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Summary

This work presents an extensive theoretical investigation of the strusfttine nucleon within the stan-
dard model of elementary particle physics. In particular, the long rangkilootions to a number of
various form factors parametrizing the interactions of the nucleon with atreteagnetic probe are
calculated. The theoretical framework for those calculations is chiralifiiettion theory, the exact low
energy limit of Quantum Chromo Dynamics, which describes such long remggeibutions in terms

of a pion-cloud. In this theory, a nonrelativistic leading one loop ordiutation of the form factors

parametrizing the vector transition of a nucleon to its lowest lying resonémed,, a covariant calcu-

lation of the isovector and isoscalar vector form factors of the nucleaextto leading one loop order
and a covariant calculation of the isoscalar and isovector generalizéal Yerm factors of the nucleon
at leading one loop order are performed. In order to perform consistep calculations in the covariant
formulation of chiral perturbation theory an appropriate renormalizatiberse is defined in this work.

All theoretical predictions are compared to phenomenology and resutislttice QCD simulations.

These comparisons allow for a determination of the low energy constante tigbry. Furthermore,
the possibility of chiral extrapolation, i.e. the extrapolation of lattice data fromulations at large

pion masses down to the small physical pion mass is studied in detail. Statisticall @s \wystematic

uncertainties are estimated for all results throughout this work.

Zusammenfassung

Die vorliegenden Arbeit liefert eine umfassende theoretische Untaragather Struktur des Nukleons
innerhalb des Standardmodells der Elementarteilchenphysik. Es werdenglieichweitigen Beitrdge
zu einer Vielzahl von Formfaktoren, die die Wechselwirkung des Nuldeuit einer elektromagnetis-
chen Probe parametrisieren berechnet. Der theoretische RahmensiiiRitiehnungen ist die chirale
Storungstheorie, der exakte Niederenergielimes der Quantenchroamoittyrin der diese langreich-
weitigen Beitrage durch eine Pionwolke beschrieben werden. Eine rathtigische Rechnungen
fiir die Formfaktoren, die den Ubergang des Nukleons in seinen niesligsmgeregten Zustand (das
A) parametrisieren bis zur fihrenden Einschleifenordnung, eine ilmoNarRechnung der isosvekto-
riellen und isoskalaren Vektorformfaktoren des Nukleons bis zur tiéi¢tienden Einschleifenordnung
und eine kovariante Rechnung der isosvektoriellen und isoskalarafigezneinerten Vektorformfak-
toren des Nukleons bis zur fihrenden Einschleifenordnung wendesemtiert. Um wiederspruchsfreie
Rechnungen in der kovarianten Formulierung der chiralen Stérungihs&oher zu stellen wird ein
entsprechendes Renormierungsschema fir diese Theorie definiert.

Die theoretischen Vorhersagen werden mit Ergebnissen der Phenlogiersowie von Gittersimula-
tionen verglichen. Diese Vergleiche erméglichen eine Bestimmung der Niextgiekonstanten. Des
Weiteren wird die Mdglichkeit chiraler Extrapolationen, d.h. ExtrapolatichamErgebnisse von Gitter-
simulationen bei groRen Pionmassen hin zur kleinen, physikalischen Piesnaasfuhrlich untersucht.
Systematische und statistische Unsicherheiten werden fir alle ErgebieisseArbeit abgeschatzt.
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Introduction

Out of the three fundamental interactions of the standard model of elem@atidicle physics, it is the strong
interaction which governs the dynamics of nucleons. In this work we appkffective field theory (EFT)
which is the low energy limit of Quantum Chromo Dynamics (QCD) which, in turthésfundamental theory
for strong interactions. We access the spacial shape of the nucle@idoyating various form factors within
the effective theory. In particular we present a nonrelativistic anabfsiise form factors which parametrize
the transition of a nucleon to its lowest lying resonance Ati#232), a covariant calculation of the isoscalar
and isovector vector form factors of the nucleon and a discussion gtheralized vector form factors of the
nucleon in the same framework. Our calculations systematically extend psestadies of all three types of
form factors. To achieve this, we also introduce a consistent renormatizzcheme for the covariant formula-
tion of the EFT.

The EFT calculation provides us with momentum transfer and quark massdisydunctions for the observ-
ables under discussion. Throughout this work, we study the depemdéour results on both variables with a
focus on the quark mass dependence. This variable is of particularsinséree QCD in discretized space-time
and finite volumes with quark masses far above the physical ones is nultlyesadaed by lattice simulations.
To make contact between this theoretical scenario and the physical Wodd,extrapolations are thus neces-
sary: the extrapolation of lattice results to the continuum, to the infinite volume asmdt), physical quark
masses. All three extrapolations can be performed in the EFT.

In this work, we focus on the extrapolation of lattice results towards theldimig, i.e. through the physical
point to the limit of massless quarks. This extrapolation is at present regeise to the limitation of the cal-
culational power available for lattice collaborations. The calculational ¢ostattice simulations scale with a
negative power of the quark massg, where the lattice community frequently gives empirical formulae for the
computational costs which scale Iilg%— with 2 < n < 7, depending on the action used. Present day lattice

simulations for nucleon form factors are therefore performed at guagses corresponding to a pion mass
well abovemn, = 300 MeV.

At this point one faces one of the central questions of this field, namelyo Wich values of the pion mass is
the effective field theory applicable? Due to its nature as a low energy limit #osytlis based on an expansion
in the pion mass and thus the assumption that this mass is small. The EFT is thioefotdeo break down at
some “large” value of the pion mass. We believe that this question is worth a imginésscated answer than
just giving some number for the pion mass which is somehow considered taybenidh respect to the scales
of the theory. We therefore start our analyses without any bias withiddgahis question but hope to find
an answer in this work by comparing the results of the theory to data atadiffguark masses and estimating
uncertainties arising due to higher order terms in the low energy expanbich hvave not yet been included.
However, there is not one universal value for the pion mass from vdri¢he low energy expansion cannot lead
to trustworthy results anymore. One rather expects the accuracy with Wigictue quark mass dependence is
described by the EFT to decrease with increasing quark mass wherdubefthe pion mass up to which the
theory can provide significant statements about the quark mass depertbpends on the observable under
consideration, the particular version of the EFT and on the order of éilgsas. In this work, we present real
chiral extrapolations, i.e. predictions for the physical values from a aweddattice plus EFT analysis for all
those observables for which the quark mass dependence is foundditabéyrdescribed by our EFT results up
to the quark masses of presently available lattice results.
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6 INTRODUCTION

Not only is the EFT a suitable tool for the interpretation of lattice results buhiatso profit from the data pro-

vided by simulations on the lattice. The EFT results presented in this work captiéna number of coupling

constants which cannot be determined from the results of experiments g@eVvelr, by fitting our results to

the quark mass (and momentum transfer) dependence of lattice data, adeate give numerical estimates
for all coupling constants occurring in the calculations of this work.

This work is organized in five chapters plus this introduction, a summaryandappendices. Each chapter is
written such that it can be read independently of all other chapters.

The first chapter gives an introduction to the field theoretical framewowkhich all calculations presented in
this work are performed. Special attention is put on those issues to whialilveentribute in the subsequent
chapters (like e.g. power-counting, renormalization and the possibleimtlattensor sources).

In chapter 2 we present an analysis of the electromagnefidransition current in the framework of the non-
relativistic “small scale expansion” (SSE) to leading one loop order. Wiglisthe momentum dependence of
the magnetic dipole- and the electric- and Coulomb quadrupole transition éator$ up to momentum trans-
fers of Q? < 0.25 GeV2. Particular emphasis is put on the identification of the role of chiral dynamittgsin
transition. Our analysis indicates that there is indeed nontrivial momentuemdepce in the two quadrupole
form factors at smal)? < 0.15 GeV? arising from long distance pion physics, leading for example to neg-
ative squared radii in the (real parts of the) quadrupole transition factors. We compare our results with
the EMRQ?) and CMR(Q?) multipole-ratios from pion-electroproduction experiments and find a reahéek
agreement up to four-momentum transferg)3f~ 0.3 GeV2. Finally, we discuss the quark mass dependence
of the three transition form factors @’ = 0, identifying rapid changes in the (real parts of the) quadrupole
transition moments as a function of the pion massnigr < 200 MeV, which arise again from long distance
pion dynamics. Our findings indicate that dipole extrapolation methods ¢iyrtesed in lattice QCD analyses
of baryon form factors are not applicable for the chiral extrapolatfaN & quadrupole transition form factors.
Chapter 3 gives a detailed discussion of general properties of realdidated in covariant Baryon Chiral Per-
turbation Theory (BChPT) followed by a catalogue of requirements whiekemand to be fulfilled by a con-
sistent renormalization scheme for this theory. Driven by the fact that abthe renormalization schemes for
covariant BChPT discussed in literature fulfills all of our conditions, wiindea new renormalization scheme
— which we namdR — by a specific modification of the infrared regularization scheme ofeate [BL99].
The second part of this chapter is concerned with a calculation of the rh#ss mucleon in this framework
and a discussion of the differences between different renormalizatfeenses on this example. Finally, we
apply covariant BChPT up to next-to-leading one loop order for chithpolations of lattice results for the
mass of the nucleon, leading to a very satisfying result. Systematic uncegaifities approach are discussed
and are found to be moderate over a quite large range of quark massegve/ number of arguments, why
dependable chiral extrapolations starting from the domain of presenilgilatedattice data necessarily have to
rely on thelR renormalization technique. These arguments are supported by thieestiggolation functions
of all observables discussed in this work. Appendix B collects the nagetechnicalities concerning the new
renormalization scheme. All integral- and corresponding regulator furctieeded for the covariant calcula-
tions in this work and a proof for the central equation of chapter 3 aenglvere.

A calculation of the isovector- and isoscalar Dirac- and Pauli form faabthe nucleon up to next-to-leading
one loop order in BChPT using thR renormalization technique is presented in chapter 4. We analyse both
the momentum transfer- and quark mass dependence of our results imtaet @ data from experiments as
well as from lattice simulations. We give estimates for the numerical valuesaybpdlaring coupling constants
and explore the possibility of chiral extrapolations with these results, in@ualiiscussion of systematic and
statistical errors. In contrast to previous studies of chiral extrapolétioctions for those form factors, we
do not only rely on a dipole parametrization in order to extrapolate the lattioggdsom finite values of the
momentum transfer to the forward limit but in addition perform the first fit offdT result to lattice data at
different quark masses and different values for the momentum tradiséetly. In the isovector sector we find
a very good description of the corresponding lattice data and are ablesta geasonable prediction for both
nucleon form factors at the physical point. Systematic and statisticakareragain found to be small over a



INTRODUCTION 7

large range of pion masses. In the isoscalar sector, the analysis is trdwyblerger systematic uncertainties
and the absence of lattice data at small pion masses. Full analytic expse&sitime vector amplitudes and
form factors are given in appendix C.

In chapter 5 we present a discussion of the first moments of the paritytsperalized Parton Distributions
(GPDs) in a nucleon corresponding to six generalized vector formriadide evaluate these fundamental prop-
erties of baryon structure at low energies, utilizing the methods of covartwral perturbation theory in the
baryon sector. Our analysis is performed at leading one loop order iPBCpredicting both the momentum
and the quark mass dependence for the three generalized isovectbresndeneralized isoscalar form factors
which are currently under investigation in lattice QCD analyses of baryaotate. We also study the limit
of vanishing four-momentum transfer where the GPD-moments reduce tcethEnewn moments of Parton
Distribution Functions (PDFs). For the isovector momgnt,_, our BChPT calculation predicts a new mech-
anism for chiral curvature, connecting the high values for this momentaiyiound in lattice QCD studies
for large quark masses with the smaller value known from phenomenolaggwise, we analyse the quark
mass dependence of the isoscalar moments in the forward limit and extracntindution of quarks to the
total spin of the nucleon. We close chapter 5 with a first glance at the momelgpemdence of the isoscalar
C-form factor of the nucleon. Throughout, we again give estimates éogsyhtematic uncertainties of the EFT
calculation. The technicalities of the calculation of the generalized formriaate collected in appendix D.

A recent review of the field this work wants to contribute to can be foundfareace [PPV06].
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Chapter 1

Basic Concepts of Chiral Effective Field
Theory

In this chapter we introduce a few basics of Chiral Effective Field ThéGhEFT). It is the aim of this work

to describe strongly interacting systems at low energies. In the following areftre identify the relevant
degrees of freedom of those systems and give a description of theinigs Furthermore, we provide the
necessary tools foperturbativefield theoretical calculations based on the effective Lagrangean. The mo
specific parts of the theory needed for the calculation of the obsendibtasssed in this work are presented in
the pertinent chapters.

The basic ideas of this theory have been developed in reference [Midiité references [Ber07, BM06, Sch03]
give recent reviews and introductions.

1.1 Construction Principles for the Effective Low Energy Lagrangean

Within the standard model of elementary particle physics the strong interacti@sdsibed by a non-Abelian
SU(3) gauge theory [FGML73] called Quantum Chromo Dynamics (QCBe fhree interacting charges of
this theory are called colours. Fermions of six different flavours, ttegla are known to carry this charge.
The masses of three of them lie well above the mass of the nucleon and siieréthevant for processes at
low energies. (Furthermore we restrict ourselves to the sector of twaeeaniark flavours: “up” and “down”
quarks.) In QCD the force between coloured objects is mediated by a amttetrof massless gauge bosons, the
gluons. Due to the fact that interactions among these gauge bosons aedatica non-Abelian gauge theory,
the coupling constant of QCD is small in hard processes but becomesifiagfé momenta are mediated
between the quarks. At low energies this coupling constant is of ordeoioaeven larger, making the standard
calculational tool of quantum field theories —i.e. an expansion of amplitugeswars of the coupling constant
—unusable.

Furthermore, no coloured objects can be observed at low energiesjulinks are confined, i.e. they only occur
in colour-neutral bound states, so-called hadrons. At present tves ypphadrons have been unambiguously
observed: mesons (quark-antiquark states) and baryons (thage-gfates). It is the spectrum of hadrons
which provides the key to a description of strong interaction at low enengiesms of effective degrees of
freedom: While there are three pseudoscalar meson states at a masstaf4@bigleV (the pions) the next
heavier hadron (the eta) carries a mass of abditMeV [Y T06]. Thus the dynamics of a strongly interacting
system at low energies is — to a large extent — determined by pion dynamiosediently, an effective field
theory for QCD at low energies can be constructed as a theory of pislhghysics beyond the effects of
dynamical pions is then encoded in the coupling constants of this theorye feelexact low energy limit of
strong interactions, the effective Lagrangean for the pions mustrpesatt symmetries of the original QCD
Lagrangean. It must therefore be invariant under parity- (P),gehaonjugation- (C) and time reversal (T)
transformations separately. A fourth symmetry leading to very importanttredms on the effective field

9



10 CHAPTER 1. BASIC CONCEPTS OF CHIRAL EFFECTIVE FIELD THEORY

theory is the chiral symmetry of the QCD Lagrangean in the limit of massles&gjuar the left- and right

handed components of the quark fields (the components with spin parallehéirparallel with respect to the
momentum) decouple in this limit and therefore the QCD Lagrangean is invanadet independent global
unitary rotations of the left- and right handed fields in flavour space. ymnsmetry is explicitly broken by

the small but nonzero quark masses. Accordingly, the constructionigdarfor the effective theory (called

Chiral Perturbation Theory — ChPT) is the demand that the Lagrangeamas@nt under chiral rotations and
to subsequently account for the finite quark masses by treating them adl pestusbation to this system.

We start the construction of the effective Lagrangean by choosinglanear representation for the pion-field

operatordJ = exp ( ) wherer? with i = 1,2, 3 are the Pauli matrices acting in isospin spaceare

the (Klein-Gordon) pion-field operators (with quantum numhg&fs= 0~) and F, is the pion decay constant.
The transformation property of thig field under chiral rotations is found if it is coupled into the original
QCD Lagrangean and invariance under chiral rotations is still demanidedrder to be invariant under P-
transformations, the effective Lagrangean must consist of terms withrewabers ot/ fields. To make those
terms chirally symmetric, the trace in isospin-space has to be taken. Togédthdahe constraint that the
Lagrangean has to be a Lorentz-scalar we find that all structures kihith§GL84]

Tr(UUY), Tr(8,U0*UT), Tr (0,U9,UT) - Tr (8,UB,UT), ... (1.1)

and thus an infinite number of terms is allowed in the chiral Lagrangean. élatve prefactors of those
terms are not constrained by chiral symmetry but are free parameters thietbry, parametrizing physics not
accounted for explicitly in this Lagrangean. It is thus apparent that ttmgeling constants — which have units
of inverse powers of mass — scale with the mass of the lowest lying resonahdéncluded in the effective
Lagrangean. Together with the observation that a classification of allmmed in the effective Lagrangean is
possible with respect to the number of derivatives they do contain, we aitra consistent hierarchy of terms:
Terms withn derivatives scale a% wherek; is a typical pion momentum antd,. is the mass of an arbitrary
resonance not explicitly included in the theory. For sufficiently small pion nrmbane perturbative expansion
of the pion Lagrangean is thus possible.

The next step in our introduction to this theory is to repeat the above stepebitrary vectow,, (J© = 17),
axial a,, (17), scalars (07) and pseudoscalar(0~) external fields (in chapter 5 we introduce external tensor
fields in exactly the same fashion). In the following we denote the momentactyithose fields withQ).
The leading part of the Lagrangean, i.e. the parts with minimal number ofatigds (note that the first term
in eq.(1.1) is just an unobservable constant) then reads

F2
£? = —=Tr [V, oVt +XTU+UTX] , (1.2)

where we have chosen the prefactor to equal one fourth of the pi@y @enstant squared and defined the
covariant derivativé/ ,U = 9,U — i (v, + a,) U + iU (v, — a,) and the fieldy = 2B,(s + ip) containing a
free parameteB,. Wlth the help of this construction it is easy to introduce the finite quark madseh reak
the chiral symmetry explicitly into the effective Lagrangean: One just hasetttify s = diag(m.,, m4) where
m,, is the mass of the up quarky, the one of the down quark and finds (with all other external sources set
Z€ero)

P = %c‘hwi@“wi — Bo(my + ma)m'n' + O(7Y), (1.3)

which is the Klein-Gordon equation for pions of mas$ = By(m,, + my). This so called GOR relation was
already derived by Gell-Mann, Oakes and Renner from currenbedd&MORG68].

Defining the field strength tensd?,ﬁ,/R =0, FL/R -0, FL/R i[F), L/R l,L/R] with £, = v, £ a, we
have now collected all independent buﬂdmg blocks aIIowed in the construofldjne pion Lagrangean. We
decide to introduce a hierarchy of terms (i.e. terms with increasing “chiralrdior”) in this Lagrangean

by taking the standard choice which is to assign chiral dimension one to theusésV U, v, anda, and

L/R _
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chiral dimension two to the structuresp andF,f,,/R. Note that from this definition we find that the pion mass

has chiral dimension one. The contributions of terms with chiral dimensgimna matrix element carry an

additional prefactop? with p € {M%, ’]\%} due to this definition and are thus numerically suppressed if there
is a sufficiently large mass gap betweg@randm. on one side and/, on the other side.

Having discussed the hierarchy of terms in the Lagrangean we now tudigowssion of the hierarchy of loop
diagrams in this theory. From the definitionl@fwe find that every pion-vertex of this theory brings a fa%er

In order to arrive at a dimensionless coupling, this vertex needs ardithensionfull parameter. In this th?aory
either the soft momentur® or the pion massn, are available. Furthermore, for topological reasons, every

loop integral brings an additional fact%. Altogether we find that contributions from a Feynman diagram

4 Fr ’47rF
of loop diagrams, assuring that the contributions from higher loop oaterparametrically suppressed if the

pion masses and momenta are sufficiently small .&& 1 < Q, m, < 1.2 GeV). In this work we follow
Weinberg'’s choice which is to tie together the loop expansigreind the expansion of the effective Lagrangean
in p one-to-one [Wei79] by assigning the chiral dimension one to both of tharskpn parameters: ~
Therefore we uniformly denote both expansions by an expansiq@%p throughout this work. The chiral
dimensionD of an arbitrary loop diagram can then be calculatedas- 2 + 2Ny, + > ,(d — 2)Ng where
Ny, is the number of pion loops andl; the number of vertices with chiral dimensidn(i.e. calculated from
those pieces of the Lagrangean which are of chiral dimengjoWe note that this choice allows for a UV-
renormalization of all loop diagrams and leads to renormalization scale indeperesults. Furthermore, it
ensures that for a calculation at a given precisidone only has to know a finite number of terms of the full
ChPT Lagrangean.

The final step of this section is now to bring the lowest lying baryons, théeans, into the theory and to
study their interaction with the pions. In analogy to the procedure descaibevk, one has to determine the
transformation properties of the fermion fieMisunder chiral rotations (the lengthy derivation is done in great
detail in reference [Geo84]). One finds that the chiral transformatienator of the nucleon is a function of the
pion field. As a consequence, general left-right rotations of the nadieldls are compensated by the emission
or absorption of pions which — within this theory — is the origin of the pion-clsudounding the nucleon.
Including the (isospin doublet]” = %Jr) nucleon fields¥ one finds the additional chirally invariant, C-, P-
and T symmetric building blocks

containingn pion vertices carry a prefactgf with ¢ € { . } This provides a consistent hierarchy

IDW = (9 +T, - i)W, (1.4)
\I/'yufygu“\ll = i‘iw/ﬁg) (UTV“U — uV“uT) v, (1.5)

where they's are the Dirac matrices, the chiral connection is definelb,as: [uf, 0,u] — Lu' (v, + ay) u —

L (v — ay) ul with u? = U andvﬁf) is an external isoscalar vector source. We organize the infinite number
of possible terms in the Lagrangean by assigning the chiral dimension zérdfowith A = 1, v, y#~°,

ot ah~5, My and chiral dimension one t§ BV with B = 5, (i p — M), D,,, u,, whereM is the
mass of the nucleon in the limit of massless quarks, i.e. the chiral limit. The leadirgahiral pion-nucleon
Lagrangean (with chiral dimension one) then reads:

£ = wlip— M+ %Afmg)uu} v, (1.6)

where g4 is the axial coupling constant of the nucleon in the chiral limit. All higher orgems can be
constructed accordingly from the building blocks. Note, however, thatrdler to arrive at dimensionless
couplings in Feynman diagrams we have now, besides the construgggnand 1wt the pOSS|b|I|ty4 R~

1 which is not a small quantity! Therefore it is not guaranteed in this theoyctbratributions from hlgher
order loop diagrams are parametrically suppressed; there is a prionieatbane correspondence among the
expansions in loop diagrams and parts of the Lagrangean. The histoedyeor this problem is given in the

next subsection (and is applied in chapter 2) while we discuss a new sdiotibis problem in chapter 3 of
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this work.

We close this paragraph with another observation from the hadron gpectivhile the QCD Lagrangean
displays a (approximate) chiral symmetry, one finds a huge mass gap hethieg partners in the hadron
spectrum which is clearly not explicable with the small explicit symmetry breatfiragk masses. Therefore
we conclude that the symmetry of the QCD Lagrangean under indepeandatidns of left- and right handed
quarks in flavour spaceSU(2), x SU(2)g in the case of two active quark flavours) is spontaneously broken.
However, one finds an approximate isospin symmetry in the hadron speletagling to the conclusion that
the subgroupbU (2) .+ r is @ symmetry of nature. The Nambu-Goldstone theorem for spontaneaog&lnb
symmetries now predicts massless bosons with the quantum numbers of the cparators of the broken
subgroup, i.e. three pseudoscalar bosons. We identify those bo#bnhevvery light pions which have a
nonvanishing mass due to the explicit symmetry breaking terms of the Lagiraagd are therefore called quasi
Goldstone Bosons. A possible mechanism for the spontaneous breéktiregohiral symmetry is provided by
a nonvanishing vacuum expectation value: For the chiral quark ceatiewe find0|Gg|0) = <O]8‘9—n7jq\0> =

—F2 B, whereH is the leading order Hamiltonian corresponding to eq.(1.2).

1.2 Nonrelativistic Limit

In order to implement a consistent perturbative expansion of the Lagaaagd the loop diagrams in ChPT
with baryons — recall that this was troubled by the presence of a secqednieass scalé/,, see above — the
authors of [JM91] decomposed the nucleon field into a massless dynamicpboent and a heavy remainder
which can consistently be absorbed into the coupling constants of the tlassoyring that terms of the type
% ~ 1 are absentin loop calculations after this treatment. Therefore, onedir$d identify all appearances
of the large masd/, in the Lagrangean. We find it in the four-momentum of the nuclgor= Mouv* + ki,
where we have introduced a velocity vectorwith v = 1 and a small residual momentuky, and in the
nucleon fieldU = e~Movz (N + H), where we have decomposed the nucleon field into two components
with the help of the projection operatofy® = 1 (1+ ¢) asN = eMv2pry andH = eMovep-y.
Inserting those expressions into the Dirac equation we findthistmassless whilé/ has a mass of twice the
mass of the nucleon. The sought after leading order Lagrangeamid iiailnose expressions are inserted into
the Lagrangeaﬂ‘,f]z] (see eq.(1.6)), itis then diagonalized in tkle H basis and thé7 fields are subsequently
integrated out. Finally, in order to avoid nonlocal operators, the Lagamdpas to be expanded in inverse

powers of the mass of the nucledi,, i.e. expanded im with » € {’A}—g, M%} As My =~ 4w F;, the chiral
dimension one is assigned to the parametand the nonrelativistic Lagrangean is thus organized as a double
expansion irp andr. The leading order pion-nucleon Lagrangean takes the form

£ = Nliv-D+gaS-uN. (1.7)

Here we have used the Pauli-Lubanski spin vector definesl,as £vs50,,v”. Note that some parts of the
leading order covariant Lagrangean of eq.(1.6) now contribute to tkietoeading (or even higher order)
Lagrangean of this nonrelativistic theory — called Heavy Baryon Chesiufbation Theory (HBChPT) — via
the additionaIMi0 expansion. Counting the additional expansion parametar the same footing gs and
q: p = q ~ r, we arrive at a counting rule completely analogous to the one in the mesion. sEiee chiral
dimensionD of a Feynman diagram can be calculated as

D = 2N +1+> [(d—2)N) + (d—1)N}'P], (1.8)
d

whereNy, denotes the number of loops in the diagrai\fjj‘,” is the number of vertices from a meson Lagrangean
of orderd and N}B the number of vertices from a meson-baryon Lagrangean of atdér HBChPT it is
guaranteed by construction that diagrams with larger chiral dimensioritaatetwith higher powers of a small
parameter.
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1.3 Inclusion of Spin< Fields

Scanning the hadron spectrum in search for further relevant degfdeesedom of low energy QCD, one is
quickly pointed to theA(1323), a strong paramagnetic nucleon resonance with quantum nuaplim%sand
isospin% which is less tharz 300 MeV away from its ground state. It is therefore — at least in some channels
advisable to include this degree of freedom explicitly in the calculations. le@ymot including this degree
of freedom explicitly it is parametrized in the coupling constants and can tldstéelarge values of those
constants. In addition one can not be sure a priori, whether the implicit tretivhéhe A(1232) effects in
the coupling constants order by order is a reasonable expansion afdbdying physics. However, in those
chapters where we have not includdddegrees of freedom explicitly we indeed find large values for some of
the coupling constants but the respective physics can be describedekby this implicit treatment of the
nucleon resonance already at next-to-leading one loop order.

Writing down the chiral Lagrangean with sp§13tates is a straightforward exercise: A field theory of those
states was given by Rarita and Schwinger [RS41] and the transformatesunder chiral rotations can be
derived in analogy to the one of the nucleon. In order to introduce astenshierarchy of loop orders, one can
again perform a nonrelativistic expansion of the Lagrangean. At tliig powever, one has to take a decision:
There is a new dimensionfull scalda (the mass of theé\) in the theory and the question arises how to treat
it with respect to the other mass scales of the theory. Here we follow theechbieference [HHK98] which

is to assign the chiral dimension one to the rqil%r whereA is the nucleonA mass splitting (in the chiral
limit): Ay = Ma — My. In this theory — the so called “small scale expan5|on” (SSE) —the Lageamgnd the
Feynman diagrams are therefore organized as a series in powavgiot < {47FF7T : 1\6420’ preyonll Al Mgﬁ : MO}

We start the next chapter — after an introduction to the matrix element undsideoation there — with a brief
discussion of the lowest order Lagrangeans of this theory.

We emphasize that physical quantities calculated in this theory are guatémtexd depend on any unphysical
“off-shell parameter” or gauge parameter of the so called “point symrhetryref. [HHK98] it has been
shown explicitly that the off-shell parameters do not lead to new strucituitee amplitudes and do therefore
not give rise to any effects which are observable independent obilnger-terms of the theory. In this work
we have therefore chosen to set those parameters to zero which jestpem ds to a particular definition of the
appearing low energy constants. Furthermore, point symmetry rotatinr®naistently be factorized and thus
be absorbed by a field redefinition.




14

CHAPTER 1. BASIC CONCEPTS OF CHIRAL EFFECTIVE FIELD THEORY



Chapter 2

The Nucleon-to-Delta Transition Form
Factors

2.1 Introduction

A(1232) is the lowest lying baryon resonance with quantum numbers&p:m% and isospin/ = % It
can be studied, for example, in the process of pion-photoproductionnorclaon ¢ N — wN). Therein it
shows up both as a clear signal in the cross section and as a pblg at (1210 — i50) MeV [Y T06] in
the complex W-plane with/” = /s denoting the total energy as a function of the Mandelstam variable
At the position of the resonance the incoming photon can excite the targebnuoto aA(1232) resonant
state via a magnetic dipole M1 or an electric quadrupole E2 transition. Assutnjpgie dominance at the
resonance energy, one can relate the pion-photoproduction multipadeshileg the finalr N state of this
process to the strengths of the sought aft&tA transition moments. Extensive research over the past decades
has produced the result EMR—(2.540.1star=0.2sys) % [BT00], demonstrating that in this ratio of quadrupole
to dipole transition strength the magnetic dipole dominates the transition to the fdekednExtending these
studies to pion-electroproduction the incoming virtual photon carries arfmmentum squaregf < 0 and
can also utilize a Coulomb quadrupole C2 transition to excite an intermedd®232) resonance. The three
electromagnetic multipole transitions M1, E2 and C2 then become functions of momgansfer squareg?,
analogous to the well known electromagnetic form factors of the nuclediestin elastic electron scattering
off a nucleon target. Extensive experimental studies of pion-electloption in theA(1232) resonance region
[ST75, Bt 72, BF68, St71] have already demonstrated that also for figitoth the electric- and the Coulomb
NA quadrupole transitions remain “small” (at the percent level) compared todimndnt magneticVA
dipole transition. However, recently, new high precision studies at cantsbeam electron machines 2,
S+05, PF01, SF06] have been performed in order to quantify the observed depesdétitese transitions with
respect tay?. It is hoped that from these new results from experiments one can infee tielevant degrees of
freedom within a nucleon which are responsible for the observed (snu@t)rgpole components in théVA
transition. The theoretical study presented here attempts to identify the @etjkees of freedom in these three
transition form factors in the momentum regi@d = —¢> < 0.3 Ge\~2.

Historically the nonzero strength of tlé A quadrupole transitions has raised a lot of interest because such
transitions are absent in (simple) models for nucleon wave functions wietrisphsymmetry. The issue of
detecting a “deformed shape” of the nucleon via well defined obsew/abkrattering experiments, however,
is intriguing to the minds of nuclear physicists up to this day, e.g. see the dmtuisgef.[Ber03]. On the
theoretical side, most of the work over the past 20 years has focustiae ddea that a “natural” explanation
for the nonzeraVA quadrupole transition moments could arise from pion degrees of freedesary in the
nucleon wave function, i.e. from the so-called “pion-cloud” around thgeon. Many calculations to quantify
this hypothesis have been pursued, within the skyrme model ansatz (e dW¥®é87]), within dynamical
pion-nucleon models (e.g see [SL96, SLO1a]), within quark-mesoniogupodels (e.g. see [Buc99]), within

15
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chiral bag models (e.g see [LTW97]), within chiral quark soliton models &=g [SUW 00]), ... to name just

a few of them. Around 1990 — based on the works of refs.[GSS88, JBRKM92] — the qualitative concept

of the “pion-cloud” around a nucleon could be put on a firm field theaakfimoting within the framework

of chiral effective field theory (ChEFT) for baryons, for a brief oduction see chapter 1. The pioneering
study of the strength of the electdé A quadrupole transition within ChEFT for real photons was performed in
ref.[BSS94] and the first calculation of all thré&A transition form factors fo€)? < 0.2 GeV? within the SSE
scheme of ChEFT [HHK98] was given in ref.J[GHKP99]. In this chapterpresent an update and extension
of the nonrelativisti®) (e3) SSE calculation of the latter reference and compare the results both to fesults
experiments as well as to recent theoretical calculations [KY99, K&D) DHKT99] and will also analyse the
quark mass dependence of our results. A comprehensive overvithe téld — from the theorist’s as well as
the experimentalist’s point of view — is given in reference [PBe07]

Before we begin the discussion of the generslA transition matrix element in the next section, we remind the
reader, that the “pion-cloud” around the nucleon in ChEFT calculatioas dot just lead to nonzero quadrupole
transition form factors but is also responsible for the fact #tlghree N A transition form factors- unlike the
case of the elastic nucleon form factors, see e.g. ref.[BFHM98] andbtlusving chapters — areomplex
valueddue to the presence of the opeV channel, in accordance with the parametrization of ref.[JS73]. In
the following we continue this chapter with a brief discussion of the effe&le theory calculation in section
2.3 and present our results in section 2.4 before summarizing our main fridiegction 2.5. A few technical
aspects are relegated to appendix A. We have already published the sdta of this chapter in references
[GHO06] and [GHO7]

2.2 Parametrization of the Matrix Element

Demanding Lorentz covariance, gauge invariance and parity cotisertae matrix element of & (J”') =

3 <%+> to 3 ({“) transition can be parametrized in terms of three form factors, i.e. complexdvaluctions

of the momentum transfer squared. For our calculation we follow the ctiowerof ref.[GHKP99] and choose
the definition:

2
iMa—Ny = +\/§2J\ZN“@N)'V5[G1(QQ)M€“_ ?/QM)+G22]\(4(]N>(pN‘Equ_pN’q€u)
+G3(q2)(- — e |t (oa) (2.1)
9A q-€qy — q€u)|UAPA). .

Heree denotes the charge of the electron ddg is the mass of a nucleon at the physical qumm denotes
the relativistic four-momentum of the outgoing nucleon/incomik@nd g, ande* are the momentum and
polarization vectors of the outgoing photon, respectively. As discussed.[GHKP99] the small scal& =
Ma — My denoting the nucleon-Delta mass-splitting had to be introduced in front @ $h¢’) form factor

in order to obtain a consistent matching between the calculated N~ amplitudes and the associatdi\
transition current at leading one loop order in the ChEFT framework & [B51K98]. The dynamics of the
outgoing nucleon is described via a Dirac spin@yy ) while the associated (1232) dynamics is parametrized
via a Rarita-Schwinger spinar,(pa). From the point of view of chiral effective field theory the signatures
of chiral dynamics in theVA transition are particularly transparent in thg(¢?), i = 1,2, 3 basis which
serves as the analogue of the Dirac- and Pauli form factor basis indte earrent of a nucleon which will be
analysed in chapter 4. However, most experiments and most model calesiliafer to the multipole basis of
the generalV A transition current. The allowed magnetic dipole, as well as electric- and @bujoadrupole
transitions are parametrized via the form fact@ts(¢?), G5(¢%) andG}.(¢*) defined by Jones and Scadron
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[JS73]. They are connected to our choice via the relations

% 02\ _ My ) GJ{(QQ) _ 2 a2 2 G;(QQ)
Gu(a”) = 3y + M) {((3MA + Mpn)(Ma + My) — q )72MNMA (MX — My —q) M
GT 2
—q¢° 2]\?’4(]32] , 2.2)
k(2N My 2 2 2 GI(QQ) 2 2 2 GE(QQ) g( %)
w2\ 2My MAT2_ 2 2_2G£(q2)_ 2 a2 T()
Gl = Sy Gl — M+ — ) ) - 0 - s+ ) T 29

As these multipole form factors have been defined forXhe— A reaction they are linear combinations of
the hermitian conjugate form facto@ (¢®)

For a comparison with experimental results we also note that the notation dAA$Y] is connected to the
Jones-Scadron form factors via:

1

g*Ash( ) — gﬁs((f)' (25)

2
1= Giitay
The full information about the rich structure of the general (isovedtady transition current is hidden in these
threecomplexform factors. In experiments this transition is studied in the proegss: ¢’ N in the region of
the A resonance (e.g. see reff{@] and references given therein) which has access to a lot morerhstduc-
ture properties than just th€ A transition current of eq.(2.1). Based on the observation that'the — 7V
transition at the resonance energy is dominated by the magnetic dipole traasifionder the assumption that
intermediate states are dominated by the imaginary part df fhi@pagator, one can relate three of the extracted

(complex) pion-electroproduction multipoles in the isospin 3/2 chamqr?’/Q(Wres, 7?), E{:?’/Q(Wres, 7?)
andS{+3/2(Wm, q ) at the position of the resonantg,., to the sought after form factors via

EMR Re

(2.6)

B W d®) ] G5() 2)
1=3/2 9 ~ —Re
M1+ (W7'687Q)
1=3/2
CMR = Relshr (Wm,q2)]

1=3/2
M2 (Wyes, ¢2)

O = PO = WP = P 9248 ] @7

Q

Ultimately the validity of this approximate connection between the pion-electraptiosh multipoles and the
NA transition form factors has to be checked in a full theoretical calculatidrprésent only nucleon- and
A pole graphs have been included as intermediate states in calculations obtesserp — ¢’ N in the

A resonance region within chiral effective field theory (e.g. see reDffV For such intermediate states
egs.(2.6,2.7) are exact. It remains to be seen to what extent nonreBuaanediateN 7- or Ax states in the
isospin 3/2 channel of this process might lead to a corretiiothe connection between EMR, CMR and the
form factor ratios as given in eqs.(2.6,2.7). As we cannot exclude tissilgtity at present, we have inserted
~ symbols in egs.(2.6,2.7).

In the next step we will calculate the form factors of eq.(2.1) using chifet&ve field theory and then discuss
our results together with data from experiments|tg;'*" (¢%)|, EMR(¢?) and CMR¢?).

Such contributions arise in@(e*) SSE calculation of the procesp — ¢’ N in the A(1232) resonance region.
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2.3 Effective Field Theory Calculation

The isovectorV A transition current has been calculatedt@?) in nonrelativistic SSE in ref. [GHKP99]. Here
we briefly review the ingredients of this calculation, the basic concepts tfittwey are discussed in chapter 1.
The parts of the ChPT Lagrangean needed for a leading one loop taliswbthe matrix element eq.(2.1) can
be written as a sum of terms with increasing chiral dimension. Divided into pétislifferent active degrees
of freedom they read:

Lssp = LO+LY+ LR + L0+ LB A +LE0a + - (2.8)
In order to introduce a hierarchy of terms we utilize a counting scheme caltedll'scale expansion (SSE)
[HHK98]. This framework contains three light (the momentum trangf#r the pion massn, and theA-
nucleon mass splitting in the chiral limiky) and two heavy (the nucleon mass in the chiral lichly and
the scale of chiral symmetry breakidg F, where F); is the pion decay constant) scales and is based on an
expansion of the Lagrangean in ratios of a light to a heavy scale. Clvinahdion one is assigned to each of
those ratios and the chiral expansion is performed in the small paramet{_e;[%, =, o %, s ﬁo}.
In order to determine the chiral dimension of a particular Feynman diagrafollees the standard power-
counting rules of chapter 1

D = 2Ny +1+) [(d—2)N} +(d-1)N'P], (2.9)
d

whereNy, is the number of independent loop momenitg? the number of vertices from the meson Lagrangean
of orderd and Né”B the number of vertices from the corresponding meson-baryon LagaangAt leading
orderD = 1 we haveN; = 0 and an arbitrary number of insertions from the leading meson- and meson-
baryon Lagrangean. However, the leadiny A coupling is of chiral dimensiod = 2 and hence there is
no D = 1 diagram contributing to the transition amplitude. The diagram WH{? = 1 and N, = 0 is

the only contribution ofD = 2. It gives rise to counter-term contributions to the chiral limitstaf(0) and
G2(0). At D = 3 first contributions withN;, # 0 occur. These leading one loop diagrams haie = 1

and arbitrary values foN! and NMB. The N;, = 1 topology only allows diagrams wittVM B NM) e
{(3,0),(2,1),(2,0)}, the corresponding diagrams shown in figure 2.1. However, we alnewaifion that
those diagrams witiVy? = 0 (i.e. all loop diagrams except for (b) and (c)) vanish in the nonrelativistic
limit due to spin- and isospin selection rules. At the same order tree leveldiagrontribute viavy, = 0,

NM = NM = 0and NP = 1 giving rise to further counter-term contributions to the chiral limit:g{0)

and G2(0) which are now also needed for a renormalization of loop contributions. Inmhik we stop at

D = 3 but hope to extend the analysisfio= 4 in the future.

The lowest order chiral Lagrangeans are given by [HHK98]:

F2
L8 = Z=Tr VUtV 4t ot (2.10)
LY = Nliv-D+gaS-ulN, (2.11)
L8 = —T"[iv- DV — 697+ g1S - ul] g, TV, (2.12)
Lha = e {Ti“guaU?N +N u?*gauT{‘}. (2.13)

g4, g1 andcy denote axial nucleon{\- and NA coupling constants in the chiral limit, respectively. The
numerical values of these constants used throughout this work are listadlén2.1. We are working in a
nonrelativistic framework utilizing nonrelativistic nucleon fieléisas well as nonrelativistic Rarita-Schwinger
fields Tﬁ for the four A states with isospin-indices j [HHK98] which is subject to the spin- and isospin
constraints*T), = 0 and"T}, = 0 wherer* are the Pauli matrices. The quasi Goldstone boson pion triplet
7% is collected in the SU(2) matrix valued field(z) = u2. The associated covariant derivatives for the pions
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V., for the nucleonsD,, and for the Deltad)}/ as well as the chiral field tensogs w,,, 7, u!, are standard
and read [HHK98]:

Dy = 0u+T,—iv}, (2.14)
1 1 1

r, = §[uT, Oyu] — §UT (v +ay)u— U (v, — a,) ul, (2.15)

U, = Z'U]LVMUuJr = TiuL, (2.16)

Ve = 0,U—i(vy+a,)U+i(v,—ayu), (2.17)

Dy = 9 <8N+FM—ZUL)> — 2i€"T, (2.18)

wl = efuy, (2.19)

wherev, anda, denote external vector- and axial vector sources, respectivalyan= 67 — 1777 is the
2

isospin% projector. Finally we note that, denotes the velocity four-vector of the nonrelativistic baryon and
S, = Lys0,0" is the Pauli-Lubanski spin-vector of HBChPT [BKM95].

The local operators contributing to théVA transition up to ordee® are given in terms of the low energy
constant$q, bg, 1 and D, (see refs.[HHK98] and [GHKP99]):

b1

2 T 7 v
LA = onr T F SN + e, (2.20)
1 - ) ) )
LR = apN Dighw®SPFE + 2iMELFiESY + (by + 2b6)(S - D)o Fit +
0
apk+ekio i k+ aa, Beki i | pm
+(by — 2b6) 0" F ! g% S D 420 FYF S gg DI T + h.c.. (2.21)
Here we have used the definitions
% 1 7
Fif, = 5T (T [Du,FgaD, (2.22)
+ R Lt
Fr = uFRutuFLul, (2.23)
F[fV’R = [6# - iF‘;¢L7R7 FI/LR]v (224)
FE = v, +a,, (2.25)
Ft' = v, —a,. (2.26)

The rich counter-term structure contributing in this transition gives alraadgdication that the relevant scales
governing the physics of th&/ A transition form factors arise from an interplay between long- and short-
distance effects, making the detection of genuine signatures of chiraivdgs nontrivial in this transition.

Figure 2.1 shows all Feynman diagrams contributing&f’), i.e. leading one loop order in SSE. The strength
of the contact terms in figure 2.1 (a) is given by the LECs of egs.(2.20),2i2d4 vertices and propagators
appearing in the loop diagrams are determined by the Lagrangeans é)s(221B). For details we are again
referring to ref.[GHKP99]. Given that in this chapter we are working moarelativistic field theory, the crucial
step is the correct mapping of tle — N~ transition amplitudes calculated from the diagrams of figure 2.1 to
the form factors defined in eq.(2.1). Up@(e®) one obtains (in the rest frame of tie [GHKP99]:

. 2 G1(q? Gi(q? ApG1(0

My My 202,
AoGa(g?) s > G1(0)  Ga(¢®)
T Taza, ) TS avca et e
Gs(QQ) 4
—S-qe- qq“4M]2VAo + O (') | uly A(0). (2.27)
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Figure 2.1: The Feynman diagrams contributing toshe- N+ transition at leading one loop order in the SSE
formalism [GHKP99]. Double lines represent spin 3/2 states while solid litzesl$or nucleon propagators.
The dashed lines denote pion-fields and the wiggly line represents theérgugmton.

Eq.(2.27) provides the central connection between the Feynman diagnaiiseasought after form factors.
Calculating theO(e3) diagrams of figure 2.1 in nonrelativistic SSE utilizing dimensional regularization
obtains the expressions given in appendix A.1. The finite parts in four diore (at renormalization scal@
still containing a Feynman parameteread:

ga 1459, 4 /1 m
Ao (94— ~_ZA _3)— — 1)) zlog (2
0 ( 3 < > g Do ; dz (5g1(x —3) — 9g94(x )) zlog y

CAMN
(4mFy)?

Gi(d®) = AN+

+g /1d$ (5g1(z — 3)I(—zAg, ) + 9ga(z — 1) (2D, 1)) | + O(e*), (2.28)
0

M3 | 4 16 ! m
) = B\~ Cug® + N | (2794 — g gL / ~Dlog (™
Ga(q”) (A) —Csq” + (UnF, ) 51 (2794 — 3591) + -5 (591 — 99.4) ; dra(z —1)log |
16 1 2z —1
T / do 50D A (sgrT(—Bo, i) + 9gaT (w80, ) | + O(E) (2.29)
9 0 m2—332A0
8caMz Ay (1 x(22% -3z +1) . -
o(g?) = ZZATTNTU _ 4
Gile®) = A /0 o S (T (o, ) + 99T (r. 1)) + O(c'). (230

The corresponding(e®) results in nonrelativistic SSE for th§ A multipole transition form factor§?, (¢%),
G3(¢%) andG} (¢?) are obtained by inserting egs.(2.28-2.30) into the definitions egs.(2.2-2.4).

As already mentioned earlier, (¢3) nonrelativistic SSE only diagrams (b) and (c) of figure 2.1 give nonzero
loop contributions to the transition form factors. The contributions fromeha® diagrams can easily be
distinguished: The contributions from diagram (b) are those propottionie coupling constanj; while
those from diagram (c) do have a prefagiar Only the latter can give rise to an imaginary part since only in
diagram (c) the intermediate states are allowed to simultaneously be onshidastdorm, < Ay.

In egs.(2.28-2.30) we have introduced the quantitiés= m?2 — ¢?z(1 — ) and

wz—mgr(log(m%r—i- 7‘;’72— )—iTr) > 1
Iw,mg) = m2 — w? arccos (—m%r for —1<.2 <1, (2.31)
—\/wZ—mzrlog(—mLﬂ—l—\/%—l) < -l
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A(X) andB(\) collect all short range physics contributing@a (0) andG2(0):

M 1 r r A

AW = G [ eEOW - DY 232)
2

B(\) = Aﬂ?g[zbﬁ—pg’“)(x)]. (2.33)

The renormalization scale dependence of the counter-terms cancelgthierarihe loop contributions exactly.
We note that the)(e3) structure with the coupling constahy in eq.(2.21) arises naturally in SSE. Its infinite
part is required for a complete renormalization of thé:3) result, whereas its (scale-dependent) finite part
EY)()\) cannot be observed independently from the coupbingFor nucleon observables the finite parts of
terms IikeEY)()\) are required in order to guarantee the decoupling ofAhesonance, i.e. those counter-
terms are renormalized such that the according loop contributions vanisk ohotible limitm, — 0 and

Ag — oo (see for example the discussion given in ref.[HWO02]). In the obséegadil the N A transition
like e.g. G1(¢?) of eq.(2.28), the finite couplin@l”)(/\) can be utilized to removguark mass independent
short distance physics contributiorsA from loop diagrams contributing to this structure. Implementing this
constraint one finds

caMpyMy
32472 F2

0

: 2A
EM () 3694 — 13991 + 3(35¢1 — 9g.4) log ()] : (2.34)

A

We emphasize again that this special choiceﬂ’ﬁfl)()\) does not lead to observable consequehiethe final
result forG'(¢?). Demanding this decoupling constraint just corresponds to a specifiitidefiof the counter-
terms and changing this definition one would only find different numeridakgafor the coupling constanis

andDY)(/\). Unfortunately, atO(e?) in SSE we canndtseparate the three independent couplingss and

Dg’") (M) as we only encounter the two linearly independent combinatigng and B(\). The strength of these
couplings is undetermined in the effective field theory approach and wilebermined from phenomenology
in the next section.

Finally we comment on the constaf in eq.(2.29). TaD(e?) in nonrelativistic SSE all counter-terms —i.e. all
short distance physics contributions — only appeafat 0, c.f. egs.(2.28-2.30). All slope parameters of the
G;(¢?) form factors therefore arise @sire loop effects from the chiral pion dynamatsthis order. While it is
expected that the dominant parts of these isoveltartransition slope parameters arise from the pion-cloud,
it is also known — for example from calculations of the isovector nuclean factors (see ref.[BFHM98] and
chapter 4) — that short distance contributions in such slope parameteus t& completely neglected. A short
distance contribution to the, slope parameter of th&/ A transition form factorGy(¢?) like Cs could, for
example, arise from the nonrelativistic reduction of th@®) SSE Lagrangean

1, .
LY ~ Cs%%i(fl [D?, F!"]) D,y + hec.. (2.35)

While this contribution is formally suppressed by two orders in the chiralresipa, we will argue in section
2.4.2 that the inclusion of such a short distance coupling is crucial fomgadson with phenomenology.

We note that the contribution of eq.(2.35) to the form factefq?) was not considered in ref.[GHKP99] and
constitutes our main change in terms of formalism compared to those prevauis reShort distance effects

do of course contribute to the slope parameters of all form factors. Yaywee have checked that an inclusion

of such terms irG1(¢?) or G3(q?) does not lead to significant changes of the best fit curves, indicatinththa
according contributions t6'1 (¢?) andG3(¢?) do behave as small higher order corrections as suggested by the

2This construction ensures that contributions from loops involvir{@232) as an intermediate state get suppressed once the mass
of A(1232) gets larger. For a fixed value of the mass{fLl232) this decoupling construction is not necessary.

3At O(e*) in SSE one would be able to separate contributions ﬁsomndDY) (M) via structurally different contributions to the
guark mass dependencies.
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power-counting.

At the end of section 2.4.4 we will also discuss the chiral extrapolation of lagmadts for the isovectav A
transition form factors in the multipole basis @ = 0. As the quark mass dependenceddf (0), G (0)
and G (0) is rather involved (see e.g. the definition equations (2.2-2.4)), the spéarific of their chiral
extrapolation can only be given numerically. However, the leading quass mkependence of thg;(¢?), i =
1...3 form factors af? = 0 can be given in a closed form and the expansion upigrovides a very good
approximation of the quark mass dependence of the full result up.te= 300 MeV*:

1 MN AO ’iCAgAAoMN CAMNm2 2 .
G1(0) = —==p — Dy(A T 19ga(6— 372 +4
1(0) 23, PV 24 2 576Agm2F2 | ~7A T
2A 2A
—410g< “> <1+2i7r—10g< 0))) —5gl<10—|—3772
My My
27 5 (20 ca(bg1 + 9ga) Mym3
41 121 T 2.36
+elog ( o > +1slog (mr T oleAZz T (2.36)

M? caM?
G2(0) = (206 — D1(N) —& — =
2(0) = (20 =DiN) 3 ~ Jgpr2

591 (1 + 3log <2A0>)
A
+994 (1 +3 <7j7r — log (2§0)>)
—4log <2A°> (3 + 2im — log <2A°>> > — 51 <10+ 72 —12log (mo)
My uzs My

caMzm?
144A2m2 F2

994 (10 — 3m(m — 4i)

MZca(5g1 + 9g4)m3

2A¢
4log? [ == 2.37
Talog <mﬂ>> 2TAITF2 ’ (2.37)
CAM]ZV ) 270 ca(bgr + 9gA)M]2VmTr
G3(0) = —2—N_185g; — 9g4(17 + 6 6(9g4 — 5g71) 1 -
3(0) 64872 F2 [ g1 — 994(17 + 6im) + 6(994 — 5g1) og( . 360072
CAM]%;’WL% 2 . 2A0 3 2A0
LN ggu | — 22 + 977 — 20im + 41 5+ 6ir — 31
988 AZr2 2 |94 ARG U L S P

+5g1 (22—1—3712 + 4log <2A°> (—5+310g (2A°)>)]
My My

_cal(bgr + 9g.4) M3m3
2TA3TF?2

(2.38)

We observe that the leading quark mass,) dependenceboth for G (0) and for G»(0) is linear inm,,
whereas the leading nonanalytic quark mass behaviour is proportionalltg m, both for the real- and for
the imaginary parts. On the other hardgs(0) displays a chiral singularity- log m, near the chiral limit
which will also appear in the Coulomb quadrupole form fagip(0) in section 2.4.4. Finally we observe that
to O(€®) short distance effects arising from the loop integrals have been renowag(2.36) from theeal

part of G1(0) via the choice forEY)()\) given in eq.(2.34), whereas the real part(f(0) in eq.(2.37) and

“Note that the expansion in, and the integration over the Feynman parametéo not commute due to the cutsrat, = zA, in
the full unintegrated results. The above result is only found if the expais performed after the integration.

SHere we assume the validity of the Gell-Mann, Oakes, Renner relation [&88Dgiven in eq.(2.51) in order to convert the,
dependence into the, dependence.
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Parametert g4 | ca | g1 | My [GeV] | Ma [GeV] | m, [GeV] | F, [GeV]
Value 1.26 | 1.5 | 2.8 0.939 1.210 0.14 0.0924

Table 2.1: The input parameters for our calculation. The nucleon giepes andM y are taken from [Y 06].
For the definition of the mass df(1232) we are utilizing the T-matrix definition of [Y06], leading to a (real
part) mass 01210 MeV. The couplingg; has been determined in {K06], whereas the value fer, is derived
in Appendix A.2.

Parametel A(1GeV)| B(1GeV) | C, [GeV~?]
Fit | 10.5 15.4 0 (fixed)
Fitll 10.5 154 —17.0

Table 2.2: The values for the previously unknown parameters obtaindittibg our results to data from
experiments fotG;/*"(Q? < 0.2 GeV?)| and EMR0) at a regularization scale of = 1 GeV. In Fit | we set
Cs = 0. We note that the values fot(\) and B(\) do not change significantly between Fit | and Fit II.

all imaginary parts are still affected by quark mass independent shtahdésphysics generated by the loop
diagrams of figure 2.1. This nuisance can only be remedied at the next@te'). In the present(e?)
SSE calculation this situation is partly responsible for the rather large fitavabeewill obtain for A(\) and
B(\) in the next section. An interesting observation from the above formulaetig trauses the SU(6) quark
model resuliy; = %gA, the two relevant diagrams (diagrams (b) and (c) of figure 2.1) contribititthe same
strength to the real parts of the form factors no matter whether the photgresoto ar N or awA loop.
Furthermore, in this artificial SU(6) scenario, no UV-divergencesestependent logarithms or divergences in
the chiral limit are present.

2.4 Discussion of the Results

2.4.1 Fitl: Comparison to previousO(e*) SSE results

The strictO(e?) results of ref.[GHKP99] can be obtained from egs.(2.28-2.30) by sefting- 0. For the
numerical values of the input parameters we do not follow that refereacestead we utilize the updated
values for the couplings given in table 2.1. In Fit | we determine the two umkrparametersi(A) and B(\)
by inserting egs.(2.28)-(2.30) into eqs.(2.2)-(2.4) and fit

¢ to the experimental data f@ﬁSh(QQ)\ shown in figure 2.2 for momentum transfers@t < 0.2 Ge\?
¢ and simultaneously to the experimental value for ENIRof ref.[B*00] utilizing eq.(2.6).

The resulting valuésof this Fit | are given in table 2.2 for a regularization scale\of 1 GeV. The dashed
curve in figure 2.2 shows that this procedure leads to a satisfying désergd |G;*"(Q?)| up toQ? ~ 0.2
GeV2. We note that the dotted curve also shown in that figure is the parametrizdttbe MAID result
[TDKYO03] which takes into account the fact that this form factor is falliagter than the standard dipole by
inserting an extra exponential function:

% 3 Q?
gMAsh(Q2)‘ = o 2 exp <—O.21Gev2). (2.39)
<1 ™ 0.71(3e\/2>

However, while we obtain a reasonalifl¥ dependence for the magnetl¢A transition form factor up to
Q? ~ 0.2 GeV?, we only get the right value of EMRJ?) at the photon poinf)? = 0 while theQ? dependence

5We discuss the numerical size of the two parameters in section 2.4.2.
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Figure 2.2: The momentum transfer dependence of the absolute valuensdgmeticN A transition form fac-
tor gj\;[“s’l(QQ) in the convention of eq.(2.5). The solid- (Fit I) and dashed (Fit I) liresisthe nonrelativistic
O(€3) SSE result while the dotted line corresponds to the MAID parametrization M3 The shown ex-
perimental data are from [B00] (diamond), [$ 75] (triangle up), [TDKYO03] (triangle down), [B72] (square)
and [B"68] (circle). The grey shaded band marks the onset of the domain wherdoes not expect the low
energy expansion to lead to trustworthy results.

of this ratio is far off the experimental data. This can be seen from theedasirve in fig.2.3. A similarly
nonsatisfying picture results for tifg? dependence of the CMR-ratio, see fig.2.4. We have analysed the reason
for these breakdowns of th@(e®) SSE results of ref. GHKP99] at very small values@f. According to
our new analysis presented here these small ratios are very sensitieedrattt form of theGo(Q?) form
factor. As it can be seen from the dotted curv&efQ?) in fig.2.5, in Fit | the momentum transfer dependence
of the real part oiG2(Q?) has an unphysical turning point already at rather @% It begins to rise again
aboveQ? ~ 0.05 Ge\2. This “unnatural” behaviour is an indication that important physics is not included in
the SSE calculation at the order we are working. Our analysis shows thahis “unphysical” behaviour of
the G2(Q?) form factor which is responsible for the poor description of {ftedependence of EM®)?) and
CMR(Q?) in Fit . In the next section we will present a remedy for this breakdowncdnclusion we must
say that for state-of-the-art coupling constants as given in table 2.lotivelativisticO(¢®) SSE calculation
for the (small) electric- and Couloml§ A quadrupole transition form factors of ref.[GHKP99] is only valid for
Q? < 0.05 Ge\? while at least the (much larger) magneltA transition form factor is described well with
the results of ref.[GHKP99] over a larger rangep.

2.4.2 Fitll: Revised O(¢*) SSE analysis

The early breakdown of thé@(e3) SSE calculation of ref.[GHKP99] discussed in the previous section can be
overcome by introducing the parame€erin eq.(2.29). As discussed in section 2.3 such a term formally arises

"We consider this behaviour to be unphysical since we expect the momefspendence of a baryon form factor in an effective
theory to decrease in magnitude in the momentum rang&eV? < Q? << (47F;)? ~ 1 GeV* when the resolution is increased.
For further examples of this observed behaviour in the case of nufdemrfactors we point to refs.[BFHM98, ®5].
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Figure 2.3: EMRQ?) of eq.(2.6) at small momentum transfer. Solid lif(e?) SSE result of Fit Il. Dashed

line: O(e3) SSE result of Fit I. Experimental data at the real photon point from MABM00], atQ? = 0.127
GeV? from OOPS [S05] and atp? = 0.4 GeV? from CLAS [J"02].
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Figure 2.4: CMRQ?) of eq.(2.7) at small momentum transfer. Solid li@(e3) SSE result of Fit Il. Dashed

line: O(e?) SSE result of Fit I. The data points shown are from refs.qH (diamonds), [$71] (circles) and
[JT02] (triangle).
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Figure 2.5: The momentum transfer dependence of the transition formdaet6Q?), Go(Q?) andG3(Q?)
(defined in eq.(2.1)) ab(e®) in SSE. Solid lines show real parts, dashed lines imaginary parts. Thescurv
shown are plotted taking the coupling constants at the values determinedliwfit the only exception being
the dotted line in the plot fofs(Q?) which corresponds to Fit I.
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from higher order couplings in th@(¢®) Lagrangean like the one displayed in eq.(2.35). Physically, this term
amounts to a small short distance correction in the slope parameter of thdafchonGs(Q?) which in Fit

| is given solely by pion loop contributions. One may wonder why such driborion, which formally is

of higher order in the perturbative chiral calculation, suddenly sholalg guch a prominent role. However,
we have to point out that the rather small electric form factpt@?) is very sensitive to théV A transition
form factorGo(Q?). The size of this quadrupole form factor is at the percent level of tineirtlnt magnetic
transition form factorG%,(Q?) — small changes iti2(Q?) are therefore disproportionally magnified when
looking at EMR@Q?). In the following we will explicitly include the tern® in Fit Il which now has three
unknown parameterd(\), B(A) andCs. Utilizing the same input parameters as in Fit | (see table 2.1) we
insert egs.(2.28)-(2.30) into egs.(2.2)-(2.4) and fit again

e to the same experimental data fi@;;**"(Q?)| shown in fig.2.2 at momentum transfers@f < 0.2
GeV?

e and simultaneously to the experimental value for ENIReported in ref.[B 00] utilizing eq.(2.6).

We note that neither in Fit | of the previous section nor in the new Fit Il weehmed any of the CMR)?)

data of fig.2.4. In both fits the resulting sizes and shapes of @MRare a prediction. The same holds for the
@Q? dependence of EMR)?) since only the real photon point of this observable has been used agdanpur

fits. The numerical values for the three parameters resulting from this itdialFe given in table 2.2. First

we notice that the central values for the parametis GeV) and B(1 GeV) have not changed significantly
compared to Fit I. While the numerical value for the new param@ids quite large, it actually only amounts

to a small correction 06.21 fm in the r, slope parameter, in agreement with the expectation from the chiral
counting:

rare: LETIM (Fitl) — 1.78fm (Fitll). (2.40)

This small correction in the slope parameter of tigQ?) form factor leads to a much more physical be-
haviou® in the real part of7>(Q?) for Q% < 0.4 Ge\2, as can clearly be seen from the solid curve in fig.2.5.
The resulting changes in the momentum dependence of EMR and CMR as ke solid curves of figures
2.3 and 2.4 are quite astonishing. The small change in the slope paramétgi(¥) has lead to agreement
with experimental data both for EMR?) and CMR Q?) up to a four-momentum transfer squaredBf~ 0.3
GeV~. We note again that none of the experimental data poirftsite Q% in EMR or CMR have been used as
input for the determination of the fit-parameters. The significant chantieafuadrupole form factors caused
by the inclusion of th&’ term which is formally of higher order indicates that its impact is underestimated b
naive power counting. At the same time the resulting good accordance véttoptenology shows that this
term includes relevant physics into our calculation. These two obsersat@rstitute our justification for the
inclusion of the coupling’ at leading one loop order. Similar effects have been observed e.g. ifetigce
polarizability of the nucleomvz to O(e®) in SSE (see ref.[HGHPO04]) or the contributions beyond the finite
one loop result of the processy — 797 in refs.[BC88, DHL88]. For completeness we also note that the
resulting absolute value &f;,(Q?) of Fit Il is now also in decent agreement with the experimental data up to
Q% ~ 0.2...0.3 Ge\V2. We therefore conclude that in Fit I, after the slope parameter correicti@, (Q?) has
been inserted, it is now the insufficient momentum dependendé ¢6)?) above@? ~ 0.25 GeV? that sets
the limit in Q? for the new nonrelativisti©(¢*) SSE result of Fit Il presented here. We indicate this limitation
by the grey shaded bands in figures 2.2-2.4 and will explore this pottigfuin section 2.4.3.

In table 2.3 we present the findings of Fit Il for all XA transition form factors discussed in this work both
at@? = 0 and for their (complex) slope parameterslefined as:

Gi(Q%) = REG;(0)] [1— érgReQz + } + 4 1m[G;(0)] {1 - érglmcg? +..]. (2.41)

8We note that we do not expect the zero-crossing in the real part obthefactorG(Q?) nearQ? = 0.1 GeV?, see fig.2.5, to
correspond to a physical behaviour. However, the size @03@2)] for Q% > 0.1 GeV? is so small that this effect does not affect
our results in any significant way. For completeness we note that&l) there is a counter term in the SSE Lagrangean which will
lead to a momentum independent overall shift if®&e(Q*)] which should correct this presumed artifact.
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REGi(0)] rigelfm?] | IM[Gi(0)] riyy (] | [Gi(0)] 1] aps [fM?]
G| 495 0.679 0.216 3.20 4.96 0.678
Go | 585 3.15 ~10.0 1.28 11.6 1.73
Gy | —228 3.39 2.01 ~2.26 | 3.04 0.907
Gy | 298 0.627 | —0.377 1.36 3.00 0.630
Gy | 00441 0836 | —0.249 0422 | 0253  0.388
Gy | 110 —0.729 | -1.68 1.90 2.01 1.10

Table 2.3: The values &? = 0 and the slope parameters of the two sets of form factors discussed in tkis wo
as obtained in Fit Il.

It is interesting to note that the real parts of the slope parameters of botletiigce and the Coulomiv A
transition form factors are negative. However, such a behaviouttimasurprising for complex form factors
for which the slope parameters cannot be interpreted as radii. As agumms®, the quadrupoléA transition
form factors do not behave like dipoles in the IGy¥¢ region, they look different both from the Sachs form
factors of the nucleon and from the common parametrizatiog fpfQ?) of eq.(2.39), see 2.6.

Table 2.3 and figure 2.6 constitute the central results of our analysis df theéransition. They make clear
that the nontrivialQ? dependence of EMR®)?) and CMRQ?) observed in figures 2.3 and 2.4 arises from
the quadrupole transition form factors which should therefore be stiniiegpendently ofi}, (Q?). Finally

we comment on the size of the short distance contributied’ parametrized viad(1 GeV) and B(1 GeV)
versus the long distance contributions from the pion-clqud.“Despite the large values for the combinations
of LECs (see e(s.(2.32,2.33)), theA transition form factors are not completely dominated by short distance
physics® — clear signatures of chiral dynamics are visible. At a scal® ef 1 GeV one obtains (at the real
photon point):

ReG1(0)]|xz1G6ev = —1.06|pC + 4'04|5d7 (2.42)
ReEGEL(0)][xz1Gev = 0'155‘19:: — 0.110|Sd, (2.43)
RE[QE(O)]‘Azl Gev = 1.47’pc — 0.365‘Sd . (2.44)

We note that such a separation into short and long range physics is slyvgmale-dependent. However,
at a much lower regularization scale = 600 MeV we have checked that one arrives at the same pat-
tern. Analysing egs.(2.42-2.44) we conclude that the magféfictransition is dominated by short distance
physics. Its strength iseduced by ~ 40% due to pion-cloud effects in the magnef\eA transition. This
result is very similar to the situation in the isovector magnetic moment of the nudeertlfe discussion in
ref.[HWO02] and chapter 4), both in sign and in magnitude! While the pionecémd the short distance physics
are of the same magnitude but of opposite sign for the very small electricupaed transition moment, the
Coulomb quadrupole moment in our nonrelativigfi¢e*) SSE analysis is dominated by the chiral dynamics of
the pion-cloud. We note that the smallness of QMR) is of purely kinematical origin (see eq.(2.7)), whereas
the electric quadrupole form factor in the Jones-Scadron conventgatsin this work is intrinsically small
relative to the magnetic M1 transition form factor.

The situation is somewhat different for the slope parameters: While we fatcapiproximately 22% of the
slope parameter ofi2(Q?) originate from short range physics, the translation into the Jones<Btadsis
drastically amplifies this contribution to the slope parameters of the quadrupoiddctors'®:

Despite the seemingly large values fof)\) and B()\) as given in table 2.2, the size of the short distance contributiog;if0),
G1,(0) andG¢ (0) is natural as expected (see eqs.(2.42-2.44)).

1From eq.(2.41) one can see that the slope parameters are norntalthedhe size of the respective form factors)t= 0. The
above statements result from just separating the slope parameters gra@atahshort range physics while keeping the full values for
G;(Q* = 0) given in table 2.3.
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Figure 2.6:0(e%) SSE results of Fit Il for theV A transition form factors in the multipole-basis. Solid lines:
Real parts. Dashed lines: Imaginary parts.

2ire = (0.650|pc—0.023\sd) fm2, (2.45)
e = (1.31]pc—2.15|sd>fm2, (2.46)
rtre = (—0.019)5— 0.710]y) fm?. (2.47)

All parts marked as short distance contributions in eqgs. (2.45)-(2.4N)sxely arise from the local operator
contributing tOr%Re. From this observation one can see that@hdasis is clearly preferred for the discussion
of chiral signatures in th&/ A transition as there are fewer kinematical cancellations between large raiimber
this basis. At the order of our calculation all effects beyond the liggadependence of the form factors and
hence the rich structures seen in figures 2.7-2.9 exclusively origirmatedion-cloud dynamics.

Before we discuss the quark mass dependence of the form factorsto®fiment on the range 6 in which
the nonrelativisti®)(¢*) SSE calculation seems applicable.

2.4.3 The range of applicability of the nonrelativisticO(¢*) SSE calculation

In nonrelativisticO(e*) SSE calculations the isovector Sachs form factors of the nucleon agiéevith
dispersion-theoretical results up to a four-momentum transféy?of 0.3 GeV? (see e.g. the discussions in
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refs.[BFHM98] and [G 05]). On the other hand, it is known that covariant ChEFT calculatiobsugfon form
factors usually do not find enough curvature in @edependence of such form factors beyond the term linear
in Q2 (e.g. see ref.[KM01] and the discussion in chapter 4) due to a differganisation of the perturbative
ChEFT series. We suspect that this is also the reason whgthdependence of EMR and CMR reported
recently in the covariant ChEFT calculation of refs.[PV05, PVO&hakedlydifferent from the one presented
here.

In our nonrelativisticO(¢®) SSE analysis the limiting factor — as far as & dependence is concerned —
seems to be the deviation between the result of Fit ii(Q?) (solid curve in figure 2.2) compared to the
data (parametrized by the dotted curve). In order to demonstrate this senpEMR Q?) and CMR Q)?) again

in figures 2.8 and 2.9, now witi;, (Q?) not given by our result of Fit Il but with the dipole parametrization
of eq.(2.39). One can clearly observe that in both figures the agreemitbnthe experimental results now
extends to even larger values 6Ff, giving us confidence that the here calculated results for the electric-
and CoulombN A quadrupole transition form factors — which are the quantities where the iropatiral
dynamics shows up most visibly (see the discussion in section 2.4.2) — hatueeththe relevant physics up
to a momentum transfep? ~ 0.3 Ge\?, similar to the situation for the isovector Sachs form factors of the
nucleon in nonrelativisti©(e?) SSE [G05, BFHM98]. We also note that the slope of the SSE result for CMR
atQ? < 0.1 GeV is highly dominated byr IV intermediate states (originating from diagram (c) in figure 2.1).
However, the intrinsic)? dependence of this quantity is dressed with a kinematical prefactor whistssh
strong momentum transfer dependence at small valué®’ ptee eq.(2.7). This prefactor is responsible for
the fast drop-off of CMRQ?) at very small momentum transfer and thus hides the effects of the underlying
7N dynamics and the interesting behaviour which we founcﬂp(@z) (see figure 2.5) at smal)? cannot

be observed in this ratio. The existence and position of the plateau in(QRjRit higher momentum transfer
however is a ChPT prediction and arises due to a balance between lecys effid short range physics with the
largerr, of Fit ll, see eq.(2.40), again being essential.

In addition to these results ChEFT provides us with the knowledge aboutrtleuses which can arise in a
calculation of the form factors at higher orders. The additional strastoontributing to each form factor at
lowest order beyond our calculation read:

GP(QQ) - G§3)(Q2)+m5h (2.48)
4
A

aQ*) — G§3)(Q2)+(ﬁ£)2 5 (2.50)

Here only those contributions which cannot be absorbed via a repaizatietr of the three free parameters
of our calculation where considered. The uncertainties in¢€') calculation due to possible higher order
effects are estimated by varying the coefficiehjtef these structures within their natural size, i.e. betwe8n
and3. A stronger constraint is put on the valued@fwhich dominates the error of the magnetic dipole form
factor as we demand the result to be consistent with the input data of dysian@e. G;,(Q?) at low Q?).
This condition is only fulfilled fol0 < §; < 2.

The grey shaded bands around the curves in figures 2.7, 2.8 and X%marea in which the set of curves
with parameter® < §; < 2, -3 < d3 < 3 and—3 < d3 < 3is located. This band indicates the uncer-
tainties which arise when neglecting higher order effects. A furtherceanirerrors lies in the values of those
low energy constants already present inthe?) calculation which have been kept fixed in the error analysis
presented in figures 2.7, 2.8 and 2.9. This is the reason for the fact¢hsttdvn error bands f&r;, (Q?) and
EMR(Q?) shrink to zero foiQ? — 0. As the quality of the determination of the low energy constants depends
on the quality of the experimental data used as input, the typical experimemttel ef each quantity indicate
the possible variation of the ChPT result due to this source of uncertailtiesonclusion from the error anal-
ysis presented here is that the calculation at leading one loop orderagingstworthy prediction of all three
transition form factors for momentum transtgf smaller thar0.2 GeV? (note that neither th©? dependence
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Figure 2.7: The momentum transfer dependence of the magnetic dipoledotan@;, (Q*): The solid line
represents th€(¢3) SSE result as discussed in the text, the grey shaded band indicates é¢niaty of
this result arising due to possible higher order effects. Data points ae fedm [BT00] (diamond), [S75]
(triangle up), [TDKYO03] (triangle down), [B72] (square) and [B68] (circle).

of EMR nor any information about CMR was used as input for our detetinimaf the low energy constants;
the given curves for the quadrupole moments are a prediction). Beydnd 0.2 GeV? higher order effects
can — according to this analysis — play a decisive role. We emphasize thad the uncertainties arising from
the extraction of the low energy constants the shown results for the quaésuare not in contradiction with
most of the models shown in the same figures. E.g., if we where to ugg’the 0 values for the quadrupole
moments from Sato and Lee [SL96, SLO1b] as input for our analysis éidgtEthe experimental EMR) of
reference [B 00]), the SSE result would exactly agree with this model prediction (see=fy@). Furthermore,
we observe that all models (Sato-Lee [SL96, SLO1b] and DMT [KY98DK 01]) and ChPT calculations (this
analysis and the calculation in tihescheme [PV06]) containing pion-cloud effects coincidingly predict a de-
creasing EMR at very low)? (where pion-cloud effects should be relevant). We also observe irefyQ that
the DMT model of ref.[KY99, KYD"01, DHKT99] shows the same features at Q& as our SSE calculation.
It is also interesting to note that the turnover in thé dependence of EMR ne&” ~ 0.25 GeV? in figure
2.8 may not signal the breakdown of our approach at this (already qtgte) lmomentum transfer but could
indicate a real structure effect connecting the OOPS and the CLAS résuE8/R(Q?). In order to decide
this issue clearly the next-to-leading one loop order correction to oultsdsas to be calculated. Finally we
note again explicitly that the resulting solid curves in figure 2.8 and figure &0t been refit to the data
points at finiteQ?, despite their “perfect* agreement with the shown data.

2.4.4 Chiral extrapolation of the N A transition form factors to O(¢?) in nonrelativistic SSE

An upcoming task in the description of the nucleon&dransition in chiral effective field theory is the study
of the quark mass dependence of these form factors, extrapolatingdiet lattice results of refs. [A05b]
and [AT05a] to the physical point. Figure 2.10 shows — as a first step on this waypidh mass dependence
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Figure 2.8: The momentum transfer dependence of the ratio of the elecdcugpole to the magnetic dipole
form factor EMRQ?): The solid line represents tt@(<*) SSE result as discussed in the text, the grey shaded
band indicates the uncertainty of this result arising due to possible higtier effects. The dashed-dotted
(MAID [DHKT99)), dashed (DMT [KY99, KYD"01]) and dotted (Sato-Lee [SL96, SLO1b]) curves are model
predictions. Experimental date are from MAMI (real photon point (B] and@? = 0.06 GeV? [ST06]) and
OOPS [S05] (Q? = 0.127 Ge\?).
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Figure 2.9: The momentum transfer dependence of the ratio of the Coulcadbugpwle to the magnetic dipole
form factor CMRQ?): The solid line represents ti@(<3) SSE result as discussed in the text, the grey shaded
band indicates the uncertainty of this result arising due to possible higtier effects. The dashed-dotted
(MAID [DHKT99)), dashed (DMT [KY99, KYD"01]) and dotted (Sato-Lee [SL96, SLO1b]) curves are model

predictions. The data points shown are from refsq§] (cross), [P 01] (diamonds), [$71] (circles) and
[ST05] (square).
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of the N A transition form factors in the Jones-Scadron basis of egs.(2.2-2 diditng to nonrelativistic)(¢®)
SSE. We note that we did not refit any of the parameters of table 2.2 toqedbe extrapolation functions
shown. All parameters have been fixed from experimental observabteg physical point as described in
sections 2.4.1 and 2.4.2. Both the real and the imaginary parts of theNhkaeansition form factors develop
a quark mass, dependence which has been translated into a dependence on the massiafth, via the
GOR:-relation [GMORG68]

m2 = 2B mq—|—(9(mg), (2.51)

s

consistent with the order at which we are workingy denotes the magnitude of the chiral condensate. The
imaginary parts of all three form factors shown in figure 2.10 are'zdop m,. > A, since theA(1232) reso-
nance would become a stable particle at this large pion masses. It is intetestivgerve that the quark mass
dependence of the magnetic dipd¥&A transition momeni:ya = Re[G;,(0)] qualitatively shows the same
behaviour as the isovector magnetic momeftof the nucleon, studied e.g. in ref.[HWO02]. Like its analogue
©%, at the physical pointf, = 140 MeV) una is substantially reduced from its chiral limit value by25
percent, dropping further rather quickly in size for increasing quarkses On the other hand, the quark mass
dependence of both the electric- and the Coulomb quadrupdldgransition moment§ X2 = Re[G},(0)] and
QNA = Re[GE,(0)] is rather unexpected: As can be seen from figure 200} even changes its sign around
m, ~ 100 MeV before approaching aegativevalue in the chiral limit. It will be very interesting to see how
the location of this zero-crossing might be affected by corrections attadgading one loop orded(¢*) in
SSE. In the case c@gA one can observe the effect6§(0) of eq.(2.38), leading to a logarithmic divergence
of the Coulomb quadrupole transition strength in the chiral limit. Curiously, ourglativisticO(¢*) SSE
calculation indicates tha@gA is near a local maximum for physical quark masses. Given the dominance of
chiral 7 N physics in this form factor (see the discussion in section 2.4.3), it wouldtoenasely exciting if
such a behaviour could be observed in a lattice QCD simulation. Note that idismussion we assume all
masses appearing in egs.(2.1-2.4) to be taken at their physical valadsgskscussion in ref.[G05] and after
eg.(4.1) of this work regarding this point). However, for a consistentgarison with lattice data, the baryon
masses which appear in our ChPT results — mainly through the translationlderens.(2.2)-(2.4) — would
have to be evaluated as a function of the pion mass. Regrettably, predentfsthe-art lattice simulations for

N A transition form factors take place fot, > 370 MeV [AT05b] which is outside the region of applicability
of this nonrelativistic leading one loop SSE calculation as indicated by theébgreys in figures 2.10 and 2.11.
We hope to extend the rangerim, for which the SSE result provides reasonable chiral extrapolatiortifunsc

for the NA transition considerably when going to next order in the calculation. We al@othat the leading
one loop covariant calculation in theexpansion scheme presented in ref.[PV05] seems to be also stable at
pion masses larger than, ~ 200 MeV, presumably due to the additional, /M, terms present in a covariant
approach (see the discussion in the following chapters). Howevettabidity of the chiral extrapolation func-
tions of both schemes should be tested further by going to next-to-leadingam order.

Furthermore, we note that there is no need to consider the rather completsts of EMRQ?) or CMR(Q?)
when comparing to lattice QCD results. The intricacies — i.e. the sought aftextsigs of chiral dynamics —
can be studied in a much cleaner fashion when directly comparing ChEElisreslattice QCD simulations

of the NA transition form factors (e.g in the Jones-Scadron basis), see figude Rdvertheless, for com-
pleteness, in figure 2.11 we also show our restifisr the chiral extrapolation functions of the real pattsf

MThis vanishing is not necessarily a monotonous functiomgfas can be see in the imaginary parggf(0) in figure 2.10.

2\We note again that all chiral extrapolation functions shown in this vimiicitly assume that all accompanying mass factors in
the definition of theV A transition current are held at their physical values. The behaviouedaftinal extrapolation functions changes
significantly form, > 200 MeV when the effects of the quark mass dependence of these masséscaincluded.

13|_attice QCD results are obtained in Euclidean space and cannot be tethdizectly with (complex valued) real world observables
in Minkowski space in the case of open decay channels.
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EMR(0) and CMR(0) defined as

. _ReG0)
ReG;, (0)]’ (2.52)
M3 — M3, ReG:(0)]
0 ReGy(0)]

cmr

(2.53)

The discussed sign-change@}:~ is visible in figure 2.11 iremrwhile the exciting chiral structures ¢f¥*
dominatecmr for pion massesn, < 200 MeV. Abovem, = 200 MeV the O(e*) SSE results foemr and
cmr show a clear breakdown, see fig 2.11. This comes as a consequehedauft that R}, (0)] (which is
the denominator of those ratios) already becomes very small at those gabhespion mass. Guided by our
experience with e.g. the anomalous magnetic moment of the nucleon we wowdd eafiect the real quark
mass dependence of &, (0)] to plateau at those values of the quark mésslowever, we are not surprised
by the rapid decrease of our result for the pion mass dependencédif; Rg] since thenonrelativistictheory
leads to similar result for the anomalous magnetic moment of the nucleon, sgercha

As already mentioned, available lattice data of these quantities in ref35#, A"05a] are unfortunately at
too large pion masses to be relevant for the chiral extrapolation functiessmted here. However — indepen-
dent of this (present) limitation of our ChEFT results to the domain of small piorse@sas we have to note
one importangeneral caveafor (future) comparisons of ChEFT results to lattice QCD simulationd/df
transition form factors: In figures 2.10 and 2.11 we discuss the chitam{ation of the threé&’ A transition
moments at)? = 0 while lattice QCD results are usually obtained at finite values of momentum traisfe
order to correct for this, one often attempts to connect the lattice resultsitef@? to the real photon point
by performing global dipole fits with the dipole mass as a free (quark masndept) parameter determined
from lattice results. While such a procedure may lead to promising resulesxdonple, in the case of the form
factors of the nucleon (see the discussion in ref(6] and chapter 4) — and also seems to be applicable to the
(monotonously falling) magnetic dipol® A transition form factoiG:,(Q?) — it should not be applied to the
study of the sought after electric- and Coulomb quadrupéle transition form factors due to the nontrivial
momentum dependence in these form factorsijér< 0.15 GeV2. This can be clearly concluded from fig-
ure 2.6 and from the negative values of (the real parts of) their slof@enagers in table 2.3. Global dipole
fits connecting lattice QCD results from larg¥ across the regio? < 0.15 GeV? to the photon point at
Q? = 0 would just “wash-out” all the interesting chiral physics which dominatesNiZe quadrupole transi-
tion momentngA and QgA at the physical point! If one wants to study these objects in lattice QCD one
has to perform simulations at such small values of momentum transfer thatordérectly compare with the
ChEFT results for the thre® A transition form factorg;,(Q? m2), G5(Q? m2) and G} (Q? m2) in the
(Q?,m2) plane and then utilize a function for the momentum dependence do@h o 0 which is consistent
with the turning-points generated by chiraN dynamics. Figure 2.12 shows the nonrelativigfi¢®) SSE
result of such a three dimensional function €y, (Q2, m2), further quantitative studies regarding these chiral
extrapolation surfaces are relegated to future work.

2.5 Conclusions and Outlook

The pertinent results of this chapter can be summarized as follows:

1. We have analysed and updated thé>) SSE calculation of the isovectd¥ A transition current of
ref.[GHKP99] in terms of the magnetic dipole, electric- and Coulomb quadiupansition form factors
in Fit I. It was found that the momentum range of reliability of these results tiemely small (i.e.
Q? < 0.05 Ge\?).

14The heuristic argument for this is provided by the observation that gmrdceffects have usually already been substantially
reduced at those large valuesmf. and only the contributions from pion mass independent short distarysecpliemain visible. We
will argue in chapter 3 why this effect is nevertheless not observableriretativistic theories.
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Figure 2.10: The quark mass dependence of\lfetransition form factors in the Jones-Scadron basis accord-

ing to nonrelativistiaO(¢2) SSE. Solid lines denote the real parts, dashed lines the imaginary parts.s&ksna

appearing in the definitions of the Jones-Scadron multipole form factetaleen at their values at the physical
point in order to displaynly the intrinsic quark mass dependence of the transition form factors.
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Figure 2.11:n., dependence of the real partseafir andemr as defined in egs.(2.52,2.53)@t = 0 according

to nonrelativisticO(e3) SSE. All masses appearing in the definitions of the Jones-Scadron multipole f
factors are taken at their values at the physical point in order to displgyhe intrinsic quark mass dependence
of the transition form factors. Note that a clear breakdown of the ndivistéc results is visible around
my = 0.2 GeW.

Figure 2.12:Q?- andm,. dependence of the magnetic dipdVe\ transition form factor in nonrelativistio(e?)
SSE.
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2. We have identified an “unnatural” momentum dependence ifVthetransition form factoiG2(Q?) as

the reason for the early breakdown of the results of Fit I. In section 2vé.have demonstrated that
the inclusion of a (higher order) counter-term which changes the slageneter ofG>(Q?) by 0.21
fm is sufficient to correct the momentum transfer behaviour of this fogctofa We have checked that
similar correction terms in the slope parameter&'ofQ?) andGs(Q?) are not significant. The physical
origin of the short distance contribution to the slope parametér,0€)?) parametrized in coupling’s

is not understood at present. The results of Fit Il which includes thigection then showed a consistent
behaviour in all three form factors up to a momentum transfer squar@d ef 0.25 . ..0.3 GeV2.

. Connecting our results for the transition form factors with ratios of nredspion-electroproduction

multipoles via eqgs.(2.6,2.7) we have obtained a remarkable agreement béteeenults of Fit Il and
experiments up to a momentum transfer square@of= 0.25...0.3 GeV? both for EMRQ?) and
CMR(Q?).

. Long distance pion physics was found to be present in all thrAetransition form factors. It showed

up most prominently in the momentum dependence of the quadrupole formsfémt@? < 0.15 GeV?,
leading to momentum dependencies which cannot be described via a (modiifielé ansatz anymore.
An observable signal of chiral dynamics in theA transition could be a minimum in EMR ne@?® =
0.05 GeV? and a maximum neap? = 0.25 GeV2. However, it is not clear whether these effects can be
identified unambiguously in experiments given the size of current expetanamor bars in EMRQ?).

. We have estimated the numerical size of possible higher order contribttiaf transition from factors

and found that those contributions only start to be relevant agdve 0.2 GeV~.

. We have studied chiral extrapolations of the thié& transition form factors a? = 0. We found that

the magnetidVA dipole transition moment decreases monotonously with the quark mass, digpdayin
gualitatively similar behaviour as the isovector magnetic moment of the nucleothe®ther hand, the
guark mass dependencies of the quadrupbletransition moments were found to display rapid changes
for pion masses below 200 MeV. While the electric quadrupole transition mo@%ﬁtin our analysis
even changes its sign neat, = 0.1 GeV before approaching a negative chiral limit value, we found that
the Coulomb quadrupole transition momé}ﬁ{A has a local maximum near the physical pion mass and
diverges in the chiral limit. State-of-the-art lattice simulations cannot yetreach small pion masses
to test these predictions. On the other hand, our nonrelativi{ié¢) SSE analysis presented here was
found to break down fom, > 0.2 GeV. In the following chapters we will show that properly renormal-
izedcovariantChPT calculations provide a more reliable description of quark mass depeied in the
domain of presently available lattice results. However, the example of the fmwsmaagnetic moment

of the nucleorx, given in reference [HWO02] teaches us that a considerable improveroeogrning the
pion mass dependence of SSEesults at large quark masses can be achieved when goingiteth to
O(€*), although this leaves an unpleasant aftertaste concerning the carsefeSSE at larger quark
masses.

. We also point out that lattice studies of the quadrupéle transition form factors which are performed

at finite Q% cannot be analysed via a simple dipole ansatz to obtain information about thentsaahe

Q? = 0 due to the turning-points and structures in @redependence of these form factorst < 0.1
Ge\~.

In the future we are planning to calculate the quark mass dependence\ofttnsition form factors ab(e*)
in order to extend the range of applicability of these results for chiral gakations and to test the stability of
the structure effects discussed in this work. In conclusion we can sayéhiaave indeed detected interesting

5Note that such an improvement can only be expected in a theory like S8 Wésides:, a second mass scale is involved (here:
Ap). The arguments for the necessary breakdown of standard HB&HRMe quark masses given in the next chapter are not affected
by this observation.
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signatures of chiral dynamics in tRéA transition, both for the momentum and for the quark mass dependence.
In particular we hope that the electric- and Coulomb quadrupafe transition moments will be tested with
higher precision, both on the lattice and in electron scattering experimentdantorverify the signatures of
chiral dynamics discussed in this work.
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Chapter 3

Renormalization of Covariant BChPT

3.1 Introduction

Motivated by the findings of the previous chapter that the convergditbe chiral expansion at quark masses
large compared to the physical one is rather poor in the nonrelativisticytheercontinue our analysis of
baryon form factors in theovariantformulation of BChPT.

In this chapter we introduce a new renormalization scheme for covaridmPBCGNe first develop a catalogue
of conditions which a consistent renormalization scheme for covarianPBQ®as to fulfill and, subsequently,
driven by the observation that none of the renormalization schemes skstirsliterature so far is consistent
with all of those conditions introduce a new renormalization scheme which WéRcas it is derived starting
from the infrared renormalization technique of reference [BL99]tHarmore, we show that consistent chiral
extrapolations exploiting the coupling constants as determined in previousPiB@nalyses are only possible
if all of the conditions which we have developed for renormalization schemeefulfilled, i.e. only in thdR
scheme.

After a discussion of basic aspects of renormalization in BChPT, we défifdiR scheme and discuss its basic
properties. Subsequently, we present an extensive calculation of $eahthe nucleon at next-to-leading
one loop order in this new renormalization scheme in section 3.3. This pplagiges us the possibility to
demonstrate the implementation and basic properties of the newly introducathedization scheme on a
simple example. The last section of this chapter is dedicated to chiral extiapslaf the mass of the nucleon.
Readers who are not interested in all the technical details of renormalizatB®hPT but want to know how
loop diagrams in the new renormalization scheme can be calculated aredefethe framed box in the end
of the first section.

3.2 Infrared Singular- and Regular Parts

In the covariant formulation of standard SU(2) BChPT, there are two light-andq?) and two heavy mass
scales [/, and4r F;). Restricting ourselves to the limjf = 0 for simplicity, the contributions to a dimen-
sionless nucleon observalileas a function of those mass scales from a loop diagram of chiral dimemgion

dimensional regularization at renormalization scateke the general form
(m Mo ni( ) (ma' ZOO M\ () iz,

10) n — n,i>n ™ ™ n,i n,a>n 1 g

oor <4TFF7F> i oddon <MO " i,even MO %a - % o8 MO

i s n,i<n M
) (16728 1087 ) o5 < (16728 + 10 00 ] , )

A
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where the index. denotes the order of a specific contributiof i tn— ands its order in Vg Theog?’i)
0

with X = n,d,l,a, M and c(L) are dimensionless, quark mass independent prefactors. For a priboé o

formula and its properties discussed below see appendix B.3. By normalizétioa proper power of a quark

mass independent mass scale the reasoning of this chapter can be extenlogervables with arbitrary mass
dimensions. The generalization to arbitrary valueg’dan be done by treating in exactly the same way as
we treatm? in this example.

The full result for the observabl@ at a certain chiral order is the sum

0 = Y (O + O)) + O™ ), (3.2)
n=0
where
e (4%#)” n even,
oy = if (3-3)
0 n odd.

The six different terms in the above equations are:

° (” ) are the prefactors of terms which are nonanalytic in the quark mass. Tidesrese determined by
the loop calculation in the sense that they are a function of lower ordeticgonstants.

. og) is the prefactor of the UV-divergent part of the loop integrals paranegtrizy .. In dimensional
regularization we choose at dimensién L = % [ﬁ + % (v — 1 —log (47))| where~ is the

Euler-Mascheroni constant.

05””‘27” denotes the strength of the logarithmic dependencies of the observablke giotthmass. Again
its size is determined by the loop calculation. All coefficients of this type aefpei < n.

° c(L”) are counter-terms contributing via local operators of chiral dimensjore. they are théare cou-
plings from the Lagrangeaﬁ;’}\), contributing via tree level diagrams. The final result eq.(3.2) therefore
only contalnSC(”) with evenn < m. In BChPT the size of these couplings is unknown since they
parametrize physics beyond the expliciv dynamics. In practice their numerical values have to be
determined from phenomenology. In tNES renormalization program, these terms also serve to absorb
the UV-divergences of the loop calculation and the dependencies onplhgsical scalé.

° (” ) are the prefactors of the terms analytic in the quark mass. Bat their sizes are again determined
by the loop calculation. Far= n however, there is — due to the presenceLB* —a freedom of choice
which terms of the final result fap in eq.(3.2) are considered to come from the loop calculation, i.e the
pion-cloud and are written aé"’i) and which terms are part of the local operator, i.e. arise due to short
range physics parametrized \d%’b). Furthermore, the result fap at ordern — 1 already contains all
counter-terms:(Li) with i < m. Such, by adding the order contribution to the orden — 1 result for

O any of theoé”’i) with i < n meets such a counter-tem&ﬁ) and therefore at this stage lacks a unique

definition. It is this freedom of choice which allows for many differentaenalization prescriptiorts
and it is the task of a renormalization prescription to provide a unique sepebetween long- and short
range physics, i.e. a unique definition of &g andc(LZ).

!Following the discussion of the introductory chapter 1 the expansiopsaitdq (notations of chapter 1) have already been tied
together in this expression and are uniformly denote(—}l%,@g,L
2The infrared renormalization scheme goes even beyond this by clainsingdhonly for evem with ¢ = n but for any even value
of 4 there is a chiral order at which the corresponding counter- té:?happears Therefore the conclusion of [BL99] is that any of the
o™ are scheme dependent, even i n.
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. og\’}K”) are the prefactors of logarithms which depend on the mass of the nucléay. cadn only be

nonzero fori < n. Since these terms do not parametrize any nonanalytic quark mass degeadéney
underlie the same scheme dependence as(ﬂﬁé

Note that in the nonrelativistic theory the expression O)p given in eq.(3.1) would only contain the terms
with i = n. Summarizing from a different point of view, one finds that in the finaliltsfer O at chiral order

7
m the observable prefactor of a certain even pow r%) is

MS 0'0 " My " (n,i) (n,i<n) 2 My (n,i>n) Mgy
: = Tt 167“L + 1 ="log —
P oomi |, nzz;) <47TF7F> 05" + oy, 67" L + log — 3 + 9 og Mo
My \' (i) 2 My (i<m) m+1
+ (47TF7T> [od (167r L +log 5 ) +cp } +O0@™), (3.4)

where only the)(m>”) andog) are scheme independent since they give the strength of a logarithmic-depen

dence on the quark mass which can only be generated by loop calculatidrtsianot originate from local
operators. However, both loop calculations and local operators cdrige to the other structures and only
the sum

o~ (Mo \" [ (nyi<n) Mo Mo \'[ (i<m); | (i<m) m1
;{)(4@)[ "o Ltlog =0 )|+ (e ) o= L+ =] 10w, @35)

is observable. In contrast, the prefactors of odd poweré%@gf)l are scheme independent. Note that while
eg.(3.4) gives the contributions with fixédthe coefficients of a certain powerin,) to the final result folO
givenin eq.(3.2), eq.(3.1) gives the contributions with fixg@hiral order of the calculated Feynman diagrams,
i.e. order inﬁ) to the same result.

We now proceed towards a unique definition of all coefficients appearieg.(3.2) by making the expression
for O subject to four conditions. Sineg@ as a polynomial inn.. is of course a sum of linear independent terms,

these conditions have to be fulfilled by each of the coeﬁici@%ﬁl—) . individually.

Mg —

1. ultraviolet regularization: The final result for an observable should be UV-finite and indepdrafehe
unphysical renormalization scale Therefore, we require all UV-divergences appearing in the lobp ca
culations (in egs.(3.1), (3.4) and (3.5) they are containgd)ito be cancelled by corresponding infinite
parts of the counter- termcéi) = c(Li)()\) 16m23% L. As L depends on the scale the remaining, finite
parts of the counter-terms are consequently also scale dependentrapensate alog “5~ andlog
terms of the loop contributions such th>a§0 = 0. A renormalization scheme de3|gned to fqu|II this
fundamental condition iMS [GSS88]. In the definitions of eq.(3.2) the renormalization prescription o
this scheme i{o(’) +y o(””<")) 1672L + ¢ — clh () with A G el () = o) + 52, o™= In
the following, we always assume that the UV-divergences have ahtmjycancelled and only discuss
the scheme dependence of the finite parts of the counter-téL?rm
Note that all UV-divergences and scale dependencies appearing loofnealculation of the observ-
ableO up to a certain order can be exactly compensated by the counter-termsblavailthis order as
all UV-divergent and scale dependent contribution©f®) in eq.(3.1) only appear with < n where
corresponding counter-terms occur in eq.(3.2), see appendix B.3.

2. power counting: There is a hierarchy of terms in the sum of eq.(3.1): This sum is carriedvaut
increasing powers of the ratio of the small scale:,, divided by one of the large scalds F,, or M.
Summands with a larger value of the indeare therefore numerically suppressed. Isolating all terms
with a nonzero mass dimension, the sum over the indaifixedn is carried out over terms of the
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form %mg But note that for any: those terms start @at= 0 and that there is thus no hierarchy
amongst contributions with differemt! The chiral expansion of eq.(3.2) therefore is not necessarily a
reasonable perturbative expansion. Feynman diagrams of any ataiesthcare not suppressed [GSS88]
but could have arbitrary numerical impact on the final resultdorIn order to provide a meaningful
power-counting prescription, a consistent renormalization schemedheteds to link the expansions in

i andn in such a way that higher orderssinonly contain higher orders of

We therefore require all terms with< n arising in a calculation of a loop diagram of ordeito be

zero in a renormalization scheme suitable for covariant BChPT. This igmssce all contributions to
O™ of eq.(3.1) withi < n are analytic in the quark mass according to appendix B.3. This condition is

thus fulfilled if all contributions of th@g ’ andogg,’K”) with i < n are absorbed into the corresponding
@)y

ey’ (N).

Two renormalization schemes discussed frequently in literature which de this/ property are the
EOMS scheme [FGJSO03] and the infrared renormalization scheme [BL99].

. nonrelativistic limit: In a renormalization scheme fulfilling the previous two conditions which are

. n .
both necessary for consistent loop calculations in BChPT, eq.(3.5¢esda) ", _, (4%%) Ogn,z) +

<4]T‘£Qﬂ>l c(LiSm)(/\) still leaving a scheme dependence i m . To uniquely define™" andc(Li)()\)

which have the same impact on the final result but are of structurally elifferigin, we choose to re-
quire the segmentation of this sum in covariant BChPT to happen in exactlgrifewgay as in HBChPT,

i.e. theo™ andc(Li)(A) must be of same numerical size in both formulations of ChPT. This requirement
allows to make contact between covariant BChPT results and the longecesstul history of HBChPT.

In a scheme fulfilling this condition all coupling constants are defined in the saayend their finite
parts do have the same numerical values as in HBChPT. For each diageadB@hPT results can be
found by an expansion of the corresponding (properly renormalzadriant result i%.

A renormalization scheme designed to fulfill this condition is the infrared realization scheme [BL99].

(4)

. analyticity: After conditions 1.-3. all coefficients_()?’i) andc;’ () of the result forO given in eq.(3.2)

are uniquely defined. However, there is “in principle” a further scheemeddence: While in a cal-

culation of O at orderm only thecggm)(/\) with i < m are explicitly included, the same expression

containSOg”’i) with any value ofi. By going to higher orders in the chiral expansi@:ﬁ,)(A) with
largeri have to be included and the scheme dependence discussed in conditiem Seréains the sum

o (4%%)71 o 4+ (%)l i (\) with i > m. Apart from the fact that this scheme dependence

is only existent “in principle” since tho&ég)()\) with large values of are not present at a certain order
n < i, we require that no unphysical nonanalyticities are generated by themalization procedure.

This last condition is relevant with respect to the infrared renormalizatiberse [BL99] since this
scheme takes advance of this possibility “in principle” but at the end hasaloadih unphysical cuts,
singularities and imaginary parts at very large quark masses. Althoughpihgsical singularities in this
scheme are located at, = 2M, and therefore far outside the region of applicability of the low energy
theory, their existence disturbs the convergence properties of thé ekpr@nsion for many observables
even for pion masses just above the physical one.

In table 3.1 we give an overview over different renormalization schemgtbaw they behave with respect to the
conditions discussed above. In Figure 3.1 we demonstrate in a schemétlt lsée different renormalization

(n,4)

schemes treat the double expansion of eq.(3.2), in particular we show wfiticeo”’, X = a, M are setto
zero in a particular scheme and which are not.

Since we are aiming to work with a renormalization scheme fulfilling all four conutiove now start with a
brief discussion of the infrared renormalization scheme (IR) which fulfilfeditions 2. and 3. and subsequently
modify it such that it also satisfies our first and fourth condition.
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power counting| analyticity | nonrelativistic limit | ultraviolet regularization
IR v v v v
standard IR v - v )
MS - v - v
EOMS v v - v
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Table 3.1: Overview over several renormalization schemes of BChRjlidrly discussed in literature and
how they behave with respect to the four conditions discussed in the textRT¥theme is designed to fulfill
all four conditions.

MS infrared renormalization heavy baryon expansion
e ° ° ° ° ° P 3 o o o . o o - 3 o e e o ° o -
5 o o o L] L] e - £ 2 L] () L] () L) - s 3 () o o [ ) () -
49 L] o o () ° e 40 (] () () o = 49 o e () () —
T () L] L] L] e e - T (] () () = T o e ° -
p. 3 L] o o o o o . 2 (] (] = 2 o o -
e o o o o o o i 2 () = i 3 o -

R S T S A C T T ¢ 1z s & 5 &

Figure 3.1: A schematic plot demonstrating the different treatments of thdedexpansion i% and]%[O

in three different formulations of BChPT. From left to rightS- and infrared renormalized covariant BChPT
and HBChPT. From this plot, one can read off at which orde@iﬁw which orders ofM}_n are included.
A black dot denotes a nonzero contribution from this structure in the cégpescheme while the grey shaded
areas pool all those terms which are considered to be of the same chieallr The covariant framework
identifiesD ~ n while the chiral dimension in the heavy baryon expansion can be calcukfed-ai.
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The authors of reference [BL99] were able to implement a computatiorfalitpee which separates results of
one loop calculations within BChPT consistently into two parts and showed riegtart — called thanfrared
singular part — fulfills conditions 2. and 3. discussed above and the remainderinftagd regular part —

is a polynomial in even powers ofi, i.e. analytic in the quark mass and can therefore be absorbed into the
coefficientsc!’ )()\). The identification of the two parts of a one loop integral can be done asvillwvith

the help of Feynman parameters, the propagator of every intermadiastate can be expressed in terms of a
one-pion-one-nucleon state:

1 d?l 1
m = 5 [ G (2 —B) (Mg — (=17 (3.9

which again using Feynman parametrization can be written as an integral siegle propagator:

af 6

where we have introduced the effective mass= (1 — z)m?2 + x2 M2 and assumeg?® = M¢ for simplicity.
The expressions in eq.(3.6) and eq.(3.7) are analytically equal if theahtfrintegration is/ = [0, 1]. The
infrared singularpart 71, of this integral is projected out if the interval of integration is identified with-
[0,00). The difference between eq.(3.6) and eq.(3.7) with this choice of integratiands — thenfrared
regular part Ry, — is then the integral over the intervial oo). Writing it down explicitly, one find%

Hy = In—Rn = [/ da:—/dx}/ 'l inZQ) (3.8)

A loop only containing pion-propagators is completely singular, if it only &ieof nucleon-propagators it is
completely regular. As already mentioned earligf, fulfills the conditions 2. and 3. whilé&;; appears to be
an even series in the pion maBs; = Z;’.‘;O ajmfrj where the prefactors; do not contain any quark mass

dependencies. Since at every even power in the pion mass there isibut@ntrfrom a contact term(L’)()\),
recall eq.(3.5)R11 can in principle be absorbed into the low energy constants. In other wbinégprescription
to neglect the infrared regular parts is nothing else but a specific definititie contact term (Z)(A) and such
of 32 oY and ™ o<, see eq.(3.5). Therefore, the result of an IR renormalized loop ctitmula
found when all appearing Ioop integrals of the type eq.(3.6) are identifibdeir infrared singular parf;;.
Writing it down explicitly, the regular part ab(™ of eq.(3.1) is of the form:

n)) — 0 b ( i) (0 162 log -9
R(O > <47rF7r> Z <M0> +ry < 67°L + log h\ ) (3.9)
i,even
where one finds
| _ Sg,i<n) i<n,
P for (3.10)
gn,z>n) i>n,
and
rm) = o for i < n. (3.11)

While the equations for < n are necessary to implement our condition 2., the second line of the firdi@yua
implements a generalization of our condition 3i te n for all terms containing a logarithm.

3Note that we define the regular part with a different sign compared ¢oene¢e [BL99].
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If Oé@ denotes the contributions 8™ from counter-terms, the IR renormalized result of orgeis found
by the replacement

S [0l - r(0™)] — 30 @.12)
n=0 n=0
Such the final result fo®(™ in IR renormalization is
om = nZ::O ol +1(0™)], (3.13)

wherel (O™) is the infrared singular part @ ™.
However, this scheme suffers from three deficiencies:

1. As already discussed earlier, the result for an observaltaea certain chiral order. only contains the
counter-terms(LZ)()\) with i« < m. The possibility to absorb terms contained in the infrared regular part
with larger values of is only a possibility “in principle”, i.e. a possibility arising at a higher order.

2. The infrared singular piece of a one loop integral can contain divees and scale dependent logarithms
beyond the order of the calculation: Thg”) are not necessarily zero for> m! As discussed above,

there are no corresponding ternﬁ@()\) present irD for these values af Therefore the IR renormalized
result forO can contain divergences and scale dependent logarithms which cannot be absorbed into
a corresponding local operator and thus violates our condition 1. Theodriopinion unsatisfactory

— remedy proposed in reference [BL99] is to cancel the divergelmgdsand, again motivated by the
possibility "in principle” to absorb these terms into low energy constants wipplear at higher orders,
and to always seX = M to cancel the explicit scale dependence.

3. The infrared regular parts of a loop integral are nonanalytic, thégteiour condition 4. This comes due
to the fact that the infinite suiR;; = Z‘;‘;O ajm? does not converge for all values of;.
This point is of particular importance in the application of BChPT results to lchitaapolations. Al-
though the scheme immanent nonanalyticities which are generated by IRnaization are located at
m; > 2Mj, the quark mass dependencies of some observables see a strong iompabbke effects at
pion masses just above the physical one, e.g. start to run into a pole.

The key to a renormalization scheme fulfilling all four conditions is the followibpgesvation: While conditions
2. and 3., which are fulfilled by the IR scheme, only affect terms of eq.{@th); < m, the three deficiencies
of IR are due to terms with > m. Therefore, we propose a modified infrared renormalization scHBme
which agrees with the IR prescriptions for all terms witkd m but treats all terms with > m differently.

In particular, we overcome all three deficiencies if the infrared reg@espvithi > m are not absorbed into
counter-terms (which are anyway not present at this ardein the newly designed renormalization scheme.
Note, however, that the determination of those regular parts which awebslokinto the corresponding counter-
terms such depends on the ordeof the calculation.

In analogy to eq.(3.12) we define the renormalization prescription forét fchiral orderm in the modified
infrared renormalization scheméR) by:

Using the notations of eq.(3.9) this definition reads

> !C(L) -y (4@2) [Ta’ + (167r2L+log ;’)H . ZC%(A). (3.15)

1=0 n=0 1=0

] - > o (3.14)
mx=0

1=0
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Let us explain the simple concept behind this rather scary formal definition:

In eq.(3.12) terms of any poweof m, were absorbed into the counter-terms. This prescription takes advance
of this possibility “in principle” that higher powers af., can be absorbed into counter-terms which appear at
higher orders. However, we refrain from doing so since at a certdialordern only the counter-terms with

1 < n are present. In eq.(3.14) the powersaf with i = n are projected out of the regular part, ensuring that
only those term are absorbed into a local operator which really do hameesponding counter—terni"). In
eq.(3.14) this projection is done with the help of derivatives with respeattolhe sum over. in eq.(3.14) is
necessary since the regular part of a contribu@# which goes likeni with i > n cannot be absorbed into a
counter-term at ordet but is absorbed at ordér Thus we find all regular contributions of a certain povwef

the pion mass appearing at any chiral ordet i . The sum over is necessary to absorb the power-counting
violating terms of a contribution of orderinto the counter-term of the lower order

In table 3.2 we give a short introduction to howRirenormalization of a loop diagram can be performed in
practice. To implement this renormalization scheme in a calculation one doeaveotohgo through eq.(3.14)
but can easily find th&R results via

O = O%p+ O%) —_ O%D+Rm (O|00p) +O(

c.t) R | __ loop (c.t)
s — RR(0°P) = o2P+ 0", (3.16)

~
loop
R

okt

where R'R has to be understood as the regular part in the senfie m#normalization, i.e. expanded up to
the power of the pion mass at which a corresponding counter-term islaeaikaccording to the above equa-
tion IR renormalized results can be calculated as the sum oM8eresult plus the regular paﬁ?:%(’p =
OL%’ + RR (O'°°p). The regular part can easily be determined with the help of the integrals ighegppendix

B. The integrals which we give in this appendix are written general entugk applicable in theories with
explicit A degrees of freedom, etc.

We note that apart from the different treatment of nucleon recoil &sff#ite same power-counting analysis can
be performed in both HBChPT arR& renormalized covariant BChPT. Thus eq.(1.8) is suitable for a calcu-
lation of the chiral dimension of a particular Feynman diagram in both frameaamd both guarantee that
diagrams with larger chiral dimension come with a higher power of a small p&eariée operators which are
allowed in the Lagrangean and the possible topologies of Feynman diagmthe game in both formulations

of BChPT.

Finally we discuss an advantagel8f renormalization not explicitly named in the four conditions in the be-
ginning of this section. Since in tH® scheme only a very finite number of terms is absorbed from the loop
results, the analytic structure of the loop integrals is preserved. In garticantributions from the pion-cloud
are systematically reduced as the pion becomes heavier. In the followiptechave show that this feature

is not only in accordance with naive expectations but can be observtedattice and is thus essential in a
calculation of reliable chiral extrapolation functions. In standard IR m@@adization this feature is spoiled by
the subtraction of an infinite number of terms which appear to be nonanalyBEhHAT results do also not
show this property since the full loop functions are truncated in the ndivistec framework. The reduction of

(2
pion-cloud effects for large:,, however, is analytically realized via an infinite string(o%) terms, giving
a strong argument for considering all of those contributions to be of the sairal order.

3.3 An example: Quark Mass Dependence of the Nucleon Mass

3.3.1 Input Lagrangeans

Before we are going to demonstrate the basic properties of the renormalizatieme discussed above by
applying it to a calculation of the nucleon self energy and subsequentiyah ektrapolation of lattice data for
the mass of the nucleon, this section gives the relevant parts of the chgedihgean needed for a calculation
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HOW TO CALCULATE LOOP DIAGRAMS INIR
- a practitioner’s guide -
1.
Calculate all diagrams iNS as usual.

2.

The infrared regular part of this result is found if all integrals

Hy, appearing in th&/S result are replaced b, (and
analogous forHﬁ), Ay andA,, see appendix B).

3.
ThelR renormalized result is found, if the regular
part expanded in the pion m&sasp to the power at
which a counter-term is available is added to the
MS result.

2f the calculation does contain more than one small param-
eter, e.g. an additional small momentum transfer squafed
additional expansions in those small parameters have to be per-
formed.

Table 3.2: The three steps which have to be performed IR@alculation in practice. The connection between
those steps and the definition of the renormalization scheme in eq.(3.14) idqutdy eq.(3.16).

of this quantity in BChPT at next-to-leading one loop order,Qép?).
The chiral Lagrangean written as a sum of terms with increasing chiral diorers:

Lot = LO+L0 +22 408 409+ (3.17)

The relevant terms for an evaluation of the nucleon self energy (i) are (up to third order from [FMS98],
fourth order from [FMMSO00]):

F2

£ = Tl + ><+> (3.18)
£y = (Z p-My+ 22 %75) (3.19)
Vs A { 4M2 (upu,) (DPDY + h.c.) + %3 <uuu”>] v, (3.20)
= ¥ [ 6“5 G =X - 614& <<x2_> P+ O3 - <X+>2)} v, (3.21)

The quasi Goldstone boson pion triplet is collected in the SU(2) matrix valeled fiz) = «?(x) and is con-
tained in the chiral vielbein,, = i{u', V,u}, the covariant derivativ®, = 9, +T',, via the chiral connection
', = [uf, d,u] and the explicit chiral symmetry breaking tesm = ufyu' & uxTu, for details see chapter
1. Here we use = 2By M where M = diag(m,,, mq4) is the quark mass matrix angly = > is the chiral
condensate divided by the pion decay constant squared. Furthermgrdenotes the trace in isospin space
and M, andg 4 are the mass- and the axial coupling of the nucleon in the chiral limit. Note that éne no
terms of the third order Lagrangean contributing to our analysis of the méss pucleon.
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/ |R N = i HB \ + ,” é\\‘ + .
" HBY,
3 4
__ Mz ___Mx
™~ (rF,)? ™~ (nFr)2 Mo

Figure 3.2: A comparison between the Feynman diagrams representing divegleae loop contribution to
the nucleon self-energy in IR renormalized covariant BChPT and HBChiRe triangles denot% insertion
which come from the)(p?) Lagrangean of HBChPT. The presence of the diagrams containingttiersgies
demonstrates that in this scheme higher ordegég’rare generated by Feynman diagrams of higher orders.

- P

s Y \ i
I IR N = I MS\ + Z;);venaim;.

Figure 3.3: A sketch for the different treatment of the leading one loopralagontributing to the nucleon
self-energy irMS- and IR renormalization. The sizes of all coefficiemtsare determined by the definition of

the infrared regular part in eq.(3.8).

LN .
;IR = £ MSN + szevenaim;
)

Figure 3.4: A sketch for the different treatment of the leading one loopralagontributing to the nucleon
self-energy irMS- andIR renormalization. The sizes of all coefficients are determined by the definition of
the infrared regular part eq.(3.8). Note that in contrast to the sketchurefi)3 the sum in the right hand side
of this figure is truncated at= m. This displays the main difference between the IR Edenormalization
schemes. Since only the sum of loop diagrams plus local operators ivalblger see figure 3.5 — the additional
a; terms can be absorbed via a redefinition of the counter-terms.
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3.3.2 IR renormalized BChPT calculation of the leading pion-nucleorioop

In this section the general discussion which was given in section 3.2 farltiteary observablé® of eq.(3.2)
is repeated for the example of the mass of the nuc{een My at leading one loop orden = 3.

The full nucleon propagator has a simple pole which is shifted away by means of the nucleon self
energyX(p). The location of this pole, the physical mass of the nucléby, is the solution of the equation

B~ Mo—Z(H)] gy, = O. (3.22)

Figure 3.5 shows the Feynman diagrams contributing tg#reurbativesolution of this equation for/ at
leading one loop order. Diagram (a) contributes via an insertion fror®tipé) Lagrangean leading to the tree
level result:

My = My —4cm? + O@p®). (3.23)

Comparing this expression to the general discussion given abovej¢nessare thMc(? annd(i) of eq.(3.2).

Diagram (b) of figure 3.5 represents the leading pion-nucleon loop Whbioh Mlg?p is calculated. Its result
thus depends on the renormalization scheme applied in the calculation. Writiogttoene of a calculation of

diagram (b) in terms of the basic integral of eq.(3.6) one finds [GSS88]:

2
My 394

loop = 2F2 MO (mfrHll — AN) N (324)

whereA y denotes a loop integral over a single nucleon propagator, see apjgendix
Performing the nonrelativistic expansion of this integral, i.e replacing theonenomentum in the integral by
p* = Mov* + O(p), one finds the HBChPT result for this diagram as the leading term of e@(&%—o:

2.3
(3.HB) _ 3gam
Myioop ™ = —35- g (3.25)
whereas &S evaluation of the same loop integrals leads to:
MN(&W) = i — m3\/4M2 — m2 arccos M ) ot log%
loop 32w F2 My " o 2My ™" My
2 2 2 2 2 My

+miMg — 2Mg (mz + M) log )\] . (3.26)

While the HBChPT result eq.(3.25) only contains the leading terrﬁloinand relegates higher ordersj(%

to diagrams of higher orders, all ordersﬁ% are present at a certain orderﬂ'@#—ﬂ) in covariant BChPT.
HBChPT assigns the chiral dimension on%? and such ties together the expansionﬁyandﬁ (i.e.
higher orders irMﬁ0 appear at higher orders ﬂg}r}—ﬂ). Figure 3.2 gives a sketch for the correlation between the
expansion in orders of the Feynman diagrams and in ord%lfgcith HBChPT.

In the MS result of eq.(3.26) the HBChPT result of eq.(3.25) is contained as aaénkp term of thearccos
structure. Since this leading term occurs at an odd powet,gfthere are no counter-term contributions to this
structure and the outcome in tMS scheme must reproduce the corresponding term in HBChPT exactly. No
that this is not ensured if the HBChPT result comes at an even power pfadhanass like e.g. in a®(p*)
calculation of the mass of the nucleon.

All contributions of thearccos structure beyond the leading one, as well asitiidog % term of eq.(3.26)
are from the viewpoint of HBChPT of higher orders (order%}[@) and appear as a consequence of the fact

that the covariant formulation of BChPT resumms all orderﬁn at a certain order iqﬁm. However,
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due to the presence of positive powersidf in the second row of eq.(3.26) tdS renormalized covariant

result forM](\;g’"OOp) contains terms which are of chiral orders and everp’. Such, a Feynman diagram of

orderp? generated terms of lower orders. This example demonstrates that theredasistent hierarchy of
Feynman diagrams in tidS scheme [GSS88]; a diagram of — following the general power-cogifdimula
of BChPT given in eq.(1.8) — arbitrary high order can contribute to armbable with unpredictable size.
Contributions from higher order Feynman diagrams are numerically ngraesged. This technical problem
of MS renormalized covariant BChPT can be remedied exploiting the followisgrehtion: The terms of the
second row of eq.(3.26) which violate the power-counting are only gbbkr together with the constants
and M), as the full ChPT result for the mass of the nucleon is (in analogy to e9.(3.2)

My = My —4cym? + MyP 4+ 0(ph). (3.27)

loop

To avoid the appearance of terms which violate power-counting and toestiiuequation
MN(n.covarian) _ MN(n.HB) + (’)HB(pn+1), (3.28)

whereO"B(p*) denotes terms which are only in the framework of HBChPT considered té higler order
but in covariant BChPT already appear at orpferfor any chiral order. with the samedefinition of constants

in covariant and nonrelativistic BChPT, the authors of reference §Blirftroduced the IR scheme. In this
scheme the integrdll{; in eq.(3.24) is replaced b, as defined in eq.(3.8) while the infrared singular part of

Ay equals zero. One finds:
— 1 s
— m24/4MZ — m2 arccos (2m0 ) +ma (2 —log n;\) ] . (3.29)

This equation now does not contain any positive powers/gf all terms are of ordem? or higher and the
lower order terms have been absorbed into the counter-terms. Compasimgdghlt to eq.(3.26) we find an
additionalm? term which by construction [BL99] already at orde€rin the covariant scheme gives ttip?)
HBChPT contributions of the tyﬁ%. The second difference between eq.(3.26) and eq.(3.29) is the sign of

1

(3.R) 39%

oop T 3272 F2 My

My

the argument of therccos. In IR itis again designed to reproduce all HBChPT terms of the fg for

i+
g :)2M6
anyi which in HBChPT would only appear &8 (p?). The difference between the results of loop calculations
in theMS- and IR renormalization scheme is allowed since it only consists of eweerpof the pion mass and
such can “in principle” be absorbed into local operators. Figure 3&sgivsketch for the different treatment of
the leading one loop diagram MS- and IR renormalized BChPT.

However, all three deficiencies of the IR scheme discussed in the pseségtion can be found in this example:

1. The only local operators presentM](\?) are My andc;. All differences between the IR- ardS re-
sults beyondn? can only be absorbed "in principle”, i.e strictly speaking at a higher ondere the
corresponding counter-term becomes available.

2. Eq.(3.29) contains a scale dependence f(ilog 7). However, there is no counter-term available at
this order which could absorb this scale dependence and the finalfisthié physical observablif
thus depends on the unphysical scale

3. Thearccos structure of eq.(3.29) diverges fat, — 2M, and becomes complex afterwards. The IR
renormalized result for the mass of the nucleon such contains an unglsiagularity. However, for the
example of the mass of the nucleon, this singularity becomes numerically retegrfior pion masses
above700 MeV, whereas it appears to play a more prominent role e.g. in the anomalareetica
moment of the nucleon (see chapter 4).

*fulfilling this equation, My (™3 fylfills conditions 2. and 3. of the previous section.
®Note that the full®(p*) HBChPT result can — and does — contaif} structures which are not of thﬁo type. These additional

terms appear in the nonrelativistic theory as well as in the covariant iarkeat orderp?.
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All three deficiencies arise due to the renormalization of terms which are b&éhiyders inML0 and thus do

have no corresponding counter-term. In the modified infrared sctintieey are avoided by only applying
the infrared renormalization technique to terms of low order%(i)nfor which corresponding counter-terms

are available. Applying the general definition of the scheme eq.(3.14) to the example under discussion —
the mass of the nucleon at orole?r the infrared regular pieces (see eq.(3.8)) are subtracted from$he

renormalized results up t@— Not only in this example but in general, this term is exactly of the same
orderi m—0 as the corresponding HBChPT result, see eq.(3.25). From this obieargae finds the following

general pattern iR renormalization: At leading one loop level the regular parts have to beasied from
the loop results up to orde;@,—o, while at next-to-leading one loop order all regular parts uw&ohave to be

absorbed into the correspondlng counter-terms.
In IR the mass of the nucleon at leading one loop order is renormalized via

Mo — deym? — R (MN(3) ) C Mo—deym? 4 — A 20 log M0
7 100P) 0 (m3) ™' 3212 F2 M, A
Mo
—MZEm?2 <1 + log > ]
X
— My — 4eym?. (3.30)

The leading one loop contribution to the mass of the nucledR irenormalized BChPT thus reads:

2
(3IR) _ 39% 3
Mnjgop " = — Som2 2 [mTr 4M@ — m2 arccos ( M(]) + m? log J\Jg] (3.31)

It can easily be seen that up to ordeg it coincides with the outcomes of the IR- and HBChPT framework
while all terms beyond this order agree with #& result. Figure 3.4 gives a sketch for the different treatment
of the leading one loop diagram MS- andIR renormalization.

To further demonstrate the calculationl®, we proceed to a calculation of the mass of the nucleon at next-to-

leading one loop order i.€)(p?*). At this order one finds new counter-term contributions frﬁﬁ]@:
4 _ 4
MNc.t. = 461mﬂ, (332)

where we have introduced = — (4ess + %611556116). At the same order there are contributions from
loop diagrams (c) and (d) of figure 3.6 which afé& renormalization read:

32c195 My + (16¢19% + c2) m2 MG

2,7 2
(aMs) _ 3cigam M S
MnNigop = &'FTQJW% arccos <2M0> + 12872 F2 02

—4m2 [de1gim?2 + (=8c1 + co + 4dez) M| log %
2 (2 2.2 4 Mo
+16019A (mﬂ. + 3M0mﬂ. + 6M0) log )\] . (333)

The regular part of this result up to order: —i.e. those pieces of the loop result which are absorbed into the
corresponding counter-terms according tolfRgrescription — reads:

2 2,,2
_ (4) _ BagaMymz M,
R<MN'°°p>0(m¢) T T 4n?R2 <1+log )
3g4mk Moy
——2 T |81 My +3 24¢1 My + 2) log — 3.34
64r2 F2 M, c1Mo + 3 + (24e1 Mo + 2) log Nk (3.34)




54 CHAPTER 3. RENORMALIZATION OF COVARIANT BCHPT
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Figure 3.5: The two Feynman diagrams contributing to the nucleon selfyeatlgading one loop order. The
solid line represents the propagating nucleon while the dashed line depided@op. The solid dot in diagram
(a) is an insertion from thé&(p?) Lagrangean. At next-to-leading one loop order an insertion frontth€)
Lagrangean contributes through the very same diagram.
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Figure 3.6: The two next-to-leading one loop order diagrams contributinggtoubleon self energy. The solid
dots denote insertions from the Lagrangé‘é@.

where the regular part of diagram (c) is of course zero since it dmeontain a nucleon propagator in the loop.
Since at ordep* the regular parts af/ Nloop have to be absorbed into the counter-terms uptoaccording to
the R prescription, there is an additional contribution from @&?) diagram (b) of figure 3.5 which at order
pt is absorbed inte;:

R (MN(?’)

3 3gAm My
Ioop) oty = F (MN( ) A <3 +2log A) . (3.35)

'°°p> O(m3) + 6472 F2 My
ThelR renormalization prescription for the mass of the nucleon at this order is

My — 4cym? + 4ef(\)mi — R (MN(3) + My > ‘O(m4) — My — 4eym?2 +4ef(N)mi, (3.36)

loop loop

where |0(m<;) denotes all contributions of the regular part upté.

3.3.3 Application of the modified renormalization scheme t@ chiral extrapolation of the mass
of the nucleon

Summarizing the previous section, %p?) IR renormalized BChPT result for the mass of the nucleon is

3 2 3 2 4
My(mx) = Mo~ 401m3r + e <_4 + Mo +4cy mﬁ) arccos <2n;\;0>

2 3
32m2F2, /4 — T8 Mg M
0

3mi 69> g m
der(Nymd — M1 (294 494 _ dey )1 (—”)
+ el()\)m7T 1287r2F7% (Mo Cz> + <M0 8c1 + co + 4cg og 3
3 2,,,6
_ 2AGAT 00 T o). (3.37)

8m2F2M2 ° My

The coupling constants occurring in this formula are described in detailfémereces [PHWO04, AKO04,
BHMO05, PMW06]. We now apply this formula for chiral extrapolation of lattice data frofanence [AK™04].
Our approach is to extract the coupling constants appearing in the ckirabelation function eq.(3.37) from
the quark mass dependence of the lattice results and to subsequenthypgediction for the physical value of
this observable from the combined lattice plus ChPT analysis. Therefeqgesorm a fit with three parameters
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(Mo, c1 ande’ (1)) to seven lattice points for the mass of the nucleon betgw= 750 MeV. Figure 3.7 shows
the resulting best fit curve with the physical point included in the fit. Theltieg values for the fit parameters
are given in table 3.4. In the same figure thép?) result with the same values for the parameters is shown
indicating a very good convergence pattern for this observalile irnormalized BChPT. For the mass of the
nucleon at ordep* the string of(m.. /Mp)? terms and thus the difference between the standard IRIRaressult
becomes numerically relevant only for pion masses alio@eMeV. The values given in table 3.4 as well as
the solid curve in figure 3.7 are therefore well consistent with the anabfseserences [PHWO04, PMW06]

4 - m75_r g - .
where theD(p*) IR renormalized result truncated at or(%gm was utilized to chirally extrapolate lattice

data.

Figure 3.8 shows thé&(p*) result eq.(3.37) fitted to lattice data only and allows the conclusion that lattice
simulations together with BChPT lead to a very reasonable prediction for trsicahvalue of this observable
with small systematic and statistical errors (together they are om(¥elevel). Not including the physical
point we arrive at values for the parameters which are even within staltistroas only well compatible with

the ones found in a fit including the physical point, see table 3.4.

We have estimated the systematic uncertainties which arise due to the fact ttextdmder effects have been
neglected as follows: The leading term beyond the chiral order of @lysis is of the form

5

5 _ s(6) Mz

The size of the coupling constaﬁlgﬁzV would be determined by &@(p°) calculation, at the present stage we

estimate the size of higher order effects by varying this coupling within radire, i.e. —3 < 55\% <3
and perform the fit to lattice data again. The grey shaded band in figuie th& area covered by the array
of curves resulting from those fits plus statistical errors. For the armbyfsstatistical errors we rely on the
methods described in references [PM®6] and [Mus05] throughout this work. Note that neither the analysis
of the convergence pattern in figure 3.7 nor the estimate of possible higlareadfects in figure 3.8 signal a
breakdown of ou©(p*) covariant BChPT results below,, = 700 MeV. Thus the application of this result to
lattice data at large quark masses clearly seems to be justified.

Finally we comment on two analyses which are concerned with the coneergéithe chiral series. The first
one has been worked out in references [MB99] and [MB06] wheremaplete ordep® analysis of the mass
of the nucleon was presented in the framework of HBChPT and the finalusion was drawn that the chiral
series forM y (m..) breaks down at rather small pion masses if one incl@gs) effects. In the nonrelativistic
analysis of reference [MB99] it was found that — apart from reamit@ctions which are already present in our
covariant results at order* — the only contributions to the mass of the nucleon appearing at prdenter
the result by replacing the coupling constants of@hg?) structures (i.eg4 andF}) by pion mass dependent
functions g4 (m) andF;(m,)) and include the leading correction to the GOR-relationiig(m,). Note that
the absence of characteristit effects in HBChPT does not imply the absence of those effects in a covaria
p° analysis [SDGS07a, SDGS07b]. Since we cannot rule out such mooaatributions we do not give a
covariantO(p®) analysis based in the findings of reference [MB99].

In our opinion the breakdown of the chiral expansionféx (m ) diagnosed in reference [MB06] does appear
as a consequence of two effects:

1. In the nonrelativistic theory only terms up to a certain power of the pion m@ssncluded. In an
O(p®) analysis of the mass of the nucleon the highest power of the pion massiagpeahe HBChPT
result ism>. Thus, there is always a highest power of the pion mass which frontaircealue ofm,. on
dominates the HBChPT formulae and drives the resulista In contrast théR renormalized covariant

5Since the data basis underlying our analyses is not sufficient to deteathippearing low energy constants from the observables
discussed in this work, we decide to take values for all those constantslifevature which enter our results solely as couplings
constants in loop diagrams (i.e. only chiral limit values and the strength appearing contact interactions are fitted). The values
which we are using as input throughout this work can found in table 3.3.
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i
BChPT results typically contain these terms plus hi(r%g) corrections in therccos structure which
is a flat function ofm.

2. Calculating the mass of the nucleon at orgieone only picks up the leading quark mass dependencies
of g4, Fr andm, which are known to be far off the observed quark mass dependencip®h masses
above the physical one (see e.g. [HPWO03] and [Lus06]). Obviouslygtiark mass dependence of the
mass of the nucleon can only be described properly by a chiral analysesappearing vertex functions
do have a realistic quark mass dependence.

We have checked that if we use realistic quark mass dependencigs(fer, ), F(m,) andm,(m,) in our
covariant BChPT results fa¥/y(m,), we arrive at best-fit curves which agree very well with the ones pre-
sented in figures 3.7 and 3.8. Following the procedure described hbrealdown of the chiral expansion
for My at orderp® could not be confirmed. Going frof(p*) to O(p®) we only found some uncertairftyn

the numerical determination of the counter-teff\\). In general, we propose to use realistic functions of the
guark mass wherever the contributing couplings acquire a quark massdiace (this is e.g. be done for the
corrections to the mass of the nuclebfy appearing in the next section). A successful description of quark
mass dependencies above the physical point is of course not possibléin if leading order quark mass
dependencies for the appearing couplings are used which are kndvenfém off their physical behaviour at
larger quark masses.

We note that the argument given in the above point 1. frequently leadsatisfactory quark mass dependen-
cies at large quark masses (i.e. in the domain of presently available latticef dasaijts of the nonrelativistic
theory are analysed. However, systematic calculations at higher ortlee tovariant framework would be
necessary in order to ultimately test the convergence properties of tla¢ sdries for the mass of the nucleon.
A first step on this way was achieved in references [SDGS07a, SO} 80iere the ordep® terms which
contribute to the mass of the nucleon proportional#b were calculated. The presence of a large number of
so far undetermined low energy constants in these structures, regratiaklya detailed numerical analysis of
these higher order contributions impossible at presence.

Another critical analysis of the convergence properties of BChPT was gn reference [PMHWO7]. In this
reference the systematic differences between nonrelativistic ChPTlatalas with- or without explicitA de-
grees of freedom were discussed on the example of the axial couplthg oficleory 4 at leading one loop
order. The main conclusions of this analysis were that an interpolation &etgresently available lattice data
for g4 and its physical value based on ChPT at one loop level is only possiediégrees of freedom are
included explicitly and that expanding the leading one Idogontributions tog, in powers ofm, around

the chiral limit, i.e.matching them to the theory without explidif one ends up with an asymptotic series if
my > Ag = Ma — My < 300 MeV. Thus, truncating the series at higher and higher powers of the pies,ma
i.e at higher and higher chiral orders of the theory without expligitone does not find a better description
of the approximated function but in contrast is faced with uncontrollableateus. This finding of reference
[PMHWO07] can even be generalized: An asymptotic seriegfpr> Ay cannot only be found by an expansion
of the leading one loop order S8Eesult forg4 but for any observable calculated within this framework at one
loop level since it is a feature of the basig loop function in the nonrelativistic (see eq.(2.31) and eq.(A.6))
as well as the covariant{;; (Ma, My, m~), see appendix B.1) formulation of the theory. Consequently, the
available one loop order SSE results for the mass of the nucleon [BHM®%nomalous magnetic moment
[HWO02], the slopes of the nucleon form factors @] and the quark contribution to the total spin of the
nucleon [CJ02] all lead to an asymptotic series#of > Ay when expanded in powers af, around the
chiral limit. At the same time, however, the covari@p*) BChPT results calculated without explick are

flat functions which are in good agreement with lattice data for all thoseradisles even iftn, > Ay and
comparing?(p?) with O(p*) results we constantly see a clear convergence towards the lattice dasel@nggr

"The numbers which we give for the low energy constants in this work —riicpiar for those constants which only appear at the
highest included order — can always be polluted by higher orderteffe must therefore only be considered to be rough estimates.
8SSE: small scale expansion, a formulation of ChPT with explicitegrees of freedom, see chapters 1 and 2.
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ga | Fr[GeV] | c2 [GeVT'] | c3[GeV™] | ¢4 [GEV]
1.2 0.0924 3.2 -3.4 3.6

Table 3.3: Input values used in this chapter for the numerical analyses.

input M, [GeV] c1 [Gev] et (1GeV) [GeV 3]
lattice+phen.| 0.889 +0.001 | —0.815 + 0.004 1.46 4+ 0.01
lattice 0.862 + 0.04 —0.834 £ 0.03 1.46 4+ 0.02

Table 3.4: The values for the parametefs, c; ande’(\) as extracted in two different fits. The given uncer-
tainties display statistical errors.

range of pion masses and no signal of a breakdown areune: A,. Furthermore, in the final result for an
observable, then’ terms resulting from the expansion of the leadirdy loop are only observable together
with a vast number of other structures, see egs.(3.1) and (3.2). Whethet the chiral expansion of a result
calculated in a theory withouh inevitably becomes an asymptotic expansion abaye= A can therefore
not be concluded from the features of the basic loop. However, we cannot rule out the possibility that the
O(p?) andO(p*) BChPT results presented in this work are low order terms of an asymptaitis serd that
higher order contributions destroy the good agreement between BCGloHattce results which we find in our
analyses. If this scenario were true, the conclusion form this work woeittiat covariant BChPT at orders
andp* provides a very reasonable approximation of the full result, which tlegmettably, cannot be improved
systematically by going to higher orders. Turning back to the exampjg ofiowever, we have to admit that
the weak dependence on the pion mass which is found for this observalte tattice is in ChPT realized
via a cancellation between large contributions frefi- and7A loops. We do therefore not expect covariant
BChPT without explicitA to lead to a very good description of the pion mass dependenge of

3.4 Concluding Remarks

In this chapter we have introduced a new renormalization scheme. ThimadhHills all necessary conditions
which we request to be fulfilled by a consistent renormalization procadwae effective field theory:

¢ It allows for a cancellation of all appearing UV-divergences and leaddrictly renormalization scale
independent results.

e The results calculated in this scheme follow a consistent hierarchy of ternescdntributions from a
certain Feynman diagram are expected to be more and more suppresseightr the chiral order of
this diagram is. Diagrams of higher order are guaranteed to contribute \Witthar power of a small
parameter.

Beyond these very basic conditions, the renormalization program déstirsshis chapter has further advan-
tages:

e The low energy constants in this scheme are defined in exactly the same waiABEhPT (and IR
renormalized BChPT). Informations on the couplings which have beardfiuthis theory can be used
as input in arlR renormalized calculation. A truncation of a such renormalized covaB&hPT result
at the proper power ih/M; always leads to the corresponding HBChPT result.

e In contrast to standard IRR renormalized BChPT calculations do not lead to unphysical cuts, singula
ities or imaginary parts in the results. Furthermore, effects from pion-ondtops are systematically
reduced in the limit of large pion masses. This second feature is not fouhe iresults of IR renor-
malized BChPT nor in HBChPT, although it is a necessary condition in ordettin realistic quark
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Figure 3.7: The mass of the nucleon as a function of the pion mass. Full ksefibof theO(p*) IR BChPT
result to the physical point and the seven lowest lying lattice points; ddsteed)(p?) result with the same
values for the parameters. The shown lattice data are taken from redefiii™04]; the black box is the
physical point [YF06].

Figure 3.8: The mass of the nucleon as a function of the pion mass. Full liret:fibef the O(p*) IR
renormalized BChPT result to the seven lowest lying lattice points without ty&iqati point. The grey shaded
band indicates the size of statistical plus systematic errors for this fit. Thendattice data are taken from
reference [AK 04].
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mass dependencies for pion masses above the physical one and tthisdloextrapolations of recently
available lattice data.

All those properties arby constructiorguaranteed in alR renormalized BChPT calculation. This was strictly
proven in section 3.2 and appendix B.3.

A framed box included in this chapter gives the steps which have to berperddn order to arrive dR renor-
malized results. The three steps given there show that the implementation ahthisesfor any observable is
straightforward and relies on well established calculational techniquethéfmore, we emphasize that where
MS results are already available, tieresult is just a very small step away. All input necessary for this modi-
fication can be found in the appendices of this work.

In the second part of this chapter, we presented leading one loopaaidatations of the mass of the nucleon
in HBChPT,MS-, IR- andIR renormalized BChPT, displaying the above discussed propertiBsaf a simple
example. Furthermore, the next-to-leading one loop order contributiomesaatulated utilizing the newly de-
fined renormalization prescription. This analysis finally allowed for a ssgfokchiral extrapolation of lattice
data forMy (m,) to the chiral limit. For this chiral extrapolation function, we gave a detailed arsabf sys-
tematic and statistical uncertainties as well as an examination of the convepgtern of the chiral series. A
fast convergence as well as a reasonable prediction of the phyaloalwith small errors~ 10%) was found.
We note that for this first, simple example the procedure is not necessary in order to arrive at a satisfying
chiral extrapolation function. However, for none of the observabl@siare studied in the following chapters
any of the other ChPT frameworks discussed can give a reasonaoieptien of their quark mass dependen-
cies above the physical pion mass at the one loop order. This obserdaggsmot come as a surprise but is
expected from many arguments given throughout this chapter (in partmollaIR renormalized results are
flat, analytic functions of the quark mass where contributions from dyndpimas get weaker as their masses
increase). Therefore we are now continuing this work with the Hitstalculations of the nucleon form factors
(at next-to-leading one loop order) and the generalized nucleon factars (at leading one loop order). An
analysis of our results always includes an examination of its quark masgadkspce and systematic errors of
the BChPT calculation due to possible higher order effects are alwajisdtn exactly the same way as for the
mass of the nucleon in this chapter, see eq.(3.38). The values which ne flmuthe low energy constants in
this chapter — see tables 3.3 and 3.4 — are used as input for our studieteafrmform factors in the following
chapters.
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Chapter 4

The vector Form Factors of the Nucleon

4.1 Introduction

In this chapter we discuss the isovector- and isoscalar vector formrdaaftthe nucleon. Our analysis is based
on a next-to-leading one loop order calculation of these form factorg wsa methods ofR renormalized
covariant BChPT. We analyse both the momentum transfer- and quarkd®epssdence of the form factors
and compare our findings to phenomenology and lattice simulations.

The study of nucleon form factors with the methods of ChPT has a long yiidtast attempts were made in
reference [GSS88] for the case of two active quark flavours arefénence [Kra90] also including strangeness
contributions. In those references leading one loop order calculatiers presented usingS renormalized
covariant BChPT. However, the absence of a consistent powetinguprescription in theMS scheme was
revealed by those calculations and hence, throughout the 19903, @halyses of nucleon form factors were
only performed using the nonrelativistic formulation of BChPT. Those elativistic studies include calcula-
tions with explicit A degrees of freedom at the leading one loop level [BFHM98] and in HBCWith 7N
degrees of freedom only even at two loop order [KaiO3]. After it wama in reference [BL99] that a con-
sistent power-counting can be implemented in the covariant version of B@ieRt-to-leading one loop order
calculations of the nucleon form factors were performed in the IR [KMO] EOMS [FGS04] renormalization
schemes.

Recently, chiral analyses of nucleon form factors have seen rehieterest in the context of chiral extrapo-
lations: Present day lattice simulations'[@, AKNT06] are performed at quark masses much larger than the
physical one and in order to make contact between those theoretical atterdptata from experiments an ex-
trapolation prescription is needed. ChPT provides such an extrapolatiscription since quantities calculated
in this theory typically depend on the pion mass which, in turn, can be directlydittkéhe quark mass. The
extrapolation of lattice data for the form factors of the nucleon to the chiral inghe of the main focuses of
this chapter. While chiral extrapolations of the anomalous magnetic momenb&eamgioneered in reference
[HWO02] and the possibility of chiral extrapolations for the slopes of thdearcform factors has been studied
in references [G05, AKNTO06], the methods applied in this work allow for the first succdssfiral extrapo-
lation of the full isovector form factors.

This chapter is organized as follows: After a brief discussion of the vectoent of the nucleon, we give the
basic ingredients for our BChPT calculation in section 4.3. The outcomes aktti-to-leading one loop order
BChPT analysis for the isovector anomalous magnetic moment and the sldpedsufvector form factors are
given in sections 4.4.1 and 4.4.2 while the accordant expressions in ticalaosector are given in sections
4.5.1 and 4.5.2. Numerical discussions of our results are given in secidwhere the)? dependence of
the isovector Sachs form factors is discussed and in sections 4.6.1 ahd/lede chiral extrapolations of both
lattice data which have been extrapolated to the forward limit using a dipolézaasa lattice data at finite
Q? directly are presented. A summary section closes this chapter while the lengtiessions for the vector
amplitudes and the full pion mass- and momentum transfer dependent ffttidhe form factors are given
in appendix C.
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ga | Fr[GeV] | My [GeV] | ¢ [GeV ] | co [GeVT1] | c3 [GeV Y] | ¢y [GeVT!] | e} (1GeV) [GeV 3]
1.2 0.0924 0.889 —0.817 3.2 —3.4 3.6 1.44

Table 4.1: Input values used in this chapter for the numerical analysie d¢fi¢hnucleon form factors.

For a review on the status of the determination of the nucleon form factoxparieents see reference [dJ06].

4.2 The Form Factors of the Nucleon

The vector current of d”’ = 5 baryon contains two independent form factors, in covariant Diradinata
typically denoted as “Dirac; (¢?) and “Pauli” F»(¢?) form factors:

2 a
<N}V;‘N> = un ( ) Fl( )'YH—FZI;JQ\;?)) /wq 1; (p1)7 (4-1)

with the four-momentum transfer

q = p2—Dp1- (4.2)
and the quark current
Vi o= qnT"%, (4.3)

whereT® = (1, 7) is an operator in isospin space;= 0 corresponds to the isoscalar- amd= 1, 2, 3 to the
isovector currentM (™ is a normalizing mass prefactor introduced in order to arrive at a dimensgoRbuli
form factor. Throughout this chapter, we either identify it with™ = M®"® (and call the corresponding
Pauli form factomormalized or we identify M (") = My (m,) (and call the corresponding Pauli form factor
unnormalizefl. For the quark mass dependence of the mass of the nucleon we emplmdthggiof chapter 3
where it was analysed at next-to-leading one loop order in covariahPBC

3g5m3 m2 m4 m

My(mz) = My— 4cym? AT —1 —

N(myz) 0 cym; + 2 p 4_%% +4M2 +c M3 arccos 5o
i
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de"(Nymt - 20m | [ Z2A 424 8 4 1 (J)
+4el (A)m; 12872 F2 ( : 62> + <n 2 c1 + ca +4c3 | log /\
BClgAm

~ s Ean 8 MOJFO( ). (4.4)

The numerical values which we use for the low energy constants apgéathis formula can be found in table
4.1.

Our strategy in this chapter is to evaluate the left hand side of eq.(4.1) infdutivef field theory framework
with an arbitrary vector sourag, coupling to this current. We therefore briefly review the necessarydingmes
for the field theoretical calculation in the next section.

4.3 Formalism

4.3.1 The form factors of the nucleon at next-to-leading oneobp order

We start from the general power-counting formula of Baryon ChPT:;

D = 2Np+1+) (d—2)N} +) (d—1)N}P. (4.5)
d d
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D denotes the chiral dimensig’ of a particular Feynman diagramy;, counts the number of loops in the
diagram, whereas the variablag” " count the number of vertices of chiral dimensibfrom the pion(M)
and pion-nucleor{M B) Lagrangeans. We emphasize again thatiBheenormalization program developed
and applied in this work guarantees that diagrams with larger chiral dimeasgarumerically suppressed.

In this chapter we discuss the vector form factors of the nucleon up tetodeading (V2/Z = 1) one loop
(N, = 1) order in covariant BChPT. This corresponds to the powep'f in the perturbative expansion
of Baryon ChPT. To leading orddd = 1 we only have the tree level contributions from thlenucleon La-
grangean of eq.(4.10) with;, = 0, N = 0 and NMB = 1. This term only gives rise to the contributions
F")(g?) = 1+ O(p?) andF{"* (¢?) = 0+ O(p?) . At next-to-leading ordeP = 2 we find an additional
tree level contribution from thg? Lagrangean of eq.(4.13) witN;, = 0, N} = 0 and NP = 1 leading to
the resultsFé”) (¢®) = %% + O(p?) andFQ(s)(qg) = % (c6 + 2¢7) + O(p?).

The first contributions from the pion-cloud entedat= 3 with N;, = 1 and arbitrary values fav* £ and N2?.
However, theN;, = 1 topology only allows diagrams wittV{* 2, NM) € {(3,0), (2,1), (2,0), (1,1), (1,0)}.
The corresponding diagrams are shown in fig.4.1 (a)-(f). In additi@rethre loop corrections from the nu-
cleon Z-factor (given in appendix D.2) which at this order only contriglttg ensuring charge conservation
F*) (g2 = 0) = 1, both in the isoscalar- and in the isovector channel. Note that there is @ivaaldpossi-
bility of obtaining D = 3 contributions viaN;, = 0, N3 = 0 and N}5 = 1, corresponding to short distance

contributions taF"**) (¢2) which are linear inj2, see subsection 4.3.3.

In this work we study the nucleon form factors up to next-to-leading onge twder, i.e. up taD = 4. Aside
from the D = 4 tree level contributions wittV;, = 0, N} = 0 and N;*# = 1 (which contribute proportional

to m?2 andg? to FQ(“’S) (¢%)) one encounters loop diagrams with= 4 via N;, = 1, NMB = 1 and possible
additional vertices ofV}¥ and NMB (which again only appear in the combinations given above), the corre-
sponding diagrams are shown in fig. 4.2 (g)-(0). Diagram (0) in thisdigepresents contributions from the
O(p?®) Z-factor together with coupling constants from the orglet.agrangean, i.e. contributions tg(”’s) (0).

The additional ordep* part of the Z-factor again only contributes by ensur}ﬁﬁ’s)(o) = 1 in the sum of all
Feynman diagrams.

The D = 4 diagrams (j), (k), (1), (m) and (n) of figure 4.2 contribute with pion massedelentc; insertions
on the nucleon propagators. The sum of those diagrams ply3(i#¥e diagrams of the same topology (i.e. the
NMB > 1 diagrams: (a), (b), (c) and (d) of figure (4.1)) is just the result ofiditter one with the mass of the
nucleon)M shifted toM, — 4c;m?2. Strictly speaking, one only finds the leading term of a Taylor series of the
O(p?®) amplitudes around/y, e.g. Amp? + Amp’ = (1 — zlclrrz,%ai]\/[0 Amp?. However, we aim to apply
our results to chiral extrapolations of lattice data for the nucleon form faetod thus abstain from such a
perturbative inclusion of the nucleon mass function since the leading ioeindvy = M — 4c;m?2 is known

to only provide a reasonable description of the true quark mass dependeno the physical pion mass. The
perturbative treatment of those effects is therefore bound to spoil tr& quass dependence of the stexip?)
BChPT results for the form factors of the nucleon. In order to overciisewe account for diagrams (j), (k),
(1), (m) and (n) of figure 4.2 by assigning a realistic quark mass depepderihe mass of the nucleon appear-
ing in the correspondind(p®) diagrams. In particular, we choose to use the next-to-leading one loep ord
result for the mass of the nucleon found in chapter 3, see eq.(4.4). Bpitinia corresponds to a resummation
of all one loop diagrams with reducible (in the sense that they can be &losimtio the mass of the nucleon)
insertions on the nucleon propagators where diagrams (j), (k), (1), fch@ of figure 4.2 are only the very
leading contributions. Resuming the discussion of section 3.3.3, we noteghat@ssful chiral extrapolation
curve cannot be found in a calculation relying on vertex functions anfdggators which are known to not
display the correct quark mass dependence up the the quark masseshadme aims to apply the results. We
therefore always recommend to follow our example and perform resummdtinthose vertex functions and
propagators.
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Figure 4.1: The loop diagrams contributing to the nucleon form factorsdar pf. The solid lines denote the
propagating nucleon, dashes lines represent pions and the wiggly lireirectiming photon.
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Figure 4.2: The loop diagrams contributing to the nucleon form factorsdaref. The solid dots denote
insertions from the second order Lagrangean of eq.(4.13).
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4.3.2 Meson Lagrangean

According to our power-counting analysis given in the previous stioseave only need to know the chiral
meson Lagrangean up @(p?). At this order it reads [GL84]

s

F2
L8 = [VNUTV“U U+ yut] . (4.6)

U = 2 corresponds to a nonlinear realization of the quasi Goldstone bosos. fiet@ covariant derivative
VU is defined as
VU = 0,U — i (v + ap) U +iU (v — ap) (4.7)

while v, anda,, denote arbitrary vector- and axial vector background fields, forildetae chapter 1. The
explicit breaking of chiral symmetry via the finite quark masses is encoded in

X:2B0<S+ip)7 (48)

if one switches off the external pseudoscalar backgroundgialtl assigns the two flavour quark mass matrix
M = diag(m,, mq) to the scalar background field To the order we are working at, we obtain the resulting
pion massn. via

m2 = 2 By + O(m,?), (4.9)

wherermn = (m, + my)/2 and B, corresponds to the value of the chiral condensate. The other fremptar
at this orderF’. can be identified with the value of the pion-decay constant (in the chiral limit).
4.3.3 Nucleon Lagrangeans

The well known leading order Lagrangean in BChPT is given as [GES88

£ =y [WDM ~ My + %‘w%uu Uy, (4.10)
with
DYy = [3 —iv(s)%—l[uT@u}—zuT(v +a)u—iu(v —ay)ul | Uy (4.11)
pEN H o 9 » Y 9 H W 9 H W )
u, = wu'V,Udl. (4.12)

W is the nucleon field operator, the coupling constantdenotes the axial-coupling of the nucleon (in the
chiral limit), M, corresponds to the mass of the nucleon (in the chiral Iimit)mﬁﬁdis the isosinglet vector
background field.

According to subsection 4.3.1 we need to know the nucleon Lagrangeantp?). The relevant terms are
[FMS98, FMMSO00]

L2 = Unlelxs) - 8M2 (Gt} (DD} + ) o ] + i

+8?\7400“”<F+) Uy, (4.13)
L® = Ty 2’]‘&60 ([D“ E2D, +hc) Mo T ([D* (FE)D, + hec.) | Oy, (4.14)
Liv = x| = S DNIDA (B o = T [ DN IDA B o = SR(EL) ()

~ 8 Bt (i )o | W, (4.15)
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where we have used the definitioRs, = u' F},,u + uF),,ul with the field strength tensdt,, = 0,0, — 9, v,
and the explicit chiral symmetry breaking tenn = u'xul + uyu. Furthermore(...) denotes the trace in
isospin space and = A — % (A) is a traceless SU(2) operator.

4.4 |sovector Form Factors of the Nucleon

Calculating the Feynman diagrams shown in figures 4.1 and 4.2 with the nualepion dynamics as well as
their couplings to the incoming photon field determined by the Lagrangea@s imivthe previous section, we
arrive at the amplitudes given in appendix C.2. The rather lengthy explaiythc expressions for the isovector
form factorsFy (t) and F5 (¢) are given in appendix C.3.

We start the discussion of those results by analysing the quark massddaperof their lowest moments in
¢ = t, namely the isovector anomalous magnetic moment of the nuelgand the slopeg! andp} of those
form factors defined via

FY(t) = 14 pit+O(t?), (4.16)
Fy(t) = ry+ pst+Ot). (4.17)

A numerical discussion of these results in the context of chiral extrapotatiblattice data is given in section
4.6.

Note that due to the presence of the small paramgtar the current of eq.(4.1) and the prefactoestached
to the slopes in the above definitions, the contributions of a BChPT calculatatriral dimensionD to these
structures are of chiral dimensiohs— 2 for ,,, D — 3 for p; andD — 4 for p,. Systematic uncertainties due
to possible higher order effects are therefore accordingly largéhésie quantities.

4.4.1 The quark mass dependence of the isovector anomalous gmetic moment

The BChPT result for the isovector anomalous magnetic moment of the nuclewritten as a sum of con-

tributions from ordep? (5&1(,3)) andp* (6n§,4)) as well as the pertinent contributions from local operators (with
couplingscs ande’;(A)) reads (here and throughout this chapter we fix the renormalizationatcate 1):

M)

Ro = o [c6— 16Mom2elos(Mo) + 63 + 65 + 0., (0], (4.18)
0
with
2 2
@ _ gamaxMor oo oyoy M oo
oS S 75| (8m2 = 7M%) log 2% — 31|
2
gamzMo 4 2 9 4 Mgy
- —13M M T 4.19
Sm? FZAS /AN — 2 [Sm7T 3M*m; + 8 } arccos (ZM)’ ( )
and

2

m 2 2 2 2 2 My
_WF}W [49,4 (c6 + 1) M5 — g4 (5c6m7r + 28M0) log A

M
+AM§ (2c69% + Tg% + c6 — 4caMp) log ﬁ]
0

5/{5)4) =

2 3
JAGMx (5m72T — 16M§) arccos [ 7). (4.20)
2My

 32m2 F2M2/AMZ — m2
While the leading chiral contributions beyond our analysis take the form

M()m?r
(4 Fp)*

OK/U (p 5) = 651)

¥ .. (4.21)
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The prefacton,,, would be determined in a fulD(p®) calculation. At the level of ou©(p*) analysis, we

estimate the possible impact of higher order contributions to our results yipgais parameter within natural
size, i.e.—3 < d,, < 3, for a numerical analysis see sections 4.6.1 and 4.6.2.

Note that according to the discussion at the end of section 4.3.1, the matisiuly in eq.(4.19) is to be
understood as

M = My, (4.22)

if one truncates eq.(4.18) already@(p?), whereas ap)(p?) it starts to acquire an intrinsic quark mass depen-
dence given in eq.(4.4):

M = My (my). (4.23)

The mass parametéf (™ in eq.(4.18) appears as a consequence of the normalizatiésig) in the current of
eq.(4.1). For comparison with experiment and normalized lattice data one hawsdo choos@s (™ = MRS
while a comparison with raw, unnormalized lattice data has to be performed A&iNg= My (m.).
Comparing the results presented in this chapter to the findings of refdi€ltfd] where the nucleon form
factors have been calculated using the standard IR renormalization teetwoficeference [BL99] at the same

. 2i
orderp?, one observes a difference of the forffs Work — nLKMOl] = (4%3)2 Yoo a; (’ﬁ—g) , l.e. an

infinite sum of even powers of the pion mass starting frarh. In principle these terms can be absorbed
into higher order coupling constants and each one such becomes watibsat a sufficiently high order of

the chiral analysis. They appear as a consequence of the diffegariarization prescriptions used here and

in [KM01]. From the viewpoint of applicability for chiral extrapolations otioice of the renormalization
scheme is motivated by the fact that fliescheme utilized here shows a much better convergence pattern for
pion massesn, > mPYS and provides smooth extrapolation functions, where contributions fréioops

are systematically reduced for large pion masses in agreement with dimses\feom the lattice but in contrast

to the standard IR result, see figure 4.7. In addition there are some moral falguments — see chapter 3 —
motivating our choice.

Performing an additionajlv0 expansion of the above expressions one finds

2,.,2 I
5 9124Mm77 gams (1 + Tlog "]\}[—O) 404
T T Rz T Sr2F2 L (4.24)
™ ™
2
. m
oy = _87r27rF72

(cs +1) g% + (2069124 + cg — 4C4M0) log % + ... (4.25)
0

and such recovers th@(p*) HBChPT result [BFHM98] (which is the first term of eq.(4.24)) while thener

~ m2 constitute the accordadit(p*) HBChPT contributions. Note that the second term in eq.(4.24) is of order
p? in the covariant framework but only appears at orglein the nonrelativistic formulation of BChPT. The
leading, linear dependence ©f on the pion mass is long-known from current algebra [CP74].

4.4.2 The quark mass dependence of the slopes of the isovedianm factors

The slope of the isovector Dirac form factor again written as a su@(pf) andO(p*) loop contributions plus
a counter-term from the ordg? Lagrangean reads:

o = Bat+pP+ 00,000, (4.26)
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with

B = —2dg(A = M), (4.27)

v(3) _ 1 2 a4 2 4 Mx 4 2 219

+gZm2 (15m2 — 44M2) log %}
2

gaAMr [ 4 2272 4] (mw )
+ 15m,. — 7dmz M= 4+ 70M™| arccos | — ), 4.28
96m2F2M4\/AM? — m2 " " 2M (4.28)

2,2
v (4) C6gAMy

2 2 Mx
= - my (my — 3My) arccos | ——
& 322 F2 M \/AMZ — m2 [ g o) <2M0>
+y/AME — m2 [Mg + (M2 —m2) log E’T}] : (4.29)
0

m2

where the last line is again not part of the orgémresult but represents the leading contribution beyond the
order of our analysis and allows for an estimate of higher order effeggganding our results in powers %

we again find the according HBChPT resul%%( terms correspond to ordef in HBChPT while the terms
0
carrying a factor’]\}—g are of ordep? in this framework):

2
v (3) _ 1 702 +1+2 (504 +1)1 M 7359*47”# 4.31
P1 967T2F7% ga+ 1+ ( 9ga + ) 0g M + 1927TF72M0 ) ( : )
2
v (4) mz
PO @<> (4.32)
Mg

The leading, pion mass independent term given as the first term in e a8 1irst found in the nonrelativistic
ChPT analysis of reference [BKKM92].
Likewise one finds for the slope of the isovector Pauli form factor:

M®)

3 4
P’ o= T (BCZ + 05D 4+ s 1+ 0 (p5)) , (4.33)
where
Be = 4Moer, (M), (4.34)
@ = g4 Mo — 124M° + 105m2M* — 18m; M?
2 9672 F2M5 (m2 — 4M?2) i i

+6 (3mS — 22M>m2 + 44M*m? — 16M°) log %

2M X
+ il ; [9m§ — 8AM2mS 4 246M*m?
482 F2M5m, (AM? —m2)2
—216M%m? + 16M8} arccos (;n—ﬂ), (4.35)
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2 . .03
oo @ _ _ gAcemy 3 {4mfr —2Tm2 Mg + 42M61] arccos (;;;)
96m2F2 MG (4ME — m2)> 0
1

+ 16c4 M7 + 524 M8 — dcym?2 M2 — 14cgg3m2 MY
967r2F72M§ (mgr_élMoz)[ C4 Mg gaiVlg Cam My Ceg AT Mg

m
—13g3m2 Mg + 8 (397 — caMy) (m2 — 4MG) M log ﬁz + deggimiE M3

— g% (m2 — 4M2) (4cgm? — 3cgm2 Mg + 24 M) log Z”] . (4.36)
0

In order to estimate higher order contributions to this observable we use

Momﬂ
P2 (4nFy)?

Op(p°) + .. (4.37)

The corresponding HBChPT results can again be found by an addigrpahsion inj\%O and read:

9 2
v (3) gaM 9a M
- 29 + 241og — 4.38
P2 487 F2my + 9672 F2 < 9+ 2dlog Mo) e (4.39)
v(4) 1 2 M
Jo = _%TQFE (39,4 + 4cy Mo + 8c4 My log ]\40) + ... (4-39)

where the second term jij ) would be of ordep* according to the counting in the nonrelativistic framework
and the first term in this equation was already found in reference [BKERM9

Note that the slopes of both isoscalar form factors are singular in the kimita While p} displays a logarith-
mic divergence, see eq.(4.3}p}, behaves amé, see eq.(4.38). The mass functibh appearing in thed(p?)
expressions of egs.(4.28,4.35) depends agglin on the chiral ordbicategs.(4.26) and (4.33) are studied.

4.4.3 The momentum dependence of the isovector Sachs form fars

In this section we discuss the momentum trangfée= —t dependence of the isovector electric- and magnetic
Sachs form factors. They are related to the previously discussed Rivddauli form factors via

2
Gp(QY) = F(QY) - 4%]%&(@2), (4.40)
Gu(Q%) = F(Q%) + R(QY). (4.41)

The Q? dependence of those form factors@{p*) BChPT atm, = 140 MeV is shown in figures 4.3 and
4.4. In those plots we have used the input values given in table 4.1 anctimated the parameters, B.q

and B.; such that we reproduce the anomalous magnetic moment and the slopes @& gagaimetrization

of reference [FWO03] given in table 4.3. The resulting values for tha@sarpeters are given in table 4.2. The
Q? dependence of the phenomenological parametrization is also shown iesfig® and 4.4. A comparison
allows us to conclude a good description of phenomenologyby') covariant BChPT up to momentum
transfers of abou)? ~ 0.25 GeV? where we find more curvature and a better agreeme(t(pf) BChPT
with the phenomenological parametrization @¥,(Q?) but a still satisfying description of%,(Q?) at low
momenta. To get an impression of the convergence properties of theetpeaision for those form factors, we
also show the&)(p?) results for the Sachs form factors. Wher€gs(Q?) receives moderate corrections when
going fromO(p?) to O(p*), the next-to-leading one loop order has a huge impact on the magneticfSanhs
factor. These largé(p?) contributions taGY, (Q?) come as a result of two effects which — at a renormalization
A = My — can be interpreted as follows: Short distance contributions to the rafins dorm factor arise at
this order, the term- B, considerably changes tf@? dependence of the magnetic form factor. The large
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Figure 4.3: The momentum transfer dependence of the isovector eleathis fam factor of the nucleon in
O(p*) BChPT (solid),0(p?) BChPT (dotted) and the phenomenological parametrization of refereki¢ed]
(dashed).

values for the coupling constants of the second order Lagrangeathgi\second, albeit less important reason
for the largeO(p*) contributions. These coupling constants are known to parametrize cdiatniérom theA
resonance and thus their impact on the magnetic form factor does not sarseigprise [BFHM98]. However,

a convergence of the BChPT results towards phenomenology is cleanlglesigby the comparison of the
different orders of our calculation.

A quantitative estimate for systematic uncertainties of@ig*) BChPT calculation can be given as follows:
The leading contributions of ordeP to the nucleon form factors (which cannot be absorbed at the physical
point by a shift incg, B.; and B.;) are proportional ta)*. Again assuming the prefactors of these structures
to be within natural size (i.e. betweer8 and3), the systematic uncertainties of our analysi€:¢f(Q?) and
GY,(Q?) exceed the0% level aboveR)? = 0.3 GeV? but are belowl 0% for Q? < 0.2 GeV2. Within those
errors BChPT and phenomenology are perfectly consistent.

Given the good agreement between the phenomenological parametrizadidhesO(p*) BChPT result for
G%(Q?) at low momentum transfer, we to study the deviation of@fedependence of this form factors from
the standard dipole form

Go(Q) =L (4.42)
(1+55a2)
The result is shown in figure 4.5 as a function|@f. Even in this high-resolution plot, the good agreement
betweenO(p*) BChPT and the parametrization of reference [FW03] holds, supportengléims made about
the deviations of the nucleon form factors from the dipole shape in thiserefé. In the same plot, we show
the result of the radius approximation, i€Y(Q?) ~ F?(0) — pYQ?, demonstrating that the ful(p*) BChPT
result contains important structures beyond this approximation.

INote that the “bumps” observed in reference [FWO03] are only visible énctiarge channels, whereas in the isovector channel
discussed here, one would — according to reference [FW03] — omlyafifecline below the dipole behaviour in #é dependence of
the form factors.
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Figure 4.4: The momentum transfer dependence of the isovector magnaiis f8em factor of the nucleon in

O(p*) BChPT (solid),0(p*) BChPT (dotted) and the phenomenological parametrization of refereii¢ed]
(dashed).
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Figure 4.5: The isovector electric Sachs form factor of the nucleon rimedao the standard dipol&?(p*)
BChPT result (solid), radius approximation (dotted) and the phenomenalquarametrization of reference
[FWO03] (dashed).
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4.5 Isoscalar Form Factors of the Nucleon

Contributions to the isoscalar form factors of the nucleon arise from aliagj(a), (g) and (h) of figure 4.1.
The resulting amplitudes can again be found in appendix C.2 while explicittanekpressions fofF; (¢) and
F5(t) are given in appendix C.3. We start the discussion of these form faaf@is by analysing the quark
mass dependence of their lowest momentsdaefined via

Fi(t) = 1+4pit+ 02, (4.43)
t) = ks+pit+O). (4.44)

A first glance at the numerical implications of our results can be found iset.6.

4.5.1 The quark mass dependence of the isoscalar anomalousgnatic moment

The BChPT result for the isoscalar anomalous magnetic moment of the nugleaitten as a sum of contri-
butions from ordep? (5&&5)) andp? (5n§4)) as well as the pertinent contributions from local operators (with
couplingsk? = cg + 2c7 ande’ 5 (\)) reads:

M)

Rs = Moy [ng — 16MymZefos(Mo) + 658 + k(Y + Oy, (p5)], (4.45)
with
3g2m2 My | mx (m2 — 3M2) m m
3) Al ™ m 2 2 2 il
W= e Mp_mgam“(mﬁ+”[+“4‘mﬁbgM’ (4.46)
and
3g2m?2 m
4 _ AV 2,0 (q 2 2 m
I = gy | MO+ (3 — 4MG) log 0
2 2
oM (Smw - 8M0) ( My )
K arccos [ —— | |- 4.47
3 4Mg — m2 2Mo @40

The leading chiral contributions te, beyond our analysis take the form:

Mom3
O0..(p°) = 5*‘5(47#)4*” (4.48)

The corresponding results of the nonrelativistic HBChPT frameworkacgmin be found by an expansion of
our covariant results irj\}—o. In HBChPT one does not find any loop contributions at oggflerAt O(p*) one
finds

3g124m2

e Mgy
ORSP = — s ()4 1) log 7=+ OB (p°). (4.49)

4.5.2 The quark mass dependence of the slopes of the isoscdtaim factors

Writing the slopes of the isoscalar form factors of the nucleon as a surantfilsutions of different chiral
dimension, we find

(4)

3
pi = By+0Y 1Y 40,00, (4.50)
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with
oL = —4dy, (4.51)
ps (3) — 9124m72T 5m2 M2 _ 18M4 + Mg (5mér - 34M2m72r + 54M4)
L 3212 F2MA (m2 —4M2) |7 4M? —m?2
X arccos (?—A}) — (m,zr — 4M2) (5m3r — 4M2) log nj\l/;] ) (4.52)
s(4) 39124'%2’”131' M2 + (M2 2) 1 My + Mg (mgl' - 3M§) ( My ) (4 53)
= —m og — arccos N .
A1 32m2F2 M} |0 0 ™ %8 My VAMZ — m2 2Mo
5 mi
And likewise
M™ 3 4
o= S (Bar i 45 4 0507), (4.55)
with
2 = 8Myesy, (4.56)
PO gAm2 M max (3ma — 20M>m2 + 30M*) recos ( My )
16m2F2M5 (4M? — m2) 4M? —m2 2M
~2(10M* = 3m2 M2 + (4M? — m2) (2M? — 3m2) log "]\?)] , (4.57)
P @ _ mggim% _ Mg (4771;1r — 2TM3Gm2 + 42M61) arccos [ N
2 3272 F2 MG (m2 — 4MQ) VAMZ —m2 2 M, 0
—4m2 M + (m2 — AMZ) (4m? — 3M2) log E”] . (4.58)
0
Mom
5 oflr

In the heavy baryon expansion all the above pion-cloud contributiong tsldipes of the isoscalar form factors
only appear at higher orders and at orgéone would only find the counter-term contributions.

Finally we emphasize again that the mass-funciiérin eqs.(4.46,4.52,4.57) depends on the chiral order at
which the respective quantities are studied. It has to be identifiedMits M, in an analysis a®(p?) but
with M = My (m,) in aO(p*) result.

4.5.3 The momentum dependence of the isoscalar form factors

After the coupling constants, e],;(My), B:, andBZ, are adjusted such that the isoscalar anomalous magnetic
moment and the slopes of the parametrization of reference [FW03] giviablie 4.3 are reproduced, tig¥
dependence of th@(p*) BChPT result for the isoscalar form factors is completely dominated by distance
physics. Although we do find rich analytic structures resulting from the-plond, their sizes are numerically
negligible compared to the contributions from local operators. Thus, giedily only find a linear dependence

of the isoscalar form factors afj? and no substantial curvature. Therefafp*) BChPT cannot provide a
good description of experimental data for these form factors begiing 0.1 GeV2. However, due to isospin
and parity conservation, the corresponding spectral functions doéant starting a? = —(3m.)? [Kai03]

and thus essential contributions to the isoscalar form factors arise fronotw effects (containing three pion
lines in the loop), starting at order.
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4.6 Fit Results

In this section we give a numerical discussion of 6)p*) covariant BChPT results in the context of chiral
extrapolations, i.e. the extrapolations of lattice data at large values.ahrough the physical point to the
chiral limit.

Simulations of the nucleon form factors on the lattice are not only performkedge pion masses but also at
finite values of the momentum transfer which in former days did lie clearly outs@leange of applicability

of BChPT. The standard tool to extract observables like the anomalousetagioment and the slopes of the
nucleon form factors from simulation results at laf&is a fit of the dipole ansatz to those lattice data. Thus,
by fitting the dipole formula to the lattice results fBr(Q?) andF»(Q?) at every value ofn,; separately, values
for k, p1 andp- at the respective pion mass can be given.

The simulation of reference [AKNTO06] now for the first time provides us Withenched) lattice results for
FP(Q?) and FY(Q?) atQ? < 0.3 GeV?, values for which the previous section gives us some confidence that
the chiral expansion for the isovector nucleon form factors has alneatl converged at next-to-leading one
loop level. We therefore perform two different types of analyses: i©teextract the values for our couplings
by a fit of theO(p*) formulae given in sections 4.4.1 and 4.4.2 to datafgr} andpy gained via a dipole)?-
extrapolation (see section 4.6.1). The second approach discussedtiam ge6.2 is a fit of our extrapolation
functions directly to the outcome of lattice simulations at fir@t¢ In both paragraphs we do not include
the physical point in the fits but give predictions for the physical valdébeisovector anomalous magnetic
moment and the slopes of the form factors including an analysis of statistivadlbas systematic errors.

4.6.1 Fits based on dipole-extrapolated data

In this section we present fits of o@¥(p*) BChPT results fok,, p} andpy (given in sections 4.4.1 and 4.4.2)
to data resulting from lattice simulations 6F (Q?) and F¥ (Q?) which have been extrapolated to low values
of Q2 using a dipole ansatz [AKNTO06]. As fit parameters we choose the BCbRfiliags entering our results
through tree level diagrarfisce, €fy5(A), B and B.o. Their numerical values are determined by a fit of the
O(p*) BChPT results fow, (see egs.(4.18)-(4.21)) and the slopégegs.(4.26)-(4.30)) andy (eqs.(4.33)-
(4.37)) to dipoleg)?-extrapolated results of dynamical- and quenched lattice simulations, edohnped at
three pion masses between 300 MeVn,, < 700 MeV. The resulting values for the fit parameters can be
found in table 4.2. The values for all other couplings entering our restdtsaten from chapter 3 and the
literature and are given in table 4.1. The numbers which we findd@nd B,; in this fit are well consistent
with what we found by an adjustment to the parametrization of referenc@3fFW section 4.4.3 while we find

a small deviation foB,.

Figures 4.6, 4.8 and 4.9 show the quark mass dependencies of the is@remmalous magnetic moment of
the nucleon and the slopes of the Dirac- and the Pauli form factor,aeagg. For all three quantities we find
very satisfactory chiral extrapolation curves connecting the lattice restulisge quark masses with data from
phenomenology (which have not been used as input in the fits) in a smabiibria All three extrapolation
curves do only show a very weak dependence on the quark mass innttaéndaf the available lattice data but
see stronger and stronger influences of the pion-cloud as the pion etas® dower values and due to this
effect, the physical values fa,, pj andps are found to be considerably larger then the results found on the
lattice — but smaller than the corresponding chiral limit values. Having fixedittparameters with the help
of lattice data, we are able to predict the valuesafp] andpj at the physical pion mass. The resulting val-
ues, each given with the corresponding statistical error can be fouablm4.3. For all three observables we
find very good agreement between the predictions from chirally extregublattice data and phenomenology.
However, we have to admit that the phenomenological situation for the skbpewiguous since there is quite
some inconsistency between the two analyses [FW03, BHMO07] to which mpa@ our results. We find good
agreement with both references @i but only with [BHMO7] for p3. Furthermore, comparing our findings

2However, note that the coupling, determining the chiral limit value of,, not only enters our results via a local operator at
O(p?) but also contributes as a coupling constar®ifp*) loop diagrams.



4.6. FIT RESULTS 75

to data from experiments, one has to be aware of the fact that one thayeipares the results of a theory
with two active quark flavours to the physical world with an additional, maeggrdight strange quark. Slight
differences between both are therefore expected.

Addressing the question of the range of applicability of ChPT, we condhode the following three observa-
tions which can be made in figures 4.6, 4.8 and 4.9 thatXf') covariant BChPT results may be applicable
for pion masses as large as, = 600 MeV and a breakdown cannot be observed befege= 700 MeV:

e For s, andpy the O(p?) results are found very close to tii¥(p*) results leading us to the conclusion
that for those observables BChPT has already converged well atrtiés d he different orders do not
start to deviate significantly below, ~ 700 MeV.

In contrast, the convergence of the chiral serieg§ds slower, originating in the fact that in a calculation
of the matrix element eq.(4.1) the slope of the Pauli form factor is identifiedeaprfactor of the
structure~ o,,4"¢*>. Three powers of the small momentumare thus factorized out and @(p")
calculation of the matrix element starts to contribute§cat the powern™ . As a consequence, the
quark mass independent counter-teBp entering this quantity is of order!. The appearance of this
counter-term is responsible for the large difference betwee®thé) andO(p*) results forpy observed
in figure 4.9. The size of order* pion-cloudcontributions tg} is small (at\ = M) and in accordance
with expectations from the power-counting analysis belew~ 700 MeV.

e In eqgs. (4.21), (4.30) and (4.37) we give terms which allow for an estinfap@ssible higher order
contributions tas,, pi andp3: Varying the coefficients,,,, d,v andd,» of egs. (4.21), (4.30) and (4.37)
between-3 and3 and performing the fits again, we arrive at arrays of curves whicindieated by the
grey shaded bands in figures 4.6, 4.8 and 4.9. In addition to those systemaitainties of the ChPT
analysis at the next-to-leading one loop level, the considerably smaller sttistzertainties resulting
from the determination of the low energy constants in the fits are also includeg gndi shaded bands.
Following this analysis we do not expect large higher order contributiors,te] andpj for m, < 700
MeV.

Due to the large absolute value gf, the error band in figure 4.9 looks a bit small. We note that for
this intrinsically large observable the assumptie® < d,z < 3 might be too optimistic and the true
systematic uncertainty for this quantity may be a bit larger than the one indicated.

e As discussed in detail in chapter 3, tHe renormalization program leads to flat chiral extrapolation
functions andr NV loops are systematically reduced in this framework as the pion mass takegen lar
values. This is in good agreement with the results from lattice simulations aflengenasses where,,
pY andph do only show very weak pion mass dependence. However, aroynd 700 MeV, our BChPT
result for the isovector anomalous magnetic moment as a function of the mamk begins to raise,
see figure 4.6. This behaviour, which we consider to be unphysicasactdto signal the breakdown
of our approach, appears as a consequence of the fact that the Isalance between different chiral
contributions to this observable gets disturbed at very large pion massssighals for the breakdown
of our approach can thus be seen around= 700 MeV.

Besides the results of covariant BChPT, we show the quark mass demendf the corresponding(p*)
HBChPT results for,, pi andp$ given in eqs.(4.24,4.25), (4.31,4.32) and (4.38,4.39) as the dotted lines in
figures 4.7, 4.8 and 4.9. Fer, andpj the curves from the nonrelativistic- and covariant approach start to
deviate even below the physical pion mass. This observed early brealafdhe HBChPT results does not
allow for chiral extrapolations of presently available lattice data. This comescansequence of the fact that

the (’AZ—E l terms which sum to flat functions and are all considered to be of the saraeiordur covariant
approach are artificially expanded in the HBChPT framework which saeslgias a low order polynomial in
i toall (Q? independent) observables. HBChPT results are thus bound to berategliein- or decreasing
from a certain pion mass on. Typically — see the examples in this chapter afudldlaéng one — this value of
the pion mass lies around the physical one and the breakdown of HBQgaiflyaoccurs at rather small pion



76 CHAPTER 4. THE VECTOR FORM FACTORS OF THE NUCLEON

C6 elos(A = My) [GeV 7] | B.i [GeV ] | By [GeV 7]
adjusted to [FWO03] _
(see section 4.4.3) 4.56 0.08 (fixed) ~1.13 5.16
dipole-Q?-extrapolated
(see section 4.6.1) | 4.51 £0.06 0.06 £+ 0.03 —1.17+£0.04 | 7.06 £0.25
direct fit
(see section 4.6.2) | 4.46 £ 0.05 0.10 £ 0.02 —1.314+0.02 | 4.47+£0.16

Table 4.2: The values for the fit parameters determined in three diffeays.w

masses.
At first sight, theO(p*) HBChPT curve forpy given in figure 4.9 seems to contradict this general reasoning.
However, at the next-to-leading one loop order, the low order polynamiad, which is found in HBChPT

for this observable only consists of the termsn%ﬁ and~ 1, see egs.(4.38,4.39). Thus, the arguments given
above apply fopy only from orderp® on where first positive powers af,. and such again the early breakdown
are expected to occur in the HBChPT result. Note, however, that foruhmeerical comparison of covariant-
and nonrelativistic BChPT we use the values for the parameters whichund fo the fit of O(p*) covariant
BChPT results to lattice dataThe statements about the early breakdown of HBChPT are thereforeunddr

the assumption that these fits lead to a reasonable estimate of the true valiseafdhpling constants. In our
results we can find a hint which justifies this assumption: Going f@?) to O(p*) in our calculation, we
encounter no new fit parameter ifi. We can thus study the stability of the value of the paramBtgrby
comparing its value in the fit of ou®(p*) result with the one it would get in a fit of the correspondii(p?)
result to lattice data. This analysis confirms the value which we givBfosince we find that between the two
fits this constant only differs abow% (as can easily be seen comparing the solid and dashed lines in figure
4.8). Furthermore, we note that there are no pion mass dependentreeumte present in the slopes of the
form factors at the order we are working. It is thus obvious from &guB, that no set of parameters can be
found which allows to make contact between lattice simulations and phenomeriotagyusing theO(p*)
HBChPT results. Fok, we find a similar behaviour: There is no set of parameters that leads ts@edde
chiral extrapolation curve for this observable basedX§p*) HBChPT. In nonrelativistic SSE, a formulation
of ChPT with explicitA degrees of freedom, however, it is at least possible to reasonaldsiethe quark
mass dependence ©f up to larger values of the quark mass [HWO02]. The interpolation functitulzded in

this reference is — within errors — consistent with the analysis presented he

Finally we also show th&(p*) covariant BChPT result fok, calculated in standard IR renormalization
[KMO01] in figure 4.7. The unphysical singularity which can appear in teisormalization program shows
up very drastically in this figure and dominates the quark mass dependkenrgealveady slightly above the
physical pion mass. This renormalization prescription thus clearly doeleawbtto a reliable description of
quark mass dependencies above the physical pion mass.

4.6.2 Direct fits to the simulation results at finitet

In this section we present a fit of o@(p*) BChPT results fol? (¢, m..) and F¥ (¢, m,) given in appendix C.3
to lattice data at finit€)? and largem,. directly. The fit parameters are agaif) €}o5()\), Bo1 and Be. The

available lattice data are located@t ~ 0.17 GeV?, Q2 ~ 0.33 GeV? and larger values af?. The results of
section 4.4.3 clearly allow the conclusion that the lowest of these values liewittén the region of applica-

3All low energy constants are defined in exactly the same way in both HB@hBIR renormalized covariant BChPT and are thus
bound to ultimately have the same size in both frameworks, see chapter 3.
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Figure 4.6: The quark mass dependence of the normalized isovector lansmzagnetic moment of the nu-
cleon in covariant BChPT (solid: covariaét(p*) BChPT result fitted to the shown dipofg2-extrapolated
lattice data; dashed: correspondifigp®) curve with the same set of parameters) and lattice QCD [AKNTO6]
(squares: dynamical simulations, diamonds: quenched simulations). Tthedumre represents the physical
point [YT06] not included in the fit. The grey shaded band is an estimate of statistisadysgtematic BChPT
errors and originates from fits with,, = £3 (see eq.(4.21)) to the data.
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Figure 4.7: The quark mass dependence of the normalized isovector lansmegnetic moment of the nu-
cleon in three different ChPT frameworks. SollR renormalized covariant BChPT, dashed-dotted: standard
IR renormalized BChPT, dotted: HBChPT. All three curves corresgiondsults at next-to-leading one loop
order and are plotted using the same set of parameters, see tables 4.2.and 4

bility of our O(p*) BChPT calculation while the secori@? value is on the borderline. Therefore, we would
like to determine our parameters from a fit to lattice dat@at~ 0.17 GeV? and find that this is absolutely
sufficient in the case aof (Q?, m,). However, the curves representing the unnormalizgd)?, m.) for the
three different pion masses just happen to cross each other in the vidiritis walue ofQ>. Therefore, to
avoid huge uncertainties in the fit, we perform the fit with four free parammétenine lattice points (at three
different quark masses fdr? (Q? ~ 0.17 GeV?) and three each fafy (Q? ~ 0.17 GeV?) and F¥ (Q? ~ 0.33
GeV?)). The numerical values for the fit parameters resulting from this fit camage found in table 4.2. The
values forcg ande’,4()\) are in good agreement with both the results of the fit to digpleextrapolated data
and the adjustment to the phenomenological parametrization of referaMIS[F

The predictions for the physical valuesf, pj andp$ resulting from our chiral extrapolation curves can be
found in table 4.3. We note that in this table we only give statistical errors; therlaystematic uncertainties
are estimated at the end of this section. Keeping this in mind, we find goochagmebetween the BChPT fits
to both dipole€)?-extrapolated data and to lattice results directly on the one side and pherlogyean the
other side fork,, pj and — with larger systematic uncertainties —r For p{, the direct fit leads to a value
which is a bit smaller than the one found in the fit to dipglé-extrapolated data. This difference is even more
pronounced in the slope d@f(Q?). A reason for this is given by the fact that (as can be seen in figure 4.10
the dipole ansatz shows more curvature in @fedependence of these form factors than ¢th@*) BChPT
result does. To describe the same data at fijitethis effect is compensated by smaller values for the slopes
in O(p*) BChPT. These curves are therefore not as steep at ver@)foand do not bend upwards as strongly
as the ones based on a dipole ansatz.

Figure 4.10 shows the resultin@? dependence of thé(p*) BChPT result forF}? (Q?, m,) at the physical
pion mass and the three pion masses for which lattice data are available @ lofor comparison we also
show the phenomenological parametrization of reference [FWO03].(Pheependence of thé€(p*) BChPT
result for £ (Q?) at the pion masses of the lattice simulations and the corresponding curveshyhieal pion
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Figure 4.8: The quark mass dependence of the slope of the isovectorfBina factor in covariant BChPT
(solid: covariantO(p*) BChPT result fitted to the shown dipofg?-extrapolated lattice data, dashed: corre-
spondingO(p?) curve, dotted:O(p*) HBChPT result, all with the same set of parameters) and lattice QCD
[AKNTO6]. The points for physical quark masses are from the analgdeeferences [FWO03] (cross) and
[BHMO7] (square). The grey shaded band indicates the size of stdtiglisasystematic ChPT errors esti-
mated via fits withy,» = +3 (see eq.(4.30)) to the data.
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Figure 4.9: The quark mass dependence of the slope of the normalizedtmolRauli form factor in covariant
BChPT (solid: covarian®(p*) BChPT result fitted to the shown dipolg2-extrapolated lattice data, dashed:
corresponding?(p?®) curve, dotted:O(p*) HBChPT result, all with the same set of parameters) and lattice
QCD [AKNTO06]. The points for physical quark masses are from thdyaea of references [FWO03] (cross) and
[BHMO7] (square). The grey shaded band indicates the size of statjgtisssystematic ChPT errors estimated

via fits with §,,; = 43 (see eq.(4.37)) to the data.
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mass again together with the findings of reference [FW03] can be foufigluire 4.11. In those figures one
can observe thad(p*) BChPT bridges the broad gap between the lattice results and phenomefulbgyh
form factors and that the predictéf dependencies of the form factors at the physical point are in reblsona
agreement (see the discussion of systematic uncertainties below) with émegtazation of ref.[FWO03] up to
Q? ~ 0.3 GeV 2. Moreover, one can see in figure 4.10 that at larger valué¥’ dhe lattice results show more
curvature in the)? dependence of the Dirac form factor than the correspon@ifyg) BChPT results.

In figure 4.12 we show the quark mass dependence,df O(p*) covariant BChPT resulting from an ex-
traction of the low energy constants at finipé directly and compare it to the findings of the previous section
where dipoleg?-extrapolated data were used as input. This figure demonstrates that tieedattiovould lie

a bit lower if one were to use ChPT instead of the dipole ansatz in order @pekite them down t@? = 0.

The grey shaded bands around the BChPT results in figures 4.10,rl 4112 indicate the size of statistical
errors. However, since the shown lattice data which serve as inputif@nalysis were all found on the same
lattice, the errors attached to those data are presumably correlated. aysisof statistical errors in contrast
assumes uncorrelated errors on the input data and thus probably léad®fgimistic estimates for the statis-
tical errors.

In addition to those errors which arise solely due to the statistics of the fit® #nerof course systematic
errors from both lattice simulations and the BChPT analysis. One soursgdmatic uncertainties lies in the
possibility of lattice artifacts like finite size effects and discretization errofge fbllowing procedure might
give an estimate for the size of those uncertainties:

The direct fits have been performed to unnormalized dat&fdt, m ), i.e. data which have been projected
out of the matrix element eq.(4.1) at the local mass of the nudléh = My (m..). However, comparing the
quark mass dependenceldfy given in reference [AKNTO06] with the one gained in chapter 3 by a fit to kattic
data from reference [AK04], we find slight inconsistencies which can only arise due to such lattiacss.
Thus the normalization of the lattice results which we use to fit the form factersusnerically — done slightly
different than the one of our ChPT results. Fitting our normalized formubscthyr to normalized lattice data
we finds, = 3.83 £ 0.1, B,y = (—1.57 £ 0.015) GeV~2 andB., = (4.95 & 0.07) GeV~2, indicating that

in addition to the statistical errors, there is an approximété uncertainty due to the specific conditions of
lattice simulations.

Furthermore, there are of course uncertainties arising from the fadtitfreer chiral orders have been neglected

in our analysis The Ieading contributions beyond the next-to- Ieading opeolaer are fory (¢, m,) of the

form (4 jon )4 and n F i for Fy(t,m,) they arej‘(/’( )m“t dM Assuming couplings of natural size

in front of these structures (i.e. couplings with numerlcal values EjetwéieandS), the possible variation of
the form factors due to those terms at tld¢*, m.) values at which we fixed our parameters is in average on
the 20% level. This value gives an indication for the size of the systematic erroredth*) ChPT analysis
which have to be attached to our predictions given in table 4.2. The bestseréor an improvement of the
precision of predictions from chiral extrapolations would be the existefhiztice data at lower values af;
since e.g. the error for th@(p*) BChPT result for, scales withm3. The systematic uncertainties of the
chiral extrapolation functions can of course also be diminished if the ChBlyses are carried out at higher
orders. However, a ChPT calculation of the form factors at highegrerdiould contain a number of so far
undetermined low energy constants and the smaller systematic uncertaintidstivesafore have to be paid
with larger statistical errors.

Given the present accuracy of our chiral analysis of lattice data aradrthi&yuous situation for the phenomenol-
ogy of the slopes of the nucleon form factors, we find good agreenswiekn the predictions from chiral
extrapolations and phenomenology for all examined quantities. This leattsthe conclusion that lattice
simulations together with BChPT are a powerful and trustworthy tool fattiptiens of physical observables.

4.6.3 A glance at the quark mass dependence in the isoscaldrannel

In this section we present a brief numerical discussion of the quark negemndence of the isoscalar nucleon
form factors. In particular we examine tii@(p*) BChPT results for the observables, p5 and p§ given in
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Ky p1[GeV~?] | po [GeV~?]

direct fit 3.58 £0.06 | 2.22+0.03 | 9.60 £+ 0.3

dipole<Q?-extrapolated 3.65+ 0.06 | 2.37 £0.04 | 12.3+0.3
reference [FWO03] 3.71 2.41 10.3
reference [BHMO7] 3.71 2.46 12.3

Table 4.3: The predictions resulting from the different fits to lattice data.efiwgs are purely statistical errors
and do not take into account any systematic uncertainties.
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Figure 4.10: Left Panel: Thé®(p*) BChPT result for the momentum transfer dependence of the Dirac form
factor. The shown curves correspond to pion masses of 410 Me¥idda490 MeV (dashed-dotted) and 560
MeV (dotted). Right Panel: Thé(p*) BChPT prediction for the Dirac form factor at the physical pion mass
resulting from a fit to lattice data at finitg? directly. The tiny grey shaded area indicates statistical errors. For
comparison we show the parametrization of reference [FWO03] (dashed)c Lattice data are from [Ale].
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Figure 4.11: Left Panel: Th@(p*) BChPT result for the momentum transfer dependence of the unnormalized
Pauli form factor. The shown curves correspond to pion masses@M&V (dashed), 490 MeV (dashed-
dotted) and 560 MeV (dotted). Right Panel: The prediction for the momenamsfer dependence of the Pauli
form factor at the physical pion mass as resulting from the combined fieatp*) BChPT result to lattice
data at finiteQ? (black) and the corresponding statistical errors (grey shaded)cdfoparison we also show
the parametrization of reference [FWO03] (dashed). Lattice data are[f&tz].
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Figure 4.12: The quark mass dependence of the isovector anomaloustinagoment of the nucleon in
covariant BChPT. The solid line corresponds to a fitafp*) BChPT to quenched lattice data at fini§2.
The grey shaded band indicates the statistical error for this fit. For cisnpawe give the result of the fit to
dipole-Q?-extrapolated data (dashed line).

Ks

—0.20

elos5(Mo) [GeV ]
0.46

B2 [GeV~?]
2.92

B, [Gev™?]
—0.334

Table 4.4: The values for the parameters entering the isoscalar formsfastimated via a comparison to the
phenomenological parametrization of reference [FW03]. Due to theweak dependence of the results at

physical pion masses afj,;(\), we have again used the quark mass dependencetofdetermine the size of

this coupling.
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Figure 4.13: The quark mass dependence of the normalized isoscataalans magnetic moment of the
nucleon in covariant BChPT (solid)(p*), dashed:O(p*)). The unknown counter-term,;()\) is varied
around the value which generates a plateau in the funetiom.). The grey shaded band indicates the size of
possible chiral corrections arising@(p®), its boundaries are curves with, = +3 (see eq.(4.48)).

sections 4.5.1 and 4.5.2, respectively. As already mentioned earlier wdimalgmall contributions from
the pion-cloud at one loop order and assume two loop effect to play antampoole in the isoscalar sector.
Since therelative size of higher order effects might therefore be large in the isoscaltorse® abstain from

a similarly elaborate discussion as for the isovector form factors. Alltseepuesented in this section really
just constitute a first glance at the quark mass dependence of the isdeoaldactors. However, two loop
contributions are suppressed by powersidf divided by some large scale where= 3 in the case ok,

n = 2 in the case opj andn = 1 for p3. Therefore, the next-to-leading one loop order results can at laa@st gi
a reliable description of the quark mass dependence in a region close tortidimit.

Figure 4.13 shows the quark mass dependence of the isoscalar anomalmetic moment of the nucleon as

it is predicted byO(p*) BChPT. The couplings? andef - (\) have been adjusted such that the phenomeno-
logical value of this quantity at the physical pion mass$ P6] is reproduced and that the curve plateaus at large
pion masses. Figures 4.14 and 4.15 show the quark mass dependenbeslopes of the isoscalar Dirac-
and Pauli form factor, respectively. The numerical values for thetemttermsBZ, and B, are determined

by the condition that — at the physical point — those curves hit the valuea @i reference [FWO03] for those
quantities. All resulting values for the ChPT couplings can be found in taile 4

The position of the plateau which we find fag, see figure 4.13, is consistent with the results of the lattice
simulations at very large pion masses'[@)]. However, disconnected diagrams (diagrams where the incoming
photon does not couple to a valence quark directly) can contribute t@lsosbservables but are neglected in
present day lattice simulations of nucleon form factors leading to uncomtre}etematic errors in the lattice
results.

As already discussed in section 4.5.3 the pion-cloud contributiop$ &md p5 are small at the order we are
working, resulting in an only weak dependence of those quantities on thenases.



4.6. FIT RESULTS 85

4
3.5- _
3
O, 3¢ . _
&~ _\I
o T——————
T
> -]
2.5- _
2 ‘ ) ‘ ‘ ‘
0 01 02 03 04 05 O€
mn[GeV]

Figure 4.14: The quark mass dependence of the slope of the isoscaarf@im factor in covariant BChPT
(solid: O(p*), dashed:O(p?)). The points at the physical quark masses are from the analysesofeés
[FWO03] (cross) and [BHMO7] (square). The grey shaded banitdtes the size of possible chiral corrections
arising atO(p°), its boundaries are curves widh; = +3 (see eq.(4.54)).
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Figure 4.15: The quark mass dependence of the slope of the normalizedleadPauli form factor in covariant
BChPT (solid: O(p*), dashed:O(p?)). The points at the physical quark masses are from the analyses of
references [FWO03] (cross) and [BHMO7] (square). The greadeld band indicates the size of possible chiral
corrections arising ab(p°), its boundaries are curves widhs = +3 (see eq.(4.59)).
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4.7 Summary and Conclusions

The pertinent results of this chapter can be summarized as follows:

1. We have calculated the isoscalar- and isovector vector form fadttine aucleon up to next-to-leading
one loop order — corresponding to orgér— in covariant BChPT using tH& renormalization prescrip-
tion developed in the previous chapter. Analytic results for the full momentansfier- and quark mass
dependence of the form factors are given in the appendix of this Warlkanomalous magnetic moments
and the slopes of the form factors as a function of the pion mass areigitieis chapter. Together with
the covariant results, we always presented the correspondingseiqre in HBChPT.

2. Covariant BChPT predicts the isovector observableg] andps to decrease, with decreasing gradient,
as a function of the quark mass and to finally take on values which are eoaisig smaller than the
physical ones, in accordance with lattice simulations. DRedependence of the BChPT result for the
isovector form factors shows less curvature at sialthan the analyses in other approaches.

3. In the isoscalar sector we found short distance contributions — atdeasderp* — to dominate the
BChPT results. In our approach we therefore found the isoscalarfémtors to be linear i)? and an
only very weak dependence pf andp$ on the pion mass.

4. The quark mass dependence of the mass of the nucleon enterecdswts e two ways: Firstly, it
appeared in the prefactor of the Pauli form factor in the vector cuoktite nucleon and hence as an
overall prefactor in all cases where we compared our results to untipechdattice data for the Pauli
form factor. Secondly, at order* first pion mass dependent corrections to the mass of the nucleon
occurred in the loop calculations. We have accounted for those effe@sdsummation of all quark
mass dependent insertions on the nucleon propagator, i.e. idedifiee¢ My (m,) as the propagating
nucleon mass since we considered a comparison of BChPT results dependhe leading quark mass
dependence of the nucleon — which is known to only describe the truk mass dependence at very
low values of the pion mass — with lattice data at large pion masses to be incansisten

5. We have compared th@(p*) BChPT results for the isovector electromagnetic Sachs form factors with
the phenomenological parametrization of reference [FWO03] and foun@HPT result to provide a sat-
isfactory description of the momentum transfer dependence of the nudeurfactors at the physical
pion mass up t@? ~ 0.25 GeV2. We showed that the chiral expansion does display a clear conver-
gence towards the phenomenological parametrization and that the devistareen both are within the
accuracy of the effective field theory calculation at this order.

6. Comparing our findings to the standard dipole parametrization for the momergnsfer dependence
of the form factors, we found slight deviations between this ansat4pt) BChPT in the momentum
transfer dependence of the Dirac form factor.

7. We have performed chiral extrapolations of lattice data for the isovecideon form factors in two
different ways: The first was to extrapolate lattice data at fig¥teto the forward limit using a dipole
ansatz and to subsequently perform chiral extrapolations for the anosnalagnetic moment and the
slopes of the form factors. The second approach was to directly {i2 ¢h&€) BChPT result to lattice data
at different values ofn, and@Q? and to perform chiral extrapolations for the full momentum transfer
dependent functions.

8. Chiral extrapolations of lattice data for the isovector anomalous magnetic mhame: the slopes of the
isovector form factors were performed using thép*) covariant BChPT results. The findings were
satisfactory in many ways: First of all, the predictions of chirally extrapdlé&ttice data were in every
case in good agreement with phenomenology. Secondly, systematic imt@staf the chiral analysis
were found to be small over a large range of pion masses and, thirdlgdacgovergence pattern of the
chiral expansion was found for all observables under consideration



4.7. SUMMARY AND CONCLUSIONS 87

9.

10.

11.

12.

We have studied the quark mass dependence @ tp&) HBChPT and IR renormalized BChPT results
for x,, and theO(p*) HBChPT results fopy andp3. We diagnosed a breakdown of all those results in
the vicinity of the physical pion mass and found that lattice data for thosditjgartannot be chirally
extrapolated in these frameworks. We therefore consider covarientatéons in theR renormalization
scheme to be essential in order to arrive at reliable chiral extrapolatictidns.

We have performed the first fits of ChPT results to lattice data for thedsmvform factors at finite
Q?. The resulting chiral extrapolation curves were again satisfactory kowl for a prediction of the
momentum transfer dependence of the nucleon form factors at the ahysiot with a20% uncertainty
up toQ? ~ 0.3 Ge\2.

The prediction 0 (p*) covariant BChPT for the quark mass dependence of the isoscalafdotons of
the nucleon was discussed. Due to a lack of reliable lattice data and theagiqrethat two loop effects
might be essential in this channel we did not perform chiral extrapolatarnsoscalar quantities.

The values for the fit parameters determined in the different fits thouighis chapter are all in reason-
able agreement and within natural size.

In conclusion, covariant BChPT at next-to-leading one loop orderiges — at least in the isovector sector —
very reasonable chiral extrapolation functions which may be applicaljeask masses as largeas = 600
MeV. All observables discussed in this chapter support the statementus@torthy predictions for physical
observables using lattice results as input can be obtained in this framelWmiefore, our hope is that future
studies of nucleon form factors on the lattice rely on covafi@renormalized BChPT in order to make contact
between the domain of large quark masses and the physical world.
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Chapter 5

The Generalized Form Factors of the Nucleon

5.1 Introduction

About a decade ago the concept of Generalized Parton Distributiori3g)dfas emerged among theorists,
constituting a universal framework bringing a host of seemingly dispanatkeon structure observables like
form factors, moments of parton distribution functions, etc. under onedtieal roof. For reviews of this very
active field of research we refer to references [Ji98, Die03, BRO5]

Working in twist-two approximation, the parity-even part of the structure @fiicleon is encoded in two Gen-
eralized Parton Distribution functiom$!(x, £, t) andE?(x, £, t). For a process where the incoming (outgoing)
nucleon carries the four-momentyi (p; ) we define two new momentum variables

¢ =py—p); p= (0 +ph)/2 (5.1)

The GPDs can e.g. be accessed in Deeply Virtual Compton Scattering (dfiGBe nucleon where — in the
parton model of the nucleon — the GPD variablean be interpreted as the fraction of the total momentum of
the nucleon carried by the probed quatkt = ¢> denotes the total four-momentum transfer squared to the
nucleon, whereas the “skewdness” variaple —n - ¢/2 with n - p = 1 interpolates between the and thex
dependence of the GPDs, for details see the reviews [Ji98, Die03,|BR0O5

The three-dimensional parameter space of GPDs is vast and rich in itifmnnadout nucleon structure. The
experimental program for their determination is only at the beginning atdédmies like CERN, Desy, JLAB,
etc. [Ji98, Die03, BR05]. However, moments of GPDs can be interpretet gasier and are connected to well
established hadron structure observables. E.g. the zeroth order Metirem®in the variable correspond

to the contribution of quark to the well known Dirac- and Pauli form factofs (¢) and F5(¢) of the nucleon
which were discussed in the previous chapter:

/11 deHi(z, &, t) = Fl(t), (5.2)
/_11 drEY(z,&t) = Fy(t). (5.3)
In this chapter we focus on thHigst moments inc of these nucleon GPDs
/11 dorxHI(z,&,t) = AS(t) + (—26)°CL (1), 5.4
/_11 dexzEl(z,£,t) = ng(t) _ (_25)2(:%70@)7 5.5)

where one encountetisree generalized form factor (t), B3 (t) andC3 ,(t) of the nucleon for each quark
flavourq. For the case of two light flavours tigeneralized isoscalar and isovector form factbesre been anal-
ysed in a series of papers at leading one loop order in the nonrelativestiework of HBChPT, starting with

89
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the pioneering analyses of Chen and Ji as well as Belitsky and Ji [B8J02, ACK06, DMS06a, DMSO06b].

In this chapter we provide the first analysis of these generalized faror&utilizing the methods of covariant
Baryon Chiral Perturbation Theory (BChPT) for two light flavours jgiered in reference [GSS88]. The lead-
ing one loop order calculation presented here again relies diRthenormalization prescription introduced in
chapter 3 which we consider to be inevitable for a consistent analysisaok quass dependencies in BChPT.
However, a disclaimer has to be added: Since the calculation presen¢eid bety performed at leading one
loop order, systematic errors due to possible higher order effect$ apeise larger then they were in the pre-
vious chapter where an analysis at hext-to-leading one loop ordemesarped and the convergence properties
of the chiral expansion for the pion-cloud effects cannot be studiedsrchapter. Therefore we cannot give
an as elaborate discussion of chiral extrapolations as in the previopteghathough we show that — at least
for some observables — a satisfying description of the quark mass depres up to the domain of presently
available lattice data with moderate errors is already possible at this stage.

Since we are going to compare our findings to the previous analyses in tihgatvistic theory throughout
this chapter, we note again that (at 0) a covariant BChPT calculation differs from a nonrelativistic one —
provided both are performed at the same chiral ofder by an infinite series of terms (m, /M)* where
My denotes the mass of the nucleon in the chiral limit, estimated to be around 890skte¥hapter 3. As
already observed in chapter 4, such terms quickly become relevantloagaon massn, takes on values
larger than 140 MeV, as it typically occurs in present day lattice QCD simuktbgeneralized form factors.
Aside from this resummation property {it/My)¢, we emphasize again, that the power-counting analysis de-
termining possible operators and allowed topologies for loop diagrams atieuper chiral order (see section
5.3.3) isidentical between covariant and nonrelativistic frameworks. Both schemesipegarperturbative
calculation as a power series (ih/ (47 F,))”. Finally we note that the first moments of nucleon GPDs have
also been studied in constituent quark models (e.g. see ref.[BPTO3thiatiquark soliton models (e.g. see
ref.[GT07]) of the nucleon which — in contrast to ChEFT — can also provide dyramnisights into the short-
distance structure present in the generalized form factors.

This chapter is organized as follows: In the next section we specify thets with which we are going to
obtain information on the three generalized isoscalar and the three geegiializector form factors of the
nucleon. In section 5.3 we portray the effective chiral Lagrangeguined for the calculation, immediately
followed by the sections containing our leading one loop order results ajeheralized form factors in the
isovector (section 5.4) and in the isoscalar (section 5.5) matrix elements. A syrahthe main results con-
cludes this chapter while a few technical details regarding the calculatioe ahtplitudes in covariant BChPT
are relegated to the appendix section D. We have already published theasialis of this chapter in reference
[DGHO7].

5.2 Extracting the First Moments of GPDs

5.2.1 The generalized form factors of the nucleon

In egs.(5.4,5.5) of the introduction of this chapter it was shown that thenfiosbents of nucleon GPDs are
connected to three generalized form factors. In lattice QCD one cartldis®cess the contribution of quark
flavourq to these generalized form factors of the nucleon by evaluating the matrixretieftae QCD energy-
momentum (and angular-momentum density) tensor for this quark flavo8t [Jie03, BRO5]

B3 0(¢%) Cso(a®)

2MN qaiaa{upl/} + MN

A udvy U(pl)
(5.6)

i(p2[Gv(, D oy alp) = a(p2) | AL (@) vy —

The brackety. ..} denote the completely symmetrized and traceless combination of all indiggls;, =
ayub, + a,b, — %gw,a -b. In eq.(5.6)u (u) is a Dirac spinor of the incoming (outgoing) nucleon of massg



5.2. EXTRACTING THE FIRST MOMENTS OF GPDS 91

for which the quark matrix element is evaluated (recall the discussion afi@r.#)*) and the generalized form
factors A(q?), B(q?) andC(¢?) are real functions of the momentum transfer squared. In ChEFT we employ
the same philosophy and also extract information about the first momentslebniGPDs of eq.(5.4,5.5) via a
calculation of the generalized form factors according to eq.(5.6). Weaesthe current on the right hand side

of eq.(5.6) using the methods of covariant BChPT in complete analogy to lihdataon of the vector current
given in eq.(4.1) with the only difference being that, in this chapter, notxérmal vector source, but an
external (symmetric an traceless) tensor soufgds coupling to the current.

Studying a strongly interacting system with two light flavours in the nonpeatiwdregime of QCD with the
methods of ChEFT one works in the basis of singgtand triplet(v) contributions of the quarks to the three
form factors:

_ , Bso(a®) C50(¢%) 1
<p2|qf}/{u v} Q‘p1>u+d = U(p2) |:A2,0( )'7{/1 Py — Tq Zaa{u v} +]\O4Q{uqy}:| §U(p1),
(5.7)
L e Y B (%) C50(¢°) e
i(P2qv(u D vy dlP1)u—a = Tu(p2) [Aao( )V{uPry — oy ¢ zva{upy}+]\()4q{uqu}] - ulpr)-
(5.8)

Note that the x 2 unit matrix1 and the Pauli matrices® with « = 1,2, 3 on the right hand sides of egs.(5.7,5.8)
operate in the space of a (proton,neutron) doublet field.

At present not much is known yet experimentally about the momentum depeadaf these 6 form factors.
The main source of information at the moment is provided by lattice QCD studige®é objects (e.g. see
refs.[GF04, H03, EF06, H"07]). Given that present day lattice simulations work with quark masses much
larger than those realized farandd quarks in the standard model, one also needs to know the quark mass
dependence of all 6 form factors in order to extrapolate the lattice QGisekown to the real world of light
andd quarks. This information is also encoded in the ChEFT results, typicallyegpd in form of a pion mass
dependence of the observables under study. For the quark massidepe of the generalized form factors we
again perform a double tracked analysis: On one side we extract nanetiges for presently unknown ChPT
coupling constants by a fit of the pion mass dependent BChPT results to titacat different quark masses.
On the other side, the EFT framework provides an extrapolation functidgibg the gap between the domain
of large quark masses used in present day lattice simulations and the pmyailchof small quark masses.
With this combined lattice plus ChPT analysis we are again able to give prediéiophlysical observables
and in the case of the generalized form factors of the nucleon some eStpesdiction come prior to first
results from experiments.

Allowing variable quark masses in the currents egs.(5.7,5.8) leads to arfadhmplication in the analysis:
One needs to be aware that itismmon practice in current lattice QCD analygbat the mass paramet&fy

in those currents doewot correspond to the physical mass of a nucleon, instead, it represenggariacleon
mass consistent with the values of the quark masses employed in the simulativdedio compare BChPT
results with the outcome of lattice simulations one therefore has to know the maeak dependence of the
mass of the nucleon appearing in the currents egs. (5.7) and (5.8).

YIn this chapter we do not indicate the normalizing mass in the currents indepeof the other appearing masses like we did in
the previous chapter but use the local nucleon midsgm) as the normalizing mass in the above definitions of the form factors
throughout this chapter.
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ga | Fr[GeV] | My [GeV] | ¢; [GeV!] | ca [GeVT!] | c3 [GeV] | €f(1GeV) [GeV ¥
1.2 0.0924 0.889 —0.817 3.2 —-3.4 1.44

Table 5.1: Input values used in this chapter for the numerical analysie ahihal extrapolation functions.

In this chapter we utilize thé®(p*) BChPT result found in chapter 3:

3 2.,3 2 4 -
My(mz) = My— Zlclmfr + IAMx -1+ —m”2 + clm—g arccos | -7
ST2F2. /4 — ™z 4M; M 2My
™ Mg
3m; 69% 9 m
4 b A A 7T
+4et(N)my, — m (]\40 - 02> +4 <]Wo —8c1 + ¢+ 4c3 | log (T)
3clg§‘m6 My 5
———T1 — O(p). 5.9
smreagg 8\ ag, ) O (5.9)

Possible effects of higher orders can be estimate@@s) ~ 5M% whered,, could be varied within
natural size estimates3 < d,; < +3 and were found to be small belaw,, ~ 700 MeV in chapter 3.

We note that the trivial, purely kinematical effect dfy = My (m,) in eqgs.(5.7,5.8) could induce quite a
strong quark mass dependence into the form fadijrs(t) andCy () and might even be able to mask any
“intrinsic” quark mass dependence in these form factors. We are rethiofddne analysis of the Pauli form
factors ;" (t) in ref.[GT05] and chapter 4 where the absorption of the analogous effect intoren&lized”
magneton even led to a different slope (!) for the isovector anomalouseatiagmoment:,, = F3'(t = 0) when
compared to the quark mass dependence of the “unnormalized” lattice datahevéfore urge the readers
that this effect should be taken into account in any quantitative (futmaysis of the quark mass dependence
of the generalized form factorB;;(t) and C5;(¢) as well. For convenience we give the numerical values
for the appearing coupling constants again in table 5.1 and emphasize thetewke same values for all
parameters throughout this work. Finally we note that in the forward timit 0 the generalized form factors
A34(t = 0) can be understood as moments of the ordinary Parton Distribution FunctiRs)x) andg(x)
[Ji98, Die03, BRO5]:

1
@hsa = A3t =0) = [ dva (@) + ) s (5.10)

Experimental results exist fdr) in proton- and “neutron” targets, from which one can estimate the isoscalar
and isovector quark contributions at the physical point [xpr] at aleeguation scale:. In this work we choose
= 2 GeV for our comparisons with phenomenoldgyn section 5.4.1 we attempt to connect the physical
value for (x),_4 with recent lattice QCD results from the LHPC collaboration[H], whereas in section
5.5.1 we analyse the quark mass dependence)qf. ; with (quenched) lattice QCD results from the QCDSF
collaboration [G 04].

5.2.2 The generalized form factors of the pion

The first moment of a generalized parton distribution function in a pibfr, £, t) can be defined analogously
to the case of the nucleon discussed above. One obtains [Ji98, Die03] BR

/1 deoHL(x, &t) = AL(t) + (—26)°CL(t). (5.11)

-1

2Note that this: dependence is not part of the ChEFT framework, as it clearly invelves-distance physics. However, all chiral
tensor couplings specified in section 5.3 carry an implicgitependence (which we do not indicate) as soon as they are fitted to lattice
QCD data or phenomenological values which do depend on this scale.
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The two functionsA%(¢) andC?(t) are the generalized form factors of the pion, generated by contribudfons
quark flavourg. In the forward limit one recovers the first moment of the ordinary paristniblution functions
in a pion:

1
() = AL(t—0)= /0 doz (g(z) + (). (5.12)

In the analysis of the isoscalar GPD moments of a nucleon we encounter fiefdsdirectly interacting with
the pion-cloud of the nucleon. One therefore needs to understandékianepion-tensor couplings in terms
of the two generalized form factors, (¢) andC,(t). We note that the two generalized form factors of the pion
have been analysed at one loop level already in ref.[DL91] for the $atal of quark and gluon contributions,
whereas the quark contribution to the form factors as defined in eq.asBHeen the focus of the more recent
works [KP02, DMSO05].

5.3 Formalism

5.3.1 Leading order nucleon Lagrangean

In this section we briefly introduce the relevant parts of the chiral Lagran which are necessary for an
evaluation of the tensor currents eqgs.(5.7,5.8) at leading one loop level.
The well known leading order Lagrangean in BChPT is given as [GFS88

Effj)v =Wy [’W“Du — Mo + %47“’7510” Uy, (5.13)
with
1 . .
DVYy = {(9“ — ivl(f) + 3 [uT,aﬂu} — %UT (U,u + a#) u— %u (v# _ a#) uT} Uy, (5.14)
u, = wW'V,Uu. (5.15)

U = u? corresponds to a nonlinear realization of the quasi Goldstone bosos figite v, anda,, denote

arbitrary vector- and axial vector background fields aﬁﬁa is the isosinglet vector background field, for details
see chapter 1. The covariant derivatvgU is defined as

V. U=0,U—i(vy+a,)U+iU (v, —ay). (5.16)

Finally we note that the couplingsy denotes the axial-coupling of the nucleon (in the chiral limit), whefdas
corresponds to the nucleon mass (in the chiral limit).

We now extend this Lagrangean to the interaction betwseaarnal tensor fieldand a strongly interacting
system at low energies. In this work we focussymmetric, traceless tensor fieldgh positive parity in order
to calculate the generalized form factors of the nucleon. In particulantiize the chiral tensor structures

1
V,u:lz:/ = 9 <guagu,6’+gu,6’gya - gwgaﬁ> ( TV u+uV, ﬁlﬁ)
1 1
Vy[,)y = 5 <g/wzguﬁ + JuBYva — dg,uugaﬁ> ?f 5 (517)

The right- and left handed fieldécgg’” are related to the symmetrisovectortensor fields of definite parity
vi,g @ndal, ; with i = 1,2, 3 via

Va = (vas = aap) X 5 (5.18)
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while v((jﬁ) denotes the symmetrisoscalartensor field of positive parity. In order to study possible interac-

tions with external tensor fields originating from the leading order Laggangq.(5.13), we rewrite it into the
equivalent form

T, 1 . — _)l/ '<—l/ — 4
Lizn = Yy 3 (w“gw,D —1D gw,v’> —My+...| Yy, (5.19)
where we have introduced
_ alé,o
G = Gu + aio‘/;?y + 72 V;j; (520)

The couplingz3 , (a5 ) has been defined such that it corresponds to the chiral limit valugpf ) ((2)v—d)
defined in eq.(5.10). We note that the couplinyy, is allowed to be different from unity, as we only sum
over theu + d quark contributions in the isoscalar moments but neglect the contributiomsgitmons. While

this separation between quark- and gluon contributions does not ocoature where one obtains the sum
rule for the total angular momentu ‘{*09(0) = 1, it can be implemented in lattice QCD analyses at a fixed
renormalization scale (e.g. see refs([@, H"03, EF06, H07]).

Although the construction of the parity-even tensor interactions with a dyramgracting system started from
the O(p') BChPT Lagrangean, an inspection of the resulting Lagrangean eq.(&\hls that the leading
interactions actually start out &(p"). This appears as a consequence of the fact that we do not assign a
nonzero chiral dimensiop”, n > 1 to any of the tensor fields. Furthermore, symmetries allow the addition of
the parity-odd tensor interaction V,,,. We finally obtain

v v
a0 Aaz,o _ >—>

0 1= .
£§7T)]V = §\I]N |:ZPYM (ag,OVI?V+ 2 Vljl;_‘_ 2 H

= s GE,O AGS,O _

—i DV~ (a270V£y + TV’; + 5 VW%)] Uy, (5.21)
with the couplingAas , corresponding to the chiral limit value of the axial quanfifyx),, 4 [DH]. The O(ph)
part of the leading order pion-nucleon Lagrangean in the presermsgarhal symmetric, traceless tensor fields
with positive parity then reads

_ by
‘Cgl)N = Yn<i'D, — Mo+ ng’Y“’YE,uu + _20 0oy [ﬁa, V_f_w} BV + h.c.
" 2 8 My
2,0 [ . Ta e 3 h o 592
+m WO0apu [V ,VO :| ythe | +... N, (5.22)

where we have introduced® = 9% — iuv(,. The two new couplings; , andb; , can be interpreted as the
chiral limit values of isovector- and isoscalar anomalous gravitomagnetic ntemBgp(0) and B3 ,(0). No

further structures enter our calculation at this ofdé&inally we note that the coupling  is only allowed to
exist because we do not sum over the quarkd gluoncontributions in the isoscalar moments, otherwise the
anomalous gravitomagnetic moment is bound to vanish in the forwardlﬂgljﬁ(t =0) = 0[Ter99].

5.3.2 Consequences for the meson Lagrangean

The choice of assigning the chiral powérto the symmetric tensor field@%R’O also has the consequence that
the well known leading order chiral Lagrangean for two light flavoutheéameson sector [GL84] is modified:

F2
L= == T [ VU (¢ +4a2VE") VLU + XU + x0T (5.23)

3We only show those terms where the tensor fields couple at tree level wittoultaneous emission of pions, photons, etc., as
these are the relevant terms for @fp?) calculation of the form factors according to the power-counting analysistsection 5.3.3.
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We note that the new coupling! has been defined such that it corresponds to the chiral limit val(e) pfof
eq.(5.12). It is allowed to differ from unity because we only sum over tralgdistribution functions in the
isoscalar channel and neglect the contributions from gluons.

The explicit breaking of chiral symmetry via the finite quark masses is edodgéde

X =2By(s+ip), (5.24)

if one switches off the external pseudoscalar background fieddd identifies the two flavour quark mass
matrix M = diag(m.,, mq) with the scalar background field To the order we are working here we obtain the
resulting pion mass:,; via

m2 =2 By + O(m,?), (5.25)

wherermn = (m, + mq)/2 and By corresponds to the value of the chiral condensate. The other framptar
at this orderF’. can be identified with the value of the pion-decay constant (in the chiral limit).

5.3.3 Power-counting in BChPT with tensor fields

We start from the general power-counting formula of Baryon ChPT:

D = 2Np+1+> (d=2)N}' +> (d—1)Nj'5. (5.26)
d d

HereD denotes the chiral dimensigf of a particular Feynman diagrad;, counts the number of loops in the
diagram, whereas the variablﬁg/f’ MB count the number of vertices of chiral dimensibfrom the pion(1/)
and pion-nucleoiM B) Lagrangeans. To leading orddd = 0 we only have the tree level contributions from
the orden? Lagrangean of eq.(5.21) witN;, = 0, N = 0 and N}*? = 1. At next-to-leading ordeD = 1
we find additional tree level contributions from the orgér_agrangean of eq.(5.22) withN;, = 0, N3 = 0
and NMB = 1. The first loop contributions enter & = 2 with N, = 1, NM = 0 and N5 = 1 plus
possible contributions fronv{¥ 2. The corresponding diagrams are shown in fig.5.1. Diagram (e) in thaéfig
represents loop corrections from the nucleon Z-factor (given inragipd.2) which at this order only renor-
malizes the tree level tensor couplings of the ondekagrangean. Note that there is an additional possibility
of obtainingD = 2 contributions viaN;, = 0, N = 0 and N}*? = 1, corresponding to further tree level
contributions discussed in the next subsection.

In this work we stop with our analysis of the generalized form factors afthe 2, i.e. O(p?) level, corre-
sponding to a leading one loop order calculation. The next-to-leading opeeftects ofD = 3 are postponed
to a later communication. The (perhaps) surprising finding of this powantow analysis is the observation
that the tensor coupling to the pion field controlled by the couplifign eq.(5.23) doesot contribute at
leading one loop order! Here it only starts to entedat= 3 via N, = 1, NM = 1 and NP = 1 or 2.
(The corresponding diagram fov? = 2 is shown in fig.5.2 while the not-shown diagram /% = 1

is expected to sum to zero due to isospin-symmetry.) We therefore note thggribelized form factors of
the nucleon behave quite different from the standard Dirac- and Rauii factors of the nucleon where the
pion-cloud interactions with the external source a la fig.5.2 are part of Hutnig one loop order result and
play a prominent role in the final result. We discuss the impact of this parti€utar3 contribution further in
section 5.5.3 when we try to estimate the possible size of higher order consetgiourO(p?) analysis.

Note that the discussion given above refers to the chiral dimension obttighuting loop diagrams and thus
of the currents in eqs.(5.8,5.7) and not necessarily to the chiral dimerfsios @spective contributions to the
generalized form factors. If the currents are evaluated at a chirahdioreD, the corresponding contributions
to By o(¢?) are of chiral dimensio® — 1, the contributions t@’; (¢*) are of chiral dimensiom — 2 due to the
presence of one power of a small parameter in fromgf(¢*) and two powers of a small parameter in front of
C2,0(¢q?) in the currents (whileds o(¢%) does not carry such a small prefactor). At the= 2 level systematic

“Note that in contrast to the analyses presented in the previous chapters thk leading order contributions were of chiral
dimensionD = 1, the calculation in this chapter starts/at= 0 due to the presence of external fields with zero chiral dimension.
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a) b)
o -
c) d)
1 1
72 7?2
*—

e)

Figure 5.1: The loop diagrams contributing to the first moments of the GPDswflaan at leading one loop
order in BChPT. The solid- and dashed lines represent nucleon angmpagators, respectively. The solid
dot denotes a coupling to a tensor field from éh@") Lagrangean of eq.(5.21).

Figure 5.2: (Isoscalar) tensor field coupling to the pion-cloud of the puacleThis process only starts to
contribute at next-to-leading one loop order in BChPT.

uncertainties due to possible higher order effects are thereforetergede already moderate fdp o (¢) but
still large for C20(¢?). We now move on to a discussion of the tensor interactions ifOth€) Lagrangean
which contribute to the generalized form factordat 2 according to our power-counting analysis.

5.3.4 Next-to-leading order nucleon Lagrangean

At next-to-leading order the covariant BChPT Lagrangean for twafla®QCD contains seven independent
terms in the presence of general scalar, pseudoscalar, vectorxiahdegtor background fields, governed by
the couplingscy, . . ., ¢ [BKM95] which contributed to our results for the mass and the form facibrhe
nucleon in the previous chapters. Extending this scenamsyriumetriandtracelesgensor background fields
with positive parity, symmetries allow the constructiorsofadditional, independent terms which describe the
coupling of a tensor field to the nucleon at next-to-leading order tree level:
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c =,
‘Cgfr)N 4]\32 \IJN{Tr(X+)VJ;y“zD —I—h.c.}\IIN
0
C9 N T u.ﬁy h N VO
+2Mg (X+),y 1 + h.c. NV
3,0 =
[k iy \ 4 1 v + ]
T 90, N{[D (D ’VIWH} N

(5.27)

+ 6132 Uy V”iBV + h.c. ;U [ea, [607‘/0 1]
SIVE

+ ...

with x4 = u'xu’ + uxTu. The physics behind these couplingswherei = 8, ...13 with respect to the
generalized form factors of the nucleon is quite simpieandcy govern the leading quark mass insertion in
(x)y—q and(x),+q4, respectively, whereas the couplings andc;; give the values of the generalized form
factorsCs3 ,(0) andC3 (0) in the double limitt — 0 andm, — 0. We can therefore denote themds, and

c5 - Finally the couplings;2 andc;3 parametrize the contributions of short-distance physics to the slopes of
the generalized form factordy ,(t) and A5 4(¢) in the chiral limit. Note that the operator controlled by the
couplingcy is not allowed to exist when we add the gluon-contributions on the left hded$eq.(5.7) [H].

After laying down the necessary effective Lagrangeans for ouulzgion, we are now proceeding to the results
of our calculation.

5.4 The Generalized Isovector Form Factors irO(p?) BChPT

5.4.1 Moments of the isovector GPDs at= 0

In this subsection we present our results for the generalized isovectoféctors of the nucleon at= 0. For
the PDF-momentls (¢ = 0) we obtain toO(p?) in IR renormalized BChPT

50(0) = (T)u—da
Y om2 9 m2 9 5 M2 m2
- ¥ 2T (3 Dlog —2X —2 — (14 3log —=
2,0 + (47TF7F)2 ( ga + ) og 22 ga +gAM02 ( +olog MOQ)

1 omi m2 9 My mZ  m} My
— g4 —=1 L - (14 -8—T 4+ T
29,4]\/[6L og Mg +ga n g—m2 Mg + MS" arccos 5o
3
2

Aalggam2 | m?2 m? ma m2  2m,(4MZ — 'm2). m
Z eI Tl (1 1 3]lo0 —F | — 2T oo —& s 0 us T
3(dnF, )2 M2 < + 3log M3> i 0g M2 + M3 arccos <2M0>
(r)
cg (A
+4m? 8M(2 ) (5.28)
0

Many of the parameters in this expression are well known from analyfseiral extrapolation functions.
Numerical estimates for their chiral limit values can be found in table 5.1. Funtire, in a first fit to lattice
data we constrain the couplinljas , from the phenomenological value od&m)ﬁ}fg' ~ (.21 via [DH]

(Az)y—g = Aaj o+ O(m3) (5.29)
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Fit | (4 points - 2 parameter) Fit Il (6+1 points - 3 parameter
as g 0.157 £ 0.006 0.141 £ 0.0057
Adj 0.210 (fixed) 0.144 4+ 0.034
4(1GeV) —0.283 + 0.011 —0.213+0.03

Table 5.2: The values of the coupling constants resulting from the two fitee@Ptp?) BChPT result given

in eq.(5.28) to the LHPC lattice data far), 4. The errors shown are of only statistical origin and do nei-
ther include uncertainties from possible higher order corrections in ThielF from systematic uncertainties
connected with the lattice simulation.

and perform a fit with two parameters: The couplings, andcér)(lGe\/) at the regularization scale = 1
GeV. We fit to the LHPC data for this quantity as given in ref:[p¥], including lattice data up to effective pion
masses ofn, ~ 600 MeV. The resulting values for the fit parameters together with their statistiors are
given in table 5.2. The resulting chiral extrapolation function is shown asdhe line in figure 5.3. We note
that the extrapolation curve tends towards smaller values for small quademhbst does not quite reach the
phenomenological value at the physical point which wasincluded in the fit. We therefore again estimate
possible corrections to the solid curve arising from higher orders. Fiiamnsional analysis we know that

the leading chiral contribution tér),_4 beyond our calculation takes the fo®(p3) ~ &4 ﬁ + ...

Repeating the fit with values féry betweef —1, ..., 41 and accounting for statistical errors one ends up with
an array of curves covering the grey shaded area of figure 5.&sRagly, the phenomenological value for
(x)4—q lies well within that band of uncertainties due to possible next-order d@rs; giving usno indication
that something may be inconsistent with the large value&dfgy_, typically found in lattice QCD simulations

at large quark masses. The resulting values for the coupﬂ;]gandcg)(l GeV) of Fit | are also well within
expectations. This analysis allows the conclusion that the physical validsafbservable can be predicted
with a precision of approximatel§0% by a combined (leading one loop order) BChPT plus lattice analysis.
Note that the lattice results which we use in this chapter to determine the low exmrgiants are calculated
with 2 41 flavours. Our SU(2) ChPT calculation is if course applicable to a scewdthia large, fixed strange
quark mass since such effects are encoded in the coupling constanestbety. Therefore however, the
numbers which we find for those constants might differ from the ones imeatpuo flavour scenario.

We note that the mechanism of the downward-bending at small quark masdgg(0) found in eq.(5.28),
see figure 5.4, is quite different from what has been discussed in literatufar within the nonrelativistic
HBChPT framework (e.g. see ref.[DMN1]). In order to demonstrate this we truncate eq.(5.28) at leading
order in1/M to obtain the exaaD(p?) HBChPT limit of our results, agreeing with the findings of references
[AS02, CJO1]:

v 2 v mi 2 2 mi 2 C(T)O\)
2,0(0)|II7{BC}LPT = a2,0{1 - (47TF77)2 <2QA + (3g + 1) log N2 > } +4my 8Mg
m3
O —2—1. 5.30
+ (16W2F,?Mg> ( )

As proven in chapter 3, the covariant BChPT scheme used in this workeiscaéxactly reproduce the corre-
sponding nonrelativistic HBChPT result at the same order by the apatefuncation of theé /M, expansion.
At leading one loop order no recoil effects are included in HBChPT lesplts and our covariant results have

0
thus to be truncated at ordé%) in order to obtain the according nonrelativistic limit. In the following we
therefore denote this truncation tbyM, — 0. All differences between the HBChPT limits presented in this

5The natural scale of all couplings in the observables considered heetis one, as all coupling estimates in this section refer to
a moment of a parton distribution itself normalized to unity. This expectatioorifirmed by the fit values of tables 5.2 and 5.3 found
for the investigated coupling constants.
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Figure 5.3: The quark mass dependence of the isovector parton dismibuéimucleon. The solid line displays
the best fit curve of thé(p?) result of eq.(5.28) to the LHPC lattice data of ref{[8i7]. The corresponding
parameters are given in Table 5.2. Note that the phenomenological vatue @lysical pion mass was not
included in the fit. The grey band indicates the size of posgilfje’) corrections as discussed in the text.

chapter and the findings of previous HBChPT studies [AS02, CJ01,08CRMS06a, DMS06b] are due to the
inclusion of selected terms of higher order, i.e. terms viiti= 3 (and even larger values @) according to
the counting formula eq.(5.26) in those references.

Fit I is certainly constricted by the assumption that we use the physical Vb.l(ldf&%()ﬁiieg' ~ 0.21 for the cou-
pling Aa3 , which presumably takes a value in the chiral limit which is a bit smaller than theophemological
value at the physical point [DH]. Furthermore, in order to also numericalfypare the(p?) HBChPT result
of eq.(5.30) with theD(p?) covariant BChPT result of eq.(5.28) we perform a second fit: We fittvariant
expression fofz),, 4 of eq.(5.28) again to the LHPC lattice data, this time however, we constrain tipérap
Aaj in such a way that the resulting chiral extrapolation curve reproduceghiigomenological value of

<x>ﬁ}f§‘ = 0.160 % 0.006 [xpr] exactly for physical quark masses. The parameter values foFthis are
again given in table 5.2, whereas the resulting chiral extrapolation ctithe @ovariantO(p?) expression of
eg.(5.28) is shown as the solid line in fig.5.4. First, we emphasize that thelookgvery reasonable, connect-
ing the physical point with the lattice data of the LHPC collaboration in a smoadtiiasSecond, we note that
the resulting values for the coupling constarffg andAaj , underlying this curve are very reassuring, indicat-

ing that both(x),_4 and(Ax),_4 are slightly smaller in the chiral limit than at the physical point! Likewise,
the unknown quark mass insertio&ﬁ)(A) contributes in a strength just as expected from natural size estimates.
For the comparison with HBChPT we now utilize the very same vﬁltmmgo andcg") (M) of Fitll as given in

table 5.2. The resulting curve based on ¢th@?) HBChPT formula of eq.(5.30) is shown as the dashed curve
in fig.5.4. One observes that this leading one loop HBChPT expressieasagith the covariant result between
the chiral limit and the physical point but is not able to extrapolate on towtasdkttice data. This behaviour

of the two flavour HBChPT result is completely analogous to the correspgrhelading one loop HBChPT

5We emphasize again that due to the definition oflheenormalization scheme — see chapter 3 — the numerical values ohBE C
coupling constants have to be the same in HBChPTIRmeénormalized covariant BChPT.
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Figure 5.4: “Fit II” of the O(p?) BChPT result of eq.(5.28) to the LHPC lattice data of ref.[H] andto the
physical point (solid line). The corresponding fit-parameters arengiveéable 5.2. The dashed curve shown
corresponds to th@(p?) result in the HBChPT truncation (see eq.(5.30)). The shaded areatizgltba region
where one does not expect that ChEFT can provide a trustworthy ekirapolation function due to the large
pion masses involved.

expressions for the axial coupling constant of the nucleon [HPW68B}hE anomalous magnetic moments of
the nucleon [HWO02], the nucleon radii and also for the transition forrtofacf chapter 2. It appears to be a
pattern that such leading HBChPT extrapolation formulae only describeuttré gnass dependence between
the chiral limit and the physical point. Possible reasons for this have be@mig chapter 3 of this work.
However, we note that all oumumericalcomparisons with HBChPT results shown in the figures of section 5.4
and 5.5 are based on the assumption that’the 2 fit values found in tables 5.2 and 5.3 are already reliable
estimates of the true, correct values of these couplings in low energy QEbxly, the shown HBChPT curves
might have to be revised if futurB = 3 analyses [DGHH] lead to substantially different numerical values for
these couplings. The true range of applicability of HBChPT versus @mouaBChPT can only be determined
once the stability of the employed couplings is guaranteed. A study of higtier effects is therefore essential
also in this respect. Note, however, that there is no set of parametesitn the O(p?) HBChPT result

for (x),_q provides a reasonable chiral extrapolation function at the quark mak#eslattice data shown in
figures 5.3 and 5.4. At this point we conclude that the smooth extrapolati@vioeir of the covarian® (p?)
BChPT expression fofz), 4 of eq.(5.28) between the chiral limit and the region of present lattice QCD data

is due to arinfinite towerof (ﬁ—g) terms. According to our analysis the chiral curvature resulting from the

logarithm of eq.(5.30) governing the leading nonanalytic quark mass toeinaf this moment isiotresponsi-
ble for the rising behaviour of the chiral extrapolation function as has hgpothesized in ref.[DMNO1].

In figure 5.4 we have marked the values of the quark mass at which we dgpext oulO(p?) BChPT analysis
to provide a trustworthy chiral extrapolation function. The decision to indittee onset of this domain clearly
abovem, = 600 MeV is based on two observations: First, as can be seen in figure 5.3y biglee contri-
butions to our analysis gfr),_4 only become sizable above, = 600 MeV. Second, the only indication for
a breakdown of our approach is the downward-bending of our edttpn curve for(zx),_4 starting around
m, = 700 MeV. This effect results from an unbalancing of different chiraltcttions to our results and
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does surely not display any real physical contribution of the pion-cinice dynamical pions should not play
a prominent role at these large quark masses.

Finally we are discussing th@(p?) BChPT results at = 0 for the remaining two generalized isovector form
factors of the nucleon at twist-two level. One obtains

My(my)  a8og3m2 m2 m2 m2
By (t=0) = b} ’ 34+log—Z% ) — —Z(2+3log—=
2l =0 = %o F apy [P%0) T P 0g
ma m2 2mg m2 ma My
—log—2 — ——— (5 -5 —FL 4+ X O(p3)(5.31
+M§ ogMg ﬁM&—m%( Mg—i-Mél)arccos (2M0>] + O(p°)( )

My(mz) | a3o9ams m? m2
My x| ra TR

4 2 2m m2 mi m
——] s 24T 4 T s 3)(5.32
( MS + Mé) arccos <2M0>] + O(p”)(5.32)

0 J‘F—
Mg gM& VAMZ —m2

Cg,o(tzo) = 05,0

As one can easily observe, one encounters plenty of honanalytic techevan chiral logarithms in these co-
variantO(p?) BChPT results. However, we note that in the HBChPT limit to the same chirat 6(?) one
would only obtain the chiral limit valuels , andc ,, nothing else [Dor05]. E.g. the chiral logarithms calcu-
lated in ref.[BJ02] forBj (t = 0) andC3 (¢t = 0) would only show up in a fulO(p?), respectivelyO(p*)
BChPT calculation of the generalized form factors. From the viewpoipbefer-counting in BChPT they are
to be considered part of higher order corrections (Re> 2) to the full O(p?) results given in egs.(5.31,5.32).
Regrettably, at this point no information from experiments exists for thesestoture quantities of the nu-
cleon. From phenomenology one would expect thét (¢ = 0) has a “large” positive value at, = 140
MeV, as it corresponds to the next-higher moment ofisioectorPauli form factorFy (¢t = 0) = &, = 3.71
n.m. (Compare eq.(5.5) and eq.(5.3)éat= 0). Lattice QCD analyses seem to support this expectation
[G*04, H"03, H"07]. In contrast, the value a5 (¢t = 0) cannot be estimated from information known
about nucleon form factors. State-of-the-art lattice QCD analyses<eegref.[H 07]) suggest that it is con-
sistent with zero. In fig.5.5 we have indicated how the correspondingpatétion curves based upon this
information might look like. As a caveat we note that in both form factors thasitrquark mass dependence
is small and we would see a dominant influence of the quark mass depersgdermuming from the kinematical
factor My (mr) in egs.(5.31) and (5.32), if the corresponding chiral limit valbissandcs , are nonzero. A
further observation is that the uncertainties connected with possible higtker corrections fron®(p?) to
B3o(t = 0) andC3y(t = 0) could already become substantial for pion masses around 300 MeVoEor b

mngN(mﬂ')

quantities they can be estimated Wdp?) ~ dB.C yESomLy Y where—1 < ép ¢ < 1. In order to ultimately
test the stability of the results in egs.(5.31,5.32) it wilf be very useful to extaadinalysis to next-to-leading
one loop order. Due to the fact that the systematic errors of our calculaftiBy ,(t = 0) andC3,(t = 0)
already become large at the lowest pion masses at which lattice data arblayaitaabstain from a study of
those two observables based on fits to lattice data. However, such astliscolthe BChPT results presented
in this work including an analysis of statistical errors can be found ineafs [H™07].

5.4.2 The slopes of the generalized isovector form factors

In order to discuss the generalized isovector form factg(t), B3 () andC3 ,(t) at nonzero values of
we first analyse their slopes;, defined via

X30(t) = X350(0)+ pk t +O(t?); X =A,B,C. (5.33)
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Figure 5.5: Quark mass dependence of the isovector momgpte = 0) andCs3 ,(t = 0). In B3 ,(t = 0) we
have varied the (unknown) chiral limit valég , betweerd and-+0.5, as lattice analyses [@4, H" 03, H"07]
suggest that this moment has a large positive value. For the chiral limit wgluef C3 (¢t = 0) we have
chosen the value zero, as preliminary lattice QCD analyses suggest thamtotimisnt is consistent with zero
[HT07]. The grey bands shown indicate the size of possible higher ordections to thes®(p?) results.

To O(p?) in BChPT we find
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v 45,09 ! M2 — 13m2 + 1277 (44 310g
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M2 m2

0 Mg M§ Mg\ JAME - METUTME T M
My ¢ Mn(mz)
X arccos <2M0> } + ¢ (AnFy2Mo’ (5.36)

The parameters,, %, andd, are not part of the covariai®®(p?) result. They are only given to indicate the
size of possible higher order corrections frdiip?®). A numerical analysis of the formulae given above sug-
gests that the size of pion-cloud contributions to the slopes of¢ineralized isovectdiorm factors is very
small!l The physics governing the size of these objects seems to be hiddencioutiter-term contributions
c12, 0% andd}, which dominate numerically when assuming natural size estimates cis, 0%, 05 < +1.

We note that this situation reminds us of iBescalar Dirac- and Paulform factors of the nucleo#?’’ (¢) and
F5(t), where thet dependence in SU(2) ChEFT calculations is also dominated by counter{egnsee the
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discussion in chapter 4 or reference [BFHM98]).
Finally truncating the covariant results of egs.(5.34-5.36) at leadingr and&é/), we obtain the (trivial)
HBChPT expressions 10 (p?):

v C12 3
= == 37
PA M2 +O(p°), (5.37)
pp = 0+0(°), (5.38)
ol = 0+0p). (5.39)

As already mentioned, the nonzero slope results found in the HBChPTatadag of refs.JACK06, DMS06a,
DMSO06b] are of higher order from the point of view of our power-etirg. Most of them can already be added
systematically to our covariad(p?) results of egs.(5.34-5.36) @x(p?).

5.4.3 The generalized isovector form factors of the nucleon
In this subsection we present the fuldlependence of the generalized isovector form factors of a nucleon to

O(p?) in BChPT. We note that for all three generalized form factors at thisramlg the amplitude of diagram
c¢) of fig.5.1 depends oh The resulting expressions at this order are therefore quite simple:

v o2
v v 9094 v C12 3
t) = — = (t)+ 5t 5.40

with A3 (0) given above and

2m3 (50Mg — 43m2 Mg + 8m3)
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—|—12merg] arccos (2]\2> + Y [12mer61 + 2m2 (4m72r - 9M02) MZM?
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M3

1
2

+ (m2 — 2M2) (8m2 + M2) Mﬂ + [2M8 +3m2 (3m2 + 4MZ) M*

~ M 2m?2 -
—4m (m2 + 9MG) M* + 12m2M3} log <Mo> + Mgz\ZS [m;ﬁ (—12M§ +4AM*ME

+8M8) + 9m2 M2 (4M§ — M2ME — 3M6M02> + 12MA N (M4 - Mé)} log <m“) }
where we have introducetd® = Mg + (u® — 1) t. Note thatFy (¢ = 0) = 0 by construction. A conservative

estimate for the size of possible higher order corrections indicated in e).(&4 be obtained viéd(p?) ~
A ;*QMO + 6% (4ﬂl§’:§2M0 t, in complete analogy to the discussion in the two previous subsections. For the

m
(4mFr
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remaining two generalized isovector form factors we obtain

My(my) 650953 M5

1
2 du ~ - -
BUo(t) = by 4 (M2 — MQ) MO + 9m2 M2M*
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The parametersg, ¢, 6% andd}, have again been inserted to study the possible corrections of highes orde
to ourO(p?) results. Varying these parameters between -1 and +1, we concludefuliadép?) calculation is
required before one wants to make any strong claims regardirigitigendence aB5 () andC3 ,(t) beyond

the lineart dependence discussed in the previous subsection. On the other leapgditted dependence of
the form factorAy ,(¢) of eq.(5.40) appears to be more reliable at this order, as possible higleercontribu-
tions only affect terms beyond the leading linear dependence blowever, due to the unsettled situation in
thet dependence of those form factors at leading one loop level, we ordgmiréits to dipolel?-extrapolated
lattice data throughout this chapter and do not dare to fit to lattice data direttlyetthe next-to-leading one
loop order effects are calculated. To get a rough idea about suct fiisen the sector of generalized nucleon
form factors the reader is again pointed to referencedH.

5.5 The Generalized Isoscalar Form Factors iO(p?) BChPT

5.5.1 Moments of the isoscalar GPDs at= 0

To O(p?) in two flavour covariant BChPT the only nonzero loop contributions to thecasiar moment3 (¢t =
0) (see eq.(5.10)) arise from diagrams c) and €) in fig.5.1. One obtains

20000 = (P)uta

s 2,2

s 2 09 3a270gAm7r

= Gy tdmrom - o5
MZ  16m2F2

ma ma (o ma\, (T
M2 T2 Mz ) 8\

+O(p?). (5.44)

2 4
My m m My
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Eq.(5.44) should provide a similarly successful chiral extrapolationtiomdor (z).,, 4 as the covarian®(p?)
BChPT result of eq.(5.28) did for the LHPC lattice data {o},_, in section 5.4.1. The uncertainty arising
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m3

from higher orders can be estimated to scal€ggs®) ~ %W whered should again be a number
between—1,...,+1, according to natural size estimates. We note that the couglirty, which played an
essential roIe in the chiral extrapolation function(o,,, is not present in the quark mass dependence of the
isoscalar momentx), 4. The resulting chiral extrapolation function is therefore presumably qiffereht
from the one in the isovector channel. The absence of a chiral logakithi log m.; in (z),4 (Ccompare
e(.(5.30) and eq.(5.45)) presumably only leads to a difference in thé exirapolation functions between the
isovector- and the isoscalar moment for, < 140 MeV.

Note that from eq.(5.44) in the limit/AM, — 0 we reproduce the leading HBChPT result fat), 4 of
ref.[AS02] which found a complete cancellation of the nonanalytic quarls megendent terms in this channel:

3
s _ 42 2 oM ) 5.45
2,0( )|HBChPT a20 + m?TMQ + <167r2F7%M0 ( )

The couplingey is therefore scale independent (in dimensional regularization) anditcbes the leading cor-
rection to the chiral limit values , of (z),4 4.

At ¢ = 0 we also find nontrivial results for the two other generalized isoscalar factors of the nucleon. To
orderp? in the covariant calculation they read
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The parameters), andé?j have been added “by hand” to these results in order to indicate posdixéseasf
higher order (i.eO(p*)) corrections. Presumably they take on valuds. . ., +1. Note that ouO(p?) BChPT
prediction forCs ((0) is strongly affected by possible corrections from higher orders. Thisiésto the fact
that one only receives a nonzero result for this form factor startin@(at) — the order we are working at.
Eq.(5.47) should therefore only be considered to provide a rough estiandtee quark mass dependence of
this form factor at = 0. For a true, quantitative analysis of its chiral extrapolation behaviourdhelete
O(p?) corrections should first be added. In order to obtainugh estimatef the chiral extrapolation functions
resulting from egs.(5.44,5.46) we utilize the quenénaata of the QCDSF collaboration {®4] as input. A
similar analysis of the here present®dp?) BChPT results together with recent LHPC data can be found in
reference [H07] leading to the same qualitative statements.

However, in particular in the isoscalar channel, there are severalesoaf systematic errors in the lattice sim-
ulation whose impact is hard to estimate at present. The generalized fdorsfatthe nucleon have not been
simulated at different lattice spacings and volumes at small pion masses pedehto control possible finite
size and discretization effects in the lattice results further simulations ardatereeeded. Furthermore, in
the isoscalar channel disconnected diagrams (all processed whenedheng external field is not directly

+5 (5.46)

"The most prominent correction fro®(p*) arises from the triangle diagram of fig.5.2 and is given in appendix2Dvi
AC} ,.(t = 0,m). We note, however, that this is not the only next-order correction.

8The quark masses employed in ref{[(4] are so large that one does not expect to find differences betywesiched and dynamical
simulations, see e.g. the discussion in reference [HW02]. Note thakewsibizing the lattice data of reference {®4] with the scale set
by ro, as we consider the alternative way of scale-setting (Viilzear extrapolation to the physical mass of the nucleon) also discussed
in ref.[GT04] to be obsolete in the light of the detailed chiral extrapolation studies afP&fW04, AK™04, BHM05, PMW"06].
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Figure 5.6: Solid lines: The quark mass dependence o) BChPT result for(z), 4 of eq.(5.44) and
B3 ,(0) of eq.(5.46). The values for the three previously unknown parameseudting from acombinedit to
the shown QCDSF data of ref.f®4] and to the phenomenological value fa), . 4 [xpr] are given in table
5.3. At the physical point we obtaiR3 , = —0.056 & 0.016, with the shown error only being statistical. Due
to the poor data situation with its unknown systematic errors, however, tbgsksrshould only be considered
as a rough estimate of the true quark mass dependence. The dashedrlieggand to the respective HBChPT
results at this order which are again found to only be applicable for varpion masses.

coupled to a valence quark) contribute to three point functions but @&¢odarge calculational expenses con-
nected with these processes frequently neglected in lattice simulations. The dastidts for isoscalar form
factors at present therefore come with an uncontrollable systematic error

Performing a combined fit of egs.(5.44,5.46) to the lattice data shown in fig.8.@ending the phenomeno-
logical value of(z),.4 ~ 0.54 [xpr], we obtain the two solid curves shown in fig.5.6. The resulting parasete
of the fit are given in table 5.3. Interestingly, despite the large quark masskthe huge error bars in the
data of ref.[G 04] we obtain reasonable chiral extrapolation curves with natural sizgliog constants. The
analysis of the QCDSF data in combination with the physical valudafoy, ; suggests that the chiral limit
value of this isoscalar PDF-moment is smaller than the value at the physicallpanting to a monotonically
rising chiral extrapolation function as shown in the left panel of fig.5.6aAgscond observation we note that
the value for the generalized form factB§ , (¢ = 0) could take on @mall negativealue at the physical point
according to the right panel of fig.5.6, albeit with a large uncertainty dueet@dior data situation and large
systematic errors of the BChPT calculation at this order. Because of thig(satgative!) value of the isoscalar
Pauli form factorFs (t = 0) = ks = —0.12 n.m., it is somewhat expected that the next higher moment yields
a value close to zero. However, fig.5.6 now opens the possibilityBhgtt = 0) ~ —0.06 might be as large
as 50% of itsFi5 (t = 0) analogue. It will be very interesting to observe whether this feature eaegroduced
when the new data of QCDSF [LQ] at small pion masses and a next-to-leawingop order BChPT calcula-
tion of the generalized form factors become available. Fig.5.6 also demiesdtat the correspondir@(p?)
HBChPT results are again not sufficient for a chiral extrapolation abtiisr. However, we note again that the
true range of applicability of HBChPT versus covariant BChPT can oaelddtermined once the stability of
the employed couplings is guaranteed, see the similar discussian)for; in section 5.4.1.

5.5.2 The contribution of w and d quarks to the spin of the nucleon

In the past few years a lot of interest in generalized isoscalar fortarfaof the nucleon has focused on the
values ofA3 ; and B3 , at the pointt = 0 since one can determine the contribution of quarks to the total spin
of the nucleon via these two structures [Ji97]:

1

Jurd = 5[ 50(t=0)+ B3 (t = 0)]. (5.48)
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3,0 5,0 Co (z)P" (1 = 2GeV)
0.527 +0.007 | —0.103 £0.016 | 0.147 +0.002 | 0.538 + 0.012 (fixed)

Table 5.3: The values for the three tensor coupling constants entéfipg) and B3 (t) at orderp® as ex-
tracted from a combined fit to the lattice results 6§ ,(0) and B3 (0) [G*04] shown in fig.5.6 and to the

physical point ofA3 ;(t = 0,m, = 0.14 GeV) = <x>§’f§'. Note that we have obtained a small negative
value forb; ;. The indicated uncertainties are the statistical errors arising in the fit dbe¢%) and (5.46) to
the data of references [®4, xpr] and do not reflect the much larger systematic uncertainties foimtbe
lattice simulations (which e.g. neglect all contributions from disconnectedatiag) and possible higher order

contributions to our chiral analysis.

To O(p?) in BChPT we find

1 My (mﬂ') a; Omzr Sgimﬂ' m2 mk mz
J. = —qa; b5 d 6T 4 T
u+d 5 {a270 + 2,0 My + (47rF,r)2 hMS = m% Mg + 61 arccos My
m2 m2 m m Coy
—3¢%4(3- =24+ (2—4—Z2 4+ T )log— am2 =% + O(p?). 5.49
(3 g+ (2155 + g ) e i) e + o) (549

Note that despite the plethora of nonanalytic quark mass dependent tentasned in theO(p?) BChPT
result of eq.(5.49), the two chiral logarithms calculated in ref.[CJ02] witterHBChPT framework areot yet
contained in our result. Both terms (a4, by~ In the notation of ref.[CJ02]) are part of the complé&?)
result according to our power-counting and will appear in the calculafitremext ordet. We further note that
the two logarithms of ref.[CJ02] are UV-divergent and are accompayiedcounter-term, whereas ttisp?)
BChPT result of eq.(5.49) happens to be UV-finite to the order we arkingprin ref.[CJ02] the authors also
reported that the two chiral logarithms (6%(p*)) which they describe presumably are cancelacherically
by pion-cloud contributions around an intermediAt€l 232) state. We can confirm that this possibility exists,
as the describedh contributions also start & (p?), assuming a power-counting where the nucldomass
difference in the chiral limit is counted as a small parameter of chiral dimewsien p! (as it has been done
in chapter 2, see ref.[BHMO3] for details).

Utilizing the O(p?) BChPT result of eq.(5.49) and the fit parameters of table 5.3, we obtast astimate for
the contribution ofu andd quarks to the spin of a nucleon:

Jura(t =0, my = 0.14GeV) ~ 0.24 £ 0.05, (5.50)

which is only about half of the total spin of the nucleon! We emphasize thanthisber is just a rough
estimate, as we are assuming that the true error is dominatsgsbgmatierrors from both the lattice input

to our analysis and the possible higher order corrections to our chicallation'®. However, the same chiral
analysis performed on a different set of lattice data lead the authoréeoémee [H07] to a result which is
consistent with the value given here — within statistical errors.

Based on the same input, we can also predict the quark mass depentidpeg. orhe result is displayed as
the solid line in fig.5.7. Note that in contrast to the analysis given in réfd@, we do not obtain a flat chiral
extrapolation function between the lattice data and the physical point.OTh&) BChPT analysis suggests
that the value at the physical point liesver than the values obtained in the QCDSF simulation at large quark
masses. Following the above discussion, this curve obviously can onlfirseestimate of the true result.

The contribution~ a ), is already contained in the functiahBy, .. (t = 0, m) discussed in subsection 5.5.3.

19The size of the statistical error read off from the fit of table 52501 and therefore negligible. The small value of this statistical
error is of course heavily influenced by the error assigned to the piemulogical value ofz)..+q4 given in table 5.3. Note, however,
that the size of statistical errors will increase once we extend our an#lysisxt-to-leading one loop order due to the presence of
several so far unknown counter-terms at this order.
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Figure 5.7: The contribution af + d quarks to the spin of a nucleon as function of the effective pion mass. The
O(p?) BChPT result shown as the solid line is a prediction of eq.(5.49) which utiliesfittharameters of table
5.3. For comparison we have also plotted simulation data from QCDSB4{En the figure. At the physical
point one can read off, . 4 ~ 0.24. (The error bar shown at the physical point is only statistical, i.e. arises d
to the errors attached to the parameters in table 5.3, and does not reflegstamatic uncertainties.)

5.5.3 Afirst glance at the generalized isoscalar form factarof the nucleon

In this section we present the results for the momentum- and quark massldeperof the generalized form
factors of the nucleon for the isoscalar flavour combinatiand atO(p?) in BChPT. We note that at this order
the only nonzero loop contributions to the three isoscalar form factors foisn diagrams c¢) and e) of figure
5.1, as the coupling of the isoscalar tensor field to the nucleon is not affiegtehiral rotations. One obtains

S 2
s _gs 2,094 15 €13 3
50(t) = A34(0) — 64r2F2 F3o(t) + 7M§ t+0(p°), (5.51)

with A3 ,(0) given in eq.(5.44) andiy , (¢t = 0) = 0 by construction. Interestingly, to the order we are working
here, the dependence of this isoscalar form factty (¢) is given by the same function

F50(t) = Fé’,o(t>+0(p3>, (5.52)

that controls its isovector analogue eq.(5.41) albeit vatiger numerical prefactors (compare eq.(5.51) to
eq.(5.40)). We note that; ,(¢) does not depend on the scalef dimensional regularization for the loop dia-
grams. The chiral coupling s is therefore also scale-independénparametrizing the quark mass independent
short-distance contributions to the slopedf, (). The unknown contributions from higher orders in the chiral
expansion can be estimated from a calculation of the triangle diagram didpfafigure 5.2. Due to the cou-
pling of the tensor field to the (long-range) pion-cloud of the nucleon, gnadirthe contributions at the next
chiral order this diagram should give the most importadependent correction to the covari&htp?) result

of eq.(5.51), resulting in the estimat®p?) ~ AA;  (t,m,). This assumption is motivated by the findings

e note again that this scale-independence refers to the UV-scales @hEFeT calculation, not to be confused with the scale-
and scheme dependence of the quark-operators on the left haraf sifl€5.6) which is completely outside the framework of ChEFT.
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of chapters 2 and 4 and the heuristic argument that the dynamics eaf\Heop is much stronger affected if
the incoming momentum is transferred to a propagating pion as if it is trangtertbe much heavier nucleon.
The explicit expression for the functiahA; (¢, m,) can be found in appendix D.3.2. For completeness, we
also note that in the limit /M, — 0 we obtain the correspondir@(p?) HBChPT result

2 C9 C13

1%w%mwza%wﬁﬁﬁﬂﬂwmmwﬁm» (5.53)
0 0

which is just a string of tree level couplings.
To orderO(p?) in covariant BChPT the two other isoscalar form factors read

Bg,o(t) = 3,0 M, 1672 F2

M as 2 pr2 1 d _ B B

nlms) _ 2209470 /2 28 (M — N2 NEO -+ 9m2 MENT
- M

—6mA MZM? 4 6m2 M (mfr — 3m2M? + M4> log nj\?

3072 . .

o GmaMs [mf, — 5m2M?* + 5M4} arccos (mf>
4M?2 — m2 2M

+AB; , (t,mz), (5.54)

My (my) aa’ogiMOQ 3 duu?
My 16m2F2 -1 M3

C5olt) = o {2<M02—]\2f2> MO — 3m2 M2 N

+6mA M2M? — 6mi M2 (mzr - 2M2) log ”A”;

6m3 M2 ~ ~ -

4220 [mfr —4m2M* + 2M4] arccos (m~ >
AM? — m2 2M

LACE, (tm), (5.55)

with A defined in appendix D.2 (c.f. eq.(D.14)M n(m,) again denotes the (quark mass dependent) mass
function of the nucleon eq.(5.9), introduced via eq.(5.7). In the limit/y, — 0 we obtain the corresponding
O(p?) HBChPT results forB3 (t) and C35 ((t) which at this order only consist of the tree level coupling
constantds , andc; . As in the case ofi3 ,(¢) we have estimated the contributions from higher orders via
O(p®) ~ AB;  (t,mz), AC;  (t,mr), assuming that the dominahtiependent higher order corrections to
our covarianiO(p?) BChPT results of eqgs.(5.54,5.55) originate from ¢h@?) triangle diagram displayed in
fig.5.2. Explicit expressions are given in appendix D.3.2. We note thatdhanalytic quark mass dependent
terms inAs o(t), B3, (t) andCs 4 (¢) calculated in reference [BJ02] with the help of the HBChPT formaifsm
correspond to the leading terms irl AV, expansion of the)(p®) BChPT corrections\ X, ,, (¢, m,) Where

X =A,B,C.

At this point we refrain from a detailed numerical analysis of thlependence of the generalized isoscalar
form factors A3 ,(¢) and B3 ((t). On the one hand very few lattice data for this flavour combination have
been published so far for pion masses below 600 MeV. Moreover, bilaikgtice data neglect contributions
from disconnected diagrams and are therefore accompanied by aowmkystematic uncertainty which is
very hard to estimate. On the other hand, in theependence both ot3 ((¢) and of B3 ,(¢) we encounter
chiral couplings ¢;3 at O(p?) in eq.(5.51) andBs4 at O(p?) in AB;  (t,m,) of eq.(D.22)) connected with
presently unknown short-distance physics and systematic uncertaintiésecafore not be guaranteed to be

2In refs.[ACK06, DMS06a, DMS06b] additional terms have been dated within the HBChPT approach. While some terms
correspond ta@)(p®) andO(p*) contributions according to our power-counting, expanding the covaf¥ép’) result of eq.(5.54) to
the orderm one can e.g. also recognize a tewma3 o m2 present in ref.JACKO6]. However, as far as we can see, neither
™ 0

ref.[ACKO06] nor ref.[DMS06a, DMS06b] presentsamplete® (p*) HBChPT calculation of thenatrix elemeneq.(5.7).
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small at the order we are working here. We are therefore postponingdigiaigssion until further information
is available, in particular from a calculation of the effects of next-to-leadimgyloop order. Disregarding the
doubts mentioned here the authors of referenceQH have attempted a study of thedependence of the
O(p?) BChPT results for the isoscalar generalized form factors and repitet satisfactory findings. In the
meantime we are preparing a full (next-to-leading one la@@f)*) BChPT analysis of the isoscalar moments
of the GPDs which (in addition to several other diagrams!) also containsothteitmitions from the triangle
diagram shown in fig.5.2, already presented in appendix D.3.2.

Before finally proceeding to the summary of this chapter, we take a look #titdegeneralized isoscalar form
factorC3 (t) of eq.(5.55). According to our power-counting, short distance carttdbs to the radius of this
form factor are suppressed and only start to enté?(at'), both in HBChPT and in BChPT. After adding the
O(p?) estimateACs _ (¢, m,) to theO(p?) BChPT result of eq.(5.55), we can hope to catch a first glance of
thet dependence of this elusive nucleon structure. Utilizifig of table 5.3 and assuming ~ (z)3 ~ 0.5 at

a renormalization scale’ = 4 GeV? [GRS99] we can determine its slope

dC3,(1)
Pc = dt lt=0
g/24 s 4 2 2 ez s 6 4 s ) 92 6
= Ga0m2 AL | 20 (2m — 3Mj) log AL o i — Smp MG+ 2mE Mg — S M
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—x  MoMy(mz) <m7r — Tmz My + 9mz My + 8M0> — —————4a3 ym; (—2m},
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+15my Mg — 30m2 My + 10Mg) + Qx”T (4my’ — 45Mgm;, + 170m; M
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—225mr M¢ + 30m2M§ + 32M&0) arccos | —% ) 3.
2My
(5.56)

At the physical point this would give ys,(m, = 0.14GeV) = —0.77 GeV2. Truncating eq.(5.56) ith/Mj
we reproduce the chiral singularity m_-* found in ref.[BJ02}3

2 ,.0 2
s gAxﬂ.MN(mﬂ—) gA s OMN(mﬂ-) mﬂ-
S - N (13 4 1510g 2 ) | .. 5.57
pc 160mF2m,  96072F2 |“20 T Ty B YA (57

This amounts to a slope of.|, = —1.12 GeV~2 which is45% larger than the BChPT estimate of eq.(5.56).
Interestingly, among the terms m2 shown in eq.(5.57) it is thé/M, suppressed corrections to the leading
HBChPT result of ref.[BJ02] that dominate numerically. This gives a gtiodication that aovariantcalcula-

tion of AC; _ (t,mr) as given in appendix D.3.2 is advisable, automatically contaialhgssociated1/M)"
corrections.

The quark mass dependence of the slope fungijorof eq.(5.56) already suggests that one obtains an inter-
esting variation of the dependence of this form factor as a function of the quark mass! Wefeherdose

this discussion with a look at fig.5.8. There we have fixed the only unkna@wanpeter; , = —0.41 + 0.1
such that the BChPT result coincides with the dipole parametrization of theSBGDIllaboration at = 0
[GT04] for the lightest pion mass in the simulation, i, = 640 MeV. We note explicitly that this coupling

13Note that due to a different definition of the covariant derivative in tregkpoperator on the left hand side of eq.(5.6) our definition
of the third isoscalar form factor differs from ref.[BJ02] by a facsb#: C57 (t) = 4C3 o ().
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only affects the overall normalization of this form factor but does not irhfiaanomentum dependence. It
is therefore quite remarkable to observe that the resuitidgpendence of this form factor according to this
ChEFT estimate agrees quite well with the phenomenological dipole-parartietriphthe QCDSF data at
this large quark mass, even over quite a long range in four-momentumerafs$fe result is rather close to
a straight line which is a consequence of the fact that in the renormalizatimme introduces and applied
in this work, pion-cloud effects are switched off at large pion massesfig®.8). We remind the reader that
the value of this form factor &= 0 andm, = 0.14 GeV determines the strength of the so-called D-term of
the nucleon, playing a decisive role in the analysis of DVCS experimen®, [Di203, BR0O5]. Utilizing the
extracted value of; , we can now study the C-form factor also at the physical point, with thét@so shown

in fig.5.8. At this low value of the pion mass one can suddenly observe a eanlidependence for low values
of four-momentum transfatue to the pion-cloud of the nucleohhis is a very interesting observation because
such a mechanism would allow for a more negative valu€qf(t = 0) at the physical point than previously
extracted from lattice QCD analyses via dipole extrapolations (e.g. se8Té#]). We obtain

Cso(t =0,my = 140MeV) ~ —0.36 £ 0.1, (5.58)

The assigned error corresponds to the fit erra'df(m, = 0.64 GeV, t = 0)qcpsr given in ref.[GM04], as it
directly influences our unknown coupling,. However, we note that the (unknown) systematic uncertainties,
both from the quenched simulation results of ref.[i@] and possible furthe®(p?) contributions (beyond
ACy | (t,m)) to our BChPT results are not accounted for in this error bar.

With this value we can finally obtain the first estimate for the radius of this eléisive factor:
(r&)? = 6 ¢(my = 140MeV)
ST 3ot =0, my = 140MeV) POV T

~ (0.540.1) fm?% (5.59)

We compare this result with the radii of the isovector Dirac- and Pauli factofs of the nucleon which are
also dominated by pion-cloud effects. Interestingly, with)> = 0.51 fm? and (+%)* = 0.73 fm? (averages

of the numbers discussed in the previous chapter) the estimated va(u%)‘%rseems to lie in the same order
of magnitude! We note, however, that our numerical estimate for the gippef eq.(5.56) given above is
significantlysmaller than the corresponding slopes of the isovector Pauli- and Diracféators, as expected
from general arguments and as already observed in lattice QCD simulatithndywamical fermions [If 04]

(at very large quark masses).

However, before we can go into a more detailed numerical analysis of ithiesesting new form factors of
the nucleon, one should first complete thép?) calculation of the generalized isoscalar form factors, as there
are additional diagrams next to fig.5.2 possibly also affecting ttependence, albeit presumably in a weaker
fashion [DGHH].

5.6 Summary

The pertinent results of this chapter can be summarized as follows:

1. We have constructed the effective chiral Lagrangean for symmeticeless tensor fields of positive
parity up toO(p?) in the covariant framework of Baryon Chiral Perturbation Theory far ight quark
flavours.

2. Within this covariant framework we have calculated the generalizeddtmvand isoscalar form factors
of the nucleonAy (¢, m2), By (t, m2) andCy(t, m2) up toO(p*) which corresponds to leading one
loop order. Our results were agdR renormalized and we can thus exactly reproduce the corresponding
nonrelativisticO(p?) results previously obtained in Heavy Baryon ChPT by taking the limitfy — 0.
Several HBChPT results published recently could not yet be repeaas they correspond to partial,
nonrelativistic results from the higher orded$p®, p*, p°).
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Figure 5.8: Momentum dependence of the form factgy (). The quasi lineat dependence of thé (p?)
BChPT result atn, = 640 MeV (solid line) has been normalized to the dipole parametrization of the QCDSF
data of ref.[G 04] (dashed line), the shown data point gives the result of this referain = 0 andm, = 640

MeV. The resulting nonlineat dependence in this form factor for smaller valuesiof is then due to the
coupling of the tensor field to the pion-cloud, providing an interesting mesimato obtain “large” negative
values at = 0 andm, = 140 MeV.

3. According to our numerical analysis of the quark mass dependernhe géneralized form factors, we
have noted that foB3(t) and C3(t) the observable quark mass dependencies could be dominated
by the (well known) q7uark mass blependence of the mass of the nuklgdm:,). This mass function
appears in several places in the chiral results due to kinematical factbesnimatrix element used in the
definition of the generalized form factors. Such a “trivial” but numericalbnificant effect is already
known from the analysis of lattice QCD data for the Pauli form factors ohtieeon.

4. The pion-cloud contributions to all three generalimyectoiform factors only show a very weak depen-
dence ort. The momentum transfer dependence of these structures seems to beteldimynaresently
unknown short distance contributions. The situation in this isovector eéhagminds us of an analogous
role played by chiral dynamics in the isoscalar Dirac- and Pauli form facibthe nucleon. At this
point we are therefore not able to give predictions formhmericalsize of the slopes of these interesting
nucleon structure quantities. It is hoped that a global fit to new lattice Q@®atamall pion masses
and small values of — extrapolated to the physical point with the help of the formulae presenteiin th
work — will lead to first insights into this new field of baryon structure physkdirst step on this way
has already been achieved in referencé (.

5. The leading one loop order covariant BChPT results for the genedadiascalarform factorsA3 (t)
and B3 () are quite surprising. As far as the topology of possible Feynman diagrarosdsrned, one
is reminded of the isovector Dirac- and Pauli form factors of the nucl@opower-counting analysis,
however, told us that those diagrams (e.g see fig.5.2) which one woulelyhakpect to strongly depend
on both the momentum transfer and the quark mass only start to contributet-#d+heading one loop
order. Our analysis therefore suggests that the momentum depentweeaues oft is dominated by
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10.

11.

12.

short-distance physics.

. Itis the value of(x), of a pion in the chiral limit that controls the magnitude of those long-distance

pion-cloud effects in the generalized isoscalar form factors of the onclegointing to the need of a
simultaneous analysis of pion- and nucleon structure on the lattice and inTChEF

. In the forward limit, the isovector form factots ,(t — 0) reduces to(z),—4. Our covariantO(p?)

BChPT result for this isovector moment provides a smooth chiral extrapol&itction between the
high values at large quark masses from the LHPC collaboration and the Vaue known from phe-
nomenology. The required chiral curvature according to this new dealgesnot originate from the
chiral logarithm of the leading nonanalytic quark mass dependence of thieme- as had been specu-
lated in the literature for the past few years — but is due to an infinite towerrogten,. /M)* with well
constrained coefficients (see eq.(5.28)). The well known leading apeHBChPT result forz), 4

of eq.(5.30) was found to be not applicable for chiral extrapolationsealite physical pion mass, as
expected.

. For(x),_q4 we have also studied the possibility of a real chiral extrapolation of latticevdttahe help

of our orderp? BChPT result, i.e. we have studied the quark mass dependence of olirfoeghis
guantity with all unknown parameters determined from lattice data only. In additepossible impact
of higher order corrections on this extrapolation function was examineééhigas to the conclusion that
a reasonable prediction of this observable with 80% uncertainty is possible from presently available
lattice data if one relies on the leading one loop order BChPT result in ordsxtriapolate to physical
quark masses.

. Judging from the (quenched) lattice data of the QCDSF collaboratian(®¢p?) BChPT result of

eq.(5.44) forA3 ,(t = 0) = (x),+q4 also provides a very stable chiral extrapolation function out to
quite large values of effective pion masses.

A study of the forward limit in the isoscalar sector has led to a first estinfateeocontribution of
the v andd quarks to the total spin of a nucleol,; ~ 0.24. This low value compared to previous
determinations arises from the possibility of a small negative contributioB3gft = 0) ~ —0.06
at the physical point, driven by pion-cloud effects. However, at thenard the uncertainty in such a
determination is rather large.

In a first glance at the third generalized isoscalar form faCfgy(¢) the quark mass dependence was
found to be qualitatively different from3 (¢) and B3 ,(¢). Its slope contains a chiral singularitym_-*

and the influence of short distance contributions is suppressed. Adinsérical estimate of its slope
gives pf, ~ —0.75 GeV? which is much smaller than the slopes of the corresponding Dirac- or Pauli
form factors. At lowt we have also observed significant changes in the momentum dependehise of
form factor as a function of the quark mass, resulting in the estitiggét = 0) ~ —0.35 at the physical
point.

Throughout this chapter we have indicated how to estimate possibéetions of higher orders to our
leading one loop order BChPT results. The associated theoreticatainties of our®(p?) calculation
have been discussed in detail. Ultimately, in order to judge the stability of aultsétss mandatory that
we analyse the complete next-to-leading one loop order.

Finally we note that the tensor Lagrangeans constructed in section 5.3 ihaigt af further studies, pertaining
both to generalized axial form factors of the nucleon [DH] and to theggreromentum-tensor of the nucleon
[HT]. The BChPT results for the generalized isovector form factors ptedén this chapter have already been
applied in a detailed analysis of recent lattice data in referenc@TH
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Summary and Conclusions

The pertinent results of the separate chapters have been summarizédliziti in a summary section at the
end of each chapter. In this paragraph, we want to highlight again theimuartant findings of this work and
draw conclusions by a comparison of the results of different chapters.

After a brief introduction to the methods of Chiral Perturbation Theory ([Qh® chapter 1, we discussed the
form factors parametrizing the transition of a nucleon to its lowest lying @ theA (1232) in chapter

2. Our analysis of this transition was based on a nonrelativistic calculatittreadccording matrix element
at leading one loop order in the small scale expansion (SSE). The cerdudt of this chapter was that our
SSE results for the three complex form factgis (Q?), G5 (Q?) and G} (Q?*) parametrizing the magnetic
dipole-, electric- and Coulomb quadrupole transitions, respectivelyinageod agreement with results from
experiments up to momentum transfers@f ~ 0.25 GeV?. Furthermore, the SSE calculation allowed for
a prediction of the)? dependence of the ratio EMR?) ~ G5(Q?)/G:,(Q?) and the size and shape of
CMR(Q?) ~ G5 (Q?)/G%,(Q?). The relative sizes of the quadrupole compared to the dipole transitioes wer
found to be on the percent level in accordance with phenomenologyestitey signatures of the pion-cloud
could be found in the)? dependencies of the real parts@f(Q?) and G5 (Q?), leading to negative slope
parameters and turning points at low momentum transfer in those form faReggettably, these structures
are washed out in the EMR and CMR ratios — which are preferred byriexpetalists — and only a turning
point in EMR(Q?) remains as an exciting prediction from SSE. Recent results from expesimenin agree-
ment with this prediction, however, their error bars are too large to unamibéiyiconfirm it. An analysis of
systematic uncertainties of our chiral analysis, i.e. the possible impact tftedions of higher orders, lead
us to the conclusion that such higher order effects should only becdevameabove)? = 0.2 Ge\? and that
the interesting structures predicted ®ye®) SSE for theR? dependence of the form factors at the leading one
loop order should not be affected decisively by higher order effects

Note, however, that we only presented a ChPT calculation fontRetransition form factors and hence had
to rely on an approximate connection in order to compare our findings feethoantities with results from
pion-electroproduction experiments. It remains an open issue to coilmeebtA transition current with the
pion-electroproduction multipoles in a ChPT calculation.

On the lattice, in contrast, th& A transition can be directly accessed. Therefore, we have also studied the
guark mass dependence of the transition form factors encoded in thE r€hfits via a dependence on the
mass of the piomn;. Again, interesting structures were predicted by the SSE calculation wisishhawever,
found to only be applicable for pion masses belaw = 200 MeV. Our nonrelativistic analysis therefore did
not allow to make contact between present-day lattice simulations a¥ thdransition form factors at large
guark masses and their chiral limits.

In order to systematically extend the range of pion masses at which ChPpliisadye, we performed all sub-
sequent ChPT calculations in the covariant formulation of this theory. Tegahce between nonrelativistic-
and covariant calculations in Baryon ChPT (BChPT) is that the latter corsstide variabléq/MO)i, whereM

is the mass of the nucleon in the chiral limit apt a small momentum or mass, to be of the same chiral order
for any value ofi. In contrast, the chiral dimensiaris assigned tdg/M)" in the nonrelativistic theory which

is thus organized as an expansioryji/, where contributions with higher powers @f\M,, appear at higher
orders of the chiral analysis. However, for consistent loop calcukaiiothe covariant framework, we had to
introduce a new renormalization scheme for covariant BChPT first. Ipteh&, we developed four condi-
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tions which necessarily have to be fulfilled by a consistent renormalizatimnse for covariant BChPT. Those
conditions were that, firstly, the results of a properly renormalized BClaRTlation should be UV-finite and
independent of the renormalization scale. Secondly, they should bedardacce with the power-counting of
ChPT, i.e. higher order loop diagrams should be parametrically supdreBsiedly, the low energy constants
(LECs) should be defined in exactly the same way in both the covariant andevy Baryon (HBChPT)
formulation of ChPT. Covariant results fulfilling this requirement do haveattheantageous features that an
expansion iny/M leads to the corresponding HBChPT result and a numerical value faursdfEC in one

of the schemes can also be utilized in the other one. Fourthly, we demandthanhanalytic functions are
absorbed into the counter-terms of the theory since such a proceddsadamphysical cuts, singularities and
imaginary parts in BChPT results.

A renormalization scheme nam#g, fulfilling all four conditions, was constructed in chapter 3 by a modifica-
tion of the infrared renormalization scheme of reference [BL99]. In tais framework theq/M)* terms sum

to flat functions where contributions from dynamical pions are redusdtieapion mass is increased. These
features are spoiled in HBChPT since the sum ove(ti&/,)’ terms is truncated and the analytic structure of
loop integrals is thus destroyed in this approach.

As a first application of the new renormalization scheme, we also presetfegaormalized next-to-leading
one loop order@(p*)) BChPT calculation of the mass of the nuclebhy in chapter 3. Using this result to
chirally extrapolate lattice results for the mass of the nucleon from pion mabsee500 MeV down to the
physical point, we arrived at a prediction for this observable which iwasmarkable agreement with phe-
nomenology. We have also studied the possible impact of higher ordetseffie our result, only leading to a
small uncertainty in our prediction for the physical valuelMf;. This gives us confidence that our next-to-
leading one loop order result fd/; may be applicable for pion masses even around= 600 MeV. This
last statement was supported by an analysis of the convergence ofrtdeseties forM .

Chapter 4 subsequently was dedicated to the first calculation of the ispwatiisoscalar vector form factors
of the nucleon inR renormalized BChPT at next-to-leading one loop order. In the isoveettior we found
large contributions from the pion-cloud while our analysis showed that tiseadar form factors — at least on
the one loop level — are dominated by short distance physics. We themfansively studied th@2- as well

as them, dependence of thé®(p*) BChPT results for the isovector form factors. The momentum transfer
dependence of these results, examined in the basis of the Sachs ftors,faas found to be in good agree-
ment with the phenomenological parametrization of reference [FW03] pte- 0.25 GeV?, although the
BChPT curves showed less curvature than the phenomenological pazatien. AboveQ? = 0.25 GeV? the
deviations between the BChPT results and phenomenology as well astématys uncertainties of our chiral
analysis grew considerably.

In chapter 4 we have also performed two different analyses of thd elirapolation functions for the isovec-
tor vector form factors of the nucleon resulting from @fp*) BChPT analysis: One was to use lattice data as
input which were extrapolated t9? = 0 GeV? using a dipole ansatz and to study the resultingdependence
of the isovector anomalous magnetic momeptnd the slopes of the isovector form factptsandps. Our
second approach was to fit the quark mass and momentum transfer elep@o') BChPT results for the
form factors of the nucleon to lattice data at finipé directly. The results of both analyses were well consistent
and both bridged the gap between presently available lattice data and pmahogyein a convincing way
for all observables under consideration. Again, we studied systematictainties of our chiral analysis and
found that — utilizing next-to-leading one loop order covariant BChPilltes the form factors of the nucleon
atm, = 140 MeV andQ? < 0.3 Ge\? can be predicted from lattice data abowg = 350 MeV with an
uncertainty of~ 20%. Small systematic uncertainties and a fast convergence of the chira sdéwe features
which were observed over a large range of pion masses for all quadigi@sssed — may furthermore be an
indication thatO(p*) covariant BChPT possibly provides a trustworthy description of thekgurass depen-
dence of the isovector form factors of the nucleon umto~ 600 MeV. The quark mass dependencies:gf

p} andps were found to display some similarities: At large quark masses the valuestbfesdl observables
are considerably smaller than the physical ones and our ChPT resulédl @s attice data only display a very
weak dependence on the pion mass. Approaching smaller values of thenpgm the chiral extrapolation



SUMMARY AND CONCLUSIONS 117

functions for all three quantities start to increase and such connecttibe tasults at large quark masses with
the larger phenomenological values. Below the physical pion masg; andps still increase as a function of
the pion mass and in the chiral limit, finally takes on a value which is considerably larger then the one at the
physical point while the slopes are singular in the chiral limit.

We also gave a first glance at the, dependence of the isoscalar anomalous magnetic moment of the nucleon
and the slopes of the isoscalar form factors. The variation of thoseitigsas a function of the pion mass was
found to only be weak due to the small contributions of dynamical pions in thisrsét could therefore not be
excluded that theelative size of higher order contributions is large for the isoscalar form fackughermore,

at present, no lattice results at small valuesrgf are available for the isoscalar form factors. Moreover, the
presently available simulation results at large quark masses come with artroliable systematic uncertainty
since contributions from disconnected diagrams have been neglectedeérsihmulations. We therefore did not
perform chiral extrapolations of the isoscalar form factors of the muncie this work.

In chapter 5 we finally presented a leading one loop order calculation dédkiector- and isoscalar general-
ized vector form factors of the nucleoh o(Q?), B2,0(Q?) andCs o(Q?) in IR renormalized covariant BChPT.
Since we performed the first covariant analysis of those nucleonwaises we first had to construct the rele-
vant parts of the chiral Lagrangean including external tensor fieldssejuently, we applied our results for a
chiral extrapolation of recent lattice data for the moment of the parton distibtunction A3 ,(0) = (z)y—d

and were able to connect the lattice data at quark masses ahove 350 MeV with the value found for this
observable in experiments. An estimate of higher order effects showetth¢hphysical value of this quantity
can be predicted with 20% uncertainty by leading one loop order BChPT if so far unknown low gneog-
stants are determined with the help of lattice data. We also performed chirmpetettions of lattice data for
A50(0) = (z)u+a @and B3 ((0) and were thus able to estimate the contributions of up- and down quarks to the
spin of the nucleon:/, ;4 = % (A;vo(()) + Bg}O(O)) ~ 0.24. However, as the lattice data which we used as
input in the isoscalar sector were found in simulations at very large pionesmassl come with an uncontrol-
lable systematic uncertainty due to the fact that disconnected diagramsdeavedyglected, we did not perform
an analysis of systematic uncertainties for the isoscalar form factoraimly £xpect them to be large. The
value which we give forJ, 4 therefore has to be considered to be a very rough estimate. Furthem®ore,
also showed that a combined lattice plus ChPT analysis allows for an estimatesif¢tof the C-form factor

of the nucleon which plays an important role in the analysis of Deeply Virtwah@on Scattering (DVCS)
experiments.

We close this summary section with a discussion of two effects which havedbsenved on many examples
throughout this work:

e Neither HBChPT- nor standard IR renormalized covariant BChPT resdte able to reasonably de-
scribe the quark mass dependence above the physical pion mass fifrthaybservables discussed in
this work (except for the mass of the nucleon). We therefore concladERinenormalization is the most
promising framework for calculating chiral extrapolation functions which fnayapplicable up to the
pion masses of state-of-the-art lattice simulations.

¢ IR renormalized BChPT results at one loop order allowed for a reatodaiscription of quark mass
dependencies with in most cases small, in some cases only moderate systeogataintres up to pion
masses aroungh, = 600 MeV. Up to this large value of the pion mass the differences between the
results at orderg® andp* were found to be small for all (isovector) observables under coraidar
In this work, no signal for a breakdown of our results could be fougldw m, ~ 700 MeV. The size
of systematic uncertainties of a ChPT analysis of a certain observablaifecdepends on the chiral
dimension at which the corresponding matrix element is calculated and onvleesoaf small quantities
(typically momentay) which are contained in the prefactor of this observable in the matrix element.

We hope that — as has already been done for our results for the lgfarm factors of the nucleon in
reference [H07] — future studies of lattice results will include chiral extrapolations relginghe methods
and calculations presented in this work. Ultimately, in our opinion, it is a rewargoal to study as many
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observables as possible in the same chiral framework since this would alt@vcbnsistent combined fit of
all those observables to lattice data which, in turn, would lead to a simultanetersnihation of many low
energy constants with small statistical errors and hence to precise praslifitomany physical observables.
We hope that we were able to convince our readersiBaenormalized covariant BChPT at next-to-leading
one loop order provides a suitable framework for such an analysis.

Accordant results for the mass- and the vector form factors of the srubtlave already been made available in
this work. TheO(p?) calculation for the generalized form factors of the nucleon is in preparatid even the
N A transition form factors are analysed at next-to-leading one loop ordigrrenormalized covariant BChPT
at present.



Appendix A

Appendices to Chapter 2

A.1 Integrals

The result of the nonrelativisti©(¢3) SSE calculation for théV A transition form factors defined in eq.(2.1)
written in terms of standard loop integrals reads:

2caMy (! 5 5 d—3 -
Gi(¢®) = 72 /0 dx [gA(x — 1) J5(xAg,m?) — 391 <1 — o= 137) Jé(—:cAo,mQ)}
1 Ao
—— 2 — D1)—— Al
5t + (2B 1)4MN (A1)
8caM? ! 5 d—3
Galg®) = ~A N/ dx |gaz(x — 1)J] (xDo, M%) — Zgr12(x — 1) =—J{ (—zAg, m?)
P2 0 3 d—1
+2b6 — D1 (A.Z)
deaM3 Ao (1
Gs(q?) = CAF;VO/ dx [gAx(:r — 1)1 = 22)J)(xAg, M) —
T 0
gglx(x )20 — 1)%,]5(—9;%, mQ)] . (A3)
The basic loop integrals (in dimensional regularization) are defined as:
1/ e Ar =2m2 L+ In o7 (A.4)
i) 2mdmz -2 T T 1672 A '
1 [ di 1
= = J 2). A5
] G = ) (A5)
For the nonrelativistic one-nucleon-one-pion loop integral one finds:
2y w My
Jo(w, mw) = —4Lw + @ (1 —2In T)
wQ—m,zr(ln(m%r—l— 7‘;’%— )—iTr) 2 >1
1 T .
52 m2 — w? arccos —mi) for —1<-2-<1 (A6)
/n' ™ ™
— w2—m%ln<—miﬂ—|— %22_1) <1
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Furthermore, we use the notations

0
0

Tilwms) = —g @owma) + Ar). (A-8)
1 0

Jy(w,m2) = “d—1om? [(m3 — ) Jo(w, mr) — wAL] . (A.9)

The divergences at = 4 parametrized via dimensional regularization are collected in the fun£tion

Lo AL L (A.10)
T 16m2 |d—a 2\E RET '

wherevyg is the Euler-Mascheroni constant ahds the renormalization scale.

A.2 The Coupling Constantcy

We determine the strength of tiéA axial coupling constants from the strong decay width of th&(1232)
resonance at tree level. In the rest frame ofAhthis width reads:

> 3 Ma+My-—-FE
CAaonNs = A 2 _m2)2. T A.11
A—N 67TF7% ( T mﬂ‘) 2MA ) ( )
where ther N A vertex has been taken from eq.(2.13) and the associated pion enecgjpiiureads:
M2 o M2 2
B, — AT Myt (A.12)

2MAa

For the numerical determination ofi we use the parametedgn, My, m, and F; from table 2.1, a width of
I'a_n= = 100 MeV [Y T06] and arrive at the resulty = 1.5.
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Appendices to Chapter 3

B.1 Basic Integrals

The integrals required for one loop calculations in BChPT can be redatlecke basic integrals in d-dimensions:

1 dU 1
A (m) = z/ (2m)d m? — 12 — i€’ 81
1 odU 1
Av (M) = z/ (2m)d M2 — 12 — i€’ (82)
1 dU 1
Hu (M.p,m) = z/ 2r)d (m2 — 12 —ie) (M2 — (I — p) —ie)’ B3

wherem (M) is a mass function involving the mass of the quasi Goldstone Boson (of ty@maandp*
denotes the four-momentum of the Baryon. The propagators are shiftethencomplex energy-plane by a
small amount to ensure causality. Utilizing thdS renormalization scheme of ref.[GSS88] with

A o S (B.4)
T 1672 [d—4 " 2VF nE '
one obtains the dimensionally regularized results
Ay = 2m? 4 B.
m) = 2L+ gy )+ 0= 1), ®5)
AnNM) = 2M*( L+ — 162 IHT +0(d—4), (B.6)
1 M?  p?— M?4+m? m
Hi (M = 2L—-——|—-1+4log—+—————1og—
11( » Dy m) 16 D) |: + 0og )\2 + pg 0og M
2mM p — M?— 2 m? + M? — p?
2mM arccos —QmM
+0O( d 4). (B.7)

More complicated integral expressions needed during the calculations imdtksare defined via

1 [ d¥ {1y
/ @) (m? — B —ie)(M? — (I = p)* — i)

1 [ di e W
- _ Jrpe: v _po o Y
i/(zﬂ)d =P iR —(—pP—ie) ~ WP R

(" HY, g HD + prpr HENY, (B.8)

Y HY. (B.9)
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The integralsHl(? are related to the three basis integrals of egs.(B.2-B.3) via the tensor-identitie

1
H§P(Map’m) = 2pg[Aﬂ_AN+(m2+p2_M2)H11(M7pvm)]a (Blo)
1
HY (M, p,m) = 2 1) —AN+2m2HH(M,p,m)—(m2+p2—M2)Hﬁ)], (B.11)
H(3)(Mp m) = _ 1—§ An —m2Hy (M, p,m)
11 17 p2(d—1) 2 )y 1
d
3 (m? +p? — M?) H{} (M, p, m)] ; (B.12)
J2suovs = 22— M2 HP (M Lm2a, - m2a B.13
11 apam) - 2p2 (m +p ) 11( apam)+d(m ™ N) ) ( . )
1
HY(M,p,m) = 27 (m? +p* — M?) HY (M, p,m) — aH) (M, p,m) — A (B.14)

Finally, we note that the integrals involving more than one baryon propagantdve related to the ones defined
above via derivatives with respect to the nucleon- resp. the pion massesh

B.2 Regulator Functions

The infrared regular parts of the basgi¢/ integral given above is defined as:

[e%S) ddl _
Ri1 (M,p,m) = / dx/(Q)d [xMZ + (22 —2)p? + (1 — z)m? — ZQ] 2 (B.15)
rx=1 ™
The analytic expressions for the regular parts of the basic loop functanis
R(Hy1(M,p,m)) = Ryu(M,p,m) = 1 (M? +p* —m?) | 327°L — 1 +210g% -
) ) ) ) 327T2p2 )\
(M2 — p? + m?)? M2~ p? +m?
dmMA|1 — e
m \/ 4m2M2 arccos oM
2 _ a2 2
— arccos (}7]\44—m>> ] , (B.16)
2mp
R(Az) = 0, (B.17)
R(ANy) = —-Apn (B.18)

The tensor reduction for theﬁ) follows from the one given above if all thHl(? are replaced by their regular
parts.

B.3 Proof of Eq.(3.1)

The contributions from one loop diagrams of a certain ordir a dimensionless observaliletake the general

form
T, dld [rippe .. Rk
(n) — M1 Py i i Bl
0 (47TF7|—)2/(27T)d NI 7 (B.19)
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wherel',, ..., is a dimensionless Dirac operator of chiral dimension zHre; m2 — 2 is the pion propagator
andN = M2 — (p — 1)? is the propagator of the nucleon. The general ordegsult forO is the sum of the
right hand side of eq.(B.19) over &l : andj with

A+ k=20+j) = n, (B.20)

atd — 4 for dimensional reasons. We are now going to show all properties &.&yfor arbitraryk, i, j and

thus for the sum by relating eq.(B.19) to the basic intedfal( My, My, m,) of eq.(B.3) (for simplicity we
only discuss onshell nucleop$ = Mg, however the proof can straightforwardly be generalized to the case of
offshell nucleons).

The first step on this way is to rewrite the integral of eq.(B.19) as

-1 il dld [eage2 .. ek
om21 angl/ (2m)? 1IN

(—=1) (B.21)
The integral of this equation would in complete analogy of egs.(B.8) and f8.8)sum over integral functions
multiplied with structures likgj"1#2gta# . .. and 52 B2 ... and compositions thereof. In order to perform
a tensor reduction of this integral we would have to multlply both sides (eq. Rl the result in terms of
Dirac structures times integral functio (Zl)) either withgt1#2 .. .| % -+ or mixtures, to make a scalar out
of both sides. While the right hand side just gives some dimensionless ntimbsrthe integral functions, we

find on the left hand side:

G117 = m2 11, (B.22)
1
S = (N -4 m2). (B.23)
0

Since all terms in the tensor reduction which go llkend NV just correspond to eq.(B.19) with a different set
of k, i and;j, we are only interested in the termsm?2 of the tensor reductionO(™ thus consists of terms of
the form

az‘—l aj—l
i—1 j—1
om2" " oMY

(—1)Hi b2 m2’ Hyy (Mo, Mo, m). (B.24)
whereg <p<k(p= % corresponds to a contraction of all open Dirac indices with terms]%}(l](ﬂNhilep =k
results from a contraction with#1#2 structures only). Note that a contractions V\% does not generate a
divergence or a scale dependence beyafid This can be seen from eq.(B.23) via

I B N Ay —A B.25
]%/(QW)dTIN = i[m” 11(Mo, Mo, mr) + Ar — N]- (B.25)
Where one can check with the help of the basic functions eqgs.(B.2)-(EBit thoes not contain ah term or
a scale dependent logarithm beyanfl. The generalization of this statement for arbitragnd;; follows by
the same argument.

All statement made in eq.(3.1) can now be derived from eq.(B.24):

1. The highest power of.,. at which a UV-divergencé can appear is2: All divergences ir0(™ are gen-
erated through eq.(B.24) out of the ter2L of Hyi(Moy, My, m,), see eq.(B.3). Thus the terms in
O™ come fromj = 1 andp > i terms, where the maximal power of, is generated fof = 1. From
the argument of eq.(B.25) one can see that only terms;wi:thg can generate a term L in the final
result. Inserting those values for the indices in egs.(B.20) and (B.24jraiwethat the maximum power
in the pion mass at which a divergenteppears ir0™ is m?.

2. Aterm~ log A can only appear ah. with » < n: The proof for this statement goes exactly as above,
since aII basic integrals contain scale dependent logarithms only togetheE witkerms of the form
L— log A.
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3. Aterm~ log m, can only appear ai’ with s > n: Logarithms of the pion mass originate from a term
m2 log my in Hy1 (Mo, My, m,). The minimal power ofn, is realized byj = 1 andp = g With
these indices we find from eqgs.(B.20) and (B.24) that the minimal power gfittremass in front of a

k .
logarithm of the pion mass 'mfr?“% with £ = n + 2(i — 1) and suchn’, wheren is even.

4. The lowest possible odd power in the pion mass iall odd powers in the pion mass are generated out
of thearccos structure ofH 1, (My, My, m,) with a leading term linear im . For the generaD(™) now
the same argument holds as for the m . above.
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Appendices to Chapter 4

C.1 Regulator Functions

In this section we give the relevant regular parts of the loop integrals wapglear in a calculation of the
nucleon form factors at next-to-leading one loop order. The fulllegufunctions can be found in appendix
B.2. We note that for ouP(p*) calculation of nucleon form factors we only need to know these expresa
to the powet of m2, ¢ in order to obtain a properly renormalized, scale independent resulthahtbe same
time is also consistent with the requirements of power-counting. The regéuaiction needed for ouP (p*)
BChPT calculation (see Appendix D.2) reads

2 2
(/272 2 9 ms 1 My 1mz My
M, = 1+—F=S|L+—|log—+=-—F5(2log— —1 C1
The derivatives of the regulator functions needed for the calculatemAppendix D.2) read
0 ~ 1 t 1 MO m2
—Riu(M,p,my) = — (14— )L+ -———(1+2log— — —%
gz T (M pyme) Mg( +6M§) +327T2Mg< Teloe Ty M@)
t My
————log — + ...... 2
T 96mzarE B X T (C.2)
8 ) /x5 = 1 m2 1 MO 1 Mo t
—RY(M.,pmy) = =(1+-—2)L+—s|log—4=(2log——-1)| - —"r—
gz T AMpme) =5 (14 g J Lt g log 557 5 { 218 =3 38472 M2
+ory (C.3)
0 B)/xr = m2 1 1 mQ Mg t
Ry (M ) = —IL+—— |4 -Z(-log—2+1 — 4. (C4
gz x5 me) T ez |2 T g Tt ) | g T (G4
8 (2) -~ 1 m2 t 1 M() MO m2
- M, — - _ T L 1 > S 1 s
gz Tt (Mo, p,m) > a2 taaz ) P T genz |Plos Ty TR (Bl 8 ) g
t My
——— [ 9log— -1 .
+5767T2M§ <9 g > +.., (C.5)
9 3 . 1 9 m2 My
—— R\ (M, = —(—4 t) L 1+4—"log —
gz Tt (Mo:B1) = g (<m0 Lt gy (L4 1085
t My
—9log— +5 C.6
+2882M§< ng+>+ ’ (C.6)
(C.7)

!Strictly speakingF (t) is renormalized up to terms m2t° and~ m2t* at orderp®, whereas those structuresfi(t) are only
renormalized at order*, see chapter 3.
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One can clearly observe that all contributions are polynomiahin(and therefore polynomial in the quark

mass) and polynomial ity as expected. Their addition to tMS results therefore just amounts to a redefini-
tion of the the coupling constants of the effective field theory and doeaffemt the nonanalytic quark mass

dependencies, which are the scheme independent signatures ofighaatics.

C.2 Amplitudes

The five O(p?) and threeO(p*) amplitudes corresponding to the diagrams of figures 4.1 and 4.2 written in
terms of the basic integrals

18 (M2, m?,p?) = HY (M2, m?,p?) + R (M%,m? p%) , i=0...3, (C.8)

of Appendices B.1 and C.1 read

1

2 2 1
Amp® = %nT (3-1 —Ta)ﬁﬂ(p2)/2 du{v"8 Ag — AMZI{Y (Mo, Mo, my)
2 _

NI

0

0 ~ ~
FAm2 MR —— I} (M, p, my) — 8M§mlﬁ)(M, By ma)

oM?

i

+ aq MN[ 1_9

Mg 11 (O mﬂ>] }u<p2>(c.9)

B .
—8ME——— 13 (NI, p, my)

OM? 2MyN " Mo

2
Amphte = TApireyu(py) 4

= Ay — 2M2TY (Mo, My, m.y)
™

u(p1), (C.10)

2

2 1 5

g u 2 0 m - 0 -

Ampt = Sy [ ld“{’w!_ Gz )+ AMG g T (Mo, )
T -3 ™ 7r

o .
+4M§WIS’) (Mo, p, m)]

i, M ) .
+2MN0“ qyﬂjgl—ﬂxMéWIﬁ’)(Mo,p, m)] }U(m), (C.11)

e 1 T

Amp® = —5g TN U(p2) Y Ar u(p1), (C.12)

Amp! = L 1 2 0 _m? 5
mp’ = ﬁﬁTT}U(m)’Y duWFAw(m)U(pl), (C.13)

N
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2 1 2
_ 92 a _ 2 tMy 0 3) vy -
Ampg = FT%’?T [(3']1*7' )06+GC7~11]nu(p1)/_édu{v“ *Tm—ru (M,p,mn)
o, LMy 27 (D) 2,52 O -
+2M %/8 M, A71'7L4]\40I11 (M,p,mﬂ)+4m7rM0 8M2111(M7p7m7r)
C1602— 1O 1, me) + a2 (L —u2) 21O G 5 m) | Sulp),  (C.14)
08M2 11 y P My 0 4 8M2 11 y P, My P1), .
Ampt = ot @+ a2 (A, = ) Lugy)
F2 4 My T 3272
1 i M
= ptan s nz ZN
2F7277 T 77“(?2)!2MNU VA Aw]U(Pl)a (C.15)
Ampt = Mo i u(p2) L_ghv MN/éda m—zA(W (p1) (C.16)
mp 72 N7 pe) | oot s u@m?r 7 Ax(m) fu(p1). .
with
M? = p? :M3+<u2—i) t, (C.17)
1
m? = m3r+<u2—4> t. (C.18)

The nucleon Z-factor reads:

393
AF2

3m2cy m2 5
_2M0F7% <A,r — 32772> +O(p?). (C.19)

ZN =

0
2m2 (— (m2 — 2Mg) WIH(MO,p,mW) + I11 (Mo, Mo,mﬂ)> + Ay
0 p— Mo




128 APPENDIX C. APPENDICES TO CHAPTER 4
C.3 Explicit Representation of the Form Factors

C.3.1 Isovector form factors

We employ the definitions

@) = 1+BYyt+ AP0 + A0 + 00, (C.20)
M)
() = S [eo B+ 470 + 47 (1) + 067)| (C.21)

and obtain for the t-dependent functions

2 u:% du 5
AP = 94 / A 9600 4+ 12 (8”2 5M2) M
1 ( ) 1927T2F7% :_% M4 + m° +

+ (36M4 - 24m2M2) M? — 6m2 (4M4 — M2M2? + 9M4) + 2975](44]

2.3 u=1 d -
+m/ ’ “ [M4\/4M2—m%<—2M4

22 )\ [2
i MG\/(mg —am2) (m2 - 4M2)
+12M?M? + m? (M2 - 4M2) ) arccos <mir>
2M
—3(3m2 — 10M?) MOy /4N — m?2 (5:2)
(3mz ) Mz A1CC08 | 5o

_1
_gaM? / = du 2 [4M8
u N2 (mz +M2) M4 — <m2 _ M2)

M6
-3 (4m2 n 3M2) M + (12m4 TR+ 5M4) M (—4m6 + N2t
— M2+ m2>

- - - ~ A3 2
+2M*m? + MG) M? + M? <Th2 — M2> arccos M —~
2Mm

Lo /u_2 du | 2 <_2M6 S+ 4m2 M2 N2 4 m (M2 - 4M2)> Milog X
32m2F2M?2 J,_ 1 6 |74 T K M

4 (gi< (M2 +2) M + 2M2m2 M* — M2 (5M* — 2> M? + in*) M
+AM* (M2 - m2)2> - m2M6) M?log mﬁ +g4 (4tM2M6
.
—am2M? (M + 3014 ) 12 + 4M4( — MO — 22N+ (5M* — 202 M? + i) M2
—4M? (M - m2)2> +mi (4M° — J12M* + 9NI°) ) log

2 v ™
~ ML ( (562 + 1) log mﬁ n gji) (C.22)
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(4)
A 32722

| 9acet /“:%
6472 F2 J,—_1

+2m2Mg (m2 -

for the isovector Dirac form factor and

_gicﬁmf’rtMg /”
u

=3 du m2 — 3M? <m,r)
= = arccos | ——
:7% M 4M2 _ 7,’,172T 2M

[MG MZM* — 2m2 M3 M?

mx
M )

du
M6

i)

MM, [*=% du - -
A®) (¢ ng/ LS 4 2m2 M2 — (8”2 3M2> M? — 504
2 () (47TF7T)2 u:—% e + m, m° +
2 as3 u=1
QAMMO/ 2 du 2(2 2) 2 ~2\2
4= — |mz (ms — M~ ) log —|—(4M—m
87r2F7% u:_% M6 m m M ( )
+M? (m72r - 4M2) — mf‘r) log% —|—4( (M2 — 'fn2)2 M2M2> log ]
M My
. M3MO/ 3 du
8m2F2  J,—_ 1 M6
M6 — (3m2 + 2M2> M4+ (3m4 T+ M2 + M4) M2 — 78 + A2
4
- - 2
\/2M2 (412 4+ 72) = (812 = ?) " = 2
M2 4+ m? — M2 m3 (3M2 - mi) m
X arccos — — arccos ( ZT> s
2mM AM?2 — m2 2M
™
_1
@ _ 1 T odu 2( 62
A7) = 19272 F2 M2 /u_l ape | Mo (2eaMo = 643)

+3m (2069,4 + 7gA + cg — 4C4M0) >M6 log M

+egm? ((4M0 — N2 M — 7M6) m2 + 2M2 N> (—2M51 +NPME + M4)) )

+96¢4m2MB M log mﬁ + g3 M2

+c6< (3M§(1 — 4u?) — 4M2) M + 12m2 (zMg - 3M2) (MO2 + Mz) M2>

Y
+12¢ M2 < — 20O + m? <2M0 MQ) +m2 <M4 2M2M2) ) log -

[ — 2 (12m2 + 13t) M°

+4912406m§r /“é
3272 F2M2 Ju_ 1

(4M3 - 2M2> arccos <2

for the isovector Pauli form factor, wher®l/2 = M?2 +

3 M6\/(4M3 —

My 6 /172 9 My
= Tm2 — 22M2) M5/ 402 —
> ( m 0) M2 arccos <2M )

m2) <4M2 - m%)

(=31

egs.(C.22,C.24) depends again on the chiral order at which eq.(C.2ajlisds

— 6g% (4MENI° (2t — Tm2)

du [Mé, [an —

129

(C.23)

(C.24)

log —

Mo

|
i (-t

,(C.25)

Note that the mass-functiof/ in
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C.3.2 Isoscalar form factors

In complete analogy to the isovector sector we define

Fi(t) = 1+ Bit+ BP0 +BY 1)+ 00, (C.26)
M®
B3 = = w0+ Byt + B W) + B () + 067)] (C.27)
0
and find the following explicit expressions:
2 i 76
du M m ~
B(?’) — -%4/2~ 2 2_4M2 | J_M(S
() 64> F2 | 1 010 6m;. (3m;; )M2 og 5r —t

+6 <M2 - MQ) <m3r (4M2 + 3M2) + 2M2M2) e

- M - ™
+6M> <2M6 log 7= + (miM2 (m2 + 4M?) — 4mer2) log Z\Z ) ]

3m2 — 10M?
VAM? — m?2

— N+ 12M2 N + m? (M2 - 4M2)

1
3g§1m§, 2 du ~ 6 My
—432772F7?M2 /_é 176 M? arccos (TM)

+

= M* arccos (;}2)] (C.28)
AM? — m2

3k%g%t (2 du | - - - y ul
BW() = - 2rsda / 2 [MG — M2N* — 2m2 M2NI? + 2m2 M2 (mfr - M2) log ”;4 ]
1
2

64w F2

T2

3K2g4mE MEt / (C.29)

32m2F2

for the isovector Dirac form factor and
g4 Mo 3 du
32m2F2M -1 M6

B (1) = [6M2M2 + MO — 6 MAM* — 12m2 M M2

+12m2 Mm* (mfT — ]\Zf2> log %

< 1 ~

——39’24m§rM5M0 / : iu —mzr — M arccos (mfr > (C.30)
ST S MO [y 2 2M
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2,2 0.2 L
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ST2F2 ' G4m?F2ZMJ | 1 nr6
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0
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N M ~ ~ ™
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for the isovector Pauli form factor. Note that the mass-funcfiérin eqgs.(C.28,C.30) depends again on the
chiral order at which eq.(C.27) is studied.
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Appendix D

Appendices to Chapter 5

D.1 Regulator Functions

In this appendix we give the explicit expressions for the relevant péariseoregulator functions needed in
order tolR renormalize thed(p?) results for the generalized form factors of the nucleon. We note that at
the order we are working we only need to know these functions up to therpofvm?2, ¢ in order to obtain a
properly renormalized, scale independent result, which at the same time t®aksstent with the requirements

of power-counting. The full expressions can be found in section BtBeodppendix. The relevant parts of the
regulator functions needed for o@{p?) BChPT calculation (see Appendix D.2) read

2 1 My 1 m?2 My
M2 m2,p?) = (222 ) L4 — |2log =0 —1— =7 (2]0g =0 ... (D1
Rll( 07m7'rap) Mg + 167'['2 0og A\ 2M02 og \ +3 + ) ( )
2 2
W g2 2 2y _ mz 1 My = 1m; My
Ry (Mg, mz,p°) = <1+J\4§>L+167r2[10g)\+2]\402 2logT—1 + ..., (D.2)
2 1 1 1| M My 3 My
R (ME,m2,p%) = <3M02 + 2m3r> L+ 5 [30 3log 57 — 1) + Zm2 (log = — 1
+os (D-3)
2
(3) MQ 2 9 _ gL 1 921 My 1 §m7r D4
Ry (Mg, mz,p°) 3 + 1872 ng)\ + 3 + 27M§ + ..., (D.4)
The derivatives of the regulator functions needed for the calculatenAppendix D.2) are
I~ 1 m2 1 My m?2 My t
R(Q) M2 m2. %) = (14 -—2=)L+—=|log— T (2log— —1 -
17 (M7, mz,p%) o\t T M2 Tz | T 202 87y 3842 ME
+...y (D.5)
I~ m2 1 1 m? My
R(g) M*m2p?) = ——2L4+———|-+-—2(—-log— +1 —_— + ... D.6
i (M7 me, ) Mt T ez 2 T \ TN ) | T e T (D-6)
- 1 1 |1, My 1 m? t
RW 2, m2 5% = =L “log =2+ — |- D.7
i (M7, ) 37T 1622 |3 ® X T8 T ansZ| " sremearz T (©-n
o 1 1 m? t
R(5) M*m2.p?) = ———|=——= D.8
w (MEmeP) = ez |3 o2 | T asseeand (D8

IStrictly speaking we need to know the regular terms contained in the geeerétizm factorsAy ¢ (t) up to powermZ2t® and
mit', whereas fomB; ¢ (t) andCy5 g () only the leading terms3t° are required, see chapter 3 and eq.(5.6).
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One can clearly observe that all contributions are polynomiaiir(and therefore polynomial in the quark mass
andt, as expected. Their addition to thS results therefore just amounts to a redefinition of the coupling
constants [BL99] of the effective field theory and does not affectibrganalytic quark mass dependencies,
which are the scheme-independent signatures of chiral dynamics.
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D.2 Isovector Amplitudes inO(p*) BChPT

The five O(p?) amplitudes in the isovector channel corresponding to the five diagramsucé figl written in
terms of the basic integrals

10 (M2 m?,p?) = HY (M2 m?, p%) + RS (M2, m2,p?) , i=0...5, (D.9)
of Appendices B.1 and D.1 read

. AaSo ga T4 _
: Tgn u(p') V4P ulp) [2m,2,111(M§,m3”p2) (D.10)

Ampaer S ——
F2

1 2
- mgrjfl) (Mgv m72r7p2) + 21;1) (M§7 m?rvpz) :| 3

1

al 2 a 1
Amp© =i 2,094 nTT—n u(p’)/ du (D.11)

1
2
{ Y{uPv}

+ (QMg - MQ) <I§?)/(M27 m?rvﬁg) - If?)/(M%m?rvﬁQ))

N

YNV (I@(M& m2,p%) — 19 (M2, m2, )

+(d=2) (112 m2, 52) - 1 (12, m2, 7)) )]
A s a3 132 m2 52y — 1OV (12 2 52
+ 1 Oaf{uPvy 0\ +11 ( » M P ) 11 ( » My, P )

— By <8M5’ u? IS)I(M27m3r,ﬁ2)) } u(p),

N _
o M W) Vuby u(p) Ar, (D.12)

o . u aTY _
Amp® =i ayo 10 WP') VP ulp) Zn- (D.13)

Ampd =—1

Note that the various couplings and parameters are defined in section Bghotes the isospin doublet of
proton and neutron. The variables in the integral functions are given as

~ 1
wheret = ¢ corresponds to the momentum transfer by the tensor fiefjg.denotes the Z-factor of the
nucleon, calculated to the requirép?) accuracy in BChPT. It is obtained from the self-enekgy at this

order via the prescription

o%
Zy =14 N +O(pY, (D.15)

87) p=Mo
with

3 2
XN = ﬁ(MO +¢) [mgr]n(Mg,m?”p?) + (Mo — p)pjﬁ)(M&mg”p2) . AN] T O(p4). (D.16)
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D.3 BChPT Results in the Isoscalar Channel

D.3.1 Isoscalar amplitudes inO(p?) BChPT

To O(p?) in BChPT the results in the isoscalar channel are quite simple. The amplitudespmnding to the
Feynman diagrams of Fig.5.1 can be be simply expressed in terms of reswdtdyadteained in the isovector
channel discussed in the previous section D.2. They read

Ampa+b = O+O(p3)7 (D17)
s T]l
a
Amp, = -3 % Amp© + O(p?), (D.18)
a0 71
Ampy = 040, (D.19)
ag o nil
Tmp, — %Ampe+(9(p3). (D.20)
XA

Note that the various couplings and parameters are defined in section 5.3.

D.3.2 Estimate ofO(p?) contributions

The contributions from the (higher order) Feynman diagram shown imefi§L2 to the generalized isoscalar
form factors read

s 9124$9r %du -8 2 2 -8 2 2 | ~2\ =6
AA} , (tmg) = 327T2F2/1]58 2p° (3mz + Mg) — tp° + 4Mg (2Mg +m”) p
™ /s
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7 2M2
+6M¢ (M§ — 7712)3] log % + 0 .
O V2R R+ ) — (32— ) — My

[6M50 — AM} (62 + 5p%) + M (36m* + 38m?p* + 23p*)

— M (248 + 1857 + 11502 + 95%) + M7 (6m® + 25%m®

o U M2+ m? — 2
st — 2i%m2 — ) + 7 (5 — m?) (p2 + 2/m?) ] arccos <02Morh> ;

(D.21)
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(D.23)

with the new variable

1
m? = mi+ <u2 — 4> t. (D.24)
We note that the contributions &fA3 (¢, mx), ACS (¢, m) are finite av(p?®) in BChPT, whileA B3 (¢, mx)
contains two new counter-termBj,(\) and B, (), at this order.
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