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Abstract— The problem of maximizing utility over the transmission strategy in a MIMO BC under QoS targets
capacity region of the MIMO broadcast channel is ad- [5], and in a recent work for utility maximization in the
dressed. While a direct solution is not possible, it is dis- MIMO BC [6]. Application of the dual decomposition
cusseq how deco_mposition techniqug; can be useq to finqO the MIMO BC is summarized. Moreover, special
an optimum solution. Two decompositions are considered: o, 2 qjs js put on the computation and construction of
A standard dual decomposition and a gradient projection- L S . .
based decomposition. maximizing rate vectors that lie in time-sharing regions.

The second decomposition under consideration, de-
|. INTRODUCTION noted asterative efficient set approximatiofiEA), has

The optimization of the physical layer of multiuserecently been proposed by the authors [7]. It is based on
MIMO systems has recently achieved wide attentiothe idea to view the DUM problem as an optimization
usually based on physical layer performance metricger a manifold, and to solve the DUM problem with a
such as sum rate or weighted sum rate. Utility functiomgadient projection algorithm, where the projections are
represent a generic model for capturing the propertiesaf the manifold. In this work, IEA is applied to utility
upper layers. Optimizing the parameters of the physiaalximization in the MIMO BC. In particular, the issue
layer with respect to system utility is, inherently, a cros®f recovering time-sharing solutions is addressed, which
layer optimization problem. There exists a large amouwias left as an open problem in [7].
of literature on utility maximization for wireless net-
works, see, e.g., [1], [2]. These network-oriented works I
usually consider a large number of nodes with a sim-
ple physical layer setup, and focus on computationally A MIMO broadcast channel witli receivers is con-
efficient and distributed resource allocation strategigiiered. The transmitter hdg transmit antennas, while
for large networks. In contrast, the multiuser MIMGeceiverk is equipped with)M,, receive antennas. The
downlink corresponds to a more involved physical lay@ransmitter sends independent information to each of the
setup, but also allows for a centralized solution at theceivers.

transmitter. The received signal at receivéris given by
From an information theoretic viewpoint, the mul-

. PROBLEM SETUP

tiuser MIMO downlink is a MIMO broadcast channel K
[3], [4]. Despite the fact that the capacity region of the yr = Hy sz + Mk,
MIMO BC is convex, a direct solution of thdownlink i=1

utility maximization(DUM) is not possible, mainly due
to the fact that with respect to the physical layer para
eters, the problem is non-convex, and convexity is on i i )
achieved by a convex hull operation. This work discuss yrthermore,n; is the circularly symmetric 2c;omplex
how decomposition techniques can be used to solve fR@USSIan noise at receivey with ;. ~ CA'(0, 0" 1yy,).
DUM problem. Let Q. denote the transmit covariance matrix of user
The first decomposition is the standard dual decorfi- The total transmit power has to satisfy the power
position, which has been used, e.g., in the contes@nstrainttr (Zszl Qk) < Py. Accordingly, with@ =
of network utility maximization [2], in optimizing the (Q1,...,Qxk) the set of feasible transmit covariance

Jhere H, € CY+*N is the channel to receivek
dxz; € CV is the signal transmitted to receivér



matrices is given by The DUM problem for the MIMO BC is given by

K
Q= {Q :Qp e HV M Qp > o,tr<ZQk> < Ptr}.
k=1

where HV*M denotes the set of Hermitiatv x M

matrices. [1l. TIME-SHARING REGIONS
As proved in [3], capacity is achieved lajrty paper

max u(r). 2)

In the following, different strategies to solve (2) are
discussed.

) ] i Before discussing utility-optimum rate allocation,
coding (DPC). Letw denote th? encoding order, 1-€-50me important properties of the structure of the MIMO
m o {L... K} — {l...,K} is a permutation and gc ¢anacity region are summarized.

m(i) is the index of the user which is encoded at |, yeneral R  C, ie., the capacity region contains
the i-th position. LetII denote the set of all possiblepyig yectors which do not correspond to a specific choice

permutgﬂons orl,...,K}. . .. of Q andr. The set of these rate vectors is achieved by
For fixed@ and~, an achievable rate vector is 9VeRime.sharing between multiple vectors Ry

by (@, ) = (r(@,7),...,mk(Q, 7)), with Let £ denote the (Pareto efficient) boundary of the
o~ log |1+ Hw(i)(zjzl. Qﬂ(j))HE(i)‘ capacity regiorC:
" 1+ Hy) (3555 Qi) Hyj | E={rec:#'ecc with +'>r}. (3)
Let R(w) denote the set of achievable rate vectors fdhe efficient sef contains the largest rate vectors (under
a fixed orderr: the partial Pareto order). Due to the strict monotonicity
of the system utility, a maximizer of the DUM prob-
R(m) ={r(Q,7): Q € Q}. lem will always be element of the efficient set. As a

ggnsequence, the properties of the efficient set play an

The set of rate vectors achievable by certain choices - i
important role in all proposed methods for solving the

Q andr is given by

DUM problem.
R = U R(m). Due to the convexity o€, the set€ can be written as
el &= U E(A) with E(A) = argmax ATr.

Finally, the capacity region of the MIMO BC is defined
as the convex hull oRR:

A>0 reC

As noted before, some points ¢hare (in general) only
C = co(R). achievable by time-sharing. Naturally, the same holds for
) ] ] the efficient boundary. For the MIMO BC, it is known
The capacity region contains the rate vectors that 4ffat£(\) is a time-sharing region if at least two of the

achievable (with time-sharing). For transmission, oNgiries in\ are equal. Accordingly, define a sat; as
actually has to choose a rate vector from the capacjyows:

region. The decision which rate vector to choose is based

on a maximization of some performance metric over the ~ Ais = {A>0: (3(k,4) 1 i # k, A = Ni) }
set of achievable rates. In the following, it is assum PA € /s the set€(\) is a convex combination of a
that the properties of the upper layers are summarize;i%te number of points, i.e.

a system utility functionu : Rf’, — R. Moreover, it is Y

assumed that the system utility function is differentiable EA) ={r =Rep(Na,a, > 0, ||a||1 =1},
concave, and strictly monotonically increasing. Her

e )
. T Where the columns of the matriR.,(\) are the corner
strict monotonicity implies that p(A)

points of the time-sharing region. Note that each corner
r>r = u(r) > u(r), (1) point rey . = Rep(A)ey is an element ofR, i.e., there

_ _ exist a covariance matrig and an ordetr such that
where forz,y € RX, with K > 1, order relations are

component wise (Pareto order), i.e., repk = 7(Q, ).

t>y s>y k=1,.... K Finally, it is known thatX is normal to£(X), i.e.,

3k x> Y. (r—)IX=0, r,7" € EN).



Consequently, i\ € A, the affine hull of€(A) is given the optimum encoding order can be inferred from the

by weight [8]. Denote this optimum order by*(\). Then
aff(E(A)) = {r = Rpp(A")a, [|lf[y = 1} max ATr(Q, 7 (X)) ()
= {rep+v,v € null AT}, (4)

can be solved as a convex optimization problem in the
whererc, denotes an arbitrary corner point ). dual MAC [8]. In addition, if A € A, the maximum
According to (2) the objective is to find the rateveighted sum rate is achieved by the corner points
vectorr* € C which maximizes utility. In fact, the mainof £(A). That is, time-sharing regions need not be
interest is not merely im* but also in the physical layerconsidered for weighted sum rate maximization, and an
parameter setup that provides. Two cases have to beoptimum rate vector can be found by solving (7).
distinguished: _ , o V. DUAL DECOMPOSITION
1) »* € R: In this case, no time-sharing is needed. o -~ ] ]
The solution is determined by the physical layer 1n¢ DUM problem is first modified by introducing
parameter€)* and«* such thatr* = r(Q*, 7*). additional variables:
2) r* ¢ R: In this case, the optimum rate vector maxu(s) st s<rreC. (8)
lies in a time-sharing region. In order to fully 520
determine a solution, it is required to identify &fter introducing the Lagrangian
set of corner pointgre, .} and a set of weights

{ax} such that L(s,r,A) =u(s) + AT (r —s)
w 1% the dual function is given by
T2 ok 2 0.3 o =1 9(A) = ga(A) + ge(N),
where W denotes the number of corner point¥ith A > 0 (the cases\, =0 can be excluded) and
required tp constructr*. In additipn, for egch ga(A) = max u(s) _/\TS, and 9)
corner pointre,, the corresponding covariance 5>0
matrix and encoding order are needed. gp(A) = max Al (20)
re
IV. DIRECT SOLUTION For a fixed, the optimization is decomposed into two

Due to the convex hull operation, it is not possible teubproblems (9) and (10). Subproblem (10) is a weighted
solve (2) directly. A first approach may be to divide theum rate maximization. As discussed in Section 1V,
problem into two subproblems: First, solve weighted sum rate maximization can be solved as a

convex optimization problem over the set of feasible
%?EU(T(QJ)) st QeQmell. (5 covariance matrices.
Second, enumerate all corner points of all time-sharir The optimum dua_l variable is found by minimizing
regions’and solve e dual fgnctlon with re;pect ta. Note that every
’ r’ € £(\) yields a subgradient of at A. In other words,
max max u(Rep(A)a) St ap >0,|al; =1. (6) the existence of time-sharing regions implies thais

Acds o non-differentiable. The minimization qf can be carried

If solutions for the two subproblems are availableyut using any of the well-known methods for non-
the optimum solution can be found by maximizing ovetifferentiable convex optimization, such as subgradient
the maximum utility of the two solutions. In generalmethods, cutting plane methods, or the ellipsoid method
however, solving the first subproblem already represeff®. Note that any any of these methods requires the
a major difficulty. This is due to the fact that problem (53omputation of a subgradient gf at iteratesA%). As
is (in general) non-convex. Moreover, féf > 2 there any point in€(A(®)) yields a subgradient, it is sufficient
are in general infinitely many time-sharing regions. Asta only consider the corner points 8fA(%)) — and these
result, a direct solution of the MIMO BC DUM problemcan be provided by (7). In other words, the dual problem
is in general not feasible. can be solved without explicit knowledge 6f

A special case is given by(r) = ATr, i.e., if system  Clearly, determining an (approximately) optimum dual
utility is given by a weighted sum of rates. In this caseplution is only an intermediate step. In the end, a primal



solution(s*, r*) is required. Let\* denote the optimum approximation(IEA), which is based on this idea. The
dual variable. Clearly, IEA decomposition can also be interpreted as a gradient
. . projection method, where projection is on the efficient
rt € E(XT). set of rate vectors [10].
If £(A\*) contains a single element, the optimum rate IEA solves the following problem:
as well as the optimum covariance matrix can be deter- max u(r) (13)
mined from (7). In contrast, iN* € A, the optimum reé '

primal solution lies in a time-sharing segment, @Md") The efficient set is ak — 1 dimensional submanifold
is not a singleton set. In order to obtain a primal solutiaRith poundary ofRY. For simplicity, in the following it
in the time-sharing case, standard methods for primalassumed that the optimum rate poiritdoes not lie

recovery could be employed. Alternatively, a straighp, the boundary of and considerations are limited to
forward way to recover a primal solutiofs*,r*) iS the interiot & of &£.

provi_ded by gxploiting thg linear structure 6{\*) i_n In case of the MIMO BC, a closed-form global
the Pme-sharlpg case. Given the set of comer points 94 rameterization of is not available. As a consequence,
£(A"), the optimum rate can be found by solving  |EA works with local parameterizations &f and solves

maxu(Rep(A)a) st ap >0, [la; =1 (11) (13) in an iterative manner. }
o Forr € &, let 7,. denote the tangent space &fat

Enumerating all corner points of (A*), however, is r, defined by the property thgtr + v,v € 7,.} is the
rather tedious, especially for largdt. In fact, »* is unique supporting hyperplane 8fatr. For the capacity
a convex combination of at mosk corner points. region of the MIMO BC, the supporting hyperplane of
Therefore, we propose to first computé, and then £ atr is unique forr € € , i.e., € is a differentiable
enumerate the corner points®fA*) until a set of corner manifold. Moreover, from the properties of the weighted
points is found whose convex combination contatfis sum-rate maximization it follows that

The optimum rater* is found by optimizing utility
over the affine hull of€(A*). While knowledge of all r € E(A) = T = null(X).
corner points is required to speciffA*), the affine hull | et B(r) € RX*K -1 denote an orthonormal basis of
of £(X*) requires knowledge of a single corner poinghe tangent space at Then,
only, see (4). We have that € £(A*). Due to convexity . Kol
of the original problem, this also implies that is a Er={r+ B(r)u,p c R* 7},

maximizer of represents a first-order approximation&aroundr.

maxu(r) st 7€ aff(E(NY)). (12)  The IEA algorithm consists of three main steps:
" 1) Using the tangent space at the current iterate
By introducing a basisB of null(A*)T), problem r(*), a first order approximation of at r*) is
(12) can be written as a simple unconstrained convex communicated to the application layer.
program: 2) The application layer uses this approximation to

determine a gradient update in the tangent space.

Bpu). L .
m,i‘X“(TCp +Bu) In fact, the application layer considers the problem

The optimum primal solution then follows &3$ = r¢,+ — (,r,(k) n B(r(k))u)
Bp* ands* = r*. H ’

and performs the first iteration of a gradient ascent
method, starting att = 0, yielding the update

VI. I TERATIVE EFFICIENT SET APPROXIMATION

In the previous section, it was discussed how a dual
decomposition can be used to solve the DUM problem a*®) =t B(rF) Ty (r*), (14)
in the MIMO BC. We repeatedly made use of the
fact that the optimum rate vector is an element of the
efficient set. This observation motivates an approach
that directly operates on the efficient set in the search FEH) — () B(p®R) k)
for an optimum solution. In [7], we proposed an alter-
native decomposition, denoted #@srative efficient set &= {rc&:r, >0,Vk}

with a stepsize > 0.
3) The application layer update results in a new point



which in general lies outside the efficient set. In the Thenr*+1) = rep + Bp*, wherep™ solves (18).
final step of each iteration, the point requested tBven if the iterates:(*) lie in a time-sharing region, it is
the application layer is projected onto the efficieniot necessary to identify the corresponding corner points.
set, yielding the next iterate**1) = P (#*+1)).  only for the last iterate, i.e., the optimum rate veator
These steps are repeated until the optimum rétés the corner points and time-sharing coefficients are iden-
found. tified in the same manner as for the dual decomposition.
There exist different possibilities to projezt*+) on
£. Due to the nature of, a Euclidean projection on
& seems prohibitive. Instead, a projection orthogonal toDue to the inherent non-convexity with respect to
the tangent space is employed, as in [10]. ketienote the physical layer parameters, the utility maximization
the unit-norm vector that is orthogonal % and points Problem in the MIMO BC cannot be solved directly.

away fromC. To project# on &, the following problem A solution can be obtained by applying decomposition
is solved: techniques. Application of a dual decomposition and of

a gradient-projection based projection were discussed.

VIl. CONCLUSIONS

max v st rH+an<r rel. (15)  while both decomposition techniques provide the opti-
The Lagrangian is given by mum solution, they opera_tg in a very different manner.
While the dual decomposition solves the DUM problem
L(z,r,A) =2+ X (r — 7 — 2n). via the dual, the IEA method performs a gradient ascent
The dual function follows as on the set of efficient rate vectors.
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