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Abstract

The ever increasing amount of information in every scientific and industrial
domain have been an exciting challenge for computer scientist to handle vast
amount of data and to represent human understandings of a domain in a system-
atic and mathematic way. Over decades, probabilistic modeling with probability
theory and statistical learning algorithms has been popular for accomplishing
this task due to the stochastic characteristics of the nature. Quantitative mea-
surements are generated from various kinds of ”sensors” in all types of science
and industry and we need to make sense of these data, i.e. to extract im-
portant patterns and trends, and understand ”what the data says”. This is
often called learning from data, reverse-engineering or bottom-up modeling.
Among these learning algorithms, Bayesian network computational framework
has become particular popular due to the ability of Bayesian network to model
cause-effect interactions between the variables in a domain. For example, in
bioinformatics, vast amount of ”-omics” data are generated by high-throughput
screening techniques. Learning method with Bayesian networks has been used
to construct gene regulatory networks from transcriptomic data and to predict
protein-protein interactions based on proteomic data.

In practice, the data basis in reverse-engineering approach can be very
sparse. Therefore, it is hardly sufficient to select one adequate model, i.e. there
is considerable model uncertainty. Selecting one single Bayesian model can then
lead to strongly biased inference results. In this case, full Bayesian approach
with model averaging can be used to alleviate the bias. In this approach, one
major difficulty is to specify prior distribution function on the Bayesian network
structure space and parameter space in order to compute a posterior probabil-
ity. One important information resources that could provide solutions to this
problem is qualitative prior distribution which largely exists in every science
and industry domain. In addition, human have a deep intuition that causal-
ity is a central and cohesive aspect of their perceptions, therefore, one subtype
of these qualitative prior knowledge, i.e. qualitative causal knowledge which
describes the cause-effect relations between multiple entities with any form of
uncertainties, are particularly well-suited to represent human understandings
and to get approximated characterizations of the behavior of the interested do-
main. For example, in a qualitative causal statement: ”smoking increases the
risk of lung cancer”, two entities: smoking and lung cancer are related to each
other. Moreover, smoking positively influences lung cancer since lung cancer
risk is increased in case of smoking. It is therefore desirable to make use of this
body of evidence in probabilistic modeling with Bayesian network.

This thesis is concerned with developing a powerful probabilistic modeling
framework to represent human understandings of a domain based on qualita-



tive prior knowledge. More precisely, to construct a Bayesian network structure
with cause-effect relationships between the entities in a domain and parame-
terize these interactions according to the semantics of qualitative knowledge.
One problem here is that qualitative knowledge provides no quantitative infor-
mation to parameterize edges in Bayesian network and parameters need to be
configured based on soley qualitative information. We attack this problem by
proposing a qualitative knowledge model which is responsible for constructing
mathematical constraints to define parameter distribution based on the quali-
tative knowledge. This approach incorporates the concept of model uncertainty
due to the qualitative nature of the statements and automatically select a class
of possible Bayesian models which are consistent with the semantics of the
statements. Quantitative Bayesian network inference is performed by averaging
inferences of each Bayesian network in this class with full Bayesian approach.

However, knowledge is well-known to be inconsistent and incomplete. Knowl-
edge has spatial and temporal properties like other physical systems, i.e. knowl-
edge exist in space-time dimension. The spatial property describes that knowl-
edge represents information on a specific sub-structure of a domain and the
temporal property states that knowledge represents human understandings at
a particular time point. Thus, these knowledge are incomplete and may be
updated by complementary discovery. Moreover, another significant drawback
of knowledge is inconsistency. In the same domain, there may exist contra-
dicting qualitative statements on dependency, causality and parameters over a
set of entities. In this thesis, we propose several successful methods to deal
with knowledge incompleteness and inconsistency, and integrate the Bayesian
networks based on the set of knowledge to form an complete and coherent rep-
resentation of the underlying system.
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Chapter 1

Introduction

The rapid growth of information in every scientific and industrial domain raises
exciting challenge in handling vast amount of data and modeling underpin-
nings of a domain in a systematic and mathematic manner. In recent years,
probabilistic network has become popular as practical representations of knowl-
edge for reasoning under uncertainty. The probabilistic network computational
framework uses a graphical model to capture random variables in a domain
and relations between them, with probabilities that represent the uncertain-
ties in the domain. The framework offers powerful algorithms of quantitative
reasoning, such as predictive inference and diagnostic reasoning. Among these
and other probabilistic graphical models, directed graphical models (also called
Bayesian Networks or Belief Networks) [82,111] are particular attractive for re-
searches with the Artificial Intelligence (AI) and statistics communities. The
most prominent advantage of Bayesian network is that an edge from one node to
another can be viewed as ”causality” and the uncertainty of this causal relation
is quantified by conditional probability distribution (CPD).

Bayesian network computational framework has been widely utilized in var-
ious nature and industry-inspired domains, such as medical diagnosis, prognosis
and nature language processing. The most widely used Bayesian network are
undoubtedly the ones embedded in Microsoft’s products, including the Answer
Wizard of Office 95, the Office Assistant of Office 97, and over 30 Technical Sup-
port Troubleshooters [78]. BNs originally arose out of an attempt to add prob-
abilities to expert systems, and this is still the most common use for BNs. An-
other famous example is QMR-DT network [72] is a two-level graphical model.
The top level of the graph contains nodes for the diseases, and the bottom level
contains nodes for the symptoms. The goal is to infer the posterior probability
of each disease given all the symptoms. An interesting fielded application is the
Vista system which is a decision-theoretic system that has been used at NASA
Mission Control Center in Houston for several years. The system uses Bayesian
networks to interpret live telemetry and provides advice on the likelihood of
alternative failures of the space shuttle’s propulsion systems.

Perhaps, the most popular application of Bayesian network framework in
now days is computational biology and bioinformatics. A common thread in
projects in bioinformatics and computational biology is the use of mathemati-
cal tools to extract useful information from data produced by high-throughput
biological techniques. Biologists are working since decades to untangle the com-



plex and diverse principles and mechanisms underlying living cellular process
and the pathogenesis of diseases. Consequently, enormous amount of data about
genes, proteins, signaling transduction pathways, disease markers, metabolites
and their relations to phenotype concepts are generated to provide a comprehen-
sive knowledge base which favors the elucidation of yet unknown underpinnings
of cellular process. With rapid accumulation of these data, existing data and
knowledge bases are at the edge to turn into an inextricable jungle. There-
fore, scientists share the opinion that discernible principles are imperative to be
mined from the overwhelming collection of data.

All processes in a living cell are directly and indirectly related to each other
through complex, recurrent and mutually interacting signaling pathway. Pro-
teins are synthesized from genes, interact with each other and with smaller
molecules, and bind to RNA and DNA where they regulate the production of
other proteins. It is not sufficient to take individual components of cellular
mechanism for granted. Global understandings of the landscape cellular pro-
cesses with irresolvable coupled and concerted interaction components in a cell
require analysis at a systems level. In light of this view, Bayesian networks
are well suited towards a complete understanding of the cellular mechanisms
and related inter- and intracellular processes. Bayesian networks are useful for
extracting meaningful biological insights from the resulting data sets and pro-
vide a concise representation of complex cellular networks by composing simpler
components. Computational framework based on well-understood principles for
inferring Bayesian networks from data facilitate a model-based methodology for
analysis and discovery. This methodology and its capabilities are illustrated by
several recent applications to gene expression data.

There are major two types of data mining practice in inferring Bayesian
network of cellular interaction network from ”-omics” data (reverse-engineering
approach). The first class of methods automatically identifies patterns and
trends in the data. For example, the patterns can be cluster of genes which are
co-expressed of a specific organism under certain conditions. Clustering studies
may disclose many extended cluster of molecules, e.g. cluster of genes, which
collectively change their expression levels when a cell or organism transit their
status from one mode to another. [2,35]. In fact, it has been shown that many
coexpressed genes and proteins are known to interact to each other in a signal-
ing transduction pathway which indicates that these global expression patterns
reflect the execution of specific cellular programs. However, clustering analysis
can not provide the structure of molecular interaction networks, i.e. to answer
questions like: which gene(s) are dominant components in the genetic regula-
tion network underlying a specific global expression pattern? Which protein
functions fail and drive the organism to global disorders. Therefore, the second
class of reverse-engineering approaches have concentrated on inferring the struc-
ture of molecular interaction network from ”-omics” data. (It is also known as
structure learning of graphical models in machine learning community [53]) For
example, learning a structure of genetic regulatory network from microarray
data [36,47,54,96]. In this approach, the set of expression data are assumed
to be drawn from a high-dimensional multivariate probability density function
which is modeled with Bayesian network with adaptive structure. Each node in
the network is assigned to a gene and each edge between genes hints towards
a regulatory relationship between them. The edge can be presumptively inter-
preted as a causal relationship. Bayesian network inference algorithms can be
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applied on the top of the inferred genetic regulatory network to answer ” what-if”
scenarios.

1.1 Motivation

These and other practices of computational modeling with Bayesian network,
especially, the computations of inferring molecular interaction network from
”-omics” data in bioinformatics, reveal a number of built-in problems of the
data driven reverse-engineering approach. There are mainly three concerns with
these approaches, i.e. sparse data which may induce overfitting, computational
complexity due to high-dimensionality of the data and integrative analysis of
data sets from multiple resources.

In machine learning, overfitting is likely to occur when inducing a proba-
bilistic network structure in the presence of sparse data set with thousands of
attributes and relative large noise level [73]. The learner is expected to reach a
state where it will be able to predict the correct output for examples not in the
training data set, thus generalizing to situations not presented during training.
Instead, when overfitting occurs, the learner may adjust to very specific random
features of the training data, that have no causal relation to the target function
where the performance of the learner on the training examples still increases
while the performance on unseen data becomes worse. For example, in studies
of inducing genetic regulation network from microarray data, high-throughput
screening techniques enable biologists to measure the expression levels of thou-
sands of genes in one experiment [26,68,110]. The data generated from these
experiments consists of instances, each one of which has thousands of attributes.
However, the largest datasets available today contain only few hundreds of in-
stances. Moreover, the genuine signals, i.e. correlations and causations between
genes, are overwhelmed by the random noise. These data sets hardly provide
sufficient entire ”statistics” of an underlying system. We cannot expect to learn
robust and detailed model from such a sparse data set and it is not too sur-
prising that our results overfit to the sparse data. Certainly, overfitting can be
avoided to some extent by additional techniques in both statistics and machine
learning. The statistical re-sampling based methods, i.e. cross-validation and
bootstrap, are often used to estimate generalization error (bias) and to explore
the robustness (variance) of the Bayesian network structures learned from sparse
data [24, 34, 38]. In machine learning framework, full Bayesian approach with
Bayesian model averaging (BMA) can be used to compute a posterior probability
distribution over all possible models to reflect the true model uncertainty [76].
This approach computes an average of the quantity of interest under each of
the models considered, weighted by their posterior model probability. Thus,
Bayesian model averaging provides a coherent mechanism for accounting uncer-
tainty in model selection and avoids over-confident inferences and decisions. In
fact, it has been demonstrated that averaging over all the models in this fashion
provides better average predictive power, as measured by a logarithmic scoring
rule, than using any single model [50, 69].

While Bayesian model averaging is an intuitively attractive solution to the
problem of overfitting by incorporating model uncertainty, it is not yet part of
the standard data analysis toolkit. One of the major difficulties in the implemen-
tation of Bayesian model averaging methods is how to specify the prior distribu-
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tion over model structure space and model parameter space [50,76]. In the do-
main where little prior information on parameters is available, non-informative
prior distribution, e.g. uniform distribution, is a reasonable choice [38,50]. How-
ever, others propose to employ Dirichlet distribution, to compute the marginal
likelihood of data given model structure [49,57]. On the contrary, if there are
sufficient amount of prior information available in a domain, the diverse prior
information can be used. For example, in cell biology, we often have prior
knowledge about the molecular interactions and the ”signs” of the interaction,
i.e. whether an interaction is a positive or negative regulation. Qualitative
probabilistic network [108] are proposed to model this prior knowledge and to
translate the knowledge into constraints on the entries of multinomial condi-
tional probability table(See Section 1.3.1). Another solution is to model the
7signs” of qualitative prior knowledge with constrained Dirichlet distributions
which is equivalent to imposing penalties on the scoring function in structural
learning [47]. Exponential function with arguments derived from qualitative
prior knowledge can be also utilized to penalize the scoring function [112]. A
prototype method is proposed for using qualitative probabilistic information to
construct a probability distribution function in the parameter hyperspace. This
approach automatically generate parameters of interest by solving a complex
system of (in)equalities [29]. Even though, this method is useful in automatic
generating parameters from prior probabilistic information, however, the re-
strictive set of constraint complex with a large number of arguments (joint
probabilities) often introduce infeasible computation complexity in practice.

In learning of Bayesian network structures from data, there are two major
approaches for inducing the structures. The first approach puts the learning
task as a constraint satisfaction problem. In that approach, we try to estimate
properties of conditional independence among the attributes in the data and
find a graph which satisfies all these independence constraints in the data. Usu-
ally this is done using a statistical hypothesis test, e.g. [83,101,103]. Although
the constraint satisfaction approach is efficient, it is sensitive to failures in in-
dependence tests. Thus, the common opinion is the second approach which
is a better tool for learning structure from data. The second approach poses
learning as an optimization problem. We start by defining a statistically mo-
tivated score function that describes how fit each possible structure is to the
data. These scores include Bayesian scores (e.g. BDe scores) [49] and BIC,
MDL scores [20,64]. The task of learner is then to find a structure that maxi-
mizes the score. In general, this is an NP-hard problem [18], and thus we need
to resort to heuristic methods. The commonly used maximum-likelihood based
learning methods often result in a complete graph since it has the largest num-
ber of parameters to fit to the data best. Thus, it is necessary to specify a prior
distribution over the discrete structure model space in the objective function to
prevent the overfitting of learned structures to the data. For structure priors,
when there is little prior knowledge, a well-principled way to avoid this kind
of overfitting is to impose a prior on models which is a penalty function of the
number of edges and the size of families to discourage networks that are globally
or locally dense [5,48,77]. This principle is compatible to the proposition stated
in Occam’s Razor which assume that the simplest consistent hypothesis about
the target function is actually the best (Consistent means that the hypothesis of
the learner yields correct outputs for all of the training examples). In domains
where large amount of prior information is available, we can construct a prior
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Bayesian network and penalize the objective function by deviation of candidate
models from this prior network. The deviation is computed by counting the
number of mismatched edges [49]. In [76], a graph weight matrix is introduced
to model the prior ”fuzzy” knowledge on the presence/absence of edges and
their orientations in a structure.

The second built-in problem in data-driven reverse-engineering approach is
caused by the large number of variables in data, i.e. high-dimensionality of
the data. In particular, when learning structure, with the number of variables
increases the space of possible graph structures grows superexponentially and
makes the learning problem NP-hard. Thus, one has to resort to heuristic
search strategies (See section 1.2.3). Most applied heuristic search techniques,
such as greedy hill-climbing, search all possible local changes in each step and
apply the one that leads to the biggest improvement in score. The computa-
tional complexity of these evaluations becomes inextricable when we learn from
high-dimensional data. Therefore, as preventing the overfitting in the learning,
we can use prior knowledge on the structures space to reduce the size of the
search space and improve both the speed of induction and more importantly,
the quality of the learned network. In addition, the acyclic directed structure
of Bayesian network can not capture the temporal characteristics of a system.
Thus, Markov networks or more precisely dynamic Bayesian network which al-
lows cyclic connections has been proposed

Regarding to the third built-in problem, as more sources of high-dimensional
data have become available, many efforts have been made to automatically in-
tegrate both homogeneous and heterogeneous types of data for the prediction of
the mechanisms and features of a underlying system. These multi-source data
sets are usually independent measures of entities at different scales and/or facets
of the system based on a variety of techniques and platforms. These scenarios
are particular true in biology domain where various technologies can be used to
produce genome-scale data sets (”-omics” data sets) that provide systems-level
measurements for all levels of cellular components in a model organism. In ad-
dition, multiple measurements are available from implementations of different
platforms within each level of the cellular parties. For example, oligonucleotide
microarrays and cDNA arrays are both microarray platforms to measure the
gene expression level, and protein microarrays provide measurements over the
expression levels of proteins in a cellular system as well as ChIP-chip technique
is used to investigate interactions between proteins and DNA in vivo. These
multi-scale and multi-origin data yield unprecedented prospective of the cellular
internal networking as well as raise remarkable challenges in analysis of these
data to recover the central workings which trace the biological information flow
from the genome to the ultimate cellular phenotype. Some of these data are
prone to introducing technical artifacts. This can bias the data, which can
falsely expose sample differences in the absence of a biological cause. In ad-
dition, uniform, standardized data representations are seldom adopted, which
complicates cross-experiment comparisons. Data quality, context and cross-lab
variations represent another important hurdle. Therefore, integrative compu-
tational frameworks becomes imperative in which researchers are rising to the
challenges by using omics data integration to address fundamental biological
questions that would increase our understanding of systems as a whole. Despite
these challenges, however, investigators are making progress in identifying, ex-
tracting and interpreting biological insights from omics data sets by data inte-
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gration. Statistical tests are employed in homogeneous data integration which
combine single-level measurements from different platforms [1,80] as well as
many efforts have been made to automatically integrate heterogeneous microar-
ray data sets with the prior knowledge on genome-scale, e.g. protein-protein
interaction database, ChIP-chip data and promoter motifs for the prediction of
protein interactions and gene regulations [52,54,104].

These and other discussions on the built-in problems and their solutions
in data driven reverse-engineering approaches have invariably revealed one fact,
i.e. the remarkable importance of prior information in reverse-engineering meth-
ods to prevent overfitting by providing structure and parameter prior distribu-
tions and to optimize computational complexity by reducing the heuristic search
space, as well as to better recover the underlying network of a system by inte-
grating homo- and heterogeneous multiple-scale and multiple-origin data sets.
In this dissertation, we extensively study the precise effects of (qualitative) prior
information in probabilistic modeling practices with Bayesian networks. To this
end, we will only consider the statistics and uncertainty presented by prior in-
formation, i.e. we utilize solely qualitative prior information in our study and
therefore, no quantitative data information is available to shield our insights
in the function and effects of prior knowledge in probabilistic modeling with
Bayesian networks. Due to the fact that human’s intuitions and perceptions
focus on causation which represent a more fine-tuned relations than simple yes-
no binary qualitative relations and fact that the directed connections in the
Bayesian networks can be interpreted as causality under proper assumptions,
we concentrated on this type of qualitative prior knowledge in our study, i.e.
qualitative causal knowledge, which describes the cause-effect relations between
multiple entities with any form of uncertainties that can be naturally utilized
to represent human understandings and to get approximated characterizations
of the behavior of the interested system. The causal knowledge is usually ac-
commodated by textual statements in scientific publications and open access
knowledgebase. The basic assumption of our study on probabilistic modeling
with prior knowledge is that, in each of the qualitative statement, a group of en-
tities on both ends of the directed connection can be identified and the causality
between these entities indicates that the event(s) of the entities at the down-
stream of the relation (effects) are regulated by the event(s) of the entities at
the up-stream (causes) of the relation. For example, in a qualitative causal
statement: “smoking increases the risk of lung cancer”, two entities: smoking
and lung cancer are related to each other and, smoking positively regulates lung
cancer since the risk of lung cancer events is increased by the events of smoking.
If the entities are discrete variables with a set of possible values, they are con-
sistent with the discrete Bayesian networks in which directed connections can
be quantified by a multinomial table of conditional probabilities and thus, reg-
ulations in the prior causal knowledge can be used to specify some properties of
this conditional probability table (See section 1.3.1 and 2.1). If the entities are
continuous variables, the properties of directed connections can be modeled by
certain density function, e.g. Gaussian distribution. Throughout this disserta-
tion, we assume these entities are discrete multinomial variables. Recall the fact
that all major built-in problems in data driven reverse engineering approaches
can be alleviated and/or resolved by specifying structure and parameter prior
distributions. Therefore, our study on probabilistic modeling with qualitative
prior knowledge is aimed to investigate the methods in which qualitative prior
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information can be used to define the distribution functions over the discrete
structure space and to specify the density functions over the (eventually) contin-
uous parameter space so that the (in)dependence among the entities of interest
can be induced and the directed regulations between these entities can be prop-
erly quantified according to the semantics of qualitative prior information, thus,
prior network(s) can be construct based on only qualitative information. Fol-
lowing this line, the ultimate goal of our study is to generate well-generalized
quantitative inference and reasoning results based on qualitative prior knowl-
edge which then, will be incorporated into the data driven reverse engineering
approaches.

From the prospective of engineering, the works in this dissertation can be
deemed as an artificial intelligence approach to construct a knowledge-based
expert system which supports quantitative conclusions based on qualitative in-
puts. An expert system is a program composed by a set of rules that analyze
information (input by users) about a specific class of problems, as well as pro-
viding mathematical analysis of the problems and recommend a course of user
action in order to implement corrections. It is a system that utilizes reasoning
capabilities to reach conclusions. There are various expert systems in which a
”rulebase” and an ”inference engine” cooperate to simulate the reasoning pro-
cess that a human expert pursues in analyzing a problem and arriving at a
conclusion. In our works, we set up a set of rules which originate from proba-
bility theory and artificial intelligence (AI). This rule set is used to analyze the
body of qualitative causal knowledge in many science and industry domains and
forms a collection of machine-understandable codes. Then, the expert system
recruits a special type of inference engine, i.e. graphical model, to perform in-
ference base on the body of the codes and draw a set of quantitative inferences
which support further actions. Other works on expert systems have been pro-
posed over a few years. One representative work is addressed in [87] where, an
knowledge-based expert system is designed to make limited and sometimes am-
biguous qualitative decisions out of qualitative inputs. Qualitative probabilistic
network [109] is used in this system. Knowledge is well-known to represent
inconsistent and incomplete information, i.e. knowledge has spatial and tempo-
ral properties like other physical systems. The spatial property describes that
knowledge represents information on a specific sub-structure of a system and
the temporal property states that knowledge represents human understandings
at a particular time point. Thus, this knowledge is incomplete and may be up-
dated by complementary discovery. Moreover, knowledge can be inconsistent.
In the same domain, there may exist contradicting qualitative statements on
dependency, causality over a set of entities. In this dissertation, we also propose
and study several methods to handle these properties of qualitative knowledge
to reconcile the inconsistent information and to integrate the incomplete infor-
mation to form a unified framework for probabilistic modeling with qualitative
prior knowledge.
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1.2 Overview of Data-driven Bayesian Modeling
Approach

1.2.1 Bayesian Networks

A Bayesian network (belief network) [82] consists of a graphical structure and a
set of conditional probabilities. The graphical structure G is a directed acyclic
graph in which nodes represent propositions (or variables) and the edges indicate
dependencies between the linked variables of which the strength are quantified
by the set of conditional probabilities ©. If we assume there is a set of ordered
variables in the domain of interest, X = {Xi,...,X,}, the joint probability
distribution over X can be decomposed into a product of local components as

n

p(X) = [[p(Xilmi, G, 0) (1.1)

i=1

where 7; denotes the parent nodes of X;, i.e. m; is some subset of nodes in
{X1,...,X;—1} such that X; and {X;,..., X;_1} excluding 7; are conditionally
independent given 7;. The primary assumption in Eq. 1.1 is that the order
of the variable set is known. This assumption complies with the observations
that: i)Human can readily claim causal relationship among variables; and ii)
The conditional (in)dependences stem from the causal relationships.

The graphical structure of a Bayesian network is composed by nodes and
edges, G = {V, E}. Each node X; € V is a random variable with values z; and
the edges represent the conditional dependencies and independencies among
them. The structure of a Bayesian network is defined as a directed acyclic
graph (DAG), i.e. there are no directed loops in the network which allow infor-
mation flow to arrive at the node where they are emitted. Besides the structure
of conditional dependence, the strength conditional dependence is encoded in
Eq. 1.1, where for every node X;, the conditional dependence emanate from
a set of parent nodes m; pointing to X; is quantified by the local probability
P(X;|m;). Tt states that the state of each variable z; depends only on the states
taken by its parents x; € ;.

D-Separation Criterion

The various types of conditional dependence and the structure of a Bayesian
network can be summarized by d-separation [82]. Consider a set of random
variables X = { X7, X5, X3}. The two edges connecting the variable pair X; and
X5 as well as pair of X5 and X3 meet at the intermediate node Xs. According to
d-separation criterion, (X7,X3) are d-separated, i.e. conditionally independent,
if

e X5 is the midpoint of tail-to-tail or head-to-tail connections and the state
of X5 is known.

e X, is the midpoint of head-to-head connections and neither the state of
X5 nor any of its descendants is known.
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X X X X
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CW(XH_ X3|X2) CZ(XH‘ X3)

Figure 1.1: D-separation Between X;,Xs and X3 and their equivalent class

Markov Blanket

By applying d-separation criterion on a node X in Bayesian network, we can
identify a subset of nodes S in this network so that node X becomes condition-
ally independent to any other nodes in the network given the nodes in S. This
set of nodes is called Markov Blanket of X [82]. Since the states of the parents
and children of X evidently give information about this node and its children’s
parents can be used to explain away X, therefore, a complete Markov blanket
of node X consists of its parents, children and the parents of its children. The
Markov blanket of a node is important because it identifies all the variables that
shield off the node from the rest of the network which means that the Markov
blanket of a node is the only knowledge that is needed to predict the state of
that node.

Structure Equivalence and Distribution Equivalence

Based on d-separation criterion, we can see that a DAG of a Bayesian network
represents the conditional independence encoded in the probability distribution
among the set of variables. In Bayesian networks, there are two key concepts:
structure equivalence and parameter equivalence [48]. Two Bayesian network
are structure equivalent if and only if they have the same set of undirected
edges and the same set of collider structures (as shown by G4 in Fig. 1.1). Two
Bayesian network with different structures over X are distribution equivalent
with respect to a family function F if they represent the same joint probability
distribution, i.e.

p(X[O¢, G) = p(X|O¢r, G') (1.2)

In general, the distribution equivalence with respect to some F' implies struc-
ture equivalence, but not vice-versa. However, if F' is unrestrictive multinomial
distribution, structure equivalence also indicates distribution equivalence [48].
It means that if we have two Bayesian network with the same joint probability
distribution, their structures must be equivalent. Or on the other words, it is
not guaranteed that the conditional dependencies and independencies lead to
a unique DAG but instead to many DAGs which altogether describe the same
probability distribution equally. This implies that two equivalent DAGs repre-
sent the same set of d-separations and therefore also the same probability distri-
bution even though they differ in the direction of some edges. In Figure 1.1, G,
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G- and G5 present the same d-separation, i.e. X7 and X3 are conditionally inde-
pendent given Xs. Therefore, even though the structures differ in the direction
of some edges they are all structure equivalent and distribution equivalence and
can be written as G; ~ G2 ~ G5 which indicate that they belong to the same
equivalence class Cy. Equivalent structures can be drawn as a partial directed
acyclic graph (PDAG) which consists of directed as well as undirected edges.
Undirected edges have no direction whereas directed ones are labeled with an
irreversible unique direction. The resulting PDAG for the equivalence class Cy
only contains undirected edges, since each edge varies in its direction across the
class members. The distribution equivalence across the class of structure equiv-
alence can be demonstrated by using Bayes’rule, the probability distribution of
a DAG can be transformed into the distribution of any other member of the
same equivalence class, e.g. in Figure 1.1, Eq. 1.2 can be reformulated as

Cr:  p(X1,X2,X3) = p(Xq]|Xo)p(X3|X2)p(X2) (Gh)
p(Xo|X1)p(X3|X2)p(X1)  (Ga)
p(X1[Xo)p(X2|X3)p(X3)  (Gs)

Co: p(X1,X2,X3) = p(Xo|X1, X3)p(X1)p(X3) (Ga)  (1.3)

Consequently a Bayesian network model can not necessarily be interpreted as
a causal model since putative undirected edges of the corresponding PDAG
do not represent causal relationships anymore. For example, in the scenario of
genetic regulatory network modeling with a Bayesian network, the edge between
molecules in the learned Bayesian network can be reversed in the graph (but
not necessarily in the cellular system). Hence for this relationship no unique
graphical representation exists and no statement about the causal relationship
among these two molecules can be made. In this case, additional prior knowledge
is required to assign a direction to the undirected link, i.e. to differentiate
the candidate Bayesian networks in the equivalent class. Thus, the problem of
structure equivalence can be best addressed by using prior domain knowledge in
the learning of Bayesian network. In the following chapters, we present method
in which prior cause-effect knowledge can be used to model a Bayesian network.

1.2.2 Bayesian Network Inference

A Bayesian network is a complete model with a graphical structure G over the
variables X and their conditional dependence F, as well as the joint probability
O. It can be used to answer probabilistic queries about them. For example,
the network can be used to find out updated belief of the state of a subset
of variables when other variables (the evidence variables) are observed. This
process of computing the posterior distribution of variables given evidence is
called probabilistic inference. The evidence about recent events or observations
is applied to the model by "instantiating” or ”clamping” a variable to a state
that is consistent with the observation. Then the mathematical mechanics are
performed to update the probabilities of all the other variables and their descen-
dants that are connected to the variable representing the new evidence. After
inference, the updated probabilities reflect the new levels of belief in all pos-
sible outcomes coded in the Bayesian network. The beliefs originally encoded
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Algorithm 1: Variable Elimination Algorithm
input : X;Xg,Xgr,CPDs
output: p(X;|XEg)

1 Set the observed variables in all factors to their corresponding observed
values;
2 while Xy is not Empty do
Multiply all CPDs has the first variable Z in Xy and store the results
in this variable’s bulket;
Sum out the bulket of variable Z;
Remove Z from Xpg;
end
Set h=the multiplication of all the factors (h is a function of variables in
X[ and XE),
Calculate h/ x h;

9 Return

N 0 o0k w

]

in the model are known as prior probabilities, because they are entered before
any evidence is known about the situation. The beliefs computed after evidence
is entered are known as posterior probabilities, because they reflect the levels
of belief computed in light of the new evidence. We can describe the set of
variables X by three subsets: the subset of inquiry variables X, the subset of
evidence variables X g and the rest variables X . Thus, the posterior inference
of X given X can be calculated as

(X ‘X )7 ZXRP(XIaXE7XR)
PRse XXX, P(X1, Xp, XR)

(1.4)

The most common exact inference methods to calculate the values in Eq. 1.4
are variable elimination, which eliminates the Xy iteratively by distributing the
sum over the product; clique tree propagation, which caches the computation
so that many variables can be queried at one time and new evidence can be
propagated quickly; All of these methods have complexity that is exponential in
the network’s treewidth. The most common approximate inference algorithms
are stochastic Markov Chain Monte Carlo (MCMC) simulation and variational
methods.

The most common exact Bayesian network inference approaches are vari-
able elimination algorithm and belief tree propagation algorithm. The variable
elimination algorithm sums out variables from a list of factors one by one and
the factors are conditional probability distributions in Bayesian network. The
VE algorithm can be shown in Algorithm 1. The time to answer any query is
exponential in the size (number of terms) in the largest factor (table) that is en-
countered. The factors come from the original graph (CPDs or potentials), but
new factors are created in the process of summing out. The order in which we
perform the summation can have a large impact on the size of the intermediate
factors. The exact inference in discrete graphical models is NP-hard. A more ef-
ficient algorithm for performing exact inference in tree-structured belief network
is called message-propagation algorithm [81]. If the network is singly connected,
then probabilities can be updated by local propagation in a isomorphic network
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Step (1) Step (2)

Figure 1.2: Belief Propagation Scheme in Tree-structured Network

of parallel and autonomous processes and the impact of new information can be
imparted to all variables in time proportional to the longest path in the network.
If the network is multiple connected, the network is required to be transferred
into tree structure by introducing ”dummy variables” which group together the
multiple-connected components and then, we can perform the message propa-
gation in the tree. As shown in Fig. 1.2, two types of messages are transmitted
between any pair of variables in the tree, i.e. Aqp(pa) and 7., (pa) to update the
local information stored in each of the node. The messages can be calculated as

Aen(pa) =Y Mch)p(chpa) (1.5)
ch
and
men(pa) = ampe [ [ A(sib) (pa) (1.6)
sib

where ch indicate child node, pa denotes parent node and sib is the siblings of
a node. « is the normalizing factor. These messages are used to update the
pre-stored 7 and A information in the nodes as

Aeh(pa) = A(pa) (1.7)
and
wen = »_ plch|pa)men(pa) (1.8)

1.2.3 Bayesian Network Learning

A Bayesian network encodes the conditional dependence and independence with
the graphical structure G and a set of conditional probability parameters © over
a set of random variables X. Given a set of training data D, we consider learning
a Bayesian network under several settings. First, the network structure might
be given in advance or it might have to be inferred from the training data. Sec-
ond, all the network variables are directly observed in each training example or
some might be unobservable. In the case where the network structure is given
in advance and the variables are fully observed in the training examples, it is
straightforward to learn the conditional probability table. We can estimate the
conditional probability table entries by statistical counting as in Naive Bayesian
classifier. In case where the network structure is given, but subset of variable
values are not observed in the training data. Expectation-Maximization(EM)
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algorithm [25] can be used to calculate the expect value of statistics presented
in the data and estimate the conditional probability table entries by maximizing
this expect value. EM algorithm, like gradient descent, finds local maxima on
the likelihood surface defined by the network parameters [66,67]. Russell [95]
proposed a gradient ascent procedure searches through the space of hypotheses
that corresponds to the set of all possible entries for the conditional probability
tables. The objective function p(D|h) is maximized during the gradient ascent
given the hypothesis h. By definition, this corresponds to searching for the max-
imum likelihood hypothesis for the table entries. Learning Bayesian networks
when the structure is unknown can be performed by maximizing some statisti-
cally motivated score function [20] to describes how fit each possible structure
is to the data. The task of learner is then to find a structure that maximizes
the score. Since the structure space is superexponential to the number of the
variables in the data, it is an NP-hard problem [18], and thus we need to resort
to heuristic methods to select single ”good” model or multiple ”good” models.
In the latter case, model averaging method with Monte Carlo method [50] can
be used to generate an efficient and better prediction results. If all the variable
values are observed, heuristical search algorithm can be performed to calcu-
late the score metric function for each possible model. If some of the variable
values are unobservable, Friedman proposed a powerful iterative maximization
algorithm, Structural Expectation-Maximization (SEM) algorithm, to calculate
the expected statistics for each possible structure [37]. In this section, we fo-
cus on learning Bayesian network structure, especially in case when some of the
variable values are unobserved. Namely, we introduce Structural EM algorithm.

Preliminary

The procedure of structural learning can be best described as: Given a data
set with N independent examples, D={D*, ..., DV} where each data example
is an n-dimensional vector with components D'=(d!,...,d!)) and the element
d., of D! indicates the value of n-th variable in the I-th data example, we are
asked to find a graph structure G and a parameter set © that best fit to D. For
example, in the context of microarray data analysis, there are N independent
microarray experiments, each observing the expression states of n probes or
genes. Each node in the learned Bayesian network symbolizes a specific probe
or gene and the structure represents the conditional dependency relationships
among these molecules regarding the cellular conditions from which microarray
samples where taken.

A statistically motivated scoring function S assigns a score S(G|D) to mea-
sure the fitness of a graph G with respect to the data. In the following, data are
supposed to be multinomial which is consistent with the multinomial nature of
the Bayesian network. Meanwhile, we assume the data is exchangeable, i.e. the
data sequence obtained by interchanging any two observations in the sequence
has the same probability as the original sequence. Interchangeability indicate
that the process generating the data do not change in time. Assume that we
have n variables, X={X},..., X,;}. When each variable X; can assume r; dif-
ferent values k and the set of parents pa; can assume ¢; different values j, the
local multinomial conditional probability distribution can be represented as a
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r; X q; table. Each parameter entry in the table is given by
p(Xilpai, G) = 0yju, (1.9)

where 0;;;, satisfy the conditions that 0< 6,5, <1 and ZZ’Zl 0;jx=1. The value
of 0,51 can be estimated by the frequency of variable X; takes the value k given
the parents pa; takes value j in the data set D, i.e. 0;;5=DN;;i/N;; where N;jj
is the number of the cases dézk and pa;(d)=j. Nij=> " Nijk.

Score Function
Frequentist Score

The classical approach for learning is the likelihood maximization. Frequentist
deem © as unknown parameter and consider the data set D as represents the
joint probability distribution. In this approach, finding the best fit structure G
boils down to the problem of finding the structure with the highest likelihood
assignment. We have the logarithm of likelihood as

n i

logp(D|O, G) ZZinklogGUk (1.10)

i=1 j=1k=1

One problem of using likelihood score function is the problem of overfitting. The
learner tends to output a complete since it has the largest number of parameters
to fit to the data best. Thus, it is necessary to specify a prior distribution
over the discrete structure model space in the objective function to prevent the
overfitting of learned structures to the data. Thus, we can re-write the Eq.1.10
as

k3 Ti

S(G,D,0) zn:ZZNZ]klogGUk - (1.11)

i=1 j=1 k=1

For structure priors, when there is little prior knowledge, a well-principled way
to avoid this kind of overfitting is to impose a prior on models which is a penalty
function of the number of edges and the size of families to discourage networks
that are globally or locally dense. For example, the Bayesian Information Cri-
terion(BIC) score [42] calculate the penalty term p as

1
=;leIN (1.12)

where N is the number of samples. Another prominent frequentist scoring func-
tion is the Minimum Description Length(MDL) which is identical to the neg-
ative BIC score but with a origin from coding theory [64]. A comparison of
these model selection criteria can be found in [106]. Even though maximum
likelihood score is quite useful for structure learning it has to be noted that
the maximum likelihood estimate converges to the real joint probability value
only when N — oo, whereas for small N the maximum likelihood score function
produces biased results [4].

Bayesian Score

The Bayesian method, rather tries to calculate the most probable structure given
the data which is equivalent to weight the models with an a priori distribution.
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In addition, the Bayesians deem the parameters as random variables instead
of unknown variables. Therefore, the Bayesian score is proportional to the
posterior probability of model structure given the data

p(D|G)p(G)
p(D)

where p(@) is the prior probability of the model structure, p(D) is a normal-
ization constant, and p(D|G) is the marginal likelihood of the data given the
structure G. Since in the Bayesian score treats the parameters of a model as
random variables characterized by a distribution. This uncertainty over the
parameters is expressed by marginalizing the parameters. Thus, the marginal
likelihood equals the integral

S(G|D) = (1.13)

p(D|G) = / p(D|G.©)p(0]G)dO (1.14)

where p(©|G) denotes the prior distribution of the model parameters © for a
given structure G and p(D|©, G) is the likelihood of the data given a Bayesian
network.

If we assume the Bayesian model is multinomial in nature and a conjugate
family prior for the model parameter density indicates that p(©|G) follows a
Dirichlet distribution. Further, if we assume the nature of our domain satisfy the
assumptions such as data completeness, parameter independence and parameter
modularity [21], Equation 1.14 can be formulated in closed form (see Appendix
A for a more detailed description). The solution of Eq. 1.14 with Dirichlet priori
density function outputs an unique scoring function, the Bayesian Dirichlet(BD)
score [49]. The analytical solution for the BD score can be written as

i F(Nz]k + Nijk)

p(D|G) = HHI‘N’—{-N”H NG

i=1j=1 ij)

(1.15)

where N/, are the parameters of the Dirichlet prior distribution which reflect
the prior knowledge on how many times we have observed X;=k and pa;=j in
the past. N;j=> kN, Jk and I' in the gamma function.

Therefore, the posterior probability of the model structure G given the data
set D with BD score can be finalize as

p(G) T 1 1 L (Ve + Nije)
D) i 1.1
nel p(D) HH I( N’ +Nza H I'(Nije) (110)

There are some open questions in the Eq. 1.16. First, we equally treat each
candidate graph in a structure and distribution equivalence class as shown by
Eq. 1.3 and the graphs are indistinguishable. In this case, the Bayesian score in
Equation 1.16 has to assume identical values for all members of a certain class
to ensure score equivalence. This can be realized by calculating N} ko 88

Niji = Nop(X; = k., pa; = j) (1.17)

where p(X; = k,pa; = j) is the marginal prior over the joint states as this
ensures the likelihood equivalence property of network structure [49]. In case
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where insufficient prior knowledge is available, p is often chosen to be uniform as
p(Xi, pa;)=1/(]X;| |pai|). The parameter of Dirichlet distribution function Ny
can be set independently. This is called BD equivalent score (BDe). However,
in the case, where vast amount of prior knowledge is available, this problem
can be resolved by modeling the structure prior p(X; = k,pa; = j) according
to the prior knowledge which can regularize the BD score to differentiate the
structures in an equivalent class. Meanwhile, some of the conditional indepen-
dences between X and their directions of the influential relationship can be
pre-specified based on the prior knowledge on model structures p(G) as it can
reduce the heuristic search space. Second, as in the frequentist approach, the
problem of overfitting needs to be addressed by punishing networks complexity.
For this, the structure prior p(G) can be used as a penalty term such that the
prior probability of a structure G decreases with the structure complexity. The
number of edges can be used as a measure for the complexity of structure G
such that the structure prior is given as [49]

p(G) = ck® (1.18)

where k is a constant factor 0 < k < 1 and c is a normalization constant. Note
that p(G) used in Eq. 1.18 does not reflect the true prior knowledge, thus can be
replaced by those expressions constructed by prior knowledge. In the following
chapters, we will study these issues on how to model the p(X; = k, pa; = j) and
p(G) based on qualitative prior knowledge.

Heuristic Search

The problem of searching for the optimal structure of a Bayesian network is
NP-hard [18], thus, we resort to employ heuristic search strategies which can
efficiently select the candidate model structures.

Score Decomposability If the data set is complete without either missing
values nor hidden variables, the score function in Eq. 1.16 can be decomposed
into a set of local scores just like the conditional probability distribution of a
Bayesian network decomposes into a product of local probabilities as Eq. 1.1.
The score decomposability can be expressed as

S(G|D) = ﬁsi(am) (1.19)

i=1

Si(G|D) denotes the local score of variable X; which only depends on its states
and the states of its parents pa;.

According to Eq. 1.19, scoring function can be decomposed into a product
of local scoring functions restricted to each family (a variable X; and its parents
pa;). Each term can be defined as the local score of X; which depends only
on the state of X; and pa;. This decomposition property enables a local search
procedure which changes one edge at each move and this search strategy can
efficiently evaluate the gains made by this change. This implies that at each step
only the local scores of those variables whose set of parents has been changed
needs to be re-estimated. For a structure G, the structures which differ only
in the presence or absence of one edge and satisfy the acyclicity condition (us-
ing depth-first search), represent the so-called neighboring structures nbg(G).
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Algorithm 2: Procedure for General SEM Algorithm

1 while Loop n<MazxLoop or No converge do

2 Compute the posterior probability of parameter p(©"|G,,, O);
3 E step: For each G of the neighborhood of G,,, compute the
expected score;

4 Q(G,Gn):E[lng(H, 0, Gn)|Gna O]:ZhEH p(h|0, Gn) 1ng(h, 0, G)a
5 M step: Choose G, +1=G that maximize Q(G,G,);

6 if Q(GnaGn):Q(Gn—O—laGn)a then;

7 return G,

8 end

The structure G’ € nbg(G) which entails the best scoring function is selected
as the next candidate structure Gg. This technique is known as local search
strategy and a commonly used approach in structure learning. If Gy is selected
as the next structure G depends on the heuristic which used. Greedy Search
is the simplest heuristic strategy of this kind strategy. In each iteration the
space of neighboring structures is visited for an improvement in the score. The
neighboring structure G which provides the largest improvement with respect
to G becomes the next intermediate structure which is the starting point for
the next iteration. Thus, the algorithm always moves across the model space
in the direction of the greatest rate of decrease of the error which is quite simi-
lar to the gradient descent algorithm for training neural networks. However, a
big drawback of this search strategy is that instead of finding the global opti-
mum it might stop at a local optimum. Therefore, a more advanced searching
algorithm, such as simulated annealing which an adaptation of the Metropolis-
Hastings algorithm [71], are often utilized to avoid this problem. However, since
search strategy is not the focus of our study, due to the simplicity, we employ
Greedy search in the following studies.

Structural Expectation Maximization (SEM)

One of the hard problems in learning Bayesian network from data raise when
the data is incomplete. As outlined above, if the data satisfy the assumption of
completeness, the data likelihood given the model p(D|G, ©) and the parameter
posterior probability p(©|G, D) are decomposable (see Appendix A). However,
this is not the case when data set is incomplete, e.g. with missing values or
hidden variables. In this case, the posterior probability of parameter is no
longer a product of independent terms. For the same reason the marginal data
likelihood given the model structure p(D|G) becomes no longer a product of
terms. Therefore, we need to directly evaluate the integral in Eq. 1.14. One
approach is that, we can find an approximation to the marginal data likelihood
with Mazimum A Posterior parameters [66], i.e.

p(0, H|G) = p(D|G) ~ p(D|G,Onap) (1.20)

where Oy, 4p=argmax{p(D|©,G)p(0|G)}. This approach involves extensive
computational complexity since it requires us to find the MAP parameters with
EM algorithm for each model we consider before we could score it. When we
search in a large space of possible models, this approach become infeasible since
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the procedure has to invest a tremendous amount of computation before making
a single local change in the model structure.

In contrast, Structural EM algorithm attempts to directly optimize the
Bayesian score in Eq. 1.13 rather than an asymptotic approximation based on
the fact that it is sufficient to find a MAP model by maximizing p(D|G)p(G)
since the normalizing term p(D) is the same for all the models we compare. The
main idea of Structural EM algorithm is that we can compute and estimate the
expected Bayesian score and maximize it over iterations instead of the actual
score [37]. If we assume that the data set D consists of observed values O and
hidden or missing values H, the complete data likelihood can be expressed as

p(D,G) = p(H,0,G) ~ p(D,G, Orap) (1.21)

and the logrithm of expected score function can be described as Ellogp(H, O, G)].
The key insight of SEM is that the complete expected data likelihood and hence
the expected Bayesian score is decomposable as in the case of complete data.
The general outline of SEM algorithm is shown in Algorithm. 2 and can be
summarized as follows: Initially, we start with an arbitrary graph Gy and a
guess Og, at n-th step, we attempt to learn the MAP parameters under current
model given O and graph G, to improve the parameters and use the MAP
parameters to complete the data by inferencing the missing values in the data,
i.e. to compute p(H|O,©,,). In this way, we could compute the ezpected suffi-
cient statistics (ESS) for all the models in the neighborhood of current graph,
G!, € nbg(G,,) as in the complete data case. Then, we select the neighboring
graph with the highest expected score E[p(H, O, G, |0, @n)] as the structure for
(n+1)-th iteration, i.e. G, — G,11. Iteration stops until there is no gain in the
score.

1.2.4 Bayesian Model Averaging

Bayesian Model Averaging (BMA) is a technique designed to help account for
the uncertainty inherent in the model selection process, something which tra-
ditional statistical analysis often neglects. By averaging over many different
competing models, BMA incorporates model uncertainty into conclusions about
parameters and prediction. Model uncertainty raise from the randomness of a
domain. In the practice of learning Bayesian networks from sparse data, it is
often true that multiple models with different structures and parameters can
fit to the data well. However, the common Bayesian approach-model selection
which using greedy local search algorithm, often selects single ”good” model
and ignore the model uncertainty which is reflected by the posterior probability
of models given the data. Full Bayesian approach with Bayesian model aver-
aging (BMA) can be used to compute a posterior probability distribution over
all possible models to reflect the true model uncertainty [50,76]. This approach
computes an average of the quantity of interest under each of the models con-
sidered, weighted by their posterior model probability. If we assume the data
set is D and the quantity of interest is A, the posterior probability of A given
the data is:

p(AID) =Y p(A|G)p(G|D) (1.22)
G

where p(G|D) is the posterior probability of model structure G given the data
and p(A|G) indicates the posterior probability of A under each model. With
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Bayes’ rule, the model posterior probability given data can be re-written as

_ _ew©
D)= 5 DI @) (125)

where

p(DIG) = /@ p(D|G,©)p(0]G)de (1.24)

Thus, Bayesian model averaging provides a coherent mechanism for accounting
uncertainty in model selection and avoids over-confident inferences and deci-
sions. In fact, it has been demonstrated that averaging over all the models in
this fashion provides better average predictive power, as measured by a loga-
rithmic scoring rule, than using any single model [50,69]. Although BMA is an
attractive solution to the problem of accounting for model uncertainty, there
are several practical problems in the implementation of BMA [50].

1. How do we define the prior distribution p(G) and p(©|G)?
2. How do we perform the integration over model parameters in Eq. 1.247

3. How do we marginalize out the hidden variables?
4. How do we perform the summation over model structures in Eq. 1.227
5. How do we choose the class of models over which to perform averaging?

The first three problems appear also in Bayesian model selection and the last
two problems are specific to BMA. With respect to problem 4), the search space
is superexponential to the number of variables in the network. To avoid this
intractability, it is proposed to use Markov Chain Monte Carlo technique to
sample the possible model structures with Metropolis-Hastings (MH) algorithm
to resolve the problem. We construct a Markov chain whose state space is all the
DAGs and the stationary distribution is the posterior probability p(G|D) [76].
With regarding to the problem 2), when the data is complete and the domain
satisfy the five assumptions (See appendix A), the integration of parameters
in Eq. 1.24 can be resolved analytically and in the case of incomplete data
(problem 3)), the data likelihood surface becomes multimodal, and we have to
use iterative methods, such as EM algorithm [25,67], to find a local maximum
of the ML/MAP function. These algorithms need to use an inference algorithm
to compute the expected sufficient statistics (or related quantity) for each node.
To address problem 5), Draper [27] suggested finding a good model and then
averaging over an expanded class of models "near” the good model. Although
the problems 2)-5) have been attracting the attentions of research over years, few
research have been done in specifying the prior distribution p(G) and p(©|G). In
the following chapters, we propose a method which makes use of a qualitative
knowledge model to introduce a set of constraints in the hyperspace of the
parameters and structures. We show that this method can well model the model
uncertainty and produce accurate quantitative predictions based on BMA.
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1.3 Overview of Knowledge-based Bayesian Mod-
eling Approach

As outlined in the above sections, a probabilistic network, such as Belief net-
work, consists of a graphical representation of the variables in a domain of
interest, and the conditional dependence and independence between the vari-
ables. The joint probability distribution is encoded in the probabilistic network
by a set of conditional probability distributions of each node given their parents.
By Bayesian network inference methods, e.g. message-propagation method, any
quantity of interest can be inferred and reasoned in the belief network. There-
fore, it is particular important to construct the network automatically. In Sec-
tion 1.2, Bayesian network learning algorithms have been introduced as to induce
Bayesian networks from the data. This is called reverse-engineering approach
and we call it Bottom-up approach. This approach is the most attractive field
of machine learning in that it can automatically analyze the observed data and
infer a network structure with parameters to specify the qualitative information
and quantitative information among the variables in the domain of interest. The
qualitative information represent by a graph model is the (in)dependence and
dependence between the variables and the quantitative information indicates
the strength (in probability) of the directed influence from parental variables to
the child. One prominent problem in the learning with sparse data is that the
learned model is often overfitting to the data. In this case, we need to use prior
knowledge and full Bayesian method to alleviate and/or avoid the overfitting.

One the other hand, in many scientific and industrial domain, vast amount
of qualitative priori knowledge exist in various type of resources, such as sci-
entific publications, domain experts and open access knowledgebase. All these
kinds of priori knowledge tend to provide the qualitative and quantitative in-
formation on the relationships among the variables in the domain. One kind
of such prior knowledge is particular relevant to probabilistic modeling with
Belief networks-qualitative causal knowledge (QCK). There are several reasons
for its significance: i)Qualitative knowledge is the most accessible, manageable
and intuitive information that human reasoning, communicating, and storing
in their daily life. ii)Human’s intuitions and perceptions focus on causation
which represent a more fine-tuned relations than Boolean qualitative relations
and iii)The directed connections in the Bayesian networks can be interpreted as
causality by nature under proper assumptions. The prominence of this practice
is two-fold: Firstly, we can utilize the existing qualitative causal knowledge to
construct a comprehensive network under a domain and new knowledge can
be discovered by inference and reasoning. Secondly, the probabilistic modeling
framework with qualitative causal knowledge can provide a way to specify the
prior distribution over Bayesian network structure and parameter space, p(G)
and p(O|G), in the reverse-engineering approach.

Therefore, it is particular important to make use of the QCK to automati-
cally construct Bayesian networks. Unfortunately, works in this area have not
attracted enough attentions. Some previous works [28, 88, 89] have been pro-
posed to use the qualitative causal knowledge to construct Bayesian network.
However, these methods operate at qualitative level, i.e. only qualitative part of
a Bayesian network is specified and no quantitative inference are performed in
the cases. These framework make use of a knowledge model-qualitative proba-
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bilistic network [109] to represent and perform qualitative inference. Due to the
lack of the abilities in these approaches to handle the uncertainty in qualitative
knowledge, ambiguous and nonsense inference results are often produced. Other
works [30,87] try to translate the expert knowledge into numbers which may be
a suspicious due to the relative large bias in this method and impractical due to
its cost. So, it is imperative to develop a probabilistic modeling framework in
which, qualitative information are augmented to produce quantitative inference
in an consistent, robust and automatic manner. In this thesis, we developed
such framework.

1.3.1 Qualitative Probabilistic Network

Qualitative probabilistic networks was proposed as qualitative abstractions of
probabilistic networks [109]. A qualitative probabilistic network encodes a quan-
titative information which abstract from numeric representation of the proba-
bilistic networks, i.e. (in)dependence and direction of the influence, among a
set of variables into an acyclic graph. Instead of numerical joint probabili-
ties, a qualitative probabilistic network associates with its digraph qualitative
probabilistic relationships with inequality constraints. Two types of qualitative
relationship are defined. Each of them is a probabilistic form of monotonicity
constraint over a group of variables. Qualitative influence describe the direction
of the relationship between two variables. Qualitative synergies describe inter-
actions among the influences. Qualitative probabilistic networks use signs to
represent the uncertainty of a domain and support an efficient, yet ambiguous,
sign-propagation algorithms to justify a reduced form of relative likelihood that
imply useful decision-making properties.

Formally, a qualitative probabilistic network can be defined as an acyclic
graph, G={V,Q}. V represents a set of variables in the domain of interest and
@ is a set of edges which describes the independences between the variables in
V captured by the d-separation criterion in Section 1.2. Besides the digraph G,
a qualitative probabilistic network, includes a set of hyper-arcs indicating the
qualitative probabilistic relationships between variables instead of a set of nu-
merical conditional probability distributions in Belief network. There are three
types of qualitative probabilistic relationship: qualitative influences, additive
synergies and product synergies.

Qualitative Influence

A qualitative influence relationship describes how the values of one node influ-
ence the probabilities of the values of the other node. For example, a positive
qualitative influence of a node A on its child B expresses that observing higher
values for node A makes higher values for node B more likely, regardless of any
other direct influences on B, where the concept of "higher” refers to the order
on a node’s values. The hyperarc of qualitative influence edge, i.e. the sign of
qualitative influence, can be expressed as

Sﬁ(A,B,G),(5€ {"_»_aoa ?} (125)

which denotes the assertion that a qualitative influence of A on B with sign §
holds in the graph G={V,Q}. ”+” means a positive qualitative influence, ”-”
indicates a negative qualitative influence and ”70” represents that A and B are
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virtually independent. ”?7” denote the situation in which the qualitative rela-
tionship between A and B are unknown or ambiguous.

Binary ST We say node A positive influence node B stochastically and write
ST (A, B, Q) if and only if for all X € X(predg(B)—A) such that X is consistent
with A and A,

P(BJA, X) > P(BJA, X) (1.26)

Binary S° We say node A and node B are independent and write S°(A, B, G)
if and only if for all X € X(predg(B) — A) such that X is consistent with A
and A,

P(BJA, X) = P(BJA, X) (1.27)

Binary S~ We say node A negative influence node B stochastically and write
S7(A, B, G) if and only if for all X € X(predg(B)—A) such that X is consistent
with A and A,

P(B|A, X) < P(B[4, X) (1.28)

where X € X(predg(B) — A) denotes the parents of node B other than A. We
could rule out the independence case and restrict to the defintion of ST and S™
by replacing the inequality operator > with > in Eq. 1.26 and the operator <
with < in Eq. 1.28.

The intuitive formula of S% in Eq. 1.26 to 1.28 is not straightforward in
case where the variables in G can take more than two values. For example, in
the definition of positive qualitative influence, we want to make assertion that
the probability distribution for node B moves towards higher values when A
increases. To make such statement, (Conditional) Cumulative Probability Dis-
tribution Function over B is used to capture the semantics of "higher order”.

Conditional Cumulative Probability Distribution Function Let A and
B are two random variables in V. Let P be the probability density function
and let B’s values be {b; < ... < b,}, n > 1. Then, the function conditional
cumulative probability distribution function over B can be defined as

FB|A(bi) = P(bl Vb V... \/b,|A)
b;
= Y P(B=1blA) (1.29)
b=by

An ordering criterion on the values can be First-order Stochastic Dominance
(FSD).

First-order Stochastic Dominance FSD holds for (conditional) cumulative
distribution function F and F’, i.e. F FSD F’, if and only if for any given value
b; of B, the cumulative function F is less than the cumulative function F’.

F FSD F' & F(b;) < F'(b;) (1.30)
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Thus, the statement: Higher values for a node B are more likely given the
higher values for a node A if and only if the cumulative conditional probability
distribution Fg|q, FSD Fp,, for all values a; > a; of A. Namely, the qualitative
influence can be defined alternatively by the cumulative probability function in
case of multinomial distribution as

Multinomial S* Let Fp|,, (b) be the conditional CPD function of node B
given A’s value a; and let Fpq,(b) be the conditional CPD function of node B
given A’s value a;, then ST(4, B,G) is

Vai,aj,ai > aj FB\ai(b) FSD FB\aj(b) (131)
The S~ can be defined similarly as

Multinomial S~ Let Fp,,(b) be the conditional CPD function of node B
given A’s value a; and let Fpq,,(b) be the conditional CPD function of node B
given A’s value a;, then S™(A4, B, G) is

Vai,aj,ai > aj FB‘%. (b) FSD FB|ai(b) (132)

Qualitative Synergy

Besides qualitative influences, the hyper-arcs of a qualitative probabilistic net-
work G={V, Q} entail synergies. A synergy describes an interaction among the
influences from two or more parents to a third child, i.e. a collider structure in
a digraph. There are two types of synergistic interaction, captured by positive
qualitative synergy and negative qualitative synergy. As qualitative influences
are directed edges augmented by signs, a qualitative synergy assertion that the
variables in set 7' C V is synergistic in direction ¢ on variable C' is written as
YT, C,G).

Y°(T,C,G),0 € {++,——} (1.33)

2

where ”4++” means a positive additive synergy, ”——" indicates a negative ad-
ditive synergy and ” x” represents productive synergy. A qualitative synergy
expresses how the values of two nodes jointly influence the probabilities of the
values of a third node.

Binary Positive Synergy ++ Let A, B and C€V be nodes in G with edges
A—C, B—C. Let X=Predg(C)/{A, B}. Then, nodes A and B exhibit a posi-
tive synergy on node C, written Y(';*'JF(A7 B,0) iff

VX,P(C|A,B,X) + P(C|A,B,X) > P(C|A,B,X) + P(C|A,B,X) (1.34)

A positive synergy of nodes A and B on a common child C expresses that the
joint influence of A and B on C is greater than the sum of their separate influ-
ences, regardless of any other direct influences on C.

Binary Negative Synergy —— Let A, B and C€V be nodes in G with edges
A—C, B—C. Let X=Predg(C)/{A, B}. Then, nodes A and B exhibit a neg-
ative synergy on node C, written Y, ™ (4, B, C) iff

VX,P(C|A, B,X) + P(C|A,B,X) < P(C|A,B,X) + P(C|4,B,X) (1.35)
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If the inequality operator in Eq. 1.35 is replaced by ”=", then node A and node
B exhibit zero synergy, i.e. no synergy between the influenced of A and C on
C. The formula of Y7 in Eq. 1.34 to 1.35 is not straightforward in case where
the variables in G can take more than two values. In this case, cumulative
probability function can be used alternatively as

Multinomial Positive Synergy ++ Let F 4, p be the cumulative probabil-
ity distribution function of node C given node A and B. Let X=Preds(C)/{A, B}.
Then, nodes A and B exhibit a positive synergy on node C, written Yg"’ (A, B,C)
iff

vaflva@v b17 b27CO7Xa ai > ag, bl > b2
Fojayb x (€0) + Fejagb,x (€0) < Folap,x (o) + Fejasp, x(co)  (1.36)

Multinomial Negative Synergy —— Let F;4,p be the cumulative probabil-
ity distribution function of node C given node A and B. Let X=Predg(C)/{A, B}.
Then, nodes A and B exhibit a negative synergy on node C, written Y3 (4, B, C)
iff

va17a27 blbe; 607X7 ai > ag, bl > b2
Felayb, x (o) + Felasb, x (€0) = Fejab, x (o) + Fejazs, x (co) (1.37)

1.4 Summary and Outline

In this thesis, we focus on the discussion about probabilistic modeling with
Bayesian network in the knowledge-driven approach. Being creative, we aim
to solve the difficult and long-standing problems in data-driven Bayesian ap-
proach, namely, how to make use of qualitative prior knowledge (hypothesis)
to infer Bayesian network quantitatively which supports quantitative prediction
and reasoning and to bridge the gap between qualitative prior hypotheses and
quantitative probabilistic representation of the Bayesian networks.

In Chapter 2, we formally propose our method to infer Bayesian network
quantitatively from the qualitative knowledge. We do so by constructing a set
of consistent qualitative knowledge model and use it to translate the qualitative
knowledge into a class of constrained Bayesian networks. This class of Bayesian
networks is used in making probabilistic prediction and reasoning. We inves-
tigated the robustness of our approach in case there is noise in the knowledge
and we proposed several approximation schemes to compute the reasoning. In
chapter 3, we extend our approach to model the Bayesian network from a set of
inconsistent knowledge. We reconcile the contradicting information by hierar-
chically formalize the qualitative knowledge model and calculating a prior dis-
tribution for each inconsistent knowledge component, i.e. each class of Bayesian
networks. In this case, quantitative inference and prediction are computed over
all ground Bayesian networks in all classes weighted by their priors. In Chap-
ter 4, we investigate the methods to integrate series of incomplete qualitative
knowledge. Due to the fact that our method not only infer the Bayesian model
structure but also the probability configurations, the qualitative knowledge in-
tegration problem are projected to Bayesian network fusion in a quantitative
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manner. In this case, Bayesian model fusion under two scenarios is studied,
namely, fusion in the parameter space given the structure space and fusion in
the parameter space as well as in the structure space.



Chapter 2

Bayesian Modeling with
Consistent Qualitative
Knowledge

Bayesian reasoning provides a probabilistic approach to inference. In Bayesian
framework, quantities of interest are described by probabilities and optimal de-
cisions can be made by reasoning about these probabilities together with the
observation or evidence. Bayesian reasoning is important to machine learning
because it provides a quantitative approach to weighting the evidence supporting
alternative hypotheses. Numerous algorithms have been proposed for learning
the Bayesian network structure and parameter from observed data. These algo-
rithms produce a single Bayesian model by maximizing its probability given the
training data, i.e. maximum a posterior approximation. In realistic problem,
learning Bayesian model by training data requires relative large amount of ob-
served data comparing to the size of network. However, the data basis is often
very sparse and it is hardly sufficient to select one adequate model due to the
model uncertainty, thus, selecting a single model may induce overfitting to the
data and can lead to strongly biased inference results. It is therefore preferable
to adopt a full Bayesian approach with model averaging. In contrast to training
data, in almost every science and industry domain, there exists an enormous
amount of qualitative knowledge which describes the entities and their relation-
ships inexplicitly. This is particular true in biomedicine domain. For example,
in the statement:” The risk of lung cancer among smokers is approximate 10
times higher than non-smokers”, the qualitative knowledge can be extracted as
two entities: smoking, lung cancer and their causal relation, smoking causes lung
cancer, as well as some properties which further specify the qualitative relation-
ship, i.e. smoking causes lung cancer by 10 times. Comparing to quantitative
experimental data, qualitative knowledge which exist in large amount could be
used to construct the priori distribution over the structure and parameter space
and thus is able to prevent overfitting. Moreover, model uncertainty is encoded
in the nature of qualitative knowledge which enables full Bayesian approach with
model averaging. In this section, we propose a novel framework of modeling
Bayesian networks and performing quantitative inference with model averaging
base on solely qualitative statements. Our method translates the qualitative

27



2.1 Qualitative Knowledge Model 28

statement into a set of constraints on the model structure and parameter space
by making use of the proposed qualitative knowledge model. Uncertainty in the
Bayesian model space is restricted to a subset of models which are consistent
with the body of qualitative knowledge. This class of consistent models is used
to perform full Bayesian inference which can be approximated by Monte Carlo
methods, but is analytically tractable for smaller networks.

2.1 Qualitative Knowledge Model

Now we provide a full formalism of how to translate a set of qualitative state-
ments into probability inequality constraints. Qualitative knowledge models
describe the process of transforming the qualitative statements into a set of
probability constraints. Our knowledge model is closely related to the concepts
of qualitative probabilistic network in Section 1.3.1, but provide more fine-tuned
inequality relationships between the conditional probabilities. In this section,
we formulate our knowledge model and in the following sections, we proposed
Bayesian inference method which makes use of this knowledge model. Note that
the inference method is independent of the qualitative knowledge model once
the set of probabilistic inequality constraints which are translated from qualita-
tive statements is given. Therefore, we argue that our inference approach could
be smoothly transfer to other existing qualitative models such as qualitative
probabilistic network [109] and the probabilistic commonsense model [79].

Here we follow the Wellman approach, where qualitative knowledge involves
influential effects from parent nodes to child nodes which are classified according
to the number of inputs from parents to child and their synergy. For the sake
of simplicity, we restrict our discussion to binary-valued nodes. Logic ”1” and
70” values of a node are defined as ”present” and ”absent” or "active” and
“inactive”, as synonyms, A and A. For multinomial nodes, similar definitions
can be applied.

The qualitative knowledge contained in the statements are describing two
aspects of a belief network, i.e. structure and parameter. The structural knowl-
edge of a simple network consisting node B and node A can be described with
two first-order logic predicates:

Depend(A,B) = 0/1
Influence(A,B) = 0/1 (2.1)

which describe whether A and B are dependent and whether the influence di-
rection is from A to B; Depend and Influence are denoted by Dp and I as well
as, the set of structural knowledge features is denoted by II={Dp,I}.

Qualitative influences with directions can be defined based on the number
of influences imposed from parents to child.

Single Influence

Definition 3.1 If a child node B has a parent node A and the parent imposes
a isolated influence on the child, then qualitative influence between parent and
child is referred to as single influence. Single influence can be further classified
into single positive influence and single negative influence.
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Definition 3.2 Iff presence of parent node A renders presence of child node B
more likely, then the parent node is said to have a single positive influence on
the child node. This can be represented by the inequality

P(B|A) > P(B[A) (2.2)

Definition 3.3 Iff presence of parent node A renders presence of child node B
less likely, then parent node is said to have a single negative influence on child
node. This can be represented by the inequality

P(B|4) < P(B[A) (2.3)

Example 3.1

Smokine @

y
Lung ardiovascula
Cancer Disease

(a) Single Positive Influence (b) Single Negative Influence

Figure 2.1: Example of Single Positive and Negative Influence

In the statement, ”"smoking increases the risk of lung cancer”, smoking is the
parent node which has a single positive influence on child node lung cancer.

P(Lung Cancer|Smoking) > P(Lung Cancer|Smoking) (2.4)

In another statement, ”Sports reduces the risk of cardiovascular disease”, Sports
is the parent node which imposes a single negative influence on child node
Cardiovascular disease.

P(Card. Disease|Sports) < P(Card. Disease|Sports) (2.5)

The graphical representations of the above qualitative statements can be seen
in figure 2.1.

Joint Influence

Definition 3.4 If a child node B has more than one parent node and all parents
influence the child in a joint way, then these influences between parents and child
are referred to as joint influence. This joint influence can be either synergic
(cooperative) or antagonistic (competitive) and the individual influences from
the parents to the child can be either positive or negative. In figure 2.2, we
show an example of a synergic and an antagonistic type of joint influence of
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(a) Synergic joint effect with individual pos- (b) Antagonistic joint effect with individual
itive influence positive influence

NN

(c) Synergic joint effect with individual neg- (d) Antagonistic joint effect with individual
ative influence negative influence

Figure 2.2: Example of Joint Effect with Positive and Negative Influence

two parents on one child with which can impose positive or negative individual
influences.
Definition 3.5 If a joint influence from two or more parent nodes generates
a combined influential effect larger than the single effect from each individual
parent, then the joint influence is referred to as plain synergic joint influence or
plain synergy.

Assume that parent nodes A and B impose positive individual influences
on child node C as shown in figure 2.2(a), then the knowledge model can be
defined as

P(C|A, B) > { i(CV" B) } > P(C[A,B) (2.6)

(ClA,B) | =

Example 3.2

Let us consider breast cancer causes. Several risk factors have been identified
for breast cancer. According to the American Cancer Society, the three most
prominent risk factors are gender, age and genotype. It is stated that being a
woman s the main risk for breast cancer. The chance of getting breast cancer
increases as a woman gets older. The most common mutations are those of the
BRCA1 and BRCA2 genes. Women with these gene changes have up to an 80%



2.1 Qualitative Knowledge Model 31
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Breast
Cancer

(a) Female, Age and Gene Mutation syner- (b) Smoking and Alcoholism synergically
gically promote breast cancer degrade health

Figure 2.3: Example of Plain Synergy Influence

chance of getting breast cancer during their lifetimes. These knowledge about
breast cancer risk factors can also be encoded by a qualitative causality model.
According to the statements, the three main risk factors influence breast cancer
by positive synergy as shown in figure 2.3(a), i.e. the joint influence of these
three factors together is more significant than individual influences from any of
these factors alone. We can represent this synergy by the inequalities

P(BC|F,A,M)>{ P(BC|F,A,M) Y, (2.7)
F )

)
P(BC|F,A, M) >{ P(BC|F,4,M) (2.8)
F )

and
P(BC|F,A, M) > P(BC'|f7 A, M) (2.9)

If we assume these risk factors pair-wise symmetric, we can further derive
the following inequalities:

P(BC|F, A, M) P(BC|F, A, M)
P(BC|F,A,M) ><{ P(BC|F,A,M) (2.10)
P(BC|F, A, M) P(BC|F,A, M)

where BC, F', A and M stands for Breast Cancer, Female, Age and Mutation.

Note that often but not always the combined influence refers to the sum of
independent influences from each parent node to child node. This defintion has
been used by [87]. Without loss of generality, we append this defintion to our
classes of qualitative knowledge.

Assume that parent nodes A and B impose negative individual influence on
child node C as shown in figure 2.2(c), then the knowledge model can be defined
as
P(C|A, B)

P(C|A,B) > { P(C[4, B)

} > P(C|4,B) (2.11)
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Example 3.3

A report by the Australian Council of Smoking and Health reveals that the com-
bination of drinking alcohol and smoking tobacco leads to a greater risk of devel-
oping cancer. The study found people who drink and smoke are up to five times
more likely to develop head and neck cancers than those who do not. Therefore,
we could represent this knowledge by synergic joint influence with negative in-
dividual effects as shown in figure 2.3(b) and inequality

— P(H|S,D) = =
P(H|S,D) > { P(HIS. D) } > P(H|S, D) (2.12)
Definition 3.6 If joint influences from two or more parent nodes generate an
combined influential effect larger than the sum of each single effect from an
individual parent, then the joint influence is referred to as additive synergic
joint influence or additive synergy. [87]

Assume in case that parent nodes A and B impose a positive individual
influence on child node C' as shown in figure 2.2(a), then we define

P(C|A, B) > P(C|A, B) + P(C[A, B) > { P(C|A, B) } > P(C|4,B) (2.13)

P(C[A,B) |~

Comparing Eq. 2.13 with Eq. 2.6, we can conclude that additive synergy is a
sufficient condition for plain synergy and plain synergy is a necessary but not
sufficient condition for additive synergy. Therefore, if multiple parents demon-
strate additive synergy, it is sufficient to judge that this influence is also plain
synergy, but not vice-versa.

Assume in case that parent nodes A and B impose negative individual in-
fluences on child node C' as shown in figure 2.2(c), then we can define

P(C|A, B)

P(CIAB) > PCIAE) + PCIAE) = { G4 D)

} > P(CIA,B) (2.14)

It is important to distinguish between plain synergy and additive synergy since
they represent distinct semantic scenarios in a domain. For example, A is a
protein and B is a kinase which phosphorylates protein A and produces the
phosphorylated protein C. Because of the nature of this protein-protein inter-
action, neither B nor A alone can significantly increase the presence of C, but
both together can drastically increase the presence of C which is greater than
the sum of C in case of either A or B present. In this example A and B exhibit
additive synergy and it is sufficiently to conclude that A and B has plain synergy
as well.
Definition 3.7 If the joint influences from two or more parent nodes generate a
combined influential effect less than the single effect from individual parent, then
the joint influence is referred to as antagonistic joint influence or antagonism.
Assume that parent nodes A and B have independent positive single influ-
ences on child node C' as shown in figure 2.2(b) the antagonistic influence of A
and B can be represented by

P(C[A,B) < P(C|A, B) < { Iiégiﬁ:gg } (2.15)
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Assume that parent nodes A and B have independent negative single influ-
ence on child node C' as shown in figure 2.2(d) the antagonistic influence of A
and B can be represented by

P(C[A,B) < P(C|A, B) < { gg'

o g;} (2.16)

A,
A,

Mixed Joint Influence

In case that the joint effect on a child is formed by a mixture of positive and
negative individual influences from its parents, the extraction of a probability
model is not well-defined in general. Hence, we adopt the following scheme: If
there are mixed influences from several parent nodes to a child node, and no
additional information is given, then they are treated as independent and with
equal influential strength. Assume that parent node A imposes positive single
influence on child node C' and parent node B imposes negative single influence
on child node C, then the joint influence can be represented by

P(C|A,B) > P(C[A,B)
P(C|A,B) > P(C[A,B)
P(C|A,B) > P(C|A,B)
P(C|A,B) > P(C[A,B) (2.17)

Once formulated, the Monte Carlo sampling procedure will make sure that all in-
equalities are satisfied for valid models. Any additional structure can be brought
into the CPT of the corresponding collider structure as soon as dependencies
between influences are made explicit by further qualitative statements.

Extended Qualitative Knowledge Model

The extended qualitative knowledge model defines relative and absolute prop-
erties of probability configurations in qualitative causal influences and synergy
from the baseline model. It includes the probabilistic ratio and relative dif-
ference between any number of configurations in a qualitative causal influence
and the absolute probabilistic bound of any configuration in a causal influence.
These extended features impose further restriction on the set of constraints gen-
erated by baseline model, therefore, restrain the uncertainty in Bayesian model
space so that more accurate generalization can be achieved.

The extended qualitative knowledge features can be consistently represented
by a linear inequality. In the case that node B impose single influence on node
A, there are two probabilistic configurations. The linear constraints can then
be written as

P(B|A) >,< RxP(BJA)+A

P(B|A) € [Bdmnu Bdmax}
P(B[A) € [Bdyp, By, (2.18)

which R is Influence Ratio, A is Influence Difference and Bd, Bd’ denote bound.
1. Influence Ratio
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Definition 3.6 In one qualitative causal influence, the ratio between any
two or more configurations of the probabilistic representation of this influence
is referred to influence ratio.

P(B|A) ~ R x P(B[A) (2.19)

Example 3.4 In the statement, ”"The risk of lung cancer among smokers is
approximate 10 times higher than non-smokers”, Smoking is the parent that
imposes positive influence on child node lung cancer with influence ratio ap-
proximately equals to 10.

P(LC|S) =~ 10 x P(LC|S) (2.20)

where LC denotes Lung Cancer and S is Smoking.

2. Influence Difference

Definition 3.7 In one qualitative causal influence, the difference between
any two or more configurations of the probabilistic representation of this influ-
ence is referred to influence difference.

In the case that node B impose single influence on node A, there are two
probabilistic configurations. The influence difference in this case can be ex-
pressed as

P(B|A) ~ A+ P(B|A) (2.21)

3. Influence Bound

Definition 3.8 In one qualitative causal influence, the absolute value bound
of any configuration of the probabilistic representation of this influence is re-
ferred to influence bound.

In the case that node B impose single influence on node A, there are two
probabilistic configurations. The influence bound in this case can be expressed
as

P(B|A) € [Bdpin, Bdmaz] (2.22)
and/or B
P(B|A) € [Bd.,,;,, Bd.

min? maw]
where Bd and Bd’ denote bound.
Example 3.5 In the statement, ”The risk of smokers to get lung cancer in
their life time is approaximate 1 out of 107.

(2.23)

P(LC|S) € [0.1—6,0.1 + 4] (2.24)

where LC denotes Lung Cancer, S is Smoking and ¢ is a small quantity reflects
the slight uncertainty on the probability bound which is described by verbal
approzimate. Once the qualitative knowledge is translated by the feature set
{II(Dp, I),A(3, ¥ (R, A, Bd))} according to Eq. 2.2 to Eq. 2.18, the distribution
of ground models is defined by this knowledge.

2.2 Comparison of Qualitative Knowledge Mod-
els

As described in section 1.2, mainly two approaches have been proposed to the
concept of qualitative uncertainty modeling, i.e. Wellman approach [108] and
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Neufeld approach [79]. In this section, we compare our proposed qualitative
knowledge model with these approaches and demonstrate that our approach
represents sufficient probability relationships as the two approaches, in addition,
provide more fine-grained contraints on the probability configurations.

2.2.1 Compare to Qualitative Probabilistic Network (QPN)

In Wellman approach, a Qualitative Probabilistic Network(QPN) is a pair G=
(V,Q), where V is the set of variables or vertices of the graph and Q is a
set of qualitative relationships among the variables. There are two types of
qualitative relationship for modeling the QPN, i.e. Qualitative Influence(QI)
and Qualitative Synergy(QS). We begin our discussion by comparing the QI
definition in Wellman approach to our qualitative knowledge model in section
2.1. Qualitative influence can be thought of as qualitative relations describing
the sign(direction) of the relationship between a pair of variables. Accordingly,
given the qualitative hypothesis ” A positively influences C”, QI translate it as:
Under all contexts © € X (predg(C)—A), A makes C more likely. The definition
of QI with binary variables is given in Eq. 1.26 in section 1.2. In case of X = (),
i.e. C has single parent A, the definition of Wellman converges to our definition
of single positive influence as Eq. 2.2. In case of X # (), C has more than one
parent, say A and B, then according to QI definition, A always makes C more
likely with or without the presence of B, i.e.

P(C|A, B) > P(C[4, B)
P(C|A,B) > P(C|A,B) (2.25)

This situation fits to the joint influence in our knowledge model where the rela-
tionship between A, B and C can be classified into 4 mutual exclusive catergories
in section 2.1, i.e. Plain Synergy, Additive Synergy, Antagonism and Mixed Joint
Influence. Since it is known that A has positive individual influence on C, i) if
B imposes negative influence on C, the qualitative relationship of A, B and C
in our knowledge model is defined by Mized Joint Influence as Eq. 2.17. ii) if B
imposes positive influence on C as well and forms plain or additive synergy with
A, then their qualitative relationship is defined as Eq. 2.6 or 2.13. In either case,
we could derive the inequality consistent with Eq. 2.25. If B imposes positive
influence on C and forms antagonistic joint influence with A, i.e. the positive
influence of A on C is impaired by the positive influence of B on C and if we
further assume that the positive influences of A and B on C are symmetric, then
the assertion given by QPN i.e. the presence of A always makes the presence
of C more likely regardless to the context of x€ X, is not always valid. For
example, due to the strong antagonistic effect between A and B, simutaneous
presence of A and B may intensively reduce their positive influence on C, i.e.
P(C|A,B), and makes C less likely than the case of single parent, i.e. P(C|A,B)<
P(C|A,B) and P(C|A,B)< P(C|A,B). However, in case B is not present, it is
true that A makes C more likely, i.e. P(C|A,B)>P(C|A,B). Therefore, we show
that this assertion requires careful inspection on the relative strength between
their antagonistic effect and their individual positive influences in this case.
The second type of qualitative relationship introduced in QPN is Qualitative
Synergy as defined by Eq. 1.34 to Eq. 1.37 in Section 1.3.1. According to the
definition of positive synergy in Eq. 1.36, for multinomial variables A, B and C,
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an general ordering scheme is introduced on the cumulative distribution function
(CDF) to represent the synergy as

F(Co|a1, bl) — .F(C()|(127 bl) S F(Co|a1,b2) — F(Co|a2,b2) (226)

where ay, as, by, by and ¢y are any values in the value-range of A, B and
C. a1 > ag, by > by. F is the cumulative distribution function and can be
formulated as

F(CO|'5') = Z P(Ci"a')

ci<co

1= > Plel]) (2.27)

ci>cCo

Therefore, in case that A, B and C are binary variables, co=C, we can re-write
the qualitative relationship by substituting Eq. 2.27 into Eq. 2.26 as

P(C|A,B) > P(C|A, B) + P(C|A, B) — P(C|A, B) (2.28)

where P(-|-) is the probability density function. Comparing the positive syn-
ergy of QPN in Eq. 2.28 with the additive synergy in our knowledge model as
defined in Eq. 2.13, we conclude that our definition on the additive synergy
provides sufficient but not necessary condition to the positive synergy in Well-
man approach. Thus, qualitative constraints defined in Eq. 2.13 automatically
ensure its satisfaction to the synergy definition in Wellman approach [108]. In
addition, our knowledge model provides more fine-grained restriction on the
qualitative relationships on the conditional probability distribution which can
not be derived by Wellman’s model.

Similarly, the negative synergy of QPN defined in Eq. 1.37 can be derived by
inversing the sign in Eq. 2.26. Thus, in binary case, the qualitative relationship
on conditional probability distribution can be formulated as

P(C|A, B) < P(C[A, B) + P(C|A, B) — P(C|4,B) (2.29)

Comparing Eq. 2.29 to Eq. 2.15, we conclude that our definition on the an-
tagonism is a sufficient but not necessary condition to the negative synergy
in Wellman approach. Combining the above facts, we can generalize that our
qualitative uncertainty model provide broader and more fine-grained definition
on the conditional probability distributions with inequality constraints than
those discussed in Wellman approach [108]. Qualitative constraints generated
by our knowledge model automatically satisfy the Wellman’s definition yet pro-
vide more detailed information for better restraining the uncertainty.

2.2.2 Compare to Probabilistic Commonsense Reasoner

Neufeld formalizes the idea of qualitative influence by means of the concept of
favoring. He bases his probabilistic commonsense reasoner on a graphical no-
tation which distinguishes the four kinds of qualitative relations that may hold
between variables. Assume two binary variables A and B, we can define the
qualitative relationships in the Neufeld approach as follows:
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Defeasible links Given A, B is more likely to happen, A — B, if
1> P(BJA) > P(B) (2.30)

Logical links Given A, B will surely happen, A = B, if
1= P(BJ|A) > P(B) (2.31)

Negative Defeasible links Given A, B is likely to happen, A - B, if
1> P(B|A) > P(B) (2.32)

Negative Logical links Given A, B is likely to happen, A % B, if
1= P(B|A) > P(B) (2.33)

We compare our qualitative knowledge model to the four qualitative relations
given in Neufeld approach [79]. For Defeasible Links and Negative Defeasible
Links in Eq. 2.30 and Eq. 2.32, we prove that they are virtually equivalent
to the definition of Qualitative Influence in Wellman approach [108] in case of
single parent and to the definition of Single Positive/Negative Influence in our
proposed qualitative knowledge model. For Logical links and Negative logical
links in Eq. 2.31 and Eq. 2.33, we show that they are virtually equivalent to
the definition of Single Positive/Negative Influence in our model with tight
boundary restrictions. We can describe the relationship of P(B|A) and P(B) by
computing their difference

P(B|A) — P(B) = [P(B|A) — P(B|A)|(1 - P(4)) (2.34)

Since 1>(1-P(A))>0, the relationship of P(B|A) and P(B) is determined by the
relationship of P(B|A) and P(B|A) eventually. In case P(B|A)>P(BJA), i.e.
A positively influence B in QPN and in our proposed knowledge model, it is
configured as Defeasible links in Neufeld approach. In case P(B|A)<P(B|A),
i.e. A negatively influence B in QPN and in our proposed knowledge model, it
is equivalent to the Negative Defeasible Links in Neufeld approach.

2.3 Bayesian Modeling based on Consistent Qual-
itative Knowledge

In this section, we suggest a way to use qualitative relational statements for in-
ference in the Bayesian framework. We proceed from the general Bayesian struc-
tural inference in Eq. 1.13 based on data. In addition, we wish to model both
structure and parameter space distribution by incorporating qualitative prior
knowledge with the data and make quantitative predictions with full Bayesian
approach by integrating over the Bayesian model space. We give a detailed
recipe to transform knowledge, represented by a set of qualitative statements,
into an a priori distribution for models.
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2.3.1 Modeling with Static Bayesian Networks

Recall that a Bayesian network m represents the joint probability distribution
0 of a set of variables X = X1, X3, ..., X, [48] with a graph structure G, which
defines the (in)dependences and influences between variables. Each component
of 0 is a table of conditional probabilities whose elements define the entries of
the corresponding conditional probability tables (CPTs). Hence, a Bayesian
network can be written as m = {G,0}. If we believe that single model m
reflects the true underlying distribution, we can perform inference based on this
model. Given some observations or "evidence” E, reflected by fixed measured
values of a subset of variables Xg € X, we wish to derive the distribution of the
remaining variables X € X\Xg. it is provided by their conditional probability
given the evidence in light of the model,

P(X|E,m) = P(X|E,G,0) (2.35)

which can be efficiently evaluated by Variable Elimination algorithm or Message-
propagation algorithm introduced in Section 1.2.2. Given the past observation
data set D, the model m’s structure and parameter can be learned by BIC score
or BDe score defined in Section 1.2.3.

In contrast, the full Bayesian framework does not attempt to approximate
one true underlying distribution. Instead, all available information is used in an
optimal way to perform inference, without taking one single model for granted.
To formalize this statement for our purposes, let us classify the set of avail-
able information into an available set of data, D, and a body of non-numeric
knowledge, €2. Then a posteriori distribution of models m is then given by

P(D|m, Q)P(m|Q)P(Q)

P(m|D,Q) = 5.9

(2.36)

The first term in the numerator of Eq. (2.36) is the likelihood of the data given
the model, which is not directly affected by non-numeric knowledge €2, the
second term denotes the model prior, whose task is to reflect the background
knowledge. We obtain

P(m|D,Q) = %P(D|m)P(m|Q) (2.37)

where Z is a normalization factor which will be omitted from the equations for
simplicity. The first term contains the constraints of the model space by the
data, and the second term the constraints imposed by the background knowl-
edge. Now, inference in the presence of evidence is performed by building the
expectation across models:

P(X|E,D,Q) — /P(X|E,m)P(m|D,Q)dm
_ / P(X|E,m)P(Dlm)P(m|Q)dm  (2.38)

In this thesis, we consider the extreme case where no quantitative data is avail-
able, D = (). Thus, the model uncertainty is fully described by the qualitative
prior knowledge 2. We will show throughout this thesis that even in this case
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it is still possible to perform proper quantitative Bayesian inference,

P(X|E,Q) = / P(X|E,m)P(m|Q)dm (2.39)
m

Now the inference is based on the general background information contained in

Q) alone, and the specific information provided by the measurements E. This is

reflected by the fact that inference results are conditioned on both quantities in

Eq. (2.39).

In order to determine P(m|Q2), we need a formalism to translate a body
of qualitative knowledge into an a priori distribution over Bayesian models.
For this we adopt the following notation to define a Bayesian model class. A
Bayesian model is determined by a graph structure G and by the parameter vec-
tor 8 needed to specify the conditional probability distributions given that struc-
ture. We refer to 6 as one specific CPT configuration. A Bayesian model class
M is then given by (i) a discrete set of model structures S = {s1,s2,...,5k},
and (i¢) for each structure s a (eventually continuous) set of CPT configura-
tions Of. The set of member Bayesian models m € M of that class is then given
by m = {(s,0)|k € {1,...,K},0 € Or}. The model distribution now reads

P(m|Q) = P(sy,0Q)
Y a1 Jo, AP (0]sq, Q) P(sa|2)

In Eq. 2.40, first the set of allowed structures is determined by means of €,
followed by the distributions of the corresponding CPT configurations. Then,
we calculate the model’s posterior probability P(m|Q2) in Eq. 2.40. Inference is
carried out by integrating over the structure space and the structure-dependent
parameter space:

K
Pummzz/dwmﬂ%wwmm. (2.41)
k=1"©%

Here we assume {2 to be represented as a list of consistent qualitative statements.
In this form, the information can be used in a convenient way to determine the
model prior, Eq. 2.40: (i) Each entity which is referenced in at least one state-
ment throughout the list is assigned to one variable X;. (i¢) Each relationship
between a pair of variables constrains the likelihood of an edge between these
variables being present. (i7¢) The quality of that statement (e.g., ”activates”,
“inactivates”) affects the distribution over CPT entries 6 given the structures.
In the most general case, the statement can be used to shape the joint distri-
bution over the class of all possible Bayesian models over the set of variables
obtained from €.

We use each statement to constrain the model space to that subspace which
is consistent with that statement. In other words, if a statement describes a
relationship between two variables, only structures s; which contain the cor-
responding edge are assigned a nonzero probability P(sg|€?). Likewise, only
parameter values on that structure, which are consistent with the contents of
that statement, are assigned a nonzero probability P(6|sk,2). If no further
information is available, the distribution is constant in the space of consistent
models.
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In the following paragraphs, we first provide a toy example of that procedure,
followed by a more thorough introduction, which takes into account recurrent
and conflicting statements. We consider a simple toy case in which the body of

ORORON0

(a) Constraining the Structure Space

Figure 2.4: Toy Example for Constraining the Bayesian Model Space

knowledge ) consists of a single statement, Q="A activates B”. We know that
there are two random variables A and B, which we assume binary, and we need
to consider the set of all possible Bayesian models on (A, B). Fig. 2.4(a) shows
the set of possible model structures. In the next step, we use the statement to
constrain the space of structures to those consistent with the statement. ” A
activates B” directly states a causal influence of A on B, hence the bottom
graph structure in Fig. 2.4(a) is assigned a nonzero probability: P(s4]Q) = 1,
P(sx|2) =0, k=1,2,3).

A | P(B=1]4)
0 0
1 0

Table 2.1: Conditional Probability Table

This graph structure encodes the probability distribution
P(A,B) = P(B|A)P(A) (2.42)

No further information on P(A) is available, however P(B|A) can be further
constrained. Table 2.1 shows the corresponding CPT. The CPT entries, i.e., the
values of the conditional probabilities form the components of the parameter
vector 6 = (6y, 61) of the model class with structure s4. From the statement we
now can infer that the probability of B active when A active is higher than the
same probability with A inactive. We obtain the inequality relationship

P(B=1A=1)>P(B=1A=0),= 6, > b,. (2.43)
Hence, the set of model parameters consistent with that statement is given by

04 = {(60,01)[0 <0 <1TAO <0 <1}, (2.44)
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and the distribution of models in the structure-dependent parameter space be-

comes
2 0€0,

P(0|s4,Q){ e (2.45)

All consistent model parameters have been assigned the same probability, which
reflects the lack of any further biasing information.

Having derived the Bayesian model class (s4,©4) consistent with the state-
ment, we can now perform inference by model averaging using Eq. 2.41. Let us
assume we observed A active, i.e., E = {A = 1}, and let us ask what is the prob-
ability of having B active under this conditions. We do so by integrating over
all models with nonzero probability and averaging their respective inferences,
which can be done analytically in this simple case:

P(B=1|E,Q) - ZP(skm)/dGP(B — 1A =1, 54,0)P(6]sk, Q)
k

2 [ d9P(B=1A=1,0)
Oy
1 1

2/ d@o/ 6,6,
0 ')

2/3

Similarly, the expected value of probability of having B active when A is inac-
tive, i.e. E ={A = 0}, can be calculated by model averaging as

(2.46)

P(B=1|E,Q) - ZP(skm)/dGP(B — 1A =0, 4, 0)P(6]sk, Q)
k

2/ dQP(B = 1|A =0,60)
Oy

1 61
= 2/ d@l/ dfobo
0 0

= 1/3 (2.47)

It is worth to note that, as long as simple inequalities are considered as state-
ments, the problem remains analytically tractable even in higher dimensions. In
general, however, integration during Bayesian inference can become intractable
by analytical methods. One way to resolve the integration problem is to use
Monte Carlo methods. Throughout this work, we use the Accept-Reject algo-
rithm [86] to approximate the constant distribution inside the polyhedron of
consistent model parameters. Each dot in Fig. 2.5(a) represents one randomly
selected Bayesian model of the toy example, for which the inference has been
carried out. Fig. 2.5(b) shows how the empirical means of the inference results
for P(B =1|A =1) and P(B = 1|A = 0) depend on the Monte Carlo sample

size in this simple model.

2.3.2 Modeling with Dynamic Bayesian Networks

However, the conventional Bayesian networks are not able to model the cyclic
regulations in molecular networks. We suggest to solve this problem by utilizing
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Monte Carlo Sampling on Model Parameter Space Constrained by 91 > 90
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(b) Converge of averaged inference results as a function of sam-
ple size

Figure 2.5: Monte Carlo Simulation in the 2-dimensional Space

the Dynamic Bayesian Networks (DBN) [23,78]. An example of DBN is shown in
Fig. 2.6(a) and it can be defined by a vector of 2-Time-Slice Bayesian Networks
(2TBN) over time as shown in Figure 2.6(b). Each 2TBN is a conventional
Bayesian model with the structure s and conditional probabilities 6 of the DBN
and encodes the joint probability of the nodes X at time ¢ and (¢t — 1), i.e.
P(X¢,X¢_1). The joint probability of a DBN over time T is

T

[1PEIx ) (2.43)
t=1

)
>
I
3
Il

For t-th 2TBN, the joint probability of X at time ¢, i.e. P(X;) can be written
as

P(X:) = P(Xi4--,Xnu)
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N
= ] PXns) (2.49)
n=1

where X, ; denotes the n-th node at time ¢. The child nodes in the ¢-th 2TBN,
Xnt, are independent given the parents, i.e. the nodes at time (¢t — 1). The

(a) DBN Example (b) 2TBN
Figure 2.6: Dynamic Bayesian Example
posterior probability distribution of each node at time ¢, i.e. P(X,,¢) in Eq. 2.49

can be calculated by integrating over the parents as in the case of conventional
Bayesian network,

P(Xni) = /(X )P(XnIW(Xn))P(W(Xn))dW(Xn)

J
Z 0; P!~ (m(X)) (2.50)

where 0; denotes the j-th entry in the conditional probability table of node X,
given its parents. P;_l(ﬁ(Xn)) represent the joint probability of j-th configura-
tion of the parents states at time (¢ — 1). The posterior probability distribution
of X, can be used as the priori probability for the next time step. Thus the pos-
terior probability P(X,, ;) can be calculated iteratively over time ¢t = {0,...,T}.

In this section, we extend the knowledge-driven Bayesian inference approach
to Dynamic Bayesian model. A DBN model, m, can be learned from a time-
series data. [62,78,115]. As demonstrated in the last section, if there is a set
of consistent hypotheses retrieved from a publication which defines a class of
models, with the structure and its associated parameter space. The inference
with full Bayesian approach is calculated by integrating the inference in each
model weighted by its posterior probability given the set of hypothesis as in
Eq. 2.41. The inference can be written as

K
POGIED) = 3 [ PUGIE 50.0)Psn 0190
k=1"9O%
1
~ ?ZP(X,JE,mk) (2.51)
mi

Since there is no inconsistent knowledge, only the structure which is consistent
with the hypotheses is assigned with non-zero probability P(s;|Q2). Likewise,
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Figure 2.7: ASIA Network Structure

only parameter values on that structure, which are consistent with the contents
of the hypotheses, are assigned a nonzero probability P(0|sg, ). If no further
information is available, the distribution is constant in the space of consistent
models. Now, we can perform inference on the marginal probability of X,, at
time ¢ in each DBN model my, according to Eq. 2.50

J
P(Xpi|E, s5,0) =Y 0 ;P (7(X0), E) (2.52)
j=1

where 8, ; represents the j-th entry of the CPT in k-th DBN model. E denotes
the evidence of the observed nodes and P;fl(w(Xn), E) denotes the joint prob-
ability distribution of the j-th configuration of the parent nodes m(X,) at time
(t—1) given the observation E. Therefore, the quantitative inference in Eq. 2.51
can be calculated by

P(X,.|E,Q)

K J
_ Z/ S04 P (X, E)P(s, 04,1240
k=179 j=1
(2.53)

The inference in Eq. 2.53 can be calculated can be performed for each model
my = (s, 0) over time T and the predictions are averaged over all models in the
model class M. We will discuss how to compute this integral in Section 2.4.1.

2.3.3 ASIA Network

An example of Bayesian modeling and inference based on consistent qualitative
knowledge is the ASTA network [65]. A popular toy belief model for testing
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Table 2.2: ASIA Network Parameters

| NODE PAIR | CPT.,d |
(Pa.,Ch.) P(Ch|Pa) P(Ch[Pa)
V,T) a1=0.05 ap=0.01
(T/LC,X) A =0.9 A=0.05

([Pal,Pag],C’h.) Pal,Pag Pal,mg ml,Pag ml,mg
([T/LC,B],D) £3=0.9 £=0.7 | &=0.8 £=0.1
([T7LC]7B) f3:1 f2:1 f1:1 f():O

Bayesian algorithms. It is shown in Figure 2.3.2. Each node in the network
corresponds to some condition of the patient. The joint probability distribution
is defined by conditional probability tables (CPT) of a child node given its parent
nodes. We listed the actual parameter, i.e. 6 = («a, 3,7, A, §), in Table 2.2. The
qualitative knowledge €2 for each possible relationship between a set of entities
in ASTA network are extracted from statements. The statements are retrieved
from various resources, such as scientific publications and internet resources.
A valid qualitative statement should be able to describe the entities and their
causal relationship with baseline and/or extended features defined in section 2.

In ASIA network, entities of interest include Visit-to-Asia, Tuberculosis,
Smoking, Lung Cancer, Bronchitis, Lung Cancer-or-Tuberculosis, Positive-X-
Ray and Dyspnea, i.e. X={V, TB, S, LC, B, TLC, XR, D}. The valid state-
ments are retrieved as below:

1. Tobacco smoke is the primary cause of lung cancer. Although nonsmok-
ers can get lung cancer, the risk is about 10 times greater for smokers.
(http://www.netdoctor.co.uk)

2. In the US, 25% of the population smokes. The lifetime risk of develop-
ing lung cancer in smokers is approzimately 10%. (http://www.chestx-
ray.com/Smoke/Smoke.html)

3. The study essentially confirmed that the risk of acquiring infection with
M. tuberculosis among these travelers (to Asia) was essentially the same
as that estimated for the gemeral population in the host countries-that is,
an annual risk of infection with M. tuberculosis of 1% to 5%. [91]

4. Risk of chronic bronchitis was significantly higher in current smokers than
i never smokers, the relative risk RR=2.85; 95% confidence interval
CI=[2.45 3.32]. [105]

5. The National Cancer Institute trials demonstrated that the sensitivity of
CXR is 54% when only ”suspicious” CXRs are coded as positive, with a
specificity of 99%; When "indeterminate” CXRs are considered positive,
the Sensitivity of CXR increase to 84%” with a specificity of 90%”. How-
ever, false negative CXR results continue to be a significant problem. [40]
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6. Dyspnea is often a presenting symptom for lung cancer patients as a result
of direct and indirect effect of the tumor. Studies have shown that 50% of
cancer patients in general complain of shortness of breath, with 20% rating
it as moderate to severe. It is estimated that 60% of lung cancer patients
have some dyspnea at the time of diagnosis rising to 90% prior to death.
(http://www.lungcancer.org)

7. Respiratory symptoms included chronic coughing in 74% of Patients (morn-
ing cough in 19%), chronic sputum production in 57% (21% with morning
productivity), dyspnea on exertion in 61%, and both at rest and on exertion

in 19%. [84]

We avoid the problem of creditability of the statements by assuming each state-
ment is true, i.e. P(f2) = 1. To ensure that no inconsistent knowledge com-
plicates our study, we retrieved only consistent statements for each relation in
the ASTA network. The corresponding constraints on the network structure and
parameter space can be compactly summarized in Table 2.3 and inequalities on
CPT entries are thereby formalized based on these constraints.

apg<ar Bo<Pr w<m <\ (2.54)
mo < M < o (2.55)

mo=1{6%} m ={&,&} m={&} (2.56)

24570 <71 <332y 960 < 51 < 1105 (2.57)

ar € [1%,3%] i € [9%, 11%]
Ao € [1%,10%] A1 € [54%, 84%)

In Table 2.4, £ is a parameter of four dimension. Besides the direct qualitative
knowledge constraint on the 4-dimension space, qualitative knowledge are avail-
able to constrain the projection of this probability distribution in a degraded
2-dimension space. The qualitative constraints in the degraded parameter space
can be written as

(2.58)

P(DIB) = P(TLC)& + (1 - P(TLC))é
P(D|§) P(TLC)é + (1 — P(TLC))éo

P(DITLC) = P(B)&+(1- P(B))&

P(DITIC) = P(B)¢ +(1- P(B))& (2.59)

P(D|TLC) > P(D|TLC)
P(D|B) > P(D|B) (2.60)
P(D|TLC)€ [60%,90%] P(D[B)e [61%, 80%] (2.61)

Without further information on the priori probability distribution of P(TLC)
and P(B), we can assume a uniform distribution, i.e. P(TLC)=0.5, P(B)=0.5.
Thus, constraints in Eq. 2.59 to Eq. 2.61 can be explicitly written as

+&>8&+8&% S+&>86+6 (2.62)
€346 €[1.22,1.6] & +& € [1.2,1.8] (2.63)
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Table 2.3: Constraints on ASIA Model Structure and Parameter Space.
NoODE Dp 1 )y R A BD
V,T 1 1 SP NULL NULL 11%,3%)]
S,LC 1 1 SP [9,11] NULL  [9%,11%)]
S,B 1 1 SP [2.45,3.32] NULL NULL
B,D 1 1 SP NULL NULL [61%,80%]
T/LC,X 1 1 SP NULL NULL [54%,84%]
[1%,10%]
T/LC,D 1 1 SP NULL NULL [60%,90%)]
(r/Lc,B),D | 1 1| PLSYN NULL NULL NULL
Table 2.4: ASTA Network Averaged Parameters
| NoDE PAIR | CPT,d |
(Pa.,Ch.) P(Ch|Pa) P(Ch|Pa)
(V,T) @_1:0.02 gon.Ol
(S,LC) £,=0.1 B,=0.01
(S,B) 2120.67 2020.24
(T/LC,X) A1=0.69 A=0.05
([Pal,Pag],C’h.) PCLl,PCLQ Pal,mg ml,Pag ml,mQ
([T/LC,B],D) 5320.88 5220.55 £,=0.63 | {,=0.24
([TvLC]vB) f3:1 f2:1 flzl fO:O
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Given the qualitative knowledge ) and associated constraints, we now apply
Bayesian inference to predict the incidence of interest in ASIA network in light of
construct the Bayesian model class based on the body of qualitative knowledge.
As explained in section 2, the qualitative knowledge constraints developed in
Eq. 2.54 to Eq. 2.63 are used to define the model priori distribution, i.e. P(m|2).
We apply Monte Carlo sampling in each dimension of 8 = («, 3,7, A, £) as shown
in Figure 2.8. The parameter samples are restrained by baseline and extended
knowledge features and these samples in each dimension are utilized in our
study. They are composed into N=>50,000 model samples. By model averaging,
we can obtain a single equivalent mean model 77 with mean parameter vector
# which is shown in Table 2.4.

For each selected model sample in Figure 2.8, we perform inferences in-silico
on the likelihood of a patient having lung cancer given information about the
patient’s smoking status and clinical evidences including observation of X-ray,
Dyspnea, and Bronchitis, i.e. X5 = {5, B, XR, D}. The convergence of these
prediction under a set of evidences E = {E\, E2, E5, E4, E5, Eg} are shown in
Figure 2.9(a). The evidences are listed below:

Ey={S,B,XR,D}  E,={S XR,D}
By ={S,B,XR,D}  E;={S,B,XR,D}
Es={S,XR,D}  Es={8 B,XR,D} (2.64)

The actual inferences under the same set of evidences is shown in Figure 2.9(b).
Comparing Figure 2.9(a) to 2.9(b), we can see that our simulations produce
reasonable quantitative predictions on lung cancer probability. The presence of
bronchitis could explain away the probability of lung cancer and the presence
of smoking increases the risk of getting lung cancer.

2.4 Performance Analysis

2.4.1 Approximating Expected Inference E[P(X|E,m)]

Bayesian networks are directed acyclic graphs in which the nodes represent
variables and the arcs signify direct dependencies between the linked variables.
Bayesian network can be used to represent generic knowledge of a domain, such
as domain expert, qualitative prior knowledge and quantitative observations.
As we have shown in section 2.3.3, the belief network can be turned into a
computational architecture for directing and activating the data flow in the
computations by translating, storing and manipulating the qualitative prior
knowledge.

There are various methods to perform belief propagation, i.e. inference. The
most common exact inference methods are wvariable elimination, which elimi-
nates (by integration or summation) the non-observed non-query variables one
by one by distributing the sum over the product; cligue tree propagation [81],
which caches the computation so that many variables can be queried at one
time and new evidence can be propagated quickly; and recursive conditioning,
which allows for a space-time tradeoff and matches the efficiency of variable
elimination when enough space is used. All of these methods have complexity
that is exponential in the network’s treewidth. The most common approximate
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inference algorithms are stochastic Markov Chain Monte Carlo (MCMC) simu-
lation, mini-bucket elimination which generalizes loopy belief propagation, and
variational methods.

In this section, we will investigate the approximation to the belief propaga-
tion in Eq. 2.41 and Eq. 2.53 respectively. Moreover, we would like to determine
the degree of performance loss in the approximation.

Approximating Inference in Static Bayesian Networks

In section 2.3, we have derived the belief propagation in the presence of model
uncertainty which is constrained by qualitative prior knowledge. The inference
in static Bayesian networks, Eq. 2.41, is calculated by taking the averaged in-
ference of each ground static Bayesian model given the new information. We
re-write the equation here as

K
P(X|E,Q) =Y | dOP(X|E, si,0)P(sk,0]Q). (2.65)
k=17 Ok

We can see that P(X|E, Q) is actually the expected value of the ground Bayesian
network inference given the model uncertainty P(s, 6|2).

P(X|E,Q) = Ep(s,010)[P(X|E, 5,0)] (2.66)

Thus, the problem we are addressing is the evaluation of terms of the form
E[f(X)]. For this approximation problem, we have few choices [37]. The sim-
plest approximation has the form

E[f(X)] = f(E[X]) (2.67)

However, this approximation is only exact when f(X) is linear in terms of its
argument X [37]. In our case, the function f(X) corresponds to the Bayesian
inference function and its argument X is actually the parameter configurations
0 in the ground Bayesian network. Unfortunately, the inference function is not
always (in most of the cases) a linear function of the network parameters.

In the following, we explore the loss of generalization accuracy by using
Eq. 2.67 to approximate E[P(X|FE, s,6)] based on three types of Bayesian net-
work, i.e. Tree-structured Belief Network, Single-connected Belief Network and
Multiple-connected Belief Network. In this thesis, we use Message-propagation
algorithm [81] to compute P(X|E, s,6).
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(e) Belief Propagation given Eg (f) Belief Propagation given E4

Figure 2.10: Belief Inference in Static Bayesian Network
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Tree-structured Belief Networks
We consider tree-structured influence network, i.e. one in which every node
except root has exactly one incoming link. We allow each node to represent
a multinomial variable which may represent a collection of mutually exclusive
hypotheses, such as Sunny, Cloudy, Raining or a set of possible observations,
e.g. gene expression level: High, Low. An example of Tree-structured Bayesian
network is shown in Fig. 2.10(a). In this network, a variable is labeled by a
capital letter. ie. V = {A,B,C,D,F,G,X}. The possible values of each
variable are denoted by subscripted letter, e.g. a1, as. FEach directed link
is quantified by a fixed conditional probability distribution (CPD), e.g. the
link from B to X can be described as ©x = P(X|B) with entries: 6,,;, =
P(X = z;|B = b;). Now, lets assume a set of independent new information
E ={E, Es, E3, Ey, E5, Eg} are inserted into the network at different positions.
Our task is to perform inference on the probability of variable X given the
evidences in F.

Firstly, we calculate the inference given F5. Based on the message-propagating
algorithm in section 1.2.2, each node in the network stores its prior probability
m(V =v;) = P(V = v;|Dy}) and the data likelihood A\(V = v;) = P(Dgz|V = v;)
at initial equilibrium state. The marginal belief of node V in its value v; can be
calculated as

BEL(V =v;)) = an(V = v)ANV = v;) (2.68)

Firstly, we consider the inference process in the single-connected belief networks.
Single-connected Belief Networks
Upon the arrival of information Fs, the influence of Fs propagates to its neigh-
bors and activate the updating processing. Two kinds of parameters are stored
with each node of the network, i.e. m and A\. The influence of the new infor-
mation will spread through the network and messages are transmitted through
the tree. In Fig. 2.10(b), as soon as node B received the new information, B
transmits the m-message (black token) to its children and transmit A-message
(white token) to its fathers. In the next phase, the triggered fathers and chil-
dren absorb these tokens and manufacture the appropriate number of tokens
for their neighbors, i.e. m-message for their children and A-message for their
fathers. The links through which the absorbed tokens have entered do not re-
ceive new tokens, thus, reflecting the feature that a m-message is not affected
by a A-message cross the same link. The message-passing procedure in case of
entering information Fj is illustrate in Fig. 2.10(b). The numerical annotation
of the messages denote the index the updating steps. Assume there are n nodes
between B and (A, G, D), the propagation procedure reach new equilibrium after
2n steps. Now we derive the belief of X at equilibrium state in various cases
where new information enters the network at different locations by calculating
the parameters updated by the information.
Immediate Upstream

In Fig. 2.10(b), the new information E; entered the network at node B, i.e.
father of node X. In the first propagation step, B transmits message, mx (B),
to X. According to section 1.2.2, wx(B) can be written as

mx(B) = an(B) (2.69)
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The 7 parameter of node X can be calculated as

7(X) = > P(X|B)rx(B)
= ZP(X\B)aﬂ'(B) (2.70)

and belief of X can be derived as
BEL(X) = m(X)AX)
= Y _ P(X|B)ar(B)A(X) (2.71)
B

where 7(B) stands for the fact that multivariate variable B are set to a particular
value by the information Ey and A(X) denotes the A parameter of node X at
initial equilibrium state. « is normalizing constant.
Non-immediate Upstream

In Fig. 2.10(c), the new information E; entered the network at node A, i.e.
a non-immediate node in the upstream of X. In the first propagation step, A
transmits message 74.41(A) to its child, say A+1. If we assume there are n nodes
from A to X, at n-th step, node B are triggered by the incoming message from
its father, say B — 1, and transmits the message 7x(B) to node X. Similarly,
the m-messages are consequently propagated to the descents of X and B until
the network reaches new equilibrium. The belief of node X in this case can be
computed sequentially as

mar1(A) = am(A) T M) (2.72)
sib(A)

where m(A) is the m parameter stored in node A at initial equilibrium state and
the m parameter of node A + 1 can be updated by

m(A+1) =) P(A+1|A)Ta41(A) (2.73)
A

Thus, we could write the updating message transmitted from node A+1 to node
A+i+1 at i-th step as

Tavici(A+i) =ar(A+i) J[ Aan(A+1) (2.74)
sib(A4i+1)

where operator sib(*) denotes the set of siblings of the child node A + i and
parameter (A 4 ¢ + 1) can be calculated as
mA+i+1) =) PA+i+1A+i)mayipr(A+i) (2.75)
Ati

After n steps, node B is activated and transmit message 7x (B) to X which can

be computed as

where Ap(B)=)_p A(F)P(F|B). The 7 parameter of X can be written as

m(X) =) _ P(X|B)rx(B) (2.77)
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Substituting Eq. 2.74 and Eq. 2.75 into Eq. 2.77, we can derive the belief of X
as

BEL(X) T(X)A(X)

ad P(X|B)--- Y P(A+1|A)m(ANX)Ar(B) (2.78)
B A

where m(A) stands for the impact of the information E; on node A and A(X)
denotes the configurations of node X at initial equilibrium state. « is the
normalizing factor.

Immediate Downstream
In Fig. 2.10(d), the new information E;5 entered the network at node C, i.e. the
child of node X. In the first propagation step, C' transmits message, Ac(X), to
X which can be written as

Z/\ P(C|X) (2.79)

where A(C)={0,...,1,...,0} reflects the features of the inserted information
Es5. Thus, the A parameter of X can be updated by Ac(X).

A(X) = Ao(X) (2.80)

m(X) is not affected by the new information Ej since there is no impact from
the upstream of X imposed in the network. Thus, the belief of node X can be
written as

BEL(X) = m(X)A(X)
(X)) MC)P(C|X)
(2.81)

where A(C) are set to a particular value by the information Es.
Non-immediate Downstream

In Fig. 2.10(e), the new information Eg entered the network at node D, i.e. a
non-immediate node in the downstream of X. In the first propagation step,
D transmits message Ap(D — 1) to its parent, say D — 1. If we assume there
are m nodes from D to X, at m-th step, node C' are triggered by the incoming
message from its child, say C' + 1, and transmits the message Ac(X) to node
X. If there are n nodes between node X and node A, at (m+n)-th step, A is
activated by its child, say A+1 and start transmitting w-message on the same
link. Similarly, the m-messages are consequently propagated to the descents of
A and B until the network reaches new equilibrium. The belief of node X in
this case can be calculated by A(X) and 7(X). As Eq. 2.74 and 2.75, A message
can be calculated sequentially as

Ap_i(D—i—1)=Y XD D—ilD—i—1) (2.82)
D—i

and the A\ parameter of node (D-i) can be calculated as

=[[ o_i(D—i-1) (2.83)
k
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where D — i is the i-th node in the upstream of node D and D — ¢ — 1 denotes
the parent node of node D —i. If node D — i — 1 has more than one child node,
i.e. D — 1 is its k-th child node, then, A(D — ) is a product of the A-message
from its children as Eq. 2.83. A(X) can be written as

MX) = Z MC)P(C)X)

ZP Cl1X)- ZPD\D—1 D) (2.84)

where A\(D) represent the new information Fg. Meanwhile, 7(X) is not affected
by the new information and we could derive BEL(X) as

BEL(X) = =(X)A(X)
X)Y P(CIX)- ZPD|D—1 D) (2.85)
C

Non-immediate Siblings

In Fig. 2.10(f), the new information F, entered the network at node G, i.e. a
non-immediate node in the downstream of X’s sibling F'. In the first propagation
step, G transmits message A\g(G — 1) to its parent, say G — 1. If we assume
there are p nodes from G to X, at (p-1)-th step, node B are triggered by the
incoming message from its parent F, and transmits the message Ag(B — 1) to
its parent B — 1 as well as transmit 7x (B) to its child node X. A(X) is not
affected by the information F4. The effect of new information of E4 on node
X is reflected by the update of A(F) which is enclosed in the 7x(B) message
transmitted from B to X. Based on Eq. 2.82 and 2.83, we can calculate A(F)
as

Arii(F) = Y ANF+1)P(F+1|F)
F+1
= Y P(F+1|F)- ZP G|G —1)A
F+1
= AF) (2.86)

where F' + 1 is the child of node F' and G — 1 denotes the parent of node G.
Meanwhile, mx (B) can be calculated according to Eq. 2.76 and Ap(B) can be

calculated as
Z A\ F)P(F|B)

ZP (F|B) Y P(F+1[F)-- Z P(G|G = 1)A(G) (2.87)

F+1

Ar(B)

where A(G) represent the new information E,. Therefore, 7(X) can be formal-
ized as

7(X) = Y P(X|B)rx(B)
B

= Y P(X|B)--- Y _ P(A+1|A)m(A)Ap(B) (2.88)
B A
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The belief of X can be written as

BEL(X) = w(X)\X)
= > P(X|B)---Y P(A+1|A)w(A) >  P(F|B)
B A F
Y " P(GIG = HA(G)A(X) (2.89)
G

where A(G) represent the new information E4 and A(X) is the A parameter of
X at initial equilibrium state.
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(a) Example of Tree-structured Bayesian (b) Belief Propagation given F1
Network

(c) Belief Propagation given Fo (d) Belief Propagation given E3
Figure 2.11: Belief Inference in Static Bayesian Network

Single-connected Belief Network with Multiple Parents
Now, we discuss the belief propagation scheme in the single-connected network
which allows a child node has more than one parent. In Fig. 2.11(a), new
information {E1, Eo, E3} are inserted into the network at various locations. We
derive the belief of node X respectively.

Non-immediate Upstream
In Fig. 2.11(b), new information E; enter the network at node A. Assume there
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are n nodes from A to X, then at n-th step, node B is triggered to send 7x (B)
message to node X. Thus, the belief of node X is updated by mx (B). According
to section 1.2.2, BEL(X) can be calculated as

BEL(X) = a\o(X ZZP (X|B,I)mx(B)mx(I) (2.90)

mx(B) can be calculated as Eq. 2.76 and A¢(X) can be computed as Eq. 2.79.
Thus, the belief of node X can be written as

BEL(X) = a) MOP(CIX))_ Y P(X|B.I)
C B I
7 P(A + 1 A)m(A)Ap (B)mx (1) (2.91)
A

where A\(C) is set at initial equilibrium state and 7(A) is determined by the new
information Ej.

Non-immediate Siblings
In Fig. 2.11(c), new information Es enter the network at node G. Assume there
are p nodes from G to X, then at p-th step, node B is triggered to send wx (B)
message to node X. Thus, the belief of node X is updated by mx (B). According
to section 1.2.2, BEL(X) can be calculated as

BEL(X) = a\o(X ZZP X|B, I)nx (B)rx(I) (2.92)

where mx(B) can be calculated as Eq. 2.76 and Ap(B) can be computed as
Eq. 2.87. Thus, the belief of node X can be written as

BEL(X) = a) MC)P(C|X)) > P(X|B, 1)) P(F+1|F)
C B I F
Y " P(G|G = )A(G)mx (1) (2.93)
G

where A(C) is set at initial equilibrium and A(G) is decided by new information
Es.

Non-immediate Downstream
In Fig. 2.11(d), new information F3 enter the network at node D. Assume there
are m nodes from D to X, then at m-th step, node C'is triggered to send Ac(X)
message to node X. Thus, BEL(X) can be calculated as

BEL(X) = aA¢(X ZZP X|B, I7x(B)rx(I) (2.94)

where Ao (X) can be calculated as Eq. 2.82 and 2.83 iteratively as
ZP ClX)- ZP D|D —1)A(D) (2.95)

Thus, the belief of node X can be written as

BEL(X) = aZP ClX)- ZP DID-1)AD) Y > P(X|B,I)rx(B)nx(I)
B I
(2.96)
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where A(D) is decided by new information Ej.

Multiple-connected Belief Networks
The efficiency of message passing algorithm in single-connected network has
been shown in the above. The question raised thereafter is whether similar
propagation schemes can be applied to less restrictive networks, i.e. Multiple-
connected network where multiple parents of common children may processes
common ancestors, thus forming loops in the underlying network. If we ignore
the existence of loops and permits the nodes to continue communicating with
each other as if the network were singly connected, messages may circulate
indefinitely around these loops, and the process will not converge to the correct
state of equilibrium.

A straightforward way of handling the loop would be to appoint a local inter-
preter for the loop by collapsing nodes (B,C'). This method works well on small
loops [55], but as soon as the number of variables exceeds 3 or 4, compounding
requires handling huge matrices which impede the natural conceptual structure
embedded in the original network.

A second method of propagation is based on ”stochastic relaxation” [41].
Similar to Boltzman machine [32]. Each processor examines the states of the
variables within its screening neighbors, computes a belief distribution for the
values of its host variable, and then randomly selects one of these values with
probability given by the computed distribution. The value chosen will subse-
quently be interrogated by the neighbors upon computing their beliefs, and so
on. This scheme is guaranteed convergence, but it usually requires very long
relaxation times before reaching the equilibrium state.

A third method, conditioning [58], is based on transferring the connectivity
of a multiple-connected network to a singly-connected network. We instantiate a
variable to a particular value which enables single-connected belief propagation
techniques. Assume binomial node, we set this variable, e.g. node Y, to 1 and
calculate the belief of node X, BEL; (X) as single-connected network. Mean-
while, we set this variable to 0 and compute the belief of node X, BELq(X).
Two results are combined by the marginal posterior probability P(X|Y). Al-
though conditioning method provides a working solution in practical cases, the
number of messages may grow exponentially with the number of nodes required
for breaking up all loops in the network.

Finally, a preprocessing approach permanently changes the multiple-connected
network into a star-decomposable and tree-decomposable tree by introducing
dummy variable.

Approximating Inference in Dynamic Bayesian Networks

For the belief propagation in dynamic Bayesian networks, we would like to
predict future outcomes given all the observations up to the present time,
y1:t = {1, ...,y } which is a common task in on-line analysis. In this thesis, we
only consider discrete-time systems, hence ¢ is always an integer. Since we will
generally be unsure about the future, we will try to compute a probability dis-
tribution over the possible future observations; We denote this by P(y:yr|y1:t),
where h > 0 is the horizon, i.e. how far into the future we want to predict.
Sometimes we have some control over the system we are monitoring, e.g. some
external stimuli. In this case, we would like to predict future outcomes as a func-
tion of our inputs. Let F1.; denote our past inputs, and Fy; .41 denote our next
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h inputs. Now the task is to compute P(yi4+n|E1.t4h,y1:t). Classical approaches
to time-series prediction use linear models, such as ARIMA, ARMAX, etc. [45],
or non-linear models, such as neural networks (either feed-forward or recurrent)
or decision trees [19]. For discrete data, it is common to use n-gram models (see
e.g. [56]) or variable-length Markov models [70,94]. There are several problems
with the classical approach. First, we must base our prediction of the future on
only a finite window into the past, say where is the lag, if we are to do constant
work per time step. If we know that the system we are modeling is Markov
with an order, we will suffer no loss of performance, but in general the order
may be large and unknown. Recurrent neural nets try to overcome this prob-
lem by using internal state, but they are still not able to model long-distance
dependencies [3]. Second, it is difficult to incorporate prior knowledge into the
classical approach: much of our knowledge cannot be expressed in terms of di-
rectly observable quantities, and black-box models, such as neural networks, are
notoriously hard to interpret. Third, the classical approach has difficulties when
we have multi-dimensional (multi-variate) inputs and/or outputs. For instance,
consider the problem of predicting (and hence compressing) the next frame in a
video stream using a neural network. Actual video compression schemes (such as
MPEG) try to infer the underlying ”cause” behind what they see, and use that
to predict the next frame. For attacking these problems in general, Kevin [78]
has suggested the state-space models, which we use in out thesis to perform
temporal predictions. Further, in this thesis, since our focus is on how to model
uncertainty based on qualitative hypotheses for (Dynamic Bayesian) networks,
we assume the state-space model to be Markovian, i.e. Dynamic Bayesian net-
works. In this case, the future prediction y;11 (h=1) is soley dependent on the
current states of the system, y;, therefore, the prediction boils down to compute
the probability distribution of P(y;y1|E1.t4h,Yy:) as shown in Eq. 2.53.

The inference in Eq. 2.53 can be calculated in two ways. Firstly, the inference
can be performed for each model my = (s, 8) over time T and the predictions

are averaged over all models in class M. Secondly, an averaged model, i.e.
equivalent mean model, can be calculated by calculating the average of the pa-
rameters over all possible models under each model structure, m; € M, and
then the inference is computed as the averaged inference of each mean model
with different structure as

P(X,.|E,Q)

K J
Z/ Zakvjpjil(ﬂ-(){n%E)P(Saek,j
k=179 j=1

0)de

K J
- ZZPT;_l(W(Xn)vE)/G)ek,jp(s,ahﬂﬁ)d@

k=1 j=1
(2.97)

Approximating E[P(X|E,m)] by P(X|E,m)

Back to the approximation problem in Eq. 2.67, the inference function, £(X),
equals to BEL(¢) in Eq. 2.71 to Eq. 2.96. It is obvious to conclude that the infer-
ence on node X given evidence E and each Bayesian network my (s, 0x) in t}le

class M={my|k =1,..., K} is a multinomial nonlinear function in terms of
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and the distance between the observation and information insertion. For exam-
ple, in Fig. 2.10(c), information F} is inserted on node A and belief propagation
is observed at node X. The belief of node X can be written as

BEL(X)=a) P(X|B)--- ) P(A+1|A)r(A)A(X)Ar(B) (2.98)
B A

If we assume binomial distribution, w(A)={0, 1} stands for the fact that infor-
mation F; set the multivariate node A to a particular value. A(X) denotes
the configurations of node X at initial equilibrium state, e.g. A(X)={1,1}
and Ap(B) represents the belief impact of node F' onto node B. « is a nor-
malizing factor. Assume we have obtained a class of Bayesian networks ac-
cording to section 2.3, we describe the k-th Bayesian network with structure
s(Fig. 2.10(c)) and k-th parameter configurations ©y. Oy denotes a vector
of conditional probability distribution of each node given its parents in the
network, i.e. ek:{@I;(IB’ .. '791(6A+1)|A}‘ For example, @I;(IB is a conditional
probability table (CPT) and can be represented by a matrix as
PHX|B) PMX|B)
k = — —
O =( peixis) P (299
Each item in @’)“(l p is a random variable with constraint of summation of each
row in the matrix equals to 1, i.e. P(X|B)+P(X|B)=1 and P(X|B)+P(X|B)=1.

Thus, the belief inference in Eq. 2.99 can be described by the conditional prob-
ability table as

BEL(X) = m(A)NX)Ar(B)OK 5 Ofuss)a
= 7(ANX)\p(B) ﬁ@f‘ (2.100)

where n denotes the number of steps for belief to propagate from A to X as
shown in Fig. 2.10(c). It can be expanded as

BEL(X) = w(AANX)Ap(B) f[ CH
i=1

gn
— R AAX)AR(B) S (0505, (2.101)
m=1
where (0¥ ---60F),, denotes the m-th configuration of the element-wide product
T, ©F corresponding to the non-zero value in 7(A) and % is an element of
matrix @;?. Eq. 2.101 is a polynomial function in form of O(6™).
We construct a polynomial function f(X, N) to mimic the belief propagation
in Eq. 2.101 with arguments X and n.

M
FXn) =D (Xm)" (2.102)

m=1

where X is a vector of random variables, X={ X1, Xo,..., X5} and M=2". For
example,

L, f=X1+Xo
2, f =X+ X2+ X2+ X2
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In case of n=1, f is equivalent to one step forward/backward belief propagation
and is a linear function of X. Whereas in case of n=2, f is a multivariate
quadratic function.

In the following discussion, we study correlation between distributions of
function f and X and analyze the approximation accuracy of expected value of
function E[f(X)] by f(E[X]). The expected value of f can be written as

K M
E[f(X,n)] = %Z > o(xkn (2.103)
k=1m=1
and the function f of the expected argument can be written as
M K
FER ) = 3 (5 S (k)" (2.104)
m=1 k=1

In this study, we draw K samples of the vector X uniformly distributed in
[0,1]. We constrain X by setting its upper and lower bounds as {b; < X,, <
bolm =1,..., M} and vary the bound with restraints {0 < b; < by < 1}. The
values of E[f(X,n)], f(E[X],n) based on various settings of X are shown in
Fig. 2.12. In Fig. 2.12, the deviation between E[f(X)] and f(E[X]) increases
proportionally to n for the same set of X which demonstrate that message-
passing belief propagation scheme will raise the aberration in proportion to
the number of inference steps n (If we deem f as belief inference function in
Eq. 2.101).

On the other hand, the various distribution of X in the range of [0,1] may
affect the distance between E[f(X)] and f(E[X]). We investigate the values
of E[f(X)] and f(FE[X]) based on different distribution of X in [0,1] and nu-
merical results are shown in Fig. 2.13. From this result, we can conclude that
E[f(X)] and f(E[X]) approach to each other as the uncertainty of variables in
X decreases, i.e. with tighter constraints in the space of X. If we consider f as
belief inference function, the expected inference results converge to its approx-
imation with decreasing uncertainty on the parameter space. Therefore, if we
set up a tight enough constraints by applying our qualitative knowledge model
in the parameter space, it is probably reasonable to approximate the expected
inference results by Eq. 2.67.

2.4.2 Robust Analysis

From Eq. 2.41 and Eq. 2.53, it is clear that generalization accuracy largely
depends on the accuracy of the model uncertainty including the structure space
uncertainty, P(s|?) and the structure-dependent parameter space uncertainty,
P(0]s,9Q). In the bottom-up probabilistic modeling framework based on the
data, these two distributions are learned given the data and usually the item
with maximized score is selected as the learned model which are used in the
future generalization task, such as maximum a posterior probability, i.e. 5 =
argmax{P(s|D)} and f=argmax{P(f|s, D)}.

In the top-down probabilistic modeling framework, the model uncertainty is
constructed based on the qualitative prior knowledge and the qualitative knowl-
edge model which are defined in section 2.1. The qualitative prior knowledge are
feed into the qualitative knowledge model and the semantics of the knowledge
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Figure 2.12: E[f(X)] and {f(E(X))

are translated into a set of structural representations and a set of inequalities
in the structure-dependent parameter space by a vector of knowledge features.
Comparing to the bottom-up approaches, full Bayesian approach assigns non-
zero probability to a set of models which are consistent with the body of the
knowledge instead of taking single model for granted. Each model is used to
generate inference and the expected value of these inferences is calculated by
model averaging weighted with model uncertainty. In case of consistent qualita-
tive knowledge, the models are assumed to be uniformly distributed in the model
space which are confined by the set of structural representations and parameter
inequalities. Thus, the generalization accuracy of our top-down approach largely
depends on the accuracy of the constructed model uncertainty given the qualita-
tive prior knowledge, i.e. P(s|Q2) and P(0|s,2). Moreover, as we have discussed
in section 2.4.1, if we approximate the expected inference across model space
by the inference in the expected model, i.e. P(X]|s, E[f],)), the generaliza-
tion accuracy will be further adjusted by this linear /non-linear approximation.
Therefore, the quantitative inference accuracy is exclusively dependent on the
accuracy of the constructed model uncertainty and the approximation of the
inference. In section 2.4.1, we have studied the generalization accuracy given
consistent qualitative knowledge as a consequence of the inference approxima-
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Figure 2.13: E[f(X)] and f(E(X)) with various X

tion. In this section, we will discuss the generalization accuracy given consistent
qualitative knowledge as a consequence of the accuracy of model uncertainty.
Noisy information often exists largely in a qualitative statement. For example,
a domain expert may feel comfortable to express the probability of getting lung
cancer for a smoker likely ranges from 10% to 15%. In this statement, parameter
uncertainty on the conditional probability of lung caner given smoking is given
by the boundary information: [10%,15%]. However, the word likely express a
second-order uncertainty on the boundary information, i.e. uncertainty over
the bounded uncertainty. In this thesis, we refer this second-order uncertainty
to noise in the knowledge and use Gaussian distribution function to represent
this kind of noise. We perform our robust analysis in 2-dimensional parame-
ter space by varying the second-order model uncertainty to different extents.
Similar analysis can be carried out in higher-dimensional parameter space.

Robust Analysis in 2-Dimensional Parameter Space

Lets consider a simple qualitative hypothesis:A causes B. The structure can be
represented by s4 in Fig. 2.4(a) and the 2-dimensional conditional parameter
space is composed by Y = P(B|A) and X = P(B|A). Now, if we use the
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expected model to perform quantitative inference, the expected model with
averaged parameter can be described as m={s,,Y,X} where Y and X denote
the averaged value of P(B|A) and P(B|A). The distance between any two
parameters can be defined as

d= /(X1 — X2)2 + (Y1 — Y2)? (2.105)

Now, the expected inference given the evidence e = {A = 1} reads

E[P(B =1le, X,Y)] /X /YP(B =1le, X,Y)P(X,Y)dXdY

1 1
/ dX/ Ydy
0 0

= E[Y] (2.106)

Similarly, the expected inference given the evidence e = {A = 0} can be calcu-
lated as

E[P(B = 1]e, X,Y)] /X /Y P(B = 1]e, X,Y)P(X,Y)dXdY

1 1
/ XdX/ dy
0 0

= EB[X] (2.107)

Since P(B = 1|e, X,Y) is a linear function of X and Y in this case, the expected
inference equals to the inference in the expected model, i.e.

E[P(B =1|e,X,Y)] = P(B = 1|e, E[X], E[Y]) (2.108)

The Root Mean Square Error (RMSE) between the expected inference and the
actual inference can be described by the averaged distance between the inference
in expected model and the actual inference,

RMSE = E[ | Y (P(Ble. E[X], E[Y]) - P(Ble, X, ¥,))?]  (2.109)

€1,€2

where X; and Y; are the uniformly distributed actual parameters in the param-
eter space and e; = {A = 1}, e; = {4 = 0}. Substituting Eq. 2.106 and 2.107
into 2.109, we have

RMSE = E[\/(E[X] - X;)2 + (E[Y] - Y})?] (2.110)

Comparing Eq. 2.110 to Eq. 2.105, we can conclude that the RMSE of the
inference results is proportional to the averaged distance between the actual
parameters and expected parameter values, i.e.

RMSE = E[d(X;,Y;, E[X], E[Y))] (2.111)
The averaged distance between the actual parameter and the averaged param-

eter can be calculated by Monte Carlo method.

M
BId(X, Yi, BIX] EY)] ~ o Y (X, ¥i, B[X], EY)) (2.112)

=1
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In extreme case, there is no constraint imposed onto the parameter space, there-
fore, the mean parameters, F[X]=0.5 and E[Y]=0.5, are shown by the red cycle
in Fig. 2.14(a). Meanwhile, the actual parameter can be located anywhere in
the parameter space as shown by the blue cycles in Fig. 2.14(a). By applying
Eq. 2.112, RMSE=0.3863. In the second case, we translate the qualitative hy-

o

1)
o
Pr(B|A)

Pr(BIA)

Y=
Y=

0 0.5 1 0 DTS 1
X=Pr(B|~A) X=Pr(B|~A)

(a) Without Constraints (b) With Baseline Constraint
Figure 2.14: 2-Dimensional Parameter Space with Consistent Hypothesis

pothesis ” A causes B” by the baseline knowledge feature in section 2.1. A cause
B can be translated as A active makes B active more likely. A constraint is in-
troduced onto the parameter space by inequality Y; > X;. The mean parameters
can be calculated as Eq. 2.46 and 2.47 which equals to E[X] = £ and E[Y] = 2.
It is shown by the red cycle in Fig. 2.14(b) as well the actual parameters are
uniformly distributed across the up-triangular area of the parameter space as
shown by the blue cycles in Fig. 2.14(b). By applying Eq. 2.112, RMSE=0.30.
In the third case, we assume the qualitative hypothesis includes not only the
baseline information but also the extended information ratio. An straightfor-
ward example of such hypothesis can be " A causes B by more that Ry times
but less than Ro times”. Then, the parameter space is restrained by inequality
R1X <Y < RyX as shown in Fig. 2.15(a) and the mean parameters can be
calculated as

1 Y
EX] = P / ay [ xdx
P11
- (== 2.113
) 1)
and
ElY] = P/ YdY/ X
P 1 1
= (e — 2.114
3(R1 Rz) (2.114)
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Figure 2.15: 2-Dimensional Parameter Space with Consistent Hypothesis
(Cont.)

where P is the normalizing constant which satisfy

1 i
P/ dY/ "dx =1 (2.115)

0 L
Then, we have P:%. By substituting P into Eq. 2.113 and 2.114, we
derive the mean parameters F[X] = g”}ggj and E[Y] = 2 which is shown by

the red cycle in Fig. 2.15(a). The RMSE of the inference with mean parameters
to the actual inference can be computed by

M

1 2 R+ R,
MSE ~ — 34 [(5 = Yi)2 + (o — X,)? 2.11
RMS Mi_l\/(3 )+(3R1R2 ) (2.116)

If we further assume the hypothesis is noise-free, i.e. the actual parameters
are uniform distributed in the constrained area of parameter space exclusively,
the RMSE is a function of R; and Rs. We compute the averaged RMSE by
varying R; and Rp in the range [1,80] and the result is shown in Fig. 2.16(a).
When Ry = 1 and Ry = oo, the constrained area of parameter space set by
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Ry and Ry converge to the up-triangular area in the second case as well as
EX] = % and RMSE = 0.30. No parameters are sampled in the area where
Ry > R since it violates the body of the qualitative hypothesis. Thus, the
averaged RMSE in this area is set to zero. The mean RMSE of the lower-triangle
parameter space in Fig. 2.16(a) equals to 0.23. If the hypothesis is noisy, i.e. the

0.
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(a) Varying R1 and Ra (Noise-free Hyp.) (b) Varying Noise Strength o (R1=2,R2=3)
Figure 2.16: RMSE Distance Measure with Ratio Constraint

actual parameters may not be exclusively distributed in the area constrained
by the inequality, instead, the actual parameters are guided by a noisy version
of the inequality. We represent the noise by a Gaussian distribution over the
constrained parameter space. The noisy constraint can be described as

(R1 +0N1)X <Y < (Ry+0N2)X (2.117)

where N7 and Ny represent samples from the Gaussian distribution N(0,1)
with zero mean and unit variance and ¢ is a constant representing the noise
strength. We first draw a vector of noise N = {N;|i = 1,..., K} from N(0,1).
For each N;, we construct the inequality constraint in Eq. 2.117 respectively
and sample M parameters in the restrained parameter space. Thus, we obtain
a set of parameter samples {(X,,, Y )|m =1,..., K x M} which represent the
actual parameter distribution confined by the noisy qualitative hypothesis. In
Fig. 2.15(b) to Fig. 2.15(d), the noisy actual parameter samples with R;=2 and
Ry=3 are drawn with various noise strength. We calculate the averaged RMSE
in these figures respectively as shown in Fig. 2.16(b). We can see that the average
RMSE distance between actual inference and the expected inference degrade
proportionally to the strength of the Gaussian noise . When o <0.5, there
are no parameter samples located in the lower-triangle of the parameter space,
i.e. the actual parameter samples are consistent with the body of qualitative
hypothesis ” A causes B”, and in these cases RMSE degrades smoothly with the
increasing o. However, when 0=0.5, a subset of the actual parameter samples in
Fig. 2.15(d) are drawn from the lower-triangle of the parameter space which are
inconsistent with the above hypothesis and the RMSE degrades dramatically
thereafter.

In the fourth case, we assume the qualitative hypothesis includes not only
the baseline information but also the extended information difference. A simple
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Figure 2.17: 2-Dimensional Parameter Space with Consistent Hypothesis
(Cont.)

example of such hypothesis could be ” A causes B by more than Dy but less than
Dy”. Then, the parameter space is restrained by inequality X + D; <Y <
X + D5 as shown in Fig. 2.15(a) and the mean parameters can be calculated as

1-Do X+Do 1-D; 1
E[X] = P{ / XdX dy + / XdX Y’}
0 X+Dq 1—-D> X+Dy
(2.118)
and
1—Do X+Do 1-D; 1
E[Y] = P{ / X Ydy + / X / Yy}
0 X+D; 1-D> X+D;
(2.119)

where P is the normalizing constant which satisfy

1—Do X+Do 1-D; 1
P{/ dX/ dY+/ dx dy} =1 (2.120)
0 X+D; 1—Dy X+D;
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Then, we have P=

(D27D1)(§7D17D2) . By substituting P into Eq. 2.118 and 2.119,

we derive B[X] = g0=P0 02D ang Bly] = 2Pt DiPatla) pien i
shown by the red cycle in Fig. 2.15(a). The RMSE of the inference with mean

parameters to the actual inference can be computed by

RMSE ~

1 M 3 — (D% + D1Dy + D3) ) (1—D1)3 — (1 —Dy)? ]
M;\/( 32— D1 - D) - +(3(2—D1—D2)(Dz—D1) - %)

(2.121)

If we further assume the hypothesis is noise-free, i.e. the actual parameters are
uniform distributed in the constrained area of parameter space exclusively, the
RMSE is a function of Dy and Ds. We compute the averaged RMSE by varying
D; and Ds in the range [0,1] and the result is shown in Fig. 2.18(a). When
Dy = 0 and Dy = 1, the constrained area of parameter space set by D; and

Dy equals to the up-triangular area in the second case as well as E[X] = %,
E[Y] = 2 and RMSE = 0.30. No parameters are sampled in the area where

Dy <0 and/or Dy < 0 since it violates the body of the qualitative hypothesis.
Thus, the averaged RMSE in this area is set to zero. The mean RMSE of the
lower-triangle parameter space in Fig. 2.18(a) equals to 0.29. If the hypothesis
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Figure 2.18: RMSE Distance Measure with Dif Constraint

is noisy, i.e. the actual parameters may not be exclusively distributed in the
area constrained by the inequality, instead, the actual parameters are guided
by a noisy version of the inequality. We represent the noise by a Gaussian
distribution over the constrained parameter space. The noisy constraint can be
described as

where N7 and N represent noise samples from the Gaussian distribution N (0, 1)
with zero mean and unit variance and ¢ is a constant representing the noise
strength. We first draw a vector of noise N = {N;|i = 1,..., K} from N(0,1).
For each N,;, we construct the inequality constraint in Eq. 2.122 respectively
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and sample M parameters in the restrained parameter space. Thus, we obtain
a set of parameter samples {(X,,, Y )|m =1,..., K x M} which represent the
actual parameter distribution confined by the noisy qualitative hypothesis. In
Fig. 2.17(a) to Fig. 2.17(d), the actual parameter samples with D;=0.3 and
Dy=0.4 are drawn with various noise level. We calculate the averaged RMSE in
these figures respectively as shown in Fig. 2.18(b). We can see that the average
RMSE distance between actual inference and the expected inference degrade
proportionally to the strength of the Gaussian noise 0. When o <0.2, there
are no parameter samples located in the lower-triangle of the parameter space,
i.e. the actual parameter samples are consistent with the body of qualitative
hypothesis 7 A causes B”, and in these cases RMSE degrades smoothly with the
increasing 0. However, when 0=0.2, a subset of the actual parameter samples in
Fig. 2.17(d) are drawn from the lower-triangle of the parameter space which are
inconsistent with the above hypothesis and the RMSE degrades dramatically
thereafter.

1 1
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o
Pr(BIA)
o
o1
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Y:

0 05 1 0 0:5 1
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0=0.1) 0=0.2)

Figure 2.19: 2-Dimensional Parameter Space with Consistent Hypothesis
(Cont.)

In the last case, we assume the qualitative hypothesis includes not only the
baseline information but also the boundary information. A simple example of
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such hypothesis could be ” A causes B, the measure of B when A active is more
than By but less than Ba, the measure of B when A is not active is more than B
but less than BS”. Then, the parameter space is restrained by a set of inequality
X <Y,B; <Y < By and Bf < X < Bj. If B > B), then restrained area
of parameter space are shown in Fig. 2.19(a) and the mean parameters can be
calculated as

B} Bs
EX] = P / XdX day
1 By
(2.123)
and
B} B
E[Y] = P / dX Ydy
B! By
(2.124)
where P is the normalizing constant which satisfy
B} Bs
P/ dX dy =1 (2.125)
B! B

Then, we have P:(BQ—BJW' By substituting P into Eq. 2.123 and 2.124,

we derive E[X] = M and E[Y] = 21582 which is shown by the red cycle
in Fig. 2.19. The RMSE of the inference with mean parameters to the actual
inference can be computed by

M
1 (Bi+By) ., BL+B) .,
RMSE ~ ;\/(2 Yi? 4 (g - Xa) (2.126)

If we further assume the hypothesis is noise-free, i.e. the actual parameters are
uniform distributed in the constrained area of parameter space exclusively as in
Fig. 2.19(a), the RMSE is a function of By, Bs, Bj and Bj with the inter-relation
of By > By > B} > Bj. We compute the averaged RMSE by varying B;, Bs
and B} and Bj in the range [0,1]. For demonstration purpose, we reduced the
number of variables by clamping B; and Bj (By = Bj) and set Bj = 0. Thus,
the size (5) of the constrained area is exclusively controled by Bj and By, i.e.

S = (B, — B,) % (Bs — By) = By # (Bs — Bb). (2.127)

and the result is shown in Fig. 2.20(a). No parameters are sampled in the area
confined by By, B2, Bi and Bj since it violates the body of the qualitative
hypothesis. Thus, the averaged RMSE in this area is set to zero. The mean
RMSE of the lower-triangle parameter space in Fig. 2.20(a) equals to 0.15. If the
hypothesis is noisy, i.e. the actual parameters may not be exclusively distributed
in the area constrained by the inequality, instead, the actual parameters are
guided by a noisy version of the inequality. We represent the noise by a Gaussian
distribution over the constrained parameter space. The noisy constraint can be
described as

(Bl —+ O'Nl)

SY (BQ“‘UNQ)
(B +0N)) < X

(By + o N3)
By < B (2.128)

<
<
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Figure 2.20: RMSE Distance Measure with Dif Constraint

where N1, No, N{ and NJ represent noise samples from the Gaussian distri-
bution N(0,1) with zero mean and unit variance and o is a constant rep-
resenting the noise strength. It is obvious that the model uncertainty is af-
fected by the noise which controls the wideness of the constrained area in the
parameter space, i.e. |By — Bi| and |Bj — Bj|. We first draw a vector of
noise N = {N;|i = 1,...,K} from N(0,1). For each N;, we construct the
inequality constraint in Eq. 2.128 respectively and sample M parameters in
the restrained parameter space. Thus, we obtain a set of parameter samples
{(Xm, Ym)|m =1,..., K x M} which represent the actual parameter distribu-
tion confined by the noisy qualitative hypothesis. In Fig. 2.17(a) to Fig. 2.17(d),
the actual parameter samples with B1=0.8, B,=0.9, B{=0.3 and B}=0.4 are
drawn with various noise level. We calculate the averaged RMSE in these fig-
ures respectively as shown in Fig. 2.20(b). We can see that the average RMSE
distance between actual inference and the expected inference degrade propor-
tionally to the strength of the Gaussian noise 0. When o <0.2, there are no
parameter samples located in the lower-triangle of the parameter space, i.e.
the actual parameter samples are consistent with the body of qualitative hy-
pothesis ” A causes B”, and in these cases RMSE degrades smoothly with the
increasing o. However, when 0=0.2, a subset of the actual parameter samples in
Fig. 2.17(d) are drawn from the lower-triangle of the parameter space which are
inconsistent with the above hypothesis and the RMSE degrades dramatically
thereafter.

By comparing the averaged RMSE given the baseline parameter constraint
and different extended parameter constraints in Fig. 2.16(a), 2.18(a) and 2.20(a),
we conclude that the baseline feature provide a primitive and rough constraints
on the model uncertainty which results in relative low generalization accuracy,
but it is the most robust constraint among the others. Moreover, boundary fea-
ture gives the tightest constraints on the model uncertainty which generate high
generalization accuracy, however, it is very sensitive to the noisy information.
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2.5 Empirical Study

In this section, we apply the proposed method to the real-world applications
where qualitative statements of the molecular interactions in breast cancer bone
metastasis and breast cancer cell proliferation are extracted from biological pub-
lications. We use our knowledge model to translate these statements into a set
of constrained class of Dynamic Bayesian networks to predict incidence of bone
metastasis and proliferation rate respectively.

2.5.1 TGFf(F-mediated Breast Cancer Bone Metastasis Net-
work

Breast Cancer Bone Metastasis (BCBM)

Kang and his colleagues, [60], have identified several key genes responsible
for promoting breast carcinoma metastasis to bone. Among this function-
ally overexpressed gene set, a subset was further investigated by transfection
studies, namely, matrix metalloproteinase 1 (MMP1), interkeulin 11 (IL11), a
chemokine receptor for SDF-1 (CXCR/) and connective tissue-derived growth
factor (CTGF). In addition, Osteopontin (OPN) was considered in the study due
to its consistent overexpression in highly metastatic cell lines derived from MDA-
MB-231 cancerous cells. The genes were found to promote bone metastasis in
a cooperative manner. Combined transfection of various gene combinations out
of these genes into the parental MDA-MB-231 human breast carcinoma cell line
resulted in enhanced but different metastatic patterns comparing to the parental
MDA-MB-231 populations. Besides these genes, transforming growth factor-(3
(TGFB) which is abundantly stored in bone matrix [75,92], is released during
osteolysis which supports a vital cycle of breast cancer bone metastasis [75].
The breast cancer bone metastasis(BCBM) network is shown in figure 2.21(a).

In addition to revealing these molecular relationships, the bone metastatic
activity of the different transfected cell lines could be quantified by injecting
them into a mouse model and evaluating the evoked incidence of bone metasta-
sis over time. The Kaplan Meier curves for bone metastatic activity are plotted
in figure 2.24. In this example application, we aim at predicting the quantita-
tive values of bone-metastatic activity from the set of relationships reflected in
figure 2.21(a).

Qualitative Knowledge Model of the BCBM Network

The original biological observation statements from Kang are summarized in
the appendix B. We could mainly draw the following conclusions from these
qualitative statements:

1. Osteolytic bone metastasis in breast cancer increases the level of TGF(
since abundant TGF( is released from bone matrix during the osteolytic
bone metastasis.

2. TGFP activates CTGF and IL11 which forms a positive feedback loop in
bone metastasis formation.

3. CXCR4, CTGF, IL11, OPN and MMP1 cooperatively promote osteolytic
bone metastasis which forms synergic effects on bone metastasis in ad-
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dition to a positive effect of each individual gene in causing osteolytic

metastasis.

These statements can be translated into probability inequalities by applying
the knowledge model introduced in the last section: They are of the type single
positive influence and plain synergic joint influence. The first two statements
can be translated into a set of probability inequality constraints by definition

3.2

P(TGFB|BM)
P(IL11|TGFB)
P(CTGF|TGFp)

2>
>
>

P(TGFB|BM)
P(IL11|TGFP)

P(CTGF|TGFR) (2.129)

Weuse IT = {CXCR4,CTGF,IL11,OPN, M M P1} to denote the parent nodes
of bone metastasis. If we further assume that these five nodes are pair-wise
symmetric to the child node, then we can translate the last qualitative statement
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into probability inequality constraints by definition 3.5

P(BM|rs) > P(BM|r) > P(BM|ms) > P(BM]ms) > P(BM|ry) > P(BM]n)

(2.130)
where m,, denotes the set of all joint parent states with exactly n parents be-
ing active and P(BM|r,) represents the subset of CPT entries with n active
parents. The set of inequalities in Eq. 2.129 and Eq. 2.130, denoted by A,
are derived from the set of statements about relationships which is a part of
the total qualitative knowledge available in [60]. In addition to these qualita-
tive statements we also make use of a set of qualitative statements on the gene
expression levels in II, which provide their prior probability. Qualitative state-
ments about the gene expression levels of (CTGF), (CXCR/), (MMP1) and
(IL11) can be extracted from the gene expression profiles in figure 2.22 [60].
From this, we could conclude the following qualitative statements on the initial
expression levels of gene CXCR4, OPN and MMP1 as

CXCR4=1.0
0.5<CTGF < 1.0
MMP1 <IL11 < CTGF (2.131)

By using the fact that expression levels range between 0 and 5 in this experiment,
we can obtain statements about the activation probabilities of these genes as

P(CXCR4) =0.2;
0.1 < P(CTGF) < 0.2;
P(MMP1) < P(IL11) < P(CTGF). (2.132)

These probability inequalities are referred to as ®. The complete qualitative
knowledge €2 translated from the qualitative statements on causal relations be-
tween molecules and phenotypic entities in [60] is given by Q = {A, ®}.

Dynamic Bayesian Network Structure for BCBM

A cyclic graphical representation of the BCBM molecular network is given in
figure 2.21(a) [60]. It reflects the graph structure that is consistent with the
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statements analyzed in the previous section. The curve above BM indicates a
plain synergic joint influence between its parent nodes.

Since the BCMB biological network is cyclic, we next created the corre-
sponding DBN model, which is shown in figure 2.21(b). The black dotted links
between two nodes indicate that their states are time invariant, i.e. probabili-
ties of these genes being overexpressed are time invariant. The resulting DBN
is uniquely defined by its structure and parameters.

DBN Parameter Space

For the fixed DBN structure used, the model uncertainty is equivalent to model
parameter uncertainty. It is given by the parameters of the four CPTs listed
in table 2.5 and table 2.6, which are encoded in the network graph structure.
The total vector of parameters for the conditional probabilities is given by 6 =
(8,7, A, ¢, €). The parameter sets (3,7, A, ¢) are derived from the statements A,
i.e., they are constrained by the probability inequalities Eq. (2.129) and (2.130).
& refer to constraints on the expression values of the genes. They are derived
from ® and are given by Eq. 2.132.

According to A defined in Eq. 2.129 and Eq. 2.130, the model uncertainty
on CPTs can be expressed as

Bo < B Y% <M Ao <\ (2.133)
and
(674} S (e%] S (6] S Qs S Qy S (6751 (2.134)
where
ap = {G}
a1 = {¢1,¢2,4,G8,Ce}
az = {5,050, C10, 125 €17, (18, C20, G4 }
as = {7, ¢, (35 Cia, G195 Co1, 22, G255 26, Cos }

as = {(i5,(23,C27,C20,C30}

Inference of Bone Metastatic Activity

Given qualitative knowledge 2 = (A, ®) in Eq. 2.129, 2.130 and 2.132, we now
apply Bayesian inference to predict the incidence of bone metastasis on the basis
of the qualitative knowledge by model averaging. We try to infer in silico, what
is the likelihood of bone metastasis (node BM) for different transfectant cell
lines, in light of the body of qualitative knowledge used to construct the Bayesian
model class. The transfection of a gene X corresponds to a measurement or
piece of evidence FE in the model. Transfection of X means that it is constantly
overexpressed, hence we obtain as evidence E: P(X = 1) = 1 for all time steps
of the dynamic Bayes net simulation.

Based on the evidence of having various transfectants E, we wish to infer
the resulting metastatic activity, P(BM|E,Q) using Eq. 2.97. We do so once by
making use of the statements about relationships only, A, and once by taking
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(a) CPT of TGFSB given Bone

Metastasis (b) CPT of CTGF given TGFg
BM | 3,=P(TGFB [BM)  TGFp | v;=P(CTGF|TGFp)
0 /80 0 ’}/O
1 ﬁl 1 Y1

(c) CPT of IL11 given TGFpS3
TGFg ‘ A;=P(IL11|TGFp)
0 Ao

1 A1

Table 2.5: CPTs for Single Positive Influence links

CXCR4 | CTGF | IL11 | OPN | MMP1 | ¢;=P(BM|CXCR4,CTGF,IL11,0PN,MMP1
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Table 2.6: CPT of Bone Metastasis given related genes

into account the full statement set €. In the first case, we marginalize over the
full range of all gene expression levels not clamped by an in silico transfection
experiment. In the second case we marginalize over gene expression values only
in the range specified in Eq. 2.132.

Since the model parameter space 8 = (3,7, A, ¢, §) is rather high-dimensional,
B,7, A €10,1]%, ¢ € [0,1]*? and £ € [0,1]°, we use Monte Carlo sampling to ap-
proaximate the integration. We use N = 500,000 model samples in the Monte
Carlo simulation. For each simulation, the selected Bayesian model is iterated
over time until the posterior probability of bone metastasis converges.

In-silico Prediction on Bone Metastasis

Seven in silico transfection experiments are performed in which certain genes out
of probe gene set (CXCR4,CTGF,IL11,0PN,MMP1) in MBA-MD-231 human
breast cancer cell are manually transfected to be overexpressed. We show the
convergence of model uncertainty on parameter space by Monte Carlo simulation
based on qualitative knowledge.

500,000 Monte Carlo samples are simulated and for each sample 100 DBN it-
erations were performed. The total simulation time was approximate 10 minutes
on a PentiumIV PC. Figure 2.26 shows how the empirical mean of metastastic
activity of ATCC cell as calculated with 100 DBN iterations convergence with
the number of Monte Carlo samples. Figure 2.23 shows how the mean estimate
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Figure 2.23: Bone Metastasis Prediction with Qualitative Knowledge

of bone metastatic activity evolves over time in the DBN simulation. The time
course of each simulation is labeled with the overexpressed transfectant genes’
names in the figure. The simulation with the non-transfectant parental ATCC
cell is labeled ”ATCC”. When comparing figure 2.23 and figure 2.24, we can
see that our simulations produce reasonable quantitative predictions on bone
metastasic activity under each biological experimental setting. Table 2.7 sum-
marizes the simulated and measured values for the bone metastatic activities
of different cell lines. The results are closer to the true values, when additional
information about ranges of gene expression levels is taken into account (€ used,
fig. 2.23(a)) than with statements about relationships alone (only A used, fig.
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2.23(b)) Hence, the beauty of this approach is that it seems to allow realistic
quantitative predictions by qualitative prior knowledge alone.

2.5.2 TGF(-mediated Mammary Epithelial Cell Cytosta-
sis Program and Breast Cancer

We apply our method to investigate the complex function of transforming growth
factor@ (TGFp) in controlling the mammary epithelial cell proliferation [11].
However, tumor cells which are relieved from TGF( growth constraints might
then overproduce this cytokine to create a local immunosuppressive environ-
ment that fosters tumor growth and exacerbates the invasiveness and metas-
tasis [12,102]. In the first experiment, we model the core representation of
the molecular interaction network of TGF( cytostatic program with dynamic
Bayesian model and perform in-silico quantitative prediction on the probability
of cell growth given TGFG. We showed that TGF( initially acts as growth
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suppressor in normal cells based on its expression level in the cell. In the sec-
ond experiment, we predict the probability of cell growth in breast cancer with
specific loss of TGF cytostatic response in the pathway.

TGF (-mediated Cytostatic Program Modeling

TGFJ can activate cytostatic gene responses in G1 phase and impede the com-
pletion of the ongoing cell cycle. TGF/S3 responses in human epithelial cell
lines from skin, lung and mammary gland originals have revealed a shared cyto-



2.5 Empirical Study 82

Converge of Bone Metastasis Activity over 100 Iterations

1
0.8
~ ATCC
P
8 0§
o
E|
g
c
g 04
E
0.2
0 0 250000 500000

Monte Carlo Sampling Size

Figure 2.26: Convergence of Bone Metastasis Prediction by Monte Carlo Simu-
lation

Experiments Prediction with ¢ Prediction w/o £ True Values
ATCC 35% 50% 30%
IL11 44% 60% 38%
CTGF 44% 60% 54%
OPN 45% 60% 39%
CXCR4 52% 60% 59%
IL11&OPN 55% 70% 66%
IL11&OPN&CTGFE 65% 78% 88%
IL11&OPN&CXCR4 72% 78% 89%

Table 2.7: Numerical Prediction of Bone Metastasis in different simulations

static program that minimally includes activation of the cyclin-dependent kinase
(CDK) inhibitors, p15, p21 and p27 and repression of the growth-promoting
transcription factor c-MYC. Several feedback loops serve to integrate this pro-
gram and providing tight control and robustness signals. A set of qualitative
hypotheses with regarding to this network can be extracted from a group of
publications [17,22,46,85,90,93,97,98,102] as Q = {Q;]i = 1...9} where

1. Q1: CDK2, CDKJ and CDK6 drive progression through the G1 phase of
the cell cycle. In G1, CDKJ/6 activation requires association with D-type
cyclins whereas cyclin E binding activates CDK2. [102],

2. Qo: The cyclin-dependent kinase inhibitor p15, is induced by treatment
with TGFS, suggesting p15 may act as an effector of TGFB-mediated cell
cycle arrest. [46];

3. Q3: TGFp elevates expression of CDK//6-specific inhibitor p15 and in-
duces the release of p27 from CDK4 and CDKG6 complex and this release
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concides with the increased binding of p27 from CDKJ to CDK2 in vivo,
suggesting that the the release of CDK/-bound p27 in TGF( treated cells
in caused by the surge in p15 levels. [90];

4. Qy: TGEB can induce the cyclin-dependent kinase inhibitor p21 through
a p53-independent pathway. [22];

5. Q5: TGFB can induce the cyclin-dependent kinase inhibitor p27 which
associates with cyclinE-CDK2 complez in vivo and prevents their activa-
tion. [85, 95];

6. Qg: A complex containing Smad3, E2F4/5, DP1 and p107, in response to
TGFB, associates with Smad4 and recognize a composite Smad-E2F site
on ¢-MYC for repression. [17];

7. Q7. TGFQ signalling prevents recruitment of c-MYC' to the p15 transcrip-
tion initiator by Miz-1. Two separate TGF(-dependent inputs keep tight
control over p15 activation: Smad-mediated transcription and relief of re-
pression by c-MYC. [98];

8. Qg: Transcript factor c-MYC' is directly recruited to the p21 promoter by
the DNA-binding protein Miz-1. This interaction blocks p21 induction by
p58 and other activators. [97];

9. Qg: TGFp activates Ras and ErbB2 which induces formation of prolifera-
tive structures in noninvasive early stage mammary epithelial lesions. [99]

Based on 2, the dynamic Bayesian network of TGF3-mediated cytostatic
program can be shown in Figure 2.27(a) and can be unrolled over the time into
a serie of 2TBNs as shown in Figure 2.27(b). In this experiment, we describe the
compact representation of the cytostatic network with the core molecules, thus,
smad proteins and other co-expressor, e.g. E2F4/5, p53, p107, p300, ID1, ID2
and Miz-1 [17,22,46,85,90,93,97,98,102] are excluded for simplicity. However,
for later study, these molecules can be consistently integrated [8,10].

The parameters are described by the conditional probability tables (CPT)
in Table 2.8 and 2.9. According to the qualitative knowledge model [13,15], the
parameter o can be modeled by Single Negative Influence, i.e. ag > a1, and o
can be modeled by by Single Positive Influence, 01 > oy and parameters (3,7)
can be described by Mized Joint Influence, i.e.

Bo > B1,P2 > 33,02 > Bo
B3> B1,% = 71,72 =3
Y2 2 V0,73 =M (2.136)

The parameters (\,p) can be modeled by Plain Synergy with Positive Individual
Influence, i.e.

P3 P1

pPr=8 Ps p =N P2 ¢ = Po
Pe P4
A3 A1

AM>9 As 220 A 22>

)\6 A4
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(a) (b) o
TGFS ‘ Pr(C-MYC|TGEFp) TGFg ‘ Pr(RAS|TGF()
0 g 0 o)
1 a7 1 g1
(c) v
TGFg ‘ c-MYC ‘ Pr(p21|TGF3,c-MYC)
0 0 7o
0 1 "M
1 0 Y2
1 1 Y3
(d) B
TGFg ‘ c-MYC ‘ Pr(pl5|/TGF3,c-MYC)
0 0 0o
0 1 B
1 0 B2
1 1 B3
(e) n
cyclinE ‘ CDK2 ‘ p21 ‘ p27 ‘ Pr(cyclinE-CDK2|cyclinE,CDK2,p21,p27)
0 0 0 0 o
0 0 0 1 m
1 1 1 1 s
() A
TGFS | p1b | p27-cyclinD-CDK46 | Pr(p27|TGF8,p15,p27-cyclinD-CDK46)
0 0 0 Ao
0 0 0 A1
1 1 1 A7
(8) ¢
cyclinD | CDK46 | p27 | pl15 | Pr(p27-cyclinD-CDK46|cyclinD,CDK46,p27,p15)
0 0 0 0 b0
0 0 0 1 ®1
1 1 1|1 b1
(h) 6
cyclinD ‘ CDK46 ‘ pl5 ‘ p21 ‘ p27 ‘ Pr(cyclinD-CDK46|cyclinD,CDK46,p15,p21,p27)
0 0 0 0 0 0o
0 0 0 1 0 01
1 1 1 1 1 031

Table 2.8: Parameters of TGF(-mediated Cytostatic Program
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e

(b) 2TBN

Figure 2.27: Structure of TGF-mediated Cytostatic Program

The parameters (6,¢,n7) can be defined by a set of constraints hierarchically.
Firstly, the parameters can be modeled by Mized Joint Influence since there
are multiple input signals to activate and to repress the molecules CyclinD-
CDK46,CyclinE-CDK2 and p27-CyclinD-CDK/6 from their parents. There-
fore, the parameters can be classified according to the number of repressors
being overexpressed. Secondly, the parameters in each class can be further de-
fined by Plain Synergy with Positive Individual Influence based on the number
of activators being overexpressed. For example, the parameter n can be firstly
classified into four classes of parameters based on the configuration of p21 and

p27, i.e. Go={no,n4,m8, M2}, G1,1={m.,m5,m9, M3}, G1,2=1{n2,M6,M10, M4} and
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cyclinE-CDK2 | cyclinD-CDK46 | RAS | Pr(CellGrowth|cyclinE-CDK2,cyclinD-CDK46,RAS)

0 0 0 0
0 0 1 P1
1 1 1 p7

Table 2.9: Parameters of TGF/-mediated Cytostatic Program(Cont.)

Ga={n3,m7,m1,Mms5}. If we assume the inhibitive effects of p21 and p27 on the
molecular CyclinD-CDK46 are symmetric (In general, it is possible to model
the unsymmetrical effects), we could merge the parameters of G171 and G2
into one class, G;. With the same configuration of the parents, the parameters
across the classes can be constrained as

No = M1,2 N4 2 Ms.6 M8 = 19,10 M2 2 113,14
n,2 = 13 75,6 = 74 79,10 = 7111 713,14 = 115
(2.137)

Secondly, within each class, the parameters can be further classified by the
number of activators being overexpressed as

N4,8 2 1055,6,9,10 = 11,2,M7,11 = N3
M2 > Na8,M3,14 = 15.6,9,10, 115 = 17,11 (2.138)
The constraints in Eq. 2.137 and Eq. 2.138 can be best illurstrated by a tree as

shown in Figure 2.28(a). Similarly, ¢ and 6 can be modeled as Figure 2.28(b)
and 2.28(c) where the edge indicates the greater than operator.

n n,——N 0— 0, —8 — 0
f r f ¢15 4)7‘11‘134’4)3‘5‘94'0)1 1 r‘ ’[‘ ‘1
L e N S—— ‘ ‘ ‘ ( GB“EHemw‘m;’OWT‘Z“ZZHOTZS
f I o 0. .0 .0 [
e " 02 w0 R
(a) Tree of n (b) Tree of ¢ (c) Tree of 0

Figure 2.28: Parameter Tree of TGF3-mediated Cytostatic Program

The inference on cell growth is computed for each possible model with pa-
rameters [I={«, o, v, p, ¢, 5, n, 6, A\} by Eq. 2.97. However, since the parameter
space is rather high dimension, we can use Monte Carlo methods to approxi-
mate the integration. For each parameter in II,we simulate K=500,000 samples
constrained by Eq. 2.136 to 2.137 and Figure 2.28(a) to 2.28(c), and these CPT
samples together with the structure s in Figure 2.27(a) define a consistent model

class, M = {mk(s’akafykapk7¢ka/6k>nk30k7)‘k)|k = 13 . aK}

TGF(-mediated Cell Growth Control

It has been long observed that TGF( acts as tumor suppressor in normal cells
and low-grade tumorigenic cells with inactivated Ras pathway. In this experi-
ment, we predict the probability of cytostasis at steady state, i.e. at the con-
vergence of DBN belief propagation, by varying the expression level of TGF(
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Figure 2.29: Parameter Tree of TGFg-mediated Cytostatic Program

as shown in Figure 2.29(a).
dose-dependent process, i.e.
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We showed that i)The cell growth by TGFgS is
increasing TGF( expression level monotonically
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reduces the probability of cell growth and vice-versa; ii) The cell growth control
by TGFE are cell context-based process in that different cell lines with distinct
expression level of X demonstrate various cell growth capability; iii)Based on a
specific cell context, reducing the TGF( expression level which is equivalent to
the loss of the TGF( responses with mutated effectors along the pathway may
cause the turnover of original normal cells with dominant cell growth(CG) con-
trol signals, i.e. P(CG)>P(CG), to low-grade tumorigenic cells with dominant
cell growth signals, i.e. P(CG)<P(CG).

Loss of TGF( Responses in Breast Cancer

Loss of growth inhibitory responses to the TGF( in cancer cells may results
from mutational inactivation of TGFf3 receptors or the Smad transcript fac-
tors. In breast cancer, however, it has been identified that the loss of TGF3
growth inhibition often occurs without a loss of these signaling factors. In
stead, the repression of a key cell growth promotion component c-MYC is se-
lectively lost [16]. In this experiment, we predict the cell growth probability
of various breast cancer cell lines with the loss of c-MYC repression by TGF(
and hyperactive oncogenic Ras pathway. We assume the rise of tumorigen-
sis is caused by unrestricted cell growth which is true for most epithelial can-
cers [107]. Three breast immortalized and tumorigenic cell lines, MCF-10A,
MCF-10A (Ras/ErbB2) and MDA-MB-231 with distinct response of ¢-MYC re-
pression to TGF( and Ras oncogenic transfection [16] are simulated. The loss
of ¢-MYC repression in MCF-10A(Ras/ErbB2) and MDA-MB-231 cells can be
modeled by clamping the prior probability of ¢-MYC to overexpress, i.e. P(c-
MYC)=1. The hyperactivity of the Ras pathway in MDA-MB-231 cells and
MCF-10A (Ras/ErbB2) cells can be represented by clamping the prior probabil-
ity of Ras to overexpress, i.e. P(RAS)=1. Since the level of X are unknown, we
represent this uncertainty by varying the prior probability of cell cycle control
molecules X between 0 and 1, i.e. P(X)€[0,1], to reflect the broad distinction of
the cell context. We simulated the minimum/maximum bounds on the proba-
bility of cell proliferation under two circumstances: i)The ¢-MYC repression by
TGF( is preserved and Ras/ErbB2 are not transfected to overexpress which is
the case of normal human mammary epithelial cells MCF-10A; ii)The ¢-MYC
repression by TGF/ is lost and Ras/ErbB2 are transfected to overexpress which
is the case of MCF-10A(Ras/ErbB2) and MDA-MB-231 cells. The simulation
results are shown in Figure 2.29(b). In case i), depending on P(X), the prob-
ability of cell proliferation ranges in [19%-41%] whereas in case ii), it results
in [50%-74%]. It has been observed that the overall expression level of cyclinD
and cyclinE in MCF-10A are undetectable [61,116] which indicates that P(X) of
MCEF-10A cell can be sufficiently close to zero, thus, its simulated proliferation
probability shall be close to the minimum bound of case i). In contrast, in MDA-
MB-231 cells, expression level of cyclinE is only moderately overexpressed [61]
and cyclinD relatively overexpress [6,116] which implies that P(X) is somewhere
between the maximum express level(1) and the minimum expression level(0),
thus the simulated proliferation probability of MDA-MB-231 cells is between
50% and 74%; For demonstration, we simulated with P(X)=0.5 which results
in 63% cell proliferation. In MCF-10A (Ras/ErbB2), the overexpression of cy-
clinD is strongly induced by ErbB2 and the Ras significantly stimulates the
cyclinE/CDK2 activity [6,51] which presumptively indicates that P(X) can be
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sufficiently large comparing to 1, thus, its simulated proliferation probability
shall be close to the maximum bound of case ii). For comparison, the observa-
tions on the cell proliferation probability formed by these cell lines are shown
in Figure 2.29(c). [16]

2.6 Summary

In this chapter, we formally proposed the knowledge-driven probabilistic net-
works modeling framework. We formulated the qualitative knowledge model and
use it to capture the structural dependence and influence between the variables
under concern and translate the cause-effect relationship described by the qual-
itative statements into a set of inequality constraints over the model parameter
space. The structural and parameter constraints eventually forms the model
piror distribution. In this way, we can build a class of (Dynamic) Bayesian
networks which are consistent with the body of the qualitative prior knowledge.

We employ full Bayesian approach to calculate the average quantity of in-
terest, e.g. inference, over the class of Bayesian networks. The integral over
model structure space and parameter space can be computed by Monte Carlo
integration techinique with Accept-Reject algorithm. We sampled the model
uniformly from the model space and select those which are consistent with the
structural and parameter constraints. One computational difficulty here is that
in order to get a "good” approximation to E[P(X|E, )], we ususally sample a
large amount of valid models and compute the inference in each of them which
causes extremy computation complexity. Hereby, we have proposed an sim-
ple and efficient solution to this problem, i.e. we approximate mean inference
over the model space E[P(X|E, Q)] by performing inference in the mean model
which is the averaged model over model space, P(X|FE,m, ). This approx-
imation scheme is exact when inference function P(X|FE) is a linear function
with respect to the model parameters which is often true in the case of forward
prediction in Dynamic Bayesian networks. However, this method will introduce
biased results in case of static Bayesian networks. We have analyzed the bias
as a function of the message-propagation steps n and of the constraints over
the parameter space. We concluded that for small n and relative restrictive
constraints (relative small parameter sub-space), our approximation scheme is
usually reasonable.

Also, we have studied the robustness of our approach. Noisy information
exists largely in a qualitative statement. For example, a domain expert may
feel comfortable to express the probability of getting lung cancer for a smoker
likely ranges from 10% to 15%. In this statement, parameter uncertainty on
the conditional probability of lung caner given smoking is given by the bound-
ary information: [10%,15%)]. However, the word likely express a second-order
uncertainty on the boundary information, i.e. uncertainty over the bounded
uncertainty. In this thesis, we refer this second-order uncertainty to noise in
the knowledge and use Gaussian distribution function to represent this kind of
noise. For each possible knowledge feature in our knowledge model, we studied
the effect of such noise on our constructed model uncertainty and its consequent
generalization accuracy.

Finally, we applied our method to solve real-world problems in Bioinformat-
ics. We applied our knowledge model to capture the qualitative cause-effect
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relationship about the molecular interaction in signaling transduction pathway
in breast cancer bone metastasis and cell proliferation. We construct a class
of constrained Dynamic Bayesian networks to quantitatively predict the bone
metastasis percentage and cell proliferation rate based on various interference
on the expression level of the molecules in the network. We compare our in-
silico simulation to the wet-lab experimental observations and show that our
approach can make reasonable quantitative prediction based on only qualitative
causal statements.

Further improvements on our approach could be: For high-dimensional pa-
rameter space and extreme restrictive constraints, it is computationally expen-
sive to use Accept-Reject algorithm to sample in the model space. Therefore,
more efficient sampling techniques can be used here to improve the efficiency of
the algorithm, such as Monte Carlo Markov Chain (MCMC) algorithm or Gibbs
sampling algorithm.



Chapter 3

Bayesian Modeling with
Inconsistent Qualitative
Knowledge

One significant drawback of qualitative knowledge is its potential inconsistency.
In the same domain, there may exist contradicting qualitative statements on
dependency, causality and parameters over a set of entities. Therefore, methods
for integrating and learning semantics of inconsistent qualitative knowledge and
making use of it as prior background knowledge in modeling Bayesian networks
and performing quantitative prediction are definite beneficial to the Bayesian
framework. In this section, we propose a novel framework for this purpose.
Our method interprets the qualitative statements by a vector of knowledge fea-
tures whose structure can be represented by a hierarchical Bayesian network.
The prior probability for each qualitative knowledge component is calculated
based on the hierarchical knowledge model. These knowledge components de-
fine Bayesian model classes in the hyperspace. Within each class, a set of
constraints on the ground Bayesian model space can be generated. Therefore,
the distribution of the ground model space can be decomposed into a set of
weighted distributions determined by each model class. This framework is used
to perform full Bayesian inference which can be approximated by Monte Carlo
methods, but is analytically tractable for smaller networks and statement sets.

3.1 Hierarchical Knowledge Feature Model

The qualitative knowledge for a general belief network can be represented hier-
archically into a tree structure, i.e. qualitative knowledge feature tree (QKFT).
Once the QKFT is formulized, constraints on structure and parameter can be
generated by going through the tree top-down as shown in figure 3.1. We show
that the prior probability of a knowledge component can be calculated as a
product of the conditional probabilities of these dependent knowledge features.
In some cases, baseline and extended qualitative knowledge information are
provided by the qualitative statements simultaneously. However, in most cases,
extended knowledge features are not fully provided in the qualitative state-

91
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(c) BN

Figure 3.1: Hierarchical Bayesian Network on Qualitative Knowledge

ments. In these cases, only baseline knowledge model will be used to generate
constraints in model space to perform inference by model averaging.

The dependent qualitative knowledge feature set can be represented by a hi-
erarchical Bayesian network (HBN) [44]. Within a knowledge HBN, the struc-
tural feature II and parameter feature A are two first-level composite nodes.
II can be further decomposed into two leaf nodes Dp and I. The parameter
feature A contains two second-level composite nodes, i.e. the baseline knowl-
edge features ¥ and extended knowledge features ¥ which consists of three
leaf nodes R, A and Bd. Thus qualitative knowledge € can be described as
Q =A{II(Dp,I),A(Z,V(R, A, Bd))},

where ¥ = (SP, SN, PlSyn, AdSyn, Ant, MxSyn). The hierarchical knowledge
model is shown in Figure 3.1(a) and a tree hierarchy in Figure 3.1(b). The
equivalent Bayesian network is shown in Figure 3.1(c).

Hierarchical Bayesian Networks encode conditional probability dependencies
in the same way as standard Bayesian Networks. The prior probability of a
qualitative knowledge € can be written as a joint probability of {II, A} and can
be decomposed according to the dependency between each component features
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as follows.
Pr(©2) = Pr(II)Pr(X|)Pr(¥|X) (3.2)
where
Pr(Il) = Pr(Dp)Pr(I|Dp)
Pr(X|II) = Pr(X|)
Pr(¥|X) = Pr(R|X)Pr(A|X)Pr(Bd%) (3.3)

(Stat. |[Dp. [ L | © | R | A | B | Weight |

S1 1 1 SP | [10,00] | null | null wq
Sa 1 1 SP | [25,00] | null | null w1
S3 null | null | null null null | null w3

Table 3.1: Feature-vector of Statements

Pr(¥|X) = Pr(R|X)Pr(A|X)Pr(Bd|X), Pr(ll) = Pr(Dp)Pr(I|Dp) and
Pr(S[I) = Pr(S|I).

3.1.1 Inconsistent Knowledge Integration

The conditional probabilities of qualitative knowledge features can be calculated
by counting the weighted occurrences given a set of inconsistent statements. The
weight of knowledge features equals to the credibility of their knowledge sources
which may be evaluated by a domain expert or determined by the source impact
factor. If no further information on the weights is available, they are set to 1. In
this case, the conditional probability of features is computed only by occurrence
count. For example, we assume a set of qualitative statements, S = {51, S2, 53},
about smoking and lung cancer are observed:

1. The risk is more than 10 times greater for smokers to get lung cancer than
no-smokers.

2. Men who smoke increase their risk more than 25 times compared with
non-smokers.

3. There is not significant evidence to prove that smoking directly cause lung
cancer, however, clinical data suggest that lung cancer is related to smok-
mng.

The statements can be represented by a vector of features which is shown in
Table 3.1. The conditional probability of the features can be calculated straight-
forwardly by

Pr(I|Dp) = (w1 4+ we) /w, Pr(I|Dp) = ws/w,

Pr(r|2=SP)=wi/wy, Pr(re]X =SP) = (w; +ws)/wp (34)

where w, = w1 + wy + w3, wp, = 2wy + we, Pr(Dp) = 1, Pr(SP|I) = 1,
r1 = [10,25] and ro = [25,00]. One notion is that the knowledge features
U = {R,A, Bd} in Figure 3.1(a) are continuous-valued and therefore, can be
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transformed to discrete attributes by dynamically defining new discrete at-
tributes that partition the continuous feature value into a discrete set of in-
tervals. In the above example, the continuous feature R in S; has value range
[10,00] and a continuous value range [25,00] in Se. The continuous ranges
can be partitioned into two discrete intervals: r; = [10,25] and o = [25, 00],
therefore, S = {51, 52,53} can be transformed to the qualitative knowledge
Q = {Q1,0,Q3} with discrete-valued features. Once we have calculated the
conditional probabilities of knowledge features, the prior probability of quali-
tative knowledge can be computed according to Eq. 3.2. Thus the inconsistent
knowledge components are ready to be reconciled. The qualitative knowledge
in Table 3.1 can be described by 2:

O = {1,1,SP,[10,25], null, null}
Qs = {1,1,8P,[25, c0], null, null}
Q3 = {1,0,null, null, null, null} (3.5)

where Qp={Dpy, I, Xk, Rk, Ak, Bdy}. If the weights of statements are set to
1, the knowledge prior probability is calculated, then we have,

Pr(Q) = Pr(Dp)Pr(I|Dp)Pr(SP|I)Pr(ri|SP)
= 2/9
Pr(Qe) = Pr(Dp)Pr(I|Dp)Pr(SP|I)Pr(rs|SP)
= 4/9
Pr(Qs) = Pr(Dp)Pr(I|Dp)
= 1/3 (3.6)

The integrated qualitative knowledge thus preserved the uncertainty from each
knowledge component. Each qualitative knowledge component €2 defines a
model class with a set of constraints on the ground model space which is gener-
ated by its features. The model class and its constraints are used for modeling
Bayesian networks and performing quantitative inference.

3.2 Bayesian Inference based on Inconsistent Knowl-
edge

In this section, we propose a novel approach to make use of a set of incon-
sistent qualitative statements and their prior belief distribution as background
knowledge for Bayesian modeling and quantitative inference.

3.2.1 Modeling with Static Bayesian Networks

A Bayesian model m represents the joint probability distribution of a set of
variables X = {x1,x2,...,xn} [48]. The model is defined by a graph structure
s and a parameter vector 6, i.e. m = {s,0}. In full Bayesian framework, all
available information is used in an optimal way to perform inference by taking
model uncertainty into account. Being different from Section 2.3.1, we classify
the set of available information into an available set of training data D and a
set of inconsistent qualitative background knowledge Q = {Q,...,Qx} on a
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constant set of variables. The posterior distribution of models m is then given
by B N B
Pr(D|m, Q) Pr(m|Q)Pr(Q)
Pr(D,Q)
The first term in the numerator of Eq. 3.7 is the likelihood of the data given the
model. The second term denotes the model prior which reflects the inconsistent
set of background knowledge and the last term is the prior belief of the knowl-
edge set. Now, inference in the presence of evidence is performed by building
the expectation across models:

Pr(X|D, E,Q)

Pr(m|D,Q) =

(3.7)

:/ﬂammmwmmﬂm@m
(3.8)

In this thesis, we consider the extreme case of no available quantitative data,
D = .

ﬂamm:/ﬂammmm@m (3.9)

In this case, model prior distribution Pr(m|Q) is determined soly by the in-
consistent background knowledge set Q. Each independent qualitative knowl-
edge component, ), € €2, uniquely defines a model class, My, with a vector
of features, i.e. M = {Mj,..., Mk}. The features are translated into a set of
constraints which determine the distribution of the ground models within each
model class.
First of all, the probability of a model class given the inconsistent knowledge
set is written as
~ K ~
Pr(Mp|Q) = ZPT(Mk|Qi)Pr(Qi|Q) = Pr(Qy) (3.10)

i=1

where {Pr(My|Q;) = 1,i = k} and {Pr(My|Q;) = 0,i # k} since the k-th
model class is uniquely defined by €2; and is independent to the other knowledge
component. Secondly, the probability of a ground Bayesian model sample m in
the k-th model class given the inconsistent knowledge set is

Pr(m € My|Q) = Pr(m|My)Pr(M|Q) (3.11)

Thus, the inference on X given evidence E and inconsistent knowledge set Qin
Eq. 3.9 can be written as

Pr(X|E,Q) = Z/ dmPr(X|m, E)Pr(m|Mj,)Pr(Q) (3.12)
k m

where Pr(m|Q) = >, Pr(m € M,|Q). Therefore, the inference is calculated
by firstly integrating over the structure space and the structure-dependent pa-
rameter space of a ground Bayesian model from a model class according to
the constraints and perform such integration iteratively over all possible model
classes with the prior distribution. The integration in Eq. 3.12 is non-trivial
to compute, however, Monte Carlo methods can be used to approximate the
inference.
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3.2.2 Modeling with Dynamic Bayesian Networks

As discussed in Section 2.3.2, we use Dynamic Bayesian network to model the
recurrent structure. An example of DBN is shown in Fig. 2.6(a) and it can
be defined by a vector of 2-Time-Slice Bayesian Networks (2TBN) over time as
shown in Figure 2.6(b). As Eq. 2.50, the posterior probability distribution of
each node at time ¢, i.e. P(X,, ;) can be calculated as

P(Xne) = /(X )P(XnIW(Xn))P(W(Xn))dW(Xn)

J
3 0,P 7 (r(X) (3.13)

where 6; denotes the j-th entry in the conditional probability table of node X,
given its parents. P; 71(7T(Xn)) represent the joint probability of j-th configura-
tion of the parents states at time (¢ — 1). The posterior probability distribution
of X, can be used as the priori probability for the next time step. Thus the pos-
terior probability P(X,, ;) can be calculated iteratively over time ¢t = {0,...,T}.

In this section, we extend the knowledge-driven Bayesian inference approach
with a set of inconsistent hypotheses to Dynamic Bayesian network. As demon-
strated in the last section, if there is a set of inconsistent hypotheses retrieved
from a publication, each independent qualitative knowledge component, 2, € €,
uniquely defines a model class My, with a vector of features. The inference on
the marginal probability of X,, at time ¢ given evidence E and the inconsistent
qualitative knowledge €2 with full Bayesian approach is calculated as follows, by
substituting the Eq. 3.13 into Eq. 3.12, we have

P(X,|E,Q) = Z/ dmPr(X|m, E)Pr(m| M) Pr(Q)
k m

K W J
S S s Pl X ), EYP (st B 20 P )d0
St

k=1w=1

(3.14)

where 6y, ., ; represents the j-th entry of the CPT in w-th DBN model in the
k-th DBN model class. FE denotes the evidence of the observed nodes and
P;_l(Tr(Xn), E) denotes the joint probability distribution of the j-th configura-
tion of the parent nodes 7(X,,) at time (¢ — 1) given the observation E. In each
model class, the structure which is consistent with the hypotheses component is
assigned with non-zero probability P(sy .,|€?). Likewise, only parameter values
on that structure, which are consistent with the contents of the hypotheses, are
assigned a nonzero probability P (0w, j|Skw, ?). If no further information is
available, the distribution is constant in the space of consistent models.

According to Section 2.4.1, the inference in Eq. 3.14 can be approximated
by performing inference in the mean model of each model class My, € M as

K W J
P(X,|E.Q) = ZZ/@ZGk,wJP;_l(w(Xn),E)P(sk,w,Hk,w7j|Qk)Pr(Qk)d@
k=1w=1"9© j=1
K w J
_ ZPT(Q,C)ZZP;*I(W(X”),E)/ Ok s P (5105 O |0)dO
k=1 ©

w=1 j=1



3.2 Bayesian Inference based on Inconsistent Knowledge 97

(3.15)

3.2.3 ASIA Network

As Section 2.3.3, we demonstrate the Bayesian modeling scheme based on incon-
sistent qualitative knowledge with ASTA network in Figure 2.3.2. The parameter
of ASTA network is given in Table 2.2.

For demonstration, we consider the inconsistent qualitative statements with
regarding to single edge between Smoking and Lung Cancer, as well as the
collider structure of Lung Cancer, Bronchitis and Dyspnea. The method applies
to all of the entities and their relations in the ASTA network.

1. Although nonsmokers can get lung cancer, the risk is about 10 times greater
for smokers. (www.netdoctor.co.uk)

2. The lifetime risk of developing lung cancer in smokers is approximately
10%. (www.chestx-ray.com/Smoke/Smoke.html)

3. Men who smoke two packs a day increase their risk more than 25 times
compared with non-smokers. (www.quit-smoking-stop.com/lung-cancer.html)

4. Lifetime smoker has a lung cancer risk 20 to 30 times that of a nonsmoker.
(www.cdc.gov/genomics/hugenet /ejournal/OGGSmoke.htm)

5. 15% of smokers ultimately develop lung cancer.
(www.cde.gov/genomics/hugenet/ejournal/O GGSmoke.htm)

6. The mechanisms of cancer are not known. It is NOT possible to at-
tribute a cause to effects whose mechanisms are not fully understood.
(www.forces.org/evidence/evid /lung.htm)

7. It is estimated that 60% of lung cancer patients have some dyspnea at the
time of diagnosis rising to 90% prior to death.
(www.lungcancer.org/health_care/focus_on_ic /symptom/dyspnea.htm)

8. Muers et al. noted that breathlessness was a complaint at presentation in
60% of 289 patients with non-small-cell lung cancer. Just prior to death
nearly 90% of these patients experienced dyspnea. [31]

9. At least 60% of stage 4 lung cancer victims report dyspnea.
(www.lungdiseasefocus.com/lung-cancer/ palliative-care.php)

10. Significantly more patients with CLD than LC experienced breathlessness
in the final year (94% CLD vs 78% LC, P < 0.001) and final week (91%
CLD vs 69% LC, P < 0.001) of life. [33]

11. 95% of patients with chronic bronchitis and emphysema reported Dysp-
nea. [63]

Each statement is analyzed by the hierarchical knowledge model in Figure 3.1(a)
and the extracted features are summarized in Table 3.2. In this statement set,
the first six statements represent the relation between (tobacco)smoking and
lung cancer. {Si,...,Ss} describe a single positive (SP) influence from smok-
ing to lung cancer with inconsistent knowledge features of the ratio (R) and



3.2 Bayesian Inference based on Inconsistent Knowledge 98

bound (Bd). However, statement Sg declares a contradicting knowledge sug-
gesting that smoking is not the cause of lung cancer. {S7,...,S11} describe the
synergic influence from lung cancer and bronchitis to dyspnea. Without further
information, it can be represented by plain synergy with positive individual in-
fluence. The knowledge on the extended features of the conditional probability
distribution of this collider structure is not available, however, the knowledge
on the extended features of the marginalized conditional probability space are
provided in these statements. For simplicity, we assume the weight of every
qualitative statement equals to 1, i.e. {w; = 1,4 =1,...,11}. Due to the pa-
rameter independency [48], we can compute the conditional probability of each
local structure independently. For each local structure, we calculate the condi-
tional probability of knowledge features by counting its occurrence frequency.
For the local structure of smoking and lung cancer in the ASTA network, the
prior probability of the knowledge features can be calculated as

Pr(Dp)=5/6 Pr(Dp)=1/6
Pr(I|Dp)=1 Pr(I|Dp)=1 Pr(SP|I)=1
Pr(r1|SP)=1/5 Pr(r2|SP)=1/5 Pr(rs|SP)=2/5
Pr(r4|SP)=1/5 Pr(b1|SP)=1/2 Pr(b2|SP)=1/2

(3.16)

where 7 = [9,11], ro = [20,25], 73 = [25,30] and r4 = [30,00]; by = [9%, 11%]
and by = [14%, 16%)]. The continuous-valued feature R and Bd are discretized
into |R| = 4 and |Bd| = 2 discrete-value intervals respectively. For the collider
structure of lung cancer, bronchitis, and dyspnea, the conditional probability of
every knowledge features can be calculated as

Pr(Dp)=1 Pr(I|Dp)=1 Pr(PISyn|I)=1 (3.17)

and the marginal conditional probability of knowledge features for the structure
of lung cancer and dyspnea can be calculated as

Pr(Dp)=1 Pr(I|Dp)=1 Pr(SP|Dp)=1
Pr(bs|SP)=3/11 Pr(b4|SP)=4/11 Pr(bs|SP)=3/11 Pr(bs|SP)=1/11
(3.18)
where b3 = [60%, 69%)], by = [69%, 78%], bs = [78%,90%)] and bs = [90%, 100%).
The continuous-valued feature Bd are discretized into |Bd| = 4 discrete-value
intervals respectively. While the marginal conditional probability of knowledge
features for the structure of bronchitis and dyspnea can be calculated as

Pr(Dp)=1 Pr(I|Dp)=1

Pr(SP|Dp)=1 Pr(b7|SP)=1/2 Pr(bs|SP)=1/2 (3.19)

where by = [91%,94%] and bg = [94%, 96%)]. Based on the features and their
prior belief, a set of qualitative knowledge Q@ = {Q,...,Q16} is formed in
Table 3.2.

ASIA Model Monte Carlo Sampling

Given the integrated qualitative knowledge set Q with prior probabilities, we
now construct the Bayesian model class and the distribution on ground model
space within each class. For demonstration purposes, we assume the partial
structure and its parameters, i.e. {a,7, A, f}, to be known as in Table 2.2.
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(a) Feature-vector of Statements

] Stat. ‘ Dp ‘ I ‘ Y ‘ R ‘ A ‘ Bd ‘ Weight ‘
S 1 [1|SP | [9,11] | null null w1
Sa 1 [1|SP null | null | [9%, 11%)] wa
S3 1 [ 1| SP|[25, 00] | null null w3
Sy 1 [ 1| SP|[20,30] | nul null wy
S5 1 |1]SP| null | nul| [14%, 16%] ws
Se 0 |0]|SP null null null We
S7 1 [ 1[SP| nul |nul]| [60%, 90%)] wy
Sg 1 [1|SP null | null | [60%, 90%) ws
S9 1 |1]SP| null | nul | [60%, 100%)] wo

Swp(l) | 1 | 1|SP null null | [69%, 78%) w1g
Swo(2) | 1 | 1|SP null null | [91%, 94%) w1
511 1 1 SP null null [94%, 96%] w11

(b) Prior Probability over Inconsistent Qualitative Knowledge

o [pplI] = | R [ A] Bd | Pr(Q) |

Qi | L 1] SP | [011 |null | 9% 11% | 1/12
O | 1 [1] SP | [9,11] | mull | [14%, 16%] | 1/12
QO | 1 | 1] SP | [20,25] | null | [9%, 11%] | 1/12
O, [ 1 [ 1] SP | [20,25 | mull | [14%, 16%] | 1/12
s | 1 | 1] SP | [25,30] | null | [9%, 11%] | 1/6
Q6 | 1 | 1| SP | [25,30] | null | [14%, 16%] | 1/6
Q| 1 [ 1| SP |[30,00] | null | [9%, 11%)] 1/12
Qs | 1 [ 1] SP | [30, 00 | mull | [14%, 16%] | 1/12
Qo 0 | 0] nul null null null 1/6
’ Q0 ‘ 1 ‘ 1 ‘ PISyn ‘ null ‘ null ‘ null ‘ 1 ‘
Q| 1 1] SP null | null | [60%, 69%) 3/11
Q| 1 |1 SP null null | [69%, 78%) 4/11
O | 1 (L] SP | null | uull| [78%, 90%] | 3/11
Qua | 1 |1 SP null null | [90%, 100%] | 1/11
Q5| 1 [ 1] SP null | null | [91%, 94% 1/2
1 1

Qi SP null null | [94%, 96% 1/2

Table 3.2: Qualitative Statements and Knowledge in ASTA network

Therefore the uncertainty of ASTA model space is restricted to the uncertainty
of the local structure and parameter space on Smoking and Lung Cancer which
can be described by Pr(m|My) and Pr(Mjy) defined by {Qx|k = 1,...,9},
ie. {Mp(Q)|k = 1,...,9}, as well as the uncertainty of the local space on
Lung Cancer, Bronchitis and Dyspnea which can be jointly determined by three
types of model class, i.e. the root-dimension model class defined by ¢, the
marginal-dimension model classes of lung cancer and dyspnea defined by {€;|i =
11,...,14} and the marginal-dimension model classes of bronchitis and dyspnea
defined by {Q;|j = 15,16}. Thus, there are total eight possible combination of
these model classes, i.e. {Mp(Q10,,Q;)k = 10,...,17;4 = 11,...,14;5 =
15,16} and each combination virtually forms a complete model class which
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Figure 3.2: ASTA Model Sampling and Inference

defines the set of constraints on the structure and parameter space of ground
Bayesian model for the local collider structure of lung cancer, bronchitis and
dyspnea. The prior probability of each combination, Pr(Mj) is the product of
the prior probability of its independent components, i.e.

P’/‘(Mk) = PT(QlO)PT‘(Qi)PT(Qj) (320)

For each local structure, we perform 10,000 sampling iterations. In each it-
eration, we select a model class M} randomly based on the prior probability
of the model class, i.e Pr(My). In each selected model class, we randomly
choose 3 samples of ground Bayesian model m, whose structure and parame-
ter space is consistent with the class constraints Pr(m|M}) as shown in Fig-
ure 3.1(a). In this way, for the local structure of smoking and lung cancer,
the prior bability of the model class is equivalent to its knowledge component,
ie. Pr(My)=Pr(Q). We generate total N=30,000 ground model samples from
model classes {My(Q)|k = 1,...,9} defined by Qj in Table 3.2. The ground
model samples are shown in Figure 3.2(a). For the local collider structure
of lung cancer, bronchitis and dyspnea, we generate N=30,000 ground model
samples from the combination of model classes defined in Eq. 3.20 based on
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B [ BB B [ B E 5]
True 0.17 | 0.87 | 0.84 | 0.21 | 0.91 | 0.11
Simulation || 0.07 | 0.61 | 0.59 | 0.08 | 0.67 | 0.06

Table 3.3: Inference Results on ASIA Network

{Q|k =10,...,16} in Table 3.2. The marginal conditional probability samples
are shown in Figure 3.2(b) and 3.2(c). Without further information on lung
cancer, bronchitis and dyspnea, we can set their prior probabilities to be 1/2.
By taking average over the models in Figure 3.2(a) to 3.2(c), we can calculate
the mean value for the conditional probability of lung cancer given smoking,
i.e. $1=0.1255, 3y=0.006, and of Dyspnea given lung cancer and Bronchitis, i.e.
£0=0.2725, £,=0.9053, £,=0.5495 and £3=0.968. Note that since the 9th model
class defined by Qg for the structure of lung cancer and smoking, i.e. Mg(fy),
contains no edge between the nodes, the parameter of this model class is null.

ASTA Model Inference

For each of the model sample, according to Eq. 3.12, we perform inferences in
silico on the likelihood of a patient having lung cancer (Lc) given information
about the patient’s smoking status and clinical evidences including observation
of X-ray, Dyspnea, and Bronchitis, i.e. Xyps = {Sm, Xr, Dy, Br}. The conver-
gence of these prediction under a set of evidences E= {E\, E2,E53,E4, E5, Eg}
are shown in Figure 3.2(d). The true prediction values with parameters in
Table 3.3 under the evidence set E are listed below in Table 3.3.

3.3 Empirical Study
3.3.1 Smad7 in TGF3-Smad Pathway

We apply our framework to integrate a set of inconsistent qualitative hypotheses
about the molecular interactions between Smad proteins of the TGFf signaling
pathway in breast cancer bone metastasis network. From recent studies [59,
60, 74,100, 114], a set of qualitative statements on molecular interactions in
the breast cancer bone metastasis network can be extracted and a Dynamic
Bayesian model can be constructed based on this set of statements as shown in
Fig. 3.3 [8,12]. We consider the inconsistent qualitative statements with regard
to the mechanism of Smad7 in blockade of the TGFS signals. In [100], the
qualitative statements can be extracted as

S1: Smad7 directly binds to the activated type I TGF-3 receptor and inhibits
phosphorylation of the R-Smads.

So: Smad6 acts in a different way as Smad7. It competes with the activated
Smadl1 for binding to Smadj.

In [114], the qualitative statements can be extracted as

Ss3: The inhibitory activity of Smad6 and Smad7 is thought to result from an
ability to interfere with receptor interaction and phosphorylation of the receptor-
requlated Smads.

Sy: However, their inhibitory activity might also result from their ability to
form a complex with receptor-activated Smads.
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Figure 3.3: Integrated TGF(G-Smad BCBM Network and Prediction

Similar statements can be extracted from [74] as

Ss: I-Smads (Smad6,7) interact with type I receptors activated by type IT
receptors.

Se: I-Smads have also been reported to compete with Co-Smad (Smad4) for
formation of complexes with R-Smads (Smad2/3).

This set of statements represent the molecular interactions between I-Smad
(Smad?7), R-Smad (Smad2/3) and Co-Smad (Smad4). {S1,Ss, S5} report the in-
teraction between Smad?7, type I TGF-receptor (TSRI) and Smad2/3. {S4, Se}
describe the interaction between Smad7 and Smad4 to form a complex whereas
So provides contradicting information. Each statement is analyzed by the hier-
archical knowledge model in Figure 3.1(a) and the extracted features are sum-
marized in Table 3.4. For simplicity, we assume the weight of every qualita-
tive statement equals to 1, i.e. {w; = 1,4 = 1,...,6}. Due to the parameter
independency [48], we can compute the conditional probability of each local
structure by counting the occurrence frequency of the knowledge features inde-
pendently. For the local structure of Smad7, TSRI and Smad2/3, the prior prob-
ability of the knowledge features can be calculated as Pr(Dp)=1, Pr(I|Dp)=1,
Pr(I|Dp)=1. For the local structure of Smad7, Smad4 and phosphorylated-
Smad2/3 (Smad2/3-p), Pr(Dp)=2/3, Pr(Dp)=1/3, Pr(I|Dp)=1, Pr(I|Dp)=1.
Based on the features and their prior belief, a set of qualitative knowledge Qis
formed in Table 3.4. In this experiment, the extended features of the inconsis-
tent knowledge is not available and the integration with inconsistent extended
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(a) Feature-vector of Statements

’ Stat. \ Dp \ I \ by \ R \ A \ Bd \ Weight
S1 1 | 1| MxSyn | null | null | null wy
Sy 0 |0 null null | null | null Wo
Ss 1 | 1| MxSyn | null | null | null w3
Sy 1 1 | MxSyn | null | null | null Wy
Ss 1 | 1| MxSyn | null | null | null ws
Ss 1 1 | MxSyn | null | null | null We

(b) Prior Probability over Inconsistent Qualitative Knowledge
[ [Dp|1] = | R[] A [Bd]Pr(Q)]
Q] 0 0] null | nul | nul | nul 1/3
Qy | 1 | 1] MxSyn | null | null | null | 2/3
’ Q3 ‘ 1 ‘ 1 ‘ MxSyn ‘ null ‘ null ‘ null ‘ 1 ‘

Table 3.4: Qualitative Statements and Knowledge in TGF3-Smad BCBM Net-
work

knowledge features are studied in [9,14].

We now construct the Bayesian model class and the distribution on ground
model space within each class. The uncertainty of the TGF3-Smad BCBM
model space is restricted to the uncertainty of the local structure and parame-
ter space on Smad7, TSRI and Smad4 which is defined by {21,025} in Table 3.4.
The model classes can be expressed as {M}(£2x)|k=1,2} and the prior proba-
bility of each model class equals to the prior probability of the knowledge, i.e.
Pr(My)=Pr(Q). We perform 10,000 sampling interactions. In each iteration,
we select a model class M}, randomly based on the prior probability Pr(Mj).
In each model class, we randomly generate 3 samples of the ground Bayesian
model m by Monte Carlo method, whose structure and parameter space is con-
sistent with the class constraints Pr(m|M}) as defined by Eq. 2.1 to Eq. 2.17.
Therefore, we obtain N=30,000 ground models from the model classes. By tak-
ing average over the ground models, we can calculate the mean value for the
conditional probability of the complex Smad4-Smad2/3-p given Smad7, Smad4
and Smad2/3-p. Note that since M; contains no edges between Smad7 and
Smad4-Smad2/3-p, the parameter of this model class is null.

Each ground model is a Dynamic Bayesian network (DBN) which can be
unrolled over time to form a series of 2TBNs [78]. The prediction on the prob-
ability of bone metastasis given a set of evidences E; € {Fj, Es, E5} in each
model class, i.e. the integral in Eq. 3.12, can be calculated by integrating the
predictions over all DBN models which is equivalent to compute firstly the mean
DBN model with averaged parameters and then perform prediction on this mean
DBN model [12]. The simulation results and the observed bone metastasis prob-
ability in [59] are shown in Fig. 3.4(a) and Fig. 3.4(b).
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Figure 3.4: Prediction in TGF3-Smad BCBM Network

3.4 Summary

In this chapter, we extend the knowledge-driven probabilistic network model-
ing framework to a set of inconsistent knowledge. We investigate the method to
reconcile the contradicting qualitative information and utilize these inconsistent
information to make coherent quantitative reasoning. We do so by transforming
the qualitative knowledge model into a hierarchical model in which knowledge
features are encoded and quantified by their mutual (in)dependences and the
associated conditional probability. Given the hierarchical knowledge model, a
set of inconsistent knowledge are dissected and the conditional probabilities of
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the knowledge features are calculated by evaluating their statistics. Expert
belief can be integrated into the method as a prior belief on the inconsistent
knowledge components. Each knowledge component uniquely define a class of
constrained Bayesian networks as in the last chapter. The conditional proba-
bility of knowledge features are used to compute the knowledge prior, i.e. the
joint probability over the feature space. Thus, multiple classes of Bayesian net-
works are inferred from the inconsistent knowledge which are weighted by their
corresponding knowledge prior distribution. The incoherent Bayesian network
classes are reconciled in this way consistently into uniform representation and
the averaged quantitative prediction can be calculated over all ground models
in one class and over all classes.



Chapter 4

Bayesian Modeling with
Incomplete Qualitative
Knowledge

It is well known that knowledge are often incomplete just like the data. The
incompleteness of knowledge can be best described by the assertion that the
information represented in the knowledge on a set of variables in a domain at a
particular time point may be complemented by the new discoveries in the same
domain. The incomplete knowledge distinguish from the inconsistent knowledge
by providing information on a newly discovered set of variables and/or the
connections of the new variable set to the existing variables in the same domain
whereas the inconsistent set of knowledge only declares contradicting structural
and/or parameter information on the same set of variables. Therefore, when
we construct probabilistic networks based on a set of qualitative knowledge as
introduced in Section 2 and if this set of qualitative knowledge are composed by
complementary components, we shall obtain a set of supplementing Bayesian
networks, each of which consists of graphs over (partial) different set of variables
in a domain with quantified edges. In this section, we propose several methods
to fuse such Bayesian networks which are built on the complementary knowledge
set.

4.1 Incomplete Qualitative Knowledge and Bayesian
Network Fusion

In this case, we study the computational aspects of the knowledge-based frame-
work [12,13] for utilizing the spatial and temporal knowledge properties in mod-
eling and integrating Bayesian networks based on incomplete sets of knowledge.
We apply our approach to model the TGF3-Smad signaling pathway in the
breast cancer bone metastasis network. Firstly, We integrate two complemen-
tary sets of knowledge in time order and form a Smad-dependent breast can-
cer bone metastasis network (Smad-BCBM). Secondly, we integrate the TGF3-
Smad signaling pathway into the Smad-BCBM network spatially by replacing
the aggregate type in Smad-BCBM with TGF(3-Smad pathway. Quantitative

106
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inference on the probability of the bone metastasis are performed by model
averaging based on the qualitative knowledge model [13]. We show that our
method is able to consistently integrate the sets of complementary knowledge
in space-time dimension and produce reasonable quantitative predictions.

4.1.1 Incomplete Qualitative Knowledge

Like most physical systems, the knowledge has spatial and temporal properties,
i.e. knowledge exist in space-time dimension. The spatial property describes
that the knowledge represents information on a specific local structure of a do-
main and the temporal property of the knowledge states that knowledge repre-
sents human understandings of a domain at a particular time point. Therefore,
incompleteness of the qualitative knowledge are two-fold: 1)At the same time,
different knowledge can be drawn from independent studies and experiments to
describe various local structures with distinct set of variables and connections
in the same domain. 2)At the same location of a domain, identified variables
and/or their connections to the existing variables can be provided by the new
discoveries.

For example, one piece of knowledge §2; concluded that ” Transforming Growth
Factor (TGFS) activates gene CTGFEF” and in a later study, another piece of
knowledge Q5 has identified that ” Smad-family proteins participate in the sig-
naling pathway and mediate the TGF( signals on gene CTGFEF”. 1 and s
are incomplete knowledge and complementary to each other. The newly identi-
fied variable Smad-pathway in {29, is supplementing to the existing knowledge
on TGFB and CTGF in Qq, i.e. the influence from TGF(3 on CTGF identi-
fied in € is mediated by the Smad-pathway in stated €25. Thus, this set of
knowledge can be integrated and the resulting structure is a feed-forward chain
TGFB—Smad-pathway—CTGF which can be explicitly derived from €; and
Q5. This scenario demonstrate that knowledge’s temporal property.

A third piece of knowledge (235 states that: CXCR4 and IL11 are found
to promote breast cancer bone metastasis which in turn increase the level of
TGFg. Q3 provide different local information to 1 and 5 in that 3 describes
a different local structure than the forward chain represented by 27 and (.
However, these different local structures exist in the same domain related to
breast cancer bone metastasis. This scenario demonstrate that knowledge’s
spatial property.

4.2 Bayesian Inference with Incomplete Quali-
tative Knowledge

4.2.1 Bayesian Network Fusion

Bayesian networks built on the incomplete knowledge may represent only a
specific local structure of an underlying system at a particular time, thus, the
Bayesian networks are incomplete as well. However, in many cases, the net-
work is required to be extended by including external nodes in the original
network and/or replace single node in the original network with a set of nodes.
The extended network has a different skeleton and set of variables comparing
to the original network. For example, in molecular interaction network, the
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nodes represent biological entities at different scales, such as protein, mRNA,
DNA, aggregate type and phenotype. Previously unobserved proteins may be
identified to participate in the interactions established by earlier studies, thus
need to be included in the molecular interaction network or aggregate type
node shall be replaced by a network with only protein and DNA at higher res-
olution. Bayesian model fusion in space-time dimension can be described as
the inclusion of external nodes into an existing Bayesian network as well as
the hierarchical replacement of the aggregate type in the existing model by an
external Bayesian network. The model integration represents the procedure
where knowledge-based computational framework makes use of the spatial and
temporal properties of the incomplete knowledge to integrate a vector of comple-
mentary Bayesian networks and form a uniform representation. Therefore, it is
crucial for knowledge-based framework to deal with these knowledge properties
and consistently integrate the Bayesian networks based on the set of knowledge
in space-time dimension to form an up-to-date and complete representation of
the underlying system.

According to [8,10], fusion of multiple Bayesian networks based on the incom-
plete set of qualitative knowledge can be performed under two scenarios: i)The
structure of the integrated model can be explicitly derived from the knowledge;
ii)The structure of the integrated model is ambiguous and can not be inferred
directly. In the first case, [8] has shown that the integration problem boils down
to the determination of the parameters given the integrated model structure.
This method provides a basis for Bayesian model integration based on the pre-
condition that integrated model structure can be explicitly derived and the joint
distribution of the integrated model given the structure can be determined by
setting an equality constraint on the (marginal) joint distributions of the vari-
ables in the integrated models. This method is based on the assumption that
a physical system should remain constant regardless to the degree of human
knowledge on it. If we use Bayesian model to represent the physical system,
the marginal joint probability distribution of the original models should be in-
variant during the model integration. However, this presumption is not always
satisfied in many cases, i.e. the structure of the integrated network is not always
directly derivable. In the second scenario, the set of complementary knowledge
impose uncertainty over the structure space of integrated model. Therefore, it
is required to learn the integrated model structure from the mixture of local
statistics represented by every incomplete model. The set of local statistics
are combined together to form the global statistics and the complete model are
learned from the global statistics. This approach assumes that the set of com-
plementary qualitative hypotheses represent the complete set of variables in the
domain, thus, the hidden variables of a specific network can be identified as
those which are unobserved in this network but observed by others.

4.2.2 Bayesian Network Fusion in Parameter Space

If the structure of the integrated model can be explicitly derived from the set
of incomplete knowledge, the Bayesian fusion problem boils down to determi-
nation of integrated network parameters based on the constraints in Section 2
and the equality constraints on the (marginal) joint space. For example, the
structure of the integrated network with TGF(, Smad-pathway and CTGF can
be obtained directly by combining the body of knowledge in £2; and €25. The pa-
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Figure 4.1: Model Integration with Single Node

rameters in the integrated model consists of the interactions between TGF (3 and
Smad-pathway as well as the interactions from Smad-pathway to CTGF. These
interactions can be described by positive single influence in Eq. 2.2. Meanwhile,
the strength of interaction between TGFG and CTGF is consistent during the
model integration, i.e. Po, (CTGF,TGF@)=Pq, ,(CTGF,TGFf3). This method
provides an basic solution to the incomplete knowledge integration problem
since it assumes that the structure of the integrated model, i.e. (in)dependency
between the variables in the model, can be explicitly derived from the comple-
mentary set of knowledge. In [8], it is proposed that the Bayesian networks built
on the incomplete knowledge can be integrated by firstly constructing the struc-
ture of the integrated model based on the combination of the knowledge and
then sampling the joint probability distributions over the integrated parameter
space based on the qualitative knowledge model and the equality constraints on
the (marginal) joint probability distribution over the variables in the individual
networks.

Assume that a Bayesian model is composed by node A, B and a directed
edge from A to B. The integration of a node C' can be shown in Figure 4.1 which
changes the structure according to the position of its insertion. In Figure 4.1(a),
the node is inserted along the edge between A and B to form a feed-forward
chain, e.g. a molecular(C) is identified in a signal transduction pathway between
A and B. In Figure 4.1(b), the node is inserted as a parent, e.g. a protein(C) is
identified to be a co-transcript factor of A to activate a gene(B). In Figure 4.1(c),
the node is inserted as a child, e.g. a disease(C) is verified to be caused by
the mutation of a gene(A). If the existing (dynamic) Bayesian model consists
aggregate types [44], the model integration in Figure 4.1(d) can be performed
by replacing the aggregate type(F) in the model with the alternative networks
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of C and D, e.g. a signaling pathway is replaced by a set of protein-protein
interactions.

The possible model integration patterns with single node are shown in Fig-
ure 4.1 which may have different structures due to the distinct insert position
of the new set of nodes. The continuous lines in the figure denote the origi-
nal graph with initial set of variables as well as the dashed lines stand for the
insertion of new set of nodes into the mode during model integration. How-
ever, the joint probability of the nodes in the original network are constant. In
Fig. 4.1(a), node C is inserted in the middle of the pathway between node A and
B as to d-separate them. In this case, the equality constraint on the marginal
probability of nodes (A, B) can be written as

P°(A, B) /CP(A B,C)dC

/ P(B|C)P(C|A)P(A)dC (4.1)
c

In Fig. 4.1(b), node C is inserted as the parent node of B. In this case, the
equality constraint on the marginal probability of nodes (A, B) can be written
as

PY(A, B)

/ P(A, B,C)dC
C

/ P(B|A,C)P(C)P(A)dC (4.2)
C

In Fig. 4.1(c), node C is inserted as the child node of B. In this case, the
marginal probability of nodes (A, B) is not affected by the node C, i.e.

P°(A,B) = P(A, B) (4.3)

In Fig. 4.1(d), node C' and node D are inserted to replace the aggregate type
node E. In this case, the inserted network with multiple nodes preserve its
d-separate property. But the original networks with node A and B changes
its d-separation properties. For example, in the original network, given node
E, node B are independent from node A whereas, in the integrated network,
node F is replaced by node C' and D and d-separation between A and B are
described as given node C or D or nodes (C,D) renders the independence of
node A and B. This means that the set of parents of node B is changed during
the model integration. By comparison, in the inserted network, the parent of
node D during the integration is constant. Thus, in this case, the marginal
probability of nodes (A, B) can be calculated by marginalizing out the nodes by
which node A and B are d-separated

P°(A, B)

P(A,B,C, D)dCdD
C,D

P(B|D)P(D|C)P(C|A)P(A)dCdD (4.4)
C,D

Since the parent of node D is stable during the integration. The joint probability
over C and D is constant as:

PY(C,D) = P(C,D) (4.5)
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Figure 4.2: Model Integration with Multiple Nodes

The model integrations with a set of multiple nodes can be decomposed into
a series of integration steps with single node as shown in Fig. 4.1. The constancy
of the marginal joint probability distribution is satisfied in each integration step.
Note that the equality constraint on the marginal probability is symmetric to
both Bayesian network components which are fused together. For example, two
component Bayesian networks in Fig. 4.2(a) are fused to form the integrated
Bayesian network in Fig. 4.2(b). This integration procedure involves multiple
nodes which can be decomposed into a multiple steps of single node insertion.
The number on the edge in Fig. 4.2(b) denote the step order of the integration
process.

In the first step, node A in the M;j is inserted as a parent onto node B in
Ms. In this case, only the node B’s parent(s) changed during the integration,
therefore, the equality constraints on the marginal joint probability of (A,B)
and (F,B) shall be imposed.

PO(A,B):/ P(B|A,E)P(E)dD
E

P°(E,B) = / P(B|A,E)P(A)dA (4.6)
A

In the second step, node C' in the M is inserted as a child node of B in Ms.
In this case, given node B, node C and F' are independent to each other and
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Figure 4.3: Structure Uncertainty in Model Fusion

are d-separated from the rest of nodes in the network. Therefore, the joint
probability of (B,C) and (B,F) are constant as

P°(B,C) = P(B,0)
P%(B,F) = P(B,F) (4.7)

In Eq. 4.1 to Eq. 4.7, P°() indicate the probability in the original networks
before model integration and P(x) represents the probability in the integrated
Bayesian network. The equality constraints describes the fact that a physical
system will remain constant regardless to the degree of human knowledge on
this system.

4.2.3 Bayesian Network Fusion in Structure Space

The discussion in the above section is based on the assumption that structure
of the integrated Bayesian network is known which is not always valid since the
(in)dependency between variables in the integrated model may not be exactly
inferred based on a combination of the incomplete knowledge. In this case,
the integration of the individual models involves i)determination of the model
structure and ii)computation of the (marginal) joint probability distributions
over the variables in the integrated model. The set of incomplete knowledge
impose uncertainty over the structure space of integrated model. For example, in
the Bayesian network fusion with component networks M; and Ms in Fig. 4.2(a),
if we do not know the structure of the integrated network as in Figure 4.2(b),
the structure of the integrated network can not be inferred directly from these
knowledge. In these scenarios, the interaction between the nodes in M; and
M can be indirect connections, such as the edge between A and B can be
mediated through D as shown in Fig. 4.3. Therefore, it is required to fit a
”good” model into the uncertainty by learning the integrated network from the
mixture of local statistics sampled by every component Bayesian networks, i.e.
learn complete network structure from global statistics. Moreover, due to the
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uncertainty in the knowledge, there may be a large set of possible structures
all of which can explain the set of incomplete qualitative hypotheses equally
well. Without further information, our method take each possible structure for
granted and adopt full Bayesian approach in making belief inference.

Local Statistics and Global Statistics

The component Bayesian networks are constructed based on the qualitative
knowledge as introduced in Section 2 and the statistics of the individual hypoth-
esis can be sampled by the artificially generating data samples from each com-
ponent Bayesian networks. The set of samples from each component Bayesian
network are combined to form a global representation of the statistics over the
variables. The unobserved nodes in a model are treated as hidden variables.
The combined data are used as training data to learn the structure of the fused
Bayesian network and the set of learned structure candidates are formalized to
perform quantitative inference by calculating the average of the inference from
each candidate model.

Assume a set of incomplete qualitative hypotheses Q = {Qy,...,Qx}, each
qualitative hypothesis €2, defines the structural and parameter space of a class
of Bayesian models, M}, = {sp, O}, over a set of variables X, = {X, n|ln =
1,...,N}.

Local Statistics The local statistics of each Bayesian model class are described
by artificially drawing samples out of the models in the class. The data samples
of k-th Bayesian model in h-th class, Dy p, can be drawn based on the local
statistics of h-th model class D}, as

Dp={Dwplk=1,..., K} (4.8)

Global Statistics The complete set of variables in the domain can be de-
scribed as X = {Xplh = 1,...,H}, i.e. a non-redundant combination of the
variables in each model class across €. The hidden variables for h-th model
class can be described as

YVh={X|XeX,X¢X,} (4.9)

Thus, the combined training data Dp = {Dy|h = 1,..., H} contains missing
values at Y}, in M. In this manner, we fuse the local statistics of individual
Bayesian model into the global statistics to represent a complete uncertainty
over the structure and parameter space of a domain which is consistent with the
semantics of the complementary qualitative hypotheses Q. Thus, the complete
Bayesian network can be constructed through learning algorithm based on the
global statistics. The global statistics over the set of incomplete knowledge can
be described as

Dp ={Dylh=1,...,H} (4.10)
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Bayesian Model Fusion by SEM based on Global Statistics
As introduced in Section 1.2.3, given Dr and £, the posterior probability of

network structure s can be formulated as

— — P(Dels,P(s)
P(s|Dr,Q) =

S T

(4.11)

The first term of numerator is the data marginal likelihood and the second term
denote the prior distribution over the network structure space given the set of
qualitative knowledge. In general, if the training data has full observation, we
can learn the Bayesian network structure with BIC score(in Eq. 1.11). Further,
if we assume the domain to satisfy five assumptions, namely, i)Multinomial dis-
tribution of the training data; ii)Parameter independency; iii) Parameter mod-
ularity; iv)Dirichlet prior; v)Full observation, we can use BD score(in Eq. 1.16)
to learn the Bayesian model structure.

However, our combined dataset Dy contains missing variables Y, for h-
th component. The difficulty with learning from missing values is that the
data likelihood is no longer decomposable [37,39]. In Section 1.2.3, Structural
Ezpectation-Mazimization (SEM) algorithm [37] is proposed to solve this prob-
lem by iterative steps. In E-step, the missing values are ”filled-in” by computing
the expected counts based on the MAP parameter estimation from current struc-
ture and parameters; In M-step, the expected counts are used to calculate the
expected BD score, i.e. E(BDs) of each candidate model produced by structure
searching algorithm, e.g. greedy hill climbing, and F(BDs) is decomposable as
the full observation case. Finally the "best” structure with the maximum score
is selected as the learned structure.

Here we give an example to fuse two component Bayesian networks shown in
Fig. 4.2(a) by assuming the structure of integrated network is unknown and can
not be inferred from the set of incomplete knowledge. The structure of these
component Bayesian networks can be described as s; and so. Two qualitative
knowledge can be used to exemplify the interactions between the variables.

1. ©Q;: Protein A activates gene B to cause disease C;
2. Q9: Protein E activates gene B to cause disease F;

The parameters together with s; and s» define two Bayesian model classes,
M;i(s1,01) and Ms(s2,02). These Bayesian model classes are used to sample
local statistics. According to Eq. 4.8, local statistics D1 and D5 can be generated
by each ground Bayesian model in each class. We sample K=10,000 ground
Bayesian models in each class and sample 3 data points from ground model as

Dy = {Di1,...,Di1k}
= {Ai1,..., A3, B11,...,Bi3k,Ci1,...,Cisk} (4.12)

Dy = {D31,...,Dok}
= {E21,...,Ea3K,B21,...,Bask, Fo1,..., Fask} (4.13)

The local statistics of the two classes of Bayesian models can be combined into
a global statistics as

Dr = {D1,Ds}
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Table 4.1: Example of Global Statistics

= {Ai1,..., A3k, A21,..., Aok,
Bii1,...,Bi13r,B21,...,B2 3K,
City..,Ci3,Copn,y .o, Co e,
Eiq,..., B3k, E21,..., B2 3K,
F171,...,F173K,F271,...,F273K} (414)

Now we wish to learn a complete Bayesian network with two component models
in Fig. 4.2(a). For simplicity, we assume that we keep the prior information on
the edge direction to differentiate the Bayesian models in an equivalent class
in Section 1.2.1. We apply SEM algorithm to learn a set of candidate models
from various initial graph with Greedy-hill climbing method. The results are
shown in Fig. 4.4. Although it may seems reasonable to integrate the two

O OJONO
DO
offo¥olNo

(a) 51 (b) S2
Figure 4.4: Incomplete Bayesian Network Structure Fusion Example

models by combining the edge from A to B in M; in the Figure 4.2(a) and
the edge from F to B in Mj in the Figure 4.2(a) to form a collider structure
from (A,E) to B as shown in Figure 4.4(b), this intuitive method may simply
neglect the uncertainty of the qualitative hypotheses and ignores other possible
structures which could be the true model. We applied SEM algorithm with
BD score to learn the integrated model and the result shows that the structure
in Fig. 4.4(a) can be learned to represent the uncertainty encoded in the set
of complementary qualitative hypotheses. Structure S indicates the scenario
where protein A interacts with protein E to activate gene B and cause disease
D.
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4.3 Empirical Study

We apply the proposed computational framework to fuse a set of incomplete
Bayesian networks which model the molecular signaling transduction pathways
in breast cancer based on a set of incomplete qualitative knowledge. We conduct
our empirical study in two scenarios: i)The structure of the integrated Bayesian
network can be explicitly inferred from the knowledge. ii)The structure of the
integrated network is unknown and must be learned from the global statistics.
The probability of bone metastasis is predicted by taking the average of the
inferences in each Bayesian model candidates.

4.3.1 Integration of TGF/3-Smad pathway into Smad-dependent
Breast Cancer Bone Metastasis Network

In the first scenario, a set of incomplete qualitative hypotheses has been ex-
tracted from the publications [59,60,74,100,114]. In [59,60], the studies address
the network of breast cancer bone metastasis and Smad-dependent pathway.
In [74,100,114], the TGF3-Smad signaling pathway is studied. We shall in-
tegrate the TGF[3-Smad signaling pathway into the Smad-dependent breast
cancer bone metastasis network by assuming that we know exactly the connec-
tions between the molecules through the pathway and make predictions on the
bone metastasis. In this scenario, we perform multiple-step model integration.
In the first step, Smad-dependent pathway node are inserted into the breast
cancer bone metastasis network to form Smad-dependent Breast Cancer Bone
Metastasis (Smad-BCBM) network. In the second step, we replace the Smad-
dependent pathway node(aggregate type node) in Smad-BCBM network with
a network of Smad-family proteins. We compute the equality constraint in the
marginal joint probability space during these model integration.

Integrating Smad-dependent Pathway into Breast Cancer Bone Metas-
tasis Network

In [60], Kang identified a set of candidate genes which are responsible for pro-
moting breast carcinoma metastasis to bone. This set of genes include the
bone homing receptor CXCR4, the osteoclast-activating cytokine Interleukin-11
(IL11), the proteolytic factor MMP1 (matrix metalloprotease-1, or collagenase-
1), the angiogenic factor CTGF (connective tissue growth factor) and Osteopon-
tin (OPN). The protein TGF( further enhances the activity of bone metastasis
by increasing the expression level of CTGF and IL11. A set of qualitative hy-
potheses on the function of these genes in the formation of bone metastasis is
extracted in Q = {Qy, 0, 3} where

Qq: These genes act cooperatively to cause osteolytic metastasis.

Qo: Two of these genes, interleukin-11 and CTGF, encode osteolytic and
angiogenic factors whose expression is further increased by the prometastatic
cytokine TGFQ.

Qg: It has been proposed that TGF( released during osteolysis supports a
cycle of metastatic breast cancer stimulation.

In [12], the breast cancer bone metastasis network is generated based on this
set of hypotheses. The bone metastasis ability of different cell lines, e.g. 1834,
ATCC and 1833, as well as the bone metastasis probability of these cell lines
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Figure 4.5: Smad-BCBM Network

with various genetic transfections has been successfully simulated. However,
in a later study [59], Kang has verified that Smad-dependent pathway involves
in the breast cancer bone metastasis. A set of qualitative hypotheses on the
function of Smad-dependent pathway is extracted in ' = {4, 2,3} where Q-
Results suggest that breast cancer cells undergo Smad-dependent transcriptional
activation in the bone microenvironment.

Qs5: The induction of CTGF and IL11 in breast cancer bone metastasis is a
Smad-dependent process.

The breast cancer bone metastasis (BCBM) network with Smad-dependent
pathway form a recurrent structure as shown in Figure 2.21(a) [60] and the
original Dynamic Bayesian network of breast cancer bone metastasis is shown
in Fig. 2.21(b). Based on the hypotheses €, the interactions from TGFf to
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(a) CPT of IL11 given Smad-pathway

Smad-pathway | p;=P(IL11|Smad-p.)

0 Po
1 p1
(b) CPT of CTGF given Smad-pathway (c) CPT of Smad-p. given TGFj3
CTGF | o;=P(CTGF|Smad-p.) TGFS | ¢;=P(Smad-p.[TGFf)
0 (&7)) 0 QbO
1 o 1 o1

Table 4.2: CPTs for Smad-BCBM Network

CTGF and IL11 can be modeled as direct edges by the dashed curves in Fig-
ure 4.5(a) [12]. However, according to the hypotheses {/, the external node
Smad-dependent pathway which was unobserved previously in [60] has been ver-
ified for existence by a later study [59], thus, it can be integrated in the existing
BCBM network by a feed-forward chain insertion(Figure 4.1(a)) between TGF /3,
CTGF and IL11 as shown by the bold lines in Figure 4.5(a) which is a Dynamic
Bayesian network. The integrated model forms a Smad-dependent breast can-
cer bone metastasis (Smad-BCBM) network and the Smad-dependent pathway
represents an network of interactions between TGF( and Smad-family proteins,
thus, can be treated as an aggregate type. The dynamic Bayesian model can
be unrolled over time into a vector of 2TBNs as shown in Figure 4.5(b). The
parameters 3, v, A and ¢ can be descibed by the conditional probability ta-
bles in Table 2.5 and 2.6 and the parameters p, a and ¢ are described by the
conditional probability tables(CPT) in Table 4.2.

According to [12,13], the parameters of the original BCBM network ¢ can be
constrained by plain synergy with positive individual influence, as well the pa-
rameters, 3, v and A can be restrained by single positive influence(SP). Similarly,
the parameters in the integrated network, i.e. «, p and ¢ can be constrained by
SP as

ap < ag po < p1 $o < ¢1 (4.15)
Given TGF(, the joint probability distribution of (TGF3, CTGF) and (TGFS,
IL11) in the original BCBM network are determined by the parameters A and
respectively [12]. The (marginal)joint probability distribution in the integrated

model, Smad-BCBM, can be computed by marginalize the newly added Smad-
dependent Pathway(S) as

Pr(C,T) = Pr(Ygad) Pr(L.T) = Pr(¥gpé) (4.16)

where C stands for CTGF, I represents IL11, T states TGF3 and Pr equals
to the probability of TGF/3. Based on Section 4.2.2, to ensure the consistency
of the model integration, the marginal joint probability of (TGFS, CTGF) and
(TGFg3, IL11) in Eq. 4.16 can be constrained by A and v approximately as

ARDY qap YR Y o pd (4.17)

where > cap € (A=A X+ Al and > gpp € [y — A,y + A]. Ais a small
quantity.
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Modeling TGF3-Smad Signaling Pathway

Transforming Growth Factor 3 controls a diverse set of cellular processes, includ-
ing cell proliferation, recognition, differentiation, apoptosis, by the activation of
Smad proteins through ligand-receptor binding, phosphorylation and transcrip-
tional regulation of target gene expression. The mechanism of Smad-mediated
TGF (3 signaling pathway is shown in Figure 4.6(a) [74]. A set of qualitative hy-
potheses Q0 = {€g,...,11} on the protein-protein interactions in this pathway
can be extracted from the publications [74,100,114] and described below:

Qg: TGFB ligand binds to the type II receptor serine/threonine kinases

Q7: The TGFB-bound type II receptor kinases phosphorylate the receptor I
kinase

Qg: The phosphorylated type I receptor kinases phosphorylate the R-Smad,
Smad2/3

Qqg: The inhibitory Smad, Smad7, may inhibit the signaling transduction by
competing with Smad2/3 for type I receptor kinases

Q19: The phosphorylated Smad2/3 and Co-Smad, Smad4, form complex to
activate the target gene

Q11 The inhibitory Smad, Smad7, may inhibit the signaling transduction by
competing with Smad4

Based on the qualitative knowledge model in [13], the set of qualitative
hypotheses can be used to generate a vector of constraints on the structure and
parameter space of the TGF/3-Smad signaling pathway. The structure can be
represented by a static Bayesian network as shown in Figure 4.6(b) and the
parameters can be described by the conditional probability tables (CPT) in
Table 4.3.

The interaction between TGF( and type-II receptor (TSRII) in Qg can be
described as ligand-receptor binding. Since TGFgS binds to TSRII and form a
complex TGFB-TARII, the probability of the complex with sufficient amount of
all reactants (n3) are higher than when there is insufficient amount on partial
reactants (11,2) which in turn are higher than none of the reactants are of
sufficient amount (7). In addition, 71 2 may be small enough such that 73 is
larger than their sum. Therefore, the constraint rules in the parameter space of
the ligand-receptor binding interaction can be described by additive synergy in
[13] as follows:

n3>(M2+m) m>m me>no (4.18)
In hypothesis 27, the complex TGFG-TSRII and the type-I receptor (TSRI)
form a phosphorylated type-I receptor. Similar to ligand-receptor binding, phos-
phorylation can be described by additive synergy as well, i.e.

ps > (p1 4 p2)  p1 > o P2 > fo (4.19)

In €39, the inhibitory Smad, Smad7 inhibits the signaling transduction by
competing with the receptor-regulate protein Smad2/3 for TGRI. Thus, the
probability of Smad2/3 being phosphorylated by the active form of TARI is
decreased with the presence of Smad7. The parameter of this interaction can
be represented by a set of second-order constraints. In the first order, the
phosphorylation between Smad2/3 and activated TSORI can be described by
additive synergy regardless to Smad?7.

o3> (01 +02) 01>00 02209

o7 > (05 +06) 05>04 06>04 (4.20)
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Figure 4.6: TGF3-Smad Signaling Pathway

In the second order, the interaction between Smad7 and the first-order phos-
phorylation can be treated as mized joint influence [13].

03> 07 01205 0g=>04 02206 (4.21)

Similarly, the parameter of the interaction between Smad7, active Smad2/3
and Smad4, 6 can be restrained by the set of second-order constraints as Eq. 4.20
to Eq. 4.21.

Integrating TGF(-Smad Signaling Pathway into Smad-BCBM Net-
work

Since the Smad-dependent pathway in Smad-BCBM network is an aggregate
type, we can spatially integrate the network in Figure 4.6(b) into Figure 4.5(a)
by replacing the Smad-dependent pathway with the TGF(G-Smad signaling path-
way which consists a vector of Smad-family proteins(S), i.e. S={TBRII, TBRI,
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Table 4.3: CPTs for TGFB-Smad Pathway

Smad2/3, Smad4, Smad7, TGF3-TBRII, TSRI-p, Smad2/3-p, Smad4-Smad2/3-

p}. The integrated network, TGFg3-Smad BCBM, is shown in Figure 3.3 and
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the joint probability distribution in Eq. 4.16 can be reformulated as
Per) = PTE Y gaboun Pyry= PTE > g pboun (4.22)

where G = {TBRII, TBRI, Smad2/3, Smad4, Smad7} and Pr c=Pr(TGFB)Pr(G).
Thus, the parameters of the integrated model can be constrained by the consis-
tency of Bayesian model integration as Eq. 4.17.

Bone Metastasis Prediction

In [60], by in-vivo selection of MDA-MB-231 human breast cancer cell line, sub-
populations with distinct bone metastatic ability are isolated. Cell line 1833
generates large osteolytic bone lesions while the populations of 1834 exhibit low
metastatic activity towards the bone. The different metastasis ability of these
populations are due to the various expression signatures of the bone metastasis
related genes, i.e. G’={CXCR4,CTGF,IL11,0PN,MMP1}. The qualitative hy-
potheses on gene expression profile in [7,60] can be summarized in Figure 4.7.

Gl T | PRCXCRL)| PRCTCH) 2l PAOPR) | PrOTNEL)
WAED| 02 D107 [ PAOMPLPACIGR]| 05 | W.PR(L)
T | 0410 | DLPrCKCH] 207 W | poid

Figure 4.7: Gene Expression Constraints

According to Section 2.3.2, the inference can be performed by calculat-
ing the equivalent mean model with expect values of the model parameters.
The vector of equivalent mean parameters of Smad-BCBM network can be de-
scribed as {@, 3,7, ¢, \, ¢, p} as well as of the integrated TGF3-Smad BCBM
network can be represented as {@,p,(,7,7i,0,5}. Since these parameters are
high-dimensional, the integration in Eq. 2.53 can be approximated by Monte
Carlo simulation. For each parameter, we simulate K=50,000 samples con-
strained by Eq. 4.15 to Eq. 4.22.

We perform the bone metastasis inference in the Smad-BCBM and TGF3-
Smad BCBM network respectively. In the first simulation, we perform inference
on the probability of bone metastasis formed by 1833 cells and ATCC cells in
the Smad-BCBM network in Figure 4.5(a) . The inference is simulated with
interference on Smad-dependent pathway by clamping it to 0(minima) and with
transfection of ATCC by clamping CXCR4, IL11, OPN to 1(maxima). The
inference results are shown in Figure 4.8(a). Secondly, the inference on the
probability of bone metastasis are performed in the integrated TGF(G-Smad
BCBM network in Figure 3.3. Since the prior probability of the variables in
G are unknown, we perform the simulation based on three configurations on
G, ie. E = {Ey,Ey, E3}. In E;, the prior probabilities of the entities in G
except Smad7 are set to 1 and the prior of Smad7 is set to 0; In Fs, the prior
probabilities of the entities in G except Smad4 and Smad?7 are set to 1. The prior
of Smad4 and Smad7 are set to 0. In F3, we set the prior probabilities of entities
in G except Smad7 to 0 and the prior of Smad7 is set to 1. The simulation
results of Fy and Fs3 provide the maximum and minimum boundary on the
bone metastasis probability in the TGF3-Smad BCBM network according to
different settings on the variables in G and the simulation of F5 comply with the
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experiment on Smad4 interference by Kang and are shown in Figure 4.8(b). The
biological observation on bone metastasis formed in [59] is shown in Figure 4.8(c)
for comparison.
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Figure 4.8: Integrated TGF3-Smad BCBM Network and Prediction
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4.3.2 Integration of TGF{-PTHrP Pathway in Breast Can-
cer Bone Metastasis Network

In the second scenario, a set of incomplete qualitative hypotheses has been
extracted from the publications [43,60, 113]. In [60], the study reports a set
of bone metastasis-related genes and their interaction with TGFf signaling
pathway in breast cancer bone metastasis network. In [43,113], the causal
role of PTHrP in breast cancer bone metastasis and its interaction with TGF(
are studied. We shall fuse the two TGF3-mediated signaling pathways in the
breast cancer bone metastasis network by fitting a integrated network to the
global uncertainty and perform quantitative inference in this network.

t-1 t

(a) PTHrP- (b) 2TBN of PTHrP-BCBM
BCBM
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(c) Example of Combined Global Data Samples

Figure 4.9: Breast Cancer Bone Metastasis Network with PTHrP
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(a) BM given PTHrP (b) TGFDb given BM
PTHrP ‘ Pr(BM|PTH:P) BM ‘ Pr(TGFB|BM)

0 7o 0 Po

1 Uil 1 P1

(¢) PTHrP given TGFg
TGFg ‘ Pr(PTHrP|TGFp)
0 Po

1 b1

Table 4.4: CPTs for PTHrP-related Bayesian Network

Parathyroid Hormone-related Protein (PTHrP) in Breast Cancer Bone
Metastasis Network

In [43], Parathyroid Hormone-related Protein (PTHrP) are proven to have a
causal role in human breast cancer bone metastasis by stimulating the osteo-
clastic bone resorption. Moreover, in [113], it has been identified that TGFS3
released during the bone destruction is responsible for enhancing PTHrP pro-
duction by tumor cells in the bone microenvironment and the enhanced PTHrP
in turn further promotes the bone destruction to form a vicious metastastic
cycle. A set of qualitative hypotheses on the causal effect of PTHrP on breast
cancer bone metastasis and the TGF3-mediated PTHrP signaling pathway can
be summarized in Q' = {Q2, 3}

Q1o: Tumor cells in the bone microenvironment produce PTHrP and stim-
ulate osteoclastic bone resorption, which in turn results in the release of active
TGFp.

O43: TGFPB then acts on the tumor cells to endow them with metastatic
capability and the ability to stimulate production of PTHrP.

The structure of the PTHrP-TGFg signaling pathway model in BCBM net-
work is shown in Fig 4.9(a) and it can be unrolled over time as in Fig. 4.9(b).
According to [13], the parameters of the PTHrP-TGFS3 BCBM network 7, p
and ¢ in Table 4.4 can be constrained by single positive influence as

Mo <M po < p1 $o < é1 (4.23)

Integrating PTHrP and Related Genes into TGF( Signaling Pathway
in BCBM Network

The full set of qualitative hypotheses can be written as Qp = {Q1, Q2, Q3, Q12, Q13}
and the complete set of variables includes eight entities at different levels,
i.e. X={CXCR4,CTGF,IL11,0PN,MMP1,PTHrP,BM,TGF3}. Two classes of
TGFg signaling pathway models of breast cancer bone metastasis network can
be constructed based on each set of hypotheses as

Mh:ﬁ = {mrn(s,(, 8,7, Nk=1,...,K}
M, o = {min(s,npe)lk=1,...,K} (4.24)

where s and s’ can be shown in Fig. 2.21(b) and Fig. 4.9(a). Moreover, Qp can
be further decomposed into two sub-sets of hypotheses, i.e. a set of consistent
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hypotheses and a set of complementary hypotheses as
ﬁF = {ﬁcon(ﬂ% QBa Q13)7§com(917 Q12)} (425)

The consistent hypotheses in Q.,,, provide explicit and unique information on
the relationship from the parent nodes to the child node, i.e. (BM;TGFg),
(TGFB;CTGF), (TGFB;IL11), (TGFB;PTHrP) and the complementary hy-
potheses in Qo describe all possible connections from the parent nodes to
the child node, i.e. (PTHrP;BM) and (CXCR4,CTGF,IL11,0PN,MMP1;BM).
Therefore, the model integration problem boils down to learn a set of ”best”
models for the variables in Q.,,, and then combine the ”best” models with the
qualitative hypotheses in ., to form the full model. Each hypothesis in Qcopm
can be used to define a model class as

Mp—q, = {mrq,(s(Gi;BM),lk=1,...,K}
Mh:ﬂlz {mk,le(s(ég;BM),n)‘k =1,...,K}

(4.26)

where G;={CXCR4, CTGF, IL11, OPN, MMP1} and G,={PTHrP}. We start
Bayesian learning by generating training data from each model class in Eq. 4.24.
We adopt two schemes for data generation: i)We sampled 5000 training se-
quences from the equivalent mean model as Eq. 2.53 from each model class; ii)We
firstly sampled K=500 ground Dynamic Bayesian models for each model class
in Eq. 4.24 and generate 10 data sequences from each ground Bayesian model.
Then the complete training data over X is formulated by mixing the training
sequences from the two schemes with hidden variables from each dataset, i.e.
Dr = {Dg, Dg7} as shown in Fig. 4.9(c). Since we are only interested in learning
a structure on the variables in Qcoy,, we collect the data in Dy corresponding
to those variables in G and G to finalize the training data D,,,, with size
| D com|=20,000. We applied the SEM algorithm with BD score to learn a set
of models based on various starting graphs. The learned model structures rep-
resent the combined uncertainty of the set of complementary hypotheses Qcom.
Since we have some prior knowledge on the relationship between the molecules
in G; and G5 to some extent, thus we could set structural prior distribution
to zero to ignore those structures which violate the knowledge, i.e. 1)We shall
not allow edges from BM to any of the molecules; ii)We shall assume that the
molecules PTHrP, CTGF and IL11 have no other parents than TGF(; iii) We
shall not allow any interaction between the molecules in G;. Then, we incorpo-
rate this structural constraint into the learning. The learned model structures
and the structures described in the consistent hypotheses, Qc,,, form a set of
complete models as shown in Fig. 4.10. The edges of the learned structure are in
black color and the edges of the structures in Qcop are in blue color. The node
is indexed by the order in the set {CXCR4, CTGF, IL11, OPN, MMP1, BM,
PTHrP, TGFG}. Meanwhile, the complete vector of parameters is composed
by the MAP parameter estimation for the learned structure and {83, v, A, p,
¢} which can be defined by Eq. 4.23 and sampled by Monte Carlo method [12].
Thus, the quantitative predictions based on full Bayesian approach can be per-
formed by averaging the inference from each of the complete model which can
be calculated by Eq. 2.53.
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(b) S2
8
(c) Ss

Figure 4.10: PTHrP-BCBM Model Candidates by SEM Learning

Bone Metastasis Prediction

In [43, 60, 113], the MDA-MB-231 human breast cancer cell line are used in
the investigation of breast cancer bone metastasis. The metastasis ability of
the population are due to the expression levels of the bone metastasis related
molecules in G={G1,G>}. The qualitative hypotheses on the expression profile
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of G can be extracted from [7,60,113] and summarized in Fig. 4.11.

[l | PRCRCR | PTG | BRI | PROPY) | RN | PPOFTAR) |

[IEE] | W] [PROOPLACTG]] W Jeri] Wi |

Figure 4.11: Molecular Expression Constraints
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Figure 4.12: Integrated TGF3-Smad BCBM Network and Prediction

We perform eight in-silico transfection experiments to predict the probability
of bone metastasis in which single or combination of molecules in G are manually
transfected to be overexpressed or underexpressed. Given the structure of each
complete model in Fig. 4.10, the averaged prediction on bone metastasis can be
calculated by Eq. 2.53 iteratively over time. The transfected molecule(s) in the
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experiments are treated as evidence of observed node(s) whose prior probabilities
of being overexpressed are clamped to 1 (maxima) and of being underexpressed
are clamped to 0 (minima). The mean estimate of bone metastasis activity
evolves over time in the case of transfected ATCC cells are shown in Fig. 4.12(a).
The time course of each simulation is labeled with the transfectant molecule
names in the figure. Figure 4.12(b) show the experiment observations in [43,60,
113].

Comparison between the simulation results and the experiment observations
from Kang in Fig. 2.24 is straightforward since in both cases the bone metastasis
probability is measured. However, the experiment observations in Fig. 4.12(b)
and Fig. 2.24 are measured in bone lesion area/number than the probability, we
could translate these results into probability by specifying the maximum proba-
bility of the bone metastasis in each figure. For example, in the top-central graph
of Fig. 4.12(b), the bone lesion area (in mm?) formulated by MDA-MB-231 cells
with and without PTHrP are measured. If we assume the total bone area under
concern is Byql, then it is obvious to infer from graph that Bioiq;>5.0 and
at 25th day, the lesion area formed by MDA-MB-231 cell without PTHrP is:
Bp<1.0, therefore we could calculate the probability of bone metastasis in this
case as B < 0.2. Similarly, the probability of bone metastasis formed by the
MDA-MB331 cells with mutated TGFg3 receptor TARITAcyt, from the bottom
graphs in Fig. 4.12(b) can be calculated as B < 0.2. Thus, we can conclude
that our in-silico simulation produces reasonablo quantitative predictions on the
probability of bone metastasis in these experiments.

4.4 Summary

In this chapter, we investigate the methods to integrate the incomplete qual-
itative knowledge into our probabilistic modeling framework. Knowledge are
often incomplete representation of an interested domain due to their spatial
and temporal properties. For example, one knowledge component may only de-
scribe a local sub-structure of a domain which can be compensated by another
knowledge component describing a different local sub-structure of the same do-
main with distinct set of domain variables. Also, even at the same location of
a domain, new discoveries with a number of newly identified variables and/or
connections might be used to update the existing knowledge and the associated
Bayesian networks at this location. Thus, the incomplete knowledge integra-
tion problem can be transformed eventually to the problem of knowledge-based
Bayesian network fusion.

We solve this problem in two scenarios. Firstly, we assume that the struc-
ture space of the fused Bayesian network is explicitly known. In this case, the
integration problem boils down to modeling the integrated parameter space un-
certainty. If a single node is inserted into one existing Bayesian network and
if the d-separation properties changed in the network during the integration
process, equality constraints on the (marginal) joint probability over the vari-
ables in the existing network are used to restrain the integrated model parameter
space. If multiple nodes are inserted, the integration process can be decomposed
into a series of steps with single node. As the above, the equality constraints
on the parameter space can be imposed in case the d-separation criterion is
changed. Especially, this criterion is symmetric to all Bayesian network compo-
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nents which are being fused together. In the second scenario, we need to model
the uncertainty of the integrated network structure space besides the parameter
space. We use Structural EM (SEM) algorithm to learn the integrated model
structure from the artificial generated local and global statistics with missing
values at some positions. We perform the SEM learning process several times
with distinct initial graphs aiming to explore all the possible ”"good” structures
to explain the statistics. Quantitative probability configurations are learned as-
sociated with each structure candidate. Quantitative reasoning and predictions
are calculated as an average of the quantity over all network structures.



Chapter 5

Discussion and Future
Research

5.1 Discussion

The rapid growth of information in every scientific and industrial domain raises
exciting challenge in handling vast amount of data and modeling underpin-
nings of a domain in a systematic and mathematic manner. In recent years,
probabilistic network has become popular as practical representations of knowl-
edge for reasoning under uncertainty. The probabilistic network computational
framework uses a graphical model to capture random variables in a domain and
relations between them, with probabilities that represent the uncertainties in the
domain. The framework offers powerful algorithms of quantitative reasoning,
such as predictive inference and diagnostic reasoning. Among these and other
probabilistic graphical models, directed graphical models (also called Bayesian
Networks or Belief Networks) are particular attractive for researches with the
Artificial Intelligence (AI) and statistics communities.

The major data mining practice in inferring Bayesian network from the data,
i.e. reverse-engineering approach is concentrated on inferring the structure and
its associated parameters of a Bayesian network from data. It is known as
structure learning and parameter learning of graphical models in machine learn-
ing. Structure learning of Bayesian network use the likelihood score, such as
BIC score to find the "best” model fitting to the data or a second type score
called Bayesian score, e.g. BD score, which incorporates prior belief on the
model structure and parameter space in Bayesian network learning. These and
other practices of computational modeling with Bayesian network, especially,
the structure and parameter learning with Bayesian network, reveal a number
of built-in problems of the data driven reverse-engineering approach. There are
mainly three concerns with these approaches:

1. Overfitting Learning from sparse data might induce overfitting since the
sparse data hardly provide sufficient entire ”statistics” of an underlying
system. Full Bayesian approach with Bayesian model averaging (BMA)
can be used to avoid and/or alleviate overfitting by computing a posterior
probability distribution over all possible models to reflect the true model
uncertainty. The quantity of interest are calculated as an average under
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each of the models. Prior knowledge over structural and parameter space
is imperative in computation of posterior probability.

2. Computational Complexity When learning structure, with the num-
ber of variables increases the space of possible graph structures grows
superexponentially. In case of high-dimensional data set, the learning
problem become NP-hard. Heuristic search strategies, such as greedy
hill-climbing, simulate annealing and MCMC algorithm are often used to
search all possible models through the structure space. The computational
complexity of these evaluations become inextricable when we learn from
high-dimensional data.

3. Multi-scale Integrative Learning As more sources of data have become
available, multi-scale integrative learning becomes imperative to raise the
challenges to address fundamental understandings of a system as a whole
by automatic integrating both homogeneous and heterogeneous types of
data. Uniform, standardized data representations are seldomly adopted,
which complicates cross-experiment comparisons as well as data quality,
context and cross-lab variations represent another important hurdle. Sta-
tistical tests are employed in homogeneous data integration which combine
single-level measurements from different platforms. However, prior knowl-
edge are indispensable to automatically integrate heterogeneous data.

These and other discussions on the built-in problems and their solutions in data
driven reverse-engineering approaches with Bayesian networks have invariably
revealed one fact, i.e. the remarkable importance of prior information in reverse-
engineering methods to prevent overfitting by providing structure and parameter
prior distributions and to optimize computational complexity by reducing the
heuristic search space, as well as to better recover the underlying network of
a system by integrating homo- and heterogeneous multiple-scale and multiple-
origin data sets.

5.2 Contribution

In this thesis, we have proposed unprecedented solutions to the challenges in
Bayesian network learning, namely, how to construct prior distribution over
structure and parameter space from prevalent amount of pre-existing qualitative
information in science and industrial domain within an unified framework as well
as to the tough question how qualitative statements about relationship between
domain entities can be transformed to yield quantitative predictive models, able
to perform probabilistic inference and reasoning.

In Chapter 2, we formally proposed the knowledge-driven probabilistic net-
works modeling framework which utilizes solely qualitative prior information
to perform probabilistic network modeling and quantitative inference and rea-
soning. No quantitative data is available in our study to shield our insights in
the function and effects of qualitative prior knowledge on quantitative model-
ing. We formulated the qualitative knowledge model and use it to capture the
structural dependence and influence between the variables under concern and
translate the cause-effect relationship described by the qualitative statements
into a set of inequality constraints over the model parameter space. The struc-
tural and parameter constraints eventually forms the model prior distribution.
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In this way, we can build a class of (Dynamic) Bayesian networks which are
consistent with the body of the qualitative prior knowledge.

We employ full Bayesian approach to calculate the average quantity of in-
terest, e.g. probabilistic inference and reasoning, over the class of Bayesian
networks. The integral over model structure space and parameter space can be
computed by Monte Carlo integration technique with Accept-Reject algorithm
which induce computational complexity for high-dimensional model space. We
proposed an simple and efficient method to approximate the averaged prob-
abilistic inference and prediction by the mean model. We have analyzed the
bias as a function of the message-propagation steps n and of the constraints
over the parameter space. We concluded that for small n (n >1) and relative
restrictive constraints (relative small parameter sub-space), our approximation
scheme is usually reasonable. For n=1, the approximation is exact. Also, we
have studied the robustness of our approach for each possible knowledge fea-
ture in our knowledge model due to the noisy information in the statements, we
studied the effect of such noise on our constructed model uncertainty and its
consequent generalization accuracy.

In chapter 3, we extend the knowledge-driven probabilistic network modeling
framework to a set of inconsistent knowledge. We investigate the method to
reconcile the contradicting qualitative information and utilize these inconsistent
information to make coherent quantitative reasoning. We do so by transforming
the qualitative knowledge model into a hierarchical model in which knowledge
features are encoded and quantified by their mutual (in)dependences and the
associated conditional probability. Given the hierarchical knowledge model, a
set of inconsistent knowledge are dissected and the conditional probabilities of
the knowledge features are calculated by evaluating their statistics. Expert
belief can be integrated into the method as a prior belief on the inconsistent
knowledge components. Each knowledge component uniquely define a class
of constrained Bayesian networks. The conditional probability of knowledge
features are used to compute the knowledge prior, i.e. the joint probability over
the feature space. Thus, multiple classes of Bayesian networks are inferred from
the inconsistent knowledge which are weighted by their corresponding knowledge
prior distribution. The incoherent Bayesian network classes are reconciled in
this way consistently into uniform representation and the averaged quantitative
prediction can be calculated over all ground models in one class and over all
classes.

In chpater 4, we investigate the methods to integrate the incomplete qual-
itative knowledge into our probabilistic modeling framework. Knowledge are
often incomplete representation of an interested domain due to their spatial
and temporal properties. For example, one knowledge component may only de-
scribe a local sub-structure of a domain which can be compensated by another
knowledge component describing a different local sub-structure of the same do-
main with distinct set of domain variables. Also, even at the same location of
a domain, new discoveries with a number of newly identified variables and/or
connections might be used to update the existing knowledge and the associated
Bayesian networks at this location. Thus, the incomplete knowledge integra-
tion problem can be transformed eventually to the problem of knowledge-based
Bayesian network fusion.

We solve this problem in two scenarios. Firstly, we assume that the struc-
ture space of the fused Bayesian network is explicitly known. In this case, the
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integration problem boils down to modeling the integrated parameter space un-
certainty. If a single node is inserted into one existing Bayesian network and
if the d-separation properties changed in the network during the integration
process, equality constraints on the (marginal) joint probability over the vari-
ables in the existing network are used to restrain the integrated model parameter
space. If multiple nodes are inserted, the integration process can be decomposed
into a series of steps with single node. As the above, the equality constraints
on the parameter space can be imposed in case the d-separation criterion is
changed. Especially, this criterion is symmetric to all Bayesian network compo-
nents which are being fused together. In the second scenario, we need to model
the uncertainty of the integrated network structure space besides the parameter
space. We use Structural EM (SEM) algorithm to learn the integrated model
structure from the artificial generated local and global statistics with missing
values at some positions. We perform the SEM learning process several times
with distinct initial graphs aiming to explore all the possible ”good” structures
to explain the statistics. Quantitative probability configurations are learned as-
sociated with each structure candidate. Quantitative reasoning and predictions
are calculated as an average of the quantity over all network structures.

In summary, our solutions to the tough question on how to make use of the
qualitative information to yield quantitative predictive models for performing
probabilistic predictions and reasoning will form an important link between
usually validated but qualitative information and quantitative yet uncertain
information derived from the data.

5.3 Future Researches

Further improvements on our methods could be

1. For high-dimensional parameter space and extreme restrictive constraints,
it is computationally expensive to use Accept-Reject algorithm to sample
in the model space. Therefore, more efficient sampling techniques can be
used here to improve the efficiency of the algorithm, such as Monte Carlo
Markov Chain (MCMC) algorithm or Gibbs sampling algorithm.

2. We could transform the uncertainty in the model space defined by the
constraints derived from the qualitative knowledge model to a parametric
presentation with a well-known probability density function, e.g. a Gaus-
sian distribution function. In this way, we can build an interface between
the inequality constraints derived from the qualitative information and
the density function which supports parametric computations.

Also, it is very interesting and very important for future investigation of our
methods on how to apply our methods to improve the Bayesian network learning
from quantitative sparse data by avoiding overfitting, reducing computational
complexity and enabling multi-scale integrative inference. One possible solution
is to incorporate the prior uncertainty over Bayesian model space from the
qualitative information to learning algorithms.



Appendix A

Bayesian Dirichlet
Equivalent Score

A score S(G) is assigned to the graph G to assess the fittness of a network G
to the data set D. This score is given by the posterior probability as

P(D|G)P(G)
=——""7 Al
where P(D|G) is the marginal data likelihood, P(G) is the prior probability of
structure G and P(D) a normalizing constant. The marginal data likelihood
can be calculated as

P(D|G) = /@P(D|6,G,£)P(®|G,§)d@ (A.2)

where © is the set of parameters and £ indicates the prior background informa-
tion. We assume that the data set D consists of N independent data samples
d', then the data likelihood can be decomposed as

N
P(D|G) =[] P(d'|e.G,¢) (A3)
=1
Thus, Eq. A.2 can be written as
N
ric) =] [ Pue.c.opeic. o (A4)
1=17/©

To solve the Eq. A.4 in closed form, five assumptions are made [21].

Assumption 1 Multinomial Distribution Let d! and d;mi denote the vari-
able X; and the parent set Pa; in the [-th case of data set D, Then,

P(d" = k|d},,, = j,0,G,€) = O, €10,1], VX, Pa; (A.5)

135



5.3 Future Researches 136

Assumption 2 Parameter Independence Given network structure G, the
parameters associated with each variable are independent from each other such
that P(O|G, &) decomposes into

P(O|G,¢) = [[P(©ilG.¢) Vi=1,....n (A.6)

i=1

Since each instance of parents of a variable X; are independent. P(©;|G,¢)
decomposes into

qi
P(6,]G.&) = [[ P(©41G.€) Vi=1,....mj=1,....q (A7)

where ¢; is the number of configurations the set of parents pa; can take.

Assumption 3 Parameter Modularity Given two network structures G
and (o, if X; has the same parents in G; and Go, then

P(044|G1,€) = P(0:4|G2,€), Vi=1,...,q (A.8)

Assumption 4 Dirichlet Prior Given a network structure G, P(0;;|G,¢)
is a priori Dirichlet distributed, 6;;~D(Njj1, ..., Nijr,), exist exponents N]k,
which depend on

F( z ijk— L
P(0]G,¢) = F( J’“ Hemk’ (A.9)
’ij

where I'(x) denotes the Gamma function and 7; is the number of values of
variable X;. The hyper-parameters N, can be computed as

l]k - N/P( - k Paz —J|§) (AlO)

where N’ is the equivalent sample size and P(X; = k, Pa; = j|{) is the prior
joint probability distribution over the variable X; and its parents Pa;.

Assumption 5 Complete Data The data set is complete. That is, D contains
no missing values or hidden variables. From the multinomial sample assumption
in Eq. A.5 and the assumption of complete data, P(D|©,G) can be factorized
into

N n qi T

P(D‘@7G7€) = HHP(di = k|le’ai :j7@aG 5 H H H azg;c]k A'll)

1=11i=1 1=17=1k=1

where N;ji equals to the number of the samples (X; = k,Pa; = j) in D.
Substituting Eq. A.9 and Eq. A.11 the marginal likelihood in Eq. A.2 can be
re-formulated as

P(DIG) = /@P(D|@,G,§)P(®|G,§)d@



5.3 Future Researches 137

/HHHW st |

i=1j=1k=1
- +N/ 1
_ ZJk? Niji+Nijp—
- HH / o 10 (A12)
i=1j= 1 wk © =1

The posterior of each parameter remains in the conjugate family since the Dirich-
let distribution is conjugate for this domain. The integral equals to

AN — ijk + V]
/ ”szer_,k Lo — [Tizs T(Niji : k) (A.13)
O -1 I'(Nij + Nij)
where N;;=>", N;;i and N, Zk Ni’jk. Thus, the marginal data likelihood
reads ( )
n 4 T (N + N
P(D ’ ik A4
o= i, +N’>H TV .

i=1j=1



Appendix B

Textual Statements on
Breast Cancer Bone
Metastasis Network

In this appendix, we list the extracted qualitative textual statements and infor-
mation for the breast cancer bone metastasis molecular interaction network(BCBM)
in [60].

1. These genes act cooperatively to cause osteolytic metastasis, and most of
them encode secreted and cell surface proteins.

2. Two of these genes, interleukin-11 and CTGF, encode osteolytic and an-
giogenic factors whose expression is further increased by the prometastatic
cytokine TGFg.

3. Most of the genes in this group that are overexpressed by more than
4-fold encode cell membrane or secretory products that may affect the
host environment to favor metastasis (Figure3C). They include the bone-
homing chemokine receptor CXCR4 pressed (Figure 3B).(Muller et al.,
2001; Taichman et al., 2002); the angiogenesis factors fibroblast growth
factor-5 (Giordano et al., 1996) and connective tissue-derived growth fac-
tor (Moussad and Brigstock,2000); the activator of osteoclast differen-
tiation interleukin-11 (IL11, Manolagas, 1995); the matrix metallopro-
teinase collagenase MMP1, which promotes osteolysis by cleaving a spe-
cific peptide bond in the collagen of bone matrix (Egeblad and Werb,
2002; Holliday et al., 1997; Zhao et al., 1999); follistatin, which binds
activin blocking its growth inhibitory effects (de Winter et al., 1996);
the metalloproteinase-disintegrin family member ADAMTS1 (Kuno et al.,
1999); and proteoglycan-1 (Timar et al., 2002).

4. A functionally diverse set of genes cooperatively promote bone metastasis.

5. IL11 is a potent inducer of osteoclast formation from progenitor cells in
the bone marrow (Manolagas, 1995). Osteoclasts are direct mediators of
bone resorption in osteolytic bone metastases (Boyce et al., 1999; Mundy,
2002).
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6. Osteopontin (OPN) is consistently overexpressed in highly metastatic cells.
OPN is a secretory protein with multiple functions, including the ability to
stimulate osteoclast adhesion to bone matrix (Asou et al., 2001; Denhardt
et al.,2001). OPN has been implicated in cancer aggressiveness metastasis
to various organs (Furger et al., 2001; Hotte et al.,2002; Reinholz et al.,
2002; Weber, 2001). AsIL11 and OPN data suggest that overexpression of
MMP1 alone or in combination play distinct roles in enhancing osteoclast
function, we tested whether they could collaborate in promoting oste-
olytic metastasis. Indeed, the combined overexpression of IL11 and OPN
in parental MDA-MB-231 cells significantly augmented the incidence of
bone metastasis (Figure 4B).

7. When overexpressed alone in parental MDA-MB-231 cells, CXCR4 caused
a limited but significant increase in bone metastasis formation, whereas
CTGF did not (Figure 4D). However, triple transfectants overexpressing
IL11, OPN, and either CXCR4 or CTGF (Figure 4C) showed a dramatic
increase both in the rate and in the incidence of bone metastases (Figure
4E).

8. Preliminary data suggest that overexpression of MMP1 alone or in com-
bination with IL11 and OPN also enhances bone metastasis. Thus, the
combined activities of these genes specifically promote the growth of os-
teolytic bone metastases.

9. TGF( activates bone metastasis genes IL11 and CTGF.



Bibliography

1]

[10]

[11]

Kyu-Baek Hwang ans Sek Won Kong, Steve A Greenberg, and Peter J.
Park. Combining gene expression data from different generations of
oligonucleotide arrays. BMC' Bioinformatics, 2004.

A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression pat-
terns. Journal of Computational Biology, 1999.

Y. Bengio and P. Frasconi. Diffusion of context and credit information in
markovian models. J. of AI Research, 1995.

Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, Inc., New York, NY, USA, 1995.

Wray L. Buntine. Operations for learning with graphical models. Journal
of Artificial Intelligence Research, 2:159-225, 1994.

C. Elizabeth Caldon, Roger J. Daly, Robert L. Sutherland, and Eliza-
beth A. Musgrove. Journal of Cellular Biochemistry, 2006.

Gabriele Carlinfante, Daphne Vassiliou, Olle Svensson, Mikael Wendel,
Dick Heinegrd, and Gran Andersson. Differential expression of osteopontin
and bone sialoprotein in bone metastasis of breast and prostate carcinoma.
Clinical and Experimental Metastasis, 2003.

Rui Chang. Consistent modeling, integration and simulation of molecular
interaction networks in space-time dimension. In Proceedings of IEEE Tth
International Symposium on Bioinformatics € Bioengineering (BIBE),
2007.

Rui Chang and Wilfried Brauer. Hierarchical qualitative knowledge in-
tegration for quantitative bayesian inference. In Proceedings of 2007 In-
ternational Conference on Intelligent System and Knowledge Engineer-
ing(ISKE), 2007.

Rui Chang and Wilfried Brauer. A novel computational framework to-
wards multi-scale molecular interaction networks fusion based on artifi-
cial data and knowledge. In The 12th Annual International Conference
on Research in Computational Molecular Biology (RECOMB), 2008. In
Processing.

Rui Chang and Wilfried Brauer. A novel knowledge-driven system biol-
ogy approach in quantifying tgf-mediated cytostasis in breast cancer. In

140



5.3 Future Researches 141

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[22]

[23]

[24]

The 12th Annual International Conference on Research in Computational
Molecular Biology(RECOMB), 2008. In Processing.

Rui Chang and Martin Stetter. A knowledge-based dynamic bayesian
framework towards molecular network modeling and quantitative predic-
tion. In Proceedings of 2007 International Conference on Bioinformatics
& Computational Biology (BIOCOMP), 2007.

Rui Chang and Martin Stetter. Quantitative bayesian inference by qual-
itative knowledge modeling. In Proceedings of IEEE 20th International
Joint Conference on Neural Networks (IJCNN), 2007.

Rui Chang, Martin Stetter, and Wilfried Brauer. Modeling semantics
of inconsistent qualitative knowledge for quantitative bayesian network
inference. Neural Networks, 2007. Accepted for Revision.

Rui Chang, Martin Stetter, and Wilfried Brauer. Quantitative inference
by qualitative semantic knowledge mining with bayesian model averaging.
IEEFE Transactions on Knowledge and Data Engineering, 2007. Accepted
for Revision.

Chang-Rung Chen, Yibin Kang, Peter M. Siegel, and Joan Massague.
PNAS, 2000.

Chang-Rung Chen, Yibin Kang, Peter M. Siegel, and Joan Massague.
Cell, 2002.

D. Chickering. Learning bayesian networks is np-complete. In Proceedings
of AI and Statistics, pages 85-96, 1995.

David Maxwell Chickering Christopher Meek and David Heckerman. Au-
toregressive tree models for time-series analysis. In Proceedings of 2006
Proceedings of the Second International SIAM Conference on Data Min-
ing, 2002.

G. F. Cooper and E. Herskovits. A bayesian method for the induction
of probabilistic networks from data. Machine Learning, 09(4):309-347,
October 1992.

Gregory F. Cooper and Edward Herskovits. A bayesian method for con-
structing bayesian belief networks from databases. In Proceedings of the
seventh conference (1991) on Uncertainty in artificial intelligence, pages

86-94, San Francisco, CA, USA, 1991. Morgan Kaufmann Publishers Inc.

Michael B. Datto, Yan Li, Joanne Panus, David J. Howe, Yue Xiong, and
Xiao-Fan Wang. PNAS, 1995.

T. Dean and K. Kanazawa. A model for reasoning about persistence and
causation. Artificial Intelligence, 1989.

M. Dejori and M. Stetter. Identifying interventional and pathogenic mech-
anisms by generative inverse modeling of gene expression profiles. J. Com-
put. Biology, 11:1135-1148, 2004.



5.3 Future Researches 142

[25]

[26]

[27]

[28]

[29]

[31]

[32]

[33]

[34]

[35]

[37]

[38]

[39]

[40]

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical
Society, 39(Series B):1-38, 1977.

Joseph L. DeRisi, Vishwanath R. Iyer, and Patrick O. Brown. Exploring
the metabolic and genetic control of gene expression on a genomic scale.
Science, 1997.

D. Draper. Assessment and propagation of model uncertainty. Journal of
the Royal Statistic Society, 1995.

M. Druzdzel and M. Henrion. Belief propagation in qualitative probabilis-
tic networks, 1993.

Marek J. Druzdzel and Linda C. van der Gaag. Elicitation of probabilities
for belief networks: Combining qualitative and quantitative information.
In Proceedings of Eleventh Conference on Uncertainty in Artificial Intel-

ligence, 1995.

M.J. Druzdzel and L.C. van der Gaag. Building probabilistic networks:
Where do the numbers come from? In IEEE Transactions on Knowledge
and Data Engineering, 2000.

D. J. Dudgeon and M. Lertzman. Dyspnea in the advanced cancer patient.
J. of Pain and Symptom Management, 16(4):212-219, 1998.

Hinton G. E., Sejnowski T. J., and Ackley D. H. Boltzman machines:
Constraint satisfaction networks that learn. Technical report, Carnegie-
Mellon University, 1984.

P. Edmonds, S. Karlsen, S. Khan, and J. Addington-Hall. A comparison
of the palliative care needs of patients dying from chronic respiratory
diseases and lung cancer. Palliative Medicine, 15(4):287-295, 2001.

B. Efron. Bootstrap methods: Another look at the jackknife. The Annals
of Statistics, 1979.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster
analysis and display of genome-wide expression patterns. Proc. Natl. Acad.
Sci., 1998.

N. Friedman, M. Linial, I. Nachman, and D. Peer. sing bayesian network
to analyze expression data. Journal of Computational Biology, 2000.

Nir Friedman. The Bayesian structural EM algorithm. In UAI pages
129-138.

Nir Friedman, Moises Goldszmidt, and Abraham Wyner. Data analysis
with bayesian networks: A bootstrap approach. pages 196-205.

Nir Friedman, Kevin Murphy, and Stuart Russell. Learning the structure
of dynamic probabilistic networks. In UAI, pages 139-147, 1998.

Giampaolo Gavelli and Emanuela Giampalma. Sensitivity and specificity
of chest x-ray screening for lung cancer. Cancer, 89,511:2453—-2456, 1998.



5.3 Future Researches 143

[41]

[42]
[43]

[44]

[48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

[56]

S. Geman and D. Geman. Stochastic relaxation, gibbs distribution and
bayesian restoration of images. IEFE Transactions on Pattern Analysis
and Machine Intelligence, 1984.

Schwarz Gideon. The Annals of Statistics, (2):461-464.

Theresa A. Guise, Juan Juan Yin, Suzanne D. Taylor, Yoshinari Kumagai,
Mark Dallas, Brendan F. Boyce, Toshiyuki Yoneda, , and Gregory R.
Mundy. Evidence for a causal role of parathyroid hormone-related protein
in the pathogenesis of human breast cancer-mediated osteolysis. Journal
of Clinic Investigation, 98, October 1996.

Elias Gyftodimos and Peter Flach. Hierarchical bayesian networks: A
probabilistic reasoning model for structured domains. In Proceedings of
the ICML-2002 Workshop on Development of Representations, pages 23—
30, 2002.

J. Hamilton. Time Series Analysis. Wiley, 1994.

Gregory J. Hannon and David Beach. p15ink4b is a potential effector of
tgf-B-induced cell cycle arrest. Nature, 1994.

Alexander. J. Hartemink, David K. Gifford, Tommi S. Jaakkola, and
Richard A. Young. Using graphical models and genomic expression data
to statistically validate models of genetic regulatory networks. Pacific
Symposium on Biocomputing, 6:422—-433, 2001.

David Heckerman. A Tutorial on Learning with Bayesian Networks. Tech-
nical report, Microsoft Research, 1996.

David Heckerman, Dan Geiger, and David Maxwell Chickering. Learning
bayesian networks: The combination of knowledge and statistical data. In
KDD Workshop, pages 85-96, 1994.

Jennifer A. Hoeting, David Madigan, Adrian E. Raftery, and Chris T.
Volinsky. Bayesian model averaging: A tutorial. Statistical Science, 1999.

Weimin Hu, Clifford J. Bellone, and Joseph J. Baldassare. J. of Biological
Chemistry, 1999.

Curtis Huttenhower and Olga G. Troyanskaya. Bayesian data integration:
A functional perspective. Computational Systems Bioinformatics, 2006.

Jordan M. I. Learning in Graphical Models. MIT Press, 1998.

Seiya Imoto, Tomoyuki Higuchi, Takao Goto, Kousuke Tashiro, Satoru
Kuhara, and Satoru Miyano. Combining microarrays and biological knowl-
edge for estimating gene networks via bayesian networks. Computational
Systems Bioinformatics, 2003.

Spiegelhalter D. J. Probabilistic reasoning in predictive expert system. In
Uncertainty in Artificial Intelligence, 1986.

F. Jelinek. Statistical methods for speech recognition. MIT Press, 1997.



5.3 Future Researches 144

[57]

[58]

[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and
Lawrence K. Saul. An introduction to variational methods for graph-
ical models. In Proceedings of the NATO Advanced Study Institute on
Learning in graphical models, pages 105-161, Norwell, MA, USA, 1998.
Kluwer Academic Publishers.

Pearl Judea. A constraint-propagation approach to probabilistic reason-
ing. In Proceedings Workshop on Uncertainty in Artificial Intelligence,
1986.

Yibin Kang, Wei He, Shaun Tulley, Gaorav P. Gupta, Inna Serganova,
Chang Rung Chen, Katia Manova-Todorova, Ronald Blasberg, William L.
Gerald, and Joan Massague. Breast cancer bone metastasis mediated
by the smad tumor suppressor pathway. In Proceedings of the National
Academy of Sciences of the USA, 2005.

Yibin Kang, Peter M. Siegel, Weiping Shu, Maria Drobnjak, Sanna M.
Kakonen, Carlos Cordén-Cardo, Theresa A. Guise, and Joan Massagué.

A multigenic program mediating breast cancer metastasis to bone. Cell,
3(6):537-549, June 2003.

Khandan Keyomarsi and Arthur B. Pardee. PNAS, 1993.

S. Kim, S. Imoto, and S. Miyano. Dynamic bayesian network and non-
parametric regression for nonlinear modeling of gene networks from time
series gene expression data, 2003.

RA Kinsman, RA Yaroush, E Fernandez, JF Dirks, M Schocket, and
J Fukuhara. Symptoms and experiences in chronic bronchitis and emphy-
sema. Chest, 83:755—761, 1983.

W. Lam and F. Bacchus. Learning bayesian belief networks: An approach
based on the mdl principle. Computational Intelligence, 98, July 1994.

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with prob-
abilities on graphical structures and their application to expert systems.
J. Royal Statistics Society B, 50(2):157-194, 1988.

Steffen L. Lauritzen. The em algorithm for graphical association models
with missing data. Technical report, Department of Statistics, Aalborg
University, 1991.

Steffen L. Lauritzen. The em algorithm for graphical association models
with missing data. Computational Statistics and Data Analysis, 1995.

D. J. Lockhart, H. Dong, M. C. Byrne, M. T. Follettie, M. V. Gallo, M. S.
Chee, M. Mittmann, C. Want, M. Kobayashi, H. Horton, and E. L. Brown.
Dna expressionmonitoring by hybridization of high density oligonucleotide
arrays. Nature Biotechnology, 1996.

D. Madigan and A.E. Raftery. Model selection and accounting for model
uncertainty in graphical models using occam’s window. Journal of Amer-
ican Statistical Association, 1994.



5.3 Future Researches 145

[70]

[71]

[72]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

A. McCallum. Reinforcement Learning with Selective Perception and Hid-
den State. PhD thesis, Univ. Rochester, 1995.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth,
Augusta H. Teller, and Edward Teller. Equation of state calculations by
fast computing machines. Computational Intelligence, 21, 1953.

B. Middleton, M. Shwe, D. Heckerman, M. Henrion, E. Horvitz,
H. Lehmann, and G. Cooper. Probabilistic diagnosis using a reformu-
lation of the INTERNIST-1/QMR knowledge base: Part II. Evaluation of
diagnostic performance. SIAM Journal on Computing, 30:256-267, 1991.

Tom M. Mitchell. Machine Learning. Morgan Kaufmann Publishers, Inc.,
San Mateo, CA, USA, 1988.

Kohei Miyazono. Positive and negative regulation of tgf-3 signaling. Jour-
nal of Cell Science, 113(7):1101-1109, April 2000.

Mundy.G.R. Metastasis to bone:causes, consequences and therapeutic
opportunities. Nature Rev. Cancer, 2002.

K. Murphy. Learning bayes net structure from sparse data sets. Technical
report, Comp. Sci. Div., UC Berkeley, 2001.

K. Murphy and S. Mian. Modelling gene expression data using dynamic
bayesian networks, 1999.

Kevin Murphy. Dynamic Bayesian Networks: Representation, Inference
and Learning. PhD thesis, University of California, Berkeley, 2002.

Eric Neufeld. A probabilistic commonsense reasoner. International Jour-
nal of Intelligent Systems, 1990.

Peter J. Park, Yun Anna Cao, Sun Yong Lee, Jong Woo Kim, Mi Sook
Chang, Rebecca Hart, and Sangdun Choi. Current issues for dna microar-
rays: platform comparison, double linear amplification, and universal rna
reference. Journal of Biotechnology, 2004.

Judea Pearl. Fusion, propagation, and structuring in belief networks.
Artif. Intell., 29(3):241-288, 1986.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers, Inc., San Mateo, CA,
USA, 1988.

Judea Pearl and Tom S. Verma. A theory of inferred causation. In
James F. Allen, Richard Fikes, and Erik Sandewall, editors, KR’91: Prin-
ciples of Knowledge Representation and Reasoning, pages 441-452, San
Mateo, California, 1991. Morgan Kaufmann.

D. Piperno, F. Bart, P. Serrier, M. Zureik, and L. Finkielsztejn. General
practice patients at risk of chronic obstructive pulmonary disease: epi-
demiologic survey of 3 411 patients. La Press Medicale, 34(21):1612-1614,
2005.



5.3 Future Researches 146

[85]

[36]

[87]

[88]

[89]

[90]

[92]

[93]

[94]

[95]

[96]

[97]
[98]

[100]

[101]

Kornelia Polyak, Mong-Hong Lee, Hedlye Erdjument-Bromage, Andrew
Koff, James M. Roberts, Paul Tempst, and Joan Massague. Cell, 1994.

Christian P.Robert. Monte Carlo Statistical Methods. Springer-Verlag,
New York, USA, 2004.

Silja Renooij. Qualitative Approaches to Quantifying Probabilistic Net-
works. PhD thesis, Universiteit of Utrecht, Holland, 2001.

Silja Renooij, Simon Parsons, and Linda C. van der Gaag. Context-specific
sign-propagation in qualitative probabilistic networks. In IJCAI, pages
667-672, 2001.

Silja Renooij and Linda C. van der Gaag. Enhancing QPNs for trade-off
resolution. pages 559-566.

Inga Reynisdottir, Kornelia Polyak, Antonio Iavarone, and Joan Mas-
sague. Kip/cip and ihk4 cdk inhibitors cooperate to induce cell cycle
arrest in response to tgf-G. Genes and Development, 1995.

Hans L. Rieder. Risk of travel-associated tuberculosis. Clinical Infectious
Diseases, 33:1393-1396, 2001.

Roberts.A.B and Sporn.M.B. The transforming growth factor-betas. In
Peptide Growth Factors and Their Receptors, 1990.

C N Robson, V. Gnanapragasam, R L. Byrne, and A T Collins. Journal
of Endocrinology, 1999.

Dana Ron, Yoram Singer, and Naftali Tishby. The power of amnesia:
Learning probabilistic automata with variable memory length. Machine
Learning, 1996.

Stuart J. Russell, John Binder, Daphne Koller, and Keiji Kanazawa. Local
learning in probabilistic networks with hidden variables. In IJCAI, pages
1146-1152, 1995.

E. Segal, Shapira M., A. Regev, D. Peer, D. Botstein, D. Koller, and
N. Friedman. Module networks: identifying regulatory modules and their
condition-specific regulators from gene-expression data. Nature Genetics,
2003.

Joan Seoane, Hong-Van Le, and Joan Massague. Nature, 2002.

Joan Seoane, Celio Pouponnot, Peter Staller, Manuela Schader, Martin
Eilers, and Joan Massague. Nature, 2001.

Sarah E. Seton-Rogers, Yu Lu, Lisa M. Hines, M. Koundinya, J. LaBaer,
S. K. Muthuswamy, and Joan S. Brugge. PNAS, 2003.

Yigong Shi and Joan Massagué. Mechanisms of tgf-§ signaling from cell
membrane to the nucleus. Cell, 113, June 2003.

Bill Shipley. Cause and Correlation in Biology: A User’s Guide to Path
Analysis, Structural Equations and Causal Inference. Cambridge, 2000.



5.3 Future Researches 147

[102]

[103]

[104]

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

[113]

[114]

[115]

Peter M. Siegel and Joan Massague. Cytostatic and apoptotic actions of
tgf-B in homeostasis and cancer. Nature Reviews, 2003.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Predic-
tion, and Search. MIT, 2000.

Yoshinori Tamada, SunYong Kim, Hideo Bannai, Seiya Imoto, Kousuke
Tashiro, Satoru Kuhara, and Satoru Miyano. Estimating gene networks
from gene expression data by combining bayesian network model with
promoter element detection. Bioinformatics, 2003.

R. J. Troisi, F. E. Speizer, Rosner B, Trichopoulos D, and Willett WC.
Cigarette smoking and incidence of chronic bronchitis and asthma in
women. Chest, 108(6):1557-1561, 1995.

Tim Van Allen and Russ Greiner. Model selection criteria for learning
belief nets: An empirical comparison. In Proc. 17th International Conf. on
Machine Learning, pages 1047-1054. Morgan Kaufmann, San Francisco,
CA, 2000.

Lalage M. Wakefield and Anita B. Roberts. Genetics & Development,
2002.

M. P. Wellman. Fundamental concepts of qualitative probabilistic net-
works. Artif. Intell., 44(3):257-303, 1990.

Michael P. Wellman. Fundamental concepts of qualitative probabilistic
networks. Artificial Intelligence, 1990.

X. Wen, S. Furhmann, G. S. Micheals, D. B. Carr, S. Smith, J. L. Barker,
and R. Somogyi. Large-scale temporal gene expressionmapping of central
nervous systemdevelopment. Proc. Nat. Acad. Sci., 1998.

J. Whittaker. Graphical Models in Applied Multivariate Statistics. Wiley
Series in Probability & Statistics, 1990.

Frank Wittig and Anthony Jameson. FExploiting qualitative knowledge
in the learning of conditional probabilities of bayesian networks. In Pro-
ceedings of Sixteenth Conference on Uncertainty in Artificial Intelligence,
2000.

Juan Juan Yin, Katri Selander, John M. Chirgwin, Mark Dallas, Barry G.
Grubbs, Rotraud Wieser, Joan Massagu, Gregory R. Mundy, , and
Theresa A. Guise. Tgf-/3 signaling blockade inhibits PTHrP secretion by
breast cancer cells and bone metastases development. Journal of Clinic
Investigation, 103, January 1999.

Ying Zhang and Rik Derynck. Regulaiton of smad signalling by protein
associations and signalling crosstalk. Trends in Cell Biology, 9(7):274-279,
July 1999.

Yu Zhang, Zhidong Deng, Hongshan Jiang, and Peifa Jia. Dynamic
bayesian network (dbn) with structure expectation maximization (sem)
for modeling of gene network from time series gene expression data. In
Proceedings of 2006 International Conference on Bioinformatics & Com-
putational Biology (BIOCOMPOG), 2006.



5.3 Future Researches 148

[116] Qun Zhou, Maryalice Stetler-Stevenson, and Patricia S Steeg. Oncogene,
1997.



