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Abstract—We study the performance of multi-input multi-  quantization. In [7] and [8], the effects of quantization on
output (MIMO) channels with coarsely quantized outputs in  the channel capacity in QPSK MIMO systems have been

the low signal-to-noise ratio GNR) regime, where the channel jestigated. It turns out that the loss in channel capacity
is perfectly known at the receiver. This analysis is of interest in due t tization i isinal I
the context of Ultra-Wideband (UWB) communications from Ue 10 coarse quantizaton IS SUrprisingly smail.

two aspects. First the available power is spread over such
a large frequency band, that the power spectral density is  Motivated by the second-order asymptotic approach, we
extremely low and thus the SNR is low. Second the analog- study in this paper the impact of quantization on frequency
to-digital converters (ADCs) for such high bandwidth signals g4t MIMO systems at IowSNR values, in terms of power
should be low-resolution, in order to reduce their cost and . . e .
power consumption. In this paper we consider the extreme penalty and optlmel Input. distribution. We conelder the
case of only 1-bit ADC for each receive signal component. We €xtreme case of 1-bit quantized MIMO channel, with CSI at
compute the mutual information up to second order in the the receiver, but no CSI at the transmitter. When a single bit
SNR and study the impact of quantization. We show that, up s used, the implementation of the all digital UWB receiver
to fII’S_t order in SNR, the mutual information of the 1-bit is considerably simplified [9], [10], [11]. In particular,
quantized system degrades only by a factor of compared to - - -
the system with infinite resolution independenrt of the actual automatic gqln control (A_GC) IS no't ”eeded- Note that CSI
MIMO channel realization. With Channel State Information ~can be obtained even with one-bit quantization [12]. We
(CSI) only at receiver, we show that QPSK is, up to the derive an expansion of the mutual information between the
second order, the best among all distributions vyith independent input and the quantized output up to the second order of the
components. We also elaborate on the ergodic capacity under gNR for general input distributions. The first order term
this scheme in a Rayleigh flat-fading environment. . . - -
of this expansion reveals the linear growth of the capacity

with the SNR, in the limit of infinite bandwidth, and is
therefore a measure for the achievable performance in terms

In the past few years, Ultra-Wideband communicatioof power efficiency. On the other hand, by means of the
combined with the use of multiple antennas at both sideecond order term, which is negative, we can quantify how
of the transmission link has attracted much attention, aslatge the bandwidth should be in order to nearly reach the
is able to overcome the bandwidth-power tradeoff [1], [2]videband limit. This aspect of wideband convergence is
The main motivation of UWB is that the capacity increasegery important since the bandwidth is large but finite in
linearly with the bandwidth but only logarithmically with practice (see [2]).
the power, therefore spreading it over a wide frequency
band take us to the IoNR limit, where the capacity is  Our paper is organized as follows. Section Il describes the
asymptotically a linear function of the power. On the othetystem model and notational issues. In Section Il we give
hand, the degradation of the bandwidth-efficiency relatebe general expression of the mutual information between th
with  UWB communication can be partly compensateghputs and the quantized outputs of the MIMO system, then
with the use of multiple antennas, at the cost of somge expand it into a Taylor series up to the second order of
additional processing complexity. However, a biggeihe SNR in Section IV. In Section V we derive the structure
challenge arises when we have to do with UWB systemsf, the best independent-component input distribution at lo
which concerns the analog-to-digital converters (ADCs). ISNR. Finally, in Section VI, we utilize these results to
fact, in order to reduce circuit complexity and save poweslaborate on the ergodic capacity in a Rayleigh flat-fading
and area, low resolution ADCs have to be employed [3], [4énvironment.

I. INTRODUCTION

Several works studied MIMO channels in the context of Il. SYsTEM MODEL AND NOTATION

UWB communication [2], [5], [6]. These studies are based We consider a point-to-point quantized MIMO channel
on a second-order expansion of the mutual informatiomhere the transmitter employ® antennas and the receiver
of MIMO channels asSNR goes to zero, dealing with hasN antennas. Fig. 1 shows the general form of a quantized
different classes of input and channel state informatioMIMO system, whereH ¢ CV*M is the channel matrix.
Unfortunately, most of these contributions assume th@he vectorz € CM comprises theél/ transmitted symbols
the receiver has access to the channel data with infinitéth zero-mean and covariance matgx = E[zx"]. The
precision, and thus does not take into account the effectsanferage energy of is fixed to 1, i.e., tfQ) = 1. The



vectorn refers to uncorrelated zero-mean complex circular Theorem 1. Consider the one-bit quantized MIMO sys-
Gaussian noise with equal one-sided power spectral dendéyn in Fig. 1 under an input distribution(z) with covari-
per dimension, which is assumed to be eq\igl= 1 without ance matrix@, satisfyingp(x) = p(jz),ve € CM (zero-
loss of generalityr € C¥ is the unquantized channel outputmean proper complex distributidrand E,| ||w||4+a] < ~ for
some finite constanta,y > 0. Then, to the second order,
r = VSNRHz + 1, (1) the mutual information (in nats) between the inputs and the

where SNR represents the average signal-to-noise ratio gganhzed outputs is given by:

each recelve antenna. I(z,y) 2tr(HQHH)SNR[itr((nondiagHQHH))z)
™ ™

In our system, the real parts r and the imaginary parts 4 1 A )
r;.1 of the receive signal components 1 < i < N, are each +§(1 - 7r)Eaz[||17[l'||4]} SNR” + Al(z,y),
quantized by d-bit resolution quantizer. Thus, the resulting o(SNR?)
guantized signals read as: (5)

) ' where nondiagA) is obtained fromA by setting all its
Yi.e = 8igN(ric) € {=1,1}, forc € {R, I}, 1 <i<N.  giagonal entries to zero, arj)ah||i is the 4-norm ofa taken

@) o the power 4 defined &s’,
Throughout our paperg; denotes the-th element of the

vectora and [a}; . = a;. with ¢ € {R, I} is the real or
imaginary part ofa;. The operatorg-)" and tf-) stand for
Hermitian transpose and trace of a matrix, respectively.

2,C ZC

Proof: The proof is based on the Taylor series expan-
sion of the function If¢) and ®(¢) aroundt = 0 up to the
order four. That is

1 3
jl: : : " O(t) =5+ ——=(t+0-2— — +0-t*+0o(t")) (6)
x >/ D) />§% >y 2 \or 6
VSNRM H N . PR

In(1+t)ftf§+§fz+ o(th). (7)

We simply apply these formulas to (4) and (3). The rest of
the proof is very technical but straightforward and therefo
omitted. The condition g[||a:||4+‘l] < v for some finite

Fig. 1. One-bit Quantized MIMO System

I1l. MUTUAL INFORMATION constantsa,y > 0 is necessary, so that the rest term of
The mutual information (in nats/s/Hz) between the chaf?€ €xpansion given by
nel input and the quantized output in Fig. 1 reads as [13] Al(z,y) = Em[0<||mHjSNR2)] @8)
P(y|z) satisfies
I(z,y) =E P(ylz)ln ; ®)

SNR-S0 SNR?
with P(y) = Ex[P(y|z)] and E.[-] is the expectation taken gjpce
with respect tax. Since all of the real and imaginary com-

4 2
ponents of the receiver noiggare statistically mdependentAI(m y) = Ezo([|zl; SNR)]
with one-sided spectral Iev%l, we can express each of the < E, [(Hm” SNR )“r ] for somed’ €)0, a]
conditional probabilities as the product of the conditiona - Y
probabilities on each receiver dimension < Eefllly ]SNR :
g A e
P(ylz) = ] HP Yesilz < EE SRS
ce{R, I}L 1 (4) - (SNRQ)
=0 .
H H (ycszczVSNR>
; [ ]
ce{R,I}i=1 1/2 For comparison, we use the results of Prelov and ¥erd

_ - [5] to express the mutual information (in nats) between the
with o(z) = = [7 e~ 7 dt is the cumulative normal input  and the unquantized outputwith the same input

distribution function. distribution as inTheorem 1:
H
V. SECOND-ORDEREXPANSION OF THEMUTUAL I(z,7) = tr(HQHH)SNR—tr((HQH )2)SNR2+
INFORMATION )
. . . SNR?).
In this section, we will elaborate on the second-order + ol ) (10)

expansion of the input-output mutual information (3) of th@yhereas the mutual information for the unquantized

considered system in Fig. 1 as the signal-to-noise ratis 9o annel in (10), up to the second order, depends only on
to zero.

1This restriction is simply justified by symmetry considerasion



the input covariance matrix, it depends in the quantizemhmponents are assumed to be independent from each other.
case (5), also on fourth order statistics #f (the fourth Thus, the probability density function of the input vector

mixed moments of its components). is p(x) = Hi7cpi7(:(xi,c).4 Now, with
Now, using (5) and (10), we deduce the mutual informa-
tion penalty in the wideband regime incurred by quantizatio ~ HZlir = > hijrejr—hijreid |, (13)
J
I(wa y) 2 4
1111 = (11) E[.’E ’,c] 2 4
SNR—0 I(z,7) Wje = E[%{CP = AM?E[z] ], (14)

which is independent of the channel and the chosen distri- _ _
bution. Since the capacity is the supremum of the mutu@d thekurtosis of the random component; . defined as
information over the set of all input distributions, the gam Ko = o —3 (15)
ratio holds for the capacity Jre T Hge T

Crpt 2 we get

li = —. 12
SNIRHLO Coobit T (12)

This generalizes the result known for the AWGN chann 1
[14] 9 % Hm]ZR) M 3Zhjc 0,7 c’+ZM]C ,7,C]

5EG )

Fig. 2 illustrates the mutual information for a randomly
generated #4 channel with QPSK signalling, computed = ! 3 ([HHH ) +Z"J
exactly using (3), and its first and second-order 4M? v B
approximations from (5). For comparison, the mutual (16)
information without quantization (using i.i.d. Gaussian Similar results hold for the other components of the vector
input) is also plotted. Fig. 2 shows that the raﬁoholds Hzx. Plugging this result and) = 'M into (5), we obtain
for low to moderateSNR. the expression of the mutual information with independent-

component input and) = ﬁ up to the second order

For a high number of antennas, the inner summation
in (3) may be_ intraqtable. In this case the second—or(_:iqrnd(x,y) ~ 2tr(HHH)SNR—[Qtr((nondiaQHHH))z)
approximation in (5) is advantageous to overcome the high m M 2
complexity of the exact formula.

2 1 SNR®
H
+5-(1=—)| 3 tr((diag HH'") +;f«w wie| | 272
2 ‘ ‘ Jse
Exact formula . (17)
1.8["| —a— First-order approximation 27 where diagA) is a diagonal matrix containing the diagonal
1.6F| T2~ Unquantsed wih 6. Gaesian nput] - * elements of the matix. |
2 Now, we state a theorem on the structure of the near-optimal
£ input distribution under these assumptions.
S
E Theorem 2: To the second order, QPSK is uniquely best
~_§ among all distributions with independent components. The
El achieved capacity up to the second order is then
s
SNR | 2
C, tr(H H" —tr((nondiag H H"))?
Q~ ( Y S tr(( d )%)
: : 2,1 SNR?
0 0.1 0.2 0.3 0.4 05 +—(1—=) | 3 tr((diag HH"))?) — 2 -
2 e 51— ) | 3 tr((diag Z el | T
(18)

Fig. 2. Mutual information of a 1-bit quantizedk4t QPSK MIMO system

and its first and second-order approximations. For compatisermutual Proof: Since Eﬁx‘-l ] > E[x2 ]2, we havek;. =

information without quantization is also plotted. Bzt ] bel = " S
o2 — 3 > —2,Vi,c. Obviously, the QPSK distribution
is the unigue distribution with independent-componentitnp

V. CAPACITY WITH INDEPENDENTCOMPONENTINPUT  that can achieve all these lower bounds simultaneously, i.e

Lacking knowledge of the channel (or its statistics), th&ic = “QPSE = —2 Vg G gnd thus maximizd"™(,y) in
transmitter assigns the power evenly over the componehtd) UP t0 the second order. u
. . ARat
Lic of the Input vectorz, I.e. E[x } = a0 N order to SWhether this is the optimal strategy for quantized MIMO systeiss

achleve good performance in average Furthermore thes&pen problem.

4Note thatp;,.(zs,.) have to be even functions ang r(z; r) =
2The generated entrigs; ; of H are uncorrelated ankl; ; ~ N'(0,1).  p; r(x;,1) Vi, due to the symmetry (s€Eheorem 1).



VI.

ERGODIC CAPACITY UNDER QPSK SHEME

This shows that mono-bit ADCs may be used to save system

Now, the channeH is assumed to be ergodic with i.i.d.POWer without an excessive degradation in performance, and
Gaussian components ; ~ (0, 1). The ergodic capacity confirms the significant potential of the coarsely quantized

achieved by QPSK reads as
C5° = En(Cql-

We apply the expectation oveH to the second order
expansion oiCq in (18). Then, it is easy to show that

En [tr(HH")]
Ex [tr ((nondiag HH"™))?)

UWB MIMO channel. Contrary to the unquantized channel,

the second order term in the Taylor expansion depends not
(19) only on the covariance matrix of the input signal but also
on its fourth order statistics. In the absence of channel
knowledge at the transmitter, QPSK turned out to be the best
among all distributions with independent components. We
studied this special case in details and obtained the aergodi
capacity for the i.i.d. Rayleigh channel model under QPSK
scheme. An interesting topic for the future is to elaborate
on the capacity-achieving input distribution for 108NR

MN (20)
MN(N —1) (21)
MN(M +1) (22)

]
Eg [tr ((diag HH™))?)]
]

ZEH [h?.,j,c
2,7,C
Finally, using (18) we obtain the following second-order

expression for the ergodic capacity of one-bit quantizeg
Rayleigh fading channels under QPSK scheme

2
2
<QSNR> . 2
™
(24) [3]
Compared to the ergodic capacity in the unquantized ca$4
achieved by i.i.d. Gaussian input (or even by QPSK up to

the second order) [2]

N(N + (xr —1)M —1)
2M

2
Cgrg ~ NZSNR —
T

N(N + M) Bl

2M
the ergodic capacity of one-bit quantized MIMO under
QPSK (g incorporates a power penalty of almost
(1.96 dB), when considering only the linear term that]
characterizes the capacity in the limit of infinite bandidt

C®9~ NSNR — SNR?, (25)

[6]

On the other hand, the second order term quantifiei§]
the convergence of the capacity function to the wideband
limit by increasing the bandwidth [2]. Therefore, it can bejg)
observed from
N+(r—-1)M-1 [10]

N M <m -1,
that the quantized channel converges to this limit slower
than the unquantized channel. Nevertheless, ¥or= 1 [11]
or M < N, this difference in the convergence behavior
vanishes almost completely, since both second-order
expansions (24) and (25) become nearly the same up to t@
factor2/7 in SNR.

1< (26)

[13]

In addition, the ergodic capacity of the quantized channgl
CgYin (24) increases linearly with the number of receivﬁ
antennasV and only sublinearly with the number of transmit
antennasV/, which holds also foC®". For the special case
of one receive antennay = 1, Cg° does not depend on
the number of transmit antennag up to the second order,
contrary toC®'s,

VIl. CONCLUSION

We derived an expression for the second-order expansion
of the mutual information of MIMO channels with one-bit
ADC for low SNR and general input distribution. Based on
this, we showed that the power penalty due to the 1-bit quan-
tization is approximately equaj (1.96 dB) at lowSNR.

§MN. (23) with ar_1d without Channel State Information (CSI) at the
2 transmitter.
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