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ABSTRACT 
In this article we introduce a novel multiple-input-multiple-output 
(MIMO) spatial filter (SF) which can be applied as a preprocess- 
ing scheme to uniform linear arrays, preserving the Vandermonde 
structure of the steering vectors while changing the amplitude and 
the phase gradient of the steering vector in a nonlinear fashion. 
The new scheme is therefore titled Vandermonde Invariance Trans- 
formation. 

The introduced degrees of freedom due to this preprocessing 
transformation can be used to beneficially influence the properties 
of the channel to achieve an enhanced performance of the subse- 
quent signal processing algorithm. 

1. INTRODUCTORY MOTIVATION 

where OT denotes transposition and I",, = -27rA sin q5,, is the 
spatial frequency with the antenna spacing A in fractions of the 
wavelength. Rewriting eq. (1) in vector-matrix notation leads to 

x ( t )  = A .  diag{p,,};=, . s ( t )  + n( t ) .  (3) 

In the following we will derive a transformation matrix T E 
CM x M  which is applied to the data vector x(t). The new output 
reads as 

y ( t )  = T . A .diag{p,,};=l . s ( t )  + T . n(t) . (4) * - 
f4t) B 

Thereby, we design T such, that the matrix B is again a steering 
matrix of a ULA having Vandermonde structure. The vector y can 
be regarded as the output of a virtual ULA with noise ii(t). - 

Some years ago the application of antenna arrays has been pro- 
posed for mobile communication systems to attain an increase in 
capacity and interference reduction by additionally exploiting the 
spatial separation of the mobile users. 
Using more then one antenna for the receiver andor sender pro- 
vokes a noticeable increase of the system performance by achiev- 
ing antenna gain, enhanced interference cancellation, and also transmit- 
receive diversity. Exploiting these properties requires the knowl- 
edge of the channel. Therefore channel estimation has to be ap- 
plied to determine the parameters of the channel. These channel 
estimation schemes work better for higher signal-to-noise ratios 
(SNR). To this end preprocessing schemes can be applied to the 
antenna output to amplify the user signal over the noise and inter- 
ference. 

The most commonly used structure of an antenna array is the 
Uniform Linear Array (ULA). In this case A4 antennas are ar- 
ranged in a line with equal distance to their neighboring antennas. 
Assuming L different propagation paths impinging at a ULA with 
M antennas under the influence of additive, possibly colored noise 
produces the data model 

L 

x ( t )  = C pn . a, . s n ( t )  + n(t), (1) 
,,=l 

where pn,  a,, sn(t),  and n(t) denote the complex amplitude of 
path n, the steering vector of path n, the arriving signal of path n, 
and complex, possibly colored noise, respectively. 
Under the assumption of discrete wavefronts [ 11, the steering vec- 
tors a, are parameterized only by one angle dn between the prop- 
agation path and the ULA. The steering vector can be written as 

Fig. 1 .  Scheme of the proposed preprocessing transformation at 
the receiving antenna array. 

2. VANDEFZMONDE INVARIANCE TRANSFORMATION 

We start with two Vandermonde vectors x, y E C2" 

x = [ 1 , 2 , 2 2 , .  . . ,z'-l]T 

y = e(.) . [l 1 > ?  

2 =&@; y 4"; /1.,v E R ( 5 )  

M - l l T  
> J J , " . > ? I  

where z and y are unimodular complex numbers 

and c(z)  is the amplitude function, that is usually nonlinear with 
res ect to 2. In the sequel we will investigate matrices T E 
CJX 

~ = T . x  (6 )  

that map x to y: 
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Matrices having this property will be called Vnndermonde Invari- 
ant Matrices, the transformation from x to y Vnndermonde Invari- 
ance Transformation (VIT). After the vector-matrix multiplication 
the n-th component yIL of vector y is a polynomial in x, that we 
will write in sum and product form 

p = l  p = l  

where r,,+ E C are the complex roots of the polynomials TJ. (z) 
and b,, E C is a scaling factor. For T to be a Vandermonde invari- 
ant matrix, it must provide the vector y with the property 

p=l 

This equation must hold for all complex values of x on the unit 
circle. We can split this condition into its absolute value and its 
angle. The absolute value of the right hand side has to be constant 
for all possible values of 1.1 = 1. To fulfill this equation we find 
a correspondence in filter theory. The only class of filter functions 
satisfying a constant absolute value for the whole frequency range 
are the all-pass functions. It is well known, that the poles and 
zeros of an all-pass function have to be symmetric with respect to 
the unit circle. The distribution of the poles and zeros can further 
be inspected by considering the angle of (8). The angle condition 
requires, that two subsequent rows of y are related by the same 
change of the angle. This requires, that two subsequent rows are 
related by the same transfer function H(x), hence 

As the total number of zeros in (7) is ( M  - l), H(x) must be an 
all-pass function of first order 

H(x) = - b,+i . - x - r *  (10) b,, x - r ’ 
where b,,+2 . b, = b:+, and ()* denotes the mirror operator on 
the unit circle. This leads to 

For convenience we require, that (6) maps an all-ones vector again 
onto an all-ones vector, which translates to 

I),, = (1 - r)n-M . (1 - r*)lprL (12) 

Plugging (1 2), (1 1) and ( 5 )  into (7) gives the transformed vector y 
from (6) in its compact form as 

/ l \  

Note that there is just one degree of freedom remaining. 

3. SOME PROPERTIES OF THE VANDERMONDE 
INVARIANCE TRANSFORMATION 

In this Section we will investigate two interesting properties of 
the VIT. For simplicity we restrict our consideration to real-valued 
roots r for constructing a Vandermonde invariant matrix T. 

3.1. Phase amplification 

Recall that the variables and y have been defined on the unit 
circle: z = d p  and y = d’ with p,  v E [-x,7r]. From (10) and 
(1 2) follows, that v can be expressed as a function of p and r as 
follows 

) . (14) 
(T - f )  . sin p 

-2 + (7- + ;) c o s p  
v = arctan 

See also Figure 2. 

> 

-3 -2 -1 0 1 2 3 

CI 

Fig. 2. Plot of the phase transformation for K = 2 and K=1/2. 

Note that p = 0 is mapped to v = 0. At this point the second 
derivative of v with respect to p vanishes. This indicates, that 
the nonlinear relation (14) may be linearly approximated in the 
vicinity of 11 = 0 as 

vl in  = K * P ,  (15) 

with phase amplification K = ( r  + l)/(r - 1). 
3.2. Amplitude amplification 

While the norm of the input vector x is always constant to 11x11, = a, the norm of the transformed vector y depends on p in a 
nonlinear fashion. Using (1 3 )  we can write the squared norm of y 
as 

Ilylli = M - 2 l P M  * (1 + K 2  + (1 - K2) ~ o s p ) ~ - ’ .  (16) 

From this it is clear that for p = 0 the norms of y and x are 
identical, whereas the amplitude for p # 0 heavily depends on K 
and 11.. E.g. 

l ly(p = 7r)ll; = M .  (1 7 )  

The ratio of the maximum and the minimum value of llyl 1: is 
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and is therefore exponential in M but only polynomial in IKI or 

- respectively. 
1 

IKI ' 

4. INTERPRETATION 

4.1. Virtual Arrays and Nonlinear Channel Transformation 

Assuming a single planar wave arriving at the ULA at an azimuth 
angle of  4 and carrying a narrow-band baseband signal s(t) ,  the 
array output x(t) reads in the absence of noise as 

Since (19) is a Vandermonde vector its structure is not changed 
by premultiplication with a Vandermonde invariant matrix T. Re- 
calling (13) and (14) we see that the vector y is the output vector 
of a virtual array, that operates in a different environment (chan- 
nel), since the spatial characteristics of the real and virtual array, 
represented by the spatial frequencies 11. and v, respectively, are 
different. Since (14) is nonlinear with respect to 11, the spatial prop- 
erties are changed in a nonlinear fashion, which leads to a nonlin- 
ear channel transformation. The change in the norms of the array 
output vectors x and y due to the VIT may be interpreted in two 
different ways. 
Either the angular response (radiation pattern) of the virtual array 
has changed, or alternatively the channel has changed its angu- 
lar amplitude characteristic just like the spatial frequency (phase) 
characteristic before. 

4.2. Adaptive Antenna Aperture Zoom 

When looking at the linear region of (14) around 11. = 0, the spatial 
separation AIL of two wavefronts looks like Av = K . All. at the 
virtual array. If IKI > 1 we get a zooming effect, similar to the 
one of an optical lens: 

The expression can be seen as an increase of the effective 
antenna spacing for a region in the vicinity of 11, = 0. For this par- 
ticular region the antenna aperture is virtually increased. However, 
the increasing phase amplification leads also to a reduction of the 
size of the region of linearity. As in an optical system this effect 
corresponds to the decrease of depth of focus by increasing focal 
length. 

Unfortunately this software zoom effect comes at rather a high 
price, since it leads to a large amplification of noise power. On the 
other hand using a phase attenuation (inverse-zoom), a consider- 
able noise suppression may be achieved at a fairly low price, which 
will be shown in the next subsection and will form the basis of ap- 
plications described in the next section. 

4.3. Noise Shaping 

Assume a ULA with omni-directional antennas that only receives 
spatially white noise of unity power density. The power density 
measured at the virtual array is given by the squared norm of its 
output vector, c.f. (16). This means, that for IK(1 # 1 the spa- 
tial distribution of noise power density will change due to the VIT, 
hence noise changes its color. This effect will be called noise shap- 
ing and is illustrated in Figure 3 which shows the spatial power 

Fig. 3. Spatial noise power density at the output of the virtual 8-  
ULA for different values for the phase amplification K .  Spatially 
white noise with unity power density is assumed at the input. 

density of transformed white noise at the output of the virtual ar- 
ray for M = 8 antennas. First of all it shows, that even for a small 
positive zoom effect (here K = 1.05) the penalty in noise ampli- 
fication is severe and gets even worse, by increasing the antenna 
number M .  On the other hand even a very moderate loss of phase 
amplification, e.g. K = 0.9 leads to a considerable suppression of 
noise. 
To better understand the noise suppression effect of noise shaping 
we have a look at the total noise power P at the output of the vir- 
tual array when the noise is of unity power density and white with 
respect to 11.. Choosing 11(1 < 1 leads to an effective gain in SNR 
as can be seen frcm Table I .  However the noise covariance matrix 
is changed into R:v = T . RN . TH. 

Searching for a optimum K we have to keep in mind, that we 
want to have a low P value to achieve as much noise suppression 
as possible and we simultaneously want to have IK(( close to 1, in 
order to get a low phase attenuation. In trying to fulfill both con- 
ditions simultaneously we maximize the cost function $. Note 
that P is a value of second order. The optimum value settles to 
Koyt  N" 0.8 largely independent of the ULA size M .  

4.4. Multiple-Input Multiple-Output Spatial Filter 

In contrast to the classical form of a spatial filter, which maps a 
vector input to a scalar output, the VIT maps vectors onto vec- 
tors, and therefore is a MIMO spatial filter. The VIT can also be 
thought of as a bank of spatial filters, that have tuned phase and 
amplitude relationships to preserve the Vandermonde structure of 
the input signal. Note that the VIT is linear in terms of its input 
and output Vandermonde vectors, but nonlinear in terms of their 
spatial frequencies. 

JKI 1 1 I 0.9 I 0.8 I 0.7 I 0.5 1 0.1 I -+ 0 
ASNR I 0 1 2.5 I 4.2 I 5.1 1 6.10 I 6.76 1 6.79 

Table 1. Noise suppression in dB due to noise shaping for different 
phase amplifications and M = 8 
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5. APPLICATION EXAMPLE 

5.1. VAP-DOA Algorithm 

In the conventional setup, N samples of the ULA output x ( t )  E 
CM are measured at successive time instants and collected into a 
data matrix X E e'' x s  [2]. The measured data is then fed into 
one of the well known high resolution DOA estimation algorithms 
like MUSIC or ESPRIT [3, 21 that returns a set of estimated di- 
rections of arrival { fi,l ~ . . . , f i ~  } I .  The quality of estimation de- 
pends on the reliability of the measured array output, i.e. the SNR, 
and also on the number of snapshots N that can be obtained dur- 
ing the coherence time of the channel. By introducing a VIT based 
preprocessing scheme we can achieve the same accuracy at a lower 
SNR level andor  with fewer snapshots. The second property en- 
ables us to track DOAs of faster changing channels. 
This idea of Virtual Array Processing (VAP) is to start with raw 
estimates of L directions of arrival and then sequentially apply a 
set of VITs that are focused on these estimated directions, followed 
by subsequent DOA estimations based on the transformed data set. 
Due to the noise shaping effect of VIT this will lead to a more ac- 
curate estimate, for the price of a L + 1 times higher computational 
load. 

5.2. Simulation Results 

We assume one wavefront impinging from d, = 27" at an 8-ULA 
with A = 0.5 spacing in spatially white noise and being estimated 
with the Standard ESPRIT algorithm. In the sequel we will com- 
pare the performance of the ESPRIT algorithm to its VAP variant. 
Figure 4 shows the RMSE of Standard ESPRIT as a function of the 
SNR. The upper line corresponds to the estimation without prepro- 
cessing and the lower line to the case of VAP enhanced estimation 
for K = 0.8. The simulation validated the previous results, that a 
choice of K = 0.8 is optimal in terms of lowest RMSE. For this 
value of K the VAP enhanced estimation achieves a gain in SNR 
of approximately 2 dB for a reasonable SNR range. 
If we plot the RMSE as a function of the number of samples N ,  
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we get the plot shown in Figure 5. In the case of four wavefronts 
we can see that we gain a factor of approxitnately 1.33 with re- 
spect to the number of samples, which means a 25% reduction in 
the sample count and a 33% higher velocity threshold for moving 
objects. 

U 

Fig. 5.  RMSE of four wavefronts d, = { -32". 2"; 8": 57") with a 
SNR of 5dB at an 8-ULA as a function of the samples N .  

6.  CONCLUSION 

A novel class of MIMO spatial filters was introduced that well 
suites as a preprocessing scheme for signal processing algorithms 
operating on ULAs. These filters preserve the Vandermonde struc- 
ture of the ULA steering vectors while changing their amplitude 
and phase-gradient in a nonlinear fashion. The filters can be de- 
scribed by means of the introduced VIT, which may be seen both 
as linear and non-linear. Effects like noise-shaping can be used 
to achieve enhanced performance of subsequent signal process- 
ing algorithms. Simulation results for a proposed enhancement of 
DOA estimation show that substantial gains in performance can be 
achieved. 
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