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Kurzfassung

Das Ziel dieser vorliegenden Arbeit ist es, eine Untersuchung wichtiger flavor verletzender
neutraler Stréme und lepton flavor verletzender Zerfille im Littlest Higgs Modell ohne T-
Paritat und mit T-Paritat vorzustellen.

Nach einer kurzen Einfiihrung in das Standardmodell der Teilchenphysik diskutieren wir
eine damit verbundene, wohlbekannte Schwierigkeit: das little hierarchy problem. Um dieses
Problem zu beheben, stellen wir die grundlegenden Konzepte von Little Higgs Modellen vor,
welche urspriinglich aus Ideen zur Dekonstruktion von Eichfeldtheorien hervorgegangen sind.
Anschlielend konzentrieren wir uns auf die 6konomischste Umsetzung dieser Idee und fithren
deshalb das Littlest Higgs Modell ohne T-Paritdt ein. Um seine Auswirkungen auf flavor
verletzende neutrale Strome zu untersuchen, leiten wir zunéchst die Feynman-Regeln fiir das
Littlest Higgs Modell ab, wobei wir Korrekturen bis zur Ordnung v?/f? beriicksichtigen.
Mit Hilfe dieser Feynman-Regeln ist es uns moglich die Funktionen X und Y zu berechnen,

Ovvund By g — ptu~

welche fiir die Beschreibung der seltenen Zerfille K™ — ntvi, K, — w
bendétigt werden.

Aufgrund von elektroschwachen Préazisionsmessungen konnte jedoch bald gezeigt werden,
dass die Skala fiir neue Physik f in diesem Modell in der GroBenordnung f ~ 2 — 3TeV
liegen muss und damit das fine-tuning Problem wieder eingefiihrt wird. Aus diesem Grund
erweitern wir unsere Analyse auf ein realistischeres Modell, das Littlest Higgs Modell mit
T-Paritat, in welchem die Skala f auf f > 500 GeV gesenkt werden kann. Nachdem wir fiir
dieses Modell die Feynman-Regeln abgeleitet haben, ermitteln wir erneut die Auswirkung auf
die Funktionen X;, Y; und Z;, welche fiir die Ermittlung der flavor verletzenden neutralen
Stréme K+ — ntvw, K — 7%, By g — pTu~ und Kp — 7% ¢~ erforderlich sind. Ferner
prasentieren wir fiir die oben erwdhnten Zerfille eine numerische Analyse, wobei wir uns
auf nicht-minimal flavor verletzende Beitrdge konzentrieren. Schliellich erweitern wir unsere
Analyse noch auf die Betrachtung lepton flavor verletzender Prozesse. Nach einer expliziten
Berechnung mehrerer Prozesse wie {; — £;y, £; — ({3 f; und 7 — w/; prasentieren wir eine
numerische Analyse in verschiedenen Vergleichsszenarien. Dabei widmen wir uns vor allem
Korrelationen zwischen verschiedenen Verzweigungsverhéltnissen und beobachten Korrela-
tionsmuster im Littlest Higgs Model mit T-Paritéat, welche sich grundlegend von denen des
minimal supersymmetrischen Standardmodells unterscheiden. Wir beschlielen diese Arbeit

mit den wichtigsten Aussagen und geben einen kurzen Ausblick.






Abstract

Throughout this work we study several prominent flavor changing neutral current (FCNC)
processes and lepton flavor violating (LFV) decays in the Littlest Higgs model without T-
parity and with T-parity.

Beginning with a brief introduction to the Standard Model (SM) we discuss a well-known
problem associated to it: the little hierarchy problem. In order to ameliorate this problem we
present the basic concepts of Little Higgs models, which were originally inspired by the ideas
of deconstructed gauge field theories. Subsequently we concentrate on the most economical
implementation of this idea and thus present the Littlest Higgs without T-parity. In order to
analyze its impact on FCNC processes we first derive the Feynman rules for the LH model,
including the v?/f? corrections. Having at hand the Feynman rules for this model the short
distance functions X and Y are calculated, which are required to describe the rare decays

v and Bgg — ptu~.

Kt —wntvp, K —

However, electroweak precision tests soon showed that the new physics scale f in this
model should be of the order 2 — 3 TeV, thus re-introducing the fine-tuning problem. There-
fore we extend our analysis to a more realistic model, the Littlest Higgs model with T-parity,
in which the scale f can be lowered down to f > 500 GeV. After having derived the Feynman
rules for this model we determine again the impact on the short distance functions X;, Y; and
Z;, 1 = s,d, K, which are relevant for the calculation of the FCNC processes like K™ — 7T vi,
K — 7%, Bg g — ptu~ and K — 7°¢T¢~. This is followed by a numerical analysis of the
decays mentioned above, focusing on effects from non-minimal flavor violating contributions.
Finally we extend our analysis by considering LFV processes. After the explicit calculation
of several processes, like ¢; — £;v, {; — £l .0; and T — 7/; we present a numerical analysis
in several benchmark scenarios. In doing so we turn our attention to correlations between
branching ratios of several decays and observe correlation patterns in the LHT that are com-
pletely different from those in the Minimal Supersymmetric Standard Model. We conclude

this work with the main messages and give a brief outlook.






Contents

1 Introduction and Motivation

2 The Standard Model

2.1 Review of the Standard Model . . . . ... .. .. ... ... .........
2.1.1  Quantum Chromodynamics . . . . . . ... .. .. .. ... ......
2.1.2  The Electroweak Sector of the Standard Model . . . . . ... ... ..
2.1.3 The Higgs Sector and Spontaneous Symmetry Breaking in the Standard
Model . . . . . . . e

2.1.4 Yukawa Sector . . . . . . . . . ...

2.2 Why Go Beyond the Standard Model . . . . . . ... ... ... ... .....
2.2.1 The Standard Model as an Effective Field Theory . . ... ... ...
2.2.2 Unitarity . . . . . . . . e
2.2.3 Naturalness and Hierarchy Problem . . .. ... ... ... ......
2.2.4  Supersymmetry . . . . ... ... e

2.2.5 Extra Dimensions . . . . . . . . . ..o

3 From Extra Dimensions to the Little Higgs
3.1 Basics of Deconstruction . . . . . . . ... L oL o
3.1.1 Moose-Diagrams and Deconstruction . . . . . . .. ... ... ... ..
3.1.2 Symmetry Breaking . . . .. ... ... ... ... ..
3.1.3 Relation to Lattice Gauge Theory . . . .. .. .. .. ... ......
3.1.4 Non-Renormalizability and Chiral Perturbation Theory . . ... ...
3.1.5 The Minimal Moose Model . . . . .. ... ... ... ... ......

4 The Littlest Higgs Model without T-Parity
4.1 The Structure of the Littlest Higgs Model . . . . . . . . ... ... ... ...
4.1.1 Symmetry Breaking Pattern . . . . . . ... .. .. ... ........
4.1.2 The Gauge Boson Sector . . . .. ... .. ... ... ... .....
4.1.3 Fermions and Their Interactions . . . . .. . ... ... ... .....

4.1.4 The Effective Higgs Potential and Electroweak Symmetry Breaking . .

11

S ot ot W

11
12
12
13
15
16
16

17
17
17
19
22
23
24

27
27
28
31
35



4.2 Feynman Rules in the Littlest Higgs Model . . . . .. .. .. ... .. .... 40

4.3 Rare Decays in the Littlest Higgs Model . . . . . . . ... .. ... ... ... 41
431 X andY Functions . . ... ... .. ... .. 41
4.3.2 The Issue of Leftover Singularities . . . . . .. ... ... ... .... 45

4.4 Numerical Analysis . . . . . . . . ... 48

The Littlest Higgs Model with T-Parity 53

5.1 Introducing T-parity . . . . . . . . . . .. .. 54

5.2 The Littlest Higgs Model with T-Parity . . . .. ... ... .. ... ..... 56
5.2.1 Gauge and Scalar Sector . . . . . . ... .. ... 56
5.2.2 The Fermion Sector . . . . . .. . .. .. ... ... ... .. 58
5.2.3 Flavor Mixing in the Mirror Sector . . . . . . . . . .. ... ...... 61
5.2.4 The Parameters of the LHT Model . . . . . . .. ... ... .. .... 63

Phenomenology of Rare Decays in the LHT Model 65

6.1 Rare K and B Decays beyond MFV . . . . .. .. ... ... L. 65
6.1.1 Preliminaries . . . . . . . . . . . 65
6.1.2 X, Y, Z;functions. . . . . . ... ... 66

6.2 Calculating Rare and CP-violating Decays . . . . . . . . ... ... ...... 66
6.2.1 Calculation in Unitary and 't Hooft-Feynman Gauge . . . . . . .. .. 67
6.2.2 Final Results for the T-odd sector . . . . . . .. .. ... ... .... 69

6.3 Important Rare Decays . . . . . .. . ... .. .. o 71
631 Kt —>atwvoand K; — 7% . . . . . 71
6.3.2 Bgg— U™ o 72
6.3.3 Kp — a0t . 73

6.4 Numerical Impact of the LHT on Rare Decays . . . ... ... .. ...... 75
6.4.1 Preliminaries and Benchmark Scenarios . . . . .. .. ... ... ... 75
6.4.2 Numerical Analysis . . . . . . . . . . . ... ... 78

6.5 Signatures of the LHT in Lepton Flavor Violating Decays . . . . .. ... .. 83
6.5.1 Ly — Ly oo 83
6.5.2 Semileptonic 7 Decays . . . . . . .. ... o o 85
6.5.3 pu~ —eete, 7T —mpuputpTand T —eTete L. L 86
6.5.4 p—e Conversionin Nuclei . . .. ... .. ... ... ... ...... 88
6.5.6 7 —peteand T —eTptuT ... 89
656 (0= 2)i « o o o 91

6.6 Numerical Impact of the LHT on Lepton Flavor Violating Decays . . . . . . . 93
6.6.1 Preliminaries and Benchmark Scenarios . . . . . . ... .. ... ... 93
6.6.2 Upper Bounds for LFV Processes . . . . . . ... ... ... ...... 98

6.6.3 Comparing the LHT to Supersymmetry . . . . . . .. ... ... ... 99



7 Summary and Outlook

A Relevant Formulae and Feynman Rules
A.1 Classes of Diagrams in the LH Model . . . . . . .. ..
A.2 Feynman Rules in the LHT Model . . .. .. ... ..
A.2.1 Fermion—-Goldstone Boson Couplings . . . . . .
A.2.2 Triple Gauge Boson—Goldstone Boson Couplings
A.3 The FunctionsU; and V; . . . . . . . . ... ... ...
A.4 Functions Relevant for Rare Decays . . . . ... ...

A.5 Functions Relevant for Lepton Flavor Violating Decays

Bibliography

101

105
105
109
109
110
112
113
115

117






Chapter 1

Introduction and Motivation

Particle physics and cosmology are the two fundamental fields in physics whose aims consist
in explaining the origin of our universe. While cosmology tries to describe the evolution of
the universe to its present state, particle physics is concerned with the understanding of the
interactions of its basic constituents. During the last decades much progress has been made
in establishing an understanding of these fundamental constituents. This finally led to the
development of the Standard Model (SM) of particle physics.

The SM itself is a quantum field theory which exhibits a broken SU(3)c ®@SU(2). U (1)y
gauge symmetry and therewith is able to describe the strong, weak and electromagnetic forces.
So far it has been extremely successful in explaining most experimental results and indeed
there has been no confirmed experimental evidence that contradicts its predictions. In spite
of its tremendous success and its remarkable agreement with experiment, the SM suffers from
a number of limitations and is therefore considered an incomplete theory.

One of the most convincing reasons why the SM is only an effective field theory is the fact
that it does not include the fourth elementary interaction, gravity, and so far all attempts
to construct a theory of quantum gravitation have resulted in non-renormalizable theories.
Apart from this there are many other theoretical questions that are not answered by the SM,
e.g. it fails to account for the baryon asymmetry of the universe. Also, it does not explain
why the observed pattern of masses of both quarks and leptons shows such a large hierarchy.
A further shortcoming concerns the Higgs particle, which has not been found so far and thus
leaves the mechanism of electroweak symmetry breaking (EWSB) unverified. Since the mass of
the Higgs particle is not protected by any symmetry, radiative corrections yield contributions
to the Higgs mass which are quadratically dependent on the cut-off of the theory. Therefore
some unnatural adjustment between the bare mass and the one-loop corrections is needed to
obtain a Higgs mass of the order of the weak scale.

To ameliorate this fine-tuning problem, particle theorists have been led to develop exten-
sions of the SM, of which the most promising candidates are supersymmetric theories, grand

unified theories or theories with extra space-time dimensions. Unfortunately, none of these
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2 CHAPTER 1: INTRODUCTION AND MOTIVATION

possible scenarios could be either confirmed or ruled out so far. However, the Large Hadron
Collider (LHC) will be able to reach energies that are large enough to prove or disprove several

extensions of the SM.

In [1, 2, 3] a new natural scheme for electroweak symmetry breaking has been proposed
by Arkani-Hamed et al., in which the little hierarchy problem is ameliorated. In these Little
Higgs models the SM Higgs is protected by an approximate global symmetry and can thus be
realized as a pseudo-Goldstone boson. Starting point of all these models is a non-linear sigma
model G/H, where the global symmetry G is spontaneously broken down to its subgroup
H and contains a set of gauge symmetries. In this process of symmetry breaking a number
of Goldstone bosons arise, where one of them can be identified with the SM Higgs boson.
However, the gauge groups are embedded in such a way that G is explicitly broken only in
the presence of all gauge couplings and any diagram which contributes to the Higgs mass has
to involve all these couplings. This new mechanism, known as collective symmetry breaking,
prevents the Higgs mass from acquiring quadratic divergences at the one-loop level. In a
specific model, the Littlest Higgs model without T-parity (LH) [4], the Higgs boson results
from an approximate global SU(5) symmetry, which is broken down to an SO(5). Due to the
existence of new heavy vector bosons Wi, Zy and Ay with a mass f = O(1TeV) the number
of gauge bosons is doubled compared to the SM, while the fermion sector is enlarged only
by one additional heavy top quark (7') which cancels the quadratic divergences coming from
the usual SM top quark. The details of this model have been elaborated in [5, 6, 7], whereas
constraints on the parameters of the Littlest Higgs model coming from direct searches and
electroweak precision tests (EWPT) have been discussed in [8]. However, in addition to the
constraints from EWPT, physics beyond the SM can also be detected in indirect searches via
flavor changing neutral currents (FCNC), i.e. by processes that only occur at the loop level in
the SM. Thus, when looking for physics beyond the SM, FCNC offer an interesting alternative
to the direct searches at colliders. In this thesis, we dedicate ourselves to the impact of the
Littlest Higgs model on FCNC.

After the introduction of the Littlest Higgs model it was soon realized that EWPT require
the relevant scale f of new physics to be at least 2 — 3 TeV, which would re-introduce a
considerable fine-tuning. Since this strong constraint is due to the violation of the custodial
SU(2) symmetry at tree-level, physicists started to construct a more attractive model in which
a discrete symmetry forbids tree-level corrections to electroweak observables. Such a discrete
symmetry was introduced into the Littlest Higgs model by Cheng and Low [9] leading to the
Littlest Higgs model with T-parity (LHT), where the electroweak precision constraints [10]
are weakened. In this model, the new gauge bosons, fermions and scalars are sufficiently light
to be discovered at LHC and T-parity also provides a dark matter candidate [11]. Moreover,
the flavor structure of the LHT model is richer than the one of the Standard Model (SM),
mainly due to the presence of three doublets of mirror quarks as well as mirror leptons and

their weak interactions with the ordinary quarks and leptons.
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In first FCNC analyses the authors of [6, 7, 12, 13, 14] discussed the impact of the LH model
without T-parity on particle-antiparticle mixing and other FCNC processes, like K — 7v,
KT — 7tvp and B — Xyv. It turns out that in the LH model the effects coming from
new particles are rather small since the scale f is required to be above 2 — 3TeV in order
to satisfy the EWPT, as already mentioned before. Moreover, due to these small effects it
is very difficult to distinguish the LH model without T-parity from the SM. As pointed out
in [7] one should also be aware of the fact that the LH model is an effective theory with an
unspecified ultraviolet (UV) completion which is reflected in a number of left-over logarithmic

divergences.

In the LHT model, AF = 2 and AF = 1 FCNC processes, like particle-antiparticle
mixings, B — Xyy, B — X /T¢~ and rare K and B decays have been discussed in [15, 16]
and [17], respectively. In this model, which is not stringently constrained by EWPT and
contains new flavor and CP-violating interactions, large departures from the SM predictions
are found, in particular for CP-violating observables that are strongly suppressed in the SM.
These deviations from the SM can first of all be seen in the branching ratio for K; — 7%
and the CP asymmetry Sy, in the By — ¢ decay, but also in Br(K; — 7%+¢~) and
Br(K*™ — 7tvw). Smaller, but still significant effects have been found in rare By, decays
and AM; 4. The presence of left-over divergences in AF' = 1 processes, that signals some
sensitivity to the UV completion of the theory, introduces some theoretical uncertainty in
the evaluation of the relevant branching ratios both in the LH model [7] and the LHT model
[17]. On the other hand, AF = 2 processes and the B — Xgy decay are free from these

divergences.

In the LHT model the effects of new particles on lepton flavor violating processes are
expected to be much larger, since the presence of new flavor violating interactions and mirror
leptons with masses of order 1TeV can change the SM expectations up to many orders
of magnitude. While in the SM FCNC processes in the lepton sector, like ¢; — ¢;v and
i~ — e"eTe, are very strongly suppressed due to tiny neutrino masses, these new effects
can bring the relevant branching ratios for lepton flavor violating (LFV) processes close to
the bounds available presently or in the near future. A further aim of this analysis also
consists in finding patterns of LFV in this model and to constrain the mass spectrum of
mirror leptons and the new weak mixing matrix in the lepton sector, Vi, that in addition
to three mixing angles contains three CP-violating phases. Moreover, we have calculated the
(o — e conversion rate in nuclei as well as (g — 2),, that has also been considered in [18, 19].
One of the most important results of the present thesis is the identification of correlations
between various branching ratios that are less parameter dependent and differ significantly
from corresponding correlations in the Minimal Supersymmetric Standard Model (MSSM)
discussed in [20, 21, 22, 23, 24, 25]. The reason for this difference is that the dominance
of the dipole operator in the decays in question present in the MSSM is substituted in the
LHT model by the dominance of Z%penguin and box diagram contributions with the dipole



4 CHAPTER 1: INTRODUCTION AND MOTIVATION

operator playing now a negligible role. Consequently, LF'V processes provide a formidable
possibility to distinguish these two models.

The remainder of this thesis is organized as follows. After a review of the main ingredients
of the SM in Chapter 2 we will briefly summarize the main ideas of dimensional deconstruction
in Chapter 3, which inspired physicists to construct Little Higgs models. Chapter 4 is then
devoted to the introduction of the LH model, in which we also present a short analysis of the
rare decays K, — v, K* — 7w and Bs g — pTp~. Next, in Chapter 5 of this work we
continue with the description of the Littlest Higgs model with T-parity. Finally in Chapter 6
we study the implications of the LHT on rare decays and lepton flavor violating processes like
¢; — Ly with particular attention paid to u — ey, for which a new stringent experimental
upper bound should be available in the coming year. Furthermore we calculate (g —2),. For
all these processes we present a detailed numerical analysis. In Chapter 7 we conclude this

thesis with a list of messages from our analysis and with a brief outlook.



Chapter 2

The Standard Model

The SM is a very successful theory describing the electroweak and strong interactions of quarks
and leptons at energies up to about a few hundred GeV. The theory of strong interactions,
known as Quantum Chromodynamics (QCD) [26], is a non-abelian gauge theory based on an
SU(3)c gauge group, while the standard theory of electroweak interactions is the Glashow-
Weinberg-Salam model relying on an SU(2);, @ U(1)y gauge group. In [27] Glashow originally
proposed how the weak and the electromagnetic interactions can be unified into this gauge
group, and Weinberg and Salam showed [28, 29] how the weak gauge bosons receive a mass

without spoiling the renormalizability of the theory.

2.1 Review of the Standard Model

2.1.1 Quantum Chromodynamics

From experiments we know that quarks possess an internal degree of freedom, called color. To
describe the interactions between quarks and gluons, Gell-Mann et al. chose a local SU(3)¢
symmetry with the gluons sitting in the adjoint representation, which induced them to define

the following covariant derivative
R
Du:8u+lgsGu?, a = 1,...,8 (211)

with A,/2 being the generators of the SU(3)¢ group. Disregarding the strong CP problem

the most general renormalizable kinetic term for the gauge fields reads:
1 a 2
Lqcp = _ZGMVGG , (2.1.2)
with the non-abelian field-strength tensor GY,, given by

GZV = auGZ - al/GZ - gsfachZG,C/' (2.1.3)

5
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In contrast to abelian field-strength tensors, the non-abelian field-strength tensor (2.1.3)
contains both linear and quadratic terms in the gauge fields, such that the theory is non-
trivial even in the absence of matter fields. These self-interactions are an important aspect

of non-abelian gauge theories and are in particular responsible for the asymptotic freedom of

QCD [30].

2.1.2 The Electroweak Sector of the Standard Model

As mentioned before, the standard theory of electroweak interactions is based on the gauge
group SU(2), ®U(1)y. This gauge group has four vector fields, where three of them, denoted
by Wﬁ, are related to the adjoint representation of SU(2)r, and one to the U(1)y, denoted by
B,,. In order to make the Lagrangian invariant under local gauge transformations, the partial

derivative 0, has to be substituted by the covariant derivative D,, i.e.

Oy — D, =0, + Zg%Wﬁ + ig'%Bu, a=1,2,3, (2.1.4)
where T, = 7,/2 and 1Y are the group generators of SU(2);, and U(1)y, and g, ¢’ their
corresponding coupling constants.

In order to allow for parity violation in the electroweak theory we need to embed the left-
and right-handed components of the fermions into different group representations. Motivated
by neutral weak currents, all the left-handed fermions are taken to transform as doublets,
while the right-handed fermions are singlets under SU(2)p.

The fermions appear in three generations: Each generation consists of a neutrino v/, a
charged lepton e} with electric charge Q. = —1, and the up- and down-type quarks u; and d;
with charge @, = 2/3 and Q4 = —1/3. The lepton and quark doublets are given by

€ ©JL V) )
d; a /. s" ), v ).

while the singlets consist of

e}% = Pre’i = (E/R,/J/R,T;%) , (2.1.7)
u}p = Pru't = (ug, cp.th), (2.1.8)
df, = Prd" = (dy, s, bR) , (2.1.9)

where P, g = (1 F+°)/2 are left- and right-handed projectors of the fermion fields and i =
1, ..., 3 denotes the generation index. Additionally, we assign to each of them the hypercharge

Y and weak isospin T3 quantum numbers, which can be found in Table 2.1. The primes at the
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Lepton T3 Q Y Quark T3 Q Y
ve 10 w3
— 1 1 1 1
e, —3 —1 -1 d -3 —3 3

- - - um 0 G
er 0 -1 -2 dr 0o -1 -2

Table 2.1: Weak isospin and hypercharge quantum numbers of the first generation of leptons

and quarks

fermion fields indicate eigenstates of the electroweak interaction, which are not necessarily
identical to the mass eigenstates.
Applying this notation, we can then write down the fermionic part of the Lagrangian

describing massless spinor fields,

3
Lp =) (BPE] + QFilQ} + epilpely + hipuf, + dfi ) . (2.1.10)
i=1

In the limit of vanishing fermion masses one can see from (2.1.10) that the fermionic part of
the Lagrangian has a high degree of symmetry. We can see that this Lagrangian is invariant
under the separate groups of unitary transformations U (3)g X U(3)g X U (3)e X U(3)y x U(3)4,
that is a U(3) symmetry for each of the multiplets EY, Q% e’é, u’é and d/}iz-

Including again the gauge kinetic terms leaves us with the SU(2); ® U(1)y-invariant

Lagrangian, which can be written as

= . Ta < 1ra Y - . Y
L= > [fm“ (Z(% 95 Wi - 9’53u> fr+ fry" (Z(% - g’;&) fR}

fr.fr
1. 1
—ngymﬂ” — ZBWBW, (2.1.11)

where a summation over all left- and right-handed fermion fields f;, and fg is understood. In
contrast to the abelian field-strength tensor B,,,, the non-abelian field-strength tensor Wﬁy

contains both linear and quadratic terms in the gauge fields.

2.1.3 The Higgs Sector and Spontaneous Symmetry Breaking in the Stan-
dard Model

The Lagrangian in (2.1.11) describes massless gauge bosons interacting with massless fermions.
But with gauge fields and fermions being massless the SM is incomplete, since it does not

accommodate the observed non-zero masses of the charged leptons, quarks, and weak gauge
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bosons. However, gauge theories do not allow for massive gauge bosons, since mass terms
of the type miAZAff are not gauge-invariant. A mass term for the fermions of the form
—mff = —m ( frfr+ fr fL) is also forbidden, since left- and right-handed fermion fields

transform according to different representations of the gauge group SU(2)y.

According to these arguments we have to include masses for gauge bosons and fermions in
the theory without violating gauge invariance and without destroying the renormalizability,
which critically depends on the gauge symmetry of the interactions. To fulfill these require-
ments another possibility, denoted as the Higgs mechanism, was introduced, which relies on
the phenomenon of spontaneous symmetry breaking. In this process we introduce an elemen-
tary scalar field ¢, that is coupled to gauge and matter fields. Due to its self-interactions
this scalar field acquires a non-zero vacuum expectation value (vev), which is responsible for
the masses of the gauge and matter fields. This scalar field is also necessary to guarantee

unitarity in a theory with massive vector bosons.

The idea of this mechanism consists in assuming that the classical Lagrangian of a theory
possesses either a global or local symmetry, which, however, is not respected by the vacuum
state. Since the symmetry is not broken explicitly by non-symmetric terms in the Lagrangian,
this is usually denoted as a spontaneously broken symmetry. In the case of the spontaneous
breaking of a (continuous) global symmetry the Goldstone theorem [31] holds and predicts
massless particles, called Goldstone bosons, corresponding to every broken symmetry gen-
erator. However, if the global symmetry of the classical Lagrangian is explicitly broken by
small terms, the broken symmetry generators are not related to massless particles anymore,
but to particles with a small mass. These particles are then denoted as pseudo-Goldstone
bosons. An example for an explicit global symmetry breaking is the chiral symmetry breaking
in QCD with two or three quark flavors due to quark mass terms. In such a scenario the
pseudo-Goldstone bosons, arising from the chiral symmetry breaking, can be identified with

+ 70 and K*, K% KO, ng, respectively. In the case of a broken local symmetry

the pions, m
Goldstone bosons arise as well, however, these Goldstone boson fields can be eliminated from
the theory with the help of gauge transformations. They are “eaten” by the corresponding
gauge fields, which in turn become massive. In the SM this is the way how vector and fermion
fields acquire a mass.

In the particular case of the SM, spontaneous symmetry breaking is achieved by means

of a single complex scalar field ¢ that transforms as a doublet of SU(2)y,

ot P1+ida
¢ = ( #° ) - < ¢>3\-€'¢4 )’ (2.1.12)
V2
with the ¢;, i = 1,2, 3,4 being real. As we will see later the superscript denotes the electric

charge of the corresponding components and thus fixes the hypercharge of ¢ to be 1 according

to (2.1.23). Using (2.1.12) we can now write down the most general renormalizable and
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SU(2)p-invariant Lagrangian for the scalar doublet,

2

L = (D) (D) + 12616 — X (¢l0) (2.1.13)
As before the covariant derivative is given by
Y
Dy — Oy +igTaWy + ig/EBu. (2.1.14)

The Lagrangian (2.1.13) also contains self-interactions between the Higgs fields due to the
potential V (¢)
2
V(9) =—n?(6'6) + (o), (2.1.15)

where A\ and p are two new real parameters. In order to obtain a stable vacuum, the potential
has to be bounded from below so that the quartic coupling A has to be positive. With u? and
A positive the Higgs potential V' (¢) has a minimum at

(¢pTg) = ”—2. (2.1.16)

2\

This ground state corresponds to an infinite number of degenerate minima. In choosing one
of them, the symmetry is spontaneously broken, since the Lagrangian (2.1.13) still respects
the SU(2)r x U(1)y, but the vacuum state does not. Without loss of generality we choose

the vacuum expectation values

(lgil) =0, i=1,2,4, (2.1.17)
2
(lps]) =v = % (2.1.18)

Expanding ¢ around this vacuum and making the substitution
h(xz) = ¢3(x) — v, (2.1.19)

we can re-express the Lagrangian in terms of physical particles. By choosing the expectation
value of the neutral component to be nonzero we ensure that the vacuum is invariant under

U(1)g of QED, and the photon remains massless. This yields

_ ¢ _ L [0
(¢) = (0] ( o ) 0) = 7 ( . ) : (2.1.20)

Ta{®) #0,  Y{(¢) #0, (2.1.21)
both SU(2); and U(1)y are broken, but

Q(¢>=<%+§>(¢>=%<é 8)<2>:0. (2.1.22)

Because
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Thus, the linear combination

Y
Q=Ts+ 3, (2.1.23)

may be identified with the generator of the unbroken residual electromagnetic U(1)g symme-
try. Hence, we expect three gauge bosons to be massive while one remains massless.

To find the masses of the gauge bosons we substitute (2.1.20) into (2.1.13) which contains

/ 2
z‘gT—;W5<¢> n z’%YBM<¢>

1 gWi+gB, g (Wi —iW?) 0
I\ g(W, +iW2) —gW3+ g’B v
1 1
= g’u2(ng’—g/B) +o(gW3+gB <2 ) Wiw (2.1.24)

where

wE = (W' Fiw?) /V2. (2.1.25)

From (2.1.24) we can see that the mass matrix of the neutral fields is off-diagonal in the
(Wg’ , B,) basis and, as expected, one of the mass eigenvalues is zero. We have displayed this
in (2.1.24) where the combination of fields in the second term is orthogonal to that in the

first one. This allows us to define
gWi —g'By

gW2+gB,
/92 +g/2

with the Weinberg angle 6y defined by

Z, = = Wi’ cos Oy — B, sin by,

A, = = Wj’ sin Oy + By, cos Oy, (2.1.26)

/
g cos Oy = g

/92 + g/2 92 + g/2

Therefore (2.1.24) can now be written in terms of the physical mass eigenstates Wf, Z,, and
the photon A, as

sin Oy = (2.1.27)

1
MWW=+ + §M%ZQ + i g (2.1.28)

v

where the masses are given by

1 1
My = 5vg, Mz = v (g +g)"? M, =0, (2.1.29)
and hence
M,
FVZV = cos Oy (2.1.30)
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2.1.4 Yukawa Sector

In the previous subsection we have seen how the Higgs mechanism generates masses for the
electroweak gauge bosons. We can now invoke the same mechanism to give masses to the
various fermions via Yukawa interactions. In order to allow for fermion masses of the up- and
down-type right-handed quark fields, an additional scalar doublet with weak hypercharge —1
is necessary. In the SM this can be achieved by defining the conjugate of the scalar doublet

by
N &0
¢ =imp" = < . ) : (2.1.31)

Following these conventions we can write down the most general renormalizable and gauge-

invariant Lagrangian relating the fermion fields to the scalar doublets,
3 . . e — e~ . e .
Ly == 3 (NIEfoe] + NIQEdul) + NP Qiod) + he.) (2.1.32)
ij=1

where the Yukawa couplings A, ), and X/, are general complex 3 x 3 matrices. As one can
see from Table 2.1, the Yukawa Lagrangian is invariant under SU(2)r @ U(1)y.
As already mentioned in Subsection 2.1.2, the largest group of unitary field transforma-

tions that commutes with the gauge group is U(3) and can be decomposed into

SU3)g, ® SUB)u, @ SUB)p, @ SU3)1, ® SU(3)E,®
UpeU1)rU)y @U(1)pg@U(1)g,-. (2.1.33)

In order to diagonalize the Yukawa matrices we can exploit this symmetry and rotate the
left-handed fermion fields via unitary matrices related to the corresponding symmetry group.

Such a transformation rotates the eigenstates E/LZ and ’LZ as
B UL @l e 2131
j=1 j=1
Similarly the analogous transformations of the right-handed chiral fields read
¢h— > Ulped, wp—> Ulpui, df > U.d}. (2.1.35)
Jj=1 Jj=1

In (2.1.34) and (2.1.35) the different rotation matrices correspond to the symmetry groups in

(2.1.33). According to these rotations the Yukawa matrices then have to transform as
Ae = Ue AU o Au = UurN,UL 5, Aa = Ut NyUJ g, (2.1.36)

which means that either A, and X or ). and )\, can be diagonalized simultaneously. In
e U e d g Y

choosing the first possibility, namely the simultaneous diagonalization of A, and X, we are

wu’
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left with a Yukawa coupling X/, which is neither real nor diagonal. However, we can decompose
Ag In such a way that it can be written as the product of a diagonal, real and non-negative

matrix Dy = Ud7L/\;UC}L r and a unitary matrix V' = Uu,LUCTzL via,
VDg = Uyt NyUl . (2.1.37)

The matrix V in (2.1.37) is the famous Cabibbo-Kobayashi-Maskawa (CKM) matrix, which
describes the mixing between the different quark generation in the SM.

By rotating the fermionic fields as given in (2.1.34) and (2.1.35) we are able to diagonalize
the Yukawa matrices by choosing a different basis, in which the mass matrices are diagonal.
Such a basis is therefore called mass eigenstate basis in contrast to the weak eigenstate basis

and can be denoted by

3 3 3 3
i ij 1 i _ ij i ij  lj
v = E :Ue,LVL’ er = E :UeLeL’ E : uLuL’ L= ZUd,LdL7
3 3
i iy 1y i ij ’J i iy 4
er=> Ulpeh, up=> Ulpuj, dy= E Uy 3. (2.1.38)

In contrast to the lepton sector, where the two components of the isospin doublet feel the
same rotation matrix, v} and d} transform differently under the unitary transformations
(2.1.38), which leads to flavor mixing in the quark sector due to the CKM mixing matrix V.

Finally we can rewrite the Lagrangian (2.1.32) in terms of mass eigenstates (2.1.38), where
the masses of the charged leptons, up- and down-type quarks are related to the diagonal

elements of the Yukawa couplings by

i U i i U i

. v .
m,=—=D% ml=-—=D" m,=—=DY, 2.1.39
e \/5 e u \/5 u d \/5 d ( )

with D., D, and D, being diagonal, real and non-negative.

2.2 Why Go Beyond the Standard Model

2.2.1 The Standard Model as an Effective Field Theory

Despite the fact that the SM is extremely successful in describing the fundamental interactions
of particles and despite the fact that there have been no confirmed experimental results that
contradict its predictions, it suffers from several conceptual problems.

One of the most obvious indications for the incompleteness of the SM is the fact that it
does not include gravity and since the gravitational interactions become strong at the Planck
scale, Mp; ~ 1019 GeV, the SM cannot be the underlying theory to describe all physical laws.
So far, all attempts to quantize general relativity result in non-renormalizable field theories.
Therefore these theories can predict correct results at lowest order, but they do not allow for

a precise calculation of experimental quantities at the quantum level.
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Apart from the question of how to incorporate gravity, the SM itself has several unnatural
features. As already discussed in previous chapters the gauge group of the SM consists of
three gauge factors SU (3), SU(2)r and U(1)y with three independent coupling constants.
Although the SM can unify the weak and electromagnetic force utilizing the idea of the
symmetry breaking mechanism SU (2); ® U (1)y — U (1)g, it cannot provide a unification
of all three forces. It is also surprising that the SU(2); ® U(1)y gauge factor distinguishes
between left and right handed states, while the SU(3)¢ does not. Another important, so far
undiscovered sector of the SM is the Higgs sector, which is responsible for the generation of
masses and the spontaneous symmetry breakdown. Besides, it requires an inelegant addition
of parameters to the Lagrangian, since it does not provide an explanation for the values of
the particles’ masses.

A further question which still remains unanswered is that the theory does not give any
arguments why there are exactly three generations of matter. Together with the unknown
origin of the parameters in the mass matrix, mentioned above, this is the reason why there
are 19 free parameters in the SM. These are the three coupling parameters (o, 0w, Agcp),
the two Higgs parameters (Mpy and \), the nine fermion masses (Mme, My, Ma; My, Me, M;
mr, myg, My), the three mixing angles and one phase angle in the CKM matrix, and the strong
QCD phase parameter . There are even more parameters if neutrino masses and mixings
are included.

Thus, due to these shortcomings, the SM cannot be the complete theory of nature, and

some new understanding is needed in order for these questions to be answered properly.

2.2.2 Unitarity

As already stated in the last subsection, at least above the Planck scale of Mp; ~ 10 GeV,
the SM has to be replaced by a more general theory that includes quantum gravity. Thus
an upper bound for the cut-off is given by the Planck scale Mp;. However, there are further
reasons like the high-energy scattering of weak gauge bosons why the SM can only be valid
up to a much lower cut-off.

A fundamental motivation to generate the masses of W and Z bosons by the Higgs mech-
anism is that the Higgs boson is needed as an extra degree of freedom to soften the UV
behavior of massive gauge bosons. When we look at the scattering of longitudinal polar-

izations of massive spin-1 particles we obtain a tree level amplitude which possesses a F*

4 2
A=AW (%) + A <%> T (2.2.40)

where M is the mass of the massive gauge boson. From (2.2.40) we can see that A becomes

dependence

larger than 1 and would spoil the unitarity of the S-matrix when the energy scale F is of
the order of the gauge boson masses. In the absence of any other fundamental degrees of

freedom the theory would therefore enter a strongly coupled regime and we would not be
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able to apply perturbative methods. The Higgs particle as a new degree of freedom can now
give an additional contribution to the scattering amplitude (2.2.40) which exactly cancels
that part of the amplitude growing with energy. Including the Higgs particle we obtain
an amplitude A = gzM%I / (4M5V), which is finite at arbitrarily high energies. However, to
preserve perturbative unitarity the Higgs particle should not be too heavy. We can get a
rough upper bound for the Higgs mass from the decomposition of the amplitudes into partial
waves [32]

o0

A =167 Z (20 +1) P, (cos ) ay, (2.2.41)

=0

where the P, are the Legendre polynomials.

Using this decomposition we get for the coefficient ag in the SM without a Higgs boson

g2 E2

== 2.2.42
16w M3, ( )

ag
which tells us that perturbative unitarity cannot be maintained above ~ 620 GeV. Including

the Higgs boson, the coefficient ag becomes

g*Mpy

=2 2.2.4
647TM5V7 ( 3)

ao

which yields the upper bound My < 1.2TeV for the Higgs mass. Considering a different
channel one can even get the more stringent upper bound My < 780 GeV [32].

A further bound on the Higgs mass can be derived from the study of radiative corrections

to the Higgs potential. At the quantum level, the coefficient A in the Higgs potential (2.1.15)

run with energy as given in [33],

3 3 9
= 24\% — (39'2 +9¢% — 12%2) Mg+ 2620 + —g* — 6y} + ... (2.2.44)

1672
T g 1 8

dlnQ

Solving (2.2.44) in the large Higgs mass limit, where the first term on the right hand side in
(2.2.44) dominates, yields the solution
M

A(Q) = , 2.2.45
(@ 202 — %M?{ ln% ( )

which shows a Landau pole at
Q = vet™ Vv /3My (2.2.46)

To prevent this instability new physics has to appear below that scale and thus we obtain a

relation between the cut-off of the SM and the Higgs mass
2,2

A 167 my,

In —

C W 2.2.47
v = 3¢?m% ] ( )

from which an upper bound on the Higgs mass for a fixed cut-off scale can be derived.
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Figure 2.1: Most important, quadratically divergent contributions to the Higgs mass, making
the Higgs UV sensitive (taken from M. Schmaltz et al. [3]).

2.2.3 Naturalness and Hierarchy Problem

Generally, in particle physics it should be possible to deduce a low-energy theory from a high-
energy theory without carefully adjusting its parameters. This means that no fine-tuning
of the high-energy parameters should be necessary to derive the low-energy effective theory.
A definition of naturalness has been given by 't Hooft in the following version [34]: at any
energy scale Q, a physical parameter o(Q) or set of parameters «; (Q) is allowed to be very
small only if the replacement «; (Q) = 0 increases the symmetry of the theory.

So far we have looked at the running of the Higgs quartic coupling to derive upper bounds
on the Higgs mass. However, radiative corrections are even more important when we consider
the mass term of the Higgs, since it is highly dependent on the UV physics. To determine
the one-loop corrections to the Higgs mass M12{ we assume the SM to be valid up to a cut-off
A and calculate the one-loop corrections of Figure 2.1, which yields the following result

2

3272°

1
SM2 = (Z (997 + 3¢”) — 6y7 + 6)\> (2.2.48)

Assuming a cut-off of 10 TeV we can see from (2.2.48) that the contributions coming from
the gauge, top and Higgs contributions to the Higgs mass are of the order of (600GeV)?,
—(1.5TeV)? and (600GeV)?, respectively. Thus all these particles give unnaturally large
corrections to the Higgs mass and some precise adjustment, i.e. fine-tuning, between the bare
mass and the one-loop correction is needed to preserve the vev of the Higgs at the weak scale.
From the contributions to the Higgs mass mentioned above we can see that a fine-tuning of
one part in 100 among the tree level parameters is necessary in order to keep the mass of the
Higgs in the range of a few hundred GeV. Such a precise adjustment of parameters strongly
contradicts 't Hooft’s definition, since setting My = 0 does not lead to any new symmetry
and therefore a fine-tuning of parameters will be necessary. This is considered as unnatural
and is usually denoted as the hierarchy problem.

According to these arguments the cut-off of the theory should not be much higher than
the Higgs boson mass and future colliders like the LHC should be able to uncover a more
fundamental theory soon. However, indirect searches through precision data from LEP did

not show any signals so far that points towards new physics at this scale. These analyses
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seem to favor a light Higgs with a mass of 100 — 200 GeV, but require the scale of new physics
to be at least 5 TeV. This hierarchy between these two different scales is often referred to as
the little hierarchy problem [35].

However, assuming that physics beyond the SM already appears at the TeV scale, we are
able to regulate the Higgs mass and restore naturalness by newly introduced particles. In
the following we want to sketch some of the most popular theories, which serve as possible

candidates to explain the physics beyond the SM.

2.2.4 Supersymmetry

One of the most popular candidate theories beyond the SM is weak scale supersymmetry. In
this model the superpartners of the SM particles possess a different statistics and contribute
to the radiative corrections to the Higgs mass with the opposite sign and in the limit of exact
supersymmetry, all corrections to My cancel. However, exact supersymmetry requires the
superpartners to have exactly the same masses as their SM partners, which has not been
observed in nature and therefore supersymmetry must be broken. Due to a broken super-
symmetry, there is a remnant logarithmic divergence dominated by the negative contribution
of the top quark. Then, assuming a soft supersymmetry breaking scale at around 1TeV, the
Higgs becomes tachyonic and the electroweak symmetry is radiatively broken. In its simplest
version, denoted as the MSSM, such a scenario is considerably constrained to live in a fraction
of its parameter space. In the MSSM the main constraint comes from the experimental lower

bound on the Higgs mass My, which is typically light and hardly above 120 GeV.

2.2.5 Extra Dimensions

A different solution to the hierarchy problem is proposed by extra dimensional models, among
which the model of Randall and Sundrum [36, 37] is one of the most popular. In their 5D
model they assume the extra space dimension not to be flat but to have a nontrivial geometry.

More precisely, they consider a setup with a bulk geometry of the form
ds* = a* () dxtdz, — dy?, ye|0,7R]. (2.2.49)

with two branes, where matter can be localized. To realize such a setup Randall and Sundrum
choose a negative cosmological constant in the bulk and opposite signs for those on the branes.
In the original works the SM particles are confined to one of the branes, which is denoted
as the visible brane. On the remaining brane, the hidden one, 4D gravity is strong with a
fundamental scale M,. However, due to the exponential factor in the metric, the fundamental

scale of gravity on the visible brane is much larger
MPis = k™ g, (2.2.50)

and one can easily obtain a fundamental scale M, in the TeV region, therefore avoiding the

hierarchy problem.



Chapter 3

From Extra Dimensions to the
Little Higgs

Gauge theories in more than four space-time dimensions are non-renormalizable and various
quantum problems cannot be solved consistently. However, it has been demonstrated [1, 38|
that the physics of higher dimensional gauge theories can alternatively be described by certain
four dimensional theories which possess an enlarged gauge symmetry. For example, there is
a correspondence between five dimensional gauge theories with the gauge group G and four
dimensional gauge theories whose gauge group is a direct product of the gauge group G
replicated N times, G X G X - -+ X G. The resulting four dimensional theory is then referred
to as deconstructed and each copy of G may be interpreted as the gauge group located
at a particular point along a new, discretized, ”deconstructed” dimension. The spectrum of
matter fields is a set of bifundamental representations expressed by a moose or quiver diagram
that has its analogy in lattice gauge theory. This setup can be considered as an alternative
description of the higher dimensional theory, but has the property of being renormalizable.
Phenomenologically interesting theories of this kind are for example Little Higgs theories,

which will be discussed later.

3.1 Basics of Deconstruction

3.1.1 Moose-Diagrams and Deconstruction

In this subsection we focus on the four dimensional model of [1, 38], which contains both gauge
fields and Weyl-fermions. These are conveniently accommodated in so-called “moose” [39]
or “quiver” [40] diagrams. In these diagrams the N gauge groups G and G; are symbolized
by circles and fermions by directed links between the sites 7 and 7 + 1. The moose diagram
we want to consider is shown in Fig. 3.2 and describes a 4D field theory with a GV x GV

gauge group, where we will choose G = SU(m) and Gs = SU(n). Furthermore, we require

17
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i Xi i P il

Figure 3.1: A side of the polygon (taken from Arkani-Hamed et al. [1]).

all gauge couplings of the SU(m) groups to be set equal to a common value g, while all the
SU(n) couplings are set to gs.
As shown in Fig. 3.1, the sides of the polygon each represent two types of fermions, which

transform under the corresponding gauge groups as

xi transforming as (m,n,1) under SU;(m) x SU;(n) x SU;jt1(m), (3.1.1)
¥; transforming as (1,n,m) under SU;(m) x SU;(n) x SU;y1(m). (3.1.2)

At energies much higher than Ag and A this theory can be described by N sets of massless
and weakly interacting fermions and gauge bosons. However, at lower energies one of the
gauge interactions can become strongly coupled and without loss of generality, we assume
As > A. Thus, around the scale A;, G = SU(n) becomes strongly coupled, while G can
still be treated perturbatively. At this scale a pair of fermions condenses similar to quark
confinement leading to ordinary glueballs and baryons in QCD. For each pair of fermions we

thus assume a non-zero vacuum expectation value,

(xithi) ~ 4Am foUs, (3.1.3)

with fs ~ Ag/(4m) and U; being a unitary m x m matrix parameterizing the direction of
the condensate in SU(m) space. The moose diagram of Fig. 3.2 then turns into a condensed

moose diagram as depicted in Fig. 3.3. Below the scale A, the theory of this condensed moose
N
diagram can be described as a [[ SU(m); gauge theory connected by a set of non-linear sigma

i=1
model (NLSM) fields, denoted by U;. Each of these link fields contains the corresponding

Goldstone boson fields arising from the symmetry breakdown and can be parameterized by
. m2-1

U=exp{ — 3wl e, (3.1.4)
fs a=1

where the T, correspond to the SU(m) generators. The transformation property of the
Goldstone boson fields under SU(m); x SU(m);4+1 is then given by those of the U; which

transform as (m, m), or explicitly
Ui = g; ' (2)Uigis1 (@), (3.1.5)

where g; € SU(m);. Moreover, the U; are singlets under the strong SU(n) gauge group.
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Suppressing higher dimensional operators, that are irrelevant for the low energy theory,

we can write the effective action for the Goldstone bosons as
N 1 '
Seff = /d4$z {f?TI‘ [(DuUZ)T DMUZ] — 2—92TI' (FZVF’Z-“V) + } 5 (316)
i=1
where the covariant derivative is defined by
DuU; = 0,U; — igAL Ui + igU; Al Al = ALOT*, (3.1.7)

The action (3.1.6) connects the gauge fields at neighboring sites and the different Goldstone
bosons are linked by a local “nearest neighbor” interaction. As pointed out in [1, 38], the
action (3.1.6), corresponding to the condensed moose diagram in Fig. 3.3, can be interpreted
as the discretized action for a five dimensional theory with a gauge group SU(m), where the

fifth dimension has been latticized. For further details the reader is referred to [1, 38].

Figure 3.2: A moose diagram (taken from ArkaniHamed et al. [1]).

3.1.2 Symmetry Breaking

According to the previous subsection it is obvious by construction that the low energy La-
grangian of (3.1.6) possesses a local SU(m)Y symmetry. Considering just one side of the
condensed moose diagram, i.e. the Goldstone boson matrix U; and its corresponding gauge
groups SU(m); and SU(m);+1 in Fig. 3.1, we can see that U; transforms under the two gauge
groups independently. Thus the symmetry group of each side of the polygon is given by
SU(m); x SU(m);+1. However, they are related by the gauge couplings, which explicitly

break this accidental symmetry.



20 CHAPTER 3: FROM EXTRA DIMENSIONS TO THE LITTLE HIGGS

@@

Figure 3.3: A condensed moose diagram (taken from ArkaniHamed et al. [1]).

Switching off the SU(m) gauge couplings, the polygon breaks up, (3.1.6) simplifies signif-

icantly and the low energy Lagrangian reduces to
N
Lomo =Y 2T (0,U10"T;) (3.1.8)
i=1

From (3.1.8) one can see that the different NLSM fields U; decouple and can be transformed

globally
Us(z) — LiU(z)R!, (3.1.9)

where the L;, R;-[ are independent SU (m) matrices and can for example be associated with the
transformations of the left-handed x' and right-handed 1), respectively. Thus, in the absence
of gauge interactions, such a theory has an accidental “chiral” global [SU(m)z x SU(m)g]"

symmetry, where the global symmetry groups of each side are now denoted with
GZ’ — GLi and Gi-i—l — GRi' (3.1.10)

Still assuming vanishing couplings g, the accidental global symmetry, in analogy to spon-
taneous chiral symmetry breaking in QCD, is spontaneously broken down to its diagonal

subgroup via vacuum expectation values of the NLSM fields,

SU(m)1, x SU(m)g, 222 SU(m)p,—r,, (3.1.11)

where the NLSM fields can be expressed as in (3.1.4). Concerning the symmetry of the total

moose diagram this implies a symmetry breakdown

[SU(m)1, x SUm) g, 225 (SU(m)1,—r]" | (3.1.12)
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with the index L and R denoting the left and right gauge group belonging to the same side
of the polygon.

In contrast to the spontaneous symmetry breakdown described above, the global acci-
dental symmetry can also be broken explicitly via the gauge couplings. Considering the

transformation properties both of the gauge bosons
Aipp — giAing) (3.1.13)

and Goldstone bosons (3.1.9) one can see [2] that, in the presence of the gauge couplings,
only a [SU(m)LFRFl]N is preserved, as soon as L; = ¢g; = R;_1. That is, it is necessary for
the right gauge group of a side to be equal to the left gauge group of the neighboring side.
Thus the global symmetry [SU(m)z, x SU(m)g,]" is explicitly broken to [SU(M) =R, ] N
by the presence of gauge couplings at the level of the classical Lagrangian.

As depicted in the following diagram the explicit symmetry breaking arises from the
presence of gauge couplings and connects each single side of the condensed moose diagram
while the spontaneous symmetry breakdown leaves the diagonal subgroup of each single side

unbroken.

[SU(m)1,, x SUm)p)~ L5 [SU(m) =g

gl gl (3.1.14)

[SU(m)Li=Ri71]N 58, SU(m)diag

Using the gauge freedom, almost all U; can be gauged to unity by an appropriate choice
of gauge transformations. As discussed in [2], in unitary gauge it is possible to set N — 1
of the N NLSM fields to unity, where one Nambu-Goldstone field remains and is associated
with the product U1Us - - - Uy . This field contains the pseudo Goldstone boson describing the

low energy limit of the theory and can be parameterized as

i 1
U:exp{—qﬁ}, p=—=(m+..+7N). 3.1.15

2 via ) 3119
Since the global accidental symmetry [SU(m)r x SU(m)g]" is broken at the classical level
only by the gauge couplings, ¢ remains massless at tree level and receives its mass by quantum
corrections. However, these quantum corrections include only diagrams which involve all
gauge couplings at the same time.

In [2] this is demonstrated by introducing spurion fields ¢;, which transform as

Ui — LUR,,, (3.1.16)

4 — Ri—i—l‘]iLL_l- (3.1.18)
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This guarantees the modified covariant derivative
DZUZ = 8uUi + igAin — igUiiniHuqiT (3.1.19)

to be invariant under a global SU(m)?Y. Since U is defined as the product of all U;, the

potential containing a mass term for ¢ must be a function of []U; and the leading nontrivial
i
operator involving only the U; is given by [2]

O =|Tx (Vg1 - - - Unan)I?, (3.1.20)

with a natural size for the coefficient of this operator given by (47f)%f2(g?/167%)N [41].
From this one can see that all couplings must be involved to generate such an operator.
Metaphorically speaking, ¢ is distributed over the whole condensed moose diagram, thus being
a non-local object, while the gauge couplings, which connect the sides of nearest neighbors of
the polygon, are local objects in theory space. Thus it is not possible to generate quantum
corrections depending on ¢ involving only a single gauge coupling, which leads to the fact that
¢ can be realized as a light pseudo-Goldstone boson. In the later Subsection 3.1.5 we will see
that this mechanism of generating scalar fields with natural small masses can be embedded

in physically more viable model, which will lead to Little Higgs models.

3.1.3 Relation to Lattice Gauge Theory

In the original works [1, 2, 38] Arkani-Hamed et al. have pointed out that theories as described
in the previous subsection can actually be interpreted as higher dimensional field theories in
the low energy limit. In particular, the theory described by the moose diagram in Figure 3.3
corresponds to a 5D gauge theory with one dimension compactified on a circle. In contrast to
many other theories, this dimension is not continuous, but discretized [42] on a lattice with
N sites. To see this correspondence, we briefly demonstrate how gauge theory is formulated
on a spacetime lattice [43]. Usually in lattice gauge theory the gauge fields are replaced by
so-called link fields U, that implement a parallel transport along the path C:

U(C)= Pexp (—z’g /C ANde> (3.1.21)

with P denoting the path-ordering operator.

Since we want to discretize only one dimension, while the remaining four dimensions shall
remain continuous, a link field is introduced only for As. Denoting the lattice points by i
and the lattice spacing by a, the link fields between two lattice points ¢ and i + 1 can be
approximated by

U; = exp (—igaAs ((i +1/2) a)) . (3.1.22)

Introducing the corresponding covariant derivatives for the Uj;,

D,U; = 0,U; — igA,, (ia) U; +igA, ((i + 1) a) U;, (3.1.23)
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and expanding it in terms of the lattice spacing a, we find that at order O(a),
D,U; = —iagF,s (ai) + O (a?) . (3.1.24)

Performing the sum over a finite number of points 0 to N and identifying ¢ = 0 with ¢ = N
we obtain a compactified and discretized interval of size L = Na with the topology of a circle.
To see the analogy to a 5D continuum theory the gauge fields have to be rescaled and the

sum has to be substituted by an integral
a) — /dﬂc5 (3.1.25)
P

with the gauge coupling constant of the 5D EFT given by g2 = ag?. By comparing (3.1.22)
with (3.1.4) one can the see the correspondence of the NLSM to a latticized version of a
5D non-abelian gauge theory with the lattice spacing a and the circumference R of the fifth

dimension,

. , 1
T fs = —agAy, a= a7 R = Na. (3.1.26)
97Js

3.1.4 Non-Renormalizability and Chiral Perturbation Theory

As we have seen in the previous subsections the deconstructed theory is a NLSM, which
is non-renormalizable and can make predictions only up to a cut-off scale A. Yet, we can
write down the effective Lagrangian using a non-linear realization of the gauge symmetry,
where we make use of the notation in [44]. In analogy to the established techniques of chiral
perturbation theory for low energy QCD [41, 45] all the terms in the Lagrangian of a NLSM

can be organized in a power series in small momenta p < A ~ 47 f,
ﬁeff =Lo+ Ly+ ..., (3.1.27)

where the terms in Lo are of order O(p?), the terms in Ly of order O(p?).

Having expanded the Lagrangian of a NLSM into a series in p/A we can see that the higher
dimensional terms, which are suppressed by inverse powers of A, destroy the renormalizability
of the NLSM. Yet, renormalizability does not pose a problem here, since in an effective field
theories (EFT) it is always possible to remove all divergences at a fixed order in the momentum
expansion.

In Chiral Perturbation Theory, for example, the most general effective Lagrangian at the
order O(p*) has to include both the tree-level graphs originating from £4, the one-loop graphs
associated with the lowest-order Lagrangian O(p?) and the Wess-Zumino-Witten functional to
account for the chiral anomaly. The complete effective Lagrangian at order O(p?) is given in
[45, 46] and needs to be renormalized due to divergent Goldstone loops. These divergences can

be absorbed in the renormalization of the coupling constants. Schematically, the Lagrangian
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can be written as a sum of operators multiplied by bare low-energy constants £4 = > L;O;,
i

where the L; are given by [44]

Li= LI (1) +T, A ”H{ ! %[log(47r)—|—F’(1)+1]}. (3.1.28)

T 1672 \d—4
From (3.1.28) we can see the constants L; absorbing the divergences from divergent loops
of L9 so that the scheme- and scale-dependent renormalized constants L] (x) are finite. The
remaining coefficient I'; of the divergent term can explicitly be calculated from the one-loop
generating functional and are given in [45, 46]. Finally, one has to perform a matching between
effective and full theory at low energies to determine these low-energy constants. However,
for strongly interacting theories case they cannot be calculated and have to be determined

from experiment.

3.1.5 The Minimal Moose Model

To derive a realistic Little Higgs model, where the SM Higgs is realized as a pseudo Goldstone
boson, it was proposed by Arkani-Hamed et al. in [47] to start with a deconstructed theory
that has at least two “compactified dimensions”. In the minimal version such a model consists
of two sites and four link fields, where one site corresponds to the gauge group G7 = SU(3),
while the other site is Gy = SU(2) x U(1). These sites are connected by 4 link fields X,
1 =1,...,4, which are 3 x 3 NLSM fields describing the Goldstone fields. In the absence of
any gauge interactions the theory has a large, approximate SU(3)® global symmetry, which is
spontaneously broken to SU(3)*. Denoting the Goldstone fields by z; and the global SU(3)
transformations by L;, R;, the NLSM fields X; = exp (2ix;/f) transform as

X; — LiX;R!, i=1,2,3,4. (3.1.29)

Below the cut-off A ~ 47 f ~ 10 TeV of this model the theory can be described by the effective
Lagrangian
L=Lg+Lx+ L+ Ly, (3.1.30)

where Lg represents the conventional kinetic terms and gauge interactions of the NLSM
and Lx, Ly, Ly will be explained in turn. As some modes of the Goldstone bosons will
serve as a Higgs boson and should therefore couple to fermions, a coupling between the four
fields X; is introduced. Additionally, we have to generate a Higgs potential to trigger the
electroweak symmetry breaking, which will be achieved by introducing Lx containing so-
called “plaquette” couplings between the X;. These consist of gauge invariant objects similar

to Wilson loops in lattice gauge theory and are added in an ad hoc way:
£x = [T (AX XEX3 X)) + 1T (/X0 X[ XaX]) + e, (3.1.31)

In (3.1.31), A, A’ denote the matrices A = k1 + ¢Tg and A’ = '1 4+ ¢'Ts. Each of these

g, €' terms preserves enough of the global symmetry to leave some of the Goldstone bosons
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massless, i.e. these ¢, ¢’ respect an SU(2) x U(1) symmetry, but break the global SU(3) to
generate pseudo Goldstone bosons.

To generate the SM Yukawa couplings, the NLSM is coupled to the SM quark fields by
the two remaining terms £; and Ly. In doing so, the top Yukawa sector is modified in a
peculiar way. To avoid quadratic divergences coming from the top sector we introduce a pair
of additional vectorlike quarks U and U€, which have the same statistics as the SM quarks
and will cancel the dangerous divergences to the Higgs boson mass at the one-loop order. In

order to achieve this the Yukawa interaction for the top quark is chosen to be
Li=Mf(00ug) X, X} ( qU3 > + N fUU® +h.c. (3.1.32)

Since the Yukawa couplings for the remaining quarks are much smaller than that of the top
quark, the quadratic divergences related to them are negligible for a cut-off A ~ 10TeV,
especially in view of the two-loop divergences coming from top quark loops which are present
in the model anyway. Therefore the standard Yukawa interaction for light up-type quarks
Ly has the same form as (3.1.32) but with U, U removed, while for the down and charged

lepton sector Ly, contains

0 0
Ly=X (g 0)XoXif| o [+xe0)xuxif| o |, (3.1.33)
de e

which finalizes the construction of the model. However, one should be aware of the short-
comings of this construction. The most striking one is the fact that the terms included in
the Lagrangian were not selected by any symmetry principle. This means that all the terms
that were neglected will be generated radiatively at higher loop level. To forbid certain terms
in the low energy Lagrangian it is necessary to construct an appropriate UV completion of
the model and it is unclear whether such a completion exists in a satisfactory form. Besides,
the Little Higgs mechanism alone cannot explain the hierarchy between the cut-off of the low
energy theory and the GUT or Planck scale. To do so, again some kind of UV completion
is needed [48]. For detailed informations about this model and its interactions the reader is

referred to the original work [47] by Arkani-Hamed et al..
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Chapter 4

The Littlest Higgs Model without
T-Parity

Little Higgs models [2, 4, 47, 49, 50, 51], as an alternative to supersymmetric models, have been
invented to stabilize the Higgs boson mass against large radiative corrections by introducing
new gauge bosons, scalars and quarks. In contrast to supersymmetric models, the cancellation
of quadratic divergences is realized between particles of the same spin statistics. In these
models the physics below the TeV scale can be approximately described by the SM, while for
energies higher than 1TeV new particles emerge. However, one should be aware of the fact
that the Little Higgs is not the end of the story and the ultraviolet completion of the theory
must still be explored.

Based on the Little Higgs idea, a model named Littlest Higgs Model without T-Parity
(LH) has been constructed [4] and its explicit interactions have been presented in [5, 6, 7].
Numerous phenomenological studies in this model have been performed, see e.g. [5, 8]. In this

chapter, we will concentrate on the effects of new particles on rare decays like K — 7°

v,
K+ — ntvp and B, 4 — ptp~, which are known to be ideal probes for physics beyond the

SM.

4.1 The Structure of the Littlest Higgs Model

In the LH model, the starting point is a global symmetry group G which is spontaneously
broken down to a subgroup H. This symmetry breaking occurs at a scale f of the order
of 1TeV. Since this model realizes the Higgs as a pseudo-Goldstone boson, the unbroken
symmetry group H should contain SU(2);, ® U(1)y as a subgroup. Similarly to the SM, one
would expect that the gauge interactions will again induce one-loop quadratically divergent
contributions to the Higgs mass. In order to avoid this, we assume that G contains a gauged
subgroup including two copies of SU(2)r, ® U(l)y: G D G1 ® Go = [SU((2)1 @ U(1)1] ®

[SU(2)2 ® U(1)3]. These two copies are now arranged in such a way that each G; commutes

27
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with a different subgroup X; of G, and hence preserves a different global symmetry. This is
sufficient to forbid a Higgs mass term. Only when both gauge groups come into play, the
symmetry is broken and a mass term for the Higgs boson is allowed. We will see that at one-
loop level one can therefore only get logarithmically divergent contributions, and quadratic
divergences first appear at two-loop level.

The full exposition of the model can be found in the original paper [4] and in [5]. We
will follow the notations of [5] as far as possible. References to comprehensive reviews can be
found in [3].

4.1.1 Symmetry Breaking Pattern

In the LH model the electroweak sector of the SM is embedded in an SU(5)/SO(5) NLSM,
which means that the global symmetry group G = SU(5) is spontaneously broken down to
its subgroup H = SO(5). The symmetry groups protecting the Higgs mass are chosen to be
X; = SU(3);, i = 1,2. Moreover, each X; contains a gauged SU(2); ® U(1); subgroup and
should not lie entirely inside H, since they shall explicitly break the symmetry protecting the
Higgs mass.

The symmetry breaking SU(5) — SO(5) is induced by a vacuum condensate of a scalar
field transforming in the symmetric tensor representation of SU(5). A vacuum expectation
value proportional to the unit matrix then breaks SU(5) — SO(5). However, it is convenient
to choose the vacuum expectation value in the direction of ¥ given by the 5 x 5 symmetric
matrix [4]

1ox9
Yo = 1 , (4.1.1)
1oy
where 1949 represents a 2 X 2 unit matrix.

In order to see that X yields the right symmetry breaking pattern, we have to transform
the standard generators of SU(5), A4, by a similarity transformation. The generators \, are
either symmetric or antisymmetric, where the 10 antisymmetric generators are identified with

the SO(5) subgroup generators. Introducing S as
141 0 01—z 0

0 14i 0 0 1—i
5:% o o 1 o o |, (4.1.2)
1—i 0 0 1+4i 0
0 1-i 0 0 1+

we can then define new generators by a similarity transformation A, := SA,S~!. Furthermore,
the symmetric and unitary matrix S is related to X by g = 52 = STS. Using these relations

we can then immediately see that the new generators Na satisfy

AaXo = (SAaS7T1)(5?) = £(SX.S)T = £50 T, (4.1.3)
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where the plus sign corresponds to symmetric generators and the minus sign to antisymmetric
generators of SU(5). From (4.1.3) it is evident that the unbroken SO(5) generators, denoted
by T, fulfill

TuXo + SoTT =0, (4.1.4)

while the broken generators, denoted by X,, obey
XX — XX =o0. (4.1.5)

This can easily be seen by observing that an unbroken symmetry preserves the vacuum and
therefore the relation OXo07 = ¥, with O = exp (ia®T}), must hold. Expanding the latter

in terms of « leads to
Yo = (1 +ia"T,) o (1 +ia"T)) = Sg + ia® (TuXo + STy ) + O (a?) (4.1.6)

yielding condition (4.1.4) for the unbroken generators of SO(5). Consequently, the remaining
14 symmetric generators are broken and obey X,%¢ — Lo X! = 0.

Thus, from the breaking SU(5) — SO(5), we obtain 14 Goldstone bosons corresponding
to the 14 broken generators. Under the unbroken SU(2); ® U(1)y, these transform as

10@30@2:|:% B34 (4.1.7)

The first two sets are eaten by the gauge bosons corresponding to the broken GGy ® G5 genera-
tors, thereby giving a TeV scale mass to them. The third set is a complex doublet, identified
with the Higgs boson while the last set is an additional complex triplet.

Similarly to the QCD chiral Lagrangian for pions, the dynamics of the theory at low
energy scales below 47 f can be described in terms of the massless Nambu-Goldstone degrees
of freedom, each of them corresponding to one of the broken generators X,. Thus we can
parameterize all the 14 Nambu-Goldstone bosons from the breaking of SU(5)/SO(5) by a
NLSM, whose Lagrangian contains all possible Lorentz-invariant, local operators built out of
the field

Y (z) = e/ f 5" /1 = 2/ 15 (4.1.8)

For the second equality in (4.1.8) we used the relation X%y = 2o X", obeyed by the broken
generators. Moreover, f is the Goldstone boson decay constant of the order 1TeV, and
IT = 7*X,. Using (4.1.7) and ignoring the Goldstone bosons that are eaten by the heavy
gauge bosons, the Goldstone boson matrix II can be written in terms of fields with definite

electroweak quantum numbers as

At
i
—_ e (4.1.9)

o5l
S
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Here h is the Higgs doublet and ¢ is a complex triplet under the unbroken SU(2);, ® U(1)y.
They can be represented by

ot 2L
h=(h",h%), ¢:< b V2 ) (4.1.10)
5 0

As already mentioned earlier, the condensate ¥y does not only break the global symmetry
group G = SU(5) down to SO(5), but also breaks the gauge group [SU(2); @ U(1);] ®
[SU(2)2 ® U(1)2] to its “diagonal” subgroup SU(2) x U(1), which then is identified with the
SM electroweak gauge group. To summarize the pattern of symmetry breaking discussed in

the last paragraphs we illustrate it in the following cartoon.

SU(5) 558, SO(5)

91192 gllgz (4.1.11)

SSB
[SU2) x UL = [SU(2) x U(1)]gjag
The first SU(2); x U(1); subgroup is embedded in the SU(5) in such a way as to preserve
a global SU(3) symmetry in the lower-right 3 x 3 block, while the second SU(2)y x U(1)2
preserves an SU(3) symmetry in the upper-left 3 x 3 block. Thus, we define the generators

of Gy =8SU(2); xU(1); as

-3
% o
¢ = Yi = — 4.1.12
Ql ) 1 10 2 ) ( )
03x3 2
2
and the ones of Gy = SU(2)2 x U(1) as
-2
033 1 —2
o_ Vv, — - _ . 41.1
Q2 . ) 2 10 2 ( 3)
—a 3
3
The diagonal SU(2) x U(1) generators
1
= —(Q1+Q3%), Y=Y+Y; 4.1.14
Q \/é (Ql QZ) 1 2 ( )
are unbroken, since
02x2 0a/2 02x2 —ox'/2
Q"o + ToQT = 0 + 0 =0, (4.1.15)

0252 —or/2 0252 ol'/2
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Figure 4.1: Gauge boson contributions to the Higgs mass. Diagram (a) is the quadratically
divergent contribution to the Higgs mass in the SM, while Diagram (b) denotes the logarith-
mically contribution to the Higgs mass in the LH model (continuous lines correspond to the

Y field, while wiggly lines denote gauge bosons).

where in the last step we used the hermiticity of the Pauli matrices. Analogously we can
proceed in the case of Yy + oY = 0.

At the end of this subsection we want to recall once more that all gauge couplings of G
leave a global SU(3)y symmetry in the lower-right 3 x 3 block invariant. Assuming further
on the gauge couplings of G5 to be switched off, the enlarged symmetry forbids the radiative
generation of a Higgs mass, i.e. a mass term hh' is forbidden by symmetry. The situation is
similar when the G gauge couplings are turned off and only Gs is active. Only when both
couplings are turned on at the same time, the symmetry is sufficiently broken and allows the
appearance of a Higgs mass. This mechanism is known as collective symmetry breaking and
eliminates all quadratically divergent one-loop contributions to the Higgs mass. From Fig. 4.1
we can see that Diagram (a) contains only a single gauge coupling in it, and hence cannot
contribute to the Higgs mass. In the SM this is the diagram, which is responsible for the
hierarchy problem. Diagram (b) is again a one-loop diagram, however is only logarithmically
divergent, since both couplings are involved. Therefore it does not generate large radiative
corrections to the Higgs mass. Moreover, there are possible two-loop diagrams that are
quadratically divergent, but their value is suppressed by a an additional loop factor of 1/(4m)
and thus is sufficiently small to prevent the little hierarchy problem from being re-introduced
at the TeV scale.

4.1.2 The Gauge Boson Sector

As seen in the last section, the effective field theory of the LH model can be parameterized
by an SU(5)/SO(5) NLSM with a gauged subgroup

G1®Gy=[SU((2)1@U(1)1]®[SU(2)2 ® U(1)9], (4.1.16)
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which is spontaneously broken down to the SM gauge group. In particular, by the symmetry
breaking of the NLSM, the Lagrangian still preserves the full [SU(2) ® U(1)]* gauge sym-
metry. The leading order dimension-two term in the NLSM, describing the X field, can be

written for the scalar sector [4, 52] as

_ 1

ﬁg_jzﬁu%muwmﬁ (4.1.17)

The numerical coefficients have been chosen such that the scalar kinetic terms are canonically
normalized. (4.1.17) is manifestly gauge invariant under G; ® G if the covariant derivative
is defined as

2
D3 = 0,5 i3 {g Wi (@5 + 2@ +ig By (B +Y])}, (4118)
7j=1

where the SU(2)j—12 gauge fields are given by Wy, the U(1)j=1,2 gauge fields by B,; and
the corresponding generators QY 5, Y1 2 are defined in (4.1.12) and (4.1.13).

In order to write the Lagrangian in terms of the scalar fields h, ¢ and the gauge bosons,
respectively, we linearize (4.1.17) by expanding ¥ in powers of 1/f around its vacuum expec-

tation value X,

y ot LE 05 ) hins V2T hTh + 26t )
E:Em%% Lo L -7 V2Zhet Mt VNG |+ O(g).
O30 L5 ¢ WTh* + 206" V2¢h! hTh

(4.1.19)

In the process of spontaneous symmetry breaking the local gauge symmetry G; ® Go

is broken down to the diagonal subgroup [SU(2);, ® U(1)y] identified with the electroweak

SM gauge group. The corresponding unbroken generators of [SU(2)r ® U(1)y] are given in
(4.1.14) while the broken generators are

Q" = 91Q¢ — 93Q%) . (4.1.20)

— (
Vi + 93

In this process 4 of the 14 Goldstone bosons of the SU(5) — SO(5) breaking are eaten
to give mass to 4 particular linear combinations of the gauge fields. This gives rise to mass

terms of order f for half of the gauge bosons (the heavy W’ and B’)

/

f /2 /12 9
mpg = —— + = . 4.1.21
B 2\/5 91 92 2\/58/C/f ( )

Here s, ¢, s’ and ¢ are the sines and cosines of the angles that describe the mixing of the
[SU(2)1 x U(1)1] ® [SU(2)2 x U(1)2] gauge bosons

_ [ 2o 9
my = 5 971 +92—2scf7

W = sWi + cWa, W' = —cWi + sWs
B = S,Bl + C/Bg, B = —C/Bl + S,Bg. (4.1.22)
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In (4.1.22) W7 and Wy each represent the three gauge bosons of SU(2); and SU(2)2, re-
spectively, while By and By are the corresponding gauge bosons of U(1); and U(1);. The

corresponding mixing angles are given by

g2 g1

s= 2 c= (4.1.23)
Vi + 93 Vi + 93
g/ g/
== d=—1 (4.1.24)

Vot + g’ VT + g5

where g1 2 are SU(2)1 2 coupling constants and g; 5 the ones of U(1)1 2. The W and B remain
massless at this stage and can be identified with the SM gauge bosons, with couplings

g=g15=g2¢c, ¢ =915 = g5pc. (4.1.25)

Finally, we can obtain the couplings of the gauge bosons to the two scalar degrees of freedom
by re-expressing (4.1.17) in terms of the mass eigenstates W, W', B and B’ and using the
expansion (4.1.19) of ¥ in powers of 1/f.

In the second step of the gauge symmetry breaking the SM group is broken down to U(1)q.
Since the details of this breakdown are already presented in [5, 7] we will summarize only the
most important results. After having broken the SM group to U(1)q the mass eigenstates of

the gauge bosons can be obtained by diagonalizing

Loasses = Wow'en (M0 L2y gy gz (L2 (112
K 2 8 # H 8 6 f2
1 102 / 1 (2 —s?)
3yi3e [ = 42,2 _ -7 a ap (=~ 2.2
+ W, W (8921 <1 6f2>>+W“W ( 19 ~2se )

2 2

i (M1 o L 9 lv
/ 1 (% — 5?) 1 102
B B/J, =22 3B/.L = oql02 1—- -
+ B ( 17V T g Wy 4997 6 f2

, , 1 / / , 1 /2 12
—l—Wi’B“ <——gg'1)2 <2 5 >> + Wj’B“ <——gg'v27(c 5 )>

8 s¢ ' cs 4 2s'c!
: 1 2
+ Wu?’B“ <—Zgg/v2u> , (4.1.26)

2sc
with v denoting the vev of the neutral components of the complex doublet. In our analysis
we will set the vev of the complex triplet, v/, to zero.
The final mass eigenstates of the charged gauge bosons are Wf and Wﬁ where the indices
L and H stand for “light” and “heavy”. The mass eigenstates are given by

2 2
Wrp=W+ 21)?86(62 — W, Wy =W'— 2U—JC230(C2 — sHW, (4.1.27)
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while the corresponding masses read

M? = m? 1——”2 l+1 2 _ %2 4.1.28
Wi W 2 \6 4(0 s) ’ (4.1.28)
M? = 2 —f2 -1 4.1.29
Wi Mw \ 22,2 : (4.1.29)

As one can see from (4.1.28) and (4.1.29), the mass of the W boson approaches the SM
value my = gv/2 when f — oo.

The neutral gauge boson mass eigenstates Ay, Z1, Ag and Zp are given by
AL = —Sww3 + CwB,

ZL:CWW3+SwB+:EZ W3

f? f2
/ Vs pv” 3
AH =B +33Hf—W — Ty P(CWW + SwB),
2
’ v
Zy=W3— ) B’ zy fQ(CWW?’JrsWB) (4.1.30)
with
. 5 , scs'd (252 + s2c?)
H — zgg (5928120/2 —g 28202) )
/ 1
¥ = Esc(c2 — 5%,
8 = is'c'(cl2 —5?). (4.1.31)
25y
Here ,
J -9 (4.1.32)

SW = —/——, cw 7
/g2 + g2 /g2 + g2
are the sine and the cosine of the Weinberg angle describing the weak mixing in the SM.

Ar and Zp, are the SM photon and Z° boson and Ay and Zg the new heavy photon and

heavy Z° boson, respectively. Their masses are given by

v? (1 1 5
Mz, = my (1 -7 (E +4(cf =57+ (7 - 3’2)2>> ) (4.1.34)
2 2 2 f2
MR = mdsk <m _ 1) 7 (4.1.35)
2 2 f2
Mz, = my <320%2 1) ? (4.1.36)

where my is the SM Z° boson mass with mz = gv/(2cw ).
It is evident from (4.1.28) and (4.1.34) that the tree level SM relation

2
my o

— 4.1.37
m? ‘ ( )
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is not valid for the W= and Z? masses. To O(v?/f?) we have [5]

2
L—. (1 + %2(6/2 — 3’2)2> (4.1.38)

which reflects the tree level breaking of the custodial SU(2) in the LH model. Formula (4.1.38)
will play an important role in our later analysis.
From (4.1.28) and (4.1.29) we find

Myyz = =—L, (4.1.39)

which is valid to order v?/f2.
The formulae given above have already been presented in [5] but at a few places the results
shown here differ from the ones presented there. We would like to spell out these differences

explicitly.

e In going from (4.1.26) to (4.1.30) no field redefinitions have been made as done in [5].
As a result of this, the formulae in (4.1.30) differ from (A34) in [5] by B replaced by

—B. This difference is a matter of choice and has no impact on physical results.

e The results for 2%/ and % in (4.1.31) differ by sign from the ones given in (A35) of
[5]. This difference is crucial for the removal of the divergences in the calculations in

the unitary gauge.

e In contrast to (A37) of [5] the presence of terms proportional to zx can not be con-
firmed at this order as seen in (4.1.35) and (4.1.36). Moreover, the result shown here is
consistent with that of the LH model with T-parity [11, 16, 17] presented in the next

chapter, where the terms proportional to xy are also absent at this order.

4.1.3 Fermions and Their Interactions

In the SM fermions become massive due to their couplings to the Higgs via Yukawa interac-
tions, and so far we have not included any fermions in the theory. However, due to its large
Yukawa coupling to the Higgs the top quark induces a large quadratically divergent contribu-
tion to the Higgs mass. In the LH model this problem is solved by adding new fermions to the
theory in order to precisely cancel these top loops. The quadratic divergences coming from
the other fermions do not constitute any problem, since their Yukawa couplings are much
smaller than the one of the top quark so that their contributions at a scale A of order 10 TeV
are quite negligible and do not necessitate fine-tuning.

The newly introduced fermions are a pair of vector-like, colored Weyl fermions ¢ and ¢
with quantum numbers (3,1) and (3,1) under the two global SU(3)s. For convenience we

accommodate the new particles in the row vector x = (b3,t3,%). The quantum numbers of
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these new particles further allows us to write down a bare mass term for the new fields of
order f. The coupling of the SM top quark and the new fermions to the Goldstone boson
field X is given by

1 ~—~
Li = SMfeijheayXiTjaShyus + Ao ft + e, (4.1.40)

where 4, j, k are summed over 1,2,3 while z,y are summed over 4,5 and uf corresponds
to the right-handed top quark of the SM. It can be seen that the first term in (4.1.40) is
SU(3);-invariant but breaks SU(3)2, while for the second term the converse is true. Hence
to generate a contribution to the Higgs mass parameter from the extended top sector, both
A1 and Ao need to be turned on. From this it follows that a quadratic divergence cannot be
generated at the one-loop level.

To extract the coupling of the fermions to the Goldstone bosons from (4.1.40), we expand

the ¥ field as given in (4.1.19). From this we obtain the following couplings
Lo = Mofti+i)N {—bg [\@iﬁ + % (\/ih—¢++ + h0*¢+)} us
—13 |:\/§h0 + % (h_¢+ + \/§h0*¢0>:| ugc

+1t [—z’f + 1 (hTh™ + AR + 29T + 9T + 2¢0¢0*)} ugf} + h.c.,

f
(4.1.41)
The most important contributions of (4.1.41) are
— A ~ -
Ly = Mo f° — %thoho*ugc + A flu — MV 2q3hOuf + hee 4 ..., (4.1.42)

where the dots indicate terms involving the heavy scalar ¢, and ¢3 = (b3,t3). From the
interactions given in (4.1.42) one can explicitly see how the quadratically divergent top loop
gets canceled at one loop order by the new heavy fermions t3, t, u¥.

The Lagrangian in (4.1.41) contains a fermion mass term of order f. Defining the mixtures
of £ and uf as

- 1 5 1 N
0= —— (Mt + M), u§ = ——= (=M1 + Nou¥), (4.1.43)

(4.1.41) can be diagonalized and yields a mass term f/A? + A\3tt¢ = mgtt¢ for the heavy

fermion.
After electroweak symmetry breaking at the scale v additional mass terms for the fermions

are generated and the Lagrangian, after diagonalization, reads

Emass = _mttLtﬁ{ - MTTLT}c{g (4144)
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where the masses up to order v?/f? are given by

S P B ()
N/ VRSV, 21 03 02 224N A+ A3 ’
My = fy/X2+ X2 [1+00*/f)]. (4.1.45)

Moreover, the physical mass eigenstates t;, t%, 17, 1’5, which correspond to the masses in
y g R R

(4.1.45), are given by the following rotation
tL = CLtg - SLE, t% = cRugc — SREIC (4.1.46)

T, = spts + CLg, T}% = SRulgc + SRE/C (4.1.47)

with the rotation angles

2

v v
S, = LEL? |:1+Pd2:|,

2,2
c, = 1—%%,
_ 1 v? 1 1
S
cr = V1—zp |:1—|—;—22:EL (%—QEL)] (4.1.48)

Expressing Mr in terms of m; we get the useful relation

f my v? (1 A2
Mp=*— (14— (2 —ar(1— = . 4.1.49
T a:L<1—a:L>< tplgmntizm)) sy

Following [5] A1 and Ag in (4.1.40) are expected to be O(1) with

2
mt 1 1 v
A > — or -+ ==(—) . 4.1.50
P2 VIS (mt> (4.1.50)
Thus, within a good approximation we can express in terms of the mass m; and the mixing
parameter xj,
my 1 my 1

M= ——, Ao = ———, 4.1.51
! v 1 —xp 2 vV /T, ( )

where x7 can in principle vary in the range 0 < xy < 1. As discussed in [5, 6, 13], the
parameter xy, is crucial for the gauge interactions of the heavy T quark. For z; =~ 0 and
xp, ~ 1, the mass Mp becomes very large [13].

In summary we see that the Lagrangian (4.1.42) includes all desired features: the quadratic

divergence due to the top loop is canceled, and the SM Yukawa coupling to the quark doublet

Aegzh®u§,  with At:ﬂ (4.1.52)

VA2 + A3
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is reproduced at low energies by integrating out the heavy quark from the Lagrangian (4.1.42).

The scalar interactions of the up-type quarks of the first two generations can be chosen to
take the same form as in (4.1.40), except that there is no need for the extra vector-like quarks
t,t°. The interactions with the down-type quarks and leptons of the three generations are

generated by a similar Lagrangian.

4.1.4 The Effective Higgs Potential and Electroweak Symmetry Breaking

In the LH model, the appearance of a Higgs potential is forbidden at tree level due to the
global symmetries protecting the Lagrangian. However, a potential for the Higgs is generated
by quantum effects at one- and higher-loop level since the Yukawa and gauge interactions
explicitly break all the symmetries of the Lagrangian. Such radiative corrections by vector
boson and fermion loops result in a Coleman-Weinberg potential which can be generically

parameterized as
2
V = Age f2Tr (qﬁTqﬁ) +idnonf (h¢T KT — h*oht ) — i2hht 4 A (hh* ) , (4.1.53)
where terms involving ¢* and h?¢? have been neglected due to their small contributions to
the vacuum expectation value of h.

First we are going to compute the quadratically divergent one-loop contributions to the
Coleman-Weinberg potential coming from gauge bosons. This contribution is given by [53]
A2

(4

where MZ (¥) is the gauge boson mass matrix in the presence of a background field ¥ and

TrME (%), (4.1.54)

can be determined from the covariant derivative (4.1.18). A calculation of this contributions
then yields [4]

fa = %“f4 {gaz > Te[(Q5%) (@F2)] + g Tr [(v;%) (sz)*]} : (4.1.55)

Here we cut off the quadratically divergent contributions of the gauge bosons at a scale
A = 4xnf, and a is a O(1) coefficient, whose precise value depends on the unknown UV
physics at A. Linearizing the ¥ field in terms of the fields h and ¢, we can rewrite the

potential as
L, — la (g% "‘932) [f2Tr <¢T¢> _ j <h¢ThT h*¢hT) ( 1)24- }
)+

2
+§u£+ﬁﬂﬂﬁww ”OWW o) + 3 (na')”+ }4”®

The last expression (4.1.56) can also be understood by looking at the SU(3) transformation
properties of h and ¢. Following [4] these two fields transform under an SU(3); according to

¢ij — ¢z’j —1 (Eihj + Ejhi) + ... (4.1.58)
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while under an SU(3)2 they transform as

hi — hi+ fn+ .. (4.1.59)
Gij —  ¢ij +i(mihj +nhi) + ... (4.1.60)

Then the invariant quantities are given by
. 2
i

¢ij £ 27 (hihj + hjhs)| . (4.1.61)

Upon expansion, this yields exactly the terms in square brackets in (4.1.56).
Similarly we calculate the quadratically divergent contribution to the Coleman-Weinberg

potential arising from fermion loops [4],
1 g
Lo = _§a’A§ e e e ek mn Din D XS +hec. (4.1.62)

Since the fermion-Higgs interaction preserves the SU(3); global symmetry in the upper 3 x 3
block of X, the contribution of fermions must have the same form as the term proportional
to g3 + g% in (4.1.56) with a coefficient now given by —1a/A2.

Adding up these two contributions from gauge bosons and fermions we end up with the

overall potential given by

1 1 i 2
(§a (g1 +97) - 5a’A%> 2 |6i + 57 (hiy +hshi) (4.1.63)
1 i 2
+50 (93 +95) f* |0 — 77 (il + hsha) (4.1.64)

In order to find the equation of motion for ¢, we determine the minimum of the overall

potential, which imposes the following condition on ¢;;
) i
la (g7 + gf) — a'M]] <¢ij + fhihj> +a(g3+95) (qsij — ?hihj> =0. (4.1.65)

Thus, at energies below the triplet mass, after having integrated out ¢, we are left with a

quartic potential for A

(97 + g7 — a'/ar}) (g5 + 65)
gt + 97 — d /Mt + g) + g5

2
A(hh*) , where A=a (4.1.66)

We can see from (4.1.66) that turning off the gauge couplings go and g4 restores the SU(3)s
symmetry and indeed sets A = 0. Similarly, turning off the SU(3); breaking terms g1, gj and
A1 again yields A = 0 and a Higgs potential is not generated.

One further remark is in order here. From (4.1.56) and (4.1.62) we can express the
coefficients Ap1, Apgn and A2 in terms of ¢, ¢/, s, 5" g, ¢ and A;. In particular, we find the
relation

1
Apa = Z)\¢2. (4.1.67)

For further details the reader is referred to [5].
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4.2 Feynman Rules in the Littlest Higgs Model

Charged Gauge Boson—Fermion Interactions

The Feynman rules for vertices involving the charged Wf and Wﬁ gauge bosons and quarks
in the notation Cv,(1 —s) [7] are given in Table 4.1. Here z, is given in (4.1.49) while a, b
and dy are defined by

1 1 5 1
a= 562(62—82), b= 582(62—82), dy = —6—|—§ZE%—|—2:L'L(1—$L). (4.2.68)

For leptons the Feynman rules can be obtained from the entries of the first line with V;; = 1.
The V;; are the usual CKM parameters. The issue of the violation of the CKM unitarity at
O(v?/f?) has already been discussed in detail in [6] and will not be repeated here. Table 4.1
should be compared with Table VIII of [5]. Due to different phase conventions for the ¢ and
T fields, the rules for the vertices WLdej and Wﬁde differ by a crucial factor i as already

discussed in [6].

Table 4.1: Feynman Rules in LH Model for W, g: Cvy,(1 — v5).

Vertex C Vertex C

Wi id; ;\gf Vij <1 %2‘ ) Wikad; —2i9f Vi< (1 + b%)

TN N O ) N L O A (i E )
Wi Td; 2\/ Vt] Ly ( + % (d2 — a)) WiTd; 2\f Vij€ap

Neutral Gauge Boson—Fermion Interactions

The vertices involving quarks and leptons and the neutral gauge bosons Zg, ZIOLI and A(}I, that
are relevant for the decays considered in the next section, are presented in Table 4.2, where

gy and ga universally parameterize the vertices as follows:

u(gv + 9475); (4.2.69)
and .
u=(* — s, a = §c’2(c’2 — 5. (4.2.70)

These rules follow from (A55) of [5] that we confirmed except for the signs in x%ﬂ and xgl in
(4.1.31) as discussed above. In spite of agreeing with (A55) the rules presented in Table 4.2
differ surprisingly at various places from Table IX of [5]. The differences are found in the
couplings Zrau, Zrtt, ZrTt, AgTT and ZgTT. They all are crucial for the cancellation of

the divergences in the calculations discussed below. In order to make the comparison with
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[5] as simple as possible, Table 4.2 has exactly the same form as table IX of [5]. Table 4.2
contains also higher order terms in v/f that were required in the calculation of diagrams in
classes 4 and 5 discussed below and were not present in [5].

As discussed in [5], the gauge invariance of the Yukawa interactions alone cannot un-
ambiguously fix all the U(1) charge values. The two parameters y. and y, that enter the
Feynman rules in Table 4.2 are undetermined. Requiring that the U(1) charge assignments

are anomaly free, they can be fixed to be

2
Ye = g, Yu = —g (4271)

On the other hand, as emphasized in [5], in an effective field theory valid below a cutoff, it
is unnecessary to be completely anomaly free as the anomalies could be canceled by some
specific extra matter at the cutoff scale. In the rest of this thesis y. and y, are set to the
values given in (4.2.71) in order to avoid additional sensitivity to the physics at the cut-off
scale.

The rules for the triple gauge boson vertices can be found in Table VII of [5] and are not

presented here.

Charged Scalar Interactions

Only the following Feynman rules given in [5] are of relevance in this thesis:

Stagd; . ——9 Mg Yy 4.2.72
_ ; A v
otTd, . ———9 M My 4.2.73
) \/54 MWL( /75))\2 f tj ( )
ote 7, : z‘cis;j(m — P, (4.2.74)

with p4 being the outgoing momenta of ®*. For the (P_cijui vertex, (1 — ~5) should be
replaced by (1 + v5) and Vj; by V- The case for @‘JjT is analogous.

4.3 Rare Decays in the Littlest Higgs Model

4.3.1 X and Y Functions

To describe the physics of rare decays it is convenient to use the framework of an effective
field theory. In such an effective field theory it is possible to formulate the physics by a certain
set of parameters without any reference to what is going on at arbitrarily small distances.
With the help of the Operator Product Expansion the effective Hamiltonian can generally be

written as

G )
Hepr = Hiignt + 72 S ViienCi (1) O, (4.3.75)
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Table 4.2: Feynman Rules in the LH Model for the gauge bosons Z, Ay and Zy. gy and
ga are defined through (4.2.69).

vertex aqv ga
ALff —eQy 0
_ 2 ’ 2 ’
Zruu —ﬁ{(%—%si) e cwwg c/2s — 5o {—% - F _—cwx?/ c/2s
swrl’ 17 5.2 swrd (11 p
+ s’c’Z (2yu + i 66/ ) } + s’c’Z (5 B 20/ )“ }
- 2 / 2 ’
Zrdd —%{(—%—F%si)—% _—cww?/ c/2s —%{%—% cwry c/2s
B’ ) ]
vt fn 4] )
Zree —ge- (—l +2s2) — ;ﬁ—z _—cww?/lc/Qs —9e- {% — ;—z _cwx%V/c/Zs
B’ )
i S|
Z1ov —% {% — ;j—z {cwwgﬂc/Qs ﬁ {—% — ;’[—2 —cwwgﬂc/Qs
B’ B’ )
v (-3 10)]) 25 (4 - 4|
— 2 2 /
Zrtt 2gw{(% — 4s2) e { 212+ cpxy )25 —ﬁ{ : = {—x%/Z cwy cf2s
swry 17 502 _ 1_M swr (1 12 1 N
+ S/C/Z <2yu + 1 EC/ 5 )\%_,}Ag) ]} + s’c’Z <5 o 56/ 5 A%-ﬁ-&%)
— 2 2 w 5
Z,TT zgw{gs;g +4( - a3+ o dad + 22 Lo |
waz (240 + 4 _ éclz + 33L)>}
— 2 swth B’ 2 Sy
ZiTt wa{—fwf S (b ) {2l (b )+
/ W/ , W/
il O TR e S ) O il A e S ) |
= ’ 17 5 2 "1 1.2
Apuu 2§c (24 + 1_5 - 66, ) 57 (5= 3¢%)
_ ' 1, 1.2
AHdd 28 c (2y“ + 15 + C ) 25’0’ (_g + icl )
= 3 2 g’ 1, 1.2
AH6€ 28 c (2ye 5 + ) 2s'c’ (_g + 3¢ )
= g 1 2 ' 4 1.2
AHVV 23 c (y8 5 + c ) . 2sg’c’ (_y8 + 5 iclz)
z g 5 /2 1_A g (1 _ 1.2 A
Aptt e (20 + 3 - 5° — sin PR (3 ¢ §>\§+1/\§)
— / 1 )\ rq 22
AHTT % 2yu+_ - _C +§>\ _’_1)\3 239’0’5)\%4-1)\3
AHTt %(éxLﬁf + ;;c’zwL 289,6, (%xL)‘—f — %%C/zw[)
Zyguu gc/4s —gc/ds
Zydd —gc/4s gc/4ds
Zyee —gc/4s gc/4ds
Zygvv gc/4s —gc/4s
Zytt gc/4s —gc/4s
ZyTT o/ f) 02/ 1?)
ZuTt grrvc/Afs —grrve/dfs
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where the O; are the relevant local operators of the considered decay. In this sense the effective
Hamiltonian H.ys in (4.3.75) can be regarded as a sum of effective vertices accompanied by
effective coupling constants C; (u). Formally, the effective theory can be derived by integrating
out the heavy particles within the path integral formalism.

In earlier papers [6, 12, 13] the effects of the Littlest Higgs model without T-Parity on
particle-antiparticle mixing and other processes have been analyzed. In this section, however,
we will be concerned with the impact of the LH on the rare decays K+ — ntvo, K;, — 7w
and Bsg4 — ptp~, where the effective Hamiltonian is governed by the functions X and Y.
These functions can be determined from Z° penguins and the corresponding box contributions
to the effective Hamiltonian with v& and pf in the final state, respectively. Adding these two

contributions yields the final effective Hamiltonian which is then given by

4
vV g 1 vo _ _
(MEF1) 24 o = 6472 112, (C (v) + B (v)) (3d)y_ 4 (PV)y_ 4 » (4.3.76)
=X ()
_ 94 1 _
(Hg;f)z%x pTes (C (v) + B (v)) (3d)y_ 4 (Att)yr_ 4 - (4.3.77)
=Y (v)

From (4.3.77) one can see that the gauge independent functions X (v) and Y (v) are defined
through the linear combinations C (v) + B*” (v) and C (v) + B*" (v), respectively.

In the Littlest Higgs model the functions X and Y are modified through contributions
coming from penguin and box diagrams involving the new heavy fields Wy, Zg, Ag, T and
®*. To determine these contributions it is useful to group the diagrams contributing at
O(v?/f?) into six distinct classes, which are shown in Appendix A.1.

In class 1 we group all the diagrams with modifications of the SM vertices, where the circles
around the vertices indicate the O(v?/f?) corrections without the 2% terms. Additionally, we
also include the Wy Wy Z, triple vertex and the (Wp,Ap) penguin diagrams in this class.
The second class contains the contributions of the standard top quark in the (Wy,Z1) and
(Wr,Zp) penguin diagrams, the (Wp,,Wpx) box diagram and the diagrams with the W, Wy Zg
and Wy Wy Zy triple vertices of order v2/f2. All diagrams involving the new heavy T quark
and the modifications from the SM top quark proportional to :L'% are displayed in Fig. A.3
and belong to the third class. Further contributions containing the heavy top quark T are
summarized in class 4 and 5. Although being suppressed by a factor v*/f*, these classes of
diagrams have to be considered, since the mass of the heavy T is of order f and therefore
leads to a relevant v2/f? contribution. For completeness, in Figure A.6 we show class 6, which
contains all the diagrams involving ®*.

Apart from the diagrams given in Appendix A.1 we may also not forget that in the LH
model the custodial SU(2) symmetry is already broken at the v?/f2 level. Since we have
to express the My mass in the Z-penguin in terms of Myy, the breakdown of the custodial

symmetry yields additional O(v?/f?) corrections. These corrections arise from diagrams of
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class 1 and Zp, penguins with heavy top quark T of class 3 and are given by

v?5
A—X*Custodiall - AYvCustodiaull - FZ(C& - 3/2)2C(xt)unitarya (4378)
v!'5 2 12\2, 2
A—X*Custodial3 - AYVCustodiaulZ& - FZ(C - S ) xLC(wT)Class& (4379)
with
xe (1 p? x? — Txy dxy — 222 + 2}
C i - 24 — 1
(@t unitary 16 (s R VES ) 32(1— ) | 16(1—xp)2 o0
zpr (1 2 3xp (=24 xp)logxy
C(xT)classZi = — | —-+1n - + .
16\ M%) 32 16

After the calculation of all diagrams coming from these 6 classes [7] we can see that the
classes 2, 3 and 4 are free of divergences, whereas some divergences contained in class 1 and
5 can only cancel in the sum together with the inclusion of the singularities from (4.3.78) and
(4.3.79) due to the breakdown of the custodial SU(2) symmetry.

However, as already mentioned earlier we are left with some singularities coming from

classes 1, 5 and charged Higgs diagrams of class 6. In summary, we obtain the final divergence

1 02 S
Civ=——"—"—-—+952], 4.3.80
@ 641—:1:Lf2< 5 T 2) (4.3.80)
where we used the abbreviations Sp resulting from classes 1 and 5 and S5 from charged Higgs
diagrams,
1 N2 1 M2
S1=-—+1 d So=—+1In—. 4.3.81
! a+nM5VL o R V7 (43.81)

After these comments on our calculation we can now write down our results for X and
Y in the LH model, that are necessary to describe the phenomenology of rare decays like
K — 7w, Kt — ntvy and Bgg — pTu~. From our calculation we find the following

functions Xyp(x¢, 2) and You(xy, 2)
Xru(xt, 2) = Xem(xe) + AX) + AXo + AXs + AXy + AX5 + AXe, (4.3.82)
Yiu(ze, 2) = Yam(a) + AY7 + AYs + AYs + AY, + AYs + AYs, (4.3.83)
where the parameter z in (4.3.82) and (4.3.83) denotes collectively all the parameters in the
LH model. As seen in Appendix A.3 the singularities mentioned in (4.3.80) are included in

the contributions AX7, AX5, AXg and AYy, AYs, AYg, respectively. In detail, we find for
each contribution AX; and AY;

v? 2 V2 21
AXl = F Ul, AXQ =C F U2 == ?QU% (4384)
v? vt 2102
AX3 = IIJ‘% F U3, AX4 = ZE%C4FU4 = $%3_2§F 4, (4385)
4 2
1
AX5 =22 Us, AXg = 2 (1 - 22, Us(ér)) (4.3.86)

f4 T 21281 —xp
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and
v2 v2 21

AY, = =V, AYo=ct— Vo = -V 4.3.87
1 f2 17 2 C f2 2 82 y 27 ( )

2 4 2 2

2 v 2 4'U 2 cclo
A}%—wLP‘/é, AY4—Z’LC FVZL_'Z'L?;P 4, (4388)

4

AYs = m%% Vs, AYs = AXg, (4.3.89)

where the different functions U; and Vg can be found in the Appendix A.3. Finally, after
having included the finite parts of the two corrections due to the custodial relation given by
(4.3.78) and (4.3.79) into the X and Y functions of class 1 and 5 the final results (4.3.82) and
(4.3.83) turn out to be independent of s'.

4.3.2 The Issue of Leftover Singularities

It may seem surprising that FCNC amplitudes considered in the previous section contain
residual ultraviolet divergences reflected by the non-cancellation of the 1/e poles at O(v?/f?)
in the unitary gauge calculation. Indeed due to the GIM mechanism [29] the FCNC processes
considered here vanish at tree level both in the SM and in the LH model in question. Therefore
within the particle content of the low energy representation of the LH model there seems to
be no freedom to cancel the left-over divergences as the necessary tree level counter terms are
absent.

At first sight then one could worry that the remaining divergence is an artifact of the
unitary gauge calculation. However, the fact that the dominant divergence comes from the
gauge independent charged triplet Higgs ®* contribution gives us a hint that the residual
divergence is not an artifact of the unitary gauge but reflects the true sensitivity to the UV
completion of the LH model and the presence of additional contributions to the NLSM used
as the effective field theory at low energy.

In order to put this hypothesis onto a solid ground we have analyzed the divergent part
of the amplitudes in the Feynman gauge. Then the box diagram contributions are finite
and it is sufficient to concentrate on the penguin (vertex) contributions. In this context let
us recall that in the SM the divergent contributions from penguin diagrams involving only
quarks and gauge bosons are removed by the GIM mechanism as the divergent terms are
mass independent. Some of the vertex diagrams with internal Goldstone bosons are also
divergent and being proportional to m?, (i = u,c,t) these divergences cannot be removed by
the GIM mechanism [29]. Within the SM they cancel, however, due to gauge invariance and
renormalizability of the theory.

In the LH model in the Feynman gauge there are no divergences left from the pure gauge
boson diagrams of classes 1-5 shown in Figs. A.1—-A.5 in the appendix. Note also that the
divergence from the breakdown of the custodial symmetry is also absent as in the Feynman

gauge the SM function C' is finite. Thus the left-over divergences come only from the charged
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triplet Higgs contribution in Fig. A.6 and two charged Goldstone bosons that now have to
be included in the evaluation of the diagrams of classes 1-5. These are a charged vector
Higgs boson which is responsible for the mass of Wy and the usual charged doublet Higgs
boson which gives mass to Wyr. We confirm that the left-over divergence coming from these
Goldstone boson contributions to classes 1-5 exactly reproduces the divergence discovered
in the corresponding unitary gauge calculation. Combined with the charged triplet Higgs

contribution we reproduce, in the Feynman gauge, the full divergence of (4.3.80).

To understand the meaning of these ultraviolet divergences it is important to recall that
the LH model is a NLSM, an effective field theory that describes the low energy behavior
of a symmetric theory below the scale where the symmetry is dynamically broken. In this
region the currents associated with the dynamically broken generators are conserved by a
cancellation between the quark charge form factor current and the Goldstone current. Quark
currents will remain conserved even when the charge form factor is renormalized as long as
the Yukawa coupling of the Goldstone bosons to the fermions has a corresponding renormal-
ization. It is easy to confirm that this is exactly what happens in the NLSM used above to
describe the LH theory and the divergence may be identified as a renormalization of the quark
charges associated with neutral current processes. The subsequent gauging of the Little Higgs
theory only rearranges the infrared structure of the theory but cannot modify the ultraviolet
behavior. The divergence in the charge form factors is not a true ultraviolet divergence but

reflects sensitivity to the UV completion of the theory.

This same mechanism can be observed in the phenomenological description of dynamical
chiral symmetry breaking in QCD using a non-linear realization of the pseudo-scalar mesons as
Goldstone bosons. Here the axial charges are dynamically broken but the axial vector currents
remain conserved due to the Goldstone currents of pions. To apply this theory to the physical
baryons, the axial charge of the baryon is observed to be renormalized, G4 ~ 1.26 # 1. This
renormalization is consistent with a conserved axial vector current as long as the Goldstone
coupling of the pions to the baryons is modified according to the Goldberger-Treiman relation.
In fact, the naive constituent quark model predicts an even larger value of 5/3 for the axial
charge of the baryon where the axial charge of the quark is taken to be 1. This kind of
divergence was already encountered by Peris [54] in a study of the constituent quark model
for baryons. He calculates the corrections to the axial charge G4 of the baryon from the
loop corrections of the chiral quark constituents. His calculation uses a linear sigma model of
pions coupled to constituent quarks to regularize the nonlinear theory. In the broken phase,
the pionic radiative corrections generate a logarithmically enhanced correction to the axial
charge form factor. The scale of the logarithm is set by the mass of the scalar partner of
the pion, i.e. the scale of the dynamical symmetry breaking within the chiral multiplet. In
the nonlinear theory this scale will not be larger than the cutoff scale, 47 f. Using the cutoff
scale, Peris observes a 20% reduction for the in the axial charge of the quark which is about

the right magnitude to explain the observed value of the axial charge of the baryon in the
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constituent quark model. He also remarked that other ultraviolet completions could generate
a modification of the quark axial charge even at leading order, i.e. g4 is really a free parameter
in the effective field theory.

The value of the charge form factors of dynamically broken generators will depend on the
ultraviolet completion of the Little Higgs model. The principal question concerns how the
dynamical symmetry breaking is transmitted to the fermions. As a minimum, the symmetry
breaking is reflected through the Yukawa couplings of the Goldstone bosons to the fermions.
In this case the next-to-leading corrections may be estimated from Goldstone loop corrections
to the charge form factors and the scale of the logarithmic divergences should not be larger
than 47 f. However, the light fermions may have a more complex relation to the fundamental
fermions of the ultraviolet completion of the theory and the Little Higgs theory may have
to include modifications of the charge form factors even at leading order, as in the case of
the baryon where G4 # 1. We conclude that the residual logarithmic divergences found in
Subsection 4.3.1 are a real physical effect, but they also indicate additional sensitivity to the
UV completion of the Little Higgs models usually not included in the phenomenology of these
models.

Assuming the minimal case discussed above, we estimate the contributions of the loga-
rithmically divergent terms to the functions X and Y. Removing 1/e terms from (4.3.80) and

setting 1 = A we find

e 1 02 A? 1 A?
AXgiy = AYyi, = — — — ——Iln—— 4.3.90
d WTGAT a2 | ME 5 MG, (4.3.90)
Setting
A =drf, my = 115 GeV, v = 246 GeV (4.3.91)
and using the values of My, and m; in Table 4.3 we find for f/v =5 and 1, = 0.8
AXgiw = AY g, = 0.049, (4.3.92)

which should be compared with Xqv ~ 1.49 and Ysy ~ 0.95. Thus for this choice of
parameters the correction amounts to 3% and 5% for X and Y, respectively. Larger values
are obtained for zj closer to unity but such values are disfavored by the measured value
of AMg. Smaller values are found for larger f. In summary the effect of the logarithmic
divergences turns out to be small. However, we would like to emphasize that this estimate
only takes into account the contributions, where the fermions couple to the Goldstone bosons
only through the mass terms, not the G 4-like terms, and the sensitivity to the ultraviolet

completion of the LH model could in principle be larger than estimated here.
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4.4 Numerical Analysis

For a numerical analysis we are mainly interested in the effects of the corrections coming from

LH contributions. For that purpose we will consider the ratios

Br (K" —mtvr)y

= 4.4.
s Br(K+ — mtvn)gy’ (4:4:95)
R, = Br(Kp —n'vi) g Br(B — Xeavt)yy [ Xin)? (4.4.94)
L= Brk,— mub)gy  Br(B — Xgab)gy, | Xsm] o
Br (B sd_>N H )LH [YLH}2
Reg = - , 4.4.95
“ Br(Bsa — ptp-)gy  Ysu ( )

where all the relevant input parameters are given in Table 4.3.

In order to define the ratios (4.4.94) and (4.4.95) we have to assume that the values of the
CKM parameters in the LH model are the same as in the SM. This is a reasonable assumption
since both models belong to the class of ME'V models for which the so-called universal unitarity
triangle exists [55, 56]. Moreover, in principle CKM parameters can be determined from tree
level processes independently of new physics contributions. In the following we will choose
zr, < 0.8 since we know from the recent CDF and D) measurement of AM, [57, 58] that
values for zy, close to unity are already excluded. Moreover, as stated above we will take the
CKM parameters to be the same for the SM and LH model and fixed to the central values
collected in Table 4.3, where m; = m;(m;) in the MS scheme. Then the ratios in (4.4.94) and
(4.4.95) only depend on the one-loop functions X and Y and the dependence on the CKM
+

parameters is only present in (4.4.93) due to the relevant charm contribution in K+ — 7tvw

in which the new physics contributions are negligible.

m, = 163.8(32) GeV | |Vip| = 0.00423(35)
My = 80.425(38) GeV | [Vip| = 0.0416(7)[59]
a=1/127.9 A=0225(1)  [60]
sin® Oy = 0.23120(15) | v =71°+£16° [61]

Table 4.3: Values of the experimental and theoretical quantities used as input parameters.

For the three new parameters f, x; and s parameterizing the LH model we will choose

the ranges

f/v=5o0r10, 02<z; <08, 0.3<s<0.95 (4.4.96)

This parameter space is larger than the one allowed by other processes [5, 8] which typically
imply f/v > 10 or even higher. But we want to demonstrate that even for f/v as low as 5
the corrections from LH contributions to X and Y are small.

In Figure 4.2 we show the ratios (4.4.93)-(4.4.95) as functions of s for different values of
xzp, and f/v =5. The corresponding plots for f/v = 10 are shown in Fig. 4.3.
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We observe that Ry, Ry, and R, s increase with increasing s and x,. For f/v =15, s = 0.95
and z; = 0.8 they reach 1.23, 1.33 and 1.51, respectively. However for f/v = 10 they are
all below 1.15 and consequently it will be difficult to distinguish the LH predictions for the

branching ratios in question from the SM ones.
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Figure 4.2: Normalized branching ratios Ry, R4, R4 for different z;, = 0.2,0.5,0.8 (from
top to bottom) and f/v = 5.
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Figure 4.3: Normalized branching ratios Ry, R4, R4 for different z;, = 0.2,0.5,0.8 (from
top to bottom) and f/v = 10.
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Chapter 5

The Littlest Higgs Model with
T-Parity

When introducing the superpotential of the MSSM in the most general form one has to con-
sider several baryon- and lepton-number violating terms, which lead to a number of theoretical
predictions that contradict experimental observations, like the decay of the proton. In order
to explain this discrepancy between theory and experiment a new symmetry, called R-parity,
is introduced. Under this symmetry all SM particles are defined to possess positive parity
while their superpartners acquire a negative sign. A direct consequence of a preserved R-
parity is the fact that the lightest supersymmetric particle (LSP) can not decay and therefore
provides a viable dark matter candidate. To fit observations, such a particle is assumed to
have a mass of 100 GeV to 1TeV, to be neutral and to interact typically through weak and

gravitational interactions.

As already discussed in the previous chapter the LH model was proposed to solve the
little hierarchy problem and to protect the Higgs scalar from quadratically divergent mass
at the one-loop level. However, in order to be consistent with the severe constraints coming
from electroweak precision tests [8], the scale f in the LH model should be of the order of
3TeV, which re-introduces an unacceptable fine tuning. This is due to the fact that in the
LH model higher dimensional operators originating either from the expansion of the X field

or from integrating out heavy gauge bosons affect these electroweak observables.

To evade these problems Cheng and Low suggested in [9] a new discrete symmetry, called
T-parity. Like R-parity in SUSY, T-parity is a mechanism in Little Higgs models to get rid
of troublesome couplings that are in conflict with experimental observations. To do so one
assumes the SM particles to have positive parities, while troublesome extra fields acquire a
minus sign under the parity transformation. In the next sections we want to illustrate how

T-parity can be incorporated into the Littlest Higgs model.

93
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5.1 Introducing T-parity

In order to implement T-parity into the LH model based on an SU(5)/SO(5) non-linear sigma
model, we recall that the unbroken and broken generators 7% and X satisfy YoT,%¢ = —T.1
and EOXaEO = XT

o » respectively. These relations lead to the observation that the coset

space SU(5)/SO(5) is a symmetric space, in which the unbroken 7% and broken symmetry

generators X¢ obey
[T“,Tb] ~ T, [T“,Xb} ~ X, [X“,Xb] ~Te. (5.1.1)

From (5.1.1) we see that the Lie algebra with its schematic commutation relations is invariant
under the transformation

T4 - T X% — —X (5.1.2)

This transformation is an automorphism of the Lie algebra and can be used to define T-parity
in a consistent way. Since the broken generators are assigned a minus sign under T-parity,

we can determine T-parity to act on gauge fields and scalars as

Wf — Wf,
WI‘_} — —W;},
I — —=QIIN. (5.1.3)

In the last line of (5.1.3) we had to introduce a matrix = diag(1,1,—1,1,1), which com-
mutes with all the generators and gives the Higgs a positive parity in order to serve as SM
Higgs boson. Furthermore this choice of €2 also keeps the triplet odd, which forbids a danger-
ous vev v’ for the triplet. Thus, by (5.1.3) and the use of €2, T-parity is defined in a consistent
way.

To impose T-parity on the gauge fields, the coupling constants of the two gauge groups
[SU(2) x U(1)]; and [SU(2) x U(1)], are set to be equal, i.e. g1 = g2 and g = g5. A direct
consequence of this setting is the fact that the gauge sector given in (4.1.17) is invariant under

the following transformation of gauge fields
Wi — W, B < Bs. (5.1.4)

Using these assignments one can convince oneself that (4.1.17) is invariant under T-parity by
applying (5.1.3).

To implement T-parity in the fermion sector the left-handed SM fermions 1, 1o have
to be embedded into incomplete representations ¥y, Wy of the full SU(5) symmetry group.
Moreover, a consistent introduction of T-parity requires a right-handed multiplet W of the

unbroken SO(5). Thus, the field content of the multiplets can be expressed as
U1 0 VR
U= 0 [, Ya=] 0 [, Ypr=| xr |, (5.1.5)
0 V2 YR
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with g being the right-handed mirror fermion doublet. The remaining singlet y g and doublet
Yg in (5.1.5) receive large masses by the introduction of further fermions [10, 62] and are
assumed to decouple from the theory. The two doublets ¥, and s transform linearly under
the [SU(2)]; and [SU(2)], gauge groups, respectively. Due to the transformation properties
of the gauge generators given in (5.1.2) T-parity relates the fields ¥y and Wy by introducing

a minus sign. That is, under T-parity both multiplets transform as
Uy — —300s,. (5.1.6)

Thus, following this transformation property of ¥; and Ws the remaining right-handed fields

W r need to transform under T-parity as
Up — —Up. (5.1.7)

Having determined how T-parity acts on the different fermion fields ¥y, ¥y and Wi we are

able to identify the T-even and T-odd eigenstates. The linear combination
1

SM — — =

Ysm 7

turns out to be the T-even eigenstate, while the T-odd combination is given by

(1 —b2), (5.1.8)

by = % (1 + ). (5.1.9)

The gy in (5.1.8) are the SM left-handed doublets, which are even under T-parity, while
the T-odd combinations are left-handed mirror fermion doublets, which will have significant
phenomenological impact, as we will see later.

Finally, we need to modify the top-sector in order to incorporate T-parity into the model.
Typically, this is done by adding two new singlet fields ¢}, ¢}, as well as their right-handed

counterparts, t] 5 and t,,. These fields are supposed to transform under T-parity as
th — —th, tigp < —thp. (5.1.10)

Taking into account these transformation properties we can write down the kinetic terms for
the left- and right-handed multiplets, respectively. Following [11] a kinetic term for ¥y and
U,y is given by

Liin D U1in* D)Wy + Waing” D20y, (5.1.11)

where the covariant derivatives are given by

D} = 8, — ivV29QiWi, — iv2g Y\ " By, — iv/2' Y3 YY) By,

D2 = 8, +ivV29QsT WS, — ivV2g'Y\ "V By, — iv/2d' Yy ¥*) Boy,. (5.1.12)

;)

Finally, the corresponding U(1) charges Y;"’’ are fixed by the requirement of gauge invariance

and T-parity and are given in Table 5.1.
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In terms of mass eigenstates of the gauge bosons and fermions, as denoted in (4.1.22),
(5.1.8) and (5.1.9), the Lagrangian (5.1.11) can schematically be re-written by

Lin D bsmiy* Divsy + vt Dby + cbspiv' Vi, (5.1.13)

where Vj,, denotes the heavy gauge bosons. As one can see, (5.1.13) contains the usual kinetic
terms for the SM doublet fermions with Dﬁ being the SM covariant derivative. However, they
also include new interactions between mirror fermions, SM fermions and heavy gauge bosons.

Similarly, a kinetic term for the top partuner fields is given by [11]
Liin D Tiy" D)}ty + tyiy* D)2 th, (5.1.14)
where the primed covariant derivatives contain only U(1) gauge bosons and are given by
Di=0, - z'\/ig’Yl(ti)Bm - i\/ig'Y;ti)Bgu. (5.1.15)

Finally, we note that the covariant derivatives for the right-handed SM fermions are in-
troduced in analogy to (5.1.12) and (5.1.15) with the relevant quantum numbers given in
Table 5.1. For the right-handed mirror fermions the kinetic terms have to be constructed via
the CCWZ formalism [62, 63] and have been worked out in detail in [11].

We want to conclude this section by noting that there is a further possibility to incorporate
T-parity in the model [62]. In contrast to the previous approach the SM fermions could also
be put into a complete multiplet of the unbroken SO(5) and a kinetic term via the CCWZ
formalism [63] could be constructed. This allows to lift the masses of the mirror fermions and
the spectrum would be identical to that of the LH model. Unfortunately, this is not possible,
since the Yukawa-type interactions, responsible for the masses of the mirror fermions contain
vertices with one SM fermion, one mirror fermion and a Goldstone boson. Such couplings
yield finite contributions to the four fermion operator cs (QZSMﬁuwSM) (QZSMﬁ“wSM) with
the coefficient c¢; being ¢y ~ 1/ f2. However, experiments require this coefficient to be cp <
1/(5—15TeV)? [64] and thus, the fine-tuning problem, which we wanted to solve, is re-

introduced.

5.2 The Littlest Higgs Model with T-Parity

5.2.1 Gauge and Scalar Sector

In this and the next subsection we want to use the ideas of Section 5.1 to write down an
explicit model, from which we can derive the Feynman rules relevant for a phenomenological
analysis.

As in the LH the starting point of our considerations is the scalar kinetic term, whereas the

two different coupling constants have been set equal, i.e. g1 = g» = v/2g and g =4qh= V24
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Thus the gauge sector of the LHT contains much less parameters than the one of the LH

model and the scalar kinetic term is now given by

Liin = %2Tr (D,%) (D*E)T, (5.2.16)

where the covariant derivative is defined by
2
DY =0,8—iv2) _ [gWe, (QIS +3QT) + ¢/ B (V;S + 5Y5)] . (5.2.17)
j=1

Due to the symmetry breaking at the scale f, (5.2.17) leads to linear combinations of

gauge bosons which remain massless

Wi+ Wi B+ B
we="1"2 g AT (5.2.18)
V3 V3
while the second orthogonal linear combinations
wae — Wi B, — By
Wg=—"1+—2 By=——-— 5.2.19
H V2 "= (5:2.19)

get a mass of the order of the breaking scale f. The indices “L” and “H” in (5.2.18) and
(5.2.19) denote the light bosons (T-even), which serve as SM gauge bosons, and new heavy
gauge bosons (T-odd), respectively. In the process of EWSB, SU(2); x U(1)y is broken
down to U(1)g via the usual Higgs mechanism, generating the known mixing of the light
gauge bosons. Additionally, in the neutral heavy gauge boson sector linear combinations
of WE’I and By will produce the new mass eigenstates Zy and Agy. After the spontaneous

breakdown at the scale v the mass eigenstates read

— Wi Fiw? — Wk Fiw}
L \/5 ’ H \/5 ’
2
. v
ZL = COSHng—SlnewBL, ZH:WI?;["F%HFBH;
2
A = sinHWWE’ 4+ cosOw B, Ag= —I'H%W?[ + Bpgy, (5.2.20)
with Oy being the usual weak mixing angle and
599'
The masses of the physical eigenstates (5.2.20) are given by
U2 fg/ 5,02
MWH = fg <1 — 8—f2> N MZH = MWH, MAH = ﬁ <1 — 8—f2> s (5222)
and
My =2 (1 BN = (o Ma, =0 (5.2.23)
WL =" 1272) 7T Scos by 1272 ) TS -

where the light gauge bosons only get contributions from the second symmetry breakdown at
the scale v. Also, from (5.2.23) one can see that the custodial SU(2) symmetry is preserved,

since the mass relation My, = Mz, cos Oy holds at tree level.
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5.2.2 The Fermion Sector

Apart from the scalar and gauge sector we also have to incorporate T-parity in the fermion
sector. To construct a T-invariant Yukawa interaction for the top quark one can start with

(4.1.40) and T-symmetrize it. As shown in [11] such an interaction is given by

. ) _ .
_ﬁ)qfemkﬁxy [(Ql)i YjaXky — (Q2%0), ijgky} i

—Xof (Bt g + ththg) + h.c., (5.2.24)

Etop

where 3, the image of ¥ under T-parity, is
> =T[3] = Zo0x8TQn,. (5.2.25)

As in the LH model the third generation Yukawa sector has to be modified in order to prevent
the Higgs mass from dangerous one loop quadratic divergences. For this reason the multiplets
@1 and @2 have to be completed to representations of the SU(3); and SU(3)y subgroups of
the full SU(5). With the fermions 11 and

t;
W, = —i09 ( ) ) (5.2.26)
the incomplete multiplets Q1 and Q2 in (5.2.24) are given by
(01 0
Q= t; |, Q=] t, |- (5.2.27)
0 (>
Furthermore, with the right-handed singlet quark field u‘;’% being neutral under T-parity,
Uy — uh, (5.2.28)

and using the transformation properties Q1, Q2 and t/ 5, thp, respectively,

Q1 = —%0Q2, tig > —top, (5.2.29)

one can see that (5.2.24) is invariant under T-parity.
To express the Lagrangian (5.2.24) in terms of mass eigenstates we introduce the following

T-even eigenstates of the top partners

tll + t,2 / — t/lR + tl2R
\/5 9 +R \/5 9

which mix with the first component of the SM quark doublet and finally lead to the T-even

t, = (5.2.30)

mass eigenstates

3 / 3 !
tr, = cpuy —sptly, (T4); = spuy +crt)y,

tr = cpuh —sgtp, (Ti)p = sruf + crt'yp. (5.2.31)
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In (5.2.31) u3 is the first component of the left-handed SM quark doublet while the sines and

cosines of the mixing angles are found to be

2
v v
S, = IL— 1+—d2:|,
f [ f?
2,2
I
‘L = 2 f27

2 1

w = o (3-a)]
cp = V1—z2p [1 + ;—Zu (% - xL>] , (5.2.32)

with 27, and dg given in (4.1.49) and (4.2.68).
In contrast to the T-even eigenstates the T-odd combination does not mix with the mirror

fermions and can simply be identified with
(T-), =t, (T-)g=t_g (5.2.33)

As one can see from (5.2.31), the physical top quark is a linear combination of the third
generation SM up-type quark and the new LHT field #’. This mixing can be described by the
mixing angles in (5.2.32) and will obviously affect SM Feynman rules for the top quark at
order v?/f2. Using the field definitions in (5.2.31) we can re-express (5.2.24) in terms of the

physical mass eigenstates, where the corresponding masses are given by

AL A 271 1
mp = i{uv <——+—:cL(1—xL)>],

N ESY AR EANE I
_f my v? (1
= T R ()]
mp = 4 [1—;—2@—%@(1—@))]. (5.2.34)

V\/T],

For the other quark flavors, however, it will not be necessary to modify the Yukawa Lagrangian
as in the top sector since their Yukawa coupling is at least one order of magnitude smaller
than the Yukawa coupling of the top quark and thus their contributions to the quadratic
divergences turn out to be negligible. Therefore we do not need to introduce additional

singlets for the remaining up-type quarks and the Yukawa coupling is accordingly given by

1 ~ _ -~ o~
ﬁup = _ﬁ)\ufeijkexy [(Ql)z ijzky - (Q2ZO)Z ijzky} ugr + h.c. (5235)

In contrast to (5.2.27) the incomplete multiplets 1, Q2 now consist only of the SU(2) doublets
11 and 1. Concerning the down-type Yukawa Lagrangian, in principle, one has to proceed

as in the case of the up-type sector via T-symmetrization. However, here an additional factor
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X = (233)_1/ 4 has to be included in order to conserve hypercharge. A gauge invariant

down-type Yukawa term is therefore given by

7

Laiown = ZﬁAdeijEmyz [(\IJQ)m EiijzX — (@120)96 iiyijsz] dr + h.C., (5236)

where this time the sum over ¢,5 = 1,2 and z,y, 2 = 3,4, 5 and the incomplete multiplets ¥,
Uy contain the SU(2) doublet fields g1, g2 without an additional factor o2,

q1 0
Uy = 0 , Uy = 0 . (5.2.37)
q2

From (5.2.35) and (5.2.36) we obtain, after diagonalization, the physical masses of the up-

and down-type quarks which are given by

i i v’ .

m, = AU <1 - 3—f2> , 1=1,2 (5.2.38)
. . 2

m = N <1 - #) . j=1,2,3. (5.2.39)

So far we have only discussed the mass generation for SM-like fermions. However, since
the mirror fermions have not been observed experimentally we have to give them a mass of

order O (f). This can be achieved by giving them a mass via the following Yukawa interaction
Lonirror = —Ki f (@;g + T ne0¢t Q) W, + hec., (5.2.40)

where the summation over i, 7 = 1,2, 3 is implicit. The set of mirror fermions ¥ is embedded
in a complete multiplet of SO(5), whose transformation is non-linear under SU(5). Thus, in
(5.2.40), & = eM/T is needed to give the Ux multiplet interactions with other fields, which
obey linear transformation rules, and to make L,irror SU(5) invariant. The masses acquired

by both the mirror quarks and leptons are given by [16]

?}2 1)2
mYy;, = V2kif <1 — W) = my; (1 — —) , (5.2.41)

mi = V2kif =mm, (5.2.42)

where the k; denote the eigenvalues of the mass matrix .

Imposing gauge invariance on the Yukawa sector of the LHT model the U(1) charges of
the fermions can be defined up to one free parameter. However, this parameter can be fixed
by requiring the Lagrangian to be invariant under T-parity, which finally yields the U(1)

quantum numbers shown in Table 5.1.
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a | (1/30,2/15) [ @ | (2/15,1/30)
| (8/15,2/15) || ¢, | (2/15,8/15)
e | (8/15,2/15) || thy | (2/15,8/15)
ur | (1/3,1/3) | dr | (=1/6,—1/6)
0| (=1/5,-3/10) || £ | (—=3/10,—1/5)
er | (—1/2,—1/2)

Table 5.1: U(1)1 x U(1)2 quantum numbers of the fermion fields.

Derivation of Feynman Rules

Having presented how T-parity can be embedded into the LH model we discussed the kinetic
and interactions terms as well as the particle content of the LHT model. However, in order to
make predictions for physical observables, we have to derive all the relevant Feynman rules.
Although other papers [10, 11, 16] concerned with calculations in the LHT model already state
some Feynman rules a complete list was first published in [17]. In Appendix A.2 we present
the Feynman rules for the interaction of fermions, gauge and Goldstone bosons since they
have not been derived by other authors so far. For our calculation they are essential, since
we want to confirm the X, Y and Z functions, obtained from a unitary gauge calculation, in

't Hooft-Feynman gauge.

5.2.3 Flavor Mixing in the Mirror Sector

As discussed in detail in [16], one of the most important ingredients of the mirror sector is
the existence of four CKM-like unitary matrices, two for mirror quarks and two for mirror
leptons:

Viw, Vaa, Vv, Ve (5.2.43)

In order to see how they arise, we briefly recall the Dirac-type mass term, which was presented
in (5.2.40). In analogy to the CKM mechanism in subsection 2.1.4, the 3 x 3 matrix s can be
biunitarily diagonalized by the two unitary matrices Vg and Ug

K= VHI{DUIT{. (5.2.44)

To understand how charged currents are affected by this rotation we schematically recall

the gauge interaction part of the kinetic terms in the T-parity eigenbasis that is given by

9Q-A Q4 +9Q+ A Q- (5.2.45)

where A_ and @_ are the heavy T-odd gauge bosons and fermions and ()4 are the T-even
eigenstates. Rotating the T-even and T-odd flavor eigenstates into mass eigenstates identified

with the index H and L, we then obtain for the quark sector

~ Vaur A
1% + . ViQu, 5.2.46
9Qu HAH( Vody ) 9( dLVdT )AH HQH ( )
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and similarly for the lepton sector

- Vv 1 VJ
9LV Ay ( Wf ) +g < Zﬁv* ) AV L. (5.2.47)
l

In (5.2.46) and (5.2.47) Qg and Ly denote doublets of heavy quarks and leptons, respectively.
Similarly to the CKM mechanism the rotation matrices relevant for flavor physics are given
by

ViV = Virw,  ViVa = Via, (5.2.48)
and

Moreover, it can easily be seen that the matrices in (5.2.48) and (5.2.49) are related to the
CKM and PMNS matrices by

V)i Via=Vexm and Vi Vg =Vi o (5.2.50)

The mixing matrices in (5.2.48) and (5.2.49) parameterize the flavor violating interactions
between SM fermions and mirror fermions mediated by the heavy gauge bosons Wf;, Zy and
Ag.

In contrast to the CKM or PMNS matrix, the matrices V4 and Vi, are parameterized
by three angles and three phases [65]. This is due to the fact that in the LHT model there are
new interactions, mediated by the heavy gauge bosons le{:, Zy and Ag. The mixing matrix
Viq is involved in the interactions of ordinary SM down quarks and either an up mirror quark
(W§ mediated), or a down mirror quark (Zp or Ay mediated). As discussed in [16], these
interactions can generally be described by a 3 x 3 unitary matrix containing 3 mixing angles
and 6 complex phases. In order to determine the number of physically parameters in this
matrix some of these phases can be eliminated by rotating the interaction states. However,
in contrast to the CKM matrix only 3 phases can be rotated away, since the phases of the
SM fields have already been fixed in order to remove the unphysical parameters in the CKM
matrix. Thus, it turns out that Vg4 can be parameterized in terms of 3 mixing angles and 3
phases. After having discussed the basic structure of Vi, it is straightforward to determine
Vi, with the help of (5.2.50).

Here we will present the parameterization of Vg4, whose analogon in the lepton sector is
the matrix Vi,. Following [65], we parameterize V4 in terms of three mixing angles Gldj and
three complex phases (5% as a product of three rotations, and introducing a complex phase in

each of them, thus obtaining

sd ;i sd
1 0 0 4, 0 s‘fge_2513 , s‘liQe_usw 0
—isd 6.
Via=10 4. 53,6712 0 1 0 —sd,eiis , 0
isd isd
0 —sd5eis 4. —sdae1s 0 s 0 0 1

(5.2.51)
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Performing the product one obtains the expression

d .d d_.d_,—i6¢ d ,—i6¢
C12€13 S12€13¢ 2 size 3
:sd s sd d s sd d d :sd
Via = —3?205361512—0[1123533[11362(5 370%)  cfyedy — sysdysfye Pl 0%) e im0
d i(8% 46 d .d od sl d_d isd d_.d od ,i(58,—6¢ d .d
512523 el (Oha+05) — cycgastyes —cfysg3ei0% — sfhegystyel (Pl 0t) 2313
(5.2.52)

As in the case of the CKM matrix, the angles Hfj can all be made to lie in the first quadrant
with 0 < 512, 523, 5 {5 < 2m. The matrix Vg, is then determined through Vg, = VHdV(;KM-

In the course of our analysis of FCNC rare decays and LFV decays it will be useful to
introduce the following quantities (i = 1,2, 3):

K) *zs i *1 *1,
&5 = visvia & = viitvid, &) = vitviy, (5.2.53)
that we will need for the analysis of rare K and B, decays
X( pne) V*ze Hé? (Te) V*Ze ngﬂ’ XZ(T“) V*ZMV (5254)

that govern y — e, 7 — e and 7 — p transitions, respectively.

5.2.4 The Parameters of the LHT Model

The new parameters of the LHT model, relevant for the present study, are

fs m[}ﬂ’ m(}ﬂ’ m[}m’ 01y, 9(1]37 9337 oy 5(1]3 5[213, (5.2.55)

which can be probed by FCNC processes in K and B meson systems, as discussed in detail

in [15, 17] and the ones in the mirror lepton sector

mf*{l ) mf*n’ mﬂg,, 912 ) 913: 923: 5%2 5%3 5537 (5.2.56)
which can be probed with the help of LFV decays, as discussed in detail in [66].

The determination of the parameters in (5.2.55) and (5.2.56) with the help of K and B
meson systems and LEV processes is clearly a formidable task. However, if the new particles
present in the LHT model are discovered once LHC starts its operation, the parameter f will
be determined from Myy,,, My, or My, . Similarly the mirror quark and lepton masses m%,
and m%i will be measured.

The only remaining free parameters among the ones listed in (5.2.55) and (5.2.56) will
then be 9‘1[ and 6%, which can be determined once many FCNC and LFV processes have

17
been Ineasured.
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Chapter 6

Phenomenology of Rare Decays in
the LHT Model

Rare decays play a crucial role for the discovery potential of B experiments such as the LHCb
or a Super B Factory. As they involve loop-suppressed flavor-changing neutral currents, they
are highly-sensitive probes for new degrees of freedom beyond the Standard Model.

In this chapter we want to present the calculation of several important rare decays in the
LHT that are likely to be of crucial interest when K and B experiments are operating. This
chapter is organized as follows. In the first section we want to introduce some theoretical
ingredients which are relevant for describing the phenomenology of rare decays. In the subse-
quent section several rare decays are calculated within the LHT so that we can finally present

a numerical analysis of these decays in the LHT.

6.1 Rare K and B Decays beyond MFV

6.1.1 Preliminaries

Before presenting the details of the calculations of rare K and B decays in the LHT model in
question, it will be useful to have a general look at rare decays within models with new flavor
and CP-violating interactions but with the same local operators of the SM or more generally
of constrained MFV (CMFV) models, as defined in [56, 67].

It should be emphasized that while the formulae given below bear many similarities to the
ones given in [68], they differ from the latter ones in the following important manner. In [68] a
simple beyond-MFV scenario of new physics has been considered in which new physics affected
only the Z%-penguin function C that became a complex quantity, but remained universal for
K, By and B; decays. In this manner several CMFV relations involving only CP-conserving
quantities remained valid and the main new effects were seen in CP-violating quantities like

Br(K — n%vi) and the CP-asymmetries in B — X /T¢~. In particular, the full system

65
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of rare K, B; and By decays considered in this section could be described by three complex
functions
X =|X|e0% v =y, Z=|Z|e%, (6.1.1)

with correlations between these functions resulting from the universality of the Z°-penguin
function C' = |C|exp (if¢c). As a result the CMFV correlations between observables in K,
By and Bg were only affected in the cases in which ; played a role. In the LHT model the
structure of new flavor violating interactions is much richer. Let us spell it out in explicit

terms.

6.1.2 X,;,Y,;, Z; functions

In the CMFV models the new physics contributions enter for all practical purposes only
through the functions X, Y and Z that multiply the CKM factors )\gl)

NO=ViVia, N =ViVia, AN =V, (6.1.2)

for K, By and Bj systems respectively. As in the LH model the CKM elements we will use
are those determined from tree level decays.
It will be useful to keep this structure in the LHT model and absorb all new physics

contributions in the functions X;, Y;, Z; with ¢ = K, d, s defined as follows:

_ 1 - - i
X, = Xsu+ Xeven + Wxgdd = | X;| etV (6.1.3)
t
_ 1 - - i
Y; = Yim + Yeven + Wygodd = |Y;| e, (6.1.4)
t
_ 1 = - i
Zi = Zsm + Zoyen + NG Z0 = | 7;] €%z . (6.1.5)

¢
Here Xgwm, Ysm and Zgyp are the SM contributions for which explicit expressions can be found
in Appendix A.4. Xeven, Yeven and Zeven are the contributions from the T-even sector, that
is the contributions of T and of t at order v?/f? necessary to make the GIM mechanism
[29] work. The latter contributions, similar to X, Ysm and Zgy, are real and independent
of i = K,d,s. They can be extracted from [7] and will be given in Section 6.2. Finally, the
remaining functions ded, Y;Odd and Zfdd, that represent the T-odd sector of the LHT model
can be obtained from penguin and box diagrams with internal mirror fermions. The details
of this calculation can be found in Section 6.2. In what follows we will present the most

interesting branching ratios in terms of X; and Y;.

6.2 Calculating Rare and CP-violating Decays

In order to calculate the functions X;, ¥; and Z; in (6.1.3), (6.1.4) and (6.1.5) we have to

determine the contributions Xeyven, Yeven and Zeven coming from the T-even sector and ded,
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ded, Zfdd resulting from the T-odd sector. Among these functions, the contribution Xeyen
and Yeyen in (6.1.3) and (6.1.4), respectively, can be easily extracted from [7] by using the
functions X and Y calculated in Chapter 4. However, in the LHT model T-parity enforces
the gauge couplings of the two SU(2); ® U(1);, @ = 1,2 factors to be equal, which implies for
the mixing angles

s=c=s==—. (6.2.6)

Due to T-parity one can also see from the diagrams in Appendix A.1 that all contributions
from the classes 1, 2, 4 and 6 vanish. Additionally, there are also no corrections from the
breakdown of custodial symmetry and the left-over divergence, discussed in detail in Subsec-
tion 4.3.2.

The remaining contributions therefore arise from the classes 3 and 5 and can be summa-

rized as
= v? x T
Xeven = ‘T%F |:U3(xt7 xT) + 1 —LJZL §t:| , (627)
— v? T T
Yeven = :E%F |:‘/é($t7$T) + 1 _L$L é] , (6.2.8)

with Us(zy, x7) and V3(xy, z7) given in Appendix A.3.

The contributions ded and ded resulting from fermions in the mirror sector cannot be
extracted from previous results and have to be calculated from the diagrams shown in Figures
6.1 and 6.2. Analogously, in the case of Y;Odd, diagrams with external charged leptons have
to be considered. For the calculation of X?dd and ded we first use the unitary gauge to find
the results (6.2.9) and (6.2.10). Subsequently, we confirm it by using the 't Hooft-Feynman
gauge, where in this renormalizable gauge also diagrams with Goldstone bosons have to be

included.

6.2.1 Calculation in Unitary and 't Hooft-Feynman Gauge

In the decays considered here only the penguin diagrams involving Zj, contribute, since there
are no couplings of Zy and Ay to viv and putp~ due to T-parity. Moreover, the diagrams
with triple gauge boson vertices vanish in the case of internal Ay and Zg contributions.

Compared to the SM the diagrams in Figure 6.1 are not suppressed by v?/f? and yield
a contribution O(1). These O(1) contributions have to vanish as otherwise it would not be
possible to decouple the mirror fermions in the limit f — oo. Indeed, this cancellation of
O(1) contributions is assured by the vectorial coupling of Z, to the mirror fermions.

A consequence of this vectorial coupling is the fact that the charged (Wﬁ) and neutral
(Zy, Ap) gauge boson contributions of O(1) to the Zp-penguin vanish independently in the
unitary gauge, since the difference in the couplings CZ%Z Ydy and 'Y Z4ul, compensates the
missing diagrams with triple gauge boson vertices in the neutral gauge boson case. Deter-

mining the remaining v?/f? corrections to the neutral gauge boson interactions we find that
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s W d S uly d s Wy .
Uy Uy Wy Wy uly
Zr Zr ZL
v v v v v v

Figure 6.2: Box diagrams in the unitary gauge.

this only yields an overall factor which multiplies the vanishing Zy and Ay contributions.
Therefore the contributions from mirror fermions to the Zj penguin vanish in the unitary
gauge.

To determine the contributions coming from the box diagrams in Figure 6.2 we assume
the mirror leptons to be degenerate in mass. Having checked numerically that this is a good
approximation this assumption will simplify our results.

For the box diagrams in Figure 6.2 we find, similarly to AF = 2 transitions considered
in [15, 16], that the relevant part of the gauge boson propagator is the g"” part, where the
contributions from the second part proportional to k¥ k¥ /MEVH cancel each other between the
last two box diagrams in Figure 6.2. Therefore we conclude that the neutral gauge boson box
contributions to ded and Yi"dd are gauge independent, which means that the neutral gauge
boson contributions to Z-penguins must vanish in an arbitrary gauge. As discussed below

we confirm this through an explicit calculation in the Feynman gauge. The result for the box
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Figure 6.3: O (v2/f2) contributions to Z-penguin in the 't Hooft-Feynman gauge.

contributions involving Wf; however is divergent in the unitary gauge. This is contrary to the
box contributions in a renormalizable gauge, where box diagrams are finite by power counting.

Consequently the box diagram contributions involving W§ must be gauge dependent.

In order to confirm our result (6.2.9) and (6.2.10) in the 't Hooft-Feynman gauge we
also have to take into account diagrams with Goldstone bosons, which are absent in unitary
gauge. For the Z-penguin diagrams the O (1) contributions vanish as expected and we have
to consider O (1)2 / f2) corrections. As in the unitary gauge, there are no contributions from
diagrams involving only gauge bosons. However, diagrams with Goldstone bosons contribute
at O (v2 / f2). It shows that the O (v2 /f 2) corrections to vertices involving SM quarks, mirror
quarks and Goldstone boson vertices cancel in the calculation. This implies that the neutral
gauge boson contributions to the Zp-penguin, not having triple gauge boson vertices and
corresponding vertices with Goldstone bosons, vanish also in the 't Hooft-Feynman gauge as
expected. Thus in the 't Hooft-Feynman gauge only two diagrams at O (v2 / f2) in Figure
6.3 contribute to the Zi-penguin vertex. Calculating these diagrams and including finite
contributions of the penguin and box diagram leaves us with the final results for ded and

ded, confirming those in the unitary gauge.

6.2.2 Final Results for the T-odd sector

Due to our calculation of ded and ded in the unitary gauge and in the 't Hooft-Feynman
gauge we conclude, similarly to the LH model without T-parity [7], that the left-over diver-
gence obtained in the unitary gauge is not an artifact of a non-renormalizable gauge but a
physical gauge independent result. Thus the final results for ded and ded in the LHT

model can be summarized as

X4 = e (7o) = T 1) + 6 (7 () — T (1w) | (62.9)

yodd  _ [gél) (T (29,y) — J(z1, 1)) +§§i) (JH (23, y) — J“ﬁ(zl,y))] , (6.2.10)
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where
VU 1 U2 vU .

J (zi,y) YE 2iSodd + F*" (zi, y; Wr)

+4(G(zi,y; Zy) + G2y Ag) + Gg(z,-,y;n))} ,  (6.2.11)
JHE (. — 12 g FHE(o 0 W

(Zm y) = 6_4F ZiDodd + (Zm Y; H)

—4 (G(Zn y; Zm) + G1(2, Y’ Ar) — Ga(zi, y; ?7))} , o (6.2.12)
1 2
S, = = . 2.
odd -t log Nz, (6.2.13)
H

The functions F*?, FP#, G, G1 and Gy are given in Appendix A.4 and the various variables

are defined as follows

2 2
M M / .
zi = = , z; =az; with a = , (6.2.14)
MV2VH M%H ! tan2 Oy
2 2
_ My _ My r 1
y_Mz M2 y =va, n=--. (6.2.15)
Wy Zy

In the unitary gauge the results in (6.2.9)-(6.2.12) follow from box diagrams only, since the
Zr-penguin diagrams do not contribute in this gauge, as discussed in Section 6.2.1. In the 't

Hooft-Feynman gauge the contribution of the Zr-penguin diagram is found to be

_ o1 02
AJYY = AJHH = v <Zi50dd - 8ZZ'R2(ZZ') + gzi + 22’7;F2(Zi)> , (6.2.16)

where the functions Ry and Fy are given in Appendix A .4.
In order to estimate the size of S,qq we will, as in Subsection 4.3.2, remove 1/¢ terms
from (6.2.13) and set ;1 = A to obtain

W= R = Zi6i4;’_z log MAT;H : (6.2.17)
as a minimal estimate of the UV sensitivity of the model. Setting
A=Arnf, v =246 GeV , (6.2.18)
we find that for f = 1000 GeV, implying My, = 652GeV,
4= J = 2 0.006. (6.2.19)

Performing a more thorough analysis as done in [17], we observe that the divergences
constitute a sizable fraction of the total result. The coefficient of z; in the divergent terms
J5r

' and Jé‘i’z is of the same order of magnitude as the analogous linear coefficient in the
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convergent contributions, but roughly four times larger. At first sight this could imply the
loss of predictive power of the theory as our estimate of the divergent contribution is clearly
an approximation. On the other hand the divergence found has a universal character and we
can simply write

e = JEN = Oaiy i (6.2.20)
and treat dq;y as a free parameter. Assuming that dg4;, encloses all effects coming from the
UV completion, which is true if light fermions do not have a more complex relation to the
fundamental fermions of the UV completion that could spoil its flavor independence, one can
in principle fit dg;, to the data and trade it for one observable. At present this is not feasible,
but could become realistic when more data for FCNC processes will be available.

On the other hand, implementing T-parity removes all divergences from the T-even sector.
This is easy to understand. The only new T-even particle is T which can be thought of as
an arbitrary singlet field mixing with the SM top quark, independently of the NLSM. Of
the “pion” matrix II, only the SM Higgs doublet is present in the T-even sector, and all
modifications in its couplings appear due to the mixing of Ty with ¢. Thus the T-even sector
of the LHT model is effectively decoupled from the breaking SU(5) — SO(5) of the non-linear
sigma model, which has been the basic reason for the appearance of the singularity described

above and in Chapter 4.

6.3 Important Rare Decays

6.3.1 Kt — wtviv and K — wviv

The first decays we want to discuss are the rare decays K+ — ntvw and K — n°vp. They
play an important role in the field of flavor changing neutral currents due to their theoretical
cleanness and their large sensitivity to short-distance QCD effects that can be calculated very
systematically.

For the determination of the branching ratios we apply the formulae presented in [68] to

the case of the LHT model. They are given by

Br(K" — ntwp) = ky [FPA'R}| X k|* + 27 P.(2) A’ Ry| X k| cos BX + Pe(2)?], (6.3.21)
Br(Kp — 7)) = k2 AYR2| X |? sin? 5% | (6.3.22)

with the relevant quantities taken from [69],

Vis

cb
The function P.(x) in (6.3.21) comprises both the NNLO corrections [69] and the long distance

contributions [70], and its value has been determined

P.(x) = <1 — )‘;> P.(z), P.(zr)=0.4240.05. (6.3.24)

~0.98, ry=(50840.17)-107", xp =(222+0.07)-1071°.  (6.3.23)




72 CHAPTER 6: PHENOMENOLOGY OF RARE DEcAYS IN THE LHT MODEL

Finally, the remaining angle ﬂ)lg is defined as the difference
BY =B — B — 0%, (6.3.25)

whereas the values for A, Ry, 8 and (3, are collected in Table 6.2.

Of particular interest is the relation
sin2(8 + ¢p,) = sin28% (6.3.26)

that for ¢, = 0, 0§ = 0 reduces to the MFV relation of [71, 72]. A violation of this relation

would signal the presence of new complex phases and generally non-MFV interactions. In
this context the ratio

Br(Kp — wvp) | Xk

BT‘(KL — 7T01/I7)SM N Xsm

2 sin ﬁ§ 2
Lin G- m)] (6.3.27)

is very useful, as it is very sensitive to 9§ and is theoretically very clean.

The most recent SM predictions for the branching ratios read [69]
Br(Kt —ntvp)=(80+11)-107"",  Br(Kp — 7vp) = (29+£04) 1071 (6.3.28)
to be compared with the present experimental measurements [73, 74]
Br(KT — ntvp) = (1.477539) - 1071° ) Br(Kp — 7vp) < 2.1-1077 (90%C.L.). (6.3.29)
Recent reviews of the K — mvw decays can be found in [75, 76].

6.3.2 Bsq— putp~

Here, we will mainly be interested in the following ratios

Br(Bs — ptp7) ‘ %S (6.3.30)
Br(Bs — ptp~)sm Yom|
Br(Bo—pps) | Yal (6.3.31)
Br(Bg — pp~)sm Yom|
Br(Ba—pwtp) 7By ma, iy | Vi [ Ya (6.3.32)
Br(Bs — ptpu™) 7(Bs) mp, FE%S Vie| |Ys] '’ o

where the departure of the last factor from unity signals non-MFV interactions. In obtaining
these formulae we assume that the CKM parameters have been determined in tree level decays
independently of new physics so that they cancel in the ratios in question.
In the LHT model [15],
AMd de BBngd

AM;  mp, By F}

2
Cg,
Cp,’

Via
Vi

(6.3.33)
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where
Cg =—2 =d,s). 6.3.34
“ (AMy)sm (a ) ( )

Consequently, using (6.3.32) and (6.3.33), the golden relation between Br(Bgs — pp~) and
AMy/AM; valid in CMFV models [77] gets modified as follows:

Br(Bs — ptup™) BBd 7(Bs) AMST Y 2CBd (6.3.35)
BT(Bd — ,U+,U_) BBS T(Bd) AM, ’ Y, CBS ’ o
with r being in general different from unity.
The most recent SM predictions read [67]
Br(Bs — ptp”) = (3.3540.32)-107°,  Br(Bg — ptp7) = (1.03£0.09)-1071° | (6.3.36)
to be compared with the experimental upper bounds from CDF [78]
Br(B, — utu~)<1-1007,  Br(By— putu~)<3-1078. (6.3.37)

6.3.3 K; — wl¢te—

Yete™ and K — 7n%utpu~ are dominated by CP-violating contri-

The rare decays K — 7
butions. In the SM the main contribution comes from the indirect (mixing-induced) CP-
violation and its interference with the direct CP-violating contribution [79, 80, 81, 82]. The

0712, while

direct CP-violating contribution to the branching ratio is in the ballpark of 4 -1
the CP-conserving contribution is at most 3 - 1072, Among the rare K meson decays, the
decays in question belong to the theoretically cleanest, but certainly cannot compete with the
K — v decays. Moreover, the dominant indirect CP-violating contributions are practically
determined by the measured decays Kg — w°¢t¢~ and the parameter ex. Consequently
they are not as sensitive as the K — n%v decay to new physics contributions, present only
in the subleading direct CP violation. However, as pointed out in [68], in the presence of
large new CP-violating phases the direct CP-violating contribution can become the dominant
contribution and the branching ratios for K — 7%¢T¢~ can be enhanced by a factor of 2-3,
with a stronger effect in the case of K — 7'utu~ [81, 82].

Adapting the formulae in [80, 81, 82, 83] with the help of [68] to the LHT model we find

Br(Ky — %07 = (cﬁir + Cly las| + Chix las|” + Cépc) 10712, (6.3.38)

where
Clir = (4.62 £0.24)(wFy + wiy), Chi, = (1.09 £0.05) (w3 +2.32w7,),  (6.3.39)
o= (113 £ 0.3)wry Cl, = (2.63 £ 0.06)wry (6.3.40)
Cix = 14.5+0.05, Chi =3.36£0.20, (6.3.41)
Cépc =0, Clpe=52=+1.6, (6.3.42)
las| =1.240.2, (6.3.43)
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with
1 |Yk| sin B sin 35 Im )\
= — |P —4|Z .3.44
wry or |10 sin? Oy sin(B8 — B3s) | K’sin(ﬂ —Bs)] [1.4-1074] "~ (6.3.44)
1 |Yk] sin 35 Im )\
= 5= 3.4
A 27 sin? @y sin(8 — Bs) | 1.4-10~4 |’ (6.3.45)
where Py = 2.88 £ 0.06 [84] includes NLO QCD corrections and
B =6-p,—08, pE=p-p—05%, (6.3.46)

with Zx defined in (6.1.5).
The effect of the new physics contributions is mainly felt in wr4, as the corresponding
contributions in w7y cancel each other to a large extent.

The present experimental bounds
Br(Kp — n%te) <28-107" [85],  Br(Kp — 7utu")<38-107 [86] (6.3.47)

are still by one order of magnitude larger than the SM predictions [83]

Br(Ky — m%"e )gu = 3.5470 28 (1.567053) - 10711, (6.3.48)
Br(Kp — 7%t p")sm = 1417038 (0.95103%) - 10711, (6.3.49)
with the values in parentheses corresponding to the “—” sign in (6.3.38).

In order to evaluate (6.3.38) we have to determine the missing function Zx, which contains
both Zeyen and Z}}dd. For the calculation of C°V*" we simply use the function Ceyen from

Chapter 4 and impose T-parity, which leads to

v 2 v? Ty — T v?
Lem?tnary = ?Lﬁseven <72 - d2$TF>
22 v? (=6 — 5z + 5a? — 37 + 3T
16 f2 2wy — 1)
8x; — 1022 + 5a?
il @ _xtl)—g Tt log xy — (4xy + x7) log :L'T>
2 .4
5 v 3
+?LF:ET <—§d2 + xQL + do log :ET> , (6.3.50)
with
1 2
Soven = . + log M{%VL , (6.3.51)
and dg defined in (4.2.68).
Using the function Dsy in the unitary gauge,
Ty —153z; + 3837 — 24513 + 272}
Dlsnl}/iltary(!ﬂt) = Zsovon + 72(:1; — 1)3 - :
16 — 64 3622 + 93z} — 84z} 4 97
- S e s e 2 R (6.3.52)

36(£Et — 1)4
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which has been calculated in [17], we can derive Degyen in the LHT model similar to B — Xy

in [7] as
Dﬁ;??ary = f2 |:<1 + 2dy f2> Eg/iltary(xT) - DE%tary(wt):| : (6353)
Subsequently, after having dropped O(v*/f*) terms,
v’ 72 ? SM
Dﬁ\rfl‘??ary = f2 Ty |: (1 + 2d2 f2> even Dunltary($t):|
2 02
ve 5 | 41 —24logxr
— — =+ —(1+2d 3—21 6.3.54
o [ T (1 s ) - 2togar)| L (635)

so that we can finally write down the gauge independent function Zeyen as

1
Zeven = Cinite — Dyt (6.3.55)

unltary 4 unitary *

Since all the divergences in (6.3.55) cancel, Zeven turns out to be finite, being consistent with
the statement in the last paragraph of Subsection 6.2.2.

Analogously in the T-odd sector we can derive the contribution Z,q4,

1
Zoad(2i) = Coaa(2i) + 7 Doda(2i) (6.3.56)
by using (6.2.16), from which we find in the 't Hooft-Feynman gauge
- 1 v? 3
Codd(zi) = AJHH — 6_4F 2iSodd — 8ZZ'R2(ZZ') + 522' + 22’7;F2(ZZ') . (6357)

The divergent part Soqq in (6.3.57) is defined in (6.5.92), whereas the functions Ry and Fb
are listed in Appendix A.4.

Finally, using our calculation of B — X in [15] we determine Dyqq(z;) to be
1 02
42
with Dy and Ey given in Appendix A.4. With the help of Cyqq and Dygq we can now write

Dodd(z,) |:D0(ZZ) éEO(Zi) — iEO(Z;):| (6358)

30

Zodd

down the final result Z37“, which reads

Z38 = 52 ( Zoad(22) — Zoad(21)) + §3 ( Zodd(23) — Zodd(zl)):| : (6.3.59)
To estimate the remaining divergence in Z,qq coming from Cpqq(2;), we proceed as outlined
in Subsection 6.2.2.
6.4 Numerical Impact of the LHT on Rare Decays

6.4.1 Preliminaries and Benchmark Scenarios

To consider the numerical impact on the branching ratios of the last subsections we assume

three scenarios both for the structure of the Vp4 matrix and the mass spectrum of mirror
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fermions. Due to the new sources of flavor and CP violation in the mirror sector of the
LHT we will see a modification of the CMFV correlations between K, Bd0 and B? systems
[55, 56, 67]. In the first two scenarios we set the phases 6¢, and 645 to zero, while in the third
scenario we perform a general scan over all mirror fermion masses and Vyg parameters with
6%, and 64, different from zero. We find that such a simplification does not affect the general
results of the analysis. Consequently such a numerical analysis helps us to gain a global view
of the possible signatures of mirror fermions in the processes considered and of T, present in

the T-even contributions.

V| = 3.68(14) - 1073 [87] | Gp = 1.16637(1) - 1075 GeV 2
V| = 0.0416(9) [59] | My = 80.425(38) GeV

A= |Vis| = 0.225(1) [60] | o =1/127.9

Vis| = 0.0409(9) [61] | sin® 6y = 0.23120(15)

A = 0.822(16) myo = 497.65(2) MeV

Ry, = 0.447(31) mp, = 5.2794(5) GeV

B =26.3(21)° mp, = 5.370(2) GeV

By = —1.28(7)° Fx =160(1) MeV 38]
me = 1.30(5) GeV Fp, = 189(27) MeV

™M, = 163.8(32) GeV Fp, = 230(30) MeV [89]

Table 6.1: Values of the experimental and theoretical quantities used as input parameters.

Benchmark Scenarios

Scenario 1 (green):

This scenario yields large departures from the SM and MFV in B, decays and can solve
some problems mentioned in [15]. For example, it is possible to explain the discrepancy
between the value of sin23 coming from tree-level decays and the one coming from the
CP-asymmetry Acp(By — $Kg). Moreover, it also gives reasons to understand the mass
difference (AMy) g < (AMs)sar, as favored by the CDF and D)) measurement [57, 58]. In

this scenario the parameters are assumed to be

mpg1 ~ myge = 500 GeV mpys = 1000 GeV , (6.4.60)

1
— <s%,<099, 5.107°<s%<2-107%, 4-1072<5% <0.6. (6.4.61)

V2
6{, and 645 are set to zero, while the phase 0¢5 is arbitrary and the hierarchical structure of
the CKM matrix, s13 < s93 < S12, is changed to

sty < sty < sy, (Vaa) (6.4.62)
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leading to the following Vg4

d d d —iéd
C12 S12 S13€ 13
e - od
—Ccllz 3?362613 —Scllzsilselélf’ 1

With the degeneracy mpg1 = mpyo the T-odd contributions in ex proportional to Im(é’g{ ) and
Re () vanish, and only the T-odd term proportional to Im (&5 )Re(£X) contributes. Since
Im(&X) = s¢5cd,5%, sin 6%, the hierarchy chosen in this scenario for Vg, with s4; < 1, has
the advantage of suppressing mirror fermion effects in g, allowing at the same time large
CP-violating effects in the BY — B? system [15]. Furthermore, AM, can be smaller than its

SM value in this scenario, and interesting effects in the Bg — Bg system are also found.

Scenario 2 (brown):
In studying this scenario we aim to enhance mirror fermion contributions to rare K decays,
keeping negligible effects in the experimentally well measured quantities AMy and ex. For
this purpose we choose the mirror fermion masses as in Scenario 1 (see (6.4.60)) since the
near degeneracy between mpygi and mpygs helps to suppress mirror fermion effects in AMp.

Concerning g, we recall that with the degeneracy mpyi1 ~ mpgs the T-odd contribu-
tions proportional to Im(fg( ) and Re(gg( ) vanish, and only the T-odd term proportional to
Im(¢X)Re(¢X) contributes. In Scenario 1 the hierarchical structure of Vizy was chosen as to
satisfy Im(é’?f{ ) ~ 0. Here, instead, we suppress mirror fermion effects in ex due to the second
and third generations by requiring Re(g?f( ) = 0. Setting also in this scenario the phases 5?2

and (5‘53 to zero, the explicit expression of the real part reads
K d d (d2 d2.d?2 dy d d d (,.d?2 d 2
Re(£3') = — 2515 <323 — C23 513 ) + (cos d73) ch3593513 <C12 — 12 ) ) (6.4.64)

which vanishes for 9?2, 933 and 9{13 (chosen in the first quadrant) satisfying

1
Ci9 S12 E s (6465)
d 3?3
sy = ——2—. (6.4.66)
1+ scll3

We note that while the value of 6, is fixed to 45° by (6.4.65), 6%, and 6, have no specified
value nor order of magnitude, but (6.4.66) implies that only one of them is a free parameter.

The matrix V4 can then be expressed in terms of the two free parameters 6¢; and 6¢; as

d d .
Ci3 €13 d _25%‘3
/2 /2 S13€
1 d\2 isd 1 d\2 isd stacts
Vira ——A—(1+ (sf3)" €”ls)  —FA—=(1 - (sf3)" e”is) =
V2 1—i—5‘11(3 V2 l-i-sil3 \/1+s§l3

S13 (1— eiégig) _ S13 (1+ eiégig) cfy
V 14sdy”

(6.4.67)
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Its structure becomes much simpler if the angle 0, is sufficiently small, i.e., s¢; < 0.1, and

reads
Vigg ~ d -5 d 7 s : (6.4.68)
(1 —es)  —Ta(1 4 ) 1

As we will see the very different structure of Vg4 as compared to Vo implies enhancements
in rare K decays, without introducing problematic effects in AMg and ex. Moreover, as
Vg in (6.4.68) has a structure different also from the one of Scenario 1 in (6.4.63), the new
physics effects in the Bg —Bg and mainly in the BY — B? system turn out to be small, although

visible.

Scenario 3 (blue):
Scenarios 1 and 2 turn out to be the most interesting ones with large new physics effects in the
B; and K systems, respectively. Such visible enhancements follow from the structure of Vi,
primarily required to satisfy the ex and AMj constraints, through Im(¢) & 0 in Scenario
1 and through Re(¢X) = 0 in Scenario 2. A further consequence of the V4 structure is that
in Scenario 1 spectacular effects can be obtained in the By system but not in the K system
and vice versa in Scenario 2. An even more interesting picture would be the simultaneous
manifestation of large enhancements in both B and K observables. In order not to miss such
a possibility, in addition to the scenarios described above, we have performed a general scan
over mirror fermion masses and V4 parameters. To have a global view of the most general
LHT effects, we have allowed here the phases 0¢, and 045 to differ from zero. Qualitatively
their effect is not significant, although they can help in achieving very large effects in certain
observables. We find that there exist some sets of masses and Vg4 parameters where the new
physics effects turn out to be spectacular in both B and K systems. We note that they do
not really constitute a scenario, they rather appear in the plots shown in the next section as
isolated (blue) points. In contrast to previous scenarios, in fact, the blue points corresponding
to large new physics effects are quite sensitive to the particular configuration of mirror fermion

masses and Vg4 parameters.

6.4.2 Numerical Analysis
Breakdown of the Universality

Since in the LHT the universality of the functions X;, Y; and Z; is broken by the presence
of the mirror fermions we expect many quantities to deviate from MFV relations. One of
the first correlations where this breakdown of universality becomes obvious is the space of
(|Xs], | Xk]). In Fig. 6.4 we show the ranges of possible points for X and X in the different
scenarios defined above. The solid line represents the MFV scenario, in which the functions

X; do not depend on the index i, i.e. X; = Xg. Any departure from this line indicates
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[ X |
5,

145 15 155 1.6 165 1.7 1.75°

Figure 6.4: Breakdown of the universality between |Xi| versus |Xs|, where the black dot

corresponds to the SM value.

Figure 6.5: Breakdown of the universality between H)Ig versus 0% , where the black dot corre-
sponds to the SM value.

a deviation from MFV relations and thus provides a hint for physics beyond the SM. From
Fig. 6.4 we can see that | X;| and | X | vary within the range

1.40 < | X,| < 1.75, 0.7 < |Xg| <47, (6.4.69)

which implies that CP-conserving effects in the K system can be much larger than in the
B system. This is due to the fact that contributions from the T-odd sector in (6.1.3) are
enhanced by a factor 1/ )\gi). In the case of the K system this leads to an enhancement
of 1/)\§K) ~ 1/(4-107*) whereas in the By, system 1/)\§d) ~ 1/(1-1072%) and 1/)\,28) ~
1/ (4 . 10_2). Therefore effects in the K system tend to be larger compared to the By,
system.

Apart from the departure of MFV in CP-conserving processes we can also observe devi-

ations from MFV relations in the CP-violating quantities 6% and 9§ . In Fig. 6.5 we can see
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Br (K »%vv)
10 |

5-10

4.10°1% ¢
3-10%0+

2-10°10¢

1.0

: Br (K" >t vv)
10

-10 5.10°

10 3.10

10 10

1-10 2-10 4.10

Figure 6.6: Br (KL — 7r01/17) as a function of Br (K™ — ntvw). The shaded area represents
the experimental 1o-range for Br (Kt — ntvi). The GN-bound is displayed by the dotted

0

line, while the solid line separates the two areas where Br (KL — T VD) 1s larger or smaller

than Br (KT — ntuvw).

that the ranges in the space ( % Hﬁ({) turn out to be
—3.5° < 0% <3.5°, —130° < 0F < 55°, (6.4.70)

which means that CP-violating effects in b — s transitions are very small in contrast to those
in K, decays.
0

The Rare Decays K+ — ntvi and Kp — nvis

01/17) for

In Fig. 6.6 we present the correlation between Br (Kt — ntvp) and Br (K — =
the three scenarios described above. The grey shaded area in Fig. 6.6 depicts the allowed 1o-
range for Br (Kt — wtvp) [73], while the dotted line corresponds to the model independent
bound by Grossman and Nir [90]. It can be seen in the plot that the Scenario 3 yields two
branches of possible points. The first one, parallel to the Grossman-Nir bound, can enhance
Br (K, — n%w) up to O (5-107%) but still lies within the 1o range of Br (KT — ntvw).
The second branch corresponds to values of Br (KT — 7t vi) up to O (5 . 10_10) while the

0

points for Br (K L—T w?) are close to the SM prediction. In the case of the Scenario 2

the picture described in the previous scenario simplifies considerably, since the first branch
reduces to a single line and the second branch disappears completely. Finally in the Scenario
1 the branching ratio of Br (Kt — wtvp) is always smaller than the SM value and can even

0

get, close to the Grossman-Nir bound, whereas Br (K L—T w?) sticks close to its SM value.
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50 100 150 200 250 300 350 ©13

Figure 6.7: The ratio v as a function of 5{13 with the black dot denoting the SM value.

sin2 Y
Sk

d
613

Figure 6.8: sin 26§/S¢KS as a function of 65 with the black dot denoting the SM value.

Deviations from MFYV relations

In Fig. 6.7 we illustrate the variation of the ratio r defined in (6.3.35) in dependence of the
new phase 5513 of the mixing matrix Vgyg. One can see that in Scenario 1, 2, 3 each large
deviations from the SM value, which is denoted by the black dot, are possible. Any departure
from unity, which can be measured by the parameter r, signals a violation of the golden
relation between By — pp~ and AMy g, which hints for new physics beyond the SM. In

all scenarios considered here we find a range
0.6 <r<1.7, (6.4.71)

where the lower and upper bounds for r can be reached most easily in the Scenario 1.
Moreover, in Fig. 6.8 we present the correlation between the ratio sin 26% /sin (28 + 2¢5,)
and the new phase 5‘113, where in a MFV scenario this relation is given by sin 2ﬁ§ = sin(20 +

2¢B,) = SyKkg- As before any deviation of this ratio from unity would indicate contributions



82 CHAPTER 6: PHENOMENOLOGY OF RARE DEcAYS IN THE LHT MODEL

Br (K- u)

2.4-101

2.10°%

1.8-10° %

1.6-10° 1

-11

Br (K »>e*e™)
3.1071 4.10°1 5.10"* 6-10"*

Figure 6.9: Br (K — n°utp™) as a function of Br (K, — m%%e™)

Br (Ku>lete /utu)
1-10°%°

Figure 6.10: Br (K; — 7%%e™) (upper curve) and Br (K, — 7% " u™) (lower curve) as

0

functions of Br (K L—T 1/17). The corresponding SM predictions are represented by dark

points.

that are coming from new physics. Since we know from the Sy, asymmetry in [61, 67] that
B, is constrained to be at most a few degrees, the existence of a phase ﬂ)lg can produce these

large deviations from unity as seen in Fig. 6.8.

The Decays Kj; — w00t~

In Fig. 6.9 the correlation between Br (KL — 7T0€+6_) and Br (KL — ﬂo/ﬁ/f) is considered.
We observe that this correlation is only moderately sensitive to the three different scenarios
and that the branching ratios can be a factor two larger compared to the SM values, which
are denoted by the black dots.

Furthermore we show Br (KL — 7T0€+€_) and Br (KL — 7ro,u+,u_) as a function of the

0

branching ratio Br (K L—T w?). It can be seen in Fig. 6.10 that a large enhancement of
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Br (K L — 7T0VI7) automatically implies an enhancement of K — 7% *¢~. Furthermore,

0

with the determination of K, — 7°¢*¢~ we would be able to predict Br (K L — T 1/17) rather

precisely.

6.5 Signatures of the LHT in Lepton Flavor Violating Decays

Some of the most popular LE'V processes used to constrain new physics contributions are the
processes ¢; — {;7, which are bounded by the following current experimental upper limits
(91, 92]!

Br(p—ey) <1.2-1071 (6.5.72)
Br(t — uy) <1.6-107%,  Br(r —ey) <9.4-107%. (6.5.73)

Among these the most interesting decay is the LFV process u — e7, since for this process
the MEGA collaboration [91] will improve the upper bound down to O (10_13 — 10_14) in
the coming years.

In order to obtain the branching ratio Br(u — e7) in the LHT model we take into account
several elements of the Br(B — X,7v) calculation in this model [15]. The generalization to
7 — py and 7 — ey will then be automatic. For details of this calculation the reader is
referred to [66].

The relevant diagrams for gy — ey in the LHT model are shown in Fig. 6.11, where we
only consider contributions coming from mirror fermions as particles from the T-even sector
give negligible contributions. Moreover diagrams involving the heavy scalar triplet ® can be
neglected since at this order in v/f they do not contribute (see [15, 17] for details).

Having calculated these diagrams we can write the resulting branching ratio as the sum

of three different terms representing the Wﬁ, Zy and Ag contributions

3o
Br(p — ey)pur = o |Aw, + Az, + AAH|2 . (6.5.74)

Using the abbreviations

¢ 2
mby; , . 5
P = —, ;= ay; th a = —5— ~16.6, 5.
Y M{%VH yi=ay: with a =07 o 6.6 (6.5.75)
we explicitly find for Ay,
WH 4 f2 ZX(MG (6576)

where H is given in Appendix A.5 and Xl(“e) is defined in (5.2.54).

'The bounds in [92] have been obtained by combining Belle [93] and BaBar [94] results.
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Figure 6.11: Diagrams contributing to u — ey in the LHT model.

The neutral gauge boson contributions can directly be deduced from (4.10) of [15]. In-
cluding a factor 3 that takes into account the difference between the electric charges of quarks

and leptons, we obtain from the last two terms in (4.10) of [15]

_ (pe) 1
AZH - 4f2 Z |:__EO yl):| 9 (6577)
e 1
Au, = 4f2 Z (1e) [__ /(yg)} . (6.5.78)
Finally, adding up these three contributions in (6.5.76)—(6.5.78), we arrive at the following
result
Br(p — ey)Lur = \Dgﬁﬁ : (6.5.79)
with
/ e (ue 7 1
oﬁd 4f2 ZX <D0 yl 6E(,)(y2) 1OEO(y7,)>] ) (6580)

and y; defined in (6.5.75) and DY), E{, given in Appendix A.5.
The corresponding branching ratios for 7 — ey and 7 — py can easily be found in analogy

to p — ey and read

Br(r —ey) = ;—QBT(T — vre D) ‘D(')gﬁf , (6.5.81)
77

3 T,
Br(t — uy) = —aBT(T — U Dy,) ‘ngﬁ 2, (6.5.82)

where D!7¢ and D, can be obtained from (6.5.80) by replacing (ue) with (re) and (7u),
respectively. Furthermore [88]

Br(t™ — vre v,) = (17.84 £ 0.05)%, Br(t™ — vrp”py) = (17.36 £0.05)% . (6.5.83)
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6.5.2 Semileptonic 7 Decays

In the last years the Belle [95] and BaBar [96] collaborations presented improved upper bounds
for the decays 7 — (P (P = m,n,n’), which have been combined [92] to

Br(t — pm) < 58-107%,  Br(r — un) <5.1-107%,  Br(r — un') < 5.3-107%,
(6.5.84)

Br(r —em) <44-107%,  Br(r —en) <45-107%,  Br(r —ey) <9.0-107%,
(6.5.85)

thus increasing the interest in investigating these branching ratios in the LHT model.

In this subsection we will study these semileptonic decays with the help of the recent
analysis of rare K and B decays in the LHT model [17]. In the case of 7 — um the diagrams
are completely analogous to the ones contributing to K — wvo. However, as 7° has the
following flavor structure -

70 = “u\/_idd : (6.5.86)

we have to consider two sets of diagrams, with both @u and dd in the final state. From

the analysis of rare K and B decays [17] we can directly obtain the corresponding effective

Hamiltonians for 7 — g, which involve the short-distance functions X% and —Y ! for au

and dd, respectively. Taking into account the opposite sign that is conventionally chosen to

define the two short distance functions, the effective Hamiltonian that includes both sets of

diagrams is then given as follows
Grp «

- ﬁ 27 sin? Oy

The structure of X4, and Y'¥ in (6.5.87) is the same as those of the functions calculated in

Hes (ngd(ﬁu)V—A — YOG%(Jd)V—A) (ﬂT)V_A . (6.5.87)

the context of rare K and B decays [17]. Adapting them to the lepton sector we find:

Xty = [ e2) = T, 2) (T . 2) = T (w,2)) | 5 (6.5.88)
Vi = P8 (I e, 2) = 71, 2) 08 (T s, 2) = T (01,2)) ] (65.89)
where
un 1 U2 uu .
J (yi,z) = YE YiSodd + F*"*(yi, 23 W)
+4 (G(yi7 2 Zn) + G1(y;, 25 An) + Ga(yi, 2;77))} , (6.5.90)
T4 (y;, 2) 1o YiSodd + F¥(yi, z; Wir)
9 64 f2 (el 19 <

—~4(Glyir 5 Zu) + Galyl, '3 An) = Gl = n))} . (65.91)

2 4 2
B g ( 772f )
My, My,

1
Sodd = g—l—log (6.5.92)
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with the functions F“%, dd—, G, G1 and G4 given in Appendix A.5, the leptonic variables y;

and y, defined in (6.5.75) and the analogous variables for degenerate mirror quarks given by

q 2
z—]\TZé?/ , 7 =az, n=-. (6.5.93)
H
Evaluating the matrix elements by
_ 0 7 0 pr#
0)(au)y—a|7”) = =(0|(dd)y —alm") = (6.5.94)

V2
where F. >~ 131 MeV is the pion decay constant, we arrive at the final branching ratio
_ G%a?F2m3T,

12873 sint Oy

with 7 and m, being the lifetime and mass of the decaying 7, and neglecting suppressed pion

Br(r — p) | Xoda + Yoqal (6.5.95)

and muon mass contributions of the order O(m2/m?2) and O(mﬁ /m?2). Analogously we can
obtain the branching ratio for the 7 — e decay very easily from (6.5.95) by simply replacing
(t) with (re). The generalization of (6.5.95) to the decays 7 — un and 7 — un’ is then
straightforward too, although slightly complicated by mixing in the — 7’ system. For details
the reader is referred to [66].

6.5.3 p~ —eete, 7T > pupTpu  and 7~ — e"ete”

Next, we will consider the decay u~ — e~ ete™, for which the experimental upper bound
reads [97]
Br(p~ — e ete™) <1.0-10712. (6.5.96)

Using the analogies to the b — sutu~ transition, analyzed in the LHT model in [17] this
decay is governed by contributions from - and Z%penguins and by box diagrams. However,
two identical particles are now present in the final state which prevent us from using directly
the known final expressions for b — su™pu~, although some intermediate results from the
latter decay turned out to be useful here. Also the general result for u= — e~ eTe™ obtained
in [98], which has been corrected in [20, 22], turned out to be very helpful.

Performing the calculation in the unitary gauge, where we find the contribution from the

Z%penguin to vanish [17], we find for the relevant amplitudes from photon penguins and box

diagrams?:
 GF e2 1 ~rpe [~ ' p ) .
Ay = ez g Doda [FD(myioasd”(1+55))(p)| @ [elpa)r"e(ps)]
~(pr = p2), (6.5.97)
62 —
A= - [4%W25§d [e(p1)7a(1 = 75)u(p)] @ [e(p2)y"e(p3)] — (p1 < p2)| , (6.5.98)
Abpox %m?ﬁdd [e(p1)7a(1 = v5)u(p)] ® [(p2)7y* (1 — v5)e(ps)] - (6.5.99)

2Following [98], our sign conventions are chosen such that Heg is determined from —A.
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The function D4 is given in (6.5.80), while the functions V)4 and Zh5y can easily be
obtained from those calculated in [17]. The analogy with the b — sutu~ decay, together
with the observation that the u~ — e~eTe™ decay in question involves only leptons in both

the initial and final states, allow us to write®

3 — —
Vi = e Z Vifl? [Jdd(yz,yi) - Jdd(yl,yi)]
i=1
Z! 7k {Jd (Y3, i) — Jdd(yl,yi)] : (6.5.100)

with J9d given in (6.5.91). Following a similar reasoning we can write for the Z é‘ 5 4 function

7851 = XY (Zoaa(y2) — Zoaa (1)) + XY (Zoaa(ys) — Zodd(yl))] : (6.5.101)
where
1
Zoad(Yi) = Codd(¥i) + 7 Doda (yi) - (6.5.102)

The explicit expressions for the Cygqq and Doqq functions are given in Appendix A.5%. Here,
we just note that as a consequence of the charge difference between the leptons involved in
p~ — e ete” and the quarks involved in b — sutu™, Doqq in (6.5.102) differs from the
analogous function found in [17].

Comparing these expressions to the general expressions for the amplitudes given in [22, 98],
we easily obtain I'(u~ — e~ete™). Normalizing to I'(u~ — e~ Zery), we find the branching
ratio for the decay u~ — e~ eTe™ to be

I(p~ — e ete”

- )
Brp™ —e7eten) = I’(,u— — e Uely,)
eVp

e e e m 11
- [ Z dd‘ +3Re (Z34(Dha)") + | Dlsq <logﬁ:—§>

1 _ 2 _ _
ue B ue pe o\
2 Sin4 HW Ye,odd‘ sin2 HW Re (Zodd (}/;,odd) )
_ ! pe e *
sin HW Re (Dodd (Y; odd) ) :| : (65103)

For 7= — u~ptu~ we make the following replacements in (6.5.97)—(6.5.103):

Vi, = Vil (ue) — (i), my —me, me —my, (6.5.104)

3The subscript e of Y;fdd denotes which of the SM charged leptons appears on the flavor conserving side
of the relevant box diagrams.

4Note that the functions Coqq and Doqq are gauge dependent and have been calculated in the 't Hooft-
Feynman gauge. However, the function Z*¢ o4a is gauge independent, so that it can be used also in the unitary

gauge calculation above.
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so that, in particular, }7; ’gdd is now present. Furthermore, in (6.5.103) the normalization
I'(u~ — e vule) is replaced by I'(t~ — p~v,7,), so that the final result for Br(r~ —
p~ptpT) contains an additional factor Br(7~ — p”v-,). In the case of 77 — e~eTe™ the

replacements in (6.5.100)—(6.5.103) amount only to
(pe) — (re),  my — mr, (6.5.105)

having now Yefgdd, and in (6.5.103) I'(x~ — e~ v,7) is replaced by I'(1~ — e~ v;7,) and an
additional factor Br(7~ — e v;7.) appears. In doing this we neglect m, , with respect to

m., in all three expressions.

6.5.4 p — e Conversion in Nuclei

Similarly to the decays y — ey and u~ — e~ ete™, stringent experimental upper bounds
on i — e conversion in nuclei exist. In particular, the experimental upper bound on u — e

conversion in 35Ti reads [99]
R(uTi — eTi) < 4.3-107'2 (6.5.106)

and the dedicated J-PARC experiment PRISM/PRIME should reach a sensitivity of O(10718)
[100].

A very detailed calculation of the u—e conversion rate in various nuclei has been performed
in [101], using the methods developed by Czarnecki et al. [102]. It has been emphasized in
[101] that the atomic number dependence of the conversion rate can be used to distinguish
between different theoretical models of LFV. Useful general formulae can also be found in
[98].

We have calculated the p— e conversion rate in nuclei in the LHT model using the general
model-independent formulae of both [98] and [101]. We have checked numerically that, for
relatively light nuclei such as Ti, both results agree within 10%. Therefore, we will give the
result for p — e conversion in nuclei derived from the general expression given in [98], as it
has a more transparent structure than the one of [101].

Following a similar reasoning as in the previous section, we find from (58) of [98]

GE 5 Zat g v 205
_ _ xXne yre |
€ €
|Z (4215, + DAY —(2Z+N)m+(z+2N)smgiew ,(6.5.107)

where X", and Y are obtained from (6.5.88) and (6.5.89) by making the replacement
(Tw) — (pe), and D/AG and Z%{, are given in (6.5.80) and (6.5.101), respectively. Z and N
denote the proton and neutron number of the nucleus. Z.g has been determined in [103] and
F(g?) is the nucleon form factor. For X = 35Ti, Zeg = 17.6 and F(¢* ~ —m2) ~ 0.54 [104].
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The p — e conversion rate R(uX — eX) is then given by

I'(uX — eX)
R(pX — eX) = T S (6.5.108)
capture
with F?apmm being the p capture rate of the element X. The experimental value is given by
Tl e = (2.590 £0.012) - 109571 [105].

In our numerical analysis of Section 6.6 we will restrict ourselves to y1—e conversion in 55711,
for which the most stringent experimental upper bound exists and where the approximations
entering (6.5.107) work very well. For details, we refer the reader to [98, 101, 104].

6.5.5 7T —wpuete and 7T —m e putpu"

These decays have two types of contributions. First of all they proceed as in 7= — p~pu™p~
and 77 — e"eTe” through AL = 1 penguin and box diagrams. However, they also receive
contributions from AL = 2 box diagrams. Since this time there are no identical particles
in the final state, the effective Hamiltonians for these contributions can directly be obtained
from the decay B — X /T¢~. The generalization to 7= — e~ u*u~ will then be automatic.
As the QCD corrections are not involved now, only three operators originating in magnetic
photon penguins, Z%-penguins, standard photon penguins and the relevant box diagrams have
to be considered. Keeping the notation from B — X u™ ™~ but translating the quark flavors
into lepton flavors these operators are
Q; = #mTﬂaaﬁ(l +75)TFag (6.5.109)

that enters, of course with different external states, also the u — ey decay, and

Qo = (Ar)v-a(ee)v,  Qio = (AT)v-a(ee)a. (6.5.110)

The effective Hamiltonian is then given by

- — — G T T T
Heg (1™ — pete™) = —7; [CTH Q7 + C3F Qg + CTE Q1) - (6.5.111)
The Wilson coefficient for the operator Q7 can easily be found from Subsection 6.5.1 and
Section 7 of [17]. We find

1_
o7h = —§D;Qg, (6.5.112)

with D/} obtained from (6.5.80) by replacing (ue) with (7p).
The Wilson coefficients of the operators Qg and Qig receive not only contributions from
AL =1 y-penguin, Z°penguin and box diagrams, but also from AL = 2 box diagrams. For

Cg" and C|{' we can then write

a ~ a

Cyl' = %Cg“, Cil = %0{5‘, (6.5.113)
- y's _ - y'h
Cgﬂ — e,odd 4Zg§d . Am, C{(/; _ e,odd + Am, (65114)

sin® Oy sin® Oy
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Figure 6.12: Diagrams of AL = 2 type contributing to 7~ — p~eTe™ in the LHT model.

with the functions Y,'[;; and Z]4; obtained from (6.5.100) and (6.5.101) by replacing (ue)
by (Ti). A;, represents the additional AL = 2 contribution which is not present in the
case of b — s¢T¢~ and will be explained below. As there are no light fermions in the T-odd
sector, the mass independent term present in Cy in the case of b — s¢T¢~ in (X.5) of [106] is
absent here. Effectively this corresponds to setting n = 1 in the latter equation and of course
removing QCD corrections.

For the AL = 2 diagrams shown in Fig. 6.12 contributing to this decay the corresponding
effective Hamiltonian can be obtained from AB = 2 processes, that is from (3.11) of [106],
through the replacements of local operators, removing the symmetry factor 2 and performing

the following change in the mixing factors:

KT —, xETe)x§“e) , (6.5.115)
We find
271' GF Te) e
Brn = U 3am 2\fMWL f? sz §u Fr(yir vs)
1
_ B N 6.5.116
T fQZ 1 (Yis Y5) ( )

with Fp (2;,y;) defined by
Fy (Zi,yj) =F (Z,',yj; WH) + G (zi,yj; ZH) + Ay (zi,yj; ZH) + Ay (zi,yj; ZH) . (6.5.117)

Effectively the presence of the diagrams in Fig. 6.12 introduces corrections to the Wilson
coefficients Cy and Cig in (6.5.114). As the relevant operator has the structure (V — A) @
(V — A), the shifts in Cy and C1g are equal up to an overall sign.

Finally, introducing

AT(r~ — pete)

2
TI(A) —
’ R (S) F(T_ — u_D“VT)

(6.5.118)
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and neglecting m, with respect to m, we find for the differential decay rate R™#(3)

TU( & a2 2\ 2 a T2 T2
R7MG) = (=82 (1+28) (1G5 + 1CTE?)

+4 <1 + %) ICI2 4 12 Re (C;“(Cg“)*) } . (6.5.119)

The branching ratio is then given as follows:

1
Br(t~ —u ete”)=Br(r” — ,u_DHVT)/ R™H(s)ds. (6.5.120)
4mg /m3
The branching ratio for 7= — e~ " u~ can easily be obtained from the above expressions
by interchanging p < e, where Xge“) = XE“e) .

For quasi-degenerate mirror leptons the AL = 1 part clearly dominates as the GIM-like
suppression acts only on one mirror lepton propagator, whereas it acts twice in the AL = 2
case. Moreover, in the latter case the effective Hamiltonian is quartic in the Vg, couplings,
whereas it is to a very good approximation quadratic in the case of AL = 1. As these
factors are all smaller than 1, quite generally AL = 2 contributions will then be additionally
suppressed by the mixing matrix elements. Consequently, the AL = 1 part is expected to
dominate and the shift A, can be neglected. On the other hand, for very special structures of
the Vg, matrix, the double GIM suppression of AL = 2 with respect to AL = 1 contributions
could be compensated by the Vy, factors. Therefore it is safer to use the more general

expressions given above.

6.5.6 (g—2),

The anomalous magnetic moment of the muon a, = (g — 2),,/2 provides an excellent test for
physics beyond the SM and has been measured very precisely at the E821 experiment [107]
in Brookhaven. The latest result of the (¢ — 2) Collaboration of E821 reads

as® = (11659208.0 +:6.3) - 10717, (6.5.121)

whereas the SM prediction is given by [108]

SM _

ay,

a®®P 4 a8 + ot = (11659180.4 + 5.1) - 10710 (6.5.122)

While the QED and electroweak contributions to aﬁM are known very precisely [109, 110], the
theoretical uncertainty is dominated by the hadronic vacuum polarization and light-by-light
contributions. These contributions have been evaluated in [108, 111, 112, 113].

The anomalous magnetic moment a, can be extracted from the photon-muon vertex

function T'*(p/, p)

u(p T, pup) = a(p’) (V" Fv (¢*) + (p+ p)'Fu(g)] ulp) (6.5.123)
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Figure 6.13: Diagrams contributing to (g9 — 2), in the LHT model.

where the anomalous magnetic moment of the muon a, can be read off as
a, = —2mF(0) . (6.5.124)

The diagrams which yield new contributions to a, in the LHT model are shown in Fig. 6.13.
They either have a heavy neutral gauge boson (Zy or Ap) and two heavy charged leptons
04y (i = 1,2,3) or two heavy charged gauge bosons (Wﬁ) and one heavy neutrino vi; (i =
1,2, 3) running in the loop.

Calculating the diagrams in Fig. 6.13 and using the Feynman rules given in [17], the

contributions of the new particles for each generation ¢ = 1,2, 3 are found to be:

7 1 mi i 12 ) ) ) 3 2 T — 1
[a“]X=AH,ZH = ﬁM—g( ‘C’X| r2{<6 5T +r;+ (ri — 3r; +2ri) In -
¢ 2
Mg 5 3 -1
+2M§ <6+2m+r + (r? +r)1n - >} (6.5.125)
i 1 m 5 3 2 2 3 bz‘i‘l
[au]X:WH = 2 M2 |CX| {— <6 — 5[)2 + bz + (bz — bz) In bl
¢ 2
My, (5 5 2 2 13 bi+1>
- =+ —b; + b — (2b; + 3b; + b)) In ,(6.5.126)
MZ \6 ' 2 bi
where
mf 2\ mg 2
ri=1-=2-) b= (6.5.127)
< M ) M
and
ci —Syin i 9 Vit Cly, = I_yin. (6.5.128)
Ag — Hes Zg — He>s Wy — 0.

20 2\/_ H?

The parameter mb;, in (6.5.125) and (6.5.126) denotes the mass of the mirror leptons while
Mx is the mass of the heavy gauge bosons. We expanded our results in the small parameter
my/Mx. Our results in (6.5.125) and (6.5.126) for the muon anomalous magnetic moment
are confirmed by the formulae in [114] for general couplings.

Replacing the parameters r; and b; by the more convenient parameter y;, defined in
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(6.5.75), leads us to the following expressions

\/§GFU2 3 i 2
[a”]ZH T T39.2 PmiZ‘VH}Z Li(yi) , (6.5.129)
=1
\/EGsz 3 i 2
wlay = T60m2 pmiz(VH‘Z Li(ys) (6.5.130)
=1
—\/iGFU2 3 i 2
ldw, = 352 pmizth*z La(yi) (6.5.131)
=1

where the functions L; and Lo are given in Appendix A.5.

Our final result for a, in the LHT model therefore is

\/iGF v? 2 ’ i
an = [alsn + 557 720 D Vi,
i=1

2 1
L)~ L) +L0D] . (65132)

While we disagree with [18], we confirm the result of [19] except that according to us the
factors (Vi )5, (Vi )2i and (Vie)s;(Vae)2i in equations (3.22)—(3.24) of that paper should be
replaced by |VI§‘2|2.

6.6 Numerical Impact of the LHT on Lepton Flavor Violating
Decays

6.6.1 Preliminaries and Benchmark Scenarios

In contrast to rare meson decays, the number of flavor violating decays in the lepton sector, for
which useful constraints exist, is rather limited. Basically only the constraints on Br(u — e7),
Br(p~ — e"ete™), R(uTi — €Ti) and Br(K — pe) can be mentioned here. The situation
may change significantly in the coming years and the next decade through the experiments
briefly discussed in the introduction.

In this section we want to analyze numerically various branching ratios that we have
calculated in Sections 6.5.1-6.5.6. In Subsection 6.6.3 we will extend our numerical analysis
by studying various ratios of branching ratios and comparing them with those found in the
MSSM. Our purpose is not to present a very detailed numerical analysis of all decays, but
rather to concentrate on the most interesting ones from the present perspective and indicate
rough upper bounds on all calculated branching ratios within the LHT model. To this end
we will first set f = 1TeV and consider three benchmark scenarios for the remaining LHT
parameters, as discussed below.

In Table 6.2 we collect the values of the input parameters that enter our numerical analysis.
In order to simplify the analysis, we will set all input parameters to their central values. As

all parameters are known with quite high precision, including the error ranges in the analysis
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would amount only to percent effects in the observables considered, which is clearly beyond

the scope of our analysis.

me = 0.5110 MeV My = 80.425(38) GeV

m,, = 105.66 MeV a=1/137

m, = 1.7770(3) GeV Gr = 1.16637(1) - 1075 GeV 2
7, = 290.6(10) - 1073 ps [88] | sin? fy = 0.23122(15) [88]

Table 6.2: Values of the experimental and theoretical quantities used as input parameters.

Benchmark Scenarios

We will consider the following three scenarios:

Scenario A (red):

In this scenario we will choose
Vire = Vs » (6.6.133)

so that Vi, = 1, and mirror leptons have no impact on flavor violating observables in the
neutrino sector, such as neutrino oscillations. In particular we set the PMNS parameters to
[115]

1
\/§ )

which is consistent with the experimental constraints on the PMNS matrix [88]. As no

sin 912 =V 0.300, sin 913 =V 0.030, sin 923 = (513 = 650 N (6.6.134)

constraints on the PMNS phases exist, we have taken d13 to be equal to the CKM phase and
set the two Majorana phases to zero.

Furthermore, we take the mirror lepton masses to lie in the range

300GeV <mb, <1.5TeV,  (i=1,2,3). (6.6.135)

Scenario B (green):

Here, we take

Vie = Vekwu (6.6.136)

so that [87]
01, =13°, 013 =025, 65 =24°, (6.6.137)
§lo=0,  &ly=65°, &ly=0, (6.6.138)

and the mirror lepton masses in the range (6.6.135).
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Figure 6.14: Correlation between  — ey and p~ — e~ eTe™ in the scenarios of Section 6.6.1.
In the right p{ot of Scenario C we show tffe contributions to u~ — e~ ete” from D;g; (purple,
lowermost), Zb . (orange, middle) and Y!'C, . (light-blue, uppermost) separately. The shaded

area represents the experimental constraints.

Scenario C (blue):
Here we perform a general scan over the whole parameter space, with the only restriction
being the range (6.6.135) for mirror lepton masses.

At a certain stage we will investigate the dependence on mass splittings in the mirror

lepton spectrum.

uw— ey, u~ — e"ete  and p — e Conversion

In Fig. 6.14 we show the correlation between y — ey and p~ — e“eTe™ in the scenarios in

question together with the experimental bounds on these decays. We observe:

e In Scenario A the great majority of points is outside the allowed range, implying that
the Vg, matrix must be much more hierarchical than Vpyng in order to satisfy the

present upper bounds on y — ey and u= — e"eTe .
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e Also in Scenario B most of the points violate the current experimental bounds, although
Vekw is much more hierarchical than Vpying. The reason is that the CKM hierarchy
513 K S93 K s12 implies very small effects in transitions between the third and the first
generation, like 7 — e7, while allowing relatively large effects in the y — e transitions.
Thus in order to satisfy the experimental constraints on g — ey and u= — e"eTe™ a
very different hierarchy of the Vg, matrix is required, unless the mirror lepton masses

are quasi-degenerate.

e In Scenario C there are more possibilities, but also here a strong correlation between

i — ey and u~ — e"ete” is observed. This is easy to understand, as both decays
(pe)

probe dominantly the combinations of Vi, elements

e For Scenario C, we also show the contributions to u= — e~ ete™ from D:)ﬁz, Zf;gd and
Ye“ ©1q separately. We observe that the dominant contributions come from the functions
Z"%, and above all Ye‘f 4> While the contribution of the operator Qz, given by DA, is
by roughly two orders of magnitude smaller and thus fully negligible. This should be
contrasted with the case of the MSSM where the dipole operator is dominant. We will

return to the consequences of this finding in the next subsection.

e We emphasize that the strong correlation between y — ey and u~ — e~"eTe™ in the
LHT model is not a common feature of all extensions of the SM, in which the structure
of 4= — e~ eTe™ is generally much more complicated than in the LHT model. It is
clear from Fig. 6.14 that an improved upper bound on y — ey by MEG in 2007 and in
particular its discovery will provide important information on u~ — e~ e*e™ within the

model in question.

Next, in Fig. 6.15 we show the correlation between the p — e conversion rate in %gTi
and Br(u — ev), after imposing the existing constraints on g — ey and u= — e"eTe”. We
observe that this correlation is much weaker than the one between p — ey and = — e~ ete™.
Furthermore, we find that the u — e conversion rate in Ti is likely to be found close to the
current experimental upper bound, and that in some regions of the parameter space the latter

bound is even the most constraining one.

T — puvy and T — ey

In Fig. 6.16 we show the correlation between Br(t — py) and Br(r — e7y) in Scenario C,
imposing the experimental bounds on u — ey and u~ — e~ ete™. We observe that they both
can be individually as high as ~ 8- 107!°, but the highest values of Br(r — ) correspond
generally to much lower values of Br(t — ey) and vice versa. Still simultaneous values of

both branching ratios as high as 2 - 10719 are possible.
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R(uTi »eTi )

1. x1071

1. x10°%8

1. x10715 ,.... C

Figure 6.15: u — e conversion rate in ‘2“23 Ti as a function of Br(u — ey), after imposing the

+

existing constraints on p — ey and p~ — e~ eTe~. The shaded area represents the current

experimental upper bound on R(uTi— eTi).

Br (t-py)
g.10 10

6-10 1°

4.10°1

2.10710

r (t-ey)

Figure 6.16: Correlation between Br(T — ev) and Br(t — uy).
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Br (t—wm, un)
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Figure 6.17: Br(t — um) (dark-blue) and Br(t — un) (light-blue) as functions of Br(t —
1y)-

T — pm, pn, pn’ and T — py

In Fig. 6.17 we show Br(r — um) and Br(r — un) as functions of Br(t — u7), imposing
the constraints from p — ey and p~ — e~ ete”. We find that Br(r — um) can reach values

0719, which is still by more than

as high as 2- 107 and Br(7 — pun) can be as large as 7 - 1
one order of magnitude below the recent bounds from Belle and BaBar. We do not show
Br(t — un') as it is very similar to Br(r — un).

Completely analogous correlations can be found also for the corresponding decays 7 —
em,en,en’ and 7 — evy. Indeed, this symmetry between 7 — p and 7 — e systems turns out
to be a general feature of the LHT model, that can be found in all decays considered in the
present section. We will return to this issue in Subsection 6.6.3.

An immediate consequence of these correlations is that, as in the case of 7 — vy and
T — e, the highest values for 7 — um are possible if 7 — en is relatively small, and vice
versa. Still the corresponding branching ratios can be simultaneously enhanced to 3 - 10719,

Analogous statements apply to 7 — u(e)n and 7 — p(e)n'.

6.6.2 Upper Bounds for LFV Processes

To estimate the impact of the LHT on all LFV processes we present in Table 6.3 an overview
of upper bounds of all branching ratios considered so far, together with the corresponding
experimental limits. In deriving these bounds we imposed the constraints coming from u —
ey and R(uTi — eT'i). The number in brackets are obtained by imposing the additional
constraint R(pT'i — eT'i), which has only a minor impact on the observables discussed. We
can also see from Table 6.3 that the limits strongly depend on the choice of the scale f which
has been set to f = 500 GeV and f = 1000 GeV with the range (6.6.135) for the mirror lepton
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decay ‘ f =1000GeV ‘ f =500GeV ‘ exp. upper bound ‘

p— ey 1.2-107% (1-107) | 1.2-107H (11071 1.2-107 [91]
p~ —eete” | 1.0-1072 (1-1071%) | 1.0-10712 (1-10712) 1.0-10712 [97]
uTi — eTi 210710 (5. 10712) 4107 (5.10712) 4.3 - 10712 [99]
T — ey 810710 (7.10719) 1-1078 (1-1078) 9.4-1078 [92]

T — py 8-10710 (8.10710) 2-107% (1-1079%) 1.6 - 1078 [92]
T~ —eefe | 7-10710 (6-10719) 2-107% (2-1079%) 2.0-1077 [116]
T~ —p ptpm | 7-10710 (6-10719) 3-1078 (3-107%) 1.9-1077 [116]
T~ —eptpm | 5-10719 (5-10710) 2-107% (2-107%) 2.0-1077 [117]
7~ —p"ete” | 5-10710 (5.10710) 2-107% (2-1079%) 1.9-1077 [117]
T — um 2-1077 (2-1079) 5.8-107% (5.8 -107%) 5.8-1078 [92]

T —em 2-107% (2-1079) 4.4-1078 (4.4 -1079) 4.4-1078 [92]

T — 6-10710 (6-10710) 2-107% (2-107%) 5.1-1078 [92]

T —en 6-10710 (6-10710) 2-107% (2-1079%) 4.5-1078 [92]

T — un 7-10710 (7-10719) 3-107% (3-1079) 5.3-1078 [92]

T —en 7-10710 (7. 10710) 3-107% (3-107%) 9.0- 1078 [92]

Table 6.3: Upper bounds on LFV decay branching ratios in the LHT model, for two different
values of the scale f, after imposing the constraints on u — ey and = — e ete™. The
numbers given in brackets are obtained after imposing the additional constraint R(uTi —
eTi) < 5-10712. For f = 500 GeV, also the bounds on T — um,en have been included. The

current experimental upper bounds are also given.

masses in both cases. In particular the upper bounds on 7 decays increase by two orders of
magnitude when the scale f is lowered to 500 GeV. Moreover, the recent upper bounds for
T — um, em could be violated by roughly a factor 5. Therefore, in deriving the LHT bounds

for f = 500GeV, we also have taken into account the latter bounds.

6.6.3 Comparing the LHT to Supersymmetry

We have seen in the previous subsection that many charged LFV processes could reach within
the LHT model a level accessible to experiments performed in this decade. However, in view
of many parameters involved, it is useful to look for correlations between various branching
ratios that are less parameter dependent than individual branching ratios. In [20] a number
of correlations characteristic for LE'V decays in the MSSM in the absence of significant Higgs
contributions have been worked out by FEllis et al. and have been analyzed in [21, 22, 24]. In
particular, these correlations have been modified by Paradisi [23, 24, 25] in the presence of
significant Higgs contributions.

These different patterns of LF'V in the LHT and the MSSM can best be seen by studying
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ratio LHT MSSM (dipole) | MSSM (Higgs)

Br(u_—e eter) 0.4.. .25 ~6-10"3 ~6-1073

e 4...2.
e e 0.4...2.3 ~1-102 ~1-1072
Br(t——p ptpm) ~9.10-3

B 0.4...2.3 2-10 0.06...0.1
e 0.3...1.6 ~2.1073 0.02...0.04

——"

Br(r——p"ete™) ~1.10-2 ~1.102
e 0.3...1.6 1-10 1-10
Br(t~—e ete™)
B e 1) 1.3...1.7 ~5 0.3...0.5
B ( — + 7)
Brir o) 1.2...1.6 ~0.2 5...10

R(uTi—eTi) ) 2 W E.10-3

Briioey) 1072...10 5-10 0.08...0.15

Table 6.4: Comparison of various ratios of branching ratios in the LHT model and in the

MSSM without and with significant Higgs contributions.

certain correlations between branching ratios that have been previously considered in the con-
text of the MSSM. We find that the ratios in Table 6.4 could allow for a transparent distinction
between the LHT model and the MSSM. In particular, the ratios involving Br (¢; — £;v) turn
out to be of O (1) in the LHT model, while being O («) in the MSSM. Also the p—e conversion
rate in nuclei, normalized to Br (u — e7), can be significantly enhanced in the LHT model,
with respect to the MSSM without significant Higgs contributions. However, the distinction
in this case is not as clear as in the case of Br({; — Kj_ﬁ;rﬁj_)/Br(&- — 4;7).

The significant difference in the pattern of the LFV branching ratios in the LHT model
from the MSSM allows for a clear distinction of these two models. The origin for this difference
is the fact, that in the MSSM the LFV rates are dominated by the dipole operator, while
in the LHT the dipole contributions to the decays ¢, — Kj_ﬁ;rﬁj_ and /; — Ej_ﬁzﬁg can be
neglected compared to the Z%penguin and box diagram contributions. The reason is that
the neutral gauge boson (Ap, Zp) contributions annihilate with the Wf; contributions to the
dipole operator functions Dggd, but combine constructively in the case of the Ylfg qq> relevant
for the Z%-penguin and box contributions. Furthermore, the characteristic enhancement of
dipole operators due to large tan 3 in the MSSM does exist in the LHT model.

However, in the presence of significant Higgs contributions this distinction between the
MSSM and the LHT is less emphasized in 7 decays with p in the final state. This makes it
difficult to distinguish between both models because of the parametric uncertainties in the
relevant MSSM ratios, as seen in 6.4. In addition, the ratio R(uTi — €T%)/Br(p — evy) is

larger than «, making it harder to discriminate between the LHT model and the MSSM.



Chapter 7
Summary and Outlook

In this work we have presented a detailed analysis of several prominent FCNC processes as
well as LE'V observables in the context of the Littlest Higgs model without and with T-parity,
whose basic structure is based on an idea by Arkani-Hamed et al. [4].

We started this thesis with a brief overview of the SM and its basic ingredients, where
we have seen that it is extremely successful in describing the fundamental interactions of
particles. However, we noticed that the SM suffers from a number of shortcomings and is
therefore regarded as an effective theory. Among these problems one of the most striking
questions is the unknown mechanism of electroweak symmetry breaking, which requires the
introduction of a scalar Higgs boson. However, being not protected by any symmetry, the
Higgs particle receives radiative corrections proportional to the square of the cut-off A, thus
being the origin of the little hierarchy problem.

To overcome this problem many extensions of the SM have been developed of which
the most prominent ones are supersymmetry or theories with extra space-time dimensions.
Starting in Chapter 3 from deconstructed gauge field theories a further, very interesting
alternative, denoted as the Little Higgs model, has been proposed in the last years by Arkani-
Hamed et al. [47, 49]. Although Little Higgs models have not been worked out in the same
detail as the MSSM, they nonetheless represent an interesting alternative in explaining why
we have not yet seen any evidence of the mechanism behind EWSB in precision experiments.

In the present thesis we have studied the LH model with and without T-parity, which is
based on the symmetry breaking pattern SU(5)/SO(5) [4]. In such a framework the Higgs
is realized as a pseudo-Goldstone boson and can be kept naturally light without fine-tuning.
Moreover, it is necessary to introduce only a very small number of new, weakly coupled
particles at the TeV scale to stabilize the Higgs mass. As discussed in Chapter 4 this includes
one heavy copy each of the electroweak gauge bosons, the top quark and a new scalar triplet
coupled to the Higgs. In view of the constraints on the new physics scale coming from
EWPT we started to analyze the impact of this model on FCNC. After the correction of

several Feynman rules, that have already been derived in [5], we were able to calculate the

101
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relevant X and Y functions relevant for the phenomenology of the rare decays K+ — 7°

0

v,
K — 7vv and By 4 — ptp~. Finally one should always be aware of the fact that the LH
model is an effective field theory with a cut-off in the range of 10 TeV, beyond which one has
to construct a UV-completion [48]. This sensitivity to the UV completion, which is reflected
by a logarithmic divergence on the cut-off, is also present in our calculation and thus lowers

the model’s ability to make precise predictions.

As already mentioned, it soon turned out that the original LH models is severely con-
strained by electroweak precision tests, which requires the scale f to be higher than 3TeV.
Such a scale however re-introduces a certain amount of fine-tuning in the theory and is against
the spirit of the original construction. To evade these problems connected with EWPT Cheng
and Low proposed to introduce a new, discrete symmetry, called T-parity [9]. Embedding this
new symmetry into the LH model they were able to avoid the stringent experimental bounds
since the new particles in the LHT are assigned to be odd under T-parity, which prevented
them from contributing to electroweak precision observables at tree level. Thus, as seen in
Chapter 5, the scale of new physics f can be lowered to values f > 500 GeV while still being
consistent with EWPT.

Having now at hand the LHT as a more viable scenario to describe physics beyond the SM
we decided to extend our analysis of FCNC in the LH model to the LHT model. Together with
a previous work [15] on quantities related to particle-antiparticle mixing and B — X7y the
rare K and B decays in [17] provide a general description of FCNC processes in this model.
In Chapter 6 of this thesis we focused on the calculation of the X;, Y; and Z;, i = K, d, s,
which are the responsible short distance functions for several rare decays. In contrast to
models with minimal flavor violation the short distance functions X;, Y; and Z; are complex
quantities which depend on the index 7 and thus signal the breakdown of universality. With
the help of these functions we could straightforwardly calculate several branching ratios of
interesting rare decays like KT — 7%, K;, — 7%, Bsg — ptu~ and K — 7%t(~.
The most evident departures from the SM predictions are found for CP-violating observables
like the branching ratio K; — 7% but large deviations from the SM expectations are also
possible for the branching ratios Br (Kt — ntvi) and Br (K, — 7% (™). In contrast to
the large effects in the K system the branching ratios for By g — ptp~ are only moderately
modified by at most 20% — 30%. Finally, we have seen that universality of new physics effects
can be largely broken, in particular between K and B 4 systems.

In contrast to rare K and B decays, where the SM contributions play an important
role, in the LHT model the mirror fermion contributions to LFV processes play the by far
dominant role, since in the SM LFV effects are suppressed by the smallness of the neutrino
masses. Moreover, the absence of QCD corrections and hadronic matrix elements allow for
predictions that are determined by perturbation theory. In this thesis we concentrated on the
radiative decays ¢; — {;v, semileptonic 7 decays like 7 — (P, P = m,n,n/, u= — e ete™,

77 —eete, 77 — p ptuT, p — e conversion in nuclei, 77 — pTeteT, 77 — e putpu”
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and finally (g —2),. As seen in Table 6.3 several branching ratios can reach the experimental
upper bounds and are interesting in the view of new experiments. The contributions of
mirror leptons to (g —2),, are negligible and thus the discrepancy between SM prediction and
experimental data cannot be explained. The correlation between various branching ratios also
allow for a clear distinction between the MSSM and the LHT, since in the MSSM without
significant Higgs contributions the dipole operator plays the dominant role while in the LHT
model penguin and box contributions are much more important. Although this distinction is
less obvious in the case of the MSSM with significant Higgs contributions the ratios involving
¢; — ljv and decays with electrons in the final state still offer an excellent opportunity to
distinguish these two models.

We want to conclude this thesis with the message that both FCNC and LFV processes
provide a formidable framework to test the LH and LHT model. As we have seen, in spite of
the impressive agreement of the SM with the available data it is still possible to obtain large
deviations form the Standard Model’s predictions. In particular, the correlations between
different LF'V processes should turn out to be very useful to distinguish the LHT from various
other models, like the MSSM and thus provide an interesting alternative in the search for new
physics to the high-energy processes at the LHC. Apart from the MSSM, which is getting more
and more under pressure by precision tests, these models represent one of the most promising
candidates for extensions of the SM. Now, it is up to the next generation of experiments, like
the LHC, to uncover the unknown pattern of EWSB.
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Appendix A

Relevant Formulae and Feynman
Rules

A.1 Classes of Diagrams in the LH Model

Oy5 and

In this section, we show all the diagrams contributing to the rare decays K; — =
K* — nvv in the Littlest Higgs model without T-parity. The different classes are arranged

according to their contributions given in (4.3.84) — (4.3.89).

Figure A.1: Class 1. Penguin and box diagrams with SM particles and Ay contributing to
K — v in the LH model at O(v?/f?).
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d s d s d d v
u,c,t
Wy,
u,c, t
Wy Wy
u,c,t 1~
Z,
Wg
v v v v v s v
d s d s d
WL U,C,t
u,c, t
, d Wy, Wy
ZH ZH
v v v v v

Figure A.2: Class 2. Penguin and box diagrams with Wy and Zg contributing to K — wvo
in the LH model at O(v?/f?).

s d s
Wr t
t ¢ Wi Wi
Z L Z L
v v v
d 2] [
Wi, T
4143
T T Wi Wy,
t -
Z L Z L
4143
s v v
s d s
WL WL
r t
d T
Z L VA4 L
v v v

Figure A.3: Class 3. Top and heavy top quark contributions to K — zwvv in the LH model

at O(v?/f?) which are proportional to x% The diamonds correspond to terms proportional
to JE%, which were not considered in class 1.
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s d s d s d d v
WL T WL
Wy
T
T t Wy, Wy d
T -
ZH ZH ZH
Wu
v v v v v v s v
s d s d s d s d
Wy Wu T Wy
T
T t T T Wy Wy d
ZL ZL ZL ZL
v v v v v v v v

Figure A.4: Class 4. Penguin and box contributions to K — 7v# in the LH model at O(v?/f?)
which are proportional to v*/ f4c4zn%.

s d s d s d
147 4143 443
t T T T T
d
Agy Ag Apn
14 14 v 14 v 14
s d s d
T T
Wi, Wy 1%3 447
Zr Zr,
v v v v
s d
0| Wi
™
d T
Zy
O
12 14

Figure A.5: Class 5. Penguin and box contributions to K — 7v# in the LH model at O(v?/f?)

which are proportional to v*/ f4l’T:E%.



108 APPENDIX A: RELEVANT FORMULAE AND FEYNMAN RULES

Figure A.6: Class 6. Penguin contributions to K — 77 in the LH model at O(v?/f?) with

internal charged scalars ®*.
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A.2 Feynman Rules in the LHT Model

A.2.1 Fermion—Goldstone Boson Couplings

In this section, we present the vertex rules concerning the interactions between the fermions
and the Goldstone bosons that are needed for the calculation of the diagrams in the LHT.
Further Feynman rules involving fermions and heavy/light gauge bosons are not repeated
here and the reader is referred to [11, 16, 17].

Fermion couplings to SM Goldstone bosons ‘

aintdi ﬁfgwa (mLPL - mi)PR) (Vekm)ij

tntd! ﬁ% (1 - %;ﬁ—z) (thL - mf;PR> (Vorm)ig
T,ntd \/5‘7;[;@ % {mﬂ (1 + %dg) Pr — mZPRJ (Verm)ij
a'mou! - 2]\/[Z9an%>s gy V504

tr0t — o, e (1 - x%}—i) o
T+7TOT+ Ly

_ZMZL cos Oy $L7575

— 2 P
T+7T0t ZJV[Z‘ZI#GVV% 777/1“+ <1+%<d2—%>)PL—thR

d'nOd! Wzi%gw%&j
a@lﬂdﬁ{ - m ;—im?ﬂ&j
vimt e ﬁ% <m’;PL - msz) (VPMNs)ij
2 - 2]\/[Zinézy>s gy V504
Fin0fi ey 150
D}'JWJF@I - m ;—sz;ﬂ&j

The leading order contributions to the couplings of fermions to the heavy Goldstone
bosons have already been given in [16]. We included also O(v?/f?) corrections, necessary for

the calculation of rare decays, and the contributions proportional to the SM fermion masses.

Fermion couplings to heavy Goldstone bosons ‘

abywtd ﬁ% (m}ﬁ”PL - mflPR> (VHa)ij

atywOul e | M (1 + ;—2 (% — taﬁ—gw)> P —mdPr| (Vi)
w0t ﬁ mY, (1 - ;—z <% — Tage %)) P, —miPr| (Viu)is

utwOT, ZﬁZLH 7 (mY,; Py, — mr, Pr) (Viu)is
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T 0t R
T_u'T, s (1 ahy) Pr
Ul —m myy,; (1 + % > (2 + 2y tan Oy) >PL mh Pr| (Vira)ij
alymt —% mly; <1 + %2; <g + zy tan Oy — %)) P —myPr| (Viu)is
wlyn Ty _1(§]J/v+ALH% (my; P — mr, Pr) (Viu)is
T i CI)IT
T_yT, 2t (1— % (323 — 200, +1) ) Pa
digwo o [ (1 8—) Py —miPr (Vi)
diyw™t WWH [m%l (1 - %2; (% >) Pr — thR] (Viru)is
diyw T4 ﬁ%wL% (m$;Pr. — ma, Pr) (Vir)is
diy w0 — ot md,., (1 + ;—2 (—% + tafl—’éw)) Pp —m}Pr| (Vira)is
dynd — ot [ (1 % (5 + autan0w) ) PL— m)Pr| (Via)yy
vhwt e \/iTIwH (mHZ-PL — mgPR> (Vie)ij
7w i | (1 + ;—2 (% - tangw)> Py —miPr| (Vir)ij
oI _ﬁ m. (1 + 4 (g + zp tan GW)> P —mi Py (VEy)ij
lw™ 1) WWH {quz (1 — ﬁg) Pr,— m,@PRJ (Viw)ij
Oy e mby, (1 + ;—2 ( 7+ tan(,W)) P, —mjPr| (Vie)i;
Cint? —ﬁ mby, (1 e ( + zp tan HW)> pPr— mzPR (Ve)ij

A.2.2 Triple Gauge Boson—Goldstone Boson Couplings

The kinetic term for the non-linear sigma model field ¥ is given by
f2
L= [(DHE)T (D“E)] , (A.2.1)
where the covariant derivative is defined through
2
DuY = 0,5 —V2i Y [gWi, (QI +2Q5T) + ¢'Bju (V;E + 2Y]1)] . (A.2.2)
j=1
From this term, taking into account the mixing of the Goldstone boson and scalar fields,
the interactions of the Goldstone boson fields with the SM and heavy gauge bosons can be
obtained.

All momenta are defined to be incoming.
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Gauge boson—Goldstone boson interactions

WWn Moy (g +42m) 0™
W-l—MW—V 0 —gMzy, ( B %) 9"
W;IWZLM_ —g My, cos Oy <1 _ MQCZ%GW) 9
Wy Ajw- .
Wizt W= 9Mwy <1 - é) g~
W AY W™ et (tonf — ) g
Wz 9My, a9
WAy T —eMw, g™
Wyt Ay g' M, 9"
wh(plw™(@)Zr | igcosbw (1 - M’%ew) ki
Wt (p)w (9) AL ie(p— a)"
" () (0) 21 i 0 o)
™ (p)m~(q)AL ie(p — a)"
wh(p)m™ (9)An _Z?”}) ="
wt(p)w® ()W, " —ig <1 _ W) ®-"
W, v s
D)V il o
@ W," R
W)W, il - 9"




112

APPENDIX A: RELEVANT FORMULAE AND FEYNMAN RULES

A.3 The Functions U; and V;

In the following we list the functions that enter the study of rare decays in the LH model,
where z; = m2/M2 + and y = M? i/MI%Vi' Both the results relevant for the X and Y
L

function are collected

Ui(xe,y)

UQ(Z’t, y)
Us(z¢, z7)
Us(zr,y)

Us(z¢, z7)

Us(27)

Vi(ze, y)

V2(xt7 y)
VY3(:L't7 :L'T)
‘/4(:ET7 y)

V5 (:Eta :L'T)

(14 4xp)zy (I +4xp) (=74 x) 2y

e T 640 (—1 + )
(1+4zp) zy (4 — 224 + 27) log 2y
320 (—1 + )’
azy (11 + 4ay)  3axy (=8 + 22 + z?)logzy  3ax;logy
C 8(—1+aw) ( 8(—1+ ) ) TS (A-31)
B x (4 — Tay) _3xt (8—6$t—$3)10gxt_wtlogy (A32)
16(—1 4+ zy) 16(—1 4 x4)? 4 e
—3+4 20 — 222 xp (4 — 2 +222) logzy (3 + 2x4)log Ty
8(—1+ a4) Lo 8(—1+ mt)t) + 8) : (A-3.3)
3zry 3ery?logxr  3zry’logy  xrlogy (A.3.4)
16(—zr+y)  16(wr —y)2  16(zr—y)2 16 o
B (=3 + 4361;)sz1 n (—7 — 12z, + SOxL) T n (=3 +4xr) zrlog xr
320 640 320
3az7y (log zp — log y) (A.3.5)
8(zr —y)
So T #2. log &7
RETRR (Er R e (A:56)
(L +4zy) xtSl n (1+4xr) (=74 x¢) xy
320 640 (—1 + )
(1 +4xp) zy (4 — 2z + :L'%) log x4
320 (—1 + a4)?
Caxg (13 +4wy) 3az? (2 + x)logzy  3axilogy (A.3.7)
8(—1+m¢) 8(—1+z¢)? 8 o
Comp (4= Tay) _3xf(2—$t)log3:t_3:tlogy (A.3.8)
16(—1 4+ zy) 16(—1 + 24)? 4 h
(3 + 224 — 227) @ (2— 2y +227) logzy (34 22¢) log (A.3.9)
8(—1+ x¢) 8(—1+ x)? 8 o
3rTy 3rry?logxr  3xry’logy  arlogy
(A.3.10)
16 (—zr+y)  16(wr—y)®>  16(er —y)®> 16
B (=3 + 4361;)sz1 n (—7 — 12z, + SOxL) T n (=3 +4xr) zrlog xr
320 640 320
3az7y (log zp — log y) (A3.11)

8(xr —y)
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A.4 Functions Relevant for Rare Decays

In this appendix we list the functions that entered the present study of rare and CP-violating
K and B decays in the LHT model. Both the SM contributions and the new physics contri-

butions coming from the T-even and T-odd sectors are collected. The variables are defined

as follows:
m2 m7,
Ty= —o T = —5t (¢ =ct), (A4.1)
T Mg, Mg,
S TRV i /A . (i=1,2,3) (A.4.2)
Z—MI%VHu i_MiH_Z _tan29W7 — Ly 4y 9 ok
2 2
Myy _ My / 1
y= = . Y =ya, n=-. (A.4.3)
M&VH M%H a
T Ty + 2 3$t —6
X = —= 1 A44
SM($t) 8 |:I't —1 (act — 1)2 8 :Et:| ( )
Tt Tt — 4 3331‘/
Y- = = 1 A45
sm () 3 [:L"t — * (o — 12 %8 ﬂft:| ( )
1 18z — 1632} + 25927 — 108z,
VA - _2] t t t
sm (@) g log e + THi(s — 1)
322} — 38z3 — 1527 + 184
1 A.4.6
72(z; — 1) o8 Tt (A-4.6)
y|ly—6 3y + 2
= = 1 Ad4.
4 —19y3 +25y%  4%(5y% — 2y — 6)
D = —=1 1 A.4.8
o(y) 918y T 350, = 1) ISG - o8y (A4.8)
2 y2(15 — 16y + 4y?) y(18 — 11y — y?)
E = —=1 1 A4.9
o(y) zlogy + 6y — 1)1 BY+ T ) (A.4.9)
3y° — 2°) (8y° + 5y° — Ty)
D] = —(7 A4l
3y (y* — 5y* — 2y)
Ef = —1 A411
—3 42w — 227w (—4— x4+ 227)logay (34 2x)logar
U: = — A.4.12
sl@ner) = =50y 8(—1 + 21)? * 8 (4.-4.12)
3+ 2z, — 227 2 —xy + 27) 1 34 2x4)1
Vi(epop) = ( zp—2a%)  wy (2 -z + 227) log 2y N (3 + 2x¢) log zp (A413)

8(—1+z) 8(—1 + 24)? 8
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(D)sm = Dglay) (A.4.14)
1
(D/)LHT = (D/)even + W O(/id (A.4.15)
t
/ / 'U2 2 / /
(D )even = Do(ﬂj‘t) + FﬂjL |:D0(£L'T) — Do(l’t):| (A416)
odd 1v° s) (1 / (s) ( 1y '
Ip = ZP {52 ( odd (22) — Dodd(zl)) +&3 (Dodd(ZB) - Dodd(zl))} (A.4.17)
1 1
oad(i) = Dy(z) — EE(/)(ZZ') - %E{)(ZQ) (A.4.18)
z; log z; 1
RQ(ZZ) — |:(1 — Zi)z 1— ZZ':| (A.4.19)
1 [ 2%1og 2 1
F(z) = —5 |+ A4.2
2() 2[u—%ﬁ+1—%} (A.4.20)
5 3
F" (zj,y; Wg) = 3%~ F5 (zi,y) — TFs (zi,y) — U (2, 9) (A.4.21)
0 3
FF (2, y; W) = 3%~ F5 (zi,y) — TFs (zi,y) + 3U (2,9) (A.4.22)
23 log 2 y3logy
F; Zi, = L A.4.23
N I EE A = Iy (4429
22 log 2 y*logy
Fe (2, - : A4.24
b Ge0) T== -2 0-0) (-9 (A2
22 log 2 y?logy 1
Ulziy) = - A.4.25
=0:0) (zi—y)(1-2) @-z)1-y° (@-z)0-y ( )
3
Gy Zm) = —7U(zy) (A.4.26)
1
Gi (2, v Am) = 25—aG (2,915 Zn) (A.4.27)
3 22 log z;
G Ev) = g [T=2) -2 = 9)
2 2
y~logy 1~ logn (A.4.28)

" I=y)(n—y) (v —2)

(1=n)(zi—n)(n—1y)
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A.5 Functions Relevant for Lepton Flavor Violating Decays

Finally, in this appendix we list the functions relevant for the study of LFV decays with the
variables being defined in Appendix A 4.

4 —1923 + 2522 2?(52% — 27 — 6)

D = —_1 1 Ab.2

o() R T v s B TPy D B (A.5.29)
2 22(15 — 162 + 42?) (18 — 11z — 2?)

B = —Z1 1 A.5.30
o(@) 3R Tt BT T 0 ( )
, B _3x3 — 222 823 + 5% — Tx

Dy(z) = w1t log z + VS (A.5.31)

32 23— 5x? — 2
E; = —l _ A.5.32
/ 2 /
H(yi) = Do (vi) — 5o (4i) (A.5.33)
Ro(y) = - |21o8vi | 1 (A.5.34)
2= (1-w)? 1-y o
1 [ y?logy; 1 }
Fo(y) = —5|= + A.5.35
un 3
F" (y;, z;Wg) = oY~ F5 (yi,2) — TFs (yi, 2) — 9U (v, 2) (A.5.36)
7 3
FU (g2 Wa) = Syi = Fs (ui2) = TF (3. 2) + 3U (43, 2) (A.5.37)
3 3
y? log y; z°log z
F5(yi,2) = . - A.5.38
") = TG T - - 2) (4.538)
2 2
y; log y; z“log z
Fe (yi,2) = — : + A.5.39
o (0 2) TR7a Y Ex el s Yoy (4.5.39
2 2
y; log y; z*log z 1
Ul(yi,z) = L + + (A.5.40)
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APPENDIX A: RELEVANT FORMULAE AND FEYNMAN RULES

Codd(yi) = 6_14;_22 [yisodd — 8y Ra(yi) + gyz + 2%’&(%’)} (A.5.44)
Do) = 15 [Polwn) — £ Eo) = 15 Eofu)] (4585
Soqa = é +log ]\;;VH — i log (j\‘; é f (A.5.46)
F(zi,y;;Wy) = (1-— zi)l(l — ;) <1 — Z%?Jj) + G _zz;l)o(gizi' )7 (1 —2y; + Zifj)
(z _yil;glyj y;)? <1 -2t ZT) (A.5.47)
e Zn) = [(1 T
@ f95;>1<01gig->2] (454
A2 = g [(a T )
(ai - yj)iiligyig(l - y;-)] (4549
Li(vi) m [—8 + 38y, — 39y + 14y} — 5y; + 18y7logy;]  (A.5.50)
Lo (y;) G(lei)“ [—10 + 43y; — 78y + 49y; — 4y} — 18y’ logy;]  (A.5.51)
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