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Abstract— We propose a time division duplex - multiple input
multiple output (TDD-MIMO) system with receiver matched to
the transmit filter and channel, leading to a linear transmission
system which diagonalizes the MIMO channel into its eigenspace
similar to joint transmit and receive filter optimization (joint
TX/RX optimization), but without the need to perform the
optimization at both sides of the link or feedback. We investigate
different optimization criteria well known from linear precoder
design and joint TX/RX optimization: transmit matched filter
(TxMF), transmit zero-forcing filter (TxZF), and transmit Wiener
filter (TxWF).

I. INTRODUCTION

Joint TX/RX optimization is a well researched and under-
stood approach for MIMO systems [1], [2], [3], [4], [5], [6],
[7], [8], where the receive and transmit filters result from one
optimization. Consequently, the transmitter and receiver have
to perform the optimization independently or one side has to
feed back the result of the optimization to the other side of the
link. Suboptimum solutions for the joint TX/RX optimization
are receive (RX) only and transmit (TX) only processing.
RX processing (e. g. [9]) requires a transmit filter which is a
priori known to the receiver, whereas TX processing designs
a precoding filter with the a priori knowledge of the receive
filter (e. g. [10], [11]). Both approaches share the advantage
that only one side of the link has to optimize its filter and the
other side simply follows the a priori defined design rule.

TX processing is especially advantageous for TDD systems
in the downlink, since the transmitting base station (BS)
can re-use the uplink channel estimation for the design of
the downlink precoding filter and the mobile station (MS)
is simplified compared to joint TX/RX or RX processing.
Conventionally, the receiver for a TX processing system is
assumed to be fixed [11] or matched to the channel [10] to
end up with a MS as simple as possible.

We propose a MIMO system with TX processing, where
the receive filter in the MS is matched not only to the channel
but also to the precoding filter which has been proposed
only for the prerake or TxMF in [12] up to now. With this
system constraint the receiver is also part of the optimization
process and changes with the transmitter design, however,
it is bound to be the matched filter. Consequently, we will
denote the proposed MIMO processing scheme as semi-joint

optimization. This assumption is advantageous in two ways.
First of all, the pilot symbols necessary for channel estimation
at the MS can be transmitted time multiplexed with the
data and have to be passed through the precoding filter.
Therefore, the MS estimates the combination of the precoding
filter and the channel together with the imperfections of the
transmission chain, e. g. calibration errors, which are reduced
by the matched filter.
Secondly, we end up with a decomposition of the channel in its
eigenmodes similar to joint TX/RX optimization although the
receiver only applies a matched filter. This diagonalization of
the channel provides good conditions for spatial multiplexing:
due to the diagonalization of the MIMO channel there is no
inter-stream-interference (ISI) between parallel data streams.

We will derive and compare the following precoding filters
for the proposed MIMO system which all share a transmit
power constraint: the matched-filter (MF) resulting from a
receive signal to noise ratio (SNR) maximization, the zero-
forcing filter (ZF) which suppresses interference completely,
and the Wiener filter (WF) minimizing the mean square error
(MSE). In all of these cases we apply two approaches: in the
first we keep the used modulation scheme fixed and identical
for all transmitted data streams while we consider adaptive
modulation in the second approach.

The paper is organized as follows. The system model is
described in Section II. Section III and IV explain joint TX/RX
optimization and the new proposed semi-joint optimization,
respectively. In Section V both approaches are extended with
adaptive modulation, where Section VI provides some simu-
lation results. A conclusion is given in Section VII.

II. MIMO SYSTEM MODEL

The data s[k] ∈ CB are filtered by the precoder F ∈ CN×B

at the BS to form the transmit signal. In the following, we
assume that all transmit filters use the whole available transmit
power Pt, i.e.

E
{
‖Fs[k]‖2

2

}
= Pt.

All considerations are based on the downlink from the BS to
the MS over a frequency flat MIMO channel. After propaga-
tion over the MIMO channel H ∈ CM×N with N transmit
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and M receive antenna elements and perturbation by the noise
n[k], the received signal is passed through the linear receive
filter G leading to the estimate (cf. Fig. 1)

ŝ[k] = GHFs[k] + Gn[k]. (1)

The spatial covariance matrix of the noise is denoted as Rn

while the spatial covariance matrix of the sigal is denoted
as Rs (and will be restricted to Rs ≡ 1 in the following).
We restrict ourselves to transmitting a constant data rate
of b bits per channel use over B independent data streams
with transmit power constraint Pt. Furthermore, we restrict to
MIMO systems with M ≥ N and B ≤ N .

s[k] F H G

n[k]

ŝ[k]

Fig. 1. MIMO System with Receiver Matched to Precoder and Channel

All linear precoders and receivers in the remainder of this
paper can be expressed as function of the eigensystem of the
following matrix product

HHR−1
n H = [V Ṽ ]

(
Λ 0
0 Λ̃

)
[V Ṽ ]

H
, (2)

where the matrices Λ and V contain the dominant (non-
zero) eigenvalues and the corresponding eigenvectors. We
assume that the eigenbase in V and Λ is sorted such, that
in Λ = diag{λ1, λ2, . . . , λN} we have λ1 ≥ λ2 ≥ · · · ≥ λN .

III. JOINT LINEAR TX/RX OPTIMIZATION

The idea of joint TX/RX optimization is to perform a co-
operative design of the linear precoder and the linear receiver.
It is intuitively clear that this approach will obtain the best
performance of the linear signal processing methods with
respect to the chosen optimization criterion.
In the following we will present the optimizition problems and
the mathematical solution of each approach, where we omit the
mathematical derivation for compactness. The computations
can be found in [8].

A. The Joint Matched Filter

Maximizing the SNR at the receiver via a joint optimization
of the linear transmitter F and the linear receiver G leads to
the joint MF (JointMF) design. For the data model provided
in Section II the maximization of the cross-correlation after
the receiver for a precoder F and a receiver G under the
transmit power constraint can be achieved with the following
constrained optimization

{F jt
MF, Gjt

MF} = argmax
{F , G}

∣∣∣E {
ŝH[k]s[k]

}∣∣∣2
E

{
‖s[k]‖2

2

}
E

{
‖Gn[k]‖2

2

}
s.t. tr

(
FRsF

H
)

= Pt, (3)

where the cost function of the minimization is the SNR at
the output of the receive filter. The solution for the joint MF
computes as

F jt
MF = V · diag {Pt, 0, . . . , 0} and (4)

Gjt
MF = diag {β, 0, . . . , 0} · V HHHR−1

n , (5)

where β = λ1

(
(Ptλ1 + 1)−1 − (Ptλ1 + 1)−2

)
, that is the

scalar in Eq. (5) is chosen such, that the MSE is minimized.
Note, that the joint MF always provides a rank 1 transmission,
i.e. only the dominant eigenvector of HHR−1

n H is used.

B. The Joint Zero-forcing Filter

The joint ZF (JointZF) approach performs a cooperative
design of the linear precoder and linear receiver that eliminates
the ISI and establishes the same path attenuation on each
substream while simultaneously minimizing the MSE between
the symbols s[k] and ŝ[k] under the transmit power constraint.
The optimization reads as

{F jt
ZF, Gjt

ZF} = argmin
{F , G}

E
{
‖s[k] − ŝ[k]‖2

2

}
s.t. GHF = 1 and tr

(
FRsF

H
)

= Pt.

(6)

With the Lagrangian method, we find the joint ZF solution

F jt
ZF =

√
Pt

tr(Λ−1)
V Λ−1/4 and (7)

Gjt
ZF =

√
tr(Λ−1)

Pt
Λ−3/4V HHHR−1

n . (8)

Note, that the joint ZF does not switch off any data stream.
Thus, the joint ZF always leads to a rank B transmission.

C. The Joint Wiener Filter

The minimization of the MSE between the transmitted
symbols s[k] and the estimates ŝ[k] by a cooperative design
of the linear precoder F and the linear receiver G leads to the
joint WF (JointWF) solution with the optimization problem

{F jt
WF, Gjt

WF} = argmin
{F , G}

E
{
‖s[k] − ŝ[k]‖2

2

}
s.t. tr

(
FRsF

H
)

= Pt.

(9)

The solution for the joint WF can be computed as

F jt
WF = V Φf and Gjt

WF = ΦgV
HHHR−1

n (10)

where Φf and Φg are positive semi-definite diagonal matrices

Φ2
f =

(
µ−1/2Λ−1/2 − Λ−1

)
+

(11)

Φ2
g =

(
µ1/2Λ−1/2 − µΛ−1

)
+

Λ−1. (12)

Here the parameter µ has to be chosen to fulfill the transmit
power constraint tr(Φ2

f ) = Pt. The operator (x)+ is equivalent
to max{0, x}.
Note, that the joint WF converges to the joint MF solution
for very low SNR, while it converges to the joint ZF solution
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for infinitely high SNR. Since the joint MF transmits only
one data stream over the dominant eigenmode of the channel
and the joint ZF always uses the B strongest eigenmodes
of the channel for data transmission, the joint WF approach
successively increases the number of used eigenmodes with
increasing SNR. This behavior can also be recognized in
the solution of Φg where the operator (•)+ switches off
these data streams, where the matrix entries are less than
zero. The power allocation is accomplished such, that the
weakest eigenmodes of the channel are neglected, while in the
remaining eigenmodes more power is allocated in the weaker
eigenmodes to minimize the MSE.

IV. SEMI-JOINT LINEAR OPTIMIZATION

The joint TX/RX optimization represents the optimum
approach that can be achieved with linear transmit/receive
processing in terms of the mentioned optimization criterion.
The big disadvantage of the joint TX/RX optimization is
the computational complexity. Since the design of the linear
precoder as well as the linear receiver evolve from one joint
optimization approach, either both sides of the communication
link have to perform the optimization, or the result of the
optimization is computed at one side of the communication
link for the price of having to transmit the optimization result
to the other side of the communication link.
If neither the possibility of feedback nor sufficient compu-
tational resources at both sides of the link are available,
the joint TX/RX optimization approach is not applicable.
One possibility to overcome this dilemma is to consider a
transmission approach where one side of the communication
link is simplified with respect to the computational complexity,
i.e. a restricted receiver structure.

In the following we will focus on a MIMO system where
we assume a simplified receiver structure such, that the receive
filter G is a matched-filter, not only to the channel H but also
to the precoding filter F . Note, that we have to allow for a
scalar degree of freedom g ∈ R to correct the signal amplitude.
This leads the the linear receive filter G = g(R−1

n HF )
H

. See
the Fig. 2. This method provides two further advantages:

H
s[k]

n[k]
ŝ[k]

gF HHHR−1
nF

y[k]

Fig. 2. Linear TX and RX processing with restricted receiver structure.

First, the pilot symbols necessary for channel estimation at
the receiver can be transmitted time multiplexed with the
data and are passed through the precoding filter. Therefore,
the receiver estimates the combination of precoding filter and
channel including the imperfections of the transmission chain.
Secondly, we end up with a decomposition of the channel
H in its eigenmodes similar to joint TX/RX optimization1.

1Note, that other receiver concepts, like ZF, also diagonalize the MIMO
channel. However, since the MF already is sufficient to diagonalize the channel
we chose it due to its simplicity with respect to the computational complexity.

This diagonalization of the channel provides good conditions
for spatial multiplexing: due to the diagonalization of the
MIMO channel there is no ISI between parallel transmitted
data streams.
For compactness we only give the optimization problem
and the mathematical solution in this paper. The complete
computations can be found in [13].

A. The Semi-Joint MF

Maximizing the cross-correlation at the receive filter output
for the system in Fig. 2 with transmit power constraint and
special restriction of the linear receiver to be the matched
filter of the previous transmission chain we can rewrite the
optimization of Fig. 3 as

F MF = argmax
F

tr(RsF
HHHR−1

n HFRs)

s.t. tr(FRsF
H) = Pt.

(13)

We obtain the solution using the Lagrangian function as

F MF = [
√

Ptvmax,0], (14)

where vmax denotes the eigenvector of HHR−1
n H belonging

to the largest eigenvalue. Computing the scalar degree of
freedom g as scalar WF to minimize the MSE gives

gMF =
1

Ptλ1 + σ2
n

. (15)

Note, that the semi-joint MF also transmits only one data
stream as in the case of the joint MF. Also note, that the
Joint MF and the semi-joint MF with scalar WF are identical.

B. The Semi-Joint ZF

Eliminating the ISI where we simultaneously minimize
the MSE with fixed receiver structure and transmit power
constraint can be expressed as

{F ZF, gZF} = argmin
{F , g}

g−1 s.t. tr
(
F HRsF

)
= Pt (16)

and gF HHHR−1
n HF = 1.

The solution with the Lagrangian function reads as

F ZF =

√
Pt

tr (Λ)
V Λ−1/2 and gZF =

tr (Λ)
Pt

. (17)

The semi-joint ZF approach achieves a perfect ISI elimination
and the whole transmission chain between the symbols s[k]
and ŝ[k] is reduced to the identity matrix. Note, that the semi-
joint ZF approach does not switch off eigenmodes of the
channel, as in the case of the joint ZF approach.

C. The Semi-Joint WF

Minimizing the MSE between the filter output ŝ[k] and the
signal s[k] with the special choice of a MF receiver leads to
the semi-joint WF solution (cf. Fig. 1). The optimization reads
as

{F ZF, gZF} = argmin
{F , g}

E
{
‖s[k] − ŝ[k]‖2

2

}
s.t. tr

(
F HRsF

)
= Pt.

(18)
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We obtain the solution using the Lagrangian function as

F WF = V Λ−1A
tr(A)

2 tr(A − A2)
with A =

(
1− εΛ−1

)
+
,

(19)
where ε has to be chosen to fulfill the power constraint
utilizing numerical optimization. Note, that the semi-joint WF
converges to the semi-joint MF for low SNR and to the semi-
joint ZF for hight SNR. Also note, that the semi-joint WF
solution has the same property of the joint WF to successively
increase the number of used data streams with increasing SNR.

D. Remarks

Note, that all precoding filters (joint and semi-joint) can
be decomposed into F = V D, where V is the eigenspace
of the channel and D is a diagonal matrix. Moreover, note,
that the derivation of all of the above mentioned precoders is
independent of the chosen modulation schemes. Consequently,
the assumed data rate of b bits per channel use can be achieved
by distributing the bits onto the allocated, parallel data streams
by appropriate modulation schemes. The simplest approach is
to uniformly distribute the b bits onto the M data streams and
to use the same modulation alphabet for each data stream.

V. ADAPTIVE MODULATION

A more sophisticated approach is to distribute the b bits onto
the B data streams according to an additional optimization
criterion which will allocate a higher data rate onto stronger
data streams. This consideration leads to adaptive modulation.
Since the channel is diagonalized and the weightings of each
eigenmode is known from the computation of the precoding
filter it is possible to compute the SNR of each eigenmode for
the actual channel realization. Since the SNR and weighting
hi is known, it is now possible to a-priori compute the bit-
error probability p for each data stream for a given modulation
alphabet as [14]

pi = f (SNRi, hi,Mi) , (20)

where pi, SNRi, hi, and Mi denote the bit-error probability,
the SNR, the weighting of the channel and the modulation
alphabet of data stream i, respectively. The desired data rate
of b bits per channel use is achieved by distributing the b bits
onto the B data streams with appropriate modulation schemes
where the average BER over all data streams of the actual
channel realization can be minimized in an optimization as

min
{Mi}

∑
i

f (SNRi, hi,Mi) log2 |Mi|, (21)

where log2 |Mi| computes the number of bits that are con-
tained in modulation alphabet Mi.

In the following, adaptive modulation is applied such that
for each modulation set {Mi}, which in sum provides a trans-
mission rate of b bits per channel use, the channel weightings
hi and the SNRi are computed and the optimization of Eq. (21)
is evaluated. Note, that this does not require the complete
computation of the filter pair F and G. Contrary, TX-only
processing results in ISI which makes adaptive modulation
computationally prohibitive (similar to RX-only processing).

VI. SIMULATION RESULTS

The uncoded BER performance of the joint TX/RX opti-
mization, the semi-joint optimization, and TX only optimiza-
tion (with G = 1) is shown in Fig. 3. The signal s[k] is
transmitted over a flat fading 4 × 4 MIMO system, where all
entries of H are complex Gaussian i.i.d with zero mean and
unit variance, and superimposed by complex Gaussian noise
with zero mean and variance σ2

n. We assume a fixed data rate
of 8 bits per channel use with fixed QPSK modulation.

−10 −5 0 5 10 15 20
10

−2

10
−1

Pt/σ2
n in dB

B
E

R

SemiMF
SemiZF
SemiWF
JointZF
JointWF

TxMF
TxZF
TxWF

Fig. 3. Comparison of the different transmission strategies respect to the
BER as function of the transmit SNR in dB for fixed modulation.

Since we assume a fixed data rate of 8 bits per channel use we
always have to transmit all 4 data streams. The MF strategies
are thus saturating: the TxMF because of the neglected inter-
ference, the semi-joint MF and joint MF because of a rank 1
transmission situation due to the optimization.
The WF strategies obtain the minimum MSE as required by the
optimization, where the joint WF obtains the smallest MSE of
all WF strategies. However, plotting the BER over the SNR
shows that the computational extensive approaches like the
joint WF and the semi-joint TxWF achieve only a comparable
performance as the TxWF. This is due to the fixed modulation
scheme and the variable number of allocated data streams in
the case of JointWF and SemiWF.

Giving up the assumption of a fixed modulation scheme and
only demanding a data rate of 8 bits per channel use produces
the BER curves in Fig. 4, where only the ZF and WF curves
are shown.
The TxWF curve does not change compared to Fig. 3. Since
the channel is not diagonalized in this case, an a-priori
computation of the BER is highly complicated. Thus adaptive
modulation is not applied in case of TX-only optimization. The
joint and the semi-joint curves achieve a huge performance
boost, they even exploit a higher order of diversity when
applying adaptive modulation. In channel realizations where
one or more eigenmodes are weak, these eigenmodes are not
used and the data is re-allocated onto the remaining stronger
eigenmodes. Since the number of antennas remains constant,
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Fig. 4. Comparison of the different WF transmission strategies with respect
to the BER as function of the transmit SNR with adaptive modulation.

the order of diversity is increased.
Note, that the proposed semi-joint optimization approaches
have comparable BER performance as the joint optimization
approaches when applying adaptive modulation, however, at
at reduced computational complexity. Also note, that the
proposed semi-joint optimization approaches even outperform
the joint optimization for high SNR (> 15dB). Fig. 5 shows
the mean SNR of the used data streams in the case of the
joint WF and the semi-joint WF, where in each case data
stream 1 has highest SNR, data stream 2 has second highest
SNR, and so on, due to an ordered EVD. In the whole SNR
range the strongest eigenmode of the joint WF has always a
higher mean SNR compared to the strongest eigenmode of
the semi-joint WF. At low and medium SNR range the data is
mostly put into the strongest or the two strongest eigenmodes.
In this case it is advantageous if the eigenmode containing
the biggest portion of the data has a higher SNR. However,
at high SNR ranges the solution of the joint and semi-joint
WF with adaptive modulation tend to uniformly distribute the
data onto all eigenmodes. In this case the data stream with
the lowest mean SNR is limiting the BER performance. Since
the 4th eigenmode of the joint WF has a lower mean SNR
compared to the 4th eigenmode of the semi-joint WF, the BER
performance of the joint WF is suffering from this effect at
high SNR.

VII. CONCLUSION

In this paper we have proposed a new linear transmission
strategy with a simple MF receiver structure and a precoder
optimization according to the matched filter, zero-forcing, and
minimum mean-square error principle. This new transmission
concept accomplishes a diagonalization of the MIMO channel
into its eigenmodes, similar to a joint TX/RX optimization,
however, at a much lower computational cost for the receiver
side. It has further been shown that with respect to the BER the
proposed system concept has comparable performance as the

−10 −5 0 5 10 15 20
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−5

0

5

10

15

20

25
JointWF
SemiWF

m
ea

n
SN

R
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da
ta

st
re

am
s

Pt/σ2
n in dB

Fig. 5. Mean SNR on the data streams for JointWF and SemiWF. Data
stream 1 has highest SNR, data stream 2 has second highest SNR, and so on.

the joint TX/RX optimization scheme in the case of adaptive
modulation. At high SNR the new transmission concept even
outperforms joint TX/RX optimization due to a more favorable
statistic of the scalar weightings of the diagonalized MIMO
channel, compared to the joint TX/RX case.
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