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Abstract— The problem of maximizing utility over the
capacity region of the MIMO broadcast channel is ad-
dressed. While a direct solution is not possible, it is dis-
cussed how decomposition techniques can be used to find
an optimum solution. Two decompositions are considered:
A standard dual decomposition and a gradient projection-
based decomposition.

I. INTRODUCTION

The optimization of the physical layer of multiuser
MIMO systems has recently achieved wide attention,
usually based on physical layer performance metrics
such as sum rate or weighted sum rate. Utility functions
represent a generic model for capturing the properties of
upper layers. Optimizing the parameters of the physical
layer with respect to system utility is, inherently, a cross-
layer optimization problem. There exists a large amount
of literature on utility maximization for wireless net-
works, see, e.g., [1], [2]. These network-oriented works
usually consider a large number of nodes with a sim-
ple physical layer setup, and focus on computationally
efficient and distributed resource allocation strategies
for large networks. In contrast, the multiuser MIMO
downlink corresponds to a more involved physical layer
setup, but also allows for a centralized solution at the
transmitter.

From an information theoretic viewpoint, the mul-
tiuser MIMO downlink is a MIMO broadcast channel
[3], [4]. Despite the fact that the capacity region of the
MIMO BC is convex, a direct solution of thedownlink
utility maximization(DUM) is not possible, mainly due
to the fact that with respect to the physical layer param-
eters, the problem is non-convex, and convexity is only
achieved by a convex hull operation. This work discusses
how decomposition techniques can be used to solve the
DUM problem.

The first decomposition is the standard dual decom-
position, which has been used, e.g., in the context
of network utility maximization [2], in optimizing the

transmission strategy in a MIMO BC under QoS targets
[5], and in a recent work for utility maximization in the
MIMO BC [6]. Application of the dual decomposition
to the MIMO BC is summarized. Moreover, special
emphasis is put on the computation and construction of
maximizing rate vectors that lie in time-sharing regions.

The second decomposition under consideration, de-
noted asiterative efficient set approximation(IEA), has
recently been proposed by the authors [7]. It is based on
the idea to view the DUM problem as an optimization
over a manifold, and to solve the DUM problem with a
gradient projection algorithm, where the projections are
on the manifold. In this work, IEA is applied to utility
maximization in the MIMO BC. In particular, the issue
of recovering time-sharing solutions is addressed, which
was left as an open problem in [7].

II. PROBLEM SETUP

A MIMO broadcast channel withK receivers is con-
sidered. The transmitter hasN transmit antennas, while
receiverk is equipped withMk receive antennas. The
transmitter sends independent information to each of the
receivers.

The received signal at receiverk is given by

yk =Hk

K
∑

i=1

xi + ηk,

where Hk ∈ CMk×N is the channel to receiverk
and xk ∈ CN is the signal transmitted to receiverk.
Furthermore,ηk is the circularly symmetric complex
Gaussian noise at receiverk, with ηk ∼ CN (0, σ2

1Mk).
Let Qk denote the transmit covariance matrix of user
k. The total transmit power has to satisfy the power
constrainttr

(

∑K
k=1Qk

)

≤ Ptr. Accordingly, withQ =

(Q1, . . . ,QK) the set of feasible transmit covariance



matrices is given by

Q =

{

Q : Qk ∈ HN×Mk ,Qk ≥ 0, tr

(

K
∑

k=1

Qk

)

≤ Ptr

}

.

where HN×M denotes the set of HermitianN × M
matrices.

As proved in [3], capacity is achieved bydirty paper
coding (DPC). Let π denote the encoding order, i.e.,
π : {1, . . . ,K} → {1, . . . ,K} is a permutation and
π(i) is the index of the user which is encoded at
the i-th position. LetΠ denote the set of all possible
permutations on{1, . . . ,K}.

For fixedQ andπ, an achievable rate vector is given
by r(Q, π) = (r1(Q, π), . . . , rK(Q, π)), with

rπ(i) = log
|1 +Hπ(i)(

∑

j≥iQπ(j))H
H
π(i)|

|1 +Hπ(i)(
∑

j>iQπ(j))H
H
π(i)|
.

LetR(π) denote the set of achievable rate vectors for
a fixed orderπ:

R(π) = {r(Q, π) : Q ∈ Q} .

The set of rate vectors achievable by certain choices of
Q andπ is given by

R =
⋃

π∈Π

R(π).

Finally, the capacity region of the MIMO BC is defined
as the convex hull ofR:

C = co(R).

The capacity region contains the rate vectors that are
achievable (with time-sharing). For transmission, one
actually has to choose a rate vector from the capacity
region. The decision which rate vector to choose is based
on a maximization of some performance metric over the
set of achievable rates. In the following, it is assumed
that the properties of the upper layers are summarized in
a system utility functionu : RK0,+ → R. Moreover, it is
assumed that the system utility function is differentiable,
concave, and strictly monotonically increasing. Here,
strict monotonicity implies that

r > r′ ⇒ u(r) > u(r′), (1)

where forx,y ∈ RK , with K > 1, order relations are
component wise (Pareto order), i.e.,

x > y ⇒ xk ≥ yk, k = 1, . . . ,K,

∃k : xk > yk.

The DUM problem for the MIMO BC is given by

max
r∈C
u(r). (2)

In the following, different strategies to solve (2) are
discussed.

III. T IME-SHARING REGIONS

Before discussing utility-optimum rate allocation,
some important properties of the structure of the MIMO
BC capacity region are summarized.

In general,R ⊂ C, i.e., the capacity region contains
rate vectors which do not correspond to a specific choice
of Q andπ. The set of these rate vectors is achieved by
time-sharing between multiple vectors inR.

Let E denote the (Pareto efficient) boundary of the
capacity regionC:

E =
{

r ∈ C : ∄r′ ∈ C with r′ > r
}

. (3)

The efficient setE contains the largest rate vectors (under
the partial Pareto order). Due to the strict monotonicity
of the system utility, a maximizer of the DUM prob-
lem will always be element of the efficient set. As a
consequence, the properties of the efficient set play an
important role in all proposed methods for solving the
DUM problem.

Due to the convexity ofC, the setE can be written as

E =
⋃

λ>0

E(λ) with E(λ) = argmax
r∈C

λTr.

As noted before, some points inC are (in general) only
achievable by time-sharing. Naturally, the same holds for
the efficient boundary. For the MIMO BC, it is known
that E(λ) is a time-sharing region if at least two of the
entries inλ are equal. Accordingly, define a setΛts as
follows:

Λts = {λ ≥ 0 : (∃(k, i) : i 6= k, λk = λi)} .

If λ ∈ Λts, the setE(λ) is a convex combination of a
finite number of points, i.e.,

E(λ) = {r = Rcp(λ)α, αk ≥ 0, ‖α‖1 = 1} ,

where the columns of the matrixRcp(λ) are the corner
points of the time-sharing region. Note that each corner
point rcp,k = Rcp(λ)ek is an element ofR, i.e., there
exist a covariance matrixQ and an orderπ such that

rcp,k = r(Q, π).

Finally, it is known thatλ is normal toE(λ), i.e.,

(r − r′)Tλ = 0, r, r′ ∈ E(λ).



Consequently, ifλ ∈ Λts, the affine hull ofE(λ) is given
by

aff(E(λ)) = {r = Rcp(λ
∗)α, ‖α‖1 = 1}

=
{

rcp + v,v ∈ nullλT
}

, (4)

wherercp denotes an arbitrary corner point ofE(λ).
According to (2) the objective is to find the rate

vectorr∗ ∈ C which maximizes utility. In fact, the main
interest is not merely inr∗ but also in the physical layer
parameter setup that providesr⋆. Two cases have to be
distinguished:

1) r∗ ∈ R: In this case, no time-sharing is needed.
The solution is determined by the physical layer
parametersQ∗ andπ∗ such thatr∗ = r(Q∗, π∗).

2) r∗ 6∈ R: In this case, the optimum rate vector
lies in a time-sharing region. In order to fully
determine a solution, it is required to identify a
set of corner points

{

rcp,k
}

and a set of weights
{αk} such that

r∗ =

W
∑

k=1

αkrcp,k, αk ≥ 0,

W
∑

k=1

αk = 1,

whereW denotes the number of corner points
required to constructr∗. In addition, for each
corner pointrcp,k, the corresponding covariance
matrix and encoding order are needed.

IV. D IRECT SOLUTION

Due to the convex hull operation, it is not possible to
solve (2) directly. A first approach may be to divide the
problem into two subproblems: First, solve

max
Q,π
u(r(Q, π)) s.t. Q ∈ Q, π ∈ Π. (5)

Second, enumerate all corner points of all time-sharing
regions, and solve

max
λ∈Λts

max
α
u(Rcp(λ)α) s.t. αk ≥ 0, ‖α‖1 = 1. (6)

If solutions for the two subproblems are available,
the optimum solution can be found by maximizing over
the maximum utility of the two solutions. In general,
however, solving the first subproblem already represents
a major difficulty. This is due to the fact that problem (5)
is (in general) non-convex. Moreover, forK > 2 there
are in general infinitely many time-sharing regions. As a
result, a direct solution of the MIMO BC DUM problem
is in general not feasible.

A special case is given byu(r) = λTr, i.e., if system
utility is given by a weighted sum of rates. In this case,

the optimum encoding order can be inferred from the
weightλ [8]. Denote this optimum order byπ∗(λ). Then

max
Q∈Q
λTr(Q, π∗(λ)) (7)

can be solved as a convex optimization problem in the
dual MAC [8]. In addition, if λ ∈ Λts, the maximum
weighted sum rate is achieved by the corner points
of E(λ). That is, time-sharing regions need not be
considered for weighted sum rate maximization, and an
optimum rate vector can be found by solving (7).

V. DUAL DECOMPOSITION

The DUM problem is first modified by introducing
additional variables:

max
s≥0

u(s) s.t. s ≤ r, r ∈ C. (8)

After introducing the Lagrangian

L(s, r,λ) = u(s) + λT(r − s)

the dual function is given by

g(λ) = gA(λ) + gP(λ),

with λ > 0 (the casesλk = 0 can be excluded) and

gA(λ) = max
s≥0

u(s)− λTs, and (9)

gP(λ) = max
r∈C
λTr. (10)

For a fixedλ, the optimization is decomposed into two
subproblems (9) and (10). Subproblem (10) is a weighted
sum rate maximization. As discussed in Section IV,
weighted sum rate maximization can be solved as a
convex optimization problem over the set of feasible
covariance matrices.

The optimum dual variable is found by minimizing
the dual function with respect toλ. Note that every
r′ ∈ E(λ) yields a subgradient ofg atλ. In other words,
the existence of time-sharing regions implies thatg is
non-differentiable. The minimization ofg can be carried
out using any of the well-known methods for non-
differentiable convex optimization, such as subgradient
methods, cutting plane methods, or the ellipsoid method
[9]. Note that any any of these methods requires the
computation of a subgradient ofg at iteratesλ(k). As
any point inE(λ(k)) yields a subgradient, it is sufficient
to only consider the corner points ofE(λ(k)) – and these
can be provided by (7). In other words, the dual problem
can be solved without explicit knowledge ofC.

Clearly, determining an (approximately) optimum dual
solution is only an intermediate step. In the end, a primal



solution(s∗, r∗) is required. Letλ∗ denote the optimum
dual variable. Clearly,

r∗ ∈ E(λ∗).

If E(λ∗) contains a single element, the optimum rate
as well as the optimum covariance matrix can be deter-
mined from (7). In contrast, ifλ∗ ∈ Λts, the optimum
primal solution lies in a time-sharing segment, andE(λ∗)
is not a singleton set. In order to obtain a primal solution
in the time-sharing case, standard methods for primal
recovery could be employed. Alternatively, a straight-
forward way to recover a primal solution(s∗, r∗) is
provided by exploiting the linear structure ofE(λ∗) in
the time-sharing case. Given the set of corner points of
E(λ∗), the optimum rate can be found by solving

max
α
u(Rcp(λ)α) s.t. αk ≥ 0, ‖α‖1 = 1. (11)

Enumerating all corner points ofE(λ∗), however, is
rather tedious, especially for largerK. In fact, r∗ is
a convex combination of at mostK corner points.
Therefore, we propose to first computer∗, and then
enumerate the corner points ofE(λ∗) until a set of corner
points is found whose convex combination containsr∗.

The optimum rater∗ is found by optimizing utility
over the affine hull ofE(λ∗). While knowledge of all
corner points is required to specifyE(λ∗), the affine hull
of E(λ∗) requires knowledge of a single corner point
only, see (4). We have thatr∗ ∈ E(λ∗). Due to convexity
of the original problem, this also implies thatr∗ is a
maximizer of

max
r
u(r) s.t. r ∈ aff(E(λ∗)). (12)

By introducing a basisB of null((λ∗)T), problem
(12) can be written as a simple unconstrained convex
program:

max
µ
u(rcp +Bµ).

The optimum primal solution then follows asr∗ = rcp+
Bµ∗ ands∗ = r∗.

VI. I TERATIVE EFFICIENT SET APPROXIMATION

In the previous section, it was discussed how a dual
decomposition can be used to solve the DUM problem
in the MIMO BC. We repeatedly made use of the
fact that the optimum rate vector is an element of the
efficient set. This observation motivates an approach
that directly operates on the efficient set in the search
for an optimum solution. In [7], we proposed an alter-
native decomposition, denoted asiterative efficient set

approximation(IEA), which is based on this idea. The
IEA decomposition can also be interpreted as a gradient
projection method, where projection is on the efficient
set of rate vectors [10].

IEA solves the following problem:

max
r∈E
u(r). (13)

The efficient set is aK − 1 dimensional submanifold
with boundary ofRK . For simplicity, in the following it
is assumed that the optimum rate pointr∗ does not lie
on the boundary ofE and considerations are limited to
the interior1 Ẽ of E .

In case of the MIMO BC, a closed-form global
parameterization of̃E is not available. As a consequence,
IEA works with local parameterizations of̃E and solves
(13) in an iterative manner.

For r ∈ Ẽ , let Tr denote the tangent space ofẼ at
r, defined by the property that{r + v,v ∈ Tr} is the
unique supporting hyperplane ofE at r. For the capacity
region of the MIMO BC, the supporting hyperplane of
E at r is unique forr ∈ Ẽ , i.e., Ẽ is a differentiable
manifold. Moreover, from the properties of the weighted
sum-rate maximization it follows that

r ∈ E(λ)⇒ Tr = null(λT).

Let B(r) ∈ RK×K−1 denote an orthonormal basis of
the tangent space atr. Then,

Êr =
{

r +B(r)µ,µ ∈ RK−1
}

,

represents a first-order approximation ofE aroundr.
The IEA algorithm consists of three main steps:

1) Using the tangent space at the current iterate
r(k), a first order approximation ofE at r(k) is
communicated to the application layer.

2) The application layer uses this approximation to
determine a gradient update in the tangent space.
In fact, the application layer considers the problem

max
µ
u
(

r(k) +B(r(k))µ
)

,

and performs the first iteration of a gradient ascent
method, starting atµ = 0, yielding the update

µ̃(k) = tB(r(k))T∇u(r(k)), (14)

with a stepsizet > 0.
3) The application layer update results in a new point

r̃(k+1) = r(k) +B(r(k))µ̃(k),

1Ẽ = {r ∈ E : rk > 0, ∀k}



which in general lies outside the efficient set. In the
final step of each iteration, the point requested by
the application layer is projected onto the efficient
set, yielding the next iterater(k+1) = PE(r̃

(k+1)).

These steps are repeated until the optimum rater∗ is
found.

There exist different possibilities to projectr̃(k+1) on
E . Due to the nature ofE , a Euclidean projection on
E seems prohibitive. Instead, a projection orthogonal to
the tangent space is employed, as in [10]. Letn denote
the unit-norm vector that is orthogonal toTr and points
away fromC. To projectr̃ on E , the following problem
is solved:

max
x,r
x s.t. r̃ + xn ≤ r, r ∈ C. (15)

The Lagrangian is given by

L(x, r,λ) = x+ λT (r − r̃ − xn).

The dual function follows as

g(λ) = sup
x∈R

r∈C

(

x(1− λTn) + λT(r − r̃)
)

=

{

+∞, λTn 6= 1,

maxr∈C λ
T(r − r̃), λTn = 1.

(16)

Note that for λTn = 1, again a weighted sum-rate
maximization problem is to be solved.

Let r∗(λ) denote an optimizer of the weighted sum-
rate maximization in (16). The optimum dual variableλ
is found by solving

min
λ≥0

λT(r∗(λ)− r̃) s.t. λTn = 1. (17)

Again, the existence of time-sharing regions leads to a
non-differentiable cost function, and the minimization
with respect toλ can be carried out using any of the
aforementioned methods for non-differentiable convex
optimization.

Let λ∗ denote the optimum dual variable. As for
the dual decomposition, again two cases have to be
distinguished:

1) If λ∗ ∈ Λts, thenE(λ∗) contains a single element
and the projection of̃r(k+1) on E is given by
r(k+1) = r∗(λ∗).

2) In the time-sharing case, the primal solution can
again be recovered by exploiting the linear struc-
ture of E(λ∗). By replacingC by aff(E(λ∗)) in
(15), a set of linear equations results, wherercp is
again an arbitrary corner point ofE(λ∗):

r̃ + xn = rcp +Bµ. (18)

Thenr(k+1) = rcp +Bµ∗, whereµ∗ solves (18).
Even if the iteratesr(k) lie in a time-sharing region, it is
not necessary to identify the corresponding corner points.
Only for the last iterate, i.e., the optimum rate vectorr∗

the corner points and time-sharing coefficients are iden-
tified in the same manner as for the dual decomposition.

VII. C ONCLUSIONS

Due to the inherent non-convexity with respect to
the physical layer parameters, the utility maximization
problem in the MIMO BC cannot be solved directly.
A solution can be obtained by applying decomposition
techniques. Application of a dual decomposition and of
a gradient-projection based projection were discussed.
While both decomposition techniques provide the opti-
mum solution, they operate in a very different manner.
While the dual decomposition solves the DUM problem
via the dual, the IEA method performs a gradient ascent
on the set of efficient rate vectors.
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