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Abstract- In a wireless communication link with one transmit 
and multiple receive antennas we optimally reduce the spatio- 
temporal channel rank at the receiver based on long-term (av- 
erage) channel properties. The channel is estimated and sym- 
bol, are detected using this reduced rank approximation of the 
received signal. Examples for this receiver architecture are 
the tempordspatio-temporal Rake, Space-Time Eigenrake, or 
beamspace pmesning. We discuss the fundamental trade-offs in 
reduced rank channel estimation and detection and propose an ap- 
propriate model for describing the spatio-temporal channel struc- 
ture. Based an these insights and definitions, we derive an analyt- 
ical expression for the minimum receiver SNR, which is necessary 
for channel estimation. Furthermore, we State under which eondi- 
tions reduced rank channel estimation is asymptotically optimum. 

1. INTRODUCTION 

It is known that space-time processing improves communica- 
tion quality and overall system performance [ I ] .  Due to addi- 
tional degrees of freedom in space-time processing more chan- 
nel parameters have to be estimated, which increases the vari- 
ance of the channel estimates. Thus, channel estimation is an 
important issue in wireless communications, whcre only a few 
pilot symbols are available due to the changing channel, and 
can become a limiting factor for transmission quality. For this 
reason reduced rank processing techniques were proposed [2], 
which reduce the number of relevant channel parameters. Re- 
ducing the rank leads to a smaller variance of the channel esti- 
mates. 

There are two approaches to rank reduction: The first reduces 
the channel based on the instantaneous channel coefficients or 
their estimates, respectively [2]. In the sequel we consider the 
second approach, which exploits long-term channel properties, 
i.e. the fact that channel delays, angles of arrival and average 
power change slowly compared to the complex fading ampli- 
tudes of the spatial or temporal taps. This average channel 
knowledge is given in the spatio-temporal correlation matrices 
[3]. Representatives are the temporal Rake [4], where the fin- 
gers are selected based on the average power of the temporal 
tap, the 2D Rake fiker [ 5 ] ,  and the Space-Time Eigenrake [3]. 

These receivers have to determine the optimum spatio- 
temporal rank of the channel, as their performance critically de- 
pends on this parameter [6]. An attempt of defining the spatial 
rank for rank reduction based on instantaneous channel prop- 
erties was made in 171. using results given bv Scharf 181. This 

tion. A definition of the channel rank is necessary to describe 
performance trade-offs in reduced rank receiver processing. 

After explaining the system model in Sec. 11, we state the 
optimum rank reduction scheme based on long-term channel 
properties (Sec. 111). Employing the MSE of the Maximum- 
Likelihood reduced rank channel estimate (Sec. IVj, we give 
a novel definition of the effective spatio-temporal rank relevant 
for a communication link with pilot-assisted channel estima- 
tion (Sec. V). Based on this definition and a new model for 
the spatio-temporal channel structure (Sec. VI), we discuss the 
performance limits of rank reduction in different regions of op- 
eration (Sec. VIIj. The proofs are given in the appendix. 

11. SYSTEM MODEL 
Consider a direct-sequence spread-specmm communication 

link with one transmit and A: receive antenna elements. The re- 
ceived signal is sampled at thechip rate. A discrete-time hase- 
band channel model ( I )  with a tapped delay line of L taps and 
white complex Gaussian noise n,[t] is employed and models 
all intra- and intercell-interference. c[t] is the transmitted chip 
sequence. 

Equivalent Channel Model: For our derivations we assume 
that a spreading sequence with perfect autocorrelation prop- 
erties is used, such that the receiver can separate all temporal 
paths perfectly. Thus, the channel can he defined by an equiva- 
lent flat channel model with M = L N,  signals: 

r[t] = /a+] + n[t] E Pxl. (2) 

~ [ t ]  contains the time-multiplexed pilot and data QAM-symbol 
sequences' with average power P. = E[Is[t]l']. which is 
temporally uncorrelated for simplicity. x[t] contains the re- 
ceived and despread spatial and temporal signal components. 
n[t] is the additive stationaty zero-mean complex Gaussian 
random process with correlation matrix R,[k] = E[n[t + 
.k] n[tIH] = d[k] U: 1.' The spatio-temporal channel vector 
h = [h[l]T,h[2]T,...,h[L]T]Tismodeledasarandomvector 
independent of n[ t]  with correlation ma& 

R h  = E[hhH] = &%UH. (3) . .  - - . .  
approach does not explain the dependcncc of the optimum rank 
on rhe number of pilot symbols avrilable for chdnncl estlma- 

I In !he v q u c l ,  ,, 
26[k] ~ , i h c  Kronccncr f u n a m  1 t h c m r y  mamx 

,,mc index \v r ,  a rrnbl pcnd. 
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Eqn. (3) gives the eigenvalue decomposition of Rh with a uni- 
tary matrix U containing the eigenvectors and a diagonal ma- 
trix A = diag{ [A,, A2,. . . , AM]] of the eigenvalues X i  with 
A; 2 A;+,. Refer to [3] for a discussion about the estimation of 
Rh. 

Now, we reduce the spatio-temporal rank of the channel and 
received signal, respectively, to R dimensions with the matrix 
W E C M x R  and obtain the reduced rank version of the signal 

y[t] = WHz[t] E CRX' (4) 

bred = WHh E C R x l .  ( 5 )  

and the channel vector 

For processing and estimation we considera block of N sym- 

X = h s T + N  €eMMXN (6) 

bols s E CNx' and write the system model as 

Y = WHX E C R X N  (7) 

with N = [n[l],n[Z],.. . ,n[N]] and X, Y defined accord- 
ingly (Figure I). 

The optimum coherent combiner under the assumptions from 
above is a maximum ratio combiner, which uses the estimates of 
the instantaneous channel h,.a (short-term processing, Figure 

.T * H  
1) 

s = h,,, Y. 
ML Channel Estimator: If the sequence of N transmit- 

ted symbols is a pilot sequence known to the receiver, the 
Maximum-Likelihood channel estimator [9] for the reduced 
channel coefficients is given by 

(8) 

1 fire, = -Ys'. 
N E (9) 

This estimator is minimum variance and unbiased w.r.1. brad, 
but biased w.r.t. estimation of h. 

Note, that perfect delay estimates were assumed above, when 
despreading the temporal paths, as they change slowly and, 
thus, can be estimated reliably averaging over a long period. 
Furthermore, the channel order L is assumed to be known. 

111. OPTIMUM RANK REDUCTION BASED ON LONG-TERM 
CHANNEL PROPERTIES 

For rank reduction we rely on the observation that the tem- 
poral and spatial channel properties, i.e. the delays and the di- 
rections of arrival, change slowly compared to the (fast fad- 
ing) complex amplitudes in h. These spatio-temporal long- 
term properties can be described by the correlation matrix Rh, 
which contains the "average" information ahout the channel. 
Thus, Rh can be estimated very accurately, when averaging 
over many blocks [3]. 

Optimality Criterion: As the interference n[t] is white, we 
i m  to maximize ihe signal power in y[t] for a given.Rank R, 

equivalent 
channel 

I 

Long-Term Short-Term 
Processing I Processing 

(Rank Reduction) I 
Fig. I .  Receiver with reduced ra& channel estimation bared on long- 
term properties afthe wirelcsr "mutication channel. 

i.e. maxwEIIIWHhs[t]Il$] [6]. Thus, the optimum rank re- 
ducing transformation W is chosen according to 

mgx trace{WHRhW} (10) 

s.t. rankW=R and W H W = l  

The solution is not unique. The columns of W are a unitary 
basis of the subspace spanned by the eigenvectors of Rh corre- 
sponding to the R largest eigenvalues: 

W=UredQ with Ured=U[e , ,e2 , . . . , e~]  
and QQH = 1, Q E C R x R .  (11) 

e; is the i-th column of the unity matrix. The proof follows 
from [8, p.3371, for example. The considered si a1 power in 
the reduced space of y[t] is t r  WHRhW = EcAi . ' 

Fig. 2. Calculation of ulc maltii W forrank reduction bscd on t h ~  
long-term (average) channel p p c n i c s  R h  and on the effective spatic- 
temporal rank &S. 

IV. MEAN SQUARE ERROR OF CHANNEL ESTIMATION 
To describe the trade-off for a good choice of R analytically 

we introduce the mean square error (MSE) of the channel esti- 
mator (Eqn. 9) w.r.t. the true channel h 

(12) 
1 
8, MSE = -E[llh - Wkr&]. 

3R$fcrto 161 for applications afcrilction (IO) IO the UMTSuplink. 
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M The MSE is normalized by Ph = tr R h  = C,,, A; to normal- 
ize the channel power. For unitary columns in W Eqn. (12) 
yields bit error rate. 

Further investigations showed good correspondence between 
the location of the minimum MSE and the minimum uncoded 

R MSE = - A,+ - VI. MODELING THE EIGENVALUE PROFILE (13) 
I M  
p, %=R+I Y - V x e  The eigenvalue profile of R h  is modeled as 

Bin. 

where "/ is the effective SNR defined as 

y = N .  SNR with 

Trade-off The rank R determines the numerical complexity 
of the short-term processing stage (maximum ratio combining, 
Figure 1) as well as the performance of the communication link 
[6], which is determined by the SNR at the output of the com- 
biner Eqn. (8) and the variance of the channel estimator in flat 
fading channels. On the one hand the bias in Eqn. (12) gives 
the fraction of the signal power A; in the subspace or- 
thogonal to span{W), which is neglected for a given rank. 
This is the bias of the estimator, i.e. a systematic error, and 
depends on the eigenvalue spectrum of RA and the rank R. It 
increases with smaller R. On the other hand the variance of the 
estimated channel coefficients is reduced, as only R < M pa- 
rameters have to be estimated. The estimation variance in the 
second ferm of Eqn. (12) increases linearly with the number of 
parameters R to estimate. The slope is given by the SNR and 
the length of the pilot sequence N .  We conclude: (i)  There is a 
rank R = Reu, which results in best performance, i.e. the opti- 
mum trade-off between neglected signal power and estimation 
variance. (ii) If complexity is a major issue, we want to choose 
the smallest rank R, which still gives satisfactory performance. 

which includes the uniformly distributed (i.e. uncorrelated 
channel) and exponentially decaying power profiles as special 
cases. Figure 3 shows the good least-squares fit ofmodel (17) 
to the spatial scenario with a uniform linear array (half wave- 
length spacing d), M antenna elements and angle spread Ab! 

5 , : .  , , , , , , 

Fig. 1. Modeling L c  cigcnvalue profile far {A4 = 8, A+ = 3 0 ° ) ,  
(A4 = E , A +  = 30') and {A< = &A+ = 60 ' )  (mBTIM: In(Ai) 
as calculated for L e  scenario depicted in thc lefl comer, solid line: least 
squares firafmodcl(17)) 

V. THE EFFECTIVE SPATIO-TEMPORAL RANK 
The correlation matrix R h  of typical communication chan- 

nels has full algebraic rank R = M ,  although its eigenval- 
ues decrease with rather a steep slope [6] .  As discussed above 
the optimum rank for receiver processing based on long-term 
channel Drouerties is an inteeer in the interval 0 < R < M .  

"11. PERFORMANCE LIMITS OF RANK REDUCTION 
In the following, we will use effective rank analysis to de- 

rive some interesting limits of performance of optimum reduced 
rank channel estimation. First we state the followine - -  

We define the efecfive spati;-femporal rank of the channel as 
the channel rank or the number of channel dimensions, which 
are relevant to the receiver in order to achieve optimum perfor- 
mance. 

Definition: Assume a single-inpudmultiple-output system 
(Figure I )  as defined in Eqn. (2) with rank reduction accord- 
ing to Eqn. (4) and (IO), and a ML-estimator to estimate the 
channel coefficients (Eqn. 9). The?,effecfive Rank of this 
system is defined as the Rank E,  which achieves optimum sys- 
tem performance. 

We choose the MSE (Eqn. 12) as a measure for receiver 
performance. Thus the effective rank is given by 

Ror = arg min MSE (7, R, M ,  A)  (16) R 
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A. Estimation Cutoff 

If the effective SNR y drops below a certain limit, which 
we call the cutoffSNR ycutou, the effective rank drops to zem. 
This means that, for y < ycutou it  is best in MSE sense, to 
cut off channel estimation altogether and report the communi- 
cation link as bmken. Note, that ycuton does not depend on 
the parameters i o  and T of the eigenvalue profile used. Further- 
more, there is 1 < ycute~ < M, where the lower limit is taken 
on for a fully correlated (rank one) channel, and the upper one 
in the uncorrelated case. 

B. Minimum Operational Rank Region 
For an effective S N R  y in the minimum operational rank re- 

gion: < y < yo, the effective rank is equal to io, inde- 
pendent of y. Note, that for a given channel power trRh, the 
upper limit 70 is independent of io. For io = 1, in a spatio- 
temporal scenario, we wnclude that, inside the minimum oper- 
ational rank region, beamforming is the optimum linear prepro- 
cessing procedure to channel estimation. 

C Full Rank Pmcessing Region 
For an effective SNR growing above the value yfree, the ef- 

fective rank is equal to M, which means, that no reduction of 
rank takes place anymore. Note, that yfree depends explicitly on 
M, io and T and grows at least exponentially in M (Eqn. 19). 

D. Asymptotic Optimali@ of RankReduction 
The parameters io and r usually are not constants but actu- 

ally depend on the value M in some way or another. In the 
asymptotic case, when M approaches infinity, we can make a 
general assertion on the effective rank, in the following 

Theorem 2: If there exist real numbers 0 < a < 1, b > 0 
and p > 1, such that 

i o ( M )  < a . M ,  and (22) 
r ( M )  < b .M' / (* -P) ,  (23) 

for all M > MO with some MO 2 1, then 

%U lim - < a 
M-m M 

for any finite value of the ratio y/ycutoc. 
The proof is given in the appendix. 0 

As long as io is not climbing stronger than linearly with M, 
and T is not climbing stronger than the square root of M ,  the ef- 
fective rank will never grow above i o  as M approaches infinity. 
In the case that, io < M it follows, that for large enough M, an 
actual reduction of rank WIN occur, for any ratio ~ l y ~ ~ ~ ~ t .  

In Figure 4 the dependency of r and io on M for a fixed spa- 
tial scenario shows that conditions (22) and (23) are satisfied, 
whereas T grows much more slowly than required by Eqn. (23). 
Figure 5 shows % R I M  as a function of M and Y/-fcuto,q. The 
dependency of %RIM on y/ycutou decreases with increasing 
A4 and finally vanishes for large M. For small M we can iden- 
tify the minimum operational rank region with y&curou. It 
also shows that the bound (24) is tight. 

Fig. 4. We observe a dependency ofthe model parameters on M ,  such 
that r(M) o( M'I4 and io a M ,  forthe scenario in Fig. 3 with angle 
spread A.$ = 30' (io is scaled by IO 10 fit i~ the same mge). 

Fig. 5. &,TIM c o v e s  10 a for large M, i.e. B plaaau indepmdcnt 
of M and 7/7cutou, for the rmario in Fig. 3 with A$ = 30'. From 
Figwe 4 it fwns out that a = 0.28, which comsponds lo fhc height of 
the p l a t m  

VIII. CONCLUSIONS 
When reducing the spatio-temporal channel rank based on 

long-term comelation properties of the channel, we neglect sig- 
nal power (bias) and reduce the estimation variance of the in- 
stantaneous channel coefficients. The trade-off between bias 
and variance ofthe channel estimates motivates the definition of 
the effective spatio-temporal rank using the MSE of estimation 
to describe the optimum trade-off. The effective rank depends 
on the channel structure, the number of pilot symbols, and the 
SNR at the receiver. Based on a good analytical model with 
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for channel estimation (cutoff SNR). They only depend on the 

there is a region above the cutoff SNR, in which beamforming, 
i.e. rank one processing, can be optimum. For high effective 
SNR above a houndarv eiven bv the number of channel naram- 

APPENDIX B 
maximum eigenvalue w.1.t. the total received power. Moreover, PROOF Of THEOREM 2 

First note, that the inequality 

- r . h ( e x p ( l / r ) - ~ )  < r2/r  (34) 
, I  

etem h' and the eigenvalue spec- full rank processing, i.e. holds for all , o, This follows from the fact, that 
no rank reduction, is the best choice for receiver processing. Fi- 
nally, we give conditions forthe channel StNChue, under which 
rank reduction is optimum for large M independent of the SNR 

max - 1 . ln (exp (11~) 1) 0.316, . , < _. 1 (35) 
r>o -r 5r 

and the number of pilot symbols N .  Using an example we il- 
lustrate that these conditions are satisfied in typical channels. 

APPENDIX A 

From ( I  8) and (20) we know, that 

&E < i o + r ~ l n ( ~ )  - r . l n ( e x p ( l / r ) - 1 ) .  (36) 
, . ,  

PROOF OF THEOREM 1 
Applying (34) takes us to 

First note, that 
TZ 

, (25) 7T 
R e E < i o + - + r . l n  1 - exp (- (M - io) / r )  

exp (1/r) - 1 
tr R h  / Amax = i o  + 

which follows immediately from (17) and the relationship which be funher upper bounded: 

(38) 

me last step makes use ofthe fact, that g ( r )  := r ,  In (1 + p), 
with c > 0, is suictly increasing in T, with lim g ( r )  = c. 
Using (22) and (23) it follows, that 

I - q M  q + q z +  . . . + P M  = - q-l  - 3 for 0 < Id, 7T (26) 

which is used with q = exp (-l/r) for r > 0. Now, we have < io + r2/r f 7/"/cuto%. 

to deal with two cases. Let US first take 0 5 R 5 io. From ( l 3 h  
(17). and (25)  we get 

T - l m  

(27) 

(39) 
%E bZ 1 -f/%tOff 

il.i <a+-.- Ml-l lO '7' - 
By defining 

Tcutoe := t r  Ria / Am-, (28) 
it IS clear, that for y < ycutoff the smallest MSE is achieved 
for R = 0, while for y > ^fCuto~ the minimum is reached for 
R = $0. Now let R > io. This time we find 

( R ; i o )  ( M ; i o )  
R 

MSE=--. + -. 
tr  RI, exp (l/r) - 1 Y 

(29) 

exp -__ -exp -~ 

. .  
Applying (28) and locating the unique mot of 

(30) 

(31) 

BMSE - 1 exp (- (R - in) / r )  
aR -/ .^ieutoff T . (exp( l / r )  - 1) ' 

yields the effective rank 

Ror = io + r . In (-{/yo) I 

since azMSE/8R2 is positive for R > io. In (3 I )  we have used 
the abbreviation 

70 := ycuton . r (exp ( l / r )  - 1) .  (32) 

The condition R > io translates into y > yo. Finally, the 
optimum rank can be at most equal to M. As (31) is s&ctly 
increasing in y, it represents a valid solution only for y 5 7frree, 
where 

(33) *ifrec := yo . exp ( ( M ' -  io) / r )  

for M 2 MO. As f l  > 1 we finally conclude, that 

Re% lim - < a 
M - t m  M (40) 

for any finite value of the ratio y/ycuto~. 
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