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Abstract— In this work we show that bireciprocal wave digital lattice
filters (BWDLF) can be used very favourably as pulse shaping filters
in digital communications. A new approach, at least in this context, is
presented, how to cope with the phase distortions which are caused by
the nonlinear phase response of BWDLFs. This approach is characterized
by minimizing the energy of the intersymbol interference with a finite
impulse response (FIR) filter instead of trying to equalize directly the
nonlinear phase with an appropriate allpass filter.

The simulation results demonstrate that the filter orders and required
operations per time interval at both the transmitter and receiver can
be reduced compared with conventional solutions. As a new option the
effort can be split asymmetrically between transmitter and receiver.

I. INTRODUCTION

The transmission of digital information over band-limited channels
necessitates the design of appropriate transmit signals. In order
to accomplish the band-limitation as well as avoiding intersymbol
interference in the case of flat communication channels, the first
Nyquist condition has to be satisfied [1].

The so-called raised cosine spectrum (RC), for example, has this
desirable spectral property. The raised cosine spectral characteristic
can be approximated in a practical FIR filter design, where the
receiver filter is matched to the transmitter filter. The result are two
identical filters with a root raised cosine spectrum (RRC), used in
the standardization of the 3G/UMTS radio access scheme.

Wave digital filters (WDF) as introduced by A. Fettweis [2] are
derived from classical analog lossless two-ports. Therefore, they
adopt very advantageous properties which lead to a small coefficient
sensitivity in the passband, optimum scaling and stability under very
general conditions. Those features allow an easy and efficient im-
plementation in hardware or software. Moreover, as infinite impulse
response (IIR) filters they offer smaller transition bandwidths than
FIR filters of the same order.

Wave digital filters can be implemented as lattice filters as in Fig 1.
If the wave digital lattice filters are designed with a bireciprocal
characteristic function C(¢) = 1/C(1/v), where 9 is the complex
frequency of the analog reference filter, further benefits are obtained
making WDLFs attractive for pulse shaping applications.

The magnitude response of a cascade of two identical BWDLFs,
which is the squared magnitude response of one BWDLEF, is odd
symmetric around fs/4, where fs is the sampling frequency [3].
Therefore, the Nyquist criterion for the magnitude response is per-
fectly satisfied. Please note, that this holds true even independently
of the applied coefficient truncation.

Moreover, the stopband attenuation is directly related to the pass-
band attenuation. As the passband attenuation is very robust against
fluctuations of the coefficients, the same is true for the stopband
attenuation.

On the other hand — like all IIR filters — wave digital filters
cannot show a linear phase response. In previous works and applica-
tions the nonlinear phase responses of IIR filters have frequently been
equalized by appropriate allpass filters. Another way of removing the
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Fig. 1. Bireciprocal WDLF of degree N

undesired impact of the nonlinear phase response of the wave digital
lattice filters is proposed for the application of pulse shaping. The
solution is oriented towards the idea that the phase response is not
the proper criterion to be aimed at. Therefore, we minimize the main
objective, the energy of the intersymbol interference, which results
in a least squares solution for continuous operation.

In the following it is shown that bireciprocal wave digital lattice
filters combined with an FIR filter, which serves as equalizing
filter, can be used for the purpose of pulse shaping. The baseband
transmission of BPSK symbols a, € {—1,1}, which are shaped
by the BWDLF with impulse response g[n], over an additive white
Gaussian noise channel (AWGN) is depicted in Fig. 2. At the receiver
the received signal is also filtered by the same BWDLF used at the
transmitter for pulse shaping.

In order to rate this approach we compare the performance of our
proposed solution with conventionally used FIR root raised cosine
filters.

II. EQUALIZER

Very important for the system is the design of the FIR equalizer.
The design criterion is to minimize the energy of the intersymbol
interference € at the sampling instances. The intersymbol interference
is measured as the error between the impulse response of the entire
system chain in Fig. 2 and the desired unit-pulse sequence ej. The
delay k between a., and a,, has strong influence on the system
performance and has to be optimized by simulation. The energy is
given by

2 - 2
e =lla —exl2, M

with @ = [..., Gm—1, @m, @m+1,...]"

The equalizing FIR filter w[n] is designed to minimize the error.
As the filter coefficients need not be adaptable, they only have to be
determined once.

This equalizer can be implemented using two different approaches.
In Fig. 3 a fractionally spaced equalizer (FSEQ), which operates at
the double of the symbol rate fs = 2fsym, is used, whereas in Fig. 4
the equalizing FIR filter operates at the symbol rate fsym and is called
symbol spaced equalizer (SSEQ).
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Fig. 3. Fractionally spaced equalizer

The steps for finding the optimum FSEQ in terms of minimum
intersymbol interference are as follows:

The FSEQ in Fig. 3 operates at the sampling rate f; = 2fsym.
Because of the infinite but also decaying impulse response of the
cascade of both BWDLFs h[n] = ac[n]|a:e07 a certain threshold
value can be determined from when further samples can be neglected,
because of being small compared with the maximum sample value.

From this approach the number M + 1 of relevant samples is
obtained, which have to be considered in the optimization process.
The continuous operation of the system leads to a convolution of the
impulse response h[n] of both BWDLFs and the equalizing FIR filter
of length Ng; + 1. This convolution can be considered as a matrix-
vector-multiplication between a matrix H’ of dimension (Ngs+ M +
1) x (Ngs + 1) and the filter vector w of dimension (Ng + 1). The
matrix H' is approximately a Toeplitz matrix because the triangle in
the lower left corner only contains the elements h[M + 1], h[M +
2],...,h[M + Ng], which are very small as mentioned above.

The samples at the filter output are then decimated to the symbol
rate by the factor 2. Each second sample is eliminated by this
decimation and its value, which is the result of the convolution
process described above, is completely irrelevant. Therefore, we can
simplify the right hand side of the linear equation system. Each
second element of the right hand side vector is arbitrary and the
remaining elements are supposed to yield the unit-pulse sequence ey,
at the symbol rate for avoiding intersymbol interference.

This means for the matrix-vector-multiplication from above, that
the matrix H' becomes the matrix H by removing every second
row. The result is a linear equation system

Huw = ey, (@)
with the (Ng + M + 1)/2 X (Ngs + 1) dimensional matrix

h[0] 0 0 - 0
h[2] K1) BO] -~ 0

. . . )

H =
h[M + Ngs]  h[M + Ngs — 1] h[M]
3)
which has to be solved.
If M > Ng + 1, which is usually satisfied, because the filter
order Ngs should be small and the impulse response of the BWDLF
cascade doesn’t decay so fast, H is a rectangular matrix and there

- - =

Equalizer
wn]

AWGN

Pulse shaping system with BWDLFs including AWGN channel and equalizer (FIR)

is no exact solution for the overdetermined linear equation system in
Eq. 2. Instead, we have to solve it in the least squares sense with the
Moore-Penrose pseudoinverse H t

w = HTek. (4)
B. Symbol Spaced Equalizer

FIR

Fig. 4. Symbol spaced equalizer

In contrast the SSEQ of order Ngs gets the already decimated
samples at the symbol rate fsym. This means that the output of the
SSEQ is supposed to be the unit-pulse sequence ej for avoiding
intersymbol interference. The optimum delay k of the pulse has to be
found by simulation. As before a certain threshold value determines
the number of relevant sample values M + 1, which have to be
equalized. Therefore, we get a linear equation system as in Eq. 2.
The difference is the matrix H € R((M+1)/2+Nss) X (Nss 1)

h[0] 0 0o - 0
h[2] h[0] 0o - 0

h[M + Nss]  h[M + Ny — 2] h[M)

The cascade of BWDLF and FIR filter at the receiver works at least
approximately as the matched filter to the transmit BWDLF which
will be adumbrated in the next sections.

ITII. MATCHED FILTER CONDITION

By considering a flat AWGN channel between transmitter and
receiver we have to satisfy the matched filter condition in the z-
domain

Hg(z) =z VHr(z") (©6)

with the transmit filter Hr(z) and the receive filter Hgr(z) in order

to maximize the signal-to-noise ratio (SNR) at the sampling instances

at the receiver. IV is chosen such that the SNR is maximized. With

Eq. 6 the cascade of both filters is characterized by the following
equation:

Hr(z)Hr(z) = Hr(z)Hr(z ")z, (7

When it is assumed that the transmit filter is a causal linear phase
filter with

jwT jwT : N
H(@T) = | He (¢ )] exp(—jw 3 T), ®)
then the well-known separation of the pulse shaping filter into two

identical filters Hr(z) at the transmitter and Hg(z) = Hr(z) at the
receiver is obtained.
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This assertion of identical filters at the transmitter and the receiver
is no longer valid when the assumption is abandoned that Hr(el“7T)
is a linear phase filter. If, for example, the nonminimum phase part of
the above linear phase transmit filter is removed, a minimum phase
transmit filter with the same magnitude response remains:

Hiy (") = |Hr (") exp(—j p(w)), ©

where p(w) = —arg(H4(e!“T)) is an odd, nonlinear 27 /T-
periodic function of w.
Using Eq. (6), Eq. (9), |Hr(e!“T)| = |Hr(e™7*T)| and replacing
N by N, it holds true for the the matched receive filter Hj, (e'“7):
Hy (') = Hp(e7“T) exp(—jwN'T)
= [Hr (") exp(j p(w)) exp(—jwN'T).

10)

It is interesting here that the transmit filter and the receive filter
are no longer identical. They differ by an allpass

Hap(e*T) = exp(—j (wT — 2¢(w))). (11)

This means that it is not sufficient to apply two identical nonlinear
phase filters at the transmitter and the receiver, if the matched
filter condition is to be satisfied. An additional filter with allpass
characteristic Hap(z) is necessary for this purpose. An additional
FIR filter as depicted in Fig. 2 is applied, but to minimize the energy
of the intersymbol interference and not to satisfy the matched filter
condition explicitly. In Sec. V the assumption that this FIR filter also
contributes in approximating the matched filter condition is affirmed.

In Eq. (9) the minimum phase property is not really demanded,
although assumed in the text above. This means that the results
are valid for arbitrary phase responses. Therefore, the linear phase
response is contained as a special case where the matched receive
filter equals the transmit filter.

If the transfer function of the cascade of the transmit filter and the
matched receive filter for the linear phase transmit filter is considered
by multiplying Hr(e*“T) in Eq. (8) by Hr(eJ“7), we get

Ho(¢“T)Hr('“T) = [Hr('“T)|? exp(—jwNT),  (12)

and for the minimum phase transmit filter by multiplying H(ET)
in Eq. (9) by Hi(e'“T) in Eq. (10), we get

H'T(ej“’T)H{ah(ej u’T) = |l"-IT(ej“’T)|2 exp(—jwN'T). (13)

This result can certainly also be obtained by evaluating Eq.(7) for

z =¢'*“T and the respective N

Hr(2)Hr(2)|,_gwr = [Hr(¢“7)]? exp(—jwNT).  (14)

Therefore, it is concluded that if Hr(e'“")Hg(e'*7) satisfies
the Nyquist criterion, also H’(e!“T)Hf (¢! “7T) satisfies it, only the
optimum delay N can be different.

IV. HARDWARE-EFFICIENT REALIZATION

A hardware-efficient realization in the context of these investiga-
tions aims at filters, which need only few multiplications per time
unit and which are very robust against the quantization or small
wordlength of their coefficients.

A. Conventional RRC Solution

The conventional pulse shaping solution with RRC FIR filters both
at the transmitter and the receiver loses the property of raised cosine
impulse responses that the sample values at multiples of the symbol
rate are zero. Therefore, each coefficient leads to a multiplication.
But, nevertheless, some complexity reduction is possible:

o« The RRC FIR filters have a symmetric impulse response.
Therefore, there are only |N/2] + 1 distinct coefficients, which
correspond to multiplications, for a filter degree of V.

o The upsampling operation before the RRC filtering at the trans-
mitter means that every second input value is zero. Therefore,
a complexity reduction can be reached by using a two-branch
polyphase structure, which avoids the multiplications with zero-
valued input samples. This means that the /N + 1 multiplications
need not be executed at the sampling rate fs but only at the
symbol rate foym.

o The same is true for the receiver. The downsampling operation
by two after filtering means that values are discarded, which
have been calculated before. A polyphase structure avoids this
calculation in advance and also leads to N + 1 multiplications
at the symbol rate fsym instead of the sampling rate fs.

o In the case of upsampling and downsampling by a factor of
two and two-branch polyphase decompositions the polyphase
components still have a symmetric impulse response. Therefore,
only | N/2| + 1 multiplications per symbol are required both at
the transmitter and the receiver.

B. BWDLF Solution with FIR Equalizer

The BWDLFs can be implemented very efficiently in terms of
multipliers, because for an N-th degree filter we need only (N —
1)/2 multipliers which correspond to adaptor coefficients. Moreover,
the degree of BWDLFs compared with FIR RRC filters is not very
demanding because they provide a very good stopband attenuation
due to their infinite impulse response.

The multiplications performed inside the adaptors are only carried
out at the symbol rate fsym,. The sampling rate fs at the output of
the BWDLF at the transmitter is achieved by interleaving the outputs
of the two allpass branches. Therefore, BWDLFs inherently include
a polyphase decomposition.

Again, the same is true for the BWDLF at the receiver as long as
the decimation follows directly the BWDLF which holds true for the
SSEQ but not for the FSEQ. Only (N —1)/2 (SSEQ) resp. (N — 1)
(FSEQ) multiplications per symbol are necessary.

As mentioned above the BWDLFs are very robust against coef-
ficient quantizations because of their relation to lossless reference
filters. Their odd symmetry property is even absolutely independent
of coefficient values. Therefore, the coefficient wordlength can be
relatively short. In addition the multipliers can be replaced by shift-
and-add structures due to the constant coefficients.

If an FIR SSEQ is used in order to avoid intersymbol interference,
Nss + 1 multiplications per symbol duration are necessary, because
no symmetry properties can be utilized in general.

If an FSEQ is used, the following downsampling by two can be
used to apply a polyphase decomposition. Therefore, Ngs + 1 multi-
plications per symbol are necessary. Again, no symmetry properties
can be used.

V. SIMULATION RESULTS

The reference system, with which the results of the BWDLF pulse
shaping are compared, uses windowed RRC pulse shaping filters both
at the transmitter and the receiver with a rolloff factor of p = 0.22.
The impulse response of the RRC filters is truncated after a duration
of 10 symbols which corresponds to 21 coefficients at a sampling
rate which is twice the symbol rate.

Taking the results of Section IV into account 22 multiplications
per symbol period are necessary for the transmit and the receive
filter altogether. This result is also given in the third row of Tab. 1.
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The cascade of identical RRC filters at both the transmitter and
the receiver doesn’t either yield zero intersymbol interference at the
sampling instances because of the truncated impulse response in the
time-domain. However, phase distortions don’t occur because of the
symmetrical impulse responses of the RRC filters.

The BWDLFs are designed as filters with an elliptic transfer
characteristic [4], which is comparable with an RRC filter with a
rolloff factor p = 0.22 according to the stopband attenuation and
stopband region. The magnitude responses of both filters are depicted
as solid and dotted lines in Fig. 5.

15

—— RRC without equalizer

- - - BWDLF without equalizer

- - BWDLF with FSE! gdegree 9)
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Fig. 5. Magnitude responses

Fig. 5 shows that the 5th degree bireciprocal WDLF already has
a better stopband attenuation than the 20th degree root-raised-cosine
FIR filter.

RRC BWDLF
fractionally spaced | symbol spaced
degree 9 degree 14
squared error | 8.1228e-05 2.0842e-15 7.6103e-05
magn. error 2.2593e-02 6.1749e-08 2.3598e-02
mult./symbol 11+11=22 2+4+10=16 2+2+15=19
TABLE I

COMPARISON RRC AND BWDLF APPROACH

Now, the results in terms of the squared error and the magnitude
error caused by conventional RRC pulse shaping and the proposed
BWDLF pulse shaping with FIR equalizer are compared (Tab. I). The
results for the BWDLF pulse shaping solution are given both for the
fractionally (degree 9) and the SSEQ (degree 14). The squared error
is the energy of the intersymbol interference, whereas the magnitude
error is the sum of the magnitude of the difference between the output
symbols and the desired unit-pulse sequence. This measure is closely
related with the maximum eye-opening. Taking again the results of
Sec. IV into accout the 9th order FSEQ and the 14th order SSEQ
need 10 resp. 15 multiplications per symbol (Tab. I), additionally to
the 2 resp. 4 multiplications per symbol of the 5th degree BWDLFs.

The errors of the BWDLF proposal are comparable or even smaller
in spite of less computational complexity as listed in Tab. L.

Interesting is also the magnitude response of the equalizing FIR
filter in the BWDLF approach. As mentioned in Sec. I the Nyquist
criterion for avoiding intersymbol interference is perfectly satisfied by
the magnitude response of the cascade of both BWDLFs. Therefore,
the FIR equalizer is mainly expected to equalize the phase distortions

due to the nonlinear phase response of the BWDLFs, although the
filter design criterion has not been explicitly the phase equalization.
This assumption can be confirmed by the solid line in Fig. 6 repre-
senting the magnitude response of the SSEQ which is approximately
an allpass. The FSEQ of degree 9 drawn as dashdotted line shows
the allpass characteristic only until fs/4. Its degrees of freedom are
not sufficient for forcing an allpass response above fs/4, too. This
frequency region is the stopband region of the BWDLF. Only higher
order filters are able to approximate an allpass response over the
whole frequency range. The dotted line (degree 15) in Fig. 6 is
already closer to an allpass function. Please note, that although the
SSEQ and FSEQ in Fig. 6 operate at different sampling rates, they
have been depicted in only one figure. The dashdotted and dotted
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35 | Fract. Spaced Equalizer (degree 15
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Fig. 6. Magnitude responses of fractionally and symbol spaced equalizer

lines in Fig. 5 belong to the FSEQs of Fig. 6 and represent the
overall magnitude response of receive BWDLF and FSEQ. The strong
amplification in frequency regions above fs/4 is also evident here. If
the channel is AWGN and has, therefore, high frequency components,
a higher order FSEQ may be necessary in order to avoid the noise
enhancement.

VI. CONCLUSION

Both BWDLFs and root raised cosine FIR filters generate some
intersymbol interference. With BWDLFs the nonlinear phase makes
absolute absence of intersymbol interference impossible. In contrast
the RRC FIR lacks in odd symmetry of the magnitude response
because of the necessary truncation in the time domain. The ad-
vantage of the pulse shaping with BWDLFs is that the filters need
less coefficients than the corresponding FIR filters. Moreover, the
wordlength of the BWDLF coefficients can be short due to the good
sensitivity properties of BWDLFs. The complexity can be split up
asymmetrically between transmitter and receiver. If transmitter and
receiver cannot be equipped equally, for example the base and mobile
stations of a mobile radio system, the effort of the equalizing filter
can be shifted to the more powerful unit.

REFERENCES

[11 J. G. Proakis, Digital Communications. McGraw-Hill, Inc. 1995.

[2] A. Fettweis, “Wave Digital Filters: Theory and Practice,” Proc. IEEE,
vol. 74, no. 2, pp. 270-327, Feb. 1986.

[3] J. A. Nossek and H.-D. Schwartz, “Wave Digital Lattice Filters with
Applications in Communication Systems,” Proc. IEEE Int. Symp. Circuits
and Systems, no. 2, pp. 845-848, May 1983.

[4] L. Gazsi, “Explicit Formulas for Lattice Wave Digital Filters,” I[EEE
Trans. Circuits Syst., vol. 32, no. 1, pp. 68-88, Jan. 1985.

527



	MAIN MENU
	Front Matter
	Table of Contents
	Session Chair Index
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

