of two chi-square distributed random variables, has a PDF that
is approximately symmetric around its peak value which strongly resembles a Gaussian PDF. A
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Gaussian approximation of the PDF ofz is the more accurate the largerN∆ is. Note thatz is the
sum of4N∆ real random variables.

The decision variablez has the mean value

µz = µfs
− µgs

= 2N∆N0B + s2 − 2N∆N0B

= s2, (3.64)

and the variance

σ2
z = σ2

fs
+ σ2

gs

= 4N∆(N0B)2 + 4N0Bs
2 + 4N∆(N0B)2

= 8N∆(N0B)2 + 4N0Bs
2. (3.65)

Assuming thatz is a Gaussian random variable, the PDF ofz is

PZ(z) =
1

√

2πσ2
z

e
− (z−µz)2

2σ2
z ,

and we can write the BEP as

Pe = P (z < 0)

=

∫ 0

−∞
PZ(z) dz

=
1

√

2πσ2
z

∫ 0

−∞
e
− (z−µz)2

2σ2
z dz

=
1

√

2πσ2
z

∫ −µz

−∞
e
− u2

2σ2
z du

=
1√
π

∫ − µz√
2σz

−∞
e−v

2

dv

=
1

2
erfc

(
µz√
2σz

)

, (3.66)

where erfc(x) = 2√
π

∫∞
x
e−t

2
dt. Inserting (3.64) and (3.65) yields

Pe =
1

2
erfc

(

s2

√

2(8N∆N2
0B

2 + 4N0Bs2)

)

=
1

2
erfc

(

s2/(2N0B)

2
√

N∆ + s2/(2N0B)

)

. (3.67)

The variables2 is the energy of the discrete-time received pulsebn, see (3.62), and is approximated
as

s2 =

N∆−1∑

n=0

|bn|2 ≈
2

Ts

∫ ∆T

0

b2(t) dt = 2BEr,
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where we made use of (3.25), (3.3), andTs = 1/B. The numberN∆ is defined in Subsection 3.2.3
asN∆ = ∆T/Ts = ∆TB. Substituting the variabless2 andN∆ by these expressions we have

Pe =
1

2
erfc

(

Er/N0

2
√

∆TB + Er/N0

)

. (3.68)

The term∆TB is caused by the receiver noisen(t), i.e., the larger the time-bandwidth product
∆TB is, the lower is the performance of the receiver. This term grows linearly with the integration
duration∆T and the bandwidthB of the receiver filter, which equals the bandwidth of the receiver
noise.

For practical power delay profiles it is possible to chose an integration durationTI < ∆T which
allows to capture most of the energyEr of the received pulse while reducing the noise contribution
∆TB. To consider this case we introduce the ratioη(TI) of the energy that is captured with an
integration durationTI to the total received energyEr, i.e.,

η(TI) =

∫ TI

0
b2(t) dt

∫ ∆T

0
b2(t) dt

. (3.69)

The reduced integration results in the modified variable

s̃2 = 2η(TI)BEr (3.70)

and the modified number
Ñ∆ = TIB.

Substituting these expressions into (3.67) yields

Pe =
1

2
erfc

(

η(TI)Er/N0

2
√

TIB + η(TI)Er/N0

)

. (3.71)

The exact expression (3.63) can also be adapted to a reduced integration durationTI , by substi-
tuting s2 according to (3.70) and by substitutingN∆ by Ñ∆ = TIB. A comparison of this exact
expression and the approximation (3.71) is given in Subsection 3.3.5 in terms of a numerical eval-
uation.

3.3.2 Bit Error Probability of the MLRP

In this subsection we derive an approximate expression for the integral (3.59). First we rewrite
(3.57) and (3.58) as

f :=

N∆−1∑

n=0

un|σnvn + nn|2, (3.72)

and

g :=

N∆−1∑

n=0

un|nn+N∆
|2, (3.73)

whereun = σ2
n/(σ

2
n+N0B). The sumf is a generalized non-central Chi-sqare distributed random

variable, i.e., the variances of the individual summands in(3.72) depend on the indexn. A closed
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form expression for the PDFPF(f) does not exist. As mentioned, this is the reason why we derive
an approximation to the BER instead of an exact expression. For this purpose we introduce the
differencez = f − g, as in Subsection 3.3.1, and write the BER as

Pe = P (z < 0).

The mentioned approximation consists in the assumption that z is a Gaussian distributed random
variable. This assumption is the more justified the larger the number of summands is that contribute
to z. This number of summands equals2N∆, see (3.72) and (3.73). Note thatN∆ = B∆T , i.e.,
the longer the channel delay spread and thus∆T is, the closer is the distribution ofz to a Gaus-
sian distribution. The Gaussian approximation made in thisderivation resembles to the Gaussian
approximation made in Subsubsection 3.3.1.1 but is less accurate. The reason for this is that in
contrast to Subsubsection 3.3.1.1 here the summands are weighted by the functionun. Therefore,
the variance of the summands depends on the indexn. As a consequence, a larger number of sum-
mands is needed to result in Gaussian distributed sum. For a finite number2N∆ of summands, the
random variablez, deviates more or less from a Gaussian distribution. Thus, we have to writePe
as the approximation

Pe ≈
1

2
erfc

(

µz
√

2σ2
z

)

, (3.74)

which is a function of the meanµz and the varianceσ2
z of z. To computeµz andσ2

z we consider the
the summands off andg and denote them asfn = un|bn+nn|2 andgn = un|nn+N∆

|2, respectively.
The samplesfn are statistically independent, which follows from the statistical independence of
the samplesbn = σnνn and the samplesnn, see (3.35) and (3.24). The samplesgn are statistically
independent for the same reasons. Based on this statistical independence we can write the mean
value and the variance ofz as

µz =

N∆−1∑

n=0

µfn
− µgn

and

σ2
z =

N∆−1∑

n=0

σ2
fn

+ σ2
gn
.

As mentioned, the samplesfn are noncentrally chi-square distributed. Their mean and variance can
be shown to beµfn

= un(2N0B+ |bn|2) andσ2
fn

= 4u2
n(N

2
0B

2 +N0B|bn|2), [49]. The samplesgn
are centrally chi-square distributed with mean and varianceµgn

= 2unN0B andσ2
gn

= 4u2
nN

2
0B

2,
respectively. With this we have

µz =

N∆−1∑

n=0

un|bn|2

and

σ2
z =

N∆−1∑

n=0

4u2
n(2N

2
0B

2 +N0B|bn|2).

Inserting these results into (3.74) yields an approximation to the BER as a function of the received-
pulse samplesbn and the weighting function samplesun in complex baseband representation. Of-
ten, it is favorable to have the BER expressed as a function of signals given in continuous-time
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passband representation. Therefore, in analogy to (3.48),we apply the approximations

µz ≈
2

Ts

∫ ∆T

0

u(t)b2(t) dt

and

σ2
z ≈

4N0B

Ts

∆T∫

0

u2(t)[2N0B + b2l (t)] dt

=
8N0B

Ts

∆T∫

0

u2(t)[N0B + b2(t)] dt,

whereu(t) = σ2(t)/[σ2(t) +N0B]. With this, our approximation to the BER in (3.74) yields

Pe ≈
1

2
erfc









1
N0

∆T∫

0

u(t)b2(t) dt

2

√

B
∆T∫

0

u2(t) dt+ 1
N0

∆T∫

0

u2(t)b2(t) dt









. (3.75)

For the special case whenu(t) = 1, i.e., whenσ(t) ≡ c or eqivalently, when no time varying
weighting of the integrator input is performed, (3.75) equals the approximation for the BER of the
GMLR, see (3.68). A numerical evaluation of (3.75) and a comparison with simulation results is
given in Subsection 3.3.5.

Note that the structure of (3.75) resembles the approximation to the BER of the mentioned
transmitted-reference receiver with weighted correlation presented in [13]. This resemblance un-
derlines the close relationship between noncoherent and transmitted-reference receivers.

3.3.3 Bit Error Probability of the MLR

For reference and to show how much performance is lost by using a noncoherent instead of a
coherent receiver, we consider the BEP of the coherent maximum likelihood receiver (MLR) for
2PPM with perfect knowledge of the received pulse shapeb(t). We assume that the random polarity
modulation in (3.1) is switched off, i.e.,ck = 1 for all k. Note that unlike noncoherent receivers, the
coherent MLR would have an increased BEP when the pulse polarity is randomized and unknown
to the receiver.

Note further that if a coherent MLR is used, the receiver’s ability to recover the pulse polarity
should be exploited through e.g. the usage of binary antipodal modulation instead of the orthog-
onal2PPM. Using binary antipodal modulation instead of binary orthogonal modulation offers a
3 dB performance improvement [49]. Hence, in a practical competition between the noncoherent
receivers considered in this work and the MLR, the MLR would have an additional performance
advantage of3 dB, which is not shown in this work.

The BEP of the MLR for2PPM without polarity randomization is derived in Subsection 3.7.2
for the case of narrowband interference with powerPu. ForPu = 0 the BEP is given by (3.128) as

Pe =
1

2
erfc

(√

Er
2N0

)

. (3.76)
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3.3.4 Comparison of Receiver Structures

The three receiver types envisaged in this chapter are the MLR that uses perfect channel state in-
formation, the ML receiver with partial channel state information (MLRP), and the generalized
ML receiver with no channel state information (GMLR). Even though they have different prop-
erties and pros and cons, their basic architectures share a common principle: The decision on the
received symbol̂ak is based on the correlation of the observed signaly(t) = r(t) + n(t) with a
templatex(t). This correlation can also be interpreted as a projection ofy(t) = r(t) + n(t) on the
templatex(t).

To unveil this similarity we consider the2PPM signaling scheme introduced in Subsection 3.1
and assume the symbola0 = 0 was transmitted and the polarity of the corresponding pulseis set
to c0 = 1. Hence, in the interval used to convey the symbola0 the received signal is

r(t) =

{
b(t), for 0 ≤ t < ∆T ,
0, ∆T ≤ t < T.

(3.77)

3.3.4.1 GMLR

The decision rule for the symbola0 of the GMLR in (3.21) withTI = ∆T , can be reformulated as

z0

â0=1

≷
â0=0

0,

where

z0 =

∫ T

∆T

y2(t) dt−
∫ ∆T

0

y2(t) dt

or

z0 =

∫ T

0

y2(t)w(t) dt

with

w(t) =

{
−1, for t < ∆T ,
1, for ∆T < t.

(3.78)

We separate the expression forz0 into its components by insertingr(t) = ckb(t − kT − ak∆T )
(see Subsection 3.1),y(t) = r(ak, t) + n(t) (see Subsection 3.2), while assuming thatc0 = 1, and
a0 = 0. Taking into account that the channel delay spreadτc, i.e., the supportb(t), is smaller than
∆T , the decision variable is obtained as

z0 =

∫ T

∆T

n2(t) dt−
∫ ∆T

0

[b(t) + n(t)]2 dt

=

∫ T

∆T

n2(t) dt−
∫ ∆T

0

[
b2(t) + 2b(t)n(t)

]
dt−

∫ ∆T

0

n2(t) dt. (3.79)

3.3.4.2 MLR

The decision rule for the MLR is derived in [49] for the general case of orthogonal symbols. For
2PPM and the symbola0 it is given by

z0

â0=1

≷
â0=0

0,
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where

z0 =

∫ T

∆T

b(t−∆T ) y(t) dt−
∫ ∆T

0

b(t) y(t) dt.

Inserting the expression fory(t) from above, using the fact thatb(t) vanishes outside the interval
[0,∆T ) and assuming thata0 = 0 this yields

z0 =

∫ T

∆T

b(t−∆T )n(t) dt−
∫ ∆T

0

b(t) [b(t) + n(t)] dt,

=

∫ ∆T

0

[b(t)n(t+ ∆T )− b(t)n(t)− b2(t)] dt. (3.80)

The noise processn(t) in the interval[0,∆T ) and in the interval[∆T , T ) can be assumed to
be uncorrelated as the noise bandwidth isB andB ≫ 1/∆T . Therefore, we can replace the sum,
n(t) − n(t − ∆T ), by the expression

√
2n′(t) wheren′(t) has the same stochastic properties as

n(t). With this and fora0 = 0 we get

z0 = −
∫ T

0

[

b2(t) +
√

2b(t)n′(t)
]

dt. (3.81)

Note that this variable is different from the decision variablez0 in (3.79) but has the same statistics,
which is sufficient for the BEP analysis.

We compare the performance of the GMLR with that of the MLR in the high SNR regime
by letting the SNR go to infinity, hence the noise terms of the decision variables in (3.79) and
(3.81) are expressed by2b(t)n(t) and

√
2b(t)n′(t), respectively, as the termsn2(t) andn2(t−∆T )

in (3.79) can be neglected. We conclude from this comparisonthat in the high SNR regime, the
sensitivity to noise of the GMLR is stronger by3 dB than for the MLR. The same observation can
be made by computing the limitEr/N0 →∞ of (3.71), which yields

lim
Er/N0→∞

1

2
erfc

(

Er/N0

2
√

TIB + Er/N0

)

=
1

2
erfc

(√

Er
4N0

)

,

and by comparing this result with (3.76) (note thatη(TI) = 1 for TI = ∆T ).
Figure 3.3 shows a graphical representation of the signal path of these two receiver types. The

primary difference is that the noncoherent receivers MLRP and GMLR use the received signal as
their own correlation template, while the coherent ML receiver correlates with an exactly synchro-
nized correlation template or received pulse shapeb(t).

3.3.5 Performance Evaluation

This section presents numerical evaluations of the BEP for the three receiver types GMLR, MLRP,
and MLR. Both, analytical and simulation results are shown forthe GMLR and the MLRP, whereas
only analytical results are shown for the well known MLR. The evaluations are performed for two
different received pulse shapesb(t). They are the realization1 of the channel model, CM1 and CM4
respectively, which are described in [23]. The bandwidth ofthe received pulse shapes isB = 1
GHz and the center frequency isf0 = 4 GHz. Fig. 3.4 shows the plot of the corresponding CIRs.
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r(t) y(t)

n(t)

T∫

0

(·) dt
s(t)

Slicer

âk

b(t−∆T )− b(t)

← Channel Receiver→

(a) Maximum likelihood receiver architecture (correlatorreceiver).

r(t) y(t)

n(t) w(t)

T∫

0

(·) dt
s(t)

Slicer

âk

← Channel Receiver→

(b) GMLR and MLRP architecture.

Fig. 3.3. Architecture of the maximum likelihood receiver with perfect channel state information (MLR),
the generalized maximum likelihood receiver (GMLR) and the maximum likelihood receiver with partial
channel state information (MLRP). These simple architectures are suited to receive only the symbolak with
indexk = 0.

As an alternative to evaluate the BEP performance only for twochannel realizations one could
evaluate the BEP performance for a set of channel realizations and compute the average BEP. The
decision to evaluate the performance for merely two channelrealizations has the following reasons:
(i) One purpose of the numerical BEP evaluations is to verify the analytical expressions. This

verification is more reliable when the BEP is evaluated for an individual channel realization.
Considering the average BEP for a set of channel realizations could potentially hide relevant
effects.

(ii) Another purpose of the numerical BEP evaluations is to compare the performance of the pro-
posed noncoherent receivers with the performance of the coherent MLR. The basic effects can
be observed by comparing BEP curves for two types of channels,one with a short and one with
a large delay spread, respectively, i.e., for CM1 and CM4.

(iii) The large bandwidth of the UWB signals results in expensive simulation periods. Restricting
the evaluation to the BEP for only two channel realizations reduces the required simulation
time considerably.

The MLRP uses an estimate ofσ2(t) which is the variance of the impulse response processB(t),
i.e.,σ2(t) = E {B(t)}. In order to determine the estimateσ̂2(t) of σ2(t), an ensemble of received
pulse shapes is required; however, in a practical receiver only a single received pulseb(t) may
be available. The property that the bandwidthBσ of the varianceσ2(t) is much smaller than the
bandwidth of the CIR,B, allows us to replace the ensemble average by a short-time average, i.e.,
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Fig. 3.4. Channel impulse responses of (a) CM1 realization1 and (b) CM4 realization1. The bandwidth is
limited by an ideal bandpass filter with center frequencyf0 = 4 GHz and bandwidthB = 1 GHz.

to estimateσ2(t) by computing the short-time average ofb2(t). We set

σ̂2(t) =
1

2LTs

∫ t+LTs

t−LTs

b2(τ)dτ,

where2LTs is the duration over which the average is taken.1/Ts is the Nyquist sampling rate
of the received pulse shape in passband representation, i.e., Ts = 1/(2f0 + B). The estimate for
σ2(t) is shown in Fig. 3.5 for the realization1 of CM1 and for different averaging lengthsLTs. For
L = 0 we observe, that the estimated standard deviationσ̂(t) =

√

σ̂2(t) follows the instantaneous
power of the CIR; however, the largerL becomes, the less sensitive does the estimateσ̂(t) react
to fast changes of the instantaneous power of the CIR. We conclude that the estimate is the more
accurate and more peaky, the smallerL is. Note however, that an accurate estimator with smallL
is more challenging to implement than a less accurate one. The corresponding weight functions,
w(t), according to (3.51) are shown in Fig. 3.6 for differentL values and for different values of
received signal to noise ratio (SNR), which is defined as

SNR=
Er
N0

.

Now we compare Fig. 3.5 with Fig. 3.6, e.g., for the parameterL = 0. For large values of̂σ(t)
we observe that the weighting functionw(t) has a value close to unity and thus passes the signal
y(t) with an unchanged amplitude to the integrator. In contrast,small values of̂σ(t) causew(t) to
be small, too and thus to attenuate the integrators input signal. The amount of this attenuation is
also influenced by the SNR. This is because the smaller the SNR is, the more relative noise power
is contained in the signaly(t) during periods of small instantaneous received power. Therefore, it
is effective to attenuate the integrator’s input signal in periods of small received power the more,
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Fig. 3.5. Zoom into channel impulse responses realization1 of channel model CM1 and corresponding
estimate,̂σ(t).

the lower the SNR is. This property of the weighting functioncan be observed from Fig. 3.51
when comparing the graphs for SNR= 5 dB and SNR= 15 dB. Furthermore, we find that the
weighting function controls the attenuation the more effective, the more accurate the estimate of
the instantaneous received power is.

The BEP of the MLR is shown for reference in Fig. 3.7, 3.9, and 3.10 as a function of the
SNR. Note that for this receiver the BEP does not depend on the shape of the received pulse
b(t) but only on its energyEr and the noise power spectral densityN0, i.e, on the SNR. Figure
3.7 also shows the BEP of the GMLR which corresponds to the exact analytic expression (3.63)
and the approximation (3.71). From both Fig. 3.7(a) and Fig.3.7(b), we observe that for a BEP
Pe > 10−3 the expression (3.71) is a good approximation for (3.63). Itis important to note that
the parameterTI has been chosen to minimize the BEP and that this minimizationrequires some a
priori knowledge about the received pulse shape and the receiver SNR. Therefore, a GMLR that has
no channel information cannot optimize the integration durationTI . For the channel realizations1
of CM1 and CM4 the optimum integration durations areTI = 15 ns andTI = 50 ns, respectively.
Fig. 3.8 illustrates how the BEP of the GMLR depends on the choice of the integration duration
TI and on the SNR. The behavior of the BEP can be understood by inspecting expression (3.71)
and the characteristics of the captured energyη(TI)Er, which is shown in Figs. 3.8(a.2) 3.8(b.2)
for CM1 and CM4. There are two concurring effects impacting the BEP:
(i) IncreasingTI increases the ratioη(TI)Er/N0 and thus reduces the BEP.
(ii) IncreasingTI increases the noise termTIB and therefore increases the BEP.
The particular shape ofη(TI) causes a minimum in the BEP versusTI function; this minimum
shifts towards largerTI the slower the captured energy increases withTI . Note that the optimum
value forTI in general depends also on the SNR in addition to the functionη(TI). Thus, in order
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Fig. 3.6. Zoom into normalized weight functions for channel response realization1 of channel model CM1
and different values ofL and SNR.

to optimize the integration duration, knowledge of the function η(TI) and of the SNR is required.
Section 3.4 presents a robust design approach forTI that does not require this knowledge. Figure
3.9 shows the exact and simulated BEP as a function of the SNR for different values ofTI . We
observe that the sensitivity loss of the GMLR when compared to the MLR is between4.3 to 6.5
dB atPe = 10−3 for CM1 and CM4, respectively. The reason for this is the increased noise in the
decision variablezk, compare (3.79) and (3.80).

Unlike the GMLR, the MLRP has knowledge about the power delay profile of the received
pulse shapeb(t), see Fig. 3.5. It uses this knowledge to weight the input signal of the integrator,
see Fig. 3.3(b), and thus reduces the impact of the noise. Forthe case where the estimate of the
power delay profile is most precise, i.e., forL = 0, the sensitivity can be enhanced by1.3 to 2.2
dB for CM1 and CM4, respectively, see Fig. 3.7. In practice there are some reasons to use a larger
L:
(i) LargerL can reduce the variance of the estimate in cases where a smallnumber of received

pulses is available or when the recovered symbol clock is disturbed by a timing jitter.
(ii) Furthermore, the signalw(t) is the smoother the largerL is; this allows to use a less accurate

synchronization, i.e., allows a larger timing jitter.
Figure 3.10 shows the BEP as a function of the SNR for differentvalues ofL. As well as for the
GMLR, the BEP of the MLRP is the lower, the shorter the channel delay spread is. This is, because
the amount of captured noise is lower for smaller delay spread, see Fig. 3.11(a) and 3.11(b).

The analytical approximation (3.75) to the BER was derived under the assumption that the
APDP, σ2(t), is exactly known. However, in this Section the weighting functionw(t) is deter-
mined on basis of the estimated APDPσ̂2(t). Therefore, to determine the corresponding BER,
we substituteu(t) by û(t) = σ̂2(t)/[σ̂2(t) + N0B] in (3.75). With this, the BER,Pe, becomes a
function ofL.
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Fig. 3.7. BEP of the generalized maximum likelihood receiver (GMLR), the maximum likelihood receiver
with partial channel state information (MLRP) and the maximum likelihood receiver with perfect channel
state information (MLR).
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Fig. 3.8. The BEP of the GMLR as a function of the integration timeTI is given in (a.1) and (b.1); in (a.2)
and (b.2) show the ratio of captured to received energy,η(TI).
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Fig. 3.9. BEP of GMLR for various integration durationsTI . The BEPs of the MLR and the MLRP with
optimum parameterL = 0 are given for reference.
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Fig. 3.10. BEP of MLRP for various estimators forσ(t), i.e. filter lengthsL. The BEPs of the MLR and the
GMLR with optimum integration durationsTI = 15 and50 ns are given for reference.
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The resulting approximation to the BER is shown as a function of the SNR in Fig. 3.11 for
L = 0 andL = 6, whereas Fig. 3.11(a) and Fig. 3.11(b) are valid for the firstchannel realization of
the channel models CM1 and CM4, respectively. For comparison, these two figures also show the
simulated BER and the BER of the GMLR with optimum integration duration. The latter represents
an upper bound to the BER of the MLRP. This is because the GMLR implicitly assumes that the
APDP is a constant within the integration duration, and therefore corresponds to an MLRP with an
inappropriate weighting functionw(t).

The approximation to the BER of the MLRP given by (3.75) is shownin Fig. 3.11(a) for the
channel model CM1. We observe that this approximation is quite inaccurate andoverestimates the
BER. Moreover, for SNRs larger than14 dB, a closer approximation is represented by the BER
curve of the GMLR. Our approximation provides such inaccurate results because the sumz of the
termsfn andgn is not Gaussian distributed, i.e., the central limit theorem cannot be applied. There
are two reasons for this: (i) Too few termsfn andgn are involved, and (ii) the weightsun cause the
variances of the summandsfn andgn to be too different.

Channels with a larger delay spread result in a larger number of sumsN∆, thus leading to a
distribution of the decision variable that is closer to Gaussian. Hence, (3.75) is the more accurate,
the longer the channel delay spread is. As an example, we consider the first realization of CM4. The
corresponding approximative BER curve is shown in Fig. 3.11(b) and provides a reasonable good
match for BERs beyond10−2. We conclude that the application of our approximation should be
restricted to channels with a relatively long delay spread.Channels with a particularly long delay
spread, reaching to several hundred nanoseconds, are encountered in large halls, e.g., industrial
environments.

3.4 Robust Design of the GMLR

The optimum receiver performance is achieved if the integration durationTI is adapted to the re-
ceived pulse shape, see Fig. 3.8. In many practical communication systems, however, a guaranteed
minimum performance is required, and the fact that the performance will be above this minimum
in some or most cases is not relevant. The robust approach presented in this section is suited for
this type of applications. It choosesTI such that it minimizes the maximum BEP that can occur for
a given setB of received pulsesb(t), i.e.,

TI,opt = min
TI

max
b(t)∈B

{Pe (TI , b(t))} . (3.82)

In order to solve this minimax problem, the set of received pulsesB must be known. To get a
solution that does not depend on the CIRs realizations, that will be trialled during the operation of
the considered communication system, we assume a simplifiedchannel model. This model still re-
flects the most important properties of realistic channels discussed in Chapter 2. The simplification
consists of the three assumptions:
(i) The captured energy ratio is modeled by the expressionη(TI) = 1 − e−t/γ; this function is

plotted in Fig. 3.12(b). The variableγ is the exponential decay constant of the PDP, see (2.1).
The curves for the empirical functionη(TI) are shown in Figs. 3.8(a.2) and 3.8(b.2); they show
only approximately exponential characteristics.

(ii) The exponential decay constant,γ, strictly increases with the transmitter-to-receiver distance
d.

(iii) The path gainα is a strictly decreasing function of the transmitter-to-receiver distanced.
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Fig. 3.11. Simulated BER and analytic approximation of the BER for the MLRP forvarious estimators of
σ(t), i.e., filter lengthsL. For reference, also the exact BER [52] of the GMLR with optimum integration
durationsTI = 15 and50 ns is given [71].
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Note that the path gain is defined in (3.4) as the ratio of the received energy per pulse to the
transmitted energy per pulse, i.e.,α = Er/Et.

The two approximationsγ andα being a strictly increasing function and a strictly decreasing
function of d, respectively, are justified by the linear regression curves for γ andα presented in
[63] and [24]. With the above definitions the productErη(TI) is expressed as

Erη(TI) = Etα(d)η(TI)

= Etα(d)[1− e−t/γ(d)] (3.83)

and is a strictly decreasing function ofd, i.e., ∂Erη(TI)/∂d < 0. Based on this observation we
conclude that (3.71) strictly increases withd, i.e.,∂Pe/∂d > 0. With (3.83) we can expressPe as
a function ofd instead ofb(t). Thus, we can rewrite the problem (3.82) as

TI,opt = min
TI

max
d∈D
{Pe (TI , d))}

= min
TI

{Pe (TI , dmax)}

= min
TI

{

1

2
erfc

(

η(TI , dmax)α(dmax)Et/N0

2
√

TIB + η(TI , dmax)α(dmax)Et/N0

)}

, (3.84)

whereD is the set of transmitter-to-receiver distances associated with the channels of the setB,
anddmax is the largest element ofD, i.e., the largest transmitter-to-receiver distance of all received
pulses inB. Expression (3.84) can be solved numerically forTI and yields the robust solution.

Example:We assume that the emitted signal is an ideal bandpass pulse with bandwidthB = 1
GHz, the maximal transmitter-to-receiver distance isdmax = 40 m, the corresponding path gain
α(dmax) is−79 dB. The exponential decay constant of the power delay profile is γ(dmax) = 10 ns.
The noise power spectral density for an assumed noise temperature of6 dB isN0 = 10FN/10K T =
1.65 · 10−20 Ws, wherek ist the Boltzmann konstant,k = 1.38 · 10−23 Ws/K, T = 300 K and the
receiver noise-figure isFN = 6 dB. The emitted energy per pulse isEt = 75 pW which results in
a power spectral density of−41.25 dBm/MHz for a symbol rate of1 MHz.

Fig. 3.12 shows the function to be minimized in (3.84), as well asη(TI , dmax) = 1− e−t/γ(dmax)

as a function ofTI and for the given parameters. The optimum value forTI obtained by evaluation
of (3.84) is

TI,opt = 23.9 ns,

which results in the minimum BEP as can be seen from Fig. 3.12. The resulting receiver is robust
against channel variations in the sense that the BEP is minimized for the worst case channel; all
other channels of the setB will result in a superior performance. In Fig. 3.12 the BEP of the GMLR
is compared with that of a coherent selective rake receiver as a function of the integration duration
TI . Note that the selective rake receiver is a modification of the MLR which captures only a certain
portionη(TI)Er of the total received energyEr, as is the case for the GMLR.

For the derivation ofTI we have assumed an exponentially decaying power delay profile,
strictly increasing decay parameterγ(d) and path gainα(d) with the transmitter-to-receiver dis-
tanced. These assumptions are only approximately satisfied by a setof practical channelsB Hence,
the presented solution for the integration durationTI is only an approximation to the optimal dura-
tion. However, the advantage of this method is that the set ofchannelsB does not need to be known
a priori. In contrast, the optimal integration duration canonly be determined whenB is known.
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Fig. 3.12. The BEP of the GMLR as a function of the integration timeTI is given in (a); in (b) the ratio of
captured to received energy,η(TI), is shown.

The MLRP makes the selection of the integration duration which is described in this Section
unnecessary, because it determines by channel estimation in what time periods the received signal
has to be considered or ignored.

3.5 Effects of the Signal Bandwidth

Three primary effects on the system performance can be observed that depend on the signal band-
width:
(i) The emission regulation for UWB signals specifies an admissible power spectral density;

hence, the total emitted power of a transmitter that fully exploits this limit will grow in propor-
tion with the emitted signal bandwidthB.

(ii) The frequency diversity increases with the signal bandwidth, which implies that the energy
that is captured by the receiver suffers less small-scale fading for a larger signal bandwidth.
Fading effects are described by the statistics of the path gain α. Note that the received energy
per pulse is given byEr = αEt.

(iii) An effect that is ignored in the literature on UWB receiver design is that the path gainα is
a functionα(f) ∼ 1/fm (see Section 2.2.4). For the free space propagation channelthis is
α(f) = (c/4πdf)m, withm = 2 see [36, 37]; herec is the speed of light andd is the separation
between transmitter and receiver antenna. This effect is caused by the effective aperture of the
receiver antenna, which scales with1/f2; the received energy is proportional to this aperture.

We investigate the effect of (i) and (iii) on the BEP of the GMLRas a function of the SNR. We
assume free space propagation; thus fading effects mentioned under (ii) have no impact. We assume
that a transmitted UWB pulse has the energy spectral densityD within the signal bandwidthB,
and the lower and upper cut-off frequencies arefl andfu, i.e.,B = fu−fl. Note, that in practice, a
constant energy spectral density,D, cannot be realized. This is in particular the case at the slopes of
the signal band. Hence, assuming a constantD introduces an error in the modelling of a practical
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transmission system which, depends on the implementation of the transmission system. In this
work we ignore this implementation aspect and assume a constantD, which greatly simplifies our
derivations.

With the frequency dependent path gain given above and the theoretical free-space path gain
α′ = (c/4πd)2 andEt = DB, the received energy per pulse is given by

Er =

∫ fu

fl

D α(f) df = D α′
∫ fu

fl

df

f 2
= −D α′

f

∣
∣
∣
∣

fu

fl

= D α′
(

1

fl
− 1

fu

)

=
Etα

′

fufl
. (3.85)

Inserting this expression into the approximate expression(3.71) for the BEP of the GMLR yields

Pe =
1

2
erfc

(

Etα
′η(TI)/(N0flfu)

2
√

TI(fu − fl) + Etα′η(TI)/(N0flfu)

)

=
1

2
erfc

(

D(fu − fl)c2η(TI)/(16π2N0d
2flfu)

2
√

TI(fu − fl) +D(fu − fl)c2η(TI)/(16π2N0d2flfu)

)

. (3.86)

Assuming that all parameters are fixed except the upper cut-off frequencyfu, this expression has a
minimum for a certainfu, which is given by

fu,opt = arg min
fu

{Pe(fu, d)} = fl +

√

f 2
l +

c2Dη(TI)

16π2N0TId2
. (3.87)

Fig. 3.13 shows the evaluation of the BEP in (3.86) as a function of the upper cut-off frequency
fu and for different transmitter-to-receiver distances, while all other parameters are fixed: The
energy spectral density of a single pulse isD = E010−6 s such that for a symbol rate of1 MHz
the energy spectral density isE0 = −41.25 dBm/MHz. The lower cut-off frequency isfl = 3.5
GHz, the integration duation isTI = 40 ns, the ratio of the captured to received energy per pulse
is η(TI) = 0.8, c = 3 · 108 m/s is the speed of light, the noise PSD isN0 = kT10FN/10, with
the Boltzmann constantk = 1.38 · 10−23 Ws/K, the environmental temperatureT = 300 K,
and the receiver noise figureFN = 6 dB. We observe that above a certain value offu the BEP
increases when the bandwidth and thus the energy per received pulse is increased. An explanation
for this behavior is the following. The captured energy grows with fu; however, this growth is the
slower the largerfu is (this is because of the channel’s1/f2 characteristic). The captured noise
energy, however, grows linearly withfu; therefore, the BEP is minimized for a finite frequencyfu
and thus for a finite bandwidthB = fu − fl. The reason for this is that the receiver filter is an
optimum bandpass filter and is not adapted to the spectrum of the received pulse. To optimize the
receiver performance, the receiver filter should be adaptedto the1/f frequency-characteristic of
the channel.

3.6 Effect of Finite Integrator Bandwidth of the GMLR

Ideally, the integrator will compute the integral of the signal s(t) = y2(t) over the interval[0, TI ],
i.e, the integrator output is

q =

∫ TI

0

y2(t) dt.
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Fig. 3.13. BEP depending on the upper cut-off frequencyfu and on the transmitter to receiver distanced.

Practical implementations of the integrator reduce the bandwidth of the signaly2(t). This effect
is modelled by the convolution with the response of an ideal lowpass filter responsex(t) with
one-sided bandwidthB and no attenuation in the passband, hence,

x(t) =
4B sin(2πBt)

2πBt

t,f
◦−−•

{
1, for |f | < B,
0, else.

We compute the integrator output as

q′ =

∫ TI

0

[y2(t) ∗ x(t)] dt.

To see the impact of the bandwidthB on the integrator outputq′ we compareq′ with the outputq
of the ideal integrator having an infinite bandwidthB. The impulse response of the lowpass filter,
x(t), decays to zero in proportion to1/t. Assuming for exampleB = 2 GHz, the impulse response
x(t) has decayed to a tenth of its maximum value,x(0), at t10 = 10/(2πB) = 0.8 ns. The support
of the convolutiony2(t) ∗x(t) is infinite in principle. As the channels considered in this work have
a delay spread in the order of some tens of a ns it follows thatTI ≫ t10. Therefore, when we
consider only an individual received symbol, it is more thansufficient to consider a support ofTI
for the signaly(t). This allows us to write

q′ =

∫ TI

0

[y2(t) ∗ x(t)] dt ≈
∫ ∞

−∞
[y2(t) ∗ x(t)] dt. (3.88)

With

y2(t) ∗ x(t)
t,f
◦−−• [Y (f) ∗ Y (f)] rect(f/B),
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wherey(t)
t,f
◦−−• S(f) and rect(f) = 1 for |f | < 1 and zero outside, we can write

q′ ≈
∫ ∞

−∞
y2(t) ∗ g(t) e−2πft dt

∣
∣
∣
∣
f=0

= [Y (f) ∗ Y (f)]rect(f/B)|f=0

= [Y (f) ∗ Y (f)]|f=0

=

∫ ∞

−∞
Y (f)Y (−f) df

=

∫ ∞

−∞
Y (f)Y ∗(f) df

=

∫ ∞

−∞
|Y (f)|2 df. (3.89)

Note that

q =

∫ TI

0

y2(t) dt ≈
∫ ∞

−∞
|Y (f)|2 dt,

i.e., we conclude from the above approximation thatq′ ≈ q. This means that a lowpass filter with
sufficiently large bandwidthB has only a negligible impact on the receiver performance. Here,
sufficiently large means that the bandwidthB is large enough such that the approximation (3.88)
is valid. This condition is equivalent to the property that the support of the lowpass filter’s impulse
responsex(t) is much smaller thanTI . As a practical example we assume an integration duration
of TI = 40 ns and a support time ofx(t) that is equivalent to1/B. In order to satisfyq′ ≈ q, it
must be guaranteed thatB ≫ 1/TI = 2.5 MHz, i.e., an integrator bandwidth of only100 MHz
would be sufficiently large to provide the same performance that would be achieved with an ideal
integrator. An intuitive explanation for this result is that the short time integration over the interval
[0, TI ] is equivalent to a lowpass filtering; thus, the effect of an additional lowpass filter changes
the result only marginally.

3.7 Effect of Narrowband Interference

Narrowband interference reduces the sensitivity of a receiver, i.e., for a given SNR the BEP is
increased. In this section, we compare the impact of narrowband interference on the BEP for the
GMLR and the MLR. The most direct way to do this is to compute theBEP as a function of the
intensity of narrowband interference for both receiver types. However, computing the BEP as a
function of the narrowband interference is difficult because for the GMLR, the random component
of the decision variable is no longer Gaussian distributed as in the narrowband-interference-free
case, but has a much more complex distribution.

Therefore we consider an indirect measure for the narrowband interference, namely the ratio of
the mean value of the decision variable to its standard deviation. Without loss of generality, these
computations are made under the assumption that the symbola0 = 0 was transmitted.

Note that the ratio of the decision variable’s mean value to its standard deviation appears also
as a factor in the argument of the erfc(·) function in (3.66) and in (3.76) that describe the BEP of
the GMLR and the MLR, respectively.
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3.7.1 Decision Variable Statistics for the GMLR

We start by deriving the statistics of the decision variablez under the assumption of noise plus
narrowband interference

u(t) =
√

2Pu cos(2πf0t+ ϕ0),

herePu is the power ofu(t). Note that the transmitted signal is also denotedu(t), see (3.1); as the
transmitted signal does not appear explicitly in this derivation there is no risk of confusion.

In the same way as in Section 3.3.1 and under the assumption that the transmitted symbol
is a0 = 0 we represent the decision variable as the differencez = fs − gs, wherefs and gs
are given by (3.60) and (3.61). To simplify the derivation ofthe decision variable statistics we
put these expressions into an integral form. Furthermore, to get rid of some constants, here we
definefs as well asgs to have only half of the values specified in (3.60) and (3.61).For our
derivation we need the equationsN = T/Ts andN∆ = ∆T/Ts from Subsubsection 3.2.3.2, the
equationnn = nl(kT + nTs) from Subsubsection 3.2.3.3, and (3.24). With these equations and by
introducing the mentioned factor1/2 we write (3.60) in the form

fs =
1

2

N∆−1∑

n=0

|cvn + nn|2 ≈
1

2

∫ ∆T

0

[bl(t) + nl(t)]
2 dt =

∫ ∆T

0

[b(t) + n(t)]2 dt. (3.90)

Adding the narrowband interference signalu(t) to the noise signaln(t), and assuming the variable
integration durationTI instead of the constant integration duration∆T we get

fs =

∫ TI

0

[b(t) + u(t) + n(t)]2 dt. (3.91)

Similarly, we obtain for (3.61),

gs =
1

2

N−1∑

n=N∆

|nn|2 ≈
1

2

∫ T

∆T

[nl(t)]
2 dt =

∫ T

∆T

[n(t)]2 dt. (3.92)

As above, we add the interference signalu(t) to the noise signaln(t), and assume the variable
integration durationTI , yielding

gs =

∫ ∆T +TI

∆T

[u(t) + n(t)]2 dt =

∫ TI

0

[u(t+ ∆T ) + n(t+ ∆T )]2 dt. (3.93)

The interference signalu(t) will typically be a modulated signal, therefore we assume that
the phase ofu(t) is random and uniformly distributed within the interval[0, 2π). Furthermore,
we assume in accordance with the channel properties reported in Chapter 2 that the CIRb(t) is
a realization of the random processB(t). The ratio of the captured energy to the received energy
η(TI), defined in (3.69), is assumed to be identical for all realizations ofB(t).

To compute the PDF of the decision variablez = fs − gs we proceed in two steps. In the first
step we assume thatb(t) andu(t) are deterministic and known. The variablesfs andgs that are
conditioned on this assumption are denoted asf ′

s andg′s. Then, the statistics ofz′ = f ′
s − g′s is

computed. In the second step, we again considerb(t) andu(t) as random signals and compute the
statistics forz on the basis of the statistics of the conditional variablez′.
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3.7.1.1 Step I: Conditional Statistics of the Decision Variable

The mean value and the standard deviation of the conditionaldecision variablez′ are called the
conditional meanµ′

z and standard deviationσ′
z, respectively. To derive expressions for these terms,

we use the approximation

y = 2

∫ TI

0

[x(t) + n(t)]2 dt ≈
NI−1∑

n=0

|xn + nn|2, (3.94)

wherexn andnn are the samples of the equivalent baseband signals ofx(t) andn(t), respectively,
with the samples taken at Nyquist rate (cf. (3.90)), and wherex(t) is deterministic andn(t) is the
realization of a white Gaussian noise process with limited bandwidthB. The number of considered
samples isNI = TI/Ts, whereTs = 1/B is the sampling period, i.e., the reciprocal of the Nyquist
rate. This discrete time representation allows us to apply the result of Appendix E, which says that
the sum in (3.94) is non-central chi-square distributed with pdf

fY(y) =
1

2N0

( y

s2

) NI − 1

2
e
− s2+y

2N0 INI−1

(√
y
s

N0

)

,

where

s2 ≈ 2

∫ TI

0

x2(t) dt,

and the degree of freedom
2NI = 2TIB.

The mean value ofy is

µy = 2NIN0 + s2 ≈ 2N0TIB + 2

∫ TI

0

x2(t) dt,

and the variance is

σ2
y = 4NIN

2
0 + 4N0s

2 ≈ 4N2
0TIB + 8N0

∫ TI

0

x2(t) dt.

Settingx(t) = b(t)+u(t) leads to the equalityy = 2f ′
s, alternatively, settingx(t) = u(t) results

in y = 2g′s. From these equivalences we infer thatf ′
s andg′s are non-central chi-square distributed

random variables with the degree of freedom2NI . Note thatf ′
s andg′s are statistically independent

because of the time shift∆T in the noise signal’s argument. The shift∆T is not present in (3.91)
but in (3.93). According to the distribution ofy which is given above, the mean and variance off ′

s

andg′s are

µf ′s = N0TIB +

∫ TI

0

[b(t) + u(t)]2 dt,

σ2
f ′s

= N2
0TIB + 2N0

∫ TI

0

[b(t) + u(t)]2 dt, (3.95)

µg′s = N0TIB +

∫ TI

0

u2(t+ ∆T ) dt,
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and

σ2
g′s

= N2
0TIB + 2N0

∫ TI

0

u2(t+ ∆T ) dt. (3.96)

With this, the conditional decision variablez′ = f ′
s − g′s has the mean value

µz′ = µf ′s − µg′s
=

∫ TI

0

b2(t) dt+ 2

∫ TI

0

b(t)u(t) dt+

∫ TI

0

u2(t) dt−
∫ TI

0

u2(t+ ∆T ) dt, (3.97)

and the variance

σ2
z′ = σ2

f ′s
+ σ2

g′s
, (3.98)

which is simply the sum of the variances of the statisticallyindependent variablesf ′
s andg′s.

3.7.1.2 Step II: Non Conditional Statistics of the Decision Variable

Note that the expressions forµ′
z andσz′ are valid under the condition thatn(t) is a deterministic

signal andϕ is constant. Now we make the second step in the computation ofthe statistics ofz,
i.e., we assume that the signalu(t) has the random parameterϕ, and thatb(t) is a realization of
the random processB(t). Furthermore, we assume that all realizations of this process result in the
same functionη(TI) defined in (3.69). This implies, that the variablesµz′ = µf ′s−µg′s, σ2

f ′s
, andσ2

g′s
become random variables. In this subsubsection we show thatthe mean valueµz′ has a nonzero
varianceσ2

µz′
and that the random variablesσ2

f ′s
, andσ2

g′s
can be approximated as constants.

Evaluation of the first term of (3.97), using (3.3) and (3.69), yields
∫ TI

0

b2(t)dt = Erη(TI). (3.99)

Because of the large multipath diversity offered by UWB indoorchannels, we assumed that for
a reasonably large integration durationTI > 10 ns, the captured energy of the received pulse is
independent of the realizationb(t). The characterization of the second term of (3.97) is described
in Appendix F by (F.13), i.e.,

2

∫ TI

0

b(t)u(t) dt = 2ρu,b ∼ N
(

0,
2PuErη(TI)

B

)

. (3.100)

The third term of (3.97) can be written by inserting the definition of u(t):
∫ TI

0

u2(t) dt = 2Pu

∫ TI

0

cos2(2πf0t+ ϕ0) dt

= Pu

∫ TI

0

[1 + cos(4πf0t+ 2ϕ0)] dt

= PuTI +
Pu

4πf0

sin(4πf0t+ 2ϕ0)

∣
∣
∣
∣

TI

0

= PuTI +
Pu

4πf0

[sin(4πf0TI + 2ϕ0)− sin(2ϕ0)]

= PuTI +
Pu

2πf0

sin(2πf0TI) cos(2πf0TI + 2ϕ0). (3.101)
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Similarly, the fourth term of (3.97) yields
∫ TI

0

u2(t+ ∆T ) dt = 2Pu

∫ TI

0

cos2(2πf0(t+ ∆T ) + ϕ0) dt

= 2Pu

∫ TI+∆T

∆T

cos2(2πf0t+ ϕ0) dt

= PuTI +
Pu

4πf0

sin(4πf0t+ 2ϕ0)

∣
∣
∣
∣

TI+∆T

∆T

= PuTI +
Pu

4πf0

[sin(4πf0(TI + ∆T ) + 2ϕ0)− sin(4πf0∆T + 2ϕ0)]

= PuTI +
Pu

2πf0

sin(2πf0TI) cos(4πf0∆T + 2πf0TI + 2ϕ0). (3.102)

In (3.97) there appears the difference of (3.101) and (3.102), which equals
∫ TI

0

u2(t) dt−
∫ TI

0

u2(t+ ∆T ) dt =
Pu

4πf0

sin(2πf0TI)

·[cos(2πf0TI + 2ϕ0)− cos(4πf0∆T + 2πf0TI + 2ϕ0)]

=
Pu

2πf0

sin(2πf0TI) sin(2πf0∆T ) sin(2πf0(∆T + TI) + 2ϕ0).

(3.103)

As mentioned, the phaseϕ0 is randomly distributed within the interval[0, 2π), which means
that the difference (3.103) oscillates between± Pu

2πf0
in the worst case, i.e., when the product

| sin(2πf0TI) sin(2πf0∆T )| equals one. In this case the difference (3.103) has zero meanand vari-
ance1

2
(Pu/(2πf0))

2, where we used the property thatE
{
sin2(ϕ)

}
= 1

2
.

With this result and with (3.99) and (3.100) we can write the mean and variance ofµz′ as

µz = E {µz′} = Erη(TI), (3.104)

and

σ2
µz′

= E
{
(µz′ − µz)2} =

2PuErη(TI)

B
+

P 2
u

8π2f 2
0

, (3.105)

where we assumed thatρu,b is statistically independent of (3.101) and (3.102). This assumption is
justified asρu,b is a function of the product of the statistically independent random signalsU(t)
andB(t), which in addition have zero mean.

The varianceσ2
f ′s

given in (3.95) can be expanded to

σ2
f ′s

= N2
0TIB + 2N0

∫ TI

0

b2(t) dt+ 4N0

∫ TI

0

b(t)u(t) dt+ 2N0

∫ TI

0

u2(t) dt. (3.106)

With (3.99), (3.100) and (3.101) this becomes

σ2
f ′s

= N2
0TIB + 2N0Erη(TI) + 4N0ρu,b + 2N0PuTI , (3.107)

where we ignored the second term in (3.101) which is much smaller than the contribution2N0PuTI
for practical cases where1/f0 ≪ TI . From Fig. 3.8 we observe that meaningful integration dura-
tionsTI lie within the interval[10, 60] ns for the channel models under consideration.
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The sum term4N0ρu,b in the expression for the variance ofσ2
f ′s

, see (3.107), is a random variable
and therefore complicates the computation ofσ2

z . However, the term4N0ρu,b is with high proba-
bility smaller than the termσ2

1 := 2PuErη(TI)/B in (3.105) and the termσ2
2 := 2N0Erη(TI) in

(3.107) for the practical range of parameters,TI > 10/B, andEr > 10N0, respectively. There-
fore, an approximation ofσ2

f ′s
can be found by neglecting the component4N0ρu,b. We compute the

probability with which this approximation is valid. This probability corresponds to the probability
with which the standard deviation of the neglected Gaussiandistributed term4N0ρu,b is smaller
than at least one of the termsσ2

1 andσ2
2. We do this for the given practical range of parameters

TI > 10/B andEr > 10N0. If Pu/B ≤ N0 the termσ2
2 := 2N0Erη(TI) is larger than the standard

deviation of the variance4N0ρu,b, which isσ3 :=
√

8N2
0ErPuη(TI)/B, i.e.,

σ2
2

σ3

=
2N0Erη(TI)

√

8N2
0ErPuη(TI)/B

=

√

Erη(TI)√
2Pu/B

>

√
10N0√
2N0

=
√

5,

whereas for the casePu/B > N0 the termσ2
1 is larger than the standard deviationσ3 of the variance

4N0ρu,b:

σ2
1

σ3

=
2(Pu/B)Erη(TI)
√

8N2
0ErPuη(TI)/B

=

√

Pu/B
√

Erη(TI)√
2N0

>

√
N0

√
10N0√

2N0

=
√

5.

Given these ratios, the probability thatσ2
1 orσ2

2 is larger than the Gaussian random variable4N0ρub
is expressed by

P (σ2
1 > 4N0ρub) = P (σ2

2 > 4N0ρub) =
1√
2π

∫ √
5

−∞
ex

2/(2)dx = 0.985,

i.e., the Gaussian random variable4N0ρub in (3.107) is smaller than the term2N0Erη(TI) or
2PuErη(TI)/B with a probability of98.5 %. From this argumentation it follows that for most
channel realizationsb(t) and phasesϕ, we get an approximation forσ2

f ′s
by ignoring the term

4N0ρub in (3.107), i.e., we can write

σ2
f ′s
≈ N2

0TIB + 2N0Erη(TI) + 2N0PuTI . (3.108)

The varianceσ2
g′s

given by (3.96) becomes with (3.102)

σ2
g′s

= N2
0TIB + 2N0

∫ TI

0

u2(t+ ∆T ) dt

= N2
0TIB + 2N0PuTI , (3.109)

where we ignored the second term in (3.102) for the same reason as above. The last expression and
(3.108) show that the variances off ′

s andg′s do not significantly depend on the realizations of the
random functionsu(t) andb(t).

The termsσ2
f ′s

andσ2
g′s

stem from the noise processN(t) within the disjoint intervals[kT, kT +
∆T ] and[kT + ∆T , kT + T ] and are therefore the variances of statistically independent random
variables. The termσ2

µz′
describes the variance of a random variable that stems from the random
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channel processB(t) and the random phaseϕ0 of the interferenceu(t). With this, the total variance
of the decision variablez is the sum

σ2
z = σ2

µz′
+ σ2

f ′s
+ σ2

g′s

=
2PuErη(TI)

B
+

P 2
u

8π2f 2
0

+ 4N0PuTI + 2N2
0TIB + 2N0Erη(TI), (3.110)

where we used the approximation (3.108). The mean value ofz is (cf. 3.104)

µz = Erη(TI). (3.111)

3.7.1.3 Bit Error Probability for the GMLR with Narrowband Interference

Hence, the ratio of the mean value ofz to the standard deviation ofz is for the GMLR

RGMLR =
Erη(TI)

√
2PuErη(TI)

B
+ P 2

u

8π2f2
0

+ 4N0PuTI + 2N2
0TIB + 2N0Erη(TI)

. (3.112)

This analytical expression has been tested by simulation for TI = 40 ns which showed good
agreement. To bring (3.112) into a clearer form we introducethe short hand notationsγ = Er/N0

for the SNR andβ = Pu/(BN0) for the interference-to-noise ratio (INR). Furthermore we write η
instead ofη(TI). With this, (3.112) yields

RGMLR =
η

√

2η β
γ

+ B2

8π2f2
0

β2

γ2 + 4TIB
β
γ2 + 2TIB

1
γ2 + 2η 1

γ

=
η

√
2η
γ

+ 2TIB
γ2 + β 2η

γ
+ β 4TIB

γ2 + β28π2f 2
0

2B
(4πf0γ)2

=
1√
2

√
ηγ

1 + TIB
ηγ

+ β
(

1 + 2TIB
ηγ

)

+ β2 B2

ηγ(4πf0)2

. (3.113)

Parameters that result in a more or less satisfactory receiver performance lie in the following fol-
lowing ranges: practically relevant SNR varies between10 and30 dB (the corresponding BEP
performance can be assessed from Fig. 3.9), i.e.,10 ≤ γ ≤ 1000. The integration durationTI is
adapted to the channel delay spreadτc, i.e.,10 ns< TI < 100 ns. As an example for typical signal
bandwidths we use the FCC’s rules:0.5 GHz< B < 7.5 GHz, also these rules allow a range of
3.35 GHz< f0 < 10.25 GHz for the center frequency.

For these range limitations the termβ2 B2

(4πf0)2
in (3.113) is so small that it can be neglected.

Note that this term represents the variance of one of the signal components of the decision variable
z, and that this component is the only non-Gaussian componentof the decision variable. Therefore,
we conclude for the given ranges of parameters that the decision variable is Gaussian distributed.
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Hence, the BEP under the assumption of narrowband interference is determined as (cf. (3.66))

Pe = P (z < 0)

=

∫ 0

−∞
PZ(z) dz =

1

2
erfc

(
µz√
2σz

)

=
1

2
erfc

(
1√
2
RGMLR

)

=
1

2
erfc




1

2

√
ηγ

1 + TIB
ηγ

+ β
(

1 + 2TIB
ηγ

)



 . (3.114)

It must be noted that for the general case ofPu 6= 0 the decision variablez is Gaussian distributed
only under the assumption of a randomized CIR. Hence, the aboveexpression corresponds to the
average BEP, where the average is taken over an ensemble of CIRs having identicalη(TI). For the
interference-free case, i.e forPu = 0 or equivalentlyβ = 0 we obtain

Pe =
1

2
erfc

(
1√
2
RGMLR

)

=
1

2
erfc




1√
2

√
ηγ

2
(

1 + TIB
1
ηγ

)





=
1

2
erfc

(

Erη(TI)/N0

2
√

TIB + η(TI)Er/N0

)

, (3.115)

which is equivalent to the expression for the BEP in (3.71).

3.7.2 Decision Variable Statistics for the MLR

The MLR for2PPM signals bases the symbol decisionâ0 on the variablez = fs − gs in the same
way as the GMLR. For the MLR, which is a coherent receiver, we assume that the polarityck in
(3.1) is always positive, i.e.,ck = 1 for all k. For this type of receiver a random polarity would
result in a reduced sensitivity. Unlike the GMLR which computes the correlation of the received
signals with themselves, the MLR correlates the received signals with the templateb(t), see also
Fig. 3.3. Hence, under the assumption thata0 = 0 the samples at the correlator output are

fs =

∫ ∆T

0

b(t)[b(t) + n(t) + u(t)] dt (3.116)

and

gs =

∫ ∆T

0

b(t)[n(t+ ∆T ) + u(t+ ∆T )] dt, (3.117)

compare with Subsubsection 3.3.4.2, and with (3.91) and (3.93).
Herefs corresponds to the first sample taken during the symbol interval andgs corresponds to

the second sample within the symbol interval. Note that the coherent receiver captures the energy
of the received pulse within an interval of duration∆T , while the optimum integration interval for
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the noncoherent receiver is of the reduced durationTI , with TI < ∆T . The only components of
these samples whose statistics are not yet described above,are the terms

ψf :=

∫ ∆T

0

b(t)n(t) dt,

and

ψg :=

∫ ∆T

0

b(t)n(t+ ∆T ) dt,

Note that the noise processN(t) is stationary, i.e., the statistics ofψf andψg are equivalent. Note
further, that the componentsψf andψg are statistically independent due to the offset∆T in the
argument ofn(t+ ∆T ), which is present in (3.117), but not in (3.116). The mean value ofψf and
ψg is zero becausen(t) has zero mean. The variance is computed by the idealized assumption that
n(t) is white Gaussian noise, i.e., the processN(t) has the ACF(N0/2)δ(τ). This assumption does
not hold in practice because the signal bandwidth is limitedin a practical receiver. However, the
idealized assumption of a white noise does not change the result because the output of the matched
filter that is implicitly contained in the MLR does not dependon the bandwidth ofn(t) as long as
its bandwidth exceeds the bandwidth of the matched filter impulse responseb(t). The reason for
this is thatψf andψg are the projections of the noise signals onto the impulse responseb(t); thus,
any signal component ofn(t) that is outside the one-dimensional signal space, spanned by b(t) is
ignored. Hence, the variance ofψf andψg equals

σ2
ψ = E

{[∫ ∆T

0

b(t)n(t) dt

]2
}

=

∫ ∆T

0

∫ ∆T

0

b(t)b(τ)E {n(t)n(τ)} dtdτ

=
N0

2

∫ ∆T

0

∫ ∆T

0

b(t)b(τ)δ(t− τ) dt dτ

=
N0

2

∫ ∆T

0

b2(t) dt

=
N0Er

2
. (3.118)

As in the previous section, we assume that the phaseϕ0 of the interference signalu(t) is
unknown. Therefore, we modelϕ0 as a random variable with uniform distribution within the range
ϕ0 ∈ [0, 2π). Using (F.1) and the definition ofψf we can representfs in (3.116) as

fs =

∫ ∆T

0

b2(t) dt+

∫ ∆T

0

b(t)n(t) dt+

∫ ∆T

0

b(t)u(t) dt (3.119)

= Er + ψf + ρu,b. (3.120)

The termEr is constant,ψf is Gaussian distributed with zero mean and varianceN0Er/2 andρu,b
is, according to (F.13), also Gaussian distributed with zero mean and varianceErPu/2B. With this
the statistics offs is specified by

fs ∼ N
(

Er,
N0Er

2
+
PuEr
2B

)

, (3.121)
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where we used the property thatρu,b andψf are statistically independent. This property can be
seen from the integral representation (3.119). Similarly,gs in (3.117) can be described as

gs =

∫ ∆T

0

b(t)n(t+ ∆T ) dt+

∫ ∆T

0

b(t)u(t+ ∆T ) dt (3.122)

= ψg + ρu,b. (3.123)

The statistics ofgs is described by

gs ∼ N
(

0,
N0Er

2
+
PuEr
2B

)

. (3.124)

Note that the termsρu,b in (3.120) and (3.123) can be assumed to be statistically independent, if
the phaseϕ0 is statistically independent in the time intervals[0,∆T ) and[∆T , T ), i.e., if the phase
is varying over time. This assumption is valid when
(i) the narrowband interference signalu(t) is modulated, or when
(ii) the integration duration starts at time instances that are subject to a large enough jitter,
(iii) or if both, (i) and (ii) are true.
Remember that the componentsψf andψg are statistically independent, too. Hence, as all the
components offs are statistically independent of the components ofgs, the decision variablez =
fs − gs is characterized by

z = fs − gs ∼ N
(

Er, N0Er +
PuEr
B

)

. (3.125)

In the considered case, wherea0 = 0, a decision error occurs ifz < 0. As the2PPM scheme is
symmetric with respect toak = 0 andak = 1, the BEP isPe = P (z < 0) and is given by

Pe =
1

2
erfc

(
1√
2
RMLR

)

, (3.126)

with

RMLR =
Er

√

N0Er + PuEr

B

=

√
γ

1 + β
, (3.127)

whereγ = Er/N0 is the SNR andβ = Pu/(BN0) is the INR (interference-to-noise ratio). In the
absence of narrowband interference, i.e., whenPu = 0, the BEP is

Pe =
1

2
erfc

(√
γ

2

)

=
1

2
erfc

(√

Er
2N0

)

. (3.128)

3.7.3 Comparison of GMLR and MLR

We compute the allowed INRβ given a desired BEPPe, as a function of the SNRγ. For the
GMLR, this is obtained by solving (3.114) forβ:

β =

[

ηγ
(
2 erfc−1(2Pe)

)2 −
(

1 +
TIB

ηγ

)]

1
(

1 + 2TIB
ηγ

) .
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For the MLR, and with (3.126) and (3.127) we get:

β =
γ

2
(
erfc−1(2Pe)

)2 − 1.

In Fig. 3.14 these two functions are shown for various BEPs. The assumed system paramters
are:B = 1 GHz, f0 = 4.5 GHz, TI = 40 ns,η(TI) = 0.8. It turns out clearly that the MLR is
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more resistant to NBI than the GMLR. For example, forPe = 10−2 and an SNR of18 dB the MLR
tolerates an NBI interference level that is by9 dB larger than that tolerated by the GMLR. This
is plausible because the GMLR uses the received signal as a correlation template which contains
any signal including NBI that passes the receiver filter. In contrast, the MLR has a fixed receiver
templateb(t) that attenuates signal components which are not in the signal space spanned by the
template, cf. Fig. 3.3. Hence, to get the same resistance to NBI as the MLR, the GMLR must be
equipped with additional mechanisms to attenuate NBI.

For the MLRP, the sensitivity to NBI has not been investigated.It is obvious that the weighting
function reduces the sensitivity to NBI when compared to thatof the GMLR.

3.8 Sensitivity of the GMLR to Synchronization Errors

The output signal of the integrate, dump, and sampling unit at time t is described by the short-time
integral

q(t) =

∫ t

t−TI

s(τ) dτ,

where the integrator is dumped att − TI , and sampled at timet, see Fig. 3.15 for comparison.
The sampling time instants,t, are determined by the synchronization or clock recovery algorithm.
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Deviations from the optimum sampling instant will result ina degradation of the BEP that depends
on the characteristics of the short-time integralq(t). Figure 3.15 depictsq(t) for realization1 (see
Subsection 3.3.5) of the channel models CM1 and CM4, and for an integration durationTI = 40
ns. By inspecting the functionq(t) that corresponds to realization1 of CM4 we observed that
q(t) shows its maximum value for a duration of approximately1 ns. This implies that deviations
∆t of the sampling instant from the optimal value do not deteriorate the BEP, as long as∆t is
smaller than± half the duration at whichq(t) is at its maximum. This is confirmed by Fig. 3.16
which shows the simulated BER of the GMLR for this channel as a function of the deviation∆t

from the optimum sampling instant. This figure also shows theBER of a coherent ML receiver for
2PAM signals. We observe that for this receiver type, a deviation of only 0.05 ns can result in a
drastically increased BER and in a receive failure; this confirms the statement in [42] which says
that the sampling jitter must be below100 to 10 ps for coherent UWB receivers. Note that coherent
reception of2PAM signals requires3 dB less signal power than coherent reception of2PPM signals
to achieve the same BER. Hence, if a coherent receiver is implemented,2PAM signals are preferred
over 2PPM signals. Therefore, we chose to compare our noncoherentreceiver for2PPM signals
with the coherent receiver for2PAM signals.

For the realization of CM1, the short-time integral has an even wider peak with a duration
of approximately10 ns, i.e., for this channel a sampling time offset of±5 ns is allowed without
the tradeoff of an increased BEP. We conclude that the synchronization accuracy requirements for
noncoherent receivers are relaxed by up to two orders of magnitude when compared to coherent
receivers.
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Fig. 3.15. Short-time integralq(t) over the interval[t−TI , t] of the squared received pulseb2(t) for channel
realization1 of (a) CM1 and (b) CM4, for an integration duration ofTI = 40 ns.

3.9 Noncoherent Versus Coherent Receivers

A noncoherent GMLR has several advantages over a coherent receiver:
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(a) In contrast to a coherent receiver, the GMLR architecture derived in Section 3.2 does not need
a channel estimate.

(b) The required accuracy of symbol clock synchronization is much reduced. For noncoherent
receivers the required synchronization accuracy is on the order of1 to 10 ns depending on the
power delay profile of the received pulse. For coherent receivers the required synchronization
precision depends on the signal frequency and is for the frequency band from3.1 to 10.6 GHz
on the order of10 to 100 ps [42]. Similar conclusions on the required synchronization accuracy
can be deduced from Fig. 3.16.

(c) As no channel estimate is used, the receiver performance is somewhat poorer than, e.g., for
the MLR. In return, however, it is robust against variations of the received pulse shape that are
caused by fading effects.

(d) Components of a coherent receiver that require high signal processing power are the channel
estimator, the correlator or matched filter, and the synchronization algorithm. For a noncoherent
receiver the first two are not needed and the requirements regarding synchronization accuracy
are much relaxed, so that the power consumption can be reduced.

(e) For the synchronization in coherent receivers several search methods are proposed that work
with a single or several correlators [43, 28]. The preamble in a data packet that is used for
synchronization must contain several pulses until the synchronization algorithm can lock. The
number of required pulses is the higher the more accurate thesynchronization must be. Note
that the use of a matched filter is much more complex than use ofcorrelators. This is because a
correlator requires the generation of the template signal,a multiplier and an integrator, whereas
a matched filter incorporates a convolution which is very complex for typical received wave-
forms b(t). However, a matched filter implementation would in the optimum case allow the
receiver to synchronize after the reception of only a singlepulse. The proposed methods for
synchronization in noncoherent receivers are similar to the correlator method [51]. However,
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the number of pulses in the preamble can be reduced because ofthe relaxed requirement to
synchronization accuracy. This property is particularly important for low data rate applications
with short data packets. In this case the preamble length is constraint to be only a fraction of
the packet length such that the resulting overhead is tolerable.

(f) In a noncoherent receiver, some sources of noise are not present that are inherent to the co-
herent receiver: A channel estimate inherently contains anestimation error. Additionally, the
correlator or matched filter causes a quantization noise if the involved signals are represented
by discrete numbers. In contrast, a noncoherent receiver will typically employ an analog circuit
to compute the square of the observed signaly(t).

The points (a) to (e) enable the implementation of GMLRs that have lower complexity and power
consumption than a comparable coherent receiver or MLR. The GMLR has however some dis-
advantages compared to the MLR. Ignoring implementation losses, its sensitivity is reduced by
about4 to 7 dB for 2 PPM signals, see Section 3.3. A coherent receiver would, e.g., allow binary
antipodal modulation (2PAM) which brings an additional3 dB gain. Furthermore, the noncoherent
receiver is more vulnerable to any kind of interference, e.g., from other UWB devices or narrow-
band interferers. This is because the noncoherent receivercaptures all the energy of the observed
signal that lies in the observed frequency band and integration time window; in addition to this
there arise intermodulation products. In contrast, the matched filter or correlator of a coherent re-
ceiver captures only a projection of the observed signal onto the expected received pulse shape.
Therefore, the sensitivity to narrowband interferers is byabout15 dB higher for the GMLR, see
Section 3.7. If multiple receiver antennas are used, then the pulse shape that is received from a
single transmitter will be different for each antenna. Coherent receivers can exploit this property
of the UWB channel to push the link performance [69]. Noncoherent receivers capture only the en-
ergy of the observed signal and can therefore not benefit fromthis effect. It should also be pointed
out that the input to the integrator in a noncoherent receiver has to process signal frequencies close
to DC. This is because of the conversion down to DC that is implicitly performed by the square
operation. In particular, CMOS transistors show an increased noise power spectral density in this
frequency spectrum. This effect can seriously deterioratethe performance of energy-collecting
receivers. The MLR receiver suffers the same problem when the direct implementation in Fig.
3.3 is used. However, in practice MLR receivers are often implemented as heterodyne receivers
that allow to sample the I and Q components in an intermediatefrequency band which does not
contain DC components. This implementation allows to circumvent this disadvantage of CMOS
technology.

The sensitivity of the GMLR can be improved if partial channel state information is included
as discussed in Subsection 3.2.3 for the MLRP. This receiver architecture makes the selection of
the integration duration (described in Section 3.4) unnecessary. Furthermore, the BEP is the lower
the shorter the channel delay spread is because the amount ofcaptured noise is lower for smaller
delay spread (see Section 3.3.5). The gain of the MLRP over theGMLR is the larger the higher
the estimation precision of the APDP is. However, to fully exploit the precision of the channel
estimate also the synchronization accuracy must be increased. In the extreme case when the APDP
is perfectly known, the same synchronization precision as for the coherent receiver is required to
take the full performance advantage offered by the channel knowledge.

As a conclusion we can say that noncoherent receivers are well suited for low complexity, low
data rate links when a moderate receiver performance is sufficient. A performance improvement
can be achieved by implmenting an MLRP, which requests some more complexity.
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4.1 Introduction

The concept of multiple transmitter and receiver antennas has been investigated intensively in the
past few years and has shown to be an excellent method for increasing the spectral efficiency of
wireless links. The channel of an indoor narrowband wireless MIMO channel is described by a
matrix whose coefficients are Rayleigh or Rician fading randomvariables. Among the gains that
can be traded off for each other are
(i) the diversity gain that arises from a potential statisticalindependence of the channel coeffi-

cients,
(ii) a multiplexing gain that depends on the rank of the channel matrix,
(iii) the coherence gain which is proportional to the number of receiver antennas, and
(iv) the interference suppression gain.
To implement these gains with coherent receivers and for antenna arrays with element spacings on
the order of half a wavelength, a variety of methods are available [3]. Typically, the performance
of these methods depends on the reliability of channel estimates. A survey on channel estimation
methods is given in [18]. The purpose of this chapter is to show the benefit of noncoherent SIMO
architectures with antenna elements that are distributed over a larger region. In the conclusion of
Chapter 3 we have summarized that the performance of noncoherent receivers is widely insensitive
to small-scale fading effects. Therefore, the receiver performance is determined primarily by large-
scale fading effects. These large scale effects are the fading of the path gains, and variations of the
PDPs (cf. Section 2.2). For simplicity, in this work we ignore variations of the PDP and restrict our
attention to the fading of the path gains. Thus, we implicitly assume that all considered channels
have the same channel impulse response, which implies equivalent PDPs for all channels. This
assumption is made throughout this entire Chapter.

The fading effect can be separated into small-scale fading and large-scale fading, see Chap-
ter 2. This is a natural distinction, because small-scale fading is caused by the superposition of
reflected signal components, while large-scale fading is caused by shadowing introduced by ob-
stacles along propagation paths. For indoor channels and antenna arrays with dimensions of up to
1 m, the diversity of the channel coefficients is determined bythe small-scale fading effect and is
denoted as micro-diversity. When the antenna elements are distributed over a larger region, e.g.,
several meters, then the diversity of the channel coefficients is determined by large-scale fading,
correspondingly we speak about macro-diversity.

The bandwidth of UWB signals is very large so that much frequency diversity is available.
Therefore, the small-scale fading effect, i.e., the variation of the captured energy per received pulse,
becomes marginal. The shape of the received pulses however still changes very sensitively with the

70
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antenna positions or the environment geometry. The benefit of this effect has been investigated in
[69] in the context of the UWB MIMO indoor channel. It has been shown that coherent receivers
allow us to exploit the temporal signature of distinct channel impulse responses. It seems to be a
property of the UWB channel that the channel impulse responses of spatially adjacent channels are
only weakly correlated, see Chapter 2.

In this chapter we focus on noncoherent receivers, in particular on the GMLR which was dis-
cussed in detail in Chapter 3. This receiver type captures theenergy of the received pulses, which
shows only a marginal small-scale fading effect as explained. We conclude that for UWB systems,
unlike for narrowband systems, it is not beneficial to aim at additional small-scale diversity. To im-
prove the receiver performance macro-diversity can be exploited instead. This method is proposed
in [16] where the benefit of macro-diversity for pure distance fading channels, i.e., LOS channels,
is estimated. Similar to this proposal, we consider a communication system comprising one trans-
mitter and a numberN of distributed noncoherent receivers with indicesi = 1 to N , creatingN
diversity branches. Each receiver is equipped with a separate antenna and a reduced GMLR. With
a reduced GMLR we denote a GMLR that has no slicer, see Fig. 3.1. Hence, the output of the re-
duced GMLR is the decision variablezk,i, cf. Fig. 4.2(a). Note that the soft decision outputzk,i of
receiveri is determined only by the captured energy per received pulseand by the receiver noise.
The statistical path loss model from [24] is explained in Section 4.2, where in addition a proper
definition of the average SNR is given.

Two different schemes for combining the soft decisionszk,i are investigated:
(i) The maximum ratio combiner (MRC) is determined in Section 4.3,and the BEP of this receiver

type is derived for known path gains. Furthermore, it is shown that for noncoherent reception
the MRC is an approximation to the optimum scheme for combining the soft decisionszk,i,
(note that the MRC is the optimum scheme when coherent receivers are used [41]). The BEP
for a coherent multiple antenna receiver is derived for reference.

(ii) A less complex but suboptimal combiner, the so called generalized selection combiner (GSC)
[35], is defined in Section 4.5. The BEP for this combiner is determined only by simulation.

Macro diversity has already been investigated for MRC and combining in conjunction with coher-
ent SIMO receivers. [17] gives an upper and lower bound on thebit error outage probability (BEO)
for BPSK, i.i.d. lognormal fading channels, and maximum ratio combining. An integral expression
for the average BEP for a selection combining receiver in combination with an MRC for Rayleigh
fading micro diversity is derived in [79] and [57]. Similarly, [1] gives integral expressions for the
average and outage probability for statistically dependent lognormal fading channels. For nonco-
herent receivers the BEP expression is more complicated thanfor the coherent receiver, see (3.71)
and (3.76). This prevents us from deriving meaningful analytical expressions for the average and
the outage error probabilities for noncoherent SIMO receivers. In Section 4.4 we derive the aver-
age BEP and the coherence gain for a coherent SIMO receiver, which allows us to compare the
performance of noncoherent and coherent SIMO receivers.

In Section 4.6 the BEP of the considered system is simulated for a fading and nonfading chan-
nel. Additionally, the BEP of coherent receivers is evaluated for reference. The conclusion reviews
the most important properties of the noncoherent multiple antenna receivers.

4.2 SIMO Channel Model

In this section a SIMO channel model is developed on the basisof the UWB channel properties
reported in Chapter 2 and some additional assumptions. The goal of this SIMO channel model is
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to describe the statistics of the received energy per pulse,i.e., the level of the received signal at
the individual receiver antennas. This signal level is determined, among other parameters, by the
large-scale and the small-scale fading effect. For UWB signals the small-scale fading effect is only
marginal when compared to the large-scale fading effect. This is because of the potential of UWB
signals to highly resolve the temporal signature of the wireless channel and thus to provide large
multipath diversity, see Chapter 2 and [53]. For this reason,we ignore the small-scale fading effect
and model only the large-scale fading.

In practice, the path gainsαi for different channelsi are determined by the environment ge-
ometry and the antenna setup. Thus, the path gainsαi are statistically dependent in general. A
description of the statistical dependence of path gains forwireless channels does not seem to exist
in the literature. A main difficulty to create such a model is that each of the considered receiver
antennas can be placed at an arbitrary position. The statistical dependence of the corresponding
path gains depends on the relative distances between the receiver antennas and on their distance to
the transmitter antenna. To have a significant statistics ofthe path gains for various relative antenna
distances, a very large number of channel measurements would be required. Because of the lack
of such a model, we assume that the shadow fading termsSi (see Subsection 2.2.2) are statistically
independent.

To describe the path gains we use the statistical model for the path loss given in [24] and adapt
it to the SIMO channel by simply assuming that the differently fading path losses are statistically
independent. The path loss is the reciprocal value of the path gain and is defined asα−1

i = Et/Er,i,
whereEt is the transmitted energy per pulse andEr,i is the random received energy per pulse at
receiveri. According to (2.3), the path loss is expressed by

α−1
i (d) = α−1

0

(
di
1m

)ν

si, (4.1)

whereα−1
0 is the average path loss for a transmitter-to-receiver distancedi = 1 m. The equivalent

of the path gainα0 in units of dB is denoted asA0 = 10 log10(α0); according to [24] this is−47
dB for line-of-sight (LOS) and−51 dB for non-LOS (NLOS) propagation. The factorsi is denoted
shadow fading term; it is a lognormal distributed random variable, i.e., its equivalent in units of dB,
Si = 10 log10(si), is Gaussian distributed with zero mean and standard deviation σS = 2.7 dB for
NLOS andσS = 1.6 dB for LOS indoor channels. The constantν is denoted path loss exponent; it
equals2 for free space propagation. For indoor propagation,ν is Gaussian distributed with mean
1.7 and standard deviation0.3 for LOS propagation and with mean3.5 and standard deviation0.97
for NLOS propagation. We assume that all the channels have the same parametersA0, σS andν.
Furthermore, we assume throughout this chapter that the transmitter-to-receiver distancedi is the
same for all receivers.

4.2.1 Statistical Dependence of Path Gains

In practice, the path gainsαi for the different channels fade in a correlated fashion. Twoextreme
cases are (a) when all antennas are concentrated in a small region such that they have approximately
the same path gains, (b) when the receiver antennas are uniformly distributed on a circle with
the transmitter in its center. In case (b), any motion of the transmitter causes some path gains to
increase and some others to decrease. A possible scenario where the channel behavior of case (b)
is realizable is that of sensor networks, where deep fades ofsome links are compensated by other
links with good connectivity and by the use of signal combining schemes like MRC. Case (a)
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corresponds to the case to be discussed in Subsection 4.6.1 where no diversity is provided so that
only the plain array gain is achieved. The remainder of this chapter is restricted to the discussion
of case (b), i.e., it is assumed thatdi = d, ∀i ∈ [1, . . . , N ].

4.2.2 SNR Definition

We define the instantaneous SNR at receiveri as

γi =
Er,i
N0

. (4.2)

The channels from the transmitter to the receivers are all characterized by the same numerical
parameters. However, the shadow fading realizationssi are individual for each channel. As a rep-
resentative parameter we define the average SNR

γ = E

{
Er,i
N0

}

=
E {Er,i}
N0

,

which depends on the average received power

Er = E {Er,i} = E {Etαi} = Et α0

(
d

1m

)−ν
E

{
1

si

}

.

The only unknown in this equation isE {1/si}. To determine its value, we remember thatsi is
lognormal distributed and thatSi = 10 log10(si) is normal distributed with zero mean and variance
σ2
S, i.e.,Si ∼ N (0, σ2

S). According to [7], a lognormal distributed random variabley, which satis-
fies ln(y) ∼ N (0, σ2), has the expectation valueE {y} = eσ

2/2. Note thaty and its reciprocal,1
y
,

have both the same PDF. This is because the pdffx(x) of x = ln(y) is Gaussian with zero mean,
and therefore satisfiesfx(x) = fx(−x), and becauseln(y) = − ln(1/y). Hence, we can write
ln(y) ∼ ln(1/y) ∼ N (0, σ2). Settingsi = y, we getSi = 10 log10(y) = 10

ln(10)
ln(y). Furthermore,

asSi ∼ N (0, σ2
S) we getσ = ln(10)

10
σS. With these results, we can finally write for the expectation

value of1/si,

E {1/si} = E {y} = e
1
2(

ln(10)
10

σS)
2

.

Note that even though the logarithmic shadow fading gainSi has zero mean, the logarithm of the
expectation value of the linear shadow fading gain,S := 10 log10(E {1/si}) = σ2

S ln(10)/20, is
different from zero. Figure 4.1 depicts the cumulative distribution function (CDF) ofSi for a con-
stant shadow fading variance,σS = 2.7 dB, i.e., the variance ofσ2

S is set to zero. The corresponding
average shadow fading gainS = 0.839 is indicated in Fig. 4.1. With the above computations we
can write the average SNR as

γ := E

{
Er,i
N0

}

=
Et
N0

α0

(
d

1m

)−ν
e

1
2(

ln(10)
10

σS)
2

.

In units of dB this can be written as

Γ = 10 log10 (γ) = A0 + 10 log10

(
Et
N0

)

− 10 ν log10(d/1m) +
ln(10)

20
σ2
S.
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Fig. 4.1. CDF of shadow fading term for shadow fading standard deviation σS = 2.7 dB.

4.3 SIMO Receivers with Maximum Ratio Combining

In this section we discuss a method to combine the decision variableszk,i of multiple noncoherent
receivers, that minimizes the BEP. The derivation of this method is derived subsequently. The
average BEP for this combining method is derived in Subsections 4.3.2; the coherency and the
diversity gain are discussed in 4.3.4 and 4.3.5, respectively. For a comparison of the performances
of the introduced noncoherent SIMO receiver and a corresonding coherent receiver, the BEP and
the coherency gain of the latter are derived in Subsection 4.4.1.

4.3.1 Noncoherent SIMO Receiver

The exact derivation of the optimum combining scheme and thecorresponding BEP is intricate
because of the distribution of the decision variableszk,i which is not perfectly Gaussian. A good
approximation for the BEP can be based on the Gaussian characterization of the decision variables
zk,i given by the equations (3.64), (3.65) and (3.70) of Subsection 3.3.1. This characterization is
summarized by

zk,i ∼ N
(
µzk,i

, σ2
zi

)
.

Forak = 0 we have according to (3.64),

µzk,i
= µfs

− µgs

= (2N∆N0 + s2)− 2N∆N0

= s2,

wheres2 is the captured energy of the received symbol and is contained in µfs
. For a variable

integration durationTI of the noncoherent receiver we haves2 = 2η(TI)BEr, see (3.70). In turn,
for ak = 1 the energy of the transmitted symbol is contained inµgs

, i.e., we have

µzk,i
= µfs

− µgs

= (2N∆N0)− (2N∆N0 + s2)

= −s2,
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Thus,µzk,i
is summarized by

µzk,i
=

{
+2ηi(TI)BEr,i, for ak = 0
−2ηi(TI)BEr,i, for ak = 1

. (4.3)

The variance ofzk,i is according to (3.65) given byσ2
zi

= 8N∆(BN0)
2 + 4BN0s

2. With (3.70),
B = 1/Ts, and by replacing the fixed integration durationN∆Ts = ∆T by the variable integration
durationTI = NITs we have

σ2
zi

= 8TIB
3N2

0 + 8ηi(TI)Er,iB
2N0. (4.4)

Furthermore, we assume for simplicity that the ratioηi(TI) = η(TI) is the same for all receivers
i = 1 . . . N . This representation allows us to interpret the decision variable zk,i as the output of
an AWGN channel with a binary phase shift keying (BPSK) transmitter at its input. Figure 4.2(b)
depicts the signal model that corresponds to this interpretation. Note that the binary transmitted
BPSK symbols are antipodal in contrast to the orthogonal2PPM symbols of the original system.
Consequently, the symbolsak in the simplified transceiver model in 4.2(b) are either+1 or−1, i.e.,
ak ∈ {−1,+1} instead ofak ∈ {0, 1}. The original system is shown in Fig. 4.2(a), it comprises a
2PPM transmitter and the GMLR from Chapter 3.

ak ∈ {0, 1} 2PPM b(t)

n(t), N0

2

(·)2
∫
· dt

Control

∆T
−

+
Detector

Detector

Synchronized to Received Signal

âk

âk

zk,i

zk,iak ∈ {−1,+1} BPSK

nk,i

±µzi

Bandlimited
Noise Signal

nk,i ∼ N (0, σ2
zi
)

Channel
Transmitter Receiveri

Fig. 4.2. Real and simplified transceiver model.

Assuming known path gains, the decision variableszk,i have still a random component which
is exclusively caused by the receiver noise; therefore, thedecision variables are statistically inde-
pendent. Hence, the optimum way of combining them is maximumratio combining (MRC) [41].
The MRC performs a weighted addition of the individual decision variables of the form

zk =
N∑

i=1

wizk,i,

with weightswi. For the special case of decision variableszk,i with identical varianceσ2
zi

, the
optimum weights arewi = |µzk,i

|. The only property ofµzk,i
that depends on the indexk is its sign.
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Therefore, the absolute value of the mean,wi, is independent ofk. In general, the variancesσ2
zi

depend on the indexi, see (4.4). Hence, to determine the optimum weights we divide the decision
variableszk,i by the standard deviationsσzi

to get the new decision variablesz′k,i = zk,i/σzi
,

which have unit variance. Then, the new mean values areµ′
zk,i

= µzk,i
/σzi

. As the variances of the
transformed decision variablesz′k,i are identical, the optimum weights arew′

i = |µ′
zk,i
|. Based on

these transformed variables, the final decision variable can be expressed as

zk =
N∑

i=1

w′
iz

′
k,i =

N∑

i=1

|µ′
zk,i
|z′k,i =

N∑

i=1

|µzk,i
|

σ2
zi

zk,i

=
N∑

i=1

zk,iηi(TI)Er,i
4TIB2N2

0 + 4ηi(TI)Er,iBN0

. (4.5)

Thus, the final weights are

wi =
|µzk,i

|
σ2
zi

=
ηi(TI)Er,i

4TIB2N2
0 + 4Er,iηi(TI)BN0

.

In practice the determination of the weightswi is simple, as the constantsTI ,B, andN0 are known
and the captured energyηi(TI)Er,i can be estimated, e.g., by using the control variable of the
automatic gain control.

Above we have mentioned that the variableszk,i are approximately Gaussian distributed. There-
fore we are allowed to assume thatzk, which is their weighted sum, is a Gaussian random variable,
too. The mean value ofzk is

µzk
= E {zk} =

N∑

i=1

E {wizk,i} =
N∑

i=1

E

{ |µzk,i
|µzk,i

σ2
zi

}

= ±
N∑

i=1

µ2
zk,i

σ2
zi

= ±1

2

N∑

i=1

η2
i (TI)E

2
r,i

TIBN2
0 + ηi(TI)Er,iN0

, (4.6)

where the sign is positive forak = 0 and negative forak = 1, cf. (4.3). The variance of the decision
variablezkis given by

σ2
z =

N∑

i=1

wi
2σ2

zi
=

N∑

i=1

µ2
zk,i

σ4
zi

σ2
zi

=
N∑

i=1

µ2
zk,i

σ2
zi

= |µzk
|

=
1

2

N∑

i=1

η2
i (TI)E

2
r,i

TIBN2
0 + ηi(TI)Er,iN0

. (4.7)

The fact thatσ2
zk

= |µzk
|, which origins from the specific weightswi, will greatly simplify the

remaining computations. On the basis of this characterization of the decision variable statistics,
and for the a-priori probabilitiesP (ak = 1) = P (ak = 0) = 1

2
, the ML decision rule minimizing

the BEP is

âk =

{
0, for zk > 0
1, else

.
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The corresponding BEP is computed according to the same method as in (3.66):

Pe = P (zk < 0|ak = 0)

=
1

2
erfc

(
µz√
2σz

)

=
1

2
erfc




1

2

√
√
√
√

N∑

i=1

η2
i (TI)E

2
r,i

TIBN2
0 + ηi(TI)Er,iN0



 (4.8)

=
1

2
erfc




1

2

√
√
√
√

N∑

i=1

α2
i η

2
i (TI)E

2
t

TIBN2
0 + αiηi(TI)EtN0



 . (4.9)

Note that the path gainsαi are random variables in general and thus alsoPe is random. In this work
only the physical layer of a communication system without coding is discussed.

Practical systems, would however use coding to implement a more reliable communication
link. A particular problem of wireless channels, in particular for channels with a small bandwidth
is, that the received energy may fade in a more or less fast fashion. For such fading channels it is
convenient to use code words whose transmission period is much longer than the average time that
passes between two deep fades. Thus, periods with a good linkcan be used to overcome periods
of deep fades. To realize this, scramblers [49] are employedwhich have the effect of making the
symbol error rate equivalent to the average symbol error rate of the physical layer, i.e., make the
frequency of symbol errors time-invariant and therefore compensate the time-varying fading nature
of the channel.

A meaningful and often used measure to assess the performance of communication systems for
such fading channels which use this kind of coding is the average BEP. To allow an easy compari-
son of the performance of the herein presented noncoherent SIMO receiver with the performance of
SIMO receivers for fast fading channels, we discuss this measure for our SIMO GMLR in Subsec-
tion 4.3.2. Not that in general, the path gains are slowly time-varying, such that an averaging over
several channel realizations is not possible due to constraints of the data block length. Therefore,
the average symbol error rate does not fully characterize the system performance. This emphasizes
that we evaluate the average BEP of our noncoherent SIMO receiver only to compare its perfor-
mance with that of well known communication systems for fastfading channels. An often used
measure to characterize the performance of communication systems for slowly fading channels is
the outage error probability or BEO which is discussed in Subsection 4.3.3.

4.3.2 Average BEP

The bit error probability in (4.9) is conditioned on the pathgainsαi. The mean valueP e is
computed by integrating over the product of this conditional error probability and the joint PDF,
∏N

i−1 fα(αi), of the statistically independent path gains. Thus, the average BEP is

P e =

∫

. . .

∫
(

N∏

i=1

fα(αi)

)

1

2
erfc




1

2

√
√
√
√

N∑

i=1

α2
iψ

2
i

TIB + αiψi



 dα1, . . . , dαN , (4.10)
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whereψi = ηi(TI)Et/N0. This expression can be strongly simplified in the high SNR case which
is given whenαiψi ≫ TIB. In this case, we have

Pe =
1

2
erfc




1

2

√
√
√
√

N∑

i=1

αiψi



 , 0 < TI < ∆T .

According to [5] the sum of the i.i.d. lognormal distributedrandom variablesαiψi is an approxi-
mately lognormal distributed random variable, whereas thesquare root of a lognormal distributed

random variable is exactly lognormal distributed. It follows thats =
√
∑N

i=1 αiψi is approximatly
lognormal distributed. Therefore, we can express (4.10) as

P e =

∫

fs(s)
1

2
erfc

(s

2

)

ds, (4.11)

wherefS(s) is the PDF ofs. Unfortunately, the productTIB is on the order of ten for practical
systems. In Chapter 3, for example,TIB = 40; the conditionαiψi ≫ TI + IB requires that the
SNR, γi = αiη(TI)Et/N0 ≫ 40, i.e., the SNR must be much larger than16 dB. This means
that our approximation is only applicable if the SNR is much larger than16 dB. Therefore, the
simplified expression for the average BEP is of little practical importance. Furthermore, it is not a
closed form expression that would allow conclusions about the system’s diversity order to be made.
Because of the mentioned problems we refrain from deriving anexpression for the average error
probability. Instead, we use a semi-analytic approach by computing the BEP for a sufficiently large
set of path gains and by averaging over these BEP realizations. Corresponding results are presented
in Section 4.6.

4.3.3 Bit Error Outage

The bit error probabilityPe in (4.9) is a random variable because of the varying path gains. We de-
fine the bit error outage probabilityPa, which is also called the bit error outage probability (BEO),
as the bit error probability that is exceeded with a probability of a%. The analytical derivation
of both measures, the average BEP and the BEO, requires a closedform expression for the CDF
of the argument of the erfc function in (4.9) [17, 46]. Becausethe determination of this CDF is
an open problem, we determine the outage error probability with a semi-analytic approach. This
approach is similar to the one we use to determine the averageBEP, i.e., we compute the BEP for
a sufficiently large set of path gains and determine the BEO as the BEP value that is exceeded with
a probability ofa%. Section 4.6 presents numerical results for the BEO. Note that even for the
coherent MLR which has a simpler BER expression, no closed form expression for the BEO can
be found [79].

4.3.4 Coherence Gain

The coherence gain of a SIMO receiver results from the coherent addition of the mean value of
theM decision variables and the noncoherent addition of their noise components. In this work we
use the following definition of the coherence gain: We assumethat a receiver with a single antenna
requires an SNR,γ′, to achieve a predefined BEP. Furthermore, we assume that theM antennas of
the SIMO receiver are all at same position, so that (i) they capture the same signals with the same
signal energies, i.e.,Er,i = Er andγi = γ, and that (ii) the ratios of the captured energy to the
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received energy are equivalent, i.e.,ηi(TI) = η(TI). The SIMO receiver achieves the predefined
BEP for an SNR,γ < γ′. Than, the coherence gain is defined as the the differenceγ′ − γ .

As mentioned, to identify the coherency gain, allM radio channels with indizesi ∈
{1, . . . ,M} must receive the same signals. The channel model specified inSection 4.2 satisfies
this condition when we set the shadow fading variance to zero, i.e. σ2

S = 0, this corresponds to
the assumption of free space propagation made under case (a)in 4.21. For this scenario, the BEP
expression (4.9) simplifies to

Pe =
1

2
erfc

(

1

2

√

Nη2(TI)E2
r

TIBN2
0 + η(TI)ErN0

)

=
1

2
erfc

( √
Nη(TI)γ

2
√

TIB + η(TI)γ

)

. (4.12)

Note that this expression equals (3.71) if we setN = 1. When doubling the number of receiver
antennasN , the coherence gain is3 dB in SNR wenη(TI)γ ≫ TIB or equivalently whenη(TI)γ ≈
TIB, i.e., in the high SNR regime. For lower SNR, the coherence gain is lower than3 dB because
doublingN in (4.12) has less effect on the argument of the erfc(·) function than doubling the SNR
γ. This effect can also be observed from Fig. 4.4 which shows simulation results for the BEP as a
function of the SNR.

4.3.5 Diversity Order

A measure for the degree to which diversity is exploited by a communication system is the diversity
order. Its analytical determination requires several approximations for the case of Rayleigh fading
channels and with coherent reception [41]. A way to derive the diversity order of the considered
SIMO GMLR with MRC is not known to the author. Typically the diversity order is defined by
the steepness of the BEP versus SNR curve in the high SNR regime. For the GMLR, the high
SNR approximation is valid for the SNRγ ≫ TIB, i.e., for an SNR much larger than16 dB. As
discussed in Section 4.3.2, this SNR region is beyond the operating point of a practical system.
Therefore, the definition of the diversity order for the GMLRin the high SNR regime would
probably have no practical relevance. The diversity order in terms of SNR gain is discussed in
Section 4.6 on the basis of simulation results.

4.4 Coherent SIMO Receiver

In this section we derive the SIMO receiver that combines thedecision variables ofM coherent
receivers (according to Subsection 3.3.2) according to theMRC principle. Furthermore we derive
the corresponding BEP and the coherence gain for this receiver.

4.4.1 BEP of Coherent SIMO Receiver

Similar, as for the noncoherent receiver, we use the statistical characterization of the individual
receiver’s decision variableszk,i to determine the weights of the MRC. With (3.125) (andPu which

1To determine the coherence gain we assume that the path gainsof the individual channels indexed byi ∈ [1, N ]
are equivalent. I.e., to determine the coherence gain, the assumption of uncorrelated fading path gains is violated.
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denotes the power of a narrowband interferer set to zero) theexact characterization of the decision
variable is

zk,i ∼ N
(
µzi
, σ2

zi

)
,

with

µzi
=

{
+Er,i, for ak = 0
−Er,i for ak = 1

,

σ2
zi

= N0Er,i, (4.13)

and whereEr,i is the energy per pulse that is received by antennai. In the same way as for the non-
coherent receiver, the random components of the decision variables are statistically independent
because of the statistical independence of the receiver noise processes. Therefore, the optimum
way of combining them is again MRC, which is described as

zk =
N∑

i=1

wizk,i.

However, the weightswi are different from the weights for noncoherent receivers. In general, the
variancesσ2

zi
are not equal, see (4.13). Therefore, we first divide the decision variableszk,i by their

standard deviationsσi,z to let the new decision variablesz′k,i = zk,i/σzi
have unit variance. Then,

the corresponding weights arew′
i = |µ′

zi
|, whereµ′

zi
= µzi

/σzi
. With this, the MRC has to compute

the final decision variable

zk =
N∑

i=1

w′
iz

′
k,i =

N∑

i=1

|µ′
zi
|z′k,i =

N∑

i=1

|µzi
|

σ2
zi

zk,i =
N∑

i=1

zk,i
N0

, (4.14)

i.e.,wi = 1/N0. The combined decision variable is approximately Gaussiandistributed as well as
the individual decision variableszk,i. Hence the decision rule that minimizes the BEP is

âk =

{
0, for zk > 0
1, else

.

SinceN0 is a constant we can setwi = 1 without changing the symbol decision of the resulting
decision rule. Assuming the final decision variablezk to be Gaussian distributed the statistics ofzk
is given by its mean,

µz =
N∑

i=1

µzi

= ±
N∑

i=1

Er,i, (4.15)

and variance,

σ2
z =

N∑

i=1

σ2
zi

=
N∑

i=1

N0Er,i. (4.16)
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On the basis of this characterization, and as the conditional probabilitiesP (zk > 0|ak = 1) and
P (zk < 0|ak = 0) are equivalent, the BEP yields

Pe = P (zk > 0|ak = 1)

=
1

2
erfc

(
µz√
2σz

)

=
1

2
erfc





∑N
i=1Er,i

√

2
∑N

i=1N0Er,i



 (4.17)

=
1

2
erfc





∑N
i=1 αiEt

√

2
∑N

i=1N0αiEt



 . (4.18)

4.4.2 Coherence Gain

If the receiver antennas are located close together, there is only the small-scale fading effect that
makes a difference in the received energiesEr,i. As this effect is very small for sufficiently large
bandwidth, we can assume by approximation thatEr,i = Er for all i and thus (4.17) simplifies to

Pe =
1

2
erfc

(
NEr√

2NN0Er

)

=
1

2
erfc

(√

NEr
2N0

)

. (4.19)

This expression also holds for a single antenna system, i.e., for N = 1, see (3.128), and describes
the plain coherence gain if there is no diversity of the received energiesEr,i. The coherence gain,
when doubling the number of receiver antennasN is 3 dB in SNR, see also Fig. 4.5(b) in Section
4.6.

4.5 SIMO Receivers with Generalized Selection Combining

The SIMO scheme with MRC consists ofN distributed receivers that communicate their decision
variables either wireless or over wires to a central processing unit which performs the MRC. The
amount of decision variables that has to be communicated from the receivers to the processing
unit is proportional toN . For some applications it is desirable to reduce this traffic. This can be
achieved by letting the MRC select only them out ofN receivers with the largest SNR, where
m < N . Only these selectedm receivers transmit their decision variables to the centralprocessing
unit. The selection reduce the number of variables to be communicated from the individual re-
ceivers to the central processing unit. We denote the systemcomprisingN receivers and an MRC
which combines them strongest signals or diversity branches as an(m,N) generalized selection
combiner (GSC) [35]. The GSC corresponds for the special casem = 1 to conventional selection
combining and form = N to MRC discussed in Section 4.3.

The application of GSC is proposed to exploit both, micro diversity as well as macro diversity
[1]. This selection combining method can be improved by estimating the SINR (signal to interfer-
ence plus noise ratio) rather than the just the SNR. Selectingthem out ofN decision variables with
the largest SINR reduces the impact of interferers. In this work we base the selection exclusively
on the SNR.
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Fig. 4.3. CDF of lognormal distributed shadow fading variableS1 and CDF of strongest, second strongest
and third strongest fading variable ofS := {S1, . . . , S8}. The variance of the fading variablesSi isσ2

S = 2.7
dB.

To explain the effect of choosing them strongest out ofN antenna signals we considerN = 8
corresponding lognormal shadow fading variablessi, with i ∈ {1, . . . , 8}, see Section 4.2. Their
logarithmSi = 10 log(Si) is normal distributed. The CDF ofS1 is depicted in Fig. 4.3; also shown
are the CDF’s of the strongest, the second-strongest and the third-strongest fading variables. The
shown CDFs of these selected variables are steeper than the CDFof the original variables. This
means, that the selected variables have a smaller variance than the original variablesSi. In addition,
we observe that the selected variables have a larger mean value than the original variablesSi. To
show the BEP for GSC, we use the semi-analytic approach from Subsection 4.3.2 and compute
the BEP from (4.9) for a sufficiently large set of path gains. The resulting set of BEPs allows
to determine any required statistics of the BEP. Results for the 10% outage probabilityP10 are
presented in the subsequent section in Figs. 4.6, and 4.7.

4.6 Numerical Evaluation

In order to make visible different effects like the coherence gain and the diversity gain, we perform
simulations for two different types of channels: for deterministic (or non-fading) channels and for
fading channels.

4.6.1 Deterministic Channels

To verify the approximate expression (4.12) for the GMLR based SIMO receiver a simulation was
run for equal path gainsαi for all i ∈ {1, . . . , N}. In our channel model the assumption of constant
path gains corresponds to the variance of the shadow fading variablesσS = 0 dB. The resulting
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Fig. 4.4. BEPPe versus SNRγ for multiple receiver antennas with equal and constant path gains. The
simulated BEP is compared with the approximate analytic function (4.12).

BEP is depicted in Fig. 4.4 as a function of the average SNR,γ (for σS = 0 dB we haveγ = γ.
In this figure, the simulation results are compared with the corresponding BEP curves obtained
from the analytical expression (4.12). The deviations between the simulation and the approximate
analytical formula become the smaller the larger the numberof receiver antennasN is. This is
because the Gaussian approximation that results in (4.12) is the more accurate the largerN is.

Given that all path gains are identical and constant, only the coherence gain can be observed.
From Fig. 4.4 we observe that for a BEP lower than10−1 the coherence gain is roughly1.8 dB in
SNR when the number of receiver antennas is doubled. The exact coherence gain however depends
on N and on the SNR; this behavior was already discussed in Subsection 4.3.4 after equation
(4.12). For coherent receivers, e.g., the MLR of Chapter 3, the coherence gain is exactly3 dB. This
can be seen from theP e versus SNR curves in Fig. 4.5(b) forσS = 0 dB (identical channels),
where the shift in SNR between the corresponding curves forM = 1 andM = 2 is exactly3
dB, the same holds forM = 2 andM = 4. This unveils another performance disadvantage of the
GMLR against the MLR, see the discussion in Section 3.9.

4.6.2 Fading Channels

The diversity gain comes from the effect that the total received energy of all antennas together has
a variance that decreases with the number of antennas,N . Thus, the probability that the BEP is
very high is decreased, and hence the average BEP decreases withN .

To quantitatively determine the effect ofN on the BEP for fading channels, we evaluate the
analytic expression (4.8) for a number of10000 channel realizations. This semi-analytic approach
is chosen because it speeds up the simulation dramatically over a pure simulation approach. The
same assumptions about the channel are made as above, exceptthat the standard deviationσS of the
shadow fading termS is set to2.7 dB; this variance corresponds to the NLOS indoor channel, see
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Section 4.2. For simplicity the variance of the standard deviationσS is set to zero2. For each channel
realization and receiveri, there results a different SNR. Therefore, we will show the average BEP,
P e, as a function of the average SNR,γ. The performance of the receivers with MRC and GSC are
presented in the following subsections.

4.6.2.1 Maximum Ratio Combining.

Figure 4.5 shows the average BEPP e as a function of the average SNR,γ, for fading path gains
with σS = 2.7 dB and for constant and identical path gains, i.e.,σS = 0 dB. Note that for identical
path gains it follows that the BEP and average BEP are equivalent, i.e.,P e = Pi. As expected, we
observe that the average BEP is increased when fading is introduced. This effect is weaker if the
number of receivers is larger, i.e., if more diversity can beexploited. For example, to get the same
BEP of10−3 for nonfading and for fading channels, the SNR for fading channels must be increased
by the fading margin, which is4.1, 2.6, 1.8, and1 dB forN = 1, 2, 4, and8 receiver antennas. For
comparison, Fig. 4.5(b) shows the performance of the same setup, but with the optimum coherent
receiver or MLR instead of the noncoherent GMLR. For the same BEP of10−3, the fading margins
are somewhat lower, i.e.,3.4, 2.1, 1.1, and0.6 dB for N = 1, 2, 4, and8 receiver antennas.
This slight superiority in terms of fading margin can be interpreted as a better exploitation of the
available diversity by the MLR. The total performance of the MLR is much better than that of the
GMLR. As an example, the MLR achieves a BEP of10−3 for an SNR of13.4 dB with a single
receiver antenna only, whereas the GMLR requires betweenN = 4 and8 receiver antennas to
achieve the same low BEP. It should be noted that practical implementations of the MLR show
an implementation loss due to imperfect estimation of the CIR,synchronization errors and an
incomplete number of rake fingers, whereas the implementation loss of a GMLR implementation
is expected to be less dramatic because of the simple receiver architecture.

Figure 4.6 shows the average BEPP e and the10% BEOP10 for N = 1, 2, 4 and8 receiver
antennas. Comparing the BEOP10 with the average BEP shows that with growing numberN the
areas between the curves for the outage probabilities and the curves for the average BEP becomes
smaller. This effect corresponds to an increasing quality of service. Furthermore, and in contrast
to the caseN = 1, the operating pointP10 = 10−3 improves by3 dB for N = 2, by 5.8 dB for
N = 4, and by8.2 dB forN = 8. This corresponds to an almost3 dB gain in sensitivity when the
number of receiver antennas is doubled.

4.6.2.2 Generalized Selection Combining

The GSC scheme introduced in Section 4.5 is simulated for different total numbers of receiversN
and selected number of receiversm. The10% bit error outage is depicted in Fig. 4.7. Recall that
the(N,N) GSC corresponds to the MRC withN receivers. One idea behind the GSC is to reduce
the total data traffic from the receivers to the combiner. This goal can be achieved with relatively
small performance losses; e.g., the(1, 2) GSC looses less than1 dB in performance compared to
the(2, 2) GSC, and still gains more than2 dB over the single antenna receiver. Another interesting
example is the(4, 8) GSC, which shows almost the same performance as the(8, 8) GSC while
requiring only half of the data traffic.

2Note that the path gain model in [24] describes the logarithmic shadow fading termS as a Gaussian random
variable with varianceσ2

S . This variance is again characterized as random variable with a nonzero variance.
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Fig. 4.5. Average BEPP e versus average SNRγ for N receiver antennas and for identical path gains, i.e.,
σS = 0 dB, and for fading channels with the same shadow fading, i.e.,σS = 2.7 dB.

4.7 Conclusion

In this Chapter we have introduced two SIMO receivers that aresuited to operate with antenna el-
ements that are distributed over a large range. The two introduced SIMO receivers are both based
on the noncoherent GMLR from Chapter 3, to each antenna element is associated one GMLR. The
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(c) 4 receiver antennas
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Fig. 4.6. Average BEP and10% BEO versus average SNRγ for multiple receiver antennas with indepen-
dently fading path gains and noncoherent receivers.

two receivers differ in the way that they combine the signalsfrom individual GMLRs. According
to these combining methods the SIMO receivers are give the attributes, maximum ratio combin-
ing (MRC) and generalized selection combining (GSC), respectively. For reference, the MRC and
GSC receivers were also based on the coherent MLR, which was also discussed in Chapter 3. The
performance of the noncoherent and coherent SIMO receiverswas determined under the assump-
tion that the received pulse shape and thus, the PDP is equivalent for all channels. The only channel
parameter that was assumed to differ for various channels and the corresponding channel realiza-
tions was the lognormally fading path gain, the fading modelfor the path gains was adopted from
a statistical path loss model for indoor UWB SISO channels. Hence, the benefit of using multiple
receiver antennas is a coherence gain and a macro diversity gain.

It was shown that the MRC is an approximation to the optimum combiner for decision variables
of several noncoherent receivers. The weighting coefficients of the MRC depend on the receiver
noise figure and on the received signal strength; this is because the noise variance of the decision
variables depends on both of these terms. A closed form expression of the BEP for deterministic
path gains was given. This expression unveils that, unlike for the MLR, the array gain for the
GMLR is less than3 dB when the number of receiver antennas is doubled.
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(b) N = 2 receiver antennas

6 8 10 12 14 16 18 20 22 24
10

−4

10
−3

10
−2

10
−1

γ [dB]

P
1
0

(1, 4) GSC
(2, 4) GSC
(4, 4) GSC

(c) N = 4 receiver antennas
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Fig. 4.7. 10% BEO P10 versus average SNRγ for GSC ofm strongest out ofN receiver signals, i.e.,
(m,N) GSC. The path gains of theN channels are fading independently.

An attempt to derive closed form expressions for the averageBEP and the BEO for fading
channels failed. One reason for this is that an approximate BEP expression which is sufficiently
simple for the derivation of the average BEP and the BEO is available only in the high SNR regime,
i.e., for SNRs larger than16 dB. As practical receivers will be operated at lower SNR, the findings
that would be based on this approach are not practically relevant. For Rayleigh fading channels and
coherent receivers, the diversity order is typically defined only in the high SNR regime. Because for
noncoherent receivers the high SNR regime begins with impractically high SNR, it is questionable
if the diversity order as it is defined for coherent receiversis meaningful for the GMLR.

From numerical performance results it follows that a SIMO GMLR with MRC andN = 4 to
8 receiver antennas has approximately the same performance as an MLR with a single receiver
antenna. This dramatic superiority of the MLR is in practicereduced by implementation losses
which are expected to be larger for the MLR than for the GMLR. Inaddition to the MRC, the GSC
has been proposed to reduce the total data traffic between thereceivers and the combiner. Numer-
ical evaluation of the BEP shows that the receiver sensitivity decreases only little for certain GSC
configurations. The numerical results for the BEP and the BEO were obtained by a combination of
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analytical expressions and simulation, because this method requires much less computation time
to yield reliable results than plain simulation.
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Rate-Division Multiple-Access
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5. Rate-Division Multiple-Access Scheme

In a multiuser-communication scenario uncoordinated users compete for the use of a single chan-
nel. One class of multiple access methods suited for this type of operation accesses the channel at
randomly chosen time instants. Because of the uncoordinatedmanner of access, collisions cannot
be avoided. Therefore, the duty cycle of the user signals is kept low so that the resulting probability
of collisions can be handled. The most popular methods basedon this principle are ALOHA and
time-hopping pulse position modulation (TH-PPM). The principle of the ALOHA scheme is that
each user transmits data packets at a randomly chosen time instant. Thus, collisions occur with a
certain probability and the corresponding data packets aredestroyed. TH-PPM is a multiple access
scheme for ultra-wideband (UWB) impulse radio (IR), where eachmodulated data symbol is rep-
resented by a sequence of up to a few hundred UWB pulses. These pulses have a low duty cycle
and are placed at time instants that depend on the specific data symbols and on a pseudo-random
or other TH sequence. A multiuser scenario often consideredin this context comprises several
transmitters, synonymously called users, and one or more receivers. In [78] each user is assigned
an individual TH sequence; a receiver can capture the signalof the desired user if it knows its TH
sequence.

The use of randomness introduces various difficulties. E.g., in an ALOHA system the arrival
time of data packets is a random process, i.e., the delay between successive packets is sometimes
larger and sometimes lower than the average. From a QoS (quality of service) perspective, however,
the packet delay should be shortest possible for all packets. Another difficulty arises for TH-PPM
signals where for signal acquisition the receiver must search for a relatively long pseudo random
TH sequence. Proposed low complexity architectures perform the signal acquisition by the use of
a sliding correlator, where the correlation is computed between the received signal and a reference
signal whose length is determined by the TH sequence of the desired user. This approach requires
long preambles even when sophisticated algorithms are usedfor signal acquisition [43, 28].

In this chapter, a novel and deterministic multiuser modulation scheme,rate-division multiple-
access(RDMA), is introduced as an alternative to random channel-access based multiple access
schemes. As RDMA is a simple deterministic scheme, it overcomes the mentioned problems of
random multiple access schemes, while achieving similar bit-error-rates (BER) and throughput
performance as random access schemes.

As mentioned, RDMA is a multiuser communication scheme for nonsynchronized or nonco-
ordinated users. Each user transmits a pulse sequence with constant pulse rate. The transmitted
signals are made distinguishable by using a different pulse-rate for each user, hence the name
RDMA. If the pulse rates are chosen appropriately, the probability that user signals collide can be
minimized and made nearly independent of the time asynchronism among the user signals.

90



5.1 RDMA Signal Model 91

The termrate division multiple accesshas already appeared in the context of a scheme that
employs individual coding rates for the transmitters [56];the symbol rates at the transmitter out-
puts, however, are identical, which is in contrast to the user-specific pulse rates (symbol rates) used
for the RDMA scheme proposed in this chapter. A scheme with a similar name,chip rate division
multiple access(CRDMA), has also been proposed for the use with code-divisionmultiple-access
(CDMA) [14], [50]. This scheme uses different chip rates thatare power-of-two multiples of a
basic chip rate to increase the number of chip sequences withgood correlation properties; this
scheme follows a CDMA approach and is therefore fundamentally different from RDMA.

The principle of the RDMA scheme is described for the application with binary-antipodal
modulation. The notion of collisions is introduced, which is an indirect performance measure that
is analytically much more tractable than the BER. The collision probability depends in general on
the time asynchronism between the user signals; this results in varying system performance and
is therefore undesirable. The key point in this chapter is toderive an analytical expression for the
collision probability and its dependency on the time asynchronism, and finally to derive design
rules for the system parameters that result in a collision probability that is independent of the time
asynchronism.

This chapter is organized as follows. As an example of a physical layer, Section 5.1 introduces
the signal model for binary antipodal modulation and coherent reception. In Section 5.2, the notion
of collision probability is presented and an analytical expression for this probability is derived.
Design rules for the user-specific rates that result in a robust collision probability are presented in
Section 5.3. In practice, the transmitted data blocks will have finite length. A deleterious effect of
this fact is discussed and a heuristic design rule to combat this effect is proposed. The efficiency of
the design rules is confirmed by simulation results, which are presented in Section 5.4. Conclusions
and an outlook are provided in Section 5.5.

5.1 RDMA Signal Model

A multiuser scenario withM nonsynchronized transmitters, synonymously called users, and a
single receiver is considered. The users are indexed with numbersm ∈ M := {1, 2, . . . ,M}; the
user with indexm is called userm for convenience. The user signals propagate over individual
channels to the receiver antenna, where they are superimposed. The receiver’s task is to detect the
data sequence transmitted by the desired user, which in the following is indexed byi. The multiple-
access communication system considered is shown in Fig. 5.1. Userm modulates the (uncoded)
data symbolsam,k ∈ {−1,+1}, with time indexk ∈ Z to produce a sequence of binary-antipodally
modulated delta pulses,

um(t) =
√

Et

∞∑

k=−∞
am,kδ(t− kTm − τm). (5.1)

By Tm we denote the symbol period, which is user-specific and allows the receiver to “tune” to
the desired user. Therefore, we call the symbol perioduser period; its reciprocal corresponds to
the symbol rate oruser rate1/Tm. Without loss of generality, we defineT1 < T2 < · · · < TM .
The time shiftτm represents the relative delay time between the instants at which userm and user
i start their transmissions, henceτm ∈ R andτi = 0. The set of relative delays{τm|m ∈ M} can
be considered a realization of a random process determined by the start of transmission instants
of the users; for simplicity we call such a realization as theasynchronism{τm}, where we use the
notation{τm} := {τm|m ∈M}.
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Fig. 5.1. Signal model for a rate-division multiple-access scheme.

The signalsum(t) are passed through the transmit filters with pulse shapeg(t) and fed to the
corresponding transmitter antennas from where they propagate through the respective channels
with the set of impulse responses{bm(t)}. For simplicity, it is assumed that these channel impulse
responses are causal and are nonzero at timet = 0, i.e., the channels’ propagation delays are
ignored. The pulse energy‖g‖2 =

∫∞
−∞ g2(t)dt is unity, so thatEt in (5.1) is the transmitted

energy per pulse in the case of binary-antipodally modulated pulses.
At the receiver antenna’s feed point, the signals

sm(t) = hm(t) ∗ um(t), m ∈M,

are superimposed and a white Gaussian noise signaln(t) with two-sided power spectral density
N0/2 is added. Here,hm(t) is the received pulse shapehm(t) = bm(t) ∗ g(t) and ‘∗’ is the convo-
lution operator. Thus, the noisy received signal is given bythe expression

y(t) =
∑

m∈M
sm(t) + n(t).

The energy per pulse that is received from userm is given byEr
m = Et

p‖hm‖2.
The receiver contains a filter with the impulse responsefi(t) of unit energy, whose output

signal
qi(t) = fi(t) ∗ y(t)

is sampled with the symbol rate1/Ti at the instantst = kTi, k ∈ Z, sinceτi = 0 as explained
above. The sampling instants are assumed to be perfectly synchronized with the corresponding
user signal. For convenience, the shorthand notation

qi,k = qi(kTi)

is defined. We can representqi,k as the sum

qi,k = wi,i,k +
∑

m∈M\{i}
wi,m,k + zi,k.

This sum consists of the sampled desired signal component

wi,i,k = wi,i(kTi),
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the multiuser interference (MUI) components

wi,m,k = wi,m(kTi), m 6= i, (5.2)

where
wi,m(t) = fi(t) ∗ sm(t)

and the additive noise term
zi,k = fi(t) ∗ n(t)

∣
∣
∣
t=kTi

.

Figure 5.2 sketches possible signalswi,m(t) for m = 1, i, andj, under the assumption that the
receiver filterfi(t) is matched to the desired received pulse shapehi(t), as indicated by the sym-
metry of the pulsesfi(t)∗hi(t) = hi(−t)∗hi(t) in the desired signalwi,m(t). The nonzero regions
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wi,i(t)

wi,j(t)

t
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Tj

∆1
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τ1
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0 2TiTi

Fig. 5.2. Signalswi,m(t) = fi(t) ∗ sm(t) caused by the usersm = 1, i, andj. The support is indicated by
the rectangular functionsψi,m(t) of duration∆m. There occur two collisions because near by the instant
2Ti the signalwi,1(t) is nonzero when both the signalwi,i(t) and the signalwi,j(t) are sampled.

of the signalswi,m(t) are indicated by the value one of rectangular functionsψi,m(t); the duration
for which they are set to one, i.e. the support of the pulsewi,m(t) is ∆m. 1 The functionsψi,m(t)
are used to define a signal-collision model in the next section. The noise sampleszi,k have variance
N0/2 and are uncorrelated if the support of the receiver filter’s impulse responsefi(t) is smaller
thanTi; this is satisfied for the simulation parameters chosen in Section 5.4.

The signal samplesqi,k are fed to a threshold detector (slicer), generating the binary decisions
âi,k = sgn(qi,k). Note that the optimum receiver filterfi(t) is only equivalent to the matched
filter hi(−t) if the multiuser interference termswi,m,k are uncorrelated and Gaussian distributed;
Section 5.4 will reveal that the latter condition (Gaussiandistribution) is not the case in general, in
particular when power control is missing, see also [20].

Since the users are not synchronized, there will be collisions among the signalssm(t) from
different users, causing the multiuser interference termswi,m,k. The energy of the desired received
signal,Er

i , and the statistics of the termswi,m,k, together with the varianceN0/2 of the noise terms
zi,k, determine the probability of a detection error,P (âi,k 6=ai,k). The multiuser interference terms
depend on the pulse energyEt, the received pulse shapes{hm(t)}, the receiver filterfi(t), and the

1The duration∆m depends on the indexi, however, as this has no impact on the subsequent derivation, the index
i is skipped for simplicity.
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set of user periods{Tm}. The aim of the following section is to formulate design rules for the set
of user periods{Tm} that make the BER independent of the asynchronism{τm} and minimum.

5.2 Collision Probability

It was pointed out that several effects impact the statistics of the multiuser interference termswi,k.
This makes it difficult to find user periods that make the BER independent of the asynchronism
{τm} and minimum. Instead of this difficult problem, we first solvethe simpler one of finding
design rules for the set of user periods{Tm} that make the collision probability, instead of the
BER, independent of the asynchronism and minimum at the same time. In this work only the
collision probability is considered, which is just an indirect measure of the BER. However, in [70]
it is shown by numerical simulation that application of the resulting user periods also leads to a
BER statistics that is only weakly dependent on the asynchronism.

A collision with the desired signal,qi,i(t), at sampling instantt = kTi is defined as the event
that one or more signalsqi,j(t) with j 6= i, j ∈ M, are nonzero att = kTi. To illustrate the notion
of collisions, the time intervals where the signalsqi,j(t) are nonzero are indicated by the value one
of the rectangular functionsψi,j(t) in Fig. 5.2. The only collision observable in this figure is caused
by user1, affecting the sampled signalqi,k at the sampling instantt = 2Ti.

5.2.1 Probability of Collision with a Single Interferer

The setKi,j of sampling indiceski for which the samplesqi,ki
are affected by a collision with user

j is described as

Ki,j =
{

ki ∈ Z

∣
∣
∣ ψi,j(kiTi) 6= 0

}

, i 6= j. (5.3)

Hence, for a given asynchronism{τm}, there is nothing random with collisions. The relevant mea-
sure which describes the collision behavior is the relativefrequency of collisions, i.e., the ratio of
the number of collisions over the number of received pulses.To get from the relative frequency de-
scription of collisions to a probabilistic description of collisions, we introduce an artificial source
of randomness. This step proves to be very useful as it allowsus to apply probabilistic number
theory [32]. Randomness is introduced by considering the probability Pc(i) that any user collides
with useri at a randomly chosen sampling instantkTi, where the numberk ∈ Z is uniformly dis-
tributed and represents theartificially introduced source of randomness. With this notion we can
define the probability of collision between theith and thejth user as

Pc(i, j) := P (k ∈ Ki,j), i 6= j. (5.4)

To ensure thatPc(i, j) < 1, the functionsψi,j(t), i, j ∈Mmust have a duty cycle which is smaller
than1; this restriction is expressed by∀

j∈M
∆j < Tj. Note that∆j is the duration of the support of

the pulse shapewi,j(t). Considering (5.3) and by inspection of Fig. 5.2, we can write

Ki,j =

{

ki ∈ Z

∣
∣
∣
∣
∃

kj∈Z

[

kjTj + τj −
∆j

2
≤ kiTi < kjTj + τj +

∆j

2

]}

, i 6= j.

(5.5)

Expressed in words, this means thatKi,j is the set of integer numberski for which there exists at
least one numberkj ∈ Z such that the inequality

kjTj + τj −
∆j

2
≤ kiTi < kjTj + τj +

∆j

2
(5.6)
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is satisfied. The notation used in expression (5.5) is definedin Appendix B.4. To determine the set
Ki,j we transform this real-valued inequality into an integer-valued inequality. In a first step we
assume that the user periodsTi, i ∈ M are integer multiples of a small time intervalT ∈ R, with
T ≪ Ti, i ∈M. Thus we can write

Ti := NiT, Tj := NjT, (5.7)

with Ni, Nj ∈ N. We denote the numbersNi, for i ∈ M asuser numbersin dependence on the
term user periods used to denoteTi, for i ∈M. Furthermore we define

rj :=

(

τj −
∆j

2

)
1

T
, and Dj :=

∆j

T
. (5.8)

Equation (5.6) can be divided byT without an effect on its solutions. With the newly defined
variables the division byT yields

kjNj + rj ≤ kiNi < kjNj + rj +Dj. (5.9)

Note that∆j andTj are real-valued and thusT, rj, Dj ∈ R. Let Fij denote the greatest common
divisor of the integer numbersNj andNi. This implies the numbers

Qj := Nj/Fij and Qi := Ni/Fij (5.10)

to be relative prime.2 Transforming the remaining terms,rj andDj, in (5.9) into integer-valued
terms is done in the following steps:

kjNj + rj ≤ kiNi < kjNj + rj +Dj,

kjQjFij + rj ≤ kiQiFij < kjQjFij + rj +Dj,

kjQj +
rj
Fij

≤ kiQi < kjQj +
rj +Dj

Fij
,

kjQj +

⌈
rj
Fij

⌉

≤ kiQi < kjQj +

⌈
rj +Dj

Fij

⌉

,

where⌈·⌉ is the ceiling function, which rounds noninteger real-valued arguments to the next larger
integer and leaves integer valued arguments unchanged. Theequivalence of the last two lines is
becausex ≤ y implies that⌈x⌉ ≤ y if y is an integer and becausey < z implies thaty < ⌈z⌉. As
kiQi is integer-valued we we can apply these two rules. The last inequality only contains integer
terms. Thus, (5.5) can be written as

Ki,j =

{

ki ∈ Z

∣
∣
∣
∣
∃

kj∈Z

L2,j

∃
l=L1,j

kiQi = kjQj + l

}

, i 6= j (5.11)

where

L1,j :=

⌈
rj
Fij

⌉

and L2,j :=

⌈
rj +Dj

Fij

⌉

− 1. (5.12)

The set (5.11) can be represented as the union

Ki,j =

L2,j⋃

l=L1,j

Ki,j(l), i 6= j, (5.13)

2Two integer numbers arerelative primeif their greatest common divisor is unity.
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with the sets

Ki,j(l) :=

{

ki ∈ Z

∣
∣
∣
∣
∃

kj∈Z

kiQi = kjQj + l

}

, i 6= j. (5.14)

According to Theorem 14 in Appendix G, these sets are disjoint3 with respect tol. A necessary
condition for the applicability of this theorem is thatL2,j − L1,j < Qj, which is satisfied for
our assumption that∆j < Tj. 4 The disjointness of the setsKi,j(l) means that a collision at any
sampling instantkiTi stems only from one pulse of the interfering userj but not from overlapping
pulses of the interfering user. Overlapping of interferingpulses from a single user is excluded if
the duration of the interfering pulses∆j is shorter than the user periodTj (cf. Fig. 5.2).

With (5.4) and (5.13), the probabilityPc(i, j) is given by

Pc(i, j) = P (k ∈ Ki,j) = P



k ∈
L2,j⋃

l=L1,j

Ki,j(l)



 . (5.15)

Note that the probabilityPc(i, j) is defined only fori 6= j. As the setsKi,j(l) are disjoint with
respect tol, we have

Pc(i, j) =

L2,j∑

l=L1,j

P (k ∈ Ki,j(l)). (5.16)

To determine the probabilityP (k ∈ Ki,j(l)) we use Theorem 13 in Appendix G, which states
that the elements inKi,j(l) are numbers of an arithmetic series with the differenceQj between
consecutive elements. From this we conclude that on averageeveryQjth realization of the random
integer variablek is an element ofKi,j(l). Thus, we have

P (k ∈ Ki,j(l)) =
1

Qj

. (5.17)

Inserting this into (5.16) yields

Pc(i, j) =

L2,j∑

l=L1,j

1

Qj

= (L2,j − L1,j + 1)
1

Qj

(5.18)

=

(⌈
rj +Dj

Fij

⌉

−
⌈
rj
Fij

⌉)
1

Qj

(5.19)

= ( ⌈γ + β⌉ − ⌈γ⌉) 1

Qj

, (5.20)

where we used the definitions (5.12), as well as

β := Dj/Fij, andγ := rj/Fij mod 1,

3An intuitive understanding of Theorem 14 can be obtained by graphically illustrating the involved number-sets on
the number line.

4CombiningT > ∆j with (5.7), (5.8), and (5.10) implies that⌈Dj/Fij⌉ − 1 < Qj ; with L2,j − L1,j =
⌈rj/Fij +Dj/Fij⌉ − ⌈rj/Fij⌉ − 1 ≤ ⌈Dj/Fij⌉ − 1 it follows thatL2,j − L1,j < Qj .
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where the modulo operationx mod y yields the remainder of the divisionx/y. Replacingrj/Fij
by γ := rj/Fij mod 1 does not influence the result of (5.19), as in an expression⌈x + y⌉ −
⌈x⌉, the integer component ofx cancels out. Assuming a sufficiently smooth pdf ofrj ∈ R, the
assumption is justified thatγ is uniformly distributed in[0, 1). From (5.19) and (5.8) we observe
that the collision probability in general is a function of the asynchronismτj. Note that the collision
probability Pc(i, j) depends on the random variableγ, i.e., on the asynchronismτj. Therefore,
Pc(i, j) is a random variable, too. To determine the average of the collision probabilityPc(i, j),
where the average is taken overγ, i.e., over the asynchronismτj, we compute first the collision
probability given that the parameterβ /∈ N andγ 6= 0:

Pc(i, j)
∣
∣
∣
β /∈N,γ 6=0

= (L2,j − L1,j + 1)
1

Qj

∣
∣
∣
∣
β 6=N,γ 6=0

= (⌈γ + β⌉ − ⌈γ⌉) 1

Qj

∣
∣
∣
∣
β 6=N,γ 6=0

(5.21)

To evaluate the term(⌈γ+β⌉−⌈γ⌉) we representβ as the sum of its integer componentβ′ := ⌊β⌋
and its noninteger partβ′′ := β − ⌊β⌋. Thus,β = β′ + β′′. This implies that⌈β⌉ = β′ + ⌈β′′⌉ and
⌈β′⌉ = 1. Analogously, we representγ asγ = γ′ + γ′′. As we consider only the case whereγ 6= 0,
γ is restricted to the interval∈ (0, 1). Hence,γ′ := ⌊γ⌋ = 0 and that⌈γ′′⌉ = 1. From the definition
of the variablesγ′′ andβ′′ it follows that they lie within the interval(0, 1). Therefore, we can write
the two rules

γ + β > ⌈γ⌉ ⇔ γ′′ + β′′ > ⌈γ′′⌉ ⇔ ⌈γ′′ + β′′⌉ > ⌈γ′′⌉ ⇔ ⌈γ′′ + β′′⌉ = 2,

and

γ + β ≤ ⌈γ⌉ ⇔ γ′′ + β′′ ≤ ⌈γ′′⌉ ⇔ ⌈γ′′ + β′′⌉ = ⌈γ′′⌉ ⇔ ⌈γ′′ + β′′⌉ = 1.

With these rules and the above representations ofβ andγ we can write

⌈γ + β⌉ − ⌈γ⌉ = ⌈γ′ + γ′′ + β′ + β′′⌉ − ⌈γ′ + γ′′⌉
= γ′ + β′ + ⌈γ′′ + β′′⌉ − γ′ − ⌈γ′′⌉
= β′ − 1 + ⌈γ′′ + β′′⌉
= β′ + 1− 2 + ⌈γ′′ + β′′⌉
= β′ + ⌈β′′⌉ − 2 + ⌈γ′′ + β′′⌉
= ⌈β⌉ − 2 + ⌈γ′′ + β′′⌉

=

{

⌈β⌉, for γ + β > ⌈γ⌉,
⌈β⌉ − 1, for γ + β ≤ ⌈γ⌉.

(5.22)

Applying this result to evaluate (5.21) we get

Pc(i, j)
∣
∣
∣
β /∈N

=







⌈β⌉
Qj
, for (γ 6= 0) ∧ (γ + β > ⌈β⌉) ,

⌈β⌉−1
Qj

, for (γ 6= 0) ∧ (γ + β ≤ ⌈β⌉) .
(5.23)
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The eventγ = 0 occurs with probability zero and can therefore be ignored. The first case in (5.23)
occurs with probability

P1 = P [(γ 6= 0) ∧ (γ + β > ⌈β⌉)]
∣
∣
∣
β /∈N

= P (γ + β > ⌈β⌉)
∣
∣
∣
β /∈N

= P (γ > (1− β) mod 1)
∣
∣
∣
β /∈N

= β mod 1

= β − ⌊β⌋ , (5.24)

where the last but one step follows fromγ being uniformally distributed. The second case in (5.23)
occurs with probability1 − P1. With this, (5.19), (5.23), (5.24), and the definition ofβ, we have
the average probability

Pc(i, j)
∣
∣
∣
β /∈N

= Eτj

{

Pc(i, j)
∣
∣
∣
β /∈N

}

= [P1 ⌈β⌉+ (1− P1) (⌈β⌉ − 1)]
1

Qj

∣
∣
∣
β /∈N

= (⌈β⌉ − 1 + β − ⌈β⌉) 1

Qj

∣
∣
∣
β /∈N

=
β

Qj

=
Dj

FijQj

. (5.25)

Next we compute the collision probabilityPc(i, j) for the complementary parameter assumption,
β ∈ N:

Pc(i, j)
∣
∣
∣
β∈N

= (⌈γ + β⌉ − ⌈γ⌉) 1

Qj

∣
∣
∣
β∈N

=
β

Qj

(5.26)

As this does not depend onγ, or implicitly on τj, the probabilityPc(i, j) for β ∈ N is not random
but constant and yields

Pc(i, j)
∣
∣
∣
β∈N

= Eτj

{

Pc(i, j)
∣
∣
∣
β∈N

}

= Pc(i, j)
∣
∣
∣
β∈N

=
β

Qj

Dj

FijQj

, (5.27)

where we used (5.26) and inserted the definition ofβ. As the probabilityPc(i, j) is the same for
non-natural and for naturalβ – compare (5.25) (5.27) – we get

Pc(i, j) =
Dj

FijQj

. (5.28)

Substituting (5.8) and (5.10) we have

Pc(i, j) =
Dj

Nj

=
∆jNi

TiNj

=
∆j

Tj
. (5.29)
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This result is intuitively clear as it equals the duty cycle of the signalψi,j(t), i.e., the average
collision probabilityPc(i, j) is equivalent to the probability that the signalψi,j(t) is nonzero at a
randomly chosen instantt ∈ R. We conclude that the collision probability given in (5.20), which
depends implicitly on the random variableτj, has the averagePc(i, j) = ∆j/Tj. In contrast, the
maximum collision probability can be determined using (5.20):

P̂c(i, j) = max
τj
{Pc(i, j)} = max

τj

{

(⌈γ + β⌉ − ⌈γ⌉) 1

Qj

}

.

In this expression, the only variable that depends onτj is γ. For any valueγ ∈ [0, 1) a τj ∈ R and
for can be found; hence, the maximization can be performed over γ. Under the assumption that
γ ∈ [0, 1) we get

⌈γ + β⌉ − ⌈γ⌉ =







⌈β⌉ − ⌈γ⌉ = ⌈β⌉ − 1, for (γ > 0) ∧ (⌈γ + β⌉ = ⌈β⌉),
⌈β⌉+ 1− ⌈γ⌉ = ⌈β⌉, for (γ > 0) ∧ (⌈γ + β⌉ > ⌈β⌉),
⌈β⌉, for (γ = 0).

Hence, we get

P̂c(i, j) = max
τj

{

(⌈γ + β⌉ − ⌈γ⌉) 1

Qj

}

= ⌈β⌉ 1

Qj

=

⌈
∆j

TFij

⌉
1

Qj

. (5.30)

Using the inequality⌈x⌉ < 1 + x and withTFijQj = TNj = Tj (see (5.7) and (5.10)), we get the
upper bound

P̂c(i, j) <

(

1 +
∆j

TFij

)
1

Qj

=
∆j + TFij

Tj
. (5.31)

The difference between̂Pc(i, j) and the upper bound is smaller than1/Qj.

5.2.2 Probability of Collision with Multiple Interferers

For the case of only one interfering userj, the probability of collisionPc(i, j) is given by (5.20).
In what follows we determine the probability

Pc(i) = P



k ∈
⋃

j∈M\{i}
Ki,j



 , (5.32)

i.e., the probability that at least one userj ∈ M \ {i} collides with useri. The derivation greatly
simplifies if the events of userj and userj′ colliding with useri, with j 6= j′ andj, j′ ∈ M \ {i},
are statistically independent; this statistical independence is ensured if

P [(k ∈ Ki,j) ∧ (k ∈ Ki,j′)] = P (k ∈ Ki,j)P (k ∈ Ki,j′). (5.33)



100 5. Rate-Division Multiple-Access Scheme

That this is always true is proved in Appendix H. We can thus evaluate (5.32) as

Pc(i) = P



k ∈
⋃

j∈M\{i}
Ki,j





= 1− P



k /∈
⋃

j∈M\{i}
Ki,j





= 1− P



k ∈
⋂

j∈M\{i}
Z \ Ki,j





= 1−
∏

j∈M\{i}
P (k ∈ Z \ Ki,j)

= 1−
∏

j∈M\{i}
[1− P (k ∈ Ki,j)]

= 1−
∏

j∈M\{i}
[1− Pc(i, j)] (5.34)

= 1−
∏

j∈M\{i}

(

1− L2,j − L1,j + 1

Qj

)

, (5.35)

where we used (5.18). Expanding the expressions forL2,j andL1,j in (5.35) yields

Pc(i) = 1−
∏

j∈M\{i}



1−

⌈
rj+D

Fij

⌉

−
⌈
rj
Fij

⌉

Qj



 . (5.36)

= 1−
∏

j∈M\{i}



1−

⌈
τj+∆j/2

Fij T

⌉

−
⌈
τj−∆j/2

Fij T

⌉

Qj



 . (5.37)

In the last line the variablesrj andDj are expressed by the natural variablesτj and∆j, see (5.8).
The average collision probability is computed as the expectation value over the individual asyn-
chronismsτj. Using (5.34) and (5.29) yields5

P c(i) = Eτ1Eτ2 · · ·Eτj−1
Eτj · · ·EτM






1−

∏

j∈M\{i}
[1− Pc(i, j)]







= 1−
∏

j∈M\{i}

[
1− Eτj {Pc(i, j)}

]

= 1−
∏

j∈M\{i}

[
1− P c(i, j)

]

= 1−
∏

j∈M\{i}

(

1− ∆j

Tj

)

. (5.38)

5The expectation over individual asynchronisms is computedas
P c(i) = Eτ1

Eτ2
· · ·Eτi−1

Eτi+1
· · ·EτM

{Pc(i)} .
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The same result is valid for multiple-access schemes where the time instants for pulse transmis-
sions are chosen randomly, the average distance between thepulses of userj equals∆j, and the
transmission times of the users are statistically independent. Note that TH-PPM falls into this class
of access schemes; however, for this scheme, the average distance between pulses is the same for
each user, i.e.,∆j = ∆. For this type of access schemes the collision probability can be derived
very easily. The probability that userj collides with useri is ∆j/Tj. Hence, the probability that
userj does not collide with useri is 1−∆j/Tj. With the assumed statistical independence it fol-
lows that the probability that none of the usersj ∈ M \ {i} collides with useri is the product of
the probabilities1−∆j/Tj over all interfering usersi ∈M\{i}. The complementary probability,
i.e., the probability that at least one userj collides with useri is finally given by (5.38).

With the statistical independence expressed by (5.33), theworst-case or maximum collision
probability is given by

P̂c(i) = max
{τm}
{Pc(i)}

= 1−
∏

j∈M\{i}

(

1−max
τj
{Pc(i, j)}

)

= 1−
∏

j∈M\{i}

(

1− P̂c(i, j)
)

= 1−
∏

j∈M\{i}

(

1−
⌈

∆j

TFij

⌉
1

Qj

)

, (5.39)

where (5.30) was used. If (5.31) is used instead, an upper bound onP̂c(i) is obtained:

P̂c(i) < 1−
∏

j∈M\{i}

(

1− ∆j + TFij
Tj

)

. (5.40)

The results (5.37) and (5.39) were confirmed by simulation.

5.3 User Period Design

5.3.1 User Period Design for Packets with Infinite Duration

In the previous section it turned out that the collision probability Pc(i) is a random variable, where
the source of the randomness is the random asynchronism{τm}. Furthermore, the collision proba-
bility Pc(i), the average collision probabilityP c(i), and an upper bound on the collision probability,
P̂c(i), have been derived, see (5.37), (5.38) and (5.40). Now we want to choose the user periodsTj,
j ∈ M such thatP̂c(i) is minimized; this is equivalent to requesting thatP̂c(i) is closest possible
to P c(i). From the upper bound (5.40), however, we conclude that choosingTj is not the proper
approach to minimizêPc(i). This because largerTj not only reduceŝPc(i), but also reduces the
symbol rate1/Tj. Instead, we observe that the smallerTFij is compared to∆j, i.e., the smaller
the ratioTFij/∆j is, the closer is the maximal collision probability to the average collision prob-
ability. Hence, forTFij/∆j ≪ 1 the maximum collision probability is approximately the average
collision probability; roughly speaking this means that the collision probability is minimized and
at the same time does not depend on the asynchronism. Note that the average collision probability
is determined by the sum of the data rates1/NjT of the interfering users and by the channel delay
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spreads, i.e., by∆j. Hence, a reduction of the average collision probability can only be achieved
by reducing the sum data rate of all interfering users when weassume that the channel properties
cannot be changed. The average collision probability influences the total throughput of a commu-
nication system. Note that the average collision probability that results in the maximum throughput
depends on potential error correction capabilities of the higher layers in the communication sys-
tem. As in this work only the physical layer is considered, the proper choice of the average collision
probability goes beyond the scope of this work.

Both T andFij can be chosen to satisfyTFij ≪ ∆j, ∀ i 6= j, i, j ∈ M. Remember that
Fij is the greatest common divisor of the user numbersNi andNj. Therefore,Fij is minimized
to the valueFij = 1, ∀ i, 6= j, i, j ∈ M if the user numbersNj, j ∈ M do not share common
divisors, i.e., if the user numberNj are relative prime. The user periodsTj are given by the product
Tj = TNj, see (5.7). Hence, the time baseT can be interpreted as the granularity of the user
periodsTj. As the minimum value ofFij is one,T must be much smaller than the minimal pulse
durationmin

j∈M
∆j in order to satisfyTFij ≪ ∆j, ∀j ∈ M. With this we can formulate the two

design rules:
• The time baseT must be much smaller than the minimal pulse durationmin

j∈M
∆j.

• The user numbersNj, ∀j ∈M must be relative prime.

5.3.2 User Period Design for Packets with Finite Duration

Our derivation of the collision probability is valid for data packets with infinite duration, i.e., for
symbol indicesk reaching from−∞ to∞. In a practical system, however, the data packets have
a finite duration. In this subsection we discuss the collision probability for finite packet durations.
It turns out that packets with finite durations can result in acollision probability that depends
strongly on the asynchronism even if the above design rules are applied. To mitigate this effect, an
additional but heuristic design rule is presented.

To understand this rule we consider the effects that occur with data packets of finite length.
Therefore, we introduce the notion of thepulse pattern period(PPP). We consider the two signals
ui(t) anduj(t), i 6= j, see (5.1). It is first assumed that the corresponding data packets are still of
infinite duration. If we ignore the modulation, i.e., foram,k = 1, ∀k,m ∈ M, see (5.1), then the
signalsui(t) anduj(t) have the periodsTi andTj, respectively. An example for these signals with
Ti = 4T andTj = 5T is shown if Fig. 5.3.

To compute the duration of the PPP let us consider the pulse ofthe signalui(t) that begins at
the time instantkiTi also, we consider the pulse of the signaluj(t) that begins at the time instant
kjTj + τj. The difference between these two pulse positions iskiTi − (kjTj + τj). When the pulse
pattern is periodic with the period durationTPPP, as we have assumed, then there exists a pulse
of the signalui(t) and a pulse of the signaluj(t) that begins at the time instantkiTi + TPPP and
kjTj + τj +TPPP, respectively. As the distance between pulses isTi andTj for the signalsui(t) and
uj(t), respectively, we conclude, thatTPPP is an integer multiple of bothTi andTj, i.e.,

TPPP= KiTi = KjTj,

whereKi andKj are the smallest integers that satisfy this equation. Applying Theorem 13 of
Appendix G yields the solutionKi = Qj, Kj = Qi, and thus

Tppp(i, j) = QjTi = QiTj = QjQiFijT. (5.41)
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ui(t)

uj(t)

t

TPPP Ti

Tj

0

0

0

Fig. 5.3. Pulse pattern of the signalsui(t) anduj(t) with Ti = 4T andTj = 5T , The duration of the PPP
is TPPP= 20T .

As an example, the PPP for the signals in Fig. 5.3 has the periodTPPP= QjQiFijT = 4·5T = 20T .
In this example, the time intervals between collisions of user i and userj are equidistant. However,
this is not the case in general; collisions can even occur in clusters. In the most extreme case all
the collisions within a PPP occur as a single cluster of collisions, within which no pulse is free
of collisions. Of course, in this case there is an interval within the PPP that is free of collisions
such that the collision probabilityP c(i) is maintained on average. As long as the data packets of
useri have a duration which is a multiple of the PPP, the presence ofcollision clusters does not
influence the average collision probability. If, however, the packet duration is not a multiple of the
PPP but much shorter than the PPP, then a number of collisionsbelow or above the average can
hit the pulses of a data packet so that the collision probability deviates from the average value. The
result is that the peak collision probability becomes significantly larger than the average collision
probability.

To avoid this undesirable effect, the user periods should bechosen such that collision clusters
are avoided, i.e., that collisions are uniformly distributed along the entire PPP. A general rule to
achieve this could not be found. Instead we develop two heuristic rules:
(i) To break up collision clusters, we introduce a constraint that guarantees that after each collision

there is at least one pulse that does not experience a collision. This is achieved by choosing the
product of the time baseT with the minimum difference between two user periods

Dmin = min
i,j∈M,i6=j

{|Ni −Nj|}

to be larger than the width of the widest pulse, i.e.,

TDmin ≥ max
j∈M
{∆j}.

(ii) If for packets with infinite duration the maximum collision probability P̂c(i) is larger than
the average collision probabilityP c(i), then this is even more the case for packets with finite
duration. The reason for this is that the achieved averagingeffect is the stronger, the longer
the duration of the data packets is. Therefore, at least for packets with infinite duration the
maximum collision probabilityP̂c(i) should be approximately equal to the average collision
probabilityP c(i); this requires that the design rules in the previous sectionare applied.
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With this, the design rules for packets with finite duration are summarized as:

• The time baseT must be much smaller than the minimal pulse durationmin
j∈M

∆j.

• The user numbersNj, ∀j ∈M must be relative prime

• TDmin ≥ max
j∈M
{∆j}, whereDmin = min

i,j∈M,i6=j
{|Ni −Nj|}.

An algorithm that generates user numbers according to thesedesign rules is given in Fig. 5.4.
This algorithm accepts the smallest user numberN1 as a parameter and iteratively generates the
user numbersN2 to NM . In each iteration step, which is indexed byi, the potential next user
numberN ′

i+1 is computed as the sumN ′
i+1 = Ni + Dmin. The numberN ′

i+1 is factorized and
the resulting prime factors are compared with the set of prime factors that is contained in at least
one of the previously determined user numbersN1, · · · , Ni. If there is one matching prime factor,
this implies thatN ′

i+1 is not relatively prime to each element of{N1, · · · , Ni}. Therefore, the next
larger valueN ′

i+1 + 1 is considered as the next potential user numberNi+1. Otherwise, if there
is no matching prime factor, thenN ′

i+1 is accepted as the user numberNi+1 and its prime factors
are added to the list of prime factors that are present in at least one of the numbersN1, · · · , Ni.
The algorithm terminates when the largest user numberNM is computed. The user numbers that
are generated by this algorithm are used for simulations of the corresponding collision probability.
The corresponding simulation results are discussed in the following section.

Algorithm:

Start PrimeFactorList =Factorize(N1)
for i := 2 to i = M

Ni := Ni−1 +Dmin

Label PrimeFactors =Factorize(Ni)
if CommonEntries(PrimeFactorList,PrimeFactors) = true

Ni := Ni + 1
gotoLabel

end
PrimeFactorList:= Unify (PrimeFactorList,PrimeFactors)

Stop end

Subfunctions:

(set of integers) =Factorize(integer)
% Returns the set of prime factors of the argument.

(boolean) =CommonEntries(set of integers, set of integers)
% Returns true if the two arguments contain at least one common
element and false otherwise.

(set of integers) =Unify (set of integers, set of integers)
% The result is the union of the two arguments.

Fig. 5.4. An algorithm to generating relative prime numbersNm according to the design rules for finite
packet durations.
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5.4 Simulation

In this section we illustrate the effect of the design rule given in Subsection 5.3.2 for both the case
of data packets with infinite duration and for the case of datapackets with finite duration. The
additional rule from Subsection 5.3.2 that is not needed forpackets with infinite duration has no
effect for packets with infinite duration. This allows us to use the same design rule for packets with
infinite and finite duration.

5.4.1 Infinite Packet Duration

To see the benefit of choosing the user periods according to the proposed design rules we compute
the CDF of the collision probability for three different setsof user numbers for a total number of
M = 10 users,∆j = 50T , with the normalized time baseT = 1, and the desired user indexi = 5.

Relative Prime User Numbers:The user numbers are generated by the algorithm given in Fig.
5.4 which is called with the parametersN1 = 6001, M = 10, Dmin = 60. The generated user
numbers are:(N1, N2, . . . , N10) = (6001, 6061, 6121, 6181, 6241, 6301, 6361, 6421, 6481, 6541).
The resulting average collision probability (5.38) isP c(i) = 0.0695, the peak collision probability
given by (5.40) yieldŝPc(i) = 0.0709.

Equidistant User Numbers:The user numbers are defined as an increasing series defined by
Ni+1 = Ni +D, with N1 = 6000 andD = 60. With this, the user numbers areN1 = 6000, N2 =
6060, . . . , N10 = 6540. The resulting average collision probability isP c(i) = 0.0695 and the
peak collision probability yieldŝPc(i) = 0.2124. Note that these user numbers share the common
divisorFij = 60; this is the reason whŷPc(i) is significantly larger thanP c(i).

Identical User Numbers:All user numbers are identical and chosen such that the average col-
lision probability is the same as for the equidistant and relative prime user numbers given above:
Ni = Nj = 6265. As desired, the average collision probability isP c(i) = 0.0696. The peak colli-
sion probability isP̂c(i) = 1. This is an obvious result because identical user numbers correspond
to TDMA (time division multiple access) without a controlled schedule; hence, with a certain prob-
ability all the transmitted pulses of the desired useri are subject to collision, which implies that
P̂c(i) = 1.

The actual collision probabilityPc(i) expressed by (5.37) depends on the realization of the
asynchronism{τm}. Its CDF is shown in Fig. 5.5 for the three given sets of user numbers. For
identical user numbers the collision probabilityPc(i) is either0 or 1 depending on the asynchro-
nism which determines if all pulses or no pulse of useri is subject to collision. For the set of
equidistant user numbers, with the common factor60, the collision probabilityPc(i) depends also
on the asynchronism but to a much lesser extent than for the identical user numbers. An almost
constantPc(i) with Pc(i) ≈ P c(i) is achieved for the set of relative prime user numbers. This
confirms that the proposed design rules are appropriate. It must however be noted that the variance
of the collision probability is not dramatically larger foruser numbers that share some common
factors. Hence, a practical system would not lose much in terms of QoS (quality of service) if some
factors are common to several user numbers.

5.4.2 Finite Packet Duration

The additional design rule presented in Subsection 5.3.2 specifies a minimum difference between
user numbers and is aimed to keep the collision probability as much as possible independent of the
asynchronism even for packets with finite duration. The principle of this rule is to break up collision
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Fig. 5.5. CDF of the collision probabilityPc(i). The CDF depends on the asynchronism,{τm}, for which
10000 realizations are considered. There areM = 10 users.

clusters by introducing a minimum distance between user numbers. To show the efficiency of this
rule we compare two sets of parameters, one where the rule is violated and one where it is satisfied.

Minimum Distance Rule Violated:The pulse duration is∆j = 15 ns,∀j ∈ M, the number of
users isM = 10. The time base is set toT = 1/8 ns. The minimum distance rule would require that
Dmin ≥ 1

T
max
j∈M
{∆j}, i.e.,Dmin ≥ 120. To violate this constraint we setDmin = 1. Furthermore, the

user numberN1 is set toN1 = 8001. With these parameters, the algorithm in Fig. 5.4 generatesthe
user numbers(N1, N2, . . . , N10) = (8001, 8002, 8003, 8005, 8009, 8011, 8017, 8021, 8023, 8027).
For the desired user indexi = 1, the minimum distance betweenNi and any other user number
Nj yieldsDmin = min

i,j∈M,i6=j
{|Ni −Nj|} = 1. Hence, the longest collision cluster consists of

∆j/(TDmin) = 120 subsequent collisions.

Minimum Distance Rule Satisfied:The parameters∆j = 15 ns ,∀j ∈ M, M = 10, and
T = 1/8 ns are the same as above. Implementing the minimum distance rule corresponds to setting
Dmin = 120. With the user numberN1 set toN1 = 7501, the algorithm in Fig. 5.4 generates the
user numbers(N1, N2, . . . , N10) = (7501, 7621, 7741, 7861, 7981, 8101, 8221, 8341, 8461, 8581).

The collision probabilityPc(i) is simulated for500 realizations of the asynchronism{τm} and
for different numbers of pulses per packet, namelyK = 50, 200, 1000, 10000. If the minimum
distance rule is violated, i.e., ifDmin = 1, the CDF is flat in particular for small values ofK, see
Fig. 5.6(a). This is because collision clusters including at most120 colliding pulses can occur if
the realization of the asynchronism{τm} is unfavorable. For a packet with lengthK = 50 this
results in a peak collision probabilitŷPc(i) = 1.

Fig. 5.6(b) shows the CDF of the collision probability for theimplemented minimum distance
rule. Collision clusters are broken up which reduces the worst-case collision probability consid-
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Fig. 5.6. CDF of the collision probabilityPc(i). The CDF depends on the asynchronism,{τm}, for which
500 realizations are considered. The parameters are for (a)N1 = 8001, Dmin = 1, M = 10, T = 1/8 ns
and∆j = 15 ns and for (b)N1 = 7501, Dmin = 120, M = 10, T = 1/8 ns and∆j = 15 ns. The user
numbers are generated by the algorithm given in Fig. 5.4.

erably. We observe that a nearly constant collision probability is obtained only for longer data
packets.

5.5 Conclusion and Outlook

In this Chapter RDMA was introduced as a scheme for uncoordinated multiuser access. The ba-
sic idea was explained and design parameters for quasi-optimal performance were proposed. As a
measure of performance, for simplicity, the collision probability was used instead of the BER. The
average and the peak collision probability was derived. It turned out that the peak collision prob-
ability depends on the time asynchronism between the users.It was pointed out that the average
collision probability is equivalent to that of a corresponding random based access scheme. From a
QoS or outage probability perspective it is desirable that the peak collision probability is close to
the average collision probability. This can be achieved by choosing the user periods according to
specific design rules, which are derived in this work.

As mentioned, for simplicity, the collision probability was considered instead of the BER that is
a more direct performance measure. In [70] it was shown by simulation that a collision probability
that is insensitive to the time asynchronism between users also results in a BER that is robust to
variations of the asynchronism.

We conclude that from a performance point of view, RDMA is an alternative to existing random
based multiple-access methods. Furthermore, as the pulse positions are equidistant for a given user,
RDMA allows simpler signal acquisition than random based access schemes.
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A particular property of the discussed RDMA scheme is the userdependent throughput, which
is determined by the pulse rate1/Tj = 1/(NmT ). One approach to achieve about the same average
throughput for each user is to switch the pulse rate between two different rates. This can be done
by dividing the data packets into blocks and to transmit every block with odd and even index with
a pulse rate that is lower and higher than the average pulse rate, respectively. A detailed description
of this method can be found in [72].
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A. Acronyms

APDP Average Power Delay Profile
AWGN Additive White Gaussian Noise
BEO Bit Error Outage Probability
BEP Bit Error Probability
BER Bit Error Rate (empirical BEP)
BPSK Binary Phase Shift Keying
BRDMA Burst RDMA
CDF Cumulative Distribution Function
CDMA Code Division Mulitple-Access
CIR Channel Impulse Response
CRDMA Chip-Rate Division Multiple-Access
ECP Empirical Collision Probability
GML Generalized Maximum Likelihood
GMLR Generalized Maximum Likelihood Receiver
GSC Generalized Selection Combining
IR Impulse Radio
ISI Intersymbol Interference
LOS Line-Of-Sight
MA Multiple Access
MIMO Multiple Input Multiple Output
ML Maximum Likelihood
MLR Maximum Likelihood Receiver
MLRP Maximum Likelihood Receiver with Partial channel state information
MRC Maximum Ratio Combiner
MUI Multiuser Interference
NBI Narrowband Interference
NLOS Non Line-Of-Sight
OOK On-Off Keying
PPM Pulse Position Modulation
PPP Pulse Pattern Period
PDF Probability Density Function
PDP Power Delay Profile
PSD Power Spectral Density
QoS Quality of Service
RDMA Rate Division Multiple-Access
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SIMO Single Input Multiple Output
SNR Signal-to-Noise Ratio
TH Time Hopping
TR Transmitter Receiver
UMP Uniformly Most Powerful
UWB Ultra Wideband
2PPM Binary Pulse Position Modulation



B. Mathematical Symbols

B.1 Functions, Operators and Sets

(·)∗ complex conjugate
ℜ{·} real part
ℑ{·} imaginary part
(·) ∗ (·) convolution
(·)T tronspose
| · | absolute value
⌊·⌋ integer part
⌈·⌉ if not integer rounds to next larger integer
max(·) maximum
min(·) minimum
a mod b a modulob operation
lim(·) limes
sgn(·) signum
gcd(·, ·) greatest common divisor
∧ logical and
∨ logical or
¬ logical negation
∀ for all
∃ exists
a⇒ b a impliesb
a 7→ b a is mapped tob
A \ B setA withoutB
∈ is element of
/∈ is not element of
∩ intersection
∪ unification
E {·} expectation value of a random variable
N (µ, σ2) Gaussian distribution with meanµ and varianceσ2

{·} Fourier transform
s(t) ◦−−•S(f) S(f) is the Fourier transform ofs(t)
{·} Hilbert transform

sl(t)
B,P←→ s(t) sl(t) is the complex baseband representation ofs(t).
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erfc(·) complementary error function
Q the set of rational numbers
N the set of natural numbers
N0 the set of natural numbers including{0}
Z the set of integer numbers
R the set of real numbers
C the set of complex numbers

B.2 Variables in Part I

A0 path gain in units of dB
ak transmitted symbol
âk decision for symbolak
α0 path gain
α0 path gain associated with receiver antennai
b(t) channel impulse response realization
B(t) channel impulse response process
B signal bandwidth
β interference to noise ratio (INR)
ck random sequence of plus and minus one
γ signal to noise ration (SNR)
γi signal to noise ration (SNR) at antennai
di distance between transmitter and receiver antennai
d distance between transmitter and receiver antenna
D energy spectral density of transmitted pulse
∆T duration of the2PPM time slots
Er energy per received pulse
Ei,r energy per pulse received at antennai
Et transmitted energy per pulse
f0 center frequency
fs integral during first 2PPM time slot
gs integral during second 2PPM time slot
g(t) shape of transmitted pulse
η(TI) ratio of captured energy to received energy
ηi(TI) ratio of captured energy to received energy for receiveri
i index of receiver antenna
k symbol index
L averaging duration to estimate the PDP
n(t) noise signal
N(t) noise process
N number of receiver antennas
N0 noise power spectral density
Pa bit error outage probability
Pe bit error probability
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Pu power of narrowband interference
r(t) received signal including noise
s shadow fading variable
S shadow fading variable in units ofdB
σS variance of shadow fading variableS
σ(t) Power delay profile of received pulse
T symbol duration
TI integration duration
u(t) transmitted signal or narrowband interference signal
w(t) weighting function in noncoherent receiver
wi weighting factors for MRC
y(t) noise free received signal
zk decision variable for symbolak

B.3 Variables in Part II

{xm} notation for the set{x1, . . . , xM}
bj(t) channel impulse response from userj
∆j duration of pulse from userj
Fij greatest common divisor of user numbersNi andNj

hj(t) received pulse shape from userj
i index of desired user
j index of any user
K number of pulses within a data packet
m index of any user
M number of users
M set of user indices
Nj user number of userj
Pc(i) probability that any user collides with useri
Pc(i, j) probability that userj collides with useri
P c(i) expectation ofPc(i)
P̂c(i) maximum ofPc(i)
Qij Nj/Fij
sj(t) received signal of userj
T time base
Tj user period of userj
{τm} set of asynchronisms
τj asynchronism between useri and userj
uj(t) transmit signal of userj
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B.4 Logical Expressions in Part II

∀
x∈X

P (x) for all x ∈ X the expressionP (x) is true

∀
x∈X

...
y∈Y

P (x, · · · , y) for all x ∈ X , · · · and for ally ∈ Y, P (x, · · · , y) is true

∃
x∈X

P (x) there exists at least onex ∈ X such that the expression
P (x) is true

∃
x∈X

...
y∈Y

P (x, · · · , y) there exists at least onex ∈ X , · · · , and at least oney ∈ Y
such thatP (x, · · · , y) is true

¬ ∀
x∈X

...
y∈Y

P (x, · · · , y) it is not true that for allx ∈ X , · · · and for all y ∈ Y,
P (x, · · · , y) is true (this is equivalent to the subsequent ex-
pression)

∃
x∈X

...
y∈Y

¬P (x, · · · , y) there exists at least onex ∈ X , · · · and at least oney ∈ Y
such thatP (x, · · · , y) is false

¬ ∃
x∈X

...
y∈Y

P (x, · · · , y) it is not true that there exists at least onex ∈ X , · · · , and
at least oney ∈ Y such thatP (x, · · · , y) is true (this is
equivalent to the subsequent expression)

∀
x∈X

...
y∈Y

¬P (x, · · · , y)
for all x ∈ X , · · · and for ally ∈ Y, P (x, · · · , y) is false



C. Hilbert Transform

In this appendix are discussed some theorems on the Hilbert transform, which are needed for
proofs in Appendix D. The Hilbert transform of the signals(t) is denoted bŷs(t) = {s(t)}, and
is defined as

{s(t)} :=
1

πt
∗ s(t) =

∫ ∞

−∞

1

π(t− τ)s(τ) dτ.

In the frequency domain this corresponds to

Ŝ(f) = −i sgn(f)S(f).

Theorem 1 (Product of Signals – Bedrosian’s Theorem [6])For signals u(t) and s(t) with
Fourier transformsU(f) andS(f) respectively, for which there exists a frequencyfl ∈ R+ such
thatU(f) = 0 for |f | > fl andS(f) = 0 for |f | < fl, the Hilbert transform of the productu(t)s(t)
is given by

{u(t) s(t)} = u(t) {s(t)} . (C.1)

Proof: The Fourier transform of {u(t) s(t)} is−i sgn(f)[U(f) ∗ S(f)]. Under the specified
conditions we have sgn(f) [U(f)∗S(f)] = U(f)∗ [sgn(f)S(f)]. Inverse Fourier transform yields
{u(t)s(t)} = u(t) {s(t)}. 2

Example C.1 A special case of this rule is

{u(t) cos(2πf0t+ ϕ)} = u(t) {cos(2πf0t+ ϕ)}
= u(t) sin(2πf0t+ ϕ), (C.2)

where we used the rule {cos(2πf0t+ ϕ)} = sin(2πf0t + ϕ). This latter rule can be shown by
using trigonometric addition theorems and the rules{cos(ωt)} = sin(ωt) and {sin(ωt)} =
− cos(ωt).

Theorem 2 (Mirror) The mirrored signals(−t) has the Hilbert transform

{s(−t)} = −ŝ(−t). (C.3)
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Proof:

{s(−t)} =

∫ ∞

−∞

1

π(t− τ)s(−τ) dτ

=

∫ ∞

−∞

1

π(t+ τ)
s(τ) dτ

= −
∫ ∞

−∞

1

π((−t)− τ)s(τ) dτ

= − {s(v)}|v=−t
= −ŝ(−t).

2

Theorem 3 (Shift) The Hilbert transform of the shifted signals(t+ u) is

{s(t+ u)} = ŝ(t+ u). (C.4)

Proof: We use the definition of the Hilbert transform and get

{s(t+ u)} =

∫ ∞

−∞

1

π(t+ u− τ)s(τ) dτ

= ŝ(t+ u). (C.5)

2



D. Equivalent Baseband Transform

The purpose of this appendix is to derive a theorem for the product of a lowpass signal with a
passband signal. Tools for this derivation are the known correspondences of the complex baseband
transform. An important aspect of the complex baseband transform is that it is unique only if
the imaginary and real part of the considered baseband signal are a Hilbert transform pair. In the
relevant literature this fact is often not explicitly mentioned [49, 40]. Ignoring this fact can result in
erroneous conclusions. In this chapter the most important rules of the complex baseband transform
are derived under consideration of this fact and provide a basis for the derivation of the product
theorem for the multiplication of a lowpass signal with a passband signal.

We denote the baseband signal that corresponds to a passbandsignal by putting the subscript
l. The transform from an arbitrary real valued signals(t) to the equivalent baseband signalsl(t) is
generally given by

sl(t) = {s(t)} =
1

a
[s(t) + i {s(t)}] e−i2πf0t, (D.1)

and the inverse transform is

s(t) = −1 {sl(t)} = aℜ
{
sl(t)e

i2πf0t
}
, (D.2)

The properties that are required fromsl(t) are discussed in the sequel. The variablef0 is denoted
the center frequency of the baseband transform and can assume any real value. However, for prac-
tical applicationsf0 is often chosen as the center frequency of the passband signal that is to be
transformed into the complex baseband domain. The factora equals one in [49] and

√
2 in [39].

We will choose its value to obtain the simplest possible rules to convert operations on passband
signals into operations on the corresponding baseband signals. To highlight thats(t) andsl(t) are

baseband transform pairs we writes(t)
P,B←→ sl(t).

Alternatively, we denote the transform from passband into baseband by : s(t) 7→ sl(t). The
mapping is one-to-one, if and only ifs(t) ∈ Rt andsl(t) ∈ C+

t , whereRt is the set of all pos-
sible real-valued functions, andC+

t is the set of complex-valued functions whose imaginary partis
the Hilbert transform of the real part (we denote this type ofsignals asbaseband signals). How-
ever, for each signalsl(t) ∈ C+

t there exist an infinite number of complex-valued signalsg(t) /∈ C+
t

(non baseband signals) such that−1 {g(t)} = −1 {sl(t)} and { −1 {g(t)}} 6= g(t). As
an example, consider the signalsg(t) = 1

a
s(t)e−i2πf0t andsl(t) = 1

a
[s(t) + i {s(t)}] e−i2πf0t,

yielding −1 {g(t)} = −1 {sl(t)} = s(t) and { −1 {g(t)}} = sl(t). As a consequence of

this, it is allowed to conclude froms(t) = aℜ
{
f(t)ei2πf0t

}
thats(t)

P,B←→ f(t) only under the
premise thatf(t) ∈ C+

t .
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In the frequency domain the baseband transform is expressedby

Sl(f) =
1

a
[S(f) + sgn(f)S(f)] ∗ δ(f + f0)

=
1

a
[1 + sgn(f + f0)]S(f + f0)

(D.3)

and the inversive transform is

S(f) =
a

2
[Sl(f − f0) + S∗

l (−(f + f0))]. (D.4)

In the same way as for time-domain signals, we express baseband transform pairs in the frequency

domain by writingS(f)
P,B←→ Sl(f).

Subsequently we give some rules that help to determine the equivalent baseband signal of a
given signal, or vice versa. The proofs of these statements are conducted by only using (D.1) or
(D.3). We refrain from making use of the inverse transform expressed by (D.2) or (D.4), as it
provides a valid passband signal even when the signal to be transformed is not a baseband signal.
To show that a pair of signals forms a complex baseband transform pair, the Hilbert transform of
the real part of the baseband signal must be performed, whichimplicitly corresponds to relying on
(D.1) or (D.3).

We assume the arbitrary real valued signalsg(t) ands(t), the highpass signalp(t) with Fourier
transformP (f) andP (f) = 0 for |f | < fl, and the lowpass signalu(t) with Fourier transform

U(f) andU(f) = 0 for |f | > fl. Furthermore we assume thatg(t)
P,B←→ gl(t), s(t)

P,B←→ sl(t),

p(t)
P,B←→ pl(t), and thatu(t)

P,B←→ ul(t). With these signals we can express the following rules for
equivalent baseband transform pairs.

Theorem 4 (Mirror)
s(−t) P,B←→ s∗l (−t) (D.5)

Proof: Formally introducings′l(t) as the equivalent lowpass signal ofs(−t) and replacings(t)
by s(−t) in the definition (D.1) yieldss′l(t) = [s(−t) + i {s(−t)}]e−i2πf0t. Defining ŝ(t) :=
{s(t)} and using (C.3) this is expressed ass′l(t) = [s(−t) − iŝ(−t)]e−i2πf0t; substitution with

−t = τ yields s′l(−τ) = [s(τ) − iŝ(τ)]ei2πf0τ . This is the complex conjugate ofsl(τ), which is
by definitionsl(τ) = {s(τ)} = [s(τ) + iŝ(τ)]e−i2πf0τ , i.e.,s′l(−τ) = s∗l (τ). Back substitution
with τ = −t yieldss′l(t) = s∗l (−t); hence, we can writes∗l (−t) = {s(−t)}, which completes
the proof. 2

Theorem 5 (Shift)
s(t+ τ)

P,B←→ sl(t+ τ) ei2πf0τ (D.6)

Proof: Formally introducings′l(t) as the equivalent lowpass signal ofs(t + τ) and replacing
s(t) by s(t+ τ) in the definition (D.1) yieldss′l(t) = [s(t+ τ) + i {s(t+ τ)}]e−i2πf0t. Defining
ŝ(t) := {s(t)} and using (C.4) this is expressed ass′l(t) = [s(t+ τ)− iŝ(t+ τ)] e−i2πf0t, i.e, by
s′l(t) = [s(t+ τ)− iŝ(t+ τ)] ei2πf0τ e−i2πf0(t+τ). This is equivalent tos′l(t) = sl(t+ τ) ei2πf0τ . 2
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Theorem 6 (Convolution)
g(t) ∗ s(t) P,B←→ a

2
gl(t) ∗ sl(t) (D.7)

Proof: In the frequency domain the convolutiong(t) ∗ s(t) writes asG(f)S(f). With the defini-
tion of the equivalent baseband transform in the frequency domain (D.3) we can express the equiv-

alent baseband signalZl(f)
B,P←→ G(f)S(f) asZl(f) = 1

a
[1 + sgn(f + f0)]G(f + f0)S(f + f0).

Hence,Zl(f) can be expressed as a function of the productGl(f)Sl(f); we express this product by
the passband signalsG(f) andS(f) asGl(f)Sl(f) = 1

a2 [1+sgn(f+f0)]
2G(f+f0)S(f+f0), where

we have applied (D.3) two times. As[1 + sgn(f)]2 = 2 [1 + sgn(f)] we geta
2
Gl(f)Sl(f) = 1

a
[1 +

sgn(f + f0)]G(f + f0)S(f + f0). Once again applying (D.3) yieldsa
2
Gl(f)Sl(f)

B,P←→ G(f)S(f).
Inversive Fourier transform of this equation completes theproof. 2

Theorem 7 (Deterministic Correlation)

g(t) ∗ s(−t) P,B←→ a

2
gl(t) ∗ s∗l (−t) (D.8)

Proof: Inserting (D.5) into (D.7) confirms the statement. 2

Theorem 8 (Deterministic Autocorrelation)

g(t) ∗ g(−t) P,B←→ a

2
gl(t) ∗ g∗l (−t) (D.9)

Proof: Settings(t) = g(t) in (D.8) confirms the statement. 2

Theorem 9 (Energy)
∫

g2(t) dt =
a2

2

∫

|gl(t)|2dt (D.10)

Proof: We write (D.9) in the formg(t) ∗ g(t) = aℜ{(a/2)[gl(t) ∗ g∗l (t)]e−i2πf0t}. Settingt =
0 and with g(t) ∗ g∗(−t) =

∫∞
−∞ g(τ)g∗(τ − t) dτ =

∫∞
−∞ |g(τ)|2 dτ we get

∫∞
−∞ g2(τ) dτ =

a2

2
ℜ{gl(t) ∗ g∗l (t)|t=0} = a2

2

∫∞
−∞ |g(τ)|2 dτ , which completes the proof. 2

Theorem 10 (Product of Lowpass Signal with Cosine Function)For any signal u(t) with
Fourier transformU(f) satisfyingU(f) = 0 for f > fc and for an arbitrary signal frequency
fc ∈ R+ we have the equivalent baseband transform pair

u(t) cos(2πf0t+ ϕ)
P,B←→ u(t) eiϕ (D.11)

Proof: Insertings(t) = u(t) cos(2πf0t+ϕ) into the right hand side of (D.1), and applying (C.2)
yieldssl(t) = u(t)[cos(2πf0t + ϕ) + i sin(2πf0t + ϕ)] e−i2πf0t = u(t) ei(2πf0t+ϕ) e−i2πf0t, which
simplifies to the statement. 2
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Theorem 11 (Product of Lowpass Signal with Passband Signal)For signalsu(t) andp(t) with
Fourier transformsU(f) andP (f) respectively, for which a frequencyfl ∈ R+ exists such that
U(f) = 0 for |f | > fl, andP (f) = 0 for |f | < fl, we have the equivalent lowpass transform pair

u(t) p(t)
P,B←→ u(t) pl(t) (D.12)

Proof: Insertings(t) = u(t) p(t) into the right hand side of (D.1), and applying (C.1) yields
sl(t) = u(t)[p(t) + i {p(t)}] e−i2πf0t = u(t) pl(t), which is equivalent to the statement.

2

General Product A simplification as provided by the above theorems could not be found for the
product of general signals, hence for generic signalss(t) andg(t) we must write

g(t)s(t)
P,B←→ 1

a
[g(t)s(t) + i {g(t)s(t)}]e−i2πf0t. (D.13)

Stochastic Correlation Functions The connection between the correlation functions
E {g(t)s(t+ τ)} and E {g∗l (t)sl(t+ τ)} is intricate in general and cannot be expressed in
such a simple way as e.g. the deterministic correlation, see(D.8).

Constant Factor Inspecting the expressions (D.7), (D.8), (D.9), and (D.10), we observe that no
value fora can eliminate the prefixed factors. However, if we chosea = 1, the only appearing
factor is1/2, and moreover the smallest number of prefixed factors is obtained. Thus we prefer the
equivalent baseband transform introduced in [49] over thatin [39]. To conserve the signal energy
under complex baseband transformation,a =

√
2 would be the proper choice.



E. Chi-Square Distribution of Complex Random Variables

The sum of the squared magnitude of independent Gaussian random variablesXn, with identical
varianceσ2 and possibly different meansmn,

Y =
N∑

n=1

|Xn|2,

is chi-square distributed. The corresponding PDF for real-valued random variables,Xn ∈ R, is
given in [49] by

PY(y) =
1

2σ2

( y

s2

)N−2
4
e−

s2+y

2σ2 IN/2−1

(√
y
s

σ2

)

, (E.1)

wheres2 =
∑N

n=1m
2
n and Iα(x) is theα th-order modified Bessel function of the first kind. This

distribution is valid fors 6= 0 and is denoted the non-central chi-square distribution. The mean
value ofY is E {Y} = Nσ2 + s2, the variance isσ2

y = 2Nσ4 + 4σ2s2.
For zero-mean random variables, i.e., formn = 0, the variabley is characterized by a central

chi-square distribution [49] with the PDF

PY(y) =
1

σN2
N
2 Γ
(
N
2

)y
N
2
−1e−

y

2σ2 , (E.2)

and has the mean valueE {Y} = Nσ2 and varianceσ2
y = 2Nσ4.

The generalization to circular distributed complex randomvariablesXi ∈ C, with statistically
independent real and imaginary partℜ{Xn} andℑ{Xn}with varianceσ2 each and complex means
mn ∈ C, is straightforward and based on the observation that

Y =
N∑

n=1

|Xn|2 =
N∑

n=1

(ℜ{Xn})2 +
N∑

n=1

(ℑ{Xn})2

is composed of2N instead ofN sums. Hence the PDF of a sum of complex random variables,Y,
is given by the non-central chi-square distribution

PY(y) =
1

2σ2

( y

s2

)N−1
2

e−
s2+y

2σ2 IN−1

(√
y
s

σ2

)

, (E.3)

with s2 =
∑N

n=1 |mn|2. The mean value ofY is E {Y} = 2Nσ2 + s2, and the variance isσ2
y =

4Nσ4 + 4σ2s2.
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The generalization of the central chi-square distribution(E.2) to complex random variables is
obtained in the same way through substitutingN by 2N such that

PY(y) =
1

σ2N 2N Γ (N)
yN−1e−

y

2σ2 . (E.4)

The mean value isE {Y} = 2Nσ2 and the variance isσ2
y = 4Nσ4.



F. Response of a Correlator to a Cosine Signal

We assume a correlation templateb(t) which is multiplied by the received narrowband signal
u(t) =

√
2Pu cos(2πfIt + ϕ0). This product is integrated over the interval[0, TI ] and denoted as

ρu,b, i.e.,

ρu,b =

∫ TI

0

u(t)b(t) dt. (F.1)

The template signalb(t) is a real valued passband signal with energyEr. The spectrum ofb(t) is
limited to the frequency interval[f0−B/2, f0+B/2], with the center frequencyf0. The frequency,
fI , of the narrowband signalu(t) lies within the spectrum ofb(t), i.e.,u(t) represents an inband
interference.

In the sequel, we derive a statistical characterization ofρu,b on the basis of the statistical prop-
erties of the templateb(t) and the phaseϕ0. For the sake of simplicity we define the normalized
template signal ¯b(t) := b(t)/

√

Er/(2B), having the energy‖b̄(t)‖2 = 2B. Thus, the two-sided
energy spectral density of̄b(t) is unity. The Fourier transform of̄b(t) which considers only the
integration interval[0, TI ] is

B̄(f) :=

∫ TI

0

b̄(t)e−i2πft dt.

This integral over the random received pulse shape weightedwith an exponential function can
be approximated by the sum of many statistically independent random variables. From this con-
sideration and the central limit theorem it follows thatB̄(f) is for any f a complex Gaus-
sian distributed random variable. As the real and imaginaryparts of the complex function
cos(2πf0t) − i sin(2πf0t) = e−i2πf0t are orthogonal, it follows that the imaginary and the real
part ofB̄(f) are statistically independent. Remember thatb̄(t) is assumed to be bandlimited to the
frequency interval[f0−B/2, f0 +B/2]. The spectrum̄B(f), however, is not bandlimited because
the considered interval[0, TI ] represents a limitation on the time axis. For practical bandwidthsB
on the order of1 GHz and integration durationsTI on the order of several tens of a ns, the time
bandwidth productTIB ≫ 1. Hence, we can assume by approximation that the spectrumB̄(f) is
nonzero only forf ∈ [f0 −B/2, f0 +B/2].

The energy ofB̄(f) is identical to the fraction of the energy ofb̄(t) that falls into the interval
[0, TI ], i.e.,

∫ ∞

−∞
|B̄(f)|2 df =

∫ TI

0

|b̄(t)|2 dt = 2B η(TI). (F.2)

The definition ofη(TI) is given in (3.69). Note that the period∆T is the duration of the support
of b̄(t). We assume further that for an integration interval shorterthan the absolute channel delay
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spreadτc, the number of echoes that fall into the integration interval is large enough so that̄B(f)
can still be assumed to be Gaussian distributed for anyf ∈ [f0 −B/2, f0 +B/2].

For simplicity, we assume that within this frequency interval, the variance ofB̄(f), i.e.,
E
{
|B̄(f)|2

}
does not depend onf . We thus obtain

∫ f0+B/2

f0−B/2
|B̄(f)|2 df = E

{
∫ f0+B/2

f0−B/2
|B̄(f)|2 df

}

=

∫ f0+B/2

f0−B/2
E
{
|B̄(f)|2

}
df

= 2BE
{
|B̄(f)|2

}
.

(F.3)

On the other hand, with (F.2), we have
∫ f0+B/2

f0−B/2
|B̄(f)|2 df = 2Bη(TI). (F.4)

This implies thatE
{
|B̄(f)|2

}
= η(TI). Thus, it follows that

ℜ
{
B̄(f)

}
,ℑ
{
B̄(f)

}
∼ N (0, η(TI)/2). (F.5)

We denote the complex baseband transform ofB̄(f) as B̄l(f), with real and imaginary part
B̄r,l(f) and B̄i,l(f), respectively. From the definition of the equivalent baseband transform in
(D.3) with a = 1 it follows that B̄r,l(f) = 1

2
[1 + sgn(f + f0)]ℜ

{
B̄(f + f0)

}
and thatB̄i,l(f) =

1
2
[1 + sgn(f + f0)]ℑ

{
B̄(f + f0)

}
. Both components,̄Br,l(f) andB̄i,l(f), are i.i.d. for anyf and

Gaussian distributed [49]. With (F.5) and because the energy of the signal is half the energy of
the equivalent signal in baseband representation, we conclude that the variance of these terms is
2η(TI), hence

B̄i,l(f), B̄r,l(f) ∼ N (0, 2η(TI)). (F.6)

To derive the distribution ofρu,b, we express (F.1) as a function ofB̄(f):

ρu,b =

√

Er
2B

∫ TI

0

u(t)b̄(t) dt

=

√

Er
2B

∫ TI

0

u(t)b̄(t)e−i2πft dt

∣
∣
∣
∣
f=0

=

√

Er
2B

U(f) ∗ B̄(f)
∣
∣
f=0

, (F.7)

with U(f) andB̄(f) being the Fourier transforms ofu(t) andb̄(t), respectively. To computeU(f)
we writeu(t) in the form

u(t) =
√

2Pu [cos(ϕ0) cos(2πfIt)− sin(ϕ0) sin(2πfIt)];

its Fourier transform is

U(f) =
√

2Pu

{
1

2
[δ(f + fI) + δ(f − fI)] cos(ϕ0)−

i

2
[δ(f + fI)− δ(f − fI)] sin(ϕ0)

}

.

(F.8)
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To simplify the derivation we substitutēB(f) by its equivalent lowpass transform:

B̄(f) =
1

2
[B̄l(f − fI) + B̄∗

l (−(f + fI))], (F.9)

see (D.4). Note that for convenience, the frequency shift inthe equivalent baseband transform is
set equal to the frequencyfI of the narrowband interference signalu(t). With (F.8) and (F.9) we
can express (F.7) as

ρu,b =

√

Er
2B

U(f) ∗ B̄(f)
∣
∣
f=0

=

√

PuEr
4B

{
1

2
[B̄l(f − 2fI) + B̄∗

l (−f) + B̄l(f) + B̄∗
l (f − 2fI)] cos(ϕ0)

− i
2
[B̄l(f) + B̄∗

l (−f − 2fI)− B̄l(f − 2fI)− B̄∗
l (−f)] sin(ϕ0)

}

f=0

. (F.10)

The above choice of the frequency shift in the equivalent baseband transform guaranties that the
termsB̄l(f − 2fI) andB̄l(−f − 2fI) are zero forf = 0 and for any choice offI from the signal
frequency band[f0 −B/2, f0 +B/2]. Thus,

ρu,b =

√

PuEr
4B

[
ℜ
{
B̄l(0)

}
cos(ϕ0) + ℑ

{
B̄l(0)

}
sin(ϕ0)

]
. (F.11)

From this we conclude thatρu,b is a weighted sum of two statistically independent Gaussianran-
dom variables and, thus, Gaussian distributed with variance

σ2
ρ = E

{
ρ2
u,b

}

=
PuEr
4B

E
{
B̄2
r,l(0) cos2(ϕ0) + 2B̄r,l(0)B̄i,l(0) cos(ϕ0) sin(ϕ0) + B̄2

i,l(0) sin2(ϕ0)
}

=
PuEr
4B

[
E
{
B̄2
r,l(0)

}
cos2(ϕ0) + E

{
B̄2
i,l(0)

}
sin2(ϕ0)

]

=
PuEr
4B

[
2η(TI) cos2(ϕ0) + 2η(TI) sin2(ϕ0)

]

=
PuErη(TI)

2B
. (F.12)

In this derivation we used the statistical independence of the random variables̄Br,l andB̄i,l as well
as (F.6). With (F.12) and sinceρu,b is Gaussian distributed,ρu,b is characterized by

ρu,b ∼ N
(

0,
PuEr η(TI)

2B

)

. (F.13)

This result is confirmed by simulation. Note that the realization ofρu,b is a deterministic function of
the current channel realizationb(t) and the phaseϕ0 of the interference signalu(t). The variance
of ρu,b is the product of the one-sided energy spectral densityEr/B of the templateb(t), the
captured energy ratioη(TI), and 1

2
of the interference powerPu. The factor1

2
appears because

the interference signalu(t) in (F.1) which is a sine function, is orthogonal to half of thesignal
components ofb(t) that lie on the spectral line with frequencyfI .



G. Theorems from Number Theory

The following theorems are derived by the author; they should be available in possible, another
form in the group theory literature, e.g., [47].

Theorem 12 For any pair of relative prime numbersp, q ∈ N there is exactly one elementδ in the
set

A :=

{

a ∈ N0

∣
∣
∣
∣
∃
b∈Z

ap = bq + 1

}

that satisfies

0 < δ < q. (G.1)

Furthermoreδ andq are relatively prime.

Proof: With the setQ := {x < q|x ∈ N0}, the expression

∀
δ∈Q

∃
b∈Z

d∈Q
δp = bq + d (G.2)

is always true asδp ∈ N0, and sincebq + d can assume any natural number. Now we assume, by
hypothesis, that there exist two different numbersδ, δ′ ∈ Q satisfying

δp = bq + d (G.3)

andδ′p = b′q + d, respectively, for a fixedd ∈ Q and arbitraryb, b′ ∈ Z. If this hypothesis was
true, it would follow that(δ−δ′)p = (b−b′)q. However, asp andq are relative prime, the equation
(δ − δ′)p = (b − b′)q is satisfied only if(δ − δ′) is a multiple ofq, which is in contradiction with
the assumption thatδ, δ′ ∈ Q. Hence, the above hypothesis is wrong and we conclude that for any
d ∈ Q, (G.3) is satisfied for at most one elementδ ∈ Q. From (G.2), we infer that for anyδ ∈ Q
there exists exactly oned ∈ Q; this implies that exactly oneδ ∈ Q must exist for whichd = 1;
this is equivalent to the first statement of Theorem 12.

Furthermore it must be shown thatq and theδ which satisfies (G.3) ford = 1 are relative
prime. We show this by assuming the opposite, namely thatδ andq are not relative prime, i.e., that
gcd(δ, q) = g > 1, i.e., thatδ = gδ′′ andq = gq′′. Inserting these products forδ andq into the
equationδp = bq+ 1 yields,δ′′gp = bq′′g+ 1, this is equivalent toδ′′p = bq′′ + 1/g. This equation
has no solution because the term1/g /∈ Z. Hence the assumption made thatq andδ are not relative
prime, results in a contradiction, which proves thatq andδ are in fact relative prime. 2
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Theorem 13 For any pair of relative prime numbersp, q ∈ N ands ∈ Z, the set

A(s) :=

{

a ∈ Z

∣
∣
∣
∣
∃
b∈Z

ap = bq + s

}

(G.4)

is equivalent to
A(s) = {kq + sδ |k ∈ Z} ,

with δ ∈ N0, 0 ≤ δ < q andgcd(δ, q) = 1. An equivalent representation of this is

A(s) =
{

aq + d(s)
∣
∣
∣a ∈ Z, 0 ≤ d(s) < q, d(s) ∈ N0

}

. (G.5)

A specification of the functiond(s) is not needed and is therefore skipped.

Proof: With bq + s = (b + ⌊s/q⌋)q + (s mod q), settingc := b + ⌊s/q⌋ andd := s mod q,
(G.4) can be reformulated as

A(s) :=

{

a ∈ Z

∣
∣
∣
∣
∃
c∈Z

ap = cq + d

}

, (G.6)

with d ∈ N and0 < d < q. The numbersa ∈ Z that satisfy ∃
c∈N0

ap = cq + d can be expressed as

a linear combination of the numbersȧ ∈ Z satisfying the homogenous expression∃
ċ∈Z

ȧp = ċq and

the numbers̈a ∈ N0 satisfying the inhomogeneous expression∃
c̈∈N0

äp = c̈q + 1, i.e.,a = nȧ+ dä,

with n ∈ Z. Hence, for anyn ∈ Z,

A(s) = {kȧ+ dä |k ∈ Z} . (G.7)

The solutionȧ of the homogeneous equation∃
ċ∈N0

ȧp = ċq is periodic with periodq. This follows

because iḟa satisfies the expression∃
ċ∈N0

ȧp = ċq thenȧ + q is also a solution of this expression.

The solution̈a of the inhomogeneous expression is also periodic with period q. This is because the
sum of the solutions̈a andȧ is again a solution of the inhomogeneous expression and because the
solutionȧ is periodic with periodq. From this property we get the general solution by putting the
lowest nonzero solution,

ȧ = inf

{

a ∈ N

∣
∣
∣
∣
∃

c∈N0

ap = cq

}

= q,

for the homogeneous equation and the lowest nonzero solution,

ä = inf

{

a ∈ N

∣
∣
∣
∣
∃

c∈N0

ap = cq + 1

}

=: δ,

for the inhomogeneous equation into (G.7). With Theorem 12,stating that0 < ä < q and
gcd(ä, q) = 1, the theorem is proved. 2

Theorem 14 Given the numbersl 6= r, with l, r ∈ Z and |l − r| < q, a pair of relative prime
numbersp, q ∈ N, then the sets

A(d) :=

{

a ∈ Z

∣
∣
∣
∣
∃
b∈Z

ap = bq + d

}

, d ∈ Z, (G.8)

satisfy
A(l) ∩ A(r) = {}. (G.9)
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Proof: According to Theorem 13,

A(d) = {kq + dδ|k ∈ Z} ,

with 0 < δ < q andgcd(δ, q) = 1. Thus, (G.9) is satisfied iff

¬ ∃
l 6=r

|l−r|<q
m,n∈Z

nq + lδ = mq + rδ. (G.10)

Without loss of generality it can be assumed thatr < l. Definingv := l − r andn′ := m − n,
(G.10) is equivalent to

¬ ∃
n′∈Z

v∈N
v<q

n′q = vδ,

this is always satisfied, given the assumption thatδ < q andgcd(δ, q) = 1, because the productvδ
does not contain the factorq. 2
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As in (5.13) and (5.14), let

Ki,j =

L2,j⋃

l=L1,j

Ki,j(l), i 6= j.

and

Ki,j(l) =

{

ki ∈ Z

∣
∣
∣
∣
∃

kj∈Z

kiQi = kjQj + l

}

, i 6= j,

with Qi, Qj ∈ N relative prime and with0 ≤ l < Qj. Then the following expressions can be
shown to be equivalent:

(ki ∈ Ki,j) ∧ (ki ∈ Ki,j′)

ki ∈
L2,j⋃

l=L1,j

Ki,j(l) ∩
L2,j′⋃

l′=L1,j′

Ki,j′(l′)

ki ∈
L2,j⋃

l=L1,j

L2,j′⋃

l′=L1,j′

Ki,j(l) ∩ Ki,j′(l′). (H.1)

Using Theorem 14 in Appendix G, which states thatKi,j(l) ∩ Ki,j(r) = {} for i, j ∈ M,
0 ≤ l, r < Qj, andl 6= r, it can be shown that the intersection termsKi,j(l) ∩ Ki,j′(l′) in (H.1) are
disjoint, i.e., that[Ki,j(l)∩Ki,j′(l′)]∩ [Ki,j(l)∩Ki,j′(l′′)] = {} for l′ 6= l′′. This property allows us
to express (5.33) as

P [(ki ∈ Ki,j) ∧ (ki ∈ Ki,j′)] = P



ki ∈
L2,j⋃

l=L1,j

L2,j′⋃

l′=L1,j′

Ki,j(l) ∩ Ki,j′(l′)





=

L2,j∑

l=L1,j

L2,j′∑

l′=L1,j′

P (ki ∈ Ki,j(l) ∩ Ki,j′(l′)). (H.2)

According to (G.5) in Theorem 13,Ki,j(l) can be expressed as

Ki,j(l) = {nQj + δi,j(l) |n ∈ Z, δi,j(l) ∈ N0, 0 ≤ δi,j(l) < Qj } , i 6= j, (H.3)
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whereδi,j(l) depends onQi, Qj, and l. This expression is applied two times in the following
derivation:

Ki,j(l) ∩ Ki,j′(l′) =

{

ki ∈ Z

∣
∣
∣
∣
∃

kj ,kj′∈Z

kiQi = kjQj + l = kj′Qj′ + l′
}

=

{

ki ∈ Z

∣
∣
∣
∣
∃

kj ,kj′∈Z

(kiQi = kjQj + l)

∧ (kjQj = Kj′Qj′ + l′ − l)
}

=

{

ki ∈ Z

∣
∣
∣
∣
∃

kj ,n∈Z

(kiQi = kjQj + l)

∧ (kj = nQj′ + δj,j′(l
′ − l)

}

=

{

ki ∈ Z

∣
∣
∣
∣
∃
n∈Z

kiQi = nQjQj′ +Qjδj,j′(l
′ − l) + l

}

= {aQjQj′ + d | a ∈ Z, d ∈ N0, 0 ≤ d < QjQj′ } . (H.4)

Note thatd is a function ofl, l′, Qj, andQj′ . We observe that everyQiQj-th integer number
is contained in the setKi,j(l) ∩ Ki,j′(l′), hence, under the assumption thatk ∈ Z is uniformly
distributed we get

P (ki ∈ Ki,j(l) ∩ Ki,j′(l′)) =
1

QjQj′
. (H.5)

Inserting (H.5) into (H.2) yields

P [(ki ∈ Ki,j) ∧ (ki ∈ Ki,j′)] =

L2,j∑

l=L1,j

L2,j′∑

l′=L1,j′

1

QjQj′
=

(L2,j − L1,j + 1)(L2,j′ − L1,j′ + 1)

QjQj′
.

(H.6)

comparing this result with (5.18) shows that

P [(ki ∈ Ki,j) ∧ (ki ∈ Ki,j′)] = P (ki ∈ Ki,j)P (ki ∈ Ki,j′)

and therefore proves the statistical independence of the eventski ∈ Ki,j andki ∈ Ki,j′ .
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