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Abstract

Traffic in the Internet is known to change over time and exhibit volatile behaviour. One
major challenge in communication networks is the problem of handling these traffic
demands that are bursty and hard to predict. Current traffic engineering techniques
operate on time scale of several hours, which is too slow to react to quick phenomena
such as flash crowds or BGP reroutes. The obvious solution, load sensitive routing, is
frowned upon, since routing decisions at short time scales can lead to oscillations. This
has prevented load sensitive routing from being deployed since the early experiences
in Arpanet, the predecessor of today’s Internet.

However, recent theoretical results have shown that a re-routing policy based on
game theory provably avoids such oscillation and, in addition, can be shown to con-
verge quickly. In the main part of our work, we describe REPLEX, a distributed dy-
namic traffic engineering algorithm based on this policy. Exploiting the fact that most
underlying routing protocols support multiple equal-cost routes to a destination, it dy-
namically changes the proportion of traffic that is routed along each path. These traffic
proportions are carefully adapted utilising information from periodic measurements
and information exchanged between the routers. The required signalling overhead is
small. Moreover, it can, under some circumstances, be avoided altogether.

We evaluate our algorithm in extensive simulations employing traffic loads that mimic
realistic bursty TCP traffic whose characteristics are consistent with self-similarity. The
simulations show quick convergence and no oscillations with reasonably chosen pa-
rameters. Comparative simulations on realistic network topologies show that REPLEX

achieves performance improvements that are as good, if not better than those attained
with traditional traffic engineering methods.

Since REPLEX as well as many other applications rely on collecting traffic statistics,
we furthermore describe an algorithm that enables a router to perform this task in an
efficient way. Our Expand-and-Collapse algorithm (EaC) is a heuristic that is partic-
ularly aimed at platforms like network processors: Under severe memory constraints,
it finds the most popular paths in search trees such as those are used in most packet
classification algorithms. EaC allows to efficiently find the largest traffic contributors.
In addition, can be applied in a wide number of other contexts as well, due to its gener-
icity. Our theoretical and simulation-based analyses show good performance.

A sound understanding for the behaviour of the workload traffic is a vital factor
in the construction of load-adaptive dynamic routing and traffic engineering systems.
We therefore also describe two methodologies for studying the characteristics of Web
traffic, which is still a major part of today’s Internet traffic. Our contributions involve
on the one hand a methodology for estimating Web traffic demands on a global scale,
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through the combination of local measurements and log files from a content distribu-
tion network. The traffic matrices we derived are among the largest of their kind and
reveal changes over time that grow larger as the time elapses. The other method that we
present is a model-based analysis of Web search traffic and the Web traffic imposed by
subsequent clicks that follow the search result. Our analysis confirms previous findings
and reveals new interesting aspects of Web search related user behaviour.
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Zusammenfassung

Es ist allgemein bekannt, dass Datenverkehr im Internet zeitlichen Änderungen und
stark schwankendem Verhalten unterworfen ist. Eine der vordringlichsten Herausfor-
derungen beim Betrieb von Datennetzwerken stellt daher der Umgang mit stoßartig
wechselndem und kaum voraussagbaren Verkehrsaufkommen dar. Heutige Methoden
des Traffic Engineering (deutsch: Verkehrslenkung) reagieren auf Verkehrsänderungen
binnen einiger Stunden, was zum Gegensteuern bei schnell auftretenden Phänomenen
wie Flash Crowds oder Instabilitäten von BGP nicht ausreichend ist. Die naheliegende
Lösung, das Routing lastabhängig zu gestalten, ist jedoch allgemein verpönt: Interagie-
rende Routingentscheidungen auf kurzen Zeitskalen können zu Oszillationen führen
– ein Effekt, der bereits im Arpanet, dem Vorgänger des heutigen Internets, beobach-
tet wurde, und aufgrunddessen der Einsatz lastabhängigen Routings heute gemieden
wird.

Kürzlich erschienene theoretische Arbeiten haben jedoch eine spieltheoretische Re-
Routing-Strategie aufgezeigt, die solche Oszillationen beweisbar vermeidet, und von
der sich darüberhinaus zeigen lässt, dass sie schnell konvergiert. Im Hauptteil unserer
Arbeit beschreiben wir REPLEX, einen auf dieser Strategie basierenden verteilten dyna-
mischen Traffic-Engineering-Algorithmus. Durch Ausnutzen der Tatsache, dass viele
Routingprotokolle zu einem Ziel mehrere gleichberechtigte Routen mit äquivalenten
Kosten zulassen (englisch: multipath equal-cost routes), passt REPLEX die jeweiligen
Anteile der einzelnen Routen am Gesamtaufkommen eines Datenstroms zu einem Ziel
dynamisch an. Die entsprechenden Verhältnisse werden permanent auf Basis periodi-
scher Messungen sowie zwischen den Routern ausgetauschten Informationen ange-
passt. Der hierfür erforderliche zusätzliche Informationsaufwand ist klein und kann
darüberhinaus unter bestimmten Bedingungen sogar vollständig entfallen.

Wir evaluieren unseren Algorithmus umfassend mit Hilfe von Netzwerksimulatio-
nen. Dabei verwenden wir Prüflasten, die realistischen und stark schwankenden TCP-
Verkehr simulieren, und der konsistent mit selbstähnlichem Verhalten ist. Unsere Si-
mulationen zeigen schnelle Konvergenz und das Ausbleiben von Oszillationen bei Ver-
wendung vernünftiger Parameter für unseren Algorithmus. Vergleichsmessungen auf
realistischen Netzwerktopologien zeigen, dass die durch REPLEX ermöglichten Lei-
stungsverbesserungen mindestens so gut oder sogar besser sind als die mit traditio-
nellen Traffic-Engineering-Verfahren erreichbaren.

Da sowohl REPLEX als auch viele andere Anwendungen auf das Sammeln von Ver-
kehrsstatistiken angewiesen sind, präsentieren wir desweiteren einen Algorithmus, mit
dem diese Aufgabe auf effiziente Art und Weise von einem Router durchgeführt wer-
den kann. Unser Expand-and-Collapse-Algorithmus (EaC) ist eine insbesondere auf
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Architekturen wie Netzwerkprozessoren ausgerichtete Heuristik, welche unter sehr re-
striktiven Speichervoraussetzungen die populärsten Pfade in Suchbäumen, welche ty-
pischerweise in Paketklassifikationsalgorithmen zur Anwendung kommen, findet. Er
erlaubt hierdurch ein effizientes Auffinden der dominierenden Verkehrsbeiträger, kann
jedoch aufgrund seiner Allgemeinheit auch in völlig anderen Kontexten zur Anwen-
dung kommen. Sowohl theoretische als auch simulationsbasierte Analysen zeigen eine
gute Performance.

Eine Grundvoraussetzung für den Entwurf dynamischer lastabhängiger Routing-
und Traffic-Engineering-Systeme ist ein tiefgreifendes Verständnis des zu routenden
Verkehrs. Daher beschreiben wir desweiteren zwei Analysemethoden für WWW-Ver-
kehr, welcher auch heute noch einen großen Anteil am Gesamtverkehrsaufkommen
stellt. Unsere Beiträge umfassen zum Einen eine Methodik zur Abschätzung von Web-
verkehrsströmen auf weltweiter Ebene, wobei eine Kombination lokaler Messungen
und Logdateien eines Content-Distribution-Netzwerks zum Einsatz kommt. Die von
uns erstellten Verkehrsmatrizen können mit zu den größten ihrer Art gezählt wer-
den und weisen eine zeitliche Variabilität auf, welche mit wachsendem zeitlichem Ab-
stand zunehmend größer wird. Die andere von uns präsentierte Methode ist eine mo-
dellbasierte Analyse von Web-Suchanfragen und den einer Suchanfrage nachfolgen-
den Klicks. Unsere Analyse bestätigt frühere Ergebnisse und liefert interessante neue
Aspekte bezüglich des Nutzerverhaltens im Kontext von Websuchmaschinen.
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Notation and Usage

Typographic Conventions

• Words from program code, language keywords, file names, program calls, com-
mands, console input, console output etc. are printed in typewriter font.

• Whenever a notion is introduced and explained, it is printed in italics, and it will
also appear on the margin. This occurrence will show up in the index in boldface.

• Software and other registered or trademarked products are written in a sans-sérif
font when they are introduced.

Index Usage

• An index entry “A, see B→C” means that for looking up A, the reader should look
up the entry B and consult its sub-entry C.

• Index entries that point to footnotes are marked with n preceding the page num-
ber.

• Index entries that point to figures are marked with f preceding the page number.

• Index entries that point to the glossary are marked with g preceding the page
number.

• Index entries that are printed in boldface point to the definition or explanation of
the expression in question.

Spelling

We shall use British spelling throughout this work. For example, we write centred and
fibre (not centered or fiber); we write naïve instead of naive; we write optimise, colour and
acknowledgement instead of optimize, color and acknowledgment, etc. Exceptions to this are
made for the spelling of established terms, trademarks, or notions, e. g., routing instead
of routeing.1

1In British English, routing without an e actually refers to drilling large holes into pieces of wood — an
aspect which this thesis admittedly does not cover to a great extent.
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1 Introduction

In the past decade, the Internet has had a tremendous impact on many people’s lives,
as it has greatly facilitated the process of communicating with other humans (e. g., via
e-mail or Internet telephony), the process of searching and obtaining information (e. g.,
Web pages and search engines), and facilitated new appliances and amenities (e. g.,
file-sharing, cooperation-based projects like Wikipedia or open source software devel-
opment, online games, telemedicine, online auctions, online forums). In other words,
the Internet has become and is still becoming more and more important for our daily
life. However, judging by its history, it is apparent that new applications and services
tend to require ever more and more network resources—just compare the data vol-
umes of e-Mail (1980s) to those of the Web (1990s), to file sharing (since 2000), or to
video-on-demand (today). Obviously, the Internet’s infrastructure does not only need
to constantly evolve in quantity (in that more and more people gain Internet access),
but also in quality (in that the network can satisfy the ever-growing demands of new
applications).

This need for constant improvement comes at a price, of course, and that is the price
of new hardware. However, faster routers and faster line cards do not automatically
guarantee an improvement in network performance. Rather, their use has to be care-
fully planned, since providers, like any company, want to use their resources as effi-
ciently as possible. An important methodology to ensure that the hardware is used in
an efficient way is traffic engineering—meaning to optimise the routing, i. e., the way
that data packets travel through the provider’s network. This process can be imagined
as planning how to set direction signposts in a road network (where all cars strictly
follow these signposts), with the goal to maximise the road network’s capacity (i. e., the
number of cars that can travel through the network during some time interval), or to
minimise traffic jams, or to minimise the travel times through the network.

Obviously, optimal routing depends on how much traffic is flowing from where to
where in the network, i. e., the traffic demands: When travelling from Saarbrücken to traffic demand

Munich, it can be advisable to travel either via Karlsruhe or via Mannheim; the opti-
mality of the choice depends on the traffic conditions on the different paths—which
may change during different times of day. Similar to road networks, traffic demands in
data networks are constantly subject to changes. These changes may, on the one hand,
occur on long-range timescales. This is the case, e. g., for circadian effects or day-of-
week changes. Such slow and usually repeating patterns can be anticipated, and the
network operator can provide different routing setups for, e. g., different times of the
day, and different days of the week.

On the other hand, not all changes in traffic demand are predictable; worse yet, these
unpredicted changes may bring about drastic changes in the imposed demands within
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1 Introduction

relatively short periods of time. Flash crowds or similar phenomena affect user be-
haviour and their imposed demands on a short timescale. Similar effects can be the
result of the release of new worms or viruses, denial-of-service attacks, or other mali-
cious causes [DFM+06, Pax99]. Other changes include BGP re-routes and other tech-
nical causes [RWXZ02, LAJ99, LMJ99, LMJ98, GR97, SKDV00, SDV02, GP01, GW99,
MGWR01]. Therefore, mechanisms that can dynamically react to such changes are
favourable over static methods.

Nevertheless, most methods employed by network operators today are of a static
or quasi-static nature: The operator collects traffic measurements from the network,
centrally computes the traffic demands, calculates a new routing setup based on these
demands, and installs the new routing setup in the network. Even though this process
can be automatised, it still a static method: The system cannot react to sudden dramatic
shifts in traffic happening on a timescale of minutes or seconds, which would require
immediate action—due to a number of technical reasons which we will explain later,
this process should rather be executed in large-scale time intervals.

Recently, however, different algorithms and mechanisms have been proposed that
enable traffic engineering in a dynamic fashion. Following this development, in the
main part of our thesis (chapters 6 and 7), we present REPLEX, a system that allows to
do traffic engineering that adjusts to changes in traffic demands very quickly. Our algo-
rithm is based on strong game-theoretic results, and it provides a number of interesting
features, such as independence from and therefore full compatibility to all kinds of ex-
isting routing infrastructures that are used in today’s networks. In a REPLEX-enabled
network, all routers (or a subset of the routers) run an instance of REPLEX. The core
idea is that every REPLEX router can dynamically shift slices of traffic between routes of
equal cost. These equal-cost routes can be provided by existing routing protocols (e. g.,
OSPF, IS-IS, etc.), or they can be configured manually. The REPLEX-enabled routers
exchange information on network traffic conditions through an efficient protocol that
minimises overhead. We present results from extensive simulation-based analyses of
REPLEX that draw on realistic self-similar TCP traffic. These show that our algorithm
yields good improvements in network performance while converging quickly without
causing oscillations, and demonstrate conformance with previous theoretical results.
We furthermore show through simulations that its performance is comparable to, or
even exceeds that of traditional traffic engineering in realistic topologies.

Obviously, dynamic traffic engineering methods like REPLEX, as well as other ap-
plications, require knowledge about traffic demands in the network. Obtaining the
demands from network interfaces is an active area in network research (traffic matrix
estimation). In this work, we present an approach for locally finding large traffic con-
tributors in a memory-efficient way: our Expand-and-Collapse algorithm (EaC; chap-
ter 5). It is especially suitable for platforms like network processors, but due to its
genericity can be applied on a wide range of platforms—and even in completely dif-
ferent contexts such as data mining.

14



The basic idea of EaC is as follows. Every time a router receives a data packet, it needs
to classify this packet, in order to decide what it needs to do with the packet. In many
cases, this classification is performed using a search tree based algorithm of some sort.
Although it is possible to simply keep a counter for each packet class, such an approach
would require a large amount of fast memory for the individual counters. EaC instead
augments the search tree by dynamically placing a small number of counters within
the search tree, and thus drastically reduces the consumption of fast memory for the
counters.

In order to be able to judge the effectiveness of load-adaptive routing and dynamic
traffic engineering techniques, it is vital to explore the characteristics of the traffic that
crosses the network. Estimating intradomain traffic (i. e., traffic demands within a ser-
vice provider’s own network) has thus been the topic of intense research over the past
couple of years.

However, to the best of our knowledge, there has been no good methodology for
estimating interdomain traffic matrices, i. e., global traffic demands between different
independent networks. It is our understanding that even the question of whether inter-
domain traffic matrices and intradomain traffic demand matrices have similar dynam-
ics remains unanswered. As Web traffic today is still one of the major contributors of
Internet traffic, we present a technique that allows to measure interdomain Web traffic
demands (i. e., traffic demands between autonomous networks, e. g., of independent
Internet service providers) on a global scale, and that can furthermore be used to inves-
tigate spatial as well as time effects in the demands (chapter 3).

A specific kind of Web traffic is the traffic that is related to search engines. As search
engines are one of the key features of today’s WWW and form a vital part of the infra-
structure of today’s information age, a better understanding of their influence on Web
traffic can be useful in a variety of ways. Although search engines form an active re-
search area in itself, most of the research focuses on pure search engine log files, and
only very little research investigates the relation of search engine results with accesses
to pages that are directly or indirectly (i. e., via one ore more clicks in between) reach-
able from the search result list. We present a state model that captures these relations
(chapter 4). Using this model on search logs extracted from packet level traces, we
present a number of interesting insights pertaining to user browsing behaviour follow-
ing the search result list.
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Overview

The remaining chapters of this document contain the following information:

Chapter 2 contains background information: It gives an overview on how routing
is done in the Internet, presents some of the most important routing protocols, and
describes some aspects of traditional traffic engineering.

Chapter 3 describes a technique for estimating interdomain Web traffic demands,
and presents results gained from applying this technique to a large data set.

Chapter 4 describes a methodology for analysing Web searches using a state model,
and presents results from applying this model to data obtained from live packet level
traces.

Chapter 5 presents the Expand-and-Collapse Algorithm (EaC), which allows to find
a search tree’s most popular nodes in a resource efficient way, and which routers can
use to gather statistics about the traffic distribution of oncoming traffic.

Chapter 6 introduces REPLEX, a game-theoretic algorithm for dynamic traffic engi-
neering that is applicable in a wide range of scenarios. We begin with a theoretical
model from game theory, which we then evolve into an algorithm that can be applied
in real-world IP networks.

Chapter 7 presents an extensive simulation-based evaluation of REPLEX using realis-
tic traffic sources. We start with simulations for finding good settings for REPLEX, and
then compare the performance improvements achieved by REPLEX to those of tradi-
tional traffic engineering.

Chapter 8 concludes the thesis and provides an outlook and open questions.
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2 Background

Now that the general direction of this work has been explained, we first describe the
background and other works that are related to the concepts and methods presented in
this thesis. As was laid out, the ultimate focus of the thesis is on dynamic optimisation
of routing in the Internet, also referred to as dynamic traffic engineering. We thus give
a brief overview on routing and traffic engineering in the Internet.

2.1 Routing

Data to be sent across the Internet is partitioned into in data packets, which then are
individually transmitted across the network. The transmission of each packet is in-
dependent of other packets; the setup of a connection (such as in e. g., the telephone
network) is therefore not needed. With regards to individual end-to-end connections,
the Internet is thus a stateless network. stateless

The format of the packets adheres to a certain format: the Internet Protocol (IP) spec- IP

ification [Pos81]. IP is the “glue” of the Internet: Figuratively speaking, it forms a
greatest common denominator for communication; all hosts that together form the In-
ternet can understand it—regardless of the underlying communication infrastructure
(Ethernet, ATM, mobile phone networks, wireless LAN, etc.). IP packets can be thought
of as standardised freight containers for data: Just as a freight container can be trans-
ported on a lorry, on a ship or via aeroplane, there is no need to rearrange its content
when a freight container (or an IP packet, respectively) is moved onto another transport
medium during its journey towards its destination.

2.1.1 IP addresses

Similar to postal packets or freight containers, each IP packet carries the address of its
source and its destination in its header, together with other information such as, e. g.,
the size of the packet. The source and destination addresses are called IP addresses.1 IP address

As with the postal system or the telephone network, an Internet host sending a packet
to another host is normally not required to know the entire path that the packet will
travel through the network—rather, it forwards he packet to a neighbouring network
node (referred to as a router) that is situated closer towards the destination. This router router

then forwards the packet to the next router it deems to be on a valid path towards the forwarding

1In today’s Internet, these are mostly 4-byte values (so-called IP version 4, IPv4); whereas its successor IP
version 6 (IPv6) with 16-byte addresses [SD98] is gaining increasing popularity and is meant to replace
IPv4 in the long run.
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destination. Note that the IP packet header normally does not prescribe the exact path
along which the packet has to travel—rather, the decision on which of its neighbouring
routers the packet will be sent to is typically based on its destination address. Some-
times, a router also takes other attributes of the packet into consideration, e. g., the type
of data being transmitted, or the source address.

2.1.2 Prefixes and routes

In this system, the routers obviously need to somehow obtain knowledge regarding
which packets should be sent along which link. Of course, with the millions of end
hosts that are connected to the Internet, it is completely infeasible to store this infor-
mation for each individual IP address. Instead, IP addresses are grouped into network
prefixes: To this end, they are regarded as bit vectors, and all addresses that have theprefix

same prefix of bits (starting from bit 0 and going to some bit ℓ) are treated the same
way; the idea is that hosts and routers in the same network area are assigned IP ad-
dresses from the same prefix range. Prefixes can have different bit lengths2. A common
notation for prefixes is to treat those IP address bits that are not relevant to the prefix as
zeroes, convert the prefix to a human-readable form, and add the prefix length ℓ as /ℓ

(e. g., 131.159.14.0/25).

Recall that standard IP routing is based on IP destination addresses. When a router
receives a packet to be forwarded towards some destination, it thus inspects the packet’s
destination address and compares it against a vector of routes that it knows. A route,route

in its simplest case, is a prefix acting as a mask that tells which packets should be for-
warded via this route, and a reference to an interface (NIC; network interface card) con-NIC

nected to a neighbouring router. The vector of routes is referred to as a forwarding table,forwarding table

or the router’s (general) routing table. The first prefix that matches the packet’s destina-routing table

tion address determines thus what the router will do with the packet.

IP prefixes (and thus, routes) can be organised hierarchically, thereby allowing differ-
ent levels of details across the network, as well as exceptions. For example, a router in
the U. S. is not required to know that all IP addresses in 131.159.14.0/25 are part of
research unit 8 whereas 131.159.34.0/24belong to research unit 10 of the faculty for
computer science at Technische Universität München. Rather, it suffices to know that
all 131.159.0.0/16addresses are part of Technische Universität München, since they
all are connected to the Internet via the same internet service provider (ISP). The longerISP

and thus more specific prefixes for the individual institutes thus can be aggregated into aaggregate

common shorter prefix. On the other hand, the router in the U. S. hypothetically could
define an additional route for 131.159.14.0/25, which would allow to treat packets
headed for the research unit 8 differently from the other TUM traffic (e. g., in order to
use a virtual network tunnel / VPN for security reasons).

2Usually varying between 8 and 30 for IPv4
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2.2 Routing protocols

2.2 Routing protocols

Even with using prefixes, and even when making use of their property that they can be
aggregated, the number of routes that a router is required to know is still very large in
many cases (thousands and more). This inhibits manual configuration for the majority
of the routes.

Instead, routers work out most of their routing information automatically by running
routing protocols. Whenever the network topology is changed—be it due to the failure routing protocol

of a link, a router crashing, or components being added or removed—and thus packets
to some destinations should be sent along other paths, the routing protocols ensure a
prompt and automatic change in the routing. We will sketch the most important routing
protocols in the following subsections.

2.2.1 Interdomain and intradomain routing

First due to administrative, and later due to commercial reasons, the Internet has al-
ways been divided into different areas, each of which is administered autonomously
(e. g., ISPs, universities, research institutes, etc.). These areas are called autonomous sys-
tems, short ASes. The partitioning of the Internet into ASes also has great influence on AS

the way routing is done:
First, a network operator potentially has full control on the precise paths that packets

travel through his own AS. However, as soon as they are handed over to a different
AS, he has no further control on their path. We therefore have to distinguish between
intradomain routing, i. e., routing of packets within a single AS, and interdomain, i. e., intradomain

interdomainrouting of packets between different ASes.
Second, the commercial objectives that a network operator is striving for are different

in intradomain routing and interdomain routing. Within his own AS, an operator tries
to configure the routing setup in such a way that the network resources (i. e., routers
and links) are used in an optimal fashion. This way, the company operating the AS
can relay more traffic, serve more customers and/or offer a better service quality, and
thus earn more money. When it comes to data traffic leaving his AS, the objective to
maximise the revenues remains unchanged; but now this goal is achieved in a differ-
ent way. Most ASes earn money by selling connectivity to customers, while at the same customer

time they themselves are customers of other ASes called providers. Obviously, network provider

operators prefer to use network paths that maximise their revenue, while at the same
time incur as little cost as possible. Therefore, if some destination d can be reached both
via a provider and via a customer, then the AS in most cases prefers the route via the
customer, regardless of performance considerations: This way, the AS will earn money
from its customer, instead of having to pay its own provider for the traffic. Routing
policies between ASes therefore are mostly influenced by contracts and monetary con-
siderations, but less so by technical ones.

Intradomain routing thus strives to be technically optimal, whereas interdomain rout-
ing employs a so-called policy routing. The obvious difference in their objectives has led policy routing

to the development of two classes of routing protocols that are different in scope: inter-
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domain and intradomain routing protocols. Virtually any network operator needs to
cater for traffic destined for hosts within its own network, as well as traffic leaving the
AS; hence many routers run an intradomain routing protocol (sometimes several ones)
and an interdomain routing protocol at the same time. A router collects the routes be-
ing worked out by its different routing protocol instances in separate routing tables forrouting table

each protocol, and combines these into its forwarding table, or (general) routing table. Po-forwarding table

tentially conflicting information is resolved by assigning each protocol a different pri-
ority, often called administrative distance. This way, the routing protocol with the higheradministrative distance

priority “wins” if two or more routing protocols (and/or statically configured routes)
contradict each other for a given destination.

2.2.2 BGP: The interdomain routing protocol

Today’s universal de-facto standard in interdomain routing is the Border Gateway Proto-
col version 4, short BGP [RLH06]. BGP allows to employ routing policies in a numberBGP

of ways. BGP routers exchange information on available routes in so-called update mes-update

sages, each of which has a number of attributes. Whenever a router receives such an
update, it checks if the update announces the existence of a new route, or a route thatannouncement

it deems to be better than the one it is has so far been using for this destination; or if a
route that it is has been using until now has been withdrawn and is no longer available.withdrawal

In these cases, the receiver of the update message needs to alter its routing table, and
therefore eventually itself needs to send out updates to its neighbours, informing them
of the altered or withdrawn routes.

The most important attribute of a BGP update is the AS path. It records each individ-AS path

ual AS that a packet needs to travel through when being sent along that route. The AS
path’s main purpose is to enable a loop-free3 routing between individual ASes. BGP
is therefore classified as a path vector protocol. Note that the AS path does not recordpath vector protocol

individual routers, but entire ASes, i. e., networks.
Apart from establishing a working routing setup between the ASes, the AS path

together with the other attributes are intended to implement policy routing, i. e., they
help a router decide whether a given route is favourable under its routing policies, or
whether it is not.

2.2.3 Intradomain routing protocols

In contrast to interdomain routing having only one de-facto standard, there exists a
multitude of intradomain protocols. Intradomain routing protocols also are referred to
as interior gateway protocols (IGP), in contrast to exterior (=interdomain) routing protocolsIGP

(EGP), which we described in the subsection above. We briefly sketch some of the mostEGP

popular IGPs in this subsection.
As the purpose of intradomain routing is to potentially achieve a technically optimal

routing, most intradomain routing protocols do not have the builtin support for policy-

3If there were a loop in a packet’s path, then the packet would never leave this loop, until its time-to-live
field reaches zero and it thus is simply discarded.

22



2.2 Routing protocols

Figure 2.1: An example for a routing protocol: The highlighted router on the left knows two
routes to reach the destination. To send packets, it will choose the route with lowest cost (green).

based routing as BGP has. The only notable exception to this observation is the MPLS
protocol (see below), which on the other hand cannot be considered a routing protocol
in the traditional sense.

IS-IS

In the Intermediate System to Intermediate System routing protocol (short IS-IS), each IS-IS

router maintains a complete view of the AS’ topology. In order to ensure that all routers
have the same knowledge base, the routers broadcast information on the links to their
neighbours into the network at regular intervals. These broadcasts are flooded through
the network. Therefore, IS-IS and similar routing protocols are termed link-state proto- link-state protocol

cols. Additionally, each link can be assigned a cost, also referred to as weight or distance. cost

weight

distance

Using the link-state information from their peers, every router is able to eventually
construct a complete graph of the AS’s topology. It then uses this graph to run some
shortest-path algorithm, e. g., Dijkstra’s algorithm [CLRS01], in order to calculate the
best paths, thereby considering the link costs. The result of the shortest path calcula-
tion then determines the forwarding table of the router. See Figure 2.1 for a generic
example.

OSPF

Very similar to IS-IS in principle, albeit more powerful (as well as more complex), is the
Open Shortest Path First routing protocol, short OSPF. It offers better scalability, since OSPF

the network can be partitioned into areas, which can help greatly reduce the number of
link state broadcasts in the network.

RIP

A simple routing protocol that is still popular with some small ISPs is RIP. In contrast RIP

to OSPF and IS-IS, it does not operate with link state broadcasts. Instead, each router
sends information on the reachability for each of its neighbours to all of its neighbours.
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Unlike in IS-IS or OSPF, this information is not broadcasted. Similar to BGP, the neigh-
bours then can use this information to extend or update their routing tables to acco-
modate for the new routes. If the routing table of a router changes for some reason,
then it announces to its neighbours all of its changed routes, together with their cost.
Here, the cost of a route is the cost of the link to the next hop lying on this route, added
together with the cost that had been announced in the route’s update message. The
cost of a route is, in the simplest case, the number of hops to the route’s destination
(or the corresponding egress point). The example from Figure 2.1 thus applies here as
well. As the updates between routers comprise therefore a vector of (changed) routes,
together with cost (=distance) information, routing protocols of this type are classified
as distance vector protocols (DV protocols).distance vector

protocol

EIGRP

Another popular intradomain routing protocol is Cisco System’s proprietary Enhanced
Interior Gateway Routing Protocol (EIGRP), which incorporates aspects both of distance-EIGRP

vector and link-state protocols. EIGRP is basically a distance-vector protocol, but re-
garding communication with its neighbours and storing topology information, EIGRP
behaves similar to a link-state protocol. Here the idea is to combine the advantages
of distance-vector protocols (less signalling overhead, and computationally less expen-
sive: the shortest paths are jointly computed by all routers, instead of being computed
repeatedly and independently on each single router) together with those of link-state
protocols (faster convergence to a stable state). EIGRP is therefore sometimes classified
as a balanced hybrid routing protocol.balanced hybrid

2.2.4 MPLS

Multi Protocol Label Switching (MPLS) [RVC01] is a technique that has attracted muchMPLS

popularity among ISPs in the last couple of years. MPLS is not a routing protocol in the
classical sense like, e. g., OSPF. The idea behind MPLS is to allow the network operator
the greatest possible flexibility in choosing the paths for routing in the network, while
at the same time increasing the rate of oncoming packets that a router can handle.

To this end, MPLS introduces a new network layer beneath the IP layer. Each IP
packet that enters an MPLS-enabled network is attached an MPLS label (or more). Eachlabel

label corresponds to a specific path through the network. Within the MPLS network, a
packet is solely routed according to its label, not its IP address. As many routes share
the same egress point, the operator can assign the same label to all of these routes.
MPLS offers additional functionality, e. g., stacking of labels, adding, removing and
exchanging labels along the path, automatically activated backup paths in the case of
network failures, or support for the special needs of optical switching4, e. g., support
for different wavelengths in one glass fibre. This gives the operator a great flexibility in
setting up routes, which cannot be achieved with classic IP routing that operates solely

4GMPLS (Generalized MPLS)
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based on a packet’s destination address. When a packet reaches an egress point and is
about to leave the MPLS network, any MPLS label headers are removed, so that the next
hop router sees the original IP packet that had been injected into the MPLS network.

Apart from the operator being able to configure arbitrarily sophisticated paths, MPLS
offers the additional advantage of reducing the complexity of the forwarding decision,
which allows to cheaper router hardware: Instead of doing a longest-prefix lookup on
the destination IP address in a set of a few hundred thousand different routes at each
router, this computationally expensive task (more information on this will be given in
section 5.1) is performed only once, i. e., when the packet enters the MPLS network and
is assigned a label. After this point, all forwarding decisions are solely made based on
the packet’s MPLS label(s), which can be done very fast by using simple lookup tables.

However, all the great flexibility and speed advantages of MPLS means that there is
a great pice to pay: In contrast to traditional routing protocols such as OSPF, in the case
of MPLS it is the network operator himself who is responsible for setting up the paths
in the network, and for setting up the MPLS routers so that they have a consistent map-
ping from labels to paths, which are usually referred to as label-switched paths (LSPs). label-switched path

These LSPs usually are not set up manually, but through additional protocols such as
CR-LDP [JAC+02] or RSVP-TE [BZB+97, AS03].

Due to this complexity, some operators combine MPLS with traditional routing pro-
tocols that are easier to handle, e. g., OSPF. As one can view the LSPs as tunnels through tunnel

the network, these tunnels are presented as virtual links to an overlaying routing pro- virtual link

tocol, on which this overlaying routing protocol then can perform its shortest-paths
calculations.

2.3 Traffic engineering

As was laid out before, the main purpose for this work is to present a method for doing
dynamic traffic engineering, often abbreviated as TE. But what actually is traffic engi- traffic engineering

neering?
Due to their nature as being companies that strive to maximise their revenues, In-

ternet Service Providers (ISPs) want to use their network infrastructure as efficiently
as possible. This encompasses the task of designing the network and optimising the
routing system which is responsible for delivering the traffic entering the network to
its destination. In the context of IP networks, the latter task is referred to as traffic en-
gineering (TE). TE techniques try to adjust the parameters of the routing system to the
imposed traffic demands, in order to achieve performance gains.

2.3.1 Problem description

In its widest sense, traffic engineering is the adjustment of parameters of some net-
work, such that the traffic conditions in the network improve. To be able to measure the measure

performance of the network, some metric is introduced (e. g., the average travel time metric
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for a packet through the network). Depending on the chosen metric, the goal of the
optimisation task is either to maximise or to minimise the performance measure.

In order not to rely on trial-and-error methods in a productive network, the traffic
engineer plans the adjustments in advance by modelling the problem as some form
of optimisation problem. The optimisation problem is given immutable parameters
(e. g., the network topology) as constants, changeable network parameters (e. g., OSPF
link weights) as variables, and some goal function that captures the performance of the
network, and that is dependent on the variables. To make the model useful, the goal
function needs to accurately reflect performance changes in the real network when its
input variables, i. e., parameters of the real network, are changed.

In the context of communication networks, traffic engineering normally describes the
task of optimising the routing in the network: The network topology usually is consid-
ered static, since adding a link or a router is a costly investment. The traffic demands
are, in most cases, considered static as well (in spite of the fact that a better network per-
formance allows the users to take advantage of the additional capacity, thereby chang-
ing their behaviour and thus alter their traffic demands in an unforeseeable way). In
this setup, it remains for the network operator to optimise routing parameters. Over
time, various TE methods have been proposed. Most popular among operators are ap-
proaches that either utilise MPLS tunnels [XHBN00] or solutions with optimised IGP
link weights [WXQ+06, FRT02, BLM, KKY03, FT02, FT00, FGL+00a].

2.3.2 TE metrics

Different metrics can be used to capture the performance of a communication network.
In practice, many operators draw on the maximum load of any link in the network, and
try to minimise this value. Here, the link load, also called link utilisation, is defined as theload

data volume per time unit sent over this link, divided by the link’s capacity. The reason
for choosing this metric is that heavily-loaded links suffer from network congestion,
which degrades the network performance that is experienced by the end hosts—i. e.,
the customers of the company operating the network.

In addition, many network operators choose as an additional constraint to keep the
load on each link below some value, typically 50 % or 70 %. Naïvely, one might assume
that this threshold were an over-cautious choice, since congestion only happens if a
link is utilised by more than 100 %. However, it has been shown that many traffic char-
acteristics are consistent with self-similarity [PF95, WPT98, Bar01]. Therefore, real IP
network traffic exhibits sharp peaks on small timescales which can make the link load
exceed 100 % for fractions of a second—even if the average utilisation on the timescale
of seconds or longer is way below 100 %. In other words, during these short packet
bursts, more packets are to be transmitted via the link in question that it can actually
handle. Even though very short peaks are remedied through the use of an interface
queue that can buffer the exceeding packets until the peak is over, the router has to dropqueue

drop excess packets once the (finite-size) queue has been completely filled up. The character-
istics of the widely-used [DFM+06] transport protocol TCP can aggravate this situation:TCP

Although a TCP transmission can easily recover from packet losses, it interprets them
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as an indication for network congestion and therefore throttles its sending rate [Pea81].
After some time, it slowly increases its sending rate again, so that, in the end, it uses a
sending rate that is well-adjusted to the capacity of the congested bottleneck link. How-
ever, with many TCP connections running in parallel over a heavily-congested link, an
undesirable jojo-like bouncing effect can take place: As long as the queue of the con-
gested interface is filled up, all packets that are subsequently scheduled to be forwarded
via the interface are dropped. This packet loss usually affects many TCP connections
simultaneously, each of which therefore subsequently massively throttles its sending
rate. After a short period of time, the congestion is thus remedied thanks to TCP con-
gestion control—however, since the incident affects the connections at the same point
in time, they become more or less synchronised: Now all of them try to increase their synchronisation

sending rate simultaneously, which may lead to yet another congestion peak at the in-
terface, etc. Various techniques for dropping packets in a “smarter” way have been
proposed, so as to affect TCP congestion control to a lesser extent (e. g., RED), but their
effectivity remains debatable [Wal03]. For these reasons, network operators are keen to
minimise the link utilisation on all of their links.

Apart from the link load, another popular metric, especially for performance analysis
of theoretical models, is latency, also called delay. When a packet travels through the latency

delaynetwork, it does not do so instantaneously, but suffers from various delays. As long as
the path of a stream of packets is constant, most delays remain constant, while others
are variable. Among the former are the link delay, which is the amount of time that it link delay

takes to encode the packet into a series of electric or optical signals that are injected into
the wire (or fibre), and the propagation delay, which is the time that it takes to transport propagation delay

the data from one end of a link to another end of the link, and which obviously is
determined by the physical length of the wire (or fibre) and the speed of light in the
physical medium. On the other hand, the queueing delay is variable: It is the delay that queueing delay

the packet suffers at the aforementioned interface queues of the various routers that it
passes through on its way. This delay obviously depends on the level of congestion in
those parts of the network which the packet is travelling through.

2.3.3 TE in practice: Traditional TE

In their seminal paper [FT00], Fortz and Thorup present a heuristic that optimises the
routing by carefully adjusting the link weights of an underlying link-state routing pro-
tocol (e. g., OSPF). The input into the network is the traffic matrix and the network
topology; the output are the optimised IGP link weights. The optimisation goal is to
minimise the maximum load on any link in the network. Many improvements and
extensions to this methodology have been proposed since (e. g., [FT02, AC03]).

The disadvantage of these approaches is that they are quasi-static: The optimal rout-
ing is calculated offline for a predicted or previously measured traffic demand matrix.
Obviously, such schemata are not able to react to unpredicted traffic changes or network
events. To arrange for unforeseen sudden traffic changes, network providers account
for single link failures and some traffic shifts in their optimisations [WXQ+06, FT02,
AC03]. In addition, they often combine traffic engineering techniques with overprovi-
sioning of their network infrastructure, or purely rely on overprovisioning.
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2.3.4 TE in practice: TE with MPLS

One of the reasons, if not the main reason, for MPLS becoming increasingly popular
with ISPs is the fine-grained and absolute control over the routing. In particular, this
facilitates traffic engineering [XHBN00, AMA+99, Awd99, Kra03].

First of all, establishing well-defined paths between every pair of ingress and egress
routers, a network operator can easily determine the exact traffic matrix by simply
counting the number of packets entering each tunnel. This renders the sophisticated
traffic matrix estimation techniques obsolete for most MPLS networks.

Second, the full control over the traffic allows the network operator to calculate the
optimal routing using standard max-flow algorithms from theoretical computer sci-
ence, or by solving linear optimisation problems. As MPLS allows traffic splits, these
optimisation problems are not required to be formulated as integer problems and thus
can be solved in acceptable computation time. The resulting optimum flows can be
immediately applied to the network; there is no need to try to map from these to IGP
weights.

The flexibility of MPLS does, however, come at a price, which is additional admin-
istrative complexity. This, in combination with the fact that a transition from a tra-
ditional IGP to MPLS is a radical complex step that requires extensive planning, has
discouraged many network operators from applying MPLS. Recently, hybrid schemes
such as, e. g., SAMTE [SBL06] have been devised that allow to use just a few MPLS
tunnels while retaining the core of the network in essence under control of a traditional
IGP. This approach allows to combine the advantages of IGPs (better resistance to fail-
ures, easier maintainability) and those of MPLS (greater path flexibility), and without
the need to completely and radically exchange the routing setup from IGP to MPLS.

2.4 Traffic demands, traffic matrices

As was pointed out in the previous section, traffic engineering requires knowledge on
the traffic demands in the network, i. e., answers to the question: how much traffic is
flowing from where to where?

Reliable predictions of such network traffic demands, are, however, not only impor-
tant to traffic engineering, but can be put to many uses. Internet Service Providers
(ISPs), for example, use traffic demand matrices also for network capacity planning, to
identify bottleneck links, and to evaluate scenarios in which major network assets fail.
As another example, network security analysts rely on models of “normal” traffic de-
mands to detect new threats, such as worms and distributed denial of service attacks,
which generate unusual demands. As a third example, traffic demand matrices are
used to drive simulators when new protocols and distributed services are designed.

Depending on their scope of the traffic, the following two types of traffic demands
can be distinguished:

Intradomain traffic demands (intra-AS traffic demands) can be estimated in several
ways, In principle, an ISP can read these demands directly from its routers using tools
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such as NetFlow [Cla04]. The volume of data, however, introduces many complica-
tions. Furthermore, enabling NetFlow on a router has shown to result in a performance
drop. This is due to the fact that router needs to update a counter that is specific to
the (source IP, destination IP) tuple (or the corresponding network tuple) of the packet.
Therefore, another popular approach is to use SNMP [CMPS02] to collect link-level load
measurements. These impose far less computational overhead, since only one counter
for each interface is needed. After collecting the link-level data of all routers at one
location, it is possible to estimate a “reasonable” traffic demand matrix that is compati-
ble with these measurements [RTZ03]. These approaches have proven effective and are
used in practice today.

Modeling interdomain traffic demands (intra-AS traffic demands), on the other hand,
is problematic because no single organisation has either the authority or the ability to
measure all network traffic. An ISP can measure the demands of its clients, and the
“transit” traffic that it carries on behalf of other ISPs, but even the largest Tier-1 ISP has
been estimated (this is merely folklore) to carry only 7 % of the Internet’s traffic. Thus,
trying to derive interdomain traffic matrices is an interesting research topic.
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3 Characteristics of interdomain Web
traffic

In order to make routing or traffic engineering dynamic, it is important to attain a
good understanding of the characteristics of the traffic that is to be routed or traffic-
engineered. In particular, we need to characterise the dynamic aspects of the traffic
workload. However, variability of traffic as observed in the Internet and imposed on
its distributed infrastructure is determined by many factors that are not well under-
stood.

To improve our understanding, we in this chapter introduce a methodology for es-
timating interdomain traffic flows on a global scale. Our methodology yields an esti-
mation of the Web traffic between all clients worldwide and the servers belonging to
over one thousand content providers. We present an interdomain traffic model that can
capture changes to content, user behaviour, routing, intra- and interdomain traffic.

The methodology produces a (time-varying) interdomain HTTP traffic demand ma-
trix pairing some hundred thousand blocks of client IP addresses with over ten thou-
sand individual Web servers. When combined with geographical databases and rout-
ing tables, the matrix can be used to provide (partial) answers to questions such as
“How do Web access patterns vary by country?”, “Which autonomous systems host
the most Web content?”, and “How stable are Web traffic flows over time?” on a global
scale.

Our methodology can estimate a significant part of the interdomain traffic demand;
it can estimate HTTP traffic between over one thousand (mostly) United-States-based
content providers and all clients worldwide. Our approach is based on four observa-
tions.

1. Content delivery networks (CDNs) deliver a significant fraction of the bytes down-
loaded by Web users. In particular, Saroiu et al. [SGD+02] observed that about
4.3 % of the Web traffic received by clients at the University of Washington be-
tween May 28th and June 6th, 2002, was delivered by Akamai [Aka].

2. For each HTTP request recorded in a CDN’s Web server logs, the same client
typically makes several additional requests directly to the content provider’s Web
servers.

3. For each object served by a CDN, the objects typically served directly by the
content provider can be identified by examining traces of Web usage from large
groups of users, or by examination of the content provider’s Web site.
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4. The locations of the content provider’s Web servers can be determined with the
help of the DNS system and information available from the interdomain routing
system.

In this chapter, we combine server logs from Akamai’s CDN network with HTTP
traces extracted from packet traces gathered at several universities to build detailed
traffic demand matrices. We provide two types of matrices: Publisher demand matrices
pair hundreds of thousands of client IP blocks with over one thousand publishers. Web
traffic demand matrices pair these client blocks with tens of thousands of IP addresses
belonging to publisher and CDN Web servers. For each pair, in either type of matrix,
we estimate the rate at which data is transferred to the clients in the block.

Some caveats

Our traffic matrices are among the largest, in terms of the number of pairs, ever gener-
ated, and much of the traffic crosses domain boundaries. Nevertheless, there are a num-
ber of limitations to our work. First, we are capturing only one class of traffic, HTTP.
Although several studies have shown that HTTP traffic is among the most common, its
dominance has recently been challenged by new classes of traffic such as peer-to-peer
file sharing data and streaming media. Whether or not HTTP traffic demand can be
used to effectively infer overall traffic demand is an open question. Second, we are not
capturing the HTTP traffic sent by all Web servers, but only those belonging to Aka-
mai and its CDN-customers. Even though many of the most popular Web sites utilise
Akamai’s servers, there are many thousands that do not. Akamai’s customer base is
also biased towards U.S.-based companies. Third, we assume that the number of bytes
served by the content provider for each Akamai object can be estimated by examining
traces from a small number of large client sets. In practice, content providers might tai-
lor their Web pages for different client sets. For example, a U.S.-based site might choose
to serve more compact (fewer bytes) Web pages to overseas clients.

3.1 Related Work

The book by Krishnamurthy and Rexford [KR01] contains an excellent survey of Web
usage studies. Some of the work most closely related to the method described in this
chapter has focused on understanding either user behaviour [CB97, WPT98, AW97,
ISZ99], some aspects of changes in content, [WM00], on the effects of these changes,
e. g., in terms of the traffic demands [Awd02] imposed on a tier-one ISP [FGL+00b,
MTS+02, MFT+02, XHBN00], or in terms of poor end-to-end performance experienced
by the users. The latter can be observed via active measurements of delay, loss, or
throughput [PAMM98], or passive monitoring of individual routers and links [TMW97].

As mentioned above, there are a variety of approaches for estimating intradomain
traffic matrices. Indeed, this topic has been the subject of intense research over the
past years [RGK+01, ZRLD03, ZRDG03, MFT+02, MTS+02, SNL+04, LY03, FGL+00b].
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Over the same period of time, traffic engineering has grown greatly in importance, and
a large effort has been devoted to designing intradomain traffic engineering solutions
(see Section 6.1). This timing is not coincidentally—one of the primary inputs to most
“traffic engineering” algorithms is an estimated traffic demand matrix (see Section 2.4).

Even more recently, a number of schemes for Interdomain traffic engineering have
been proposed [FBR03, Qea03, QUB02, UBQ03, ACK03, WJR02, QYZS03]. Yet, not
much work has been published on estimating interdomain traffic demands on a global
scale. Even the question of whether interdomain traffic matrices and intradomain traf-
fic matrices have similar dynamics is unanswered. Partial interdomain traffic matrices
have been made public to researchers [UQLB06]. Recently, Chang et al. have provided
an approach to modelling inter-AS traffic matrices from publicly available data, as well
as from various and extensive Internet-wide measurements, including search engine
queries [CJMW05]. In Chapter 4, we present a methodology for studying the behaviour
of users performing Web search sessions. The results of our analysis can be used to re-
fine the methodology of Chang et al. .

3.2 Background: CDNs and Terminology

Before we describe our methodology in further detail, we provide the reader with a
brief overview of the process of content delivery with and without content delivery
networks (CDNs). We also present a brief dictionary of the terms and abbreviations
used in the remainder of the chapter.

3.2.1 Terminology

The following definitions, taken in part taken from the Web Characterization Terminol-
ogy & Definitions Sheet [LN], will serve to clarify the subsequent discussions.

Web site: A collection of interlinked Web objects hosted at the same network location Web site

by a set of origin Web servers. origin Web server

Web site publisher or just publisher: A person or corporate body that is the primary publisher

claimant to the rewards or benefits resulting from usage of the content of a Web
site. A publisher may distribute his content across multiple Web sites. Publishers
are also referred to as content providers. content provider

Content delivery network (short CDN): An alternative infrastructure operated by an CDN

independent service provider, on which some parts of a Web site can be hosted.

3.2.2 Content delivery

The purpose of the Internet is to allow the exchange of and access to information. This
information is typically hosted on origin Web servers. Content delivery networks, short
CDNs (see, e. g., [Hul02, DMP+02, GCR01, BV02, JCDK00, KWZ01, SGD+02]) are de-
signed to reduce the load on origin servers and at the same time improve performance
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Figure 3.1: Example of CDN deployment and traffic flows (Web traffic demands).

for the user. Most CDNs have a large set of servers deployed throughout the Internet
and cache the content of the original publisher at these servers. Therefore another view
of CDNs is that they provide reverse proxy services for content providers, the publish-
ers. In order to take advantage of their distributed infrastructure, requests for data are
redirected to the “closest” cache server. Intelligent redirection can reduce network la-
tency and load (and therefore network congestion), thereby improving response time.
CDNs differ in their approach to redirecting traffic. Some, such as Akamai [Aka], use
DNS to translate the hostname of a page request into the IP address of an appropriate
nearby CDN server. This translation may consider the location of the client, the loca-
tion of the server, the connectivity of the client to the server, the load on the server, and
other performance and cost based criteria.

An example that shows how the CDN infrastructure is embedded in the Internet
architecture is shown in Figure 3.1. We can see four ASes, numbered 1–4, two Web site
publishers, publisher.ex and adserver.ex, and two sets of clients. The publisher
publisher.ex is connected to AS 3; the publisher adserver.ex is connected to AS 2.
A set of clients is connected to AS 1, another one to AS 4. Traffic is routed between the
ASes by means of BGP (or some other exterior gateway protocol); traffic within an AS
is routed by means of Interior Gateway Protocols [Hal97].

The location of the CDN’s servers differs from CDN to CDN and depends on con-
tractual agreements between the CDN and the individual ISPs. In some instances, the
CDN servers are deployed within the data centers of the ISP and therefore belong to
the same AS, like AS 1, 2, 4 in Figure 3.1. Clients of the ISP (i. e., directly connected
end users) will typically be served by these servers in the same AS. With other ISPs,
the CDN may have a private peering agreement that allows the CDN to serve requests
from the ISP’s clients via a direct connection between the CDN and the AS. The CDN
may also co-locate servers with the ISP’s clients, e. g., on university campuses. Other
ISPs may have no relationship with the CDN, and the traffic to the ISP’s clients is thus
routed via another AS.
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Objects hosted on some adserver

Objects hosted on CDN server

Page hosted on publisher’s own server

Figure 3.2: Example Web page with some CDN content and some content hosted on an Web
advertisement server.

Let us now consider the steps that are necessary to download the Web page shown
in Figure 3.2. This page consists not only of the main HTML page, which is located
at publisher.ex/page.html, but also several embedded objects.1 The publisher re-
sponsible for publisher.exhas decided to use the services of a CDN, cdn.ex. There-
fore, two objects (the two graphics in the top section) of the sample page are hosted by
the CDN. Moreover, an image and an internal frame are provided by another company
providing dynamic advertisements, adserver.ex.

Whenever a specific client from client set A in Figure 3.1 on the previous page ac-
cesses the Web page, publisher.ex will serve the bytes for the main page and one
embedded object, whereas adserver.ex will serve the bytes for the advertisements,
and the “nearest” CDN server will serve the two CDN-located objects—in our case,
they will be served from AS 1. In contrast, if instead a specific client from client set B
accesses the page, the two CDN objects will be delivered from a different CDN server,
namely the one in AS 4. Keep in mind that it is the objective of the CDN to direct the
client to a CDN server that is close to the client.

3.3 Interdomain Web traffic demands

In this section we motivate and introduce abstractions for publisher demands and Web
traffic demands and discuss some possible applications based on these abstractions.

The interplay between content hosting, intra- and interdomain routing, and the In-
ternet architecture affects the set of traffic demands we choose to estimate. In contrast

1For simplicity reasons, we assume that the page consists of one single HTML file, i. e., it does not com-
prise any additional files, such as external style sheets, Javascript files, etc.

35



3 Characteristics of interdomain Web traffic

to previous work, we are not focusing on a single ISP. Rather, the goal of this study is
interdomain traffic imposed by any client through accessing content provided by many
publishers, on a global scale. The situation lends itself to two abstractions:

1. a publisher demand matrix that captures traffic behaviour at the aggregate level of apublisher demand
matrix publisher or content provider; it pairs each client IP block with various publishers

and

2. a Web traffic demand matrix that captures the traffic at the granularity of a WebWeb traffic demand
matrix server with a specific IP address; it pairs each client IP block with various Web

server IP addresses.

3.3.1 Motivation

Traffic demands usually specify the amount of traffic flowing between two end-points,
from the source to the destination, which is sufficient as long as both end-points are
of the same granularity. In the context of Web traffic, treating end-points at the same
granularity is problematic, as there are many more clients than servers or publishers.
Distinguishing between individual clients is moot due to the sheer size of the resulting
matrix.

Just as the interplay between intra- and interdomain routing motivated a point-to-
multipoint demand model [FGL+00b], it motivates us to define Web demands in terms
of network prefixes that are consistent with BGP. This enables us to address questions
arising in the context of inter- and intra-domain routing as well as questions regarding
how to multi-home sites and how to balance traffic between ISPs.

Summarising clients according to network prefixes appears appropriate. Network
prefixes provide a way of aggregating client traffic that preserves locality in terms of
the Internet architecture. Such an aggregation is necessary in order to avoid the severe
scalability problems of representing each client at the level of an IP address. In addition,
it reduces the statistical significance problem caused by too little traffic per individual
IP address.

Yet, summarising publishers via network prefixes is hazardous. A publisher that
serves gigabits per second to clients is likely to use a distributed infrastructure together
with some load distribution mechanism, such as DNS round-robin or proximity-aware
routing. In general, these mechanisms are very similar to those employed by CDNs.
This usually means that the content is available via multiple IPs in different network
prefixes. Furthermore, it is sometimes impossible to deduce the Web site publisher from
its IP address: One HTTP server may host multiple sites of several publishers. Even the
URL of an object does not directly allow us to infer the identity of the publisher for
the content, e. g., to see that Vivendi Universal Interactive Publishing is responsible for
www.lordoftherings.com . Some publishers split their content into various sites,
each with its own responsible organisation and its own independent infrastructure.
All these issues imply that one may want to capture the traffic matrix at two levels of
abstractions: at the publisher level or at the level of each individual Web server.

36



3.3 Interdomain Web traffic demands

P
u

bl
is

he
r 

d
em

an
d

42
   

   
A

 @
 1

0a
m

: 2
 G

B
yt

es

client set B

4 G
Byt

es

21
    

  A
 @

 10
am

:

Pu
bl

is
he

r d
em

an
d

42
   

   
B 

@
 1

0a
m

: 5
 G

By
te

s

GBytes
@10am

Publisher 42: 

client set A

Publisher 21:

54
42

A B

42
21

p
u

bl
is

he
r

client set

demand matrix:
Web publisher

news.ex,
weather.ex

publisher.ex

42     B @
 10am

: 4 G
Bytes

Publisher dem
and

�
�
�

�
�
�
�
�
�
��
�
�
�

�
�
�

�
�
�
�
�
�
��
�
�
�

�
�
�

�
�
��
�
�
��
�
�
�

��
��
��

��
��
��

��
��
��
��

����

��
��
��

��
��
��
��
��
��
������

��
��
��

��
��
��
��
��
��
������

��
��
��

��
��
��
��
��
��
������

��
��
��

��
��
��

��
��
��
������

��
��
��

��
��
��

��
��
��
����
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Figure 3.3: Publisher demands.

3.3.2 Examples

Having motivated the need for the two kinds of matrices—publisher demand and Web
traffic demand—, we now present some illustrative examples. Figure 3.3 shows two
different publishers that are identified by ID numbers 42 and 21, and the domain names
of the sites that they publish: publisher.ex for 42, news.ex and weather.ex for
21. Their content is accessed by two different client sets: A and B. Each client set ac-
cesses some of the content provided by publisher.ex and news.ex/weather.ex.
This results in traffic flowing from the Web sites of publisher.ex and news.ex/
weather.ex to the client sets A and B. These traffic flows are what we refer to as
publisher demands. publisher demand

If we want to improve, say, our routing decisions, then publisher demands are not
of much use: They do not take into account the server locations. In the distributed in-
frastructure for the publisher with ID 42 shown in Figure 3.1 on page 34, some of 42’s
content (namely publisher.ex) is hosted at servers connected directly to AS 3, some
of 42’s content has been offloaded to a CDN; furthermore there may be third-party con-
tent such as banner ads hosted by adserver.ex on some of 42’s pages. In Figure 3.1,
the resulting three Web traffic demands to client set A are indicated by the smooth arrows; Web traffic demand

the Web traffic demands to client set B are depicted by the dotted arrows.

3.3.3 Applications

These notions of demands enable experimentation with changes to content hosting, to
routing, to the AS level topology, as well as to the location of the content and/or the
clients. A publisher that needs to upgrade its infrastructure has many choices: upgrade
the existing servers, add more servers, add more bandwidth to existing network con-
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nections, add alternative network connections, change the way requests are allocated to
individual servers, or outsource more of its content delivery. In order to decide on the
best option, the publisher may use the publisher demands to evaluate possible scenar-
ios: the traffic volume imposed by different client sets may influence his decisions. For
such “what if” scenarios, he needs to understand the dynamics of both the publisher
demands, as well as the Web traffic demands, as well as the differences in the dynamics
between them.

An ISP may also need to predict the effects that adding or moving a link or peering
session may have. This requires a model of interdomain traffic. An important dif-
ference between traffic statistics collected within an AS and the Web traffic demands
discussed here is that they describe traffic flows not just through the network of the
ISP, but throughout the Internet. Therefore, given an understanding of the dynamics of
Web traffic demands, it is easier to estimate the effects that decisions (such as adding
peering connections) may have. Furthermore, it is possible to explore what effects pol-
icy changes will have. Applying our methodology, this is feasible not just for policy
changes by the ISP itself, but also for policy changes performed by other ISPs.

By combining Web traffic demands with topology and BGP routing information, one
can explore the impact of routing instabilities on actual traffic flows and vice versa.
Moreover, by combining the Web traffic demands with performance measurements,
one can explore how user feedback should be factored into future decisions. Further-
more both demands, the Web traffic demand as well as the publisher demand, are ideal
inputs for driving interdomain network simulations.

3.4 Using CDNs to estimate publisher demands

The publisher demands can be computed in two ways—either given information from
each publisher regarding which clients access its content and from which prefixes, or
given information from each client set about which Web sites they are requesting. One
way of deriving this information would be to collect fine-grain traffic measurements
at all publisher sites or all client sites. This may enable us to identify the traffic as
it reaches the Web site publisher or the clients. However, this approach is virtually
impossible, since the huge number of publishers and client sets imposes a task that is
simply unmanageable. Furthermore, it would still be necessary to address the question
of how to distinguish publishers that are co-located at the same server. Just analysing
a large proxy log does not help either, since it does not allow us to gather information
about any significant subset of all possible clients.

Instead, we focus on publishers, as there are far fewer publishers than clients. Yet,
instead of considering all publishers, we take advantage of the fact that CDNs provide
reverse proxy services (Section 3.2.2) for the content providers (the publishers); they
thus are acting as “subcontractors” to the publishers. Using data collected within CDNs
has several advantages:

• CDNs serve the content on behalf of their customers (the publishers). This implies
that the CDN has a way of relating content to publishers.
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3.4 Using CDNs to estimate publisher demands

• Due to the requirements imposed by volume-based billing, CDNs collect data on
behalf of the publishers regarding how much traffic is served. This implies that
the CDN has a way of deducing the amount of traffic it serves on behalf of each
individual publisher.

• In addition, most publishers do not want to lose access to the information they
can collect when they serve content directly to clients. For example, information
about which clients are accessing what content is derivable from Web server logs.
Accordingly the CDN has to collect this “Web server”-like log information. As a
consequence, it has a way of relating traffic to clients.

Moreover, the number of CDN service providers is significantly smaller than the
number of publishers. A list of CDN types and their products is maintained by Davi-
son [Dav03]. To further reduce the candidate set, we observe that, at the time of this
writing, the market is dominated by only a small number of CDNs such as Akamai [Aka],
Speedera, Cable & Wireless and Mirror Image [Mir].

Focusing on CDNs limits us in terms of the number and kind of publisher demands
that can be estimated: If a publisher has no association with a CDN, it will not be
possible to derive his publisher demands. This raises the question of which publisher
demands we are interested in, and if those are likely to be associated with a CDN. Like
a lot of other quantities in networking [BCF+99, FP99, FGL+00b] and elsewhere [Zip],
we expect publisher demands to be consistent with a Zipf-like (cf. glossary) distribu-
tion. Since the heavy hitters account for a significant part of the traffic, we are mainly
interested in them. Luckily, those are the ones that are more likely to use the services
of a CDN. Therefore CDNs can provide us with a way of estimating the publisher de-
mands for those content providers that are most popular and thus account for a large
part of the traffic.

Still one problem remains: As discussed in Section 3.2.2 and as shown in Figure 3.1,
CDNs try to take advantage of their distributed infrastructure by serving traffic locally.
So how can we expect to derive estimates for interdomain Web traffic demands from
CDN traffic data? Here it turns out that most publishers will not serve their whole
content via the CDN. Rather, they will use some mixture, as shown in Figure 3.2. Note
that not all content has to be served via the Web site of the publisher or the CDN—
some embedded objects may be located on yet another server instead, e. g., banner
advertisements.

Together this provides us with the opportunity that we need: If we know the ratio of
a customer’s traffic serviced via a CDN vs. the traffic from the publisher’s own servers
vs. traffic served by via external sites (see Figure 3.4(a)), and if we know the traffic
serviced by the CDN (Figure 3.4(b)), we can estimate the other amounts (Figure 3.4(c)).
These facts allow us to estimate publisher and Web traffic demands for all client prefixes
world-wide and all publishers that are customers of the CDN. Our methodology signif-
icantly improves the availability of interdomain traffic estimation on a global scale—so
far at best a scarce quantity.
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Figure 3.4: Web publisher demand estimation.

3.5 Realisation ideas

With access to the logs of a CDN, determining the traffic served by the CDN on behalf
of a specific publisher is possible. Accordingly, we now discuss how we approach
the remaining problems of how to estimate traffic ratios between publisher and CDN
traffic, as well as how to map publisher demands to Web traffic demands. Further
details are provided in Section 3.6.

3.5.1 Estimating traffic ratios

One way to proceed is to explore the content provided by the Web site of the publisher
offline, or by using Web crawlers. Given a set of Web pages, one can easily calculate the
fractions of data served by the CDN vs. the fraction of data served by the original Web
site. The problem with this approach is that it ignores the fact that certain Web pages
are more popular than others.

Hence, we really need access to information about actual user accesses. There are
many ways of doing this [KR01]: from users running modified browsers [CB97], from
the logs of the publishers themselves [AW97], from proxies logging information about
which data is requested by the users of the proxy [PM95, KLM97], or from the wire
using packet monitoring [Fel00a, BPS+98, GB97]. Each of these methods has its advan-
tages, but most have severe limitations regarding the detail of information that they
log. Distributing modified Web browsers suffers from access to the browser software
and from users not accepting the modified browsers. Although a few publishers actu-
ally might cooperate by revealing their logs, most will not. In addition, this approach
suffers from a scalability problem. Using proxy logs or logs derived via packet moni-
toring may be more scalable with regards to ISPs—but with regards to the size of the
user population that can be monitored, it is more limited.
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3.5 Realisation ideas

To choose the appropriate solution, let us consider the granularity at which we need
the information. The purpose of estimating the publisher demands is mainly to un-
derstand their medium time-scale fluctuations and their impact on traffic engineering,
routing, etc. We are not as interested in small time-scale events (and in any case it is
hard to understand their causes). Therefore, some coarse-grain estimation is sufficient
for our purposes. Hence, we propose the following two-fold approach:

• Obtain from the publisher their estimate of the fraction of traffic that is served
by the CDN and other third party providers; admittedly, we utilise the provider-
customer relationship between the CDN and the publisher to acquire this infor-
mation, which is provided by only a subset of the publishers.

• Use packet level traces or proxy logs to derive the fractions for some users and
therefore for some sample client sets. (Although proxy logs suffice, since detailed
timing information is not required, the analysis in this chapter is based on packet
level traces.)

Consider again the example page shown in Figure 3.2 on page 35. A log file, de-
rived from a proxy log or the packet traces, should show five entries per access to this
page, i. e., one for the HTML file of the page, and one for each embedded object (unless
it is cached in the user’s cache). Each entry includes an object_id (i. e., the URL),
the start and end time of the download of the object, the number of transferred bytes,
and the HTTP_REFERRER 2 field (if specified by the user agent). Note that the referrer
field, which lets a user agent include the URL of the resource from which the requested
object was reached, is optional and not necessary. Nevertheless, most popular Web
clients, such as Firefox and Internet Explorer, include them regularly, which proves to
be extremely helpful. In our sample page, all embedded objects have the same value
for their referrer field independent of where the object actually resides: The value is the
same as the URL of the base page. Thus the referrer field provides us with the means to
associate the objects and therefore provides us with the means of estimating the ratios
between the traffic flows.

One way of estimating the ratios could be to try to compute the exact temporal and
causal relationship between the pages and their embedded objects. But past work, e. g.,
in the context of estimating the benefits of prefetching [KLM97] or piggybacked cache
validation [KR01], has shown that this is a nontrivial task, especially in the presence of
proxies and strange user behaviour. For our purpose, the fact that there is a relationship
is sufficient. See Section 3.6.2 for further details.

3.5.2 From publisher demands to Web traffic demands

In order to derive the Web traffic demands from the publisher demands, we first need
to map the Web sites of the publishers to IP addresses. This mapping may not be a
one-to-one mapping—recall that some publishers use a distributed infrastructure and

2The header field HTTP_REFERRER is misspelled in the official protocol definition of HTTP [FGM+99].
Unless we explicitly refer :-) to the HTTP header field, we will use the correct spelling referrer.

41



3 Characteristics of interdomain Web traffic

therefore apply DNS mechanisms for “load balancing”, “proximity-aware”, or “server-
feedback dependent” name resolution, in a manner similar to Akamai’s mechanism for
distributing load, or even entrusting Akamai to provide these mechanisms.

Again, we propose to take advantage of information available to the CDN: It knows
the set of hostnames that are associated with each publisher. Therefore the problem is
reduced to associating each hostname with its set of IP addresses.

This can be done using DNS queries. To account for “proximity-aware” or “server-
feedback dependent” policies used by the publisher, it is not sufficient to issue DNS
queries from a single point in the Internet—rather, we need to use a set of DNS servers
that are distributed throughout the Internet. Since we have to issue recursive queries3

to these servers in order to discover their view of the server IP addresses, they have to
allow recursive DNS queries.

In a second step, we determine which server is used by which client. This problem
can either be extremely simple or extremely hard. If the site uses a single IP address or
simple DNS round robin across a number of different IP addresses, this step is trivial.
Since DNS round robin is supposed to partition the requests about evenly across all of
the servers, this is what we will do in estimating demand. If, however, the site uses
a more sophisticated mechanism, we are left with a fairly difficult problem. Here we
have two possible ways to approximate the decision of the physical Web site: We can
either use the result of the DNS server “closest” to the client set, or we can assume
that the client set is directed to the “closest” Web server. As we are dealing with an
estimation of inter-AS traffic in this chapter, we propose to capture the meaning of
“close” in terms of AS distance. This seems reasonable, since it is known that some
distributed infrastructures are using this information [Liu], and since other measures
of closeness are even harder to define.

3.6 Implementation details

In this section we present more details of the ideas outlined in the previous section.
More specifically, we describe how we estimate publisher demands and Web traffic
demands using logs from a CDN provider, packet level measurements at ingress links,
and the DNS system.

3.6.1 CDN log evaluation

To compute publisher demands using CDNs, fine-grain access records from all servers
of the CDN have to be collected. Usually, servers generate a record summarising each
transaction. These records are exported on a regular basis for billing purposes and
include sufficient information for computing the publisher demand: the accessed_
object, the client IP address, the start and end times of the transfer, and the

3In an iterative query, the contacted name server tells the requesting name server which name server to
ask next, whereas in a recursive query the contacted name server proceeds by sending a query to the
next name server on behalf of the original user.
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3.6 Implementation details

number of transferred_bytes. (Any additional information can be used to further
refine the notion of publisher demands.)

Computing the traffic demands requires information about the CDN customer (i. e.,
publisher) associated with each record. This aggregation process draws on a map,
object_to_customerid, such that every object can be associated with a unique
customer_id. Furthermore, it uses another map, clientip_to_client_prefix,
of network addresses such that every source IP address (client) can be associated
with a network prefix client_prefix. The first map can be derived from the cus-
tomer information of the CDN while the second can be derived with longest prefix
match from a joined BGP routing table (joined_bgp_table) from multiple different
viewpoints in the Internet. Alternatively, one can use static groups such as up to the
/24 level, which (given that most ISP will not allow propagation of prefixes smaller
than /19) does not hinder any later application specific aggregation.

No content transfer is instantaneous. Rather, they last for some time interval starting
at start, ending at end, and contributing some amount of traffic, transferred_
bytes. In order to avoid problems in time resolution, e. g., discrepancies between
clocks at the record collectors, granularity of the data sources, etc., and since most ap-
plications making use of publisher demands are on a larger time scale, we compute
the demands on time scales of multiples of minutes rather than seconds. Time is par-
titioned in bins of duration bin_length, according to the considered resolution. If a
record spans multiple bins, we subdivide the traffic in proportion to the fraction of time
spent in each time period.

To derive the final publisher demands, we draw on another map, customerid_to_
demand. It specifies for each customer_id the relationship between the CDN-hosted
traffic flows and the self-hosted traffic and is the result of the computation detailed in
Section 3.6.2. The mechanism for computing the publisher demands is summarised in
algorithm 1 on the next page.

3.6.2 Estimating flow ratios between CDN and publisher

In Section 3.5, we suggest using proxy and/or packet level traces to estimate the rela-
tionships between the various flows shown in Figure 3.4(b) on page 40. We now present
a three-pass approach which automatically ensures that Web pages referring to other
Web pages are handled appropriately.

The first two passes serve preparative purposes. In the first pass, we separate the set
of accessed objects according to the client IP addresses. In the second pass (algorithm 2),
we determine the set of objects served by the CDN under consideration, cdn_set, and
some additional information that we specify below. For this purpose, we check each ob-
ject against the appropriate CDN customer base information (determine_customer_
id()) and, if appropriate, compute the CDN customer_idand add it to the cdn_set.

In the third pass, we compute for each CDN object cdn_id within this set the fea-
sible base pages base_candidate_set and the set of possible other embedded ob-
jects embedded_candidate_set. For an object to fall into these sets, either its URL
or its referrer has to be equal to the referrer value of the CDN object. For this pur-
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Algorithm 1 Estimating CDN publisher demands from CDN transaction logs.

1: for all accessed_object: (client, start, end, transferred_bytes) do

2: customer_id← object_to_customerid(accessed_object)
3: client_prefix← longest_prefix_match(client, joined_bgp_table)
4: start_bin← ⌊ start

bin_length⌋ · bin_length

5: end_bin← ⌊ end
bin_length ⌋ · bin_length

6: if start_bin == end_bin then

7: volume[client_prefix, customer_id, start_bin] += transferred_bytes
8: else

9: ⊲Compute volume of traffic for each time_bin:
10: byte_rate← transferred_bytes

end - start
11: volume[client_prefix, customer_id, start_bin]

+= byte_rate · (start_bin + bin_length− start)
12: for time_bin← start_bin + bin_length; time_bin < end_bin;

time_bin += bin_length do
13: volume[client_prefix, customer_id, start_bin] += byte_rate · width
14: end for

15: volume[client_prefix, customer_id, end_bin] += byte_rate · (end− end_bin)
16: end if

17: end for

18: for all aggregate do

19: demand[client_prefix, customer_id, end_bin] ← customerid_to_demand[customer_id] ·
volume[client_prefix, customer_id, end_bin]

20: end for

21: Output for each aggregate: (client_prefix, customer_id, time_bin, volume)

pose, we have stored some additional information in the second pass: each object with
URL url and referrer referrer is added to the set of possible home pages for this
URL base_set(url). Furthermore, we add the object to the set of possible embed-
ded objects for the current referrer, denoted by embedded_set(referrer). Once
we have retrieved the candidate sets, we can determine the hostnames for each of
the objects within the candidate sets, and add the bytes in the corresponding object
to the appropriate traffic flow. The appropriate traffic flow is either determined by
the cdn_customer_id for CDN objects or the hostname for non-CDN objects. If the
hostname is not used in the client’s request, we propose to use the server IP address
instead. In order to keep the relationship information, we can now establish the link
associated_hosts between cdn_customer_id and the hostname of the objects in
the candidate sets. In order to avoid double counting, e. g., if the exact same page is ac-
cessed multiple times, one needs to mark every object that has already been accounted
for.

Again, it is the case that no content transfer is instantaneous—but rather than spread-
ing the contribution of each transfer across multiple time periods of duration bin_
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Algorithm 2 Computing flow ratios: CDN server accesses vs. publisher server accesses
from user access logs.

1: ⊲Pass 1:
2: Sort the accessed objects according to client IP addresses
3: ⊲Pass 2:
4: for all client_IP and object_id: (url, start, end, trans_bytes, referrer, hostname) do

5: if determine_customer_id(object_id) evaluates to a CDN object then

6: customer_id[object_id] ← determine_customer_id(object_id)
7: cdn_set ∪= object_id
8: end if

9: base_candidate_set[url] ∪= object_id
10: embedded_candidate_set[url] ∪= object_id
11: end for

12: ⊲Pass 3:
13: for all object_id ∈ cdn_set with (url, start, end, transferred_bytes, referrer, hostname)

do

14: if done[object_id] then

15: next

16: end if

17: done[object_id]← true
18: end_bin_cdn← ⌊ end

bin_length ⌋ · bin_length

19: cdn_customer_id← customer_id[object_id]
20: volume[cdn_customer_id, end_bin_cdn] ∪= transferred_bytes
21: for all candidate ∈

base_candidate_set[referrer] ∪ embedded_candidate_set[referrer] do

22: if ∃ customer_id[candidate] or done[candidate] then

23: next

24: end if

25: done[candidate]← true
26: associated_hosts[cdn_customer_id] ∪= hostname[candidate]
27: end_bin_candidate← ⌊ end[candidate]

bin_length ⌋ · bin_length

28: volume_related[cdn_customer_id, hostname[candidate], end_bin_candidate]
∪= trans_bytes

29: end for

30: end for

31: Output for each customer_id and host from the associated_hosts the ratios:
(customer_id, hostname, time_bin,
volume[customer_id, time_bin], volume_related[host,time_bin]

volume[customer_id,time_bin]
)
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length, we propose to just add it to the last bin. It is known from aggregating Net-
Flow data that this can lead to artefacts [SF02]. But if the aggregation periods are long
enough, size and impact of these artefacts decrease significantly.

3.6.3 Mapping publisher demands to Web traffic demands

In order to map the publisher demands to Web traffic demands, we need to find out
which IP addresses are actually in use by the publisher’s infrastructure. As an initial
step, we derive the set of hostnames associated with each site publisher (customer_
id; via the mapping customerid_to_hostname), utilising the knowledge of the
CDN provider. Therefore, the problem is reduced to associating each hostname (host)
with its set of IP addresses (ip_set).

To account for the distributed infrastructure of the site, we have to issue recursive
DNS queries from a set of DNS servers that are distributed throughout the Internet. We
propose to identify a set of candidate DNS servers from traffic measurements, such as
NetFlow or packet level traces, or by checking the server logs of the CDN’s DNS server.
Using packet traces has the advantage that its easy to check if the DNS servers support
recursive DNS queries. Otherwise, one can issue a recursive query to the DNS server
and see if it is willing to respond to the query, and second, if it does support recursive
queries. Once we have derived a candidate set of DNS servers one way or the other,
we can either use all of them, or some subset. We propose to concentrate on a subset,
such that each DNS server in the subset will return a different IP address for at least
one Web site publisher that utilises a distributed infrastructure. Since the CDN runs a
highly distributed infrastructure, we propose to use the main Web server of the CDN
for this purpose, in our case akamai.com and www.akamai.com .

The next step involves identifying what kind of access distribution mechanism (dns_
policy) is used by the physical Web site. We propose to concentrate on popular mech-
anisms and look for indications of their use (algorithm 3). If all queried DNS servers
return almost the same set of IP addresses, then we can assume that DNS round robin
(“round robin”) is used. We use “almost” instead of “exactly”, since one cannot
query all DNS servers at the same time; this lack of synchrony can cause anomalies. If,
however, different DNS servers return different IP addresses in a consistent fashion (at
least twice), then we can assume that some form of proximity-aware load balancing is
used (“proximity”).

In the first case, we propose to split the load evenly between all IP addresses that are
used to implement the physical infrastructure. Otherwise, we propose to split the traffic
only between those IP addresses that are resolved by the “closest” (Section 3.2.2 on
page 34) DNS server queried from the clients in question. All other cases are currently
resolved via manual inspection.
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Algorithm 3 Mapping site publishers to Web traffic demands.

1: for all customer_id do

2: hostname_set← customerid_to_hostname(customer_id)
3: for all host ∈ hostname_set do

4: for all dns_server ∈ dns_server_set do

5: ip_set[customer_id] ∪= dns_query(dns_server, host)
6: ip_set_dns[customer_id, dns_server] ∪= dns_query(dns_server, host)
7: dns_policy[customer_id] ← classify_dns_policy(ip_set)
8: end for

9: end for

10: end for

11: for all client_prefix do

12: closest_dns_server[client_prefix] ← closest(client_prefix, dns_server_set)
13: end for

14: for all customer_id and client_prefix do

15: if dns_policy[customer_id] is “round robin” then

16: split traffic evenly among ip_set[customer_id]
17: else
18: split traffic evenly among

ip_set_dns[customer_id, closest_dns_server[client_prefix] ]
19: end if

20: end for
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Dataset Location Key Fields

CDN sites CDN List of Web sites and publishers
that use the CDN

CDN servers CDN List of hostnames of physical Web sites
CDN logs CDN’s Per accessed object: client IP address, resource,

billing system start time, end time, transferred bytes
HTTP logs external network Per accessed object: client IP address, URL,

connection start time, end time, transferred bytes,
referrer, hostname

DNS lookups set of Per hostname and DNS server:
name servers set of IP addresses

BGP table peering points Per network: set of possible routes (AS path)
EdgeScape CDN Maps IP addresses to locations

Table 3.1: Datasets and key fields used in computing and validating the publisher and content
traffic demands.

Dataset Date Duration Size
CDN logs {Apr 26th, Apr 28th, May 5th}, 2004 3× 2 hrs 617.4 GB .gz
HTTP logs Jan 30th, 2004 – May 11th, 2004 102 days 28.5 GB .gz
DNS lookups May 12th, 2004 – May 13th, 2004 1 day 5.4M queries
BGP tables Apr 28th, 2004 — 270 tables

Table 3.2: Per data set summary information.

3.7 Data sets

The computation of the demands draws on several different data sets, as summarised
in Tables 3.1 and 3.2. This section describes our approach for harvesting and preparing
these various large data sets, each collected at a different location at a different granu-
larity.

3.7.1 CDN Data

Using logs that feed into the CDN billing system of a major CDN provider, in our study
Akamai [Aka], we extract the information which clients are accessing which Web object
at which time. From this, we can deduce for each client set how much content from
which publisher is accessed (after appropriate anonymisation). Each individual log file
records all accesses to some part of the CDN infrastructure during some time period
and is available for processing some time after the last recorded access. We captured
logs for three two-hour time periods: 9–11:00 h UTC on Mon Apr. 26th, 2004 (CDN1)
and 8:30–10:30 h UTC on Wed Apr. 28th, 2004 (CDN2) and 17–19 h UTC on Wed May
5th, 2004 (CDN3) from more than 90 % / 85 % / 65 % of all the operational servers of
the CDN. There are two reasons why we did not capture logs from all servers: Logs
for certain time periods arrive in chunks, thereby imposing huge instantaneous bursts
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that sometimes can overload our limited research collection infrastructure. Other logs
can be delayed due to remote network outages, and thus arrive after we stopped our
data collection process. 4 In addition, the online collection is augmented by an offline
retrieval of some subset of the logs via an archival system. We initially aggregated
this data using the methodology described in algorithm 1 on page 44, using a time
aggregation of half an hour. This time aggregation was chosen to examine the spatial,
rather than the temporal variability of the data.

3.7.2 Data from three user sets

Three sets of client access information were extracted from packet level traces at the
(then) 1 Gb/s upstream link of the Münchner Wissenschaftsnetz (MWN) in Germany. MWN

The MWN provides external Internet connectivity to three major universities (Lud-
wig-Maximilians-Universität München, Technische Universität München, Hochschule
München) and a number of smaller universities, government organisations, and re-
search institutes. Overall, the network contained about 50,000 individual hosts and
65,000 registered users at the time that the study was conducted. On a typical day, the
MWN exchanges 1–2 TB of data with its upstream provider. On the 13th of May 2004
during the day (8–20 h), 295.5 GB used the HTTP port, which corresponds to 26.5 % of
the traffic. During the night, 112.2 GB (18 %) of the traffic was HTTP. This indicates that
the Web is still a major traffic contributor.

Our monitoring is realised via a monitoring port on a Gigabit Ethernet switch, just
before the traffic passes the last router to the Internet. We captured the raw packet
stream using tcpdump on disk, and then extracted the HTTP connections offline us-
ing the HTTP analyser of the intrusion detection system bro [Pax99]. We chose this
approach over feeding the packets ”live” into bro, since this way we can allow bro to
consume more CPU time than real time. The resulting trace contains all relevant HTTP
header information, and it is much more compact than the raw packet data.

Since extracting HTTP data at Gigabit speed is almost impossible using standard PC
hardware [Fel00a], we split our client base into three groups: one for each university
(TUM, LMU), and one that covers the other organisations (MISC). To ensure a reasonable
coverage of all client groups, we monitored each client group for a 2-hour period, rotat-
ing through the groups. Accordingly, each trace captures all downloads of all clients in
the group from all publishers as well as the CDN. In total, we collected 1,017 traces, each
of which covers a 2-hour period. This approach ensures reasonable packet loss rates:
Of the 1,017 measurement intervals, the number of intervals with more than 0.1 % /
1 % / 10 % packet drops (as reported by tcpdump) was 124 / 22 / 1. The maximum
packet loss rate was 10.18 %, the average was 0.23 %, and the median was 0.0028 %.

4The relatively bad coverage for the May dataset is due to having to use a compute server for retrieving
and storing the logs.
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3.7.3 DNS data

We identified the IP addresses of roughly 7,000 DNS servers using a different packet
level trace. The way that we identified these DNS servers ensures that each server sup-
ports recursive queries. The process, however, does not pay attention to the distribution
of the DNS servers within the Internet infrastructure. Therefore, in the next step, we
identified a subset of 516 DNS servers that return different results when resolving the
name of the main CDN Web server. The 516 DNS servers are located in 437 ASes in over
60 countries. We restrict ourselves to using this subset, in order to reduce the load on
the overall DNS system while achieving a good coverage of the Internet infrastructure.
To resolve which publishers are using a distributed infrastructure, we selected a subset
of 12,901 hostnames used by the publishers. The resolution of these hostnames resulted
in more than 5.4 million queries of which 98.2 % received a valid response.

3.7.4 BGP data

We constructed a joined BGP routing table from the individual BGP tables on April
28th, 2004 from RouteView [Rou] and RIPE’s RIS project [RIP]. Our joined routing
table contains 161,991 routable entries. Furthermore, we extracted an approximation
of the contractual relationships between the ASes using a methodology similar to that
proposed by Gao [Gao00].

3.8 Experimental results

In this section, we present our results of applying our methodology to the various data
sets discussed in Section 3.7.

3.8.1 Estimating CDN publisher demands

Our first step is to estimate how much traffic is sent by the CDN on behalf of each
publisher to each client set. For the initial analysis in this chapter, we decided to use
static groups of /24 prefixes to define client sets. We observe 1,130,353 different client
sets within the datasets CDN1 and CDN2. This corresponds to a 23.6 % coverage of
the overall IPv4 address space and a 52 % coverage of prefixes within the routable IPv4
address space. 1.3 % of the observed client space is not publicly routable, perhaps due
to placement of CDN servers within private networks. In total, the client sets accessed
roughly 41 TBytes of data via the CDN network. Thus, on average, each client set
accessed about 36 MBytes over the three trace periods.

The Internet has obviously many client sets and a sizable number of publishers. But
who is contributing the majority of the traffic—is it a small set of client sets, or a small
subset of the publishers? Even by just studying the amount of traffic serviced by the
CDN, we can get a first impression of these relationships. In Figure 3.5 on the next
page, we rank client sets by total traffic received from the CDN from largest to small-
est, and plot the percentage of the total traffic attributable to each for each 30 minute
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Figure 3.5: CCDF of client set traffic volume (% bytes served from all publishers each 30 min).
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time interval of the CDN2 trace. This corresponds to plotting the (empirical) comple-
mentary cumulative distribution function (CCDF) of the traffic volume per client set.
In order to not obscure the details in the curves we use lines instead of marking each
point for ranks greater than five. To better distinguish the curves, we add some sup-
porting markers. As predicted, we find a “linear” relationship on the log-log scale, an
indication that the distribution is consistent with the characteristics of a Zipf-like distri-
bution [Zip, BCF+99] (cf. Glossary). The client sets are sorted by their activity in terms
of downloaded bytes; the first client set is the most active one. This implies that one has
to look for the linear relationship in the left-hand part of the plot, while artefacts can be
expected at the right-hand side.

But do client sets exhibit the same sort of activity distribution, even if we focus on
individual publishers rather than on all publishers taken together? In Figure 3.6 on the
previous page, we explore the characteristics of the top 10 publishers, selected by the
total number of bytes that they serve to all client sets (using the same plotting technique
as before). The fact that we still observe a “linear” relationship on the log-log scale
indicates that even single publisher demands are dominated by the behaviour of a few
client sets. One aspect that may be contributing to these effects is that client sets are
located in different time zones: About 40.4 % of the client sets in CDN1 and CDN2 are
located in the US, 9.4 % in Japan, 6.0 % in Korea, 4.2 % in the UK, 4.2 % in China, 3.9 % in
Germany.5 One reason for reduced demands is that in some client groups, most users
are sleeping, while users of other client sets are at work, etc. Although the impact of
time zones has to be explored further, we start by subselecting various subsets of client
sets. Each of these client sets covers either one (Japan), two (UK, France, Germany),
or four time zones (US). We still observe activity drops that are consistent with Zipf-
like distributions (plots not shown) if we split the demands per client or per time. The
bends for Publishers 6 and 10 in Figure 3.6 are due to the superpositions of accesses by
client sets in the US and abroad; the ones in the US have a higher demand than those
outside the US.

Even though the client sets in Figure 3.6 are ranked separately, according to their
activity for each publisher, it also shows that a client set that receives the most bytes
from one publisher does not do so from another publisher. Rather, there are significant
differences. This indicates that each publisher in the Internet has to determine for itself
who the heavy hitters (contributors) among the clients are—extrapolating from one
client set to another can, in fact, be misleading.

But what is the behaviour if we consider the data from the viewpoint of the client
sets? In Figure 3.7, we explore the popularity of content served by the CDN on behalf
the publishers (using the same plotting technique as before). Again, we observe a curve
that indicates a Zipf-like distribution in the range of 1–1,000. The drop-off in the curve
for less popular publishers indicates that there is a large number of publishers that
do not serve a lot of data via the CDN. However, this does not disprove that, for the
popular publishers, the distribution is consistent with a Zipf-like distribution.

5The mapping of network to country was done using an internal Akamai tool called EdgeScape.
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Figure 3.7: CCDF of publisher traffic volume (% bytes served to all client sets each 30 min).

Generally, we observe the same kind of curves for all data sets and for each subset
of the datasets. For example, in Figure 3.7, the curves for the publisher popularity in
terms of traffic volume between consecutive 30-minute time periods fall on top of each
other. The same observations hold if we look at the individual publishers or the client
sets over consecutive 30-minute intervals. But this does not imply that it is always the
same publisher or the same client set that dominates the distribution. Accordingly Fig-
ure 3.8 plots the bytes contributed by each country during one 30-minute time period
vs. another 30-minute time period. The left plot does so for consecutive time periods.
The nice concentration around the diagonal indicates that the volume changes are not
rapid within any of the three datasets. In contrast, the right plot shows the same kind of
plot comparing corresponding 30-minute time periods from the 26th of April to those
of the 5th of May. (A 30-minute time period starting at offset x in one trace corresponds
to the 30-minute time period starting at offset x within the other trace.) Note that, due
to the time shift, one should expect a larger spread. This is indeed the case, indicating
that the popularity changes have to be considered not being just time-of-day variations.

3.8.2 Estimating relationships between CDN and publisher fl ows

Once we know how much Web traffic is flowing from the CDN to each client set, we
need the ratios from the packet level traces to extrapolate from the partial CDN pub-
lisher demands to the Web publisher demands. Accordingly we apply our methodol-
ogy to the client access logs. Note that we are not necessarily capturing all of the traffic
from the publisher, since our methodology is based on the referrer fields in the requests
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Figure 3.8: Scatterplot: publisher bytes for time period t vs. period t′.

Users Description Requests (in K) Bytes (in GBytes)
absolute relative absolute relative

TUM Total 357,621 100.00 % 3795.83 100.00 %
LMU Total 91,104 100.00 % 721.60 100.00 %
MISC Total 62,013 100.00 % 636.47 100.00 %
All Total 510,738 3× 100 % 5153.90 3× 100 %

TUM CDN 15,065 4.21 % 119.00 3.14 %
LMU CDN 4,449 4.88 % 26.75 3.71 %
MISC CDN 3,043 4.91 % 27.40 4.31 %
TUM CDN customer 10,650 2.98 % 83.95 2.21 %
LMU CDN customer 2,549 2.87 % 13.75 1.91 %
MISC CDN customer 2,107 3.40 % 11.20 1.76 %
TUM related non-CDN 6,121 1.71 % 44.61 1.18 %
LMU related non-CDN 1,325 1.45 % 5.15 0.71 %
MISC related non-CDN 1,212 1.76 % 4.91 0.77 %

Table 3.3: Basic statistics of the user access characteristics.

for CDN-delivered objects—i. e., there might be even more CDN customer data being
delivered than we are estimating.

We start with presenting some basic characteristics of the data sets from the three
client populations covering all monitored subnets, see Table 3.3. Overall, in the TUM,
LMU, and MISC data sets, we observed roughly 522 million different requests for Web
objects for more than 5.15 TBytes of data. This implies that the mean object size in
our data sets is about 9.5 kBytes. The mean size of an object served by the CDN to
the clients at TUM, LMU, and MISC is a bit smaller at about 8 kBytes. This accounts for
the difference between the percentage of requests directed towards the CDN vs. the
percentage of bytes. Although 4.2–4.9 % of all HTTP requests are served by the CDN,
this corresponds to only 3.14–4.31 % of the HTTP bytes.

From Table 3.3, we see that the clients only retrieve 1.8–2.2 % of the HTTP bytes from
the CDN customers’ own servers. This indicates that the ratio of bytes served by the
CDN vs. the bytes served directly by the publishers can vary from 1.4 to 2.5: The rel-
ative percentage of requests directed to the CDN customers is larger than the relative
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percentage of bytes retrieved from the CDN. This indicates that CDN customers del-
egate their larger content to the CDN, which is to be expected. Although publishers
offload a large amount to the CDN, they normally do not delegate all of their traffic—
rather, some of their traffic is served from servers that belong directly to the publisher,
as we have seen in the packet level traces. Therefore, our approach for estimating pub-
lisher traffic can be expected to yield estimates of interesting interdomain traffic flows
for a significant fraction of the overall traffic volume.

The fraction of bytes in the category related to non-CDN-customers gives us another
possible avenue for estimating interdomain traffic flows. There are two reasons why re-
quests (or traffic) falls into this category: publishers offload some of the content to other
service providers (e. g., those providing targeted advertisement), and some of the pub-
lisher’s content is served in connection with other sites (e. g., advertisements on some-
one else’s Web page). We note that a large number of Web advertisement providers
exist, most of these providing a decentralised infrastructure. Thus, even though the
approach of analysing their traffic as well may indicate some additional potential, we
considered the overhead in determining identities and services of these advertisement
publishers was too large in relation to the potential benefit. We thus solely focused
on the ratio of traffic served by the CDN on behalf of a publisher vs. the traffic to the
publisher itself.

For this purpose we need to associate the bytes served by the CDN and the bytes
served by CDN customers’ own servers with the appropriate publisher. Using infor-
mation sources that are internal to Akamai, we were able to identify 23 million requests
from the MWN for Akamai-hosted URLs (Table 3.1). Although 23 million requests are a
sizable number, the individual number of requests for objects served by the CDN over
smaller time period (2 hrs) are significantly smaller. Averaged over the whole duration
of the trace collection, this implies that one can expect to see only 2,000–20,000 requests
in each data set for each two-hour time period. Just averaging is unfair, of course, since
there will be many more requests during busy hours than during off-hours, e. g., in the
middle of the night. In addition, some subnets (e. g., those with Web proxies) generated
many more requests than others. Nevertheless it points out the problem of observing
enough samples for deriving a reasonable ratio estimate.

Here we receive help from a fact that has been observed in many other contexts:
some publishers have much more popular content than others. We rank the number
of requests (Figure 3.9) and bytes (Figure 3.10) by provider from the largest to small-
est for both data sets, and plot the percentage of total requests (or bytes, respectively)
attributed to each. For those publishers that contribute a significant percentage of the
bytes, these curves are “linear” on a log-log scale. Again, this characteristic is consis-
tent with a Zipf-like distribution. Together, these two observations imply that we can
expect to find time periods with a reasonable number of observations for some sig-
nificant subset of the publishers in our user access data sets. We now focus on those
(time period, publisher) pairs with enough observations.

Here we define “enough” as observing at least 50,000 requests satisfied by the CDN
on behalf of a publisher and 500 requests served by each publisher itself per aggregation
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Figure 3.9: CCDF of requests per publisher.
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.

period.6 Using these selection criteria, we compute the ratios of bytes for each publisher
and each aggregation period. Not too surprisingly, we find that the ratios span quite a
wide range of values: from 0.01 to 100.

Comparing ratios is awkward: Is, e. g., the “difference” between 0.03 and 0.06 the
same as the “difference” between 16 and 32? In this context, the answer is yes, since
both “differ” by a factor of 2. Therefore, to ease comparisons of ratios we, in all further
discussion, will use the binary logarithm of the ratios. Accordingly, 0.03 is transformed
to −5, and 0.06 to −4, and 16 to 4, and 32 to 5. Now the differences in both cases are 1.

Figure 3.11 plots the density of the transformed ratios for the TUM and LMU data
sets for both bytes as well as requests. We observe for all data sets that the ratios span
a significant range of values from −10 to 10, both for requests as well as for bytes.
This indicates that different providers use different policies with regards to delegating
their information to the CDN. We see furthermore, as expected, that the CDN usually
provides more bytes than the original publisher for most, but not all publishers. In
addition, with regards to requests, the distribution is more balanced. This indicates
that some publishers use the CDN for big objects, such as software distribution.

Even though the overall distribution of the ratios is interesting, more relevant for
the purpose of estimating the publisher demands is the question: How stable are the
ratios across time and user populations? Overall, it is well known that traffic vol-
ume [WPT98] and flow arrival streams [Fel00b] are self-similar and exhibit significant

6Using a value of 500 is fairly arbitrary.
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Figure 3.12: Box plot of log2(ratios) for the 15 most popular publishers (labelled 1, 2, . . . , 15).
For each publisher results for four data sets are shown (from left to right): TUM / LMU / MISC /
(TUM ∪ LMU ∪ MISC).

burstiness. Therefore, we can expect some fluctuations with regards to the number of
requests over time. In addition, not every user will access the same pages from the pub-
lisher, and different subsets of pages will lead to different ratios in terms of bytes from
the publisher and the CDN. But what are the impacts of all these causes of instability?
Our estimation methodology allows us to explore the size of these instabilities since it
will yield multiple samples of estimated ratio values for various publishers. Figure 3.12
shows box plots of the ratios for the 15 most popular publishers for the samples of the
three data sets, TUM, LMU, and MISC. Box plots can be used to display the location, the
spread and the skewness of several data sets in one plot: the box shows the limits of the
middle half of the data; the line inside the box represents the median; the box widths
are proportional to the square root of the number of samples for the box; whiskers are
drawn to the nearest value not beyond a standard span from the quantiles; and points
beyond (i. e., outliers) are drawn individually.

Most of the boxes have a reasonably small spread (less than two), whereas others
have a sizeable spread, e. g., those at index 4. This is partially due to a fairly small
sample size and partially due to the variability of different content that is offered by
that publisher. Further aggregation and combining the information from different user
sets can sometimes be helpful—Figure 3.12 also shows the box plots for the samples
from the combined data sets. Although some estimations of the ratios stabilise, as indi-
cated by the smaller range of the box, others expand due to the differences in the user
behaviour.

Generally, we can estimate the ratio of publisher demand serviced by the CDN vs.
that serviced by the publisher. But there are drawbacks to this approach: A large num-
ber of requests needs to be monitored in order to derive reliable estimations. The es-
timations can vary across time and some attention has to be paid towards different
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subject/interest areas by different user sets. Furthermore, not all user sets will access
sufficiently many objects from all publishers that are customers of the CDN. Therefore,
this approach should be combined with other approaches for estimating the ratios, e. g.,
static exploration of the Web site and information from the publisher itself.

3.8.3 Mapping of publisher demands to Web traffic demands

The next step is to apply our methodology for mapping the publisher demands to Web
traffic demands. The open question is: how well does the proposed methodology of
mapping each client set and each hostname to a single server IP address work? We
propose a two-step process to address this issue. First, we need to identify the set of IP
addresses for each hostname. Then we need to identify which subset of the IP addresses
to choose for each client set, since it may be the case that not all client sets use all server
IP addresses.

If a hostname is hosted by the CDN itself, or if the infrastructure is using DNS round
robin by itself, the identification step is simple. In the first case, we know which IP
address serves the traffic; and in the second case, all returned IP addresses are used.
Using the data described in Section 3.7.3, we observe that of the 12,901 hostnames,
2,106 (16.3 %) are hosted by the CDN itself, while 1,242 (9.6 %) are using some form
of proximity-aware load balancing, and 10,906 (84.5 %) are consistently returning the
same set of IP addresses. Of these hostnames, 9,124 (83.8 %) are returning a single IP
address whereas 1,079 (8.4 %) are utilising only DNS round robin. Most of these (830)
are using two IP addresses, while 79 are using more than five IP addresses. Therefore,
we have solved the problem for 90.4 % of the considered hostnames. If most publishers
are serving their content out of a small number of servers, then most clients must be far
away from those servers, which indicates that a significant fraction of the traffic that we
capture will be interdomain traffic.

This leaves us the with 1,239 hostnames that are hosted on a distributed infrastruc-
ture and for which proximity-aware load balancing is used. To better understand this
infrastructure, we show a histogram of the number of IP addresses (Figure 3.13) and
the number of ASes (Figure 3.13). We observe that most of these hostnames (83.5 %)
are only mapped to a small number of IP addresses (≤ 5). Indeed, more than 34.7 %
are using only two distinct IP addresses. Next, we examine whether the infrastructure
crosses domains (see Figure 3.14). 377 (30.4 %) of all hostnames that use proximity rout-
ing are in a single AS. This means that, from the view point of interdomain routing, we
will not be able to distinguish these demands. We observe that 44 % of the hostnames
are located in at least two, but at most five different ASes.

To explore how the infrastructure of the remaining 862 hostnames is embedded in
the Internet, we studied the minimal AS distances of the ASes of the IP addresses of the
distributed infrastructure to the ASes of 500 randomly selected IP client sets. In order
to compute the distances, we consider the contractual relationships as derived from the
routing tables [Gao00]. Each AS path may only cross a single peering/sibling edge,
and may never follow a customer-to-provider edge once it has followed a provider-to-
peer edge. Any edge unclassified by the heuristic is treated as a “sibling/peer” link.
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Figure 3.13: Distributed infrastructures: IP addresses per hostname.
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Figure 3.14: Distributed infrastructures: ASes per hostname.
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Figure 3.15: Distributed infrastructures: AS distance between client sets and publisher host-
names.

We observe (Figure 3.15) that providers that use more servers and distribute them in
various AS indeed gain some benefits. The mean distance and the standard deviation
to other ASes is reduced.

3.9 Summary and open questions

In this chapter, we have proposed two models for interdomain traffic demands, pub-
lisher demands and Web traffic demands, that capture the origin, the volume, and the
destination of the data, and thus provide an interdomain traffic matrix for Web traf-
fic. We believe that this simple abstraction can facilitate a wide range of engineering
applications, such as traffic engineering, planning of content delivery, or network sim-
ulation. We have further presented a methodology for populating parts of the demand
model using logs from CDN networks, observations from user sets, the DNS, and the
routing system.

The experimental results obtained by applying our methodology to logs from a ma-
jor CDN and user traces from two large user sets are promising. Our approach seems
to allow us to capture a significant fraction of all Web traffic. Viewed on any scale, but
particularly in terms of the number of pairs, our matrices are some of the largest ever
generated. We have demonstrated that it is indeed possible to combine server log data
from a CDN with packet level traces from large user sets to estimate a good chunk of
all interdomain Web traffic as proven by the diversity and coverage of the demands.
Nevertheless, our results (especially the numerical estimates) should be treated as pre-
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liminary and viewed mainly as an indication of the potential of the methodology. We
present a collection of directions for further research:

1. We have captured only one class of traffic, namely HTTP. Even though several
studies have shown that HTTP traffic is among the most common, its dominance
has recently been challenged by new classes of traffic such as peer-to-peer file
sharing data and streaming media. How well does HTTP traffic demand effec-
tively represent overall traffic demand? How can traffic demand for other classes
be estimated?

2. In this work we assume that the number of bytes served by the content provider
for each Akamai-served object can be estimated by examining traces from a small
number of large client sets. Is the observed ratio of bytes served by the customer
to bytes served by the CDN (reasonably) invariant across diverse user sets? At
this point we have examined only two. It is possible that content providers tailor
their Web pages for different client sets individually; e. g., a U.S.-based site might
choose to serve more compact (fewer bytes) Web pages to overseas clients.

3. Now that we have a means of estimating interdomain traffic demands, we are
beginning to explore aspects such as temporal (time-of-day) and spatial distribu-
tions and analyses of publisher/user dynamics. But we expect it to be even more
fruitful to combine this data with routing information, specifically BGP tables.
How does BGP respond to network bottlenecks? How do the demands shift in
response to routing changes?
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4 Characteristics of Web search related
traffic

After we have analysed Web traffic in general on a global scale in the previous chapter,
we now focus on the characteristics of Web traffic that is the direct or indirect result of
search engine usage. Search engines are a vital part of the Web and thus the Internet
infrastructure. Interactions with search engines make up a tremendous part of users’
Web activities. Therefore understanding the behaviour of users searching the Web gives
insights into trends, and enables enhancements of future search capabilities. Moreover,
the characteristics of Web-search induced traffic can be of use in other domains, e. g.,
interdomain traffic matrix estimation [CJMW05]. Indeed, search engines are an active
research area in itself.

Similar to our methodology for estimating Web traffic demands, one possible data
sources for studying Web search behaviour are either server side logs or client side
logs. Unfortunately, current server side logs are hard to obtain, as they are consid-
ered proprietary by the search engine operators. Therefore we in this chapter present a
methodology for extracting client-side logs from the traffic exchanged between a large
user group and the Internet. The added benefit of our methodology is that we do not
only extract the search terms, the query sequences, and search results of each individual
user but also the full clickstream, i. e., the result pages users view and the subsequently
visited hyperlinked pages. We propose a finite-state Markov model that captures the
user Web searching and browsing behaviour and allows us to deduce users’ prevalent
search patterns. To our knowledge, this is the first such detailed client-side analysis of
clickstreams.

4.1 Introduction

Besides gaining new insights into user search patterns, query clickstreams can serve
as a means for Web search enhancement. In the past, query logs [LW04] have been
used to extend state-of-the-art link analysis on the Web graph, or to perform query
clustering [CWNM03] for query expansion. The implicit feedback inferred from such
logs can be used as input to machine learning approaches [RJ05], or in the estimation
process of language-model based information retrieval [STZ05].

Unfortunately, the currently available data sets about clickstreams are rather limited.
In principle, there are two ways of gathering such data: either on the server, or on the
client side. As server side data is considered proprietary, current analyses are limited
to only a few search-engine-specific data sets, including one gathered in 1998 from Al-
tavista [SHMM98], one from the Excite search engine [SWJS01] in 1997, and one from
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Vivisimo [SKP+05] in 2004. Furthermore, none of these data sets include the full click-
stream which consists of all user accesses to Web pages related to a search query. The
client-side data gathering has focused on asking volunteers to surf the net using addi-
tional browser plugins, e. g., [WOHM06], or enhancing HTTP proxies with extended
logging functionality, e. g., [AWS06]. Yet, not all sites currently use proxies or are will-
ing to modify them.

Our approach is to extract client-side logs from packet level traces of the traffic ex-
changed between a large research network and the Internet. From the packet level
traces, we extract all HTTP requests and responses, as well as the bodies of all responses
from search engines. From this data we reconstruct each of the users’ query sessions.
This includes that we determine for each search query the position of the search results
that the user clicked upon (if any). Furthermore, we recursively analyse how many
links (if any) the user followed from the search result.

Utilising data obtained at the border of the MWN, the large scientific network located
in Munich which we mentioned in Section 3.7.2 on page 49 already, we present a char-
acterisation of the query sessions as well as a finite-state Markov model that relates the
Web search clickstreams to the Web hyperlink structure.

4.2 Related Studies

Studies of Web search behaviour can be categorised along different axes according to
whether the data is gathered from search engine logs or on the client side, the time pe-
riod they cover, as well as the measures applied and research questions pursued. Jansen
and Pooch [JP01] survey and compare studies on traditional information retrieval sys-
tems, online public access catalogues, and Web searching up to the year 2000. They
find that there is a lack of clarity in the descriptions and that the use of different ter-
minologies by the various studies make the results hard to compare. They propose a
framework for such analysis, which we use in this study.

More recently, a number of researchers, e. g., [LLC05] have focused on categorising
queries according to user search goals in order to improve search performance. Lee et
al. [LLC05] rely on packet level traces. Yet, as the focus of their paper is on automatic
identification of user goals in Web search, they do not systematically establish a rela-
tionship between the position of the search results and the gathered clickstream, nor do
they consider follow-up clicks. Another line of work (e. g., [BJC+04]) aims at a topical
query classification using data from a major commercial search service.

Chau et al. [CFS05] examine which documents of the result pages are viewed by the
user; they, however, do not consider which hyperlinks the user follows beyond these.
In addition, their study is limited to Web site search. Spink et al. [SJO00] use a Markov
model for query reformulation patterns of the Excite search engine. Their model, how-
ever, cannot include the user behaviour beyond the search engine interface: It neglects
which documents that are listed on the result pages are visited by the user during a
query session. Thus, none of these studies take the whole Web query clickstream into
account.
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4.3 Terminology

To simplify the discussion, we briefly summarise some of the terms that we use in the
remainder of this chapter. The definitions are in part taken from Jansen et al. [JP01] and
from Spink et al. [SWJS01].

termTerm: any unbroken string of alphanumeric characters entered by a user, e. g., words,
abbreviations, numbers, URLs, and logical operators.

queryQuery: a set of one or more search terms as typed by the user (may include advanced
search operators). After a query has been issued, the search engine (hopefully)
returns a query result page. query result page

query sessionQuery session: a time-contiguous sequence of queries issued by the same user.1

unique queryUnique query: a query that is unique within one query session.

repeat queryRepeat query: re-occurrence of the same query in the same session, e. g., if a user re-
trieves several result pages for one query. We furthermore distinguish between
next result page queries and real repeat queries: The latter indicate multiple requests next result page query

real repeat queryfor the same query result page.

result linksResult links: links contained in the query result page.

result positionResult position: the absolute position of a result link in the query result page.

clickClicks: text/htmlHTTP requests that are the result of a click on a hyperlink.

result clickResult clicks: result links on which a user clicks.
clickstream

Clickstream: all text/html requests related to a query session.

4.4 Search clickstreams

In order to monitor the Web search clickstream of a set of users, we rely on capturing
client side logs. More specifically, we suggest to use packet level traces as our main
data source. From these traces we extract:

for the search engine under study: all HTTP requests and responses including their
bodies and the HTML links they contain.

for all Web servers: all HTTP request and response headers.

1An alternative definition for a query session is “a sequence of queries by one user which satisfy a sin-
gle information need.” Unfortunately, identifying such sessions is only possible by finding semantic
demarcations, e. g., by relying on query similarity. But recent work [SKP+05] indicates that such de-
marcations may not exist, as a user may work simultaneously on several information needs, or may
have rapidly switching information needs, or his information needs may evolve or shift during his
search activities.
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Neither standard browsers nor Web proxies provide us with this kind of data. Thus
one would have to either instrument all Web browsers or install a modified Web proxy
into the data path [AWS06, KR01].

Although one could use any tool that can reconstruct HTTP level detail from packet
level traces (see, e. g., [KR01]), we utilise the HTTP analyser of bro [Pax99], a network
intrusion detection system. A self-written “policy” file for bro extracts all the data de-
scribed above from both standard HTTP/1.0 as well as persistent or pipelined HTTP
connections. For extracting HTML links from the bodies retrieved from the Web search
engine, we use the Perl module HTML::Parser version 3.45 from [Net].

4.4.1 Search queries

To determine which requests are search queries, one has to consider the specifics of the
search engine. We, in this chapter, focus on queries to Google, but the same principle
methodology can be used to extract clickstreams for other search engines. We consider
an HTTP request to be a Google query if the following conditions hold:

• The request is made to one of our locally-seen Google servers in the subnets
66.249.64.0/18, 64.233.160.0/19, 216.239.32.0/19, 72.14.192.0/
18, or 66.102.0.0/20.

• The Host header contains the string “.google.” .

• The URI starts with /search?, contains a non-empty CGI parameter q=..., and
does not contain the string client-navclient-auto, since we conjecture that
these come from requests issued by a software, but not from direct user interac-
tion with the browser.

• The Content-Type field of the response contains the string text/html.

• The User-Agent field does not indicate an automated query, i. e., it does not
contain any of these strings: bot, agent, crawler, wget, lwp, soap, perl, python, spider
(case-insensitive match).

4.4.2 Sessions (User Web search clickstreams)

In order to statistically evaluate the user search behaviour, we somehow need to group
the search-related actions of individual users. Thus we identify search requests, and we
determine individual sessions that contain all search requests and all other text/html
requests that are directly or indirectly reachable via the result pages of the query re-
quests (search-induced clicks).

The grouping of requests into sessions is shown in Fig. 4.1 and works as follows: For
each arriving request, we determine whether it is a search request, using the criteria
from Section 4.4.1. If this is the case, we utilise the fact that Google embeds a cookie
called PREF in the search request stream. This cookie contains a portion labelled ID,
which Google apparently uses for tracking individual users. We search in our pool of

66



4.4 Search clickstreams
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noyes yes, at least one none at all
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Figure 4.1: Determining the session for a new request.

currently active sessions for a session that matches the given ID, and add the request
to the session. If no session matches, we instantiate a new session.

If the current request is not a search request, we determine client IP and HTTP
User-Agent as a pseudo-ID (note that this concept is orthogonal to the Google cookie
IDs). In all sessions matching this pseudo-ID, we look for requests that have either the
same URL as the current request, or whose URL matches the HTTP referrer of the cur-
rent request. We assign the current request to the session with the most recent matching
request. If no match can be found, we ignore the current request.

Sessions that have not seen a request for more than five minutes are considered to
have ended. They are removed from the pool of active session and will not be re-
activated.

4.4.3 Query terms

Given that we can now group queries into sessions, we also want to examine how the
queries within each session differ. Therefore we consider the query terms within the
query based on an understanding of the specifics of the query language provided by
the search engine. Google’s basic search [Ggl] requires all search terms, except stop
words2, to be present in the results, i. e., all terms are implicitly combined by “and”.
Capitalisation plays no role, as all typed letters are automatically converted to lower
case. In contrast, term order is decisive. Accordingly, we normalise the queries to
lower case but retain the search term order. Negative terms, i. e., terms that should not
occur, are preceded by a minus. Phrases are surrounded by quotation marks and are
treated as a single term. A plus sign in front of a term tells Google that this is not a
stop word; a stop word would be removed otherwise. The tilde sign before a term tells
Google to include synonyms and is therefore kept. The “site:” operator restricts the
search space to the specified domain. Even though Google offers several additional
advanced features we, in this study, restrict ourselves to the ones discussed above, the
most common ones.

2Stop words are very frequently occurring words that carry little information like a, the, is, . . .
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4.5 Search characteristics

We now describe the dataset that we use for our analyses of user Web search behaviour.
The description is followed by an analysis of the user query behaviour, in order to
reveal some characteristics of the user population that we examine.

4.5.1 Dataset

For our analysis of the clickstreams we use data collected from the Münchner Wis-
senschaftsnetz (MWN; Munich Scientific Network). At the time that we conducted our
study, the MWN provided a 10 Gbit/s singly-homed Internet connection to roughly
50, 000 hosts at two major universities along with additional institutes; link utilisation
is typically only around 200–500 Mbit/s in each direction. Our monitoring machine is
connected to the monitoring port of the border switch. Since MWN as a whole imposed
too much load on our tracer machine running the bro HTTP analyser, we restrict our
data gathering to Ludwig-Maximilians-Universität, the larger one of the two universi-
ties in Munich (about 44,000 students).

bro’s memory consumption increases slowly over time, as it accumulates state from,
e. g., dangling TCP connections, etc. Thus we start a new bro process every 45 min and
let it run for 50 min. The resulting 5 min overlap ensures that HTTP requests that stretch
over the 45-minute boundary are not lost, apart from a few long-lasting persistent con-
nections. Duplicate records are removed.

We consider all requests issued from Thursday, August 17th, 2006, 17:07 MET until
Friday, September 1st, 2006, 21:00 MET, excluding a monitor downtime period of about
18 hours. The median packet loss as reported by bro and LIBPCAP during each 50 min
interval is 0.0 % (average: 0.15 %; maximum: 7 %). The total number of HTTP requests
on TCP port 80 is 125,104,884; the number of transferred HTML objects is 28,026,595,
of which only 19,601,616 have HTTP status code 200. Note that these numbers also
include “abuses” of the HTTP protocol by non-Web applications.

During this time period, we identified a total of 545,455 Google search queries. There
are 275 empty queries where the user clicked the “Search” button before entering a
query. Out of the remaining Google queries, 414,184 are unique queries, and 130,996 are
repeat queries. The repeat queries consist of 105,683 real repeat queries and 25,313 next
result page queries. Manual inspection shows that most queries relate to local specifics
of the area of Munich (see also Table 4.5.2 on page 70). Yet, as expected, the queries
also reflect the academic environment. We note that, even though manual inspection
reveals that many obviously recreational queries are made, our data is strongly biased
towards academic users, and thus may expose a behaviour that is different from the
general population.

4.5.2 Query session characteristics

To understand the characteristics of the sessions within the reconstructed clickstream,
we start this section by presenting statistics similar to those of previous studies [CFS05,
JP01, SWJS01].
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Query length

The maximum number of terms per query we encountered is 199; one user copied a
whole text snippet into the query box. The median query length is 1 while the mean is
1.67. This shows an even stronger trend towards very short queries than observed in
the course of previous studies, e. g., [SHMM98]. 64 % of the queries consist of a single
query term, 83 % contain less than three terms, and 99 % consist of less than six terms.

Use of search operators

Of the 414,184 unique queries, 11,977, i. e., 3% use phrase search. 832 queries enforce
the occurrence of a search term via the plus operator, and 315 queries use the minus
operator to exclude search terms. However, similarity search utilising the tilde oper-
ator does not occur at all. Finally, domain queries (restricting the search to a specific
Web site) occur 492 times. To summarise, only about 0.4 % of the queries made use of
features other than phrase search.

Terms

We identify 249,445 distinct terms in our data; however, 124,095 of these are of the form
"info:<url>" to request further information on specific URLs from Google. We omit
these terms in the following statistics (note that this might be an explanation for the
large number of one-keyword queries found). The most frequent terms are listed in
Table 4.5.2 in descending order of their frequency. This statistic clearly reveals a bias in
our dataset towards local themes (high frequency of terms relating to Munich and Ger-
many), as well as academic subjects. For example, the term “lmu” is short for “Ludwig-
Maximilians-Universität”, which is the university whose Web traffic is analysed in this
study. Also note the use of stop words (“in”, “der”) and the set of presumably naviga-
tional queries, e. g., “wikipedia”. In addition, queries relating to recreational activities
are quite frequent such as “hotel”, “wetter” (which is German for “weather”), as well
as searches related to companies and products (e. g., both “siemens” and “xp” occur
with frequency 224). Yet, in spite of the academic environment, we also find queries on
pornographic material, such as “sex” (387) and “porn” (116). Interestingly, the promi-
nence of the term “+” possibly indicates that users have trouble with the correct usage
of the “+” operator, and write “+ the” instead of “+the” to prevent “the” from being
neglected as a stopword, or that they use it for phrases such as “tom + jerry”.

Query sessions

We identify 153,719 query sessions. The median number of queries per session is 2,
the mean number is 3.5. There are sessions with more than 100 queries, but more than
46 % / 20 % only contain one / two queries. Similarly, the median number of unique
queries is 1 and the mean number decreases to 2.7. Accordingly, the median number of
repeat and real repeat queries is 0 while the mean is 0.85 and 0.69, respectively.
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Term Freq. Term Freq. Term Freq.

münchen 9,815 lmu 1,009 die 710
in 2,830 für 969 windows 703

the 1,875 2006 895 wetter 676
of 1,809 online 852 a 662
+ 1,724 von 832 lyrics 628

der 1,532 de 825 java 623
und 1,405 to 808 uni 599

download 1,373 bayern 799 berlin 595
muenchen 1,370 linux 783 free 591

and 1,020 wikipedia 761 hotel 582

Table 4.1: The 30 most frequent search terms.

Query refinements

To describe the relationship between two consecutive queries in the same session, we
distinguish between the following kinds of query modifications: repeat (the same query
again), disjoint (no overlap in the query terms), add (the follow-up query is a superset
of the previous one), delete (the follow-up query is a subset of the previous query), and
replace (the follow-up query and the previous one overlap but are not strict subsets). We
find that there are 20 % (76,541) repeat, 68 % (265,715) disjoint, 4.75 % (19,661) add, 2.5 %
(9,521) delete, and 4.75 % (20,023) replace modifications. This rather coarse-grained
categorisation leaves space for further investigation, e. g., to examine how often terms
are changed into phrases, or how often users re-order terms.

Result pages viewed:

The maximum number of viewed result pages is 32. The mean number is 1.06 and the
median is 1. If we consider the unique queries, 96.5 % look at only a single result page.
Less than 0.1 % consider four or more distinct result pages.

4.6 A state model for Web search

To better understand the behaviour of users that search the Web, we model Web user
behaviour during a search session as a Markov model. The Markov model relates the
hyperlinks between the Web documents (thereby capturing the relationships between
the requested documents) with the clickstream (the sequence in which a user requests
the documents) and the properties of the documents (position in search result, HTTP
status code).

The goal of the model is to help answer numerous questions regarding a user’s nav-
igational behaviour during Web search, e. g.: Which link result position is likely to
contain the answer a user is looking for? Is a user likely to explore the Web site of a
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clickstream (state changes)

referrer (hyperlinks etc.)

cookie (user identification)

g1p1

g1p1R6 g1p1R10

g1p2

g1p2R2 g2p1R1

g2p1

g1p1R6L1 g1p1R6L2

g1p1R6L1L1

Figure 4.2: Logical relations (referrer, cookies) and actual click sequence as conducted by the
user in a sample search session.

top-ranked result click further than a subsequent one? Do protections against “deep
links” from search engines affect user search behaviour? Moreover, this model can be
used as a refinement for the interdomain traffic estimation technique of Chang et al.
[CJMW05].

4.6.1 States and transitions

Each state in our Markov model includes important aspects of the users’ navigational
behaviour. It retains the following information:

Index of search query in session: gx

Index of result page: py

Position of result click: Rk, if it can be established

Furthermore, as a user may visit additional pages between result clicks, we capture
the tree structure of such requests by keeping an index for the tree depth Li and the
number of sons for each level of the tree Lz. Moreover, a state may have additional
attributes for capturing whether the page was reached via a different HTTP status code
than “200 OK”.

Each state captures the logical relationship of the requested page to the query that
directly or indirectly made the user access this page. As the user clicks on pages, he
navigates through the state space, and each click on a hyperlink corresponds to a state
change. (Note, however, that requests served directly out of the client cache can only
be inferred if they do not result in an If-Modified-Since request.) In effect, when
viewing the clickstream as a set of events over time, the current state represents the
user’s (presumed) navigational position in the graph of hyperlinked documents ac-
cessed during the search session.

Let us consider an example of a search session where the user searches for informa-
tion on the soccer world championship in 2006. The states in our Markov model are
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given in parentheses; the entire search is depicted in Fig. 4.2. At first, the user might
submit the query “soccer” to the Google search engine (g1 p1), and explore the sixth
result link on page 1 (g1 p1R6), “soccer international root page”, in a new browser win-
dow. On this Web site, he explores, e. g., the link for “German version” (g1 p1R6L1),
where he follows yet another link (g1 p1R6L1L1). He finds that this link does not con-
tain what he was looking for, thus presses the back button twice, which results in two
If-modified-since requests (g1 p1R6L1, g1 p1R6), and clicks on the “English version”
page instead (g1 p1R6L2). Still unsatisfied, he goes back to the initial search result list
(g1 p1) and explores the tenth link: “soccer-sites.com” (g1 p1R10). As this site does not
contain the desired information either, he takes a look at the next set of results from
Google (g1 p2), where he clicks on the second result link (g1 p2R2) “ussoccer.com”. This
is still not a site about the FIFA World Cup in Germany, so he refines his original search
by typing “Soccer world cup” in yet another browser window (g2 p1). Note that the
usage of another browser window has the effect that we cannot establish a logical con-
nection between the two clicks via the referrer field; rather, we have to rely on the PREF
cookie. In this case, the first result (g2 p1R1) points to “The official site for the 2006 FIFA
World Cup Germany”, which the user clicks on. The thick pink lines in the background
of Fig. 4.2 show the relationships (i. e., hyperlinks) between the Web pages, whereas the
thin black arrows depict the actual user clickstream. The dashed blue arrows indicated
queries whose affiliation cannot be inferred through HTTP referrers, but only via the
PREF cookie.

We distinguish three types of states:

Query result pages have the form gx py indicating that this is the y-th result page of
the x-th query in the session.

Result clicks have the form gx pyRγ, where gx py identifies the query and γ is the result
position.

Other clicks have the form πLz where π is the state of hyperlinking document Π that
originates the click, and z is the index of the clicked document in the vector of
clicked hyperlinks originating from Π, ordered in time.

4.6.2 From HTTP logs to Markov states

For the construction of the Markov model, we focus on text/html objects, since
each Web page has an HTML document as its skeleton. A brief analysis of HTTP
Content-Types reveals that the number of transferred objects in other potentially
hyperlink-capable formats such as PDF or XML is insignificant at the time of this writ-
ing.

To capture the Web search clickstreams by means of a Markov model, we apply the
following logic: For each new request ν, we first locate the session that it belongs to,
using the method described in Section 4.4. Then we determine the state to be assigned
to the request using the mechanism outlined in Fig. 4.3: First, we examine whether ν
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Figure 4.3: Determining the Markov state for a new request.

requested the same URL as a previous request ρ in the same session. If so, we simply
assign ν the same state as ρ. Otherwise, we check whether ν is a search request. If so,
we either increment the search index number from gx . . . to g(x+1) . . . (in the case of a
new query), or we retain the old search number gx . . . if the user repeats his query, e. g.,
he might request the next Google result page (which requires an adjustment of the page
number from gx py to gx p(y+1)), or he might have entered the same search terms again.
If the request ν is not a search request, we examine the request ρ that corresponds to the
URL where the referrer of ν points to (this task is described in Section 4.4.2). Assume
that ρ has state gx py[. . . ], and that previous requests already have been assigned the
states gx py[. . . ]L1 to gx py[. . . ]Lz. Then we assign ν the state gx py[. . . ]Lz+1. An exception
occurs if ρ is a search request: In this case, we determine the position of the URL for ν

in the HTML code pertaining to ρ and thus determine its search rank. Here, the state
we assign to ν is gx pyRposition, i. e., it depends on the position of ν in the list, but not on
the number of child states of ρ.

Note that the user clicking on a single hyperlink may trigger the download of multi-
ple text/html documents. For example, the URL that a hyperlink points to may re-
sult in a “302 Found” redirect (having text/html as Content-Type), which points
to an HTML document consisting of multiple frames, each transferred as yet another
individual text/html object. To avoid the instantiation of many futile intermediate
states, we assign a request the same state as a previous request from the same session,
if they are less than one second apart from each other and are linked via URL / referrer.
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To keep Fig. 4.3 simple, this mechanism is omitted in the picture. In the case that we
cannot capture the beginning of a session, a “new” session may start with, e. g., g1 p3

instead of the normal case g1 p1 shown in Fig. 4.3. This is due to the fact that we always
calculate the page number (g... py) from the search request’s URL. We find only a small
number of such exceptions in our data.

When identifying state transitions as indicated by the temporal evolution of the search
clickstream, we find that the time sequence of the clickstream (thin black arrows) is
likely to differ from the hyperlink graph as highlighted in Fig. 4.2 (thick light-coloured
arrows). For example, by keeping the query result page in a separate window, the user
can call g1 p1R10 without having to re-enter his query; thus a re-request of g1 p1 is not
necessary. Note that the same page and therefore the same state can be reached multiple
times, e. g., when the user presses the “back” button after retrieving page g1 p1R6L1L1.

4.6.3 A refinement for interdomain traffic analyses

Apart from describing those aspects of user behaviour that are immediately pertain-
ing to Web searches, our model also can be used to refine the method that is described
in [CJMW05]. In their work, Chang et al. draw on various publicly available data
sources for estimating an interdomain traffic matrix. One of their data sources are pub-
lic lists that contain frequently-used search terms in Web search. These lists are used
to send queries to a popular search engine. The highest-ranked sites in the query re-
sult list are then identified, as they are considered to be major traffic sources due to an
assumed search result popularity.

Using our method, it is possible to refine this method in a number of ways. First, our
model yields weights on the popularity ratios for the differently-ranked entries in the
search result page (i. e., the first search result is more often clicked upon than the second
one, etc.). Second, as we have seen our (refined) model can tell on average how many
more clicks a user spends on the website of the first, second, third etc. search result—
and this number of clicks can be expressed in the number of bytes. Third, our approach
of collecting HTTP traces can be used to identify popular sites in general, although this
is, of course, not specific to our state model.

4.7 Model-Based Analysis

Recall that our state model does not only investigate the search queries, but also takes
into account all subsequent clicks that are direct or indirect consequences of the users
clicking on search results (followup clicks). In the following, we demonstrate the broad
applicability of our model by highlighting some key findings that we made in our anal-
yses of real-world data.

Using the data described in Section 4.5.1 with our state model, we are able to as-
sign a state to 1,488,246 text/html requests with HTTP status code 200 and iden-
tify 1,336,418 “clicks” (search states). Thus the share of search operations and their
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Figure 4.4: CCDF for number of clicks triggered by one search operation, and CCDFs for click
distance between search page and visited document.

follow-up clicks amounts to least 6.8 percent of all transferred HTML documents.
Note that this lower bound is strict.

If we analyse the distribution of the number of followup clicks for each individual
search request (i. e., the “child states” for each gx py), we see a mostly linearly falling
slope on a CCDF plot (Fig. 4.4, circles). As was pointed out before in Section 3.4
and the glossary, this suggests consistency with a Zipfian distribution. In this respect,
search-triggered Web sessions thus do not seem to differ from Web sessions in gen-

eral [Bar01]. The same holds for the distribution of total the number of clicks per session
(plot not shown).

Similar behaviour occurs in the distribution of the number of clicks between a doc-
ument and the original search request, which we call click distance. In addition to this,
Fig. 4.4 reveals that the users behave slightly different during working hours (red trian-
gles) than during recreational times (green cross-hairs): During their spare time, users

are more likely to engage in “serendipity clicks” leading them away from the page

they may have been originally looking for.

Next, we compare the total number of clicks per session (black circles) vs. the distri-
bution of click distances (red triangles) in the corresponding time intervals. We observe
that these curves run in parallel for almost the entire range, except at the end. This sug-
gests that most users follow a rather linear approach during searching and browsing;

i. e., they normally do not click on the “back” button and follow another link on the

previous page, etc. Only long sessions with many clicks seem to differ significantly in
this respect (lower right of plot).
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Figure 4.5: Rank in search result vs. willingness of the user to continue browsing from the result
page.

Users are much more likely to re-formulate queries than to view the second result

page. By comparing states gi p1 with gi p2 and gi+1p1, we observe that a user is about
37 times more likely to enter a new query than to look at the next result page.

If we look at the lozenges in Fig. 4.5 (bottom), we see that most users request the

first search result—in fact, more than 60 % of the clicks on any ranked search result
(i. e., excluding advertisements, search settings etc.) go to position 1. Note, however,
that we witnessed automatic pre-fetching of the first search result in a number of cases.

When we consider the number of follow-up clicks to a search result as a measure for
the result quality, we see that top-ranked search results indeed seem to be of higher
quality than lower-ranked ones (Fig. 4.5, blue line at top with crosses). Yet, the pre-
sumed result quality difference between high ranks and low ranks is significantly lower
than the difference in popularity (red line at bottom with lozenges). This suggests that
the page summaries in the result list probably are read by most users before they
click.

Let us finally analyse the impact of HTTP redirects that lead the user away from a
search result: If a user enters any state gx py{R, L}z via an HTTP redirect (not issued by
the search engine), the average number of clicks that start from this document is only
0.12, as compared to the normal 6.5. This means that a user who clicks on a search result,
but is redirected to a different page than the desired one, normally does not spend any
time on that page. We conclude that operators protecting their Website against “deep

linking” from search engines repel many potential customers. Ironically, their intent
of trying to lure visitors into their site this way turns out to have just the opposite effect.

4.8 Summary and Outlook

In this chapter, we analysed Web search clickstreams. Our data is gathered by extracting
the HTTP headers from packet level traffic, as well as the bodies of Web search result
pages. We correlate both data sets to extract sequences of subsequently posed queries,
and relate each query to its clicked result pages and follow-up clicks.
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Based on the data gathered so far, we find that most queries consist of only one key-
word and make little use of search operators, such as the plus, minus or tilde sign.
Moreover, users issue on average four search queries per session, of which most consec-
utive ones are distinct. Relying on our Markov model that captures the logical relation-
ships of the accessed Web pages, as well as navigational behaviour, we gain additional
insights on users’ Web search behaviour. Users are much more likely to re-formulate a
query than to look at the second result page. This is consistent with the observation that
the top-ranked results are much more attractive to a user, perhaps due to the reluctance
to use the scrollbar. Moreover, judging from follow-up click behaviour, top-ranked
results seem to be of higher quality than lower-ranked ones. “Serendipity browsing”
seems to influence user search behaviour during recreational time periods. Finally, Web
sites that are protected against “deep links” repel many visitors.

Our approach for gathering clickstreams is generic and not limited to Google, our
example search engine. By gathering data from multiple search engines for the same
user set during the same time period, comparisons of user behaviour (and, possibly,
implications about search result qualities) across different search engines are possible.
While it was our initial intention to investigate along this alley, we found to our greatest
surprise that a sensible analysis of this kind was not possible with the data presented
in this work—since the queries to Google appeared to overwhelmingly outnumber the
queries posed at other search engines (e. g., Yahoo, MSN search, Lycos, Excite). Worse
yet, those other search engines appeared to be used only during very short sessions,
which makes a state model analysis futile. Another promising alley can be to perform
timing-based analyses by considering the time a user spends in each state.

In a study that is related to our work presented in Chapter 3, Chang et al. identify
hosts that serve Web sites containing frequently-accessed search terms from publicly
available data [CJMW05]. They use this data to estimate interdomain traffic matrices,
by estimating the traffic that was supposedly served by the servers hosting the pages
with the most popular search terms. Combined with our methodology, this analysis
can be refined further: For example, one can take into account not only the popularity
of the query terms, but also the actual result clicks, or one can estimate the number of
follow-up clicks on the same server. Moreover, our method allows to consider all kinds
of search engines, including very popular ones. It is not restricted to publicly available
query term popularity lists, which are a scarce quantity.
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The previous chapter introduced a methodology for estimating traffic demands on a
global scale. Dynamic routing and traffic engineering, which is the focus of this thesis,
indeed needs to draw on data sources that provide similar traffic information. Yet, the
methods presented in Chapter 3 have some limitations, not only regarding the scope,
but also regarding the time scale. Moreover, it requires data sources such as CDN log
files which not many institutions, even large ISPs, may have access to. Furthermore, the
method comprises centralised aspects regarding the collection of data, and suffers from
some limitations regarding the timescale on which we can expect to obtain meaningful
results.

A dynamic routing or traffic engineering mechanism, however, ideally works in a
decentralised manner. This also comprises the task of collecting the data which the
routing or TE decisions are based upon—and it needs very frequent updates on the
traffic conditions, i. e., on a time scale of one minute or, preferably, less.

A natural first step towards a distributed traffic data collection is to let the routers
count the oncoming traffic packets, using, e. g., NetFlow [Cis] or similar mechanisms.
However, NETFLOW is known to negatively affect the performance of a router. This is a
reason why many operators refrain from enabling it in their networks. One possibility
to alleviate the NetFlow impact can be to use packet sampling methods [SF02]. On the
other hand, emerging trends such as load-adaptive packet classifications and adaptive
firewalls [BK05] require constant monitoring of hit rates in the packet classification data
structures of a networking device. This information, too, can be used as a data source
for dynamic routing and traffic engineering.

In this chapter, we present an algorithm for efficiently gathering statistics about the
hit frequencies on the nodes of a search tree in a packet processing system, under lim-
iting space constraints. The Expand and Collapse (EaC) algorithm is a heuristic that
periodically adjusts the set of those search tree nodes at which statistics are gathered, in
order to use the limited space available to collect statistics in preference from the cur-
rently most frequently visited nodes in the search tree. We prove convergence and good
node-hit coverage of the algorithm and validate its performance on a set of simulated
data.

The information collected can be useful for a variety of reasons, such as inferring
traffic properties for dynamic routing, discovering failures and attacks, dynamically
optimising a tree-based packet classification method for locality patterns in the oncom-
ing traffic, or other optimisations related to the tree on which our method is used.
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5.1 Introduction

A common task in packet processing systems is a lookup or search over a database or-
ganised into some form of a search tree. Typically executed per every packet, it must besearch tree

carried out within a tight time budget. Examples are a next-hop lookup, where a packet
destination address is compared to a table of address prefixes using a longest-prefix
match, or packet classification, where multiple fields in the packet header are comparedpacket classification

against rules in the classification table, in order to determine the applying rule with the
highest priority.

Efficient implementation of the longest-prefix match [NK98, DBCP97, WVTP97] and
rule-based classification [FM00, GM99, SBVW03, KKV+03] has been a subject of exten-
sive research. Often, a search tree is built over a pre-processed prefix-table or rule-set,
to achieve a favourable tradeoff between size and search speed. For example, the Hi-
Cuts [GM99] and HyperCuts [SBVW03] classification methods construct search trees
by a heuristic that cuts the search space into subspaces containing an approximately
equal amount of rules; HiPac [FM00] constructs several interlinked search trees.

Generally, few assumptions or observations are made about the workload patterns
of the search keys—the methods are typically optimised for the worst case scenario,
minimising the depth of the search tree. However, neither the packet flows are dis-
tributed uniformly over the address- or rule-space, nor is the popularity of flows in
terms of packet count uniform [FW97, WDF+05]. Clearly, such non-uniform distri-
bution of workload is going to lead to massive inequalities in the number of packets
traversing different paths of the search trees, as some paths will be traversed much
more frequently than others.

To our best knowledge, little work has been so far dedicated to the ability to monitor,
at run-time, the hit rates per different paths traversing the search tree structure. This
information can be useful in a number of ways: for inferring traffic properties, deter-
mining the most potent traffic flows, discovering failures and attacks, or dynamically
optimising the search method itself for locality patterns in the oncoming traffic, e. g., by
providing shortcuts in the tree [BK05, KS06].

In this chapter, we study statistics gathering from a tree-search method on a high-
speed architecture with a complex memory hierarchy, such as a network processor
[JK03]. We aim to efficiently capture how traffic is distributed over the search tree and
to determine the current frequently traversed paths.

5.2 Related Work

Gathering statistics about current network traffic has become a standard task in both
research and in operational networking environments [IDGM01, MHH+03, EKMV04].
Usage of such statistics ranges from analysis of flow dynamics on wide-area networks
[FW97, WDF+05] over rules how traffic can be engineered [PTD04, FGL+00a] to traffic-
adaptive methods within the network node [SRS99, KB02].
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The principal lessons can be summarised as that many quantities characterising net-
work performance have long-tail probability distributions, which may have a dramatic
effect upon performance [FW97, WDF+05]. Thus, a possible engineering principle is to
select a small set of objects (packet flows) that account for a large fraction of the over-
all traffic (due to the long-tail distribution), to be treated differently so as to achieve
a specific performance objective. However, the object dynamics are volatile and the
particular objects (packet flows) need to be reselected often [PTD04].

The counter management algorithm in [RV03] allows to maintain a large number of
counters at line rate. We take an orthogonal approach, by restricting the number of
counters to only those that convey useful information, to further limit the overhead.

5.3 Efficient Gathering of Statistics

We assume that packet information is processed by performing a tree search operation
using some packet data as the search key—more precisely, that the search starts from
the root of the tree and continues downwards, without any backtracking, as in, e. g.,
HyperCuts [SBVW03] (Fig. 5.1). Our goal is to determine the frequently traversed tree
paths and to measure the hit count on these paths.

5.3.1 Hardware context

We assume a programmable networking system, such as a network processor (short: network processor

NP) [JK03], to be the target device for the method’s implementation. NPs typically con-
sist of a control processor, multiple forwarding engines and a hierarchy of memories,
differing in memory access latency, size and cost. Typically, the memory accesses are a
key bottleneck in terms of performance. Fast memory is scarce and it is the use of this
resource that we aim to optimise in this work.

The tasks executed on a NP belong either to the data plane, i. e., tasks that are pro- data plane

cessed per every packet, generally carried out at the forwarding engines, or to the
control plane, i. e., not-so-frequent, more computationally intensive tasks carried out on control plane

the control processor. We assume the tree search method to belong among the data
plane tasks, as well as the counting of hits along the nodes of the search tree. The algo-
rithm to select the monitored nodes can run on the control plane, as the selection pro-
cess may be relatively complex and is not required to happen on a per-packet timescale.

Gathering of hit statistics should not impose a large overhead on top of the search
algorithm. We thus need to use fast memory for counting the accesses to the nodes.
For example, on the Intel R© IXP 2400 NP, there are 8× 640 words of high-speed local
memory available [JK03], yet the rule databases containing several thousands of rules
can range from 10 k to 100 k words [GM99, SBVW03]. Furthermore, if the search is per-
formed on multiple engines in parallel, simultaneous memory accesses must be dealt
with. Thus, reducing the counting overhead is important to prevent potentially expen-
sive access conflicts.
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Figure 5.1: Small example packet classification search tree and corresponding classification
rules. Note that, for example, rule R3 can be reached both via the path (u1, u2, u6), as well
as (u1, u4, u8).

5.3.2 Counting strategies

It is unwise to maintain a counter for each node of the search tree, as it is desirable to re-
duce the number of counters located in the fast memory, although other counters could
be placed into slower but cheaper types of memory, as in [RV03]. A straightforward
approach is to maintain counters for the tree leaves only. This allows to reconstruct
hit counts up through the nodes in the tree by summing up hits of child nodes. How-
ever, the number of leaves in a typical classification search tree can be quite large (a
tree of a uniform node degree 4 and depth 10, which is quite realistic [GM99, SBVW03],
has about 1 million leaves). As most of the leaves most likely will be hit infrequently,
monitoring all of them would waste too much memory on “uninteresting” counters.

In classification trees [GM99, SBVW03], many rules span different leaves of the tree
(see Fig. 5.1). We thus might keep a hit counter for each rule, yet this approach wastes
a lot of counters for rules that are accessed only rarely. Once determined, the counters
for these infrequently-hit rules can be shifted to slower memory, but we would still
need a vast amount of fast memory in the initial phase: The number of rules in today’s
ACLs is in the order of thousands [GM99, SBVW03, KKV+03], but is expected to grow
fast with proliferation of mechanisms like VPNs or traffic engineering. Furthermore,
by knowing how often each rule is hit, we cannot precisely infer how traffic traverses
the tree. This is due to the fact that one rule may be reached via different paths (as in
Fig. 5.1), each of which can have vast differences in access probabilities.

The method presented in this work collects data preferably at the nodes that attract
a large number of hits. To monitor the heavily-hit nodes, we must determine the posi-
tion of these nodes, but this in turn would require earlier monitoring of the tree struc-
ture. To address this chicken-and-egg problem, we iteratively find out and adjust which
nodes are heavily-hit. In Section 5.6.3, we prove that our algorithm provides the pre-
cise hit count for all nodes that are hit at least 1/x · #search operations times, if given
x ·max{height of tree} counters.
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5.4 Notations and Definitions

In the case of the HiCuts [GM99] and HyperCuts [SBVW03] algorithms, there are three
layers in the search tree structure:

1. the tree with the search nodes, each representing a set of cuts,

2. lists of rules attached to nodes, and

3. the rules themselves (see Fig. 5.1).

For our purposes, we perceive the lists of rules (2) as leaves of the tree. Coupling
the rules (3) with the search tree would turn the tree into a directed acyclic graph, be-
cause one rule may be reached through different paths in the tree, as in Fig. 5.1. When
referring to a tree, we however mean the part without the rules (i. e., without (3)). tree

In the remainder of this chapter, variables and symbols have the following meaning:

ui node i
u0 root node
f(ui) hit count (number of hits) on node i
tk time interval k
→(tk) transition to next time interval tk

χ(tk) some “χ” during time interval tk (e. g.:
f(t4) = hit count during interval t4)

f(tk)(u0) hit count on root, i. e., packets processed
by the system during tk

ui ⊃ uj node ui is an ancestor of node uj in the
search tree

ui

.
⊃ uj node i is a direct parent of node j

Mui node i is being monitored (predicate)
Fui node i can be followed (predicate)
Hui node i is heavily-hit (predicate)
M set of monitored nodes
m number of monitored nodes (i. e., |M|)
h maximum height of search tree
n number of nodes in the search tree
||ui|| distance between ui and the root of the

tree
O minimum outdegree of the tree

Definition 5.4.1. A node u is said to be heavily-hit relative to a set of nodes {u1, . . . , un} iff1, heavily-hit

assuming that f (u1) ≥ f (u2) ≥ · · · ≥ f (un) holds, f (u) ≥ f (u̺), for some fixed ̺ ∈ [1, n].

1As usual, the word iff is shorthand for the logical expression “if and only if”.
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We use the metric of hit counts for determining whether a node should be monitored
or not. Other metrics may be possible; however, the algorithmic rules in Section 5.5
use the assumption that the values generated by the metric are monotonically non-
increasing along any path down the tree, and thus (u ⊂ v ∧Hu)→ Hv.

Input traffic patterns undergo significant changes over time. We divide time into
intervals t1, t2, . . . , of equal length, and associate a node’s property of being heavily hit
(H) to a specific time interval.

5.5 The Expand and Collapse (EaC) Algorithm

Our method for efficiently gathering statistics under stringent memory constraints is
divided into three parts:

1. The actual statistics gathering happens during the classification of a packet. Up-
dating of the counters must be integrated into the traversal of the tree during the
search. Due to accessing counters, this part of the algorithm needs to operate
using fast memory, as the per-packet processing time is potentially prolonged.

2. Selection of monitored nodes, i. e., the nodes for which we keep counters, is
performed after each time interval of a pre-defined length. The selection is per-
formed based on the data read from the counters and may be done off-line. This
part constitutes the actual EaC algorithm.

3. Bounds computation for other tree nodes, i. e., inferring from our knowledge
about the monitored nodes to other nodes of the tree, which can also be performed
off-line. This part can be implemented as an on-demand API for the application
that requires the statistics being gathered, e. g., a tree optimisation algorithm.

5.5.1 Idea

As we are looking for the heavily-hit nodes, we start monitoring nodes near the root of
the tree first, and then proceed towards the leaves selectively at the heavily-hit nodes.
Whenever the traffic characteristics change, we gradually adjust the monitored set to
fit the new distribution of node hits—i. e., we refrain from watching nodes no longer
heavily-hit and instead monitor nodes that have recently become heavily-hit.

To keep track of which nodes are monitored, we augment all the nodes of the mon-
itored tree by a flag monitored. Formally, for a node u we indicate monitoring by a
predicate Mu. Furthermore, the nodes being monitored carry the following additionalmonitored nodes

fields:

• A counter that counts all the search accesses passing through this node;

• A flag “follow”, indicated by a predicate Fu. The purpose of this will be ex-follow flag

plained further below.
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non−heavily−hit node

heavily−hit node

node being monitored

node possibly monitored

arbitrary node

Figure 5.2: Legend for the rule figures 5.3,
5.4, 5.5, 5.6.

Figure 5.3: Expand-to-children rule: If a node is
heavily-hit, we start monitoring its children.

Figure 5.4: Collapse rule, with the oscillation prevention rule: If a monitored node is not heavily-
hit, we stop monitoring it and monitor its parent instead. The oscillation prevention stops us
from re-descending to the non-heavily-hit node for a configured time period.

After each monitoring time interval ti, the counters of the monitored nodes are read
(i. e., the f(ti)(u) values for each monitored node u) and reset, and the monitoring at-
tributes of the nodes are changed, applying the algorithmic rules that are described
below. Note that the old values of f(ti)(u) can be stored in slow memory once the time
interval ti has elapsed.

5.5.2 The EaC algorithmic rules

After each time interval, we adjust the choice of nodes to monitor, according to the
following rules (a legend for the rule description figures is given in Fig. 5.2):

Expand to children

If a node is monitored and found to be heavily-hit, then monitor all of its children. Stop expand rule

monitoring that node itself (see Fig. 5.3). Formally,

Mup ∧Hup →(ti+1) ¬Mup ∧ (∀uc
.
⊂ up : Muc)

Collapse to parent

If a node is monitored and found to be non-heavily-hit, stop monitoring it, and instead collapse rule

start monitoring its parent again (see the first step in Fig. 5.4). If this rule is applied to
n nodes that are siblings, then we obviously free n− 1 counters. Formally, if up

.
⊃ uc:

Muc ∧ ¬Huc →(ti+1) ¬Muc ∧Mup
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shift
timeout

Figure 5.5: The follow flag timeout. The follow flag is reset after a configurable timeout,
to allow for finding newly heavily-hit children, to whom the collapse rule has previously been
applied.

Prevent oscillation

Suppose that a node is heavily-hit, but actually none of its children is heavily-hit. Inoscillation prevention
rule this case, the children are first examined using the Expand rule. Since all the children are

non-heavily-hit, the Collapse rule will be applied to each during the next EaC run; thus
in the next time period, it is the parent node again that will be monitored. Obviously,
such a scenario can easily lead to infinite oscillations. Thus, upon applying the Collapse
rule, we clear the followflag (set true by default) for the parent that is being monitored
again:

Muc ∧ ¬Huc →(ti+1) ¬Muc ∧Mup ∧ ¬Fup ∧ Fuc

We amend the Expand rule such that it is only applied to nodes that have the follow
flag set:

Mup ∧Hup ∧ Fup →(ti+1) ¬Mup ∧ (∀uc
.
⊂ up : Muc)

The follow flag is re-set in collapsed children, as we might have to re-examine them
at a later time. See Fig. 5.4 for a graphical representation of the Collapse rule combined
with the oscillation prevention rule.

After a configurable number of time intervals, we re-set the follow flag in the par-
ent, allowing to apply the Expand rule again (see Fig. 5.5). Formally,

· · · →(ti) ¬Fu→ · · · →(ti+timeout) Fu

This is to allow for finding children that have recently become heavily-hit due to changes
in the network traffic patterns, and to whom the Collapse rule had previously been ap-
plied.

Remove intermediate monitored nodes (optional rule)

Optionally, a further optimisation rule may be applied. This rule can boost the effi-
ciency of the monitoring process by eliminating further redundancies in the choice of
the monitored set, in that it trades measurement precision for a reduced number of
counters. It depends on the user’s preferences to decide about the right tradeoff for
the particular application, but the basic algorithm functions just as well without these
optimisations.

Due to the Collapse rule, it may happen that we monitor nodes which also have a
few heavily-hit descendant nodes, these being monitored as well. We can infer fromremove intermediate

nodes the existence of these heavily-hit descendant nodes that the intermediate nodes must
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Figure 5.6: Remove intermediate monitored nodes: Since the parents of a monitored heavily-hit
node must be heavily-hit themselves, there is little gain in monitoring more parents than only
one at the top.

be heavily-hit as well, so there is no real need to monitor them (see Fig. 5.6 on the
next page), except if we are interested in obtaining their exact hit number rather than a
bounded estimate. To save counter positions, we therefore may choose to cease moni-
toring these intermediate nodes. However, this rule may prolong discovery of recently
emerged heavy-hitters among the removed node’s children.

Mu1 ∧ Mu2 ∧ Mu3 ∧

Hu1 ∧ Hu2 ∧ Hu3 ∧
(u1 ⊃ u2 ⊃ u3) ∧ ¬Fu2

→(ti+1) Mu1 ∧ ¬Mu2 ∧ Mu3

The rule is explained graphically in Fig. 5.6. Note that we always need to keep watch-
ing some uppermost node u3 (i. e., at least the root node u0), since otherwise we will
never notice any sudden traffic increases at or above u3.

5.5.3 EaC algorithm iterations

The algorithmic rules for selecting the monitored nodes allow the algorithm to work
with a given number of counters efficiently. Each algorithm iteration consists of the
following steps:

1. Order the currently monitored nodes by their respective hit counts.

2. Start at the top of the list (i. e., the heavily-hit nodes) and apply the rule that
requires more counters—i. e., the Expand rule.

3. Free the additional memory required for the new counters by applying the Col-
lapse rule as often as needed, starting at the bottom of the list.

4. Goto step 2 and repeat, until the Expand and the Collapse parts meet (i. e., the ex-
pansion cannot use any more collapse rules without having to remove nodes that
it just expanded during the same iteration). If an Expand operation fails because
we cannot free enough memory positions, then perform a rollback of this opera-
tion and all operations related to it, and terminate.
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Figure 5.7: By applying the Expand and Collapse rules, the algorithm determines a new boundary
between heavily-hit (new entries at the top) and non-heavily-hit nodes (formerly heavily-hit
nodes are removed at the bottom), until no further expansion is possible.

An example for the resulting change to the list of monitored nodes is depicted in
Fig. 5.7. We call the execution of this loop until its termination one EaC iteration. TheEaC!iteration

next EaC iteration will take place after the next monitoring time interval has elapsed.
An example of monitoring a very small tree with several EaC iterations is shown in
Fig. 5.11.

The boundary between heavily-hit and non-heavily-hit nodes is thus not fixed, but
rather re-calculated by the algorithm during each iteration, based upon the hit counts
and the number of counters available.

If interested in obtaining the precise hit count on every node hit at least by a 1
x fraction

of traffic, the EaC iteration must stop at a point where we would have to remove the
counter from such a node, i. e., we refrain from applying the Collapse rule to nodes that
are hit more than 1

x f(0) times (the collapsing threshold). See Section 5.6.3 for furthercollapsing threshold

discussion of this particular task.

5.5.4 Non-monitored nodes

The purpose of the EaC algorithm is to select the monitored nodes. We can, however,
obtain hit counts on non-monitored nodes, too. The precise node hit count can be de-
duced by summing up the hit counts of its children, if known. As with the precise
number of hit counts (Fig. 5.8), this can be done recursively. See theorem 5.6.4 for more
details.

As no node can have more hits than its parent, we can use the precise node hit count
as an upper bound for all of its descendants (Fig. 5.9).

If we are to remove some of the intermediate monitored nodes (Section 5.5.2), we
can end up in a situation where not all children of a node are covered by counters, and
where we thus cannot reconstruct the precise number of hits on this node. However,
even with an incomplete coverage we can at least provide a lower bound: If some of
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Figure 5.8: Summing up children: The number of hits on a node can be derived by summing up
the counters of all of its children (left). The summation may be applied recursively to all nodes
of the tree (right).
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Figure 5.9: Upper bounds: The num-
ber of hits on a node is an upper
bound for any of its children, and thus
recursively for any of its descendants.
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Figure 5.10: Obtaining better upper bounds us-
ing information from siblings: An upper bound
can be improved by subtracting the sum of
lower bounds for all the siblings.

the node’s children receive x hits in total, their parent must receive at least x hits too.
We can recursively sum up the lower bounds (see Fig. 5.8). We obtain a lower bound
for any ancestor of a monitored node.

A bound for a node can be tightened by including hit counts (or lower bounds, re-
spectively) for its siblings: For example, if a node’s parent is hit by at most z hits and
its siblings are hit ≥ x + y + . . . times, then the node can be hit at most z− x− y− . . .
times (see Fig. 5.10). We may therefore be able to compute both the upper and the lower
bound for some intermediate nodes.

5.6 Algorithm Properties

Before we give an experimental evaluation of the algorithm’s performance, we first
prove that it converges, and that it can provide us with the exact number of hit counts
for a certain class of certain nodes. We also give a lower bound for the number of these
nodes in relation to the tree size and the number of available counters.

5.6.1 Convergence

In this subsection we prove that the EaC algorithm converges to a stable choice of moni-
toring nodes. Since convergence is difficult to define in the case of a moving target (i. e.,
ever-changing traffic patterns in the real world), we analyse the case of a tree whose
access patterns remain constant.
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Figure 5.11: EaC example iterations with 3 available counters. After the first hit-counting stage,
EaC is run on the tree. It expands node A; i. e., nodes B, C, D get monitored. The second
hit-counting stage reveals that node B (7 hits) should be expanded, which requires to collapse
node C (1 hit). However, this implies monitoring A again, so D (2 hits) needs to be collapsed
also. After the fourth iteration, node A has more hits (10) than E (4) and F (3) thus should be
expanded; however, this is not allowed if oscillation prevention is in effect.

Theorem 5.6.1. In the case of constant hit patterns and a large enough timeout value, the EaC
algorithm converges.

Proof by induction over tree potential2: We define the potential of the tree and then
show that it is strictly monotonically decreasing over the EaC iterations.

Definition 5.6.1. We define the potential Φ(u) of a node u as

Φ(u) :=











2 ⇔ u has never been monitored yet

1 ⇔ u is currently being monitored

0 ⇔ u is not monitored any longer

Moreover, we define the potential Φ(N ) of a set of nodes N to be the sum of the potentials of
the nodes:

Φ(N ) := ∑
u∈N

Φ(u)

This means in particular that the potential Φ(T) for the entire tree T is the sum of the
potentials of all tree nodes.

Lemma 5.6.2.

(a) The initial potential Φ(t0)(T) of any tree T is finite.
(b) The potential of a tree is always non-negative, i. e., ∀ti : Φ(ti)(T) ≥ 0.

Proof of lemma 5.6.2: Both statements are obvious, since (a) we operate on finite trees,
and (b) the potential is a sum of non-negative numbers.

Lemma 5.6.3. The potential Φ(T) of any tree T with constant hit patterns is strictly monoton-
ically decreasing when applying the EaC algorithm to the tree.

2Proof method as in [CLRS01]. For a brief explanation of this method, see [Wik07c].

90



5.6 Algorithm Properties

Proof of lemma 5.6.3: The potential of the tree only changes at nodes whose monitoring
state is changed. This is only possible if these nodes have been affected by one of the
rules described in section 5.5.

Let ∆Φ(x) := Φ(ti)(x)−Φ(ti−1)(x) be the difference in potential of some node x after
an iteration ti−1 → ti. Following this definition, ∆Φ(x) < 0 means that the potential of
x has decreased. Assume that during one iteration of the algorithm, one application of
a single rule has affected the monitoring state of each node in N = {u, v1, . . . vn} with
∀vi : u

.
⊃ vi. Now distinguish the following cases of rules being applied:

Expand: Monitoring of u has been expanded to monitor each vi. Due to oscillation
prevention, u can not have been monitored at an earlier stage—since then we would
not have been allowed to expand u again. This means that none of the vi had been
previously monitored either. Thus ∆Φ(N ) = ∆Φ(u) + ∑

n
i=1 ∆Φ(vi) = (0 − 1) + n ·

(1− 2) ≤
(as n≥2)

−3.

Collapse: Assume w.l.o.g. n = 1. As u must have been monitored before, we have
initially ∆Φ(N ) = ∆Φ(u) + ∆Φ(v1) = (1− 0) + (0− 1) = 0. However, the collapse rule
is only applied if there is need to free a memory position. This need can only arise in
two situations: (a) another node ǔ

.
⊃ {v̌1, . . . } has been expanded, or (b) another node

v̂
.
⊂ û has been collapsed, which required freeing the memory position of v needed by

û. In case (b), the collapse rule is invoked recursively, but since we are dealing with a
finite tree, this only may happen a finite number of times k. The recursion thus must
have been triggered by one initial Expand rule (i. e., case (a)). In the end, we have a chain
of rule applications, and the potential of all the nodes Ñ affected by this rule chain is
thus ∆Φ(Ñ ) = ∆Φ(expand rule) + (k + 1) · ∆Φ(collapse rule) ≤ −3 + 0.

Thus, no matter what rule has been applied, the tree potential Φ(T) is always re-
duced.

To summarise, Φ(T) starts from a positive finite value, decreases strictly monotoni-
cally over the iterations of the EaC algorithm, but remains non-negative. This concludes
our proof that the algorithm converges at some point.

5.6.2 Precise hit count reconstruction

Theorem 5.6.4. If v is a monitored node, we obtain the precise hit count on v and all its
ancestors.

Proof: Assume otherwise. Then there are nodes u ⊃ v with ¬M(tk)u ∧M(tk)v. Since
M(tk)v, there must have been some previous ti, i < k such that M(ti)u. Node u can
only have been ceased being monitored due to either the Collapse or the Expand rule.
The former would result in ¬Mv before ¬Mu (since v ⊂ u and thus f(v) ≤ f(u))—
a contradiction. The latter must result in u being fully covered by its descendants—a
contradiction to the assumption that we cannot obtain the precise hit count f(tk)(u).

Note that the theorem implies that any path from the root to an arbitrary leaf passes
at least one counter, and the monitored nodes thus form a cut across the tree structure.
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5.6.3 Hit coverage

A common definition of a heavy-hitter object is one that receives at least 1
x of the total

traffic [PTD04]. We now prove a relationship between x and the number of counters
made available to EaC.

Assume that the search pattern remains constant over a number of iterations. Let
h := max{height of the tree}. Then EaC converges to a state where it provides the precise
hit count on all nodes hit by at least 1

x · f(0), using x · h = |M| counters.

Lemma 5.6.5. The number of nodes that are hit at least 1
x · f(0) times, and that are deepest

down in the tree, is at most x.

Proof: If one node is hit by≥ 1
x · f(0) traffic, then its parent also must be hit by≥ 1

x · f(0)
of the traffic. Since the nodes cover disjoint search space areas, there can be at most x
such “deepest” nodes, each attaining ≥ 1

x · f(0) hits.

Lemma 5.6.6. To obtain the precise hit count on all nodes that are hit ≥ 1
x · f(0) times, we need

to monitor at most x · h counters.

Proof: Since we have ≤ x “deepest” 1
x -hit counters, all additional nodes that we have

to monitor must be parents of these x counters. This means that we have to monitor
all nodes along the x paths from the root to each of these deepest 1

x -hit nodes. The
worst case is that these paths already separate immediately below the root, and that
height(deepest 1

x -hit nodes) = h. This implies that we need to monitor ≤ x · h nodes in
total.

Theorem 5.6.7. If x · h monitors are available, then the EaC algorithm picks all of those nodes
that are hit at least 1

x f(0) times, if the hit patterns do not change until the algorithm has con-
verged and if the collapsing threshold (5.5.3) is applied.

Proof: Obviously, the collapsing threshold guarantees that we never cease monitoring
1
x · f(0)-hits nodes once we have found them; we only may expand them and this way
can detect possible 1

x · f(0)-hit children.
EaC converges to a state where it has found all 1

x · f(0)-hits nodes, because (a) during
each iteration, it always expands those nodes that are hit most frequently, (b) we always
obtain precise hit count on any node that is monitored or a parent of a monitored node,
(c) EaC does converge.

5.7 Performance Evaluation

In this section, we present some results from running the EaC algorithm within a sim-
ulator environment. We then analyse the results yielded by its choice of monitored
nodes.
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5.7.1 Evaluation set-up

For a number of reasons, it is not possible to pin down a “typical” packet classifica-
tion tree. First of all, many different algorithms for packet classification exist (simple
binary trees, HiCuts [GM99], HyperCuts [SBVW03], HiPac [FM00], and many more).
These different algorithms naturally create different packet classification trees, even if
the same set of input rules is given. Second, there is no “standard” rule set for packet
classification. For example, the ruleset for a typical firewall focuses on port numbers
and its rules focus only on a few source and destination networks. In contrast, the
rules applied by a backbone router will be vastly different, since they will almost ex-
clusively take destination prefixes into account; the rules for the access router of an
MPLS-enabled network with quality-of-service routing decisions will have even other
rules. From the fact that neither a standard packet classification algorithm, nor a typical
packet classification rule base exist, obviously follows that a “typical” packet classifica-
tion tree cannot exist either.

In order to evaluate the performance of the EaC algorithm, we chose to implement
the algorithm within a generic simulation framework written in Java. Our framework
allows EaC to be run on search trees of arbitrary shape, and generates random requests
on them. At each node, the search requests follow a fixed user-defined probability
distribution that changes from time to time. In our evaluation, we use artificially con-
structed trees, both uniformly constructed trees which we use to derive the general
behaviour of algorithm in trees of different outdegrees, as well as random trees. The
randomly constructed trees, however, are not completely random, but are constructed
in a way such that they resemble trees produced by the HiCuts or HyperCuts algo-
rithms.

We use various uniform trees of fixed outdegree (OD) at each node and a fixed depth OD

(d), as well as several randomly-built trees. The random trees were constructed as fol- random tree

lows: At each node, we randomly determine if the node will have children (probabil-
ity=0.75) or not; but at the same time, we ensure that all paths from the root to a leaf
have a minimum length of 4 and a maximum length of 24. The number of children ODu

for a node u is determined by creating a uniformly distributed number ∈ 2 . . . 32, which
we then round down to the nearest power of two. The process is also stopped when
the number of leaf nodes is equal to or greater some threshold; we use thresholds of
4096 and 65536. This is done to ease comparison of simulation results on trees that are
different in shape but comparable in size. We create 9–20 instances for each tree shape
and analyse the average values of the simulation runs in each equivalence class.

Since the EaC algorithm is designed to identify heavily-hit nodes in a tree, it is inter-
esting to analyse the impact of different access patterns in the tree on the performance.
Luckily, search operations in EaC-compatible search trees can be simulated in a simple
fashion: We go through the tree from the root towards the leaves. At each node, we ran-
domly pick a child to visit next according to some probability distribution. Each node
has its own probability distribution for selecting child nodes that is kept constant over
many lookup operations. We examine the effect of different probability distributions,
i. e., uniformly, exponentially and Pareto distributed access probabilities (see below).
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Comparison of different quality measures

EaC run number

upper bounds #contig.nodes largest n−cov

0 10 20 30 40 50 60

1e
−

07
0.

00
1

1

0
1

2
3

#c
on

tig
uo

us
 n

od
es

 / 
10

0 
   

   
 a

nd
#h

its
 o

n 
la

rg
es

t n
on

−
co

ve
re

d 
no

de
 /1

00
0

su
m

 o
f s

qu
ar

ed
 u

pp
er

 b
ou

nd
 e

rr
or

s

Figure 5.12: CDF showing EaC convergence. The algorithm converges rapidly, and the different
quality measures behave consistently with each other.

After 5 · 105 requests have been issued, we run EaC on the tree to select a new set
of monitors. This is followed by another 5 · 105 search requests, then another EaC run,
etc. We chose a constant number of search requests instead of a random distribution in
order to make results from independent EaC iterations easier comparable.

Every 15 monitoring intervals, the simulator imposes an entirely new hit pattern
distribution at each node. This change is likely to render the previously-found set of
monitored nodes useless, and is done in order to analyse EaC’s reaction to pronounced
dynamic changes to the oncoming hit patterns.

5.7.2 EaC performance measures

Before we let the EaC algorithm undergo a performance evaluation, we first have to
define how we want to measure its performance. Since the EaC counter choices provide
exact measures for monitored nodes and upper bounds for all other nodes of the tree,
one aspect of the performance of the EaC algorithm is the accuracy of these bounds. As
a measure, we define the (normalised) sum of squared errors for the upper bounds of eachsquared errors

node in a tree T as

E(T) := ∑v∈T(u(v)− f(v))2

|T| · f2(0)

Here, a better performance is indicated by a smaller value.
Another interesting aspect is EaC’s performance in finding the “heavy-hitters” among

the nodes. To this end, we determine the maximum number of hits on any node for
which the algorithm cannot guarantee to yield the precise number of hits. We call this
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Figure 5.13: Influence of tree topology, size, and hit distribution.

the largest non-covered node. As with the error sums, better performance is indicated by largest non-covered
nodesmaller values of this measure.

Closely related is the number of nodes that are hit more often that the largest non-
covered node. By definition, EaC yields their precise number of hits. We call this mea-
sure the number of contiguously covered nodes; better EaC performance is indicated by a contiguously covered

nodeslarger number of this value.

5.7.3 Comparison of performance measures

Fig. 5.12 shows the average of simulation runs on 20 trees. Each tree is uniformly
shaped (OD = 4, d = 6, 4096 leaves), whereas the individual trees have different
Pareto-distributed hit patterns. We make 512 counters available to EaC, and use a uni-
formly distributed random variable from the interval (0 . . . 2) as the timeout value for
the oscillation prevention rule. We will refer to this set-up as our default setup in the default setup

further analyses.

The (typical) plot in Fig. 5.12 on the previous page demonstrates that all four per-
formance measures described above show consistent behaviour at the beginning and
after each time the simulator installs new hit probabilities. In the following, we thus
concentrate on only one performance measure. We pick the number of contiguously
monitored nodes, since we believe this pattern to be less affected by the different tree
shapes, which facilitates making comparisons.
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5.7.4 Hit patterns

We now investigate the effect of the shape of the tree on EaC’s performance. Fig. 5.13
shows some of the results for different groups of search trees of comparable sizes. To
compare the effect of different hit distributions on a tree, we simulate different hit pat-
terns on various trees while keeping our default values described above for all other
parameters. A hit pattern is defined as follows: At each node, the probability to con-
tinue the search operation (during, e. g., packet classification) in either child 1 or child 2
or child 3 or (. . . ), is (a) uniformly, (b) exponentially, (c) Pareto-distributed with α = 1.3.

We notice that the hit distribution has a measurable, but not very pronounced effect
on EaC’s performance: The three lines for OD = 4, d = 6 are not far apart. It seems that
a uniform hit pattern poses the worst case in this scenario (i. e., the line appears shifted
towards the left) and exponential the best, Pareto lying in the middle. Due to the small
impact of the hit pattern, we can restrict ourselves to investigating only one hit pattern.
We chose to use Pareto-distributed hit patterns for this purpose, as flow popularities in
the Internet typically are consistent with power laws [WDF+05].

5.7.5 Tree shape and tree size

By examining the other lines in Fig. 5.13, we see that the number of contiguously cov-
ered nodes decreases significantly as the branching factor (OD) increases: For OD = 2
we get the best coverage, even though the corresponding uniform binary tree has more
nodes (8191) than, e. g., a tree with OD = 16 (4369 nodes) having the same number of
leaves: The performance for the latter obviously is worse. Consistently, the randomised
trees (average OD = 7.1) show a better performance than the trees with OD = 8.

If we increase the size of the tree while keeping the number of available counters at
the same level, we intuitively expect the algorithm’s performance to decrease. Indeed,
this is the case if we keep the number of counters at 512 but increase the size of the
tree: If we increase the size of the tree by a factor of 16, the performance is measurably
reduced, although obviously not by a factor of 16. If, for example, we increase the tree
depth for OD = 4 from d = 6 to d = 8, we see in Fig. 5.13 on the previous page that
the corresponding line for the tree with the greater depth and thus the larger number
of nodes is leaned more towards the left-hand side. The same holds if we compare the
line for OD = 16, d = 3 to the line OD = 16, d = 4, which also corresponds to a 16-fold
increase in the number of nodes.

5.7.6 Oscillation prevention rule

Next, we analyse the benefits of applying the oscillation prevention rule while keeping
all other values at default. In Fig. 5.14, we analyse EaC oscillation prevention timeout
values of 0 (i. e., no prevention), a fixed value of 2, and uniformly distributed timeout
values with averages of 2 (as was the setting for all previous simulation runs) and 10.
We conclude from the plot that a small randomised non-zero oscillation prevention
value has a small but measurable positive effect on the efficient use of counting nodes.
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Figure 5.14: Influence of number of counters and oscillation prevention.

5.7.7 Number of counters

Fig. 5.14 shows the results for simulation runs on the default tree, but only with 128
counters available, i. e., only 1

4 of those before (left line). As one can expect, the num-
ber of contiguously fully-covered nodes remains roughly linear in proportion to the
number of available counters.

5.8 Conclusion

Our evaluations on simulated data confirm the theoretically derived convergence and
coverage properties. Further analyses should evaluate EaC’s performance on search
requests resulting from real-life packet traces, applied to a search tree built from an
existing real-life rule base, using a state-of-the-art packet classification method like Hy-
perCuts [SBVW03]. Moreover, further understanding is likewise needed in how to ad-
just seamlessly to changes in the underlying rule-base, or how to employ effectively
knowledge form previous algorithmic iterations.

As the restricted search-tree monitoring presents a negligible system overhead, it
holds a significant potential for possible applications, one of them being a run-time
optimisation of the search method itself. However, the gathered data can be useful in
a number of ways, for example for identifying heavy flows or detecting rapid changes,
failures or attacks in the network.

The presented approach can be generalised to any tree search abiding by the assump-
tions of downward search without backtracking. As such, this self-monitoring mecha-
nism is a clear step towards developing a fully autonomous packet processing system
that reacts dynamically to changes in the pattern of the oncoming traffic.
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6 An Algorithm for Dynamic Traffic
Engineering

After we have introduced methodologies for measuring and characterising traffic in
the previous chapters, we now focus on the main part of this thesis: dynamic traffic
engineering.

As was outlined in Section 2.3.3, current traffic engineering operates on time scales
of hours. This is too slow to react to quick traffic bursts, caused by phenomena such
as flash crowds or BGP reroutes. One possible solution is to use load sensitive routing.
Yet, interacting routing decisions at short time scales can lead to oscillations, which has
prevented load sensitive routing from being deployed since the early experiences in
Arpanet [KZ89].

However, recent theoretical results have shown that re-routing policies based on
game theory can provably avoid such oscillation, and that in addition can be shown
to converge quickly. In this chapter we present REPLEX, a distributed dynamic traffic
engineering algorithm based on this policy. Exploiting the fact that most underlying
routing protocols support multiple equal-cost routes to a destination, it dynamically
changes the proportion of traffic that is routed along each offered path. These pro-
portions are carefully adapted utilising information from periodic measurements and,
optionally, information exchanged between the routers about the traffic condition along
the path.

6.1 Introduction

Recently, a number of promising dynamic traffic engineering or dynamic routing so-
lutions have been proposed (e. g., TeXCP [KKDC05], MATE [EJLW01]). These systems
take advantage of alternative paths in a network (e. g., MPLS multipaths) and optimise
network utilisation by adjusting the distribution of traffic among the paths with the
same ingress/egress nodes. These systems are not routing protocols per se; they rather
operate on top of an existing routing infrastructure, which is MPLS in both cases. Ac-
cordingly, they are referred to as traffic engineering protocols [KKDC05], rather than rout-
ing protocols.

This chapter presents a traffic engineering protocol, REPLEX, which is applicable in
a broad context: It can be deployed on top of virtually any routing infrastructure (e. g.,
OSPF, IS-IS, MPLS, even multipath BGP, or a network that is entirely configured by
hand). The additional signalling overhead induced by our protocol is very small. More-
over, it even is not strictly necessary (although favourable) that the routers exchange in-
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formation on traffic conditions; the “protocol” thus even can achieve increased network
performance if the routers do not communicate with each other at all.

Our protocol is derived from an algorithm that can be proven to be stable and con-
verge quickly in a game-theoretic model. The algorithm assumes that the only action
that a router can perform is to change the traffic distribution among a set of equal-cost1

routes between an ingress/egress pair. Similar to TeXCP or MATE, these paths are pro-
vided by an existing routing architecture.

Our algorithm specifies how a router should react to changes in its traffic load, be
they external or the effect of another router’s decision. In order to not reorder packets
within a flow, which is known to cause bad TCP performance [LG02], traffic splitting
is done on a flow-by-flow basis utilising the standard hashing technique [CWZ00]. To
help the router with its decision about how to distribute the traffic among the path,
the router can gather measurement data about the path itself, or, in addition, period-
ically exchange information with other routers. While experiments indicate that this
information is helpful, the algorithm still yields improvements in cases where such
communication is not desired, e. g., in an interdomain context. In general, the commu-
nication overhead is low, as we use a distance vector-like approach for distributing this
information. The method is therefore scalable even for large networks.

Our proposed system features a number of novel properties. Theoretical analyses
in a game-theoretic setting promise a quick convergence speed and no oscillations. A
simulation-based evaluation, which we are going to present in the next chapter, sup-
ports these expectations under realistic conditions. Contrary to almost all other pub-
lications proposing dynamic routing solutions, we impose a realistic workload whose
characteristics are consistent with self-similar traffic, and which is thus difficult to han-
dle due to the resulting traffic bursts. The traffic demands are the results of heavy-tailed
arrival processes of Web-like and peer-to-peer-like downloads with heavy-tailed distri-
butions for the number of bytes and inter-download times. The Web-like and P2P-like
workload moreover implies that we do neither ignore the dynamics imposed by TCP’s
congestion control, nor its inherent feedback to congestion in the network which inter-
acts with any small-time scale traffic engineering. The simulations furthermore confirm
that the communication overhead is low and that the system works even if no commu-
nication is possible.

One of the convenient properties of our proposed system is that it is generic with
regard to the underlying routing architecture that provides the routing alternatives,
may they be OSPF, IS-IS, MPLS, etc. Here, an interesting question is if the number
of offered alternative paths is sufficient to enable the algorithm to do its job, or how
many alternative paths are needed. Our experiments using topologies provided by
Rocketfuel [SMW02] indicate that the available number of equal-cost paths when using
hop-count as distance metric is sufficient.

1Throughout this chapter, the term cost refers to quasi-static costs as defined by an underlying routing
protocol, e. g., OSPF link weights. It does not encompass variable costs that change dynamically with
traffic conditions, such as, e. g., link load.
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6.2 Related Work

Many works have been published on traffic engineering and related areas [FRT02,
XHBN00, FT00, WXQ+06] such as traffic matrix estimation [RTZ03, ZGK+05, TDRR05,
ZRLD03]. Most of the TE methods frequently used within the network operator com-
munity are offline methods: Network traffic intensities are measured over some period
of time (usually a few hours); then these measurements are collected at a central point,
where a new routing (e. g., readjusted OSPF weights; [FT00, FT02, BLM] and many oth-
ers) is calculated. This new routing is then applied to the network, and the network
remains in the new state—unless a link or a router fails, or the TE is re-run.

Such TE schemes are used by quite a number of operational networks, since they
achieve good performance gains. By running TE mechanisms multiple times per week
or even per day, Internet providers can react to long-term changes in traffic demands
(e. g., day-of-week effects and to some extent circadian effects). Hao and Ito even pro-
pose a mechanism for dynamically adjusting OSPF weights [HI05]. However, changing
weights too often increases the number of times that the intradomain routing protocol
has to converge, and has an impact on the interdomain routing. During the interdomain
routing convergence time, albeit in the order of seconds or milliseconds, routing loops
can occur. This, in turn, leads to thousands of TCP connections suffering packet losses
and falling into their slow-start phase simultaneously. Due to resulting synchronisation
effects, massive service degradation can occur even well after the loops have vanished.
Moreover, changing IGP weights can result in changes to the BGP routing [Tei05] and
thus affect other providers and potentially be harmful to the global BGP stability.

Obviously, offline methods that are run once every few hours cannot react to sudden
traffic changes in real time. Such changes can, e. g., be caused by BGP reroutes, flash
crowds, malicious behaviour, and to some extent by diurnal traffic variations. Further-
more, while current TE can deal with network failures by pre-computing alternative
routings, it usually does so only for a limited set of failures (e. g., explicitly via MPLS
backup paths or implicitly [FT02, AC03]). It thus may fail to anticipate certain failures,
which can lead to bad performance even when the network actually provides enough
capacity. Even a guaranteed worst-case behaviour [WXQ+06] still leaves room for im-
provement.

In the past, various methods for online traffic engineering, in other words, routing
protocols that react to changes in traffic demands, have been proposed. The earliest ap-
proaches to such load-adaptive routing were used in the Arpanet but showed heavy os-
cillations due to interactions between the decisions made by the various routers. Even
though they were later revised and improved [KZ89], their tendency to oscillate re-
mained. Due to these bad experiences, routing in the Internet was designed not to react
to traffic conditions, but only to topology changes. Instead, the mechanisms to protect
the network from overload were moved from the routing protocol into the end hosts.

In today’s Internet, one can therefore presume an even higher danger of oscillations
when deploying a load-adaptive routing protocol: A large share [DFM+06] of today’s
traffic consists of TCP connections, which themselves use end-to-end feedback loops in
order to avoid network congestion [Pea81]. Thus a routing protocol reacting to traffic
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Figure 6.1: Traffic engineering using multipaths. Traffic is always sent along the same, unchang-
ing paths; however, the share of traffic sent over each path is variable. Traffic is dynamically
shifted between paths so as to increase network performance.

changes may affect a large number of TCP connections, which results in interactions be-
tween the feedback loop of the routing protocol and the feedback loops of the affected
TCP connections. Hence, by reacting to changes in the traffic demands, the traffic de-
mands themselves may change.

With all these issues in mind, network operators are sceptical about employing load-
adaptive routing protocols. Instead, they use traditional offline TE techniques, com-
bined with vast overprovisioning of their network backbone infrastructure. While this
“brute-force” approach can indeed protect against potentially disrupting changes in
traffic patterns, it brings about the question whether a currently overprovisioned net-
work backbone can be used in a more efficient way, thereby allowing the operator to
increase its revenues without the need for costly upgrades to its hardware.

The reluctance of network operators to employ load-adaptive routing in their net-
work is amplified by the fact that most load-adaptive schemes that have been proposed
in theory (for an overview, we refer to [Skr06]]) require them to entirely replace their
current routing architecture with a new load-adaptive one. To remedy this aspect, ap-
proaches that allow automatic online traffic engineering on top of an existing tradi-
tional routing infrastructure have been proposed. Among these are MATE [EJLW01]MATE

and TeXCP [KKDC05]. Both systems represent approaches similar to ours, in that theyTeXCP

are not routing protocols, but traffic engineering protocols [KKDC05]. They split traf-
fic among multiple paths that an underlying routing architecture has established be-
tween the same pair of edge routers (the authors suggest MPLS tunnels), and adjust
the splitting ratio dynamically depending on the traffic—see Fig. 6.1 for a graphical
explanation.

In contrast to TeXCP and MATE, the system we propose is not restricted to path-
centred (i. e., MPLS-like) scenarios. Not only is there a large number of ISPs who do
not use MPLS, but also there are known issues with MPLS paths across AS bound-
aries [PUB04]; therefore these TE protocols are not suited as interdomain TE protocols.
Moreover, our approach allows greater scalability for large networks, since the com-
munication cost incurred at each router is linear with the number of interfaces times
at most the number of destination prefixes, which can be greatly reduced by grouping
prefixes that share the same set of egress nodes (Section 6.4.3). In contrast, for solutions
employing virtual links such as MPLS tunnels, it is quadratic with the number of edge
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routers. Finally, an evaluation of their systems’ behaviour under realistic traffic load,
containing TCP feedback loops and bursts caused by the self-similar nature of Internet
traffic, has not been performed yet.

The Traffic Engineering extensions for OSPF routing (OSPF-TE [KKY03]) allow the
routers to inform the network not only about availability and costs for each link, but
also provide a framework to broadcast traffic conditions for each link. Considering
that OSPF is a link-state protocol, one can expect a sizable increase in communication
due to periodically broadcasting traffic conditions for each single link. The system that
we propose is expected to scale better than OSPF-TE, since it aggregates information
for paths in a distance-vector like fashion. Moreover, our approach does not prescribe
the operator to use OSPF; rather it can even be deployed on top of routing protocols
such as BGP/MIRO [XR06] across AS boundaries for the purpose of interdomain traffic
engineering.

Gojmerac et al. present AMP, an interesting distributed dynamic traffic engineer- AMP

ing algorithm which bears some resemblance with our system, since it also makes use
of multipaths that an existing routing infrastructure provides [GZRR03]. They take a
different approach in that their system uses so-called backpressure messages that recur-
sively propagate aggregated information to upstream nodes, telling them how much
their traffic contributes to congestion. Their implementation and evaluation is sound;
realistic traffic and avoiding packet reordering are taken into account. However, the
AMP backpressure messages do not distinguish between different traffic destinations.

DATE [HBCR07] (Distributed Adaptive Traffic Engineering) by He et al. is a new
approach that explicitly takes into account the fact that the TCP traffic used in today’s
networks has a feedback loop whose decisions can interact with traffic engineering.
They unite the network layer (traffic engineering) and transport layer (TCP congestion
control) into a multi-layer approach that optimises the goals of end users and those
of network operators at the same time. The system is stable even with stochastic traf-
fic fluctuations and reacts quickly to bottlenecks, which is shown through theoretical
analyses and simple simulations.

Basu et al. propose a routing algorithm where each node in the network is assigned
a certain potential, which reflects the congestion experienced at this router [BLR03].
Their algorithm subsequently tries to route packets probabilistically, so that they avoid
routers having high potentials, i. e., suffer from congestion. The drawback of this ap-
proach is the ignorance of the fact that one link at a router may be congested while
another one may be not. Furthermore, their implementation does not take packet re-
ordering into account.

The theoretical background of our algorithm is described in [FRV06, FV04, FV05].
Therein, a very similar policy is analysed in what has become known as the Wardrop
model [BMW56, RT02, War52]. Ragunathan et al. analyse the performance of STARA
routing protocols and propose various Wardrop-based improvements, most notably
PSTARA [RK04, RK05, Skr06]. The authors focus on mobile networks where network PSTARA

sizes are small; realistic traffic workload and TCP issues are not considered. Liu and
Reddy analyse a similar adaptive mechanism [LR07] in a multihoming scenario [LR07].

Adaptive routing policies have also been studied from the perspective of online
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learning, where one aims at minimising the regret which is defined as the difference
between a user’s average latency over time and the latency of the best path in hind-
sight (see, e. g., [AK04, BEDL05]). Analyses of the convergence time for selfish load bal-
ancing problems in discrete models have been performed mainly for simple networks
consisting of parallel links [EDM05, BFG+06].

In [KV05], Kelly and Voice present an analysis based on fluid models that examines
the time scale on which an adaptive routing system can operate without interfering
with TCP. They conclude that this is possible on the time scale of round-trip times.

6.3 Methodology

In this section we introduce our load-adaptive multipath rerouting algorithm. We start
from a simple rerouting policy in a game theoretical model which can be proven to
quickly converge to a stable state. This model assumes that a set of agents is located
at the ingress of the network, each of which manages the path for a small amount of
traffic headed towards some destination. Each agent has full control over which path
its traffic takes and uses this control to minimise the latency that its traffic will sustain.

Subsequently, we adopt this algorithm from an artificial setting to an algorithm that
is deployable in networks with a traditional IP routing infrastructure. We assume that
path alternatives (i. e., multipaths) exist, but that the router may not necessarily have
control over the path the packets will take beyond the current router (such as in OSPF
equal-cost multipath). Moreover, we generalise the optimisation TE goal and also allow
optimisation objectives other than the traditional minimisation of latencies.

6.3.1 Wardrop Equilibria and optimality

The algorithm we present in this section is built upon the foundation of a well-known
game theoretic model, the Wardrop model. A rigorous analysis in this model proves
convergence even with stale information and yields polynomial upper bounds on the
time to reach approximate equilibria [FRV06, FV05]. Note that the algorithm presented
in this section cannot be directly used as a routing policy in a real-world IP network.
Rather, it serves as a starting point for a scheme that we will devise in Section 6.4.

In the Wardrop traffic model [War52], one assumes an infinite number of selfishWardrop model

agents, each of which wants to send an infinitesimal amount of traffic (called flow)agent

flow through a network G = (V, E). Each agent belongs to a commodity i from a set [k] =
commodity {1, . . . , k}. A commodity is specified by a source si, a sink ti, and a total flow demand
flow demand di that is to be routed from si to ti. The total flow demand di can be interpreted as

the number of agents belonging to commodity i. We normalise the demands such that
∑i∈[k] di = 1. Each agent can choose the path for their flow from a set Pi of paths con-
necting si and ti. The path an agent picks is also referred to as their strategy, and Pi isstrategy

therefore the strategy space of commodity i. By P = ∪i∈[k]Pi we denote the set of all pos-strategy space

sible routing paths. An assignment of agents, or, equivalently, traffic, to paths induces
a flow vector ( fP)P∈P . This flow assignment in turn induces latencies on the edges.flow vector
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For e ∈ E, let fe = ∑P∋e fe denote the flow on edge e. Then the latency of edge e is latency

given by the value of the respective non-decreasing latency function ℓe( fe) and the la- latency function

tency of a path P is then ℓP( f ) = agge∈P{ℓe( fe)}where agg is some aggregation function. aggregation function

In the Wardrop model, agg is typically assumed to be the sum; this is appropriate if ℓ

denotes latency. If ℓ denotes any other metric like link utilisation, agg can also be the
maximum or some other function. In the following, when f is clear from the context,
we omit f as an argument to ℓ.

In picking a routing path P ∈ P , the agents strive to minimise the latency they sus-
tain. From the game theoretic perspective, one is usually interested in equilibrium so-
lutions, i. e., an assignment of agents to paths such that no agent has an incentive to
deviate from the path it is assigned to. This notion is formalised by the solution con-
cept of Nash equilibria, also referred to as Wardrop equilibria in this model. Wardrop equilibrium

Definition 6.3.1. A flow vector f is at a Wardrop equilibrium if for each commodity i ∈ [k]
and each path P ∈ Pi with fP > 0 it holds that ℓP( f ) ≤ ℓP′( f ) for all P′ ∈ Pi.

Wardrop equilibria are meaningful in a competitive scenario where each agent strives
to minimise their own latency selfishly. In contrast, the operator controlling an au-
tonomous system (AS) is usually interested in obtaining a system optimal flow, which
minimises the total or average cost ℓ̄( f ) = ∑e∈E feℓe( fe) without any need for “compe-
tition” among its network components. Therefore, let us remark that system optimal
flows are Wardrop equilibria with respect to modified latency functions. More precisely,
a flow at Wardrop equilibrium for so-called marginal cost [BMW56] latency functions
he(x) = (x · ℓe(x)) d

dx is known to be system optimal for the original latency functions
ℓe. Note that for linear latency functions without offset, i. e., ℓe(x) = ae · x, we have
he(x) = 2ae · x = 2ℓe(x) implying that Wardrop equilibrium and optimum coincide.

6.3.2 The Exploration-Replication policy

We are considering the Wardrop model in a dynamic, round-based variant. Here,
agents are activated every T seconds and are then allowed to change their path simul-
taneously. An interesting question is then whether agents can distributedly and jointly
learn a Wardrop equilibrium quickly. The main problem is to avoid oscillation. To il-
lustrate this, consider the natural policy where agents migrate to a path with minimal
latency whenever they are activated. Such policies are generally referred to as best re-
sponse policies. However, best response policies lead to greatly increased congestion on
the optimal path at the end of a round and cause oscillation effects subsequently.

Hence, our rerouting policy must be more careful. The so-called (α, β)-exploration- exploration/replication

replication policy presented in [FRV06] is designed to avoid oscillation and finds approx-
imate equilibria quickly. This policy is simple, easy to implement, and requires only
local knowledge.

Informally, our policy as performed by all agents in parallel, can be described as
follows: At regular intervals an agent samples another path applying one out of two
sampling techniques: For uniform sampling, which is executed with only a small prob- sampling

uniform sampling
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ability, every path is sampled with uniform probability. This sampling step guaran-
tees that every path has strictly positive sampling probability and is consequently re-
sponsible for an exploration of the strategy space. For the second sampling technique,exploration

proportional sampling, the probability of sampling a path is proportional to the fractionproportional sampling

of agents already using it, i. e., the popularity of a path is taken as an indicator of its
quality. Thus, agents using good paths are more likely to be imitated. Proportional
sampling is therefore responsible for replication of paths with small latency and willreplication

thus “boost” successful strategies. It can indeed cause the flow on such a path to grow
exponentially fast.

Having sampled a path Q, the agent must eventually decide whether or not they
want to migrate from their old path P to Q in a migration step. Again, the decisionmigration

is randomised. Indeed, the migration probability is sensitive to the relative latency
gain that can be achieved by switching from P to Q. More precisely, the migration
probability is

pmigration = max
{

0,
ℓP − ℓQ

ℓP + α

}

.

Here, α is some parameter that can be interpreted as a positive offset added to all
latency functions to prevent the migration probability to become overly large if ℓP (and
also ℓQ) are close to zero.

More formally, our policy can be described in the following way. In every round,
every agent is activated with probability λ. Each activated agent performs the following
two steps (consider an agent in commodity i, currently assigned to path P ∈ Pi):

1. Sampling: With probability β, perform step (a); with probability 1− β, perform
step (b).

a) Uniform Sampling: Pick a path Q ∈ Pi with probability 1/|Pi|.
b) Proportional Sampling: Pick a path Q ∈ Pi with probability fQ/di.

2. Migration: If ℓQ( f ) < ℓP( f ), migrate from P to Q with probability pmigration
ℓP−ℓQ

ℓP+α .

The adaptive migration rule ensures that small latency gains only cause a small mi-
gration rate. This is necessary to avoid oscillation. However, the migration rate also
depends on the choice of the parameter λ which consequently determines whether or
not oscillation can occur. Its value has to respect the steepness of the latency functions.
This is made precise by the following theorem which is (in a slightly stronger version)
proved in [FRV06].

Theorem 6.3.1. If the latency functions are polynomials of degree d and λ ≤ c/d for a suit-
able constant c > 0, the (α, β)-exploration-replication policy converges towards a Wardropconvergence

equilibrium if

β ≤
minP∈P ℓP(0) + α

maximum path length ·maxe∈E maxx∈[0,β] ℓe(x)
.
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Figure 6.2: Challenges when adopting the Wardrop model to IP routing.

This theorem can actually be generalised to latency functions with finite first deriva-
tive. While this ensures convergence in the long run, in order to give a bound on the
time of convergence we need to define approximate equilibria. Let ℓ̄( f ) denote the aver- approximate

equilibriaage latency of all paths and let ℓ̄i( f ) denote the average latency of paths in commodity i.
We say that a flow is at a (δ,ǫ)-equilibrium iff for every commodity i ∈ [k], ǫi agents use (δ,ǫ)-equilibrium

paths with latency at least ℓ̄i( f ) + δ · ℓ̄( f ) and ∑i∈[k] ǫi ≤ ǫ. It can be shown that for
suitable choices of parameters, the (α, β)-exploration-replication policy reaches a (δ,ǫ)-
equilibrium in time

O

(

d

ǫ2δ2 log
d max f ℓ̄( f )

min f ℓ̄( f )

)

,

where d is again (a generalisation of) the degree of the polynomial latency functions
[FRV06]. We believe that these positive results are a strong indication that a load-
adaptive rerouting algorithm based on this selfish rerouting policy can perform well
in practice. In the following section, we develop such an algorithm.

6.4 Wardrop routing in an IP network

The Wardrop model draws on a rather theoretical setup: It is suitable when the number
of agents is infinite, when the agents can fully control their traffic and the chosen path,
and when they have easy access to the current latency of the paths. However, none of
these requirements is true in real-world networks such as the Internet. In the following
we address all of the aforementioned issues and show that a variant of our Wardrop
policy still can yield a practical algorithm that can be deployed in practice.

6.4.1 Delegation of Decisions

The first major problem is that agents normally do not have control over the entire path
their packets take in real-world communication networks—usually, the end points of
a communication stream are located at the periphery of the network, and are typically
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connected to the network by only a single link, e. g., Ethernet, DSL, or 802.11. Rather, it
is the routers in between the endpoints that are responsible for choosing the path along
which the data packets are sent. In the scenario depicted in Fig. 6.2, the Wardrop agent
should naturally be associated with the data source s; however, s has no influence on
the paths of the flows s ; t that are actually being used for reaching destination t.

Moreover, in most cases not even the routers can choose a path as a whole: Apart
from cases where tunnels or virtual links such as ATM circuits or MPLS LSPs are being
used, a router can only determine the next-hop node on the way to the destination if
traditional IP routing is used. In Fig. 6.2, we see that, even if the Wardrop agent is
located at r and not at s, it still has no influence on the forwarding decisions met at u—
thus, it does not have full control on the paths to be used.

Furthermore, in normal IP routing this decision is solely based on the destination of
a packet, whereas other header attributes (e. g., the source) are neglected. This has the
effect that not all possible paths through the network actually can be used—the dotted
line in Fig. 6.2 shows an example for a path that is not allowed in traditional IP routing
protocols that are based on hop counts or link costs.

As we see, the mapping of Wardrop agents to a network is non-obvious. In this
section we describe how agents (end hosts) delegate rerouting decisions to adjacent
routers. These routers make partial decisions and, in turn, delegate further decisions
they are unable to carry out themselves along the path.

Consider a router r that is located somewhere on a path s ; r ; t from s to t. There
may exist several paths from r to t. Applying our Wardrop rerouting policy, router r
aims at distributing the traffic from s to t evenly among these paths. However, r does
not know about all of these paths, but merely knows a set of possible next hops of
routes for destination t denoted by N(r, t). In practice, these routes can be manually
configured, or they are obtained from an underlying routing protocol such as OSPF as
equal-cost routes.

In order to control the traffic balance, the router r maintains a set of dynamically
changeable weights w(r, t, vi) for every target t and possible next-hop neighbour vi ∈
N(r, t). We normalise the weights for every target t such that they all sum up to 1,
i. e., ∑vi∈N(r,t) w(r, t, vi) = 1. For the time being, let us interpret w(r, t, vi) as the exact
fraction of traffic routed from r to t via vi.

6.4.2 Distributing information

From the perspective of an agent at source s, the routing decision made at intermediate
node r influences only the performance of the path section from r to t, whereas the
performance of the section from s to r is fixed. In order to make the routing decision, r
must gather traffic information about the set of paths between r and t.

On the other hand, r cannot control which one of the possible paths a packet will take
once it has been forwarded to one of neighbours vi. Thus, r cannot exploit exhaustive
information about all possible paths. Consequently, we use only aggregated informa-
tion about the possible paths from next-hop vi to destination t. We now describe how
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router r can gather this information simply by performing measurements of the adja-
cent links (r, vi) and exchanging messages with its peer routers vi. This information
exchange resembles a distance vector routing protocol like RIP (Section 2.2.3 on page
23).

Since r cannot influence a packet’s path beyond the chosen link to neighbour vi, the
decision whether to send the packet via link r → vi is based on the expected latency expected latency

L(r, t, vi) for the path r → vi ; t. Router vi can keep r informed about the expected
latency of its paths vi ; t by periodically sending messages. But how can r use these
values to compute L(·)? Let us consider the case that agg is the sum, and let P(x, y)
denote the set of paths between node x and y. Then r’s valuation L(r, t, vi) of the next-
hop node vi for destination t is

L(r, t, vi) := ℓrvi
+ ∑

P∈P(vi,t)

wP · ℓP

where wP is the weight of path P. This means that for P ∈ P(u1, uk), we have wP =

∏
k−1
i=1 w(ui, t, ui+1). The measurement value of the next-hop edge ℓrvi

can be evaluated
at r.

Let us now specify the information that router vi sends to r. We define

A(vi, t) := ∑
P∈P(vi,t)

wP · ℓP .

to be the average latency that we expect to obtain when r forwards traffic with destina-
tion t via next hop vi.

We then obtain

A(vi, t) = ∑
uj∈N(vi,t)

w(vi, t, uj) ∑
P∈P(uj,t)

wP ·
(

ℓviuj
+ ℓP

)

= ∑
uj∈N(vi,t)

w(vi, t, uj)



ℓviuj
+ ∑

P∈P(uj,t)

wP · ℓP





= ∑
uj∈N(vi,t)

w(vi, t, uj) · L(vi, t, uj) ,

where the first equality is the definition of ℓP, the second holds because ℓviuj
does not

depend on P and the weights sum up to 1, and the third equality holds as it uses the
definition of L(·, ·, ·).

To summarise, the value A(vi, t) is computed at vi and sent to r at regular inter-
vals, after which r can update L(r, t, vi) = ℓrvi

+ A(vi, t). A(vi, t) can be interpreted
as condensed information about the performance of subsequent path sections. Note
that we are using the fact that L(vi, t, uj) is already defined for all vi ∈ N(r, t) and
uj ∈ N(vi, t) when computing L(r, t, vi). This corresponds to the information being
propagated backwards along a path.
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Figure 6.3: No communication restriction allowed: Even though router R1 has only one route
to reach the destination prefix, it is part of a multipath from R2 to this destination. Hence, R2 is
dependent on traffic information from R1 regarding this destination.

Based on the values stored in L(r, t, ·), router r can adapt its weights w(r, t, ·) over
time and distribute the traffic of this demand (from various sources to the same sink t)
as evenly close to the weights as possible. Section 6.4.4 will explain how this split can
performed in practice.

6.4.3 Communication costs

Obviously, the routers need to communicate with each other if they are to base their
decisions not only on local observations, but on the general state of the network. This
brings about the question how much additional traffic is exchanged in course.

For every destination t, the size of such a message contains the identifier of t, which
is typically an IPv4 prefix of 32 + 5 bits, plus the value of A(vi, t) itself. If we allow
11 bits for this value, then the total size of an update message for one destination prefix
amounts to 6 bytes. For IPv6 prefixes, this value roughly triples to 128 + 7 + 11 bits
≤ 19 bytes per update message. Even if one assumes an extreme “worst-case” scenario
where information about 200,000 IPv6 prefixes is exchanged every second, the result-
ing communication overhead is only 3.6 MBytes/s on each link. Compared to today’s
link capacities of 10 Gbit/s and more, this value is small (< 0.4%)—even under these
extreme assumptions.

Furthermore, the information exchanged between routers can be significantly re-
duced by a number of methods. First, no information exchange is needed for those
destinations for which the underlying routing protocol does not offer any (best-cost)
multipaths. Second, routers that are not part of a best-cost multipath do not require to
exchange traffic information. Note, however, that routers which do not have multipath
alternatives to choose from, but which are part of a multipath, still need to forward traf-
fic information; see Fig. 6.3 for an explanation. Third, destinations that have exactly the
same set of egress points from a REPLEX-controlled network share the same traffic con-
ditions along their paths. Assuming normal IP routing, the paths to these egress routers
always remain the same, regardless of the destination behind the router.2 Therefore,
traffic information only needs to be sent once for each of these egress set equivalence
classes; see Fig. 6.4 on the next page for an explanation.

To conclude, REPLEX incurs only minimal additional communication cost.

2Of course, the conditions on their further path outside the REPLEX-controlled network are likely to
differ, but we assume that we cannot obtain traffic information from outside our REPLEX-enabled
network.
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Figure 6.4: Saving communication costs: The 192... and the 172... destinations have ex-
actly the same egress points, i. e., R1 and R2; hence their REPLEX traffic information can be
aggregated. In contrast, the 10... destination has R3 as an additional egress point; thus its
traffic information cannot be aggregated together with the other two.

Route CRoute A Route B

h( )

From: 10.0.0.1 To:   10.9.8.7
Src port: 31377 Dst port: 80

(payload)

Figure 6.5: Avoiding packet reordering using hashing. Traffic is shifted between routes by
adjusting the boundaries between the bins for the hash values.

6.4.4 Randomising vs. hashing—ruling out packet reorderin g

A natural way of distributing traffic according to some weights w(r, vi, t) is to use sim-
ple randomisation, where each weight is interpreted as a probability. However, this
probabilistic routing approach has the drawback that packets headed towards the same
destination may take different paths—a bad decision. Even though the expected laten-
cies along each path may be the same, the actual latencies can differ. Thus packets can
overtake each other, which results in packet reordering at the destination. Since TCP
treats packet reordering in the same manner as it treats packet losses, probabilistic rout-
ing can seriously harm TCP performance [LG02].

Therefore we “roll the dice” not per-packet but rather per-flow by applying the well-
known technique [CWZ00] of using a hash function h : V × V 7→ [0, 1] mapping each hash function

packet based on its source and destination address to some value. For every destination
t, we partition the interval [0, 1] into sections of size w(r, t, vi) and label each interval
with the corresponding next-hop node vi. Whenever a packet from source ids and des-
tination idt arrives, it is forwarded to the node associated with the interval containing
h(ids , idt)—see Fig. 6.5.

As long as the weights are constant, we can thus be sure that no packet reordering
occurs. Whenever weights are shifted, this causes a fraction of the traffic to be rerouted,
possibly causing packet reordering. Hence, the time interval at which weight shifts occur
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should not be smaller than the time it takes for a typical TCP connection to recover from
packet losses, i. e., on the order of several hundred milliseconds.

Let us remark that if there is a range of hash values that are systematically more
popular than others, be it by accident or due to an attempted denial-of-service attack
against our REPLEX network, this causes our weight shifting procedure to decrease the
corresponding weight accordingly.

Note that popular hash methods as they are implemented in practice typically do
not have the continuous interval [0, 1] as their co-domain, but rather some (small) sub-
set H ( Z. Our calculated weights ∈ [0, 1] thus need to be scaled and discretised
in some form, such that their sum amounts to |H|. The similar problem occurring in
democratic elections, i. e., determining the number of seats for each party based on a
much larger number of votes, is resolved by apportionment methods. Several apportion-apportionment

ment methods are known, e. g., the largest remainder (Hare-Niemeyer or Hamilton’s
method), d’Hondt (Jefferson’s method), Sainte Laguë/Schepers, Hill-Huntington (U.S.
congressional appointment), and some more (for an overview, we refer the reader to
[Bog, Wik07a, Wik07b]). Luckily, democratic fairness aspects such as malapportion-
ment, monotonicity, consistency etc. only have marginal effects on the assigned hash
values; thus we can safely ignore them in our case. Therefore we simply decided to use
the method that incurs the lowest CPU overhead. This method proved to be the largest
remainder method.

6.4.5 Measuring performance

In Section 6.4.1 we have assumed that every router r is able to measure ℓ for all outgoing
edges {r, vi}. With an acceptable computational effort we can measure the following
values during each time interval: the number of packets sent and dropped (due to link
overload), the number of bytes sent and dropped, and the average queue length. From
this information we can, e. g., compute the following metrics:

1. The latency as the sum of the (constant) propagation delay of the edge plus thelatency

(variable) queueing delay. Obviously, latency values are additive along a path.

2. The link utilisation. Let b denote the bit rate of an interface, T the length of thelink utilisation

measurement interval, and let n denote the number of bytes sent within this in-
terval. Then we compute the link utilisation as 8·n

T·b . We define the utilisation of
a path to be the maximum utilisation of a link in the path, i. e., the aggregation
function agg is the maximum.

3. The packet loss probability, short loss rate. We compute this probability p as the
number of dropped packets per interface, divided by the number of packets that
were meant to be sent out via that interface. In order to obtain the packet loss
probability along a path, we can calculate its opposite, i. e., the packet delivery
probability, (1 − p). We then can define the packet delivery probability along
the path as 1− ppath = ∏router∈path(1− prouter) and thus ppath = 1−∏router∈path(1−
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prouter). In other words, the aggregation function agg is the product of the additive
inverse in this case.

Different applications require optimisation of different parameters. Applications like
voice over IP require small latency, accessing files requires large throughput, other ap-
plications may require high reliability (i. e., small packet loss probability), and a typical
goal of an ISP doing traffic engineering is to minimise the maximum utilisation of an
edge in the network. In this work, we focus on the latter. Let us remark that in this case,
Wardrop equilibria with respect to link utilisation are also optimal from the ISP’s point
of view. Note, however, that our algorithm can cater for other metrics as well.

Internet traffic is known to be very bursty [PW00]. Therefore, traffic measurements
made within a short time interval are not very reliable. To this end, instead of using
the measured values directly, we use an exponential moving average (EMA). Let ℓ̃(r, v)
be our current metric value for link (r, v), and suppose that we measure a value of ℓrv.
Then we update the value of ℓ̃(r, v) in the next round to be ℓ̃(r, v) ← η · ℓrv + (1− η) ·
ℓ̃(r, v).

6.5 The REPLEX Algorithm

Combining the techniques presented in the previous section, we now present the pro-
tocol which is run on each individual router that participates in a network optimised
by our algorithm. Since it is derived from the exploration-replication policy, we name
our algorithm REPLEX.3 Recall that a protocol implementation has to address several REPLEX

tasks: Foremost, it needs to calculate the weights w(·). For this, measurements ℓ· on the
router’s link queues are necessary. These are combined with the information A(·) that
is received from neighbouring routers. Finally, it has to compute the information L(·)
which it then sends to its neighbours. In order to perform above computations, each
router r maintains the following arrays:

ℓ̃(r, v): The EMA of the measurements for link (r, v).

L(r, t, v): metric value for destination t using next hop node v

A(v, t): The average measurement value that next hop router v has announced for des-
tination t. This array is updated whenever update messages from neighbouring
routers are received. It is initialised with values that are neutral w. r. t. agg(·, ·).

w(r, t, v): Current weight of route r → v ; t (i. e., route for destination t via next hop
neighbour v)

In the router’s main loop, which is executed every T seconds, these values are updated
and sent to the neighbouring routers, as described in Section 6.4.1. Algorithm 4 de-
scribes the procedure in more detail.

At the heart of the algorithm we have the actual weight adaption procedure de-
scribed in Algorithm 5. For every pair of next hop nodes, this procedure computes the

3. . . which happens to sound better than EXREP.
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Algorithm 4 Main loop of the REPLEX algorithm.

1: initialise an empty message M
2: for each destination t in the routing table do

3: for all next-hop nodes v ∈ N(r, t) do

4: measure performance ℓrv

5: ℓ̃(r, v) ← η · ℓrv + (1− η)ℓ̃(r, v) // calculate EMA
6: L(r, t, v) ← agg(ℓrv, A(v, t)).
7: end for

8: avg ← ∑v∈N(r,t) w(r, t, v) · L(r, t, v)
9: Append (t, avg) to M

10: end for

11: send M to all neighbours v who store it in A(r, ·)
12: call procedure ADAPTWEIGHTS (Algorithm 5)

Algorithm 5 Procedure ADAPTWEIGHTS.

1: for each destination t in the routing table do

2: w′(r, t) ← w(r, t).
3: for each pair of next-hop routers v1, v2 ∈ N(r, t) do

4: if L(r, t, v1) > L(r, t, v2) + ǫ then

5: δ← λ
(

(1− β)w(r, t, i) + β
|N(r,t)|

)

L(r,t,v1)−L(r,t,v2)
L(r,t,v1)+α

6: w′(r, t, v1)← w′(r, t, v1)− δ

7: w′(r, t, v2)← w′(r, t, v2) + δ

8: end if

9: end for

10: set w(r, t)← w′(r, t).
11: end for

migration rates (line 5) similar to the policy described in Section 6.3.1. The computed
rates are then migrated by shifting the corresponding weights.

Parameters

Obviously, the REPLEX algorithm depends on a number of different parameters, which
have been introduced to in the previous subsections. In the following we give a con-
cluding overview on the static parameters of our algorithm.

update period length T : The length of the interval at which the main loop is executed.

communication period length Tcomm: If communication between the routers is de-
coupled from the main loop (not shown in algorithm 4 for the sake of simplicity),
this value describes the time intervals between subsequent messages to neigh-
bouring REPLEX instances.
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weight shift factor λ: This parameter determines the weight shifted in one round.
The ratio λ/T controls the convergence speed of the algorithm. Oscillation ef-
fects and congestion control feedback loops of affected TCP connections limit the
maximum convergence speed that we can achieve.

EMA weight η: Decreasing the weight of the exponential moving average makes the
algorithm less sensitive to the effects of bursty traffic, whereas choosing it too
small increases the time span until the algorithm realises the effects of rerouting
decisions, or reacts too slowly to traffic changes.

virtual latency offset α: This virtual offset is added to all path latencies L(r, t, v) mak-
ing the algorithm less sensitive to small differences when the metric is close to 0.
(For a detailed discussion, see [FRV06].)

improvement threshold ǫ: The optional parameter ǫ can be considered to be a damp-
ing factor. Projected weight shifts that are smaller than ǫ are not carried out; thus
one can ensure that weights are only shifted if the change is substantial.

exploration ratio β: This parameter determines the ratio between replication and ex-
ploration. If β is too small, currently unused paths may not be sampled by our
algorithm. On the other hand, β should not be too large, since this can result
in excessive growth of a flow if fP is close to zero. (For a detailed discussion,
see [FRV06].)

metric to optimise: As we pointed out before, REPLEX is not restricted to operate with
latencies. Rather, the REPLEX instances in a network also can be used to opti-
mise other network performance metrics, e. g., maximising throughput, minimis-
ing link loads, or minimising packet losses.

nonlinear link load parameter κ: This parameter is specific to the nonlinear link load
and will be introduced in Section 7.1.6.

Our simulations show that the performance is largely independent of the choice of
α, β and ǫ, as long as these are chosen within reasonable intervals. We find α, β ∈
[0.1 . . . 0.25] and ǫ ∈ [0 . . . 0.05] to offer a good trade-off between the effects described
above. The more sensitive parameters that influence the performance most are T, λ, η,
and the metric that the individual REPLEX instances aim to optimise. Accordingly, we
explore this parameter space in the following chapter in greater detail.
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In this chapter, we evaluate the REPLEX algorithm that was introduced in the previous
chapter via network simulations. It is our intention to show that our protocol behaves
well with realistic traffic. Therefore, we employ traffic loads that mimic actual Web
traffic, i. e., bursty TCP traffic whose characteristics are consistent with self-similarity
and with those shown in Chapters 3 and 4.

As predicted by theory, the simulations quickly converge and do not exhibit signifi-
cant oscillations. This holds both for artificial as well as real topologies.

7.1 Simulation setup

The purpose of our simulations are twofold: On the one hand, we use them to deter-
mine good parameters for the algorithm. On the other hand, we want to understand
the behaviour of the system both in simple scenarios as well as in more complex ones.
Accordingly, we consider various topologies ranging from simple four-node graphs to
complex intra-autonomous system topologies such as those provided by the Rocketfuel Rocketfuel

project [SMW02]. The specifics of the topologies are discussed when we present the
results. However, the principal workload and routing setup is the same across all sim-
ulations, and is summarised in the following subsections.

7.1.1 Network simulator

For our simulations we use the toolkit SSFNet (version 2.0, Java) [Ren], since it en-
compasses the features that we need: a full TCP implementation, flexible workload
generators, complex topologies, and support of multiple routing protocols (including
OSPF [B0̈3], MPLS [Kra03], and BGP [Ren]). Furthermore, it allows us to run com-
plex simulations lasting for multiple hours of simulated time with ten to one hundred
routers and several hundreds of clients within reasonable computation time (hours to
a few days), and with thousands of clients and hundreds of routers in not quite so
reasonable computation time (many days to weeks).

Within each simulation run, we distinguish three phases: a startup phase which in startup phase

most cases lasts 1,000–30,000 seconds, a comparison phase of 4,000 to 10,000 seconds comparison phase

where REPLEX is not enabled yet, and an evaluation phase of another 4,000 to 10,000 evaluation phase

seconds during which we study the performance of the algorithm. The startup phase
is used to setup the underlying routing system and to enable the workload generator
to reach a “stable” state, while the comparison phase allows us to compare the perfor-
mance of the network before and after (i. e., evaluation phase) the start of REPLEX.
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7.1.2 Routing

As our algorithm is not a routing protocol but a traffic engineering protocol, it relies
on an underlying routing system. We use the SSFNet OSPFv2 implementation [B0̈3]
for this purpose. The computation of the routes is performed right at the start of the
simulation and only takes a few seconds.

Some of the Rocketfuel maps are shipped with additional Rocketfuel-deduced IGP
weights. Note that these weights are presumably the result of some traffic engineering
process. As we do not know the traffic matrix underlying this TE process, it does not
make sense for us to use these IGP weights in our simulations. Instead we use uniform
OSPF weights, resulting in hop count as the distance metric. Using hop count increases
the number of equal-cost paths when compared to routing based on, e. g., weights in-
ferred from Rocketfuel measurements. Therefore it provides the algorithm with more
flexibility.

7.1.3 Realistic workload

Overall, it is well known that traffic volume [WPT98] and flow arrival streams [Fel00b]
are self-similar and exhibit significant burstiness. To account for this bursty nature of
traffic on the Internet [PW00] and the fact that most traffic on the Internet is still using
TCP [DFM+06], we choose to generate our workload using the Web workload genera-
tor of [Vol04]. This generator uses a workload model that is similar to that of the Web
workload generator that is shipped with SSFNet [Ren], but offers additional features.
It uses a workload model that is similar to the one introduced by SURGE [BC98] or
NSWeb [Wal01]. We parametrise the workload generator with data from [Bar01], in or-
der to generate TCP traffic with realistic properties [FGHW99]. A survey conducted by
Schneider [Sch06] confirmed that these parameters still can be considered to be consis-
tent with today’s Web traffic. To further increase burstiness, we purposely disable the
use of persistent HTTP connections [KR01].

Our generator simulates Web users that read a Web page, then are idle for some time
before reading another Web page, become idle again, etc. Therefore, one has to allow
the system to reach its equilibrium during a certain startup phase. We achieve this
by starting all clients at uniformly distributed random times (to avoid synchronisation
effects) after the route computations have finished. In most cases, the clients are started
in the simulation time interval between 50 s and 10,000 s. After all clients have been
started, and before the startup period ends, we wait for another 2000 s so that the traffic
can stabilise, before we end the startup phase and continue with the actual evaluation
phase. The different phases of the simulation are shown in Fig. 7.1.

Like the timeouts, the simulated file sizes are also heavy-tailed. Thus, they yield
many short flows, as well as a significant number of long-lasting flows.

In today’s Internet though, the Web is not the main traffic contributor any more: In
the last couple of years, it has been de-throned by peer-to-peer filesharing networks,
such as Gnutella [SZR06], BitTorrent [IUKB+04], eDonkey [Tut04], Kademlia [MM02],
etc. All in all, filesharing networks contribute more than 50 % of today’s Internet traf-
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Figure 7.1: The different phases in simulation time and their influence on the number of bytes
transmitted through the network in an example simulation. Note that we define t = 0 in sim-
ulation time to be the start of REPLEX, in order to ease comparisons across simulations that
use different startup period lengths. The numbers on the right, in contrast, show the absolute
simulation time counted from the start of the simulation.

fic [KBB+04]. Moreover, their characteristics differ significantly from those of Web traf-
fic [SZR06, LBBSS02].

We conjecture that it is sufficient for our purpose of generating workload to simu-
late only the actual downloads, while leaving out additional traffic such as searches,
since the major part of peer-to-peer traffic is related to downloads. Moreover, most
of them use HTTP as a transport protocol. Therefore, although simulators for peer-
to-peer networks exist [AFM05], we simply add a second group of “Web” clients and
servers that we use to simulate peer-to-peer file transfers. This peer-to-peer group of
“Web” clients and servers is independent of those Web traffic hosts that are responsible
for the actual Web traffic, and we change the model parameters for the new group to
imitate typical peer-to-peer network characteristics [SZR06, SR06] instead of Web traf-
fic. Foremost, the larger file sizes of filesharing traffic [LBBSS02, AdMD+04] lead to
much longer-lasting TCP connections when compared to those of Web traffic. Note
that the these longer-lasting TCP connections will typically spend most of their time in
the congestion avoidance phase instead of the slow-start phase [Pea81]. Therefore, they
potentially suffer even more from eventual packet reordering caused by REPLEX path
weight changes than the shorter-lasting Web TCP connections.

We note that alternative approaches—such as replaying a pre-recorded trace, or gen-
erating packets with randomised inter-packet timeouts following some heavy-tailed
distribution—do not suffice, as they do not account for interacting feedback loops.
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After all, the self-adjusting traffic engineering protocol as well as other control loops,
foremost TCP, both react to congestion. Therefore, it is crucial to investigate potential
interactions of the TCP congestion control feedback loop with the actions of our TE
protocol: While it has been shown that a joint system of (traditional) traffic engineering
and TCP congestion control can be stable under specific conditions, this is not neces-
sarily the case with REPLEX as well. Rather, the doubled feedback could easily lead
to overreactions, which in turn can cause oscillation—even when REPLEX’s decision
strategy just by itself would not cause any harm.

Obviously, simulating TCP plays an important role in the generation of our realistic
traffic workload. However, many different TCP implementations exist in the real world
[PAD+99, YQL04, Dir] and, moreover, many of these offer configuration options that
affect their behaviour (e. g., enabling or disabling the Nagle algorithm [Nag84]). Since
we are interested in identifying potential performance losses that might arise through
adverse interactions of REPLEX and TCP, we decide to tune TCP towards a greater
sensitivity to packet reordering. Although our hashing mechanism ensures that all
packets pertaining to one TCP connection are sent along the same path, it may happen
that REPLEX meets a decision to assign a subspace of the hash values—and thus a
number of currently active TCP connections—to a different route. In an unlucky case
featuring extreme differences in path latency, this can result in one pair of packets per
TCP connection being shuffled.

The TCP implementation of SSFNet simulates an older BSD-style TCP implementa-
tion [Ren]; hence reordered packets are regarded as packet losses. We thus disable the
Fast Recovery mechanism in TCP [MA99] on purpose, in order to increase the adverse
effect of packet losses, as well as of packet reordering, on TCP throughput.

In order to add variability to the experienced RTT values in the network [FGHW99],
we randomise the link delay for each client and each server. They are chosen uniformly
from the interval [0, 60] ms for clients and [0, 25] ms for servers. Also for the sake of
variability, we connect clients and servers with random bandwidths to their router.
The random bandwidths are chosen uniformly from [0.1, . . . , 2] times the default link
bandwidth of the scenario (i. e., 1 Mbit/s to 20 Mbit/s in most of our scenarios).

All in all, our Web workload generator produces realistic bursty workload traffic.
For illustration, Fig. 7.2 shows the average load for a simulated 10 Mbit/s link that is
traversed by the traffic from 100 clients and five servers, with time resolutions rang-
ing from fracetions of a second to several minutes. Obviously, the traffic on the link
fluctuates heavily, which is both due to the self-similar characteristic of the random
distributions employed in the workload model, as well as to the competing feedback
loops of concurrent TCP connections that interact with each other.

7.1.4 Network topology

We evaluate REPLEX both in simple artificial, as well as in more complex realistic
topologies. Further details on the simple topologies are given below, together with
a discussion of the simulation results.
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Figure 7.2: Example for bursty workload behaviour. The traffic on the link fluctuates heavily.
Fluctuations are even visible on long-range timescales, such as 16 and 256 seconds. 1 simulation
run, REPLEX not active.

Our realistic topologies come from two sources. Our main source is the Rocket-
fuel project [AMSW, SMW02]; the other is the AT&T topology that is shipped with
the Totem traffic engineering software toolbox [BLM].

7.1.5 Limitations of simulation scale reduction

Obviously, when compared to real-world networks, our simulated networks are signif-
icantly smaller in size: It is just not feasible to simulate the entire Internet or even a
large fraction of it, involving millions of hosts and each generating realistic TCP traffic.
We therefore have to take care that we do not introduce artefacts into our simulation
that arise from differences in scale reductions of different network parameters. We con-
jecture that it is possible to downscale a network comprising a few millions of end hosts
and link speeds of 10 Gbit/s (i. e., a large AS and the end hosts that generate the traffic
routed through it) by a factor of 100 down to speeds 100 Mbit/s and several thousands
of end hosts, without suffering from drastic distortions of the workload characteristics.
However, our experience with such very large simulations is that they take a very long
time to run (one week to one month). Further downscaling of the number of packets
flowing through the network is thus desirable.

Naïvely, one might assume that, for downscaling a network by some factor x, it were
sufficient to reduce the link capacities and the number of workload-generating end
hosts by the same factor x. However, this only works to a certain extent, since it distorts
the relationships between important network characteristics such as propagation delay,
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queueing delay, transport delay, queue capacities, packet sizes, and TCP window sizes.
We now examine these aspects in greater detail and point out observations that are
valid for large network simulations in general.

Obviously, reducing the bandwidth increases the transport delay, whereas the prop-
agation delay remains constant, as it only depends on the speed of light in the glass
fibre. At bitrates of 10 Mbit/s, the transport delay amounts to 1.2 ms already, and
thus comes close to the range of typical propagation delays on long distance links:
300,000 km

s ·
1

1.5 · 1.2 ms = 240 km (note that the speed of light in fibre is about 1.5 times
slower than in vacuum [Pop]). Thus, further simple bandwidth downscaling increas-
ingly distorts the delay characteristics of the network topology: It reduces the influence
of the differences in delay that arise from the differences in physical distance, and in-
creases the differences in delay that arise from network hop distance.

Another factor is the queueing delay: In order to not to let it grow, the router queue
sizes need to be scaled down as well. At 10 Gbit/s, a queue size of 2 MBytes can hold
1333 full-size packets of 1500 Bytes (assuming that at the time of this writing, Jumbo
frames are not yet widespread outside local area networks). It delays the sending of a
packet by 1.6 ms when completely filled, a value that is in the order of the propagation
delays, as we have just seen in the transmission delay example above. To retain the
original relationship between propagation delay and queueing delay, we have to reduce
the queue capacity to 2 kBytes—however, a queue this small will not be able to hold
more than just one single full-size IP packet. If we were to use such small queues
to offset the aforementioned queueing delay issue, this severely distorts the queueing
characteristics of the network, presumably causing a drastic increase in packet drops.

A solution that can ease both of these problems is to reduce the maximum segment
size: This way, we can ensure that the queue can hold more packets and, at the same
time, we reduce the maximum transport delay. However, applying a scaling factor of
1000 or more is not feasible, since this implies that we have to deal with many tiny
packet sizes: zero, one, and maybe two bytes. Thus a solution in the middle needs to
be found.

A second reason why we cannot arbitrarily scale down the MTU are the packet
headers: By simply reducing the MTU, we reduce the difference between the smallest-
possible and largest-possible packet sizes. In order to keep the ratio between header
bytes and workload bytes constant, one has to also reduce the IP and TCP header sizes.
Alas, our version of SSFNet proved to be unstable when we tried this, and using an-
other simulator was out of question because a re-implementation of REPLEX in a dif-
ferent network simulator, including a faithful reproduction of the worklad generators,
the routing subsystem etc., did not seem worthwhile.

Another issue with scaling the MTU are the implications that arise from the subse-
quent alteration of TCP, HTTP and workload model characteristics. First, downscaling
the MTU naturally implies that the TCP MSS is reduced as well, which in turn leads to
HTTP headers and HTTP workload to be spread across more packets than in the nor-
mal case (unless we reduce their values as well). Second, reducing the MTU increases
the number of segments that the TCP window holds. If we want to keep this value
constant, we have to downscale the TCP windows as well.
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An alternative solution to address the delay-related issues that we mentioned previ-
ously is to scale the propagation delays as well: If queueing delay and transport delay
are increased by a factor of x, we could simply increase the propagation delays by the
same factor x in our simulations. This scales the total delays in the entire network by a
factor of x.

However, this simple approach can lead to severe distortions of the TCP workload
characteristics, if we maintain our goal of reducing the number of end hosts in our
simulated network. First, let us note that the maximum throughput R attained by a
(long-lasting) TCP connection with bulk traffic can be expected to be roughly linear
with R ∝ M/T, where M is the MSS and T is the RTT (see, e. g., [HDA05], for more
sophisticated TCP throughput estimations). By increasing the delays in the network
by a factor of x, we scale T to T′ := x · T, and thus obtain a downscaled maximum
throughput R′ := R/x. This may seem fine at first glance, as we also reduced the link
capacities by a factor of 1/x. However, bear in mind that our reason for reducing the
link capacities is the result of our intention to be able to reduce the number of end
hosts and thus the number of packets that we need to simulate. Assuming (without
loss of generality) that every simulated host handles roughly the same number of TCP
connections and that the network is not heavily overloaded, it is alright to assume that
the number of workload bytes B which an average client injects into the network during
a certain time span is linear with R (formally, B ∝ R). Given n end hosts, we thus have
a total traffic demand of n · B in our network. Now recall that the reduction of link
capacities has to do with the fact that we want to be able to downscale the number of
end hosts by the same factor. But if we scale the number of end hosts using the same
factor x down to n′ := n/x, as it was our initial intention, then we have a downscaled
traffic demand of B′ := n

x · R
′ = n

x ·
R
x ∝ 1

x2 . Here, note that nR
x2 is dependent on x2

and not on x, so this obviously is not linear with our desired reduction factor of x any
more! In other words, our downscaled network can be expected to either generate less
traffic than it should, or at least to generate traffic with different load characteristics.
The obvious way to avoid this is to not reduce the number of simulated clients in the
network, but to use quantities as seen in the real world (i. e., hundreds of thousands or
millions of end hosts). But this unfortunately does not reduce the complexity and thus
the memory consumption of the simulation, although the reduced number of simulated
packets at least reduces the CPU time.

Another downside of changing the overall network delays on a large scale is the fact
that this also requires us to adjust the timeout distributions of the workload model
accordingly—otherwise, the behaviour of the simulated users is not consistent with
the timing performance of the network. Our thus increased inter-request times, inter-
session times etc. of the workload model, in turn, also reduce the average bandwidth
consumed by each end host. This even aggravates the TCP issues discussed in above
paragraph. In short, if our downscaling of the network comprises significant increases
in delays, our workload hosts can be expected to generate significantly less traffic per
host.
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To summarise, we can see that there is no easy way to simply reduce the amount
of the simulated network traffic (and thus the CPU time consumed by the simulation)
such that all relevant characteristics of traffic in real-world high-bandwidth networks
are faithfully preserved. Simply dividing the link bandwidths and the number of end
hosts by the same factor only can work reasonably work well up to a certain scale. If an
even larger reduction is required, the most important characteristics to be retained have
to be selected, and compromises have to be made on other aspects of the simulation:
Apart from link bandwidths and the number of end hosts, other factors that need to be
considered are queue lengths and maximum packet sizes; additional tuning options are
the various header sizes and file size distributions, as well as the propagation delays of
the topology, and the timeouts of the workload model.

Given all these considerations, which of the options mentioned above should we use
in our simulations, so that we do not compromise our goal of generating realistic work-
load traffic? We note that, if we want to simulate a modern network with link speeds
of 10 Gbit/s and above, then our simulated network should feature link speeds that are
at least 10 Mbit/s—otherwise, we may encounter too large distortions that are initially
caused by the transport and queueing delays growing too large, and we would have to
resort to further artificial tuning, thereby causing other undesired artefacts. Constrain-
ing ourselves to a certain link speed brings about the question of how many workload
hosts we are to simulate. Since our workload model is fixed, we determine the aver-
age traffic demand for one workload client through simple simulation in a 10 Mbit/s
environment under typical RTTs of 2 to 200 ms between client and server and different
values from 2 to 200 kBytes for the router queues for a MTU of 1500 Bytes. We find that,
in order to achieve high but not extremely high link utilisation with acceptable packet
loss rates, a value between 20 and 100 is a good choice for the number of clients, while
8 kBytes to 32 kBytes are good values for the router interface queues. Setting the TCP
send and receive windows to 32 kBytes yields sufficiently bursty traffic; using larger
values increases burstiness even further but, due to some SSFNet bug, increases the
computation time for the simulations.

7.1.6 REPLEX setup

Depending on the size of the topology, we end the startup period after 2 000. . . 30,000 s,
and start the evaluation period. To simplify our notation, we completely ignore the
startup phase and define the beginning of the evaluation period as t = 0 for the re-
mainder of the document. The comparison phase (i. e., the time interval during which
our algorithm is not active yet) thus is characterised by times t < 0. Note that, for the
sake of simplicity, we will simply ignore the startup phase that precedes the comparison
phase.

The evaluation period is used to study the behaviour of our TE algorithm. Accord-
ingly, the REPLEX instances at each router are now started. Similar to the Web clients,
the TE instances start at random times to avoid synchronisation effects. This happens
during t ∈ [0, T] s distributed uniformly across the interval. Communication between
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routers has already been enabled at this point. Initially, all route weight settings are
neutral; this guarantees an equal traffic distribution among the available equal-cost
routes and is the default in real-world networks.

When the algorithm starts, the route weights are still at their unbiased uniform set-
ting (i. e., each inversely proportional to the number of same-cost routes to its destina-
tion; e. g., 50:50 in the case of two route alternatives), and have not yet been optimised.
Thus the time at which the TE instances are started can be seen as a situation in which a
drastic large-scale traffic change has suddenly caused (almost) all weights in the entire
network to be maladjusted—which our algorithm now needs to mend.

We mentioned earlier that REPLEX allows to optimise different metrics. In our sim-
ulations, we use the following metrics to optimise (i. e., we use REPLEX to minimise
them):

Link load: This is presumably the most popular metric with network operators. Most
TE schemes strive to minimise the maximum link load in the network, with the
idea that higher link loads feature increased congestion and thus a deterioration
of service quality.

Nonlinear link load: Links that feature a high link load are much more likely to suffer
from packet losses than links with only a medium load; i. e., packet losses grow
faster than linear with link load. Similar to other TE schemes, e. g., [FT00], we
therefore also try an approach where we valuate the link load with a nonlinear
utility function. In Section 6.3.1 we argue that linear latency functions1 allow
us to find the (global) optimum. If we now consider that the actual goal is not
to minimise link loads, but rather to minimise packet loss probabilities, then it
makes sense to choose a nonlinear utility function that accurately captures the
relation between link load and packet losses.

Queueing theory suggests for simple M/M/1 queueing models that the increase
in latency is hyperbolic with the load [GH98]. Although we cannot assume that
queues in real networks have exponentially distributed packet interarrival times
due to the self-similarity of the network traffic characteristics [LTWW94, CB97,
CB96, WPT98, Fel00b, PW00], it nevertheless is an indication for a good starting
point to minimise 1

remaining capacity , i. e., 1
1−link load . This implies that our utility func-

tion approaches ∞ as the link load approaches 1. However, it is possible that the
link load actually approaches or even exceeds this value. A valuation of ∞ for
a link results in immediate drawback of all traffic from this link, which is cer-
tainly an unfavourable overreaction. To avoid this happening, we add a small
additional factor κ and thus use

nonlinear link load :=
1

1− link load + κ

1Let us remark again that here, the term latency is used in its meaning for theoretical computer science,
i. e., as a generalised cost measure, but not in the meaning of actual queueing, transmission, or propa-
gation delay.
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as our formula for deriving the nonlinear link load from the measured link load.
We use κ = 0.2 in most simulations involving this metric, as our simulation results
suggest that even a heavily overloaded link rarely exceeds a load of 1.1.

Packet loss probability (loss rate): Instead of trying to model the packet losses as a
function of the link load, we may as well use the probability of drop-induced
packet losses itself as a metric. We note that this is a potentially dangerous ap-
proach, as the congestion control mechanism of TCP strives to minimise this met-
ric as well—thus if we are to use packet loss probability as the metric for REPLEX,
we will not only have two interacting control loops (i. e., REPLEX and TCP con-
gestion control), but even two interacting control loops that try to optimise the
same objective.

Another aspect that we need to consider is the propagation of the packet losses
via our distance vector like protocol. Recall that, for the link load, we take the
maximum of our own measured link load, and the maximum of the link load
on the further route, as reported by our neighbour. Although this makes sense
for link loads, it does not make much sense for packet losses; certainly, a route
featuring one link with loss probability 1 % (and no further losses beyond that
link) is preferable over another route with three links, each of with with a loss
probability of 0.5 %: In the end, the latter has a higher overall loss probability.

But just as we cannot drill a hole of 10 mm in diameter using one 6 mm and one
4 mm drill, 2 we cannot simply add the packet loss probability of a link to the loss
probability of the downstream route—rather, we have to combine both to obtain
a meaningful value. Let pi be the probability that a packet gets dropped at the i-th
link of a route, then the probability p̄i for the packet to pass link i unharmed is
p̄i = 1− pi. Hence, the probability for the packet to safely reach the end point of
a route with n links is ∏

n
i=1 p̄i. Suppose that a packet already has reached the k-th

link of the route, then the probability P̄k for it to safely travel along the remaining
route without being dropped is ∏

n
i=k p̄i. Now note that this is actually p̄k · P̄k+1.

We thus can calculate the packet loss probability Pk = 1− P̄k on the remaining
route using our distance-vector approach as Pk = 1−

(

p̄k · P̄k+1
)

, i. e., in the end
we obtain

Pk = 1− ((1− pk) · (1−Pk+1)) ,

where pk is our own measurement of packet losses on link k, and Pk+1 is the
packet loss report that we received from the neighbour at link k. We use Pk in
our REPLEX calculations, and also use it (averaged together with further P ′k, P ′′k ,
P ′′′k ,. . . of alternative routes, weighted by their respective weights) in our report
that we send to our upstream neighbour k− 1.

2Remember the footnote on page 7. . .
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7.2 Measuring Performance

So far we have been talking about the setup of the simulations that we will use to
measure REPLEX’s performance—but how do we actually do measure its performance?

Generally speaking, we examine the performance under two criteria: First, how
much does applying REPLEX increase the “performance” of the network (note that we
need to define “performance” before we can answer this question); and second, how
fast does REPLEX achieve this goal? This opens two questions: how do we define the
“performance” of the network, and how do we define the speed of convergence, i. e.,
how do we define “convergence”?

7.2.1 Network performance

A number of criteria can be thought of as performance measures. Since a common opti-
misation goal in traditional (i. e., offline) traffic engineering is to minimise the maximum maximum link load

link load on any link in the network, this measure is naturally an interesting performance
indicator.

One of the reasons to use this goal in traditional TE is that a high load on a link in-
creases the probability for packets to be dropped when they are to be sent over it. An
increased loss rate, however, does not only decrease the quality of service as perceived
by the end users—it can, moreover, lead to synchronisation effects across otherwise in-
dependent TCP connections, since all connections affected by the same packet loss burst
will react with their congestion control mechanisms (slow start and/or fast retransmit)
around the same time. This synchronisation, in combination with the effectively non-
linear increase of the slow-start phase, will increase the traffic’s burstiness and thereby
deteriorate the service quality even more. Therefore, the packet loss rate is another useful packet loss rate

measure for network performance.
Another measure that is of interest for the network operator is the number of bytes

that are transmitted through the network. Greatly oversimplifying economic details,
we can generally assume that the financial revenues increase as the number of trans-
mitted data increases. On the other hand, we can assume that TCP congestion control
will make use of additional network capacities, thereby shortening download times and
thus allowing more downloads per time unit.3 Therefore, the number of transmitted IP
payload bytes per time unit, i. e., the network throughput, is yet another useful measure network throughput

for network performance.
Apart from the packet loss rates, the criteria mentioned so far view performance from

the position of a network operator, i. e., at the IP level. However, it is not the network
operator but the end users who utilise the network and who pay for it; so measures that
describe the performance as experienced by the end user are also good performance
indicators. Since TCP is used solely as our workload, it is thus useful to measure the
TCP goodput, i. e., the total number of TCP payload bytes that were actually received by TCP goodput

3The inter-request and inter-session times in our workload model are counted from the end of a re-
quest/session to the beginning of the next one. Slow download rates will thus delay the downloads
of further objects, thereby reducing the overall number of bytes that one client downloads.
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the end hosts per time interval. If faster download rates increase the total number of
bytes in the network, then the TCP goodput should increase likewise (unless the TCP
connections suffer from heavy retransmits induced by massive packet reordering or
packet losses).

We mentioned earlier that, due to the hashing approach, REPLEX ensures that pack-
ets pertaining to one TCP connection always travel along the same path, since packet
reordering negatively affects TCP performance. However, a few packets actually may
be reordered when REPLEX changes the weights, i. e., assigns some hash bins (and thus,
potentially, some active TCP connections) to a new route. As the receiving TCP stack
is not clairvoyant, it cannot know that a missing packet has just been reordered and
will thus arrive later than its successor; therefore it does not distinguish between TCP
segments being reordered and TCP segments being lost. To quantify the extent of possi-
ble REPLEX-induced reorderings, we measure the TCP packet loss rate per time interval,TCP packet loss rate

i. e., the number of all TCP segment losses as perceived by the receiving end hosts (be
they caused through congestion or through packet reordering), divided through the to-
tal number of TCP segments injected into the network during the time interval under
consideration.

Another interesting performance indicator is the retransmission ratio. Whenever aretransmission ratio

TCP receiver deems a segment as having been lost and indicates this to the sender, then
the latter has to retransmit the segment in question. By relating the number of TCP
segments that have to be retransmitted to the absolute number of TCP segments, we
can judge the efficiency that TCP can achieve in the underlying network. The retrans-
mission ratio naturally includes both retransmits caused by packet reorderings, as well
as retransmits caused by packet losses due to congested links.

7.2.2 Determining convergence

So far, we have talked about how to measure the effect of REPLEX on a network’s per-
formance. However, since REPLEX is a dynamic traffic engineering algorithm, it is not
only of interest how much we can gain by using REPLEX, but also how fast REPLEX can
attain an improved performance level. In other words, we need to measure its speed of
convergence.

As we shall see from the experimental results in, e. g., Section 7.3, we find that some
of our performance measures seem to reach their optimal level quicker than others—
for example, as soon as we enable REPLEX, the number of transmitted bytes increases
much faster than the route weights do. Therefore, although it may at first sight feel
natural to define convergence solely on the output of the algorithm, i. e., the changes to
the weights, it is also interesting to see how quickly REPLEX stabilises at a level with
increased network performance.

Since we use a statistical workload model, we have significant fluctuations in our net-
work traffic even if we do not employ REPLEX at all. Therefore, we cannot expect any
of our performance measures to monotonically increase over time and finally converge
to one fixed value. Rather, it is natural for our performance measures to fluctuate—not
only before and after REPLEX has converged, but even during the convergence process.
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Figure 7.3: Calculating the convergence time tc, based on a sequence of measurements mi.

This, of course, opens the question of how one can determine when a series of measure-
ments has stabilised (converged), and when it has not yet reached a stable level but is
still in the process of converging.

Assume that we want to determine the convergence time tc of the time series that
represents our measurement value m (e. g., m can be the weights that REPLEX adjusts).
Formally, we have measurements mi, i ∈ 0, . . . , e where i = 0 corresponds to the time at
which we start REPLEX, and i = e corresponds to the end of our simulation time. We
want to find some c such that all mi, i ≥ c have “converged”, i. e., have become station-
ary and remain within some “convergence region”. We call the time tc that corresponds
to the measurement mc the convergence time, supposing that t0 = 0 corresponds to mea- convergence

surement m0.

Let us initially suppose that our simulation runs for an infinite time after the start
of REPLEX, i. e., e = ∞. In this case, we can calculate a statistical convergence time tc in
the following way. Since we have infinitely many mi spanning an infinite amount of
simulation time, we can neglect the initial convergence phase m0, · · · , mc−1 (since it is
finite) and hence assume the mi values to be stationary. Therefore, we can calculate the
expected value of m (which in this case exactly coincides with the arithmetic mean) and
other descriptive statistics. More specifically, we can calculate some kind of convergence convergence corridor

corridor C, within which the majority of the mi fall, using some kind of corridor func- corridor function

tion f . For the time being, imagine f to be something like f (m1, . . . ) = µ(m1, . . . ) ±
1 · σ(m1, . . . ) or f (m1 . . . ) = (first quartile(m1, . . . ), third quartile(m1, . . . )). After hav-
ing defined our convergence corridor, we can define convergence to occur at the first
measurement mc that falls into our convergence corridor. Formally, mc ∈ C ∧ ∄i <

c such that mi ∈ C. See Fig. 7.3 for a graphical explanation. Note that some subsequent
mi, i > c may fall outside the corridor C again, as it is shown in the figure. For example,
this is naturally the case if we use quantiles as our corridor function.
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Of course, our initial assumption of having an infinitely-long running simulation is
not realistic; in fact, we only have a limited number of measurements, i. e., e << ∞. If
we have a large number of measurements, we can still calculate the corridor function
using all mi —however, then our argument that the measurements pertaining to the ini-
tial convergence phase do not affect the extent of our corridor does not hold any longer.
In an extreme case, mc occurs just shortly before me (i. e., the end of the simulation), and
thus most mi fall into the convergence phase (i. e., most i < c). Therefore, they must
not be used in the calculation of the corridor, since we want our corridor to describe the
location of typical mi values after convergence has occurred; we therefore can only use
those measurements mi, i ≥ c that we obtain after the convergence time tc to calculate
our corridor C. In other words, to calculate C, we need to know tc —but recall that our
reason for calculating C is that we need it in order to compute tc. Is the cat biting its
own tail?

We can resolve this cyclic redundancy by assuming that those mb...e (with b only a
little smaller than e) that appear near the end of the simulation almost certainly belong
to the converged state. We calculate C based just on these mb, . . . , me. Then we can
check if all prior mi, i < b are indeed outside our calculated C. If this is the case, we
have, by definition of c, found that c = b and thus determined the convergence time
(assuming without loss of generality that mb is the first measurement that lies within
C). If this is, however, not the case—i. e., there is at least one mi with i < b such that
mi ∈ C—, we can iteratively reduce b and check again. This way, we check at which
earlier point in time the convergence region is reached for the first time. Of course,
reducing b also means that we include more and more mi in our calculation of C.

To summarise, we grow the region which we assume to be converged from the end
of the simulation, thereby constantly adjusting the convergence corridor, until we reach
the first point of the converged phase by our definition of convergence.

We calculate the point after which we consider our series of measurements to be con-
verged using Algorithm 6. In addition to the symbols introduced so far, the algorithm
uses the following additional variables: mconv is the set of measurements that are con-
sidered to be converged as by our definition, i. e., mconv := m[c, . . . , e]. m? is the current
candidate for mconv, which we test if it fulfils our convergence criterion (i. e., it more or
less corresponds to the variable mb in the description above). We label its convergence
corridor with C?. As can be seen, Algorithm 6 performs exactly the computations that
we described above, and thus yields the convergence region according to our definition.

Note that this simplified version does not consider the case that some of the mi, i < c
may lie below corridor C while others may be located above it. It is an interesting
question whether a subsequence of measurements that are intermittently either above
or below a convergence corridor can be regarded as being converged or not: In those
cases where convergence expresses itself as a decrease in the amplitude of fluctuations,
it makes sense not to consider such a subsequence as converged. In other cases where
convergence appears as level changes (for example, from low to high values), it can
make sense to neglect one of the boundaries of the corridor (in the example case, the
upper boundary). See Fig. 7.4 for a graphical explanation of the two possibilities. The
measurements involved in our REPLEX simulations mostly take either variant of the
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C

simulation time

m

Figure 7.4: Possible definitions for the convergence condition can be either the first time that
the convergence corridor C has been crossed (red, left) or the first time that some measurement
mi lies within the boundaries of C (blue, right). We choose the latter, stricter approach.

Algorithm 6 Calculating the statistical convergence of a time series.

Require: A time series of measurements m[1, . . . , e]
1: mconv ← m [e− 2, . . . , e]
2: C← f (mconv)
3: for i in 3, . . . , e do

4: m? ← m [e− i + 1, . . . , e]
5: C? ← f (m?)
6: if m? [1] inside C? then

7: mconv ← m?

8: C← C?

9: end if

10: end for

second form, i. e., convergence towards a level higher or lower than the one prior to
the actions of REPLEX. Manual inspection of the data reveals, however, that intermit-
tent over- and undercrossing of the corridor without any further measurement actually
falling within the corridor occurs only very infrequently and, if at all, only for very
short periods of time. We thus restrict ourselves to the stricter and more conservative
approach of requiring the first measurement of the converged set to stay within the
corridor boundaries (depicted in blue in Fig. 7.4), thereby possibly obtaining slightly
longer convergence times.

So far we have disregarded the range of mi prior to the start of REPLEX, i. e., m−1, m−2,
m−3, . . . . In an extreme case, our algorithm may have no effect on m at all—then, most
of the mi for i < 0 are inside C, as well as most mj f orj > c; and those few m0, . . . , mc−1
that were outside of C happen to be just some statistical fluctuation. In such a case, the
value c is meaningless. Unfortunately, this is still the case if only some of the mi, i < 0
fall within C, even if running REPLEX otherwise does have some effect on m. Note that
it is not sufficient to compute a “pre-REPLEX” corridor C̄ = f (m−1, m−2, . . . , mstart) and
to prove that C̄ ∩ C = {} . Since we only have a finite number of measurements mi for
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i < 0, we can however check that none of the pre-REPLEX measurements mi for i < 0
lies within C. If this is the case, we take this as a strong indication that the typical levels
with and without REPLEX are separated enough so that our convergence calculation is
sensible. Otherwise, we cannot be sure whenever an mi is within C, if this is really due
to REPLEX’s action, or whether it is actually just some statistical fluctuation that may
well have happened without any REPLEX influence at all.

To summarise, in this case we are not able to make any claim with regards to conver-
gence time using this methodology.

7.2.3 Measuring weight changes

In the previous section, we have presented a method for determining the point at which
a time series of measurements has converged—but what kind of measurements do we
actually want to check for convergence? As pointed out previously, we have two large
groups of metrics to choose from: On the one hand, REPLEX’s immediate output, and
on the other hand, network performance metrics that are affected by REPLEX’s actions.

The first group, i. e., the output of our algorithm, contains the weights and weight
changes. In small and primitive test scenarios that feature only extremely few equal-
cost routes, we can measure convergence times for each individual route. In the sim-
plest case, i. e., having only two equal-cost alternatives to the same destination network,
the weights for the two routes are complementary to each other and thus convergence
occurs at the same point in time for both (unless we made an unwise choice regarding
to our corridor function f ).

In more complex scenarios that contain many equal-cost routes differing in length
and number of equal-cost alternatives, we can calculate the convergence time for each
individual route. Although we cannot obtain “one” generalised convergence time for
our algorithm this way, we can use these values to obtain a histogram, or to calcu-
late descriptive statistics (minimum, maximum, average, median) for the convergence
times, and thus get an impression of typical convergence times.

Alternatively, we can sum up all weight changes that occur within one time interval.
At the start of REPLEX, we expect the weight changes to occur with a large amplitude:
At this point in time, the weights are completely un-tuned towards the actual traffic
demands in the network, and REPLEX is constructed such that it applies larger weight
changes if more gain is to be expected, whereas it applies only small changes if less
gain is to be expected. The latter, of course, should be the case after some time has
elapsed and the first weight shifts already have led to a significant increase in network
performance.

We can thus use the accumulated weight changes per time unit for another purpose.
Recall that TCP performance is negatively affected if packets of the same TCP connec-
tion overtake each other, which was our motivation for using our hash-based approach
instead of random-based statistical multiplexing of packets. Note, however, that packet
reordering may still occur when an actively used TCP connection is suddenly sent along
a different path, due to a weight change by REPLEX. If a larger weight shift occurs at the

132



7.3 Artificial topologies

same time, then each from a potentially larger number of TCP connections may suffer
from their packets being reordered. As the reorderings happen at the same time, this
bears the danger that the congestion control mechanisms of all affected TCP connec-
tions become synchronised—which by the resulting amplifying effect increases traffic
burstiness and thus can have a further negative impact on network performance. It is
therefore desirable to make small weight changes, in order to keep the number of simul-
taneously affected TCP connections small. Obviously, it thus makes sense to “punish”
heavy increases or decreases in weight. Hence it is better not to sum up the weight
changes per time unit, but to sum up the squared weight changes per time unit as a means squared weight

changesto capture REPLEX’s activities.

7.3 Artificial topologies

REPLEX’s theoretical analysis indicates fast convergence. But as the theoretical analysis
cannot take real world factors into account, e. g., bursty traffic, or interactions with the
feedback loop of TCP congestion control, we now evaluate its performance in a network
simulator under realistic workload conditions. We start the evaluation with small and
simple topologies. This helps us to tune the various parameters of the algorithm, and
to evaluate its impact on the network performance.

7.3.1 Experiment planning

The the many parameters of our algorithm raise the question about how to choose the
best approach to find good parameter settings—simply examining all possible combi-
nations of three different values for each parameter (α, β, ǫ, η, λ, T, and the metric that
we want REPLEX to optimise), and using 10 simulation runs for each combination (so
as to reduce the influence of random statistical fluctuations) results in an experiment
table of size 10 · 38 = 65610 experiments. As each of these experiments typically runs
for 15 minutes at the very least (many of them require 30. . . 300 minutes), this would
require roughly two years of CPU time, and probably more. Therefore, we have to find
a more effective approach.

Initial experiments in the parameter space [FKF06] indicate that the most influential
parameters on REPLEX’s convergence time are λ (adaptation speed) and T (decision
interval), followed by η (factor for the exponential moving average), while the other
parameters’ influence is less pronounced. We therefore devise the following experiment
plan:

1. First, we determine good choices for λ for our three different metrics in a very
simple topology, with “reasonable” standard values for the other parameters, fo-
cusing on just one REPLEX instance.

2. Having found good choices for λ and the REPLEX metric, we then analyse the
influence of η. Note that in contrast to most other parameters, the exponential
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moving average affected by η does not only influence the decisions of one RE-
PLEX instance; its value also affect the updates that are broadcast to neighbouring
instances. Therefore we analyse the influence of η in topologies with different-
length “chains” of REPLEX instances.

3. One of the key questions in load-adaptive traffic engineering is the question re-
garding the time scale on which we can react to traffic fluctuations without run-
ning into negative effects, i. e., oscillations caused by overreactions or by too
strong interaction with the TCP congestion control loop. In other words, it is
important to see how small we can make T. To analyse this, we use a very simple
setup without a bottleneck link, but that features routes with different latencies.
We use this to analyse the extent of packet reordering caused by REPLEX rerout-
ing actively transmitting TCP connections, and its effects on TCP performance.
We combine different settings of T with different settings of λ and η.

4. In the previous chapter, we argue that theory gives a strong indication that a set
of competing REPLEX instances converges to a stable solution. To analyse how
well REPLEX performs under realistic set-ups, we analyse a small scenario where
several REPLEX instances compete over a bottleneck link. We use this set-up to
also show that our previous results based on just one deciding REPLEX instance
can be generalised for scenarios involving multiple instances.

5. After having found a good parameter setup, we finally analyse REPLEX’s perfor-
mance in setups involving more complex and realistic topologies. Furthermore,
we compare the performance improvements that we can achieve using REPLEX

to those that are achievable using traditional traffic engineering.

7.3.2 The influence of the rerouting speed λ

To avoid oscillation effects, we have to judiciously choose the amount of flow λ that the
router can shift during one decision interval. In order to make efficient use of CPU time,
we restrict ourselves to a very simple topology where we can focus on just one router.
Apart from varying λ, we keep the other parameters at default settings of T = 1 s
(which it significantly larger than the client-server RTT and thus allows TCP congestion
control to converge before the next REPLEX decision), and α = 0.25, β = 0.1, η = 0.5,
ǫ = 0.0, which we found out to be good choices in prior, preliminary experiments
(partially presented in [FKF06]). As the optimisation metric, we initially choose the
link load, as it is the traditional optimisation goal in traffic engineering.

We perform our simulations for finding good values for λ using the topology de-
picted in Fig. 7.5. It consists of six routers, a server cloud at R3 (source), and a client
cloud at R1 (sink). The client cloud consists of 80 HTTP clients; the server cloud hosts
two HTTP servers. Unless otherwise stated, the link bandwidths are 10 Mbit/s, the in-
terface queue lengths are 16 kBytes, and the propagation delay on each link is 10 ms.
The underlying routing setup is done by the OSPFv2 implementation for SSFNet [B0̈3],
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Figure 7.5: Standard topology for many of the experiments with an artificial topology.

using uniform weights. This means that the shortest paths used for routing are solely
based on hop distance and not on any other factors.

In Section 7.1.5 we argue that 10 Mbit/s is a very small value if we are to extrapolate
our simulation results to today’s real-world networks with link speeds of 10 Gbit/s.
However, due to the simplicity of the topology, scale interactions as described in Sec-
tion 7.1.5 are not really an issue. On the other hand, using a low link speed reduces the
number of packets that need to be simulated per time interval, which help save compu-
tation time—which really is an issue, since the bursty workload traffic forces us to run
each simulation multiple times, so as to reduce the influence of statistical fluctuations
on the results.

Each router in the topology runs an instance of REPLEX. However, only routers R1
and R3 can choose between multipath alternatives for connecting the two workload
clouds: They can either route via R10 and R20, or via R11 and R21. Therefore, the
REPLEX instances at the other routers only perform measurements, and communicate
using our DV-like protocol; otherwise, they have no influence on the traffic in the net-
work. Since an HTTP request is typically much smaller in the number of bytes than
its corresponding HTTP response, using a client cloud and a server cloud results in an
asymmetric traffic ratio where the majority of the traffic is flowing from the right (server
cloud at R3) to the left (client cloud at R1). To investigate the decisions of REPLEX, it
therefore suffices to look at the decisions of R3, as the decisions of R1 on the overall
traffic only play a marginal role.

We start our simulations with reducing the bandwidth of the link between R11 and
R21 to 1 Mbit, thereby artificially creating a bottleneck. Neither R1 nor R3 are aware of
this fact, as we do not reflect it through, e. g., OSPF weight settings. The bottleneck is
thus only visible to the other routers through the measurements of R11 and R21, made
available by REPLEX update messages with the neighbouring routers. This way, we can
examine the effectivity of both the weight adaptation, as well as the communication
between REPLEX instances.

In Fig. 7.6, we see that λ does have a significant influence on the time that REPLEX

needs for convergence. The top row plot shows the weight that the REPLEX instance as-
signs to the route going over the non-bottleneck link. Considering that the link speeds
are 10 Mbit/s vs. 1 Mbit/s, one can assume the theoretically optimal weight to be 10

11
(marked with the grey dash-dotted line in the top-row plot). We see that convergence
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Figure 7.6: REPLEX converges quickly within seconds. λ affects convergence speed, but not
final solution (top plot). Optimisation metric is link load. Averages of 10 simulation runs.
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7.3 Artificial topologies

(dashed vertical lines) of the route weight can be reached relatively quickly on the or-
der of a few seconds (left, higher lambda) to the order of one or two minutes (right,
smaller lambda). Once REPLEX has converged towards a solution, the values stay
closely within a tight convergence region for most of the time (dashed horizontal lines;
barely discernible). The additional dotted horizontal lines (barely discernible) mark the
confidence intervals of the average chosen weight. The fact that the horizontal lines
marking the convergence corridors and those marking the confidence intervals are al-
most impossible to distinguish shows that the converged solution is independent of the
choice of λ, just as one expects. We moreover see that the weight increases more or less
monotonically, until the converged state is reached. The only exception to this is the
setting λ = 1.0 (green dots), where we can see a brief oscillation that lasts for one single
period of about 20 seconds.

The weight changes (second row from top) exhibit a slightly different behaviour: For
λ = 0.5 and λ = 1, convergence of the weight changes is reached significantly later
than the weights themselves. This is an indication that, while the weights may appear
to have converged, they are in fact subject to some oscillations (similar to the obvious
one that can be seen in the first 20 s for λ = 1 in the top-row plot, but much smaller in
amplitude). For λ < 0.5, however, convergence of weight changes happens at almost
the same time as convergence of the weights themselves takes place.

Interestingly, the workload traffic adjusts to the changing situation even quicker than
the weights themselves: The middle plot shows that the IP throughput reaches conver-
gence much faster than the weights (top plot) or weight changes (2nd row). This is due
to the fact that the congestion control loops of live TCP connections being re-routed
quickly detect the additional capacity of their new route. It is apparent that just a few
of these reroutings need to take place before the non-bottleneck link is fully utilised—
e. g., compare the top-row and the middle-row plot for the slow-moving λ = 0.125
(red) around t = 20 s. Another fact which supports this is the observation that during
the first very few seconds, the traffic rate (unlike the weights in the top-row plot) does
not increase very much, before it is subject to an increase that is way steeper than the
increase in weight.

The same picture emerges when we view the packet drop rate, which is shown in
the last two plots. The first one of them (i. e., fourth row from top) shows the drop rate
at the interface that is the entrance to our artificial bottleneck link. Here, we see that
the bottleneck drop rate is reduced rather slowly for λ = 0.125, which corresponds to
the slow weight changes. (Note that, due to the overlapping ranges of measurements,
it is not feasible to obtain convergence times for this performance metric by using our
method from Section 7.2.2 on page 128.) Likewise, the bottom plot shows the overall
drop rate, i. e., the sum of the packets dropped either at R20–R10 or at the bottleneck
link R21–R11, divided by the total number of packets that were sent into the network.
In contrast to the bottleneck drops, we see a very swift decrease in overall drops even
for λ = 0.125, whose convergence times more or less correspond to those of the work-
load bytes (3rd plot from top). This is due to the fact that TCP congestion control effects
a quick increase in utilisation on the non-congested link, thereby drastically increasing
the number of transmitted packets while the absolute number of drops in the network
increases only marginally.

137



7 Evaluation

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ro
u

te
 w

ei
g

h
t

metric = Link load
metric = Nonlinear link load
metric = Packet losses

Start time of algorithm
Statistical convergence
Theoretically optimal weight
Confidence interval

0.
0

0.
1

0.
2

0.
3

0.
4

sq
u

ar
ed

 w
ei

g
h

t 
ch

an
g

es
/

s

0
40

00
00

10
00

00
0

re
ce

iv
ed

 I
P

 b
y

te
s/

s

0.
0

0.
1

0.
2

0.
3

0.
4

b
o

tt
le

n
ec

k
 d

ro
p

 r
at

e

−50 0 50 100 150 200 250

0.
00

0.
05

0.
10

0.
15

o
v

er
al

l 
d

ro
p

 r
at

e

simulation time (s)

Figure 7.7: Comparison of different metrics at the aggressive setting λ = 2. Nonlinear route
load leads to heavy oscillation. Normal (linear) route load still shows pronounced oscillation.
Packet losses show almost no oscillation. Averages of 10 simulation runs.
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7.3 Artificial topologies

7.3.3 Which metric should R EPLEX optimise?

So far, we have used the link load as our metric to optimise, just as it is normally the
case with traditional traffic engineering. We now investigate the results of using other
metrics, i. e., the non-linear link load that we discussed in Section 6.4.5, and packet
losses. Clearly, one expects different outcomes for the different metrics even if all the
other parameters are kept the same, as the weight changes are linear with λ and with
the performance difference; and if the performance difference is changed (due to us-
ing a different metric) while λ remains the same, then the outcome in weight change
naturally will be different.

Figure 7.7 compares the outcome for our three metrics at the rather aggressive set-
ting λ = 2. The other parameters remain the same as for the simulations from Fig. 7.6.
We immediately see that a choice of λ = 2 results in heavy oscillation of the weights
(top plot) and, respectively, weight changes (2nd plot from top) for the nonlinear route
load (blue). This heavy oscillation also influences the network’s performance (other
plots). While the oscillations in weight gradually reduce (top plot), they never disap-
pear entirely over the entire 4000 s of simulation time (plot not shown). In spite of the
heavy oscillations, even this obviously bad setting still is able to increase the network
throughput in the long run almost as well as in other experiments (middle plot, and
comparison to Fig. 7.6). Interestingly, the worsened performance is not only due to the
oscillation, but due to the convergence around a weight corridor that does obviously
not contain the theoretically optimal weight setting of 10

11 (top plot; dashed faint blue
lines indicate convergence corridor for the weights; dash-dotted grey line shows the-
oretically optimal weight). While this strategy shifts a large amount of traffic towards
the uncongested link, it is apparently not enough to relieve the congested link of its
congestion (fourth plot from top), which in turn negatively affects the overall drop rate
(bottom plot) when compared to the other simulations. Another fact worth noting is
the convergence of the weight changes by definition, which—contrary to the appear-
ance of the plot—is very fast (vertical dashed blue line, second plot from top): The fast
“convergence” is due to the fact that the weight changes almost show no real conver-
gence. Therefore, by our definition, the convergence corridor becomes very large, and
it is thus entered very quickly, as the values swing back and forth. The same holds for
the “convergence” times in the other plots (vertical dashed blue lines).

The situation for the “normal”, i. e., linear link load is slightly better (shown in red).
Here, we also see significant oscillations in the weights and weight changes (top 2 plots)
that influence the network’s performance (other plots). However, the weights converge
around a corridor that is closer to the theoretical optimum (dashed faint red lines in top
plot), which in turn relieves the bottleneck link in the long run (fourth plot from top),
thus results in an improved overall loss rate (bottom plot), which in turn increases the
network throughput when compared with the nonlinear link load metric (middle plot).

The figure tells clearly that, at λ = 2, we achieve the best performance if we use the
packet drops as our metric to optimise (shown in green): This setup shows a remark-
ably fast convergence within just a few seconds, and does not exhibit any oscillation
behaviour, apart from a one-period small “swing-in” phase that is barely noticeable
(top-row plot, first 20 seconds).
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Figure 7.8: Comparison of different metrics at their respective highest values of λ that do not
yet lead to (much) oscillation (i. e., “optimum” values for λ). REPLEX with packet losses metric
(green) converge fastest; nonlinearly weighted link load (blue) gives worst results. Averages of
10 simulation runs.
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7.3 Artificial topologies

Obviously, it does not make sense to compare different metrics while leaving the
other parameters untouched. In fact, each metric has its unique optimum setting of λ

that allows the fastest possible convergence without going into oscillations. Analysing
various settings of λ and, in part, other parameters for the three different metrics, we
found the following values of λ to be good choices:

• link load: λ = 0.5

• nonlinear link load: λ ≤ 0.25

• packet losses: λ = 1 (in fact, values up to 3 are possible without medium- and
long-term oscillation, but will lead to small swing-ins of one or two periods; cf.
Fig. 7.9)

We compare these settings in Fig. 7.8. We see that the difference between the three
metrics becomes small, albeit notable in some details.

At first sight, convergence is achieved very fast and at almost the same time (top
plot; dashed vertical lines indicate convergence). We note a small advantage for packet
losses (green) and linear link load (red) over nonlinear link load (blue). This picture
remains almost untransformed when we look not only at the weights (top plot), but
also at the network performance (middle plot to bottom plot).

However, the convergence in weight changes (2nd plot from top) is achieved fastest
by the packet loss metric: While packet losses and linear link load start at almost the
same level of weight changes, the decrease in weight change becomes less pronounced
for the link load after a while (red) while the drastic drop continues for the packet
losses (green), which results in a much faster convergence for the packet losses metric
(dashed green line) than for the linear link load metric (dashed red line). In comparison,
the nonlinear link load (blue) starts with fewer weight changes, but converges even
later (dashed blue line). This is due to a slight beginning oscillation, which is most
prominent in the weight plot (top row) and the bottleneck packet losses (4th plot from
top). Increasing λ even further aggravates this oscillation tendency, while reducing λ to
smaller values leads to significantly slower convergence times (plots not shown). The
effect remains if we change the κ parameter of the nonlinear workload metric within
reasonable bounds (plots not shown).

So, even though we initially assumed that the nonlinear packet loss metric looks
like a good idea for capturing the fact that the network performance is not linear with
the link load, we can conclude that this metric actually yields worse performance than
the standard linear link load metric. The linear link load metric is comparable to the
packet loss metric, but the latter yields a significantly faster convergence of the weight
changes. By looking at it even closer, we see that the packet loss metric actually con-
verges slightly faster than the linear link load in all plots apart from the overall drop
rate (bottom plot).
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Figure 7.9: Packet losses as optimisation metric lead to faster convergence. In comparison to
the link load metric, λ can be set to higher values without causing oscillation. Averages of 10
simulation runs.
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7.3 Artificial topologies

7.3.4 Choosing a good λ for the packet loss metric

The packet loss metric thus seems to be the most promising optimisation metric, and
is therefore the focus of rur further simulation experiments. Fig. 7.9 shows different
choices for λ. We see that the metric begins to exhibit significant oscillations only at
λ = 4. In fact, this effect starts to set in at around λ = 3 (plots not shown). As described
earlier however, values of λ > 1 will lead to an initial swing-in phase (top-row plot,
first 30 seconds). In order to rule out any negative influence that may be caused by this
effect, we choose λ = 1 or the even more conservative λ = 0.5 in the remainder of our
simulations, since both values still lead to a fast convergence (around half a minute)
while not causing any oscillations.

7.3.5 The EMA parameter η

After having determined how fast REPLEX should adjust its weight, we now attempt
to find good parameters for the data source upon which it bases its weight change de-
cisions: Remember that REPLEX does not directly use its measurements and the values
reported by the neighbours, but that it rather calculates an exponential moving aver-
age (EMA) on them, to remove the influence of ephemeral peaks and drops over a short EMA

timescale.
When calculating the EMA value for the current time interval, we weigh the newest

measurement with a parameter η (with 0 < η < 1) and the EMA value from the pre-
vious time interval with (1− η). Note that η has to be chosen wisely, since too large
values as well as too small values potentially may lead to oscillations:

• If we choose η too large, we may risk that REPLEX unnecessarily reacts to short-
time traffic fluctuations; e. g., if we choose η = 1, REPLEX does not do any averag-
ing at all, but will rather operate upon the current measurement only. Since traffic
fluctuations can be very pronounced (recall the bursty traffic shown in Fig. 7.2
on page 121), this easily can cause REPLEX to overreact. Overreactions by one
REPLEX instance in turn provoke overreactions from others, i. e., through interac-
tions with TCP and/or with other (overreacting) REPLEX instances. These effects
lead to oscillations.

• If we choose η too small, then our EMA-smoothed measurements will reflect
changes in traffic patterns only very slowly, so that a REPLEX instance does not
get the feedback that it needs quickly enough. Rather, the REPLEX instance can
be lured into additional weight shifts away from some route that initially used to
be congested, but that now is no longer congested. When the averaged measure-
ments finally indicate that the congestion has been fixed, it is way too late, since
by then the REPLEX instance already has overreacted, i. e., shifted too much traf-
fic. Naturally, after a while the same happens in the other direction. Especially in
setups with several REPLEX instances, their interactions can support the ensuing
oscillations ad infinitum.
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Figure 7.10: Topologies for testing the influence of η in relation to the number of hops.

Considering that not only the exponential moving average, but also the number of
hops between a bottleneck and a deciding REPLEX instance influences the feedback
speed, it thus makes sense to analyse the behaviour of our algorithm under different
values of η, as well as with different hop lengths. In the simulations so far, we have used
the topology in Fig. 7.5 on page 135, where the measurements at the bottleneck link
R21–R11 cannot be made by the REPLEX instance that has to make the decision about
shifting the traffic (i. e., R3). Rather, it has to be propagated one hop. To investigate
other hop distances, we use the topologies shown in Fig. 7.10, and perform simulations
with different values for η.

Some results of these simulation runs are shown in Fig. 7.11. Even from the first
glance at the plots, it is evident that neither a drastic change to η (which used to be η =
0.5 in our previous simulations), nor the number of hops have a significant influence on
the output of the algorithm. We get almost the same picture for simulations with larger
hop distances (omitted for brevity).

In the top row plot we see that the initial weight changes are almost identical. As can
be expected, convergence (dashed lines) is achieved faster for shorter hop counts and
for larger values of η. The second plot confirms these findings for the weight change
rate, albeit at later points in time. Note that the weight changes for all parameter sets
start at the same time: We start our distance-vector like information distribution pro-
tocol (algorithm 4 on page 114; lines at bottom) before the REPLEX decision making
process sets in at t = 0, so that the deciding REPLEX instance already has full infor-
mation of the bottleneck route when it starts. This way, we exclude the influence of
initial information delays and thus can compare the convergence times and oscillation
behaviour based solely on the feedback delay.
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Figure 7.11: The EMA parameter η does not have a large influence on REPLEX’s behaviour.
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Figure 7.12: Topology for determining the REPLEX time parameter T.

The overall network performance (middle to bottom plot) improves on the same time
scale as the weights, with the convergence being reached faster for the larger η = 0.9
and slower for η = 0.125, and is even less influenced by the number of hops.

In summary, we can conclude that for our settings with λ = 0.5, T = 1 s and packet
drop metric, we can pick η from the wide range of values, independent of the diameter
of our topology (i. e., maximum hop distance between any two REPLEX routers). We
choose to stick with η = 0.5, since this in our opinion offers a good tradeoff between
actuality and damping, as the current measurement contributes exactly one half to the
EMA value.

7.3.6 Choosing the reaction time T

In our simulations so far, we have used an interval of T = 1 for REPLEX’s main loop,
which is much larger than the maximum RTT in our topology. This way, we ensure
that the congestion control loops of actively transmitting TCP connections that were
affected by a REPLEX-induced reroute have enough time to converge, before the next
REPLEX decision may affect their congestion control loop again. Let us now investigate
what happens if we make REPLEX react on shorter time scales.

REPLEX and TCP can interact in different aspects: First, an actively transmitting TCP
connection may be redirected to a route that is more or less congested than the previous
one; second, it may be redirected to a route with a larger or smaller network latency.
The impact of these interactions on TCP’s performance is especially bad if the network
latency of the new route is much smaller than the previous latency, so that newer pack-
ets on the new route may overtake older packets on the old higher-latency route. Such
packet reordering is treated by TCP as a packet loss, triggering the respective congestionpacket reordering

control mechanisms. This development is especially contraproductive if the new route
has the same or even a higher capacity than the previous route, as in that case obviously
TCP should increase its sending rate, rather than decreasing it. Worse yet, if many TCP
connections undergo these disadvantageous reordering events in parallel, they will en-
ter their congestion control phase at about the same time, thereby synchronising andsynchronisation

thus (due to their slow start algorithms being synchronised) creating unnecessary sud-
den packet bursts after some time, which makes the traffic even harder to handle.

Naturally, the smaller we choose our time parameter T, the more often this can occur.
It is therefore interesting to investigate the time scale at which we can allow REPLEX to
operate, without these negative effects getting overhand.
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Another interesting aspect is the choice of the parameter λ in relation to T. Recalling
Algorithm 5 on page 114, we see that the weight change is linear with λ and the differ-
ence in route performance. Assuming that the performance difference after a REPLEX

decision does not change instantaneously but rather within a certain time interval, it
thus seems rational to reduce λ if T is reduced, in order to avoid overreactions [FKF06].

To investigate the negative influence of smaller values of T (in combination with dif-
ferent settings of λ), we choose the following approach: We simulate a very simple
topology that features two routes of equal capacity, but differing latencies; see Fig. 7.12.
The upper path has a latency of 20 ms while packets on the lower path experience a
delay of 70 ms. In this scenario, we cannot expect a significant improvement in net-
work performance, if any at all, since the default 1:1 split ratio between the two routes
of 10 Mbit/s each is the optimum already (unless our hashing method created a heavy
imbalance in the actual traffic ratio through a random statistical fluctuation in client ac-
tivity). However, since a re-route does dramatically affect the travelling time of packets
through the network, we expect that running REPLEX on a time scale that is too small
results in measurable performance decrease for TCP.

The latency difference between the two routes is 50 ms. In the extreme case that the
16,000 Bytes queue of one route is completely empty and the other one is completely
filled, at 10 Mbit/s this difference can range between 37.2 ms and 62.8 ms due to the
difference in queueing delays. While we conjecture that a change of at least 37.2 ms
in delay for a route can be regarded as a “worst case” in an intradomain scope (satel-
lite radio links aside), we chose this difference for another reason: With a maximum
packet sizes of 1500 Bytes, this time difference is larger than the inter-packet time for
any long-lasting TCP connection whose sending rate exceeds as little as 40 kBytes/s.
In other words, any TCP connection that reaches a throughput of at least 3.2 % of the
maximum link bandwidth of 10 Mbit/s is affected by REPLEX’s reroute-induced packet
reorderings.

In contrast to the previous simulations where we perform measurements only at the
IP layer for performance reasons, we now also collect information on the number of
bytes received by TCP (the TCP goodput), and the ratio of packet losses and reorderings TCP goodput

detected by TCP. We take these metrics as an indicator for the effect of REPLEX on TCP
performance. On the other hand, the performance indicators that we used to evaluate
the previous simulations seem less effective for our purposes: The initial 1 : 1 traffic
split is already “converged”, thus there is no temporal development to be expected,
neither in the weight changes nor in the weights themselves; and the IP-level perfor-
mance metrics (number of bytes, which also comprise REPLEX and OSPF traffic, but
which do not explicitly reveal retransmits) are inferior to the direct TCP measurements.
We therefore omit these figures for the following simulation runs.

While values of T > 1 s can make sense in scenarios where network operators want
to avoid frequent re-routes at all costs, we want to investigate the interactions between
REPLEX and TCP on shorter timescales of 1 s and below. In previous work, we men-
tioned that the choice of λ and η actually depends on T, more precisely, on the ra-
tios λ

T and η
T [FKF06]. Therefore, we run simulations for all combinations of T = 1 s,
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Figure 7.13: Example weight changes in a completely balanced setup. λ = 0.5, η = 0.5. Red:
T = 62.5 ms; black: T = 1 s. One simulation run each with same random seeds for the workload.

T = 0.25 s = 1
4 s, T = 0.0625 s = 1

4·4 s and λ = 0.5, λ = 0.125 = 0.5
4 . We perform 10

simulation runs for each possible combination of parameters. As one can expect, these
different settings lead to different behaviour of REPLEX in trying to adjust the weight
settings; Fig. 7.13 gives an example for their difference in volatility.

To quantise the impact of REPLEX, we compare the values of TCP goodput and re-
transmission ratio. This allows us to relate the negative influence of REPLEX-induced
reordering with the positive aspect of REPLEX-induced congestion reduction—note
that we are analysing a scenario where traditional traffic engineering techniques cannot
be applied, since the traffic is perfectly balanced over the two parallel routes of exactly
the same capacity.

Table 7.1 shows the gain in TCP goodput (middle column) and the number of retrans-
mits (right column) when we enable REPLEX with the specific parameters. Note that
positive percentages are good for the TCP goodput, while they are bad for the number
of retransmits (since more retransmits mean that the network is used in an inefficient
way). Surprisingly and contrary to our initial expectation, the most volatile setting
(small timescale of T = 62.5 ms and λ = 0.5) yields significantly better performance
both in goodput (+17.84 %), as well as in the number of TCP retransmits (2.84 % reduc-
tion), whereas most of the more conservative, slower settings yield a performance that
is slightly inferior to the scenario where we do not enable REPLEX. This is due to the
fact that the highly volatile REPLEX settings can even react to statistical traffic spikes
on a very short timescale, thereby significantly reducing the number of congestion-
induced packet losses. This outweighs by far the number of retransmits that are caused
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T (s) λ η goodput significant? % retransmits significant?
1 0.5 0.5 −6.14 % ✔ +0.13 % ✔
0.25 0.5 0.5 +2.89 % ✔ −0.23 % ✔

0.0625 0.5 0.5 +17.84 % ✔ −2.84 % ✔
1 0.125 0.5 −2.17 % ✔ +0.50 % ✔

0.25 0.125 0.5 −3.26 % ✔ +0.38 % ✔

0.0625 0.125 0.5 −2.99 % ✔ −1.09 % ✔

Table 7.1: TCP performance figures for different REPLEX reaction timescales. Averages of 10
simulation runs each. Statistical significance calculated by testing if confidence intervals over-
lap.

by packet reorderings. With a smaller λ however, REPLEX cannot react quickly enough.
The same holds for time scales that are too large to react to the typical sub-second over-
load spikes, and for the case that the exponential moving average for the measurements
changes too slowly (some simulations with η < 0.5; not shown).

To confirm that the performance differences are not caused by random fluctuations
of our statistical workload, we calculate for each parameter set the mean TCP goodput
confidence intervals (or the mean reordering percentage confidence intervals, respec-
tively) over 10 simulation runs. We compare the confidence intervals that we obtain for
simulations with REPLEX enabled against those that we obtain for simulations without
REPLEX.4 If the confidence intervals do not overlap, we take this as a strong indication
that the performance difference really is an effect of REPLEX, and not of random fluc-
tuations. The results of these tests are shown in Table 7.1 in the columns labelled “sig-
nificant?”. As we can see, all results are statistically significant under this test (marked
by the tick symbol “✔”).

We conclude that, while REPLEX potentially may cause packet reordering within TCP
connections every time that it changes the route weights, this situation happens very
rarely even under adverse circumstances. The effect of packet reordering is offset by
the positive effect that REPLEX’s potentially quick reactions to sudden spikes have on
the network performance even in a perfectly traffic-engineered network.

As we believe that network operators want to rule out packet reordering as much
as possible, we shall nevertheless continue our experiments with a setting of T = 1 s,
even though Table 7.1 shows that this is not the most effective setting. However, even this
relatively conservative setting has shown in the previous experiments to let REPLEX

converge rather quickly on a timescale of seconds or a few minutes, while not hurting
the overall performance too much when there is nothing to be gained by traffic engi-
neering. As another positive (and very relevant) aside, we save a significant amount

4The confidence intervals are calculated by dividing the simulation data into groups of 200 seconds of
simulation time and taking their means. At this resolution, autocorrelation function plots (not shown)
do not indicate that the groups are correlated with each other, which otherwise forbade us to calculate
the confidence intervals. As the evaluation phase (or comparison phase, respectively) lasts 4000 s, we
thus obtain 10 · 4000

200 = 200 non-correlated groups, for which we calculate the confidence interval for
the mean of their means. [VR02]
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of CPU time in our further simulations, especially in those involving more complex
topologies with many REPLEX instances, since we do not have to increase the number
of REPLEX calculations per second of simulation time.

7.3.7 Interacting R EPLEX instances

The simulations that we have described so far comprise several REPLEX instances that
communicate their performance measurements with each other. However, due to the
network topology in use, all these simulations feature only a single REPLEX instance
that make relevant decisions, which is on the router that sits at the fork of the two
path alternatives near the server cloud. Only this instance has the full control over the
traffic distribution in the network, whereas the purpose of the other REPLEX instances is
solely to measure traffic and forward the relevant information to neighbouring REPLEX

instances.
Our simulations so far thus only have demonstrated that one REPLEX instance does

not fall into overreaction-induced oscillations, given a reasonable parameter set. But it
remains to show that this holds if he have multiple REPLEX instances, each of which
controls a fraction of the traffic. After all, REPLEX is in essence based on a selfish (i. e.,
non-cooperative) game, even though the actual REPLEX instances communicate and
thus partially “cooperate” with each other, in order to make the necessary information
for the individual decisions available for all.

The decisions of a REPLEX instance on some router R can interact with those of other
REPLEX instances in three basic fashions:

• A REPLEX router upstream can decide to send more (or less) traffic to R. This may
lead to increased (or reduced) congestion on some of R’s outgoing routes, which
in turn requires R to take action in order to offset the changed situation.

• The same situation also can be seen from the other end: If R decides to change
some route weight, this automatically changes the performance figures for the
affected routes. This change is then reported to other routers upstream, which in
turn may increase (or reduce) the now more (or less) performant route via R.

• Another interaction situation arises when two or more REPLEX instances compete
over a bottleneck link further downstream. Recalling the experiences in the Arpa-
net [KZ89], one may intuitively expect a high potential of mutual overreactions
and thus oscillations for such a scenario.

To analyse all three of these interactions between REPLEX instances, we simulate the
network shown in Fig. 7.14, with 350 clients at R1 and 40 servers at R3. As usual,
the majority of the traffic is flowing from the servers to the clients; so we can again
neglect the traffic going in the other direction. Let us now consider the structure of this
topology.

As the traffic enters R3, it encounters first bottleneck. The measurements performed
by R3 will suggest a traffic split in a 2 : 1 ratio for R20 vs. R21. However, if we look
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7.3 Artificial topologies

Figure 7.14: Topology for analysing interactions of multiple REPLEX instances.

further downstream, we see that this is not the real bottleneck, which actually sits be-
tween the routers {R20, R21} and the routers {R10, R11}. Considering the link capaci-
ties downstream, it is obvious that R3 should split its traffic not 2 : 1, but rather roughly
5 : 8—i. e., actually the other way around.

There is, however, another important aspect to note: As soon as REPLEX starts, the
route quality as reported by R21 will be vastly inferior to the one reported by R20—
while R21 has, in theory, the greater capacity, it initially exerts a downstream traffic
split of 1 : 1 towards R10 and R11. Considering its input capacity, this results in most
of the capacity of link R21→ R10 being unused, while imposing an enormous overload
on the link R21 → R11 at the same time. This will greatly deteriorate the overall per-
formance that R21 reports back to R3. On the other hand, the downstream links of R20
are balanced; therefore, R20 will not suffer from artificially bad performance. Hence, R3
initially is likely to shift traffic away from R21, rather than shifting towards it. Also note
that R20 and R21 compete over the link R10→ R1: The capacity of this link (36 Mbit/s)
is slightly smaller than the sum of the inbound capacities at R10 (40 Mbit/s), making it
a further bottleneck. This situation is aggravated by the fact that the links R20 → R10
and R21 → R10 have relatively high capacities and thus are attractive targets for the
REPLEX instances at R20 and R21. The parallel link R11 → R1, in turn, is not a bottle-
neck. Thus, while R20 and R21 “fight” over R10 → R1, this will indirectly influence
the decisions of R3 at the other end, regarding its traffic split between R20 and R21.

To summarise, in spite of its relatively small size, this topology is full of potentially
adverse interactions between the different REPLEX instances. It is thus ideally suited
for exemplarily studying the behaviour of our algorithm in a competitive scenario. At
the same time, it is small enough to allow us to study it in closer detail.

Results of this simulation are shown in Fig. 7.15 on the next page. We see that the
weights converge very quickly (top row plot), with the exception of the weights at R3
(blue line): At start, R3 very quickly changes the weights, but then overshoots to a
setting of about 80 % to R21, which afterwards slowly is taken back a bit during a time
range of several hundred seconds. R21 very quickly finds out that directing almost all
traffic towards R10 and thus avoiding the extremely under-dimensioned link to R11 is
a good idea, and during the next≈ 3000 s very slowly increases this value even further.
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7.3 Artificial topologies

Neither of these longer-term developments manifest themselves in the absolute volatil-
ity of REPLEX (second plot from top): The most drastic weight changes take place
within the first < 30 s (sharp spike), after which obviously limited changes occur, which
are in majority caused by statistical workload fluctuations on a small timescale.

The network performance metrics evolve in the same manner: A drastic increase in
throughput is gained within the first few seconds (plot in 3rd row), after which the
situation does not measurably improve any further. Note that, just as in previous sim-
ulations, the traffic becomes significantly less volatile as soon as REPLEX is activated:
Without REPLEX being active, some long-running TCP connections find themselves to
be “fortunately” (i. e., through pseudorandom hashing) assigned to uncongested high-
capacity routes, while most are directed to congested routes.

The overall drop rate ∑ drops on any path towards R1
∑ packets sent from R3 to R1 (bottom row plot) evolves more or less

in the same way (with a different sign), with one remarkable exception: Right after the
activation of REPLEX, the overall drop rate almost reaches 0 and then slowly increases
again to a new, but lower and less volatile level.

When we look at the developments more closely, i. e., with a higher temporal reso-
lution, we see the explanation: At the very start, R21 shifts a lot of traffic (Fig. 7.16 on
the next page, top row, green line) away from the heavily congested link to R11 and
towards the uncongested link to R10. This immediately manifests itself in a very sud-
den drop in packet losses on this bottleneck link (bottom plot; straight light green line),
which previously featured a dramatic packet loss rate of almost 30 %, i. e., prior to the
start of REPLEX.

Note that, even though R21 shifts most of its traffic towards R10, this link features
almost no packet losses (Fig. 7.16, bottom plot, dashed dark green line at y = 0.00).
The reason why R21 does not put even more traffic on this link is that the drop rate at
R10→ R1 is slightly above zero, since this link is slightly underprovisioned (Fig. 7.14).

Another interesting development is that the drop rate at R3 → R21 increases after a
while. This is due to the fact that REPLEX immediately shifts more weight to R21 (top
row plot, blue line shows the inverse R3→ R21), and is further aggravated by the fact
that the REPLEX instance at R21 removes the downstream bottleneck R21 → R11, so
that now the bottleneck property of R3 → R21 becomes more pronounced. Since we
use TCP traffic as workload, this added network performance along the route will be
quickly detected by active TCP connections, which almost immediately start sending
packets in ever shorter intervals, thereby quickly reaching the capacity limit of the new
bottleneck link R3 → R21. In other words, this development is a result of a positive
interaction between TCP and REPLEX.

We see another notable interaction at R20: Actually, the route R3 → R20 is assigned
less weight (top-row plot, blue line), but at the same time, the drop rates on the outgo-
ing links of R20 start to increase (3rd plot from top, dashed red and solid orange line).
How can that be? Here, the answer is not just TCP, but rather our workload model:
As we on purpose disabled persistent HTTP connections, each HTTP object is trans-
ferred in its own separate TCP connection. During the download of one page, many
objects have to be transferred (e. g., the HTML page itself, some inline images, style
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Figure 7.16: Results for interacting REPLEX instances (detail).
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7.4 Realistic topologies

sheet files, Flash objects, etc.), thus creating many rather short-lived TCP connections
in a short interval of simulation time. However, these downloads do not all take place
at the same time; rather, a client downloads just two objects in parallel, and only opens
a new TCP connection for a new download when a previous download has finished.
Moreover, we have a similar setting for the peer-to-peer workload. Now, if the TCP per-
formance on the other routes (i. e., not via R20) is drastically increased, this means that
the HTTP transfers via these routes finish in a shorter time, thereby allowing the HTTP
client to start its next download somewhat earlier. This hence leads to an increased
download rate, and thus in a higher rate of new TCP connections that are “randomly”
(i. e., through hashing) assigned to a route via R20. With this added traffic, R20 now
becomes a bottleneck. Since this development is caused not only by an interaction of
REPLEX and TCP, but rather between REPLEX, TCP, and the workload model, this de-
velopment is slower than on the other links, and takes place on a timescale of about one
minute (3rd plot from top, dashed red and solid orange line).

In summary, we can see that REPLEX yields an improved network performance even
if the decisions of different REPLEX instances influence the decisions of other instances,
and even interact with the simulated workload-generating “users” at the TCP end
hosts. Oscillation does not occur, and a converged state is reached very quickly.

7.4 Realistic topologies

So far, we have analysed REPLEX’s behaviour in a number simulations featuring rela-
tively simple topologies. While the purpose with these simulations is to find out good
values for the various REPLEX parameters (mainly λ, η, T, and the metric to optimise),
we in this section are now going one step further by analysing the performance of RE-
PLEX in simulations involving realistic topologies. In addition, we compare the perfor-
mance of REPLEX to that of traditional traffic engineering by tuning OSPF link weights,
and check furthermore the behaviour of REPLEX with communication between the
routers being disabled.

We focus our analyses on the EBONE (AS 1755), Exodus (AS 3967), Metromedia
Fiber / Abovenet (AS 6461) network topologies from the 2002 Rocketfuel [SMW02] data,
and the AT&T topology which is shipped as an example together with the TOTEM tool-
box [BLM]. We chose these topologies, as they feature a reasonable number of routers
and links. Moreover, their good connectivity offers good path diversity, which our al-
gorithm can take advantage of.

7.4.1 Size reduction

Since the Rocketfuel maps are heuristically obtained from active measurements, they
are not necessarily 100 % accurate. Moreover, they are lacking some important infor-
mation, such as link bandwidths and, in many cases, link latencies, which we therefore
have to estimate. Since Rocketfuel topologies contain the (estimated) geographical lo-
cation of each router, we can calculate the minimum physical length for each link based
on the speed of light in glass fibre [Pop, Hen].
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A full Rocketfuel map yields a rather complex network topology comprising many
routers, typically more than one hundred. While we did indeed perform several sim-
ulations of such large networks with realistic workload generators [FKF06], CPU and
memory consumption of these simulations proved to be too time-consuming to allow
many simulations that span a sufficiently long simulation time. We therefore decided
to reduce the Rocketfuel maps in size while retaining their characteristic structure.

We note that many of the Rocketfuel maps already are available in reduced forms
(“r0”, “r1” maps, etc.). In their case, the reduction has been performed by identifying
routers that are located near the edge of the network and removing them. While this
leads to significant reductions in network size, artefacts of this reduction strategy can
lead for some parts of the network to disappear completely, while other parts retain
unnecessary detail. For example, we need to set reasonable link delays; yet Rocketfuel
link delay estimates cover only a small number of links. Our strategy for estimating
missing link delays is based on geographical distance. But this only works for those
links that connect different cities; it is not possible for us to estimate link delays within
a single PoP this way. However, some of the reduced maps retain the internal structure
of PoPs, while possibly erasing other PoPs altogether. Removing entire PoPs, on the
other hand, is something that we want to avoid, since links between PoPs normally
are long-distance links, i. e., an expensive resource, whose utility we want to maximise
through the application of REPLEX. Thus the Rocketfuel standard reduction technique
provides us on the one hand with detail which we cannot use, but on the other hand
removes important parts which we would like to retain. Therefore, the “r0” and “r1”
maps are not suitable for our purposes.

We therefore implement a different reduction technique based on geographical po-
sitions. For (almost) every router, the Rocketfuel maps provide us with the name of
the city where that router is (supposedly) located. In a preparatory step, we remove all
routers from the topology with unknown location, if any such routers exist. In our main
reduction step, we then aggregate all routers that are located in the same city into one
“meta”-router. Our reduction technique thus yields a topology that retains those links
that are most cost-intensive—i. e., the long-distance links that connect different cities—
while removing unnecessary detailed descriptions of the structure of single PoPs. The
size reductions are significant. Table 7.2 compares the sizes of original topologies and
our reduced versions. Routers marked in the Rocketfuel topology as being external are
ignored. With our reduction technique, we can typically achieve a reduction factor of
at least 1:10, while retaining the geographical distribution of the network.

7.4.2 Traffic demands and link parameters

In the previous simulations, we maintained a cloud of workload clients on one side
and a cloud of workload servers on the other side of the topology, in order to obtain a
main traffic flow, which makes the analysis easier. In our further simulations however,
do not any more distinguish between client and server workload clouds. Rather, we
install workload clouds containing some number of clients and some number of servers
at every router of the simulated topology.
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AS # RF routers RF links red. routers red. links
1755 299 548 27 46
3967 446 920 21 35
6461 654 1338 22 54

(AT&T) (154) (188) — —

Table 7.2: Comparison of original and reduced Rocketfuel topologies (RF=Rocketfuel,
red.=reduced). We let the AT&T topology from the Totem project in unreduced form.

In all of our simulations, the request distribution between clients and servers is uni-
form, and therefore the effective traffic demands between each client/server pair are
uniformly distributed—i. e., at all times, each client chooses the Web server hosting the
next Web page to be downloaded uniformly, regardless of their location. The number
of servers in a workload cloud thus determines the amount of traffic flowing from the
location, while the number of clients determines the amount of traffic flowing towards
it. In other words, the number of clients and servers in each workload cloud directly
determines the traffic matrix.

Since we do not know the traffic matrix for the given topologies, we choose to install
the most basic setup: We set the number of clients and servers to be the same within
every workload cloud. Hence, we achieve a uniform traffic matrix.

Rocketfuel estimates only the network topology and link latencies, but not link band-
widths. We use the former in our simulations while the latter have to be chosen man-
ually. As traffic engineering is most effective in a network where the bottleneck is in
the backbone and not at the periphery, we simulate an underprovisioning network and
set the link bandwidths of the links between routers to 30 Mbit/s while ensuring a sat-
uration of many links through an appropriate number of clients, ranging from 20 to 40
clients and 7 to 10 servers per router, depending on the topology.

7.4.3 REPLEX setup

As in the previous simulations, we choose λ = 0.5, η = 0.5, T = 1 s, metric = drop rate,
α = 0.25, β = 0.1, ǫ = 0.0 as parameters for REPLEX. The time interval implies that
one pair of REPLEX messages is exchanged per second between every pair of neigh-
bouring routers. Assuming that each REPLEX message contains a 6-byte information
for 2,000 destination prefixes, this amounts to a total of just 96 kbit/s, i. e., just 0.32 % of
additional traffic on each 30 Mbit/s link.

Note that, due to the high memory demand (3.5–7 GBytes) and the long running
time (one day up to a week), we do not provide multiple simulation runs for the same
simulation to reduce the influence of statistical fluctuations. Rather, we simulate each
parameter set only once.
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Figure 7.17: Reduced Rocketfuel topology for AS 1755.

7.4.4 Effectivity of R EPLEX

We start with analysing the weight change behaviour of our algorithm in the topology
AS 1755. The topology is shown in Fig. 7.17. It consists of 46 links connecting 27 routers,
each running a REPLEX instance. All routers are connected to workload clouds and thus
are workload traffic destinations. It is therefore not feasible to show weight changes for
individual links; neither does it make much sense to show weight changes for specific
routes at specific nodes. Instead, we consider the total weight changes for each 1 second
interval. As with the previous experiments in Section 7.3, we expect the weights to be
subject to small fluctuations even in the converged state, due to the bursty nature of the
generated realistic workload traffic.

Fig. 7.18 shows the temporal development for weight change metric (i. e., like the
plots in the second row in Fig. 7.6 ff). We see a sharp decline during the first ≈ 150 s.
A converged state by our definition from Section 7.2.2 is reached roughly at t = 400 s
(dashed vertical line).

While convergence certainly is a pleasant property, it remains to show that REPLEX

actually improves network performance. To demonstrate the performance gains, Fig. 7.19,
shows the overall network throughput, i. e., the total number of IP bytes that are re-
ceived by all simulated clients per 1 second time interval. We see that the network
performance increases slightly faster than the weight changes decrease (within a time
window of roughly 200 s). Note that, in contrast to the weight changes, it does not
make sense to apply our convergence definition, since here the range of our measure-
ments (i. e., throughput values) prior to and after starting REPLEX do overlap. Thus,
we cannot be sure that reaching the convergence corridor is a sign of convergence, or
just an outlier caused by a random fluctuation in the workload that might as well have
happened without REPLEX. However, we can see that the throughput gain achieved by
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Figure 7.18: Weight changes in AS 1755.
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Figure 7.19: Influence of REPLEX on network throughput in AS 1755.
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Figure 7.20: Influence of REPLEX on the drop rates in AS 1755.

REPLEX is significant, since the 95 % confidence intervals5 are clearly separated (dashed
red and green lines).

Where do these gains in throughput come from? Naturally, the reason is a signif-
icant reduction in the number of packet drops. Fig. 7.20 shows the maximum drop
rate of all drop rates in the network (brown), as well as their 99 % quantile (red), the
95 % quantile (orange), the 75 % quantile (pink) and the 50 % quantile (i. e., median,
flat magenta-coloured line at bottom). We see a swift decrease in the maximum num-
ber and 99 % quantile of packet drops during the first ≈ 250 s after REPLEX has been
started. The 95 % quantile remains more or less unchanged, while the 75 % quantile
slightly increases. The median of the link loads (and thus all lower quantiles as well)
remains constantly at zero. In other words, a strong reduction of the most heavily con-
gested links (brown, red) is achieved, at the cost of a slight increase in the loss rate on
less congested links (pink).

It is interesting to correlate the temporal development of the drop rate with the link
loads. Fig. 7.21 reveals that the most heavily loaded links, which naturally are those
suffering from the highest drop rates, are only slightly relieved in terms of link load
(brown and red points)—but remember that this small load decrease by scarcely 10 %

5This and the following confidence intervals are calculated from 32 group means of 125 measurements
each. ACF plots (not shown) gave no indication for autocorrelation-induced nonstationarity.
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Figure 7.21: Influence of REPLEX on the link loads in AS 1755.

corresponds to a packet drop decrease of 30–40 % (recall Fig. 7.20).6 Apart from a few
links that carry almost no workload (5 % quantile), the load on the majority of the other
links is significantly increased (25 % to 75 % quantile). In particular, the 75 % link load
quantile (light pink) is increased from about 50 % to almost 60 %, which corresponds to
an increase in packet losses from virtually zero to about 0.2 % (Fig. 7.20, pink)—which
is consistent with the common practice among network operators of not letting the load
on any link exceed 50–70 %, since otherwise performance starts to degrade.

We see a similar behaviour in our simulation of AS 3967 (topology shown in Fig. 7.22
on the next page) instead of AS 1755: Most links, even the very lightly loaded ones,
experience a significant increase in utilisation after we enable REPLEX (Fig. 7.24 on
page 163). In contrast to AS 1755, the most heavily loaded links do not experience
much of a visible decrease in link load. However, these most heavily congested links
are nevertheless relieved in terms of packet losses (Fig. 7.23 on the next page), albeit
less pronounced than in the case of AS 1755. All in all, this development also leads to a
significant increase in network throughput (Fig. 7.29).

The results of these and other simulations are summarised in Table 7.3 on page 164.
We witness a performance increase of 13.1 % for REPLEX over the unoptimised network

6When regarding these very high values for maximum loss rates of around 3 % and the maximum link
loads of about 90,%, keep in mind that this is on purpose, since we are simulating a vastly underprovi-
sioning network.
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Figure 7.22: Reduced Rocketfuel topology for AS 3967.
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Figure 7.23: Influence of REPLEX on the packet losses in AS 3967.
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Figure 7.24: Influence of REPLEX on the link loads in AS 3967.
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Figure 7.25: Influence of REPLEX on the throughput in the AT&T topology.
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Topology Optimisation method TP gain over unopt. signif.?

1755 IGPWO +10.7 % ✔

1755 REPLEX +13.1 % ✔

1755 REPLEX + IGPWO +11.2 % ✔

1755 REPLEX/noComm +5.4 % ✔

3967 IGPWO +6.5 % ✔

3967 REPLEX +8.5 % ✔

3967 REPLEX + IGPWO +7.6 % ✔

3967 REPLEX/noComm +7.1 % ✔

3967 REPLEX/noComm + IGPWO +7.0 % ✔

6461 REPLEX +6.5 % ✔

AT&T REPLEX +16.4 % ✔

Table 7.3: IP throughput (TP) gains over the unoptimised network (unopt) for REPLEX, REPLEX

without communication (REPLEX/noComm), traditional IGP weight optimisation (IGPWO),
and combinations of these.

in the 1755 topology (first block, second row), and of 8.5 % for the 3967 topology (second
block, second row). When simulating AS 6461, we also notice a statistically significant
performance increase of 6.5 % through the use of REPLEX (third block). Furthermore,
we achieve a very good performance increase of 16.4 % for the AT&T topology (fourth
block). Here, the network throughput is less volatile (Fig. 7.25 on page 163), and the
new performance level is reached within less than 100 seconds. This quick performance
increase is again correlated with a quick drop in weight changes. When we examine
the weight changes of all routes at one particular router (Fig. 7.26 on page 165), we
see that indeed many weights converge within less than 100 s (left). In many cases, we
observe weight settings where one route alternative is completely disabled (i. e., either
weight = 0 or weight = 1). Other route weights, in contrast, do not change much, if
at all (horizontal and almost horizontal lines starting at y = 1

2 , y = 1
3 , y = 1

4 ). Yet other
routes show a slow convergence towards some value, e. g., the two dashed red lines
that converge from 0.5 to around 0.7. Even other routes keep changing around y = 0.5.
Another effect that can be seen is that many routes share the same bottleneck link and
therefore almost behave identically. This results in weight change lines that are almost
parallel.

In summary, we have seen that REPLEX also converges quickly and without oscilla-
tions in realistic topologies, while at the same time resulting in an improved network
performance. 7

7Note that the remaining rows of Table 7.3 are addressed in the following sections.
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Figure 7.26: Weight changes at one router in the AT&T topology.

7.4.5 Comparison to traditional IGP weight optimisation

So far, we have shown that REPLEX converges fast, that it does not lead to oscillations
if sane values are chosen as parameters, and that it yields an increased network per-
formance. However, another important question is: How well does REPLEX compare
against other traffic engineering methods?

To demonstrate its potential, we decided to compare REPLEX against a very popu-
lar TE method: the traditional technique of adjusting OSPF (or other IGP) link weights
[FT00]; refer to Section 2.3.3 on page 27 for further details. The TOTEM traffic engineer-
ing toolbox [BLM] provides an implementation of this method. In the TOTEM toolkit,
it is called IGPWO (for “IGP weight optimisation”), and we adopt this terminology in IGPWO

the remainder of this document.
Recall that IGPWO requires the full traffic matrix as input. The quality of its output

is, of course, dependent on its input. In many cases, network operators do not employ
Cisco NetFlow or comparable techniques to determine a (nearly accurate) traffic matrix
due to performance reasons; they rely on traffic matrix estimation techniques instead.
However, even if they do not estimate but have access to accurately measured TMs,
it has to be noted that any traffic matrix obtained this way can only reflect the traffic
demands that are possible within the capacity of the current network setup—these
measurements can, however, not anticipate any change in traffic demand that is caused
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through a routing optimisation (i. e., additional traffic demand that can now be satisfied
due to an increased network performance along a previously congested path). In other
words, even if the true traffic demands remain constant, the measured traffic matrix
will not, and is thus always an imperfect input to the IGPWO algorithm, even if the
actual measurements perfectly capture the currently imposed traffic demands. In our
case, we actually do know the traffic matrix with the true traffic demands—because we
have set up our simulation in a way such that it is uniform. This means that we can give
the IGPWO algorithm a perfect input from which it can estimate the optimised OSPF
weights.

Recall from Chapter 2 that IGPWO is a traditional TE method. It is static, centralised,
and works in three phases:

1. Collecting traffic matrix data on a time scale of hours,

2. calculating the optimum IGP weights on a time scale of minutes,

3. and applying the new IGP weights on a time scale of seconds or milliseconds.

In contrast, REPLEX is dynamic, decentralised, and the adaptation process is perma-
nently executed. Thus, a comparison of the convergensce time of REPLEX to the “con-
vergence” time of IGPWO is futile, since the comparison of these times does not make
sense. Therefore, we only measure the differences in network performance that can be
achieved with IGPWO vs. those that can be achieved by (constantly) running REPLEX.

We take the achieved IP throughput as an indicator for the network performance, as
we have seen in the previous experiments that it is closely coupled with the packet loss
rate and other performance measures. Let us therefore have another look at some of
the remaining lines of Table 7.3 on page 164.

The first line in the first block shows that in the AS 1755 topology, the IGPWO method
yields a 10.7 % increase in throughput over the completely unoptimised scenario (i. e.,
neither IGPWO weights, nor any REPLEX instances running). We can safely assume
that this 10.7 % performance increase is not due to some random fluctuation, as the 95 %
confidence interval for the mean throughput with normal hop-count routing and the
confidence interval for the mean throughput with IGPWO routing are clearly separated.
We indicate this fact with the green tick symbol “✔” in the column labelled “signif.?”.

The second line in the first block shows the results if we use REPLEX as our traffic
engineering method instead of IGPWO. We see that in this case, we can achieve an
even higher gain of 13.1 % over the completely unoptimised scenario. From the first
line of Table 7.4 on the next page, we can see that this corresponds to a 2.2 % gain over
the IGPWO simulation. By comparing the confidence intervals for REPLEX and IGPWO
however, we see that they actually overlap (marked by “✘” in Table 7.4); we therefore
cannot rule out the possibility that the higher value for REPLEX is just a coincidence
caused by the randomised workload generator.

The first and second line of the second block in Table 7.3 compare the same values for
the topology of AS 3967. Judging by the numbers to those for AS 1755, this topology
obviously offers less optimisation potential, but nevertheless we get the same picture
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Topology REPLEX type TP gain over IGPWO signif.?

1755 REPLEX +2.2 % ✘

1755 REPLEX + IGPWO +0.5 % ✘

1755 REPLEX/noComm −4.2 % ✔

3967 REPLEX +1.8 % ✘

3967 REPLEX + IGPWO +1.0 % ✘

3967 REPLEX/noComm +0.5 % ✘

3967 REPLEX/noComm + IGPWO +0.4 % ✘

Table 7.4: IP throughput (TP) gains over traditional IGP weight optimisation (IGPWO) for
standard REPLEX, REPLEX without communication (REPLEX/noComm), and REPLEX-IGPWO
combinations.

as before: While IGPWO yields a measurable performance improvement and REPLEX

seemingly an even better one (Table 7.3), we cannot say with certainty that REPLEX

really is the better TE mechanism, as the confidence intervals overlap (Table 7.4).

7.4.6 Combining R EPLEX and IGP weight optimisation

Remember that we can only apply REPLEX in networks where we can choose between
multipath routes. A weight optimisation such as they are performed by IGPWO nat-
urally reduces the number of available routes and therefore the possibilities among
which REPLEX instances may choose to share their traffic. Nevertheless, the Totem
IGPWO implementation does not necessarily remove all multipath routes from a sce-
nario, but actually features a flag through which one can explicitly allow the use of
multipath routes. We enabled this flag, calculated optimised OSPF weights using the
IGPWO module, and then let run REPLEX on the network with the optimised OSPF
weights.

The result of this combination is shown in the third row of the first and second block
of Table 7.3. In both of our simulated topologies, we note a small advantage for the
combination of IGPWO and REPLEX over the pure IGPWO setting. Alas, the advan-
tage is rather small and furthermore statistically not significant, as we can see from
the second row of the first and second block of Table 7.4. Moreover, the performance
gain is less than the one that can be achieved with REPLEX on a network with a sim-
ple hop-count routing; on the other hand, this performance difference proved to be not
significant either in our simulations.

7.4.7 Disabling communication

Running REPLEX in a network requires additional control traffic for the distance-vector
like protocol. Although this traffic is negligibly small in comparison to the real pro-
duction traffic (especially in Gigabit speed environments and above, as we have shown
in Section 6.4.3 on page 110), it is nevertheless interesting to see what happens if we
disable this protocol.
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In this case, the REPLEX instances do not communicate with each other any more.
Rather, they act completely independent, based solely on their local information, which
are the measurements on their own outgoing links. This means that a REPLEX instance
is unable to detect a downstream bottleneck, unless it is on an immediate outgoing link.
Furthermore recall that one single agent from the theoretical model (Section 6.3 ff.) doesagent

not correspond to just one single REPLEX instance at one router, but rather to chains of
REPLEX instances along the agent’s paths from the source to the sink (Section 6.4.1 oninstance

page 107). If we disable communication between the REPLEX instances, we thus do not
faithfully reproduce the actions of our theoretical agents, and our theoretically proven
properties (e. g., fast convergence, theorem 6.3.1 on page 106) do not necessarily hold.

Nevertheless, it is interesting to see what happens in a network without any REPLEX

communication. First, a network operator may be interested in reducing the additional
control traffic to a minimum—and zero definitely is a minimum. Second, neighbour-
ing ASes may choose to run REPLEX internally in their respective networks, but with-
out cooperation across the AS boundaries. In this case, we have the situation where
two neighbouring routers are equipped with a REPLEX instance each, but where these
instances not exchange any information on the traffic conditions in the other network.
In both of these cases, if is interesting to see if the crippled “REPLEX” instances still
yield performance improvements than a network without REPLEX or with traditional
IGPWO traffic engineering.

A first look at the fourth row of the first block in Table 7.3 reveals that we do indeed
obtain a measurable performance increase of 5.4 % over the unoptimised case. But this
gain is significantly smaller than the ones that can be attained using IGPWO (Table 7.4,
first block, third row), or using normal REPLEX with inter-router communication. The
difference in performance is large enough to be statistically significant; the confidence
intervals do not overlap.

For the 3967 topology, we obtain slightly different results: For this topology, REPLEX

without communication leads to a performance improvement (Table 7.3 2nd block, 4th
row) that is comparable to the improvements achieved by IGPWO or by normal RE-
PLEX involving communication. The throughput is even half a percent better than the
throughput for IGPWO (Table 7.4)—but as before, this difference may be statistically
insignificant, as the confidence intervals overlap.

The convergence time also is in the same time scale as in the previous simulations;
Fig. 7.27 shows that the convergence as by our definition of convergence takes place
within about 250 s (dashed vertical line). The temporal development of the workload
throughput takes place on the same timescale or even faster (Fig. 7.28). Due to the
smaller gain in comparison to the scenario involving communication, the step follow-
ing t = 0 is less pronounced and thus not as easily discernible. This indiscernibility is
even more pronounced for the 3967 topology, as can be seen in Fig. 7.29.

These nice results, however, turn out to be somewhat phony when we take a look
at the development of the link utilisation: Fig. 7.30 on page 170 reveals that the maxi-
mum link load is actually significantly (and very quickly) increased and not decreased.
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Figure 7.27: Weight changes for REPLEX without communication, AS 1755, standard hop-count
routing.
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Figure 7.28: Workload throughput for REPLEX without communication, AS 1755, standard hop-
count routing.
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Figure 7.29: Workload throughput for REPLEX without communication, AS 3967, standard hop-
count routing.
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Figure 7.30: Influence of the absence of inter-router communication on the link utilisation dis-
tribution in AS 1755.
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Figure 7.31: Influence of the absence of inter-router communication on the packet loss rate
distribution in AS 1755.

Likewise, less loaded links are not used more, but actually less. This unfortunate de-
velopment is also mirrored in the development of the packet losses (Fig. 7.31): The
maximum loss rate is increased, while the quantiles for lower loss rates are decreased.
The development for AS 3967 is about the same (plots not shown).

Note that both developments happen very quickly. This is due to the fact that no feed-
back from other routers is available. Rather, any performance measurement is purely
local and thus immediately affects the local weights (in contrast, with REPLEX com-
munication being enabled, the feedback may have to traverse several REPLEX nodes
before it reaches a node making a relevant decision; recall the experiments involving
the artificial topologies). This also results in a faster convergence time, which is shown
in Fig. 7.32 on the next page exemplarily. This plot shows the temporal development
of the weight changes for REPLEX without communication in the AS 3267 topology. In
contrast to the previously described simulations, we in this simulation apply IGPWO
instead of normal hop-count based routing. Regarding the performance, communica-
tionless REPLEX in combination with IGPWO weights delivers a throughput increase
of just 0.4 %, which is statistically insignificant in comparison to IGPWO without RE-
PLEX (Table 7.4 on page 167), and yields a performance that is slightly inferior to that of
communicationless REPLEX with standard hop-based routing (Table 7.3 on page 164) or
any communication-enabled REPLEX scenario (second and third row in second block).
However, none of these differences are statistically significant.
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Figure 7.32: Disabling REPLEX communication decreases the convergence time.

The unfortunate situation that already highly congested links become even more con-
gested is caused by the fact that each router only has local knowledge on the its out-
going links. Without receiving additional information from its peers, it cannot know
about bottlenecks further downstream. Therefore it is possible that several REPLEX

instances decide to shift more traffic towards uncongested links leading to the same
router, whose outgoing link towards the destination then of course becomes more con-
gested. Attracting additional traffic this way is especially likely for links that are al-
ready highly congested, since these usually are located in the core of the network and
thus are well-connected.

We conclude that communicationless REPLEX yields a measurable increase in net-
work throughput. At the same time however, it causes a decrease in the quality of
service experienced by some customers, as the maximum link loads and thus the max-
imum packet losses in the network increase, rather than decrease. This phenomenon
also holds for scenarios where we use communicationless REPLEX in combination with
IGPWO routing. Therefore, disabling REPLEX communication seems to be a tradeoff
whose advantage is questionable, whereas normal REPLEX with inter-router commu-
nication proves to be very advantageous.
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7.5 Summary

Our simulations involving realistic self-similar traffic with real TCP connections show
that REPLEX reliably achieves significant performance improvements. Simple artificial
scenarios help us in our search for good REPLEX parameter settings, and show that
REPLEX converges quickly to an efficient solution without suffering from oscillations.
Simulations with Rocketfuel topologies clearly demonstrate that this also holds in real-
istic network environments.

When comparing REPLEX against IGPWO, a widespread traditional static engineer-
ing technique, our measurements suggest that REPLEX achieves a slightly better per-
formance than IGPWO. However, these differences have so far to be regarded as statis-
tically non-significant.

A strapped-down version without any communication between REPLEX instances
on the one hand increases the overall network throughput to some extent as well. On
the other hand, it degrades other network performance parameters such as packet loss
rates; therefore its effectivity is questionable.
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In this thesis, we have presented several approaches to characterise and handle Internet
traffic and its dynamic behaviour.

We described a methodology that allows us to estimate interdomain demands for
Web traffic on a global scale. Our system draws on data from the log files of a content
delivery network (CDN), and packet level data for HTTP traffic gathered at one or a
few vantage points, and correlates the data. This correlation allows us to extrapolate
from the CDN logs to an interdomain traffic matrix for WWW traffic on a truly global
scale. Concerning the dynamic behaviour of the traffic, we found that traffic variation
on mid-range time scales (1 hour) is less pronounced than on larger time scales (several
days).

We then presented a state model for describing the behaviour of users that are brows-
ing the Web using a search engine. Our model captures the temporal and logical rela-
tionship between the pages that the users visit during their search sessions, including
the search engine itself. A model-based analysis, utilising data from HTTP traces gath-
ered at one vantage point, confirms findings of others, and gives insights into user
search behaviour. Finally, it indirectly gives directions for Web site operators, e. g., by
showing that redirects leading away from a search hit (i. e., deep link protection) repel
many potential visitors.

The previous two approaches are static and require to collect data from potentially
many data sources at a single place over a long period of time. We therefore proposed
a technique that allows network components, such as routers, to collect data indepen-
dently, in real time, with very little amounts of memory. Although originally directed
at specific computing platforms like network processors, our Expand-and-Collapse al-
gorithm (EaC) is very generic, in that it can be used in any scenario where information
is required on the most frequently hit nodes in a search tree, under severe memory con-
straints. It is thus not even restricted to the context of networking. An evaluation using
artificial data shows quick convergence and a good performance.

As the main contribution of the thesis, we finally presented and evaluated REPLEX,
a traffic engineering protocol that automatically balances traffic between equal-cost
routes provided by an underlying routing architecture, such as OSPF, IS-IS or MPLS.
REPLEX scales well even in large networks, since it distributes the required information
on current network traffic conditions in a distance vector-like fashion. The protocol-
induced communication overhead on a link is only linearly dependent on the number
of routes (destination prefixes). Furthermore, our “protocol” even can yield perfor-
mance increases when communication between the routers is not desired and thus dis-
abled, e. g., in interdomain contexts. Through extensive simulations involving realistic
TCP traffic with self-similar properties we first derived reasonable parameter settings
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for REPLEX. We then used these parameters in further simulations involving realistic
topologies of real ISPs. These simulations show that REPLEX converges quickly, which
is in good conformance with its strong game-theoretic background, and that it yields
performance improvements that are at least equal to those achieved by traditional of-
fline traffic engineering techniques.

Further analyses and improvements to REPLEX are thinkable. First of all, one can
try to improve its performance by applying the weight changes in a “soft” manner
(i. e., make a smooth transition to the new weight settings, rather than abruptly setting
them to a new value) [KKDC05] so as to further reduce the number of TCP connections
affected by shift-induced packet reordering per time interval. A similar effect may be
attained by choosing the decision period (T) much smaller than the update interval
(Tcomm).

Another interesting alley is to change the inter-update times on demand: If the per-
formance of a route does not change very much, then the need to tell the neighbours
is not as pressing as in a case where a sudden performance increase or decrease is en-
countered.

We believe that improvements also are achievable by making use of typical flow size
distributions [WDF+05]. For example, these can be used together with using improved
hashing techniques such as DHFV [JKCM02]. Another approach to utilise the char-
acteristics of flow size distributions can be to aggregate same-egress prefixes such as
in [SGD03].

Certainly, providing the REPLEX instances with more path alternatives to select from
is another interesting alley. Since hop-count routing already provides a large number
of equal-cost multipaths, it is in our view not very promising to find OSPF heuristics
for tuning the weights in order to offer greater path flexibility to, e. g., the high-traffic
nodes. Instead, we suppose that it is favourable to selectively install MPLS tunnels
at specific locations, so as to provide additional route alternatives at specific locations,
like, e. g., the SAMTE [SBL06] approach which uses in a combined IGP/MPLS routing.

Furthermore, the performance gain of REPLEX in MPLS-enabled networks in general
is another interesting research possibility. In this case, REPLEX needs a slight modifica-
tion, as now a “link” (i. e., an LSP) spans multiple hosts: Suppose that an LSP consists
of the routers r0 → r1 → · · · → rn, where r0 is the ingress and rn is the egress. In this
case, there is only one REPLEX instance at r0 that controls the amount of traffic sent via
this path to rn (and in relation to other paths r0 → r′1 → · · · → rn), whereas the other
routers r1, . . . naturally do not need fully-functional REPLEX instances, because they
have no route alternatives. However, they still need to run slimmed-down REPLEX in-
stances, since now the outgoing “link” from r0 to rn is not a normal point-to-point link
but spans multiple links. As r0 alone cannot measure the performance (i. e., link load,
packet losses, etc.) along the entire LSP, the routers downstream also have to measure
their own links that are part of the LSP, and aggregate this data into reports that are
sent back to r0. This aggregation can be made with slightly modified REPLEX instances
that only run the distance-vector like protocol without the decision part. Alternatively,
it can be interesting to combine REPLEX in a MPLS network together with TeXCP’s link
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feedback mechanism [KKDC05], since TeXCP also provides performance information
for each LSP.

Last but not least, due to its genericity, REPLEX is not restricted to pure IP networks.
Instead, it is interesting to see if REPLEX can lead to performance improvements if it
is adapted in other networks, e. g., overlays such as peer-to-peer networks, or even
completely different types networks that are not even related to computers, e. g., road
networks, train networks, or logistics networks. After all, the notion of a Wardrop equi-
librium, which forms the theoretical base of REPLEX, was not coined in communication
networks, but stems from road traffic research [War52].
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Glossary

Akamai: A big1 CDN provider. Provides Web (and other) services.

CDN: Content Delivery Network. A collection of servers are distributed across the
entire Internet. Typically, all servers provide the same content. The idea is that a
client uses a server that is nearby, thereby experiencing a performance improve-
ment.

distance vector protocol: A distance vector protocol (short DV) is a routing protocol
that performs a distributed computation of the Bellman-Ford algorithm. Every
node sends messages to its neighbours, containing the distances to all nodes for
which it has a route. The receivers include this information into their routing
tables and eventually change them accordingly. Every time that the routing ta-
ble changes (be it through reception of such a message, or through a new link
being added, or an existing link going down), a router immediately informs its
neighbours.

ISP: Internet Service Provider

link state protocol: A routing protocol based on full information. Every node receives
an exhaustive map of the network topology, i. e., a graph showing which nodes
are connected to which other nodes. Each node then independently calculates
the best next hop from this map for every possible destination in the network,
using only the copy of the map, and without any further communication with
any other node. The topology map usually is obtained through broadcasts.

MSS: Maximum Segment Size, i. e., the maximum number of bytes that is allowed in
a (TCP) packet.

RTT: Round trip time, i. e., the sum of the one-way delay from the sender to the re-
ceiver and the one-way delay back from the receiver to the sender. As asymmet-
ric routing is rather common in the Internet, this is in many not just the double
of one of the one-way delays.

traffic engineering: Optimising the performance of a network, usually achieved by
making adjustments to the routing based on measured (or estimated) traffic de-
mands.

1(at the time of this writing)
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Zipf: A Zipf-like distribution is a probability distribution where the contribution of
the k-th most popular item varies as 1

ka , for some a. Values taken from a Zipf
distribution normally form a linear slope in a doubly-logarithmic CCDF plot.
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(α, β)-exploration-replication, 105
activation, 105, 106
administrative distance, 22
agent, 104, 104, 105–108, 168

agg, 105

aggregate, 20, 108, 111
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DV, see distance-vector protocol
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EaC, 14, 175
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iteration, 88, 90
EdgeScape, n52
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English spelling, 7
Enhanced Interior Gateway Routing Pro-

tocol, see EIGRP
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δ, ǫ, see (δ,ǫ)-equilibrium
equilibrium, 104, 105, 107

approximate, 107

evaluation phase, 117

expand rule, 85

exploration, 106

exploration/replication, 105, 106, 107
exterior gateway protocol, see EGP

f , 104
f (ui), 83

fibre, 7
flow, 104

flow demand, 104

flow vector, 104

follow, 86
follow flag, 84

forwarding, 19

forwarding table, 20, 22

g, 71
goodput, see TCP goodput

H, 83

h, 83

hash function, 111

heavily-hit, 83

HTTP, 31, 32, 49, 54, 62, 65, 66

IGP, 22, 27, 165
IGPWO, 164, 165, 166–168, 171–173
index, 201

usage, 7
instance, 114, 115, 124, 133–135, 143, 144,

150, 151, 153, 155, 158, 166–168,
168, 172, 173

interdomain, 21, 29, 100–103
interior gateway protocol, see IGP
Intermediate System, see IS-IS
Internet Protocol, see IP
internet service provider, see ISP
interval, 105
intradomain, 21, 28, 101, 147
IP, 19

IP address, 19

IPv4, 110
IPv6, 110
IS-IS, 23

ISP, 20, 21, 102, 113
iteration, 88

κ, 125

L, 71, 109, 113

ℓ, 105

λ, 106, 115

λ, 106, 141
ℓ̄, 105

ℓ̃, 113

label, 24

label-switched path, 25

largest non-covered node, 95

latency, see delay, 27, 81, 105, 105, 107,
111, 112, n125, see delay

expected, 109, 111
latency function, 105, 106, 125
license, 8

link load, 125

nonlinear, see nonlinear link load
link utilisation, see load, 105, 112

link-state protocol, 23

load, 26

longest-prefix match, 80
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loss rate, 112, 126

LSP, see label-switched path

M, 83

m, 83

marginal cost, 105
MATE, 102

maximum link load, 127

measure, 25
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metric, 25, 115

migration, 105, 106, 106

migration probability, 106
monitored nodes, 84

MPLS, 24, 99–102, 108, 117
MWN, 49, 64

N, 108

n, 83

η, 113, 115

Nash equilibrium, see Wardrop equilib-
rium

NetFlow, 29, 46, 79, 165
network processor, 81
network throughput, 127

next result page query, 65

NIC, 20

nonlinear link load, 115, 125

normalisation, 104

NP, see network processor

OD, 93

optimise, 7
optimum, 105
origin Web server, 33, 33

oscillation, 86, 99–101, 105, 106, 115, 117,
120, 134, 137, f 138, 139, f 140, 141,
f 142, 143, 144, 150, 155, 164, 165,
173

oscillation prevention rule, f 85, 86, 95,
96

OSPF, 23, 27, 99–101, 103, 104, 108, 117,
118, 134, 135, 147, 155, 165–167

outdegree, see OD
overview

on this document, 16

p, 71

packet classification, 80

packet loss rate, 127

packet reordering, 146

path vector protocol, 22

phase, 118
policy routing, 21
polynomial, 106, 107
prefix, 20, 110
priority, 22
probability, 82
proportional sampling, 106, 106

provider, 21

proxy, 34
PSTARA, 103

publisher, 32, 33, 33, 34–43, 46, 48–50,
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publisher demand, 37
publisher demand matrix, 32, 36

query, 65

query result page, 65
query session, 65

queue, 26

R, 71
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reader’s guide, 16
real repeat query, 65

referrer, n41, 44, 67, 72, 73
remove intermediate nodes, 86, 88
repeat query, 65
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REPLEX instance, see instance
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result click, 65
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router, 19

routing, 7
routing policies, 22
routing protocol, 21
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search tree, 80, 81, 83
simulation

framework, see SSFNet
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spelling, see English spelling
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SSFNet, 117
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startup phase, 117, 124
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stop word, 69
strategy, 104

strategy space, 104

structure
of this document, 16
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system optimal flow, 105
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tree, 83
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uniform sampling, 105, 106
unique query, 65

update
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virtual link, 25
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Wardrop equilibrium, 105, 105, 106
Wardrop model, 103, 104, 104

Web search clickstream, see s
Web server

origins, see origin Web server
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Web traffic demand, 32, 37

Web traffic demand matrix, 36
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static (routing protocol), 23

weight changes
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withdrawal, 22
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