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Abstract— We study the performance of multi-input multi-
output (MIMO) channels with coarsely quantized outputs in
the low signal-to-noise ratio (SNR) regime, where the channel
is perfectly known at the receiver. This analysis is of interest in
the context of Ultra-Wideband (UWB) communications from
two aspects. First the available power is spread over such
a large frequency band, that the power spectral density is
extremely low and thus the SNR is low. Second the analog-
to-digital converters (ADCs) for such high bandwidth signals
should be low-resolution, in order to reduce their cost and
power consumption. In this paper we consider the extreme
case of only 1-bit ADC for each receive signal component. We
compute the mutual information up to second order in the
SNR and study the impact of quantization. We show that, up
to first order in SNR, the mutual information of the 1-bit
quantized system degrades only by a factor of2

π
compared to

the system with infinite resolution independent of the actual
MIMO channel realization. With Channel State Information
(CSI) only at receiver, we show that QPSK is, up to the
second order, the best among all distributions with independent
components. We also elaborate on the ergodic capacity under
this scheme in a Rayleigh flat-fading environment.

I. I NTRODUCTION

In the past few years, Ultra-Wideband communication
combined with the use of multiple antennas at both sides
of the transmission link has attracted much attention, as it
is able to overcome the bandwidth-power tradeoff [1], [2].
The main motivation of UWB is that the capacity increases
linearly with the bandwidth but only logarithmically with
the power, therefore spreading it over a wide frequency
band take us to the lowSNR limit, where the capacity is
asymptotically a linear function of the power. On the other
hand, the degradation of the bandwidth-efficiency related
with UWB communication can be partly compensated
with the use of multiple antennas, at the cost of some
additional processing complexity. However, a bigger
challenge arises when we have to do with UWB systems,
which concerns the analog-to-digital converters (ADCs). In
fact, in order to reduce circuit complexity and save power
and area, low resolution ADCs have to be employed [3], [4].

Several works studied MIMO channels in the context of
UWB communication [2], [5], [6]. These studies are based
on a second-order expansion of the mutual information
of MIMO channels asSNR goes to zero, dealing with
different classes of input and channel state information.
Unfortunately, most of these contributions assume that
the receiver has access to the channel data with infinite
precision, and thus does not take into account the effects of

quantization. In [7] and [8], the effects of quantization on
the channel capacity in QPSK MIMO systems have been
investigated. It turns out that the loss in channel capacity
due to coarse quantization is surprisingly small.

Motivated by the second-order asymptotic approach, we
study in this paper the impact of quantization on frequency
flat MIMO systems at lowSNR values, in terms of power
penalty and optimal input distribution. We consider the
extreme case of 1-bit quantized MIMO channel, with CSI at
the receiver, but no CSI at the transmitter. When a single bit
is used, the implementation of the all digital UWB receiver
is considerably simplified [9], [10], [11]. In particular,
automatic gain control (AGC) is not needed. Note that CSI
can be obtained even with one-bit quantization [12]. We
derive an expansion of the mutual information between the
input and the quantized output up to the second order of the
SNR for general input distributions. The first order term
of this expansion reveals the linear growth of the capacity
with the SNR, in the limit of infinite bandwidth, and is
therefore a measure for the achievable performance in terms
of power efficiency. On the other hand, by means of the
second order term, which is negative, we can quantify how
large the bandwidth should be in order to nearly reach the
wideband limit. This aspect of wideband convergence is
very important since the bandwidth is large but finite in
practice (see [2]).

Our paper is organized as follows. Section II describes the
system model and notational issues. In Section III we give
the general expression of the mutual information between the
inputs and the quantized outputs of the MIMO system, then
we expand it into a Taylor series up to the second order of
theSNR in Section IV. In Section V we derive the structure
of the best independent-component input distribution at low
SNR. Finally, in Section VI, we utilize these results to
elaborate on the ergodic capacity in a Rayleigh flat-fading
environment.

II. SYSTEM MODEL AND NOTATION

We consider a point-to-point quantized MIMO channel
where the transmitter employsM antennas and the receiver
hasN antennas. Fig. 1 shows the general form of a quantized
MIMO system, whereH ∈ C

N×M is the channel matrix.
The vectorx ∈ C

M comprises theM transmitted symbols
with zero-mean and covariance matrixQ = E[xxH]. The
average energy ofx is fixed to 1, i.e., tr(Q) = 1. The



vectorη refers to uncorrelated zero-mean complex circular
Gaussian noise with equal one-sided power spectral density
per dimension, which is assumed to be equalN0 = 1 without
loss of generality.r ∈ C

N is the unquantized channel output:

r =
√

SNRHx + η, (1)

where SNR represents the average signal-to-noise ratio at
each receive antenna.

In our system, the real partsri,R and the imaginary parts
ri,I of the receive signal componentsri, 1 ≤ i ≤ N , are each
quantized by a1-bit resolution quantizer. Thus, the resulting
quantized signals read as:

yi,c = sign(ri,c) ∈ {−1, 1}, for c ∈ {R, I}, 1 ≤ i ≤ N.
(2)

Throughout our paper,ai denotes thei-th element of the
vector a and [a]i,c = ai,c with c ∈ {R, I} is the real or
imaginary part ofai. The operators(·)H and tr(·) stand for
Hermitian transpose and trace of a matrix, respectively.
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Fig. 1. One-bit Quantized MIMO System

III. M UTUAL INFORMATION

The mutual information (in nats/s/Hz) between the chan-
nel input and the quantized output in Fig. 1 reads as [13]

I(x,y) = Ex

[
∑

y

P (y|x)ln
P (y|x)

P (y)

]

, (3)

with P (y) = Ex[P (y|x)] and Ex[·] is the expectation taken
with respect tox. Since all of the real and imaginary com-
ponents of the receiver noiseη are statistically independent
with one-sided spectral level12 , we can express each of the
conditional probabilities as the product of the conditional
probabilities on each receiver dimension

P (y|x) =
∏

c∈{R,I}

N∏

i=1

P (yc,i|x)

=
∏

c∈{R,I}

N∏

i=1

Φ

(

yc,i[Hx]c,i

√
SNR

√

1/2

)

,

(4)

with Φ(x) = 1√
2π

∫ x

−∞ e−
t2

2 dt is the cumulative normal
distribution function.

IV. SECOND-ORDEREXPANSION OF THEMUTUAL

INFORMATION

In this section, we will elaborate on the second-order
expansion of the input-output mutual information (3) of the
considered system in Fig. 1 as the signal-to-noise ratio goes
to zero.

Theorem 1: Consider the one-bit quantized MIMO sys-
tem in Fig. 1 under an input distributionp(x) with covari-
ance matrixQ, satisfyingp(x) = p(jx),∀x ∈ C

M (zero-
mean proper complex distribution)1 and Ex[‖x‖4+α

4 ] < γ for
some finite constantsα, γ > 0. Then, to the second order,
the mutual information (in nats) between the inputs and the
quantized outputs is given by:

I(x,y) =
2

π
tr(HQHH)SNR−

[
2

π2
tr((nondiag(HQHH))2)

+
4

3π
(1 − 1

π
)Ex[‖Hx‖4

4]

]

SNR2 + ∆I(x,y)
︸ ︷︷ ︸

o(SNR2)

,

(5)
where nondiag(A) is obtained fromA by setting all its
diagonal entries to zero, and‖a‖4

4 is the 4-norm ofa taken
to the power 4 defined as

∑

i,c a4
i,c.

Proof: The proof is based on the Taylor series expan-
sion of the function ln(t) andΦ(t) aroundt = 0 up to the
order four. That is

Φ(t) =
1

2
+

1√
2π

(t + 0 · t2 − t3

6
+ 0 · t4 + o(t4)) (6)

and

ln(1 + t) = t − t2

2
+

t3

3
− t4

4
+ o(t4). (7)

We simply apply these formulas to (4) and (3). The rest of
the proof is very technical but straightforward and therefore
omitted. The condition Ex[‖x‖4+α

4 ] < γ for some finite
constantsα, γ > 0 is necessary, so that the rest term of
the expansion given by

∆I(x,y) = Ex[o(‖x‖4
4 SNR2)] (8)

satisfies

lim
SNR→0

∆I(x,y)

SNR2 = 0, (9)

since

∆I(x,y) = Ex[o(‖x‖4
4 SNR2)]

≤ Ex[(‖x‖4
4 SNR2)1+

α′

4 ], for someα′ ∈]0, α]

≤ Ex[‖x‖4+α′

4 ]SNR2+ α′

2

≤ Ex[‖x‖4+α

4 ]
4+α′

4+α SNR2+ α′

2 (Hölder’s inequality)

≤ γ
4+α′

4+α SNR2+ α′

2

= o(SNR2).

For comparison, we use the results of Prelov and Verdú
[5] to express the mutual information (in nats) between the
input x and the unquantized outputr with the same input
distribution as inTheorem 1:

I(x, r) = tr(HQHH)SNR− tr((HQHH)2)

2
SNR2+

+ o(SNR2).
(10)

Whereas the mutual information for the unquantized
channel in (10), up to the second order, depends only on

1This restriction is simply justified by symmetry considerations.



the input covariance matrix, it depends in the quantized
case (5), also on fourth order statistics ofx (the fourth
mixed moments of its components).

Now, using (5) and (10), we deduce the mutual informa-
tion penalty in the wideband regime incurred by quantization

lim
SNR→0

I(x,y)

I(x, r)
=

2

π
, (11)

which is independent of the channel and the chosen distri-
bution. Since the capacity is the supremum of the mutual
information over the set of all input distributions, the same
ratio holds for the capacity

lim
SNR→0

C1-bit

C∞-bit
=

2

π
. (12)

This generalizes the result known for the AWGN channel
[14].

Fig. 2 illustrates the mutual information for a randomly
generated 4×4 channel2 with QPSK signalling, computed
exactly using (3), and its first and second-order
approximations from (5). For comparison, the mutual
information without quantization (using i.i.d. Gaussian
input) is also plotted. Fig. 2 shows that the ratio2

π
holds

for low to moderateSNR.

For a high number of antennas, the inner summation
in (3) may be intractable. In this case the second-order
approximation in (5) is advantageous to overcome the high
complexity of the exact formula.
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Fig. 2. Mutual information of a 1-bit quantized 4×4 QPSK MIMO system
and its first and second-order approximations. For comparisonthe mutual
information without quantization is also plotted.

V. CAPACITY WITH INDEPENDENT-COMPONENT INPUT

Lacking knowledge of the channel (or its statistics), the
transmitter assigns the power evenly over the components
xi,c of the input vectorx, i.e. E[x2

i,c] = 1
2M

, in order to
achieve good performance in average. Furthermore these

2The generated entrieshi,j of H are uncorrelated andhi,j ∼ N (0, 1).

components are assumed to be independent from each other.3

Thus, the probability density function of the input vectorx

is p(x) =
∏

i,c pi,c(xi,c).4 Now, with

[Hx]i,R =




∑

j

[hi,j,Rxj,R − hi,j,Ixj,I ]



 , (13)

µj,c =
E[x4

j,c]

E[x2
j,c]

2
= 4M2E[x4

j,c], (14)

and thekurtosis of the random componentxj,c defined as

κj,c = µj,c − 3, (15)

we get

Ex[([Hx]i,R)4]=
1

4M2







3
∑

j,c,j′,c′

(j,c) 6=(j′,c′)

h2
i,j,ch

2
i,j′,c′ +

∑

j,c

µj,ch
4
i,j,c







=
1

4M2



3
([

HHH]

i,i

)2

+
∑

j,c

κj,ch
4
i,j,c



 .

(16)
Similar results hold for the other components of the vector

Hx. Plugging this result andQ = I
M

into (5), we obtain
the expression of the mutual information with independent-
component input andQ = I

M
up to the second order

I ind(x,y) ≈ 2

π
tr(HHH)

SNR
M

−
[

2

π2
tr((nondiag(HHH))2)

+
2

3π
(1− 1

π
)



3 tr((diag(HHH))2) +
∑

i,j,c

κj,ch
4
i,j,c








SNR2

M2
,

(17)
where diag(A) is a diagonal matrix containing the diagonal
elements of the matixA.
Now, we state a theorem on the structure of the near-optimal
input distribution under these assumptions.

Theorem 2: To the second order, QPSK is uniquely best
among all distributions with independent components. The
achieved capacity up to the second order is then

CQ ≈ 2

π
tr(HHH)

SNR
M

−
[

2

π2
tr((nondiag(HHH))2)

+
2

3π
(1− 1

π
)



3 tr((diag(HHH))2) − 2
∑

i,j,c

h4
i,j,c








SNR2

M2
.

(18)

Proof: Since E[x4
i,c] ≥ E[x2

i,c]
2, we have κi,c =

E[x4
i,c]

E[x2
i,c

]2
− 3 ≥ −2,∀i, c. Obviously, the QPSK distribution

is the unique distribution with independent-component input
that can achieve all these lower bounds simultaneously, i.e.,
κi,c = κQPSK = −2 ∀i, c, and thus maximizeI ind(x,y) in
(17) up to the second order.

3Whether this is the optimal strategy for quantized MIMO systems, is
an open problem.

4Note that pi,c(xi,c) have to be even functions andpi,R(xi,R) =
pi,I(xi,I) ∀i, due to the symmetry (seeTheorem 1).



VI. ERGODIC CAPACITY UNDER QPSK SCHEME

Now, the channelH is assumed to be ergodic with i.i.d.
Gaussian componentshi,j ∼ N (0, 1). The ergodic capacity
achieved by QPSK reads as

Cerg
Q = EH [CQ]. (19)

We apply the expectation overH to the second order
expansion ofCQ in (18). Then, it is easy to show that

EH

[
tr(HHH)

]
= MN (20)

EH

[
tr
(
(nondiag(HHH))2

)]
= MN(N − 1) (21)

EH

[
tr
(
(diag(HHH))2

)]
= MN(M + 1) (22)

∑

i,j,c

EH

[
h4

i,j,c

]
=

3

2
MN. (23)

Finally, using (18) we obtain the following second-order
expression for the ergodic capacity of one-bit quantized
Rayleigh fading channels under QPSK scheme

Cerg
Q ≈ N

2

π
SNR − N(N + (π − 1)M − 1)

2M

(
2

π
SNR

)2

.

(24)
Compared to the ergodic capacity in the unquantized case
achieved by i.i.d. Gaussian input (or even by QPSK up to
the second order) [2]

Cerg ≈ NSNR − N(N + M)

2M
SNR2, (25)

the ergodic capacity of one-bit quantized MIMO under
QPSK Cerg

Q incorporates a power penalty of almostπ
2

(1.96 dB), when considering only the linear term that
characterizes the capacity in the limit of infinite bandwidth.

On the other hand, the second order term quantifies
the convergence of the capacity function to the wideband
limit by increasing the bandwidth [2]. Therefore, it can be
observed from

1 <
N + (π − 1)M − 1

N + M
< π − 1, (26)

that the quantized channel converges to this limit slower
than the unquantized channel. Nevertheless, forM = 1
or M � N , this difference in the convergence behavior
vanishes almost completely, since both second-order
expansions (24) and (25) become nearly the same up to the
factor 2/π in SNR.

In addition, the ergodic capacity of the quantized channel
Cerg

Q in (24) increases linearly with the number of receive
antennasN and only sublinearly with the number of transmit
antennasM , which holds also forCerg. For the special case
of one receive antenna,N = 1, Cerg

Q does not depend on
the number of transmit antennasM up to the second order,
contrary toCerg.

VII. C ONCLUSION

We derived an expression for the second-order expansion
of the mutual information of MIMO channels with one-bit
ADC for low SNR and general input distribution. Based on
this, we showed that the power penalty due to the 1-bit quan-
tization is approximately equalπ2 (1.96 dB) at lowSNR.

This shows that mono-bit ADCs may be used to save system
power without an excessive degradation in performance, and
confirms the significant potential of the coarsely quantized
UWB MIMO channel. Contrary to the unquantized channel,
the second order term in the Taylor expansion depends not
only on the covariance matrix of the input signal but also
on its fourth order statistics. In the absence of channel
knowledge at the transmitter, QPSK turned out to be the best
among all distributions with independent components. We
studied this special case in details and obtained the ergodic
capacity for the i.i.d. Rayleigh channel model under QPSK
scheme. An interesting topic for the future is to elaborate
on the capacity-achieving input distribution for lowSNR
with and without Channel State Information (CSI) at the
transmitter.
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