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Abstract- In a wireless communication link with one transmit
and multiple receive antennas we optimally reduce the spatio-
temporal channel rank at the receiver based on long-term (av-
erage) channel properties. The channel is estimated and sym-
bols are detected nsing this reduced rank approximation of the
received signal. Examples for this receiver architecture are
the temporal/spatio-temporal Rake, Space-Time Eigenrake, or
beamspace processing. We discuss the fundamental trade-offs in
reduced rank channel estimation and detection and propose an ap-
propriate model for describing the spatio-temporal channel strue-
ture. Based on these insights and definitions, we derive an analyt-
ical expression for the minimum receiver SNR, which is necessary
for channe] estimation. Furthermore, we state under which condi-
tions reduced rank channel estimation is asymptotically optimum.

I. INTRODUCTION

It is known that space-time processing improves communica-
tion quality and overall system performance [1]. Due to addi-
tional degrees of freedom in space-time processing more chan-
nel parameters have to be estimated, which increases the vari-
ance of the channe! estimates. Thus, channel estimation is an
important issue in wireless communications, where only a few
pilot symbols are available due to the changing channel, and
can become a limiting factor for transmission quality. For this
reason reduced rank processing techniques were proposed [2],
which reduce the number of relevant channel parameters. Re-
ducing the rank leads to a smaller variance of the channel esti-
mates. )

There are two approaches to rank reduction: The first reduces
the channe! based on the instantaneous channel coefficients or
their estimates, respectively [2]. In the sequel we consider the
second approach, which exploits long-term channel properties,
i.e. the fact that channel delays, angles of arrival and average
power change slowly compared to the complex fading ampli-
tudes of the spatial or temporal taps. This average channel
knowledge is given in the spatio-temporal correlation matrices
[3]. Representatives are the temporal Rake [4], where the fin-
gers are selected based on the average power of the temporal
tap, the 2D Rake filier [5], and the Space-Time Eigenrake [3].

These receivers have to determine the optimum spatio-
temporal rank of the channel, as their performance critically de-
pends on this parameter [6]. An attempt of defining the spatial
rank for rank reduction based on instantaneous channel prop-
erties was made in [7], using results given by Scharf [8]. This
approach does not explain the dependence of the optimum rank
on the nuember of pilot symbols available for channel estima-
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tion. A definition of the channel rank is necessary to describe
performance trade-offs in reduced rank receiver processing.
After explaining the system model in Sec. II, we state the
optimum rank reduction scheme based on long-term channel
properties (Sec. III). Employing the MSE of the Maximum-
Likelihood reduced rank channel estimate (Sec. 1V}, we give
a novel definition of the effective spatio-temporal rank relevant
for a communication link with pilot-assisted channel estima-
tion (Sec. V). Based on this definition and a new model for
the spatio-temporal channel structure (Sec. VI), we discuss the
performance limits of rank reduction in different regions of op-
eration (Sec. VII). The proofs are given in the appendix.

II. SYsTEM MODEL

Consider a direct-sequence spread-spectrum communication
link with one transmit and N, receive antenna elements. The re-
ceived signal is sampled at the chip rate. A discrete-time base-
band channel model (1} with a tapped delay line of L taps and
white complex Gaussian noise 7:.[t] is employed and models
all intra- and intercell-interference. c[t] is the transmitted chip
sequence.

L
rft] = Rt — )+ n ) e C¥x! (1)
=1

Equivalent Channel Model: For our derivations we assume
that a spreading sequence with perfect autocorrelation prop-
erties is used, such that the receiver can separate all temporal
paths perfectly. Thus, the channel can be defined by an equiva-

lent flat channel model with M = L N signals:

z[t] = hs[t] + n[t] € CM*L. vl
3[t] contains the time-multiplexed pilot and data QAM-symbol
sequences' with average power P, = E[is[t]|?], which is

temporally uncorrelated for simplicity. x[t] contains the re-
ceived and despread spatial and temporal signal components.
nft] is the additive stationary zero-mean complex (Gaussian
random process with correlation matrix Rp[k] = E[n[t +

k] nft]f] = 8{k]o21? The spatio-temporal channel vector

h = [R[1T,R[2)T, -, A[L]T)T is modeled as a random vector
independent of n[t] with correlation matrix

Ry, = E[hh"] = AUN. 3)

Lin the seque! ¢ is the integer time index w.r.t. a sythbol period.
2§[k] is the Kronecker function, 1 the unity matrix.
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Eqn. (3) gives the eigenvalue decomposition of Ry with a uni-
tary matrix 7 containing the eigenvectors and a diagonal ma-
trix A = diag{[X1, Az, -+, Aar]} of the eigenvalues A; with
Ai 2 Ait1. Referto [3] for a discussion about the estimation of
Ry,

Now, we reduce the spatio-temporal rank of the channel and
received signal, respectively, to R dimensions with the matrix
W € CM=R and obtain the reduced rank version of the signal

ylt] = whalt] e R )
and the channel vector
hrea = WHR g CRX, )

For processing and estimation we consider a block of N sym-
bols 3 € C¥*! and write the system model as

hs™ + N eCM*¥
wix  ecixy

X:
Y =

6
(N

with N = [n[1],n[2],-- ,n[N]] and X, Y defined accord-
ingly (Figure 1). :

The optimum coherent combiner under the assumptions from
above is a maximum ratio combiner, which uses the estimates of
the instantaneous channe! fircq (short-term processing, Figure
1}

T=ho Y. ®)

ML Channel Estimator: If the sequence of N transmit-
ted symbols is a pilot sequence known to the receiver, the
Maximum-Likelihood channel estimator [9] for the reduced
channel coefficients is given by

: 1

hred = Ys*

NP, ’

®

This estimator is minimum variance and unbiased w.r.t. Aqq,
but biased w.r.t. estimation of h.

Note, that perfect delay estimates were assumed above, when
despreading the temporal paths, as they change slowly and,
thus, can be estimated reliably averaging over a long period.
Furthermore, the channel order L is assumed to be known.

II1. OPTIMUM RANK REDUCTION BASED ON LONG-TERM
" CHANNEL PROPERTIES

For rank reduction we rely on the observation that the tem-
poral and spatial channel properties, i.e. the delays and the di-
rections of arrival, change slowly compared to the (fast fad-
ing) complex amplitudes in k. These spatio-temporal long-
term properties can be described by the correlation matrix Ry,
which contains the “average” information about the channel.
Thus, R, can be estimated very accurately, when averaging
over many blocks [3].

Optimality Criterion: As the interference n[t] is white, we
aim to maximize the signal power in y[¢] for a given Rank R,
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Fig. 1. Receiver with reduced rank channel estimation based on long-
term properties of the wireless communication channel.

ie. maxy E[l|W"h s[2]|i2] [6]. Thus, the optimum rank re-
ducing transformation W is chosen according to

max trace{ WHR,,W} (10

st. rankW =R and WHW =1

The solution is not unique. The columns of W are a unitary
basis of the subspace spanned by the eigenvectors of Ry, corre-
sponding to the R largest eigenvalues:

W=U,aQ with U,g=Ulees, -, €g]

and Q@Y =1, QeCF (1)

e; is the i-th column of the unity matrix. The proof follows
from [8, p.337], for example. The considered s}i{gnal power in
the reduced space of y[t] is tr WHR, W = T ;.3

SNRl lr

i=1 7

A
R =1
l Rcﬂ'
Ry ¥4 - w
= UAUY AW =Uredf—>

Fig. 2. Calculation of the matrix W for rank reduction based on the
long-term (average) channel properties J2y, and on the effective spatio-
temporal rank R.g.

1V. MEAN SQUARE ERROR OF CHANNEL ESTIMATION

To describe the trade-off for a good choice of R analytically
we intreduce the mean square error (MSE) of the channel esti-
mator (Eqn. 9) w.r.t. the true channel A

1 .
MSE = pTE[IIh ~ Whieal3]: (12)

3Refer to [6] for applications of criterion (10) to the UMT S-uplink.



The MSE is normalized by P, = ir Ry = 12 A, to normal-
ize the channel power. For unitary columns in W Eqn. (12)
yields

MSE = % 3 n+ R (13)
i=R+1 "
T Variance
whete v is the effective SNR defined as
¥ = N-SNR with (14)
2
e - FlURsliBl _BER

E(ln[li3l/M — o2

Trade-off: The rank R determines the numerical complexity
of the short-term processing stage (maximum ratic combining,
Figure 1) as well as the performance of the communication link
f6], which is determined by the SNR at the output of the com-
biner Eqn. (8) and the variance of the channel estimator in flat
fading channels. On the one hand the bias in Eqn. (12) gives
the fraction of the signal power Z R+1 A in the subspace or-
thogonal to span{W}, which is neglected for a given rank.
This is the bias of the estimator, i.e. a systematic error, and
depends on the eigenvalue spectrum of R, and the rank R. It
increases with smaller B. On the other hand the variance of the
estimated channel coefficients is reduced, as only B < M pa-
rameters have to be estimated. The estimation variance in the
second term of Eqn. (12) increases linearly with the number of
parameters R to estimate. The slope is given by the SNR and
the length of the pilot sequence N. We conclude: (i) There is a
rank R = R.g, which results in best performance, i.. the opti-
mum trade-off between neglected signal power and estimation
variance. (ii) If complexity is a major issue, we want to choose
the smallest rank R, which still gives satisfactory performance.

V. THE EFFECTIVE SPATIO-TEMPORAL RANK

The correlation matrix Ry, of typical communication chan-
nels has full algebraic rank R = M, although its eigenval-
ues decrease with rather a steep slope [6]. As discussed above
the optimum rank for receiver processing based on long-term
channel properties is an integer in the interval 0 < R < M.
We define the effective spatio-temporal rank of the channel as
the channel rank or the number of channel dimensions, which
are relevant to the receiver in order to achieve optimum perfor-
mance.

Definition: Assame a single-input/muitiple-output system
(Figure 1} as defined in Eqn. (2) with rank reduction accord-
ing to Eqn. (4) and (10), and a ML-estimator to estimate the
channel coefficients (Eqn. 9). The effective Rank Rog of this
system is defined as the Rank R, which achieves optimum sys-
tem performance.

We choose the MSE (Eqn. 12) as a measure for receiver
performance. Thus the effective rank is given by

Reg = arg m}%n MSE (v, R, M, A). (16)
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Further investigations showed good correspondence between
the location of the minimum MSE and the minimum uncoded
bit error rate.

VI. MODELING THE EIGENVALUE PROFILE
The eigenvalue profile of Ry, is modeled as

_ [ Amax y 1Zi<ig
A= { Amax EXP(—?) , fpLisM ("
which includes the uniformly distributed (i.e. uncorrelated

channel) and exponentially decaying power profiles as special
cases. Figure 3 shows the good least-squares fit of model (17)
to the spatial scenario with a uniform linear array (half wave-
length spacing d), M antenna elements and angle spread Ag.*

Fig. 3. Modeling the eigenvalue profile for {M = 8, Ad = 30°},
{M = 16,A¢ = 30°} and {M = 16, Ag = 60°} (mackers: In(};}
as calculated for the scenario depicted in the left corer, solid line: least
squares fit of model (17)).

VIL. PERFORMANCE LIMITS OF RANK REDUCTION
In the following, we will use effective rank analysis to de-
rive some interesting limits of performance of optimum reduced
rank channel estimation. First we state the following
Theorem I: For the cigenvalue profile specified in (17), the
effective Rank H.q is given as

M for v 2 Ve
Rz = io+7-In(y/v} for o < < Yiee
® ig . for YemeR Y <70
0 for v < Yeurot
with (18
Yiree Yo - exp (M — 4g) /T} ’ (19)
Yo = Teutor T (exp(l/7) - 1) (20)
TYeurof = tr Ry [/ Amax. (¢#A}]
The proof'is given in the appendix. C

4For reasons of brevity we consider a spatial scenatio only.



A. Estimation Cutoff

If the effective SNR «y drops below a certain limii, which
we call the cutoff SNR Yeutofr, the effective rank drops to zero.
This means that, for ¥ < Yeutos it is best in MSE sense, to
cut gffl channel estimation altogether and report the communi-
cation link as broken. Note, that o,tenr does notf depend on
the parameters ig and 7 of the eigenvalue profile used. Further-
more, there is 1 < Yeutor < M, where the lower limit is taken
on for a fully correlated (rank one) channel, and the upper one
in the uncorrelated case.

B. Minimum Operational Rark Region

For an effective SNR v in the minimum operational rank re-
gion: Yeutoff < Y < Yo, the effective rank is equal to #g, inde-
pendent of y. Note, that for a given channel power trRj;, the
upper iimit g is independent of i5. For ig = 1, in a spatio-
temporal scenario, we conclude that, inside the minimum oper-
ational rank region, beamforming is the optimum linear prepro-
cessing procedure to channe] estimation. *

C. Full Rank Processing Region

For an effective SNR growing above the value Y., the ef-
fective rank is equal to M, which means, that no reduction of
rank takes place anymore. Note, that yeree depends explicitly on
M, ip and 7 and grows at least exponentially in M (Eqn. 19).

D. Asymptotic Optimality of Rank Reduction

The parameters iy and T usually are not constants but actu-
ally depend on the value M in some way or another. In the
asymptotic case, when M approaches infinity, we can make a
general assertion on the effective rank, in the following

Theorem 2: If there exist real numbers 0 < a < 1,5 > 0
and 8 > 1, such that

1o{M) < a-M, and (22}
(M) < b MVED (23)
forall M > My with some Mg > 1, then
. R
Jm 5 <o @
for any finite value of the ratio v/Yeutof-
The proof is given in the appendix. O

As long as {g is not climbing stronger than linearly with M,
and T is not climbing stronger than the square root of A, the ef-
fective rank will never grow above iy as M approaches infinity.
In the case that, ip < M it follows, that for large enough M, an
actual reduction of rank will occur, for any ratio ¥/ Yeutoff -

Sassuming the teraporal channel taps are uncorrelated, which leads to a block
diagonal matrix Ry, The eigenvectors then correspond to the spatial eigen-
vectors for each temporal tap. Selecting the dominant eigenvector is therefore
equivalent to beamforming for the one temporal tap with highest SNR.
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In Figure 4 the dependency of 7 and i on M for a fixed spa-
tial scenario shows that conditions (22) and (23) are satisfied,
whereas T grows much more stowly than required by Eqn. (23).
Figure 5 shows Reg /M as a function of M and y/~euror. The
dependency of Resr/M on ¥ /vcurosr decreases with increasing
M and finally vanishes for large M. For small M we can iden-
tify the minimum operational rank region with Yo/ Ycutor- It
also shows that the bound (24) is tight.

)
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Fig. 4. We observe a dependency of the model parameters on A, such
that T{M) o M/% and 49 oc M, for the scenario in Fig. 3 with angle
spread Ag = 30° (ig is scaled by 70 to fit in the same range).
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Fig.5. Hem/M converges to a for large M, i.e. a platcau independent
of M and 7v/%.utof, for the scenario in Fig. 3 with A¢ = 30°. From

" Figure 4 it tums out that @ = 0.28, which corresponds to the height of
the plateau.

VIII. CONCLUSIONS

When reducing the spatio-temporal channel rank based on
long-term correlation properties of the channel, we neglect sig-
nal power (bias) and reduce the estimation variance of the in-
stantaneous channel coefficients. The trade-off between bias
and variance of the channel estimates motivates the definition of
the effective spatio-temporal rank using the MSE of estimation
to describe the optimum trade-off. The effective rank depends
on the channel structure, the number of pilot symbols, and the
SNR at the receiver. Based on a good analytical model with
only three parameters for typical eigenvalue spectra, we iden-
tify relevant effective SNR (Eqn. 14) regions for receiver oper-
ation: A minimum SNR and pilot sequence length are required



for channel estimation {cutoff SNR). They only depend on the
maximum eigenvalue w.r.t. the total received power. Moreover,
there is a region above the cutoff SNR, in which beamforming,
i.e. rank one processing, can be optimum. For high effective
SNR above a boundary given by the number of channel param-
eters M and the eigenvalue spectrum full rank processing, i.e.
no rank reduction, is the best choice for receiver processing. Fi-
nally, we give conditions for the channel structure, under which
rank reduction is optimum for large M independent of the SNR
and the number of pilot symbols &V, Using an example we il-
tustrate that these conditions are satisfied in typical channels.

APPENDIX A
PrOOF OF THEOREM 1

First note, that
1—exp (= (M —dg) /7)

tr Ry [ Amax = do + oxp (1/1_) _1 ) (25)
which follows immediately from (17) and the relationship
2 I gM
g+g 4+ +g =q_1~_1,for0<lqi, (26)

which is used with ¢ = exp (—=1/7) for r > 0. Now, we have
to deal with two cases, Let us first take 0 < R < 4. From (13),
(17), and (25) we get

_ 1 Amax
MSE=1+R (:r nrR,,)' @7
By defining
Yeutoff 1= t& Bp [/ Amax, (28)

it is clear, that for v < “Yeutom the smallest MSE is achieved
for B = 0, while for v > +eusorr the minimum is reached for
R = 15. Now let R > ip. This time we find

B—-1 M-
exp | — —exp | —
MSE = Jmex T T SR
T tr Ry, exp(l/r)—~1 Syt
29
Applying (28) and locating the unique root of
BMSE _ 1 exp(~(R—io)/) (30)
BR Y TYeuiolf * T (exp (1/7) - I) ,
yields the effective rank
Reg =io+7-In(v/%), (31)

since 52MSE/8R? is positive for R > 1ip. In (31) we have used
the abbreviation

(32)

The condition R > iy translates into v > <. Finally, the
optimum rank can be at most equal to M. As (31) is strictly
increasing in v, it represents a valid solution only for ¥ < Viree,
where

Yo = Yeutei - T (exp (L/7) — 1}.

“ree 1= Yo - €XP ((M_ io) /7) (33)
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APPENDIX B
PROOF OF THEOREM 2

First note, that the inequality

—r-ln(exp(1/7) —1) < 7%/x (34)
holds for all 7 > 0. This follows from the fact, that
1 . 1
111_1%_—1_-ln(exp(l/‘r)—-1)~D.316...< o (35)

From {18) and (20} we know, that

Rar < o+ (290 ) o nenp 1/7) = ). (36)

Applying (34) takes us to
2
Reﬁ<i0+f—+f-ln(1ﬁm), (37)
T T
which can be furtber upper bounded:
2
Ra < do+_+7In (1 + 1———-/"’““""*)
g T
< tg+ 72/7" + ¥/ Yeutof- (38)

The last step makes use of the fact, that g(r) 1= 7-In (1 + £),

with ¢ > 0, is strictly increasing in 7, with lim g{r) = ¢
=00

Using (22) and (23) it follows, that

Req b? 1 Y/ Yeutolf
YRR v v Iy VIR
for M > My. As 8 > 1 we finally conclude, that
. Hem
dm B <o @

for any finite value of the ratio ¥/¥euronr-
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