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Abstract

Cognitive functions of human behavior like selective attention, working memory and decision

making require complex information processing techniques in order to select and represent the

behavioral relevant information and to create the correct associations. Present-day research

addresses these issues by developing neurodynamical computational models inspired from the

structure and properties of the nervous system.

Driven by the assumption that the representation of information in the brain is distributed across

several cortical areas and that the coherent description of information is achieved at a global

level through an intricate inter-areal connectivity, an important approach to the understanding

of the neural mechanisms underlying the cognitive functions of the brain assumes that its distinct

features might emerge from the mutual interplay of different interconnected brain structures.

This implies the necessity of analyzing the biological neural networks at system level.

This work contributes to the understanding of the fundamental brain principles underlying cogni-

tive functions by introducing and systematically analyzing two models that provide fundamental

building blocks for the construction of large neurodynamical multi-areal models.

A module inside a cortical area is modeled as a biologically-inspired recurrent network of ex-

citatory and inhibitory spiking neurons described by nonlinear dynamics and characterized by

stochastic activity, for which stimuli-related inputs are processed in the context of neuronal

reverberation. The modules are structured according to the concept of population coding and

to the general framework of Biased-Competition and Cooperation.

Two concrete examples that study specific cognitive phenomena as effects of multi-areal recurrent

processing determine a set of underlying working hypotheses and relate these hypotheses to

experimental evidence. The first model analyzes the computational principles underlying the

neuronal correlates of attentional filtering, showing how an input encoding the attentional state

can bias the level of competition and cooperation in a single-area model in order to extract

the relevant information for the behavioral task. The second model analyzes the computational

principles underlying the neuronal correlates of perceptual learning, showing how learning affects

the connectivity between two model areas and how the resulting intrinsic attentional signal

affects the level of competition and cooperation in the network in order to express the relevant

information for the behavioral task.

Along with correctly describing the experimental findings on awake behaving animals, both

models help to extract a number of possible underlying principles, like selective filtering, corre-

lation facilitation and selective tuning. These dynamical features represent fundamental building

blocks for large-scale multi-areal neurodynamical networks modeling cognitive brain functions.
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1 Introduction

Conventional computers use an algorithmic approach to problem solving. They process infor-

mation in a centralized and predictable way, which makes them unable to solve real world prob-

lems that involve adaptation to a changing environment and generalization to new situations.

New technological needs like advanced image processing, adaptive pattern recognition, learning

autonomous systems, prediction and intelligent control require the development of intelligent

information processing systems, for which the use of the biological nervous systems as inspiration

source holds a lot of promise. In tasks like visual recognition, language understanding or motor

control, the human brain outperforms today’s supercomputers in terms of processing and storing

capabilities, reaction times and robustness to novelty. The human brain can be considered as a

huge network of interacting neural processing elements (about 1011 neurons and 1014 connecting

synapses) structured in many layered subnetworks with different architectures, properties and

functions. The recurrent dynamical nature with nonlinear, parallel and distributed processing

capabilities plus the continuous self-adaptivity make our brain a more powerful computational

tool than conventional computers are. Therefore studying the way it processes and encodes

information represents an important approach for the development of intelligent or thinking

computers.

Understanding how the brain processes information, adapts to complex and novel environments

and is able to generalize on one side, and using this knowledge in designing complex adaptive

systems that build up their own rules through experience on the other side, are all part of the

Neural computation field of study. The interdisciplinary research goes into distinct directions,

from designing tools able to analyze large nonlinear data sets (artificial neural networks), trying

to understand higher-level brain functions by measuring cortical activity using techniques like

EEG, fMRI and PET (cognitive neuroscience) to suggesting possible mechanisms underlying

brain function using biologically inspired computational models (computational neuroscience)

and solving engineering problems using cortical inspired architectures (neuromorphic systems).

A first step towards biologically-inspired information processing systems was achieved through

the development of Artificial Neural Networks (ANN). Following the general aspects of

biological neural systems, they represent an information processing technique that consists of

a large number of highly interconnected parallel processing units, whose interactions are mod-

ified by simple learning rules. Unlike the biological systems, they are characterized by simple

architectures and relatively simple and usually identical processing elements. The first pro-

cessing units used in ANNs were the McCulloch-Pitts threshold neurons (McCulloch & Pitts,

1943), which are rate model neurons using a step, or threshold activation function. Using these

simple units, the multi-layer perceptrons and Hopfield networks were successfully applied in

digital computation. Later, rate model neurons using continuous activation functions, like the
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1 Introduction

sigmoid function, used in feed-forward and recurrent networks, were able to approximate also

analog computations. Configured through a specific structure and parameter set for a specific

application, the ANNs are capable of solving some of the problems that are too complex for

conventional technologies based on algorithmic approaches. They are successfully applied to an

increasing large number of real world problems like pattern recognition, nonlinear regression,

clustering and data classification.

The next step in developing intelligent computers, having as inspiration source the biological

neural systems, goes in the direction of developing a general theoretical framework for studying

the fundamental principles underlying the cortical mechanisms of brain function and subse-

quently understanding the working principles of the brain.

In order to answer fundamental questions like: what functions and computations are performed

in our brain and by which mechanisms, the extensive research in experimental neuroscience

investigates the complex nervous system by studying, along with its structure and properties,

its responses to specific stimulations under specific conditions. For example neurophysiological

experiments using implanted electrodes on awake behaving animals allow measurements of single

neuron activities from different cortical areas during various behavioral tasks. Studies of cog-

nitive brain function in humans measure indirectly the neuronal activity through non-invasive

techniques such as fMRI. This technique measures the regional changes in blood flow, which is

indirectly associated with regional differences in brain activity. Although not as precise as single

cell measurements, this non-invasive technique allows the association of different brain regions

with particular processing stages of different information types. Detailed introductory descrip-

tions of neuronal physiology, cortical organization and measuring techniques can be found in

general neuroscience textbooks, for example Kandel et al. (2000).

In the search to understand and analyze the cortical, neural and synaptic mechanisms underlying

the complex functions of the brain, the experimental research is complemented by theoretical

models. The computational neuroscience field of study investigates the dynamics of the

neural system at different levels of detail by introducing appropriate mathematical techniques

for analyzing and reproducing the rich behavior of the complex neural system from the corti-

cal to the synaptic level. These techniques underlie the development of explicit mathematical

neurodynamical models of cortical modules, neuronal assemblies, single neurons and individual

synapses. The models make explicit assumptions about the underlying neural mechanisms of

brain function by integrating different levels of experimental investigation of brain function:

behavioral, neuroanatomical, neurophysiological, neuroimaging and single cell studies. Their

analysis allows then specific conclusions to be drawn about the studied neural behavior and

the assumed underlying neural mechanisms. Different modeling approaches are described in

computational neuroscience textbooks, for example Koch (1999); Dayan & Abbott (2001).

This work contributes to the understanding of the fundamental brain principles underlying

cognitive functions by introducing and systematically analyzing two concrete models studying

specific cognitive phenomena as effects of multi-areal recurrent processing. They provide a

number of important basic features of cortical function and represent fundamental building

blocks for the construction of powerful computational systems.
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Research methodology

Cognitive brain functions, like selective attention, working memory and decision making, require

complex information processing techniques in order to select and represent the behavioral rel-

evant information and to create the correct associations. Present-day research addresses these

issues by developing neurodynamical computational models inspired from the structure and

properties of the nervous system. Important to note here is that distinct features of cognitive

brain function seem to emerge from the mutual interplay of interconnected brain structures

rather than being generated by individual structures. Searching to explain complex cognitive

phenomena as effects of multiareal recurrent processing, multi-modular systems of interacting

or coupled recurrent networks are proposed, which analyze and model the techniques underlying

these complex multiareal recurrent processes of the brain.

For this, a cortical module, having a specific functionality, is modeled as a recurrent network

of interconnected excitatory and inhibitory spiking neurons described by nonlinear dynamics

and characterized by stochastic activity, for which stimuli-related inputs are processed in the

context of neuronal reverberation (Amit et al., 1994; Amit & Brunel, 1997b,a; Brunel & Wang,

2001). The dynamics of the proposed models are described at the spiking and synaptic activ-

ity levels, which provide a quantitative formulation for the temporal evolution of the neural

activity at many processing levels: from single neurons, neuron assemblies, recurrent networks

of neurons and up to coupled hierarchical modules of networks. This enables psychophysical,

neurophysiological and imaging studies to be explicitly simulated and predicted. The structure

and properties of these biologically inspired network models, that are able to reproduce exper-

imental measurements studying complex phenomena in the brain, will help to derive relevant

biological principles underlying perception and cognition.

Choosing the structure of the cortical modules is a very important aspect, which recent model-

ing strategies address through the conceptual architectural framework of Biased-Competition

and Cooperation . The Biased-Competition Hypothesis, formulated for the mechanism of se-

lective attention, assumes that multiple activated populations of neurons engage in competi-

tive interactions that are biased by external interactions in favor of specific groups of neurons

(Moran & Desimone, 1985; Spitzer et al., 1988; Motter, 1993; Miller et al., 1993; Chelazzi et al.,

1993; Desimone & Duncan, 1995; Reynolds & Desimone, 1999; Chelazzi, 1999). Neurodynami-

cal models constructed within the Biased-Competition framework have been proven to success-

fully account for different aspects of visual attention (Rolls & Deco, 2002; Corchs et al., 2003)

and working memory context dependent tasks (Deco & Rolls, 2003; Deco et al., 2004). The

theoretical framework of Biased-Competition and Cooperation extends this view: while com-

petition selectively highlights the neural representation of the attended or behavioral-relevant

information at the expense of the representation of other present but not relevant information,

cooperation promotes the co-activation of the representations of the associated or related infor-

mation (Szabo et al., 2004; Almeida et al., 2004). Neurodynamical models developed within this

conceptual framework have been used to model single neuronal responses, fMRI activation pat-

terns, psychophysical measurements, effects of pharmacological agents and local cortical lesions:

Deco & Rolls (2002, 2004); Szabo et al. (2004); Almeida et al. (2004); Szabo et al. (2006).
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1 Introduction

Thesis overview

This work introduces, by proposing recurrent network models of spiking neurons constructed

using the theoretical framework of Biased-Competition and Cooperation, a set of underlying

working hypotheses for the cognitive brain phenomena, like selective filtering, correlation facili-

tation and selective tuning, and relates these hypotheses to experimental evidence. Guided by

cortical activity measurements from recent neurophysiological experiments on behaving mam-

mals, two examples of functional neurocomputational models are described.

The first study introduces a neurocognitive model of selective attention, and exhaustively an-

alyzes how competition and cooperation biased by behaviorally-relevant information operate

within a single model area. The mechanisms of selective attention form an important basis of

cognitive processing. Through attention, information is selected and filtered out in a context-

dependent way, where the context is provided by the internal state of the brain. A remarkable

phenomenon of selective attention for human vision known as inattentional blindness (for a re-

view see Simons, 2000) refers to the inability of humans to recover any information from the

unattended parts of the visual field. Attentional filtering represents a particularly strong atten-

tional effect, in which the context gates sensory input in an all-or-none fashion, and might be

part of a neural correlate of the inattentional blindness observed in humans. The role of the

prefrontal cortex in the attentional filtering mechanism was studied in a recent neurophysiologi-

cal experiment on awake behaving monkeys engaged in a focused attention task (Everling et al.,

2002). Motivated by their results, specifying that only an attended task-relevant stimulus is

gated by the context and is allowed to be represented, a neurodynamical computational model

of a small part of the prefrontal cortex is proposed to account for the neural mechanisms defining

this attentional filtering effect. The model investigates how this strong attentional effect can

arise from a weak modulatory bias which mediates the cortical context (Szabo et al., 2004).

The second study introduces a neurocognitive model for learning visual categorization that op-

erates over two different cortical modules. A recent neurophysiological experiment on awake

behaving monkeys has shown that learning a visual categorization task shapes the selectivity

of inferotemporal cortex (ITC) neurons to the task-relevant features of the presented stim-

uli (Sigala & Logothetis, 2002). Hypothesizing that the task-dependent shaping of feature-

selectivity might emerge as a dynamic effect through the information exchange between ITC

and another cortical area, possibly the prefrontal cortex (PFC), where the previously learned

stimulus categories could be encoded, a biologically inspired neurodynamical two-layer model

is proposed. The model investigates how the selectivity of the ITC model neurons can arise

and how it is influenced by learning the categorization task, implemented using a reward-based

Hebbian learning algorithm (Szabo et al., 2006). An important feature of the proposed model,

which exhaustively analyzes how competition and cooperation operate within a two-area model,

is the internal generation of the biases needed for the competition process in the PFC model

area.

Along with correctly describing the experimental findings on awake behaving animals, both

models help to extract a number of important features underlying cortical mechanisms, like

selective filtering, correlation facilitation and selective tuning. These dynamical features repre-
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sent fundamental building blocks for large-scale multi-areal neurodynamical networks modeling

cognitive brain functions and could be an important link to a fundamental brain principle.

The thesis is organized as follows: At first the building blocks of the model networks, i.e. the

neurons, are described in chapter 2. The chapter starts with a general introduction in the

structure and properties of biological neurons (section 2.1) and follows with a description of

different modeling techniques (section 2.2), presenting in detail the modeling strategy adopted

in this work: the leaky integrate-and-fire neuron with nonlinear synaptic dynamics (section

2.2.4).

Chapter 3 starts by presenting different assumptions for the encoding mechanisms performed

by the nervous system (section 3.1). Afterwards, based on properties of the biological cortical

networks, the structure and parameters of the considered network model are presented in section

3.2. The chapter ends with the description and biological motivation for the Biased-Competition

and Cooperation architectural framework (section 3.3).

Chapter 4 introduces the Reward-based Hebbian learning mechanism used for training the pro-

posed biological inspired spiking network model from chapter 7. Chapter 5 describes the Mean-

field approximation which simplifies the analysis of the network and allows exhaustive explo-

rations of its parameter space.

Chapters 6 and 7 introduce two examples of functional network models. They study the influence

of selective attention on perceptual processing (chapter 6) and the influence of concept formation

on the lower-level representations of information in the biological cortical structures (chapter

7). Simulation results of both mean-field analysis for stationary conditions and full spiking-

dynamics are presented and discussed. The last chapter discusses the results of the modeling

strategies and presents the conclusions of this work.
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2 Network processing units

The scientific community in neuroscience has agreed that information processing in the ner-

vous system underlying all sensory, motor and cognitive functions is achieved by the conjoint

activity of a large group of specialized cells called neurons. Sparsely and inhomogeneously in-

terconnected, they form an intricate network with remarkable storing and encoding capabilities.

Referred to as the information processing units of the nervous system, the neurons are complex

biophysical and biochemical entities able to perform specific kinds of computations. They are

responsible for encoding, integrating and transmitting information in the nervous system.

Anatomical and physiological data accumulated over many years of neurobiological research,

in special in-vitro and in-vivo single-cell measurements of neuronal activity, provide significant

knowledge about the neuronal structure and the biophysical and biochemical mechanisms un-

derlying neuronal activity. The generation of action potentials and the synaptic transmission are

fundamental mechanisms of information transmission in the biological neural system, at their

basis underlying specific ionic mechanisms. Understanding the complex biochemical processes

behind these mechanisms creates an extended basis for constructing biological realistic models

of neurons.

Detailed conductance-based models, like the Hodgkin and Huxley model (Hodgkin & Huxley,

1952), are able to accurately reproduce experimental neurophysiological single-cell recordings

but are too complex and not efficient for constructing and analyzing large neural network models.

Therefore simple and efficient neuron models were developed, like the leaky integrate-and-

fire model, capturing only the major features and properties of biological neurons. Detailed

information about neuron biophysics and the corresponding modeling strategies can be found

in many computational neuroscience books, see for example Jack et al. (1983); Koch (1999);

Dayan & Abbott (2001).

The first part of this chapter, section 2.1, concentrates on the general characteristics of the struc-

ture and communication mechanisms of real neurons. The second part, section 2.2, addresses

neuron modeling strategies, in particular the one adopted further in this work.

2.1 Biological neurons

Neurons, on the order of 1011 − 1012 in the human cerebral cortex, are the functional cells of

the nervous system specialized in the reception, integration and transmission of information in

the form of an electro-chemical process. They have a particular structure and specific electrical

and chemical properties that are related to their functionality.

7



2 Network processing units

Despite the high functional diversity, neurons have common anatomical structures and physical

properties, briefly presented in section 2.1.1. All neurons process and transmit information in

the same way using a combination of chemical and electrical signals. Across one neuron the

information travels as an electrical signal in the form of modifications of the cell’s membrane

potential. Between neurons, the information is transmitted as a chemical signal in the form

of specialized molecules passing through specialized points of contact. These communication

mechanisms are introduced in section 2.1.2.

2.1.1 Structure and properties of biological neurons

Although neurons differ in shape and size from one brain region to another, they have many

structural and functional features in common. Distinctive from other cells in the organism,

neurons have specialized extensions – the dendrites and the axon; structures – the synapses;

chemical elements – the ion channels, the neurotransmitters and the receptors; and electri-

cal properties – the membrane potential (Braitenberg & Schütz, 1991; Kandel et al., 2000). A

schematic representation of a pyramidal neuron can be seen in Figure 2.1. Named from the

pyramidal shape of their body, the cortical pyramidal neurons are the most common neurons in

the mammalian cortex (around 80% of all cortical neurons).

The dendrites are short ramifying branches (usually no longer than 1 mm) extending from

the cell body (also called soma). The dendritic tree, grouping all dendrites, along with the

cell body constitute the receptive, or input, region of the neuron, where synaptic contacts are

made with other neurons (usually around 5000 and most of them dendritic). The receptive

region is characterized by specialized protein molecules embedded in the cell membrane, called

receptors, that respond to the chemical signals sent by the connecting neurons.

The axon is a singular long extension of neuron’s body which represents the output region of

the neuron. The axon ranges in length from a few hundred microns to over a meter (for motor-

neurons) and divides in many branches (forming the so called axonal arborization). This enables

an active neuron to transmit its output, to many neurons in the same and also other remote

areas in the nervous system. For the cortical pyramidal neurons, the axon can connect from 103

to more than 104 other cortical neurons, many of them residing in the same brain area.

The axonal fibers are often wrapped in multiple sheaths of myelin – fatty layers acting as an

electrical insulator. The myelinization facilitates a high propagation speed of the electrical signal

for small diameters of the axon, by increasing its membrane resistance. This is an efficient

solution to group numerous connecting fibers in a small limited space. The myelin sheaths

surrounding the axon are segmented at regular intervals by small gaps called nodes of Ranvier

where the impulse can be regenerated. This is important for the transmission of the electrical

impulse over long distances.

The synapses are specialized junctions that represent the connection points between neurons

where information is transmitted in the form of a chemical signal1. Synapses are the neural

1I refer here only to chemical synapses which are the common type of synapses encountered in the cortical
areas

8



2.1 Biological neurons

Figure 2.1: Schematic representation of a pyramidal neuron with a detail of the chemical synaptic
site. The notations used are explained in the text.

elements believed to be involved in adaptation, learning and memory. A schematic represen-

tation of a synapse can be seen in Figure 2.1. The neuron sending the information is referred

to as pre-synaptic and the receiving neuron as post-synaptic. The tips of the axonal branches

of the pre-synaptic neuron are called axon terminals. They release, in certain conditions, small

amounts of special molecules – called neurotransmitters that diffuse in the gap between the

connecting neurons – named synaptic cleft – and bind to the receptors of the post-synaptic

neuron.

For each neurotransmitter type there are more corresponding receptor types, and it is possible

that different types of receptors are present in a single synapse. The most common neurotrans-

mitters in the cortex are:

• glutamate2 – an excitatory neurotransmitter that acts most commonly on AMPA2 and

NMDA2 receptors, and

• GABA2 – an inhibitory neurotransmitter that acts most commonly on GABAA and

GABAB receptors.

Each synapse is characterized by a specific synaptic efficacy determined by the type and amount

of released neurotransmitters and the type and number of activated ion channels on the post-

synaptic site.

Along with the particular structure and chemical properties, neurons have also particular elec-

2Abbreviations: glutamate – amino acid L-glutamate; AMPA – α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid; NMDA – N-methyl-D-aspartate; GABA – gamma-aminobutyric acid
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2 Network processing units

trical properties. They are characterized by temporal and spatial electrical changes that can be

accounted by modifications of the electrical potential across neuron’s membrane. The mem-

brane potential is defined as the voltage difference between the inside of the neuron and the

extracellular fluid that surrounds it. Biological values for neuron membrane potentials range

from −90 mV to +50 mV.

The neuron is bounded by a selectively-permeable membrane composed of a double layer of

lipid (fatty) molecules, 3 to 4 nm thick, embedding specialized proteins referred to as chan-

nels, that selectively allow the passage of specific charged particles across it (most commonly

the Na+,K+,Cl− and Ca2+ ions). Voltage-gated channels are specific ion channels that open

only for some values of the membrane potential. The voltage dependence is important for the

generation and conduction of electrical signals in the output region of the neuron. Ligand-gated

channels open in response to a specific chemical stimulus, and are important for the commu-

nication between the neurons. The membrane is an almost perfect electrical insulator being

impermeable to most charged particles, acting as a capacitance. The embedded ion-conducting

channels act as a conductance across the membrane.

The resting (quiescent) state of a neuron is the state of dynamical equilibrium in which the intra-

and extra- cellular ionic distributions are balanced in such a way that no net ionic flow is present

across the membrane. The resting state is a polarized state: there are more negative ions inside

and more positive ions outside the neuron, or in other words the inside of the neuron is more

negative than the extracellular fluid. For a neuron at rest, the electrical potential across the

membrane, known as the resting membrane potential, Vrest, has a typical value of −70 mV.

The changes in the membrane potential are mediated by the flow of sodium Na+ and potassium

K+ ions, between the intra- and extra- cellular space. Most of the time, the membrane potential

has a negative value around its resting value.

A description of the complex biophysical mechanism underlying neural communication is given

in the next subsection.

2.1.2 Mechanism of neural communication

One important neural communication mechanism, which will be considered here, consists of

three complementary processes: synaptic transmission between neurons, electrical conduction

and integration along the neuron membrane and action potential generation in the output region

of the neuron.

Synaptic transmission is a complex electro-chemical process that takes place at the synapse.

The electrical signal from the pre-synaptic neuron is transformed into a chemical signal that is

transmitted through de extracellular space to the post-synaptic neuron where it is transformed

back into an electrical signal. A schematic representation of synaptic transmission is presented

in Figure 2.2.

The receptors of the post-synaptic neuron are directly or indirectly (using intracellular second

messengers) coupled to ligand-gated membrane ion channels, which are induced to open in re-
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2.1 Biological neurons

Figure 2.2: Schematic representation of the process underlying synaptic transmission. The elec-
trical impulse reaching the axon terminal of the pre-synaptic neuron causes voltage-
sensitive calcium channels to open. The calcium ions trigger the release of neu-
rotransmitters in the synaptic cleft, which bind to the corresponding receptors of
the post-synaptic neuron and induce particular ion channels to open. For exam-
ple: AMPA receptors are Na+ channels; NMDA receptors are Ca2+ channels and
GABAA receptors are Cl− channels. The resulting ion flow induces specific electrical
changes in the post-synaptic neuron.

sponse to the neurotransmitter binding process. This is equivalent to a change in the membrane

conductance of the post-synaptic site, called synaptic conductance , that depends on the

post-synaptic receptor properties. Different receptors induce different response types: AMPA

and GABAA receptors mediate fast synaptic transmissions, NMDA receptors mediate a slower

synaptic transmission, while GABAB receptors mediate a slow and long lasting synaptic trans-

mission. The NMDA receptors are in addition voltage dependent: they can only be activated

if a sufficient level of depolarization is present (which removes the Mg2+ ions blocking them).

Thus NMDA receptors act as coincidence detectors of pre- and post-synaptic activity, which

makes them possible candidates for the biochemical implementation of the Hebbian learning

mechanism.

Channel opening induces a small ion flow into the post-synaptic neuron, which generates a

transient and local small change in the electrical potential across the membrane – known as

post-synaptic potential3.

Depending on the sign of the electrical change, two types of stimulation or input are defined:

• one that depolarizes the membrane potential, i.e. the voltage inside the cell becomes more

close to the one outside, denoted as excitatory, and

• one that hyperpolarizes the membrane potential, i.e. the voltage inside the cell becomes

even more negative than the voltage outside, denoted as inhibitory.

The neurotransmitters, their corresponding receptors and thus the synapse type are also either

inhibitory or excitatory, depending on the type of stimulation that they induce. Conform to

Dale’s principle (Dale, 1935), the synaptic connections made by a pre-synaptic neuron to other

3sometimes referred to as graded potential because it represents a small change in the membrane potential
that degrades with distance and in time
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neurons are either all excitatory or all inhibitory and thus a neuron can be also denoted as

excitatory or inhibitory. The pyramidal neurons are believed to be excitatory, acting through

the excitatory glutamate neurotransmitter. Most interneurons are believed to be inhibitory,

acting through the inhibitory GABA neurotransmitter. They induce excitatory post-synaptic

potentials (EPSP) and inhibitory post-synaptic potentials (IPSP), respectively.

The size of the induced post-synaptic current depends on the deviation of the post-synaptic

membrane potential from the reversal potential of the corresponding ionic channels. The re-

versal potential is defined as the potential for which the sign of the induced synaptic current

reverses and is given by the Nernst potential of the ion channels. The reversal potential depends

on the synapse type: for excitatory synapses the reversal potential is much larger than the

resting potential, with a typical value of VE = 0 mV, and for inhibitory synapses the reversal

potential is close to the resting potential, with a typical value of VI = −70 mV (Connors et al.,

1988; McCormick, 1989). The stimulation, either excitatory or inhibitory, drives the membrane

potential towards the corresponding reversal potential. In conclusion, the induced synaptic cur-

rent is strong for membrane potentials far away from the corresponding reversal potential and

decreases as membrane potential approaches the reversal potential. If the membrane potential

is approximatively equal to the reversal potential of a synapse, an inhibitory input has no direct

effect on the membrane potential but it affects the depolarization caused by other excitatory

inputs. This effect is called ’shunting inhibition’ because it effectively shunts the inputs received

from other excitatory synapses.

The process of electrical conduction and integration takes place through passive ion diffu-

sion inside the neuron. The induced post-synaptic potentials are propagated along the dendrites

and the cell body in a passive way, with decreasing strength over distance and time. Locally,

the tendency of the membrane potential after stimulation is to slowly decay to its resting value

due to leakage currents flowing through the membrane. The post-synaptic potentials induced

at different locations and times are integrated over the cell body using spatial and temporal

summation, respectively.

Action potential generation is conditioned by the depolarization level of the membrane

potential at a special region of the cell body connecting the axon, named axon hillock. When

the accumulated electrical potential exceeds a certain threshold value, called excitation or

spiking threshold, a brief voltage pulse known as action potential, impulse or spike is

generated. For cortical neurons, the excitation threshold Vthr has a typical value of −50 mV.

Excitatory inputs drive the membrane potential towards the spiking threshold, thus making

the neuron more likely to fire. Inhibitory inputs drive the membrane potential away from the

spiking threshold, thus making the neuron less likely to fire. Cortical excitatory post-synaptic

potentials are usually around 0.2 mV, thus more than 100 excitatory inputs have to arrive in a

very short time interval, for a spike to be initiated.

The common features of an action potential are the fast depolarization of the membrane above

0 mV, generated by a fast influx of sodium ions, followed by a slightly slower re-polarization of

the membrane generated by a slower efflux of potassium ions. Thus for a brief period of time,

about 1 ms, the membrane potential suddenly reverses its electrical potential. Afterwards,
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2.1 Biological neurons

the membrane repolarizes towards a slightly hyperpolarized state characterized by the reset

membrane potential , whose typical value for cortical neurons is Vreset = −75 mV. During the

hyperpolarization period, the sodium channels are inactivated. This inhibits the generation of

another action potential for a short time interval called refractory period and ensures that

the action potentials travel in only one direction. The refractory period limits the maximum

frequency with which real neurons fire.

Due to the special configuration and structure of the axon, the action potential propagates fast,

with constant speed and amplitude, away from the cell body in all its axonal branches. Along

the myelinated parts of the axon the impulse is propagated using cable properties, in a similar

way how electrical current travels along insulated cables. This type of conduction is fast and

efficient, using a small amount of energy, but the strength of the impulse decays in time. The

nodes of Ranvier are the places where the action potential is regenerated by permitting ion

exchange. Here, the signal regains its initial strength conditioned that it remained above the

excitation threshold. This alternating way of conducting the impulses along the axon is called

saltatory conduction. Because the action potential is generated only in the moment when the

membrane potential exceeds the excitation threshold and it maintains a constant amplitude

along the axon, it is said to obey an all-or-none rule (Adrian, 1914).

The passive conduction of the electrical potentials in the dendrites and the cell body, character-

ized by slow propagation with decaying strength, is only effective for communication on short

distances. In contrast, the active conduction along the axon, characterized by fast and efficient

propagation at constant strength, is effective for communication on long distances.

Important to note here is that across all types of neurons, action potentials have a generally

stereotyped shape with a typical duration of the order of one millisecond. Thus, it is reasonable

to assume that their actual shape does not contain any information, and that neuron activity can

be fully characterized by their time of generation. This implies that the information sent from

one neuron to another must be encoded in the timing or the rate of the transmitted impulses.

Different encoding strategies will be discussed in chapter 3.1.

In-vivo single cell recordings show that for real neurons spikes usually occur at irregular inter-

vals and are easily separated one from another. The sequence of spikes emitted by a neuron,

i.e. its output, is referred to as spike train and is usually characterized through its spiking

rate or inter-spike intervals. The spiking rate is usually estimated by averaging over small

time intervals and over many instances, i.e. many recordings of the same neuron under the

same conditions of stimulation. All these important findings on the structure and functional-

ity of biological neurons that were described in this section, will be used to develop different

mathematical models of neurons, from very simple to more complex, as illustrated in the next

section.
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2.2 Model neurons

A prerequisite of understanding the neurodynamical mechanisms underlying brain function is

to construct neuron models extracting the essence from the complex structure and behavior of

real neurons. Their level of description should be accurate enough to allow relevant mechanisms

at the physiological level to be properly taken into account. Also, their description should be

simple and effective, allowing the construction of network models with a large number of neurons

and synaptic connections.

As seen in the previous section, the activity of biological neurons is characterized by the emission

of discrete electrical impulses, i.e. spikes, which are considered to be the elementary units of

signal transmission in the nervous system. Different modeling strategies describe the neuronal

activity in terms of:

• a continuous variable representing the average activation rate: rate models;

• a series of discrete impulses representing the spike train: spiking models;

• or more detailed, a continuous variable representing the entire time evolution of the mem-

brane potential: conductance-based models.

Simple models describe the synapses as simple current sources, while complex models include

nonlinear synaptic dynamics. Section 2.2.1 captures the tradeoff between accuracy and efficiency

in neuronal modeling. Section 2.2.2 introduces the leaky integrator rate model. A simple and

frequently used spiking neuron model, the leaky integrate-and-fire model, is presented in Section

2.2.3. Its extension capturing more complex synaptic dynamics, presented in Section 2.2.4,

represents the biological-inspired neuron model used further in this work.

2.2.1 Complex versus simple neuron models

Pioneers in the study of neural mechanisms, Hodgkin and Huxley analyzed the action po-

tential generation mechanism for the giant axon of the squid (Hodgkin & Huxley, 1952). They

developed a complex mathematical model describing the voltage and time dependence of the

ionic axonal permeabilities, using curve fitting from experimental data. The voltage depen-

dent conductances were later explained by the voltage-dependent ion channels embedded in the

neuron membrane (as described in the previous section). Their detailed model, consisting of a

four-dimensional set of coupled nonlinear partial differential equations, generates action poten-

tials extremely accurate in shape and time course as compared with the experimental single-cell

recordings.

Following the formalism introduced by Hodgkin and Huxley, the conductance-based neuron

models describe through membrane conductances the collective behavior of the ion channels

of the same type from a region of the cell membrane. The active or nonlinear conductances

accounting for channel’s dependence on the membrane potential or the presence of a specific

chemical particle, enable a more accurate modeling of the specific phenomena observed in ex-

perimental measurements. The conductance-based neuron models are complex mathematical
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models using detailed descriptions of the biophysical mechanisms for synaptic integration and

action potential generation. They are continuous-time models that capture the detailed time

course of the membrane potential and are able to reproduce with good accuracy the neuro-

physiological in-vivo single-cell measurements but are difficult to analyze analytically and also

computational expensive to be used in large interconnected neural networks.

An important aspect to be taken into account is that real neurons can show substantial dif-

ferences in the membrane potential across their cell surface. A good modeling strategy would

be to divide the neuron into a number of inter-connected simple compartments, characterized

by membrane potentials with small spatial variations, and model each compartment separately.

Multi-compartment models are more realistic but also more complex and difficult to analyze

and use in large neural networks. Single compartment models, equivalent to point-like neurons,

completely ignore the structure of the dendritic tree and consider that the membrane potential

is uniform across the entire cell surface. Their internal state can be completely characterized by

a single variable representing the average membrane potential across the entire cell.

Considering the behavior of the biological neuron’s membrane potential, two distinct regimes can

be easily separated: the slow varying subthreshold regime and the brief and fast varying spike

generation regime. Most of the time a neuron finds itself in the subthreshold regime. Here,

the membrane potential is continuously and slowly changing by the integration of the incoming

post-synaptic potentials. The brief spike generation regime is reached when the membrane

potential exceeds the excitability threshold and is characterized by fast stereotyped changes of

the membrane potential. It is followed by the short refractory period in which another action

potential can not be generated. Neuron models can be considerably simplified without major

functionality loss by considering only the time when an impulse is generated without modeling

its actual time course. The impulses are reduced to only a point in time, expressing the spike

or firing time, which is defined as the moment when the membrane potential crosses the spiking

threshold. These models are called integrate-and-fire neuron models and their activity is

fully characterized by the sequence of firing times, called the spike train.

An even more drastic simplification ignores also the exact timing of the impulses and describes

the neuron activity only through its average firing or spiking rate. These reduced models,

called rate neuron models, represent a good approximation in the case of a large number

of uncorrelated pre-synaptic spikes. Because of their simplicity, they make possible the steady

state analysis of large network models (as shown in chapter 5).
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2.2.2 Leaky integrator rate model

Rate neuron models represent a standard tool in neural network theory that describe the activity

of the neurons in terms of their activation or firing rate. The activation of a neuron, denoted by

x(t), depends on its total afferent input, Itot(t), that is given by the activation of the connecting

neurons. This dependence, describing the input-output characteristic of the neuron, is expressed

through the activation or transfer function: x(t) = f(Itot(t)). The shape of the transfer function

gives the characteristics of the performed computation. For linear transfer functions, the neuron

model can compute only linear functions but it has the advantage that its dynamics can be

computed analytically. Introducing nonlinearities increases the computational power of the

model. A piecewise linear transfer function considers that the activation is zero below some

threshold level of the afferent input and linear above it, accounting for the activation threshold

of neural excitability. A sigmoidal transfer function accounts for the saturation of firing rates

for high inputs, reflecting the refractoriness property of neurons.

The leaky (or forgetful) integrator model accounts for the transient nature of the inputs by

introducing leakage currents, which imply temporal decays in the activity level. The activity

of neuron i in the network is represented by the variable xi(t) whose dynamics follows the

exponential decay model:

τ
dxi(t)

dt
= −xi(t) + f(Ii,tot) (2.1)

where τ is the integration time constant that characterizes the response time of the neuron. A

change in the synaptic input induces an asymptotical change in the activity level of the neuron

towards the fixed point xi,0 = f(Ii,tot).

The total synaptic input driving neuron i integrates by spatial summation all afferent stimu-

lations coming from other neurons in the network and possibly from other sources outside the

model network. It can be written as a weighted linear sum of the individual activations:

Ii,tot = Ii,ext +
∑

j

wijxj(t) (2.2)

where wijxj(t) denotes the amount of input contributed by neuron j and Ii,ext denotes input

from other external sources. wij represents the strength or efficacy of the connection from

neuron j to neuron i.

For some models, the activation x(t) and input I(t) are considered to represent the firing rate and

the afferent synaptic current, respectively. In this case f() is referred to as the frequency-current

(f − I) curve.
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2.2.3 Leaky integrate-and-fire neuron model

The integrate-and-fire (IF) models, proposed for the first time in 1907 by Lapicque (Lapicque,

1907), represent a class of reduced spiking neuron models characterized by a simple level of

description of both integration (subthreshold) and spiking regime, which makes them compu-

tationally very efficient. They maintain the essential features of neuronal excitability like the

all-or-none behavior, synaptic input integration and refractoriness, but leave out the detailed

biophysical descriptions of the synaptic channels and the generation of action potentials. The

dynamics of the membrane potential is modeled only for the subthreshold regime. The firing

regime is described by simple rules that can include also the refractoriness property.

The standard leaky integrate-and-fire (LIF) neuron model is a single-compartment model

that accounts for the membrane leakage currents through a passive (constant) conductance and

omits all other active synaptic conductances, which makes it easy to implement and simulate.

It simply translates the afferent spikes to currents of constant amplitude that are temporally

summed into a single variable. A fixed threshold is used for the generation of the discrete

identical pulses. Due to its simplicity and efficiency, the LIF neuron has proved to be a practical

model for studying the dynamics of neural networks with a large number of interconnected

neurons. A detailed description of the model can be found in Gerstner & Kistler (2002).

The equivalent electrical circuit of the LIF neuron model, presented in Figure 2.3, consists of a

capacitor, Cm, expressing the total membrane capacitance of the cell, in parallel with a resistor,

RL, expressing the total membrane leak resistance of the cell. The voltage across the capacitor

corresponds to the membrane potential of the LIF neuron and is denoted through Vm. The total

afferent input to the model neuron is modeled through a current source, Itot, that integrates

the individual synaptic currents generated by the activations of the pre-synaptic neurons. The

RC circuit is characterized by the time constant τm = RLCm, referred to as the membrane time

constant , which determines the response time of the neuron to the afferent stimulations. The

membrane leak conductance gL = 1/RL characterizes the cellular mechanisms that restore the

equilibrium state of the neuron after stimulation and enables the model to take into account the

temporal relationships in the inputs.

In absence of stimulation, Itot = 0 corresponding to a neuron at rest, the voltage across the

capacitor is given by the constant voltage source VL, the leakage reversal potential, which

accounts for the polarized equilibrium or resting state of real neurons. Excitatory, Itot > 0, or

inhibitory, Itot < 0, stimulations drive away the membrane potential from its resting value VL.

This results in a potential difference across the resistor, which gives rise to the membrane leakage

current, IL(t) = gL(Vm(t) − VL), opposing the voltage change. The membrane potential is thus

asymptotically restored to its resting value, with time constant τm.

Using simple voltage-current relationships from electrical circuit theory, the subthreshold

membrane potential dynamics of the LIF neuron model can be described by the follow-

ing integrator equation (Knight, 1972; Ricciardi, 1977; Tuckwell, 1988):

τm
dVm(t)

dt
= −Vm(t) + VL + RLItot(t) (2.3)
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Figure 2.3: Equivalent electrical circuit of the leaky integrate-and-fire neuron model for the sub-
threshold regime. The parallel RLCm circuit models the passive electrical properties
of real neurons. The current source Itot accounts for the total synaptic input, and
the voltage across the capacitor Vm represents the membrane potential of the model
neuron. For details see text.

where Vm(t) is the instantaneous value of the membrane potential that completely describes the

internal state of the integrate-and-fire neuron. For the LIF model, the time evolution of the

subthreshold membrane potential is described as a simple one dimensional continuous dynamical

system.

The LIF model introduces a nonlinearity at the spike generation regime: when Vm(t) is depolar-

ized above a chosen firing threshold, θ, a spike is generated and the membrane potential is reset

to the reset potential Vreset. The spikes are described as pulses of infinitely large amplitude and

infinitely short duration through the Dirac delta function δ(t). For a time period corresponding

to the absolute refractory period τref the neuron is prevented to emit another spike by keeping

Vm(t) = Vreset. Accordingly, the firing regime is specified by the rule:

if Vm(tk) = θ thengenerate δ(t − t
k) and set Vm(t) = Vreset for t ∈ [tk+, tk + τref ] (2.4)

The output of the LIF neuron is given by the ordered sequence of firing times, i.e. the spike

train, and is modeled as a series of Dirac delta functions:
∑

k

δ(t − t
k) with Vm(tk) = θ.

For constant stimulation, Itot(t) = I, the time course of the membrane potential starting from

the initial value Vm(t0) at t = t0, is given by:

Vm(t) = (VL +RLI) + (Vm(t0) − (VL +RLI)) e
−

t−t0
τm .

The tendency of the system is to return from the initial state to an equilibrium state character-

ized by the asymptotically stable fixed point Vm(t∞) = VL +RLI.

For an input spike train, defined as a discrete series of Dirac delta functions, the total afferent

current to the cell can be written as:

Itot(t) =
N
∑

j=1

wj

∑

k

δ(t− tkj ) (2.5)
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Figure 2.4: Time course of the membrane potential of a standard LIF neuron stimulated by a
stochastic current defined as a Poisson-distributed train of Dirac delta impulses with
rate N ·ν. It was assumed that the neuron is driven by N = 103 inputs, of which 80%
are excitatory with a mean activation rate of νE = 3 Hz and 20% are inhibitory with
a mean activation rate of νI = 9 Hz, and using the following parameters: VL = −70
mV, τm = 20 ms, Jj = +1 for excitatory inputs and −1 for inhibitory inputs. Once
the threshold θ = −50 mV is reached, the neuron emits a spike and stays for the
refractory period τref = 2 ms at the reset potential Vreset = −75 mV.

where N is the total number of synaptic connections, wj represents the efficacy of the synaptic

coupling (connection strength) with pre-synaptic neuron j. The sum over k runs over all spikes

arriving at at a given site j, characterized by their arrival times tkj .

The time course of the membrane potential is determined by solving the ordinary differential

equation 2.3 with synaptic input given by 2.5:

Vm(t) = VL + (Vm(t0) − VL) e−(t−t0)/τm +
∑

j

Jj

∑

k

e−(t−tk
j )/τmH(t− tkj ) (2.6)

where H(t) is the Heaviside step function, H(t − tkj ) = 1 for t > tkj and 0 otherwise. Each

input spike causes an instantaneous jump of size Jj =
wj

Cm
at time tkj in the membrane potential

(neuron model with instantaneous synapses) that will thereafter decay exponentially with time

constant τm. For a large time constant as compared to the average inter-spike interval, the

decay of the membrane potential is negligible and the output of the LIF neuron is equivalent

to a temporal linear integration of the inputs. For a smaller time constant as the inter-spike

interval, the leak becomes significant. Hence the excitatory input has to be strong enough to

initiate a spike, evidencing the correlations in the input spike trains.

An example of the time course of the membrane potential as described by equation 2.6, consid-

ering stochastic excitatory and inhibitory input, is shown in Figure 2.4. For stochastic inputs,
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the evolution of the membrane potential is nondeterministic. In order to analyze its evolution,

the standard trick is to approximate the stochastic input with a continuous diffusion process

(Ricciardi, 1977; Tuckwell, 1988). This reduces the spiking model to a rate model describing

the average firing rate as a function of the mean and variance of the total synaptic input. For

more details see section 5.1 that formulates the Mean-field analysis for LIF model neurons.

Ignoring the synaptic current dynamics of real neurons and approximating the synapses as

simple current sources, the standard LIF neuron model can account only for linear synaptic

interactions. Also, the model ignores the characteristic reversal potentials of different synapse

types. Moreover, because of the saturation effects at the synaptic sites, the total synaptic input

coming to a real neuron is not just a linear sum of the independent contributions. All this make

the standard LIF neuron model unable to capture the rich spiking dynamics of real cortical

neurons.

The standard LIF neuron model represents a framework for modeling the complex behavior

of real neurons. It can be extended to include nonlinear synaptic dynamics, to account for

different types of synaptic inputs and to include saturation effects at the synaptic sites. Such

an extended LIF neuron model using more realistic synaptic dynamics and allowing the use of

realistic biophysical constants (like synaptic conductances and delays) is presented in the next

section.
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2.2.4 Leaky integrate-and-fire neuron with nonlinear synaptic dynamics

The leaky integrate-and-fire with nonlinear synaptic dynamics (LIF-NS) neuron model

represents a trade-off between the detailed conductance-based models able to accurately repro-

duce the complex dynamics of neural activity and the computationally efficient LIF models.

Recently proposed in Brunel & Wang (2001); Wang (2002) for cortical models of selective work-

ing memory, the LIF-NS model extends the standard LIF model presented in the previous section

to include nonlinear synaptic current dynamics following a biologically inspired description. The

synapses are regarded as membrane ion channels with specific opening dynamics and the affer-

ent inputs are modeled as dynamical changes in the synaptic conductance. The model takes

also into account the dependence of the synaptic currents on the reversal potentials for both

excitatory and inhibitory inputs. Being characterized by biophysical time constants, latencies

and conductances, this description captures more realistic features of neuronal activity as the

simple LIF neuron model and allows a better comparison with the dynamics of biological cortical

neurons.

The adopted synaptic model considers a mean-field approach over the contributions of all synap-

tic ion channels of the same type, i.e. regulated by a specific receptor type R, that are present

at a given synaptic site j, assuming that their number is sufficiently large. The synaptic ion

channels are assumed to exist in either an open (conductive) state or in a closed state. Their av-

erage behavior is described through the gating variable sR
j (t), expressing the fraction of opened

synaptic ion channels of type R at site j.

The LIF-NS neuron model takes into account three types of synaptic input with different tem-

poral characteristics: excitatory input with very fast dynamics mediated by AMPA receptors,

excitatory input with slow dynamics mediated by NMDA receptors and inhibitory input with

fast dynamics mediated by GABA receptors. For a review of different synaptic current descrip-

tions see Destexhe et al. (1998).

In the case of AMPA and GABA receptors, the responses to the incoming spikes are characterized

by very fast activations and fast deactivations. The opening of the channels following a pre-

synaptic spike is smaller than 1 ms and can be considered instantaneous. The general behavior

of such fast synaptic transmissions can be described through a steep increase (instantaneous

jump) of the gating variables with every afferent spike, followed by exponential decay with time

constant τR
decay (expressing the time constant of the conductance change at the synaptic site).

This can be dynamically modeled by a first order differential equation (Destexhe et al., 1998):

dsR
j (t)

dt
= −

sR
j (t)

τR
decay

+
∑

k

δ(t− tkj ) (2.7)

where R is AMPA or GABA. The sum over k runs over all spikes, formulated as Dirac delta func-

tions δ(t), from pre-synaptic neuron j arriving at times tkj . The synaptic decay time constants

are set to biophysical realistic values: 2 ms for AMPA (Hestrin et al., 1990; Spruston et al.,

1995) and 10 ms for GABA (Salin & Prince, 1996; Xiang et al., 1998). This formulation ne-

glects the saturation of the AMPA and GABA gating variables and is justified only for low
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a) fast synaptic dynamics b) slow synaptic dynamics

Figure 2.5: Time evolution of the gating variables sj(t) for AMPA, GABA (a) and NMDA (b)
receptors in response to one afferent spike at t = 0 considering sj(0) = 0.

pre-synaptic firing rates, as in the case of cortical neurons whose mean activation is around the

spontaneous firing rate.

In the case of NMDA receptors, the responses are characterized by slower activations and de-
activations. The general behavior of the slower synaptic transmission is dynamically modeled
by a second order kinetics including both the rise and decay times of the gating variable (Hille,
2001):

dsNMDA
j (t)

dt
= −

sNMDA
j (t)

τNMDA
decay

+ αxNMDA
j (t)(1 − sNMDA

j (t)) (2.8)

dxNMDA
j (t)

dt
= −

xNMDA
j (t)

τNMDA
rise

+
∑

k

δ(t− tkj ) (2.9)

where the synaptic rise and decay time constants are set to biophysical realistic values: τNMDA
rise =

2 ms and τNMDA
decay = 100 ms (Hestrin et al., 1990; Spruston et al., 1995). The variable α = 0.5

ms−1 controls the saturation properties of NMDA receptor channels at high pre-synaptic firing

frequencies, and xNMDA(t) is an intermediate gating variable.

The time course of the gating variables in the case of one pre-synaptic spike arriving at time t = 0

is shown in figure 2.5.a for the fast synaptic dynamics of AMPA and GABA receptors, and in

figure 2.5.b for the slow synaptic dynamics of NMDA receptors. This simple and computationally

efficient description of the synaptic dynamics, with parameters based on fits to experimental

data, captures the essential properties of real synaptic currents. An overview of the synaptic

kinetic models is presented in Destexhe et al. (1994).

The effective post-synaptic current mediated by a specific receptor type R at the synaptic site

connecting pre-synaptic neuron j, can be expressed, assuming a linear current-voltage relation-

ship, in the following general form:

IR
j (t) = gR

maxs
R
j (t)

(

Vm(t) − V R
reversal

)

(2.10)

where gR
maxs

R
j (t) expresses the time-varying total synaptic conductance at site j mediated by
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receptor R. gR
max represents the maximum synaptic conductance mediated by the receptor

type R and can be thought as channel density multiplied by the maximum conductance of a

single channel. The strength of the effective current also depends on the difference between

the actual value of the membrane potential and the corresponding reversal potential for that

synapse type, V R
reversal. Similar to real neuron behavior, when the membrane potential is close

to the corresponding reversal potential, the incoming stimulations have almost no effect.

The nonlinear dependence of the NMDA post-synaptic currents on the neuron’s depolarization,

due to the [Mg2+] blockade, can be expressed through an additional gating factor to the effective

current in equation 2.10 (Jahr & Stevens, 1990; Hille, 2001):

fNMDA

(

Vm(t),
[

Mg2+]

o

)

=
1

1 + γ exp(−β Vm(t))
(2.11)

where γ = [Mg2+]o/3.57, β = 0.062 and the extracellular magnesium concentration [Mg2+]o = 1

mM. The constants were determined from single channels studies.

The individual receptor mediated contributions to the synaptic current induced by a pre-synaptic
neuron j can be written as:

IAMPA
j (t) =gAMPA

max · sAMPA
j (t) · (Vm(t) − VE) (2.12)

INMDA
j (t) =gNMDA

max · fNMDA

(

Vm(t),
[

Mg2+
]

o

)

· sNMDA
j (t) · (Vm(t) − VE) (2.13)

IGABA
j (t) =gGABA

max · sGABA
j (t) · (Vm(t) − VI) (2.14)

where VE = 0 mV is the reversal potential for excitatory synapses (VE = V AMPA
reversal = V NMDA

reversal);

VI = −70 mV is the reversal potential for inhibitory synapses (VI = V GABA
reversal); s

AMPA
j (t) and

sGABA
j (t) are given by the equation 2.7 and sNMDA

j (t) is given by the equations 2.8 and 2.9.

The total synaptic input to a cell is received through recurrent lateral connections coming

from neighboring cells located in the same module (area) and external connections coming

from distant cells located in other brain areas. The recurrent excitatory post-synaptic currents

(EPSCs) are assumed to be mediated by both AMPA and NMDA receptors and the external

EPSCs are assumed to be mediated only by AMPA receptors. The inhibitory post-synaptic

currents (IPSCs) to both excitatory and inhibitory neurons are assumed to be mediated by

GABA receptors (see for example Sheperd (1998)).

The total synaptic current, Itot is calculated as the sum over all synaptic connections and of all

receptor-mediated components:

Itot(t) =

NE
∑

j=1

wj

(

IAMPA
j (t) + INMDA

j (t)
)

+

NI
∑

j=1

wjI
GABA
j (t) +

Next
∑

j=1

IAMPA
j (t) (2.15)

whereNE andNI are the number of excitatory and inhibitory, respectively, recurrent connections

with synaptic strengths wj specified by the network architecture and Next is the number of

external excitatory connections.

For both excitatory and inhibitory LIF-NS model neurons, the subthreshold membrane potential

dynamics is described by the integrator equation 2.3, where the total synaptic current Itot(t)

is given by equation 2.15. The same rules describing the spiking regime are used, as for the
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2 Network processing units

Figure 2.6: Time course of the membrane potential of an excitatory LIF neuron with nonlinear
synaptic dynamics stimulated by a stochastic input defined as a Poisson-distributed
train of Dirac delta impulses coming from NE = 800 excitatory neurons with a mean
firing rate νE = 3 Hz and NI = 200 inhibitory neurons with a mean firing rate νI = 9
Hz. For more details see the text.

standard LIF neuron (equation 2.4).

For the simulations performed in this work, the biologically inspired model parameters were

calibrated based on experimental data from cortical excitatory pyramidal cells and inhibitory

interneurons (McCornick et al., 1985; Troyer & Miller, 1997a): resting potential VL = −70 mV,

firing threshold θ = −50 mV, reset potential Vreset = −55 mV4, membrane capacitance Cm = 0.5

nF for excitatory cells and 0.2 nF for inhibitory cells, membrane leak conductance gL = 25 nS

for excitatory cells and 20 nS for inhibitory cells, refractory period τref = 2 ms for excitatory

cells and 1 ms for inhibitory cells, membrane time constant τm = 20 ms for excitatory cells and

10 ms for inhibitory cells.

The values for the maximum synaptic conductances can be calibrated such that the spontaneous

spiking rates for the excitatory and inhibitory neurons in the model network have the typical

values of 3 Hz and 9 Hz, respectively, as observed in the cerebral cortex (Wilson et al., 1994;

Koch & Fuster, 1989). In the case of a fully connected network consisting of 800 excitatory and

200 inhibitory neurons, with each neuron receiving 800 external excitatory inputs modeled as

independent Poisson processes with an average rate of 3 Hz, the values of the maximum synaptic

conductances were calculated by Brunel & Wang (2001): gAMPA,ext
max = 2.08 nS, gAMPA

max = 0.104

nS, gNMDA
max = 0.327 nS and gGABA

max = 1.25 nS for excitatory neurons; gAMPA,ext
max = 1.62 nS,

gAMPA
max = 0.081 nS, gNMDA

max = 0.258 nS and gGABA
max = 0.973 nS for inhibitory neurons.

4In order to explain the high gain of the biological f − I curves of cortical spiking cells and thus explain the
high sensitivity of the responses to small changes in the input, Troyer and Miller adjusted the reset potential
closer to the threshold potential (i.e. 5 mV under the threshold), Troyer & Miller (1997b). Accordingly, for
the simulations performed in this work we use Vreset = −55 mV instead of −75 mV.
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2.2 Model neurons

An example of the membrane potential time course for an excitatory LIF-NS neuron receiving

a Poisson distributed stochastic input is shown in Figure 2.6. The synaptic current of the stan-

dard LIF model consists of instantaneous Dirac impulses, which give rise to discrete jumps in the

membrane potential (Figure 2.4). In contrast, the synaptic current of the LIF-NS model is char-

acterized by finite temporal variations giving rise to a continuous modulation of the membrane

potential (Figure 2.6). In comparison to the standard LIF neuron for which the membrane po-

tential exhibits large fluctuations between Vrest and θ (see Figure 2.4), the membrane potential

of the LIF-NS neuron exhibits small fluctuations close to the threshold θ (see Figure 2.6). For

balanced excitatory and inhibitory stochastic input, the trajectory of the membrane potential

is similar to that of a random walk. An extra excitatory input can move the mean of Vm(t) in

the vicinity of the threshold and the stochastic spike arrival can drive Vm(t) over the threshold

(firing is driven by the fluctuations in the membrane potential).

Through the detailed synaptic descriptions, the LIF-NS model introduces a nonlinear integration

of the afferent impulses. This synaptic filtering gives rise to new dynamical response properties of

the LIF neurons, achieving temporal dynamics similar to that of more complex neuron models

(Softky & Koch, 1993). This model was also shown to allow a good representation of high

frequency neuronal signals (Brunel et al., 2001; Fourcaud & Brunel, 2002).

Assuming to capture a proper level of description of neuronal activity, the LIF-NS neurons

represent the building blocks of the biologically-inspired recurrent spiking networks presented

in the next chapter.
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3 Computational model of cortical networks

In order to properly describe the dynamic aspects of the neural cognitive processes, a coupled

attractor network view is taken into account: Different cortical modules with specific function-

alities are modeled as recurrent networks of spiking neurons. Their local attractor dynamics are

linked by inter-module connections, corresponding to the long-range axonal fibers in the cortex,

in such a way to form a global coherent representation of information. This approach is assumed

to model in a conceptual way the neo-cortical operation. The resulting powerful computational

networks incorporating the LIF neuron models presented in the previous chapter, exhibit a

rich spiking dynamics similar to that of the neurophysiological cortical data (Sima & Orponen,

2003). Consequently, the simulated dynamical processes, that putatively underlie the studied

cognitive processes, can be quantitatively contrasted with the neurophysiological experimental

measurements.

The first part of this chapter, section 3.1, describes possible neural encoding modalities. Section

3.2 introduces the general structure and properties of the adopted recurrent network model

that follows a biologically inspired description. The structure of the recurrent networks follows

the general framework of the Biased-Competition and Cooperation assuming that model units

engage in competitive and cooperative interactions with each other in order to represent their

input in a context-dependent way, as described in section 3.3.

3.1 Neural encoding strategies

The scientific community still debates the actual mode in which information is processed and

stored throughout the brain, one fundamental unsolved issue in neuroscience being the neural

encoding mechanism. As stated in section 2.1.2, it seems reasonable to assume that information

is transmitted from one neuron to the other in the form of identical discrete impulses emitted

at irregular time intervals (the spike train), but how exactly the information is encoded in these

spike trains is still not understood.

Theories, at the basis of neural temporal codes, assume that the precise timing of impulses

plays an important role and that the output spike reflects the exact coincidence of several input

spikes (neurons are described as coincidence detectors) (Rieke et al., 1997). These theories

are supported by different experiments – showing that individual in-vitro neurons produce the

same spike train when injected with the same noisy looking input; finding repeating spatio-

temporal patterns in a neuron’s spike train; or revealing precise temporal correlations of different

neurons firing patterns (Abeles, 1994). Experiments on flies (Bialek et al., 1991) show that time

dependent stimuli are encoded in the firing times of visual neurons. Temporal codes, where
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3 Computational model of cortical networks

each single spike is thought to carry reliable and precisely timed information, require a detailed

description of the neuronal dynamics. They were able to explain the fast transmission of sensory

or motor information in small neural systems with few synaptic connections.

In-vivo recordings show that, as opposed to sensory and motor neurons, cortical neurons have a

very irregular behavior generating highly stochastic spike trains for both spontaneous low activ-

ity and stimulus evoked high activity, that is close to a Poisson point process (Softky & Koch,

1993). The inter-spike interval (ISI) distributions are roughly exponential, with a coefficient of

variation close to 1. It is not known if this variability is just noise or is actually given by an

efficient encoding technique.

Given the noisy cortical environment, the theories at the basis of neural rate codes assume

that some sort of average measure of the spike trains is the modality by which neurons commu-

nicate and that the actual timing of individual spikes is stochastic and gives little information

(Rolls et al., 2004; Treves et al., 1999). Cortical neurons are reported to fire irregularly in-vivo

although able of regularly firing in-vitro. This suggests that the irregularity comes from synaptic

sources interacting with deterministic membrane properties rather than from any intrinsically

stochastic spiking mechanism. The spike trains from the same cortical neuron but different

trials of the same experimental condition express also high variability, which implies that the

cortical processes might not be deterministic. It is assumed that the combined large number of

inputs to a cortical neuron results in a fluctuating change of its membrane potential that will

stochastically cross the spiking threshold and thus generate an irregular behavior. Rate models

are better suited for cortical circuits where the impact of only one spike is relatively small –

given that cortical neurons have thousands pre-synaptic connections, many of which coming

from neighboring cells with similar receptive fields.

A first encoding modality, neuron rate coding , considers that the neuronal response can be

completely described by the average firing rate of single cells, calculated as the mean number of

spikes emitted over a small time interval. An event-related response of a single neuron can be

expressed by the time average of the traces collected by recording it for many times under the

same conditions of stimulation. Many studies showed simple stimuli features (like intensity) to

be correlated with the average spiking rate and not with the exact spiking time of the measured

sensory neurons (Hubel & Wiesel, 1959). The intuitive assumption that neurons use a rate code

for encoding the corresponding information, is subject to an ongoing debate (Rieke et al., 1997).

The problem with this simple code is that it can only express constant or slow varying stimuli.

Given a neuron’s typical time constant on the order of 15-20 ms and the multi-layered structure

of the brain, this type of rate coding cannot explain the short reaction times on the order of

only 30− 40 ms measured in behavioral experiments on animals, and the fast visual recognition

in humans on the order of a few hundreds of milliseconds (Thorpe et al., 1996). This problem

can be, however, overcome by using population rate coding (see below).

An important characteristic of the neural code is its efficient representation of the sensory world.

The important requirement of the neural communication mechanism – to allow fast reactions

to fast changes in the input – can be met by another encoding modality that takes into account

the structural features of cortical circuits. These consist of a large number of neurons organized
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3.2 Recurrent network of spiking neurons

into functional groups of neurons with similar properties, like the columns in visual cortex

(Hubel & Wiesel, 1962), populations of motor neurons (Kandel et al., 2000) or the modules

observed in ITC or PFC (Miyashita & Chang, 1988; Wilson et al., 1993). This leads to the

assumption that information could be extracted from the average activity of such assemblies of

neurons, and the new measuring techniques using large arrays of electrodes and amplifiers that

make possible the simultaneous recording in-vivo of many neighboring neurons, facilitate their

study.

Donald Hebb introduced in 1949 the concept of neural assembly as a modality of information

representation in the cortical structures, Hebb (1949) The average activity of the population

of neurons removes the details of individual spike trains, but emphasizes the common trend

of the neuronal assembly. Population rate coding is sustained by many studies showing

that the temporal variations of the average firing rate of a large population of neurons can

accurately express the fast temporal variations of the inputs on a time scale much smaller than

the integration time constant of single neurons (see for example Gerstner, 1995; Amit & Brunel,

1997a; Fusi & Mattia, 1999). Population rate coding represents a powerful tool for investigating

the function of large neural systems and will be used in this work to study the neural mechanisms

underlying high-level cognitive brain functions.

3.2 Recurrent network of spiking neurons

The correct operation of the nervous system relies on the coherent flow of information through

elaborate neural circuits whose structure and properties are important elements for understand-

ing the cortical mechanisms underlying brain function. At the macroscopic level, the neocortex

is hierarchically organized into spatially segregated regions with different functional roles and

is characterized by a distinct layered structure. For example, the occipital cortex is specialized

for vision and its different macroscopic subregions represent different stages in the processing

of visual information. Motivated by the modular architecture of the cortex, it is assumed that

small cortical areas with specific functionalities can be treated as recurrent networks, which are

interconnected to form complex computational systems able to solve elaborate tasks.

In this work, the model cortical areas are constructed as fully connected recurrent networks of

spiking neurons that incorporate biologically inspired cortical features (as earlier introduced in

Amit & Brunel, 1997b), which are coupled to each other by excitatory long-range connections.

Each module contains some 103 excitatory and inhibitory integrate-and-fire neurons that fire

spike trains with Poissonian statistics. A recurrent network consisting only of excitatory cells,

was shown to be very unstable to small fluctuations in the mean afferent input and thus unable to

reproduce the spontaneous firing rates of biological cortical circuits (Amit & Brunel, 1997b). By

introducing inhibitory cells, the mean of the stochastic afferent current to a cell is reduced while

its standard deviation is increased, and the network becomes able to develop stable attractors

at low spontaneous rates. The structure and parameters of the model recurrent network are

chosen in agreement to important neuroanatomical and neurophysiological cortical findings that

will be specified next.
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3 Computational model of cortical networks

Figure 3.1: Architecture of a cortical module consisting of NE excitatory neurons, organized into
n specific populations and one non-specific population, and NI inhibitory neurons
that form the inhibitory population. Recurrent EPSCs are mediated by AMPA and
NMDA receptors and IPSCs by GABA receptors. External EPSCs coming from
other cortical modules are assumed to be mediated only by AMPA receptors.

The cortical areas contain a large number of interconnected cells. About 80 % of cells are excita-

tory pyramidal neurons which communicate via the glutamate neurotransmitter. About 20 % of

cells are inhibitory interneurons which communicate via the GABA neurotransmitter (Abeles,

1991). A dominant cortical feature is the dense recurrent intra-areal and inter-areal connectivity,

cortical neurons receiving on the order of 103 afferent synaptic connections. Typical excitatory

pyramidal cells have both short-range collateral connections and long-range connections reach-

ing other remote cortical areas. Inhibitory interneurons are believed to have only short-range

connections which keeps their direct influence local. The external long-range connections are

assumed to be only of excitatory nature and make up half of the total excitatory inputs to a

cell (Braitenberg & Schütz, 1991).

The proposed recurrent network model for a cortical module consists of NE excitatory and NI

inhibitory model neurons, chosen in the proportion 80% and 20%, respectively, to be consistent

with the neurophysiological experimental data (Abeles, 1991). The single neuron dynamics is de-

scribed by the LIF-NS model capturing detailed synaptic current dynamics, that was presented

in section 2.2.4. The recurrent excitatory postsynaptic currents (EPSCs) are modeled to have

two components, mediated by AMPA (fast) and NMDA (slow) receptors. The inhibitory post-

synaptic currents (IPSCs) into both excitatory and inhibitory cells are mediated by GABAA

receptors. Aside the recurrent excitatory and inhibitory inputs, the model considers that all

cells receive, on average, the same number of external excitatory inputs, Next, originating from

outside the module. Next is chosen to make up half of the total excitatory input to a cell, i.e.

Next = NE for a fully connected network. The external EPSCs are assumed to be driven only

by AMPA receptors. The detailed description level of the LIF-NS synaptic currents allows the

use of realistic biophysical time constants, latencies and conductances, which permits realis-

tic time scales and spiking dynamics of the simulated neural activity, that can be afterwards

quantitatively contrasted with experimental neurophysiological cortical data.

Motivated by the concept of population coding, assuming that cortical neurons can be organized
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3.2 Recurrent network of spiking neurons

into groups with similar properties, the model recurrent network is structured into a discrete

non-overlapping set of populations defined as groups of excitatory or inhibitory spiking neurons

sharing the same inputs and connectivities. Previous studies showed that groups of co-activated

neurons form local attractors of the recurrent neural dynamics (Hopfield, 1982; Amit et al., 1994;

Amit & Brunel, 1997b). Attractor dynamics for biologically inspired networks of spiking neurons

were recently investigated by Amit & Brunel (1997a); Brunel & Wang (2001); Deco & Rolls

(2003). The model defines three general types of populations: the specific populations gather

excitatory neurons selectively encoding information associated to a specific behavioral function;

the non-specific population groups all other excitatory neurons present in the modeled cortical

area that are not involved in the specified behavioral function; and the inhibitory population

groups all local inhibitory neurons present in the modeled brain area, which helps to regulate

the overall activity in the network. The architecture of the proposed cortical module is depicted

in Figure 3.1.

A characteristic of the cortical system is its continuous activity. About 99% of the cortical neu-

rons are spontaneously active at a low rate of about 3 Hz. The rest 1% of neurons are active with

higher than spontaneous rates, typically some tens of Hz (Wilson et al., 1994; Koch & Fuster,

1989). This characteristic and the dense cortical connectivity suggest that each neuron is mostly

driven by a strong background current consisting of spontaneous or unrelated activity from the

same or other cortical areas. Few external connections carry specific or related inputs. These

inputs can be seen as small perturbations, on the order of a few percents, on top of the back-

ground current. It is assumed that the recurrent neural circuits amplify these small inputs in

a useful way to achieve a coherent processing of the behavioral relevant information. Another

important feature is the stochastic character of the cortical spike trains (as discussed in the

previous section).

For the proposed model, all neurons receive an external stochastic background input assumed

to originate in other, not explicitly modeled, areas. The background input is modeled as a Pois-

son process with constant rate. It is assumed that all Next external connections are activated

by independent Poisson processes with a mean rate of 3 Hz (the typical value observed in the

cerebral cortex for the spontaneous activity rate of excitatory pyramidal cells, Wilson et al.,

1994; Koch & Fuster, 1989). Signals conveying task-related information, like stimulus presen-

tation, attentional state or context knowledge, are also assumed to originate in other cortical

areas not explicitly modeled. These relevant inputs are modeled as small, additive excitatory

inputs on top of the background input to the specific neuron populations in the model, and are

implemented by small increases in the rates of the corresponding Poisson processes.

In the presence of fluctuations, the attractor dynamics of the recurrent network is very unstable,

and can respond very differently to small changes in the inputs. The attractor landscape,

characterizing the function carried out by the cortical model, is determined by the structured

connection strengths of the recurrent network. The connection strengths, or weights, describe

the efficacy of the synaptic couplings in the network. The choice for these parameters will be

discussed in the next section that introduces the unifying principle of Biased-Competition and

Cooperation for neocortical modeling of higher-level cognitive brain functions.
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3 Computational model of cortical networks

3.3 Architectural Biased-Competition and Cooperation framework

An important aspect regarding the information processing and encoding mechanisms of the

brain is how the information is represented across the cortical areas. Recent findings lead to the

hypothesis that the representation of specific information is distributed across several cortical

areas and that one cortical area can hold partial representations of many different views. It is

assumed that these partial representations represent an incomplete description of the behavioral

input and / or internal cortical state, like for example object features, object identities, spatial

relationships, behavioral rules or associations. Moreover it is assumed that, a set of different

views representing different conflicting or related partial information could be encoded in the

neural activities of a particular cortical area.

In order to achieve a coherent global representation, the partial representations are integrated

by mutual cross-talk through inter-areal neural connections. Between the cortical areas, feed-

forward connectivity is usually complemented by feedback connectivity between the same neural

assemblies, i.e. the neurons feeding back from the higher-stage processing area preferentially

address the same neurons in the lower-stage processing area which drive them. The feed-forward

input from a lower-stage processing area, which is characterized by less abstract representations,

is referred to as bottom-up driving input. The feedback input from a higher-stage process-

ing area, which is characterized by more abstract representations, is referred to as top-down

biasing input. Whereas bottom-up driving input is thought to activate a set of concepts con-

sistent with the lower level (e.g., sensory) features, the top-down biasing input is thought to

back-propagate higher level (i.e. more abstract) information to the lower-stage processing area,

that helps selecting one activation pattern among several possible ones.

The Biased-Competition and Cooperation framework assumes that in a cortical area the

conflicting partial representations compete with each other in order to be represented, while the

related partial representations cooperate with each other, mutually reinforcing their activities.

By Biased-Competition, the competitive intra-areal dynamics is assumed to be resolved by a

top-down bias coming from a higher-stage processing area that favors a certain representation

over the others. In the context of visual attention, for example, a top-down signal encoding the

attentional state, could bias the competition in a visual cortical area such that, when multiple

stimuli appear in the visual field, only the attended stimulus will end up being represented,

thereby suppressing the representation of all other distracting stimuli (Duncan & Humphreys,

1989; Desimone & Duncan, 1995; Duncan, 1996). Neurodynamical models developed within

the conceptual framework of the Biased-Competition Hypothesis (Moran & Desimone, 1985;

Chelazzi et al., 1993; Desimone & Duncan, 1995; Chelazzi, 1999; Reynolds & Desimone, 1999)

have been proven to successfully account for different aspects of visual attention (Rolls & Deco,

2002; Corchs et al., 2003) and working memory context dependent tasks (Deco & Rolls, 2003;

Deco et al., 2004).

In parallel to the competition view, a cooperation view has been formulated, where neural

correlates are represented by different co-activated assemblies of neurons (Hebb, 1949). The

theoretical framework of Biased-Competition and Cooperation for modeling higher-level cognitive
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3.3 Architectural Biased-Competition and Cooperation framework

Figure 3.2: Single-layer network architecture using ’Biased Competition and Cooperation’ frame-
work. Within the specific populations, the neurons are mutually connected by
stronger than average mean synaptic strength w+. Cooperation is implemented
through stronger than average excitatory lateral interactions (w0 ≤ w′ ≤ w+) be-
tween populations representing related information. Competition is implemented
through weaker than average excitatory lateral interactions (w− ≤ w0) and the
global inhibitory signal.

brain functions was introduced by Rolls & Deco (2002); Szabo et al. (2004). This framework has

been used to describe different types of experimental data, like single neuronal responses, fMRI

activation patterns, psychophysical measurements, effects of pharmacological agents and effects

of local cortical lesions (Rolls & Deco, 2002; Deco & Rolls, 2002; Deco et al., 2004; Szabo et al.,

2004, 2006).

A multi-areal biased-competition and cooperation model is constructed as a multi-layered re-

current network in which populations of neurons interact with each other in a hierarchical way.

By biased-competition it is assumed that in a model cortical-area multiple activated populations

of neurons encoding conflicting information engage in competitive interactions. The internal

competition is assumed to be biased by external top-down signals representing attention or be-

havior in favor of specific groups of neurons encoding the relevant information for behavior (e.g.,

the attended stimulus). The competition between different populations of neurons selectively

highlights the neural responses of the attended or task-relevant stimuli features at the expense

of the responses of other non-attended or not relevant features. Cooperation, on the other hand,

promotes the co-activation of neuronal populations that represent stimuli features associated

with each other and accounts for the correlations in the neural responses (Szabo et al., 2004;

Almeida et al., 2004). Using both biased-competition and cooperation, the cortical areas could

mutually guide each other’s internal dynamics until a maximally coherent state is reached, in

which each area’s represented partial information is consistent with the represented partial in-

formation of the other areas. The result is a coherent global representation of information in

the neocortical system (Szabo et al., 2006).

For the adopted multi-layer recurrent network model, biased-competition and cooperation is

implemented by structured excitatory connection strengths within and between the model layers

and is mediated by the mutual inhibitory signals produced inside each layer. In each layer, all
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excitatory neurons drive a single population of inhibitory neurons. The inhibitory population

regulates the overall activity in that layer by spreading back a common inhibitory signal to all

its neurons.

The connection strengths are modulated, starting from an average value w0 over the entire

network, such as to intuitively match a Hebbian learning paradigm. First, it is reasonable to

assume that the neurons within a specific population are strongly co-activated and hence the

synaptic strength of the connections between them will become stronger than average. Their

mean strength is denoted here by w+. These strong synaptic couplings implement neuronal re-

verberation in the population and can, in certain conditions, underlie the formation of working

memory1. The specific populations representing related information in the context of a certain

behavioral task are likely to have correlated activities and therefore are assumed to be linked

through stronger-than-average synaptic weights, denoted here by w′. This weight setting imple-

ments cooperation and underlies the formation of co-activated cell assemblies in the model. The

specific populations representing unrelated information are likely to have uncorrelated activities

and thus are assumed to be connected through weaker than average synaptic weights, denoted

here by w−. This weight setting implements competition and underlies the formation of compet-

itive dynamics inside the model layer. The specific populations influence each other’s activities

mainly through the inhibitory neurons, implementing a mechanism of global competition.

Different weight settings correspond to different functionalities of the model network. In order

to achieve a certain, desired, operation of the cortical model, the network has to be trained using

an appropriate learning algorithm. A biologically-inspired learning mechanism, compatible with

the type of network model used and the type of experimental behavioral tasks modeled, will be

covered in the next chapter.

1working memory can be seen as sustained high cortical activity after the corresponding stimulus was removed
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networks

The most remarkable feature of our nervous system is the ability to modify its internal param-

eters and even its structure in response to a changing environment, in other words to learn.

Learning can be defined as the capability of a system to acquire information and skills in an

adaptive and goal-directed way.

The first part of this chapter, section 4.1, captures the important aspects of learning in biological

and artificial networks. A biologically inspired learning algorithm is proposed in section 4.2, and

its implementation is described in section 4.3.

4.1 Learning in biological and artificial networks

How learning occurs in biological systems is still not exactly understood, but it is clear that they

are able to adaptively acquire behaviorally relevant information and relate it to other already

stored information. In the vertebrate brain learning is usually associated with the modification

of the synaptic efficacies, i.e. chemical changes at the synaptic level, but it is unclear what

neural mechanism optimizes these changes in the direction of obtaining the desired associations.

These changes can last from a few seconds, being related to short time memory or up to many

days, being related to long time memory. This type of learning is referred to as synaptic

plasticity . Another type of learning, still debated in the scientific community, is thought to

involve structural changes in the brain. This type of long time learning, referred to as structural

plasticity , is associated to the apparition of new synaptic connections and the disappearance of

other existing synaptic connections. In this work, only learning in the form of synaptic strength

modifications will be regarded.

An important contribution to the study of learning mechanisms was done by Donald O. Hebb

(Hebb, 1949). Inspired from the physiology of the nervous system, he developed a theory of

how learning could occur in a biological system. Hebb’s postulate holds that learning occurs as

modifications of the synaptic efficacies between neurons and that these modifications are driven

by correlations in the neuronal activity, i.e. synapses are strengthened between neurons that

fire at the same time. Thus Hebbian learning refers to a correlation based synaptic plasticity:

learning is driven by the multiplicative correlation of pre- and post- synaptic activity.

In the neuroscience research, a persistent increase in synaptic efficacy which follows high-

frequency stimulation of afferent fibers is called Long-Term Potentiation (LTP) and a decrease

in the synaptic efficacy is called Long-Term Depression (LTD). Experimentally observed LTP
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often occurs when there is a coincidence of pre- and post- synaptic activity and it is thus ex-

plained through the putative mechanism of Hebbian learning. Experimentally observed LTD

can occur in two cases: when there is presynaptic activity in the absence of postsynaptic activ-

ity (Homosynaptic LTD) or when there is postsynaptic activity in the absence of presynaptic

activity (Heterosynaptic LTD). LTP and LTD are considered to be the neuronal correlates of

learning and memory in the biological systems.

In artificial neural networks, learning or training is a dynamical process that modifies the connec-

tion weights between the individual elements according to a learning algorithm or rule. Learning

is seen as an optimization process. An artificial neural network usually consists of three layers:

an input layer, a hidden layer and an output layer, and the functionality of the network is given

by the weights connecting the hidden units. Three major learning strategies were developed:

• Unsupervised learning schemes are used to identify patterns (statistical regularities) in

data sets and perform data clustering based on the correlations in the inputs. For example

the Kohonen self-organizing feature map is an autonomous, bottom-up and data-driven

learning strategy. Unsupervised Hebbian learning rules modify the connection weights

based on activities of the pre- and post-synaptic neurons, and are used for clustering the

input data.

• Supervised learning schemes use a teacher specifying the desired output for each specific

input vector. The corresponding learning algorithms for multilayer networks (for example

the LMS algorithm and the error-backpropagation algorithm) are based on propagating

error signals from the output layer to the input layer and modifying the weights in the

direction of minimizing some error functions. As an example, the error-backpropagation

algorithm computes the gradient of a cost function that quantifies the performance of the

network with respect to a desired input-output relationship and with respect to the param-

eters that should be optimized, i.e. the connection weights. Although not realistic (there

is not any known neurobiological equivalent for the supervisor), they support nonlinear

input-output mappings which makes them effective in training artificial neural networks.

• Reinforcement learning schemes (for example the Monte Carlo prediction and con-

trol algorithm (Metropolis & Ulam, 1949; Fishman, 1995) and the temporal differences

(TD) learning algorithm (Sutton, 1988)) use an external observer (critic) that evaluates

qualitatively the network’s performance (when the actual desired output is not given or

known) and decides to punish or reward its behavior in order to optimize some reward or

cost function. It is applied in the cases when learning takes place through trial-and-error

interactions with a dynamical environment. Reward based (goal directed) learning al-

gorithms are based on rewarding or punishing the system given its response to a certain

stimulation. The system is trained using a global reinforcer that modifies the internal pa-

rameters in such a way as to maximize the expected cumulative reward. For more details

see Sutton & Barto (1998).
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4.2 Reward-based Hebbian learning mechanism

Learning in a biological system usually takes place by evaluating the response of the environment

to the performed action and modifying accordingly the system’s internal associations in order to

follow a desired goal. Behavioral experiments on operant conditioning show that the probability

of performing one action in relation to a given input (referring to voluntary actions) changes with

the behavioral consequences of that action. Actions followed by a positive consequence, called

reward, become more frequent, implying that the corresponding cortical stimulus-response as-

sociations are strengthened or reinforced. Similarly, actions followed by a negative consequence,

or punishment (often regarded as the consequence of not receiving reward), become more in-

frequent thus the corresponding associations are supposed to be weakened. In other words, the

biological system determines the behavioral relevance of different sensorial information through

the consequences - receiving reward or not - of the selected action and tries to maximize the

future reward by remodeling its internal associations.

To model this learning strategy, we construct a reward-based Hebbian learning algorithm

that modifies the synaptic efficacies according to the resulting network activities and a reward

signal, using a simple regulatory mechanism. This type of learning algorithm was shown to

be compatible with a learning procedure that quantitatively reproduces the behavior of the

recorded cortical activity of monkeys trained to learn visuo-motor associations in a continuously

changing environment (Asaad et al., 1998; Fusi et al., 2007).

On the network level, assuming that learning takes place in an interactive way using a trial-

and-error strategy, the reward-based model of learning modifies the future behavior based on

the success or failure of previous trials such as to increase the expected reward. This type

of reinforcement learning is the biologically plausible choice from the well established learning

strategies in the artificial neural networks field (Sutton & Barto, 1998). This kind of interactive

learning modifies the future behavior, based on the success or failure of previous trials, such as

to increase the desired reward.

On the single synapse level, we consider a biologically inspired Hebbian learning scheme, as

described in Figure 4.1. Following reward, a synapse is potentiated if the presynaptic and post-

synaptic neurons are simultaneously active; depressed if the presynaptic neuron is active but

the post-synaptic neuron is inactive; and not modified otherwise. Following non-reward, the

synapse is depressed if both presynaptic and post-synaptic neurons are simultaneously active;

and not modified otherwise.

A pure Hebbian learning scheme, acting locally at each synapse and for each afferent spike,

would be very difficult to control. Thus, the learning dynamics is modeled in this work using a

synaptic mean-field approximation, which captures, for computational convenience, the average

synaptic dynamics between two given populations of neurons. Using this approximation, the

average effects of a supposedly underlying single-synapse dynamics are described through a single

variable characterizing the synaptic population dynamics. A synaptic population gathers all

connecting synapses between two neural populations that originate in one of the two populations

and end in the other, i.e. between each pair of neural populations there are well-defined two
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4 Learning mechanism for biologically inspired spiking networks

Figure 4.1: Modified Hebbian learning scheme applied for the reward (a) and non-reward (b)
cases. The filled blobs represent active neurons and the empty blobs represent
inactive neurons. The potentiated synapses are represented by bold lines and the
depressed synapses by dotted lines. The connections that are not marked are not
modified. In the reward case, a synapse is potentiated if the pre-synaptic and post-
synaptic neurons are simultaneously active, depressed if the pre-synaptic neuron is
active but the post-synaptic neuron is inactive. Feedback and feed-forward weights
are not always changed in the same way: the learning rule is asymmetric in the
reward case. In the non-reward case, the synapse is depressed if the pre-synaptic
and post-synaptic neurons are simultaneously active.

synaptic populations.

For the hidden single-synapse dynamics, the individual synapses are considered binary (one

potentiated and one depressed state), as suggested by experimental data from Petersen et al.

(1998). Learning dynamics in the case of binary synapses are best described by a stochastic

process for which the probability of transition depends on the pre- and post- synaptic activities.

Models of learning dynamics using synapses that undergo stochastic transitions between two

available states depending on the pre- and post-synaptic neural activity were developed in earlier

studies (Fusi et al., 2000; Fusi, 2002; Amit & Fusi, 1994).

At the mean-field level adopted here, all the connections belonging to the same pair of pre-

and post-synaptic populations are forced to have the same weight; the latter is updated by

first computing the fraction of synapses that would get potentiated or depressed on the basis

of the estimated firing rate distributions, as detailed in the next section. Then, the resulting

average weight is computed and, finally, that value is assigned as the common new weight for

all the synapses of the population. In order for this to be a good description of what would

result from the detailed single-synapse dynamics, the non-trivial distribution of firing rates

inside each neural population plays an important role. This is why it is important to keep the

detailed spiking dynamics of the neurons in the face of the more abstract description of the

learning dynamics. The efficacies for the various synaptic populations are thus changed in a

way consistent with what would result on average from the spike-driven stochastic changes of

single synapses under the same firing conditions. Implemented for a fast approximate evaluation

of the learning behavior, this approximate description of the learning dynamics was shown to be

a good estimate of the probabilistic model’s dynamics (for details see Amit & Fusi, 1994; Fusi,

2002).
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4.3 Implementation of the learning algorithm

During learning, the network configuration changes with the modification of the synaptic weights

from an initial, chosen, configuration to a final, learned, configuration. For each trial, the

network is stimulated with a randomly chosen input pattern and its simulated activity is recorded

for a determined time period characterizing its response. The global reward signal estimating

the overall performance of the network is not explicitly modeled. Its value is calculated based

on the network response. Using the reward variable and the neuronal activations, the network

configuration is changed using the following scheme:

Consider a presynaptic neuronal population with a total number of ni neurons from which na
i

neurons are considered active and a post-synaptic neuronal population with a total number of nj

neurons from which na
j neurons are considered active. In case of reward, the learning dynamics

has to reflect for each synaptic population, that all synapses between pairs of active neurons

are potentiated and all synapses from an active neuron to an inactive neuron are depressed

(as described in Figure 4.1.a). This can be expressed through the fraction of synapses to be

potentiated, Np, and depressed, Nd, for each synaptic population:

Np
ij = na

i · na
j /(ni · nj) (4.1)

Nd
ij = na

i · (nj − na
j )/(ni · nj) (4.2)

In case of non-reward, the fraction of synapses to be depressed is given by the pairs of active

neurons and there are no synapses to be potentiated (as described in Figure 4.1.b):

Np
ij = 0 (4.3)

Nd
ij = na

i · na
j /(ni · nj) (4.4)

The Np
ij and Nd

ij variables embody the firing distributions of the neuronal populations in the

network, i.e. the variability in the neuron spiking rates inside the populations after each stimulus

presentation, and thus require the full simulation of the neural dynamics. Consequently, the

efficacies of the synaptic populations will be changed in a consistent way with what would result,

on average, from the spike-driven stochastic changes of single synapses under the same firing

conditions.

Considering the variable Cij as being the current fraction of potentiated synapses from the

synaptic population ij, its value is updated after each trial as follows:

Cij(t+ 1) = Cij(t) + (1 − Cij(t))N
p
ijq+ − Cij(t)N

d
ijq− (4.5)

where i and j generally denote the pre- and post-synaptic neuronal populations, respectively;

q+ and q− are the transition probabilities for potentiation and depression, respectively (i.e. the
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4 Learning mechanism for biologically inspired spiking networks

learning rates); (1 −Cij(t)) and Cij(t) are the fractions of depressed and potentiated synapses,

respectively; and t is the trial number. The same equation (4.5) applies both in the reward and

non-reward case but different learning rates can be used.

Accordingly, the average synaptic weight between each pair (ij) of neuronal populations is

determined by the following relation:

wij = w+Cij + w−(1 − Cij), (4.6)

where w+ and w− are the values corresponding to the connection strength between two popu-

lations when all synapses are potentiated or depressed, respectively. Different values of w+ and

w− can be used for the feed-forward and feedback connections in the network.

It should be remarked that the wide firing rate distributions of the neuronal populations in the

network can provoke unwanted drifts in the learning history of some of the synaptic populations.

Several regulatory mechanisms might in principle help to keep under control the effects of

fluctuations in the synaptic dynamics (Miller, 1994; Stetter et al., 1994, 1998). The solution

adopted here, is to keep the average synaptic efficacy in the network constant.

For this, a subtractive normalization of the total afferent synaptic connectivity is applied, which

is calculated over all synaptic connections to each neuron in the network (Miller, 1994). The

average synaptic weight for all connections between the pre-synaptic population i and post-

synaptic population j is normalized as follows:

wnorm
ij (t) = wij(t) −

1

N

(

N
∑

k=1

wkj(t) −

N
∑

k=1

wkj(t− 1)

)

, (4.7)

where N is the number of pre-synaptic populations connected to the post-synaptic population

j.

The values for the Cij variables are then recomputed based on the new wij normalized values in

order to keep valid the equality in equation 7. For the next stimulus presentation, the connection

weights between the neuronal populations are set to the calculated normalized values wij . The

algorithm is repeated until convergence to a stable network configuration is reached. This

configuration associates different neuronal assemblies in the model network such as to maximize

the expected reward for the specified input-response relationship.
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5 Network analysis using the Mean-field approximation

The recurrent network of integrate-and-fire neurons is a system with many non-linear interacting

units whose dynamics is difficult to describe analytically. The standard trick, originating from

statistical mechanics and referred to as the Mean-field approximation, is to replace all individual

interactions from any one unit to any other unit with an average or effective interaction. The

analysis is thus simplified to a system of effective units, each of them being influenced by a mean-

field interaction. Mean-field models represent a well-established means for efficiently analyzing

the approximate network behavior (Tuckwell, 1988; Stetter, 2002), at least for the stationary

conditions (i.e. after the dynamical transients).

The Mean-field analysis of the recurrent network of integrate-and-fire neurons ignores the dy-

namics of individual neurons and calculates in an efficient manner, for the stationary regimes,

the mean firing rates of the populations inside the network. This approximation allows an

exhaustive analysis of the network dynamics: using different initial conditions, the parameter

space of the recurrent network can be systematically explored in order to identify its quali-

tatively different functional regimes. Subsequently, bifurcation diagrams showing the possible

dynamical states of the system as a function of the model-parameters can be constructed. For

the parameter region showing the desired behavior, simulations of the full non-stationary spiking

dynamics can be performed using the set of coupled differential equations describing the explicit

neuronal dynamics of the recurrent network.

A recent derivation of the Mean-field approximation, consistent with the model neurons and net-

work structure used in this work, will be considered for the systematic parameter explorations of

the proposed models. This chapter is organized as follows: section 5.1 describes the assumptions

and approximations used to predict the average firing rate of a LIF-NS neuron characterized

by stochastic inputs. The derivation of the average firing rate of a population of identical and

asynchronous firing LIF-NS neurons is presented in section 5.2.

5.1 Approximation of neuronal dynamics

The state of the LIF-NS neuron is fully characterized by the membrane potential dynamics,

which is given by the coupled differential equations describing the integration (2.3) and the

synaptic currents (2.7, 2.8 and 2.9) (see chapter 2.2). Fixed, regular inputs generate a deter-

ministic behavior of neuronal activity. Stochastic spike arrival generates fluctuations in the

membrane potential and thus a non-deterministic behavior of neuronal activity.

In the presence of noise, the exact value of the subthreshold membrane potential and thus
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5 Network analysis using the Mean-field approximation

the next firing time of a neuron cannot be predicted in a deterministic fashion. The state of

the neuron can only be described statistically by estimating the probability that its membrane

potential will be in a certain interval after a certain time. A large noise level will lead to a broad

distribution of the membrane potential.

Starting from the membrane potential dynamics of the spiking neuron, the standard Mean-field

approach performs a stochastic analysis of the mean-first passage time of the membrane poten-

tial above the spiking threshold, i.e. computes the average firing rate as a function of the input

statistics and model parameters. The approximation provides a simplified description of neuron

stochastic dynamics for stationary regimes and represents a well-established way of efficiently

analyzing the approximate network behavior (Wilson & Cowan, 1972, 1973; Ben-Yishai et al.,

1995; Gerstner, 1995, 2000; Eggert & van Hemmen, 2000; Stetter, 2002). An extended Mean-

field formulation consistent with the LIF-NS model neurons considering both the fast and slow

glutamatergic excitatory synaptic dynamics (AMPA and NMDA) and the GABAergic inhibitory

synaptic dynamics, was derived by Brunel & Wang (2001). The main assumptions and estima-

tions will be captured in the remaining part of this section:

First, it is assumed that the model neurons are characterized by stochastic spike arrival, i.e. that

the individual spike trains arriving at different synaptic sites of the neuron are independent and

that for each individual synapse each spike arrives independently of the previous one (the Markov

assumption). The assumption of stochastic spike arrival is sustained by in-vivo recordings of

cortical neuronal activity that show a high irregularity in the afferent spike trains (as mentioned

in section 3.2). The individual spike trains are described in the model as independent Poisson

processes with mean activation rate ν. A Poisson process with rate ν can be characterized by

its mean µ = ν and variance σ2 = ν. The coupled differential equations describing a neuron’s

state contain thus random terms which make it difficult to calculate the subthreshold membrane

potential evolution and to find the neuron firing times in a deterministic fashion.

Second, it is assumed that the model neurons receive a large number of uncorrelated inputs

(spikes) in small time intervals compared to their integration time constant (τm) and that indi-

vidual spikes generate on average very small post-synaptic potentials as compared to the spiking

threshold. Hence, the total afferent stochastic current to each neuron can be approximated by

a Gaussian process: the Diffusion approximation (Tuckwell, 1988). These assumptions are sus-

tained by experimental cortical findings showing dense recurrent connectivity and continuous

and highly stochastic cortical activity. Even if all presynaptic neurons fire at low spontaneous

rates, the high number of pre-synaptic contacts to a neuron, on the order of 103, produce in

total a high presynaptic activity. This implies also that each presynaptic spike induces a very

small change in neuron’s membrane potential.

In the framework of the diffusion approximation, the equations of the subthreshold membrane

potential dynamics can be simplified by replacing the pre-synaptic inputs through an average

DC component and a random component. The latter can be treated as Gaussian white noise

(in the case of instantaneous synapses) or Gaussian colored noise (denoting a finite correlation

time of the random components in the case of nonlinear synaptic current dynamics) (Tuckwell,

1988; Amit & Tsodyks, 1991a,b). Consequently, the dynamics of the subthreshold membrane
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5.1 Approximation of neuronal dynamics

potential follows a Brownian motion that can be described by an Ornstein-Uhlenbeck process

in the form of a Langevin stochastic differential equation (Uhlenbeck & Ornstein, 1930).

For the LIF-NS neuron dynamics, the Langevin equation is given by (Brunel & Wang, 2001):

τj
dVm(t)

dt
= −(Vm(t) − VL) + µj + σj

√
τjη(t) (5.1)

where

• τj is the effective membrane time constant that considers the impact of the various modeled

synaptic currents on the membrane conductance,

• µj is the mean value that the membrane potential would have in the absence of spiking

and fluctuations,

• σj measures the magnitude of the fluctuations due to the variance of the stochastic synaptic

inputs,

• η is a Gaussian stochastic process with exponentially decaying correlation function with

time constant τf that is given by the fluctuating terms of the synaptic input.

For the considered model, the fluctuations of the recurrent synaptic inputs, i.e. from other

neurons in the modeled area, can be neglected when compared to the fluctuations of the external

AMPA inputs. Thus σj can be calculated considering only the external stochastic inputs and τf

is considered to be equal to τAMPA (for details see Brunel & Wang, 2001). The expressions for

these variables depend on the network structure. They were derived by Brunel & Wang (2001)

and are given in the second part of this chapter (section 5.2).

Because of the random component of the synaptic current, the solution of the Langevin equation

(i.e. Vm(t), the time-course of membrane potential), can be given in the form of a probability

density function p(Vm, t): the probability that the membrane potential has the value Vm(t) at

time t, starting from V0 at time t0. Thus, the probability that the membrane potential at time

t will be in the interval (V1, V2), given the initial condition Vm(t0) = V0, will then be:

Pr {V1 < Vm(t) < V2 | Vm(t0) = V0} =

∫ V2

V1

p(Vm, t)dVm (5.2)

The solution of the Langevin equation (5.1) can be estimated using an equivalent description of

the diffusion of the membrane potential, given by the Fokker Planck equation (Risken, 1984):

τj
∂p(Vm, t)

∂t
= − ∂

∂Vm
(−(Vm(t) − VL) + µj) p(Vm, t) +

σ2
j

2τj

∂2

∂V 2
m

p(Vm, t) (5.3)

This equation describes, in the diffusion limit, the temporal evolution of the probability density

function of the membrane potential
∂p(Vm, t)

∂t
. The first term represents the systematic drift

of the membrane potential due to the leakage and mean afferent input. The second term

represents the diffusion term, with diffusion constant
σj

2τj
, and accounts for the fluctuations

of the membrane potential. The solution of the Fokker Planck equation gives the probability
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density of the solution of the original Langevin equation, i.e. the probability density function

of the membrane potential.

p(Vm, t) = τj

√
π

σj

∫ θ

Vm

du exp

(

(u− νj)
2

σ2
j

)

[

erf

(

u− νj

σj

)

+ 1

]

(5.4)

With this, the mean first passage time of the membrane potential can be calculated as the

probability of the membrane potential first crossing the threshold θ in the time interval [t, t+ dt]

starting from V0 at t0:

Pfiring(t) =

∫

∞

θ
p(Vm, t)dVm (5.5)

For the LIF-NS neuron model, an analytical solution can be calculated for the stationary regime,

i.e. the regime where the mean input current is constant over time for any given neuron in

the network, taking into account the normalization and boundary conditions that restrict the

depolarization values to the interval [Vrest, θ] (Treves, 1993). The normalization condition states

that the probability that the membrane potential has a value in this interval equals to 1. The

first boundary condition describes the firing threshold as an absorbing barrier: p(θ, t) = 0, ∀t (all

depolarizations crossing the threshold θ are absorbed and reset to Vreset). Another boundary

condition describes the reflecting barrier at Vrest (no depolarization goes below this value).

With these conditions, the mean firing (emission or discharge) rate, νj , calculated as the inverse

of the mean inter-spike interval (i.e. the mean time interval between two consecutive spikes)

can be approximated by the solution of the mean first passage time of the membrane potential

(Ricciardi, 1977; Tuckwell, 1988), and was derived for the considered neuron model in the limit

τAMPA << τm by Brunel & Sergi (1998); Brunel & Wang (2001):

νj = φ(µj , σj) =

(

τref + τj
√
π

∫ α(µj ,σj)

β(µj ,σj)
duϕ(u)

)−1

(5.6)

where

ϕ(u) = exp(u2)[1 + erf(u)] (5.7)

α(µj , σj) =
(Vthr − µj)

σj

(

1 + 0.5
τAMPA

τj

)

+ 1.03

√

τAMPA

τj
− 0.5

τAMPA

τj
(5.8)

β(µj , σj) =
(Vreset − µj)

σj
(5.9)

and erf() is the error function.

φ(µj , σj) is the transfer function of the LIF-NS neuron, also known as the frequency - current

or response function. It depends on the mean µj and standard deviation σj of the Gaussian

afferent current in the stationary conditions.

44



5.2 Approximation of population dynamics

5.2 Approximation of population dynamics

The recurrent network of integrate-and-fire neurons is divided into populations of neurons and it

is assumed that inside a population i, the neurons are driven by stochastic recurrent and external

currents with the same mean µi and variance σi. Sharing the same statistical properties of the

total afferent current, the neurons inside a population fire independently at the same mean

firing rate νi. The population activity can then be described by only one equation representing

the average firing rate of the neurons inside that population, which equals, given the identical

input statistics, the mean firing rate of the individual neurons. The population dynamics is

described through the evolution of membrane potential densities, denoting the probability that

an arbitrary neuron in the population has a specific internal state (at a given time, each neuron

may be in a different internal state, given by its membrane potential). This is the same as

the probability density function of the membrane potential of an individual neuron inside the

population. Thus the dynamics of the population is reduced to the dynamics of a single reference

neuron.

Mean-field analysis is a well known approach used to approximate the full spiking dynam-

ics of a population of identical and asynchronously firing neurons (Abbott & van Vreeswijk,

1993; Brunel & Hakim, 1999; Fusi & Mattia, 1999; Nykamp & Tranchina, 2000; Omurtag et al.,

2000; Brunel, 2000). For a similar spiking recurrent network as the one presented in chapter

3, the analytical formulas describing the firing rate of a population of LIF-NS neurons for

stationary regimes were derived by Brunel & Wang (2001). The derivation assumes that the

dynamics of the network will converge to a stationary attractor which is consistent with the

asymptotic behavior of an asynchronous firing network of IF neurons (Brunel & Wang, 2001;

Del Giudice et al., 2003; Fusi & Mattia, 1999).

The stationary dynamics of each population can be described by the population transfer function

φ, which provides the average population rate as a function of the afferent current statistics and

is given, as explained in the beginning of this section, by the single neuron transfer function

(equation 5.6). The set of stationary, self-reproducing rates νi for all populations i = 1 . . . N in

the network can be found by solving the set of coupled self-consistency relations, using standard

numerical integration techniques:

νi = φ(µi(ν1, ..., νN ), σi(ν1, ..., νN )) (5.10)

where µi() and σi() are the mean and standard deviation of the afferent input to poplation i

that depend on the mean firing rates of all other populations in the network. In order to find

the stationary rates, a set of first-order differential equations, describing a fake dynamics (in

contrast to the ’true’ underlying spiking dynamics) of the system is used, whose fixed point

solutions correspond to the solutions of equation 5.10:

τi
dνi

dt
= −νi + φ(µi(ν1, ..., νN ), σi(ν1, ..., νN )) (5.11)
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5 Network analysis using the Mean-field approximation

For a fully-connected recurrent network consisting of NE excitatory LIF-NS neurons grouped

into P populations and NI inhibitory LIF-NS neurons, and considering that each neuron receives

Next excitatory external connections, the corresponding parameters are (see Brunel & Wang

(2001)):

µi =
(SAMPA,ext

i + SAMPA
i + ρ1S

NMDA
i )VE

Si
+
ρ2S

NMDA
i 〈V 〉 + SGABA

i VI + VL

Si
(5.12)

σ2
i =

g2AMPA,ext(〈V 〉 − VE)2Nextνextτ
2
AMPAτi

g2mτ
2
m

(5.13)

where:

τi =
Cm

gmSi
(5.14)

is the effective membrane time constant;

Si = 1 + S
AMPA,ext
i + SAMPA

i + (ρ1 + ρ2)SNMDA
i + SGABA

i (5.15)

is a shunting factor;

S
AMPA,ext
i =

gAMPA,ext

gm
NextτAMPAνext (5.16)

SAMPA
i =

gAMPA,rec

gm
NEτAMPA

P
∑

p=1

fpwp,iνp (5.17)

SNMDA
i =

gNMDA

gm
NE

P
∑

p=1

fpwp,iψ(νp) (5.18)

SGABA
i =

gGABA

gm
NIτGABAwI,iνI (5.19)

are the average DC components of the synaptic variables. Here fp is the fraction of the neurons in

the pth excitatory population; wp,i is the incoming connection weight from excitatory population

p; νp is the discharge rate of the pth excitatory population; wI,i is the incoming connection weight

from the inhibitory population; νI is the discharge rate of the inhibitory population and νext is

the discharge rate of the external excitatory stimulation.

ρ1 =
1

J
(5.20)

ρ2 = β
(〈V 〉 − VE)(J − 1)

J2
(5.21)

J = 1 + γ exp(−β〈V 〉) (5.22)

are parameters derived from linearizing the voltage dependence of the NMDA conductance

around the mean value of the voltage 〈V 〉 (Brunel & Wang, 2001);

The average membrane potential 〈V 〉 was calculated in Brunel & Hakim (1999):

〈V 〉 = µi − (Vthr − Vreset)νiτi, (5.23)
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The static component of the gating variable of NMDA channels, in the case of Poissonian input

spike trains is approximated by a function ψ(ν) depending on the presynaptic rates ν:

ψ(ν) =
ντNMDA

1 + ντNMDA

(

1 +
1

1 + ντNMDA

∞
∑

n=1

(−ατNMDA,rise)
nTn(ν)

(n+ 1)!

)

(5.24)

Tn(ν) =
n
∑

k=0

(−1)k
(n

k

)

(

τNMDA,rise(1 + ντNMDA)

τNMDA,rise(1 + ντNMDA) + kτNMDA,decay

)

(5.25)

τNMDA = ατNMDA,riseτNMDA,decay (5.26)

For the models developed in this work, both mean-field simulations using the formulation pre-

sented in this chapter and full spiking-dynamics simulations using the formulations presented in

sections 2.2.3 and 2.2.4 will be performed.
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6 One-layer neurodynamical model for attentional

filtering

This chapter analyzes the computational principles underlying the neuronal correlates of at-

tentional filtering, showing how an input encoding the attentional state can bias the level of

competition and cooperation in a single-area model in order to extract the relevant information

for the behavioral task.

6.1 Selective attention and inattentional blindness

The overwhelming amount of sensory information coming in a wide variety from the environ-

ment at any moment to our nervous system can be dramatically reduced if only the relevant

information is considered. In spite of its parallel processing capabilities and its huge amount

of processing elements, the brain seems to employ a selection strategy even at early processing

stages, for managing this enormous amount of sensory information. This selection process is re-

ferred to as attention and denotes the ability to concentrate on a particular thing while ignoring

others. Attention represents an important cognitive process of perception which involves an or-

ganized processing of all sensory information in such a way as to produce a coherent experience

of the surrounding environment. The concept of attention implies that only certain behaviorally

relevant information from the sensory input or internal representations are processed at a given

time. It is assumed that the focus of attention modulated by the behavioral context can be

shifted from one sensory information to another or from one internal representation to another

in a serial fashion.

Given the limited amount of information that can be processed in the brain at any time, attention

represents an important basis of cognitive processing by selecting and filtering the information

in a context-dependent way. The context is provided by the internal state of the brain, reflecting

the subject’s current hypotheses about its surrounding (external) environment. Selective or

focused attention may be defined as the cognitive process by which the perception of certain

relevant stimuli in the environment is favored in preference to other concurrent stimuli of less

importance. The attention is said to be focused on selected parts of the environment. For

example, certain parts of the visual input can be selectively attended to, depending on their

relevance for the current task to be subserved or the current goal to be achieved. The neural

process of visual selective attention enhances the signals representing visual information relevant

for behavior, while suppressing the representation of the non-relevant visual information.

A remarkable phenomenon of selective attention, known as inattentional blindness, has been
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6 One-layer neurodynamical model for attentional filtering

described for human vision (for a review see Simons (2000)). It refers to the unawareness of a

certain visual event when attention is focused on another event, and is thought to be part of

an important cognitive mechanism, namely that of focusing or concentrating on a task to be

performed. The neural mechanisms underlying selective attention are subject to ongoing debate.

Hence, it is interesting to investigate which mechanism could produce the signals generating

attention, how they can be flexibly controlled by the current brain state and what are their

effects on tuning the neural activity.

Recently, a neurophysiological study performed by Everling, Tinsley, Gaffan & Duncan (2002),

investigated the possible underlying mechanisms of visual selective attention by monitoring the

activity level of single neurons in the prefrontal cortex (PFC) of awake behaving monkeys which

were engaged in a focused attention task. In this experiment, a monkey, after being cued to

attend one of the two visual hemifields (i.e. the left or the right visual eye-field), had to watch a

series of bilateral stimuli that consisted of different pairs of objects, and to react with a saccade1

if and only if a predefined target (previously learned object) appeared in the cued hemifield. In

order to correctly perform this cognitive task, the monkey had to ignore any presented object

in the uncued hemifield and to concentrate (focus his attention) on the cued location.

At first, using unilateral stimuli only, Everling and coworkers observed that some of the measured

neurons from PFC were selective for target or non-target stimuli (stimuli requiring or not a

behavioral response). These neurons were also found to have a preference for the stimulus

location in one of the two hemifields (see figure 6.1). Next, during the focused attention task

with bilateral stimulus presentation, the PFC neurons again discriminated between target and

non-target stimuli, but only for the attended location, (figure 6.6, column 1). The target /

non-target discrimination disappeared if the objects were presented in the unattended visual

hemifield, i.e. the presented stimulus in the non-attended location had no influence on the

neuronal response (cf. figure 6.6-1b red line). The experimental results showed that only a task-

relevant stimulus (i.e., target in the cued hemifield) is gated by the context and is allowed to be

represented. Thus, attention acts not only in a modulatory way but imposes a multiplicative

effect upon the sensory driven neuronal response. Consequently these neurons seem to code for

the behavioral relevance of a stimulus rather than for its identity. This effect is referred to as

attentional filtering .

When humans perform similar tasks, they cannot recover any information from unattended

sensory stimuli – the inattentional blindness effect as mentioned before. The attentional filtering

of object’s representation for the unattended hemifield strongly resembles this behavior, possibly

explaining the blindness to ignored inputs, implying that the reported properties of the neuronal

response might be part of the neural correlate of cognitive inattentional blindness.

Motivated by these observations, we developed a minimal neurodynamical computational model

of a small part of the monkey’s PFC, which preserves the biological relevance and follows the

Biased-Competition and Cooperation architectural framework, in order to investigate how this

strong attentional effect can arise from a weak modulatory bias which mediates the cortical

context (Szabo et al., 2004). This chapter is organized as follows: Section 6.2 describes the

1a saccade is a rapid intermittent eye movement occurring when eyes fix on one point after another

50



6.2 Network structure and parameters

Figure 6.1: Experimental results of the focused attention task in the case of unilateral stimuli
presentations – adapted from Everling et al. (2002). The two graphs depict the
population activity of all selective PFC neurons when a target (blue lines) or a non-
target (red lines) was presented in the preferred location (left graph) or non-preferred
location (right graph).

chosen network structure and parameters. Section 6.3 presents results of exploring the parameter

space using the mean-field approximation and section 6.4 presents explicit simulations of the

network spiking dynamics that are compared to the experimental results. At last, section 6.5

discusses the obtained results.

6.2 Network structure and parameters

In the search to understand the underlying neural substrate of selective attention, a neurodynam-

ical computational model of a small part of the monkey PFC is proposed. The model simulates

the conditions of the visual attentional experiment performed by Everling et al. (2002) and tries

to reproduce the attentional filtering effect observed in the experimental results. The model

was initially constructed using the conceptual framework of Biased-Competition. We observed

that the mechanism of biased-competition alone could not account for the experimental results

and show that biased-competition and cooperation between stimulus selective neurons are, in

combination, required conditions for reproducing the referred effect. The theoretical framework

of Biased-competition and cooperation was described in section 3.3.

Similar to previous studies (Brunel & Wang, 2001; Deco & Rolls, 2003; Deco et al., 2004), a

biologically inspired minimal model is set up as a single-layer recurrent network of spiking

neurons, whose generic structure and parameters were described in section 3.2. The detailed

level of description of the spiking dynamics and the biological inspired network parameters

allow thorough studies in realistic time scales of the firing rates involved in the evolution of the

modeled neural activity (as shown in section 6.4).

The network is constructed of NE = 800 excitatory neurons and NI = 200 inhibitory neurons,
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6 One-layer neurodynamical model for attentional filtering

Figure 6.2: Schematic network architecture of the prefrontal cortical module. The four specific
populations correspond to target and non-target selective neurons with preferred
location left or right. The inhibitory population sends a global inhibitory signal to
all neurons and the non-specific population stabilizes the activity inside the network.
There are two types of synapses coming from the excitatory neurons: AMPA and
NMDA, and one type from the interneurons: GABA.

which are grouped, by setting common inputs and connectivities, into distinct populations, as

depicted in figure 6.2. The specific populations, are chosen to show the same selectivities as

found in the experimental results (Everling et al., 2002). Accordingly, under a non-attentive

control task they encode information about the object identity (’T’ for target stimulus, ’O’ for

other non-target stimulus) and spatial location (’L’ for left, ’R’ for right visual hemifield). Thus

there are four interconnected specific populations, that encode for target with preferred location

left (TL), target with preferred location right (TR), non-target (other) left (OL) and non-target

(other) right (OR). For simplicity, all specific populations were chosen to have the same number

of excitatory neurons: f · NE , with f = 0.1. The non-specific population contains all other

excitatory neurons in the area, (1 − 4f)NE , which are not involved in the current task. The

inhibitory population, grouping the NI inhibitory neurons, sends a global inhibitory signal to

all the neurons and thus balances the overall activity in the network.

The individual populations are driven by four different kinds of inputs. First, all neurons in

the model receive spontaneous background activity from outside the module through Next = 800

external excitatory connections carrying Poisson spike trains with a rate of 3 Hz. Second, the

neurons in the specific populations receive, in addition to the background noise, bottom-up

sensory inputs and two kinds of top-down biasing inputs, as summarized in figure 6.3:

• the bottom-up sensory inputs selectively encode whether there was a target or a non-

target in the left or the right visual hemifield and drive the corresponding specific popula-

tions. It is assumed that a lower-level visual cortical area processes the visual scene such

as to provide these signals. The four possible combinations of sensory inputs are depicted
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6.2 Network structure and parameters

Figure 6.3: Simple scheme illustrating the inputs to the model network, given by the conditions
of the visual attentional experiment. The arrows in the lower part of the figure
represent the four possible sensory stimulus-combinations of the focused attention
task to be modeled: (a) target in both locations; (b) target right and other object left;
(c) target left and other object right; (d) non-targets in both locations. The model
dynamics is further guided by a target bias and an attentional bias. The recording pin
on the TR population (the group of target-specific neurons with preferred location
right) specifies the neurons whose activity will be considered for the simulation
results presented in section 6.4 (in the same way, the experimental results refer
also only to the target selective PFC neurons).

in figure 6.3.

• the top-down target bias accentuates the representation of the relevant behavioral in-

formation, by biasing the neurons that are selective for the target object (i.e. from popu-

lations TL and TR). The origin of this signal is not explicitly modeled, but it is assumed

to originate from a working-memory module that encodes and memorizes context in terms

of rules.

• the top-down attention bias facilitates neurons which have as preferred location the

currently cued location. Also the origin of this bias, which might be sent from a spatial

working memory area, is not explicitly modeled here.

Both biases together can provide sufficient information about the task to be solved. They are

found to guide the competition and cooperation processes. All sensory inputs and biases are

set on top of the spontaneous background activity imposed onto the network from outside. The

non-specific excitatory neurons do not have sensory or biasing inputs. They are thought to be

involved in other cognitive tasks and to be only spontaneously and non-selectively active in the
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6 One-layer neurodynamical model for attentional filtering

present model and under the present task.

It is considered that the model corresponds to the situation of an already trained monkey,

thus the learning process itself is not explicitly modeled. Therefore, the connection weights

between the neurons are chosen (not learned or optimized in any manner) such as to intuitively

match a Hebbian learning paradigm. The model network is chosen to be fully connected, and

for simplicity reasons the neurons between any two populations are connected with the same

average synaptic weight. Within the same specific population, neurons are strongly co-activated

and are therefore, in agreement with the Hebbian learning rule, connected with a stronger than

average weight, w+ > 1 (the average connection weight in the network is chosen w0 = 1).

The activity of the neurons residing in populations selective for different objects is likely to

be anticorrelated resulting in weaker than average connections between them, w− < 1. These

weak synaptic connections were found to mediate competition between the populations selective

for different objects, and are referred to as competitive weight setting . Further, it is not

unreasonable to hypothesize that neurons with the same object selectivity are often co-activated

and consequently linked strongly, by Hebbian learning mechanisms, yet weaker than neurons

which share both object selectivity and location preference. Therefore, the weights between the

populations that encode for the same object are set in the range 1 < w′ ≤ w+. This weight

setting is found to mediate cooperation between the populations selective for the same object

and is referred to as cooperative weight setting .

Activities between specific and non-specific populations are likely to be close to uncorrelated.

Therefore, the weights from specific to non-specific populations are set to the average value

w0 = 1 and the corresponding feedback connections to wn ≤ 1. Finally, all connections from

and to the inhibitory population are set to the average value w0 = 1. The resulting connectivity

setting is illustrated in figure 6.2. In order to determine the system’s performance, the next

section investigates different operational modes of the model network by systematically exploring

the absolute strengths of the connections between different populations.

6.3 Exploration of network connectivity

Explicit simulations of network dynamics accurately capture the full temporal evolution of net-

work activity. However, they are computationally expensive and thus not efficient to use for sys-

tematic parameter explorations. For stationary conditions, the parameter space will be explored

using the mean-field formulation consistent with the type of neurons and network structure used

in this work, that was presented in chapter 5. The mean-field approximation formulates the av-

erage firing rates of the populations as a function of the model parameters. By performing a

systematic exploration of the structured connection weights, different parameter regimes cor-

responding to qualitatively different modes of operation (responses) of the proposed recurrent

network model can be investigated.

The values for the sensory inputs and biases have been chosen after exploring the effect of

different signal strengths on the results. It was found that the network behavior does not
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considerably depend on their exact strengths, as long as they stay within certain values: First,

the target bias should not be too strong, because otherwise it causes unattended target stimuli

to win the competition, but it is needed to stabilize the behavior that target stimuli generally

win over non-target stimuli. A suitable target-bias can be thought of breaking the symmetry

between target and non-target but weakly affecting the network behavior otherwise. Second,

the attentional bias should be not too weak compared to the input. The stronger the attentional

bias is, the more complete the attentional filtering effect becomes. For the present network, the

target bias should be in the range of 30 Hz or less, and the attentional bias in the range of 100

Hz or more, but it should be stressed that these numbers are only coarse estimates and because

of their dependency on network size, structure and parameters cannot be taken as a quantitative

predictions but only as qualitative trends.

Unless otherwise stated, the mean-field simulations were carried out as follows: The neuron

average firing rates were initialized to 3 Hz for the excitatory populations and 9 Hz for the

inhibitory population (typical values for the cortical spontaneous activity rates). The external

spontaneous background input received by each neuron was set to 800 ·3 Hz = 2.4 kHz. On top

of it, an attentional-bias of 100 Hz and a target-bias of 30 Hz were applied to the corresponding

populations throughout the whole simulation. A sensory input was encoded as a small increase

of 200 Hz in the external background input of the stimulated specific populations. For each

parameter set consisting of different values for the parameters w−, w+, w′ and wn, the mean-field

equations (see chapter 5) using the neuron model parameters from section 2.2.4 were integrated

over 1000 iterations.

Searching to reproduce the attentional filtering effect captured by the neurophysiological exper-

iment, we observed, as indicated by the comparison of the experimental results with explicit

simulations of the network spiking dynamics, that the network requires the following combina-

tion of response properties:

i). the network must show responses at all,

ii). the network should not show persistent post-stimulus activity (because it was not present

in the experimental results),

iii). the network should carry out competition between a target and a non-target population,

to implement the suppression of the non-attended object representation, and

iv). populations selective for the same object need to cooperate, in order to facilitate the

activation of the neurons selective for the attended object and non-attended location.

We tested the presence or absence of these four properties of network activity over the explored

parameter space as described next:

i). First, the responsiveness of the network was tested by applying the most effective stimulus

(target in both locations) and checking if the resulting activity of the target selective

populations exceeded a threshold of 10 Hz.

ii). Second, the persistent post-stimulus activity was tested by simulating the immediate post-

stimulus phase of the network, i.e. the time after the stimulus – target in both locations

– offset, and checking if the populations previously driven by input were still active. The

average firing rates of the neurons in the network were initiated to 50 Hz for the two
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6 One-layer neurodynamical model for attentional filtering

cooperating target selective populations, 3 Hz for the other excitatory populations, and 9

Hz for the inhibitory population. Persistent activity was assumed, if the activity of the

target selective populations still exceeded 3 Hz after 1000 iterations.

iii). The presence of competition was tested by applying one target and one non-target stim-

ulus and checking if the cooperating non-target populations could win against the target

populations when the stimulated non-target population was biased by the attentional sig-

nal. Winning was tested by requiring that the activity of the non-attended target selective

population does not exceed 3 Hz.

iv). Finally, it was examined under which conditions cooperation between neurons selective

for the same object became prominent. Cooperation was tested by providing one sensory

input and attentional bias to a target specific population, and the other sensory input to a

non-target specific population, and measuring whether the other target-specific population

was co-activated even without receiving any afferent input or bias.

At first, we set w− = 0, denoting complete competition, and explored how the network’s behavior

changes when w+, w′ and wn are varied. Figure 6.4 summarizes the borders of the parameter

regimes given by testing the four response properties, which are plotted as a function of wn

and a number of w+ and w′ combinations: i). right to the dotted line the network shows

responsiveness; ii). right to the dashed line the network shows persistent activity; iii). left to

the dash-dotted line the network shows competition between target and non-target populations;

iv). right to the solid line the network shows cooperation between the target specific populations.

As it can be seen from figure 6.4, all regimes are relatively robust, for a variety of weight values.

Changing w+ = w′ in concert results only in a shift of the regimes along the wn axis. The regime

where the network shows competition, cooperation and no persistent activity is associated to

the attentional filtering effect. It can be observed that when the weights w+ and w′ become too

small, the attentional filtering regime destabilizes. Likewise, if w′ becomes too small, attentional

filtering vanishes.

Next, we examined how different values for the weights connecting the target and non-target

populations, w−, and the specific and non-specific populations, wn, affect the collective behavior

of the network. The other two parameters are fixed to: w+ = 1.6 and w′ = 1.6 (the same values

for w+ and w′ will be used for the explicit network dynamics simulations in the next section).

The borders of the parameter regimes are summarized in figure 6.5 and correspond to the four

response properties of the network:

i). The dotted line marks the border – almost parallel to the w− axis – above which the

network is effectively driven by the weak sensory inputs, i.e. for wn > 0.5 the network shows

responsiveness;

ii). The dashed line separates the regimes of persistent activity (wn > 0.71) from pure

stimulus coding (wn < 0.71);

iii). Below the dash-dotted line the common input provided by the fibers from the non-

specific neurons added to the input coming from the other specific neurons is balanced with the

inhibitory input in such a way that it allows for efficient competition in the network;

iv). Right to the solid line (wn > 0.61) the system shows cooperation between the target
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Figure 6.4: Parameter space exploration illustrating the influence of w+ and w′ on the parameter
regimes as a function of wn, for w− = 0. The values on the y-axis denote the
two parameters w+ and w′. The parameter regimes are separated by border lines
denoting responsiveness (dotted line), persistent activity (dashed line), competition
(dash-dotted line) and cooperation (solid line). For more details see text.

specific populations.

It turns out that for stabilizing the attentional filtering regime w− should be weak, but otherwise

its actual value does not strongly influence the attentional filtering behavior. As it can be seen

in figure 6.5, the border lines for responsiveness, cooperative setting and persistent activity

are given by fixed values of wn and are independent of the w− value. For wn above 0.51 the

total excitation in the network becomes sufficient to amplify small external inputs such that the

network becomes responsive. Further on, increasing wn above 0.61 the total excitation in the

network becomes sufficient to implement cooperation. And for wn above 0.71 the reverberations

in the network become strong enough to autonomously stabilize the post-stimulus activity.

Most of the excitatory neurons considered in the model belong to a population of non-specific

neurons. In the real brain, these neurons would probably contribute to the implementation of

some other functions, not related to the task modeled here. In particular some of these neurons

could encode stimuli that are irrelevant for the present task. In both explorations, all four tested

properties of the network activity were influenced by the parameter wn expressing the weights

from the non-specific to the specific neurons. This indicates that the activity of the non-specific
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Figure 6.5: Parameter space exploration over different values of w− and wn, for w+ = 1.6 and
w′ = 1.6. The parameter regimes are separated by border lines denoting responsive-
ness (dotted line), persistent activity (dashed line), competition (dash-dotted line)
and cooperation (solid line).

neurons affects the total level of excitation in the network and can be thought of as a background

current whose strength influences the functional regime of the network (as described in Stetter

(2006)).

From the presented mean-field simulation results, a number of conclusions can be drawn. First,

they show the existence of different parameter regimes, for which the model spiking network

shows qualitatively different kinds of behavior. The following operational modes of the simple

one-layer network can be specified:

• Input amplification mode - for w− around 1 and small values of wn, the network shows

neither competition nor cooperation;

• Selective mode - for small values of both w− and wn, the network shows pure competition;

• Attentional filtering mode - for small values of w− and intermediate wn, the network shows

both competition and cooperation, and no persistent activity;

• Correlation facilitation mode - for w− around 1 and intermediate wn, the network shows

pure cooperation;

• Non-selective working memory mode - for large values of both w− and wn, the network
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shows cooperation and persistent activity;

• Selective working memory mode - for small values of w− and large values of wn, the network

shows competition, cooperation, and persistent activity.

Second, the population of non-specific neurons proves important for setting a certain activity

level in the network, which corresponds to a certain operational mode. One thing to note here

is that the connectivity to and from the non-specific population is non-symmetric. This was

mainly chosen in order to remain close to the architectural choice of previous models and thus

permit the comparison of these results with other modeling results. Changing the weights of the

non-specific population to be symmetric and equal to wn gives qualitatively the same results as

with the non-symmetric setting.

In summary, cooperation, w′ > 1, in combination with competition, w− small and wn interme-

diate, appears to be important for the generation of the measured attentional filtering effect.

Using these results, full non-stationary simulations of the spiking network model were performed,

and their results will be presented in the next section.

6.4 Explicit temporal simulations of spiking dynamics

Explicit simulations of the network spiking dynamics were carried out by using the coupled

differential equations given in section 2.2.4. All four different bilateral stimuli combinations

that were used in the visual attentional experiment of Everling et al. (2002) were applied to the

model network, as presented in figure 6.3 a-d. Each sensory stimulus was applied for a time

period of 300 ms, with a total strength of 400 Hz per stimulus-input, distributed over the 800

afferent fibers. The target and attentional biases were set to 16 and 160 Hz, respectively, and

were left constant throughout the entire simulation run. As it can be observed, these values are

different from the ones used in the mean-field analysis. The spiking network is more unstable

given the random firing times, and it needs a stronger sensory input and attentional bias and also

a weaker target bias for a consistent response. Using this setting, the 1000 coupled equations

(2.3) were integrated numerically using the second order Runge-Kutta method with a step size

of 0.1 ms. After 800 ms from stimulus onset, an excitatory flush of strength 5 Hz per afferent

fiber was given to all neurons. This simulates a strong generic brain activity and causes the

reset of the network activity that is mediated over the inhibitory interneurons.

Figure 6.6 demonstrates the necessary ingredients for the attentional filtering effect to occur.

The left column, figure 6.6-1, displays the experimental results from Everling et al. (2002) in the

case of the four bilateral stimulus combinations (illustrated as insets). The blue lines correspond

to attention directed to the preferred location and the red lines correspond to attention directed

to the non-preferred location. For the model network simulations (figure 6.6.2-4), the results

represent the population-averaged responses of the model ’target right selective’ (TR) neurons

for the same stimulus conditions and attentional states as in the experimental results.

In the second column, figure 6.6-2, competition and cooperation are combined, using the param-

eters w+ = 1.6, w′ = 1.6, wn = 0.62 and w− = 0.3. It can be observed, that the simple network
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architecture using both conditions of competition and cooperation shows the attentional filter-

ing of the information present in the unattended hemifield, similar to the experimental results

measured in the monkey PFC. It can be concluded that attentional filtering consists of four

different phenomena which can be assigned to the four stimulus conditions:

1. Location preference: When both hemifields contain target stimuli, the strength of the

response reflects the preference for a specific location of the respective target selective

neurons (figure 6.6-1a, 6.6-2a).

2. Attentional suppression: Although the target appears in the preferred location of the

measured neurons, the response is completely shut down, as soon as attention is shifted

away from the target-stimulated side (figures 6.6-1b and 6.6-2b, red lines).

3. Attentional facilitation: In contrast, when a target appears in the non-preferred location

of the measured neurons, the neural response is increased, as soon as attention is shifted

towards it (figures 6.6-1c, 6.6-2c, red lines).

4. Finally, when both hemifields are stimulated with non-target stimuli, the response stays

low, reflecting the target-selectivity of the measured neurons (figures 6.6-1d, 6.6-2d).

Combining these effects, both biological and model neurons encode only the information pre-

sented in the attended hemifield (compare blue lines in figure 6.6-1, 6.6-2 a and b with c and d,

compare the red lines in figure 6.6-1, 6.6-2 a and c with b and d), and ignore the content of the

non-attended hemifield (compare blue lines in figure 6.6-1, 6.6-2 a with b and c with d, compare

the red lines in figure 6.6-1, 6.6-2 a with c and b with d). The content of the non-attended

hemifield is not encoded in the responses of the measured neurons.

It can be seen that the model traces from figure 6.6-2 are in good agreement with the experi-

mental results. This demonstrates that a weak attentional bias can be strongly and selectively

amplified by cooperation and competition that leads to an all-or-none attentional filtering ef-

fect. By choosing different parameters, it was shown that in the framework of the presented

model both cooperation and competition are needed together in order to reproduce the referred

effect. Competition, mediated by a small weight w−, implements attentional suppression, and

cooperation, mediated by a strong weight w′, implements attentional facilitation. When both

mechanisms act together, this simple model shows a strong ’all-or-none’ attentional filtering

effect, which is mediated by weak top-down biases.

Two further simulations, for which the network was equipped only with competition (figure

6.6-3) or only with cooperation (figure 6.6-4) were carried out in order to examine the roles of

cooperation or competition, respectively, for producing the referred attentional filtering effect.

We say that a network exhibits cooperation when, due to recurrent processing, the activities of

different populations end up being equalized. In contrast, a network exhibits competition, when

differences between activities become amplified. In order to observe cooperation, the network

needs a stronger connection weight w′ between populations coding for the same category. This

accounts for the equalization of the two target or two non-target population activities. In

contrast, in order to observe competition, a weak connection weight w− is required between
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Figure 6.6: Experimental results of the focused attention task (column 1, adapted from
Everling et al. (2002)) and model simulation results for three different parameter set-
tings: cooperation and competition setting: w+ = 1.6, w′ = 1.6, wn = 0.62, w− = 0.3
(column 2); competition only setting: w+ = 1.6, w′ = wn = 0.76, w− = 0.3 (column
3); cooperation only setting: w+ = 1.6, w′ = 1.6, w− = 1, wn− = 0.65 (column 4).
The results depict the mean neuronal responses of the target selective neurons to
the four bilateral stimuli combinations shown in the inset: (a) target in both loca-
tions, (b) target in preferred location only, (c) target in non-preferred location, (d)
non-target stimuli in both locations. Blue lines correspond to attention focused to
the preferred location and the red lines to attention focused to the non-preferred
location of the measured PFC neurons and model-neurons.

the populations encoding for different objects. Mediated by global inhibition, this succeeds in

amplifying differences between the corresponding population activities.

When the network is dominated by competition (figure 6.6-3), the responses in the case of a

target stimulus presented in the preferred location decrease (figure 6.6-3 a and b), and there is

no attentional facilitation in the network (see the zero activity in figure 6.6-3c, red line). This is
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6 One-layer neurodynamical model for attentional filtering

Figure 6.7: Simulation results of the model network for the competition and cooperation setting
in the case of three different dopamine levels: normal dopamine level (column 1);
weak increase of dopamine D2 receptor activity (column 2); strong increase of D2
receptor activity (column 3). The results depict the mean neuronal responses of the
target selective neurons, to the four bilateral stimuli combinations shown in the inset:
(a) target stimuli in both locations, (b) target in preferred location only, (c) target
in non-preferred location, (d) non-target stimuli in both locations. For each stimulus
combinations the two traces reflect the attended location. Blue lines correspond to
attention focused to the preferred location and the red lines to attention focused to
the non-preferred location, of the target selective model-neurons.

the case, because in the present model the facilitation effect is caused by a lateral propagation

of activity from the stimulated TL population to the non-stimulated TR population over the
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6.4 Explicit temporal simulations of spiking dynamics

recurrent connections. Because these connections are too weak in the competition-only setting

(i.e., w′ is too small), facilitation does not occur.

When the network is dominated by cooperation (figure 6.6-4), the responses between attended

and non-attended conditions are equalized, and as a consequence the attentional effects diss-

appear (compare blue with red lines in figure 6.6-4). In particular, attentional suppression is

no longer observed. In summary, competition, mediated by a small weight w−, implements

attentional suppression, and cooperation, mediated by a strong weight w′, implements atten-

tional facilitation. When both mechanisms act together, the model shows the strong all-or-none

attentional filtering effect, which is mediated by the weak top-down biases.

Departing from the parameter setting which correctly reproduces the experiment, one can also

formulate concrete quantitative predictions, suitable for experimental testing, by observing the

effect of neurotransmitters or pharmacological treatment. In particular, the effects of manip-

ulating the dopamine level are studied, by evaluating the effect of an increase in dopamine

concentration on the attentional filtering mechanism for the proposed network. An increase

in dopamine concentration, accompanied by an increase in D2 receptor activation, is known

to decrease both NMDA and GABA conductances (Law-Tho et al., 1994; Zheng et al., 1999).

Hence, the increase in dopamine concentration is modeled here by a decrease in both NMDA

and GABA conductances. This was achieved by multiplying both NMDA and GABA conduc-

tances by a factor of 0.7 or 0.2 to obtain a weak or strong, respectively, increase in D2 receptor

activation.

The results are presented in figure 6.7. The graphs show the population-averaged responses

of the model TR neurons for the same stimulus conditions and attentional states as for the

experimental results. For all three cases, the network was set up to show both cooperation and

competition: w+ = 1.6, w′ = 1.6, w− = 0.3, wn = 0.62. The first column presents the simulation

results of the model network with a normal level of dopamine. The model neuronal responses in

the case of a weak increase in D2 receptor activation, modeled by multiplying both NMDA and

GABA conductances by a factor of 0.7, are presented in the second column. The model neuronal

responses in the case of a strong increase in D2 receptor activation, modeled by multiplying the

NMDA and GABA conductances by a factor of 0.2, are presented in the third column.

It can be seen that when the dopamine level increases slightly, the attention facilitation effect

previously defined becomes impaired (figure 6.7, column 2-c). This might be related to a de-

graded ability to shift selective attention to a new, non-prominent stimulus. As the level of

dopamine is further increased, the attentional suppression effect also becomes impaired, and the

attentional effect becomes, in general, more impaired (figure 6.7, column 3). Hence, the results

suggest that an increase in dopamine concentration will lead to a progressive weakening of the

attentional filtering effect.
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6 One-layer neurodynamical model for attentional filtering

6.5 Discussion of the results

In this chapter, a network of integrate and fire neurons characterized by biophysically realistic

spiking and synaptic dynamics, was used to model possible mechanisms underlying the visual

attention filtering effect measured in Everling et al. (2002). To our knowledge, this is the first

computational model proposed to explain the referred attentional effect. The experimental re-

sults show that the presence of a target in an unattended hemifield is not at all signaled in the

target-selective neurons of the PFC. The information is totally filtered out by an attentional

mechanism. However, presenting a target in the attended visual field will always exert a strong

excitation in the target-selective neurons even for those that are preferentially activated by stim-

uli in the other visual field. This strong effect was explained in this work through competition

and cooperation between the units of a simple one-layer network model, where competition was

mediated by a weak attentional bias defining the relevant information to the current behavior.

Earlier models of attentional (Rolls & Deco, 2002; Corchs et al., 2003) and working memory phe-

nomena (Brunel & Wang, 2001) were developed without considering cooperative weight settings.

However, when working memory becomes selective, the currently stored information becomes

dependent on the current brain state. Hence, context-dependent working memory requires a

mechanism of association, which in general allows context to modulate working memory for-

mation. Recent neurodynamical models specify that a more complex structure of the recurrent

weights than the one originally proposed by in Brunel and Wang is needed in order to create

selective working memory or rule-dependent working memory (Deco & Rolls, 2003; Deco et al.,

2004).

In this study, the effects of such a complex weight setting on the network operation were system-

atically explored. It was found that cooperation between populations is an important structural

feature of the network. Roughly speaking, cooperation allows that the activation of a popu-

lation can be propagated to other populations encoding behaviorally associated information.

The first population serves as the context, which enables or facilitates the response of the other

populations. In general, cooperation can be hypothesized as the basis of categorization (bind-

ing information together referring to the same category), of different associations (for example

between sensations) or even of mental manipulation. Here we suggest cooperation - besides

competition - as a second fundamental principle for the neural basis of cognitive processes in

the prefrontal cortex leading to what we name the Extended Biased Cooperation-Competition

Hypothesis.

The attentional facilitation effect was successfully implemented through the cooperative weight

setting, i.e. strong weights between populations encoding associated information. It might

be hypothesized that the same effect could be obtained by divergent inputs, for example the

neurons in the TL (target-left) population would also receive some external sensory input when

the target was presented in the right hemifield. This divergence of the inputs was not modeled in

our network since preliminary results showed that it could not account so well for the attentional

filtering effect. The facilitation effect seems to need the reverberation between the pairs of

specific populations.
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6.5 Discussion of the results

The network model used in this work represents a small area of the PFC. The PFC is a neocortical

structure connecting with all sensory and motor areas and with other cortical and sub-cortical

systems. This broad connectivity structure makes the PFC suitable to coordinate different

types of information converging from many brain regions. In fact, neurophysiology, imaging

and computational studies have suggested that PFC plays an important role in cognitive and

behavioral control, and it is thought that the wide connectivity that characterizes PFC might

determine its crucial role in cognition. However, the focus of this work involves the investigation

of the possible neural mechanisms within the PFC that underlie complex behaviors and hence

the model is restricted to a minimal network of spiking neurons. The emphasis is not put in

modeling in detail the whole hierarchy of cortical regions involved in the attentional filtering

effect. Therefore, in the presented network, the two biases (for attention and identity of the

target) are hypothesized to come from cortical areas not explicitly modeled. We also do not

explicitly model the cortical processing of visual information before it reaches the prefrontal

cortex. Instead, we consider that the inputs to the network are already signaling a specific pair

of object and location. At a later stage one could model the biases explicitly by having specific

populations operating in a bistability regime (i.e., able of persistent activity over a delay period)

coding for the present context of the task. In principle, the processing of the visual input by

early cortical areas could also be added to the present model, using for example models similar

to those presented by Rolls & Deco (2002).

Given the complexity of the PFC and its associated projections, it is remarkable that we could

explain the experimental results using this very simple network model. Important to note how-

ever, is that although we reproduced qualitatively the attentional filtering effect, the quantitative

aspects of the results could not be explained by this simple model. In particular, the results

of the simulations could not account for the values of the baseline activity and the strength

of the responses. We tried to reproduce these features of the data by modifying the values

considered for the conductances. The high firing rates observed in figure 6.6-2 a and b could be

decreased. However this could not be achieved without reducing also the attentional facilitation

effect (figure 6.6-2 c), which tended to disappear. In order to modify in a disproportional way

the peak activations, a more detailed network model, containing several processing layers, would

be required. The interplay between such layers might contribute to the reduction of the peak

activity found when targets are presented to both hemifields, by weakening the input at an

earlier stage through a top-down attentional bias. The attentional weakening would lead to a

smaller input to the target encoding population with preference for the non-attended location

and hence induce less activity for the cooperating pair of target encoding populations.

The number of neurons used in the network (1000) is relatively small, and was chosen for

computational feasibility. The network can be scaled to have larger number of neurons (see

Brunel & Wang, 2001), thus reducing the finite-size effects while preserving the qualitative be-

havior of the system. The system is robust to changes in the relative sizes of the neuronal

populations, provided that a large part of the excitatory neurons are non-specific. This charac-

teristic is important to assure the stability of the activity in the network, as well as the stability

of several important operational regimes identified in the present work. In fact, in biology, for

any possible state of the system there is always a large population of non-specific neurons, cor-
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6 One-layer neurodynamical model for attentional filtering

responding to all other neurons not involved in coding the present particular state. Stability

of operational modes might then be an important functional role for distributed representation

and sparse coding in the brain.

A putative aspect of attentional filtering – inattentional blindness – has been behaviorally stud-

ied in humans. The neuronal mechanisms underlying this effect have been hypothesized to be the

ones experimentally measured by Everling et al. (2002). However, single neuron measurements

cannot be directly compared with behavioral performance. The presented neurodynamical com-

putational model with biologically inspired spiking dynamics captures the neuronal behavior

underlying the mechanisms of visual attentional filtering, as measured in Everling et al. (2002),

and hence can in principle be used to make predictions concerning human psychophysical ex-

perimental results. It can also be extended to allow comparison with neuroimaging results (see

Deco et al., 2004). The model can thus provide an ideal theoretical framework to link the electro-

physiological measurements with the results from human studies, both measuring performance

and brain activity through imaging methods.

In this work two experimentally testable predictions of the model were formulated. First predic-

tion relates an increase in the level of dopamine with a progressive impairment of the attentional

filtering effect. In particular, as the dopamine concentration increases, the model predicts that

attentional facilitation is first affected, followed by the impairment of attentional suppression.

According to these results, in terms of behavior, an increase in the level of dopamine is expected

to impair performance, in the sense that the presence of distracting stimuli will interfere with

the processing of the task-relevant information. The other prediction is that the presentation of

an increasing number of task irrelevant stimuli will eventually lead to the disappearance of the

attentional filtering effect. The observed behavior of the model suggests that the ability to filter

out stimuli with basis on attention will degrade as the number of distracting stimuli increases.

Further, the mean-field explorations allowed us to characterize the model network for a number

of different overlapping working regimes: competition, cooperation, persistent activity and non-

competitive amplification, which in combination form quite different modes of operation. For

example non-persistent activity and competition yield an attentional selective mode, while non-

persistent and non-competition result in a non-competitive amplification mode. The grouping of

specific populations, effect we name cooperation, together with competition for both bistability

and single stability regimes might be a more general mechanism used in the brain to implement

computation. The contribution of this study is then twofold: we reveal different modes of

operation of the simple one-layer network, which can be used to perform distinct operations,

and model the neuronal mechanisms underlying visual attentional filtering.

66
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selectivity tuning in ITC

This chapter analyzes the computational principles underlying the neuronal correlates of per-

ceptual learning, showing how learning affects the connectivity between two model areas and

how the resulting intrinsic attentional signal affects the level of competition and cooperation

in the network in order to express the relevant information for the behavioral task. The study

shows that higher-level cognitive feedback encoding the learned categories can explain the en-

hancement of selectivity in ITC neurons to the stimulus features which are relevant for a learned

visual categorization task and that the referred tuning effect can be correctly reproduced by a

biologically-inspired learning algorithm that robustly converges to a stable fixed point of the

learning dynamics.

7.1 Neural selective tuning in ITC and concept formation in PFC

Perceptual learning represents an important cognitive process that involves structural and

functional modifications of the brain following sensorial experience, and leads to improvements

in task performance with training or practice (Goldstone, 1998). Different studies show that

neurons from cortical areas involved in higher-stages of visual processing become tuned to some

particular patterns of the visual input. These changes in the response properties of the cor-

tical neurons, supposed to be mediated by higher-level top-down inputs resulting from cogni-

tive mechanisms like concept formation and attention, are associated with perceptual learning

(Fine & Jacobs, 2002).

Trying to understand the neural mechanisms of perceptual learning represents a challenging task

that aims, along with other studies, at a better understanding of brain functionality. Infero-

temporal cortex (ITC) and prefrontal cortex (PFC) are two interconnected cortical areas thought

to be involved in the performance of visual tasks, such as visual recognition, categorization and

memory, although the contribution of each of these two areas in visual processing is not fully

understood. In this context, recent studies have suggested that PFC is mainly associated

with cognitive processing (such as categorization), while ITC is more associated with feature

processing, (Freedman et al., 2003). Categorization is an important cognitive mechanism for

information processing, involved in concept formation. Further studies suggest that, top-down

signals from PFC could partially determine ITC neuronal responses (Freedman et al., 2003;

Tomita et al., 1999).

In a recent neurophysiological experiment Sigala & Logothetis (2002) have studied how the rep-
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7 Two-layer spiking neural network modeling selectivity tuning in ITC

resentation in ITC of different visual stimulus features was affected by their behavioral relevance,

by monitoring the activity level of single ITC neurons of awake behaving monkeys engaged in

a visual categorization task. For this experiment, the monkeys learned to categorize a set of

schematic images, representing faces or fish (the visual stimuli), into two categories. Each cat-

egory was associated to one lever that the monkey had to pull when the presented stimulus

belonged to that category. The stimuli were characterized by a fixed set of four varying fea-

tures, each of them having a discrete small set of values (high, medium or low) as shown in

figure 7.1.a. Only two of the varying features, referred to as diagnostic, were relevant for solving

the categorization task. The two categories could be linearly separated along the two diagnos-

tic features in the stimulus space, as depicted in figure 7.1.a bottom. The other two features,

referred to as non-diagnostic, gave no information about the stimulus associated category and

were irrelevant for the ongoing task. After training, the activity level of the visual responsive

ITC neurons was measured. The experimental results, presented in Sigala & Logothetis (2002)

and reproduced in figure 7.1.b show that after training the selectivity for the different levels of

the task-relevant features, the diagnostic features, was enhanced (figure 7.1.b - top panel) in

comparison to the selectivity for the levels of the other non-diagnostic features (figure 7.1.b -

lower panel). Their results suggest that ITC not only encodes objects and features, but their

representation is tuned by their relevance to behavior.

Taking into account all these findings on perceptual learning, higher visual processing and the

tuning of ITC neurons during the categorization task (as reported by Sigala & Logothetis, 2002),

we hypothesize that the enhancement of selectivity to the diagnostic features (see figure 7.1.b-

top panel) in ITC might emerge, in the behavioral context, through a higher-level cognitive

feedback, originating from category encoding neurons, possibly residing in the PFC. According

to this hypothesis, the selectivity for the diagnostic features, which is acquired during training,

is formed as a consequence of the top-down signals coming from an area where information

about the learned categories is stored. This could explain the underlying neural substrate of the

referred perceptual tuning effect.

In order to test the above mentioned hypothesis and account for the presented experimental re-

sults, a neurodynamical two-layer cortical model that simulates two small interconnected areas

from ITC and PFC is proposed (Szabo et al., 2006). The model is constructed in the framework

of Biased-Competition and Cooperation (Szabo et al., 2004; Almeida et al., 2004) and the choice

of its structure and parameters are presented in section 7.2. The next section, 7.3, characterizes

network’s modes of operation by exploring different parameter regimes using the mean-field ap-

proximation. In section 7.4 the non-stationary dynamics of the model network is simulated using

a parameter set where the neurons show selectivity tuning and the results are compared with

the experimental results. Choosing a learning prescription that robustly modifies the network

free parameters to reach a configuration where the desired associations of the categorization

task are correctly performed, section 7.5 presents the evolution of selectivity tuning of the ITC

model neurons during learning. The last section, 7.6, contains the discussion of the results and

conclusions.
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Figure 7.1: a) Stimuli and stimulus space for the visual categorization task adapted from
Sigala & Logothetis (2002). The stimuli have four varying features: Eye-height,
Eye-separation, Nose-length and Mouth-height, and can be linearly separated in two
categories along two of the four dimensions: Eye-height and Eye-separation. b) Ex-
perimental results adapted from Sigala & Logothetis (2002). The traces represent
the average activation of the recorded visual responsive ITC neurons (a total of 96
units) after training (i.e., after the monkeys have learned to categorize the presented
stimuli). For each neuron, the responses were sorted by the presented features and
averaged over many trials. The resulting average neuronal activity levels reflect
which feature value excite a given neuron most and least, respectively. The popula-
tion average activation was calculated by grouping these average neuronal activity
levels according to their best (black lines) and worst (gray lines) responses to the
levels of the diagnostic feature Eye-height (top panel) and the non-diagnostic feature
Nose-length (bottom panel).
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7 Two-layer spiking neural network modeling selectivity tuning in ITC

7.2 Network structure and parameters

Extending previously introduced biologically-inspired neurocomputational models that were

shown to capture many aspects of the dynamics shown by neurophysiological measurements

(Brunel & Wang, 2001; Deco & Rolls, 2003; Szabo et al., 2004), a minimal model accounting

for the response enhancement to the relevant features of the ITC neurons is proposed. The

model network, presented in figure 7.2, is structured in two interconnected layers of integrate-

and-fire neurons that follow the general structure and properties described in chapter 3. The

first layer corresponds to a small area in ITC that receives external bottom-up information

about the presented stimulus and is organized into populations of neurons which receive feature

specific inputs. The second layer corresponds to a small area in PFC that contains neuronal

populations connected to the populations in ITC in a way which allows them to encode for the

corresponding learned categories.

Layer 2

Layer 1

Stimulus presentation Stimulus presentation

Ns

Ns Inh

Inh

w

owow
owdwiw

dw

 +2w

w1w1w1

 −2 C2C1

O2O1D2D1

 +2w

Figure 7.2: Schematic representation of the two-layer model architecture. Each layer consists of a
fixed number of specific populations, a non-specific population (Ns) and an inhibitory
population (Inh). First layer (ITC model layer) receives external inputs from lower
cortical areas encoding the presented stimulus features: D1 receives input when the
diagnostic feature is high, D2 when the diagnostic feature is low, O1 when the other
feature is high, and O2 when the other feature is low. The second layer (PFC model
layer) encodes the two categories to be learned (C1 and C2), and interacts with the
first layer through the connections wd, wi and wo. (for more details see text)

For this minimal model, we consider that the presented stimuli are characterized by only two

features: Eye-height and Nose-length, each with two discrete values (high and low), and that

the two categories are determined exclusively by one of the features, the diagnostic feature:

Eye-height. This results in four specific populations in the ITC layer, denoted according to the

specific input that they receive: one population receives input when the stimulus is characterized

by the diagnostic feature being high (population D1), one when the diagnostic feature is low

(population D2), one when the other feature is high (O1) and one when the other feature is low

(O2). The specific populations in the PFC model layer are selective for the first category (C1)

and second category (C2), respectively (see figure 7.2). The stimuli having the value high for

the diagnostic feature will be classified as belonging to category C1 and the stimuli having the

value low for the diagnostic feature as belonging to category C2.
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Each layer is constructed of a large number of LIF-NS cells (presented in section 2.2.4), fully

connected. First layer, corresponding to ITC, is composed of NE1 = 800 excitatory model

neurons organized into groups of f · NE1 neurons for each specific population, (1 − 4f) · NE1

neurons for the non-specific population and NI1 = 200 inhibitory model neurons forming the

inhibitory population. The second layer, corresponding to PFC, is composed of NE2 = 520

excitatory model neurons (with f · NE2 neurons for each specific population, (1 − 2f) · NE2

neurons for the non-specific population) and NI2 = 130 inhibitory model neurons grouped

into the inhibitory population. For simplicity we used the same number of neurons for the

specific populations in each layer and set f = 0.1. The chosen values respect the proportion

of 80% excitatory neurons and 20% inhibitory neurons, in order to be consistent with the

neurophysiological data (Abeles, 1991).

The individual populations are driven by two different kinds of input. First, all neurons in

the model network receive spontaneous background activity from outside the module through

Next = 800 external excitatory connections, each carrying Poisson spike trains at a spontaneous

rate of 3 Hz (the typical value observed in the cerebral cortex Wilson et al., 1994; Koch & Fuster,

1989), which amounts to a background external input of 2.4 kHz for each neuron. And second,

the neurons in the four specific populations from the first (ITC) layer also receive, in addition to

the background input, external inputs encoding stimulus specific information, which are assumed

to originate from lower areas which process the visual scene such as to provide these signals.

For the simple case of having only two features, each with two values, results four different

combinations of inputs that can be presented to the network. For the corresponding neurons

in the specific populations, the rate of the external Poisson train is increased by λstim = 150

Hz. The non-specific excitatory neurons receive only the common background input. They are

thought to be involved in other cognitive tasks and to be only spontaneously and non-selectively

active in the present framework.

The conductance values for the synapses between pairs of neurons are modulated by connection

weights, which can deviate from their default value of 1. The structure and function of the

network is achieved by differentially modulating these weights within and between populations

of neurons. The structure is set so that the sum of all connection weights to each neuron is

1, to assure stability (see Brunel & Wang, 2001). The two layers are fully connected, but the

interlayer connectivity is restricted to the specific populations only. The labeling of the weights

is defined in figure 7.2.

Inside each layer the weights are considered fixed and chosen as follows: According to preliminary

simulations it has proven necessary to chose no structure in the ITC model layer in order to

achieve weak selectivity for the case when the feedback was not present. In this way, the

enhancement of selectivity in the ITC layer is obtained only as a result of categorization encoding

in the PFC layer. All weights are set equal to the default value w1 = 1, thus implementing

cooperation between all ITC specific populations (Szabo et al., 2004). The cooperating setting

in the ITC layer can be argumented by the fact that different features of a face always co-

occur in natural images, e.g. nose (long or short) will always come together with eyes (high or

low). In the PFC layer, neurons encoding different categories are likely to have anti-correlated
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7 Two-layer spiking neural network modeling selectivity tuning in ITC

activity resulting, following a Hebbian learning paradigm, in weaker than average connections

between the populations C1 and C2, implementing thus competition between them. For this

we choose the extreme case w−2 = 0. The weights within the same category population are

set to the default value w+2 = 1, as we are not interested in persistent activity (achieved for

strong recurrent connections, Almeida et al. (2004)) and look for a regime with small firing

rates, as reported in the experimental data. For both layers, the weights from and to the non-

specific populations were computed so that the sum of all excitatory connection weights to each

excitatory neuron sums up to 1 and all connections from and to the inhibitory population are

set to the default value of 1.

Finally, the connections between the two layers, restricted to the specific populations only, are

set as follows: the neurons selective for the non-diagnostic feature and the category neurons are

assumed to have uncorrelated activities, and the same weight wo is chosen for all the connections

between them. The activities of the diagnostic selective neurons and the corresponding category

neurons are likely to be correlated, so we hypothesize that the connection strengths between

D1 and C1 (and D2 and C2, respectively) will increase by training so that wd > wo. Likewise

the neurons in D1 and C2 (D2 and C1, respectively) probably have anti correlated activities,

resulting in a decrease of the strengths by training so that wi < wo. Unless specified otherwise,

throughout this chapter, the weights for the feedback connections (from PFC to ITC) are taken

to be half of the weight values for the corresponding feedforward connections (from ITC to

PFC) and the values used in the next sections for the parameters wd, wi and wo will represent

the feedforward connection values. The choice for the feed-forward connections to have, on

average, the double strength of the feedback connections is inspired from the idea that between

the cortical areas of the brain the feed-forward projections have a strong driving role, while the

feedback projections have a weaker modulatory role. The absolute strengths of the connection

weights between the two layers are explored in the next section in order to analyze different

operational modes of the model network.

7.3 Exploration of network connectivity

The behavior of the model network whose architecture and parameters were presented in section

7.2 is analyzed by exploring the structure of the excitatory weight setting between the two model

cortical layers, using the mean-field approximation, presented in chapter 5 that is fully consistent

with the model used. The mean-field approximation allows an exhaustive analysis of the network

regimes as a function of the parameter space. For each simulated point in the parameter space,

corresponding to a fixed set of inter-layer weights, the Mean-field simulation was performed for

all four possible stimuli presentations and the results were grouped according to the best and

worst responses for each feature, in the same way as for the experimental results. The simulation

started by initializing the frequencies to 3 Hz and 9 Hz for the excitatory and inhibitory neurons,

respectively, and setting the rate of the external input to each model neuron to 2.4 kHz. The

stimulus presentation was modeled as an extra input rate of 150 Hz to the corresponding specific

populations in the ITC layer. After setting all the parameters, the Mean-field equations (see

chapter 5), were integrated using the Euler algorithm with a step size 0.1 for 3000 iterations,
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Figure 7.3: Parameter space exploration over different values of the weights between the two
layers. Both graphs show the average spiking rates of feature selective neurons
according to their best (black lines) and worst (gray lines) responses to the levels of
diagnostic (solid lines) and other non-diagnostic (dashed lines) features, exploring
(a.) the necessary connection strength between the two layers in order to obtain
the desired effect (wd takes values from 0 to 0.8, wo = wd/2 and wi = 0) and
(b.) the relative difference of these connections (starting from equal connectivity
wd = wo = wi = 0.4, wd is increased and in the same time wi is decreased, until
wd = 0.8, wo = 0.4, wi = 0).

enough to achieve convergence.

Figure 7.3 shows how the selectivity for the diagnostic feature, when compared to that of the

other non-diagnostic feature, behaves as a function of the connection strengths between the

two layers. Figure 7.3.a explores the necessary connection strength between the two model

cortical areas needed to influence one another. It was obtained keeping wi = 0 and changing

wd and wo, subject to the constraint wd = 2 · wo. Figure 7.3.b explores the relative difference

of the connection strengths between the category populations in PFC and each of the specific

populations in ITC. It was obtained keeping fixed wo = 0.4 and increasing the difference between

wd and wi subject to the constraint wd + wi = 2 · wo = 0.8. Both graphs show the average

spiking rates of all selective neurons in the ITC model layer according to their best (black lines)

and worst (gray lines) responses to the levels of diagnostic (solid lines) and other non-diagnostic

(dashed lines) features.

The results show that the selectivities for the diagnostic and non-diagnostic features are equal in

the case when there is no connectivity between the two layers (figure 7.3.a-left side) or when all

the connection weights are equal (figure 7.3.b-left side). But when wd increases in comparison to

wi, both changing wo (figure 7.3.a) or keeping it fixed (figure 7.3.b), the selectivity for the level

of the diagnostic feature increases while the selectivity for the level of the non-diagnostic feature

remains approximately constant. Thus the increase in selectivity is mediated by category specific

top-down input from the PFC layer, and the connectivity between the two layers should reflect

the following categorization rule: neurons in ITC receiving inputs encoding for the diagnostic

feature (for example D1 receive input when presented stimulus has diagnostic feature being
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7 Two-layer spiking neural network modeling selectivity tuning in ITC

Figure 7.4: Parameter space exploration for different connection weights between the layers. The
x axis represents the relative difference in the connectivity of the diagnostic specific
populations to their corresponding (wd) or non-corresponding (wi) category, and the
y axis represents the average connection strength between the layers. The weights
connecting the category populations with O1 and O2 in the ITC layer, were subject
to the constraint wo = wd/2. The activity of the four specific populations in the
ITC layer was evaluated, and two parameters were calculated in order to measure
the Feature selectivity and Diagnostic tuning of the ITC specific neurons. Inside the
black solid line without markers the network performed correct categorization. The
dashed (dotted) lines represent the maximum activities in the ITC layer (PFC layer,
respectively). The gray area corresponds to the region in the explored parameter
space where all the conditions were fulfilled. The black x in the graph corresponds
to the parameters used in the spiking simulation presented in figure 7.6.

high) should be strongly connected to the corresponding category (C1 through wd) and weekly

connected with the other category (C2 through wi). The increased difference for the spiking

rates associated with the diagnostic feature shows that there is an enhancement of selectivity for

the level of this feature in the ITC layer that it is mediated by the category specific top-down

inputs from the PFC layer.

The two-dimensional parameter explorations in figures 7.4 and 7.5 further analyze the behavior

of the network for a large value range of the excitatory weights connecting the two model cortical
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layers. The relation between wd and wi, relative to the total connection strength is explored in

figure 7.4, and the relation between the feedforward and feedback connectivities in figure 7.5.

For both graphs each point was simulated for all four possible stimuli presentations, and the

activities of all specific populations were evaluated in order to conclude about the network’s

operational modes. From the activity of the four specific populations in the ITC layer, two

parameters that measured the Feature selectivity (gray solid line with ▽ markers) and Diagnostic

tuning (black solid line with • markers) of the ITC selective neurons were calculated. Feature

selectivity measures, for a specified set of parameters, the selectivity for the diagnostic feature

through a selectivity index calculated as the difference between the best diagnostic feature value

and worst diagnostic feature value activities divided by their sum. Diagnostic tuning measures

the difference between the selectivity for the diagnostic feature and the selectivity for the non-

diagnostic feature calculated also as a selectivity index. From the activity of the two category

populations in PFC, another parameter was calculated as the difference between the activity of

the population encoding the correct category of the presented stimulus and the activity of the

population encoding the other category divided by their sum. It measures the correct association

of the presented stimulus with the corresponding category, i.e. Correct categorization (black solid

line without markers).

For each of these parameters we chose a threshold that marked the limit where the requirements

of having the respective selectivity, tuning or categorization were still satisfied. The figures 7.4

and 7.5 plot the border lines of these limits that separate the different operational regimes of

the network. Because the network should work in biologically relevant activation regimes, the

maximum activities that the network reached during the simulations were also checked. The

dashed-dotted (dotted) lines represent the maximum activities in the ITC layer (PFC layer,

respectively). With all this information, we could separate the area in the explored parameter

space where all the conditions were fulfilled (the gray area in the graphs).

The results presented in figure 7.4, indicate that as the average connection strength between the

layers increases, the activity in both layers increases, and when it exceeds some value (here for

(wd + wi)/2 > 0.6), the functionality of the network becomes impaired (both categories show

high activity and the neurons in ITC don’t show selectivity anymore). In the same way, for

small differences between wd and wi ((wd − wi)/wo < 0.1) the network shows categorization

impairment. As this difference increases, the network starts performing correct categorization.

But this difference has to increase even more to achieve feature selectivity ((wd −wi)/wo > 0.5).

The gray area shows the region for which also the diagnostic tuning requirement is met. We

conclude that the average connection strength should be not too high so that the network keeps

its functionality with reasonable values for the population activities, but also high enough so

that the PFC layer can influence the ITC layer and achieve in this way diagnostic tuning. Only

a strong average connection strength is not enough to achieve feature selectivity and diagnostic

tuning, another requirement is that wi should be a very small fraction of wd (wi << wd).

Figure 7.5 studies the influence of feedforward versus feedback weight strength on network’s

behavior. The values for the feedback weights are taken relative to the values for the feedforward

weights from 0 · wff to 2 · wff . As can be seen from the figure, for high feedforward values,
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7 Two-layer spiking neural network modeling selectivity tuning in ITC

Figure 7.5: Parameter exploration that studies the influence of feedforward - feedback strengths
on the network regimes. The x axis represents the strength of the feed-forward value
of wd (the other weights were chosen: wo = wd/2 and wi = 0). The y axis represents
the ratio between the feed-forward and feedback values for all interlayer connections.
Same evaluation parameters and border lines were used as in figure 7.4.

wff > 1, the second layer receives significant input which will result in high activities. Also, if

we use high feedback values (upper right corner of the figure), the network will end up in a high

amplification regime with categorization impairment and no feature selectivity. Similar if small

feedforward and feedback values are chosen (lower left corner of the figure), the activities in the

PFC will be too small and unable to drive the specific populations in ITC. The gray area in

the figure shows the regime where all the conditions: feature selectivity, diagnostic tuning and

correct categorization are fulfilled.
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7.4 Selectivity shaping in the spiking network

Explicit simulations of the spiking dynamics for the model network were carried out for a specific

connection weight setting between the two layers and for all possible combinations of stimulus

inputs. For each simulation, a different combination of stimulus features was applied, for a time

period of 500 ms, with a total strength of λstim = 150 Hz per stimulus-feature input. The

1650 coupled differential equations (2.3) with parameters given in section 7.2 were integrated

numerically using the second order Runge-Kutta method with step size 0.1 ms.

Figure 7.6 shows in parallel the experimental results from Sigala & Logothetis (2002) (figure

7.6.1) and the results from the spiking model simulations (figure 7.6.2), for a fixed parameter

set: wd = 0.8, wo = 0.4 and wi = 0. The experimental results show the population average

activity for all recorded visual responsive neurons, when different combinations of features were

presented. Four responses were selected: the highest (black line) and lowest (gray line) responses

sorted according to one diagnostic feature (figure 7.6.1.a) and the highest (black line) and lowest

(gray line) responses sorted according to one non-diagnostic feature (figure 7.6.1.b).

The simulation results were obtained by doing the corresponding calculations in the model

network. In order to reproduce the experimental data, we also took into account all the neurons

responding to the presented stimuli, so the average firing rate over all specific populations in the

ITC model layer is considered. The model network is simulated for all possible combinations of

the input values (D1+O1, D2+O1, D1+O2, D2+O2), and each combination was simulated 10

times. After this, we check for each specific population, which value of the diagnostic feature

(non-diagnostic feature, respectively) produces a higher response and we use the corresponding

activity to compute the average rate representing best value for the diagnostic feature (non-

diagnostic feature, respectively). Similarly the lower responses was used to compute the average

rates representing the worst values. This average activities over all specific populations for the

best and worst values of the diagnostic (non-diagnostic, respectively) feature are presented in

figure 7.6.2 (left column). The right column of figure 7.6.2 presents the firing rates of the specific

populations from both layers (D1, D2, O1, O2 for ITC and C1, C2 for PFC) in the case of a

presented stimulus with diagnostic feature high (D1) and other feature high (O1) (i.e. external

input to D1 and O1 in our model).

As it can be observed from figure 7.6, the simulations results are, qualitatively, in good agreement

with the experimental results and show that there is an enhancement of the selectivity for the

level of the diagnostic feature, as compared to the non-diagnostic feature (the lines in the first

two columns in figure 7.6.a are more separated than those in 7.6.b). And since all weights in

the ITC layer were chosen equal, results that the enhancement of selectivity emerges due to the

top-down inputs from the PFC layer, which encodes the previously learned stimulus categories.

From the time when the stimulus is presented to the network (time = 0 ms in figure 7.6), the

selectivity of the category specific populations (figure 7.6b, right most column) emerges through

the feed-forward connections (ITC -> PFC) from the activation of the specific populations in

the ITC layer. Through the feedback connections (PFC -> ITC), this selectivity is transmitted

afterwards to the feature-selective populations in ITC.
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Figure 7.6: Experimental results adapted from Sigala & Logothetis (2002) (1) and model spiking
neurons simulation results (2). The first two columns show the average spiking rates
of stimulus responsive neurons, grouped according to their best (black lines) and
worst (gray lines) responses to the levels of diagnostic (a) and non-diagnostic (b)
features. The right most column shows the average spiking rates of the four specific
populations (D1, D2, O1, O2) in ITC layer (a) and the two specific populations
(C1, C2) in the PFC layer (b) in the case of the stimulus presentation having the
diagnostic feature high and the other non-diagnostic feature high (external input
to D1and O1). The model simulations corespond to the parameter set: wd = 0.8,
wo = 0.4 and wi = 0.

The results show that the enhancement of selectivity for the task-relevant features in ITC

can result from top-down information signaling the category. The model ITC neurons respond

correctly to the complete stimuli, if they are strongly linked and hence cooperate with each other.

Further, the categories can be represented, if the category populations are weakly linked and

hence compete with each other. In addition, the network categorizes correctly if the recurrent

interareal connections are differentiated for the ITC populations driven by different relevant

(diagnostic) features and non-differentiated for ITC populations driven by category-irrelevant

(non-diagnostic) features. Under these conditions, only the model ITC populations driven by

the diagnostic features develop feature selectivity, whereas the other populations remain non-

specific. Category dependent feature selectivity arises in an emergent way from the network

dynamics and the weight setting.
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7.5 Learning to categorize enhances the neuronal selectivity

In order to enable the network to associate in a biologically plausible manner a set of stimuli,

characterized by different combinations of the feature values, with a certain category, the model

network is trained using the reward-based Hebbian learning algorithm, that was presented in

chapter 4. This section is organized as follows: Section 7.5.1 outlines the learning procedure

chosen to train the model network. Section 7.5.2 discusses the capability of the model network to

start learning from an unbiased weight configuration. The sample learning histories, presented

in section 7.5.3, show that the model network successfully develops both a forward ITC → PFC

synaptic structure, able to support correct classification, and a backward PFC → ITC synaptic

structure producing a task-dependent modulation of the ITC responses. At last, section 7.5.4

analyzes the evolution of network performance during learning.

7.5.1 The learning procedure

Before presenting the learning procedure, we specify the choice for the parameters of the learn-

ing algorithm: For all simulations, the learning rates were fixed to qreward
+ = qreward

− = 0.01

and qnon−reward
− = 0.05. The learning rate in the non-reward case is chosen to be greater than

the learning rate in the reward case. The difference is mostly motivated by previous experi-

mental studies on the learning and forgetting rates of a monkey performing a visuo-motor task

(Asaad et al., 1998; Fusi et al., 2007). In these studies, non rewarded trials led to a quick reset

of the previously memorized associations, as opposed to learning new associations that required

20-30 trials. In order to reproduce this behavior the modifications in the case of no reward had

to be significantly larger than in the case of reward.

To ensure network’s stability for all points in the learning process, we have to chose the connec-

tion weights between the two layers not too small so that there is information exchange between

the two modeled areas and not too high so that the network does not evolve into an amplification

regime where neurons lose their selectivity. Also the biological constraint of achieving realistic

neuronal activities for the modeled neurons needs to be considered (see Szabo et al., 2005).

In the following simulations, the values for the synaptic strengths in the potentiated and de-

pressed states, respectively, were chosen to wff
+ = 0.8 and wff

− = 0 for the feed-forward synapses

connecting the populations from ITC to PFC and wfb
+ = 0.4 and wfb

− = 0 for the synapses in the

feedback direction. The feed-forward connections are chosen double in strength on average than

the feedback connections. The above choice is inspired by the idea that between cortical areas,

feed-forward projections have a strong driving role, while feedback projections have a weaker

modulatory role.

Using the reward-based Hebbian learning algorithm, presented in chapter 4, the synaptic efficacies

between the ITC and PFC layers are modified after each trial (i.e. stimulus presentation)

according to the network outcome (i.e. resulting network activities) in the PFC layer and a

reward variable, using a simple regulatory mechanism. The learning procedure runs as follows:
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Starting from a chosen initial configuration of the weight setting, different stimuli are presented

to the network in a random order. For each stimulus presentation, all network internal variables

are reset and the network configuration, given by the synaptic weight variables, is set to the

latest learned configuration. Using this setting, the spiking dynamics, modeled by the 1650

coupled differential equations 2.3, is simulated for 500 ms under spontaneous activity followed

by 800 ms under specific input encoding the presented stimulus. The simulation running time

was chosen such that convergence to a stable configuration is reached. For the period of time

when the stimulus is presented to the network, the first 300 ms are regarded as transient time,

and only the last 500 ms are used to acquire the time-averaged spiking rates of each simulated

neuron. These rates are used to calculate the population firing distributions, the reward variable

and finally the synaptic modifications as presented in more detail in the following.

For the typical average firing rates in our simulations, the 500 ms time window used to estimate

single neuron rates implies non-negligible fluctuations in the estimated values. As a consequence,

despite the full synaptic connectivity and the common value of the synaptic efficacies for each

synaptic population, a wide distribution of estimated firing rates in each neuron population

arises for each trial. This brings non-trivial consequences in the mean-field learning dynamics,

in that superimposing tails of the rate distributions for different pairs of populations can induce

unwanted potentiations or depressions, thereby pushing the learning trajectory to wrong direc-

tions. We decided to keep this feature to show the robustness of the model to the finite-size

effects of various kinds that would affect the dynamics in a less constrained and more realistic

setting.

The firing distribution of each population i is expressed through the fraction of active neurons,

na
i , calculated by comparing the previously computed time-averaged spiking rate of each neuron

inside this population with a chosen threshold: above 8Hz for the ITC model layer and 14Hz

for the PFC model layer a neuron is considered to be active. When the population encoding

the correct category has more than half of the neurons active and also there are more than

double as many neurons active in this population than in the other category population, the

trial is assigned a reward, otherwise no reward is given. Next, for each ITC-PFC pair of specific

populations, the fraction of synapses to be potentiated, Np
ij , and to be depressed, Nd

ij , are

evaluated using equations 4.1-4.4 (where (i; j) or (j; i) ∈ ({D1, D2, O1, O2}, {C1, C2})). Then

the presynaptic efficacies are modified using equations 4.5-4.7.

The network configuration is thus changed, through the modification of the inter-layer synaptic

weights, from the initial, chosen, configuration to a final, learned, configuration. In the next sub-

sections, it will be shown that this learning rule robustly modifies the network’s free parameters

to reach a final configuration where the desired associations are correctly performed.
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7.5.2 Network capability to learn from an unbiased starting configuration

Figure 7.7: Dynamics of the PFC model layer for the initial network configuration, when all
the connecting weights between the two layers are set to be equal to (w+ + w−)/2.
Driven by the fluctuations in the inputs, one of the two category populations will
end up being represented irrespective of the stimulus presented to the network. The
first two graphs show average spiking rates over 50 trials for specific and inhibitory
neurons in the model PFC layer. The responses of the specific populations were
grouped based on their activity level: the higher responses were averaged into the
active category response (black lines) and the lower responses were averaged into
the inactive category response (dark gray lines). Population averages are depicted
in (a) and spike raster plots for five neurons from each population in (b). The light
gray lines represent the averaged activity over all 50 trials of the inhibitory neurons.
The right most graph (c) plots the PFC layer dynamics in the phase space.

Before illustrating how learning proceeds in the system, we start by analyzing the properties of

the network characterized by an uniform connectivity between the two layers. It is important

that for this configuration corresponding to an untrained system, the network exhibits the

capability to decide stochastically with 50% probability in response to a stimulation. Figure 7.7

presents the activities of the specific and inhibitory neurons in the PFC model area, averaged

over 50 trials, for the untrained network configuration where all inter-layer connections are

chosen equal. The strong competition between the populations encoding for the two categories

and the stochastic fluctuations present in the network, ensure that even in the beginning of

the learning process, when both categories are identically connected with the ITC layer, one of

them randomly wins the competition. Hence, even the untrained network always reaches a clear

decision.

The learning process will develop as follows: in the untrained system, where all weights between

ITC and PFC have equal strengths, when a stimulus is presented to the ITC layer one of the

populations in the category layer will, by chance, receive a stronger input, mediated through

network’s fluctuations. These fluctuations, which are a finite-size effect, are another needed

dynamic element of the model that requires the explicit description of neural dynamics at the

spiking level. Because there is strong competition between the category populations, mediated

through the recurrent connectivity inside the category layer, the category being driven slightly

stronger will win this competition and thus will be more strongly activated (figure 7.7). If this

category happens to be the correct one, the network is rewarded. Synaptic populations that
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contributed most to this category’s input, are hence potentiated, the ones that were driving the

wrong category are weakened.

As a consequence, the next presentation of that stimulus will be more likely to activate the

correct category in the future. If the chosen category was wrong, the system is not rewarded, and

the synaptic populations that were driving the wrong category are weakened. As a consequence,

this category is less likely to be activated by that stimulus in the future. By repeated stimuli

presentations, the ITC populations representing the diagnostic features will be consistently

associated with the correct category population. In contrast, the ITC populations representing

non-diagnostic features will be associated with each output population with the same probability.

Consequently, the network will learn to perform better and better the categorization task.

7.5.3 Learning to categorize in the model network

We start training the network from an unbiased initial configuration, where all connections

between the two model layers are equal to the average synaptic strength: wff
ij = (wff

+ +wff
− )/2 =

0.4 for the feed-forward connections and wfb
ji = (wfb

+ +wfb
− )/2 = 0.2 for the feedback connections,

where (i; j) ∈ ({D1, D2, O1, O2}, {C1, C2}). Thus the initial network configuration corresponds

to half of the synapses being potentiated between each pair ITC-PFC of specific populations.

To this end, we will show both the time course of the average synaptic efficacies for the weights

of interest, and the manifestation of the plastic synaptic rearrangement in the ITC and PFC

neural activities during learning, providing evidence of a qualitative agreement with the findings

of Sigala and Logothetis.

Figure 7.8 presents average network activities (over 50 consecutive trials) in three moments of

the learning process: at the beginning of learning, at an intermediate point (after 200 trials)

and after the convergence of the synaptic parameters (after 1500 trials). The plots in the first

row were obtained by performing the same calculations as for the experimental data (figure 1.b).

For each specific neuron in the ITC model layer the spiking rates for all 50 consecutive trials

were grouped based on the presented stimulus values and were averaged. Each specific neuron

has a different response level to the two values of each feature. The highest responses for the

diagnostic feature of all specific neurons in ITC model area were averaged producing the best

Diagnostic response. The lowest responses for the diagnostic feature of all specific neurons in

ITC model area were averaged to generate the worst Diagnostic response. Similar calculations

were done for the non-diagnostic feature.

These average activities over all ITC specific neurons are presented for three points in time

in figure 7.8 top row. In the beginning of learning, there is no bias in the input to the PFC

layer, the C1 and C2 populations are activated randomly with the same probability (figure 7.8.a,

bottom). Thus there is no difference between the tuning of the diagnostic and non-diagnostic

features (figure 7.8.a, top). As learning progresses and the synaptic weights evolve, the network

now correctly solves the categorization task (figure 7.8.b, bottom). At the same time we notice

the beginning of the tuning process that will be enhanced in time (figure 7.8.b, top). After

convergence, the selectivity for the level of the diagnostic feature is enhanced, as compared to
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Figure 7.8: Training the spiking network: Simulation results of population activities averaged
over 50 successive trials for three points in the learning process: a) in the beginning
of learning; b) an intermediate point during learning (after 200 steps); c) after the
weights converged to a stable configuration (1500 steps). The top row shows the
average spiking rates of stimulus responsive neurons, grouped according to their
best and worst responses to the levels of diagnostic and non-diagnostic features. The
middle and bottom rows show the average spiking rates of the specific populations
in the ITC layer (D1, D2, O1, O2) and the PFC layer (C1, C2), respectively, for the
trials among the 50 successive trials where the presented stimulus was characterized
by diagnostic feature high and other feature high (external input to the populations
D1 and O1).

the non-diagnostic feature (figure 7.8.c, top). The activities for the best and worst diagnostic

feature values are more separated than those for the best and worst non-diagnostic feature

values. This result is in good qualitative agreement with the experimental results, (figure 1.b),

that reflect the ITC activity after the monkeys had learned to categorize the stimuli.

The middle and bottom rows in figure 7.8 show the average spiking rates of the specific popula-

tions in the two layers for the selected trials among the 50 successive trials where the presented
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Figure 7.9: Evolution of the average synaptic weights between the selective populations of the
two model layers in the process of learning. The graphs present the evolution for
both feed-forward (a) and feedback (b) connections, in the case of an unbiased initial
condition denoted by equal connectivity between the two layers.

stimulus was characterized by diagnostic feature high and other non-diagnostic feature high

(populations D1 and O1 stimulated). Since there is no structure in the model ITC layer, the en-

hancement of selectivity emerges due to the top-down input from the PFC layer, which encodes

the previously learned stimulus categories. The right-most column, figure 7.8.c, corresponds to

the point in the learning process where the weights converged to a stable configuration.

From the time when the stimulus is presented to the network (time = 0ms in figure 7.8), the

selectivity of the category specific populations (figure 7.8.c, bottom row) emerges through the

competition biased by feed-forward inputs (ITC → PFC) from the specific populations of the ITC

layer. Through the feedback modulatory inputs (PFC → ITC), this selectivity is transmitted

afterwards to the feature-specific populations in ITC (figure 7.8.c, middle). It can be seen that

in the first 100 ms after the stimulus onset the D1 and O1 (stimulated) or D2 and O2 (non-

stimulated) populations do not differ in activity. Hence there is no diagnostic tuning. Only after

the correct category population becomes active, the diagnostic tuning builds up.

The evolution of the synaptic weights between the two layers is presented in figure 7.9. For

both feed-forward (figure 7.9.a) and feedback connections (figure 7.9.b) the links between the

diagnostic features and the visual object categories are selectively modified. Weights between

a diagnostic feature population and the correct category population are increased, those con-

necting the wrong category population are weakened. The connections between non-diagnostic

feature populations and category populations remain around the starting point, corresponding

to half of the synapses being potentiated. This learning case corresponds to the network learning

the task from scratch, and the initial condition is referred to as unbiased.

Figure 7.10 shows learning trajectories for two other initial network configurations. In Figure

7.10.a the network was previously tuned for the feature which is non-diagnostic in the present

task protocol, i.e. the Nose-length feature. In figure 7.10.b the network was previously tuned

for both features (Eye-height and Nose-length), and also the Eye-height feature was differently
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Figure 7.10: Learning trajectories for the average synaptic populations between the two layers,
starting from two other initial network configurations which imply a switch in the
behavioral task: In the first case the diagnostic feature becomes non-diagnostic
and the non-diagnostic feature becomes diagnostic (a). In the second case, both
features were important for categorization before the task switch (b). The weights
for both feed-forward (a1, b1) and feedback connections (a2, b2) are presented.

associated to the two categories. Both cases correspond to a modification in the task protocol.

The results show that the connection weights with the diagnostic feature are selectively modified

in the direction of increasing the synaptic strength with the corresponding category popula-

tion and decreasing the synaptic strength with the other category population. The connection

weights transmitting signals from the non-diagnostic feature converge to the average synaptic

strength between the two layers corresponding to the unbiased situation of equal connectivity

with both category populations. Because here the network needs to react to a task switch, the

corresponding initial conditions are called biased .
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7.5.4 Evolution of network performance during learning

For the three simulation runs whose learning trajectories are presented in figures 7.9, 7.10.a

and 7.10.b, we define and calculate specific parameters describing key features of the network

performance along the learning process. The results are presented in figure 7.11. For each

trial, e.g. point in the learning trajectory, the time-averaged activities of the model neurons,

calculated over the last 500 ms of the stimulus presentation, are used to compute, in the same

manner as described for the results in figure 7.8.a, the best and worst responses for the diagnostic

and non-diagnostic features of all specific neurons in the ITC model layer. The evolution during

learning of these responses is presented in figure 7.11-top row.

The tuning of the two features Eye-height (diagnostic) and Nose-length (non-diagnostic), is

evidenced through a feature selectivity index calculated as the difference between the best

and worst activities for the corresponding feature divided by their sum. The time evolution of

the tuning for both features is presented in figure 7.11-middle row. The classification perfor-

mance during learning, depicted in figure 7.11-bottom row, was estimated through a category

selectivity index calculated as the difference between the average activities of the population

encoding the presented category and the population encoding for the other category, divided by

their sum.

It can be seen that for the run where the network was initially unbiased, the selectivity of

the diagnostic feature starts building over time, whereas the selectivity for the non-diagnostic

feature remains constant at a low value (figure 7.11.a-middle row). In the case of a switch in

the behavioral task, where the network was previously tuned for the Nose-length feature, the

selectivity for the non-diagnostic feature (Nose-length in the present task protocol) decreases

while the selectivity for the diagnostic feature (Eye-height in the present task protocol) builds up

(figure 7.11.b-middle row). In the last run, the network was previously tuned for both features

and also the Eye-height feature was differently associated to the two categories. As it can be

seen from figure 7.11.c-middle row, the tuning of the diagnostic feature initially goes down,

as for the present task protocol the feature was previously erroneously associated to the two

categories.

The learning traces show that on average, after 500 stimulus presentations, the tuning of the

diagnostic feature starts building up in accord to the chosen task protocol. Also the tuning of

the non-diagnostic feature goes down as it becomes irrelevant for behavior. From the bottom

row in figure 7.11 we remark that the network performance in classification reaches a high

value after 300 stimulus presentations for the case when the network was initially unbiased,

after 600 stimulus presentations in the case of a modification in the behavioral task of only

one variable (non-diagnostic previously tuned) and after 1000 stimulus presentations in the case

of a modification in the behavioral task of two variables (non-diagnostic initially tuned and

diagnostic erroneously tuned). In the latter case, the diagnostic feature of the task to be learned

at present was diagnostic before as well, but with the opposite mapping to the categories. This

is reflected by a negative category selectivity index (the network is worse than guessing) in

the initial phase of learning. It is remarkable that even this severe re-orientation towards a

completely new task is robustly achieved by the learning network.
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Figure 7.11: Task performance evolution during learning for the three learning histories of figures
7.9, 7.10.a and 7.10.b: (a) learning from scratch (figure 7.9) and (b, c) learning after
task switches (figure 7.10.a and b). The top row shows the time evolution of the best
and worst responses for the diagnostic and non-diagnostic features of all specific
neurons in the ITC model area. The middle row shows the time evolution of the
tuning for both features. The bottom row shows the classification performance
during learning. For details see text.

As it can be seen in figures 7.9 and 7.10, some weights change in a similar manner. We conclude

that we do not need all 16 free parameters (describing the feed-forward and feedback synaptic

populations between the two layers’ specific populations) to describe network’s behavior and

reduce the parameter space to the important dimensions only. We define four effective weights:

wd, wi, wo1 and wo2. wd relates to the average connection weight between D1-C1 and D2-C2

populations, which for our task protocol corresponds to the connections between the diagnostic

feature values and the corresponding categories. wi relates to the average connection weight

between D2-C1 and D1-C2 populations, corresponding to the connections between the diag-

nostic feature values and the non-corresponding categories. Similar wo1 and wo2 are defined
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7 Two-layer spiking neural network modeling selectivity tuning in ITC

Figure 7.12: Evolution of Eye-height and Nose-length tuning during learning, for three different
initial network configurations. They all converge to the same regime corresponding
to high selectivity of the diagnostic feature Eye-height and low selectivity for the
non-diagnostic feature Nose-length (bottom right corner of the graph). The net-
work’s performance is characterized through an extensive exploration of network’s
effective parameters using the mean-field formulation. The network performed Cor-
rect categorization in the light gray area, presented Eye-height tuning in the medium
gray area and showed Diagnostic tuning in the dark gray area. For details see text.

for the connections of the non-diagnostic feature with the two categories. Because the feed-

forward weights are on average twice as big as the feedback ones, we weighted the feedback

connection strengths with a factor of 2. This simplifies the representation by making a simple

correspondence between the effective weights and the feed-forward or feedback ones.

wd =
1

4
(wD1−C1 + wD2−C2 + 2 · wC1−D1 + 2 · wC2−D2)

wi =
1

4
(wD1−C2 + wD2−C1 + 2 · wC2−D1 + 2 · wC1−D2)

wo1 =
1

4
(wO1−C1 + wO2−C2 + 2 · wC1−O1 + 2 · wC2−O2)

wo2 =
1

4
(wO1−C2 + wO2−C1 + 2 · wC2−O1 + 2 · wC1−O2)

Using this simplification, we can capture an important result, namely that the network shows

robustness to the starting point in the parameter space. All three learning trajectories converge

to the same final network configuration as illustrated in figure 7.12 by the black lines. The

two axes reflect the tuning of the two features Eye-height and Nose-length expressed through
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7.5 Learning to categorize enhances the neuronal selectivity

the variables wd −wi, denoting Eye-height tuning, and wo1 −wo2, denoting Nose-length tuning,

calculated using the formulas above. The zero values correspond to equal connectivity of the

feature values to the two categories, which is equivalent to no tuning for that feature. High

values correspond to different connectivities between the two values of the feature with the two

categories, which is equivalent to feature tuning. All traces converge to the area where there

is no selectivity for the Nose-length feature and high selectivity for the Eye-height diagnostic

feature.

In order to illustrate the regimes that the network crosses during training, the effective parameter

set describing the excitatory weight setting between the model cortical layers is explored using

the mean-field formulation (chapter 5). Similar to the analysis from section 7.3, each point in the

parameter space, was simulated for all four possible stimulus presentations. The resulting mean

firing rates of the specific populations were evaluated by calculating three suggestive parameters,

as described below. From the activity of the four specific populations in the ITC layer, two

parameters that measured the Eye-height tuning and Diagnostic tuning were calculated.

Eye-height tuning measures, for a specified set of effective weights, the selectivity for the Eye-

height feature through a selectivity index calculated as the difference between the mean firing

rates for the best Eye-height feature value and worst Eye-height feature value, divided by their

sum. Note that the best and worst values are calculated in the same way as for the results

presented in figure 7.8 and 7.11, with the only difference that the population average activities

are used instead of single neuron activities.

Diagnostic tuning measures the difference between the selectivity index for the diagnostic feature

(which corresponds to Eye-height tuning) and the selectivity index for the non-diagnostic feature

(which corresponds to Nose-length tuning). The Eye-height and Nose-length tuning were also

calculated for the single neuron activities, as presented in figure 7.11 middle-row.

From the activity of the two category populations in PFC, another parameter Correct categoriza-

tion was calculated as the difference between the mean firing rates of the population encoding

the correct category of the presented stimulus and the population encoding the other category,

divided by their sum. This parameter was also calculated for the single neuron activities, as pre-

sented in figure 7.11 bottom-row. It measures the level of association of the presented stimulus

and corresponding category.

For each of these parameters we chose a threshold that marked the limit where the requirements

of having the respective selectivity or categorization are still satisfied, as shown in figure 7.11

middle and bottom rows by the horizontal dotted lines. The network was defined to show

Eye-height tuning when the best Eye-height value response is twice or greater than the worst

Eye-height value response. We say that the network shows Diagnostic tuning when the selectivity

for the diagnostic feature is twice or greater than the selectivity for the non-diagnostic feature.

Also a correct categorization corresponds to an activation of the correct category more than

twice greater than the activation of the other category. In figure 7.12 we plotted the areas where

these three performance criteria were satisfied. We notice that the learning trajectories converge

to the area in the explored parameter space where all three conditions were fulfilled (the darkest

gray area in the graph).
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7 Two-layer spiking neural network modeling selectivity tuning in ITC

7.6 Discussion of the results

The study presented in this chapter, formulates a biologically-inspired two-layer spiking neural

network that accounts for the enhancement of selectivity in ITC neurons for stimulus features

which are relevant for a learned visual categorization task (as described in Sigala & Logothetis,

2002). The behavioral task consisted of categorizing a set of schematic images based on their

varying features, from which only some of them, named diagnostic, were relevant to solve the

task. The experimental measurements from ITC (Sigala & Logothetis, 2002) showed that, after

training, the neuronal selectivity to the diagnostic features was enhanced as compared to the

selectivity to the other, non-diagnostic, features (figure 1.b). Other studies of perceptual learning

and visual encoding suggest that the tuning of sensory neurons can be mediated by top-down

information and that prefrontal cortex can be associated with processing of category related

information. Trying to explain the neural substrate of the experimentally observed phenomena,

the present study tests the assumption that the enhancement of selectivity to the behavioral

relevant features in ITC might be determined by higher-level cognitive feedback from category

encoding neurons possibly residing in PFC and demonstrates a learning scenario which robustly

produces such a selective enhancement.

The model is constructed as a biologically-inspired two-layer network of integrate and fire neu-

rons that is able to capture the temporal dynamics of experimentally measured neural spiking

rates and thus represents an appropriate choice in the search to explain the neural substrate

of the observed cortical effects. Such networks, using the conceptual framework of Biased-

competition and cooperation, successfully accounted for different aspects of visual attention and

working memory in context dependent tasks. A key new feature of the model proposed in this

study is that the biases needed to guide the competition between different neuronal populations

are internally generated using recurrent signals produced inside the network. As a stimulus is

presented to the network, the sensory inputs (coming from lower visual processing areas) acti-

vate the neurons in the ITC model layer and are propagated through feed-forward connections

to the PFC model layer. This bottom up input from ITC biases the competition between the

category encoding populations. The winning category expresses the monkey’s decision (as in

Wang, 2002) and influences the activity of the neurons in the ITC model layer such that, after

a successful learning, they become selective for the behaviorally relevant features.

Based on an extended parameter exploration, we found that the described effect could be

achieved for a specific structure of the connections between the feature encoding layer (ITC)

and the category encoding layer (PFC). Namely, the ITC model neurons activated by a fea-

ture value determinant for categorization are strongly connected to the associated category and

weakly connected to the other category. ITC model neurons activated by a task-irrelevant

feature are connected to the category neurons with an average weight value, not significantly

changed during training. For this particular structure of the interlayer connectivity, the network

was able to reproduce the experimental results, by achieving a high selectivity of the ITC model

neurons for the diagnostic feature and a low selectivity for the non-diagnostic feature. By setting

all weights equal, so that no structure exists in the interlayer connectivity, the network could

not reproduce the enhancement in selectivity for the diagnostic features.
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7.6 Discussion of the results

By construction, having identical inputs from the lower sensory areas encoding for the presented

diagnostic and non-diagnostic feature values and no structure in the connectivity of ITC specific

model neurons, a single layer model (only ITC) would induce identical tuning for the diagnostic

and non-diagnostic features. The selective tuning of the ITC model area emerges then only

through top-down modulatory signals from the PFC model area where the learned categories

are encoded. A side effect of the identical inputs to the ITC model neurons, as can be seen from

the results in figure 7.8, is that the model shows some selectivity also for the non-diagnostic

feature as compared to the experimental results that show almost no selectivity for the different

values of the non-diagnostic feature (figure 7.1.b).

The network is trained using a biologically inspired reward-based Hebbian algorithm, which

robustly modifies the connections between the feature encoding layer (ITC) and the category

encoding layer (PFC) and ensures convergence for different initial network configurations. This

simple model is constructed with a small number of excitatory and inhibitory neurons for each

cortical area. The finite size effect creating random fluctuations in the population firing rates

enables the spontaneous transition, in the beginning of learning when the two categories are

equally connected to the ITC specific populations, of one category to win the competition.

Increasing the network size reduces the probability of these spontaneous transitions.

The results show that the learning dynamics converges to a stable fixed point denoting the setting

where the ITC model neurons activated by a diagnostic feature value are strongly connected to

the associated category and weakly connected to the other category, and the ones activated by

task-irrelevant features, are equally connected to the category neurons with an average weight.

This structure of the interlayer connectivity was shown to be able to reproduce the experimental

data, by achieving a high selectivity of the ITC neurons for the diagnostic feature and low

selectivity for the non-diagnostic feature.

The modeling approach from the present work can be used to generate some experimentally

testable predictions: Learning to provide the correct categorization, by modification of the ITC

→ PFC synapses, occurs before the backward plastic reorganization of the PFC → ITC synapses

which produces the modulation effect on the selectivity in ITC neurons response. We infer this

from the results presented in Figure 7.8: for the intermediate point in the learning process,

the network categorizes correctly but the responses in ITC are not yet tuned to the behavioral

relevant features. Also the other two cases of contextual task change show that the ITC tuning

occurs after correct categorization is achieved. Such a scenario would be consistent with the

prediction that the tuning effect is an epiphenomenon of the primary synaptic process that

allows to achieve the correct categorization.

Another interesting experimental scenario is suggested by the analysis presented in Figs 7.10

and 7.11, where different initial conditions corresponding to switches in the behavioral task,

are chosen: in one case exchanging the role of the diagnostic feature and in the other case

switching from both features being diagnostic to only one. We can infer that the number of

stimulus presentations needed until convergence to the final learned network configuration, i.e.

the time needed by the network to learn the new association, increases with the number of

modifications made in the task protocol. Figure 7.11 shows that for convergence in the case
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7 Two-layer spiking neural network modeling selectivity tuning in ITC

of unbiased starting configuration around 500 trials are needed (figure 7.11.a), in the case of a

simple change where the non-diagnostic feature was previously associated to the two categories

around 900 trials are needed (figure 7.11.b), and for a more complex change where in addition

to the change in the latter experiment the diagnostic feature was also differently associated to

the two categories around 1300 trials are needed (figure 7.11.c).
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8 Conclusions

Aiming to understand the way in which our brain perceives, reacts, reasons and takes deci-

sions, powerful methods are needed to investigate the mechanisms and principles underlying

the higher-level cognitive functions of human behavior, like selective attention, working memory

and concept formation. An important approach is provided by the analysis of the biological

neural networks, characterized by a large number of dense interconnected cells, at the system

level. This idea is driven by the assumption that the representation of information in the brain

is distributed across several cortical areas and that the coherent description of information is

achieved at a global level through the intricate inter-areal connectivity. For this, multi-areal

neurodynamical models based on knowledge from cognitive neuroscience and techniques from

computational neuroscience and artificial neural networks are being developed.

The neurocognitive modeling approach presented in this thesis considers neurodynamical com-

putational models inspired from the structure and properties of the nervous system. Neural

modules from specific cortical areas having specific functionalities are modeled as recurrent net-

works of spiking neurons that include important features of the biological cortical structures.

The neurons are implemented as Leaky Integrate-and-fire neurons including nonlinear synaptic

current dynamics and following a biologically inspired description – given by the use of realistic

biophysical time constants, latencies, and conductances. At this level of detail the model allows

to perform a thorough study of the realistic time scales and firing rates involved in the evolution

of the modeled neural activity. Consequently, the simulated neuronal dynamics, that putatively

underlies cognitive processes, can be quantitatively contrasted with experimental data from a

wide variety of sources: single cell measurements, fMRI imaging measurements, psychophysical

results, effects of pharmacological agents and effects of damage to the neural system. This kind

of powerful computational networks was shown to exhibit a rich spiking dynamics similar to

that of the neurophysiological cortical data (Sima & Orponen, 2003) and was successfully ap-

plied in this work to study attentional and cognitive phenomena as effects of multiareal recurrent

processing.

The architecture of the model networks is set up using the concept of population coding and

follows the theoretical framework of Biased-competition and cooperation, which assumes that

in a cortical area the conflicting partial representations compete with each other in order to

be represented, while the related partial representations cooperate with each other, mutually

reinforcing their activities. The model neurons encoding the same information are gathered

in populations receiving common bottom-up stimulus-related inputs and common top-down

signals encoding the attentional condition or task-relevance of the presented information. The

populations are interconnected with stronger or weaker synaptic weights in order to implement

competition or cooperation between them.
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8 Conclusions

Different weight settings give rise to different overlapping operational regimes of the recurrent

networks, like for example: pure amplification mode, selective (competition) mode, correla-

tion facilitation (cooperation) mode and working memory (persistent activity) mode. Thus,

the grouping first of neurons into populations and then of different specific populations, en-

coding related information, into correlated structures (through cooperative weight settings),

together with implementing competition between the populations representing anti-correlated

information, for both bistability and single stability regimes, is assumed to represent a general

mechanism used in the brain to manage complex computation. In general, cooperation can

be hypothesized as the basis of categorization (binding information together referring to the

same category), of different associations (for example between sensations) and even of mental

manipulation.

The Biased-Competition and Cooperation mechanism can be seen as an extension of the early

competitive-cooperative mechanism implemented in the Kohonen self organizing networks (maps).

They implement a competitive learning process using a winner-take-all strategy between dis-

tant neighbors and a cooperative learning process using a neighborhood function between close

neighbors (Kohonen, 2001). The competitive-cooperative mechanism can explain experimental

findings in early visual system and its extension is recently applied, as described in this work, to

cognitive modeling. The Biased-Competition and Cooperation mechanism can then represent a

fundamental principle of brain operation.

The contribution of this work is twofold: First, different operational regimes corresponding to

different functional modes of first one-layer and then two-layer recurrent network are revealed.

Second, two functional neurocomputational models are proposed that, guided by cortical ac-

tivity measurements from recent neurophysiological experiments on behaving animals, specify

possible neuronal mechanisms underlying cognitive phenomena like selective visual attention

and selective neuronal tuning.

The first study introduces a one-layer neurodynamical model that investigates how the effect of

attentional filtering could arise from a weak modulatory bias which mediates the cortical context

(Szabo et al., 2004). In the context of the proposed biologically inspired minimal model, the

study shows how competition and cooperation, biased by behaviorally relevant information,

operate within a single model area. Relevant parameter explorations reveal regimes where the

network shows different modes of operation: selective working memory, attentional filtering,

pure competition and non-competitive amplification.

Attentional filtering represents a particularly strong attentional effect, in which the context gates

sensory input in an all-or-none fashion. The simulation results showed that both cooperation

and competition are needed for reproducing the referred attentional filtering effect, and suggest

them as fundamental principles for the neural basis of cognitive processes in the higher-level

cortical areas. Also, the presence of non-specific neurons in the model area was important to

assure the stability of the activity in the network, as well as the stability of several important

operational regimes identified in the present work and can be related to biological evidence,

where for any possible state of the nervous system there is always a large number of neurons

not involved in coding the present particular state. A recent study, Stetter (2006), showed
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analytically that the level of the global spontaneous background current dynamically tunes the

functional mode of the neural circuit. The stability of operational modes might then be an

important functional role for distributed representation and sparse coding in the brain.

The study presents also two experimentally testable predictions of the model: First, an increase

in the level of dopamine is related with a progressive impairment of the attentional filtering

effect and thus of the task performance. And second, the ability to filter out stimuli with basis

on attention is assumed to degrade as the number of distracting stimuli increases.

An early model investigating the mechanisms of visual attentional that follows the Biased-

Competition hypothesis, was performed by Reynolds & Desimone (1999). Their implemen-

tation, which is not biologically motivated, consisted of a feed-forward model in which the

top-down biases – encoding the attentional state – modulated the strength of the connections

coming from neurons selective for the attended stimulus. Another quantitative neural model

of Reynolds et al. (1999) for visual attention in areas V2 and V4 studied the effects of biased-

competition using a simple feed-forward competitive neural network. An alternative biologically

motivated implementation of Spratling and Johnson uses a rate-based approach for the neural

activity and considers that the top-down signals modulate in a multiplicative way the bottom-up

sensory-driven inputs to the model neurons, which compete by sending lateral inhibitory signals

to their neighbors (Spratling & Johnson, 2004b,a). In comparison, the biologically motivated

model presented in this work addresses the neural mechanisms of attentional filtering using a re-

current network consisting of a large number of spiking neurons, where the top-down biases effect

on the activations of the selective excitatory neurons, which compete through local inhibitory

neurons. The study presented here suggests cooperation - besides competition - as a second

fundamental principle for the neural basis of cognitive processes in the prefrontal cortex lead-

ing to the Extended Biased Cooperation-Competition Hypothesis. The present study provided

also detailed parameter space explorations of the different dynamical attractors of the model

network in order to characterize its working regimes. The simple one-area network could show

quantitatively different kinds of operational modes given by the overlapping of a small set of

fundamental mechanisms: competition, cooperation, persistent activity and input amplification.

The second study introduces a two-layer neurodynamical model for learning visual categorization

that investigates how the task-dependent shaping of neuronal selectivity could arise from top-

down biases encoding the presented category information, and how this shaping evolves during

learning the categorization task (Szabo et al., 2006). In the context of the proposed biologically-

relevant minimal bi-areal model, the study shows how competition and cooperation operate over

two different cortical modules. A key new feature of the proposed model is that the biases needed

to guide the competition between different neuronal populations are internally generated using

recurrent signals produced inside the network.

The model assumes that the neurons in ITC, modeled as receiving feature specific sensory

inputs, will develop during learning stronger or weaker connections to the category-encoding

model neurons from PFC to which they are consistently associated or not. Using a reward-

based Hebbian learning mechanism, the proposed model shows a robust change in the bi-areal

attractor dynamics towards increased performance of the entire system, even in the case of an
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unexpected switch in the behavioral task. The results show that the learning dynamics converges

to a stable fixed point characterized by the setting where the ITC diagnostic selective neurons

are strongly connected to the associated category and weakly connected to the other category,

and the non-diagnostic selective neurons are equally connected to the category neurons with an

average weight value.

After learning, the results show that the top-down influence of the model category encoding

neurons will enhance the selectivity of the responses in the ITC model layer for the behavioral

relevant (diagnostic) features of the presented stimuli, explaining the experimentally observed

effect. This suggests that task-dependent feature tuning might be a neuronal correlate of top-

down hypothesis-driven visual perception and that the perceptual representation in visual areas

can be strongly affected by the interaction with other areas which are devoted to higher cognitive

functions.

The study also presents two experimentally testable predictions of the model: First, learning to

provide the correct categorization, by modification of the ITC → PFC synapses, occurs before

the backward plastic reorganization of the PFC → ITC synapses, which produces the modulation

effect on the selectivity of the ITC neurons response. Such a scenario would be consistent with

the prediction that the tuning effect is an epiphenomenon of the primary synaptic process that

allows to achieve the correct categorization. And second prediction is that the time needed by

the network to learn a new association, increases with the number of modifications made in the

task protocol.

An alternative attentional-gated reinforcement learning paradigm was recently introduced for

the Sigala and Logothetis perceptual learning task by Roelfsema & Van Ooyen (2005). They

suggest that the selective tuning of ITC neurons could arise from learning the feedforward con-

nections coming to ITC from lower visual processing areas. They use a feed-forward model

receiving a generic attentional feedback signal that modulates the learning of the feedforward

synaptic weights. As opposed to this implementation, the model presented in this thesis consid-

ers a recurrent network in which the activities of the category encoding neurons directly affect

the ITC neuronal activities, thus explaining the ITC tuning effect. An experimental scenario

that could distinguish between the two network predictions is PFC cooling. After learning the

categorization task, the influence of the top-down signals from the category encoding neurons

could be measured: in case of a feedforward learning scenario the effect would reside with the

same strength, while in the case of a recurrent network the effect it is predicted to decrease or

even vanish.

Recent work in the field of cognition of Spratling and Johnson (Spratling & Johnson, 2004b,a,

2006) use computational models of interacting cortical regions to study the possible effects of

top-down signals in visual information processing, like visual attention and perceptual learning.

They show that the competition between neural representations and the neural activity mod-

ulation are common features of cortical information processing that could result from common

mechanisms, like the top-down biasing from higher cortical regions. Although using a biologi-

cally motivated architecture, their connectionist model is based on simple forms of rate-based

response functions and a dendritic inhibition model that allows negative weight values. Other
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studies from O’Reilly, Cohen, Braver and colleagues (Frank et al., 2001; O’Reilly et al., 2002;

Rougier & O‘Reilly, 2002; Cohen et al., 2004) explore the biological properties of the PFC un-

derlying working memory and cognitive control by implementing several connectionist models

of the PFC based on the Leabra framework1 (O’Reilly & Munakata, 2000) in which cortical

areas are organized according to different levels of abstraction. The models involve competi-

tion implemented by lateral inhibition and biased by top-down inputs from PFC, and take into

account the role of the dopamine system believed to regulate the learning process and control

the update of the PFC representations. Although biologically motivated, this framework uses a

rate-based approach for the neural activity which is only valid under stationary conditions, and

does not consider an explicit neuronal spiking mechanism and thus is not able to capture the

non-stationary temporal dynamics of neural activity.

Compared to the high-level modeling of the above mentioned connectionist type models that im-

plement artificial dynamics and learning schemes (Roelfsema & Van Ooyen, 2005; Miller & Cohen,

2001; O’Reilly et al., 2002), the model presented in this work implements biologically inspired

neuronal spiking and synaptic mechanisms and a biologically plausible Hebbian learning algo-

rithm, which make it a realistic model of the actual dynamical processes occurring in the brain.

An important feature of the proposed model, which exhaustively analyzes how competition and

cooperation operate within a two-area model, is the internal generation of the biases needed for

the competition process in the PFC model area.

In order to facilitate a consistent theoretical analysis of the underlying mechanisms of neural

computation, one has to consider in the future also discussing the effects and implications of

several choices taken in this modeling approach, for example: full versus partial connectivity,

local versus global inhibition, the activation and influence of the external neurons, the number

and connectivity of the non-specific neurons, different types of neurotransmitters.

Also it should be noted that present spiking neuron models focus on the fast chemical interactions

and assume that all synapses coming from one neuron can be either excitatory or inhibitory.

Future models, that will take into account also longer time-scale chemical interactions, will

enable extra functionalities – like a switch in the activity mode of a neuron, and consequently

a switch in the functionality of an entire module, like for example from an attentional module

to an selective working memory module.

In conclusion, the presented neurodynamical models describe and analyze a small number of

mechanisms, like biased-competition and cooperation, that combined give rise to a number of

basic features of cortical processing, namely input amplification, selective filtering, correlation

facilitation, attentional suppresion and selective tuning. These features allow relevant insights

about the neurodynamical mechanisms underlying higher-level cognitive functions of the brain

and represent fundamental building blocks of large neurodynamical models. We belive that

these fundamental mechanisms can be used to form very powerful computational systems and

represent an important contribution to the modern cognitive neuroscience.

1the Leabra framework is a coherent set of basic neural processing and learning mechanisms
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A Appendices

A.1 List of common used abbreviations

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ANN artificial neural network

EEG electroencephalography

EPSC excitatory post-synaptic current

EPSP excitatory post-synaptic potential

fMRI functional magnetic resonance imaging

GABA gamma-aminobutyric acid

IPSC inhibitory post-synaptic current

IPSP inhibitory post-synaptic potential

ISI inter spike interval

ITC inferotemporal cortex

LIF leaky integrate-and-fire

LIF-NS leaky integrate-and-fire with nonlinear synaptic dynamics

LTD long-term depression

LTP long-term potentiation

mM millimolar (concentration)

ms millisecond

mV millivolt

nF nanofarad

NMDA N-methyl-D-aspartate

PET positron emission spectroscopy

PFC prefrontal cortex
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A Appendices

A.2 List of common used symbols

Vrest resting membrane potential

VE reversal potential for excitatory synapses

VI reversal potential for inhibitory synapses

Vthr excitation or spiking threshold

Vreset reset membrane potential

Itot(t) total afferent input to a neuron

Iext(t) total external input to a neuron

f(Itot) activation or transfer function

τ integration time constant

wij synaptic strength from neuron j to neuron i

Cm total membrane capacitance (LIF neuron)

RL total membrane leak resistance (LIF neuron)

Vm membrane potential (LIF neuron)

τm membrane time constant (LIF neuron)

gL membrane leak conductance (LIF neuron)

VL leakage reversal potential (LIF neuron)

θ firing threshold (LIF neuron)

δ(t) Dirac delta function

τref absolute refractory period (LIF neuron)

H(t) Heaviside step function

sR
j (t) fraction of opened synaptic ion channels of type R at site j (LIF-NS neuron)

τR
decay synaptic decay time constant for receptor type R (LIF-NS neuron)

τR
rise synaptic rise time constant for receptor type R (LIF-NS neuron)

gR
max maximum synaptic conductance mediated by receptor type R (LIF-NS neuron)

NE number of excitatory recurrent connections (LIF neuron)

NI number of inhibitory recurrent connections (LIF neuron)

Next number of external excitatory connections (LIF neuron)

ν firing rate

w+ weight setting between neurons within a specific population

w′ weight setting implementing cooperation

w− weight setting implementing competition

q+ learning rate for potentiation

q− learning rate for depression

w+ total connection strength between two populations when all synapses are potentiated

w− total connection strength between two populations when all synapses are depressed

Np fraction of synapses to be potentiated

Nd fraction of synapses to be depressed

Cij current fraction of potentiated synapses from the synaptic population ij
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