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Zusammenfassung

Finite Elemente hoher Ordnung (p-Version) werden zur Simulation von geometrisch und
materiell nichtlinearen Problemen angewandt. Neben hyperelastischen Materialien wird ein
viskoplastisches Modell mit inneren Variablen verwendet. Das Algebro-Differentialgleichungs-
system, welches aus der räumlichen Diskretisierung der schwachen Form entsteht, wird mit der
Backward-Euler Methode zusammen mit dem Mehrebenen-Newton-Verfahren gelöst. Um den
Prozess des kalt-isostatischen Pressens effizient abzubilden, werden ein axialsymmetrisches El-
ement für große Dehnungen, Reaktionskräfte und Folgelasten für die p-Version abgeleitet. An-
alytische Vergleichslösungen zeigen, dass die p-Version volumetrisches Locking auch für große
Dehnungen überwindet. Die effiziente Anwendung der entwickelten Methoden auf einaxiales
und isostatisches Pressen von Metallpulvern wird demonstriert. Ein komplexes Validierungs-
beispiel zeigt gute Übereinstimmung mit dem Experiment.

Abstract

For the simulation of geometric and material nonlinear problems implicit high-order (p-version)
displacement-based finite elements are applied. Beside hyperelastic materials a finite strain
viscoplasticity model with internal variables is considered. We apply the combination of Back-
ward-Euler integration and Multilevel-Newton algorithm to solve the system of differential-
algebraic equations resulting from the space-discretized weak form. For an efficient modeling
of the cold isostatic pressing process an axisymmetric finite strain element, reaction forces and
follower loads are derived in the p-version context. We demonstrate that the p-version can
overcome volumetric locking also in the finite strain case. An adaptive time-stepping algorithm
is presented to perform simulations of metal powder compaction. We report applications to
die-compaction and isostatic pressing processes, and a complex validation example where a
good agreement to experimental data is achieved.
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Notation

Wherever possible without overloading the notation, it is tried to reflect the different concep-
tional representations (tensor, column matrix etc.) and discretization stages in the symbolism.

Second order tensors are written as capital roman letters, for example the Green strain
tensor E. For computer implementation, the components of second order tensors are collected
in column matrices denoted by sans-serif bold letters. Work conjugate symmetric tensors like
the Green strain tensor E and the second Piola-Kirchhoff stress tensor T̃ are treated according
to the Voigt notation (compare Footnote 11 on p. 61) and rendered E, T̃. For non-symmetric
tensors like the displacement gradient G = Grad ~u, Eq. (3.8), the order of terms in the column
matrix representation is stipulated, cf. in Eq. (4.49). In view of the finite element method,
we distinguish global (assembled) quantities written in italic sans-serif letters like E and their
restriction to an element Ωe – denoted by upright sans-serif capitals like Ee. If a quantity is
‘living’ in the vector space of Ansatz functions (FE-space) it is denoted by a superscript h
as Eh. Geometric vectors in the reference configuration, cf. Fig. 2.1, are written as capital
letters, e.g. ~X, in the current configuration as small letters, like ~x. In an analogous way the
column matrix representation is X and x. The displacement field ~u = ~X − ~x is approximated
in the FE-space as ~u ≈ ~u h and in column matrix notation referred as uh.

For later reference, some tables are compiled to show how the notation reflects the dis-
cretization process from the continuous tensor term to the spatially discretized expression in
column matrix representation. It is helpful to see at a glance that the gradient-displacement
matrix G for example results from discretizing the gradient field G = Grad ~u and is written
in column matrix notation Θh (FE-space). Or compare how the strain-displacement matrix
B is used to compute the discrete variation of the Green-Lagrange δE strain tensor in vector
form. Tab. 2 provides this information.

The commutative diagram in Tab. 1 shows, that we arrive at equal results whether one
discretizes first and then carries out linearization of the nonlinear expressions, or if the lin-
earization is done at intermediate stages. In this work the linearization at intermediate stages
is also given. Finally, the List of Symbols starting on page 163 gives access to further in-depth
information.
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vi Notation

balance of
linear momentum

Div TR + ρR
~k = ~0 (2.41)

δ~u
R

��

elastic potential
(conservative problems)

Π(~u) (3.13)
δΠ=0 (3.15)

yy
π(t, ~u, δ~u, q) (3.9)

Dπ(~u)[∆~u]
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◦

��
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��
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Chapter 1

Introduction

Numerical methods have become indispensable tools both for engineering applications and re-
search. An important case is the simulation of a system’s response by finite element methods.
It can provide further insight and in many cases minimize the number of experiments. The
finite element method started as a tool for applied engineers but the mathematical analysis
catched up in the mean time, deepening understanding and also spurring new developments.
One of those contributions from the mathematical side goes by the name high order finite el-
ements or p-version. The monograph by Barna Szabó and Ivo Babuška (Szabó and Babuška,
1991) on the p-version unifies the knowledge of high-order finite element methods at the begin-
ning of the nineties of the 20th century. The p-version is known to be robust against element
distortion and to perform very well in the small strain setting, also for nonlinear materials.
Recently it was shown that these benefits also carry over to the finite strain case, see for exam-
ple (Düster et al., 2003; Heisserer et al., 2007; Krause et al., 1995; Yosibash et al., 2007). In
this thesis, both the locking-free property of the p-version for finite strain hyperelasticity and
the application of p-FEM to a complex pressure dependent finite strain inelastic material is
shown in the context of cold isostatic pressing of powder materials. This work reflects insights
gained in a project funded by GIF1. There, the focus was on simulating cold isostatic pressing
covering the full range from experiments over constitutive modeling, numerical calculation
with the p-version, and finally validation of the results, compare Fig. 1.1.

1.1 The process of cold isostatic pressing (CIP)

Cold isostatic pressing is a technology used to compact powder materials, compare (German,
1998), (Koizumi and Nishihara, 1991), (Price, 1998). For a historical review compare (Papen,
1977). The specimen are often sintered after the compaction stage. Cold isostatic pressing is
used for a wide range of materials, however most prevalent is the compaction of metal powder
and ceramic, cf. (Richerson, 2006). The process of manufacturing suitable metal powder is
an art by itself2 as the shape of the powder particles has significant influence on the handling
and properties of the pressed material.

1The support of the German-Israeli Foundation of Scientific Research and Development grant I-700-
26.10/2001 is gratefully acknowledged.

2In the ASM Handbook of Powder Metal Technologies and Application, (ASM, 1998), over 170 pages are
devoted to the different powder production methods for a wide varieties of metals ranging from iron over
copper and titanium to tungsten and molybdenum.
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2 1. Introduction

Model validation

Experiments

Constitutive Model

Finite Element

Simulation

Figure 1.1: Overview of the GIF project modeling the cold isostatic pressing process

The powder is filled in a flexible mold that determines the final shape of the specimen
and deforms during the process. At ambient temperature (‘cold ’) in an isostatic manner the
pressure is applied, in most cases by a liquid medium like water or oil, see Fig. 1.2. Typically
the pressure is in the range of 300 − 500 MPa. Metal powders are, for example, compacted
from a relative density of about 0.4 of the full density of the solid materials to a relative
density of about 0.9 of the full density by isostatic pressing. During this process the porosity
is reduced and the particles are packed denser. Resulting is a brittle body where the bonding
is achieved by friction.

rubber mold

powder

high-pressure vessel

pressure medium

Figure 1.2: Schematic representation of wet-bag isostatic pressing
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One advantage of cold isostatic pressing, cf. (Price, 1998), is that even complex shapes
with undercuts can be produced. Furthermore, thin-walled sections with large aspect ratios
of length to characteristic diameter can be densified, see for example the chamotte tubes used
in chimneys in Fig. 1.3. Die wall friction is not an issue because of the elastic behavior of the
mold. A very important point is that the density distribution in the pressed sample is very
homogenous due to the isostatic pressure. This is especially important for subsequent sintering
because regions with different densities are likely to cause cracks by different shrinking. An
example of cold isostatically pressed titanium alloy and aluminium alloy powders is shown in
Fig. 1.4. Expensive materials like titanium (Lüthering and Williams, 2003, p. 91), tungsten
(Lassner and Schubert, 1999, p. 323), molybdenum, and tantalum are candidates for CIP.
Also materials difficult to machine like tungsten carbide, titanium carbide, and tool steels. In
the GIF-project copper powder was chosen as reference material.

Figure 1.3: Chamotte tubes produced applying cold isostatic pressing by the German company
Schiedel with Loomis presses (Ceramitec trade fair in Munich 2006)

1.2 Outline of the thesis

The thesis is structured as follows. Chapter 2 recalls basic continuum mechanics concepts,
introduces the kinematic notations as well as balance principles and summarizes the material
models needed in the simulation of metal powder compaction.

Chapter 3 introduces the important concept of linearization and the relationship of vari-
ation and directional derivative. This tool is subsequently applied to the nonlinear weak
equation establishing the basis for numerical treatment.
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Figure 1.4: Forging preforms cold isostatically pressed with titanium alloy and aluminium
powders. Dynament Technology, reproduced from (Price, 1998, p. 387)

The linearized variational equation is discretized in Chapter 4 using high-order finite el-
ements. Hierarchical shape functions are distinguished from standard high-order shape func-
tions. Furthermore, different mapping concepts and their consequences are discussed. Various
types of errors occurring when modeling a physical event by numerical methods are discerned
and the inherent verification properties of the p-version are addressed. For the solution of the
global nonlinear equation system two similar variants are kept apart: the Newton-Raphson
method (NRM) and the multi-level Newton algorithm (MLNA) with a local iteration.

After the stage is set, Chapter 5 confirms the implementation of the axisymmetric fi-
nite strain element and justifies the calculation of reaction forces when hierarchic high order
shape functions are used. Next, the implementation of deformation-dependent loads (follower
loading) encountered in cold isostatic pressing is verified against analytical solutions derived
in this project. These analytical solutions allow to show that the locking-free property of the
p-version, well known in the small strain setting, can also be found for finite strain hypere-
lasticity. Finally, powder metallurgical numerical examples are addressed drawing on the full
arsenal of methods elaborated. We end with a ‘complex’ validation example where we can
show good matching of the numerical simulation to the experimental result.

Chapter 6 concludes and gives an outlook for future work.







Chapter 2

Basic continuum mechanics

In the endeavor of man to understand the world the so called ‘pre-socratic’ philosophers
mark an important stage, compare e.g. the collection (Mansfeld, 1983, 1986). They struggled
to explain phenomena rejecting traditional mythologic explanations. Instead, they tried to
introduce reason and logic arguments. One prominent question was what the nature of matter
is. The school of the atomists, Leucippus (5th century BC) and Democritus (460–370 BC),
argued that everything is composed of small, indestructible components, compare (Mansfeld,
1986, Sec. 9). These building blocks they called ατoµoς - indivisible. So they coined the
notion ‘atom’. However, in the mean time the meaning of ‘atom’ changed: what we call
‘atoms’ today is in turn made up from smaller components, protons, neutrons, and electrons.
Modern physics shows that beyond these are even more smaller particles, physicists talk of a
‘zoo’ of particles and there is a world-wide hunt for the basic particles.

While we know of quantum mechanics and to some extend of the microstructure of matter,
it is nevertheless sufficient for a broad range of engineering applications to apply classical
mechanics and the concept of macrostructure entities. Many phenomena can be successfully
described by approximating matter on a macroscopic level, thereby averaging properties over
a given volume. Continuum mechanics is a phenomenological theory of fields. The term
continuum is defined as a set of points continuously filling a given space. These points bear
the material properties, like e.g. density, temperature and, velocity (Altenbach and Altenbach,
1994, p. 3).

The scope of continuum mechanics is the study of motion and deformation (kinematics),
the study of stress in a continuum and the mathematical description of the models governing
the motion of a continuum (balance principles) (Holzap fel, 2000, p. 55).

In this work we only give a brief introduction in the wide field of continuum mechan-
ics, for in-depth knowledge the reader may consult monographs on this topic, for example
(Altenbach and Altenbach, 1994; Haupt, 2000; Marsden and Hughes, 1993; Truesdell and Noll,
1965). Introductions to these concepts in the framework of finite element analysis can be found
in (Belytschko et al., 2000; Bonet and Wood, 1997; Holzap fel, 2000; Wriggers, 2001).

2.1 Kinematics

The study of deformation and motion without reference to the cause is called kinematics. To
this end every material point P is assigned to three coordinates ξ1, ξ2, ξ3 (collected in the vector

7



8 2. Basic continuum mechanics

~ξ) in the reference configuration R of a body B. The point P moves through space in time and
is labeled X in the reference configuration at time t = 0 and x in the current configuration.
The series of configurations associated with the parameter t (time) is called motion of the

point P and is described by the current position vector ~x = κ(t, ~ξ). The configuration at t = 0

is called reference configuration and the position vector is denoted by capital letter ~X. Due to
the construction we have an one-to-one map from the coordinates ~ξ of point P to a position
vector ~X in space at time t = 0. Therefore, one can define a new function in ~X

~x = ~χ
R
( ~X, t) (2.1)

to describe the motion with respect to the reference configuration. For a detailed discussion
of configurations and motion in different coordinate systems it is refered to (Haupt, 2000,
pp. 7–22). Compare Fig. 2.1 for a sketch of the notations. Already at this point we hint at the

~e1
~e2

~e3

X2, x2

X2, x2

X3, x3

φ ϕ
ξ1

ξ2

ξ3

~X ~x

~u

κκo

time t = 0 t

P

Reference Conf. Current Conf.

X x

B

Ωst

Motion ~x = κ(t, ~ξ)~x = ~χ
R
( ~X, t)

Figure 2.1: Configurations
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partitioning of the domain in small regions in view of the finite element method and introduce
the mapping from a standard element Ωst to the reference configuration, ~X = φ(~ξ) (4.30),

and to the current configuration at a given time t, ~x = ϕ(~ξ), for later use.
We employ a total Lagrangian approach to describe the relevant tensor fields with relation

to the reference configuration, i.e. in terms of the position vector ~X. For example, the
deformation at time t is defined as

~u(t, ~X) = ~χ
R
( ~X, t)− ~X . (2.2)

A very fundamental quantity is the gradient of the deformation. The deformation gradient
F is a local measure, how the deformation field in the vicinity of a point P is affected by the
motion, or put differently, how neighboring points in the reference configuration move. It is
defined as

F = Grad ~χ
R
( ~X, t) =

∂xk

∂XL
~gk ⊗ ~GL (2.3)

where xk = ~χ
R
(XL, t) and XL define the coordinates in the current configuration and reference

configuration respectively. Furthermore, ~gk denotes the tangent vectors to the isolines of
coordinates in the current configuration and ~GL the gradient vectors to the coordinate surfaces
in the reference configuration.

The deformation gradient transforms material line elements d ~X, i.e. tangent vectors of the
coordinate lines in the reference configuration, to line elements d~x of the spatial configuration.
Accordingly, surface and volume elements are transformed as, cf. (Haupt, 2000, p. 28),

d~x = Fd ~X (2.4)

d~a = (detF)F−T d ~A (2.5)

dv = (detF)dV, (2.6)

where we stipulate that the deformation is invertible and preserves the orientation, i.e.

det F ≡ J > 0 . (2.7)

The deformation gradient can be decomposed in a number of ways.

• In the polar decomposition the motion is separated in a rigid body rotation, i.e an
orthogonal rotation tensor R and a material stretch tensor U or a spatial stretch tensor
V, depending on the order of the operations

F = RU = VR . (2.8)

For a graphical interpretation of the split compare (Haupt, 2000, p. 29).

• In the volumetric decomposition we multiplicatively separate F into a volume-changing
part F̂ and a volume preserving (or distortional or isochoric) component F,

F = F̂F . (2.9)

This decomposition is for example applied when developing strain energy density func-
tions for nearly incompressible hyperelastic materials, cf. Eq. (2.60) in Sec. 2.3.1.
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• A third decomposition is e.g. utilized for the constitutive model of metal powder com-
paction in Sec. 2.3.2. Here a multiplicative decomposition in an elastic and an inelastic
part, F̂e and Fv respectively, is applied, see Eq. (2.69),

F = F̂eFv. (2.10)

In the literature a number of further decompositions are proposed, compare the references
in (Hartmann, 2003a, p. 50). All these multiplicative splits define intermediate configurations
and if the splitting has physical meaning constitutive relations can be separately defined for
the different physical phenomena.

The deformation gradient is used to define quantities related to the stretch of the material.
The right and left Cauchy-Green tensors are introduced as

C = FTF = U2 (2.11)

B = FFT = V2 (2.12)

and building on them strain measures can be introduced. Strain measures are tensorial quan-
tities that vanish under rigid body rotations and have monotonous properties, cf. (Hartmann,
2003a, p. 46). The Green-Lagrange strain tensor E is defined as

E =
1

2
(FTF− I) =

1

2
(C− I) =

1

2
(U2 − I) (2.13)

and a strain measure operating on the spatial configuration is the Euler-Almansi-strain tensor

A =
1

2
(I− F−1F−T ) =

1

2
(I−C−1) =

1

2
(I−V−2) , (2.14)

both are connected by the relations

A = F−T EF−1 and E = FT AF . (2.15)

Some materials show dependence on the deformation velocities. The relations describing the
temporal rates corresponding to (2.4) – (2.6) are, see (Hartmann, 2003a, p. 47),

d~̇x = Ḟd ~X = Ld~x (2.16)

d~̇a = J
(
(F−1 · ḞT )I− F−T ḞT

)
F−T d ~A =

(
(trL)I− LT

)
d~a (2.17)

dv̇ = J(F−1 · ḞT )dV = (trL)dv. (2.18)

The material time derivative is denoted by the superimposed dot. The (spatial) velocity
gradient is calculated from the velocity field in the spatial configuration ~v(~x, t) as

L = ḞF−1 = grad~v(~x, t) . (2.19)

We introduce the important split of L in the symmetric ‘rate of deformation tensor’ D and
the antisymmetric ‘spin tensor’ W as

D =
1

2
(L + LT ) (2.20)

W =
1

2
(L− LT ) . (2.21)
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The material time derivative of the Lagrangian strain tensor is obtained from (2.13) and (2.11)
as

Ė =
d

dt
E =

1

2
Ċ =

1

2
(ḞTF + FT Ḟ) (2.22)

and by inserting Eq. (2.19) into (2.20) we arrive at

D = F−T ĖF−1 . (2.23)

If we introduce Eq. (2.15) in (2.23) we have

D = F−T

(
d

dt
E

)
F−1 = F−T d

dt
(FT AF)F−1 ≡

△
A . (2.24)

The quantity
△
A is known as the (covariant) Oldroyd rate of the Almansi strain tensor (Haupt,

2000, p. 48), (Holzap fel, 2000, p. 193). The three step operation of (i) pulling back a spatial
tensor (•∗) to its material representation (•∗), (Holzap fel, 2000, p. 82),

(•∗) = FT (•∗)F (2.25)

(ii) material time derivative

˙(•∗) =
d

dt
(•∗) (2.26)

and (iii) push forward

(•∗) = F−T (•∗)F−1 (2.27)

is known as Lie time derivative (Bonet and Wood, 1997, p. 87), (Holzap fel, 2000, p. 106).

2.2 Balance principles and stress tensors

Balance principles

The kinematic relations introduced above give a description of motion and deformation of
bodies. This section presents balance relations that relate kinematic quantities to influences
‘from the outside world’ (for a detailed discussion we refer to (Haupt, 2000, Ch. 2)). One can
imagine dividing the world in two disjoint sets: a body (or parts of a body) and the rest of
the material world (free-body principle). Under the assumption that key physical quantities,
like mass, momentum and energy are continuously distributed and additive in the sense of
the measure theory they can be represented by volume integrals of density functions and the
exchange of those quantities over the surface of a control volume can be described by surface
integrals. Balance relations establish a causal relationship of the temporal change of quantities
inside the body with influences from the outside world.
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Balance relations can be given in a global (integration over the whole reference volume V )
or local form (for a particle), for example the global form of the balance of mass in reference
configuration reads

d

dt

∫

V

ρR( ~X, t) dV = 0 (2.28)

with the density in the reference configuration ρR, while the local form is gained under the
assumption that balance equations in general, and equation (2.28) in particular, are valid not
only for the whole control volume but for every subvolume of V ((Haupt, 2000, Theorem 2.1,
p. 77), (Belytschko et al., 2000, p. 108))

d

dt
ρR( ~X, t) = 0 ⇒ ρR( ~X, t) = ρR( ~X) . (2.29)

And as the mass of the system will not change upon a pull back operation
∫

v

ρ(~x, t) dv =

∫

V

ρR( ~X) dV (2.30)

we can use the kinematic relation (2.6) with J = detF to obtain

ρR = Jρ → ρ =
1

J
ρR, (2.31)

a relation that can be used to compute the current density from the determinant of the
deformation gradient if the material (initial) density is known. In powder compaction processes
an important quantity is the relative density ρrel = ρ/ρ0 defined as the quotient of the current
density of the powder body over the density of the solid material ρ0, e.g. tap density of
copper powder over the density of solid copper (see (ISO/TC119, 1995)). As a consequence
of Eq. (2.31) the relative density at time t can be calculated from the initial relative density
at time t = 0 and the deformation gradient at time t as

ρrel(~x, t) =
ρ(~x, t)

ρ0
=

1

J

ρR( ~X)

ρ0
=

1

J
ρRrel( ~X). (2.32)

Summary of global balance equations. The thermodynamic balance relations can be
written in unified form ((Haupt, 2000, p. 137), (Altenbach and Altenbach, 1994, p. 118),
(Holzap fel, 2000, Sec. 4.7)) that was tabulated in (Hartmann, 2003a, p. 57) as the temporal

change of a scalar (ψ) or vector valued (~ψ) variable that is related to a surface transport term

(φ, ~φ), a volume transport contribution (σ, ~σ) and production term (p, ~p),

d

dt

∫

v

ψ(~x, t)ρ(~x, t) dv =

∫

a

φ(~x, t) da+

∫

v

(σ(~x, t) + p(~x, t)) dv

d

dt

∫

v

~ψ(~x, t)ρ(~x, t) dv =

∫

a

~φ(~x, t) da+

∫

v

(~σ(~x, t) + ~p(~x, t)) dv, (2.33)

here, ρ(~x, t) is the mass density of the body. Using Cauchy’s lemma that stipulates a linear
dependency of the surface-distributed interaction from the surface normal ~n and the flux,
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ψ, ~ψ ~Φ,Φ σ, ~σ p, ~p

mass 1 ~0 0 0

linear momentum ~v T ρ~k ~0

angular momentum (~x− ~x0)× ~v (~x− ~x0)×T (~x− ~x0)× ρ~k ~0

energy e+ 1
2
~v · ~v TT~v − ~q ρ(~k · ~v + r) 0

entropy s −1
θ
~q r

θ
ρ γ ≥ 0

mechanical energy 1
2
~v · ~v TT~v ρ~k · ~v −T ·D 0

Table 2.1: Terms in the general balance relation

φ = ~Φ · ~n, ~φ = Φ~n, the terms of the general balance equation (2.33) can be specified as

collected in Tab. 2.1 with the fluxes ~Φ,Φ.
The mechanical energy is not an independent balance relation but the result of mass, linear

momentum and angular momentum balance. However, it fits in the structure of the general
balance equation and was thus added. The quantities in Tab. 2.1 are defined on the current
configuration and have the following meaning: spatial velocity ~v(~x, t), Cauchy stress tensor

T(~x, t), strain rate tensor D(~x, t), density ρ(~x, t), volume or body force ρ~k, ~x0 as point of
reference for the angular momentum, specific internal energy e(~x, t), heat flux ~q(~x, t) and a
spatially distributed heat supply r(~x, t), density of entropy s(~x, t) as well as a non-negative
production of entropy γ(~x, t) ≥ 0. The absolute temperature is denoted by θ > 0.

Local balance equations. Using the transport and divergence theorem the local forms
of the balance equations can be derived (see, for example, (Haupt, 2000, Sec. 3.5.3), (Wriggers,
2006, Sec. 3.2), (Belytschko et al., 2000, Sec. 3.5 and Sec. 3.6)).

The spatial representation of the local balance equations consists of the conservation of
mass

ρ̇(~x, t) + ρ div~v(~x, t) = 0, (2.34)

the conservation of linear momentum

div T(~x, t) + ρ~k = ρ
d~v(~x, t)

dt
, (2.35)

and the conservation of rotational momentum

T = TT (2.36)

manifesting the symmetry of the Cauchy stress tensor.
To express the balance of linear momentum in the material configuration Eq. (2.35) is

pulled back to the reference configuration. We introduce the first Piola-Kirchhoff stress tensor

TR = JTF−T (2.37)

to obtain

Div TR( ~X, t) + ρR
~k = ρR

d~v( ~X, t)

dt
. (2.38)
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Remark 1 A note concerning the notation: The differential operators starting with capitals,
viz Div and Grad , denote differentiation with respect to coordinates in the reference configu-
ration, e.g. Div~v = ∂v1

∂X1
+ ∂v2

∂X2
+ ∂v3

∂X3
while div , grad designate differentiation with respect to

coordinates in the current configuration, e.g. div~v = ∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
.

The material form of the balance equation of rotational momentum, cf. (2.35),

TRFT = FTT
R (2.39)

reveals that the first Piola Kirchhoff tensor is unsymmetrical and a two-field tensor, with one
base vector belonging to the spatial configuration, the other to the reference configuration. To
be able to work with a symmetric stress tensor the first Piola-Kirchhoff tensor is multiplied
from the left with the inverse of the deformation gradient yielding the second Piola-Kirchhoff
stress tensor T̃, a symmetric stress tensor operating totally on the reference configuration

T̃ = F−1TR = JF−1TF−T . (2.40)

A number of commonly used stress tensors and their relation is compiled in Tab. 2.2 for later
reference.

TR T̃ S T

TR FT̃ SF−T JTF−T

T̃ F−1TR F−1SF−T JF−1TF−T

S TRFT = FTT
R FT̃FT JT

T 1
J
TRFT = 1

J
FTT

R
1
J
FT̃FT 1

J
S

1st Piola-Kirchhoff stress TR, 2nd Piola-Kirchhoff stress T̃, weighted Cauchy or Kirchhoff stress S, Cauchy stress T

Table 2.2: Conversion of commonly used stress tensors (Hartmann, 2001, p. 59)

Governing equations

For the numerical treatment of structural problems the local balance equations with appropri-
ate boundary conditions have to be solved. The conservation of angular momentum is ensured
by construction of the constitutive equations. For solid mechanical problems the mass balance
is guaranteed by the fact that the control volume coincides with the body under considera-
tion and there is no mass flux over the surface as well as no distributed production of mass.
Restricting ourself to isothermal processes only the balance of linear momentum Eq. (2.35) or
Eq. (2.38) has to be considered in particular.

Further assuming quasi-static processes the acceleration terms in the linear momentum
equations are dropped, however the momentum equation still depends on time as the stresses
(constitutive equations) and boundary conditions might be time-dependent (Hartmann, 2003a,
p. 103). In the material reference frame the local momentum balance Eq. (2.38) reduces under
the mentioned assumptions to

Div TR( ~X, t) + ρR( ~X)~k = ~0. (2.41)
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According to the transformations collected in Tab. 2.2 this relation can be expressed using the
symmetric second Piola-Kirchhoff-Tensor T̃ as

Div (F( ~X, t) T̃( ~X, t)) + ρR( ~X)~k = ~0. (2.42)

To determine the unknown motion this equation has to be satisfied for every material point
~X and every time t for the time-dependent geometric and force boundary conditions.

2.3 Constitutive models

So far we have introduced the kinematics and the balance principles including stresses. The
fields and influences can be arranged in a so-called Tonti diagram1, Fig. 2.2, where the grey
boxes represent the unknown fields and their relations. To link the left and right side of the

Prescribed

Prescribed

displacements
Dirichlet b.c.

on Au

Displacements

Strains

E

Stresses

T̃

Volume load

ρ~k

Force b.c.

on At

~u

tractions
and forces

Kinematics

Constitutive

model in V

Governing equations
in V in V

Figure 2.2: Tonti-Diagram: basic structure of the equations

diagram relations between stress and strain are needed. Those relations are constitutive models
and they depend on the materials involved. At this point we complete the set of equations
by assuming a fairly general constitutive model following (Hartmann, 2003a). Later on some
specific constitutive relations for hyperelasticity and metal powder compaction are introduced.
The constitutive relations for the stress state T̃ depend on the deformation, represented by
the symmetric right Cauchy-Green strain tensor C = FT F, and internal variables q evolving
according to the process history:

T̃( ~X, t) = Φ̃
(
C( ~X, t), q( ~X, t)

)
(2.43)

q̇( ~X, t) = r
(
C( ~X, t), q( ~X, t)

)
(2.44)

obeying the initial conditions q( ~X, t0) = q0( ~X). Furthermore, the initial conditions for the

motion or equivalently for the displacement field ~u( ~X, t) = ~u0( ~X) have to be satisfied.
Many inelastic material models exhibit the structure of Eq. (2.43) – (2.44). In the case of

inelastic models with yield function the internal variables q evolve only if a loading condition

1The Italian physicist Enzo Tonti (∗ 1935) introduced classification diagrams for physical theories to study
the analogies in physics. We refer to one of his early publications on this subject, (Tonti, 1972), and a current
working paper that summarizes his research on the analogies of variational principles, (Tonti, 2003).
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is fulfilled. Usually in the numerical treatment the plastic multiplier λ is not evaluated by
the consistency condition. Instead λ is used as an additional variable and the yield condi-
tion f(C, q) = 0 is exploited to arrive locally at a differential-algebraic (DAE) system, cf.
(Brenan et al., 1996),

q̇ = λr(C, q) (2.45)

0 = f(C, q) (2.46)

abbreviated by

Aq̇− r
(
C( ~X, t), q( ~X, t)

)
= 0 , (2.47)

with qT = {q, λ}, rT = {λr, f}, where the upper left part of the singular matrix A

A =

[
I

0

]
(2.48)

recovers the evolution equations (2.44), while the lower right zero relates to the algebraic
equation that governs the yield condition. In the viscoelastic case, A = I, and (2.47) is
simplified to the form of Eq (2.44).

For investigations of the efficient solution of DAE systems with modern methods developed
in numerical mathematics we refer to the following references and the literature cited therein
(Ellsiepen and Hartmann, 2001; Hartmann, 2002, 2003a, 2004, 2005; Hartmann and Bier, 2008;
Hartmann and Wensch, 2007). Hyperelastic constitutive relations show a simpler structure as
no internal variables are involved.

2.3.1 Hyperelasticity

For a hyperelastic material the stresses are derived from a stored energy functional. More
specifically, the work done by stresses during a deformation is path-independent, i.e. it depends
only on the initial state at time t0 and the final configuration at time t. Consequently a stored
strain energy function or elastic potential Ψ depends only on the current deformation F. A
further restriction is given by the demand of objectivity – the stored strain energy must be
invariant to rigid body rotations. In the view of the polar decomposition of the deformation
gradient, Eq. (2.8), only the stretch must contribute. Therefore, the elastic potential is often
defined as a function of the right Cauchy-Green tensor C, Eq. (2.11), or Green strain E,
Eq. (2.13),

Ψ̂(F( ~X)) = Ψ(C( ~X)) = Ψ̃(E( ~X)) . (2.49)

The stress is obtained as the derivative of the potential in direction of the deformation, i.e.

T̃ = g̃(E) = ρR
dΨ̃(E)

dE
(2.50)

= g(C) = 2ρR
dΨ(C)

dC
(2.51)
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and the fourth-order elasticity tensor C̃ valid at a state ~u connecting an increment in strain
D~uE(~u)[∆~u] due to a deformation ∆~u to an increment in stress D~uT̃(~u)[∆~u],

D~uT̃(~u)[∆~u] = C̃D~uE(~u)[∆~u] (2.52)

is given by

C̃ =
dg̃(E)

dE
= 2

dg(C)

dC
= 4ρR

d2Ψ

dCdC
. (2.53)

For the definition of the directional derivatives, e.g. D~uT̃(~u)[∆~u], compare Eq. (3.21).

Remark 2 The factors 2 and 4 in the equations above originate from the application of the
chain rule, where we used the representation

C = 2E + I , (2.54)

compare Eq. (2.13)2. These factors of course also show up in the discretized quantities.

Remark 3 The simplest example of a hyperelastic constitutive model is the St.Venant-Kirch-
hoff model with the strain energy function

Ψ̃(E) =
1

2
λ(trE)2 + µE ·E (2.55)

where λ and µ are material coefficients and trA = ak
k denotes the trace operator. The stress

tensor is obtained according to Eq. (2.50) as

T̃ = λ(trE)I + 2µE . (2.56)

See (Bonet and Wood, 1997, p. 120), (Wriggers, 2001, pp. 45),(Bathe, 2002, p. 589),
(Holzap fel, 2000, pp. 250). It is a classical finite strain model for compressible hyperelastic
materials that is often used for metals. Note that this model is suitable for large displacements
but not for large compressive strains. The reason is a horizontal tangent in the stress-strain
curve, i.e. zero stiffness in the compression domain as we discuss in Sec. 4.9.2.

If further knowledge about the material is given, this can be used to restrict the strain energy
density functions even more. For the important class of isotropic materials like steel or rubber
the energy potential can be expressed using the invariants of the right Cauchy-Green tensor
C.

In current finite element codes three types of polynomial assumptions of the strain energy
functions are commonly used. The models of Rivlin and Saunders (Rivlin and Saunders,
1951), of Ogden (Ogden, 1972) and of Arruda and Boyce (Arruda and Boyce, 1993) were first
formulated for the case of incompressibility, i.e. with the constraint (detF)2 = J2 = IIIC = 1.
This means, the third invariant IIIC = detC of the right Cauchy-Green tensor C that describes
volumetric change is not present in the equations. For example, the generalized polynomial
Ansatz of Rivlin and Saunders states

w(IC, IIC) =
m∑

i=0

n∑

j=0

cij(IC − 3)i(IIC − 3)j . (2.57)
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Depending on the coefficients cij and the parameters m,n a number of well known material
models are recovered, for example the Neo-Hooke (Rivlin, 1948) model with a positive constant
c10, (c00 = 0, m = 1, n = 0),

wNH(IC) = c10(IC − 3) (2.58)

or the Mooney-Rivlin model (Mooney, 1940), (Rivlin and Saunders, 1951) with positive c10, c01,
(c00 = c11 = 0, m = 1, n = 1),

wMR(IC, IIC) = c10(IC − 3) + c01(IIC − 3) . (2.59)

For a survey compare (Hartmann, 2001).
To model compressible material behavior, i.e. det F 6= 1, the strain energy functions of

incompressible hyperelastic materials can be augmented by a term depending on J = detF.
To this end the deformation gradient F = Grad ~χ

R
( ~X, t) is multiplicatively decomposed

into a volume-changing part F̂ and a volume-preserving part F,

F = F̂F, (2.60)

where

F̂ = J1/3I, det F̂ = detF ≡ J, (2.61)

F = J−1/3F, detF = 1. (2.62)

This formulation goes back to Flory (Flory, 1961). Applying this decomposition one can define,
for instance, the unimodular Right or Left Cauchy-Green tensors C and B, respectively,

C = F
T
F = J−2/3C and B = FF

T
= J−2/3B. (2.63)

This specific decomposition is used to formulate strain energy functions which have the de-
coupled form

ψ(J,C) = U(J) + ŵ(C), (2.64)

i.e. the part U(J) depends on the volume-changing deformation and the other part ŵ(C) is
determined by the volume-preserving (dilatational) deformation.

Hartmann and Neff (Hartmann and Neff, 2003) proposed a class of generalized polynomial-
type elasticity

ŵ(I
C
, II

C
) = α(I3

C
− 33) +

m∑

i=1

ci0(IC − 3)i +
n∑

j=1

c0j(II
3/2

C
− 3
√

3)j, (2.65)

with ci0 ≥ 0 and c0j ≥ 0 together with the strain energy function

U(J) =
K

50
(J5 + J−5 − 2) (2.66)

where K denotes the bulk modulus of the material. In a simple compressible Neo-Hookean
model the compressible part is chosen as

U(J) =
K

2
(J − 1)2 (2.67)
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and the resulting strain energy function evaluates to

ψ(J,C) =
K

2
(J − 1)2 + c10(IC − 3) . (2.68)

This material model is for example used in Sec. 5.2.2 and in Sec. 5.4.3 to model the mold in
rubber isostatic pressing of metal powders.

2.3.2 Powder plasticity

As this thesis is concerned with the simulation of metal powder compaction we give a short in-
troduction in the constitutive model. To recap the constitutive relations of the rate-dependent
finite strain plasticity model, the kinematic relations are first summarized. The constitutive
model proposed in (Bier and Hartmann, 2006) is based on the multiplicative decomposition
of the deformation gradient (2.3),

F = F̂eFv, detF > 0, det F̂e > 0, detFv > 0 . (2.69)

F̂e defines the elastic and Fv the inelastic part inducing the so-called inelastic intermediate con-
figuration. A fictitious unloading leads to the inelastic Green strain tensor Ev = 1/2(FT

v Fv−I),
where E = 1/2(FTF− I) defines the Green strain tensor of the total deformation. The elastic
strains are obtained by the difference Ee = E − Ev, Ee = 1/2(FTF − FT

v Fv). The push-
forward operation, cf. Eq. (2.27), of the strain-like tensorial variables relative to the reference
configuration into quantities relative to the inelastic intermediate configuration reads

Γ̂ = F−T
v EF−1

v , Γ̂e = F−T
v EeF

−1
v , Γ̂v = F−T

v EvF
−1
v (2.70)

leading to

Γ̂ = Γ̂e + Γ̂v, (2.71)

Γ̂e =
1

2

(
F̂T

e F̂e − I
)
, (2.72)

Γ̂v =
1

2

(
I− F−T

v F−1
v

)
, (2.73)

whereas the transformation of the material time derivatives of the Lagrangean quantities,
Ė = Ėe + Ėv,

△

Γ̂ = F−T
v ĖF−1

v ,
△

Γ̂e = F−T
v ĖeF

−1
v ,

△

Γ̂v = F−T
v ĖvF

−1
v (2.74)

yield an additive decomposition

△

Γ̂ =
△

Γ̂e +
△

Γ̂v =
˙̂
Γ + LT

v Γ̂ + Γ̂Lv, (2.75)

△

Γ̂e =
˙̂
Γe + LT

v Γ̂e + Γ̂eLv, (2.76)

△

Γ̂v = Dv =
˙̂
Γv + LT

v Γ̂v + Γ̂vLv (2.77)
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Figure 2.3: Plastic intermediate configuration

of Oldroyd-derivatives relative to the inelastic intermediate configuration, see, for example,
(Haupt, 2000; Haupt and Tsakmakis, 1989, 1996). The configurations involved are sketched
in Fig. 2.3.

In Eqs. (2.75) - (2.77), the inelastic velocity gradient tensor Lv and its symmetric part Dv

Lv = ḞvF
−1
v , (2.78)

Dv =
1

2

(
Lv + LT

v

)
(2.79)

are applied. Furthermore, the elastic and inelastic right Cauchy-Green tensors are defined

Ĉe = F̂T
e F̂e, Cv = FT

v Fv, (2.80)

for later use.
The strain measure (2.72) is purely elastic and the strain tensor (2.73) designates the strain

rate (2.77), which is purely inelastic implying the motivation to make use of the quantities in
the elasticity relation and the flow rule.

The elastic strain defines the stress state in the intermediate configuration

T̂ = (Λ lnJe − µ)Ĉ−1
e + µI, (2.81)

where a Simo&Pister type model is applied, see (Simo and Pister, 1984). Je = det F̂e =
(det Ĉe)

1/2 defines the elastic part of the volumetric deformation. The stress tensor relative
to the inelastic intermediate configuration T̂ is related to the 2nd Piola-Kirchhoff tensor T̃
and the weighted Cauchy stress tensor S (Kirchhoff stress tensor) by the push-forward and
pull-back operations

T̂ = FvT̃FT
v = F̂−1

e SF̂−T
e (2.82)

respectively, with S = (detF)T, where T is the Cauchy stress tensor. In view of a thermo-
mechanical consistent constitutive model, the Mandel stress tensor P̂ = ĈeT̂ is introduced
controlling the evolution of the inelastic flow

△

Γ̂v = λ
∂F

∂P̂
= λ

(
∂F

∂I1
I +

∂F

∂J2
P̂D

)
, (2.83)
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for more details see (Bier and Hartmann, 2006). F is the yield surface defined in (2.87),
I1 = tr P̂ and J2 = 1/2 P̂D · P̂D define the invariants of the Mandel stress tensor. AD denotes
the deviator operator A− 1/3(trA)I.

λ =
1

η

〈
F

σ0

〉rv

(2.84)

is a constitutive function expressing the case distinction into elastic and inelastic deformations,
where 〈x〉 = (x+ |x|)/2 defines the Macauley-brackets, i.e. 〈x〉 = 0 for x ≤ 0 and 〈x〉 = x for
x > 0.

The main ingredients of the model are the yield function and its evolution during the
compaction process. There are a number of yield function based plasticity models in the
literature (see (Bier and Hartmann, 2006) and the references therein). However, the appli-
cation of Drucker-Prager type models with caps to reproduce the hardening behavior in the
compressive range imply non-differentiable yield surfaces and, accordingly, require particular
numerical techniques to solve the problem arising at the edges. The application of single sur-
face models like those of (Aubertin and Li, 2004; Bigoni and Piccolroaz, 2004; Ehlers, 1995)
pose the difficulty to guarantee the convexity during the evolution or to properly account
for the non-uniqueness of additionally occurring regions in the stress-space. To this end the
new convex single surface yield function concept discussed in (Bier and Hartmann, 2006) is
applied. This yield surface is generated by interpolating an ellipsoidal function

g1(I1,
√

J2) =

√
J2 + α (I1 − 3ξ)2 − k (2.85)

and an exponential function

g2(I1,
√

J2) =
√

J2 + δ − k + A1e
A2I1 (2.86)

using an interpolation formula of (Kreisselmeier and Steinhauser, 1979) and
(Arnold and Frischmuth, 1998),

F (I1,
√

J2) = ck ln

(
eg1(I1,

√
J2)/(ck) + eg2(I1,

√
J2)/(ck)

2

)

. (2.87)

The abbreviations

k =
√
α(I0 − 3ξ)2, A1 =

k
(
1−
√

1− r2
)I0/((3ξ−I0)(1+r))

, A2 = ln(k/A1)/I0 (2.88)

are introduced. For a schematic representation of F we refer to Fig. 2.4. The parameter c
controls the closeness of the resulting function to the lower one of both functions so that the
resulting function has the tear-drop like form.

The internal variable ξ controls the hardening in the direction of the hydrostatic stress
state and α influences the form of the drop-like yield function containing the parameters I0, r
and c which are defined in advance. The small quantity δ has been introduced to avoid a
vertex singularity at the intersection of the yield function with the hydrostatic axis close to
I0 following a proposal of (Abbo and Sloan, 1995). I0 is a fixed right bound in our approach.
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Figure 2.4: Yield function concept of interpolating simple convex models proposed by
Bier and Hartmann (2006)

The volumetric inelastic deformation detFv, or detCv, is related to the center of the yield
function defined by

ξ(rK) = a1rK + a2r
3
K −

a3

rK − rK0
− a3

rK0
, (2.89)

see proposal in Szanto et al. (2007), depending on the strain-like internal variable

rK = r̂K(Cv) = ln(detCv)/2 −→ ṙK = tr
△

Γ̂v = trLv. (2.90)

a1, a2, a3 and rK0 are material parameters. ξ defines the center of the ellipsoid and is obviously
related to plastic volumetric deformation and, therefore, to the relative density of the material.

The internal variable α describes the “deviatoric behavior” and evolves according to

α̇ = λ

(
cD
α

(P̂− ξI) · ∂F
∂P̂
− αbDχ

)
, (2.91)

with the abbreviation

χ = χ̂(I1, J2, ξ, α) =

√

3

(
∂F

∂I1

)2

+ 2J2

(
∂F

∂J2

)2

. (2.92)

bD and cD are material parameters. The process of identifying the material parameters is
presented in (Bier et al., 2007) and the resulted values for a copper powder are recapped in
Tab. 2.3.

Because the applied numerical scheme is based on the Total-Lagrangean formulation, the
quantities relative to the reference configuration are required. In Tab. 2.4
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Table 2.3: Material parameters (initial condition: α(0) = 0.558)
identified material parameters specified parameters

Λ µ a1 a2 a3 rK0 bD cD rv r c I0 δ σ0

GPa MPa MPa−1 [/] MPa2 MPa

5.2 8.3 24.8 23.6 15.9 -0.87 2.68 10−4 1 0.3 0.01 1 0.1 1

Table 2.4: Constitutive model expressed with quantities relative to the reference configuration
elasticity viscoplasticity

loading
condition

F ≤ 0 F > 0

elasticity
relation

T̃ = (Λ ln Je − µ)C−1 + µC
−1
v

flow rule Ċv = 0 Ċv = 2λ
(

∂F
∂I1

I + ∂F
∂J2

(CT̃− (I1/3)I)
)

Cv

distortional
hardening

α̇ = 0 α̇ = λ
(

cD

α

(
(I1 − 3ξ) ∂F

∂I1
+
√

J2
∂F

∂
√

J2

)
− bDαχ

)

abbrev. I1 = tr (T̃C), J2 = (CT̃ · T̃C− I21/3)/2, Je = ((det C)/(detCv))
1/2

rK = ln(detCv)/2, ξ = a1rK + a2r
3
K − a3

rK−rK0
, λ = 1

η (F/σ0)
rv

the model is compiled indicating that in three dimensions 7 evolution equations have to be
integrated, which are subject to a case distinction called loading condition (6 equations due
to Cv and one for α).





Chapter 3

Variational formulation

3.1 Variational formulation

An analytic solution of the system of equations characterized in Fig. 2.2 is possible only for
simple problems. The range of application is dramatically enlarged if approximate solutions
are employed. Among the numerical methods to solve partial differential equations are the
finite difference method, the boundary element method and many variants of the finite element
method. In Sec. 4.2 we introduce the p-version of the finite element method which possesses
some very advantageous properties.

A straightforward way to derive a variational form yields the principle of virtual displace-
ments, one-field variational principle as only the displacements are varied. An alternative
approach results in multi-field variational principles (see, for an overview (Belytschko et al.,
2000, Sec. 8.5), (Holzap fel, 2000, Sec. 8.5 – 8.6)) that are discretized as mixed finite elements to
overcome shortcomings of traditional h-version elements like locking. The Hellinger-Reissner
principle (see (Hellinger, 1914) and (Reissner, 1950)) is a two-field principle with unknown
displacements and stresses. The most general form is the Hu-Washizu principle where also
the strains are principal variables. Another way to overcome locking is the use of higher order
elements. As the p-version was shown to perform well also for locking-dominated nonlinear
problems, see Sec. 5.3, a purely displacement-based approach is not only simpler but also
justified.

To arrive at the variational or weak form applying the principle of virtual displacements,
we multiply the partial differential momentum equation (2.42) with a test function δ~u followed
by partial integration. The first step yields

∫

V

Div TR( ~X, t) · δ~u( ~X) dV +

∫

V

ρR( ~X)~k · δ~u( ~X) dV = 0 . (3.1)

Without loss of generality we focus on three-dimensional continua. Then, in all three coor-
dinate directions d, d = 1, 2, 3, two types of boundary conditions (b.c.) can be distinguished:
Dirichlet (essential or geometric) b.c. and Neumann (force or natural) boundary conditions.
The surface of the domain A = ∂V is decomposed in non overlapping parts, Aud

where the
geometric boundary conditions ud(~x, t) = ~u(~x, t) · ~ed = ud(~x, t), ~x ∈ Aud

are given and a part
Atd where the surface traction td(~x, t) = ~tR(~x, t) · ~ed = TR~nR · ~ed = td(~x, t), ~x ∈ Atd . The
unit vectors in direction d are ~ed and the normal vector on the surface in the undeformed

25



26 3. Variational formulation

configuration is denoted by ~nR. Formally this decomposition of the surface can be written as

A = Aud
∪ Atd , Aud

∩ Atd = ∅, d = 1, 2, 3 . (3.2)

The vector-valued test function that is identified as virtual displacement δ~u( ~X, t) has to
vanish on those parts of the surface of the body where displacement boundary conditions are
prescribed. The virtual displacement is in principle independent of time t, however as the
Dirichlet boundary conditions may change in time the conditions on the function δ~u( ~X, t)
can change: surface areas where no Dirichlet b.c. was set at time t1 and consequently no
restrictions for δ~u existed may be clamped at time t2 with the consequence that in those
regions δ~u( ~X, t2) must vanish. As we do not treat contact in this thesis, most processes can
be split in sequences with constant Dirichlet b.c. regions for the partial process. Therefore,
the dependency of δ~u on the time is neglected.

Integration by parts of the first term followed by the application of the divergence theorem
and incorporating the condition on the surface traction ~tR we obtain the weak form in the
reference configuration

π(t, ~u, δ~u, q) =

∫

V

TR( ~X, t) ·Grad δ~u( ~X) dV −

−
∫

V

ρR( ~X)~k · δ~u( ~X) dV −
∫

A

~tR( ~X, t) · δ~u( ~X) dA = 0 (3.3)

where ~tR = TR~nR defines the traction vector operating on the undeformed surface A and
~nR designates the outward normal vector on the surface of the reference configuration. The
internal variables q were introduced in (2.43).

The unsymmetrical first Piola-Kirchhoff stress tensor TR in Eq. (3.3) can be replaced by
TR = FT̃ and we obtain

TR( ~X, t) ·Grad δ~u( ~X) = T̃ ·FTGrad δ~u = T̃ · 1
2
(FT Grad δ~u+Grad T δ~uF) = T̃ · δE. (3.4)

In Eq. (3.4)1 we used the fact that for the double contraction of tensors the following relation
is valid (Holzap fel, 2000, Eq. (1.95)1)

(BTA) ·C = A · (BC) here: (FT̃) ·Grad δ~u = T̃ · (FT Grad δ~u). (3.5)

For Eq. (3.4)2 the property is exploited that for the product of a symmetric tensor (T̃ rep-
resented by S) with an arbitrary tensor (here B) only the symmetric part of the tensor B
remains (Holzap fel, 2000, Eq. (1.115)),

S ·B = S · 1
2
(B + BT ). (3.6)

Furthermore, for Eq. (3.4)3 we used the relation that the virtual Green strain δE, the di-
rectional derivative1 (defined in Eq. (3.21)) of the Green strain E in direction of the virtual

1The chain rule for Gâteaux derivatives is for example given in (Gurtin, 2003, p. 26).
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displacement δ~u, is the symmetric part2 of the tensor FT Grad δ~u (Hartmann, 2003a, p. 119)

δE(~u, δ~u) = D~uE(~u)[δ~u] = DGE(G)
[
D~uG(~u)[δ~u]

]
=

1

2
(FT δG + δGTF) (3.7)

= sym(FT δG) =
1

2

(
FT Grad δ~u( ~X) + Grad T δ~u( ~X)F

)

with the displacement and virtual displacement gradients

G = Grad~u( ~X, t) and δG = Grad δ~u( ~X). (3.8)

Finally, substituting Eq. (3.4) in Eq. (3.3) the principle of virtual work can be split in internal
virtual work πint and an external virtual work πext contribution as

π(t, ~u, δ~u, q) = πint(t, ~u, δ~u, q)− πext(t, ~u, δ~u) = 0. (3.9)

The internal virtual work is identified as

πint(t, ~u, δ~u, q) =

∫

V

δE( ~X, t) · T̃(C, q) dV (3.10)

where the second Piola-Kirchhoff tensor T̃ depends on the right Cauchy-Green tensor C( ~X, t)

and the internal variables q( ~X, t) as stipulated in Eq. (2.43).
If we also take deformation dependent surface loads (follower loads) into account, the

external work consists of the following parts

πext(t, ~u, δ~u) =

∫

V

δ~u( ~X) · ρR( ~X)~k dV +

+

∫

A

δ~u( ~X) · ~tR( ~X, t) dA +

∫

a

δ~u(~x) · ~t(~x, t) da, (3.11)

where the last term accounts for a traction contribution on the deformed surface a. Only
this last term depends on the deformation ~u. An example is hydrostatic pressure with an
amplitude p that acts on the deformed surface described by the traction vector

~t(~x, t) = T~n = −pI~n = −p~n(~x, t) , (3.12)

see Sec. 3.3.2.
The principle of virtual work (3.9) is both physically and geometrically nonlinear. For

a numerical treatment it has to be linearized. This is the topic addressed in the following
section.

Remark 4 The principle of virtual work as derived above applies to both conservative and
non-conservative systems where no energy functional exists. It is quite general as no particular
material was taken into account, we just assume to have the stresses T̃ ’by some constitutive
model’. If we restrict the range of application to conservative hyperelastic systems, we require
the existence of an energy functional Π for both the stresses and the loads. Then, for a static

2An alternative derivation is obtained from Eq. (3.33) if ∆ is exchanged by δ.
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problem the total potential energy of a system is composed of the internal Πint and external
Πext potential energy, cf. (Holzap fel, 2000, Sec. 8.3), (Bonet and Wood, 1997, Sec. 6.6.1),

Π(~u) = Π(~u)int −Π(~u)ext (3.13)

with

Π(~u)int =

∫

V

Ψ(~u) dV, Π(~u)ext =

∫

V

ρR
~k · ~u dV +

∫

A

~tR · ~u dA (3.14)

where Ψ(~u) denotes the hyperelastic strain energy function and Π(~u)ext the potential energy of
dead load. The deformed shape, i.e. the equilibrium state for a given load, is that configuration
where the potential energy reaches its minimum. This is achieved if the total potential energy
is rendered stationary,

δΠ(~u, δ~u) = D~uΠ(~u)[δ~u] = 0, (3.15)

i.e. the directional derivative has to vanish in all directions δ~u, compare Eq. (3.26) for the
definition of variation as directional derivative. As before, the arbitrary vector field δ~u has to
vanish where displacement boundary conditions are prescribed.

3.2 Linearization

Nonlinearities in continuum mechanics can stem from different origins. There is geometrical
nonlinearity as a consequence of a nonlinear strain measure like the Green-Lagrange strain.
Physical nonlinearities result in nonlinear constitutive models and contact problems described
as inequality relations also introduce nonlinearities.

Linearization enables to formulate approximate theories that make analytical solutions for
more or less simple problems possible, for example, the classical linear beam theory. If the
applications are more complex, approximate numerical solutions of the nonlinear problem
are pursued. One popular example are Newton-type algorithms to solve nonlinear equations
arising in the finite element method. In the finite element world the need for consistent
linearization of all the quantities associated with a nonlinear problem was introduced by
(Hughes and Pister, 1978) and (Simo and Taylor, 1985). Subsequently, it was shown that
linearization is a systematic process based on the directional derivative (Gâteaux-derivative)
and formally equivalent to the variation of fields.

This section summarizes the idea of linearization and performs the linearization of the
weak form. It is based on (Bonet and Wood, 1997, Sec. 2.3), (Belytschko et al., 2000, Sec. 6.4),
(Holzap fel, 2000, Sec. 8.4), (Marsden and Hughes, 1993, Ch. 4), and (Wriggers, 2001, Sec. 3.5).

The concept of linearization

We start from a general set of nonlinear equations

F(x) = 0 (3.16)

where F may be a tensor, vector or scalar valued function with a tensor, vector or scalar valued
argument x. Consider an initial guess x0 and an increment u that (we hope) will generate
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x = x0 + u closer to the solution of Eq. (3.16). As in general it is not immediately obvious,
how to express the derivative of a complicated function F with respect to x, an artificial scalar
parameter ǫ is introduced allowing us to define a nonlinear function F in ǫ as

F(ǫ) = F(x0 + ǫu). (3.17)

Sketched for a two-degree-of-freedom system f(x1, x2) this re-parametrization defines a curve
F(ǫ) in the scalar parameter ǫ as shown in Fig. 3.1. A Taylor’s series expansion of the nonlinear

f

ǫ

ǫ

F(ǫ)

x0

u

f(x1, x2)

0 1 2 3x1

x2

Figure 3.1: Two-degree-of-freedom case f(x1, x2) = 0 and re-parametrization F(ǫ) = 0

function F(ǫ) at ǫ = 0, corresponding to x = x0, gives

F(ǫ) = F(0) +
dF(ǫ)

dǫ

∣∣∣∣
ǫ=0

ǫ+
1

2

d2F(ǫ)

dǫ2

∣∣∣∣
ǫ=0

ǫ2 + . . . . (3.18)

Using the definition of F given in Eq. (3.17) we obtain

F(x0 + ǫu) = F(x0) +
d

dǫ
F(x0 + ǫu)

∣∣∣∣
ǫ=0

ǫ+
1

2

d2

dǫ2
F(x0 + ǫu)

∣∣∣∣
ǫ=0

ǫ2 + . . . . (3.19)

Truncating the series after the linear term and setting ǫ = 1 gives a linear approximation to
the change in the nonlinear function F(x) as

F(x0 + u)−F(x0) ≈
d

dǫ
F(x0 + ǫu)

∣∣∣∣
ǫ=0

. (3.20)

The right-hand side is identified as the directional derivative (Gâteaux derivative) of F(x) at
x0 in the direction u and defined as

DuF(x0)[u] =
d

dǫ
F(x0 + ǫu)

∣∣∣∣
ǫ=0

. (3.21)
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The Gâteaux derivative Duf(x0)[∆u] is a linear operator and the usual properties of the
derivative, like product rule and chain rule are satisfied, see e.g. (Bonet and Wood, 1997,
Sec. 2.3.3). As this defining equation is generally valid for scalars, vectors, matrices and
tensors the kind of multiplication (scalar product, matrix product, tensor contraction, etc.) is
not explicitly written but indicated by putting the second term in square brackets, viz [u].

With the help of the directional derivative the linearized representation of the function
F(x) at x0 in the direction u is defined as

L[F(x)]x=x0 = F(x0) + DuF(x0)[u] . (3.22)

Newton-Raphson procedure. For the solution of the nonlinear equation Eq. (3.16) the use
of the linear approximation given in Eq. (3.22) allows to establish the well known Newton-
Raphson algorithm, compare also (Parisch, 2003, Sec. 8). Evaluating the linearized approxi-
mation at an initial guess x0,

F(x0) + DuF(x0)[u] = 0, (3.23)

we solve for the increment u. Introducing the iteration index m = 0, 1, . . . , n, the procedure
to obtain an updated solution is defined by

DuF(xm)[u] = −F(xm)  u (3.24)

xm+1 = xm + u  xm+1 → xm. (3.25)

A simple stopping criterion for the iterative process could be to check whether the norm of the
residual F(xm) or of the increment u is below a prescribed threshold. The Newton procedure
has the advantage of quadratic convergence in the vicinity of the solution. If the initial guess
x0 however is too far away from the solution, the procedure may diverge. Further remarks on
two variants of the Newton method are given in Sec. 4.7.

Variation. As already mentioned the directional derivative is the basis for linearization,
as well as for the variation of a field quantity. The first variation, or Gâteaux variation, δA
of a field A(x) is defined as the directional derivative (3.21) of A(x) in the direction of δu:

δA(x, δu) = DxA(x)[δu] =
d

dǫ
A(x + ǫδu)

∣∣∣∣
ǫ=0

. (3.26)

For details we refer to (Meyberg and Vachenauer, 2006, Sec. 13) and (Holzap fel, 2000, Sec. 8.1).

3.3 Linearization of the variational equation

If the nonlinear principle of virtual displacements (3.9) is treated by the Newton-Raphson
algorithm, it has to be linearized. Here, we derive the linearization with respect to the material
configuration starting from a deformation state (~u, q).

The linearized representation of the weak form is obtained by applying the definition of
Eq. (3.22) to the principle of virtual displacements Eq. (3.9),

L[π](~u,q) = π(t, ~u, δ~u, q) + D~u π(t, ~u, δ~u, q)[∆~u] = π + D~u π[∆~u] = 0 . (3.27)

The first term π is obtained by evaluating Eq. (3.9) at the known state (~u, q).
In the following we consider the Gâteaux derivative of D~u π in the direction ∆~u.
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3.3.1 Directional derivative of internal virtual work

The Gâteaux derivative of the internal virtual work πint, Eq. (3.10), is evaluated using the
product rule

D~u πint(t, ~u, δ~u, q)[∆~u] = D~u




∫

V

δE · T̃ dV



 [∆~u]

=

∫

V

(
D~uδE[∆~u] · T̃ + δE · D~uT̃[∆~u]

)
dV. (3.28)

First we treat D~uδE[∆~u]: starting from the representation of δE given in Eq. (3.7) we can
evaluate

D~uδE(~u)[∆~u] = sym(D~uF
T [∆~u]δG) = sym(Grad T ∆~u Grad δ~u), (3.29)

where we used

D~uF(~u)[∆~u] =
d

dǫ
(1 + Grad (~u+ ǫ∆~u))

∣∣∣∣
ǫ=0

= Grad∆~u. (3.30)

For the directional derivative of the stresses D~uT̃[∆~u] as needed in (3.28) we assume that
the internal variables q are implicit functions of the strains in the vicinity of an equilibrium
state (~u, q), i.e. we apply the implicit function theorem, cf. Sec. 4.7, to use the multi-level
Newton algorithm. Then, the derivative of the stresses

T̃( ~X, t) = Φ̃
(
C(E), q(C(E))

)
(3.31)

can be evaluated applying the chain rule as

DEΦ̃(E)[∆E] =

[
∂Φ̃

∂C
+
∂Φ̃

∂q
· dq

dC

]

2 ∆E = C̃ ∆E (3.32)

with the abbreviation

∆E = D~uE(~u)[∆~u] =
1

2

(
D~uF

T [∆~u]F + FT
D~uF[∆~u]− D~u1 [∆~u]

)

=
1

2

(
Grad T ∆~uF + FT Grad∆~u

)

= sym(FT Grad∆~u) (3.33)

and the forth-order tensor C̃ (tangent-operator) describing the linearized constitutive relation-
ship at the state (~u, q)

C̃(~u, q) = 2

[
∂Φ̃

∂C
+
∂Φ̃

∂q
· dq

dC

]
(3.34)

relating the increment in stress (‘∆T̃’) to the increment in strain (‘∆E’)

D~uT̃[∆~u] = C̃ D~uE[∆~u] = C̃ sym(FT Grad∆~u). (3.35)
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Remark 5 The factor 2 in C̃ stems from the fact that we want to express the right Cauchy-
Green tensor depending on the Green strain tensor as C = 2E + 1. Hence the directional
derivative DEC(E)[∆E] = 2∆E bears the factor 2.

The explicit calculation of the tangent-operator C̃ depends on the assumed constitutive
model and can be quite intricate as indicated in Sec. 2.3.

Substituting relations (3.29) – (3.35) in Eq. (3.28), we finally arrive at

D~u πint(t, ~u, δ~u, q)[∆~u] =

∫

V

sym(Grad T ∆~u Grad δ~u) · T̃ dV +

∫

V

δE · C̃ D~uE[∆~u] dV

=

∫

V

Grad∆~u T̃ ·Grad δ~u dV +

∫

V

δE · C̃ D~uE[∆~u] dV, (3.36)

compare for example Eq. (3.329) in (Wriggers, 2001) and (Holzap fel, 2000, p. 396). Where we
used for the transformation of the first integral the symmetry of the stress tensor (T̃·sym(A) =
T̃ ·A, (Holzap fel, 2000, Eq. (1.115))) and the relations A · (BC) = (BTA) ·C = C · (BTA).
(Holzap fel, 2000, Eq. (1.95)), (Scholz, 2006, Eq. (2.35)). After discretizing the first integral
gives rise to the ‘initial stress tangent matrix’ or ‘geometric stiffness tangent matrix’ as the
stresses T̃ are held constant and the influence of the deformation is taken into account. The
second integral becomes the ‘material tangent stiffness’ as it involves the change of the stress
and thus depends on the material response, see also (Belytschko et al., 2000, p. 338).

3.3.2 Follower load: directional derivative of external virtual work

To evaluate the Gâteaux derivative of the external virtual work πext (3.11), the contributions
(3.11)1, (3.11)2 expressed in the reference configuration vanish as they do not depend on the
displacement ~u. The only remaining part concerns the follower load contribution. Different
assumptions on the nature of the displacement dependent load ~t(~x, t) can be made. Restricting
ourself to the important case of pressure (traction always perpendicular to the current surface),
we can follow (Schweizerhof and Ramm, 1984) and distinguish two contributions, resulting in
different types of pressure load with consequences for the linearization

~t = −p(~u) ~d(~u) =

{
−p ~n(~u), body attached loading
−p(~u) ~n(~u), space attached loading

. (3.37)

• For body attached loads the magnitude is independent of the displacement, i.e. p(~u) = p0,
and only the load direction depends on the deformation dependent unit normal vector
~d(~u) = ~n(~u). An example would be isostatic gas or fluid pressure or the pressure for
example in a cold isostatic pressing chamber.

• In the case of space attached loads the magnitude and distribution p(~u) also depends on
the position (and thus on the displacement), and the direction is again given by the unit

normal vector ~d(~u) = ~n(~u). Examples are hydrostatic pressure depending on the height
of the fluid column above or a beam with a magnetic tip in a magnetic field.
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There is a broad body of literature3 addressing deformation dependent loading and the
numerical treatment of it, e.g. (Sewell, 1967), (Hibbitt, 1979), (Argyris and Symeonidis,
1981), (Argyris et al., 1982), (Mang, 1980), (Schweizerhof, 1982; Schweizerhof and Ramm,
1984), (Mok et al., 1999), (Simo et al., 1991), (Rumpel and Schweizerhof, 2004) to name just
a few. However, in the context of the p-version, follower loading was treated only recently
by (Heisserer et al., 2005) and (Yosibash et al., 2007). The article (Noel and Szabó, 1997)
discusses a p-version formulation in the spatial reference frame where all traction loads auto-
matically act on the current configuration. Some textbooks that address follower loading are
e.g. (Wriggers, 2001, Sec. 3.5.3, Sec. 4.2.5), (Bonet and Wood, 1997, Sec. 6.5), (Holzap fel,
2000, p. 383).

The literature reflects a controversial discussion of the question whether or not follower
loading is conservative, leading to a symmetric stiffness after discretization. As every closed
system is conservative, this discussion is more precisely addressing the part of the system
that is modeled in the analysis. In a letter to the editor (Koiter, 1996) of the Journal of
Sound and Vibration it was argued that in the absence of physical evidence, follower forces
are purely a ‘Gedankenexperiment’ – the letter concluded “be aware of unrealistic follower
forces”. Less drastic the existence of a potential for static fluid loads was proved analytically
by Bufler (Bufler, 1984, 1985) and it was shown that this conservativity can be destroyed
by unrealistic simplifications of the load operator. Based on these investigations Schneider
(Schneider, 1990) derived necessary conditions for the conservativity of deformation dependent
pressure loading. One of his statements was that every static gas or fluid pressure load that can
be imposed in a real experiment is conservative. In a similar manner Schweizerhof and Ramm
(Schweizerhof and Ramm, 1984) used the symmetry of the discretized follower load stiffness
matrix as indicator for conservative systems. Their point is that usually pressure loads are force
fields in space that lead to symmetric load stiffness matrices indicating conservative loading.
These space attached loads however are often simplified to the body attached case, and the
dependence of load magnitude and distribution on the deformation p(~u( ~X)) is lost, resulting
in a lack of symmetry of the load stiffness matrices. There are, however, cases in reality
that correspond to the body attached concept. What about those? Schweizerhof and Ramm
(Schweizerhof and Ramm, 1984) performed an integration by part of the load stiffness matrix
(for constant load magnitude p see also (Bonet and Wood, 1997, Eq. (6.21), Eq. (6.22))),
yielding a domain integral ‘

∫
’ and a boundary integral ‘

∮
’. The matrix resulting from the

domain integral after discretization is unsymmetric for body attached loads with the exception
of the case when the load magnitude is constant (this special case is given in (Bonet and Wood,
1997, Eq. (6.22))). The boundary integral part always results in an unsymmetric stiffness
matrix. While the possible unsymmetry in the domain integrals remains after assembly of
the individual element matrices to the global stiffness matrix, the boundary terms of adjacent
elements mutually cancel each other and only the outermost boundary terms remain. So if
we model a static (for example linearly varying) fluid pressure as body attached load, the
unsymmetric global stiffness matrix would imply nonconservative loading – a contradiction to
the statement of Bufler that static fluid pressure loads are always conservative? The solution
is to show that varying body attached pressure can not be realized physically. According to
the investigations of Schweizerhof & Ramm (Schweizerhof and Ramm, 1984) and Schneider

3For example, the Journal of Sound and Vibration published over 100 papers since 1978 treating follower
loading.
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(Schneider, 1990) a varying deformation dependent body attached pressure can not be realized
physically and can only be induced by an unsuitable simplification of the loading. The only
case of body attached load that is physically realistic is constant pressure, and this leads to
symmetric domain integrals as mentioned. If, furthermore, the deformation of the points along
which the boundary integral is evaluated are fixed or prescribed (in two dimensions these are
the endpoints of the loaded area), the boundary integral vanishes and the global stiffness
matrix is symmetric. The boundary integral also vanishes if a symmetry plane bisects the
pressure loaded region.

In the following we treat the case of body attached loads with constant magnitude p not
depending on the deformation

πext(t, ~u, δ~u) =

∫

a

δ~u(~x) · ~t(~x, t) da = −
∫

a

δ~u(~x) · p~n(~x, t) da (3.38)

where the deformed surface element da and the direction of the normal vector ~n depend on
the deformed configuration and are subject to linearization.

To carry out the linearization those quantities have to be expressed depending on the
displacement ~u. One possibility would be to transform the spatial surface vector d~a = ~nda
with the help of Nanson’s formula, (Holzap fel, 2000, Eq. (2.55)),

d~a = ~nda = JF−T~nRdA = JF−T d ~A , (3.39)

where ~nR denotes the normal in the reference configuration, and linearize the determinant J
of the deformation gradient F (see for example (Wriggers, 2001, p. 91)), as well as the inverse
of the deformation gradient (cf. (Wood et al., 1981, p. 50)).

A way which is more suitable for subsequent implementation in a finite element code is
the parametrization of the current boundary surface as shown in Fig. 3.2. The region Ωξ

in the parameter plane is mapped by ~ϕ to the deformed region in Cartesian space. The
parametrization of the surface on which the pressure p acts is given as

~x(t) = ~ϕ(t, ξ1, ξ2) . (3.40)

The convective tangent vectors define the basis by

~ϕ,1 =
∂~ϕ

∂ξ1
and ~ϕ,2 =

∂~ϕ

∂ξ2
(3.41)

and the outward unit vector ~n can be expressed as the normalized cross product of the con-
vective base vectors

~n =
~ϕ,1 × ~ϕ,2

‖~ϕ,1 × ~ϕ,2‖
. (3.42)

The infinitesimal surface element da is evaluated after the coordinate transformation as

da = detJ dξdη (3.43)

where detJ is the determinant of the Jacobian matrix J =
∂~ϕ

∂~ξ
of the mapping ~ϕ. As the

determinant of the Jacobian is the norm of the cross product of the base vectors, (Westermann,
1997, Sec. 3.2.2),

det J = ‖~ϕ,1 × ~ϕ,2‖ (3.44)
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Figure 3.2: Parametrization of the pressure loaded surface ∂Ωσ

we obtain for the differential surface element

da = ‖~ϕ,1 × ~ϕ,2‖dξ1dξ2. (3.45)

Using relations (3.42) and (3.45) in (3.38), the norm ‖~ϕ,1 × ~ϕ,2‖ cancels and pulling out
the constant pressure magnitude p the external deformation dependent virtual work may be
expressed in convective coordinates as

πext(t, ~u, δ~u) = −p
∫

Ωξ

(~ϕ,1 × ~ϕ,2) · δ~u dξ1dξ2 = −p
∫

Ωξ

(
∂~ϕ

∂ξ1
× ∂~ϕ

∂ξ2

)
· δ~u dξ1dξ2 . (3.46)

To obtain the directional derivative we apply definition (3.21),

D~uπext(t, ~u, δ~u)[∆~u] = − d

dǫ



p
∫

Ωξ

(
∂(~ϕ + ǫ∆~u)

∂ξ1

)
×
(
∂(~ϕ + ǫ∆~u)

∂ξ2

)
· δ~u dξ1dξ2





∣∣∣∣∣∣∣
ǫ=0

= −p
∫

Ωξ

(∆~u,1 × ~ϕ,2 + ~ϕ,1 ×∆~u,2) · δ~u dξ1dξ2 (3.47)

where ∆~u,1 abbreviates ∂∆~u
∂ξ1

.

Axisymmetric/2D case

In the special case of an axisymmetric or two-dimensional domain one of the base vectors
coincides with the unit vector ~e3 perpendicular to the plane, see Fig. 3.3. Consequently, the
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Figure 3.3: Parametrization for pressure loading in two dimensions

virtual work of follower loading, Eq. (3.46), takes the simpler form in the plain stress/plain
strain case compared to the three dimensional case

πext(t, ~u, δ~u) = −p
∫

Ωξ

δ~u · (~e3 × ~ϕ,ξ) dξ = −p
∫

Ωξ

δ~u ·
(
~e3 ×

∂~ϕ

∂ξ

)
dξ (3.48)

and the directional derivative given in Eq. (3.47) reduces to

D~uπext(t, ~u, δ~u)[∆~u] = −p
∫

Ωξ

δ~u ·
(
~e3 ×

∂∆~u

∂ξ

)
dξ = −p

∫

Ωξ

δ~u · (~e3 ×∆~u,ξ) dξ . (3.49)

If axisymmetric problems are investigated, the differential dξ in (3.48) has to be replaced by
r(ξ) dξ, where r(ξ) denotes the radius, i.e. the distance of the investigated point from the axis
of rotation in radial direction and the integral must be multiplied by 2π as the integration
is carried out over 2π radians to cover the whole volume. Consequently we obtain for the
axisymmetric case

πext(t, ~u, δ~u) = −2πp

∫

Ωξ

δ~u · (~e3 × ~ϕ,ξ)r(ξ) dξ = −2πp

∫

Ωξ

δ~u ·
(
~e3 ×

∂~ϕ

∂ξ

)
r(ξ) dξ . (3.50)

To evaluate the directional derivative we note that the term r(ξ) = X1 + u1 = ϕ1 depends on
the (first, i.e. radial component) of the deformation ~u and has to be derived, too. Therefore,
we carry out the directional derivative explicitly according to the definition (3.21) and apply
the product rule to obtain the directional derivative in the axisymmetric case

D~uπext(t, ~u, δ~u)[∆~u] = −2πp
∂

∂ǫ




∫

Ωξ

δ~u ·
(
~e3 ×

∂

∂ξ

(
~ϕ+ ǫ∆~u

))(
ϕ1 + ǫ∆u1

)
dξ





∣∣∣∣∣∣∣
ǫ=0

= −2πp

∫

Ωξ

δ~u ·
(
(~e3 ×∆~u,ξ)ϕ1 + (~e3 × ~ϕ,ξ)∆u1

)
dξ . (3.51)
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Summary

This paragraph collects the expressions of the linearized weak form for later reference. Starting
from Eq. (3.27) the individual terms expand as

L[π](~u,q) = (πint − πext) + (D~u πint[∆~u]− D~u πext[∆~u]) (3.52)

where we linearize around a ‘known’ state (~u, q) and are interested in the increment ∆~u with

the internal virtual work (3.53)

πint(t, ~u, δ~u, q) =

∫

V

δE( ~X, t) · T̃(C, q) dV

the external virtual work (3.54)

πext(t, ~u, δ~u) =

∫

V

δ~u( ~X) · ρR( ~X)~k dV

+

∫

A

δ~u( ~X) · ~tR( ~X, t) dA

−p
∫

Ωξ

δ~u · (~ϕ,1 × ~ϕ,2) dξ1dξ2

dir. derivative of the internal virtual work (3.55)

D~u πint(t, ~u, δ~u, q)[∆~u] =

∫

V

Grad∆~u T̃ ·Grad δ~u dV +

∫

V

δE · C̃ D~uE[∆~u] dV

dir. derivative of the follower loading (3D) (3.56)

D~u πext(t, ~u, δ~u)[∆~u] = −p
∫

Ωξ

δ~u · (∆~u,1 × ~ϕ,2 + ~ϕ,1 ×∆~u,2) dξ1dξ2 .





Chapter 4

Discretization

Although the analytical solution of the linearized continuous weak form (3.52) is intractable
in most cases, approximate solutions can be obtained by numerical methods. The problem
continuous in space and time is discretized leading to a problem with a finite number of
unknowns. One could discretize time and space in one step, however in numerical differential
calculus it proved useful to start with the discretization of either one of those ‘dimensions’
and analyze each step separately. For the application of the finite element method one first
discretizes the spatial dimension. This is called the vertical method of lines (see Fig. 4.1)

T
t

0 x
x0 x1 xN. . .

Figure 4.1: Vertical method of lines: spatial discretization

leading to semi-discrete equations still continuous in time. The alternative approach, first
carrying out the temporal discretization is called the horizontal method of lines or Rothe-
method, see (Grossmann and Roos, 2005, p. 317 vs. 337) and (Soĺın et al., 2003, Sec. 5.4.1).
Now, different methods for temporal discretization can be applied. Historically first backward
differentiation formulae (BDF) were used, recently also one-step methods like Runge-Kutta
and extrapolation methods are employed too, compare (Soĺın et al., 2003, Sec. 5.4) for a brief
introduction.

39
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4.1 Spatial discretization by the finite element method

For the spatial discretization the continuous vector field ~u( ~X, t) is approximated by uh( ~X, t)

as a combination of linear independent functions (‘modes’) Ni( ~X). These functions span a

finite-dimensional vector space, and are collected in a matrix N( ~X) ∈ R
nsd×ndof whereas the

coefficients ux a(t), uy b(t), uz c(t) populate a vector u(t) that represents the remaining unknowns

~u( ~X, t) ≈ ~u h = uh( ~X, t) =






nmodes(x)∑

a=1

Na( ~X)ux a(t)

nmodes(y)∑

b=1

Nb( ~X)uy b(t)

nmodes(z)∑

c=1

Nc( ~X)uz c(t)






= (4.1)

=




N1( ~X) . . · · ·

. N1( ~X) . · · ·

. . N1( ~X) · · ·










ux 1(t)
uy 1(t)
uz 1(t)

...
ux nmodes(x)(t)

...
uy nmodes(y)(t)

...
uz nmodes(z)(t)






= N(X)u(t). (4.2)

Note that the coefficients are not necessarily directly associated to displacements of ‘nodes’ in
the case of p-FEM as will be discussed below.

The resulting total number of degrees of freedom ndof is the sum of modes in each space
dimension

ndof = nmodes(x) + nmodes(y) + nmodes(z) . (4.3)

The notation in Eq. (4.1) already hints at the possibility that the Ansatz space may have
different number of basis functions for each spatial dimension x, y, z leading to anisotropic
finite elements with advantages, e.g. for the computation of thin-walled structures (Düster,
2001; Scholz, 2006).

The idea of the finite element method that came to light in the 1940s (for the account of
an early pioneer see (Clough, 2004)) is centered around the construction of the Ansatz space
and the functions Ni. The original domain V with boundary ∂V is approximated by Ω and
∂Ω. Instead of defining the Ansatz functions in a closed form over the whole domain, the
domain is split into ne non-overlapping subdomains, called elements

ne⋃

e=1

Ωe = Ω and

ne⋂

e=1

Ωe = ∅. (4.4)

The union of the elements defines the mesh that either is an exact representation of the
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A

Ωe

∂Ω
∂A

curved edge ~E
x1

x2

Figure 4.2: Two-dimensional domain A (grey region) and approximated domain Ω (solid lines)
consisting of elements Ωe. The boundary ∂A (dashed line) can be approximated by straight
lines or more precisely described for example by the blending function method in its different
flavors, viz Sec. 4.3.

original domain V or an approximation to it, compare Fig. 4.2. The global Ansatz functions
Ni are piecewise polynomial functions constructed from the union (assembly) of local functions
N e

i defined on the elements Ωe obeying certain continuity requirements. It is common and
beneficial to construct the local functions N e

i in a way that C0 continuity of the global function
Ni over element boundaries is ensured1. For numerical evaluation the functions N e

i on the
element are defined on a standard (reference, master) element Ωst = {|ξi| ≤ 1, i = 1, . . . , nsd}
and mapped to the actual element in space as described in Sec. 4.3. Compare Fig. 4.3 for a
sketch of the idea.

−1 1

−1 1

−1 1

−1 1

assembling
mapping

modes on standard element space mode associated with a global dof

Figure 4.3: Construction of a global Ansatz function from the union of elemental local functions

The choice of the Ansatz functions on the master element and the mapping concept dis-

1If this requirement is abandoned, the discontinuous Galerkin method (Zienkiewicz et al., 2003) is recovered.
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tinguishes the h- and the p-version and related variants of the finite element method.

• In the h-version, see e.g. (Bathe, 1996; Hughes, 2000; Zienkiewicz and Taylor, 2000b),
the discretization error is controlled and convergence is achieved by reducing the ele-
ment size (h being the size of the largest element in the mesh). Typically low-order
Ansatz functions (linear or quadratic) are used keeping the polynomial degree p of the
Ansatz functions fixed. The mapping is usually iso-parametric, i.e. the same (low-order)
functions used to describe the deformation are applied to approximate the geometry.
Consequently curved boundaries must be resolved by many small elements for a good
representation. The displacement-based h-version is well established for linear and non-
linear applications but is prone to locking. Therefore, the concept of mixed finite ele-
ments was developed to circumvent this problem. Furthermore, the h-version has a lower
convergence rate than the p-version for many kinds of problems (Szabó et al., 2004), cf.
Sec. 4.4.

• The p-version on the contrary keeps the mesh fixed and achieves convergence by raising
the polynomial degree p of the Ansatz functions. As the mesh is usually coarse it is
crucial to guarantee a good representation of the boundary, for example by the blend-
ing function method described in Sec. 4.3. For smooth problems the p-version achieves
exponential convergence and locking is overcome by raising the polynomial degree. This
property, well established for small strain elastic problems (for a comprehensive discus-
sion we refer to (Szabó and Babuška, 1991)), also carries over to finite strain hyperelastic
applications (Düster et al., 2003; Heisserer et al., 2007; Yosibash et al., 2007) as inves-
tigated in Sec. 5.3.

• The hp-version (Demkowicz, 2006; Schwab, 1998) combines the advantages of both ap-
proaches. It uses large elements and a high polynomial degree where the solution is
smooth and small elements with lower order in regions with strong gradients. This com-
bination allows to achieve exponential convergence also for problems with singularities.

• For problems where different length-scales (multiscale problems) are involved the hp-
version can be augmented by the solution on an overlay-mesh resolving regions of rapid
variation in the solution or enriching e.g. a two dimensional calculation with three-
dimensional analysis of a zoomed detail. The hp-d method was first introduced by Rank
(Rank, 1992a,b) and further developed in (Düster, 2001; Düster et al., 2007; Krause,
1996; Krause and Rank, 2003; Niggl et al., 2003; Rank, 1993; Rank and Krause, 1997).

The p-version is accepted as an efficient approach for elliptic linear (Actis et al., 1999;
Babuška and Strouboulis, 2001; Babuška and Szabó, 1982; Düster et al., 2001; Holzer et al.,
1990; Rank et al., 2002, 1998a, 2001; Schwab, 1998; Szabó and Babuška, 1991) and geometri-
cally nonlinear problems (Krause et al., 1995) but little work has been carried out for physi-
cally nonlinear applications. Small strain elastoplasticity with the p-version was investigated
by Szabó et al. (Szabó et al., 1995), Holzer and Yosibash (Holzer and Yosibash, 1996), Jeremic
and Xenophontos (Jeremic and Xenophontos, 1999). Düster and Rank compared the p-version
to an adaptive h-version (Düster and Rank, 2001) for the deformation theory of plasticity. The
high-order approach for the J2 flow theory of plasticity was studied in (Düster et al., 2002;
Düster and Rank, 2002). The elasto-plastic modeling of laminated anisotropic plates with
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moderately large deflections and small rotations in the sense of von Kármán hypothesis by
the p-version was investigated by (Woo et al., 2003).

Nübel (Nübel, 2005; Nübel et al., 2007) proposed an adaptive rp-method for small strain
elasto-plastic problems where the mesh is adapted to capture the elasto-plastic interface. The
benefit is that exponential convergence is recovered with this strategy.

There are even less investigations for the application of the p-version for finite strain
nonlinear materials. For finite strain hyperelastic problems there are the papers published
by (Düster et al., 2003), (Heisserer et al., 2007) and Yosibash (Yosibash et al., 2007). To our
knowledge there exist no publications on the application of the p-version for finite strain
elasto-plastic and visco-plastic problems that is reported in this work.

4.2 Hierarchical shape functions for high-order finite el-

ements

After introducing different flavors of the finite element discretization we will focus on the p-
version in the following. The presentation of the shape functions follows closely (Düster, 2001)
and (Szabó and Babuška, 1991).

From a theoretical point of view the finite element space, described by the mesh, the
polynomial degrees of the elements and the mapping functions, completely controls the quality
of approximation. See (Szabó and Babuška, 1991, Sec. 3.1) for a mathematically rigorous
treatment of this topic. Different sets of basis functions can span the same finite element
space, however there are some important considerations (compare (Szabó and Babuška, 1991,
p. 95)(Düster, 2005)) if finite element procedures are to be implemented on computer hardware
with round-off errors and a limited number of digits

1. For a wide range of mapping parameters the round-off error accumulation with respect
to increasing polynomial degree should be as small as possible.

2. The shape functions should permit computation of the stiffness matrices and load vectors
as efficiently as possible.

3. The shape functions should permit efficient enforcement of exact and minimal continuity.

4. The choice of the shape functions affects the performance of iterative solution procedures.
For large problems this can be the dominant consideration.

For constructing high-order Ansatz spaces Szabó and Babuška (Szabó and Babuška, 1991)
promote a hierarchical basis where shape functions of lower order are included in the set of
higher-order shape functions. These functions are constructed from orthogonal polynomials
with a minimum number of functions not vanishing on nodes, edges or faces. This construction
is not obvious as the classical Lagrangian shape functions do not show this property. It is
instructive to study the different concepts in one dimension first.

4.2.1 The one-dimensional hierarchic basis

To have a point of comparison we first introduce the classical or standard nodal basis on
a standard element Ωst = (−1, 1). The set of Lagrange polynomials defines the standard
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p = 1

p = 2

p = 3

(a) standard basis

p = 1

p = 2

p = 3

(b) hierarchical basis

Figure 4.4: Set of one-dimensional standard and hierarchical basis functions in 1D

high-order shape functions (Fig. 4.4(a)) in one dimension

Np
i (ξ) =

p+1∏

j=1, j 6=i

ξ − ξj
ξi − ξj

. (4.5)

The points ξj where

Np
i (ξj) = δij (4.6)

are called nodes. Usually, the nodes are chosen to be equally distributed, i.e.

ξj = −1 + 2
j − 1

p
, j = 1, ..., p+ 1 . (4.7)

For each polynomial degree p a separate set of shape functions has to be defined, for example,
for p = 1

N1
1 (ξ) = 1/2(1− ξ)

(4.8)N1
2 (ξ) = 1/2(1 + ξ) ,

for p = 2

N2
1 (ξ) = 1/2 ξ (ξ − 1)

N2
2 (ξ) = (1 + ξ) (1− ξ) (4.9)

N2
3 (ξ) = 1/2 (ξ + 1) ξ ,

for p = 3

N3
1 (ξ) = −1/16 (3 ξ + 1) (3 ξ − 1) (ξ − 1)

N3
2 (ξ) = 9/16 (ξ + 1) (3 ξ − 1) (ξ − 1)

(4.10)N3
3 (ξ) = −9/16 (ξ + 1) (3 ξ + 1) (ξ − 1)

N3
4 (ξ) = 1/16 (ξ + 1) (3 ξ + 1) (3 ξ − 1)

etc. Note that the sum of all Lagrange polynomials for a given polynomial degree p equals
unity

p+1∑

i=1

Np
i (ξ) = 1 , (4.11)
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in the case of the hierarchic basis introduced below this is true only for the nodal modes (4.24).
The space spanned by the standard basis can also be represented by a hierarchical basis,

compare Fig. 4.4(b). Note that the set of higher-order basis functions contains all lower
order shape functions. The set of one-dimensional hierarchic shape functions, introduced by
(Szabó and Babuška, 1991) is shown in Fig. 4.4(b) and given by

N1(ξ) = 1/2(1− ξ) (4.12)

N2(ξ) = 1/2(1 + ξ) (4.13)

Ni(ξ) = φi−1(ξ), i = 3, 4, ..., p+ 1 (4.14)

with the integrated Legendre polynomials

φj(ξ) =

√
2j − 1

2

ξ∫

−1

Lj−1(x) dx =
1√

4j − 2
(Lj(ξ)− Lj−2(ξ)) , j = 2, 3, ... (4.15)

where Lj(ξ) are the well-known Legendre polynomials that can be computed either by applying
the Rodriguez formula

Ln(x) =
1

2n n!

dn

d xn
(x2 − 1)n , x ∈ (−1, 1), n = 0, 1, 2, ... (4.16)

or Bonnet’s recursion formula

Ln(x) =
1

n
[(2n− 1)xLn−1(x)− (n− 1)Ln−2(x)] , x ∈ (−1, 1), n = 2, 3, 4, ... (4.17)

Legendre polynomials are orthogonal on I = (−1, 1):

1∫

−1

Ln(x)Lm(x) dx =

{ 2

2n+ 1
if n = m

0 else
. (4.18)

The linear functions N1(ξ), N2(ξ) are called nodal shape functions or nodal modes and
constitute a partition of unity

N1(ξ) +N2(ξ) =
1

2
(1− ξ) +

1

2
(1 + ξ) = 1 . (4.19)

Because the functions Ni(ξ), i = 3, 4, ... vanish at the boundary of the domain

Ni(−1) = Ni(1) = 0, i = 3, 4, ... (4.20)

they are called internal shape functions, internal modes or bubble modes. The orthogonality
property of Legendre polynomials implies

1∫

−1

dNi

d ξ

dNj

d ξ
d ξ = δij , i ≥ 3 and j ≥ 1 or i ≥ 1 and j ≥ 3 . (4.21)
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The hierarchic shape functions for p = 1, 2, 3, ..., 8 are given by

N1(ξ) = 1/2(1− ξ) ,
N2(ξ) = 1/2(1 + ξ) ,

N3(ξ) = 1/4
√

6
(
ξ2 − 1

)
,

N4(ξ) = 1/4
√

10
(
ξ2 − 1

)
ξ ,

N5(ξ) = 1/16
√

14
(
5 ξ4 − 6 ξ2 + 1

)
, (4.22)

N6(ξ) = 3/16
√

2ξ
(
7 ξ4 − 10 ξ2 + 3

)
,

N7(ξ) = 1/32
√

22
(
21 ξ6 − 35 ξ4 + 15 ξ2 − 1

)
,

N8(ξ) = 1/32
√

26ξ
(
33 ξ6 − 63 ξ4 + 35 ξ2 − 5

)
,

N9(ξ) = 1/256
√

30
(
−140 ξ2 − 924 ξ6 + 630 ξ4 + 5 + 429 ξ8

)
.

Hierarchic shape functions result in a better conditioning of the one-dimensional ele-
ment stiffness matrix, see (Düster, 2001, Sec. 2.2.4). That hierarchic shape functions also
have benefits compared to Lagrangian shape functions in higher dimensions was shown in
(Zienkiewicz and Craig, 1986).

Building on the one dimensional hierarchical basis functions introduced above hierarchical
shape functions for two- and three-dimensional quadrilateral and hexahedral elements can be
constructed as the tensor product of the one-dimensional hierarchic shape functions.

4.2.2 Hierarchic shape functions for quadrilaterals

As most of the numerical examples and applications given in this thesis are either two-
dimensional or axisymmetric it is sufficient to introduce the hierarchic shape functions for
two-dimensional elements.

The implementation of the p-version in two dimensions is based on a quadrilateral element
formulation, using the Ansatz functions introduced by Szabó and Babuška (Szabó and Babuška,
1991). Fig. 4.5 depicts the standard quadrilateral finite element.

N2

ξ

η

pξ

pη

N1

N3N4

E1

E2

E3

E4

Ωq
st = [(−1, 1)× (−1, 1)]

Figure 4.5: Standard quadrilateral element: definition of nodes, edges and polynomial degree
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Two different types of Ansatz spaces are taken into consideration: the trunk space Spξ,pη

ts (Ωq
st)

and the tensor product space Spξ,pη

ps (Ωq
st). The tensor product space Spξ,pη

ps (Ωq
st) consists of all

polynomials on Ωq
st = [(−1, 1)× (−1, 1)] spanned by the set of monomials

• ξi ηj with i = 0, 1, ...., pξ, j = 0, 1, ...., pη,

whereas the trunk space Spξ ,pη

ts (Ωq
st) on Ωq

st = [(−1, 1) × (−1, 1)] is spanned by the subset
containing the following monomials

• ξi ηj with i = 0, ..., pξ, j = 0, ..., pη, i+ j = 0, ...,max{pξ, pη}
• ξ η for pξ = pη = 1

• ξpξ η for pξ ≥ 2

• ξ ηpη for pη ≥ 2 .

4

ξ ξ  η ξ  η ξ  η ξ  η η
η

η
η

η
1

ξ
ξ

ξ

ξ ξ  η

ξ  η ξ  η

ξ  ηξ  η
ξ  η

ξ  η

ξ ξ  η η

ξ  η
ξ  η

ξ  η

2 2

3 32 2

43 32 2

5 54 3 2 43

6 655 4 43 3 22

2

S3,3
ts (Ωq

st)

S3,3
ps (Ωq

st)

Figure 4.6: The trunk space S3,3
ts (Ωq

st) and the tensor product space S3,3
ps (Ωq

st)

The difference between the two Ansatz spaces can be readily visualized when considering
the spanning sets in Pascal’s triangle. Fig. 4.6 depicts the set of monomials for pξ = pη = 3
for both the trunk and the tensor product space. All monomials inside the dashed line span
the trunk space S3,3

ts (Ωq
st) whereas the monomials bordered by the solid line are contained in

the tensor product space S3,3
ps (Ωq

st).
By construction, the two-dimensional shape functions can be classified into three groups:

1. Nodal modes: The four nodal modes

NNi

1,1(ξ, η) =
1

4
(1 + ξi ξ)(1 + ηi η) , i = 1, ..., 4 (4.23)

are the standard bilinear shape functions, well known from the isoparametric four-noded
quadrilateral element. (ξi, ηi) denote the local coordinates (±1,±1) of the ith node.
Fig. 4.7 depicts the mode for node 1. The sum of the four nodal modes equals unity

4∑

i=1

NNi

1,1(ξ, η) = 1 , (4.24)
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a property important for the calculation of reaction forces in Sec. 4.9. Note that in
the case of a Lagrangian nodal basis all shape functions for a given polynomial degree
represent a partition of unity (Eq. (4.11)), whereas with the hierarchic basis introduced
here this property is only valid for the nodal modes.

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

0

0.25

0.5

0.75

1

ξ
η

Figure 4.7: Node 1: NN1
1,1 (ξ, η) = 1

4
(1− ξ)(1− η)

2. Edge modes: There are 2(pξ − 1) + 2(pη − 1) side modes for p ≥ 2. These modes
are defined separately for each individual edge, they vanish at all other edges. The
corresponding 2(pξ − 1) modes for edge E1 and E3 in ξ-direction read:

NE1
i,1 (ξ, η) =

1

2
φi(ξ)(1− η), i = 2, . . . , pξ , (4.25)

NE3
i,1 (ξ, η) =

1

2
φi(ξ)(1 + η), i = 2, . . . , pξ , (4.26)

while for edges E2 and E4 the 2(pη − 1) modes in η-direction are

NE2
1,i (ξ, η) =

1

2
(1 + ξ)φj(η), j = 2, . . . , pη , (4.27)

NE4
1,i (ξ, η) =

1

2
(1− ξ)φj(η), j = 2, . . . , pη , (4.28)

with φi defined in Eq. (4.15). In Fig. 4.8 the modes for edge 1 with i = 2 and i = 5 are
plotted.
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(a) (i = 2): NE1

2,1(ξ, η)
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-0.15
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 0.15

ξ
η

(b) (i = 5): NE1

5,1(ξ, η)

Figure 4.8: Two representative higher order edge modes
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3. Internal modes (bubble modes): There are (p− 1)(q − 1) internal modes (p, q ≥ 2)
for the tensor product space Spξ,pη

ps (Ωq
st). For the trunk space Spξ,pη

ts (Ωq
st) the internal

modes enter the scene later, for p ≥ 4,

N int
i,j (ξ, η) = φi(ξ)φj(η) (4.29)

for






product Sp. i = 2, ..., pξ − 2, j = 2, ..., pη − 2
trunk Sp. i = 2, ..., pξ − 4, j = 2, ..., pη − 4,

i+ j = 4, ...,max{pξ, pη}.

The internal modes are purely local and vanish at the edges of the quadrilateral element.
This provides the possibility to use static condensation on element level, a kind of Schur
complement preconditioning, cf. Sec. 4.8. The computational effort on element level pays
off for the solution of the global equation system by iterative solvers as the condition
number of the global stiffness matrix decreases significantly, compare (Ainsworth, 1996;
Mandel, 1990a,b). To give an impression of the rapid growth of the internal degrees of
freedom when the tensor product space is used a comparison of the fraction of purely
internal degrees of freedom to the total degrees of freedom is plotted in (Düster, 2001,
p. 24). For a two-dimensional Lamé problem discretized with one quadrilateral element
and uniform p = 4 the product space contains about 40% internal degrees of freedom
while the trunk space exhibits only about 5%.

Fig. 4.9 depicts the internal modes for i = j = 2 and i = j = 3.
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(a) (i = j = 2): N int
2,2(ξ, η)
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(b) (i = j = 3): N int
3,3(ξ, η)

Figure 4.9: Two representative higher order internal modes

As already indicated, the indices i, j of the shape functions denote the polynomial degrees in
the local directions ξ, η.
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4.2.3 Inter-element continuity

Fig. 4.3 sketches how the union of shape functions defined on the individual elements form a
global shape function pertaining to a certain global degree of freedom. If — as in our case —
high-order shape functions are used special care has to be take to ensure C0 continuity in the
displacements over element edges and faces. To this end all edges bear an orientation and in
setting up the elemental shape function this information is used for the construction of the
Ansatz function. Fig. 4.10 shows the importance of this consideration for the union of two
edge shape functions, p = 3. Further details can be found in (Heisserer, 2007, Ch. 2.8) and
(Düster, 2005, Ch. 5.2).

(a) Discontinuous union of elemental functions (b) Continuous global function

Figure 4.10: Union of elemental shape functions to a global shape function

4.3 Mapping

In the p-version the element size is not reduced as the number of degrees of freedom is increased
as in the h-version. Consequently, the description of the geometry must be independent of the
number of elements. The need arises to construct elements with an accurate representation
of the boundary. The blending function method described in the following provides this
possibility.

In Sec. 4.2.2 the shape functions were defined on the standard element Ωq
st. To relate

them to the element in the reference configuration a mapping φe(ξ) = {φe
X(ξ),φe

Y (ξ)}T of
the four-noded standard element Ωq

st = [(−1, 1)× (−1, 1)] with local coordinates ξ = {ξ, η}T
to a general four-noded element in the global reference configuration with coordinates

~X = {X, Y }T = φe(ξ) (4.30)

is defined as sketched in Fig. 4.11. The inverse mapping is introduced as

ξ = {ξ, η}T = (φe)−1( ~X) . (4.31)

The nodes ~Xi = {Xi, Yi}T , i = 1, 2, 3, 4 and the four edges ~Ei = {EiX , EiY }T , i = 1, 2, 3, 4
given in parametric description define the geometry of the element in two-dimensional Euclid-
ian space.

In the example depicted in Fig. 4.11 where only edge 2 is curved the transformation from
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X

Y

ξ

η

N1 N2

N3N4

~E1

~E2

~E3

~E4 ~X1

~X2

~X3

~X4

~E2(η)

~X = φe(ξ, η)

Figure 4.11: Mapping function of four-noded elements

local to global coordinates can be described by the two functions

X = φe
X(ξ, η) =

4∑

i=1

NNi

1,1(ξ, η)Xi +

(
E2X(η)−

(
1− η

2
X2 +

1 + η

2
X3

))
1 + ξ

2

Y = φe
Y (ξ, η) =

4∑

i=1

NNi

1,1(ξ, η) Yi +

(
E2Y (η)−

(
1− η

2
Y2 +

1 + η

2
Y3

))
1 + ξ

2

(4.32)

The idea of the blending function method as proposed by Gordon and Hall (Gordon and Hall,
1973a,b) is to augment the standard bilinear mapping given by the first term2

~X =
4∑

i=1

NNi

1,1(ξ, η)
~Xi (4.33)

with the blended difference between the straight connection of the nodes 2 and 3 and the
curved edge ~E2, where NNi

1,1 are the nodal modes3 defined in Eq. (4.23). This difference is

linearly blended out towards the opposite edge by the term
1 + ξ

2
that is 1 along edge ~E2 and

evaluates to 0 along the opposite edge bounded by the nodes 1 and 4.

The generalization to the case where all four edges are possibly curved is given by

~X = φe(ξ, η) =

4∑

i=1

NNi

1,1(ξ, η)
~Xi +

4∑

i=1

ei(ξ, η) (4.34)

2The bilinear mapping contains affine maps as special cases as can be seen in Fig. 4.16 on p. 81.
3(•)1,1 denotes no derivative here but the polynomial orders in ξ and η direction
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where the edge blending terms are defined as

e1(ξ, η) =

[
~E1(ξ)−

(1− ξ) ~X1 + (1 + ξ) ~X2

2

](
1− η

2

)

e2(ξ, η) =

[
~E2(η)−

(1− η) ~X2 + (1 + η) ~X3

2

](
1 + ξ

2

)

e3(ξ, η) =

[
~E3(ξ)−

(1− ξ) ~X4 + (1 + ξ) ~X3

2

](
1 + η

2

)

e4(ξ, η) =

[
~E4(η)−

(1− η) ~X1 + (1 + η) ~X4

2

](
1− ξ

2

)
.

(4.35)

A mapping ~X = φ(ξ) is characterized by its Jacobian matrix4

J =
∂φ(ξ)

∂ξ
=
∂ ~X(ξ)

∂ξ
=





∂X1

∂ξ1

∂X2

∂ξ1

∂X1

∂ξ2

∂X2

∂ξ2



 . (4.36)

To ensure bijective mapping and the preservation of orientation the determinant of the Jaco-
bian matrix of the mapping must be strictly positive

detJ > 0 . (4.37)

4.3.1 Mapping concepts

As the mapping has a vital influence on the finite element space — defined by the mesh,
the shape functions and the mapping — different mapping concepts are distinguished in the
following (compare (Düster, 2001, Sec. 3.4), (Bröker, 2001, Sec. 4) and (Nübel, 2005, Sec. 4.4))

• Iso-parametric mapping : The same functions used to approximate the displacement are
also used for the description of the geometry ~X = φ(ξ), e.g. for the evaluation of the
Jacobian needed in the computations of integrals to calculate the discretized load vectors
and matrices on the standard element (e.g. in Eq. 4.170). The function space for the
mapping Sgeo is equal to the function space Sdisp, in symbolic notation Sgeo = Sdisp.

• Sub-parametric mapping : The functions to describe the geometry are a subset of the
function space Sdisp used for the approximate solution ~u h ≈ ~uex, Sgeo ⊂ Sdisp.

• Super-parametric mapping : The functions used to describe the geometry are more com-
plex than the functions ~u h used to approximate the exact solution ~uex. To avoid com-
paring apples and oranges it must be clarified what ‘more complex’ means. We do not

4In the literature often the Jacobian matrix is defined as the transpose of the form given here. Our
definition is in accordance with (Szabó and Babuška, 1991, p. 113), Wriggers (Wriggers, 2001, p. 106) and
Bathe (Bathe, 1996, p. 346), but transposed of the widely used convention in classical FE-texts as for example
(Zienkiewicz and Taylor, 1989).
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understand it in the strict hierarchic sense of set theory, where one would understand
the super-set to include the sub-set like Sgeo ⊃ Sdisp. Instead we use super-parametric
in a wider sense where the mapping functions can not be represented in the space of the
displacement. For example, this is not only the case when the geometry is expressed by
polynomials of higher order than those defining the FE space in which the approximation
~u h lives, but also if the geometry is given in non-polynomial terms (like trigonometric
functions). Expressed in symbolic notation we have Sgeo 6∈ Sdisp.

Exact, interpolated and approximated geometry

The blending function method as given in Eq. (4.32) relies on the parametric description of

the geometry of the edges ~Ei(r). Different approaches are presented in (Bröker, 2001) and
(Nübel, 2005, Sec. 4.4.3) for this task.

• Using the blending function method with the exact boundary representation ~E as intro-
duced in Eq. (4.32) has the advantage of evaluating the Jacobian matrices based on the
exact geometry. The prerequisite however is that the geometry is available analytically
in parameterized form.

• One possibility besides the exact representation is the quasi-regional mapping described
by (Királyfalvi and Szabó, 1997). It uses an interpolation

~Ei(r) ≈ E interp
i (r) =

pgeo+1∑

k=1

N
pgeo

k (r)Ei(rk) (4.38)

according to Chen and Babuška (Chen and Babuška, 1995). Because for the interpola-
tion Lagrange polynomials N

pgeo

k , see Eq. (4.5), are used that evaluate to 1 at a node
and vanish at all other nodes the coefficients for the polynomial representation can be
obtained without solving an equation system: the coefficients Ei(rk) are the values of
the exact geometry at the nodal or collocation points rk.

The locations rk of the sampling points determine the quality of the approximation as
they control the oscillations of the basis functions. A good set of basis functions has
minimal oscillations of its sum

λ(r) =

pgeo+1∑

k=1

|Npgeo

k (r)| . (4.39)

In (Chen and Babuška, 1995) an optimal set of sampling points for a given order of
geometric approximation pgeo is derived by minimizing the Lebesgue constant of the set
of sampling points. This results in non-equidistant nodes, the so called Chen-Babuška

points.

• A third approach would be to approximate the exact geometry with the same hierarchic
shape functions (viz Sec. 4.2.2) as the displacements

~Ei(r) ≈ E approx
i (r) =

nmodes∑

i=1

Ni(r) ai. (4.40)
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Using this iso-parametric approach the rigid body modes can be exactly represented,
however it requires the solution of a small equation system to obtain the coefficients ai,
see (Demkowicz, 2004) and for a similar problem Remark 13 on p. 97. A related approach
is recently introduced as ‘iso-geometric analysis’ by Hughes et al. (Bazilevs et al., 2006;
Cottrell et al., 2006; Hughes et al., 2005) where, instead of the hierarchic shape functions
introduced here, NURBS (Non-Uniform Rational B-Splines) or a super-set of them, T-
splines (Sederberg et al., 2004, 2003), are used for both the Ansatz space, i.e. for ~u h and

for the exact representation of the geometry ~X = φ(ξ). The interesting consequence is
that all rigid body motions and constant strain states can be represented exactly and
the geometry can be used as given from a CAD system in its native representation.

4.3.2 Representation of rigid body modes

The different approaches have consequences for the modeling of rigid body modes ~urbm. It is
the defining property that rigid body motion does not cause any strains. In two dimensions all
rigid body modes can be described by the linear combinations of two translations (governed
by the scalars C1, C2) and one rotation

~urbm = C1

{
1
0

}
+ C2

{
0
1

}
+ C3(α)

{
x
y

}
, (4.41)

where C3 is the rotation matrix for angle α. To describe the rotation we are interested in the
displacement ~u corresponding to the rotation R(α) of point ~x into ~x ′, ~x ′ = R(α)~x. Hence
we solve ~x ′ = ~x + ~u for the displacement and obtain ~u = ~x ′ − ~x, i.e. ~u = R(α)~x − ~x =
C3~x. Consequently, we obtain for the coefficient matrix C3(α) = R(α) − I evaluating the
displacements corresponding to a rotation of point ~x around the origin,

C3(α) =

[
cosα − sinα

sinα cosα

]

−
[

1 0

0 1

]

=

[
cosα− 1 − sinα

sinα cosα− 1

]

. (4.42)

The representation of those rigid-body modes is only ensured if the function space for the
description of the geometry is a subspace of the finite element approximation. Therefore, a
general rigid body mode is represented exactly only if

uh = ~urbm (4.43)





nmodes(x)∑

a=1

Na(ξ, η)uxa

nmodes(y)∑

b=1

Nb(ξ, η)uy b






= C1

{
1
0

}
+ C2

{
0
1

}
+ C3(α)

{
φe

X(ξ, η)
φe

Y (ξ, η)

}

holds. This is always guaranteed for iso-parametric or sub-parametric mapping. Concerning
the super-parametric concept the rigid body translations governed by C1 and C2 can always
be represented by the nodal modes in the hierarchic Ansatz space given in Sec. 4.2.2. For
the rigid body rotations specified by C3(α)φe, however, there is no counterpart in the finite
element space. This leads to artificial strains and stresses in the solution, compare (Bröker,
2001, Sec. 4.7). The error caused can be minimized in the p-version if the description of the
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geometry is sufficiently smooth and the polynomial degree is raised, cf. (Szabó and Babuška,
1991), (Düster, 2001, p. 39).

The following example investigates finite deformation rigid body rotation and discusses the
error introduced by super-parametric mapping.5 A quarter of an annulus that is discretized
by only one element with polynomial degree p is rotated α = 45 and α = 90 degrees by
prescribing the displacement along the edges6 1− 2 and 3− 4, cf. Fig. 4.12. This corresponds
to a rigid body mode ~urbm with the coefficients C1 = 0, C2 = 0 and C3(α = {π/4, π/2}) in
Eq. (4.41). The arcs, ri = 10 [m] and ra = 30 [m], are exactly described using trigonometric
functions applying the blending-function concept. For the plain stress investigation a linear

1 2

3

4

1′

2′
3′

4′
α

x

y

ri
ra

Figure 4.12: Rotated annulus, here α = 45 degree

material model (St.Venant-Kirchhoff) with Young’s modulus E = 200.000 [MPa] and Poisson
ratio ν = 0.3 is used. To rule out any influence of the quadrature scheme 30× 30 integration
points are used in the element for all runs. As rigid body rotation must not induce strains by
definition, the numerically calculated strain energy corresponds to the error in energy norm
caused by the super-parametric mapping. This error is plotted in a double logarithmic scale
versus the degrees of freedom in Fig. 4.13.

The error decreases to machine precision as the polynomial order is raised. For example,
with only one element and p = 9 the error is smaller than 0.1% for α = 90 degrees and
the tensor product space. The parallel curves in Fig. 4.13 show that there is only a small
influence of the rotation angle α on the error, but a great difference in the number of degrees
of freedom when the trunk and the tensor product space is compared, as can be explained by
Pascal’s triangle, Fig. 4.6. The polynomial degree in each direction is the same but the tensor
product space has much more internal modes, i.e. more degrees of freedom that do not give an
additional contribution for the approximation of the trigonometric functions. The fading out
of the error in stresses with increasing polynomial degree along a cutline (x = y in reference

5If the calculations are carried out using a linearized kinematic, i.e. engineering strains where the nonlinear
terms in Eq. (4.48) are neglected, there are already on the analytical level spurious strains introduced by
rotation as the engineering strain can not be used for large deformations. However, the Green-Lagrange strain
is constructed in a way that finite rotations do not induce artificial strains, hence spurious strains occurring
in the numerical treatment can be attributed to the numerical method.

6This is achieved by prescribing the displacement ux and uy at the points 1, 2, 3, 4. The higher order inner
modes along boundary 1− 2 and 3− 4 are set to vanish by the penalty method, cf. Sec. 4.9.1.3 and Remark
13 on p. 97. This results in a prescribed linear displacement in ux and uy along these edges. The inner modes
along the curved boundaries are not prescribed. Nevertheless the circular arc is very well represented after the
deformation.
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Figure 4.13: Error in energy norm for the rigid body rotation of 45 and 90 degree using the
trunk (reduced) and the tensor product (full) space. Each point along the lines represents an
increase in polynomial degree by one.

configuration) can be studied in Fig. 4.14. The plot is given for the trunk space however the
results for the tensor product space are almost identical.

To show that the error discussed is only introduced by the curved boundary described with
trigonometric functions we report the error in strain energy for exactly the same example with
small modifications of the mesh in Tab. 4.1. The arcs are replaced by straight lines in one
setting and by parabolas in an alternative design. For the straight lines the rigid body rotation
induces no strain already for linear shape functions, p = 1. For the parabolic boundaries there
is a significant error for p = 1 that vanishes if p = 2 is used as the Ansatz space now contains
quadratic functions that exactly describe the rigid body rotation, cf. Eq. (4.44).
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Figure 4.14: Rotation 45 degree: convergence of the absolute error in von Mises stress along a
radial cutline (x = y) for increasing polynomial degree. Only the solid lines are labeled with
their polynomial degree.

p straight parabola arc meshes
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2 2.62E-22 6.60E-22 6.66E+07
3 2.63E-22 6.60E-22 1.11E+06
4 2.62E-22 6.67E-22 1.11E+04
5 2.67E-22 6.65E-22 7.09E+01
6 2.54E-22 6.60E-22 3.10E-01
7 2.74E-22 6.99E-22 9.90E-04
8 2.65E-22 6.74E-22 2.41E-06
9 2.68E-22 6.71E-22 4.62E-09
10 3.24E-22 6.75E-22 7.17E-12

Table 4.1: Rigid-body rotation (α = 90 deg.): strain energy of the p-extension (reduced space)
for the domain bounded with straight lines, parabolic and circular arcs as shown.
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4.4 Error control

The finite element discretization of a physical process approximates a continuous problem with
a limited number of parameters. Therefore, the exact solution is only obtained in very special
cases. In most cases the numerical analysis of a physical problem is subject to a number
of errors and the concept of verification and validation addresses them. The sketch of the
different levels involved

physical event

model error

��

~ureal

parametric data //

**U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

mathematical model

discretization error
��

~uex

validation

gg

computational model

numerical errors

��
result

interpretation errors

��

~u h

verification

aa

decision

(4.44)

gives guidelines how to classify some of the errors.

• Model errors occur in the process of describing a physical phenomenon with a numer-
ical model. Often assumptions are inevitable to derive a model that is to be solved by
numerical methods. Common assumptions are linear kinematics, reduction of the dimen-
sion if e.g. a three-dimensional dam structure is modeled with plain strain assumptions.
Frequently static or quasi-static analysis is chosen instead of a dynamic investigation.
Also constitutive models and kinematic assumptions belong to the domain of modeling
errors.

• Discretization errors result from the transition of the continuous mathematical model
to a discrete system. Errors of this class can stem from the approximation of the ge-
ometry, the finite element mesh, the polynomial degree of the Ansatz functions, the
resolution of the temporal discretization and from steep gradients in the solution.

• Parameter errors describe the uncertainty of material and geometric parameters that
are needed to make a prediction for a specific real-world problem. A slightly different
prominent case goes by the name of ‘metric mishap’ and resulted in a $125 million loss
of the Mars Climate Orbiter (MCO) in September 1999 because a Lockhead Martin
engineering team used English units while the NASA team used the metric system for
spacecraft operation.7

7’The MCO MIB has determined that the root cause for the loss of the MCO spacecraft was the failure
to use metric units in the coding of a ground software file ... used in trajectory models. Specifically, thruster
performance data in English units instead of metric units was used in the software application code ...’, (NASA,
1999, p. 16).
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• Numerical errors introduced by round-off can be controlled in most cases by using
double precision arithmetics and applying stable algorithms.

• Interpretation errors describe a different type of error introducing humans who make
decisions based on computed results. As the size of models grows the data available may
become very complex to handle. Even if it is assumed that the model perfectly captured
reality its predictions still must be accessed and judged. Visualization of computed
results is often vital to understand and evaluate the results of the numerical model.
For wrong interpretation based on inaccurate visualization, (Nelson and Kirby, 2006)
introduced the notion ‘visualization error’.

These sources contribute to the overall error. The error as the difference between real physical
data, e.g. ~ureal, and the numerical solution can only be assessed a posteriori if experiments
are available. The difference ~e of the computational solution ~u h from the exact solution ~uex

of the mathematical model can also only be evaluated a posteriori, i.e. in this case after the
computation, however it is independent from physical data,

~e = ~uex − ~u h . (4.45)

The p-version provides mechanisms to control most classes of the errors distinguished above.
The hierarchic shape functions with orthogonality properties (Sec. 4.2.1) were chosen in a way
to minimize round-off error. Anisotropic plate and shell analyses with a hierarchical Ansatz
space allow to enrich the space step by step and thus construct a hierarchy of kinematic
models, giving the possibility to assess the model error related to the kinematic. The different
versions of the finite element method — h, p, hp, . . . — that are briefly sketched in Sec. 4.1
focus on the control of the discretization error.

As numerical methods are used to support significant engineering decisions, for example
the design of an airplane, the awareness for the different types of errors and an approximation
of their magnitude is of great importance. The American Society of Mechanical Engineers has
only recently set up a working committee on Verification and Validation in Computational
Solid Mechanics that proposed a draft in the year 2006, ASME V&V 10-2006. This is rec-
ognized as an important step towards implementing these topics in a national design code.
This way of thinking will have major impact on the computational codes as the “currently
used large finite element software tools were not designed to support V&V procedures. Major
revisions will be necessary.”8

The two keywords are verification and validation (V&V). A prominent mathematician
working on finite elements, Ivo Babuška, and also one of the fathers of the p-version, considers
V&V issues to be the important challenge for the next decade9 On the other hand he is in line
with the eminent philosopher of science, Karl Popper (1902–1994). The Popperian argument
(Popper, 1959) is that, unlike mathematical propositions, claims in empirical science can not
be proved, they can only be tested through observations. As one can never be sure to have

8Barna Szabó in a keynote lecture at the High-Order Finite Element Methods conference, May 18, 2007,
Herrsching am Ammersee (near Munich), Germany

9See, for example his presentations at the MAFELAP 2006 ’Will Computational Science Fulfill It’s
Promises? - Reliability of the Computational Engineering’ and at the 303. WE-Heraeus seminar 2003
‘V&V in computational engineering and science’, as well as the technical reports (Babuška and Oden, 2003),
(Babuška et al., 2004)
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tested all the possible cases, a scientific theory can never be validated, but only not falsified.
He proposes the notion of ‘corroboration’ or ‘proved its mettle’ as long as a theory withstands
severe tests and it not superseded by another theory. Babuška admits to be tempted to
abandon the term ‘validation’ and use the more precise notion of ‘corroboration’, as theories
in science are never validated. But as the term ‘validation’ has a long and widespread use in
contemporary technical language he opts to continue to use ‘validation’, and to emphasize that
it is subject of a burden: validation with respect to specific tolerances for specific quantities of
interest. This said he proposes the following concise definitions (Babuška and Oden, 2003)

• Verification: The process of determining, whether a computational model obtained by
discretizing a mathematical model of a physical event represents the mathematical model
with sufficient accuracy.

• Validation: The process of determining, whether a mathematical model of a physical
event represents the actual physical event with sufficient accuracy.

Validation can be paraphrased as ‘are we solving the right model’ while verification ad-
dresses the issue ’are we solving the mathematical model right’. Verification can be split
in code verification and calculation verification. The calculation verification of numerics is
equivalent to a posteriori error estimation of PDE’s, a subject introduced by Babuška and
Rheinboldt in 1979 (Babuška and Rheinboldt, 1979). Specific statements about errors can
only be derived after the analysis (a posteriori). However, general characteristics of the er-
ror are also available a priori if there is existing knowledge of the structure of the problem
(boundary conditions and geometry). For details we refer to (Babuška and Strouboulis, 2001;
Schwab, 1998; Szabó and Babuška, 1991). The knowledge of the ‘smoothness’ of the solution
gives guidelines for the selection of an appropriate discretization method and for mesh gen-
eration, see e.g. (Babuska and Rank, 1987). The convergence rate, i.e. the rate of reduction
of the error, is known a priori for different classes of problems. If, for example, the error
(e.g. in energy norm) is plotted versus the degrees of freedom, the p-version is proven to show
exponential convergence for smooth problems while the h-version converges only algebraically.
For problems with singular points the p-version with an a priori constructed geometrical
mesh maintains exponential convergence. For more details see for example (Demkowicz, 2006;
Düster, 2001; Szabó and Babuška, 1991)

4.5 A note on temporal discretization

This section briefly comments on some temporal discretization strategies for time-dependent
phenomena, the second step in the vertical method of lines, cf. p. 39. In solid mechanics
ordinary differential equations (ODEs) occur in the description of transient phenomena like
heat conduction, structural dynamics and path-dependent materials described by the evolution
of internal variables. One can observe that the numerical treatment of these problems in the
finite element world is quite decoupled from recent developments in numerical mathematics. In
numerical mathematics evolved methods for integration of ordinary differential equations were
developed that slowly begin to spread into the finite element world. The time discretization
methods commonly used in the finite element treatment of linear structural dynamics are
summarized in Part Two of Hughes’s book (Hughes, 2000). Most of them are variants of
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Newmark’s method, trying to balance stability, the order of the method and the possibility
to damp out spurious modes by numerical dissipation. One of the later developments in this
line is the generalized-α method (Chung and Hulbert, 1993) that was implemented in the p-
version FE-code AdhoC, see (Heisserer, 2001) for large strain structural dynamics. In the
context of material models with ordinary differential equations describing the evolution of
internal variables, ‘modern’10 methods like the Runge-Kutta family (allowing adaptive step
control) in combination with the multi-level Newton algorithm and Rosenbrock methods were
investigated by Hartmann and co-workers in (Ellsiepen and Hartmann, 2001; Hartmann, 2002;
Hartmann and Wensch, 2007). The backward Euler method used for the examples in this
thesis is a special case, a diagonally implicit Runge-Kutta method of first order.

4.6 Discretized linearized variational form

For the spatial discretization of the linearized variational form, Eq. (3.52), we are now work-
ing in the FE-space defined by the mesh, the mapping, and the Ansatz functions. This
approximation is indicated by the superscript h. To prepare a computer implementation, the
column matrix form of the tensorial quantities is derived in the total Lagrangian framework
in Sec. 4.6.1 and the subsequent spatial discretization is carried out in Sec. 4.6.2. For an
overview of the approximation and discretization stages and corresponding notation compare
Tab. 1 and Tab. 2.

4.6.1 Column matrix representation of the tensorial quantities

4.6.1.1 Strain tensor and related quantities

To obtain a column matrix of the principle of virtual work using Voigt notation (cf. footnote
11 on p. 61) we start with the Green-Lagrange strain tensor E (2.13) and its variation δE
(3.7). Exploiting the symmetry E = ET we have nst individual components that can be stored
in a column matrix Eh(X, t)∈ R

nst. Here nst, the number of strains/stresses is six in the
three-dimensional (3D) case, four for axisymmetric (AXS) problems and three for plain strain
computations11,

3D: Eh =






Eh
11

Eh
22

Eh
33

2Eh
12

2Eh
23

2Eh
31






=






u1,1

u2,2

u3,3

u1,2 + u2,1

u2,3 + u3,2

u1,3 + u3,1






+






1
2
(u2

1,1 + u2
2,1 + u2

3,1)
1
2
(u2

1,2 + u2
2,2 + u2

3,2)
1
2
(u2

1,3 + u2
2,3 + u2

3,3)
u1,1u1,2 + u2,1u2,2 + u3,1u3,2

u1,2u1,3 + u2,2u2,3 + u3,2u3,3

u1,1u1,3 + u2,1u2,3 + u3,1u3,3






, (4.46)

10Well, ‘modern’ is in the context of the finite element method indeed very old. Runge and Kutta developed
their method around 1900, see (Runge, 1895) and (Kutta, 1901).

11 The factor two in the column matrix representation accompanying the off-diagonal terms (e.g. 2Eh
12)

stems from the fact that the contraction of the stress and strain tensor δE · T̃ in the principle of virtual work

is to be described by the scalar product of the vectors δE h and T̃
h
, so one of the column vectors must have

the factor two for the off-diagonal entries. For the details of the so-called Voigt notation, compare (Hartmann,
2003a, Appendix 2) or (Belytschko et al., 2000, Appendix 1) and (Wriggers, 2001, p. 121). Note, however that
Belytschko uses a different arrangement of the off-diagonal entries.
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AXS: Eh =






Eh
11

Eh
22

Eh
33

2Eh
12





=






u1,1

u2,2
u1

X1

u1,2 + u2,1





+






1
2
(u2

1,1 + u2
2,1)

1
2
(u2

1,2 + u2
2,2)

1

2

(
u1

X1

)2

u1,1u1,2 + u2,1u2,2






, (4.47)

2D: Eh =






Eh
11

Eh
22

2Eh
12




 =






u1,1

u2,2

u1,2 + u2,1




+






1
2
(u2

1,1 + u2
2,1)

1
2
(u2

1,2 + u2
2,2)

u1,1u1,2 + u2,1u2,2




 , (4.48)

where ui are the components of uh and the comma notation denotes the derivative with respect
to material coordinates, e.g. u1,2 = ∂u1

∂X2
. In the axisymmetric case the denominator X1 in the

fraction designates the radial distance from the axis of rotation.

Following Crisfield (Crisfield, 1991, Ch. 5) we denote by Θh the column vector ‘picking’ the
ngr entries of the material displacement gradient G = Grad ~u h, Eq. (3.8), in a specific order.
Grad~u h has nine entries in the three-dimensional case, five for axisymmetry and four in the
2D case. In three dimensions we have Θh(uh) = {u1,1, u1,2, u1,3, u2,1, u2,2, u2,3, u3,1, u3,2, u3,3}T ,
while in the other cases the representations are

axisymmetric, Θh(uh) =






u1,1

u1,2

u2,1

u2,2
u1

X1






, and 2D, Θh(uh) =






u1,1

u1,2

u2,1

u2,2





. (4.49)

Due to the linear property of ‘picking’, the corresponding virtual displacement gradient vectors
δΘh are defined accordingly, e.g. in the 2D case

δΘh(uh) = Θh(δuh) = {δu1,1, δu1,2, δu2,1, δu2,2}T . (4.50)

Then, the strain column matrix can be expressed as

E h(X, t) = Eh
ℓ + Eh

nℓ = HΘh(uh(t)) +
1

2
MΘ

(
Θh(uh(t))

)
Θh(uh(t)) (4.51)

=

[
H +

1

2
MΘ

(
Θh(uh(t))

)]
Θh(uh(t))

using for the three cases the incidence matrix H∈ R
nst×ngr and a matrix MΘ ∈ R

nst×ngr con-
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taining the elements of the gradient Θh in a special arrangement

3D (4.52)

H =





1 . . . . . . . .
. . . . 1 . . . .
. . . . . . . . 1
. 1 . 1 . . . . .
. . . . . 1 . 1 .
. . 1 . . . 1 . .




, MΘ =





u1,1 . . u2,1 . . u3,1 . .
. u1,2 . . u2,2 . . u3,2 .
. . u1,3 . . u2,3 . . u3,3

u1,2 u1,1 . u2,2 u2,1 . u3,2 u3,1 .
. u1,3 u1,2 . u2,3 u2,2 . u3,3 u3,2

u1,3 . u1,1 u2,3 . u2,1 u3,3 . u3,1





AXS (4.53)

H =





1 . . . .
. . . 1 .
. . . . 1
. 1 1 . .



 , MΘ =





u1,1 . u2,1 . .
. u1,2 . u2,2 .
. . . . u1

X1

u1,2 u1,1 u2,2 u2,1 .





2D (4.54)

H =




1 . . .
. . . 1
. 1 1 .



 , MΘ =




u1,1 . u2,1 .
. u1,2 . u2,2

u1,2 u1,1 u2,2 u2,1



 ,

where dots ‘.’ denote zero entries. The correctness can be proved by element-wise computation.

The vector form of the virtual strain tensor δE (3.7) is obtained by applying the definition of
the variation (3.26) as directional derivative, see (3.21), in the direction of δuh to the vector
form of the strains E h (4.51),

δEh(uh, δuh) = Du hEh(uh)[δuh] (4.55)

=
d

dǫ

[
HΘh(uh + ǫδuh) +

1

2
MΘ

(
Θh(uh + ǫδuh)

)
Θh(uh + ǫδuh)

]

ǫ=0

= HΘh(δuh)

+

[
1

2
MΘ

(
Θh(δuh)

)
Θh(uh + ǫδuh) +

1

2
MΘ

(
Θh(uh + ǫδuh)

)
Θh(δuh)

]

ǫ=0

= HΘh(δuh) +
1

2
MΘ

(
Θh(δuh)

)
Θh(uh) +

1

2
MΘ

(
Θh(uh)

)
Θh(δuh).

As the matrix MΘ

(
Θh(uh)

)
, e.g. Eq. (4.52), is just a rule how to pick the entries of the

displacement gradient we see the equivalence of

1

2
MΘ

(
Θh(δuh)

)
Θh(uh) =

1

2
MΘ

(
Θh(uh)

)
Θh(δuh) . (4.56)

Consequently we can simplify Eq. (4.55) to obtain the column matrix representation of the
virtual strain tensor

δE h(uh(t), δuh) =
[
H + MΘ

(
Θh(uh(t))

)]
Θh(δuh(t)). (4.57)

As the definition of the variation, Eq. (3.26), is based on the directional derivative we can
immediately evaluate the directional derivative of the strain column matrix

∆E h = Du hEh(uh(t))[∆uh] =
[
H + MΘ

(
Θh(uh(t))

)]
Θh(∆uh(t)) (4.58)
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if we replace the ‘direction’ δuh by ∆uh.

Remark 6 The factor 1
2

that is present in the vector form of the Green-Lagrange strain tensor

Eh (4.51) is missing in its variation δEh (4.57) and directional derivative ∆Eh (4.58) as the
product rule together with the equivalence relation (4.56) is applied. The strain tensor E
(corresponding to the factor 1

2
) does not occur in the terms of the (linearized) virtual work

(3.52), only its variation or the directional derivative. However, it might be for postprocessing
or other reasons desirable to compute the spatially discrete Green-Lagrange strain tensor E.
Hence, one can implement a generic B(β) matrix, cf. Eq. (4.81), governed by the factor β that
evaluates the operator [H + βMΘ] G. If the variation or the directional derivative is needed,
set β = 1, for the strains we choose β = 1

2
. Another application of the β = 1

2
case is the

case of a linear material model where the stress tensor T̃ in the virtual internal work (3.53)

corresponding to the known state ~u can be computed by multiplication of a material matrix C̃L

and the discretized strains E. An example is an extension of Hooke’s law to large strains, the

so called St.Venant-Kirchhoff model where we would substitute T̃
h

= C̃LEh in the discretized
form of Eq. (3.53).

4.6.1.2 Stress tensor and related quantities

The symmetric second Piola-Kirchhoff stress tensor T̃ = T̃T is transformed to a column matrix

T̃
h
(X, t)∈ R

nst

3D: T̃
h

= {T̃ h
11, T̃

h
22, T̃

h
33, T̃

h
12, T̃

h
23, T̃

h
13}T (4.59)

AXS: T̃
h

= {T̃ h
11, T̃

h
22, T̃

h
33, T̃

h
12}T (4.60)

2D: T̃
h

= {T̃ h
11, T̃

h
22, T̃

h
12}T (4.61)

and is governed by a constitutive relation of the type

T̃
h
(X, t) = Φ̃

h
(

Ch
(
Eh(X, t)

)
,qh
(
Ch(Eh(X, t))

))
, (4.62)

the vector form of Eq. (2.43), where Ch is the spatially discretized right Cauchy-Green tensor

Ch = 2Eh + I (4.63)

and the internal variables qh are given by the initial value problem,

Aq̇h
(X, t)− r(Eh(X, t),qh(X, t)) = 0, qh(X, t0) = qh

o(X), (4.64)

the matrix form of Eq. (2.47).

Analogously to the tensorial consistent tangent operator C̃ (3.34), the matrix form C̃
h

L is
derived evoking the Gâteaux derivative of the constitutive equation Eq. (4.62) in the direction
of the strain increment ∆E h (4.58),

DE h Φ̃
h
(Eh)[∆Eh] =

[
∂Φ̃

h

∂C h
+
∂Φ̃

h

∂qh
· dqh

dCh

]
2 ∆Eh = C̃

h

L(X, t) ∆Eh . (4.65)
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The factor 2 in C̃
h

L stems from the fact that we want to express the right Cauchy-Green tensor
depending on the Green strain tensor as Ch = 2Eh + I. Hence the directional derivative
DE hCh(Eh)[∆Eh] = 2∆Eh has the factor 2. Now we can express the increment in stress
needed in Eq. (3.28) in column matrix representation as

Du hT̃
h
(X, t)[∆uh] = C̃

h

L∆Eh . (4.66)

4.6.2 Spatial discretization of the linearized weak form

We use the standard Bubnov-Galerkin12 approach to approximate the continuous vector fields
of displacement ~u( ~X, t) and virtual displacement δ~u( ~X, t) by the same Ansatz functions Nj ,
compare Eq. (4.2),

uh(X, t) = Na(X) ua(t), uh ∈ R
nsd (4.67)

δuh(X) = Na(X) δua, δuh ∈ R
nsd (4.68)

∆uh(X) = Na(X) ∆ua, ∆uh ∈ R
nsd (4.69)

with the global vectors collecting the displacement coefficients ua ∈ R
ndof , virtual displacement

coefficients13 δua ∈ R
ndof and the increment vector ∆ua ∈ R

ndof. The corresponding shape
functions Nj(X)∈ R introduced in Sec. 4.2.2 are collected in the matrix Na(X)∈ R

nsd×ndof,
X∈ R

nsd represents the column vector of Cartesian coordinates in reference configuration of
point ~X.

Remark 7 Acknowledging the history of the finite element method where the Lagrangian shape
functions were dominating in the beginning when the notations were coined, we speak of the
‘displacement’ vector ua. However, for a general basis the unknowns ua are just coefficients
of the basis functions. Two different systems of high order bases are compared in Sec. 4.2.
Using a Lagrangian (or standard) basis the solution coefficients of the shape functions are
indeed the displacements at these ‘nodes’ due to property Eq. (4.6) that states that all shape
functions but one vanish at a node and the non-vanishing function has the value 1 there. But
using a hierarchical basis of integrated Legendre polynomials as we do, only the coefficients
belonging to the nodal modes, Eq. (4.23), have the direct meaning of displacements and all the
other values are just scaling factors of the higher order modes. Therefore, we speak of ‘modal
shape functions’ instead of ’nodal shape functions’ and all summations are over the number
of modes.

Following (Hartmann, 2003a) we distinguish known (prescribed) and unknown displace-
ment degrees of freedom. This prepares for the computation of reaction forces as derived
in Sec. 4.9. All (mnemonic subscript a) displacement coefficients (‘degrees of freedom’) are
collected in column matrices, the displacement coefficients in ua(t)∈ R

ndof, their virtual coun-
terparts in δua ∈ R

ndof . The shape functions are collected in the matrix Na(X)∈ R
nsd×ndof. For

partitioning we denote by u(t)∈ R
nu the nu unknown degrees of freedom, while u(t)∈ R

np

12Contrary to the Petrov-Galerkin approach where test (δ~u) and trial (~u) functions differ, cf.
(Belytschko et al., 2000, p. 406)

13The time-dependence of the virtual displacement is neglected. See the discussion on page 26.
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represents the vector of the np prescribed displacements, ndof = nu + np. As the virtual dis-
placements have to vanish by construction where Dirichlet boundary conditions are prescribed,
we have δu = 0∈ R

np , while the remaining virtual displacements δu∈ R
nu are arbitrary.

Consequently we can write

ua(t) =

{
u(t)
u(t)

}
, ∆ua =

{
∆u
∆u

}
and δua =

{
δu
δu

}
=

{
δu
0

}
(4.70)

and introducing this partitioning in Eqs. (4.67) – (4.68) we divide the matrix Na accordingly
to obtain

uh(X, t) =
[
N(X) N(X)

]{ u(t)
u(t)

}
= N(X)u(t) + N(X)u(t) (4.71)

∆uh(X, t) =
[
N(X) N(X)

]{ ∆u
∆u

}
= N(X)∆u + N(X)∆u . (4.72)

δuh(X, t) =
[
N(X) N(X)

]{ δu
0

}
= N(X)δu . (4.73)

Spatial discretization of strain-like quantities

Substituting the Ansatz (4.67) and (4.68) in the definition of the gradient vectors Θh (4.49)
and δΘh (4.50) we obtain the discretized column vector of the displacement gradient Θ(ua)
(note that the superscript (•)h is omitted for discretized quantities)

Θ(ua(t)) = G ua(t), δΘ(ua(t)) = G δua, and ∆Θ(ua(t)) = G ∆ua (4.74)

with

G = [G1,G2, . . . ,Gnmodes
] (4.75)

where one of the block matrices Gi ∈ R
ngr×nsd , i = 1, . . . , nmodes in G∈ R

ngr×ndof has the fol-
lowing structure

3D:Gi =





Ni,1 . .
Ni,2 . .
Ni,3 . .
. Ni,1 .
. Ni,2 .
. Ni,3 .
. . Ni,1

. . Ni,2

. . Ni,3





AXS:Gi =





Ni,1 .
Ni,2 .
. Ni,1

. Ni,2
Ni

X1
.




2D:Gi =





Ni,1 .
Ni,2 .
. Ni,1

. Ni,2



 . (4.76)

The derivatives, Ni,k =
∂Ni(ξ)

∂Xk
, are with respect to global material coordinates, however the

shape functions are given on the standard element Ωq
st in local coordinates ξ = {ξ1, ξ2, ξ3}T .

Therefore, we apply the chain rule, viz

∂Ni

(
ξ(X)

)

∂Xj

=
∂Ni

∂ξ1

∂ξ1
∂Xj

+
∂Ni

∂ξ2

∂ξ2
∂Xj

+
∂Ni

∂ξ3

∂ξ3
∂Xj

for j = 1, 2, 3 . (4.77)
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Collected in matrix/vector form we have in three dimensions






∂Ni(ξ)

∂X1

∂Ni(ξ)

∂X2

∂Ni(ξ)

∂X3






=





∂ξ1
∂X1

∂ξ2
∂X1

∂ξ3
∂X1

∂ξ1
∂X2

∂ξ2
∂X2

∂ξ3
∂X2

∂ξ1
∂X3

∂ξ2
∂X3

∂ξ3
∂X3










∂Ni(ξ)

∂ξ1
∂Ni(ξ)

∂ξ2
∂Ni(ξ)

∂ξ3






= J−T






∂Ni(ξ)

∂ξ1
∂Ni(ξ)

∂ξ2
∂Ni(ξ)

∂ξ3






(4.78)

with the Jacobian matrix J(ξ) (4.36) of the mapping φ, (Eq. (4.30)),

J =
∂φ(ξ)

∂ξ
=
∂X(ξ)

∂ξ
=





∂X1

∂ξ1

∂X2

∂ξ1

∂X3

∂ξ1
∂X1

∂ξ2

∂X2

∂ξ2

∂X3

∂ξ2
∂X1

∂ξ3

∂X2

∂ξ3

∂X3

∂ξ3





. (4.79)

To spatially discretize the (continuous) column strain matrices Eh (4.51), δEh (4.57) and ∆Eh

(4.58) we start from a generic form 2E h with placeholders 2 and β

2E h =
[
H + βMΘ

(
Θh(uh(t))

)]
Θh(2uh(t)) for






Eh set 2 = 1, β = 1
2

δEh set 2 = δ, β = 1

∆Eh set 2 = ∆, β = 1

(4.80)

and discretize 2Θh according to (4.74) with the help of the gradient-displacement matrix G
(4.75) to arrive at

2E = [H + βMΘ (Gua(t))] G︸ ︷︷ ︸bB(β)

2ua(t) for






E set 2 = 1, β = 1
2

δE set 2 = δ, β = 1
∆E set 2 = ∆, β = 1

, (4.81)

the small strain case is recovered if β = 0. Splitting linear and nonlinear parts as in (4.51) we
can introduce strain-displacement matrices B∈ R

nst×ndof as

2E = Eℓ + 2Enℓ

Eℓ = Bℓ ua(t) = HG ua(t)
2Enℓ = βBnℓ 2ua(t) = (βMΘ (G(ua(t))) G) 2ua(t) .

(4.82)

We define the abbreviations for the individual matrices

Bℓ(X) = HG = [Bℓ 1,Bℓ 2, . . . ,Bℓ nmodes
] (4.83)

Bnℓ(ua(t),X) = MΘ (Gua(t)) G = [Bnℓ 1,Bnℓ 2, . . . ,Bnℓ nmodes
] (4.84)

and the combinations differing by the factor β

B∗
a(ua(t),X) = [B∗

1, . . . ,B
∗
nmodes

] = Bℓ +
1

2
Bnℓ (4.85)

Ba(ua(t),X) = [B1, . . . ,Bnmodes
] = Bℓ + Bnℓ . (4.86)
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The component-wise evaluation of (4.83) and (4.84) yields for the block matrices Bi ∈ R
nst×nsd

in the three-dimensional case (3D)

Bℓ i =





Ni,1 . .
. Ni,2 .
. . Ni,3

Ni,2 Ni,1 .
. Ni,3 Ni,2

Ni,3 . Ni,1




, Bnℓ i =





u1,1Ni,1 u2,1Ni,1 u3,1Ni,1

u1,2Ni,2 u2,2Ni,2 u3,2Ni,2

u1,3Ni,3 u2,3Ni,3 u3,3Ni,3

u1,2Ni,1 + u1,1Ni,2 u2,2Ni,1 + u2,1Ni,2 u3,2Ni,1 + u3,1Ni,2

u1,3Ni,2 + u1,2Ni,3 u2,3Ni,2 + u2,2Ni,3 u3,3Ni,2 + u3,2Ni,3

u1,3Ni,1 + u1,1Ni,3 u2,3Ni,1 + u2,1Ni,3 u3,3Ni,1 + u3,1Ni,3




,

(4.87)

for axisymmetric problems (AXS)

Bℓ i =





Ni,1 .
. Ni,2

Ni

X1
.

Ni,2 Ni,1



 , Bnℓ i =





u1,1Ni,1 u2,1Ni,1

u1,2Ni,2 u2,2Ni,2
u1

X1

Ni

X1
.

u1,2Ni,1 + u1,1Ni,2 u2,2Ni,1 + u2,1Ni,2



 , (4.88)

and in two dimensions (2D)

Bℓ i =




Ni,1 .
. Ni,2

Ni,2 Ni,1



 , Bnℓ i =




u1,1Ni,1 u2,1Ni,1

u1,2Ni,2 u2,2Ni,2

u1,2Ni,1 + u1,1Ni,2 u2,2Ni,1 + u2,1Ni,2



 . (4.89)

Remark 8 Only for the case β = 1, i.e. for the discretized column matrices δE (4.92) and
∆E (4.93), but not for E (4.91), an alternative representation can be obtained. Therefore,
the sum Bℓ + 1Bnℓ is evaluated and we take advantage of the component representation of the
deformation gradient F as Fij = ui,j + δij (with the Kronnecker14 delta δij). Applying this
e.g. the first entry can be rewritten as Bℓ 11 +Bnl 11 = Ni,1 +u1,1Ni,1 = (1+u1,1)Ni,1 = F11Ni,1.
The alternative representation is e.g. in the 2D case15

Bi =




F11Ni,1 F21Ni,1

F12Ni,2 F22Ni,2

F12Ni,1 + F11Ni,2 F22Ni,1 + F21Ni,2



 . (4.90)

Introducing the discretization (4.83)–(4.84) into the representations of the strain vector
(4.81) we finally obtain the spatially discrete strain column matrices

E(X, t) = B∗
a(ua(t),X) ua(t) (4.91)

δE(X, t) = DuE(ua)[δua] = Ba(ua(t),X) δua (4.92)

∆E(X, t) = DuE(ua)[∆ua] = Ba(ua(t),X) ∆ua, (4.93)

notice the difference between B∗
a (4.85) and Ba (4.86), see Remark 6 on p. 64.

14δij = 1 if i = j, otherwise 0
15See, for example (Wriggers, 2001, Eq. (4.78)) and (Hartmann, 2003a, Eq. (5.81))
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The split of the modal displacement vector ua into unknown u and prescribed u modal
displacements as set forth in Eq. (4.70) can be reflected in partitioning the strain-displacement

matrices accordingly as B∗
a = [B∗ B

∗
] and Ba = [B B]. We obtain for (4.91)

E(X, t) = B∗(ua(t),X) u(t)+B
∗
(ua(t),X) u(t) with B∗ ∈ R

nst×nu and B
∗ ∈ R

nst×np , (4.94)

and the strain increment (4.93)

∆E(X, t) = Ba∆Ua = B(ua(t),X) ∆u + B(ua(t),X) ∆u (4.95)

with B∈ R
nst×nu and B∈ R

nst×np .
For the variation (4.92) the prescribed displacement modes vanish by definition (δu = 0)

and we have

δE(X, t) = B(ua(t),X) δu with B∈ R
nst×nu . (4.96)

Spatial discretization of the variational equation

Remark 9 Unless otherwise stated we omit the subscript a of ua for a leaner notation in
the following. If the prescribed displacements u are treated as unknowns with conditions to
be satisfied by the solution like in the Lagrange multiplier or penalty method, see Sec. 4.9.1.2,
one would replace u by ua and accordingly N by Na.

After this legwork we are in the position to derive the matrix/vector form of the nonlinear
variational equation (3.9),

πh(t,uh, δuh,qh) = πh
int(t,u

h, δuh,qh)− πh
ext(t,u

h, δuh) = 0 (4.97)

= δu(g̃int − g̃ext) = δu(fint − fext) = 0 , (4.98)

and its linearization L[πh] (3.52),

L[πh](u h,qh) = (πh
int − πh

ext) + (Du h πh
int[∆uh]− Du h πh

ext[∆uh]) (4.99)

= δu
(
(g̃int − g̃ext) + (Du g̃int[∆u]− Du g̃ext[∆u])

)
= 0 .

As the test functions δuh = Nδu and consequently also their coefficients δu are arbitrary, the
term in brackets must vanish and we can focus in the following on the expressions16

g̃(t,u,q) = g̃int − g̃ext = fint − fext = 0 (4.100)

L[g̃](u,q) = (g̃int − g̃ext) + (Du g̃int[∆u]− Du g̃ext[∆u]) = 0 . (4.101)

The integrals over the volume V and boundary A are approximated by the integrals over the
discretized domain Ω and its surface Γ = ∂Ω and the individual terms for the four contributions
are given below.

16A note on the notation: the tilde in g̃ denotes that the integrals are evaluated over the whole domain Ω
and no numerical integration is used. Consequently for a consistent notation the internal and external modal
force vectors fint, fext in Eq. (4.100) should also bear a tilde. After the split in elements is carried out one could
use ĝ and finally g, Eq. (4.170), if numerical integration is applied. However, not to overload the notation the
tilde is omitted for the force vectors.
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1. The internal virtual work, (3.53), is written in column matrix form as

πh
int(t,u

h, δuh,qh) =

∫

Ω

δEhT
(
X, t
)
T̃

h(
Ch,qh(Ch)

)
dΩ (4.102)

and its discretization exploiting the arbitrariness of δu using (4.73), (4.96), (4.62) allows
to identify the internal force vector

g̃int(t,u,q) = fint =

∫

Ω

BT
(
u(t),X

)
Φ̃
(

C
(
E(X, t)

)
,q
(
C(E(X, t))

))
dΩ. (4.103)

2. For the external virtual work, (3.54), we obtain the vector representation

πh
ext(t,u

h, δuh) =

∫

Ω

δuhTρR(X)k dΩ (work of body forces)

+

∫

ΓtR

δuhT tR(X, t) dΓtR (work of surface traction)

− p

∫

Ωξ

δuhT (x,1 × x,2) dξ1dξ2 . (work of follower load)

(4.104)

The discretization is obtained by substituting the Ansatz (4.73) and taking the arbi-
trariness of δu into account we arrive at

g̃ext(t,u) = fext =
(
fext k + fext tR + fext tf

)
. (4.105)

The load vector for conservative volume loading k, Eq. (4.104)1, is

fext k =

∫

Ω

NTρR(X)k dΩ, (4.106)

while for conservative traction tR loading, Eq. (4.104)2, defined on the reference config-
uration we get

fext tR =

∫

ΓtR

NT tR(X, t) dΓtR. (4.107)

For the discretization of the follower load term (4.104)3 where the integration is carried
out over the deformed configuration (cf. Sec. 3.3.2) we note that the placement x,
the discretized form of φ (3.40), is additively composed of the placement in reference
configuration, the coordinate vector X (4.30), and the displacement uh(t) (4.67), both
can be expressed in coordinates ξ of the standard element Ωq

st, hence

x(t) = X + uh(t) = φ(ξ) + N(ξ)u(t). (4.108)

Consequently the convective base vectors x,i are

x,i =
∂

∂ξi

(
φ(ξ) + N(ξ)u(t)

)
= φ,ξi

(ξ) + N,ξi
u(t) i = 1, . . . , (nsd − 1). (4.109)

The derivatives of the mapping φ,ξi
(ξ) can be easily obtained once a specific mapping

is chosen.
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Remark 10 This is the general case where all the different mapping concepts discussed
in Sec. 4.3 are included and typical for the separation of geometry and deformation in
the p-version. The basis of the function space for X given by the mapping φ is in general
different from the basis used to describe the deformation uh. In the case of iso-parametric
mapping more compact formulations can be obtained, see (Wriggers, 2001, Sec. 4.2.5)
and (Simo et al., 1991) loosing the insight what contributions stem from the mapping
and what is influenced by the Ansatz space.

The follower load vector stemming from (4.104)3 is in three dimensions

fext tf = −p
∫

Ωξ

(x,1 × x,2) dξ1dξ2 = −p
∫

Ωξ

n dξ1dξ2 . (4.110)

For the implementation of the cross product it is best to evaluate its entries according
to (4.109) and use the non-normalized outward normal vector n

n = x,1 × x,2 =

∣∣∣∣∣∣

e1 e2 e3

x1,1 x2,1 x3,1

x1,2 x2,2 x3,2

∣∣∣∣∣∣
=






x2,1x3,2 − x3,1x2,2

x3,1x1,2 − x1,1x3,2

x1,1x2,2 − x2,1x1,2




 . (4.111)

For the two-dimensional (3.48) and axisymmetric case (3.50) the cross product is simpler,
as one of the base vectors is the unit vector e3. However, now we have to take care on
which edge of the quadrilateral we are to calculate the outward and not the inward
pointing normal vector (check the ‘right hand rule’17 in Fig. 4.15). As the mapping was
stipulated to preserve the orientation of the coordinate system, detJ > 0 (4.37), these
considerations can be derived on the standard element and we evaluate

1

2

3

4

Figure 4.15: Standard and mapped element with tangential and normal vectors. Positive
tangent vectors always point in the positive direction of the local coordinates.

n =

{
x,r × e3, for edge 1: r = ξ, s = −1, for edge 2: r = η, s = +1
e3 × x,r, for edge 3: r = ξ, s = +1, for edge 4: r = η, s = −1

(4.112)

17cf. (Phan-Thien, 2002, p. 1)
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where r, s is a re-parametrization of the edges in the local ξ, η coordinate system.

Without loss of generality we focus on the second case (edge 3 or 4) and have to evaluate

n = e3 × x,r =






−x2,r

x1,r

0




 . (4.113)

As the third dimension perpendicular to the plane is neglected we can describe the
re-ordering and sign change with a matrix

A =






[
0 −1

+1 0

]
for edge 3 and 4

[
0 +1
−1 0

]
for edge 1 and 2

(4.114)

as

n = Ax,r = A
(
φ,r(ξ) + N,ru(t)

)
(4.115)

where we substituted (4.109) for x.

So we can write for the axisymmetric follower load vector (3.50)

fext tf = −2π p

1∫

−1

NT n x1(r, s) dr

= −2π p

1∫

−1

NT A
(
φ,r(r, s) + N,ru(t)

)
x1(r, s) dr (4.116)

where the differential element r(ξ)dr from (3.50) transforms to x1(r, s) dr as x1(r, s) is
the radial distance from the axis of rotation, i.e. the first component of the vector x,
that is computed as

x1(r, s) = X1 + uh
1 = [1 0]

(
φ(r, s) + Nu(t)

)
. (4.117)

In two dimensions the differential element is simpler and we arrive for (3.48) at

fext tf = −p
1∫

−1

NT n dr = −p
1∫

−1

NT A
(
φ,r(r, s) + N,ru(t)

)
dr. (4.118)

3. Now we focus on the directional derivatives. First the internal virtual work (3.55) is
transferred to matrix/vector form

Du h πint(t,uh, δuh,qh)[∆uh] =

∫

Ω

δΘhT ̂̃T∆Θh dΩ (geometric stiffness)

+

∫

Ω

δEhT C̃
h

L∆Eh dΩ (material stiffness)
(4.119)
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where the vector representation of the gradients Grad δ~u,Grad∆~u by δΘh, ∆Θ h is

given in (4.49), of the strains δEh,∆Eh in (4.57) and (4.58) respectively and C̃
h

L is the
consistent tangent operator matrix from (4.66).

Introducing the discretizations (4.74), (4.96) and (4.95), again using the arbitrariness of
δu, we arrive at

Du h g̃int(t,u,q)[∆u] =

∫

Ω

GT (X, t) ̂̃T G(X, t) dΩ ∆u

+

∫

Ω

BT (u(t),X) C̃L B(u(t),X) dΩ ∆u .
(4.120)

The global tangential stiffness matrices valid at the state (u,q) are introduced as the
stiffness from geometric nonlinearity

KG =

∫

Ω

GT (X, t) ̂̃T G(X, t) dΩ (4.121)

and the stiffness as a result of the nonlinear constitutive model

KC =

∫

Ω

BT (u(t),X) C̃L B(u(t),X) dΩ . (4.122)

The matrix
̂̃T∈ R

ngr×ngr holds the components of the stress tensor T̃ in a special arrange-
ment so that the tensorial expression Grad∆~u T̃ ·Grad δ from Eq. (3.55) is represented
by the matrix/vector notation in Eq. (4.121). We obtain the following matrices,
3D:

̂̃T =




T̃ 03×3 03×3

03×3 T̃ 03×3

03×3 03×3 T̃



 with T̃ =




T̃11 T̃12 T̃13

T̃12 T̃22 T̃23

T̃13 T̃23 T̃33



 (4.123)

AXS:

̂̃T =




T̃ 02×2 0

02×2 T̃ 0

0 0 T̃33



 with T̃ =

[
T̃11 T̃12

T̃12 T̃22

]
(4.124)

2D:

̂̃T =

[
T̃ 02×2

02×2 T̃

]
with T̃ =

[
T̃11 T̃12

T̃12 T̃22

]
. (4.125)

4. Finally, we address the matrix/vector representation of the directional derivative of
follower loading, Eq. (3.56).
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In the three-dimensional case, (3.47), the vector form is

Du hπext(t,uh, δuh)[∆uh] = −p
∫

Ωξ

δuh ·
(
∆uh

,1 × x,2 + x,1 ×∆uh
,2

)
dξ1dξ2 (4.126)

with x,i i = 1, 2 as in Eq. (4.109). For the evaluation of the cross products we start
with

∆uh
,1 × x,2 =

∣∣∣∣∣∣

e1 e2 e3

∆uh
1,1 ∆uh

2,1 ∆uh
3,1

x1,2 x2,2 x3,2

∣∣∣∣∣∣
=






∆uh
2,1x3,2 −∆uh

3,1x2,2

∆uh
3,1x1,2 −∆uh

1,1x3,2

∆uh
1,1x2,2 −∆uh

2,1x1,2




 .(4.127)

To be able to pull out ∆uh
,1 we rewrite the vector product with a skew symmetric matrix

∆uh
,1 × x,2 =




0 x3,2 −x2,2

−x3,2 0 x1,2

x2,2 −x1,2 0










∆uh
1,1

∆uh
2,1

∆uh
3,1




 = A,2∆uh
,1 . (4.128)

As a × b = −(b × a) we can readily obtain a similar expression for the second cross
product in (4.126)

x,1×∆u h
,2 = −(∆uh

,2×x,1) = −




0 x3,1 −x2,1

−x3,1 0 x1,1

x2,1 −x1,1 0



∆uh
,2 = −A,1∆uh

,2 . (4.129)

Spatial discretization using Eq. (4.69), ∆uh
,i = N,i∆u, yields

Dug̃ext(t,u, )[∆u] = −p
1∫

−1

1∫

−1

NT
(

A,2∆u,1 − A,1∆u,2

)
dξdη

= −p
1∫

−1

1∫

−1

NT
(

A,2N,1 − A,1N,2

)
dξdη ∆u (4.130)

where we can identify the displacement-depending follower tangent stiffness matrix for
three-dimensional problems

KF = −p
1∫

−1

1∫

−1

NT
(

A,2N,1 − A,1N,2

)
dξdη (4.131)

with the matrices A,1 (4.129) and A,2 (4.128) for the cross-product.

The directional derivative in the plain stress/strain case (3.49) is transferred to column
matrix notation as (w.l.o.g. for edge 3 and 4)

Du hπext(t,uh, δuh)[∆uh] = −p
∫

Ωξ

δuh ·n dξ = −p
∫

Ωξ

δuh ·
(
e3 ×∆uh

,1

)
dξ . (4.132)
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The cross product is evaluated as in Eq. (4.113) with the matrix A (4.114) as

e3 ×∆uh
,1 = A∆uh

,1 . (4.133)

Introducing the Ansatz Eq. (4.69) we obtain the spatial discretization

Dug̃ext(t,u)[∆u] = −p
1∫

−1

NT AN,1 dξ∆u, (4.134)

and the follower stiffness matrix for the plain strain/stress case is abbreviated as

KF = −p
1∫

−1

NT AN,1 dξ (4.135)

with the matrix A defined in (4.114).

In the axisymmetric case we give the column matrix form of the directional derivative
(3.51) (w.l.o.g. for edge 3 and 4) as

Du hπext(t,uh, δuh)[∆uh] = −2πp

1∫

−1

δuh ·
(
(e3 ×∆uh

,1)x1 + n∆uh
1

)
dξ (4.136)

= −2πp

1∫

−1

δuh ·
(
(e3 ×∆uh

,1)x1 + (e3 × x,1)∆u
h
1

)
dξ

and substituting (4.133) for the first cross product and (4.115) for the second we obtain

Du hπext(t,uh, δuh)[∆uh] = −2πp

1∫

−1

δuh ·
(
(A∆uh

,1)x1 + (Ax,1)∆u
h
1

)
dξ . (4.137)

Spatial discretization by the Ansatz, Eq. (4.69), and expressing ∆uh
1 = [1 0]∆uh =

[1 0]N∆u yields

Dug̃ext(t,u)[∆u] = −2πp

1∫

−1

(
NT AN,1x1 + NT Ax,1[1 0]N

)
dξ∆u, (4.138)

where x1 is the first component of the known placement x (4.108), x,1 from (4.109) and
matrix A∈ R

2×2 as given in (4.114). The follower stiffness for the axisymmetric case is
defined as

KF = −2πp

1∫

−1

(
NT AN,1x1 + NT n[1 0]N

)
dξ (4.139)

= −2πp

1∫

−1

(
NT AN,1x1 + NT Ax,1[1 0]N

)
dξ . (4.140)
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Checking the dimensions of the follower stiffness we see

ndof × ndof = (ndof × 2)(2× 2)(2× ndof)1 + (4.141)

+(ndof × 2)(2× 2)(2× 1)(1× 2)(2× ndof)

that the matrix is as expected ndof × ndof.

Summarizing, the global tangential stiffness matrix of the whole domain is composed
of the stiffness resulting from physical nonlinearity (‘material stiffness’) KC (4.122), the
stiffness induced by geometric nonlinearity KG (4.121) and the follower load stiffness KF

given in equations (4.131), (4.135) and (4.139) for the different cases

K = KC + KG −KF . (4.142)

It is apparent from the linearized form, Eq. (4.101), that the follower stiffness must be
subtracted.

The column matrix representation of the linearized form L[g̃], Eq. (4.101), corresponding
to the state (u,q, t) can now be written as

L[g̃](u,q) = (KC + KG −KF )∆u + fint − fext = 0 (4.143)

with the external force vector fext as introduced in Eq. (4.105) and the internal forces fint

(4.103).

4.6.3 Element level quantities and their assembly

So far all quantities are functions defined over the whole discretized domain Ω. The splitting of
the domain into non-overlapping and continuous elements Ωe, cf. Sec. 4.1, and the construction
of the shape functions as introduced in Sec. 4.2 ensures C0 continuity of the displacements.
Furthermore, this constitutes that the global functions have local support in the sense that
displacements and strains obtained by the global functions (•)h living in the FE-space over
the element Ωe coincide with the displacements and strains evaluated locally on this element
(•)eh,

ue h
(
(φe)−1(X), t

)
≡ uh(X, t) = Na(X) ua(t) = Ne

(
(φe)−1(X)

)
ue(t) for X = X ∈ Ωe, (4.144)

where ξ = (φe)−1(X)∈ R
nsd is the inverse mapping introduced in Eq. (4.31) of the local

position vector X∈ R
nsd to the coordinates in the standard element ξ ∈ Ωq

st. Ne(ξ)∈ R
nsd×nem

represents the matrix of shape functions defined on the element Ωe and ue(t)∈ R
nem is the

vector of modal degrees of freedom18 of element Ωe. The number of local degrees of freedom
of an element is denoted as nem (‘number of element modes’) and solely these degrees of
freedom — in the higher order sense: the coefficients of the element modes — are necessary
to describe the displacement field in the region of the element Ωe. Furthermore, we have
the defining equivalences for the elemental strain-displacement matrices B∗e(ue(t), (φe)−1(X)),

18As the polynomial degree can vary from element to element and even in the local directions the number of
element modes, nem, may be different on each element. For four-noded elements as used here the lower bound
is nem ≥ 4nsd.



4.6. Discretized linearized variational form 77

Be(ue(t), (φe)−1(X)), the strain column matrices Ee((φe)−1(X), t), δEe((φe)−1(X)), and the
virtual displacement δue hfor X = X ∈ Ωe

(4.51),(4.85) Ee((φe)−1(X), t) ≡ E h(X, t) = B∗
a(ua(t),X) ua(t) (4.145)

≡ B∗e(ue(t), (φe)−1(X)) ue(t)

(4.57),(4.96) δEe((φe)−1(X), t) ≡ δE h(X, t) = B(ua(t),X) δua (4.146)

= Be(ue(t), (φe)−1(X)) δue .

(4.68) δue h((φe)−1(X)) ≡ δuh(X) = Na(X)δ ua = Ne((φe)−1(X))δue . (4.147)

The correlation between element modal displacements ue(t) and all displacements ua(t) is
given by

ue = Z e
aua, (4.148)

where the incidence matrix Z e
a ∈ R

nem×ndof is introduced. This matrix is partitioned according
to the split of the vectors ua = {u u}T and δua, Eq. (4.70), as

Z e
a =

[
Z e Z

e
]

(4.149)

with Z e ∈ R
nem×nu and Z

e ∈ R
nem×np resulting in

ue = Z eu + Z
e
u, δue = Z eδu, ∆ue = Z e∆u (4.150)

Ee = B∗e
[
Z e Z

e
]{ u

u

}
= B∗e

{
Z eu + Z

e
u
}

(4.151)

δEe = BeZ eδu (4.152)

∆Ee = BeZ e∆u. (4.153)

Remark 11 The incidence matrices holding only 0 and 1 are introduced here to formalize and
keep track of the assembly operations implemented in program codes and show the transition
from elemental to global (assembled) quantities. The benefits of this notation together with the
split in unknown and prescribed degrees of freedom was shown to provide insight for questions of
displacement control (Hartmann, 2003b) and the computation of reaction forces (Hartmann,
2003a). In (Belytschko et al., 2000, p. 39) the incidence matrices are called ‘connectivity
matrices’, (Hughes, 2000, p.92) also describes the process in detail. Of course the large sparse
matrix Z e

a does not have to be stored in memory. In the p-version code AdhoC (Düster et al.,
2004) for example the element’s data structure holds the inverse relation, a ‘location matrix’
∈ R

nem×1 storing the corresponding global degrees of freedom for the local modes, see (Düster,
2005, Sec. 5.2.1).

We now apply the decomposition into elements Ωe and obtain exemplarily for the dis-
cretized internal virtual work column matrix g̃int, Eq. (4.103), the so called internal force
vector fint,

g̃(t,u,q) =

ne∑

e=1

Z eT






∫

Ωe

BeT
(
ue(t),X

)
Φ̃
(
Ce
(
Ee(X, t)

)
,qh
(
Ce(Ee(X, t))

))
dΩe





︸ ︷︷ ︸

feint

−fext(t,u) = 0 . (4.154)
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The abbreviation feint for the elemental contribution in curly brackets is introduced and the
global internal force vector is given as

fint =

ne∑

e=1

Z eT feint . (4.155)

For the external force vector (4.105) we obtain by the same reasoning the element level
counterparts

fext =
ne∑

e=1

Z eT feext =
ne∑

e=1

Z eT
[
feext k + feext tR

+ feext tf

]
. (4.156)

For the assembly of the stiffness matrices stemming from a Gâteaux derivative we take
Eq. (4.150)3 into account and arrive at a representation where the local element matrix is
multiplied with the incidence matrix from the right and its transpose from the left

K =

ne∑

e=1

Z eTkeZ e =

ne∑

e=1

Z eT
[
ke

C + ke
G − ke

F

]
Z e (4.157)

(a forward reference: the matrix ke
G is given on Gauss-point level in (4.202), ke

C in (4.207)).
The global nonlinear equation system (4.100)

g̃ = g̃int − g̃ext = 0 (4.158)

and its linearization (4.143) can now be expressed as the assembly of elemental contributions

L[g̃](u,q) =

ne∑

e=1

Z eT
[
ke

C + ke
G − ke

F

]
Z e∆u +

ne∑

e=1

Z eT
[
feint − feext

]
= 0. (4.159)

4.6.4 Numerical integration

The volume integrals hidden in (4.154), (4.156) and (4.157) to be evaluated on element Ωe can
be written in the generic form

I =

∫

Ωe

F (x, y, z) dΩe . (4.160)

We introduce a coordinate transformation to the standard element, Eq. (4.30),

I =

1∫

−1

1∫

−1

1∫

−1

F
(
φe(ξ, η, ζ)

)
detJ dξdηdζ (4.161)

where the determinant of the Jacobian, Eq. (4.36), accounts for the mapping from the standard
element to the reference configuration.

For the numerical integration different quadrature schemes can be used, see (Schwarz,
2004, Ch. 7), (Szabó and Babuška, 1991, Sec. 3.3), (Soĺın et al., 2003, Ch. 4). One important
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class interpolates the integrand F by a polynomial that is sampled at certain points ξjkl to
calculate an approximation of the integral by a weighted sum

I ≈
∑

j

∑

k

∑

l

wjwkwl F
(
φe(ξjkl)

)
detJ dξdηdζ . (4.162)

Exploiting the tensor-product structure of the Ansatz functions in two and three dimensions
the volume integral is reduced to one-dimensional integration for each spatial direction

+1∫

−1

f(x)dx ≈
n∑

i=n

wif(xi) with xi ∈ [−1; 1] . (4.163)

If the integrand is known at equally-spaced points, integration formulae based on Newton-
Cotes rules can be used. Higher accuracy can be obtained with non-equidistant points. In the
finite element context Gauss-Legendre19quadrature is commonly applied.20 For the Gauss-
Legendre scheme there exists exactly one set of quadrature points and weights to be used
in Eq. (4.163) with n sampling points xi in the interior of the interval [−1; 1] that exactly
integrate a polynomial of order

p = 2n− 1 , (4.164)

i.e. to exactly integrate a polynomial with order p we need

n ≥ p+ 1

2
(4.165)

sampling points.
The Gauss points or sampling points xi are the roots of the n-th Legendre polynomial,

Eq. (4.16), and the corresponding weights are given as

wi =

1∫

−1

n∏

j=1
j 6=i

(
x− xj

xi − xj

)2

dx > 0, i = 1, 2, . . . , n. (4.166)

19While for the Gauss-Legendre quadrature the n abscissae and n locations of n sampling points in the
interior of the unit interval give optimal accuracy and interpolate with 2n parameters a polynomial with
2n coefficients, i.e. a polynomial of order pGLeg = 2n − 1 exactly, it may sometimes be useful to include
the end points of the interval as sampling points. If just one end point is used the Gauss-Radau scheme is
obtained, if both endpoints are sampling points the so called Gauss-Lobatto scheme is recovered. Prescribing
the location of sampling points is at the expense of accuracy. For n sampling points the Gauss-Radau scheme
exactly integrates a polynomial of order pGRad = 2n− 2, while the Gauss-Lobatto quadrature is only exact for
polynomials up to order pGLob = 2n− 3 (Überhuber, 2001, p. 108).

20While Gauss quadrature expands the integrand in terms of polynomials, the Clenshaw-Curtis quadrature
is based on the expansion of the integrand in terms of Chebyshev polynomials, see (Trefethen, 2007). This
construction leads to nested quadrature points allowing adaptive integration. The Clenshaw-Curtis schemes
integrate with n points only polynomials up to order n− 1. However, if the integrand is no polynomial there
is a wide class of functions where the approximation in terms of Chebyshev polynomials converges rapidly
and Clenshaw-Curtis quadrature is advantageous. One variant of the Gauss quadrature with nested sampling
points is the Gauss-Kronrod scheme.
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A numerically stable method to compute these quantities in given in (Schwarz, 2004, Ch. 7.4).
The location of the Gauss points in the interval [−1; 1] is symmetric to the origin and from
Eq. (4.166) it is obvious that a symmetric pair of integration points share the same weight.21

The extension to higher dimensions is straightforward by the tensor product of the one-
dimensional Gauss points and weights as indicated in Eq. (4.162). The tensor product con-
struction allows us to choose the integration orders nξ, nη, nζ in each local direction ξ, 2, ζ
differently yielding corresponding weights wj, wk, wl for the Gauss point ξT

jkl = {ξj, ηk, ζl}.
An alternative integration approach well suited for high-order shape functions is the vector

integration introduced by Hinnant (Hinnant, 1994). This method was implemented in the p-
version code AdhoC and augmented by an adaptive component, cf. (Nübel et al., 2000, 2001),
(Nübel et al., 2007, Sec. 4.6.2). Melenk et al. introduced a different approach in (Melenk et al.,
2001) for the fast quadrature of hp elements.

Accuracy A general demand, cf. (Szabó and Babuška, 1991, p. 116), is to select the
quadrature rule such that the integration error is not greater than the discretization error,
compare Sec. 4.4. When computing quasi static problems, we must scrutinize the integration
of the element stiffness matrix. We focus on the expression for the elemental stiffness matrix
given on Gauss-point level in its geometric, Eq. (4.202), and material component, Eq. (4.207)
that will be derived later. For the current investigation of integration error we can distinguish
in symbolic notation four components at a given Gauss point

ke =
∑

w × dN × C × dN × J , (4.167)

the scalar weights w and a scalar entry C either representing an entry in the consistent tangent

operator C̃
e

L(ξjkl) or stress value in
̂̃
T(ξjkl). Here we assume that the entries of the tangent

operator describing the material model evaluate the scalars for the Gauss point in question.
As scalars do not change the polynomial order we now discuss the integration of dN×dN ×J,
the product of the Jacobian determinant with two derivatives of shape functions (representing
either an entry in the element strain-displacement matrix B (4.86) or the gradient-displacement
matrix G (4.76). As those derivatives are with respect to global, world space coordinates, the
inverse of the Jacobian matrix is present in each component, compare Eq. (4.78).

Only under the far-reaching restriction of affine mapping we can develop rules of thumb for
exact integration. Affine mapping from the standard element, ξ, η-coordinates, to the element
in global X1, X2-coordinates (reference configuration) has the property, that

• parallel lines remain parallel and

• the partition ratio of three points is invariant under affine mapping,

compare (Li et al., 1993, p. 6) and (Weisstein, 2004). It is interesting to note that only a
subset of the maps that are possible applying bilinear mapping, see Eq. (4.33), are affine
maps. Affine maps in the defined sense have the property, that the Jacobian matrix and its
determinant is constant, i.e. is no function of the coordinates ξ, η. Fig. 4.16 shows some
shapes the standard quadrilateral Ωq

st can transform to under bilinear mapping. Only the grey

21Abscissas and weight factors up to order n = 10 for Gauss-Legendre integration are compiled in
(Szabó and Babuška, 1991, p. 356) and up to n = 50 in the source code of AdhoC in the file Fem/set_Gauss.c.

Fem/set_Gauss.c
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φ

φ

φ φ

φ

φ

Figure 4.16: Bilinear mapping is a superset of affine maps

shapes are a product of an affine map with constant Jacobian, the white ones do not preserve
the parallelism of lines. There the Jacobian is a linear function of the local coordinates ξ, η as
can be easily verified if the Jacobian for Eq. (4.33) is calculated.

If an affine map transforms the standard element to the element in the reference configu-
ration, the influence of the inverse of the Jacobian, cf. Eq. (4.78), results only in scalar factors
that can be interpreted as stretching. Then, the derivatives of the mapped shape functions
with respect to global coordinates are still polynomials of the given order. As shape functions
of order p are used, the matrices represented by dN in Eq. (4.167) contain derivatives of order
p−1 in both coordinates directions. The product dN×dN is the individual product resulting
from the matrix pairing BT meeting B or GT to G in Eq. (4.202) and Eq. (4.207) respectively.
There, derivatives in different coordinate directions may meet. In the ‘worst’ case an entry
that is derived in X1-direction is multiplied with an entry derived in X2-direction, i.e. the
product is of order 2p, in the ‘best’ case of order 2(p− 1) = 2p− 2. According to Eq. (4.165)
the Gauss quadrature needs to be of order

n ≥ (2p− 2) + 1

2
= p− 1

2
(4.168)

for exact integration in the best case and

n ≥ (2p) + 1

2
= p+

1

2
(4.169)

in the worst case.

Both conditions are fulfilled if the integration order is chosen to be n = p+1 and integration
is exact in this case of affine mapping and constant material data, cf. (Demkowicz, 2006,
Sec. 10.5.2). In the higher dimensional case with affine mapping it is also enough to use p+ 1
integration points for each spatial direction as the shape functions are the tensor product of
one-dimensional shape functions of order p, even in the case of the tensor product space as
can be seen from Pascal’s triangle, Fig. 4.6.
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If, however, the mapping is not affine, the transformation from the local ξ, η coordinate sys-
tem to the global X1, X2 system may introduce via the inverse of the Jacobian, see Eq. (4.78),
rational fractions or general non-polynomial contributions like trigonometric functions. Thus,
these integrands can not be integrated exactly by Gauss quadrature any more. Then, there
exists no general rule which integration order to choose for sufficient accuracy as the smooth-
ness of the problem has to be taken into account. From numerical experiments it is sug-
gested to use an integration order of n = p + 2, or better n = p + 3, in each spatial di-
rection (Bröker, 2001, Ch. 3.4.3) (Graeff-Weinberg, 1995). The commercial p-version code
StressCheck (Engineering Software Research & Development, 2006) uses an integration order
of p + 3. A mathematical investigation of this issue was carried out by Banerjee and Suri,
(Banerjee and Suri, 1992a,b) and numerical one- and two-dimensional examples are discussed
by Kim and Suri (Kim, 1998; Kim and Suri, 1993) indicating that in pathological cases the
margin of safety provided by an integration order of p+3 is not sufficient to reach the expected
order of convergence in L2 and H1 norm.

After this excursion we perform the numerical integration exemplarily for the internal
virtual work, Eq. (4.103),

g(t,u(t),q(t)) ≈
ne∑

e=1

Z eT

{
nξ∑

j=1

nη∑

k=1

nζ∑

l=1

wjwkwl BeT
(
ue(t), ξjkl

)
(4.170)

Φ̃
(
Ce
(
Ee(ξjkl, t)

)
, qe
(
Ce(Ee(ξjkl, t))

))
detJe(ξjkl)

}
− fext(t,u) = 0 .

The term in curly brackets is the numerical approximation of the elemental internal force
vector feint. The number of integration points in element e is ne

i = nξ × nη × nζ and the
number of integration points of the whole structure amounts to ni =

∑ne

e=1 n
e
i , as the number

of integration points may vary from element to element. Analogous derivations can be carried
out for all contributions in the linearized weak form Eq. (4.101) by evaluating the quantities
at the Gauss points ξjkl and summing with the corresponding weights.

4.6.5 DAE system and time discretization

As a consequence of the numerical integration the internal variables qe(jkl)(t)∈ R
nq, qe(jkl)(t) =

qe
(
Ce(Ee(ξjkl, t))

)
need to be available at the quadrature points ξjkl. This necessitates the

evaluation of the evolution equations (4.64) of the constitutive model at the ni integration
points of the structure

Aq̇e(jkl)(t)− r(Ee(ξjkl, t), q
e(jkl)(t)) = 0, qe(jkl)(t0) = q

e(jkl)
0 . (4.171)

The dependency of the internal variables on the unknown displacements u(t) and the time-
dependent prescribed displacements u(t) can be clearly seen from equation (4.94).

As we introduced coincidence matrices for the transition from elemental to global displace-
ments in Eq. (4.148) we do a similar process for the internal variables

qe(jkl)(t) = Z e(jkl)
q q(t), qe(jkl) ∈ R

nq (4.172)

where the incidence matrix Z e(jkl)
q ∈ R

nq×nQ is used to obtain the nq internal variables qe(jkl) at
Gauss point ξjkl in element e. We note that the internal variables and their evolution equations
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are independent of each other and depend only on quantities at the specific integration point.
Mathematically this is described by the property

Z e(jkl)
q Z ê(ĵk̂l̂)T

q =

{
Inq if e = ê and j = ĵ and k = k̂ and l = l̂
0 else

(4.173)

with the identity matrix Inq ∈ R
nq×nq. Contrary to the displacements where multiple element

degrees of freedom (nodal and edge modes) may correspond to the same entry in the global
displacement vector, for the internal variables we have a one-to-one relation as a consequence
of property (4.173) and we can assemble all evolution equations of all internal variables into
a system of ordinary differential equations, ODE, (if A = I, see (2.48)) or a differential
algebraic system, DAE, for constitutive models with yield condition. With a number of nq

internal variables (for example 7) of the chosen constitutive model at each quadrature point all
internal variables nQ = ni × nq at time t can be stored in a global vector of internal variables
q(t)∈ R

nQ . Then Eq. (4.171) transforms to an nQ-dimensional initial value problem for the
complete structure

Aq̇(t)− r
(
t,u(t),q(t)

)
= 0, q(t0) = q0 . (4.174)

To obtain the unknown displacements u(t)∈ R
nu and all internal variables q(t)∈ R

nQ we
have to solve the discretized variational principle (4.170) and the evolution equations (4.174).
Together they form a system of differential algebraic equations

F(t, y(t), ẏ(t)) ≡
{

g(t,u(t),q(t))
Aq̇(t)− r

(
t,u(t),q(t)

)
}

= 0, F∈ R
nu+nQ (4.175)

where the functions y(t)∈ R
nu+nQ

y(t) ≡
{

u(t)
q(t)

}
with the initial conditions y(t0) ≡

{
u(t0)
q(t0)

}
=

{
u0

q0

}
≡ y0 (4.176)

are introduced.
Usually this formal derivation leading to the DAE-system (4.175), compare the work of

(Ellsiepen and Hartmann, 2001) based on (Fritzen, 1997), is not carried out in the literature of
finite elements. However, it clarifies the mathematical structure of the problem and gives the
possibility to identify methods developed in numerical mathematics that have not necessarily
an intuitive equivalent. Higher order methods for time integration are naturally suited for
time adaptivity and error estimation as more accurate higher order results can be compared
to lower order values. The intuitive approach to time integration is to increase the external
loads or prescribed displacements step by step and to solve the evolution of the internal vari-
ables at the Gauss points, Eq. (4.171), by more or less simple time integration methods like
backward Euler. For the solution of semi-explicit nonlinear block-structured DAE-systems
like Eq. (4.175) resulting from a space discretization (for example by finite elements) there
exist more sophisticated possibilities. The time discretization can be done with one-step or
multi-step methods. One-step methods only rely on the information of one previous time
step to determine the current value whereas multi-step methods take the information of more
than the last time step into account. An example of an one-step method is the stiffly accu-
rate diagonally implicit Runge-Kutta (DIRK) method that contains the traditional backward
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Euler method as special case. DIRK methods in the context of finite elements are for ex-
ample discussed in (Hartmann, 2003a, Sec. 2.3),(Ellsiepen and Hartmann, 2001),(Hartmann,
2002), (Hartmann and Bier, 2008). Another approach is to use Rosenbrock-type methods as
investigated in (Hartmann and Wensch, 2007).

For the remainder of the text and the implementation we apply the backward Euler scheme
for time discretization, i.e. a DIRK method with only one stage, s = 1. Here the boundary
conditions u(t), fext(t) are prescribed for the time t = tn+1 and after time-discretizing, the
nonlinear equation system Eq. (4.175) for the time step from tn to tn+1 takes the form

Rn+1

(
un+1,qn+1

)
= Rn+1

(
yn+1

)
=

{
Gn+1(un+1,qn+1)
Ln+1(un+1,qn+1)

}
= 0, (4.177)

R∈ R
nu+nQ, with the unknowns

yn+1 =

{
un+1

qn+1

}
(4.178)

and the abbreviations for the equations (4.170) and (4.171) that are discretized and evaluated
at time tn+1

Gn+1(un+1,qn+1) ≡
ne∑

e=1

Z eT

{ nξ∑

j=1

nη∑

k=1

nζ∑

l=1

wjwkwlB
eT
(
ue

n+1, ξjkl

)
(4.179)

Φ̃
(
E

e(jkl)
n+1 , q

e(jkl)
n+1

)
detJe(ξjkl)

}

− fext(tn+1,un+1) = 0

Ln+1(un+1,qn+1) ≡
ne∑

e=1

{ nξ∑

j=1

nη∑

k=1

nζ∑

l=1

Z e(jkl)T
q L

e(jkl)
n+1

(
E

e(jkl)
n+1 , q

e(jkl)
n+1

)}
= 0 . (4.180)

The local equation system at Gauss point ξjkl is given as

L
e(jkl)
n+1

(
E

e(jkl)
n+1 (ue

n+1), q
e(jkl)

)
≡ A

{
q

e(jkl)
n+1 − q

e(jkl)
n

∆tn

}

− r
(
E

e(jkl)
n+1 (ue

n+1), q
e(jkl)

)
= 0 (4.181)

and the strain at the quadrature point depends via the B∗e matrix (4.151) also on the unknown
and prescribed displacements

E
e(jkl)
n+1 = B∗e(jkl)Ue

n+1 where Ue
n+1 = Z eun+1 + Z

e
u(tn+1) (4.182)

with Ue
n+1 ∈ R

nem ,Un+1 ∈ R
nmodes.

4.7 Solution of the global system

Common methods for the solution of nonlinear equation systems in the context of the finite
element method are, (Wriggers, 2001, Ch. 5),

- fixed point iteration,
- Newton-Raphson procedures,
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- quasi-Newton procedures,
- dynamic relaxation,
- path following methods.

One of the most popular algorithms for the solution of coupled nonlinear systems of the
type Eq. (4.177) is the Newton-Raphson method in its different flavors with the property of
quadratic convergence in the vicinity of the solution. In the finite element literature following
(Simo and Taylor, 1985) it is generally claimed that the equation system (4.177) resulting
from the space and time discretization of a constitutive model with internal variables is solved
by the Newton-Raphson method. Connected to this is a local iteration (‘stress algorithm’)
and the so called consistent tangent operator necessary to attain quadratic convergence.

Science as a system of knowledge relies on clear notions, (Keller, 1989), so it is advisable
to follow (Hartmann, 2005) and distinguish for problems with internal variables two solution
procedures of Newton type:

• the classical Newton-Raphson Method (NRM) that yields a consistent tangent operator
but no local iteration,

• and the Multi-Level Newton algorithm (MLNA) that is precisely what is usually applied
in current finite element codes with a local stress algorithm. An example is the radial
return method in elastoplasticity, that iteratively solves the evolution equations for the
updated internal variables needed for the stress computation and a consistent tangent
operator.

The consistent tangent operator is similar but different in detail for both variants. For prob-
lems of nonlinear elasticity, even for complex hyperelastic constitutive models, where the stress
state is solely determined by the strain state (no internal variables) there is no local iteration
and indeed the classical NRM is used. However, finite element codes used for the solution of
constitutive equations of evolutionary type exhibit a two-level structure and implicitly apply
the MLNA. In the FE community the pioneering work of (Simo and Taylor, 1985) numeri-
cally showed that quadratic convergence can be achieved by a concept they called ‘consistent
linearization’. It is interesting to note that the quadratic convergence of the multi-level New-
ton algorithm was already proved analytically by (Rabbat et al., 1979) in the context of the
computation of nonlinear electric networks some years before.

The classical Newton method that was introduced in Sec. 3.2 based on the linearization
(3.22) of a function is adapted here to the system (4.177), R(y) = 0, y∈ R

n, (we omit the
index n + 1),

L [R(y)]y=y0
= R(y0) + Dy(R(y0))[∆y] = R(y0) +

dR
dy

∣∣∣∣
y=y0

∆y (4.183)

with the increment ∆y = y − y0. From an initial state y0 we start an iterative process with
iteration index (•)(m) to obtain the increment ∆y = y(m+1) − y(m) that, we hope, brings us
nearer to the solution

R
(
y(m)

)
+

dR
dy

∣∣∣∣
y=y(m)

∆y = 0. (4.184)
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Moving the residuum R
(
y(m)

)
to the right-hand side we have to solve a system of linear

equations in each iteration to obtain ∆y
[
dR
dy

]∣∣∣∣
y=y(m)

∆y = −R
(
y(m)

)
. (4.185)

The procedure can be stopped if the norm of the increment ‖∆y‖ or the norm of the residuum
‖R
(
y(m)

)
‖ is below a certain threshold, then we have obtained an approximate solution to

R(y) ≈ 0. A discussion of convergence criteria in the finite element context can be found in
(Zienkiewicz and Taylor, 2000a, Sec. 2.2.7) and (Belytschko et al., 2000, Sec. 6.3.9).

In the following we discuss two distinct methods for solving the DAE system. For a compact
notation of the block structured system Eq. (4.177) we drop the index n + 1 and introduce
the abbreviations U ≡ un+1,Q ≡ qn+1,G ≡ Gn+1,L ≡ Ln+1, and R ≡ Rn+1

R(y) =

{
G(U,Q)
L(U,Q)

}
= 0, y =

{
U
Q

}
. (4.186)

4.7.1 Newton-Raphson method (NRM)

Applying the classical Newton-Raphson procedure (4.185) to the block structured system
(4.186) we obtain for iteration m





∂G
∂U

∂G
∂Q

∂L
∂U

∂L
∂Q





∣∣∣∣∣∣∣
y

{
∆U
∆Q

}
= −

{
L(y)
G(y)

}
,with y ≡

{
U(m)

Q(m)

}
(4.187)

and the increments ∆U = U(m+1) − U(m), ∆Q = Q(m+1) −Q(m).
The iterative solution of the system (4.187) corresponds to the application of the classical

Newton-Raphson method (NRM). This may be solved in one step for the vector of all unknowns
{∆U,∆Q}T , see e.g. (Christensen, 2000), or the block-structure is exploited by solving the
second equation in (4.187) for ∆Q and inserting in the first equation, so ∆U is the remaining
unknown and the associated coefficient matrix is a tangential stiffness matrix. The numerical
implications of this approach yielding a consistent tangent operator but no local iteration are
described in detail in (Hartmann, 2005).

4.7.2 Multi-level Newton algorithm (MLNA)

We now focus on the multi-level Newton algorithm that is used in current finite element
implementations for the solution of the coupled system (4.186). To this end the implicit
function theorem22, (Krantz and Parks, 2003), is applied to Eq. (4.186)2. This theorem states
that in the neighborhood of a solution y∗ = {U∗,Q∗} of L(y) = 0 there exists an implicitly
defined differentiable function Q(U) in U satisfying (4.186)2. This function is inserted into
Eq. (4.186)1 and we obtain the system

G
(
U,Q(U)

)
= 0 . (4.188)

22For a demonstrative, yet detailed presentation see (Implicit Function Theorem, 2007).
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For the solution of this nonlinear equation we linearize in view of the Newton-Raphson method,
viz Eq. (4.183), and shift the known terms to the right-hand side to obtain

DUG
(
U,Q(U)

)
[∆U] = −G(y) , (4.189)

where the directional derivative defines the tangential stiffness matrix K|y of the MLNA

DUG
(
U,Q(U)

)
[∆U] =

[
∂G
∂U

+
∂G
∂Q

dQ
dU

]∣∣∣∣
y

∆U = K|y ∆U . (4.190)

This is explicated at Gauss point level in (4.197) – (4.208) yielding also the consistent tangent
operator or material matrix (4.208).

Consequently the equation system corresponding to Eq. (4.185) is

[
∂G
∂U

+
∂G
∂Q

dQ
dU

]∣∣∣∣
y

∆U = −G(y) (4.191)

where ∆U = U(m+1)−U(m) is the vector of modal displacement increments and y ≡ {U(m),Q(m)}
the state corresponding to iteration m.

The implicit function theorem states the existence of the function Q(U) and rules for the
derivative, but no explicit formulation. To evaluate G(y) in (4.191), given in (4.179), we need

to calculate the internal variables Q(m) = Q(U(m)) iteratively for given displacements U(m)

from the evolution equations. This is the so-called local integration step

L(U(m),Q(m)) = 0 ; Q(m) . (4.192)

Besides Q(m) the derivative dQ/dU of the implicit function Q(U) is needed in the tangential
stiffness matrix (4.190). The implicit function Q(U) is defined in a way that the equation
(4.186)2 is identically satisfied, hence,

L
(
U,Q(U)

)
= 0. (4.193)

Deriving this identity with respect to U, see e.g. (Meyberg and Vachenauer, 2003, p. 399), the
chain rule gives

∂L
∂U

∣∣∣∣
y
+
∂L
∂Q

∣∣∣∣
y

dQ
dU

∣∣∣∣
y

= 0 (4.194)

and we can rearrange to obtain an equation system with several right-hand sides to evaluate
the derivative dQ/dU

[
∂L
∂Q

]∣∣∣∣
y

dQ
dU

∣∣∣∣
y

= − ∂L
∂U

∣∣∣∣
y

. (4.195)

The MLNA procedure is summarized in Tab. 4.2 taken from (Hartmann, 2005) and adapted
(simplified) to the backward Euler time integration procedure, i.e. an implicit Runge-Kutta
method with one stage.
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Table 4.2: Multilevel-Newton algorithm at time tn+1, taken from (Hartmann, 2005) and sim-
plified for backward-Euler time integration

Given: U(0)
n+1 = un, Q(0)

n+1 = qn, ∆tn

Repeat m = 0, . . .

local level (given: U (m)
n+1, argument vector y := (U (m)

n+1,Q
(m)
n+1))

local integration step

L(U (m)
n+1,Q

(m)
n+1) = 0

; Q (m)
n+1

consistent linearization
[
∂L
∂Q

∣∣∣∣
y

]
dQ
dU

∣∣∣∣
y

= − ∂L
∂U

∣∣∣∣
y

;
dQ
dU

∣∣∣∣
y

global level

solve linear system of equations[
∂G
∂U

∣∣∣∣
y

+
∂G
∂Q

∣∣∣∣
y

dQ
dU

∣∣∣∣
y

]
∆Un+1 = −G(y)

; ∆Un+1

Update of global variables

U (m+1)
n+1 ← U (m)

n+1 + ∆Un+1
; U (m+1)

n+1

Until the convergence criterion is fulfilled

4.7.3 Evaluation on element level

The global representation of the MLNA for the solution of the coupled nonlinear DAE-system,
as given in Tab. 4.2, has to be completed with the actual representation on element and Gauss
point level.

First we focus on the calculation of the internal variables, Eq. (4.193). As the evolution
equations are decoupled, cf. (4.173), the local nonlinear equation (4.181) at Gauss point ξjkl,

Le(jkl)(Ue,Qe(jkl)) = 0 (4.196)

for given Ue is iteratively solved to obtain the internal variables Qe(jkl). This local iteration is
also called stress algorithm as the stresses can be evaluated from Eq. (4.62) once the internal
variables are known. As this iterative procedure has to be carried out for all ni integration
points of the structure this can be quite expensive. Therefore, it is very beneficial if the
equation system can be simplified or even solved analytically. These problem adapted op-
timized stress algorithms (see for example in the case of elastoplasticity (Simo and Taylor,
1985), (Nübel, 2005), (Düster, 2001) and visco-plasticity (Hartmann et al., 1997)) improve
efficiency but disguise the general structure of the global multi-level procedure.

Now the tangential stiffness matrix is traced to element and Gauss point level. Restricting
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ourself to the contribution of the internal virtual work (the follower stiffness is treated ac-
cordingly) we can build on the derivations leading to the representation of the internal virtual
work on Gauss point level, Eq. (4.179). The directional derivative of this part

G
e(jkl)
int = Be(jkl)T (Ue) Φ̃

(jkl)
(
Ee(jkl)(Ue),Qe(jkl)(Ee(jkl)(Ue))

)
(4.197)

in the direction of the displacements needs to utilize the product rule as the Be matrix in
finite strain analysis also depends on the deformation and the chain rule for the dependency
of the local displacements Ue on the global U, (4.150). For the global picture see (4.190). So
we arrive at

DUG
e(jkl)
int [∆U] = (4.198)

= DUeBe(jkl)T (Ue)[DUUe[∆U]] Φ̃
(jkl)

(4.199)

+Be(jkl)T
(
DUΦ̃

(jkl)(
Ee(jkl)(Ue),Qe(jkl)(Ee(jkl)(Ue))

)
[∆U]

)
. (4.200)

For the evaluation of the first term, (4.199), we introduce the definition of Be, (4.86) together
with (4.83)-(4.84)

DU

(
HG + M

(
G(Ue)

)
G
)T

[DUUe[∆U]] Φ̃
(jkl)

=
(
M
(
G(∆U)

)
G
)T

Z e∆U Φ̃
(jkl)

(4.201)

where the matrix Z e results from DUUe[∆U], cf. (4.150). The part M
(
G(∆U)

)
G is the

discretization of DδE, (3.29). Written in matrix-vector form using the same arguments as for
(4.121) we obtain the familiar representation

ke
G =

nξ∑

j=1

nη∑

k=1

nζ∑

l=1

wjwkwl G
T (ξjkl)

̂̃
T(ξjkl)G(ξjkl) detJe(ξjkl) (4.202)

where ̂̃T is the matrix holding the stresses Φ̃
(jkl)

in the order of
̂̃T, see (4.123)-(4.125), and

the element gradient-displacement matrix G at point ξjkl is the counterpart of the global
matrix G, (4.76) with elemental shape functions. At the end of this derivation we obtained
the geometric stiffness ke

G as needed in (4.159).

To explicate the stiffness resulting from the nonlinear constitutive model, ke
C in (4.159),

we evaluate the second term of the directional derivative, (4.200), using the chain rule

Be(jkl)T
DEeΦ̃

jkl
(
Ee(jkl)(Ue),Qe(jkl)(Ee(jkl))

)[
DUeEe(jkl)

[
DUUe[∆U]

]]
(4.203)

+ Be(jkl)T
DQΦ̃

jkl
(
Ee(jkl)(Ue),Qe(jkl)(Ee(jkl))

)[
DEeQ

[
DUeEe(jkl)

[
DUUe[∆U]

]]]
(4.204)

= Be(jkl)T

[
∂Φ̃

∂E
Be(jkl)Z e∆U

]
+ Be(jkl)T

[
∂Φ̃

∂Q

dQ

dE
Be(jkl)Z e∆U

]
(4.205)

= Be(jkl)T

[
∂Φ̃

∂E
+
∂Φ̃

∂Q

dQ

dE

]∣∣∣∣∣
y,ξjkl

Be(jkl)Z e∆U (4.206)
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where the vector y = {Ue(m),Qe(m)} corresponds to the known quantities at iteration (m).
Finally, we can give the element stiffness matrix corresponding to the material nonlinearity

ke
C =

[ nξ∑

j=1

nη∑

k=1

nζ∑

l=1

wjwkwl B
e(jkl)T C̃

e

L(ξjkl)Be(jkl) detJe(ξjkl)

]∣∣∣∣∣
y

(4.207)

with the consistent tangent operator (material matrix) at Gauss point ξjkl and state y as
derived in Eq. (4.206)

C̃
e

L(ξjkl)
∣∣∣
y

=

[
∂Φ̃

∂Ee(jkl)
+

∂Φ̃

∂Qe(jkl)

dQe(jkl)

dEe(jkl)

]∣∣∣∣∣
y

. (4.208)

The term dQe(jkl)

dEe(jkl) is obtained from the solution of the equation system (4.195) where it is the

result of the discretization of dQ
dU at Gauss point level.

Remark 12 For elastic materials the second part of the matrix (4.208) vanishes and the
consistent tangent operator is given by

C̃
e

L
(ξjkl)

∣∣∣
y

=

[
∂Φ̃

∂Ee(jkl)

]∣∣∣∣∣
y

. (4.209)

Compare for example (Bonet and Wood, 1997, p. 119).
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4.8 Elimination of interior degrees of freedom

In this section, we exploit the distinction of hierarchical high order shape functions into in-
terface modes uei and bubble modes ueb on element level. As the bubble modes are purely
local, i.e. independent from element to element, they can be condensed on local level and only
the reduced element matrices (and corresponding right-hand side) need to be assembled to
the global equation system. After its solution, the remaining bubble modes can be evaluated
locally. This Schur complement approach is attractive for parallelization and is also known to
improve the conditioning of the global equation system, (Ainsworth, 1996; Mandel, 1990a,b).

First, we distinguish in the global vector of unknowns ua three components: the degrees
of freedom that are prescribed u, and among those remaining the interface ui and bubble
ub degrees of freedom. Correspondingly, the incidence matrices Z e

a ∈ R
nem×ndof , Z

e ∈ R
nem×np ,

Z e
i ∈ R

nem×nu, Z e
b ∈ R

nem×nb are introduced,

ue = Z e
aua = [Z e

i Z e
b Z

e
]






ui

ub

u




 = Z e
i ui + Z e

b ub + Z
e
u (4.210)

δue = Z e
aδua = [Z e

i Z e
b ]

{
δui

δub

}
= Z e

i δui + Z e
b δub . (4.211)

Furthermore, on element level the interface degrees of freedom uei and the bubble degrees of
freedom ueb are distinguished,

ue =

{
uei

ueb

}
, δue =

{
δuei

δueb

}
(4.212)

and incidence matrices for the selection of the interface d.o.f., Z ei ∈ R
nei×nem , and bubble d.o.f.,

Z eb ∈ R
neb×nem from the element mode vector ue are defined,

uei = Z eiue = Z ei(Z e
i ui + Z e

b ub + Z
e
u) = Z ei(Z e

i ui + Z
e
u) (4.213)

ueb = Z ebue = Z eb(Z e
i ui + Z e

b ub + Z
e
u) = Z eb(Z e

b ui + Z
e
u) (4.214)

δuei = Z eiδue = Z ei(Z e
i δui + Z e

b δub) = Z eiZ e
i δui (4.215)

δueb = Z ebδue = Z eb(Z e
i δui + Z e

b δub) = Z ebZ e
b δub (4.216)

where we used the fact that interface and bubble modes are independent by construction, i.e.

Z eiZ e
b = 0 , (4.217)

Z ebZ e
i = 0 . (4.218)

For the explication of the principle of virtual work these distinctions allow the partition of
the shape function and strain displacement matrices, both on global as well as on local level:

uh = Naua =
[
Ni Nb N

]





ui

ub

u




 = Neue =
[
Nei Neb

]{ uei

ueb

}
= ue h (4.219)

δuh = Naδua =
[
Ni Nb

]{ δui

δub

}
= Neδue =

[
Nei Neb

]{ δuei

δueb

}
= δue h . (4.220)
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For example, the transpose of the virtual displacement vector needed later evaluates to

δue hT
=

{
δui

δub

}T
[

Z e
i

T
Z eiTNeiT

Z e
b

T
Z ebT

NebT

]
. (4.221)

For the strains we obtain a similar transition from global to local quantities

E h = B∗
aua =

[
B∗

i B∗
b

]{ ui

ub

}
= Be∗ue =

[
Bei∗ Beb∗]

{
Z ei(Z e

i ui + Z
e
u)

Z eb(Z e
b ui + Z

e
u)

}
= Eh

δE h = Baua =
[
Bi Bb

]{ δui

δub

}
= Beδue =

[
Bei Beb

]{ Z eiZ e
i δui

Z ebZ e
b δub

}
= δEh (4.222)

and for later use the transpose of the virtual strains is stated

δEhT
=

{
δui

δub

}T
[

Z e
i

T
Z eiTBeiT

Z e
b

T
Z ebT

BebT

]

. (4.223)

Using these relations in the principle of virtual work, (4.102),(4.104) we arrive at

π(t,ui,ub, δui, δub,q) =

{
πi(t,ui, δui,q)
πb(t,ub, δub,q)

}
= (4.224)

=
ne∑

e=1

∫

Ωe

{
δui

δub

}T
[

Z e
i

T
Z eiTBeiT

Z e
b

T
Z ebT

BebT

]
Φ̃
(
Ee, qe

)
dΩe

−
ne∑

e=1

∫

Ωe

{
δui

δub

}T
[

Z e
i

T
Z eiTNeiT

Z e
b

T
Z ebT

NebT

]

ρRk dΩe

−
ne∑

e=1

∫

ΓtR

{
δui

δub

}T
[

Z e
i

T
Z eiTNeiT

Z e
b

T
Z ebT

NebT

]
tR dΓtR = 0 .

Exploiting the arbitrariness of the virtual displacements and performing numerical inte-
gration by Gauss quadrature we obtain

g̃i(t,ui,q) =

ne∑

e=1

Z e
i

T
Z eiT

∑

jkl

wjklBei(jkl)T Φ̃
(
Ee(ua), q

e
(
Ee(ua))

)
detJe(ξjkl) (4.225)

−
ne∑

e=1

Z e
i

T
Z eiT

∑

jkl

wjklNeiTρRkdetJe(ξjkl)

−
ne∑

e=1

Z e
i

T
Z eiT

∑

jkl

wjklNeiT tR detJe(ξjkl)

=
ne∑

e=1

Z e
i

T
Z eiTge

i , (4.226)
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g̃b(t,ub,q) =
ne∑

e=1

Z e
b

T
Z ebT ∑

jkl

wjklBeb(jkl)T Φ̃
(
Ee(ua), q

e
(
Ee(ua))

)
detJe(ξjkl) (4.227)

−
ne∑

e=1

Z e
b

T
Z ebT ∑

jkl

wjklNebT
ρRk detJe(ξjkl)

−
ne∑

e=1

Z e
b

T
Z ebT ∑

jkl

wjklNebT
tR detJe(ξjkl)

=
ne∑

e=1

Z e
b

T
Z ebT

ge
b , (4.228)

where the local residual vector is denoted by ge
i and ge

b respectively.

In the context of the Newton-type methods derivatives are necessary (in this section we
omit the change of notation from u to U that is introduced for the time integration of the
evolution equations). The equation system we encounter is on global level





∂g̃i

∂ui

∂g̃i

∂ub
∂g̃b

∂ui

∂g̃b

∂ub




{

∆ui

∆ub

}
= −

{
g̃i

g̃b

}
→
[

Kii Kib

Kbi Kbb

]{
∆ui

∆ub

}
= −

{
g̃i

g̃b

}
. (4.229)

For explicit calculation of the terms we pre-evaluate

∂Φ̃
(
Ee(ua), q

e
(
Ee(ua)

))

∂ui

= C̃
e

L

∂Ee(ua)

∂ui

, (4.230)

∂Φ̃
(
Ee(ua), q

e
(
Ee(ua)

))

∂ua
= C̃

e

L

∂Ee(ua)

∂ub
, (4.231)

where use is made of the abbreviation for the consistent tangent operator

C̃
e

L =

[
∂Φ̃

∂Ee +
∂Φ̃

∂qe

dqe

dEe

]
. (4.232)

The derivative of the strains with respect to the displacements evaluate to

∂Ee(ua)

∂ui

= Bei∗ Z eiZ e
i (4.233)

∂Ee(ua)

∂ub
= Beb∗ Z ebZ e

b . (4.234)

Now, the terms of the stiffness matrix are given as assembly of the element stiffness matrices
(assuming the the external loadings are independent of the deformation). For example, Kii is
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the assembly of all element stiffness matrices ke
ii,

Kii =
∂g̃i

∂ui

=
ne∑

e=1

Z e
i

T
Z eiT

{
∑

jkl

wjklBei(jkl)T C̃
e

L(ξjkl)B
ei∗(jkl) detJe(ξjkl)

}

︸ ︷︷ ︸
ke

ii

Z eiZ e
i (4.235)

Kib =
∂g̃i

∂ub
=

ne∑

e=1

Z e
i

T
Z eiT

{
∑

jkl

wjklBei(jkl)T C̃
e

L(ξjkl)B
eb∗(jkl) detJe(ξjkl)

}

︸ ︷︷ ︸
ke

ib

Z ebZ e
b (4.236)

Kbi =
∂g̃b

∂ui

=
ne∑

e=1

Z e
b

T
Z ebT

{
∑

jkl

wjklBeb(jkl)T C̃
e

L(ξjkl)B
ei∗(jkl) detJe(ξjkl)

}

︸ ︷︷ ︸
ke

bi

Z eiZ e
i (4.237)

Kbb =
∂g̃b

∂ub
=

ne∑

e=1

Z e
b

T
Z ebT

{
∑

jkl

wjklBeb(jkl)T C̃
e

L(ξjkl)B
eb∗(jkl) detJe(ξjkl)

}

︸ ︷︷ ︸
ke

bb

Z ebZ e
b . (4.238)

For the static condensation of the global equation system (4.229) the second equation is
solved for ∆ub and substituted in the first equation to obtain an equation only in the unknown
interface degrees of freedom ∆ui

(Kii − KibK
−1
bb Kbi)︸ ︷︷ ︸

K∗

∆ui = −g̃ + KibK
−1
bb g̃b︸ ︷︷ ︸

g∗

. (4.239)

The condensed matrix K∗ and the condensed residual vector g∗ can be traced to local level
and it can be shown that the static condensation can be carried out in the element,

K∗ =

ne∑

e=1

Z e
i

T
Z eiTke

iiZ
eiZ e

i − (4.240)

−
ne∑

e=1

Z e
i

T
Z eiTke

ibZ
ebZ e

b

ne∑

e=1

Z e
b
−1

Z eb−1
ke

bb
−1

Z eb−T
Z e

b
−T

ne∑

e=1

Z e
b

T
Z ebT

ke
biZ

eiZ e
i

=
ne∑

e=1

Z e
i

T
Z eiT

[
ke

ii − ke
ibk

e
bb
−1ke

bi

]
Z eiZ e

i =
ne∑

e=1

Z e
i

T
Z eiT

[
ke∗
]
Z eiZ e

i

where we used the fact that bubble modes of different elements e have no interaction, i.e.

(Z ebZ e
b ) (Z ê−1

b Z êb−1) =

{
I for e = ê
0 for e 6= ê

. (4.241)

For the right-hand side g∗ we can also show that the static condensation can be carried out
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on element level,

g∗ = −
ne∑

e=1

Z e
i

T
Z eiTge

i + (4.242)

+

ne∑

e=1

Z e
i

T
Z eiTke

ibZ
ebZ e

b

ne∑

e=1

Z e
b
−1

Z eb−1
ke

bb
−1Z eb−T

Z e
b
−T

ne∑

e=1

Z e
b

T
Z ebT

ge
b

=

ne∑

e=1

Z e
i

T
Z eiT

[
− ge

i + ke
ibk

e
bb
−1

ge
b

]
=

ne∑

e=1

Z e
i

T
Z eiT

[
g∗
]
.

In the actual implementation the inverse matrix ke
bb
−1 on element level does not have to be

calculated explicitly. The Schur complement ke∗|g∗ can be obtained as result of a incomplete
Gauss elimination on element level that is stopped after all bubble degrees of freedom are
eliminated,

[
ke∗ 0

ke
bi
∗ L

]{
∆uei

∆ueb

}
= −

{
g∗

g∗
b

}
. (4.243)

A detailed discussion with efficient use of block elimination (BLAS and LAPACK routines)
is given in (Niggl, 2007, Sec. 3.3.1). After the global displacement increment of the interface
modes ∆ui has been calculated, the local interface modes are obtained via ∆uei = Z eiZ e

i ∆ui.
The last step is to evaluate the bubble degrees of freedom,

∆ueb = −ke
bb
−1(ge

b + ke
ii∆uei) . (4.244)

In an actual implementation this can effectively be done by backsubstitution in (4.243)2, where
L is a lower left triangular matrix.

4.9 Reaction Forces

In Sec. 4.6.2 the principle of virtual displacement is used to derive the weak form Eq. (3.9) in
the Galerkin formulation. After discretization the unknown displacements can be computed.
However, by construction the principle of virtual displacements can not give information about
reaction forces because the virtual displacement must vanish where a displacement is pre-
scribed, δu = 0 on Γud, and consequently no work is performed by the reaction forces. To
compute reaction forces different variational principles must be applied. Here we investigate
the method of Lagrangian multipliers and the closely related penalty function method.

4.9.1 Computing reaction forces

Outline of the argumentation. The Lagrange multiplier method and the penalty method
for the imposition of constraints can be motivated in a very simple context, cf. (Hughes, 2000,
pp. 194), (Bathe, 1996, pp. 143). Here this approach is applied to the DAE-system (4.174) and
the Langrange multiplier is identified with the reaction forces pertaining to those displacement
degrees of freedom where a constraint is enforced. This argumentation is based on (Hartmann,
2003a, Sec. 5.1.2) and (Hartmann et al., 2008). Next, a procedure for the calculation of the
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Lagrange multiplier, viz the reaction force, from the internal force vector is discussed. The
entries in question can be also obtained by the penalty method in a postprocessing step, i.e.
no Lagrange multipliers are needed for the calculation, only for the interpretation. Finally,
we argue that in the context of hierarchic Ansatz functions, see Sec. 4.2.2, the reaction force
is the assembly only of those entries of the internal force vector corresponding to the linear,
nodal shape functions. The method to calculate the reaction forces from the internal force
vector is verified in Sec. 4.9.1.5 by comparing the result with the integration of the stresses
along the boundaries where displacements are prescribed.

4.9.1.1 Motivation

The method of Lagrange multipliers and the penalty function for treating constraints are
closely related and are important concepts for optimization theory and mathematical pro-
gramming, compare for example (Luenberger, 2003). There, the task is to

minimize f(x)

subject to x ∈ S, where S = {x : ci(x) = 0, i = 1, 2, ..., p} . (4.245)

For further treatment the constrained problem (4.245) is transferred to an unconstrained
formulation where the constraint is incorporated. In the case of the penalty function method
we use

minimize f(x) + κP (x) (4.246)

where κ is a positive constant, the penalty parameter, and P is a continuous function that only
vanishes if the constraint is satisfied, if not P (x) > 0. Among the many possible functions, a
very useful penalty function is

P (x) =
1

2

p∑

i=1

ci(x)
2 . (4.247)

In continuum mechanics Lagrange multipliers and penalty function methods are adapted
to impose constraints in the finite element method, compare (Hughes, 2000, pp. 194), (Bathe,
1996, pp. 143), (Belytschko et al., 2000, pp. 325), be it prescribed displacements, the treatment
of contact problems (Wriggers, 2006) and more generally other constraints like incompress-
ibility in mixed methods.23

For the motivation of those methods the existence of a potential is assumed, however,
also for nonconservative systems weak forms using Lagrange multipliers and the penalty
function method can be constructed with the ‘guidance’ from the conservative case, see
(Belytschko et al., 2000, Eq. (6.3.42) and Eq. (6.3.50)).

4.9.1.2 Lagrange multiplier method for the DAE-system

This argument is based on (Hartmann, 2003a, Sec. 5.1.2) and (Hartmann et al., 2008). As in-
troduced in Eq. (4.70) we distinguish in the vector of all modal degrees of freedom ua(t)∈ R

ndof

23Besides to the penalty and Lagrange multiplier method linear displacement constraints can of course be
enforced by direct elimination in the linear equation system. This is described in (Dhondt, 2004, Sec. 3.6).
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the modal displacements u∈ R
nu without constraints and the modal displacements û∈ R

np

where the displacement constraint u(t) is prescribed,

ua =

{
u
û

}
. (4.248)

Here also û is unknown and will be obtained by the solution that satisfies the constraint
equation Cc ∈ R

np stating the Dirichlet boundary conditions

Cc(t,ua(t)) = û− u(t) = MT ua(t)− u(t) = 0, M =

[
0nu×np

Inp

]
(4.249)

with the filter matrix M∈ R
ndof×np and the prescribed modal displacements u(t)∈ R

np.

Remark 13 The Dirichlet b.c. have to be prescribed in the space of the hierarchic shape
functions, see Sec. 4.2, as û holds the coefficients of the hierarchic shape functions pertain-
ing to constrained modes, cf. (Demkowicz, 2006, p. 177). For example, along an edge in
a two-dimensional analysis homogenous (u = 0), constant and linear prescribed displace-
ments can be readily enforced by setting the coefficients of the quadratic and higher modes
(see Eq. (4.22)i, i > 2) along this edge to zero and determining the value of the prescribed
displacement at the end points of the edge in global x1, x2 direction corresponding to the linear
modes Eq. (4.22)1 and (4.22)2. These values are the prescribed coefficients of the linear shape
functions N1, N2.

If more complicated displacements need to be prescribed they have to be projected in the
space of the Ansatz functions to determine the coefficients of the shape functions giving the
best approximation of u(t). This operation is important for hp-adaptivity and is denoted as
projection based interpolation. It is explained in (Demkowicz, 2006, Eq. (5.1), p. 74).

The variational equation π (3.9) is augmented by Lagrange multipliers to account for the
Dirichlet b.c.

πLa(t,ua, δua,λ, δλ,q) = δuT
a ga(t,ua(t),q(t)) + δ

(
λT Cc(t,ua)

)
(4.250)

= δuT
a ga(t,ua(t),q(t)) + δλT (t)Cc + λT (t)MT δua (4.251)

= δuT
a

(
ga(t,ua(t),q(t)) + Mλ(t)

)
+ δλT (t)Cc = 0 (4.252)

with the Lagrange multipliers λ(t)∈ R
np. To obtain (4.251) the first variation δ(λT Cc) in

(4.250) is carried out according to the definition, Eq. (3.26),

δ
(
λT Cc(t,ua)

)
= δλT Cc(t,ua) + λT δCc(t,ua) (4.253)

=
d

dǫ
(λ + ǫδλ)T

∣∣∣∣
ǫ=0

Cc(t,ua) + λT d

dǫ

(
MT (ua + ǫδua)− u(t)

)∣∣∣∣
ǫ=0

= δλT Cc(t,ua) + λT MT δua , (4.254)

where Cc is expanded as in Eq. (4.249) .
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Exploiting the arbitrariness of δua ∈ R
ndof and δλ∈ R

np in Eq. (4.252) we arrive at, com-
pare (Belytschko et al., 2000, Eq. (6.3.45), p. 327),

ga(t,ua(t),q(t)) + Mλ(t) = 0
Cc(t,ua(t)) = 0 . (4.255)

The modified DAE-system is obtained by similar arguments that lead to Eq. (4.175)

F(t, y(t), ẏ(t)) ≡






ga(t,ua(t),q(t)) + Mλ(t)
Cc(t,ua(t))

Aq̇(t)− r
(
t,ua(t),q(t)

)




 = 0, F∈ R
ndof+np+nQ (4.256)

where

y(t) ≡






ua(t)
λ(t)
q(t)




 and the initial conditions y(t0) ≡






ua(t0)
λ(t0)
q(t0)




 =






ua0

λ0

q0




 ≡ y0 .

(4.257)

The constraints Cc are introduced in (4.249), the evolution equations in (4.174). The dis-
cretized variational principle (4.170) is now denoted as ga and modified to account for all
degrees of freedom explaining the 0np in the vector of external loads corresponding to the
constrained degrees of freedom û

ga(t,ua(t),q(t)) ≡
ne∑

e=1

Z eT
a

{ nξ∑

j=1

nη∑

k=1

nζ∑

l=1

wjwkwlB
eT
(
ue(t), ξjkl

)

Φ̃
(
Ce
(
Ee(ξjkl, t)

)
, qe
(
Ce(Ee(ξjkl, t))

))
detJe(ξjkl)

}

−
{

fext(t,ua(t))
0np

}
= 0, (4.258)

ga ∈ R
ndof, with the incidence matrix Z e

a according to (4.148) and the external force vector fext

given in Eq. (4.105). The local Be matrix at Gauss point ξjkl depends on the local displacement
vector ue that may contain contributions to both global vectors u and û.

For time discretization the simplest DIRK method to solve the DAE system (4.256) is
the backward Euler method that was already applied to the analogous Eq. (4.177). As for
Eq. (4.186) we drop the subscript n + 1 and introduce the abbreviations

T ≡ tn+1,Ua ≡ ua n+1,Cc ≡ Ccn+1,Λ ≡ λn+1,Q ≡ qn+1,

Ĝ ≡ Ĝn+1,G ≡ Gn+1,L ≡ Ln+1,R ≡ Rn+1 . (4.259)

Then, Eq. (4.256) is rendered as

R (Ua,Λ,Q) = R (y) =

{
Ĝ(Ua,Λ,Q)

L(Ua,Q)

}
= 0, R∈ R

ndof+np+nQ, (4.260)
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with

Ĝ(Ua,Λ,Q) ≡
{

G(Ua,Λ,Q)
Cc(Ua)

}
=

{
ga(T,Ua,Q) + MΛ

MT Ua − u(T )

}
(4.261)

L(Ua,Q) ≡ A
{

Q− qn

∆tn

}
− r(Ua,Q) . (4.262)

To apply the multi-level Newton algorithm, cf. Sec. 4.7.2, the internal variables Q are
calculated on local level for a given modal displacement Ua, compare (4.192). On the global

level the directional derivative of Ĝ, Eq. (4.261), according to (4.189) (substitute G by Ĝ)
yields the system of linear equations for iteration m ; m+ 1

{
DUa

G(y)[∆Ua] + DΛG(y)[∆Λ]
DUa

Cc(y)[∆Ua] + DΛCc(y)[∆Λ]

}
= −

{
G(y)
Cc(y)

}
(4.263)

with yT = {Ua
(m)T Λ(m)T Q(m)T} and the increments ∆Ua = Ua

(m+1) − Ua
(m) as well as

∆Λ = Λ(m+1) −Λ(m). Evaluating the individual terms in (4.263) we obtain

DUa
G(y))[∆Ua] = Ka|y ∆Ua =

[
∂G
∂Ua

+
∂G
∂Q

dQ
dUa

]∣∣∣∣
y

∆Ua, cf. Eq. (4.190) (4.264)

DΛG[∆Λ] = M ∆Λ (4.265)

DUa
Cc[∆Ua] = MT ∆Ua (4.266)

DΛCc[∆Λ] = 0np×np ∆Λ. (4.267)

The tangential stiffness matrix Ka|y is singular because no rigid body modes are suppressed,
mathematically representing an under-determined system. Inserting (4.264) – (4.267) in the
linearized equation system (4.263) we obtain for the global equation system

[
Ka|y M

MT 0np×np

]{
∆Ua

∆Λ

}
= −

{
G(y)
Cc(y)

}
. (4.268)

Partitioning the system to distinguish the free and prescribed degrees of freedom as in the
displacement vector (4.248) yields




K Kup 0nu×np

Kpu Kpp Inp

0np×nu Inp 0np×np





∣∣∣∣∣∣
y






∆U
∆Û
∆Λ




 =






−f(y)

−f(y)−Λ(m)

u(T )− Û
(m)





=






−fint(y) + fext(y)

−fint(y)−Λ(m)

u(T )− Û
(m)






(4.269)

where we introduced

Ua =

{
U
Û

}
, ∆Ua =

{
∆U
∆Û

}
, (4.270)

as well as the sub-matrices that are assembled from the elemental stiffness matrices ke accord-
ing to

K|y =
ne∑

e=1

Z eTke|y Z e, Kup|y =
ne∑

e=1

Z eTke|y Z
e
, (4.271)

Kpu|y =
ne∑

e=1

Z
eT

ke|y Z e, Kpp|y =
ne∑

e=1

Z
eT

ke|y Z
e
, (4.272)
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compare (4.157), and (4.148) – (4.149) for the definition of the incidence matrices Z e,Z
e
. Fur-

thermore, the residual vector (4.261)1 belonging to the state y, cf. Eq. (4.258), is partitioned
as24

G(y) = ga(tn+1,U
(m)
a ,Λ(m)) + MΛ(m) (4.273)

=

{
f(y)

f(y)

}
+

{
0nu

Λ(m)

}
=

{
fint(y) − fext(y)

fint(y)

}
+

{
0nu

Λ(m)

}

=






ne∑

e=1

Z eT





∑

(jkl)

wjklBe(jkl)T
(
Ue)Φ̃

(
Ce(jkl),Qe(jkl)

(
Ce(jkl)

))
detJe(jkl)




 − fext

ne∑

e=1

Z
eT





∑

(jkl)

wjklBe(jkl)T
(
Ue)Φ̃

(
Ce(jkl),Qe(jkl)

(
Ce(jkl)

))
detJe(jkl)











+

{
0nu

Λ(m)

}

where fint is the internal force vector containing the entries belonging to prescribed displace-

ment degrees of freedom û assembled by Z
eT

, while fint corresponds to the ‘free’ degrees of
freedom u, cf. (4.154) – (4.155), assembled by Z eT as

fint =
ne∑

e=1

Z eT feint (4.274)

fint =

ne∑

e=1

Z
eT

feint (4.275)

with feint given in (4.154).
After this technical work we proceed with the interpretation in the framework of the MLNA.

It is natural to use the prescribed displacements as initial guess for Û in the first iteration,

i.e. Û
(0)

= u(T ) = u(tn+1). Then evaluating (4.269)3 gives that the increment ∆Û = 0 and

therefore Û
(0)

= Û
(m)

= u(T ) = u(tn+1) for all iterations m. Consequently the remaining
equations of (4.269) now state

K|y∆U = −f(y) (4.276)

Kpu|y∆U +
{
Λ(m+1) −Λ(m)

}

︸ ︷︷ ︸
∆Λ

= −Λ(m) − fint(y) (4.277)

⇒ Kpu|y∆U = −Λ(m+1) − fint(y) . (4.278)

Eq. (4.276) can be solved independently, using the internal variables obtained by the local
stress algorithm (4.256)3. After the global iteration is converged the increment ∆U ≈ 0 and
Eq. (4.278) now reads

0 = −Λ(m+1) − fint(y) ⇒ (4.279)

Λ(m+1) = −fint(y) = −fint(Ua,Q) for fint see Eq. (4.273)2. (4.280)

24 The summation over the Gauss points from Eq. (4.258) is abbreviated here to obtain a shorter notation.
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This means, the Lagrange multiplier can be interpreted as the reaction force

fRF = Λ = −fint (4.281)

equilibrating the internal forces fint corresponding to the constrained displacement degrees of
freedom, cf. Eq. (4.249).

Concerning the implementation we note that Eq. (4.276) is independent of the Lagrange
multipliers and analogous to the equation system derived for the pure principle of virtual
displacements, Eq. (4.159) in Sec. 4.6. In the case of a converged solution — the Dirichlet
b.c. can also be imposed by the penalty function method, see Sec. 4.9.1.3 — the (negative,
cf. Eq. (4.281)) reaction force vector of the complete structure is obtained by the assembly
operation described in Eq. (4.275) of the internal force vector feint, Eq. (4.154), on element
level,

− fRF = fint =

ne∑

e=1

Z
eT

feint (4.282)

=

ne∑

e=1

Z
eT





∑

(jkl)

wjklBe(jkl)T
(
ue(t))Φ̃

(
Ce(jkl)(t), qe

(
Ce(jkl)(t)

))
detJe(jkl)




 .

4.9.1.3 Penalty function method

The penalty function method for the imposition of Dirichlet b.c. augments the variational
equation π (3.9) with a term that penalizes the violation of the prescribed constraints. Since
the advent of computerized structural analysis in the late ’50s the penalty approach was
used in a physical ‘disguise’ where the displacement constraint is motivated by a very stiff
spring. In the ’70s the penalty function method has been described and investigated in formal
mathematical terms, compare (Felippa, 1977) and the references therein. A general class of
penalty functions is given in (Luenberger, 2003, Eq. (18), p. 372). The most popular penalty
function is

P (ua) =
1

2
κCT

c Cc , (4.283)

with a positive constant κ and the constraint equation Cc as set forth in Eq. (4.249).

We now define a slightly different variational equation (compare (4.250) for the Lagrangian
form πLa)

πPen(t,ua, δua,q) = δuT
a ga(t,ua(t),q(t)) + δP (ua) . (4.284)

The variational term δP is evaluated25 invoking the definition Eq. (3.26), where we expand

25As δP is a scalar product of column matrices we can use the property aT b = bT a, for example to transform
(M T δua(t))T Cc to CT

c M T δua(t) and further (CT
c M T ) δua(t) to δuT

a (t) (CT
c M T )T = δuT

a (t) (M Cc). Voilá
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Cc according to (4.249),

δP (ua) = δ
(1

2
κCT

c (t,ua)Cc(t,ua)
)

=
1

2
κδCT

c Cc +
1

2
κCT

c δCc

=
1

2
κ

d

dǫ

(
MT
(
ua(t) + ǫδua(t)

)
− u(t)

)T
∣∣∣∣
ǫ=0

Cc

+
1

2
κCT

c

d

dǫ

(
MT
(
ua(t) + ǫδua(t)

)
− u(t)

)∣∣∣∣
ǫ=0

=
1

2
κ
(

MT δua(t)
)T

Cc +
1

2
κCT

c MT δua(t)

=
1

2
κCT

c MT δua(t) +
1

2
κCT

c MT δua(t)

= δuT
a κMCc = δuT

a κM
{

MT ua(t)− u(t)
}
. (4.285)

Introducing this result in Eq. (4.284), the variational formulation for the penalty method is
obtained as

πPen(t,ua, δua,q) = δuT
a

{
ga(t,ua(t),q(t)) + κM

{
MT ua(t)− u(t)

}}
, (4.286)

where ga is defined in Eq. (4.258).
Exploiting the arbitrariness of δua we obtain the space discretized DAE-system

F(t, y(t), ẏ(t)) ≡
{

ga(t,ua(t),q(t)) + κM
{

MT ua(t)− u(t)
}

Aq̇(t)− r
(
t,ua(t),q(t)

)

}
= 0, F∈ R

ndof+nQ (4.287)

where

y(t) ≡
{

ua(t)
q(t)

}
with the initial conditions y(t0) ≡

{
ua(t0)
q(t0)

}
=

{
ua0

q0

}
≡ y0 . (4.288)

For the time discretization of the DAE system (4.287) we again employ the Backward-Euler
method to solve for time T = tn+1 using the abbreviations introduced in (4.259),

R (Ua,Q) = R (y) =

{
G(Ua,Q)
L(Ua,Q)

}
= 0, R∈ R

ndof+nQ , (4.289)

with

G(Ua,Q) ≡ ga(T,U,Q) + κM
{

MT Ua − u(T )
}

(4.290)

L(Ua,Q) ≡ A
{

Q− qn

∆tn

}
− r(Ua,Q) . (4.291)

To apply the Multilevel-Newton algorithm we linearize the differential equation (4.290)

according to Eq. (4.189) at a given state y ≡ (U(m)
a ,Q(m)),

DUa
G
(
Ua,Q(Ua)

)
[∆Ua] = −G(y) , (4.292)
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with the individual terms

DUa
G
(
Ua,Q(Ua)

)
[∆Ua] =

[
Ka|y + κMMT

]
∆Ua (4.293)

G(y) = ga(T,U
(m)
a ,Q(m)) + κM

{
MT U(m)

a − u(T )
}

(4.294)

to arrive at the linear equation system

[
Ka|y + κMMT

]
∆Ua = −ga(T, y)− κM

{
MT U(m)

a − u(T )
}
, (4.295)

where Ka|y is given in Eq. (4.271)1 and ga in Eq. (4.258).
Partitioning the system (4.295) according to the vector (4.270) we arrive at

[
K Kup

Kpu Kpp + κI

]∣∣∣∣∣
y

{
∆U
∆Û

}
=

{
−f(y)

−f(y)− κ
{

Û
(m) − u(T )

}
}

=

{
−fint(y) + fext(y)

−fint(y)− κ
{

Û
(m) − u(T )

}
}

(4.296)

using the matrices defined in Eq. (4.271) – (4.272) and the load vectors from Eq. (4.273).

Remark 14 The positive penalty parameter κ has to be chosen large enough that the con-
straints Cc are observed satisfactorily. However, as the penalty parameter is added to those
entries on the diagonal of the system stiffness matrix, where constraints are given, the con-
dition number of the global equation system deteriorates with increasing value of the penalty
parameter. This is investigated in (Luenberger, 2003, p. 373ff). When iterative solvers like
the conjugate gradient method are used this results in additional iterations, when direct solvers
are employed, the system can be still solved, however the accuracy may be affected, i.e. the
solution is sensitive to small perturbations of the stiffness matrix entries or the right hand
side. However, these shortcomings are only theoretically as they can be healed by the simple
operation of diagonal preconditioning, a standard first step in solver implementations.

In the p-FEM code AdhoC the value of the penalty parameter κ is typically chosen as 1020.
If dynamic problems using small time steps ∆t with direct time integration methods (like the
generalized-α method (Chung and Hulbert, 1993)) are calculated, the penalty parameter has
to be even higher to satisfy the condition to be much larger than the diagonal entries Kii as
the inverse of ∆t2 enters the resulting stiffness matrix, compare (Heisserer, 2001, Eq. (3.171)
together with Eq. (3.168)).

4.9.1.4 Reaction force in the context of hierarchic high-order finite elements

We have identified the negative vector fint (4.275) with the reaction force vector fRF, i.e. those
forces necessary to maintain the constraint (4.249) and obtained the rule (4.282) to compute
the reaction force vector corresponding to the chosen Ansatz space.

It is known that for hierarchic shape functions only the linear modes have direct physical
meaning. Contrarily, if standard low order shape functions or high-order shape functions
like Lagrange functions that constitute a partition of unity are employed, see Eq. (4.11) and
Fig. 4.4(a) for the one-dimensional case, we can directly sum the entries of the vector fint
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belonging to the displacement degrees of freedom along a boundary of interest and obtain the
reaction force in the global coordinate system.

If hierarchic high-order shape functions constructed from integrated Legendre polynomials
as introduced in Eqs. (4.12) – (4.14) are applied, cf. Fig. 4.4(b), only the bilinear nodal modes
constitute a partition of unity, see Eq. (4.24). Consequently only those entries from the vector
fint must be taken into account that correspond to the nodal modes, Eq. (4.23), to compute a
reaction force with physical meaning.

The importance of the linear modes can also be demonstrated by investigating the entries
of the external load vector fext (4.107). The following analogy justifies the examination of the
external force vector: like the external force vector fext is upon convergence in equilibrium
with the part of the internal force vector fint corresponding to the ‘free’ displacement degrees
of freedom, in the same way the other part of the internal force vector fint corresponding to
constrained d.o.f. is equilibrated by the reaction forces fRF, compare Eq. (4.273).

G(y) =

{
fint

fint

}
−
{

fext

−fRF

}
= 0 . (4.297)

Therefore, if the physically applied external load is recovered by adding the ‘linear’ components
of fext, more precise the components corresponding to the linear modes (4.23), that are in
equilibrium with the linear entries of fint, we can argue that the linear components of fint give
the negative physical reaction force.

Assume for simplicity that along a horizontal boundary (global x − y and local ξ − η
directions may coincide, detJ = 1) of the reference element a normal traction ty(ξ) and
tangential traction tx(ξ) = 0 is applied. Then, the load vector fext is according to Eq. (4.107)

fext tR =

∫

ΓtR

NT

{
tx
ty

}
dΓtR =

ξ=1∫

ξ=−1





N1(ξ) .
. N1(ξ)

N2(ξ) .
. N2(ξ)

N3(ξ) .
. N3(ξ)
...

...





{
0
ty

}
dξ =






0∫
ξ
N1(ξ)ty dξ

0∫
ξ
N2(ξ)ty dξ

0∫
ξ
N3(ξ)ty dξ

...






,

(4.298)

where the integrals in the load vector were abbreviated by
∫

ξ
≡
∫ ξ=1

ξ=−1
. Next we compute the

total applied load Py and try to identify the external load in the load vector fext tR .

Py =

ξ=1∫

ξ=−1

ty(ξ) dξ =

ξ=1∫

ξ=−1

1 · ty(ξ) dξ =

ξ=1∫

ξ=−1

[
N1(ξ) +N2(ξ)

]
ty(ξ) dξ (4.299)

=

ξ=1∫

ξ=−1

N1(ξ)ty(ξ) dξ +

ξ=1∫

ξ=−1

N2(ξ)ty(ξ) dξ , (4.300)

where we used the property that the linear modes, i.e. the nodal shape functions constitute a
partition of unity, 1 = N1+N2, cf. Eq. (4.19) and (4.24) for the 2D case. Identifying the terms
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of (4.300) giving the external applied load in y-direction in the load vector (4.298), we see
that we have to sum the second and the fourth component, i.e. those entries where the linear
shape functions N1 and N2 are multiplied with ty. By the same reasoning the total applied
load in x direction would be obtained by summing the first and third component. The higher
shape functions, Ni, i ≥ 3 do not contribute to the partition of unity – their ‘purpose’ is to
enrich the Ansatz space and they are responsible for the beneficial numerical properties of the
p-version. By analogy we conclude that the physical total reaction force along a boundary
with prescribed displacement is obtained by summing the linear components of the vector
fint of all nodal degrees of freedom constituting this boundary. For a note concerning the
implementation see Remark 15 on p. 106.

This procedure, termed ‘method RF’, is verified in Sec. 4.9.1.5, where the reaction force is
alternatively computed by integration of stresses along the boundary.

4.9.1.5 Verification of reaction forces for an L-shaped axisymmetric domain

This example serves for the verification of the calculation of reaction forces. The reaction forces
extracted from the entries of the internal force vector corresponding to the linear (nodal) shape
functions of the elements along the boundary (‘method RF’) as described in Sec. 4.9.1.4
are compared to the force obtained by integration of the stresses along cutlines located on
the boundaries (‘method Fσ’). The geometric setting of the axisymmetric domain and the
boundary conditions are shown in Fig. 4.17. Displacement controlled pressing at the top and
bottom introduces an inhomogeneous deformation (ubottom = 2.4 = −0.8utop). The setting is

3.0

2.4

6

6

1020

r

z

Figure 4.17: System and boundary conditions for the L-shape example with displacement
control

the same as in Sec. 5.4.1.2, however here St.Venant material (E = 1000, ν = 0) and linearized
kinematics are chosen. These simplifications are justified as we are only interested in comparing
the two approaches to obtain the reaction force.

The polynomial degree is uniformly increased from p = 1 to p = 10 and for each p
the elements in the base mesh Fig. 4.18(a) are uniformly subdivided in n × n sub-elements,
n = 1, 3, 5, 7, 9, 11, 13, 15 (see Fig. 4.18(b)).

Method Fσ: To be able to calculate the reaction force Fσ from the integration of the
stresses along the boundaries of the L-shaped cross section, the stress state is written out
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(a) base h-mesh (b) h-refined mesh, e.g. 15×15

Figure 4.18: Base mesh, where each element is uniformly subdivided into n× n, up to n = 15
elements

using cutlines with 1500 points along the radial extension of the domain. Fig. 4.19 shows
the location of the postprocessing points where the stresses are evaluated and an exemplary
distribution of σzz stresses along these boundaries.
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(b) σzz along these lines for p = 10, mesh 5x 1x1

Figure 4.19: Location of the boundaries where the stress is plotted

These σzz stresses are integrated along the horizontal boundaries using a simple trapezoidal
rule taking the axisymmetric setting (integration over one radian) into account, compare
Fig. 4.20 for the notation. We have a series of points ri with corresponding values fi along
a cutline. The integral is composed of the sum of the intervals I =

∑
i Ii. Over one interval

(ri, ri+1) the mean value is f i = 1
2
(fi + fi+1). The integral over one radian of one interval is

approximated by

Ii =

ri+1∫

ri

f ir dr = f i

1

2

[
r2
]ri+1

ri

= f i

1

2

(
r2
i+1 − r2

i

)
. (4.301)

Remark 15 For the calculation of the reaction force with the method RF those entries of
the element internal force vector fe

int
pertaining to linear, i.e. nodal shape functions must be

added along the boundary in question, compare Sec. 4.9.1.4. The situation at the reentrant
corner warrants a closer look for the computer implementation, compare Fig. 4.21. It is
straightforward in the p-FE code AdhoC to obtain all edges that constitute a boundary with a
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θ
rri ri+1

fi

fi+1

f

Figure 4.20: Notations for trapezoidal integration in a cylindrical coordinate system

certain boundary condition code (bcc). But if we would only take the internal force vector for
the elements containing those edges into account we would solely consider the elements labeled
‘A’ in Fig. 4.21. The elements that only contribute a node to the boundary with the bcc in
question would be omitted. However, as can be seen from the sketch, the elements ‘B’ and
‘C’ also contribute to the global nodal shape function associated with the global node N and
therefore are found and evaluated in the implementation.

A AB

C
N boundary bcc=3

Figure 4.21: Calculation of the reaction force via the internal force vector: elements to be
taken into account for boundary 3

The reaction force along the upper boundary (boundary 5, compare Fig. 4.19(a) for the
numbers of the boundaries) obtained by the method RF and the method Fσ are compared
in Fig. 4.22(a). It can be seen that both methods deliver very good matching results for
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increasing polynomial order and mesh refinement. The same holds true for the reaction force
along boundary 1 (bottom left, not plotted).

Along the boundary 3 (bottom right) both methods differ in about 700 N for p = 10 on
the finest mesh. This relative difference of only about 0.5 % can be explained by the stress-
singularity at the reentrant corner. It poses a challenge to any numerical quadrature and the
trapezoidal rule is known to be the least exact of Newton-Cotes type integration schemes.
The method RF exploits by construction integrals that are used to compute the solution and
inherently computes the reaction force to the best accuracy for a present polynomial order
and mesh. The method Fσ on the other hand relies on post-processed data and the accuracy
can be increased by evaluating the stresses at more and more post-processing points, in this
case the boundary 3 was resolved by 500 integration points. Of course a higher accurate
integration scheme than the trapezoid rule could be used but the limitation that the result
near a singularity depends on the number of integration points remains. When using material
models with internal variables another advantage of the method RF becomes obvious. The
internal force vector feint (4.282) is evaluated over the element domain Ωe and using numerical
integration the stresses are only needed at the Gauss-Legendre points inside the element. If the
stress along a cutline like in the method Fσ need to be evaluated each of the post processing
points has to hold an array of internal variables and the internal variables have to be updated
after each converged step. With the method RF these additional computations are not needed.

The residual force in axial direction, i.e. the sum of the axial reaction forces of boundary
1,3 and 5 should vanish and is therefore an indicator for the quality of the solution. For the
two methods discussed the residual is shown in Fig. 4.23. The first plot shows the absolute
value, i.e. the out-of balance force, the second plot the relative residuum, i.e. the residuum
is divided by the reaction force along the top boundary (boundary 5). Both figures use a
logarithmic scale for the axis of ordinates. The difference induced by the singularity discussed
above leaves its traces here also. As the reaction forces along boundary 1 and 5 coincide for
both methods the results along boundary 3 cause the discrepancy. It can be noted that the
absolute value of the residuum for the method RF is about 10−10 for all computations and the
relative value, i.e. the residuum over the reaction force of the top boundary is even smaller.
As indicated the relative difference for the method Fσ also decreases to less than 1% (0.3%
for p = 10 and the finest mesh).
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Figure 4.22: Comparison of the reaction force obtained by the two methods
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Figure 4.23: Residuum obtained by the two methods: absolute value and normalized
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4.9.2 Application to the investigation of the St.Venant-Kirchhoff
material

The simplest example of a hyperelastic material is the St.Venant-Kirchhoff model, see Re-
mark 3 on p. 17 and (Bonet and Wood, 1997, p. 120), (Wriggers, 2001, pp. 45), (Bathe, 2002,
p. 589), (Holzap fel, 2000, pp. 250). It is a classical nonlinear model for compressible hy-
perelastic materials that is often used for metals. Note that this model is suitable for large
displacements but not for large compressive strains. The reason is a horizontal tangent in the
stress-strain curve, i.e. zero stiffness in the compression domain.

The ability to compute the reaction forces allows to reproduce this instability within a
simple example. In a plain stress analysis a unit square with thickness 1, E = 100, ν = 0 is
fixed in normal direction on all sides except the upper edge. At the upper edge displacement
controlled compression or tension, as well as — in a different investigation — force controlled
compression or tension is applied. We plot the displacement versus the reaction force (or the
applied force in force control). The displacement-controlled analysis gives the typical picture,
Fig. 4.24, of the St.Venant-Kirchhoff material and the two points that prohibit the use of this
model in the finite strain compressible range can be clearly made out. The first issue is that
as the domain is compressed to zero the reaction forces approach zero also — this makes no
physical sense. For a physically reasonable constitutive model the stresses should increase to
infinity if the domain is compressed to zero volume. The second point is the minimum at
uy = 1

3

√
3 − 1 ≈ −0.4226 with a horizontal tangent and vanishing stiffness. It is no problem

to trace the curve in the tension range with force control but in the compression range force
control fails to get over the minimum as can be seen in Fig. 4.25 where the automatic step
control algorithm reduces the increment resulting in a concentration of points at the minimum.
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Figure 4.24: Reaction force vs. deformation for compression and tension
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Chapter 5

Application, adaption, and numerical
studies

After setting out the theoretical foundation in the previous chapters, we now focus on the
application of these concepts and the adaptions or enhancements of the p-version code Ad-
hoC (Düster et al., 2004) necessary to perform the numerical studies reported.

First, a finite strain high order axisymmetric element is treated and the implementation
is verified by a number of benchmarks. Available analytical solutions for follower loading for
hyperelastic material provide the possibility to investigate how displacement based hierarchic
finite elements overcome the volumetric locking problem. Finally, the prepared tools are
applied for the simulation of powder metallurgy. We start with die compaction processes,
move on to cold isostatic pressing and rubber isostatic pressing to end with a validation
experiment. It is pointed out, that for materials with evolving internal variables, determined
by a nonlinear equation system at each integration point, the concept of (displacement) degrees
of freedom must be amended by the number of internal variables present in the structure.

5.1 Finite strain axisymmetric p-version element

A high-order finite strain axisymmetric element was implemented in the p-version code Ad-
hoC to efficiently perform numerical simulations of structures of revolution under axisymmetric
boundary conditions.

The analysis of structures of revolution by the finite element method can be traced back to
the 1960s. As the finite element method was applied in the aerospace industry axisymmetric
elements were developed for rocket analysis. The first journal paper on axisymmetric solid
elements, by E.L. Wilson, appeared in 1965 (Wilson, 1965) and modeled axisymmetric rocket
nozzles and space craft heating shields. There exists an ample literature on axisymmetric
finite element analysis. Zienkiewicz and Taylor for example cover some aspects of rotational
symmetry in (Zienkiewicz and Taylor, 2000b, Ch. 5) and give examples. Szabó and Babuška
(Szabó and Babuška, 1991, Sec. 5.5) state the principle of virtual work and the bilinear form
in cylindrical coordinates.

The mathematical structure is very similar to plain strain or plain stress problems as the
situation can be reduced to a two-dimensional displacement field. Due to symmetry arguments
the two components of displacement in any plane section containing the axis of rotation com-
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pletely define the strain and consequently the state of stress. Fig. 5.1(a) shows such a cross
section in cylindrical coordinates, the displacement components at point P are denoted as
u1 = ur in radial and u2 = uz in axial direction. The displacement in circumferential direction
vanishes by the mentioned symmetry arguments u3 = uθ = 0, however, there exist circum-
ferential strains and stresses. A ‘quadrilateral element’ in the cross section plane corresponds
now to a torus as indicated in the figure. As we use cylindrical coordinates and have only two
independent displacement components ur, uz all volume integrals, e.g. of a function f(ur, uz)
can be reduced to an integral in the r− z plane by performing the circumferential integration
in advance,

∫

V

f dv =

2π∫

θ=0

r2∫

r=r1

z2∫

z=z1

f(ur, uz) dθ rdr dz = 2π

r2∫

r=r1

z2∫

z=z1

f(ur, uz) rdr dz . (5.1)

In view of the p-version the displacement components ur and uz are discretized by the
same high-order shape functions for quadrilaterals introduced in Sec. 4.2.2, using the Ansatz
Eq. (4.1). The virtual work for the plain strain or plain stress setting depends only on the

x1 = r

x2 = z

ur

uz

P

(a) Axisymmetric solid element

x1 = r

x2 = z

ur

r

r + ur

(b) Circumferential strain from ur

Figure 5.1: Axisymmetric settings

in-plane strains, the component normal to the coordinate plane does not contribute as either
the stress or the strain vanishes. This is different in the axisymmetric setting. Each radial
displacement ur also causes circumferential strain as can be explained from Fig. 5.1(b). If
we assume for simplicity a linear strain measure where the strain is defined by the change in
length over the original length, ε = ∆ℓ/ℓ0, a radial displacement ur corresponds to an increase
in circumference of the circle ∆ℓ = 2π(r+ur − r) resulting in the strain induced by a radial
displacement ur as εθ = 2πur/(2πr) = ur/r. Therefore, the circumferential (‘hoop’) strain
and corresponding stress component has to be considered also. Here, and in the fact that the
differential element contains the radius, r dr dz, lies the essential difference in the treatment
of the axisymmetric situation from plain strain/stress case.
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The column vector form of the axisymmetric Green-Lagrange strain tensor is given in
Eq. (4.47), of the gradient tensor Θ in (4.49) and the second Piola-Kirchhoff stress in Eq. (4.60).
The resulting strain displacement matrix B (4.88) and gradient displacement matrix G (4.76)
contain ur/r respectively u1/X1 terms (X1 denotes the radial coordinate of a point in ref-
erence configuration). These terms are undefined for points on the axis of rotation where
r = X1 = 0. If numerical integration using Gauss-Legendre quadrature on quadrilateral ele-
ments is used this case can never happen in the pre-processing stage as the Gaussian points
always are located in the interior of the element and never on the boundary. This is different
if Gauss-Lobatto or Gauss-Radau integration is used, compare 4.6.4 and especially footnote
19 on p. 79.

Remark 16 In the calculation of stresses for elements that touch the axis of rotation one
may encounter during postprocessing the case that the strain is to be evaluated for points on
the axis of rotation, r = 0. As we do not allow pinholes on the axis of rotation the radial
displacement must vanish there, limr→0 ur = 0 . For the small strain case we only have the
first, linear, term of strains given in (4.47). Consequently we can apply the rule of L’Hospital
(Weisstein, 2005) to evaluate the undefined expression

lim
r→0

εθ = lim
r→0

ur

r

′ 0
0

′

= lim
r→0

dur
dr
dr
dr

= lim
r→0

dur

dr
= lim

r→0
εr (5.2)

and may replace the value of εθ by εr on the axis of rotation, e.g. for postprocessing evaluations.
See (Cook et al., 2001, p. 512) for the ‘trick’. For the computer implementation this means,
that instead of the third row of the B-matrix (4.88) the first row is used in the case that r is
smaller than a certain threshold, e.g. 10−15. In the finite strain case this relation does not
hold due to the nonlinear terms in (4.47).

5.2 Follower load for the p-version: implementation and

verification

The theory is derived in Ch. 4 leading to the discretized follower load vector (4.118) for 2D
problems and (4.116) in the axisymmetric case. As the follower load depends on the defor-
mation this nonlinear dependency is linearized in the view of a Newton-Raphson algorithm.
The tangential stiffness matrix for deformation-dependent loading is given for the 2D case in
(4.135) and Eq. (4.139) pertains to the axisymmetric setting. All components assembled form
the linearized global equation system given in Eq. (4.143).

Once the theory in the framework of the p-version with the characteristic distinction of
mapping φ and deformation uh is obtained, the implementation in the p-version code AdhoC is
straightforward. As in the axisymmetric setting all contributions carry the factor 2π we can
omit it, remembering that as a consequence we only integrate over one radian, i.e. 1/2π of
the domain.

5.2.1 Bending strip

The first example uses the St.Venant-Kirchhoff constitutive model. The scope of this con-
stitutive model includes problems with large rotations however only small strains (Wriggers,
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2001, pp. 45). It is well known that in the compressible range this constitutive model ex-
hibits non-physical behavior as the strain-stress curve has a horizontal tangent that can lead
to instability, i.e. a numerical snap-through, compare Sec. 4.9.2. The critical value for one-
dimensional compression with no transversal contraction (ν = 0) is reached when the stretch
λ = x/X reaches a value of 1

3

√
3 ≈ 0.577. For the bending of the strip reported below this

critical value is not reached in the compression region.1

y

(a) Setting for the bending strip example

σu

b

h

2
3

h
2

F

y

(b)
Calculating the equivalent
stress for a given bending
moment

Figure 5.2: Bending strip: System and notation

A thin elastic strip is bent to a circle. This example is discussed for example in the
context of shells in (Betsch, 1996, p. 67) and p-version setting in (Noel and Szabó, 1997) and
(Szabó et al., 2004). The strip is clamped at its left edge, the right edge is subjected to a
linearly distributed normal follower traction, cf. Fig. 5.2(a). This traction is chosen equal to
a bending moment that distorts the strip to a perfect circle. From the Bernoulli beam theory
the curvature ρ is connected to the applied bending moment M , the Young’s modulus E and
the geometrical moment of inertia I by 1/ρ = M/(EI). For a perfect circle formed of a strip
with length ℓ the radius is ρ = ℓ/(2π).

To calculate the normal stress equivalent to the moment that forms the circle we use the
variables introduced in Fig. 5.2(b). The resultant force of the compression region for a width b
is

F = −1

2
σub

h

2
. (5.3)

The total moment of the compression and tension regions relative to the neutral axis

M = 2
2

3

h

2
F = −2

h2b

12
σu (5.4)

1 The stretch in the outer compressed fiber is λ = 2π(r−h/2)
2πr = 1 − h

2r . To ensure that the critical
value of the St.Venant constitutive model is not reached the stretch in the most compressed fiber must fulfill
λ = 1 − h

2r > 1
3

√
3, i.e. h < 2r(1 − 1

3

√
3) ≈ 0.845 r. Expressed in the length of the neutral fiber this means,

h < ℓ
π

1
3

√
3 ≈ 0.269 ℓ. For the thin strip investigated here this condition is satisfied.
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has to be for a perfect circle

M =
EI

ρ
=

2πEI

ℓ
. (5.5)

Using I = bh3/12 and equating (5.4) and (5.5) we arrive at

σu = −2π
h

2

E

ℓ
. (5.6)

Introducing the coordinate −h
2
≤ y ≤ h

2
perpendicular to the neutral axis we obtain the

normal traction equivalent to the moment that bends the strip into a circle

tn(y) = −y 2πE

ℓ
. (5.7)

For the implementation the follower load vector is computed by numerical integration along
the loaded edge. At each integration point the local coordinate −1 ≤ ξ ≤ 1 corresponds to
the coordinate y and we set the load amplitude in Eq. (4.118) to be p = ξσu.

This plain stress example with Young’s modulus E = 1 MPa and Poisson ratio ν = 0 is
discretized with 3 plain stress high-order finite elements of height 0.5 mm (lengths of the three
elements are 10, 45, 45 mm) where the aspect ratio of the largest element is length/height
= 90. The load is applied in 10 equal increments in a total Lagrangian analysis, the final
deformation and four intermediate stages are given in Fig. 5.3. This example illustrates that
in the p-version very large aspect ratios can be used. The mapping concept can handle
large deformations. The edge where the load is applied is rotated 360 degrees relative to its
reference configuration. The computations reported were carried out using the trunk space
with polynomials of order 8.

Figure 5.3: Final Deformation and intermediate stages
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5.2.2 Pressure on a thin circular plate

Consider a circular plate with radius r = 1.0 [mm] and thickness t = 0.1 [mm] clamped at
its outer edge as shown in Fig. 5.4, cf. (Yosibash et al., 2007). A pressure of P = 0.01 MPa
is acting on the upper surface, always perpendicular to the boundary’s current deformation.
We use the compressible Neo-Hookean model (2.68) with the parameters K = 2000 [MPa]
and c10 = 0.5 [MPa]. This example problem demonstrates both a change in the loaded area
at which pressure is applied, as well as the direction of the pressure, in the terminology of
Sec. 3.3.2 we have a body attached follower load. There is no analytical solution available,
so a comparison with the h-version code Abaqus/implicit2 is used in the investigation. We

t = 0.1 mm

L = 1 mm

P = 0.01 MPa

A B

CD

r

z

u
r

=
0 ur = 0

uz = 0

0 0.45 0.90

Figure 5.4: Geometry and dimensions for the circular plate

compute the solution by 10 increments with Abaqus obtaining a deflection of 0.182571 [mm]
at point A and a deflection of 0.178883 [mm] at point D, using 8-noded linear C3D4 elements
(100×10 elements), see Fig. 5.5. The same problem is computed by two different p-FE meshes
with AdhoC, a 6-element and 8-element mesh - see Fig. 5.5. The deflections at the upper and
lower center of the plate obtained by h-FE and p-FE methods are summarized in Tab. 5.1 and
Fig. 5.6.

Table 5.1: Deflections at points A and D for the h-FE and two p-FE meshes

Abaqus 6 el mesh 8 el mesh
DOF (# el. ; # iter.) A D DOF (p) A D DOF (p) A D

315 (2 × 20 ; 57) -0.177739 -0.171180 15 (1) -0.029559 -0.029552 21 (1) -0.029818 -0.029809
1689 (5 × 50; 32) -0.181917 -0.178249 43 (2) -0.175045 -0.170344 59 (2) -0.182626 -0.177907
4143 (8 × 80; 82) -0.182409 -0.178729 71 (3) -0.170592 -0.167631 97 (3) -0.178841 -0.175423

6379 (10 × 100; 71) -0.182571 -0.178839 111 (4) -0.180264 -0.176697 151 (4) -0.181775 -0.178166
163 (5) -0.181809 -0.178141 221 (5) -0.182367 -0.178686
227 (6) -0.182250 -0.178575 307 (6) -0.182550 -0.178866
303 (7) -0.182461 -0.178778 409 (7) -0.182647 -0.178961

This example shows that the p-FEM implementation of finite deformation follower loads in
AdhoC converges to the same result as the Abaqus implementation. Concerning the efficiency,
the p-version solution reaches the same accuracy as the h version with significantly less degrees
of freedom.

2Abaqus is a trademark of ABAQUS, Inc., Rising Sun Mills, Providence, RI, USA.
The help of Zohar Yosibash and Moty Szanto for carrying out the Abaqus computations is acknowledged.
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5.3 On volumetric locking-free behavior of p-version hy-

perelastic finite elements under finite deformations

5.3.1 The locking problem and remedies

The p-version of the finite element method based on the displacement formulation is known
to be locking free beyond a moderate polynomial order for nearly-incompressible problems in
linear elasticity (see (Babuška and Suri, 1992a,b; Suri, 1996) and references therein). Recently,
p-FEMs have been shown to be very efficient for finite-deformation problems (Düster et al.,
2003), and following (Heisserer et al., 2007; Yosibash et al., 2007) we demonstrate that the
locking free property carries over to finite-deformation analyses of nearly incompressible Neo-
Hookean and generalized hyperelastic materials.

The locking problem has accompanied and fueled the development of finite elements since
the sixties, see for example, the synopsis of Zienkiewicz and Taylor (Zienkiewicz and Taylor,
2000a), Hughes (Hughes, 2000) and Belytschko et al. (Belytschko et al., 2000): the perfor-
mance of displacement-based low-order elements is known to deteriorate in bending dominated
problems and for the nearly incompressible case. The term ‘locking’ is used since the mid sev-
enties for situations, where the displacement approximated by a finite element discretization
is far too small when compared to the exact solution of the mathematical problem. Common
to those problems is the presence of constraints (Suri, 1996) where the numerical solution de-
teriorates as a characteristic parameter approaches a critical limit, e.g. for volumetric locking
in linear elasticity as the Poisson ratio ν → 0.5 or in finite deformation compressible elasticity
as the compression modulus K → ∞. For plate-like structures in bending-dominated situa-
tions the critical parameter is the element aspect ratio of the element thickness over a typical
element length t/h → 0. The critical parameter gives the name for the type of locking and
shear, membrane and volumetric locking is distinguished.

First there were heuristic approaches to overcome those defects, in the mean time there exist
mathematical investigations and definitions. It has to be pointed out that locking depends on
the error measure considered: elements might show no locking in energy norm but deteriorate
significantly in the pointwise error of stresses. A heuristic method to quantify locking is the
constraint count proposed by Hughes (Hughes, 2000, p. 209), where the number of equations
is compared to the number of constraints. A sound mathematical definition and assessment of
locking and robustness is given by Babuška and Suri (Babuška and Suri, 1992a,b; Suri, 1996).

Remedies against locking were first developed in the setting of geometrical linear (small
strains) linear elasticity and are still investigated for nonlinear problems. Three basic ap-
proaches can be pointed out: increasing the order of the polynomial approximation (p-FEM),
reduced integration with stabilization and the field of mixed methods. We show here the
locking-free property of displacement based p elements for finite deformations. To provide the
context, some milestones for the other approaches are also mentioned.

Reduced integration and stabilization. An simple yet effective approach is to use
reduced or selective integration, for early references see Doherty et al. (Doherty et al., 1969),
Zienkiewicz et al. (Zienkiewicz et al., 1971) and Hughes et al. (Hughes et al., 1977). The
idea is to eliminate the ‘parasitic’ stresses or strains responsible for locking by a reduced or
selective integration of the corresponding terms in the stiffness matrix. The notion ‘parasitic’
describes strains and stresses that do not exist in the exact solution (Bischoff, 1999, Sec. 6.4).
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For a mathematical explanation see Arnold (Arnold, 1981). The major drawback of reduced
integration is that the resulting stiffness matrices are rank-deficient and un-physical zero-
energy modes introduce oscillatory errors, the so-called ‘hourglass’ effect.

Stabilization procedures were developed by Flanagan, Belytschko and co-workers (Flanagan,
1981), (Belytschko et al., 1986; Belytschko and Tsay, 1983) based on the theoretical insight
provided by (Malkus and Hughes, 1978) and (Koslo and Frazier, 1978), who showed the equiv-
alence of selective integration and mixed methods under certain conditions. The stabilization
is achieved by adding additional stiffness.

Mixed methods. Different from the classical approach, where the displacements field is
the only primary variable, the Hu-Washizu functional introduces strain and stress as further
independent fields. From a mathematical point of view, the constrained minimum-problem
is transformed to a saddle-point problem (Suri, 1996). The direct application of the three-
field Hu-Washizu principle is complicated (Belytschko et al., 2000) and there were attempts
to reduce the number of primary variables. In the hybrid multi-field methods a set of vari-
ables is statically condensed on element level. The ‘assumed strain’ approach is preferred
over the ‘assumed stresses’, as most constitutive models are strain-driven. Two paths are
followed, either to enhance the strain field so parasitic strains are compensated or to elimi-
nate parasitic strain terms. The enhanced assumed strain (EAS) method proposed by Simo
and Rifai (Simo and Rifai, 1990) includes the method of incompatible modes by Wilson et
al. (Wilson et al., 1973) as a special case. Under certain loading conditions the EAS method
shows hour-glassing. Several strategies have been proposed in Bischoff et al. (Bischoff et al.,
1999), Reese, Simo, Wriggers and co-workers (Reese et al., 1999; Reese and Wriggers, 2000;
Simo et al., 1993; Wriggers and Korelc, 1996; Wriggers and Reese, 1996) to overcome this
drawback. The EAS method was generalized to finite deformations by Simo and Amero
(Simo and Armero, 1992).

The other path eliminates parasitic strains and can be summarized under the term ‘B-bar’
approach, cf. Simo and Hughes (Simo and Hughes, 1986). The assumed natural strain (ANS)
method is used by Hughes and Tezduyar (Hughes and Tezduyar, 1981) to avoid shear lock-
ing and was extended to nonlinear problems by Dvorkin and Bathe (Dvorkin and Bathe, 1984).
The discrete strain gap (DSG) method proposed by Bletzinger and co-workers (Bletzinger et al.,
2000; Koschnick, 2004) generalizes the ANS concept.

High-order methods. Since the very beginning when locking was recognized, high-order
methods were proposed to overcome it, see e.g. Irons in 1966 (Irons, 1966). Zienkiewicz and
Taylor (Zienkiewicz and Taylor, 2000b, p. 320) report that high-order elements are applied
with excellent results for incompressible problems (Arnold, 1981; Vogelius, 1983), but would
pose other difficulties and are thus seldom used in practice. In the mean time most diffi-
culties are resolved, see the monographs of Szabó and Babuška (Szabó and Babuška, 1991)
and Schwab (Schwab, 1998). There exist mature commercial high-order finite element codes
like StressCheck (Engineering Software Research & Development, 2006) and a number of aca-
demic codes like AdhoC (Düster et al., 2004) so the theoretical benefits of high-order elements
for locking problems shown by Babuška and Suri (Babuška and Suri, 1992a,b; Suri, 1996) can
be exploited for practical applications. For geometrical linear thin Reissner-Mindlin plates it
was observed that a moderate polynomial degree of p = 4 is sufficient to avoid shear locking,
see for example Holzer et al. (Holzer et al., 1990), Rank et al. (Rank et al., 1998b), Szabó
and Babuška (Szabó and Babuška, 1991). Nübel (Nübel, 2005) demonstrates the robustness
of geometrical linear p-FEM used in nearly incompressible problems also for the deformation
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theory of plasticity.
This section shows that the locking-free properties of p-FEM carry over to geometrical

nonlinear problems of near incompressibility, where hyperelastic constitutive models are used.
We investigate the Neo-Hookean model problem of a sphere under internal pressure where
a semi-analytical solution is provided in (Yosibash et al., 2007). It serves as a benchmark
problem against which p-FEM solutions are compared to demonstrate that an increase in
polynomial order vanquishes locking, and to explain amplification of the errors in the stresses
for near incompressibility.

5.3.2 Thick-walled sphere under internal pressure

The semi-analytical solution obtained in (Yosibash et al., 2007) to an accuracy in the displace-
ments of 10−8 allows to compute the average relative error of the numerical finite element
solution in displacement and stress along a radial cutline. This kind of ‘norm’ is used to study
locking. A first investigation discusses that p-refinement can overcome locking even on very
coarse grids. In a second study the performance with respect to locking of h-refinement with
fixed (moderate) polynomial degree is explored.

5.3.2.1 First investigation: p-extension

The thick-walled sphere under internal pressure is discretized by 2 and 4 p-axisymmetric
elements (see meshes in Fig. 5.7) using blending functions (Sec. 4.3) for an exact representation
of the circular curves. The calculations are carried out with the academic p-finite element code
AdhoC. The main purpose of this example is to demonstrate the convergence characteristics
of p-FEMs for progressively more incompressible materials as defined in (2.68) with c10 =
0.5 MPa. This is realized by raising the compression modulus K = 10k MPa, k = 1, . . . , 5.
The number of degrees of freedom is increased by uniformly incrementing the polynomial order
from 1 to 9 yielding in the 2-element case 6, 16, 26, 40, 58, 80, 106, 136 and 170 degrees of
freedom. Throughout all runs 15 × 15 integration points for each element were used to rule
out any significant effects of the quadrature rule for comparison.

Fig. 5.8 shows the average relative error in displacement ur in percent versus the degrees
of freedom calculated from sampling the data at 101 points along a radial cutline

Avg. error
.
=

1

101

101∑

j=1

∣∣∣∣
uEX

r (Rj)− uFE
r (Rj)

uEX
r (Rj)

∣∣∣∣× 100 (5.8)

on a log-log scale. As reference the semi-analytical solution was evaluated at the sampling
points. The average error in radial stress σrr in percent calculated in the same manner is
shown in Fig. 5.9. Each of the dots corresponds to an increment in the polynomial order
of one. From the plot of the error in displacement it is clearly visible that total locking for
the case of 2 elements and K = 100 000 MPa is present until p = 4, afterwards the solution
converges rapidly and with p = 5 the average error in displacement is already down to less
than 2 %. If 4 elements are used p = 4 corresponds to an error of about 6 % while the error
decreases to 0.1 % for p = 5.

From Fig. 5.9 we can see, that the relative error in stress is amplified as the material
becomes more and more incompressible. This can be readily explained by noting that in
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ϕ

(a) 2 element p-FE mesh (b) 4 element p-FE mesh

Figure 5.7: Axisymmetric meshes with curved elements and symmetry boundary condition.
Meshes are classified by the number of divisions along the arc and in radial direction. The
examples shown here are denoted 1x2 and 1x4.

Eq. (5.9), cf. (Yosibash et al., 2007), governing the radial stresses any error in the placement
r = f(R) or its derivative violating the incompressibility constraint is magnified by K, in our
examples K up to 100 000 MPa for the nearly incompressible case,

σrr = K



−1 +
f 2f ′

R2︸︷︷︸
detF



−
4c10 (f 2 − f ′2R2)

3
(

f2f ′

R2

) 5
3
R2

. (5.9)

The relative error in stress along a radial cutline in Fig. 5.10 shows that this is not only true
in an average sense, but also pointwise.

Remark 17 The expression (5.9) describing the radial stresses contains a term (−1 + detF)
that is multiplied by the compression modulus K. Note the similarity to the penalty function
method for constraint enforcement described in Sec. 4.9.1.3. The penalty parameter κ can be
identified with the compression modulus K and the constraint equation Cc (4.249) corresponds
here to (−1 + det F). Approaching the incompressible case, i.e. when K is large, the volume
must remain constant which is equivalent to the constraint detF = 1. Hence the term in the
brackets must vanish. If small errors in the solution f or its derivative violate this condition,
the error is amplified by large K >> 1 for nearly incompressible materials.

It is interesting to note, that with a moderate number of 170 degrees of freedom (p = 9)
and only 2 elements, even for the nearly incompressible case of K = 100 000 MPa, an average
relative error in ur smaller than 0.000 32 % is obtained, while the large K results in an average
error in the stress σrr of about 6.5 %. However, in the stresses there is rapid convergence for
polynomial order p > 4 as well (although still at a high level). As one would expect from
Eq. (5.9) if the bulk modulus is increased by one magnitude, also the error in stresses grows
approximately one magnitude, this can be verified in Fig. 5.10 and Table 5.2 (compare the
values for p = 9).

Fig. 5.11 shows how the pointwise deviation from incompressibility (detF = 1) is decreas-
ing as the compression modulus grows. Using the incompressible analytical solution given
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Figure 5.8: Average relative error in ur [%]

Table 5.2: Sphere under internal pressure: DOF (polynomial order p) and average relative
errors in percent in ur and σrr for p-FE solutions

DOF (p) Avg. Error (ur) % Avg. Error (ur) % Avg. Error (ur) % Avg. Error (ur) % Avg. Error (ur) %
2 elements K = 10 K = 100 K = 1000 K = 10 000 K = 100 000

6 (1) 6.983280846E+01 9.5269932E+01 9.907157826E+01 9.981561118E+01 9.997844902E+01
16 (2) 1.101921483E+00 3.8662678E+00 9.646173999E+01 9.942663224E+01 9.986553204E+01
26 (3) 2.055641371E+00 7.6180657E+00 1.756328147E+01 9.595459426E+01 9.974518752E+01
40 (4) 1.108291789E-01 4.1478166E-01 2.521988004E+00 6.506828996E+00 8.661859778E+01
58 (5) 1.212597316E-02 1.6560222E-02 3.635192519E-02 2.417838390E-01 1.727937377E+00
80 (6) 1.452696466E-03 2.2684369E-03 1.115035145E-02 7.609565235E-02 2.270126864E-01
106 (7) 1.595114879E-04 2.2172175E-04 1.075499406E-03 9.814558987E-03 5.323631678E-02
136 (8) 1.370535820E-05 1.8897797E-05 2.677895669E-05 2.198140702E-04 1.251180778E-03
170 (9) 1.964790025E-06 2.3470184E-06 3.853879283E-06 2.920482985E-05 3.145745740E-04

DOF (p) Avg. Error (σrr) % Avg. Error (σrr) % Avg. Error (σrr) % Avg. Error (σrr) % Avg. Error (σrr) %
2 elements K = 10 K = 100 K = 1000 K = 10 000 K = 100 000

6 (1) 3.006689337E+02 3.6220284E+02 3.276664797E+02 2.462204001E+02 2.229869114E+02
16 (2) 2.465804728E+02 1.8789976E+03 7.591388343E+02 5.637689561E+02 5.328481905E+02
26 (3) 1.337053119E+02 3.0415066E+02 3.804915473E+03 3.068254348E+03 2.564841507E+03
40 (4) 1.547535621E+01 1.5451258E+02 1.487362855E+03 1.105656722E+04 2.290003269E+04
58 (5) 1.511532528E+00 1.2900826E+01 1.353470545E+02 1.367770978E+03 1.029684008E+04
80 (6) 2.842779005E-01 1.8132423E+00 1.795774934E+01 1.748979049E+02 1.803357358E+03
106 (7) 3.098556237E-02 2.1263489E-01 2.031664676E+00 2.526832023E+01 4.039467240E+02
136 (8) 2.658960948E-03 1.7439388E-02 1.657037181E-01 1.433039045E+00 1.284992373E+01
170 (9) 6.173770274E-04 4.4520136E-03 4.174696015E-02 3.993825467E-01 6.420052203E+00

in the appendix of (Yosibash et al., 2007), we can assess how ‘incompressible’ the solution is
for a given compression modulus K. Notice that incompressible solutions are provided for a
series of problems for which the internal displacement and pressure are computed that sat-
isfy the equilibrium equations. Fig. 5.12 shows the relative difference in internal pressure in
percent between the (compressible) numerical p-finite element solution and the incompress-
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Figure 5.9: Average relative error in the radial stresses σrr [%]

ible reference for a given internal displacement ur(Ri). For the computations with K up to
10 000 MPa a polynomial order p = 9 was sufficient. If the compression modulus reaches
K = 100 000 MPa the oscillations on a very small scale noticeable in Fig. 5.12(b) vanish if p
is raised to 13. In this latter case the plot shows that a relative difference between the com-
pressible semi-analytical solution and the incompressible solution (denoted by the diamond
shape) matches the numerical solution.

Following Suri (Suri, 1996), we can conclude that p-finite elements are locking-free in the
presented finite deformation example as the error curves for displacements and stresses in
Fig. 5.8 and Fig. 5.9 remain parallel and converge for p > 4 also for very high compression
moduli K.
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Figure 5.12: The relative difference η =
∣∣∣P

FE(ui)−P IC(ui)
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∣∣∣× 100 in internal pressure P between

the compressible FE solution (2 element mesh) and the incompressible analytic solution as a
function of the displacement ui = ur(Ri). η decreases as K is increased. Note that in (b) the
semi-analytic compressible solution for K = 100 000 MPa (computed within an accuracy of
10−8 in ui ) has an apparently same small relative difference compared to the incompressible
result as the FE solution for p = 13.
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5.3.2.2 Second investigation: h-extension for fixed p

After the study of p-refinement, we investigate the locking phenomenon of the hyperelastic
sphere under internal pressure concerning h refinement with fixed moderate polynomial degree.
In the following, we only report results for the bulk modulus K = 10 000 MPa. The features
discussed here are representative also for the other values of K that were used in Sec. 5.3.2.1.

The basic plot for the discussion of variants is Fig. 5.13. Here the average error in displace-
ment ur as defined in (5.8) along a radial cutline is plotted in double logarithmic scale versus
the degrees of freedom. The lines with the crosses correspond to h-refinement for different
fixed polynomial degrees p (one element in arc direction and refinement in radial direction, the
sequence of meshes is denoted as 1xN, N = 1, . . . , 10, i.e. 1x1, ... , 1x10). The lines marked
with triangle, circle and square show p-refinement, p = 1, ...9, for a fixed mesh. The higher
convergence rate of the p-extension is evident. For h-refinement and p = 3 locking is overcome
and slow convergence is visible, however the error on the 1x10-mesh is still larger than 10%.

If also divisions in arc direction are used, compare Fig. 5.14, a better convergence is
recovered in the beginning however the curves level off at a small slope and for the 7x9
mesh the error is only little below 0.1%. To clarify this effect look at Fig. 5.15, where an
analogous plot is given for p = 5. Here, there is also an almost horizontal branch visible for
the 1xN-meshes but an increasing slope is recovered if the arc is subdivided.

From this it is apparent, that two effects contribute to this leveling off. First the distortion
of the elements dictates a certain polynomial degree to render a certain accuracy. This can
already be studied in the base plot Fig. 5.13 if the polynomial degree is raised on a certain
mesh, e.g. the 1x4-mesh. Second this leveling off indicates an error, that is induced by the
exact description of the circular arcs by trigonometric functions. For example, with p = 5,
Fig. 5.15, the fading out that is present on the 1xN and 2xN-meshes is overcome with increasing
arc-refinement. This is in line with the growing ability to capture rigid body rotations with
increasing polynomial order of the shape functions when the boundaries of the domain are
described with non-polynomial functions, cf. Sec. 4.3.2, like in the present example.

If an h-refinement for the high polynomial degree p = 7, Fig. 5.16, is carried out a different
type of error comes to light. The geometric error connected to the exact description of the
circular arcs is almost gone, when the arc-direction is divided twice but the curves still level off
and no accuracy higher than about 10−8% can be reached. This is caused by the so called model
error, Sec. 4.4. As the semi-analytic reference solution described in (Yosibash et al., 2007) was
determined to an accuracy in displacements of approximately 10−8 there is a threshold for any
error measure based on this reference solution that can not be gone below. Similar effects are
discussed in (Nübel, 2005, Sec. 6.2.2.2).
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Figure 5.14: K = 10 000 MPa, p = 3: h-refinement – influence of arc-divisions



5.3. p-FEM is locking free for finite strain hyperelasticity 131

 10000

q1x_ p5
q2x_ p5
q3x_ p5
q4x_ p5
q5x_ p5
q7x_ p5

degrees of freedom N

av
g
.

re
la

ti
v
e

er
ro

r
u

r
[%

]

1e-01

1e-02

1e-03

1e-04

1e-05

1e-06

1e-07

1e-08

1e+00

1e+01

1e+02

1x9

4x9

7x9

7
x
1

a
rc

d
iv

is
io

n

radial division

10 100 1000

..
.

..
.

Figure 5.15: K = 10 000 MPa, p = 5: h-refinement – geometric error
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Figure 5.16: K = 10 000 MPa, p = 7: h-refinement – model error
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5.4 Simulation of metal powder die compaction and cold

isostatic pressing

5.4.1 Die compaction examples

5.4.1.1 Cylinder

A cylinder made of copper powder with initial relative density (see Eq. (2.32)) of ρrel0 =
ρR/ρ0 = 0.42 is compacted under displacement control. The reference density ρ0 is the density
of solid copper while ρR is the density of the powder body in the initial state. Exploiting
the radial symmetry we use axisymmetric elements, see Fig. 5.17 for the system and the
boundary conditions. This example is analogous to the die compaction experiments that were
conducted to determine the parameters of the constitutive model in (Bier et al., 2007). Due
to the homogenous deformation, i.e. the deformation gradient is the same for all points of the
body, F( ~X, t) = F(t) cf. (Haupt, 2000, p. 26), one element with linear Ansatz functions is
sufficient. The current relative density ρrel is calculated according to (2.32).

r

z

u

(1,1)

Figure 5.17: System and boundary conditions for the die-compaction example with displace-
ment control

This example serves mainly to verify the proper implementation of the stress algorithm
including unloading and reloading. At the end of a partial run the current state is written
to the mesh file storing the element displacement vectors and the internal variables at all
integration points. In the restart procedure these quantities are read and used e.g. to compute
the tangential stiffness matrix for the next loading process. This restart feature is necessary
for more complex processes as described in Sec. 5.4.4.1. Fig. 5.18 displays the evolution of
the axial and radial Cauchy stress vs. the relative density. It can be seen that the reloading
follows exactly the elastic unloading path. As the sample is clamped in radial direction, an
unloading in axial direction decreases the axial stress σz to zero while there remain radial
stresses due to the boundary conditions.
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5.4.1.2 L-shaped domain

The second example is a rotationally symmetric structure with L-shaped cross section. Axi-
symmetric elements are used to discretize the system shown in Fig. 5.19. Displacement
controlled pressing at the top and bottom introduces an inhomogeneous deformation (final
ubottom = 2.4 = −0.8utop), cf. Fig. 5.20. The reentrant corner allows to study the influence of
a singularity.

3.0

2.4

6

6

1020

r

z

Figure 5.19: System and boundary conditions for the L-shape example with displacement
control

The deformed body is depicted in Fig. 5.20 and the distribution of the relative density is
shown in Fig. 5.21.

It is well known for linear problems with corner singularities how to construct a suitable
mesh for the p-version of the finite element method (Szabó and Babuška, 1991). The same
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Figure 5.20: Inhomogeneous deformation, shown is |~u|. The background mesh depicts the
undeformed configuration.

mesh layout is applied for this geometric and material nonlinear problem. We compare the
p-version approach where the polynomial degree of the hierarchic Ansatz functions is raised on
a fixed mesh graded once towards the reentrant corner with a geometric progression factor of
0.15 shown in Fig 5.22(a) (referred as ‘graded mesh’) to meshes with an uniform subdivision
of the base elements and fixed low polynomial degree as shown in Fig 5.22(b). This uniform
h-refinement subdivides each of the 5 elements of the base mesh in up to 41×41 sub-elements
(‘h-meshes’), Fig. 5.22(c) shows an example where each base element is divided in 15×15
elements.

Elasto-plastic (η = 0) and inelastic computations (η > 0) were carried out for both mesh
layouts to study the convergence in terms of stresses, see Tab 2.4. As a constitutive model
with internal variables is employed, the stresses are initially only available at the Gauss points.
To be able to extract the stress at the point r = 5, z = 9 for all used meshes without further
processing, an odd number of Gauss-Legendre points is chosen resulting in an integration order
in each spatial direction of p+ 2 for odd polynomial orders p and p+ 3 for even p. Details are
given when the different extension strategies are discussed.

The number of degrees of freedom is increased on the graded mesh by raising the polynomial
degree of the Ansatz functions, while on the h-meshes uniform subdivision of elements was
done and a moderate polynomial degree p = 2 and p = 3 was used.

For elastoplasticity (η = 0) we found that the h-refinement approach comes to the limit
when the mesh is very fine. For p = 2 and an integration order of p+3 = 5 the stress algorithm
is not able to find a solution to the local nonlinear equation system for some integration points
very close to the singularity. The global step size is consequently reduced over and over to
a level that rendered calculations infeasible. This point was reached when during the h-
refinement process3 each base element was divided in 35×35 subelements, corresponding to
6125 elements and about 49.000 degrees of freedom with p = 2.

Therefore, the viscoplastic formulation was chosen with a small viscosity, η = 1. The
effecting regularization is investigated in (Hartmann and Bier, 2008) and it is demonstrated

3For the elasto plastic h-refinement with η = 0 each of the five base elements is subdivided in n×n elements,
with n = {1, 3, 5, 7, 9, 11, 13, 15, 25, 27, 29, 31, 33, 35}
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Figure 5.21: Spatial distribution of the relative density mapped on the reference configuration.
The mesh is refined once towards the singularity with the geometric progression factor 0.15.
The polynomial degree of the shape functions is p = 9 on all elements.

there that a small viscosity did not alter the resulting stresses significantly. To rule out any
effects of rate-dependence and to compare only the different spatial discretization strategies
the following calculations were performed with a fixed small step size of 1/150 of the total
displacement and the order of Gauss integration set to 5 for the h-refinement4 with p = 2 and
p = 3. For p-refinement on the geometrically graded mesh, the Gauss order is set to p+ 3 for
even p, e.g. if p = 4 we use an integration order of 7, and p+ 4 for odd polynomial degrees of
the Ansatz functions.

We investigate the convergence of the axial Cauchy stress σzz at the material point r =
5, z = 9. The stresses are plotted vs. the logarithm of the degrees of freedom in Fig. 5.23
comparing the different discretization strategies. The same data is shown in Fig. 5.24, where
the abscissa shows the CPU-time in logarithmic scale. If instead of the computation time the
total number of unknowns, i.e. displacement degrees of freedom plus internal variables (seven
at each Gauss point) is plotted, Fig. 5.25, it is apparent that an investment in the polynomial
order pays off. Because for the h-refinement with p = 2 and p = 3 in both cases an integration
order of 5 is used, those curves are almost parallel as the number of internal variables that
dominate the total number of unknowns is the same, the minimal shift is due to the different
number of displacement degrees of freedom. The step-like descent of the p-extension is caused
by the construction of the integration orders to be p+ 4 for odd polynomial orders and p+ 3
for even p. Consequently, both p = 5 and p = 6 are integrated with order 9, for example.

From these plots it is apparent that for this nonlinear example the p-extension on the
geometrically refined mesh needs significantly less degrees of freedom than the uniform h-

4For the viscoplastic h-refinement with η = 1 each base element was subdivided in n×n elements, for p = 2
and p = 3 the same subdivisions were used with n = {1, 3, 5, 7, 9, 11, 13, 15, 25, 29, 35, 41}
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(a) geometric graded mesh (b) base h-mesh

(c) h-refined mesh, e.g. 15×15

Figure 5.22: The two classes of meshes employed. A geometrically graded mesh towards the
singularity is used for p-extension while for h-extension with a fixed polynomial degree each
element of the base h-mesh is uniformly subdivided in up to 41×41 elements.

refinement to achieve the same accuracy. It may be argued, whether it is fair to compare a
p-version on a geometrically graded mesh with a h-version computation on a uniformly refined
mesh. It is true, that a priori information where to refine is exploited for the geometric mesh.
Therefore, we also compare in terms of computation time. The computational cost to set
up the stiffness matrix of an element with a high polynomial degree is higher but due to the
better rate of convergence of the p-extension this investment pays off also for finite strain
applications with strongly nonlinear material like in this example.

The global equilibrium was checked by computing the out of balance force. To this end
the reaction forces in axial direction along all boundary edges were added. This procedure
is applied and described in detail in Sec. 4.9.1.5 for the same geometric setting however with
a linear constitutive model. The absolute residuum is below 10−5 N and the relative value
(residuum over reaction force along top edge) for the reported runs is well below 10−8.
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Figure 5.23: Convergence of Cauchy-stress σzz at point r=5, z=9 for the h- and p-refinement
strategies in terms of the displacement degrees of freedom.
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Figure 5.24: Convergence of Cauchy-stress σzz at point r=5, z=9 for the h- and p-refinement
strategies vs. the CPU-time of the computation.
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5.4.2 Cold isostatic pressing

To show the performance of an implicit p-version approach for a ‘smooth’ finite deformation
problem the cold isostatic pressing of a ball made of copper powder is modeled. Exploiting
the rotational symmetry only a quarter in the longitudinal plane of the sphere is meshed
with axisymmetric elements. The pressure acts on the current surface, hence follower loading
needs to be applied. The global implicit formulation using the MLNA, see Sec. 4.7.2, to
solve the nonlinear equation system has the benefit that after an initial densification of the
powder the stepsize can be increased resulting in short computation times compared to an
explicit approach. Tab. 5.3 reports the computation time, number of displacement degrees
of freedom and total number of unknowns for raising the polynomial degree p of the Ansatz
functions on the fixed 7 element mesh. As for the elasto-plastic case (η = 0) 8 unknowns
have to be determined at each quadrature point from a local nonlinear equation system, the
number of displacement degrees of freedom must be augmented by all the internal variables
of the complete structure to obtain the total number of unknowns for a meaningful criterion
of the problem size as given in the last column of Tab. 5.3. It must be emphasized, that the
stress algorithm is given in a three-dimensional formulation. An adaption to the axisymmetric
case, where only 5 internal variables are required, has not been carried out. To obtain accurate
results for the coarse mesh shown in Fig. 5.26 the circular arc is described analytically with the
blending function method as introduced in Sec. 4.3. We show the deformation after springback
when the pressure of 500 MPa is released.

Table 5.3: Cold isostatic pressing of a sphere with 7 elements. The order of Gauss-Legendre
integration is chosen p+ 1 in each spatial direction

p CPU time [s] dof no. of GPs total no. of unknowns
3 2.39 50 112 946
4 3.18 128 175 1528
5 5.37 188 252 2204
6 8.87 262 343 3006
7 14.67 350 448 3934
8 24.13 452 567 4988
9 38.68 568 700 6168

10 59.38 698 847 7474

As the displacement |~u| along the arc should be constant, the influence of integration order
and polynomial degree on the displacement can be investigated in the following. Compare
Sec. 4.6.4 for a general discussion of considerations concerning numerical quadrature. In
Fig. 5.27 and Fig. 5.28 it can be seen, that the influence of the order of Gaussian integration is
very small once a sufficient order greater or equal p+ 1 is chosen. Relevant is the polynomial
degree as can be seen in Fig. 5.29 and Fig. 5.30 for higher Ansatz orders and Gauss order of
p+1. The four arcs that are visible in most plots stem from the fact that the circular boundary
is composed of four elements. The displacement field on each element is approximated by
Ansatz functions of a certain degree. As only C0 continuity over the element boundaries is
prescribed, we see the peaks where two elements meet. For the chosen mesh with 7 elements,
Fig. 5.31 shows on a logarithmic scale the deviation | |~u| − |~uref| | for p = 3, 4, 5, 6 along the
circular arc after compression. The reference value |~uref| = 1.16706829500301 is the mean
value of 800 sample points calculated from an overkill solution with 93 elements and p = 10.
From Fig. 5.31 we see an increase in the polynomial order of the shape functions corresponds
to an increase in the accuracy of the representation of the circular arc of at least one order.
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(a)
Displacement |~u| = 1.1671 along the arc for an applied pressure of
500 MPa. The relative density is 0.88753 throughout the domain.

(b)
Remaining displacement |~u| = 1.1364 along the arc after unloading
(springback). The relative density after springback is 0.86631.

Figure 5.26: Cold isostatic pressing of a sphere, here 7 elements, p = 3. Note the very precise
approximation of the circular arc on the coarse mesh due to the blending function method.
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Figure 5.27: Cold isostatic pressing of a sphere, here 7 elements, p = 1, 2, 3. The displacement
|~u| at 201 points along the circular arc is shown. The plots reveal that the influence of the
Gauss-order is small compared to the influence of the Ansatz-order p.
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Figure 5.28: Cold isostatic pressing of a sphere, here 7 elements, p = 2, 3. The displacement
|~u| at 201 points along the circular arc is shown. The plots reveal that the influence of the
Gauss-order is small compared to the influence of the Ansatz-order p.
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Figure 5.29: Cold isostatic pressing of a sphere, here 7 elements, p = 1− 6. The displacement
|~u| at 201 points along the circular arc is shown. Gauss order p+ 1
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Figure 5.30: Cold isostatic pressing of a sphere, here 7 elements, p = 4− 6. The displacement
|~u| at 201 points along the circular arc is shown. Gauss order p+ 1



5.4. Simulating powder metallurgy 145

1.0e-14

1.0e-12

1.0e-10

1.0e-08

1.0e-06

1.0e-04

1.0e-02

1.0e+00

 0  50  100  150  200  250

p=1
p=2
p=3
p=4
p=5
p=6

|u
−
u

re
f|

points along the circular arc

Figure 5.31: Influence of the polynomial degree on the deviation |~u−~uref| in the displacement
along the circular arc after compaction with 500 MPa. Gauss order p+ 1



146 5. Application, adaption, and numerical studies

5.4.3 Rubber isostatic pressing

Rubber isostatic pressing (RIP) is a process equivalent to cold isostatic pressing (CIP) that
initially was developed for the densification of permanent magnet powders (Sagawa et al.,
2000) that are sintered afterwards. The benefit of an isotropic densification for creating
magnets is that an initial orientation of the powder given by a pulsed magnetic field is not
disturbed during pressing. Pulsed fields can be much stronger than a stationary field. RIP is
now also applied for other materials like titanium alloys, ceramics and ordinary metal powders
and a wide variety of shapes can be produced, cf. Fig. 5.32. For a comparison of CIP and
RIP consult (Yang et al., 2004) and the references therein.

Figure 5.32: Green compacts of titanium powder produced by RIP, (Sagawa et al., 2000)

The powder is filled in a cavity of a massive rubber mold that in turn is pressed by a
punch in a die-compaction machine. For industrial applications the most important know
how concerns the automated filling of the powder with a high initial density. During the
compaction the powder is formed in an almost isotropic deformation generated in the rubber
mold itself. The principle is similar to CIP, however, as it does not use fluid pressure it is
simpler and safer. The isotropy or anisotropy of the deformation of the powder is influenced by
the size of the cavity and the thickness of the rubber mold in lateral direction. A greater wall
thickness results in a larger lateral deformation of the powder with respect to the shrinkage
along the press-axis (Sagawa et al., 2000). This can be studied in Fig. 5.35(a) where ur is
plotted.

The examples in this section just apply the idea of RIP and give a first qualitative insight.
For quantitative predictions a contact formulation allowing separation of the compacted pow-
der and the surrounding rubber during spring back would be needed.
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5.4.3.1 Spherical cavity

In this numerical example a steel die under displacement control is pressed on a rubber mold
with a spherical cavity filled with powder. The axisymmetric domain is characterized by three
materials, the steel die on the top and the hyperelastic material embedding the spherical cavity
of powder. The hyperelastic mold is characterized by the polyconvex strain energy function
proposed by Hartmann and Neff (Hartmann and Neff, 2003), see Eqs. (2.64) – (2.66), with
the parameters α = 0.00367 MPa, c10 = 0.1788 MPa, c01 = 0.1958 MPa and a compression
modulus of K = 5000 MPa. The bottom and right boundaries are fixed in normal direction.
The rubber transforms the vertical deformation of the die to an almost isostatic pressure on
the embedded powder as can be seen by the displacement vectors in Fig. 5.33(a). Fig. 5.33(b)
shows that the compacted powder has almost homogenous relative density.

(a)
Deformation trajectories. The powder domain
is displayed in red, the steel die is the dark blue
regions on top and the rubber mold is indicated
in light blue.

(b)
The resulting relative density in the compacted
powder is almost homogenous.

Figure 5.33: Rubber isostatic pressing of a sphere

5.4.3.2 Tube for vacuum circuit breakers

This example is inspired by a rubber mold and corresponding ceramic tube of a vacuum circuit
breaker5 CIP’ed from Al2O3, Fig. 5.34(a). Here we investigate a similar setting applying RIP
and the constitutive model for copper powder.

5Ceramitec trade fair 2006 in Munich
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In the initial configuration the domain is 70 mm in radial and 160 mm in axial direction.
The dimensions of the powder region in radial direction are maximum 50 mm and minimum
20 mm. The circular arcs have a radius of 10 mm. Along the top boundary a normal displace-
ment in negative axial direction of 40 mm is prescribed.

A hyperelastic mold characterized by a polyconvex strain energy function, cf. Sec. 5.4.3.1
for the parameters, defines the cavity for the powder. The circular arcs are exactly described
using the blending function concept, cf. Sec. 4.3. In the axisymmetric analysis all boundaries
are fixed in normal direction, only along the top boundary a displacement controlled defor-
mation in axial direction is prescribed. Perfect bonding is assumed at the interface between
powder and mold. For the analysis a polynomial degree p = 8 is set in all elements. The
number of displacement degrees of freedom is 18 238, the CPU time was 5489.64 seconds,
i.e. about 1.5 hours on an Opteron processor with 2.4 GHz. The undeformed mesh and the
deformed configuration with corresponding relative density can be seen in Fig. 5.34(b).

(a)
Specimen made of Al2O3 together with its rub-
ber mold

(b)
Initial and deformed configuration. The result-
ing relative density in the compacted powder
is almost homogenous. The blue domain des-
ignates the elastomer where no density is plot-
ted.

Figure 5.34: Rubber isostatic pressing of an insulator

Assessing the isotropy of the deformation we see in Fig. 5.35 almost perfect horizontal
iso-lines of the vertical deformation uz in the powder domain. The effect mentioned on p. 146
that a wider layer of rubber mold in lateral direction induces a larger lateral compaction of the
powder can be studied from the iso-lines of ur in those parts where the rubber cone advances
into the powder region. Apart from these regions the vertical ur lines are almost parallel
indicating an almost isotropic compaction.
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(a) Radial deformation ur (b) Axial deformation uz

Figure 5.35: Rubber isostatic pressing of an insulator

Fig. 5.36 shows the displacement increment (normalized to the total applied displacement)
and accumulated displacement vs. the steps. It is clearly visible that in the beginning small
steps are necessary and later as the material consolidates the stepsize can be increased. The
individual steps needed under 20 global iterations for convergence.
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5.4.4 Experimental validation of a complex process

5.4.4.1 CIP of a powder cylinder with a rigid spherical inset

This example models a ‘complex’ experiment where uniaxial die compaction is followed by
cold isostatic pressing (CIP). The experimental setup and simulation with an explicit h-version
code is described in detail in (Szanto et al., 2007). Here the calculations are done applying
the p-version of the FEM. A steel sphere is embedded in a cylinder of copper powder that is
compressed. This inset causes an inhomogeneous deformation in the body. The final body is
shown in Fig. 5.37. Fixing the position of the sphere embedded in the powder inside the CIP
chamber is very difficult. Therefore, as a first step uniaxial pre-compaction of the specimen
with the sphere inside is done. This brittle body is carefully transferred to the CIP unit where
the isostatic pressure is applied.

hmin

hmax

dmin

dmax

Figure 5.37: Cut specimen after the experiment. The minimum and maximum diameter and
height are available for comparison with the simulation.

5.4.4.2 Modeling the process

The procedure of the experiment suggests to split the modeling of the process into four stages
(Fig. 5.38).
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(1) die compaction (2) springback I

(3) CIP (4) springback II

Figure 5.38: Schematic representation of the four stages of the process. Displacement perpen-
dicular to the blue lines is clamped or prescribed as in (1). Dotted lines represent the shape
at the start of the stage, solid lines at the end.

1. Die compaction with displacement control. The experimental data is compiled in the
paper of (Szanto et al., 2007). The initial height reported there corresponds to a relative
density of 0.376 for the copper domain. As the material parameters for the constitutive
model were determined for powder with initial relative density of 0.42, the initial height
corresponding to this relative density was calculated by purely geometrical considerations
from the powder mass, the known volume of the steel sphere, density of copper and the
dimensions of the cylindrical die. For the numerical simulation we use the resulting
initial height of 29.55 mm.

After die compaction the body has an average height of 23.482 mm. A corresponding
deformation of 6.068 mm is prescribed to model this stage. The rotational symmetry
allows to use axisymmetric elements and as the origin is approximately placed in the
center of the sphere only a quarter of the longitudinal plane has to be modeled setting
symmetry boundary conditions as shown in Fig. 5.39. Hence the initial height of the
computational domain is 14.775 mm and the radius of the body is 10.015 mm. A defor-
mation uz = −3.034 mm is prescribed at the upper edge. The left and right edges are
fixed in radial direction (ur = 0), while the bottom edge is clamped in axial direction
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(uz = 0). Calculations showed that the rigid steel sphere is numerically equivalent to a
clamped circular arc because it is much stiffer than the copper powder. Consequently,
the calculations reported here were carried out with the arc clamped, i.e. along the arc
ur = 0, uz = 0.

2. Springback I: The final state of the die compaction is the starting configuration for the
springback stage where only symmetry boundary conditions are set and the reaction
forces induced by the prescribed displacements of stage 1 are reduced to zero.

3. CIP: The body from stage 2 is subjected to isostatic pressure of 300 MPa acting on the
current deformed configuration (follower loading) of the outer boundary.

4. Springback II: Also after CIP there is springback where the load is taken away. What
remains is the overall “plastic” (remaining) deformation.

For the simulation a coarse mesh, as shown in Fig. 5.40, is used. Again the curved boundary
is described by the blending function method. Counting from the arc in the lower left corner
we distinguish three layers of elements where different polynomial degrees may be set as shown
in Fig. 5.40.

The numerical simulation follows the four stages explained above. The state at the end
of each run (displacement vectors of all elements, internal variables at all Gauss points) is
the starting configuration for the following stage with the new boundary conditions. The
rate-independent version of the constitutive model (η = 0) was used for comparison with the
calculations of (Szanto et al., 2007). Different polynomial degree distributions were investi-
gated. Comparing the numerically obtained dimensions to the experimental values we find
that the difference is below 3.5 % and the moderate computation time as indicated in Tab. 5.5
allows to apply the simulation to gain insight into the process. Taking into account that no fric-
tion was modeled this is a very good agreement. It is interesting to note that in (Szanto et al.,
2007) the same constitutive model is used within an explicit h-version code. The dimensions
after the process match the experimental results very well, however, the calculation times were
in the magnitude of days.

In our implicit approach it proved vital to implement an automatic control of the stepsize.
Since the load-deflection slope at the beginning of the loading process is very flat, small loading
steps have to be used. On the other hand, as the material gets denser the stepsize can be
increased. The deformed body and the distribution of the relative density at the end of the
process is shown in Fig. 5.41. The relative density along a cutline from the center of the sphere
to the top right corner (in reference configuration) in Fig. 5.42 allows to rate the quality of
the approximation. As the relative density depends on the determinant of the deformation
gradient, i.e. on derivatives of the displacement, there may be discontinuities over element
boundaries as the displacement field is only C0 continuous there. These discontinuities are an
indicator for the accuracy – analogous to arguments used in error estimators based on recovery
methods, see for example (Rank and Zienkiewicz, 1987). For the uniform polynomial degree
pattern p = 4 − 4 − 4, i.e. p = 4 in each of the three layers of elements shown in Fig. 5.40,
a discontinuity is visible that is smoothed if the polynomial degree for the second and third
layer of elements is raised using p = 4− 6− 8 indicating an improvement. If the polynomial
order is raised to p = 4− 8− 10 an almost smooth curve is obtained.



Table 5.4: Experimental data for the embedded sphere example (sphere diameter 11.89 mm
and mass 6.8749 g)

Experiment total mass (g) initial dimensions after die compaction after CIP
only powder D H D (mm) H (mm) Hmin Hmax Dmin Dmax

1 38.48 20.03 32.66 20.1 23.44 21.18 21.28 17.35 17.58
31.6051

2 38.4692 20.03 33.21 20.1 23.47 21.13 21.31 17.38 17.6
31.5943

3 38.442 20.03 32.53 20.1 23.5 21.05 21.32 17.33 17.64
31.5671

4 38.44 20.03 32.58 20.1 23.5 21.07 21.31 17.33 17.62
31.5651

5 38.447 20.03 32.5 20.1 23.5 21.03 21.3 17.35 17.63
31.5721

mean value 31.58074 20.030 32.696 20.100 23.482 21.092 21.304 17.348 17.614
std. dev. 0.01791 0.000 0.294 0.000 0.027 0.062 0.015 0.020 0.024

Table 5.5: Specimen dimensions (mm) after the entire process. Comparison of experiment
(Szanto et al., 2007) and FE results. The CPU time includes all four stages of the process.
The number in brackets is the relative difference between the experiment and the FE result
in %.

Dimensions after release of pressure Hmin Hmax Dmin Dmax

Experiment (mean value) 21.092 21.304 17.348 17.614
standard deviation 0.062 0.015 0.020 0.024
numerical results
run dof int.vars.

P
CPU [s]

p=2 29 882 37.88 20.4437 (3.07%) 20.9088 (1.86%) 17.9495 (3.47%) 18.0834 (2.66%)
p=3 143 1568 78.32 20.4379 (3.10%) 20.8741 (2.02%) 17.9430 (3.43%) 18.0965 (2.74%)
p=4 228 2450 150.15 20.4369 (3.11%) 20.8811 (1.99%) 17.9398 (3.41%) 18.1071 (2.80%)
p=5 341 3528 278.69 20.4386 (3.10%) 20.8852 (1.97%) 17.9375 (3.40%) 18.1132 (2.83%)
p=2-4-6 330 3010 295.31 20.4394 (3.09%) 20.8929 (1.93%) 17.9456 (3.44%) 18.0862 (2.68%)
p=2-6-8 576 5026 837.61 20.4399 (3.09%) 20.8912 (1.94%) 17.9453 (3.44%) 18.0864 (2.68%)
p=3-6-8 584 5222 878.79 20.4426 (3.08%) 20.8876 (1.95%) 17.9418 (3.42%) 18.0968 (2.74%)
p=4-6-8 600 5474 944.73 20.4391 (3.10%) 20.8867 (1.96%) 17.9392 (3.41%) 18.1057 (2.79%)
p=4-8-10 926 8050 2514.59 20.4398 (3.09%) 20.8877 (1.95%) 17.9388 (3.41%) 18.1054 (2.79%)
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Figure 5.39: Cross section of the initial geometry in cylindrical coordinates and the reduced
axisymmetric system with symmetry boundary conditions. The geometric dimensions are
a = 10.015 mm (2a = 20.03 mm), b = 14.775 mm (2b = 29.55 mm) and the steel sphere has a
diameter of 11.89 mm (radius r = 5.945 mm). The z-axis coincides with the axis of rotation.

Figure 5.40: Coarse p-version mesh. The colors group the three areas where different Ansatz
orders may be set. For example p=4-8-10 codes for p = 4 in the region adjacent to the arc,
p = 8 in the next layer and p = 10 in the remaining elements.



(a) Undeformed mesh and deformation |~u| (b)
Spatial distribution of the relative density in the powder
(p = 5 in all elements)

Figure 5.41: Displacement and distribution of relative density after the entire process
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Figure 5.42: Convergence of the relative density along a cutline from the center of the arc to
the top right corner (in reference configuration) for different polynomial patterns



Chapter 6

Conclusion

A constitutive model for metal powder compaction using a unique and convex single surface
yield function is successfully incorporated in the implicit hierarchic high-order finite element
code AdhoC . This setup is used to model large strain material nonlinear problems occurring
in powder compaction problems. The Multi-Level Newton Algorithm (MLNA) is applied
with a local stress algorithm (to update the internal variables) that provides the consistent
tangent operator for the global Newton iteration. For material models with internal variables a
significant computational effort must be spent to solve the local nonlinear equations describing
the evolution of the internal variables. Therefore, besides the number of displacement degrees
of freedom also the number of internal variables, for example 7 at each Gauss point, must be
taken into account when judging the complexity of a simulation.

For the cold isostatic pressing process a deformation dependent load formulation (‘follower
loading’) is derived and implemented in the p-FEM context. The implementation is verified
against (semi)analytical hyperelastic solutions. These solutions also provide the possibility to
investigate the robustness of the p-version with respect to finite strain volumetric locking for
the first time. In this study additionally the effect of super-parametric mapping is visible that
is examined also separately for large rigid body rotations.

Besides these points, reaction forces for hierarchic high order elements where the Ansatz
functions do not form a partition of unity are introduced and a heuristic adaptive step-control
mechanism is applied for the simulation of metal powder compaction. Starting with uniaxial
die compaction experiments analogous to those used to calibrate the constitutive model, the
restart procedure is verified. Next, cold isostatic pressing of metal powder is investigated
numerically and a related process, rubber isostatic pressing is examined to explain how a die
compaction of a thick rubber mold with a cavity for the powder results in an almost isostatic
pressure like CIP. Finally, a ‘complex’ validation experiment where uniaxial die compaction is
followed by cold isostatic pressing demonstrates that implicit high order elements are promising
candidates for efficient and validated solutions for nonlinear problems.

For possible further investigations one could think of two directions. The first is to apply
even more advanced finite strain constitutive models in the p-FEM context. The second line
is to improve the performance of the numerical method.

• A natural line for future research is to move from cold isostatic pressing to hot isostatic
pressing (HIP). Then, the constitutive model has to take the temperature into account,
too. Also one could think of an additional electric field controlling the temperature in

157
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the sample.

• Hierarchy is a powerful concept, not only for data organization, but also for adaptive
control.

– Hierarchical integration schemes can be used to control the error of numerical in-
tegration of the element matrices and vectors.

– For the time integration hierarchical schemes like the Runge-Kutta method can be
used to derive error indicators adaptively controlling the step size.

– Analogous principles may be exploited for the spatial discretization were an adap-
tive hp method (modifying the mesh and polynomial degrees of the elements) or pq
method (adapting the polynomial degrees in different spatial directions for a given
mesh) is driven by error indicators computed from models of different hierarchy-
levels.

– The natural support of the hierarchic p-version for validation and verification can
be combined with stochastic considerations to assess the level of confidence in the
results based on uncertain input data.

In summery, hierarchic high order finite element methods together with hierarchic concepts
provide powerful tools to address many nonlinear problems providing inherent verification
properties.
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Appendix B

List of symbols

Most of the symbols used in this work are listed with a short description below. For each
symbol a reference is given to the page where it is introduced or used in a manner clarifying
its meaning. For an overview of the concepts of the symbolism compare the notes on p. v .

B.1 Scalars

α material parameter 18

δij Kronecker delta: δij = 1 if i = j, else 0 44

κ penalty parameter 101

λ material parameter 17

µ material parameter 17

ρ density in current configuration 12

ρR density in reference configuration 12

ρrel relative density in current configuration 12

ρRrel relative density in reference configuration 12

ρ0 initial relative density at time t = 0 12

A surface of a body 26

Aud
part of the surface where Dirichlet (displacement) b.c. are prescribed 26

Atd part of the surface where Neumann (force) b.c. are prescribed 26

cij material parameter in hyperelastic strain energy functions w for the
incompressible part

17

dv, dV differential volume element in reference and current configuration 9

e specific internal energy 13

F yield function 21

I1 first invariant of a tensor 20
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J2 second invariant of the deviator of a tensor 20

I
C
, II

C
invariants of the unimodular right Cauchy-Green tensor C 18

J determinant of the deformation gradient F 9

K bulk modulus, material parameter in hyperelastic strain energy func-
tions for the compressible behavior

18

ndof total number of degrees of freedom 40

ne number of elements Ωe 40

ngr number of elements in column matrix Θh of Grad~u 62

ni number of integration points of the whole structure 82

ne
i number of integration points in element Ωe 82

nξ number of integration points in element Ωe in local ξ direction 82

nη number of integration points in element Ωe in local η direction 82

nζ number of integration points in element Ωe in local ζ direction 82

nem number of element modes = ‘elemental’ degrees of freedom in p-FEM 77

nmodes(x) number of modes in x-direction 40

nmodes(y) number of modes in y-direction 40

nmodes(z) number of modes in z-direction 40

nsd number of space, i.e. physical dimensions 25

nst number of strains/stresses in column matrix representation 61

nu number of unknown degrees of freedom 66

np number of prescribed degrees of freedom 66

nb number of global bubble (internal) degrees of freedom 91

nei number of local interface degrees of freedom 91

neb number of local bubble degrees of freedom 91

p polynomial degree of Ansatz functions 49

p pressure 32

r heat supply 13

t time

v, V volume in current and reference configuration 12

V ∈ R
nsd original domain 40

∂V ∈ R
nsd−1boundary of the original domain 40

B.2 Shape functions and Ansatz spaces

Spξ,pη

ts (Ωq
st) trunk space 46

Spξ,pη

ps (Ωq
st) tensor product space 46

Ni(ξ) ∈ R, global Ansatz function defined on Ω 40
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N e
i (ξ) ∈ R, local Ansatz function on element Ωe 40

Np
i (ξ) ∈ R, Lagrangian shape functions 44

Ni(ξ) ∈ R, hierarchical shape functions (integrated Legendre poly.s) 45

φj(ξ) ∈ R, integrated Legendre polynomials 45

Lj(ξ) ∈ R, Legendre polynomials 45

B.3 Matrices and column matrices

Θ ∈ R
ngr, discretized displacement gradient vector Θh 66

Φ̃
h ∈ R

nst, vector form of the consecutive relationship 64

ξjkl Gauss point (jkl) 82

A matrix in the general DAE-system 16

Bℓ ∈ R
nst×ndof, linear strain-displacement matrix 67

Bnℓ(β) ∈ R
nst×ndof, nonlinear strain-displacement matrix 67

B∗e ∈ R
nst×nem , local element strain-displacement matrix for Ee 77

Be ∈ R
nst×nem , local element strain-displacement matrix for δEe and ∆Ee 77

C̃
h

L ∈ R
nst×nst, matrix form of the consistent tangent operator C̃ operating

on the reference configuration
64

E h ∈ R
nst, column matrix form of the Green-Lagrange strain tensor E 61

Ee ∈ R
nst, element Green-Lagrange strain column matrix 77

F ∈ R
nu+nQ, DAE system consisting of the discretized variational prin-

ciple and the evolution equations
83

feint ∈ R
nmodes, internal force vector belonging to element Ωe 100

fint ∈ R
np , part of the global internal force vector belonging to prescribed

displacement dof.
100

fint ∈ R
nu , part of the global internal force vector belonging to unknown

displacement dof.
100

gi ∈ R
nsd , base vectors of convective coordinates 70

g ∈ R
ndof, discretized variational principle with contributions on Gauss

point level
82

G ∈ R
ngr×ndof , gradient displacement matrix 66

Gi ∈ R
ngr×nsd , one block of the gradient displacement matrix 66

H ∈ R
nst×ngr , incidence matrix for the calculation of E h 62

I unit matrix 16

In ∈ R
n, unit matrix 99

k ∈ R
nsd , body force vector 70

K ∈ R
ndof×ndof, global tangential stiffness matrix 78

ke
C ∈ R

nem×nem , element material stiffness matrix 78

ke
G ∈ R

nem×nem , element geometric stiffness matrix 78
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ke
F ∈ R

nem×nem , element follower load stiffness matrix 78

MΘ ∈ R
nst×ngr , matrix holding entries of Θh for the calculation of Eh 62

N ∈ R
nsd×ndof, Matrix of shape functions 40

Ne ∈ R
nsd×nem matrix of shape functions of element Ωe 77

q column matrix holding all internal variables of the complete structure 15

qe column matrix of the assembled internal variables of all Gauss points
in element Ωe

82

qe(jkl) column matrix of the internal variables at Gauss point (ijk) in element
Ωe

82

q column matrix of the assembled internal variables of all Gauss points
in a structure

82

R ∈ R
nu+nQ, time discretized DAE-system 84

r̃ differential equation for the evolution of internal variables q 15

tR ∈ R
nsd , traction vector related to reference configuration 70

T̃
h ∈ R

nst, column matrix representation of the 2PK stress tensor T̃ 64
̂̃T ∈ R

ngr×ngr , stores components of T̃ in special order 72

uh ∈ R
nsd , discretized displacement field of the whole domain 40

ue ∈ R
nem vector of element modal displacements 77

u ∈ R
ndof, vector of unknown coefficients 40

ua ∈ R
nsd , column matrix of all modal displacements 66

u ∈ R
nu , vector of unknown degrees of freedom 66

u ∈ R
np , vector of prescribed degrees of freedom 66

X ∈ R
nsd , local position vector ∈ Oel in reference configuration 77

Z e
a ∈ R

nem×ndof, incidence matrix for displacements dofs (global to local) 77

Z e ∈ R
nem×nu , incidence matrix of the free displacement dofs 77

Z
e ∈ R

nem×np , incidence matrix of the prescribed displacement dofs 77

Z e(jkl)
q ∈ R

nq×nQ, incidence matrix for the internal variables of a Gauss point 82

Z e
i ∈ R

nem×nu , incidence matrix for the global interface dofs to local in-
terface dofs

91

Z e
b ∈ R

nem×nb , incidence matrix for the global bubbles dofs to local bubble
modes

91

Z ei ∈ R
nei×nem , incidence matrix for all local modes to local interface dofs 91

Z eb ∈ R
neb×nem , incidence matrix for all local modes to local bubble dofs 91

B.4 Geometry: points, vectors, elements and mapping

κ(t, ~ξ) motion of point P 8
~ξ vector holding the coordinates of point P 7

φ(~ξ) mapping from standard element Ωq
st to reference configuration 9
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ϕ(~ξ) mapping from standard element Ωq
st to current configuration 9

~χ
R
( ~X, t) motion with respect to reference configuration 8

Ω ∈ R
nsd discretized domain approximating V 40

∂Ω ∈ R
nsd−1 boundary of the discretized domain Ω 40

Ωe ∈ R
nsd , discretized element — a part of Ω 40

Ωq
st ∈ R

nsd , standard element 46

Ωξ ∈ R
nsd−1, re-parametrization of the loaded surface 34

d~a, d ~A oriented differential surface element in reference and current configu-
ration

9

~e ∈ R
nsd , error vector, difference between exact mathematical ~uex and

FE solution ~u h

59

~ed ∈ R
nsd unit vector in direction d, d = 1, ..., nsd 25

~gk tangent vectors to the isolines of coordinates in the current configura-
tion

9

~G L gradient vectors to the coordinate surfaces in the reference configura-
tion

9

~k volume load per unit volume 25

~n surface normal in current configuration 13

~nR surface normal in reference configuration 26

P material point of body B 7

~q heat flux 13

~tR surface traction vector in reference configuration 25

~t surface traction vector in spatial configuration 25

~u ∈ R
nsd continuous displacement field 9

~uex ∈ R
nsd , exact solution of the displacement 52

~urbm ∈ R
nsd , rigid body mode 54

~u h ∈ R
nsd , FE solution ~u h of the displacement 59

δ~u variation of the displacement field ~u 25

d~x, d ~X differential line element in reference and current configuration 9

X label of of point P in reference configuration 7

x label of of point P in current configuration 7
~X position vector of point X in reference configuration 8

~x position vector of point x in current configuration 8

B.5 Tensors

If not otherwise noted, all tensors listed here are of second order.

(•∗) material (pulled back) tensor 11
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(•∗) spatial (pushed forward) tensor 11

Γ̂ strain tensor operating on the intermediate configuration 19

Γ̂e elastic strain tensor operating on the intermediate configuration 19

Γ̂v inelastic strain tensor operating on the intermediate configuration 19

Φ̃ constitutive relation yielding the Second Piola-Kirchhoff stress tensor 15

A Almansi strain tensor 10

B left Cauchy-Green strain tensor 10

B unimodular left C.-G. tensor, volume preserving part of B 18

C right Cauchy-Green strain tensor 10

C unimodular right C.-G. tensor, volume preserving part of C 18

Ĉe elastic right Cauchy-Green strain tensor 20

Cv inelastic right Cauchy-Green strain tensor 20

C̃ fourth order elasticity tensor operating on the reference configuration 17

D rate of deformation tensor, strain rate (symmetric) 10

Dv inelastic strain rate 20

E Cauchy-Green strain tensor 10

δE variation of the Cauchy-Green strain tensor 27

F deformation gradient 9

F̂ volume changing (volumetric) part of the deformation gradient 9

F volume preserving (isochoric) part of the deformation gradient 9

F̂e elastic part of the deformation gradient 10

Fv inelastic part of the deformation gradient 10

G deformation gradient 27

I second order unit tensor 17

L spatial velocity gradient 10

Lv inelastic velocity gradient 20

R rotation tensor 9

S weighted Cauchy or Kirchhoff stress 14

T Cauchy stress tensor 13

T̃ Second Piola-Kirchhoff stress tensor 14

T̂ stress in the intermediate configuration 20

TR First Piola-Kirchhoff stress tensor 13

P̂ Mandel stress tensor 20

U material stretch tensor 9

V spatial stretch tensor 9

W spin tensor (antimetric) 10
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B.6 Work, potential energy & strain energy functions

π virtual work / weak form 26

πLa virtual work with constraints incorporated by Lagrangian multipliers 97

πPen virtual work with constraints incorporated by penalty method 101

πint internal virtual work 27

πext external virtual work 27

Π potential energy 28

Πint internal potential energy 28

Πext external potential energy 28

Ψ strain energy density function in terms of C 16

Ψ̂ strain energy density function in terms of F 16

Ψ̃ strain energy density function in terms of E 16

U strain energy density function, volume changing part 18

w, ŵ strain energy density function, volume preserving part 18

B.7 Operators

A ·B = a j
i b

i
j inner product of two second order tensors 17

DuF(x0)[u] Gâteaux or directional derivative 29

δA(x, δu) first variation of A(x) in direction δu 30

AT transpose of tensor A 11

A−1 inverse of tensor A 11

A−T transpose of the inverse of tensor A, i.e. (A−1)
T

11

AD deviator of tensor A, i.e. A− 1/3(trA)I 20

〈a〉 Macauley-brackets, i.e. 〈a〉 = 0 for a ≤ 0 and 〈a〉 = a for a > 0 20

det determinant of a tensor 9

div divergence with respect to current configuration 14

Div divergence with respect to reference configuration 14

grad gradient with respect to current configuration 10

Grad gradient with respect to reference configuration 9

L[F(x)]x=x0 linear part of a function F at x0 30

sym(A) symmetric part of the tensor A 27

trA = a k
k trace of a tensor 17
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Düster, A., Bröker, H., and Rank, E. (2001). The p-version of the finite element method
for three-dimensional curved thin walled structures. International Journal for Numerical
Methods in Engineering, 52:673–703.
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and Olivera, E. d. A., editors, Accuracy estimates and adaptive refinements in finite element
computations, pages 25–59. John Wiley & Sons.

Zienkiewicz, O. and Taylor, R. (1989). The Finite Element Method – Basic Formulations and
Linear Problems, volume 1. McGraw-Hill Book Company, 4th edition.

Zienkiewicz, O. and Taylor, R. (2000a). The Finite Element Method – Solid Mechanics,
volume 2. Butterworth-Heinemann, 5th edition.

Zienkiewicz, O. and Taylor, R. (2000b). The Finite Element Method – The Basis, volume 1.
Butterworth-Heinemann, 5th edition.

Zienkiewicz, O., Taylor, R., Sherwin, S., and Peiro, J. (2003). On discontinuous Galerkin
methods. International Journal for Numerical Methods in Engineering, 58:1119–1148.

Zienkiewicz, O., Taylor, R., and Too, J. (1971). Reduced integration technique in general
analysis of plates and shells. International Journal for Numerical Methods in Engineering,
3:275–290.


	Notation
	Introduction
	The process of cold isostatic pressing (CIP)
	Outline of the thesis

	Basic continuum mechanics
	Kinematics
	Balance principles and stress tensors
	Constitutive models
	Hyperelasticity
	Powder plasticity


	Variational formulation
	Variational formulation
	Linearization
	Linearization of the variational equation
	Directional derivative of internal virtual work
	Follower load: directional derivative of external virtual work


	Discretization
	Spatial discretization by the finite element method
	Hierarchical shape functions for high-order finite elements
	The one-dimensional hierarchic basis
	Hierarchic shape functions for quadrilaterals
	Inter-element continuity

	Mapping
	Mapping concepts
	Representation of rigid body modes

	Error control
	A note on temporal discretization
	Discretized linearized variational form
	Column matrix representation of the tensorial quantities
	Strain tensor and related quantities
	Stress tensor and related quantities

	Spatial discretization of the linearized weak form
	Element level quantities and their assembly
	Numerical integration
	DAE system and time discretization

	Solution of the global system
	Newton-Raphson method (NRM)
	Multi-level Newton algorithm (MLNA)
	Evaluation on element level

	Elimination of interior degrees of freedom
	Reaction Forces
	Computing reaction forces
	Motivation
	Lagrange multiplier method for the DAE-system
	Penalty function method
	Reaction force in the context of the p-version
	Verification of reaction forces

	Application to the investigation of the St.Venant-Kirchhoff material


	Application, adaption, and numerical studies
	Finite strain axisymmetric p-version element
	Follower load for the p-version: implementation and verification
	Bending strip
	Pressure on a thin circular plate

	p-FEM is locking free for finite strain hyperelasticity
	The locking problem and remedies
	Thick-walled sphere under internal pressure
	First investigation: p-extension
	Second investigation: h-extension for fixed p


	Simulating powder metallurgy
	Die compaction examples
	Cylinder
	L-shaped domain

	Cold isostatic pressing
	Rubber isostatic pressing
	Spherical cavity
	Tube for vacuum circuit breakers

	Experimental validation of a complex process
	CIP of a powder cylinder with a rigid spherical inset
	Modeling the process



	Conclusion
	List of publications originating from the GIF collaboration
	List of symbols
	Scalars
	Shape functions and Ansatz spaces
	Matrices and column matrices
	Geometry: points, vectors, elements and mapping
	Tensors
	Work, potential energy & strain energy functions
	Operators

	Bibliography

