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ABSTRACT

The subgrid-scale (SGS) model in a large-eddy simulation (LES) generally operates on a

range of scales that is marginally resolved by discretization schemes. Consequently, the

discretization scheme’s truncation error and the subgrid-scale model are linked, which

raises the question of how accurate the computational results are. The link between the

SGS model and truncation error can be beneficially exploited by developing discretization

methods for subgrid-scale modeling, or vice versa. Approaches where the SGS model

and the numerical discretization scheme are fully merged are called implicit LES (ILES)

methods.

In order to improve on modeling uncertainties, a systematic framework is proposed

for design, analysis, and optimization of nonlinear discretization schemes for implicit

LES. The resulting adaptive local deconvolution method (ALDM) for implicit LES is a

finite volume method based on a nonlinear deconvolution operator and a numerical flux

function. Free parameters inherent to the discretization allow to control the truncation

error. They are calibrated in such a way that the truncation error acts as a physically

motivated SGS model. An automatic optimization based on an evolutionary algorithm

is employed to obtain a set of parameters that results in an optimum match between the

spectral numerical viscosity and theoretical predictions of the spectral eddy viscosity for

isotropic turbulence. The method is formulated for LES of turbulent flows governed by

the incompressible Navier-Stokes equations and for passive-scalar mixing.

ALDM has shown the potential for providing a reliable, accurate, and efficient method for

LES. Various applications, such as three-dimensional homogeneous isotropic turbulence,

transitional and turbulent plane channel flow, and turbulent boundary-layer separation,

demonstrate the good performance of the implicit model. Computational results agree

well with theory and experimental data and show that the implicit SGS model performs

at least as well as established explicit models, for most considered applications the

performance is even better. This is possible because physical reasoning is incorporated

into the design of the discretization scheme and discretization effects are fully taken into

account within the SGS model formulation.
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NOMENCLATURE

Roman Symbols

a Reynolds stress anisotropy tensor

c passive scalar

C coefficient matrix

CB Batchelor constant

Cf friction coefficient

CK Kolmogorov constant

COC Obukhov–Corrsin constant

CS Smagorinsky constant

Cτ mean friction concentration

CW mean concentration at the wall

Ê turbulent kinetic energy spectrum

Êc scalar variance spectrum

F flux

f flux vector, one column of F

F flux tensor

G filter kernel

G general error or residual

h grid spacing

hx, hy, hz directional grid spacing

H channel half width

H12 shape parameter based on δ1 and δ2

H32 shape parameter based on δ3 and δ2

i imaginary unit

I tensor invariant

k turbulent kinetic energy



x Nomenclature

k order of reconstruction polynomial

K maximum order of reconstruction polynomials

K acceleration parameter

K+ non-dimensional mass-transfer coefficient

l+ viscous length scale

L integral length scale

N number of grid points

N flux tensor

p pressure

Pe Péclet number

r shift (of leftmost stencil point)

Re Reynolds number

Reδ Reynolds number based on boundary-layer thickness

Reδ1 Reynolds number based on displacement thickness

Reδ2 Reynolds number based on momentum thickness

Reδ3 Reynolds number based on energy thickness

Reλ Taylor scale Reynolds number

Reτ wall-friction Reynolds number

Sc Schmidt number

t time

T̂ nonlinear energy transfer

u ≡ u1 first velocity component (streamwise)

u velocity vector

Uτ mean wall-friction velocity

v ≡ u2 second velocity component (wall-normal)

w ≡ u3 third velocity component (spanwise)

x ≡ x1 first coordinate (streamwise)

x coordinate vector

y ≡ x2 second coordinate (wall-normal)

z ≡ x3 third coordinate (spanwise)

Greek Symbols

αk,r,l coefficients of reconstruction polynomials



xi

β smoothness measure

β Clauser pressure parameter

γ model parameter of ALDM

γ1 skewness

γ2 excess kurtosis

δ boundary-layer thickness

δ1 displacement thickness

δ2 momentum thickness

δ3 energy thickness

δij Kronecker’s delta

∆t time step

∆P Patel pressure gradient

∆RC Rotta–Clauser length

ε dissipation

ηK Kolmogorov length

ηB Batchelor wavenumber

κ von Kármán constant

κ scalar diffusivity

λ shift

Λ pressure gradient parameter of Castillo and George [19]

λT Taylor micro scale

ν kinematic viscosity

ν+ viscosity normalized with (Ê(ξC)/ξC)1/2

ξ wavenumber

ξ wavenumber vector

ξB Batchelor wavenumber

ξC cut-off wavenumber

ξD diffusive cut-off wavenumber

ξN Nyquist wavenumber

ξK Kolmogorov wavenumber

ξS threshold wavenumber of large-scale forcing

ρ density

σ model parameter of ALDM

τ shear stress



xii Nomenclature

ϕ generic variable

Φ primitive function of ϕ

χ scalar diffusion

χ reverse-flow parameter

X 1-D deconvolution operator

X 3-D deconvolution operator

ω weight functional

Ωi,j,k cell of Cartesian computational mesh

Other Symbols

· spatially filtered quantity

·̃ numerical (discrete) approximation

·̌ analytical (continuous) approximation

·̂ Fourier transform

〈·〉 mean value (Reynolds filter)

·′ fluctuation

Subscripts

0 reference state

∞ free-stream property

δ property at the boundary-layer edge or based on the length δ

bulk bulk property

c related to passive scalar c

C truncated at cut-off wavenumber

N grid function obtained by projecting a continuous function onto a

numerical grid

num numerical

p based on pressure or pressure gradient

ref reference value

vD van Driest

w property at the wall

θ based on δθ



xiii

τ based on wall friction

Superscripts

+ normalized , frequently for scaling in wall units

B backward

D downward

F forward

L left / leftward

R right / rightward

U upward

Frequently Used Abbreviations

1-D one-dimensional

2-D two-dimensional

3-D three-dimensional

ADM approximate deconvolution model

ALDM adaptive local deconvolution method

APG adverse pressure gradient

BiCGstab stabilized bi-conjugate gradient method

CBC Comte-Bellot and Corrsin [27]

CFL Courant–Friedrichs–Lewy ; Courant number

CL Chollet–Lesieur

CPU central processing unit

D detachment

DIA direct interaction approximation

DNS direct numerical simulation

DSM dynamic Smagorinsky model

EDQNM eddy-damped quasi-normal Markovian

ENO essentially non-oscillatory

FCT flux-corrected transport

FD finite difference

FFT fast Fourier transform



xiv Nomenclature

FV finite volume

ID incipient detachment

ILES implicit large-eddy simulation

ITD intermittent transitory detachment

LASER light amplification by stimulated emission of radiation

LDA LASER Doppler anemometry

LHDI Lagrangean-history direct-interaction

LES large-eddy simulation

MDE modified differential equation

MDEA modified-differential-equation analysis

MILES monotonically integrated large-eddy simulation

MPDATA multidimensional positive definite advection transport algorithm

MPI message passing interface

MUSCL monotonic upstream-centered scheme for conservation laws

PIV particle-image velocimetry

PPM piecewise parabolic method

RANS Reynolds-averaged Navier–Stokes

rms root of mean square

SFS subfilter scale

SGS subgrid scale

SI international metric system (Le Système international d’unités)

SVV spectral vanishing viscosity

TBL turbulent boundary layer

TD transitory detachment

TFM test field model

TGV Taylor–Green vortex

TV total variation

TVB total-variation bounded

TVD total-variation diminishing

WENO weighted ENO

ZPG zero pressure gradient

ZS Zagarola and Smits [187]



— CHAPTER ONE —

INTRODUCTION

1.1 Motivation

Large Eddy Simulation (LES) is becoming a more and more widely used simulation

tool for the time-accurate prediction of unsteady flows at high Reynolds numbers. In

contrast to Direct Numerical Simulation (DNS) the Kolmogorov dissipation scale is

not resolved with LES, making the computational cost of LES largely independent of the

Reynolds number1. The level of abstraction is lower than with statistical approaches

based on the Reynolds-averaged Navier-Stokes (RANS) equations. Thus the scope

of LES extends to unsteady turbulent flows with a broad range of spatial and temporal

scales.

With LES the Navier–Stokes equations are numerically solved on a grid that is too

coarse to represent the entire range of turbulent flow scales. The large resolved scales pro-

vide a direct representation of the energy-containing flow structures. This representation

is adequate for most practical purposes in engineering and in geophysical sciences, i.e.,

where the unrepresented small-scale, high-frequency fluctuations are of minor interest.

From a mathematical point of view, however, there are nonlinear interactions between

all turbulent flow scales, with the truncated small-scale information being crucial for the

proper evolution of large-scale structures in the flow. The purpose of a subgrid-scale

(SGS) model is to close the resolved-scale equations by representing the effect of their

nonlinear interaction with unrepresented scales.

The development of efficient and accurate SGS models constitutes a major research

challenge. First attempts on LES and SGS modeling date back to the 1960s. Motivated

by meteorological applications, the first SGS model was proposed by Smagorinsky

[161] and analyzed in depth by Lilly [100]. First successful applications to turbulent

channel flow were reported by Deardorff [31]. Years of intense research have further

allowed for a consensus on the limitations of the eddy-viscosity concept - the basis of

Smagorinsky’s model - to be reached: First, that the model parameter is not universal,

1 With wall boundary layers are a prominent exception. The computational cost of resolving the

viscous sublayer scales like Re2.4, unless wall models are used. [21, 134].
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and second, that the subgrid-stress tensor and the strain tensor involved in the model

are only weakly correlated. Eddy-viscosity models that improve on the first point can

be constructed, e.g., by incorporating an algebraic rule that adapts the model constant

[46, 101, 117] or high-pass filtering that eliminates the effect of mean-flow gradients [145,

171, 179]. An alternative to eddy-viscosity models are approaches that replace modeling

by an ad hoc mathematical procedure based on a similarity assumption between the

smallest represented scales and the largest non-represented scales. With Bardina’s

scale-similarity model [5] the SGS stress is computed directly from its definition, while

using the filtered solution as approximation of the unfiltered solution. Deconvolution-

type models, such as the approximate deconvolution model of Stolz and Adams [168],

can be interpreted as a generalization of this approach. Based on more sophisticated

approximations, they extract as much information as possible from the represented range

of scales. Mixed models which combine deconvolution with a dissipative component

[170, 181, 190] show significantly improved correlations with true SGS stresses2. The

numerous SGS models that were developed over the last four decades can be classified in

various ways. However, a common distinction is made between eddy-viscosity models,

scale-similarity models, and mixed models. Valuable reviews on recent developments,

their historical aspects, as well as related mathematical and physical theories are given by

Piomelli [133], Lesieur et al. [94], Meneveau and Katz [116], and Domaradzki

and Adams [34]. Several textbooks providing a good introduction to LES are also

available (Refs. [93, 136, 144]).

We refer to all these approaches as explicit SGS models, as they rely on beforehand

defined approximations or estimates for the unclosed SGS terms which have to be com-

puted during time advancement. Theoretical development of explicit SGS models is

mainly based on the filtering concept of Leonard [92], where deriving the resolved-

scale equations and SGS modeling are considered separately from numerical aspects of

solving the equations. That is, SGS are modeled explicitly if the conservation law has

been modified and subsequently discretized.

The conceptual separation of explicit SGS model and discretization implies the assump-

tion that the numerical method provides an accurate solution to the resolved-scale equa-

tions. SGS models for LES operate mainly on the smallest represented scales, i.e., on

the range of scales that is only marginally resolved by the underlying numerical method.

This fact requires the numerical truncation error to be small. Otherwise the subgrid-

scale model will unpredictably interfere with the discretization scheme. First theoretical

2 A priori analysis showed superior correlations for deconvolution models without regularization. In

practice, however, a dissipative component is needed for numerical stability.
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analyses by Ghosal [48] led to the conclusion that even the truncation error of a fourth-

order accurate central-difference discretization can be of the same order of magnitude

as the SGS stress. Comparative numerical studies [47, 89, 180, e.g.] corroborate these

analytical results.

The reciprocal interference of the numerical truncation error and the SGS model brings

the accuracy of the resolved-scale solution into question and therefore constitutes a ma-

jor hindrance for the further development of LES. In order to reduce this coupling,

one could resort to higher-order discretizations or to explicit filtering [48]. For LES of

flows in or about complex geometries the use of higher-order schemes leads to complica-

tions concerning the implementation and increases the computational cost substantially.

The modified-wavenumber concept of discretizations (see Vichnevetsky and Bowles

[176]) implies a distinction between resolved scales (accurately represented scales for

which the modified wavenumber of the discretization is close to the exact wavenumber)

and represented scales (scales larger than the grid cut-off). With explicit filtering the

filter cutoff can be chosen according to the accuracy of the particular numerical method

[169]. For a given discretization an explicit filter reduces the error caused by the band

of non-resolved scales. On the other hand, filtering increases the required overall grid

resolution and computational cost for a given smallest resolved flow-scale.

Recent studies indicate that the interference between the explicit SGS model and the

truncation error can be exploited. The truncation error from the unmodified conservation

law’s discretization can itself be employed to model the effects of unresolved scales, thus

functioning as an implicit SGS model that is directly contained within the discretization

scheme. An explicit computation of the subgrid-stress tensor becomes unnecessary. Such

an approach is referred to as implicit LES (ILES). With ILES under-resolution is treated

as a primarily numerical problem which can be tackled by employing an appropriate

discretization scheme. This approach is particularly convenient in flow regimes for which

the derivation or the accurate computation of explicit SGS models is cumbersome. Many

authors emphasize the potential of implicit LES for physically complex flows and for flows

in complex geometries [52, 130, e.g.].

It is worthwhile to note that the original intention of subgrid-scale modeling was to stabi-

lize under-resolved flow simulations while preserving reasonable accuracy of the resolved

scales [162]. Rather than a deep reasoning about the physical correctness of the model

assumptions, it actually was the artificial numerical dissipation of von Neumann and

Richtmyer [178] that motivated Smagorinsky to propose his SGS model. Kawa-

mura and Kuwahara [85] first reported indications that the truncation error of an

upwind scheme may function as an SGS model in some cases. More generally, the use
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of nonlinearly stable schemes for ILES was proposed by Boris et al. [14]. Originating

from the use of monotone schemes this approach has been dubbed MILES for monotoni-

cally integrated LES, although more accurate schemes satisfying less restrictive stability

constraints are used in practice. For this reason the designation implicit LES, i.e. LES

with an implicit SGS model, is considered to be a more appropriate for approaches that

merge the numerical discretization with the SGS model.

Implicit LES can be approached in many ways; a comprehensive review is presented

by Grinstein et al. [51]. Mostly, 2nd-order-accurate schemes with a nonlinear regu-

larization to maintain stability are used. Relevant discretizations are, e.g., the Flux-

Corrected Transport (FCT) method of Boris and Brook [13], Zalesak [188], the

so-called Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL) of

van Leer [175], the Multidimensional Positive Definite Advection Transport Algo-

rithm (MPDATA) of Smolarkiewicz [163], the Piecewise Parabolic Method (PPM) of

Colella and Woodward [26], the entire family of Essentially Non-Oscillatory (ENO)

schemes (see Harten et al. [57], Shu and Osher [155]), and the Spectral Vanishing

Viscosity (SVV) method of Tadmor [172].

As reported by Garnier et al. [44], the application of robust discretization schemes

to turbulence simulations is less straightforward: Even though the artificial dissipation

introduced by second and higher order dissipative truncation errors indeed stabilizes

under-resolved turbulence simulations, small flow scales may either behave unrealistically

or suffer from excessive numerical damping. This causes probability-density functions

of velocity increments and pressure to exhibit the typical behavior of low Reynolds-

number turbulent flows, rather than that of high Reynolds-number ones. In particular,

monotonic and total-variation diminishing (TVD) schemes, such as MUSCL, appear to

be poorly suited for ILES. For implicit SGS models total-variation bounded (TVB) dis-

cretization schemes that allow for finite oscillations are have been used most successfully

so far. The conclusions drawn by Garnier et al. [44] are highly controversial and have

stimulated a deeper analysis of ILES discretizations [42, 111–113, 143]. Recent studies

report considerable success in predicting canonical turbulence and complex flows with

ILES. In particular successful applications to wall-bounded turbulence, reported for the

FCT method by Fureby and Grinstein [42] and for SVV by Karamanos and Kar-

niadakis [84] and Severac and Serre [151], are noteworthy. A successful application

of PPM to decaying compressible turbulence is given by Porter et al. [137, 138]. More

recently the FCT method has been applied for complex engineering applications [52] and

MPDATA is becoming a standard tool in geophysical sciences [114, 164, 165].
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1.2 Contribution of this Work

Previous approaches to implicit SGS modeling rely on the application of preexisting

discretization schemes, which have been developed for other purposes, to fluid-flow tur-

bulence. Consequently, methods with suitable implicit SGS model are usually found by

trial and error. Recent analyses have shown that stabilizing an under-resolved simu-

lations by upwind or non-oscillatory schemes is insufficient for accurately representing

SGS turbulence, although some general trends can be reproduced [36, 38, 44]. Employ-

ing implicit LES for prediction, however, requires numerical methods that are specially

designed, optimized, and validated for the physical problem to be considered. A full cou-

pling of SGS model and discretization scheme cannot be achieved without incorporating

physical reasoning into the design of the implicit SGS model.

The objective of this work is to improve on the aforementioned modeling uncertainties.

The starting point is to explore how implicit subgrid-scale modeling can be approached

systematically. For this purpose, methods of design, analysis, and optimization of non-

linear discretizations for implicit LES are devised. Previous approaches to implicit mod-

eling have frequently led to the belief that an implicit subgrid-scale model is generally

inferred by the choice of discretization. This is not necessarily the case. In fact, implicit

subgrid-scale models can be designed deliberately. The following systematic procedure

for implicit SGS modeling is proposed:

1) Discretization design: First, a general nonlinear discretization scheme is developed

on the basis of standard approaches. These, however, are modified in such a way that the

resulting truncation error can be controlled. The resulting scheme should be as simple

as possible to facilitate computation at reasonable cost, and as complex as necessary

to allow for implicit modeling. A suitable framework is available by the finite-volume

method, implying reconstruction or deconvolution of the unfiltered solution at cell faces

and the approximation of the physical flux function by a numerical one.

2) Modified-differential-equation analysis: The general discretization method is

analyzed with respect to its implicit SGS modeling capabilities. A suitable tool is an

analysis of the modified-differential equation (MDEA) [98]. Based on Taylor-series

expansions of the solution, such an analysis allows to determine the relation between

the implicit model and any given explicit SGS model. With this method the MPDATA

and the FCT were analyzed by Margolin and Rider [112] and Fureby et al. [43],

respectively. However, MDEA of more complex nonlinear discretization schemes for non-

linear three-dimensional differential equations is practically impossible. An alternative

approach follows the method of Domaradzki [38, 69], where the spectral numerical

dissipation is considered in an a-posteriori analysis.
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3) SGS-model calibration: In the final step, appropriate values of the parameters

inherent to the discretization scheme are determined. In classical numerical analysis,

discretization coefficients are usually chosen in such a way that the formal order of

accuracy of a discretization is maximum. This approach holds for direct numerical

simulation but not for LES, where the chosen grid resolution essentially defines the

range of represented scales. At a finite grid size, truncation errors interfere with the

turbulence models. Thus, free discretization coefficients should be selected in such a

way that the superposition of all contributions (truncation errors, SGS modeling terms,

and modeling errors) is optimal. With implicit LES we do not aim at formally highest

order of accuracy. Instead, discretization coefficients are optimized in such a way that

the truncation error acts as a physically motivated SGS model in regions where the flow

is turbulent, while maintaining a second-order accurate central discretization in regions

where the flow is laminar.

The main achievement of this work is a novel nonlinear discretization for implicit LES

based on a finite-volume method. Finite-volume methods imply cell-averaging and re-

construction steps which - with respect to classical LES - can be interpreted as filtering

and deconvolution. The resulting method is called the Adaptive Local Deconvolution

Method (ALDM). It involves locality through the use of local approximation polynomi-

als, nonlinear adaptivity through the use of a smoothness measure, and deconvolution

through an approximate inversion of the finite-volume top-hat filtering. The trunca-

tion error of finite-volume methods readily appears as a divergence of a tensor. This

form is advantageous with respect to physically motivated implicit modeling. The im-

plicit model provided by the ALDM discretization can be interpreted as a combination

of eddy-viscosity and scale similarity modeling. Model parameters are determined by

a spectral-space analysis of the effective eddy viscosity for isotropic turbulence in the

Reynolds number’s infinite limit. We will show that implicit large-eddy simulation

can be made rigorous by requiring that the numerical dissipation approximates the

physical SGS dissipation obtained from the analysis of nonlinear interactions in turbu-

lence. The good performance of the implicit model is demonstrated in various appli-

cations, e.g., three-dimensional homogeneous isotropic turbulence, plane channel flow,

laminar-turbulent transition, and turbulent boundary-layer separation. Representing a

full merger of numerical discretization and SGS model, ALDM has the potential to be a

reliable, accurate, and efficient method for LES. Predictions of ALDM agree well with

theory and experimental data. The implicit SGS model performs at least as well as

established explicit models. This is possible because physical reasoning is incorporated

into the design of the discretization scheme and discretization effects are fully taken into

account within the SGS model formulation.
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1.3 Mathematical Formulation

In LES the evolution of non-universal larger scales is computed whereas their interaction

with universal smaller scales is modeled. The precise definition of large resolved scales

varies from one approach to another. For the purpose of eliminating small scales, a

spatial low-pass filter operation was suggested by Leonard [92]. It is based on the

convolution

ϕ(x, t) = G ∗ ϕ =

∫
G(x − x′)ϕ(x′, t)dx′ , (1.1)

where G is a homogeneous filter kernel with normalization

∫
G(x)dx = 1 . (1.2)

An overbar denotes the resolved-scale component of a function ϕ. The unresolved

subfilter-scale (SFS) component results from

ϕSFS(x, t) = ϕ(x, t) − ϕ(x, t) . (1.3)

Leonard’s concept is commonly employed for deriving model closures without refer-

ence to a computational grid. Therefore the term subfilter scale appears to be more

appropriate than subgrid scale. More generally, a spatial and temporal filter can be con-

sidered, see Aldama [3] and Dakhoul and Bedford [30]. Since spatial and temporal

scales are coupled through the underlying transport equation it is common practice to

consider spatial filtering only. This assumes that all relevant temporal scales are resolved

by a time-step of small enough size. A converse approach as well as recent developments

on temporal filtering can be found in Pruett et al. [139, 140].

The initial-value problem for a generic transport equation with a nonlinear flux function

F (ϕ) is considered,

∂tϕ + ∇ · F (ϕ) = 0 , (1.4)

which yields the Modified Differential Equation (MDE)

∂tϕ + ∇ · F (ϕ) = GG . (1.5)

for the large-scale component ϕ. The solution of Eq. (1.5) would be identical to the

filtered solution of Eq. (1.4) if the residual GG could be computed exactly.

Using filtering as an analytical tool, the residual

GG = ∇ · F (ϕ) − G ∗ ∇ · F (ϕ) (1.6)



8 INTRODUCTION

is obtained by subtracting the exact filtered transport equation

∂tϕ + G ∗ ∇ · F (ϕ) = 0 (1.7)

from the modified differential equation (1.5). Leonard [92] proposed a distinction

between two contributions to GG: The first component

GL = ∇ · F (ϕ) − G ∗ ∇ · F (ϕ) (1.8)

is commonly known as the divergence of the Leonard stress tensor and can be com-

puted directly from the known filtered solution. The second contribution

GSFS = G ∗ ∇ · F (ϕ) − G ∗ ∇ · F (ϕ) . (1.9)

arises from the subfilter scales. Reflecting the nonlinearity of F , it encompasses both

backscatter and dissipation due to autocorrelations between subfilter scales (the unre-

solved Reynolds stress) and semi-local cross correlations between SFS and resolved

scales (so-called cross stress). In contrast to Reynolds’ averaging [142], Leonard’s

filtering is based on non-projective kernels, that is, ϕ 6= ϕ and ϕϕSFS 6= 0.

Leonard showed that GL removes significant energy from the resolved scales and

argued that better results are obtained when GL is not lumped together with the SFS

model. He proposed the alternative MDE

∂tϕ + G ∗ ∇ · F (ϕ) = GSFS , (1.10)

where the Leonard stress merges with the nonlinear term. The right-hand side GSFS =

−G ∗ ∇ · τSFS has to be closed by an explicit model for the stress tensor

τSFS = F (ϕ) − F (ϕ) . (1.11)

Filtering and subfilter modeling are considered separately from numerical aspects of

the subsequent discretization of the filtered equations. This implies that the numerical

method has to provide an accurate solution to the resolved-scale equations.

An alternative derivation of the resolved-scale equations follows from the volume-balance

procedure proposed by Schumann [147, 148]. Schumann starts from a given mesh for

which the cell-averaged solution, denoted by
V −

ϕ, is considered. Averaging and Gauss’

theorem lead directly to an integral equation form

∂t
V −

ϕ +

∮
n · F (ϕ)dS = ∂t

V −

ϕ +
∑

l

l−

f = 0 (1.12)
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for the time evolution of the finite-volume average
V −

ϕ of the quantity ϕ. Eq. (1.12)

relates the finite-volume average to the transport across the surface of that volume by

the cell-surface-averaged flux
l−

f . The numerical method has to provide surface averages

reconstructed from volume averages, which is accomplished through Taylor series

expansion. Both surface average and volume average are discrete grid functions. The

continuous solution is not reconstructed. With Schumann’s approach, scale separation,

discretization, and SGS modeling are not separated. Discretization and splitting of

resolved and unresolved scales is implied by the cell-averaging for a given mesh. A SGS

model has to account for the transport by unresolved scales and for approximations

involved in the reconstruction of surface averages. Accordingly, Schumann’s SGS model

represents unresolved surface-averaged stresses, whereas Lilly [100], Deardorff [31],

and Leonard [92] consider filtered subgrid stresses corresponding to a volume average.

A clear advantage of Schumann’s finite-volume method, which has been intensely used

by Grötzbach et al. [53–55], e.g., is that grid inhomogeneity and anisotropy are readily

incorporated. The drawback - an unusual notation notwithstanding - lies in the strong

influence of the underlying numerical method on the subgrid closure’s character.

A link between the volume-balance procedure and the filtering approach can be con-

structed by evaluating the filtered conservation law (1.7) with the top-hat filter ker-

nel. Top-hat filtering returns the cell-average of a function. An inverse-filter operation

ϕ = G−1 ∗ ϕ is used for the reconstruction of the unfiltered solution ϕ in (1.7) from the

filtered solution ϕ. At this point it should be noted that Leonard’s ansatz implies a

subsequent discretization of the filtered equations, where the discrete grid function ϕN

is obtained by projecting the filtered continuous function ϕ onto the numerical grid.

This projection corresponds to an additional filtering in Fourier space with cut-off

at the Nyquist wavenumber ξN = π/h, where h is a constant grid spacing. Ex-

act deconvolution is ill-posed since non-represented scales cannot be recovered, that is,

G−1 ∗ ϕN = ϕN 6= ϕ. The discrete filtered conservation law reads

∂tϕN + G ∗ ∇ · FN(ϕN) = GR . (1.13)

The approximation of ϕN in terms of ϕN is called the soft deconvolution problem which

can be handled numerically by an inverse filter operation G−1 on the represented scales.

The computation of

GR = G ∗ ∇ · FN(ϕN) − G ∗ ∇ · F (ϕ) = −G ∗ ∇ · τSGS (1.14)

involves unavailable information on subgrid-scales ϕSGS = ϕ− ϕN and therefore consti-

tutes the hard deconvolution problem that requires modeling. Approximating the SGS

stress tensor

τSGS = F (ϕ) − FN(ϕN) (1.15)
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by an explicit model obviously cannot be accomplished in terms of local error norms.

Rather the model should closely approximate the effect of GSGS on the resolved scales.

With implicit LES the truncation error of the discretization scheme itself is employed

to model the SGS energy transfer instead of an explicit computation of the SGS stress.

Due to numerical approximations the exact solution of the discrete equations does not

satisfy Eq. (1.13) with τSGS = 0, but does satisfy the MDE

∂tϕN + G ∗ ∇ · FN(ϕN) = GN . (1.16)

A spatial semi-discretization has the generic truncation error

GN = G ∗ ∇ · FN(ϕN) − G̃ ∗ ∇·F̃N(ϕ̃N) , (1.17)

where a tilde now indicates the respective numerical approximation. For example, the

unfiltered continuous solution ϕ is unknown in an LES. However, an approximation

ϕ̃N of the grid function ϕN can be obtained from ϕN by regularized deconvolution

ϕ̃N = G̃−1 ∗ ϕN [34, 168].

The truncation error, Eq. (1.17), can act as an implicit SGS model. Particularly, an

explicit SGS model can be reproduced, if the filtered divergence of the model SGS tensor

is approximated as

GN ≈ −G ∗ ∇ · τSGS . (1.18)

This can be achieved either by representing a given explicit SGS model for GSGS by

the implicit model GN , or by direct identification of discretization parameters from

theoretical, experimental or empirical data.

1.4 Outline

In Chapter 2 ALDM is introduced as a new nonlinear discretization of the Navier–

Stokes equations. In Chapter 3 the modified differential equation of ALDM is analyzed.

Optimum values of free discretization parameters are determined in such a way that the

truncation error of the discretization method acts as a physically motivated SGS model

in developed Navier–Stokes turbulence. This parameter selection is then validated in

Chapter 4 for large-scale forced and decaying three-dimensional homogeneous isotropic

turbulence as well as for instability and breakdown of the 3-D Taylor-Green vortex. The

response of the implicit SGS model to flow anisotropy and wall-bounded turbulence is

analyzed in Chapter 5. A simple modification is proposed and assessed for turbulent

channel flow at various Reynolds numbers. For further validation, zero-pressure-

gradient boundary layer flow is considered that undergoes transition from the laminar
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to the turbulent regime. In Chapter 5, the implicit SGS modeling is extended to LES of

passive-scalar mixing. An adaptive advection algorithm is developed and discussed with

respect to its numerical and turbulence-theoretical background. Computational results

are presented for the turbulent transport of passive scalars in isotropic turbulence and

in turbulent channel flow for a wide range of Schmidt numbers. For a final validation

of ALDM, an LES of incompressible fully-turbulent flat-plate boundary-layer flow sub-

jected to a constant adverse pressure gradient is presented in Chapter 7. Reynolds

number and pressure-gradient parameters adapted to an experimental setup. Chapter 8

summarizes this study.





— CHAPTER TWO —

DISCRETIZATION-SCHEME

DESIGN

In the following we develop a general nonlinear discretization scheme for the three-

dimensional Navier-Stokes equations. Preliminary investigations on the example of

the one-dimensional viscous Burgers equation are summarized in Appendix A. The

resulting method is based on standard approaches which, however, are modified in such

a way that the resulting truncation error can function as implicit SGS model.

2.1 The incompressible NAVIER-STOKES Equations

We consider incompressible turbulent flows which are governed by the Navier-Stokes

equations in non-dimensional form

∂tu + ∇ · F + ∇ p − ν ∇ · ∇u = 0 , (2.1)

where u = [u, v, w] is the velocity, F = uu is the nonlinear convection term, and ν is the

molecular viscosity. The pressure p serves as a scalar field to satisfy the incompressible

continuity equation

∇ · u = 0 . (2.2)

The nonlinearity enters the pressure through the Poisson equation

∇ · ∇p = −∇ · ∇ · F , (2.3)

which has to be accounted for in subgrid-scale (SGS) modeling. We collect all nonlinear

terms in

∇ · N(u) = ∇ · F (u) + ∇ p . (2.4)

The differential equations for the resolved scales are obtained by applying the filter (1.1)

to Eqs. (2.1) and (2.2)

∂tuN + G ∗ ∇ · NN(uN) − ν ∇ · ∇uN = −G ∗ ∇ · τSGS , (2.5a)
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∇ · uN = 0 . (2.5b)

The subscript N indicates the grid functions obtained by projecting continuous functions

onto the numerical grid.

In Eq. (2.5) the represented-scale part of the unfiltered field is reconstructed for com-

puting the nonlinear term [34]. This can be accomplished by an inverse-filter operation

uN = G−1 ∗ uN applied to represented scales. Since non-represented scales cannot be

recovered it is uN 6= u, which results in the subgrid-stress tensor

τSGS = N(u) − NN(uN) . (2.6)

For uniform viscosity the diffusive term is linear in terms of uN and does not contribute

to the SGS tensor. For a closure of Eq. (2.5) the subgrid-stress tensor (2.6) has to be

approximated by a model.

Instead of an explicit computation of the SGS stress, the truncation error of the dis-

cretization scheme itself is employed to model the effects of unresolved scales. Due to

numerical approximations the exact solution of the discrete equations does not satisfy

Eq. (2.5) with τSGS = 0, but rather a Modified Differential Equation (MDE). For a gen-

eral implicit SGS model, as implied by a general LES discretization scheme, this MDE

is given by

∂tuN + G̃ ∗ ∇̃ · ÑN(ũN) − ν ∇ · ∇uN = 0 , (2.7a)

∇ · uN = 0 . (2.7b)

In the following we consider a top-hat filter-kernel G, see Eq. (2.10). For this filter kernel

the LES equations (2.5) evaluated on a grid correspond to a finite-volume discretization,

and ũN denotes an approximant of the velocity uN . The local Riemann problem is

approximated by a consistent numerical flux function F̃N which yields the divergence-

free nonlinear term ÑN . The symbols G̃ ∗ ∇̃ indicate that G and ∇ are replaced by

their respective numerical approximations. In fact G̃ ∗ ∇̃ can be a nonlinear operator.

The truncation error due to the discretization of the convective term is accordingly

GN = G ∗ ∇ · NN(uN) − G̃ ∗ ∇̃ · ÑN(ũN) . (2.8)

We point out that the effect of the truncation error on the diffusive flux could also be

considered, as was done by Zandonade et al. [189] for finite-volume optimal LES. This

approach, however, can lead to Reynolds-number dependent model coefficients and is

therefore undesirable. We employ standard high-order centered schemes for discretizing
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the diffusive flux. Their contribution to the implicit model is negligible even for rather

small Reynolds numbers as will be shown below.

The numerical truncation error, i.e. the implicit SGS model, resembles an explicit SGS

model if the filtered divergence of the model SGS tensor in Eq. (2.5) is approximated

GN ≈ −G ∗ ∇ · τSGS . (2.9)

In the following we develop a general nonlinear discretization scheme for the Navier-

Stokes equations, which is as simple as possible to facilitate computation and as com-

plex as necessary to allow for implicit modeling. The essential building blocks are:

(1) a numerical integration and differentiation scheme based on the finite-volume

method,

(2) an adaptive local reconstruction operator that returns the approximately decon-

volved solution at the cell faces,

(3) a numerical flux function which approximates the physical convective flux.

2.2 Finite-Volume Filter and Differentiation Operator

With ALDM we consider the discretized equations directly as proposed by Schumann

[148]. Although filtering is not performed explicitly we can use the filter formulation of

Leonard as analytical tool when designing and analyzing the discrete operators. The

framework is a finite-volume discretization with the top-hat filter

G(xi,j,k, x) =
1

hxi hyj hzk

{
1 , (xi,j,k + x) ∈ Ωi,j,k

0 , otherwise
, (2.10)

which returns the cell average of a function

ϕ(xi,j,k, t) =
1

hxi hyj hzk

∫∫∫

Ωi,j,k

ϕ(xi,j,k − x′, t) dx′ . (2.11)

The integration domain

Ωi,j,k =
[
xi− 1

2

, xi+ 1

2

]
×
[
yj− 1

2

, yj+ 1

2

]
×
[
zk− 1

2

, zk+ 1

2

]
(2.12)
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is equivalent to a cell of the underlying Cartesian computational grid so that the filter

width corresponds to the local grid size

hi,j,k =




hxi

hyj

hzk


 =




xi+1/2 − xi−1/2

yj+1/2 − yj−1/2

zk+1/2 − zk−1/2


 . (2.13)

Here and in the following half-integer indices denote cell faces.

For implicit SGS modeling we only consider the nonlinear term N(u) in the momentum

equation (2.1), whereas the linear terms, i.e. the diffusive flux, are approximated by a

standard centered discretization. By Gauss’ and Green’s theorems filtering applied

to the flux divergence ∇ · N(u) returns the flux through the surface Si,j,k of cell Ii,j,k

[ G ∗ ∇ · N(u) ]i,j,k =
1

hxi hyj hzk

∫∫

Si,j,k

n · F dS +
1

hxi hyj hzk

∫∫

Si,j,k

np dS , (2.14)

where n is the unit normal vector on the cell faces. ALDM applies to the convective

flux F = uu. For incompressible flows the normal stresses due to the pressure p are

subsequently computed by solving a Poisson equation (2.3). Evaluating the convective

integral in Eq. (2.14) we obtain

1

hxi hyj hzk

∫∫

Si,j,k

n · F dS =
1

hxi

(
1−

f (xi+ 1

2

, yj, zk) −
1−

f (xi− 1

2

, yj, zk)
)

+
1

hyj

(
2−

f (xi, yj+ 1

2

, zk) −
2−

f (xi, yj− 1

2

, zk)
)

+
1

hzk

(
3−

f (xi, yj, zk+ 1

2

) −
3−

f (xi, yj, zk− 1

2

)
)

. (2.15)

The flux vector
l

f = ulu denotes the l-direction component of F and
l−

f is the spatial

average of
l

f over the cell face with nl = ±1 . Here and in the following the coordinate

system { x , y , z } is synonymous with { x1 , x2 , x3 }.

The numerical computation of
l−

f involves approximations which we explain now on the

example of the flux in z-direction

3−

f (xi, yj, zk+ 1

2

) =
1

hxi hyj

x
i+1

2∫

x
i− 1

2

y
j+ 1

2∫

y
j− 1

2

3

f (x, y, zk+ 1

2

)dxdy . (2.16)
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A Gaussian quadrature rule with (2m + 1)2 numerical integration points returns

3−

f (xi, yj, zk+ 1

2

)
.
=

2m+1∑

α=1

2m+1∑

β=1

Cαβ

3

f (xi+α−m, yj+β−m, zk+ 1

2

) . (2.17)

Our present computational implementation allows for two different integration schemes

with 32 nodes, given by

C2 =




0 0 0

0 1 0

0 0 0


 and C4 =

1

24




0 1 0

1 20 1

0 1 0


 . (2.18)

The coefficient matrix C2 of the first scheme yields a second-order accurate solution on

equidistant grids. A fourth-order integration scheme is obtained with C4. Preliminary

tests, see Appendix B, showed that the difference between these operators has negligible

effect on the computed energy and dissipation spectra. Therefore, we use the simple

second-order integration C2 throughout this work.

A remark on the discretization of the Poisson equation (2.3) is in order. Langford

and Moser [90] have pointed out that, given a divergence-free continuous turbulence

field, for the corresponding filtered field a divergence residual arises. They propose

to adjust the discrete divergence operator appropriately. A similar issue is faced with

ALDM where an adaptive reconstruction could also be used for the discrete divergence

operator. However, in doing so the implicit model would become significantly more

complex. Zandonade et al. [189] come to the conclusion that the accuracy gained by

the adjusted discrete divergence operator does not justify the increased complexity. We

follow this conclusion and employ standard discrete operators for the Poisson equation.

Parameters of ALDM, as will be shown below, enter the discrete Poisson equation by

the discretization of the convective fluxes. Since energy redistribution due to pressure

thus also contains the adaptive deconvolution through the discrete divergence of the

convective fluxes the model parameters which will be determined in Section 3.3 reflect

both contributions to the energy transfer.

2.3 Solution-Adaptive Local Deconvolution

As a consequence of identity (2.15), finite-volume schemes require a reconstruction of

data at the faces of the computational volumes which corresponds to approximate decon-

volution [1]. The three-dimensional (3-D) filter operation is defined in Eq. (2.11). The
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3-D top-hat filter kernel can be factorized into three one-dimensional (1-D) operators

G(x) = Gx(x) · Gy(y) · Gz(z) . (2.19)

An inverse-filter operation can be defined as a convolution with the inverse kernel

G−1(x) = G−1
x (x) · G−1

y (y) · G−1
z (z) , (2.20)

factorized into three 1-D operators. An exact inverse filter operation is ill-posed, how-

ever, the de-filtered solution can be computed approximately by regularized deconvo-

lution [34]. Following Eq. (2.20), the numerical scheme for performing approximate

deconvolution with ALDM is assembled from 1-D operators.

The 1-D reconstruction (i.e. deconvolution and interpolation) operator is denoted by

X λ
x . It is defined on a grid xN = {xi} with cell size hi = xi+ 1

2

− xi− 1

2

. Applied to the fil-

tered grid function ϕN = {ϕ(xi)} the reconstruction operator returns the approximately

deconvolved grid function ϕ̃λ
N

.
= {ϕ(xi+λ)} on the shifted grid xλ

N = {xi+λ}

X λ
x ϕN = {ϕ (ϕ̃, xi+λ) + O (hi

κ)} = ϕ̃λ
N . (2.21)

The filtered data are given at the cell centers {xi}. Reconstruction at the left cell faces

{xi− 1

2

} is indicated by λ = −1/2 and at the right faces by λ = +1/2. For obtaining a 3-D

reconstruction by successive 1-D operations yet another approximation of the partially

deconvolved solution is required at the cell centers. The respective operator is indicated

by λ = 0.

Deconvolution and interpolation are done simultaneously. The unfiltered solution at the

cell faces is obtained from a primitive-function reconstruction as proposed by Harten

et al. [57]. Given the cell-averaged grid function ϕN , point values of the primitive

function

Φ(x) =

x∫

x0

ϕ(x′)dx′ (2.22)

can be expressed by the cell averages ϕN as

Φ(xi+ 1

2

) =

i∑

j=i0

hjϕj . (2.23)

We now apply interpolation to the point values of the primitive function. Given a generic

k-cell stencil (spanning (k + 1) cell faces) with shift r of the left-most stencil point with
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respect to xi the interpolation polynomial in Lagrange form is

Φ̌k,r(x) =

k∑

m=0

Φ(xi−r+m− 1

2

)

k∏

n=0
n 6=m

x − xi−r+n− 1

2

xi−r+m− 1

2

− xi−r+n− 1

2

. (2.24)

Standard approximation theory gives

Φ̌k,r(x) = Φ(x) + O
(
hi

k+1
)

, (2.25)

provided the function ϕ(x) is piecewise smooth on the interpolation stencil. Note that

Φ(x) is one derivative smoother than ϕ(x). We define

ϕ̌k,r(x) =
∂

∂x
Φ̌k,r(x) , (2.26)

where the dependence on the lower limit x0 in (2.22) cancels out. From (2.25) follows

immediately

ϕ̌k,r(x) = ϕ(x) + O
(
hi

k
)

. (2.27)

Taking the derivative on both sides of (2.24), we finally obtain

ϕ̌k,r(xi+λ) =
k−1∑

l=0

αλ
k,r,l(xi)ϕi−r+l , (2.28)

where

αλ
k,r,l (xi) =

(
xi−r+l+ 1

2

− xi−r+l− 1

2

) k∑

m=l+1

k∑
p=0
p 6=m

k∏
n=0

n 6=p,m

xi+λ − xi−r+n− 1

2

k∏
n=0
n 6=m

xi−r+m− 1

2

− xi−r+n− 1

2

(2.29)

is found after some algebra, see also Shu [154], where a more detailed derivation is given.

The grid-dependent coefficients αλ
k,r,l(xi) contain the deconvolution, i.e. the inversion of

the top-hat filter on the space of admissible local interpolation polynomials, and the

interpolation from xi to xi+λ. As indicated, this rule applies for grids with variable mesh

width and for arbitrary target positions xi+λ. In case of a staggered grid the values of xi

are different for each velocity component and the coefficients αλ
k,r,l have to be specified

accordingly.
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Selecting a particular interpolation stencil (k, r) would return a linear discretization

ϕ̃λ
N(xi+λ) =

k−1∑

l=0

αλ
k,r,l(xi)ϕN (xi−r+l) = ϕ(xi+λ) + O

(
hi

k
)

with a fixed, solution independent functional expression of the k-th order truncation

error.

Harten et al. [57] have combined reconstruction with an interpolation-stencil selection,

leading to the essentially non-oscillatory (ENO) property of the reconstructed solution.

This procedure constitutes a nonlinear approximation or regularized deconvolution of the

filtered solution since the stencil selection depends on the local properties of the actual

computed solution. ALDM adopts the idea of the Weighted-Essentially-Non-Oscillatory

(WENO) scheme of Shu [154] where interpolation polynomials of order k ≡ K are

selected and combined nonlinearly. The essential difference between ALDM and WENO

is that we superpose all interpolants of order k = 1, . . . , K

ϕ̃λ
N(xi+λ) =

K∑

k=1

k−1∑

r=0

ωλ
k,r(ϕN , xi)

k−1∑

l=0

αλ
k,r,l(xi) ϕN (xi−r+l) (2.30)

to allow for lower-order contributions to the truncation error for implicit SGS modeling.

The restriction on the local approximation polynomials is that their stencils interpolate

at the cell faces xi+λ, extrapolating stencils are excluded. Admissible stencils range from

xi−r to xi−r+k−1 with r = 0, . . . , k − 1.

The weights ωλ
k,r(ϕN , xi) can be constructed as to yield an accurate approximation of

order 2K −1 in smooth regions [154]. For our purpose, however, we do not need highest

possible order of accuracy. Rather the superposition (2.30) introduces free discretiza-

tion parameters which allow to control error cancelations. The sum of all weights is

constrained to be unity for consistency. More restrictively we require

k−1∑

r=0

ωλ
k,r =

1

K
, (2.31)

with k = 1, . . . , K, and compute each weight from

ωλ
k,r (ϕN , xi) =

1

K

γλ
k,rβk,r (ϕN , xi)

k−1∑
s=0

γλ
k,sβk,s (ϕN , xi)

, (2.32)
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with r = 0, . . . , k − 1 for each k = 1, . . . , K . The solution-adaptive behavior of ALDM

is controlled by the functional

βk,r (ϕN , xi) =

(
εβ +

k−r−2∑

l=−r

(
ϕi+l+1 − ϕi+l

)2
)−2

, (2.33)

where εβ = 10−10 is a small number to prevent division by zero. βk,r measure the smooth-

ness of the grid function on the respective stencil to obtain a non-linear adaptation of

the deconvolution. Liu et al. [102] and by Jiang and Shu [80] proposed alternative

smoothness measures for WENO schemes. Their use for ALDM is evaluated for the 1-D

Burgers equation in Appendix A. It is worth mentioning that an advantage of the

total-variation smoothness measure, definition (2.33) is that

βk,r (ϕN , xi) = βk,r−1 (ϕN , xi−1) (2.34)

can be exploited to improve computational efficiency.

The parameters γ
+1/2
k,r , γ

−1/2
k,r , and γ0

k,r represent a stencil-selection preference that would

become effective in the statistically homogeneous case. The requirement of an isotropic

discretization for this case implies symmetries on the parameters

γ
−1/2
k,r = γ

+1/2
k,k−1−r and γ0

k,r = γ0
k,k−1−r . (2.35)

As consequence of Eq. (2.31) the number of independent parameters is further reduced

by

k−1∑

r=0

γ
+1/2
k,r = 1 and

k−1∑

r=0

γ0
k,r = 1 . (2.36)

In the present implementation of ALDM we use K = 3, which is a compro-

mise between computational complexity and modeling. Hence, four parameters

{ γ
+1/2
2,0 , γ

+1/2
3,0 , γ

+1/2
3,1 , γ0

3,1 } are available for modeling.

We assemble now the 3-D adaptive local deconvolution operator X λ from 1-D operators

of the kind of X λ
x . Following Eq. (2.20) we obtain

ϕ̃λ
N = X λ ϕN = X λ3

z

(
X λ2

y

(
X λ1

x ϕN

) )
. (2.37)

Analogous to the procedure in 1-D the vector λ = [ λ1 , λ2 , λ3 ] indicates the rela-

tive target position. Required operations are summarized in Table 2.1. Theoretically,

the sequence of these 1-D operators is arbitrary. However, there is a certain preferred

choice which minimizes computational cost. Since each operator in Table 2.1 consists
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Direction relative target index λ Example

(R) rightward [+1
2
, 0 , 0 ] ũR

i,j,k ≈ u(xi+ 1

2

, yj, zk)

(L) leftward [−1
2
, 0 , 0 ] ũL

i,j,k ≈ u(xi− 1

2

, yj, zk)

(F) forward [ 0 , +1
2
, 0 ] ũF

i,j,k ≈ u(xi, yj+ 1

2

, zk)

(B) backward [ 0 ,−1
2
, 0 ] ũB

i,j,k ≈ u(xi, yj− 1

2

, zk)

(U) upward [ 0 , 0 , +1
2
] ũU

i,j,k ≈ u(xi, yj, zk+ 1

2

)

(D) downward [ 0 , 0 ,−1
2
] ũD

i,j,k ≈ u(xi, yj, zk− 1

2

)

Table 2.1: Interpolation directions for 3-D reconstruction.

of two centered and one shift step, operations with λ = ±1/2 should be performed last.

Furthermore, the order should be chosen by cyclic permutation to achieve rotational in-

variance of the implicit model. For example, to compute the approximately deconvolved

solution ũL
i j k at the left cell face λ = [−1/2 , 0 , 0 ] we first perform a 1-D deconvolu-

tion in y-direction using the central operator X 0
y . Then, another 1-D operator X 0

z is

applied to the partially deconvolved solution. Only in the final step the deconvolved

solution is interpolated to the target position by X−1/2
x . For computational efficiency

we simultaneously compute ũR
i j k by applying X+1/2

x in the final step. Note that ũR
i−1 j k

stands for a second approximation at the same cell face as ũL
i j k but with the neighbor

cell Ii−1 j k as reference. For further details on the efficient implementation of ALDM

refer to Appendix B where also possible simplifications are discussed.

2.4 Numerical Flux Function

Another tool exploited is the choice of an appropriate and consistent numerical flux func-

tion F̃N =
[

1∼

f ,
2∼

f ,
3∼

f
]

that operates on the reconstruction of the unfiltered solution

at the cell faces and approximates the physical flux function, i.e.,

F̃N ≈ F = uu and
l∼

f ≈
l

f = ulu . (2.38)

A review of common numerical flux functions can be found, e.g., in LeVeque’s textbook

[98]. During construction of the one-dimensional ALDM scheme for Burgers equation,

see Appendix A, various flux functions were analyzed by MDEA. Based on these findings
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we propose the following modification of a Lax-Friedrichs flux function

1∼

fi+ 1

2
,j,k =

1

4

(
ũL

i+1,j,k + ũR
i,j,k

) (
ũL

i+1,j,k + ũR
i,j,k

)

− 1

σi,j,k




|ui+1,j,k − ui,j,k| (ũL
i+1,j,k − ũR

i,j,k)

|vi+1,j,k − vi,j,k| (ṽL
i+1,j,k − ṽR

i,j,k)

|wi+1,j,k − wi,j,k| (w̃L
i+1,j,k − w̃R

i,j,k)


 , (2.39a)

2∼

fi,j+ 1

2
,k =

1

4

(
ṽB

i,j+1,k + ṽF
i,j,k

) (
ũB

i,j+1,k + ũF
i,j,k

)

− 2

σi,j,k




|ui,j+1,k − ui,j,k| (ũB
i,j+1,k − ũF

i,j,k)

|vi,j+1,k − vi,j,k| (ṽB
i,j+1,k − ṽF

i,j,k)

|wi,j+1,k − wi,j,k| (w̃B
i,j+1,k − w̃F

i,j,k)


 , (2.39b)

3∼

fi,j,k+ 1

2

=
1

4

(
w̃D

i,j,k+1 + w̃U
i,j,k

) (
ũD

i,j,k+1 + ũU
i,j,k

)

− 3

σi,j,k




|ui,j,k+1 − ui,j,k| (ũD
i,j,k+1 − ũU

i,j,k)

|vi,j,k+1 − vi,j,k| (ṽD
i,j,k+1 − ṽU

i,j,k)

|wi,j,k+1 − wi,j,k| (w̃D
i,j,k+1 − w̃U

i,j,k)


 (2.39c)

for the three-dimensional Navier-Stokes equations and collocated grids. The exten-

sion to a staggered grid arrangement is straight forward and leads to

1∼

fi+ 1

2
,j,k =

1

4




(ũL
i+1,j,k + ũR

i,j,k) (ũL
i+1,j,k + ũR

i,j,k)

(ũB
i,j+1,k + ũF

i,j,k) (ṽL
i+1,j,k + ṽR

i,j,k)

(ũD
i,j,k+1 + ũU

i,j,k) (w̃L
i+1,j,k + w̃R

i,j,k)




− 1

σi,j,k




|ui+1,j,k − ui,j,k| (ũL
i+1,j,k − ũR

i,j,k)

|vi+1,j,k − vi,j,k| (ṽL
i+1,j,k − ṽR

i,j,k)

|wi+1,j,k − wi,j,k| (w̃L
i+1,j,k − w̃R

i,j,k)


 , (2.40a)

2∼

fi,j+ 1

2
,k =

1

4




(ṽL
i+1,j,k + ũR

i,j,k) (ũB
i,j+1,k + ũF

i,j,k)

(ṽB
i,j+1,k + ṽF

i,j,k) (ṽB
i,j+1,k + ṽF

i,j,k)

(ṽD
i,j,k+1 + ṽU

i,j,k) (w̃B
i,j+1,k + w̃F

i,j,k)




− 2

σi,j,k




|ui,j+1,k − ui,j,k| (ũB
i,j+1,k − ũF

i,j,k)

|vi,j+1,k − vi,j,k| (ṽB
i,j+1,k − ṽF

i,j,k)

|wi,j+1,k − wi,j,k| (w̃B
i,j+1,k − w̃F

i,j,k)


 , (2.40b)
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3∼

fi,j,k+ 1

2

=
1

4




(w̃L
i+1,j,k + w̃R

i,j,k) (ũD
i,j,k+1 + ũU

i,j,k)

(w̃B
i,j+1,k + w̃F

i,j,k) (ṽD
i,j,k+1 + ṽU

i,j,k)

(w̃D
i,j,k+1 + w̃U

i,j,k) (w̃D
i,j,k+1 + w̃U

i,j,k)




− 3

σi,j,k




|ui,j,k+1 − ui,j,k| (ũD
i,j,k+1 − ũU

i,j,k)

|vi,j,k+1 − vi,j,k| (ṽD
i,j,k+1 − ṽU

i,j,k)

|wi,j,k+1 − wi,j,k| (w̃D
i,j,k+1 − w̃U

i,j,k)


 . (2.40c)

Note that in the latter equation the indices are defined using the specific (staggered)

coordinate system of the respective velocity component.

The first term on the right-hand side corresponds to the physical Navier-Stokes flux.

For maximum order of consistency it is computed from the mean of both interpolants

of the deconvolved velocity at the considered cell face. The difference between them

is exploited as an estimate of the local truncation error. In the second term on the

right-hand side it is multiplied with the magnitude of a filtered velocity increment which

corresponds to the first-order structure function. For developed turbulence the Kol-

mogorov theory predicts a scaling with a 1/3 power of the two-point separation [41].

The coefficients

1

σi,j,k = σ

(
L0

h0

xi+1,j,k − xi,j,k

Li,j,k

)−s

, (2.41a)

2

σi,j,k = σ

(
L0

h0

yi,j+1,k − yi,j,k

Li,j,k

)−s

, (2.41b)

3

σi,j,k = σ

(
L0

h0

zi,j,k+1 − zi,j,k

Li,j,k

)−s

, (2.41c)

were introduced to compensate for effects of varying grid-size. It was found that s = 1/3

ensures a correct scaling of the numerical viscosity in simulations of isotropic turbulence,

as long as the numerical cutoff wavenumber is located within the inertial range of the

turbulent kinetic energy spectrum. The length Li,j,k is a local estimate of the current

integral flow scale and the scalar factor σ is another free parameter of the discretization

scheme, see Tab. 3.1. It is interesting to note that with this kind of grid-width com-

pensation the truncation error of ALDM, when formally determined by Taylor series

expansion, is less than second order in terms of the mesh width. As a result of the

parameter optimization process, see Section 3.3, the ratio of reference integral length

and reference grid size is L0/h0 = 32.
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2.5 Summary

The concept of a solution-adaptive deconvolution method based on a convex combina-

tion of Harten-type approximation polynomials is developed for the incompressible

3-D Navier-Stokes equations. Instead of maximizing the order of accuracy, here de-

convolution is regularized by limiting the degree of local interpolation polynomials and

by permitting lower-order polynomials to contribute to the truncation error. Adaptivity

of the deconvolution operator is achieved by weighting the respective contributions by

an adaptation of WENO smoothness measures. The approximately deconvolved field is

inserted into a consistent numerical flux function. Flux function and nonlinear weights

introduce five independent model parameters, namely σ, γ
+1/2
2,0 , γ

+1/2
3,0 , γ

+1/2
3,1 and γ0

3,1.

These parameters allow to control the truncation error and constitute the implicit SGS

model.
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IMPLICIT SGS MODELING

Discretization coefficients are usually chosen in such a way that the formal order of

accuracy of a discretization is maximum. This approach holds for direct numerical

simulation but not for LES, where the chosen grid resolution essentially defines the

range of represented scales. At a finite grid size, truncation errors interfere with the

turbulence models. Thus, free discretization coefficients should be selected in such a

way that the superposition of all contributions (truncation errors, SGS modeling terms,

as well as modeling errors) is optimal. With implicit LES, numerical discretization and

turbulence model are indistinguishable and free discretization parameters have to be

determined in such a way that the truncation error acts as a physically motivated SGS

model.

By an analysis of the modified differential equation of a discretization scheme an implicit

SGS model can be determined analytically. It can be observed that the Taylor-series

expansion of the truncation error of nonlinear discretization schemes contains functional

expressions which are similar to that of explicit SGS models [42, 113, 143]. For some

discretizations a given explicit SGS model can be matched by adjusting parameters of

the generic implicit SGS model.

As alternative to adjusting the model parameters for a given explicit SGS model one can

try to find systematically the SGS model that gives the best statistical representation

of the SGS effects on the filtered scales. Provided that the grid resolution is sufficient,

turbulent subgrid scales are believed to obey general properties such as a Kolmogorov

scaling in the inertial wavenumber range. This is exploited for determining optimal

model parameters. Optimization target is a canonical reference flow configuration that

represents the essential properties of 3-D Navier–Stokes turbulence.

3.1 Modified-Differential-Equation Analysis in Real Space

The modified-differential-equation analysis is based on the assumption that the discrete

unfiltered solution in a neighborhood of xi can be represented by local approximation



28 IMPLICIT SGS MODELING

polynomials of degree K up to K ≤ L. The polynomial approximation of the filtered

solution is

ϕi
.
=

L−1∑

µ=0

ϕ̌
(µ)
i

Mµ(xi)

(µ)!
, (3.1)

where ϕ̌
(µ)
i stand for the order µ derivatives of the approximation polynomial ϕ̌ of ϕ at

xi. Mµ is the µ-th moment of the filter kernel

Mµ(xi) =

+∞∫

−∞

(x − xi)
µG(x − xi)dx . (3.2)

The top-hat filter kernel gives

Mµ(xi) =





0 , µ odd
hµ

i

2µ(µ + 1)
, µ even.

(3.3)

Taking the order ν derivatives on both sides of Eq. (3.1), we obtain

ϕ
(ν)
i

.
=

L−1∑

µ=ν

ϕ̌
(µ)
i

M(µ−ν)(xi)

(µ − ν)!
, (3.4)

for ν = 0, . . . , L − 1. The set of equations (3.4) can be written in matrix form




ϕi

ϕ′
i

ϕ′′
i
...

ϕ
(L−1)
i




= C ·




ϕ̌i

ϕ̌′
i

ϕ̌′′
i
...

ϕ̌
(L−1)
i




, (3.5)

where the coefficient matrix C is upper triangular and diagonally dominant [58]. Solv-

ing (3.5) for ϕ̌
(ν)
i , ϕ̌N is obtained in terms of the first L − 1 derivatives of ϕN . This

series expansion for ϕ̌N can be inserted as approximation for ϕN when evaluating the

truncation error of a numerical method.

For clarity it is common to restrict the analysis of the MDE (2.7) to the spatial semi-

discretization and a uniform grid size. Consistent with the spatial-filtering concept the
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time step is assumed to be sufficiently small so that all relevant time scales are well

resolved. Under these assumptions, the truncation error GN is given by

GN = G ∗ ∇ · NN(uN) − G̃ ∗ ∇̃ · ÑN(ũN)

=
{

G ∗ ∇ · uNuN + ∇ pN

}
−
{

G̃ ∗ ∇̃ · F̃N(ũN) + ∇
∼

pN

}
. (3.6)

For uniform viscosity and density the diffusive term is linear in terms of uN and does

not contribute to the SGS tensor. Provided the Reynolds number is large, numerical

approximation errors of the diffusive flux are small and can be neglected in the further

analysis.

The pressure gradient is included in Eq. (3.6) since it is directly coupled to the convective

term by the pressure-Poisson equation (2.3). The pressure grid function pN corresponds

to the filtered velocity field uN whereas the MDE requires
∼

pN . The residual
≈

pN =
∼

pN−pN

is the contribution of the pressure projection to the truncation error

GN =
[
G ∗ ∇ · uNuN − G̃ ∗ ∇̃ · F̃N(ũN)

]
− ∇

≈

pN (3.7)

which has to satisfy the continuity condition

∇ · GN = 0 . (3.8)

For an analytical expression of the first term on the right-hand side of (3.7) the filtered

and the unfiltered solution are approximated in terms of Taylor expansions of uN

truncated at order L

AL(u) = G ∗ ∇ · ǔN ǔN − G̃ ∗ ∇̃ · F̃N(ũN) (3.9)

= G ∗ ∇ · uNuN − G̃ ∗ ∇̃ · F̃N(ũN) + O
(
hL
)

.

Moreover, the implicit SGS model (3.7) is divergence free if the pressure residual satisfies

∇ · ∇≈

pN = ∇ · AL(u) . (3.10)

The difficulty in solving this Poisson equation analytically, see e.g. Batchelor [6,

chapter 5], is the reason why a detailed evaluation of GN similarly as for the 1-D Burg-

ers equation - see Appendix A - is practically impossible. Since already the analytical

expression of AL becomes extremely lengthy the 3-D problem is not tractable any longer

even with symbolic-mathematics software.

Our preliminary results suggest that only two parameters, γ
+1/2
2,1 and σ, can be used to

tune the second-order contribution to A3 which is expected to be most relevant for SGS



30 IMPLICIT SGS MODELING

modeling. The truncation error involves dissipative terms which resemble the artificial

dissipation of von Neumann and Richtmyer [178]. Similar expressions have been

found for the 1-D Burgers model, see Appendix A. The form of the these terms is

common for the modified equation of many nonlinear finite-volume schemes [143]. In our

case, these contributions originate from the use of a numerical flux function and allow

to reproduce the dimensional-splitting equivalent of a Smagorinsky SGS model with

CS =

√
1

3
σ (3.11)

on equidistant grids. Using Lilly’s asymptotic value for the Smagorinsky constant

[99], we obtain

σ ≈ 0.0867 . (3.12)

A second group of terms is the truncation error of the 2nd-order numerical integration

scheme, Eq. (2.18). These contribution cancel out if the 4th order quadrature scheme is

used. The remaining terms result from the 2nd order accurate deconvolution operator.

Most 2nd-order terms cancel out with

γ
+1/2
2,1 =

2

3
. (3.13)

The weights associated with the third-order deconvolution polynomials do not contribute

to the second-order truncation error.

Since it was not feasible to analyze the higher order model terms, the reproduction of

an explicit model fails. Also note that an interpretation of truncated Taylor series is

difficult for a non-smooth solution and coarse grid resolution. We conclude that Tay-

lor expansion is not the method of choice for analyzing complex discretizations in

three-dimensional space. Appropriate model parameters will be directly identified from

turbulence-theoretical results by another analysis detailed below.

3.2 Modified-Differential-Equation Analysis in Spectral Space

Linear discretization schemes for linear differential equations can be analyzed in

Fourier space with the modified-wavenumber concept [176]. Lele [91] successfully ap-

plied this method to optimize the spectral resolution of compact finite difference schemes,

for example. For nonlinear discretizations, however, the modified wavenumber is a func-

tional of the solution, which makes the analysis difficult and case dependent. In the

following we develop a theoretical framework for the evaluation and optimization of the
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spectral numerical dissipation of complex nonlinear discretization schemes for nonlin-

ear three-dimensional differential equations. As reference for the spectral MDEA serves

isotropic turbulence for which theoretical eddy-viscosity models are usually formulated

in spectral space [23, 93].

3.2.1 Mathematical Formulation

We consider the discretization of a (2π)3-periodic domain by N3 grid points. The trans-

formed MDE (2.7) reads

∂ûC

∂t
+ Ĝ iξ · N̂C(ûC) + νξ2ûC = ĜC , (3.14a)

iξ · ûC = 0 , (3.14b)

where the hat denotes the Fourier transform, i is the imaginary unit, and ξ is the

wavenumber vector.

Reference to spectral theories of turbulence implies isotropy. A physical-space discretiza-

tion restricts contributions to the numerical solution to wavenumbers up to |ξ| =
√

3ξC

where ξC = N/2− 1 is the cut-off wavenumber. For consistency with isotropy, contribu-

tions with wavenumbers |ξ| > ξC need to be removed. For this purpose we define

ûC(ξ) =

{
ûN(ξ) , |ξ| ≤ ξC

0 , otherwise
. (3.15)

On the represented wavenumber range the kinetic energy of the deconvolved velocity

ûC(ξ) = Ĝ−1(ξ)ûC(ξ) , with |ξ| ≤ ξC (3.16)

is

Ê(ξ) =
1

2
ûC(ξ) · û∗

C(ξ) . (3.17)

Multiplying equation (3.14a) by the complex-conjugate û∗
C of ûC we obtain

Ĝ(ξ)
∂Ê(ξ)

∂t
− Ĝ(ξ)T̂C(ξ) + 2νξ2ĜÊ(ξ) = û∗

C(ξ) · ĜC(ξ) . (3.18)

The nonlinear energy transfer

T̂C(ξ) = iû∗
C · ξ · N̂C(ûC) = iû∗

C(ξ) ·
3

P (ξ) · ·
∫

|η|≦ξC

ûC(η)ûC(ξ − η)dη (3.19)
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is the Fourier transform of the nonlinear term. The tensor
3

P (ξ) is defined by

3

Plmn(ξ) = ξmδln − ξlξmξn |ξ|−2, (3.20)

see also Pope [136]. Finally, we deconvolve Eq. (3.18) by multiplication with the inverse

filter coefficient Ĝ−1(ξ) which is defined on the range of represented scales |ξ| ≦ ξC and

obtain

∂Ê(ξ)

∂t
− T̂C(ξ) + 2νξ2Ê(ξ) = Ĝ−1(ξ)û∗

C(ξ) · ĜC(ξ) . (3.21)

The right-hand side of this equation is the numerical dissipation

εnum(ξ) = −Ĝ−1(ξ)û∗
C(ξ) · ĜC(ξ) (3.22)

implied by the discretization of the convective term. Now we investigate how to model

the physical subgrid dissipation εSGS(ξ) by εnum(ξ).

An exact analytical match between εnum(ξ) and εSGS(ξ) cannot be achieved since

εSGS(ξ) involves interactions with non-represented scales. Modeling can be accom-

plished by invoking theoretical energy-transfer expressions. Employing an eddy-viscosity

hypothesis the subgrid-scale dissipation is

εSGS(ξ) = 2νSGS(ξ)ξ2Ê(ξ). (3.23)

Similarly, the numerical dissipation can be expressed as

νnum(ξ) =
εnum(ξ)

2ξ2Ê(ξ)
. (3.24)

In general νnum is a function of the wavenumber vector ξ. For isotropic turbulence,

however, statistical properties of Eq. (3.21) follow from the scalar evolution equation

for the 3-D energy spectrum

∂Ê(ξ)

∂t
− T̂C(ξ) + 2νξ2Ê(ξ) = −εnum(ξ) . (3.25)

This equation is obtained from Eq. (3.21) by integration over spherical shells with radius

ξ = |ξ|, that is

Ê(ξ) =

∮

|ξ|=ξ

Ê(ξ)dξ . (3.26)

For a given numerical scheme νnum(ξ) can be computed from

νnum(ξ) = − Ĝ−1(ξ)

2ξ2Ê(ξ)

∫

|ξ|=ξ

û∗
N (ξ) · ĜN (ξ)dξ . (3.27)
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The concept of modeling nonlinear interactions in turbulence by a wavenumber-

dependent spectral eddy viscosity was first proposed by Heisenberg [60]. Convenient

for our purposes is a normalization by

ν+
SGS(ξ+) = νSGS

(
ξ+ξC

)
√

ξC

Ê(ξC)
, (3.28)

with ξ+ = ξ
ξC

as proposed by Chollet and Lesieur [24]. For high Reynolds numbers

and under the assumption of a Kolmogorov range E(ξ) = CKε3/2ξ−5/3 extending to

infinity the Eddy-Damped Quasi-Normal Markovian (EDQNM) theory [93] leads to

ν+
SGS(ξ+) = 0.441C

−3/2
K X(ξ+) , (3.29)

where CK is the Kolmogorov constant and X(ξ+) is a non-dimensional function

exhibiting a plateau at unity for small wavenumbers ξ+ . 1/3 and a sharply rising cusp

in the vicinity of the cut-off wavenumber ξ+ = 1. Chollet [23] proposes the expression

ν+
Chollet(ξ

+) = 0.441C
−3/2
K

(
1 + 34.467e−3.03/ξ+

)
(3.30)

as best fit to the exact solution.

3.2.2 Numerical Evaluation

In the following, an algorithm proposed by Domaradzki [38, 68, 69] is adapted.

We consider freely decaying homogeneous isotropic turbulence in the limit of vanish-

ing molecular viscosity. A numerical simulation is performed in a (2π)3-periodic box,

discretized by 32×32×32 uniform finite volumes. The time-step size is adjusted accord-

ing to Eq. (4.1) with CFL = 1.0. This Courant number is identical to that used in all

other simulations. Filtered and truncated LES data obtained by filtering and truncating

data from separate simulations with a dynamic Smagorinsky SGS model at higher

spatial resolution of 1283 cells are used as initial condition uN(t0). Solutions uN(tn) at

time tn = t0 + n∆t, n being an integer, are obtained by advancing n time steps with

the discretization method. An a-posteriori analysis of the data allows to identify the

spectral eddy viscosity of the implicit SGS model.

The computed velocity fields uN(tn) are Fourier-transformed and truncated at ξC = 15

ûC(ξ, tn) =

{
F{uN}(ξ, tn) , |ξ| ≤ ξC

0 , otherwise
. (3.31)
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Energy spectra Ê(ξ, tn) and spectral transfer functions T̂C(ξ, tn) are computed from

(3.17) and (3.19). The convolution integral in (3.19) is computed in real space. The

computation of the numerical-dissipation spectrum, see Eqs. (3.21) and (3.22), involves

the spectral-energy decay which is approximated by

∂Ê(ξ)

∂t

∣∣∣∣∣
tn−1/2

≈ Ê(ξ, tn) − Ê(ξ, tn−1)

∆t
(3.32)

at times tn−1/2 = 1
2
(tn−1 + tn). Energy spectrum and spectral transfer function are

interpolated as

Ê(ξ, tn−1/2) =
Ê(ξ, tn) + Ê(ξ, tn−1)

2
, (3.33a)

T̂C(ξ, tn−1/2) =
T̂C(ξ, tn) + T̂C(ξ, tn−1)

2
. (3.33b)

Following Eq. (3.24) the spectral numerical viscosity is

νnum(ξ, tn−1/2) =
1

2ξ2Ê(ξ, tn−1/2)


T̂C(ξ, tn−1/2) −

∂Ê(ξ)

∂t

∣∣∣∣∣
tn−1/2


− ν . (3.34)

The 3-D numerical-viscosity spectrum is obtained by summation over integer-

wavenumber shells ξ − 1
2
≤ |ξ| ≤ ξ + 1

2

νnum(ξ, tn−1/2) =
4πξ2

M(ξ)

∑

ξ

νnum(ξ, tn−1/2) , (3.35)

where M(ξ) is the number of integer wavenumbers on each shell with radius ξ. A

subsequent normalization gives

ν+
num(ξ+, tn−1/2) = νnum(ξCξ+, tn−1/2)

√
ξC

Ê(ξC, tn−1/2)
. (3.36)

Since the analysis is performed in spectral space, the normalization term

√
ξC/Ê(ξC) is

readily evaluated. However, the magnitude of the resulting ν+
num then depends strongly

on the energy spectrum’s highest wavenumbers. An integral and therefore more robust

normalization follows from the identity

√
ξC

Ê(ξC)
= C

−1/2
K ε−1/3ξ

4/3
C , (3.37)
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which is valid for an idealized Kolmogorov inertial range.

This methodology can be applied to any discretization scheme, only a de-aliased spectral

discretization will yield ν+
num ≡ 0. Domaradzki et al. [38] first conducted an analysis

of the implicit model provided by MPDATA. More recently, Hickel et al. [75] reported

results for a vortex-in-cell method, where particles carry the solution. Figure 3.1 shows

the spectral numerical viscosities of standard finite difference (FD) methods. Central

differencing methods are usually energy conserving, however, their dispersive errors re-

distribute the kinetic energy between the scales. In average, energy is transferred from

medium to large wavenumbers. For most wavenumbers the spectral numerical viscosity

of the considered central FD schemes is positive. However, a large negative peak is

found at the cutoff wavenumber. Negative dissipation at high wavenumbers results in

an energy accumulation. This can lead to numerical instability unless the method is

stabilized by adding artificial dissipation, e.g., by an approximate interpolation scheme

as proposed by Rhie and Chow, see [40]. These results are consistent with the analysis

of Ghosal [48].
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Figure 3.1: Spectral numerical viscosity of −−−−−−− de-aliased spectral scheme, ·−·−·− 2nd order

central FD with a collocated grid, −··−··− 4th order central FD with a collocated grid.

◦ eddy viscosity of EDQNM theory [23].

3.3 Calibration of Model Coefficients

3.3.1 Cost Function

Isotropic decaying turbulence does not lose memory of the initial data. An evaluation of

ν+
num for one data set only does not necessarily represent the statistical average. To cope

with this problem the spectral numerical viscosity from 10 uncorrelated realizations is
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evaluated and averaged. Each realization is advanced by one time step so that compu-

tational cost amounts to 10 time steps per evaluated numerical viscosity. Therefore the

evaluation procedure is sufficiently efficient for an automatic optimization of the free

parameter values of the discretization scheme.

The cost function used for evaluating a set of ALDM discretization parameters is the

root-mean-square difference

C
(
γ

+1/2
2,0 , γ

+1/2
3,0 , γ

+1/2
3,1 , γ0

3,1, σ
)

=

√√√√ 1

ξC − 1

1∑

ξ+=2/ξC

(
〈ν+

num(ξ+)〉 − ν+
Chollet(ξ

+)
)2

(3.38)

between the spectral numerical viscosity ν+
num(ξ+) and the spectral eddy viscosity

ν+
Chollet(ξ

+) of EDQNM.

3.3.2 Evolutionary Optimization

The employed automatic optimization algorithm follows an evolutionary strategy in

which natural biological processes are modeled by simple stochastic search methods.

Evolutionary optimization strategies are particularly suitable for treating non-smooth

cost functions, where gradient-based methods fail. A set of free parameters is considered

as genome of a living individual. The algorithm operates on a population of individuals

and applies the survival-of-the-fittest principle of the Darwinian theory of evolution.

At each generation, a new set of individuals is created by modeled natural processes,

such as selection according to the level of fitness, recombination, and random mutation.

This process leads to the evolution of a population of individuals that is better adapted

to a cost function than the population that it was created from.

We use the following four-step algorithm:

1) Selection of parents: Pairs of two parameter sets are selected by a random process

either with probability proportional to their fitness or by tournament selection.

2) Recombination: Offspring is generated by recombination of their parents’ genes.

Recombination can take place either by 2-point cross-over or by arithmetic cross-over.

3) Mutation: Random change of offspring genes. The random data are normally

distributed with zero mean. Their variance is adapted depending on how close the

generation is to an optimum.

4) New generation selection: The new generation of individuals is selected from the

current generation plus offspring either by fitness selection or by tournament selection.
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These four steps are looped over until an optimality criterion is satisfied or, as in our

investigations, until a maximum number of generations is reached.

Normally distributed random numbers are used as an initial guess for the first population.

The subsequent generations are created by a four-step algorithm consisting of parent

selection, recombination, mutation, and new-population selection. Performance and

convergence of the employed optimization algorithm strongly depend on the mutation

model of step 3. We employ normally distributed random numbers. The variance is

initially set to σ2
mut = 0.1 and updated by a factor of 0.95±1 after every generation,

where successful mutations enlarge the target area and unsuccessful mutations make it

smaller. For further details on the algorithm see Tab. 3.2.

parameter optimal value

C 0.0054850

γ0
3,1 0.0500300

γ
+1/2
2,0 1.0000000

γ
+1/2
3,0 0.0190200

γ
+1/2
3,1 0.0855000

σ 0.0689100

Table 3.1: Result obtained by evolutionary optimization for the discretization parameters of ALDM.

Since this algorithm works on populations instead of single individuals, the search is

performed in an efficient parallel manner. The numbers of time-steps and realizations

for evaluation of the cost function C are chosen as a compromise between accuracy

and computational feasibility. Surely, they are less than what would be necessary to

completely remove the effect of stochastic fluctuations. Thus the resulting cost function

is not smooth but exhibits residual fluctuations. Unlike standard gradient-approximation

based optimization methods, evolutionary algorithms can handle such non-smooth cost

functions [4]. For further details the reader is referred to Back et al. [4], Beasley et al.

[9, 10], and the references therein.
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Parameter Value

Number of genes per individual 5

Initialization Random numbers, equally distributed on

[0, 0.3333)

Number of generations 200

Population 50

Offspring per generation 40

Selection of parents Tournament

Offspring generation Arithmetic cross-over and mutation

Mutation model Gaussian normal distribution, zero mean

Initial mutation variance 0.1

Mutation-variance update factor 0.95

Admissible parameter range [0.0, 1.0]

Admissible mutation-variance range [10−6, 10+3]

Table 3.2: Parameters of the evolutionary optimization algorithm.

best 50 individuals best 200 individuals all individuals

C 0.0054860 ±0.0000004 0.0054878 ±0.0000071 0.2377798 ±3.6380424

γ0
3,1 0.0501310 ±0.0001948 0.0501456 ±0.0003782 0.0652569 ±0.1125736

γ
+1/2
2,0 1.0000000 ±0.0000000 1.0000000 ±0.0000000 0.9741133 ±0.1789786

γ
+1/2
3,0 0.0845990 ±0.0001628 0.0847430 ±0.0010236 0.1221711 ±0.2100462

γ
+1/2
3,1 0.0189470 ±0.0001435 0.0186506 ±0.0013708 0.0289264 ±0.1117276

σ 0.0689194 ±0.0000965 0.0689116 ±0.0001884 0.0664319 ±0.0947205

Table 3.3: Mean values and standard deviation of cost function and parameter values demonstrate

the convergence of the evolutionary optimization algorithm.
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3.3.3 Optimized Eddy-Viscosity Model

The finally selected set of parameters is given in Table 3.1. It was determined after

evaluating 200 generations, each with 40 individuals. The convergence of the optimiza-

tion algorithm is demonstrated by comparing the best 50 sets, the best 200 sets, and all

tested sets of parameters in Tab. 3.3. The spectral eddy viscosity of the implicit model

with the optimized parameter set, Tab. 3.1, yields an excellent match with theoretical

predictions as shown in Fig. 3.2. It exhibits a low-wavenumber plateau at the correct

level and reproduces the typical cusp shape up to the cut-off wavenumber at the correct

magnitude.
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Figure 3.2: Numerical viscosity of ALDM with optimized parameters compared to the prediction of

turbulence theory. −−−−−−− LES with N = 32, −−−− LES with N = 64, ◦ EDQNM

theory [23].

ALDM nonlinearly combines interpolants from several central, upwind, and downwind

stencils. The truncation error therefore is not purely dissipative. The Probability Den-

sity Function (PDF) of the numerical viscosity ν+
num(ξ), shown in Fig. 3.3, exhibits

significant anti-dissipative contributions which represent backscatter. Analysis of DNS

data gives a wide distribution of ν+
SGS(ξ) including negative values since the magnitude

of local backscatter is comparable with and often even larger than the average subgrid

energy transfer [135, e.g.].

The shell-averaged spectral eddy viscosity of Chollet ν+
Chollet(ξ

+) considers the net

SGS dissipation only and is always positive, see Fig. 3.3. Modeling backscatter ren-

ders a SGS model more realistic [37, 96, e.g.], whereas the particular way in which it is

accounted for appears to be less important. Most explicit backscatter models follow a

suggestion of Leslie and Quarini [96] and consider outscatter and backscatter sepa-

rately from the mean energy transfer which is well reproduced by explicit eddy-viscosity
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Figure 3.3: PDF of normalized spectral numerical viscosity ν+
num(ξ) in integer-wavenumber Fourier

space for LES with 643 cells. −−−−−−− ALDM with optimized parameters; ·········· Eq.

(3.30), Chollet (1984) ; −−−− Chollet (1983)

models. An analysis of Carati et al. [18] revealed no major differences between the

performance of stochastic and deterministic backscatter models.

3.4 Summary

Implicit SGS modeling requires systematic procedures for design and analysis of ap-

propriate discretization schemes. For this purpose the modified differential equation is

analyzed. MDEA of complicated nonlinear discretization schemes of nonlinear three-

dimensional differential equations becomes tedious if Taylor series expansion is em-

ployed. For calibrating model parameters an alternative approach is pursued where the

modified differential equation is analyzed in spectral space and the spectral numerical

viscosity is determined a posteriori. A spectral analysis is well suited for isotropic tur-

bulence for which theoretical models are usually formulated in spectral space [23, 93].

Optimal model parameters are determined by minimizing a cost function which mea-

sures the difference between spectral numerical viscosity and the eddy viscosity from

EDQNM theory. With the finally selected parameters the implicit SGS model yields an

excellent match with theoretical requirements of EDQNM. The effective spectral eddy

viscosity exhibits a low-wavenumber plateau at the correct level and reproduces the typ-

ical cusp shape up to the cut-off wave number at the correct magnitude. It is important

to note that the Chollet-Lesieur eddy viscosity is not enforced. Only for inertial-

range isotropic turbulence the EDQNM eddy viscosity is necessarily recovered due to

the parameter calibration.
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VALIDATION FOR ISOTROPIC

TURBULENCE

For a posteriori validation of the implicit SGS model provided by ALDM we perform

LES of large-scale forced turbulence and of decaying isotropic turbulence. As an example

for transitional flows we also consider the instability and breakdown of the 3-D Tay-

lor-Green vortex.

4.1 Computational Setup

All simulations presented in this chapter are carried out on (2π)3-periodic computa-

tional domains using a collocated grid arrangement for velocity and pressure. The

computational domain is discretized by 643 cells unless specified otherwise. For time

advancement, we use an explicit third-order Runge-Kutta scheme of Shu [153], see

also Gottlieb and Shu [50]. The time step ∆t is adjusted dynamically according to a

Courant-Friedrichs-Lewy limit evaluated as

∆t = CFL min

(
ui

hi

+
ν

h2
i

)−1

, (4.1)

where CFL is the so-called Courant number [29]. The time-discretization scheme is

total-variation diminishing (TVD) for CFL ≤ 1, provided the underlying spatial dis-

cretization is TVD, whereas the linear stability bound is larger. We found for ALDM

stable time advancement up to the linear bound CFL = 1.7. For all our simulations we

use CFL = 1.0.

ALDM applies only to the convective term of the NSE. The discretization schemes for

dissipative terms and the pressure-Poisson equation are based on 4th-order approxi-

mation polynomials. First derivatives are approximated on 5-point central stencils

(∂xϕ)j =
1

h

[
8

12

(
ϕj+1 − ϕj−1

)
− 1

12

(
ϕj+2 − ϕj−2

)]
. (4.2)
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In this chapter we consider periodic domains only. Therefore, the Helmholtz projec-

tion of the velocity onto a divergence-free field is done in spectral space, where modi-

fied wavenumbers corresponding to the underlying discretization (4.2) are applied. See

Vichnevetsky and Bowles [176] for an introduction to the modified-wavenumber

concept.

4.2 Decaying Homogeneous Isotropic Turbulence

We integrate the Navier-Stokes equation by initially prescribing Ê(ξ) as inertial-

range spectrum for homogeneous isotropic turbulence in the limit Re −→ ∞. After an

initial transient during which the randomly oriented initial phases re-align by Navier-

Stokes dynamics the energy spectrum decays self-similarly while preserving the ξ−5/3

law up to the largest wavenumbers, see Fig. 4.1. This finding is consistent with LES

results obtained with Chollet’s eddy viscosity model available in the literature [24,

118, 184].
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Figure 4.1: Instantaneous 3-D energy spectra for LES of decaying homogeneous isotropic turbulence

at the inviscid limit. −−−−−−− instantaneous spectra ; ·········· Ê ∼ ξ−5/3.

The observed decay rate

ε = −∂k/∂t (4.3)

of the resolved turbulent kinetic energy

k(t) =

ξC∑

1

Ê(ξ, t) (4.4)

is proportional to the turbulent kinetic energy to the power of 3/2, see Fig. (4.2), as

predicted by the scaling

ε ∼ k3/2L−1
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for self-similar decay of an inertial-range spectrum, i.e. L = const.
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Figure 4.2: Phase diagram of turbulent kinetic energy for decaying homogeneous isotropic turbulence

at Re −→ ∞. ·········· ε ∼ k3/2.

Decay rate and energy-spectrum shape can be assessed simultaneously by the Kol-

mogorov function

CK(ξ, t) = ε(t)−2/3 ξ5/3 Ê(ξ, t) (4.5)

which is plotted in Fig. 4.3. For an ideal setting the Kolmogorov function should be

constant. For our simulations, we find a CK(ξ, t) which is almost constant in time and has

a wide plateau in ξ at CK ≈ 1.8. This value slightly differs from theoretical predictions,

but is in reasonable agreement with other published results. A comprehensive account of

the value of the Kolmogorov constant in numerical simulations of isotropic turbulence

is given by Yeung and Zhou [186].
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Figure 4.3: Kolmogorov function for decaying homogeneous isotropic turbulence at Re −→ ∞.

·········· CK = 1.8.
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4.3 Forced Homogeneous Isotropic Turbulence

As second test case, ALDM is applied to forced isotropic turbulence governed by

∂uN

∂t
+ G̃ ∗ ∇̃ · ÑN(ũN) − ν∇ · ∇uN = S(uN) , (4.6a)

∇ · uN = 0 . (4.6b)

The forcing S(uN) is added to the right-hand side as an extra source term. It is defined

in spectral space through its Fourier transform

Ŝ (ξ) = − CS (ξ) û (ξ) , (4.7)

where ξ = |ξ|. The forcing results in a production of kinetic energy that compensates

dissipation while preserving the shape of the kinetic-energy spectrum. By construction

of the linear compensation factor CS(ξ) only large scales are affected by the forcing

CS (ξ) =





(
2Ê ′ (ξ, t)

)−1 ∂Ê ′ (ξ, t)

∂t
, ξ ≤ ξS

0 , otherwise
, (4.8)

where Ê ′ is an intermediate energy spectrum obtained by first solving Eq. (4.6) with

S = 0 at the known time level. In this section the threshold wavenumber is ξS = 4.

We perform simulations for four different cases corresponding to the combination of two

different grids with two different Reynolds numbers. The coarser grid is composed of

N3 = 323, the finer one of N3 = 643 evenly-spaced cells. The computational Reynolds

numbers Re = 1/ν are Re = 102 and Re = 105. For the lower Reynolds number the

Kolmogorov length scale

ηK =
ν3/4

ε1/4
(4.9)

is on the order of the mesh size h = 2π/N for N = 64. The initial condition is a

divergence-free velocity field with random phases and with a 3-D energy spectrum Ê(ξ) =
1
2
ξ−5/3. After an initial transient of 250 time steps, samples of the 3-D energy spectra

were collected until a converged mean spectrum was observed.

The resulting 3-D energy spectra are shown in Figure 4.4. For Re = 102 the largest

resolved wave numbers are within the dissipative range. A comparison with DNS data

show that the energy spectra computed with ALDM are also correct at low Reynolds

numbers. A characteristic and grid independent observation is that the energy spectra
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level out in the immediate neighborhood of the cut-off wavenumber ξC . For Re = 105

the 3-D mean energy spectra coincide for both mesh resolutions and follow the Kol-

mogorov law. This result verifies a posteriori the optimum parameter set which was

based on the corresponding theoretical prediction.
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Figure 4.4: Mean 3-D energy spectra for the large-scale forced Navier-Stokes equation at (a)

Re = 100, (b) Re = 100000 ; −−−−−−− LES with 643 cells ; −−−− LES with 323

cells ; ◦ DNS ; ·········· line ∼ ξ−5/3.

Figure (4.5) shows results obtained with a pseudo-spectral code, where Chollet’s

spectral eddy viscosity is added explicitly. We note an excellent agreement between the

Chollet-Lesieur SGS model, ALDM, and the theoretical prediction Ê(ξ) ∼ ξ−5/3,

and DNS data respectively. For a dissipative-range spectrum EDQNM predicts, e.g,

a considerably lower plateau value for ν+
SGS [118, e.g.] which has also been noticed in

DNS analyses [35, e.g.]. On this account the performance of the unmodified Chollet-

Lesieur SGS model at Re = 102 is remarkable. A possible explanation is that the

low-wavenumber forcing immediately compensates an overestimated SGS dissipation.

For Re = 102 the isotropic Taylor micro scale λT can be approximated in terms of the

resolved 3-D energy spectrum [115]. The micro-scale Reynolds number is

Reλ =
λT u′

ν
, (4.10)

with

λT
.
=

√√√√√√√√

5
ξC∑
ξ=1

Ê(ξ)

ξC∑
ξ=1

ξ2Ê(ξ)

u′ .
=

√√√√2

3

ξC∑

ξ=1

Ê(ξ) . (4.11)
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Figure 4.5: Mean 3-D energy spectra for LES of the large-scale forced Navier-Stokes equation at

(a) Re = 100, (b) Re = 100000 with 643 cells ; −−−−−−− ALDM ; −−−− Chollet-

Lesieur model ; ◦ DNS ; ·········· line ∼ ξ−5/3.

The DNS predicts Reλ = 74. Using ALDM we obtain Reλ = 78 with N = 32 and

Reλ = 73 with N = 64. For the high-Re case λT cannot be computed by (4.11) since

dissipative scales are not resolved. To quantify the SGS dissipation rate of ALDM at

Re −→ ∞ we consider freely decaying turbulence in the following section.

We conclude that with the model parameters found by an optimum match of a theoreti-

cal prediction for isotropic turbulence at Re −→ ∞, see Section 3.3, the SGS dissipation

predicted by ALDM correctly models the local energy transfer. This holds for cut-off

wavenumbers ξC within the inertial range. The results also show that even for lower

Reynolds numbers, for which ξC is in the dissipative range, the predicted spectral

energy distribution and dissipation rate for the same parameter set are correct. This

indicates that the used model parameters may be valid universally for isotropic turbu-

lence.

4.4 COMTE-BELLOT - CORRSIN Experiment

A more complex situation is encountered for decaying grid-generated turbulence for

which also the correct representation of the energy-containing range of the spectrum

is important [136]. Computations are initialized with energy spectrum and Reynolds

numbers adapted to the wind-tunnel experiments of Comte-Bellot and Corrsin

[27], denoted hereafter as CBC.

Among other space-time correlations CBC provides streamwise energy spectra for grid-

generated turbulence at three positions downstream of a mesh with a width M = 5.08cm.

Table 3 of Comte-Bellot and Corrsin [27] gives corresponding 3-D energy spectra
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which were obtained under the assumption of isotropy. The grid Reynolds number of

the experiment is ReM = 34000, the Taylor-microscale Reynolds number is given

as Reλ = 71.6 at the first and Reλ = 60.6 at the last position.
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Figure 4.6: LES with 643 cells for the Comte-Bellot - Corrsin test case. (a) Instantaneous 3-D

energy spectra (b) Instantaneous 3-D dissipation spectra −−−− Chollet’s spectral

eddy viscosity model, ·−·−·− Smagorinsky model, −··−··− dynamic Smagorinsky

model, −−−−−−− ALDM ; © t′ = 42 , � t′ = 98 and △ t′ = 171 experimental data of

Comte-Bellot and Corrsin [27].

In the simulation this flow is modeled as decaying turbulence in a (2π)3-periodic com-

putational domain. Based on the Taylor hypothesis the temporal evolution in the

simulation corresponds to a downstream evolution in the wind-tunnel experiment with

the experimental mean-flow speed which is approximately constant. The energy distri-

bution of the initial velocity field is matched to the first measured 3-D energy spectrum

of CBC. The SGS model is verified by comparing computational and experimental 3-

D energy spectra at later time instants which correspond to the other two measuring

stations.

The experimental data are non-dimensionalized as proposed by Misra and Lund [119]

and Ghosal et al. [49]. The reference velocity is Uref =
√

3/2 22.2 cm/s , the reference

length is Lref = 10.8M/2π, and the reference time is tref = Lref/Uref . In order to

create the initial velocity field a random field was allowed to develop for about one

large-eddy turnover time while maintaining the 3-D energy spectrum (Eqs. (4.6-4.8)

with ξS =
√

3ξC) as given for the first measuring station.

Results of ALDM are compared with those obtained with a 4th-order central discretiza-

tion and an explicit Smagorinsky SGS model and with a pseudo-spectral code and an

explicit Chollet-Lesieur model. The Smagorinsky model is used in its conven-

tional and in its dynamic version. For the conventional model [99, 161] the parameter is
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set to CS = 0.18. Lilly [100] derived this value for sufficiently large Reynolds num-

bers and a sharp spectral cut off in the inertial range assuming CK ≈ 1.4. The dynamic

algorithm was proposed by Germano et al. [46]. Here, CS is computed according to

Lilly [101] and an average over the entire flow field is taken.

Examining the computed energy spectra, Fig. 4.6, and dissipation spectra, Fig. 4.6, we

note that ALDM performs just as well as the dynamic Smagorinsky SGS model. It

should be noted that we use the the dynamic Smagorinsky model as an example for

state-of-the-art SGS models and as a benchmark for isotropic turbulence. The conven-

tional Smagorinsky model requires an ad-hoc adjustment of CS. The theoretical value

is based on the assumption of a wide inertial range about ξC , i.e. a high-Reynolds-

number spectrum, which is not the case for the CBC experiments. We found that

a somewhat smaller CS gives better results which are close to those of the dynamic

Smagorinsky model. For the Chollet-Lesieur model with the eddy viscosity of

Eq. (3.30) the overall results are similar to ALDM and the dynamic Smagorinsky

model. At large wave numbers the energy drops and approaches that of the standard

Smagorinsky model.

For the decay of total kinetic energy K, Fig. 4.7, we find ∂K/∂t ∼ t−n with n = 1.25.

This corresponds to ε = ∂K/∂t ∼ t−2.25 or ε ∼ K1.8. The exponent n = 1.25 is in

a reasonable agreement with published experimental data [2, 27, 83] which range from

n = 1.2 to n = 1.3.

10
-2

10
-1

10
0

10
110

-3

10
-2

10
-1

10
0

(a)

ε

t
10

-1
10

010
-3

10
-2

10
-1

10
0

(b)

ε

K

Figure 4.7: Energy decay rate of ALDM results for decaying homogeneous isotropic turbulence for the

Comte-Bellot - Corrsin experiment. (a) Sources of dissipation: ·−·−·− molecular

dissipation, −−−− implicit SGS dissipation, −−−−−−− total dissipation, ·········· ε ∼ t−2.25;

(b) Power law of total dissipation: −−−−−−− total dissipation, ·········· ε ∼ K1.8 (equivalent

to K ∼ t−1.25)

Fig. 4.8 shows iso-surfaces of a constant vorticity magnitude at the last position. The
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Figure 4.8: Iso-surfaces of constant vorticity magnitude at the final station of the CBC experiment

for implicit LES with ALDM. Left: original data from ALDM, right: filtered with top-hat

filter width 2∆. Colors indicate kinetic energy.

threshold value is chosen to 3.5 times the mean vorticity. The visualization shows worm-

like vorticity structures and indicates that ALDM reproduces basic mechanisms of tur-

bulence. Even though Garnier et al. [44] investigated the inviscid Euler equation

they obtained similar images using a threshold of 2.5 times the mean vorticity and a

higher spatial resolution of 1283 grid cells. The visual impression of the 643-point sim-

ulation of Garnier et al. [44] can be reproduced when we filter our ALDM results to

the effective resolution of 323, see Fig. (4.8).

4.5 Transition of the Three-Dimensional TAYLOR–GREEN

Vortex

One of the most demanding test cases for SGS models is laminar-turbulent transition.

For the onset of transition the SGS model must not affect the instability modes of the

laminar flow. Most eddy-viscosity models, for instance the Smagorinsky model and

the structure-function model of Métais and Lesieur [93, 95, 118], do not satisfy this

requirement without modifications.

A suitable test scenario for a periodic computational domain is the 3-D Taylor–Green
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Vortex (TGV). This flow is characterized by the initial data

u(t = 0) ≈ u(t = 0) =




0

cos(x)sin(y)cos(z)

−sin(x)cos(y)sin(z)


 . (4.12)

At t = 0 the entire kinetic energy is contained within eight Fourier modes on the

wave-number shell ξ =
√

3. At early times the TGV evolution is laminar and strongly

anisotropic, see Fig. (4.11). Then energy is transferred to larger wave numbers by vortex

stretching. Visualizations of vortices show that they roll up, divide and re-connect, see

Fig. (4.11). Preserving spatial symmetries the flow eventually becomes turbulent. In

the final steps the small scales are nearly isotropic and exhibit an ξ−5/3 inertial range of

the kinetic-energy spectrum.

We compare our LES with DNS of Brachet et al. [15] which were originally performed

on a grid of 2563 modes and repeated with 8643 modes about 10 years later [16]. These

spectral simulations exploit spatial symmetries of the TGV to reduce the effective com-

putational cost by a factor of 8. Brachet et al. [15] were therefore able to resolve

Reynolds numbers up to Re = 3000.

For LES spatial symmetries are not imposed. The computational domain is a (2π)3 box

that contains 8 counter-rotating vortices. It is discretized with 643 cells and has peri-

odic boundary conditions. To assess the quality of the LES the characteristic growth

and decay of the dissipation rate is compared between the present LES and Fig. 7

of Brachet et al. [15], see Fig. 4.9. The considered Reynolds numbers range from

Re = 100 to Re = 3000. For an assessment of ALDM with respect to standard LES, we

also show results for the conventional (CS = 0.18) Smagorinsky model, the dynamic

Smagorinsky model, and the Chollet-Lesieur model at the same resolution. To

demonstrate the effect of the SGS models simulations without SGS model were per-

formed. These simulations became unstable as soon as the energy transfer reached the

highest resolved wave numbers, see Fig. 4.9.

The Smagorinsky model with constant parameter CS is obviously not well suited

for transitional flows. Even in the fully resolved Re = 100 case excessive dissipation

affects the flow evolution. At larger Re the conventional Smagorinsky model gives

wrong dissipation rates and a completely wrong flow structure. If the Smagorin-

sky parameter is adjusted dynamically the behavior improves significantly. The SGS

viscosity vanishes for laminar flow. The prediction is good for the two lowest Reynolds

numbers throughout the entire time interval and up to t = 8 for Re = 400. An advantage
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Figure 4.9: Rate of energy dissipation for LES of the Taylor-Green vortex ; ·········· without

SGS model, −−−− Chollet’s spectral eddy viscosity model, ·−·−·− Smagorin-

sky model, −··−··− dynamic Smagorinsky model, −−−−−−− ALDM, ◦ DNS data from

Brachet et al. [15].
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Figure 4.10: Contributions to energy dissipation in ALDM for LES of the Taylor-Green vortex ;

·−·−·− molecular dissipation, −−−− implicit SGS dissipation, −−−−−−− total dissipa-

tion, ◦ DNS data from Brachet et al. [15].
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Figure 4.11: Iso-surfaces for the zero Q-criterion (see Jeong and Hussain [79]) for implicit LES of

Taylor-Green vortex with ALDM at Re = 400. Colors indicate kinetic energy.
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of the Chollet-Lesieur model is that no energy is dissipated by the model in the

early stages of the cascade, when no energy has yet reached the cut-off wavenumber. At

later stages, however, it is too dissipative.

Much better results are obtained with ALDM. The error increases with increasing

Reynolds number but stays at all times significantly smaller than for the dynamic

Smagorinsky model. Up to Re = 800 the difference between ALDM and DNS is

negligibly small. Note that the resolution requirement of a DNS of Re = 800 is two

orders of magnitude higher than that of the LES.

The dissipation as shown in Figure 4.9 generally can originate from three sources. One

source is molecular dissipation which is inversely proportional to the Reynolds number.

The second source is transfer which is explicitly modeled by SGS dissipation. The

third source is numerical dissipation which should be negligible for proper explicit SGS

modeling. For implicit SGS modeling, however, the third source replaces the second

one. This is the case with ALDM as shown in Figure 4.10. At low Re the discretization

does not significantly contribute to the energy dissipation. However, the implicit model

activates itself with increasing Reynolds number and finally dominates the molecular

dissipation at Re = 3000. These results for the TGV confirm that the implicit model,

owing to its solution adaptivity, over a large range of Reynolds numbers functions as

intended.

4.6 Summary

The performance of the implicit model was evaluated by simulations of different flow con-

figurations. Large-scale forced and decaying three-dimensional homogeneous isotropic

turbulence were considered. For transitional flows the model performance was tested by

an application to instability and breakdown of the 3-D Taylor-Green vortex. For all test

cases the implicit model shows an excellent agreement with theory and experimental

data. It is demonstrated that physically optimized implicit SGS models can perform at

least as well as established explicit models.
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ADAPTATION FOR

WALL-BOUNDED

TURBULENCE

In this chapter the implicit SGS model of ALDM is analyzed for wall-bounded turbu-

lence. First, ALDM is applied to incompressible, turbulent channel flow. Computational

results are presented for Reynolds numbers, based on friction velocity and channel

half-width, of Reτ = 180, Reτ = 395, Reτ = 590, and Reτ = 950. All simulations

compare well with Direct Numerical Simulation data and yield better results than the

dynamic Smagorinsky model at same resolution. The near-wall accuracy of ALDM

can be further improved by a simple modification which is described below. Finally,

ALDM is tested for laminar turbulent transition of zero-pressure-gradient boundary

layer flow, which is one of the most demanding tests for SGS models1.

5.1 Application to Turbulent Channel Flow

5.1.1 Computational Method

In the following we report on the application of ALDM to turbulent channel flow. The

incompressible Navier-Stokes equations are discretized on a staggered Cartesian

mesh. For time advancement an explicit third-order Runge-Kutta scheme with coef-

ficients as proposed by Shu [50, 153] is used. We use a Courant-Friedrichs-Lewy

limit of CFL = 1.0 for all simulations. The pressure-Poisson equation and diffusive

terms are discretized by second-order centered differences. The Poisson solver em-

ploys fast Fourier transforms in the streamwise and spanwise directions and performs

direct tridiagonal-matrix inversions in the wall-normal direction. The oddball modes

remain part of the solution. Modified wavenumbers for a second-order discretization

of the Laplace operator are used. It should be noted that the Poisson equation is

solved at every Runge-Kutta substep.

1 This chapter is based on Refs. [62, 65, 73]
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Since ALDM is based on a WENO-like discretization, computational cost are compara-

ble to such schemes. The adaptive deconvolution scheme causes an overhead which is

comparable to that of the test-filtering procedure of the dynamic Smagorinsky SGS

model. A computationally more efficient implementation of the original ALDM results in

the simplified adaptive local deconvolution method (SALD) [63]. All results presented in

this chapter and in the following chapters are obtained by this version, which is outlined

in Appendix B.

Results of implicit LES are compared with those obtained by a dynamic Smagorin-

sky SGS model combined with a second-order central discretization scheme. The

Smagorinsky constant is computed using Lilly’s version [101] of the dynamic proce-

dure of Germano et al. [46], and an average over the two homogeneous flow directions

is taken. Following Piomelli [132], no test filtering is performed in the wall-normal

direction.

5.1.2 Grid and Boundary Conditions

In order to validate the new model for wall-bounded flows, implicit LES have been

conducted, where computational setup and Reynolds number are adapted to the

reference DNS of Moser et al. [121]. First we consider the case with nominal Reτ = 395.

The flow is driven by a mean pressure gradient that is controlled to maintain a constant

mass flow corresponding to Rebulk = 6875.

The computational domain has the extent 2πH × 2H × πH in the streamwise, wall-

normal, and spanwise direction, respectively. Periodic boundary conditions are imposed

in streamwise and spanwise direction. No wall model is used in the simulations, rather

the no-slip condition is imposed directly, i.e., we set

uwall = 0 ,
∂p

∂y

∣∣∣∣
wall

= 0 . (5.1)

The computational domain is discretized by 64 × 68 × 48 cells. The grid is stretched in

wall-normal direction by a hyperbolic tangent function

y′
j = − H

tanh (CG)
tanh

(
CG − 2CG

j

Ny

)
(5.2)

in order to increase resolution in the vicinity of the walls, c.f. Gullbrand and Chow

[56]. Ny is the number of cells in the wall-normal direction and CG = 2.5 is the grid-

stretching parameter. Computational-grid parameters are given in Tab. 5.1. This
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streamwise direction Lx = 2πH Nx = 64 h+
x = 38.8

wall-normal direction Ly = 2H Ny = 68 h+
y = 1.2 – 25.0

spanwise direction Lz = πH Nz = 48 h+
z = 25.9

Table 5.1: Grid for LES of turbulent channel flow at Reτ = 395.

parameter choice is based on an earlier study [86] employing the dynamic Smagorin-

sky SGS model and second-order centered schemes on staggered grids.

5.1.3 Results

The implicit LES is initialized with a laminar Poiseuille profile superimposed with

white-noise fluctuations. The flow goes through transition and reaches a stationary

turbulent state. Figure 5.1 shows the evolution of the velocity fluctuations (averaged

over the entire domain) during the initial transient for five different amplitudes of the

random initial disturbance ranging from urms(t0) = 10−7Ubulk to urms(t0) = 10Ubulk.

0 50 100 150 2000

0.01

0.02

0.03

0.04

urms

t

Figure 5.1: Evolution of instantaneous r.m.s. velocity fluctuations during the initial transient in im-

plicit LES of channel flow. The lines correspond to different amplitudes of the ini-

tial disturbance superposed on the laminar state ranging from urms(t0) = 10−7ubulk to

urms(t0) = 10ubulk.

The implicit LES scheme is sufficiently robust to handle very strong disturbances but

also allows for the growth of amplified modes even for very small amplitudes. The results

suggest that ALDM is able to reproduce of laminar-turbulent transition for a wide range

of disturbance amplitudes, thus confirming an earlier observation for transitional 3-D

Taylor-Green flow (see Section 4.5). Additional results for LES of laminar-turbulent

transition of a Blasius boundary layer will be given in Section 5.3.3. A detailed study
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of transition, however, is beyond the scope of this work. Initial data for the LES with

the dynamic Smagorinsky model are provided by the developed turbulent solution

from an earlier simulation.
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Figure 5.2: Mean velocity profile and Reynolds stresses for LES of turbulent channel flow at Reτ =

395. −−−−−−− baseline ALDM formulation, ·−·−·− dynamic Smagorinsky model. ◦
reference DNS of Moser et al. [121].

Figure 5.2 shows mean velocity profile and Reynolds stresses. Here and in the follow-

ing, computational results are normalized with the bulk velocity

Ubulk =
1

2H

+H∫

−H

〈u〉dy (5.3)

and the channel half width H , or with the wall-friction velocity

Uτ =
√

ν〈∂yu〉wall (5.4)

and the viscous length scale

l+ = ν/Uτ . (5.5)
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The velocity vector u = {u1, u2, u3} is synonymous with {u, v, w}.

Results of both explicit and implicit LES are in good agreement with the reference DNS

data. The dynamic Smagorinsky model shows the well-known overestimation of the

streamwise normal Reynolds stress and underestimation of the other normal stresses.

Albeit yielding better results in general, ALDM predicts a slightly too low wall-friction

velocity. For the present configuration, Uτ is underestimated by 3.5%. This issue is

addressed in the following section.

5.2 Near-Wall Modeling

5.2.1 Subgrid Dissipation

Underprediction of the friction velocity can be attributed to an overestimation of SGS-

turbulence energy resulting in a too large dissipation due to the SGS model. The spectral

numerical dissipation of ALDM has been analyzed for the case of homogeneous isotropic

turbulence [69]: The solution-adaptive stencil selection scheme generates the cusp of the

spectral numerical viscosity of ALDM at large wavenumbers whereas it has no or even a

slightly negative contribution at small wavenumbers, see Fig. 5.3a. The numerical flux

function of ALDM generates a numerical viscosity ν+
eF

that is almost constant at a level

which can be adjusted by the model parameter σ, see Fig. 5.3b. A linear curve fit for

this contribution gives

ν+
eF
≈ 3.5 σ . (5.6)
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Figure 5.3: (a) Contributions of −−−−−−− numerical flux function and −−−− adaptive deconvolution

operator to the spectral numerical viscosity of ALDM for homogeneous isotropic turbu-

lence at infinite Reynolds number. (b) Correlation between the parameter σ and the

mean viscosity of the numerical flux function ν+

eF
for homogeneous isotropic turbulence at

high Reynolds number. −−−− linear fit.
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Fig. 5.3 suggests that the contribution of the numerical flux function to the SGS model is

very similar to a spectral discretization of a Smagorinsky-type eddy-viscosity model.

In fact, weights of the deconvolution operator could be determined such that σ functions

as the Smagorinsky constant of an implicit reproduction. Results of such a model,

however, are inferior to ALDM results obtained with evolutionary optimized parameters

(see Appendix A). Working on truncation errors of different order, ALDM exploits

spectral information at multiple scales resulting in a more complex SGS model. Not only

the spectral shape but also the magnitude of the numerical-viscosity adjusts dynamically

to the flow [69]. Fig. 5.3a and Eq. (5.6) apply to the calibration case of inertial-range

turbulence only.
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Figure 5.4: Effect of the ALDM parameter σ on the mean velocity profile in turbulent channel flow

at Reτ = 395. ·−·−·− σ = 0.010 ; −−−−−−− σ = 0.020 ; −−−− σ = 0.035 ; −··−··−
σ = 0.068 ; ◦ DNS.

The model parameters of ALDM have been calibrated for isotropic turbulence. Due to

similar experiences with explicit eddy-viscosity models [97], it is possible that the model

parameters of ALDM may depend on the Reynolds number. This is investigated on

the example of the parameter σ. One could argue that σ should vary for shear flows.

Appropriate values may range from σ = 0 to the optimal value for isotropic turbulence

σ = 0.069. Computational results for different values of σ are shown in Figures 5.4 and

5.5. Since simulations with σ = 0 turned out to be unstable, the smallest value shown

is σ = 0.01. The optimal parameter value with respect to the prediction of the wall

shear stress in turbulent channel flow is in the range 0.02 ≤ σ ≤ 0.035. However, the

overall prediction of the mean velocity profile, especially in the logarithmic layer and

in the wake region, deteriorates for σ being different from that calibrated for isotropic

turbulence. Disregarding the wall shear stress, the best results are obtained with σ being

identical to that for high Reynolds number isotropic turbulence. A remaining issue is

the near-wall behavior of ALDM which is investigated further in the following section.
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Figure 5.5: Effect of the ALDM parameter σ on the Reynolds stresses. ·−·−·− σ = 0.010 ; −−−−−−−

σ = 0.020 ; −−−− σ = 0.035 ; −··−··− σ = 0.068 ; ◦ DNS.
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5.2.2 Near-Wall Effects

With ALDM a local approximation ũ of the unfiltered solution u is computed from a

solution-adaptive superposition

ũλ
N(xi+λ) =

K∑

k=1

k−1∑

r=0

ωλ
k,r(uN , xi)

k−1∑

l=0

αλ
k,r,l(xi) uN(xi−r+l),

of Harten-type deconvolution polynomials with K = 3. The coefficients αλ
k,r,l are

grid-dependent, see Chapter 2. The solution-adaptive behavior is controlled by dynamic

weight functionals ωλ
k,r(u). By construction, the statistical average of these weights

resembles a central reconstruction scheme for isotropic turbulence. Near solid walls,

however, velocity fluctuations are strongly anisotropic. Time-averaged values of selected

weight functions of the reconstruction operator are shown in Fig. 5.6 for turbulent chan-

nel flow, the complete set of profiles for mean values and fluctuations is given in Appendix

C.
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Figure 5.6: Time-averaged ALDM weight functions for central deconvolution of the streamwise and

wall-normal velocity component. Implicit LES of turbulent channel flow at Reτ = 395.

We note that ALDM responds to flow anisotropy by becoming anisotropic in the near-

wall region. The resulting weights always prefer the stencil that is closer to the wall as

shown, e.g., for the wall-normal velocity component in Fig. 5.6b. This weight distribution

leads to an upwind bias for fluid moving away from the wall and to a downwind bias

for fluid moving towards the wall. A central scheme is reproduced only at the channel

centerline and at 1 or 2 other planes within the logarithmic layer.

The effect of the non-symmetric stencil selection on the implicit SGS model can be

analyzed indirectly. For turbulent channel flow the total shear stress follows a linear
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Figure 5.7: Shear stress balance for LES of turbulent channel flow at Reτ = 395. −−−−−−− SGS stress,

·−−·−− viscous stress, −··−··− Reynolds shear stress, ·········· total shear stress.

law, where the individual contributions of mean Reynolds shear stress and viscous

stress can be computed directly from the solution. The statistical average of the residual

stress of the implicit SGS model follows from the global shear-stress balance, i.e.,

〈τSGS
12 〉 = (

y

H
− 1)U2

τ − 〈u′v′〉 + ν
∂〈u〉
∂y

. (5.7)

Fig. 5.7 shows the SGS stress for implicit LES of turbulent channel flow. The overall

behavior agrees well with results from DNS analyses. However, the position of maximum

SGS stress is closer to the wall than expected. The location of the SGS stress maximum

does not coincide with the location of the resolved-Reynolds-shear-stress maximum.

Rather, it is shifted towards the region of large turbulent-kinetic-energy gradient. This

shift can be attributed to the anisotropic stencil selection, causing increased SGS stresses

near walls.

5.2.3 Wall Correction

Approaches to reduce discretization anisotropy at walls can be based on constraining

or damping the dynamic range of the stencil weights. An alternative is to compensate

for increased SGS dissipation by reducing the dissipative weight of the numerical flux

function. The latter approach turned out to be more practical, in particular because the

first one bears the risk of losing essential properties such as numerical stability.

The compensation coefficients (hi,j,k/h0)
−s in

σi,j,k = σ

(
hi,j,k

h0

)−s

(5.8)
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have been introduced in Ref. [69] to compensate for grid-width effects in the numerical

flux function of ALDM, see Sections 2.4 and 3.3.3. For simulations of isotropic tur-

bulence, it was found that s = 1/3 ensures correct scaling of the numerical viscosity.

Since model parameters were calibrated for this resolution, the reference grid width is

h0 = L0/32, where L0 is an integral flow scale. The integral length scale L0 in turbulent

channel flow is of the order of H . We use the estimate L0 = 2H/3, which is based on

energy spectra obtained from DNS data. Note that computational results are insensitive

to a small variation of L0 due to the exponent s = 1/3 in Eq. (5.8).

For the purpose of wall modeling Eq. (5.8) can be reformulated as

σi,j,k = σ

(
L0

Li,j,k

hi,j,k

h0

)−s

= σ

(
32

hi,j,k

Li,j,k

)−s

(5.9)

introducing the van Driest damping

Li,j,k = L0 − L0 exp

(
−
(

lW ũτ

a ν

)d
)

, (5.10)

where lW is the wall distance and ũτ is the friction velocity at the closest wall. d and

a are free parameters. The original scheme is recovered at large wall distances where

Li,j,k → L0. The wall-asymptotic behavior of the effective change of the model parameter

σ can be determined by Taylor series expansion of fvD = (L0/Li,j,k)
−s. The leading-order

term gives

fvD|wall ≈
1

ad s
y+d s

. (5.11)

The exponent d determines the shape of the damping functional. It is worth mentioning

that Piomelli [132] proposed

fvD|wall ∼ y3

based on a priori tests [131] for the Smagorinsky model, corresponding to d = 3/s

with Eq. (5.10). By computational experimentation it was found that the improvement

by the damping of Eq. (5.10) is rather insensitive to the particular choice of d and a.

Given d, an optimal value for the length scale a can be selected such that the correct

wall-shear stress is obtained. Based on several LES at varying Reynolds number and

grid resolution, optimal values for ALDM were estimated as

d =
1

s
= 3 ,

a = 50.0 .
(5.12)
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Figure 5.8: Left: Effective van Driest damping, −−−−−−− damping functional used with ALDM

(parameters s = 1/3, d = 3, a = 50) and ·········· linear approximation fvD = 0.02 y/l+.

Right: Modeled Reynolds shear stress in LES of turbulent channel flow for −−−−−−−

ALDM with van Driest damping, −−−− original homogeneous-turbulence ALDM

formulation.

With these parameters, the proposed van Driest damping does not affect the implicit

model at wall distances larger than 80l+. The effective damping function is plotted

in Fig. 5.8. The modeled SGS shear stress is analyzed in Fig. 5.8 for ALDM with van

Driest damping. The shear-stress maximum observed for the original ALDM formulation

is reduced and moves away from the wall.
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Figure 5.9: Mean velocity profile for LES of turbulent channel flow at Reτ = 395. −−−−−−− ALDM

with van Driest damping, ·−·−·− dynamic Smagorinsky model. ◦ DNS of Moser

et al. [121].

Computational results of implicit LES with van Driest damping are shown in Fig.

5.9 and 5.10. The damping leads to the expected reduction of SGS dissipation near walls

without deteriorating the Reynolds-stress anisotropy. The observed underestimation
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Figure 5.10: Reynolds stresses for LES of turbulent channel flow at Reτ = 395. −−−−−−− ALDM

with van Driest damping, ·−·−·− dynamic Smagorinsky model. ◦ DNS.
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of the Reynolds-normal and Reynolds-shear stresses is consistent with the fact that

the DNS reference data are not filtered. The prediction of Reynolds stresses by ALDM

is better than by the dynamic Smagorinsky model. It is evident that van Driest

damping improves the prediction of the wall-shear stress significantly. The effect on the

logarithmic layer is clearly visible in the compensated mean velocity profiles of Fig. 5.11.
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Figure 5.11: Compensated log-law for the mean velocity profile in turbulent channel flow at Reτ =

395. −−−−−−− ALDM with van Driest damping, −−−− original ALDM formulation,

·−·−·− dynamic Smagorinsky model. ◦ DNS [121]. ·········· log law with κ = 0.41.

5.3 Validation

5.3.1 Effect of REYNOLDS Number

In addition to the case considered in the previous section we address turbulent channel

flow at a higher Reynolds number Reτ = 950 according to the DNS of del Álamo

et al. [32] and results for LES at a lower Reynolds number Reτ = 180 according to

the DNS of Kim et al. [87]. The grid parameters of the LES are summarized in Table

5.2.

Computational results for mean velocity profiles and Reynolds stresses from implicit

LES and DNS of turbulent channel flow at Reτ = 180 and Reτ = 950 are shown in

Figures 5.12 and 5.13, respectively. Good agreement with the reference data is observed.

These results suggest that the optimal values for the model parameters are sufficiently

independent of the Reynolds number. Turbulence statistics are accurately predicted

for a wide range of Reynolds numbers.
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Figure 5.12: Mean velocity profile and resolved Reynolds stresses for LES of turbulent channel flow

at Reτ = 180.−−−−−−− ALDM with van Driest damping, ◦ DNS of Kim et al. [87].

Reτ = 180 streamwise direction Lx = 2πH Nx = 32 h+
x = 35.3

wall-normal direction Ly = 2H Ny = 32 h+
y = 0.9 – 27.3

spanwise direction Lz = πH Nz = 32 h+
z = 17.7

Reτ = 950 streamwise direction Lx = 2πH Nx = 128 h+
x = 46.6

wall-normal direction Ly = 2H Ny = 128 h+
y = 1.5 – 33.7

spanwise direction Lz = πH Nz = 128 h+
z = 23.3

Table 5.2: Grid for LES of turbulent channel flow at Reτ = 180 and at Reτ = 950, respectively
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Figure 5.13: Mean velocity profile and resolved Reynolds stresses for LES of turbulent channel flow

at Reτ = 950.−−−−−−− ALDM with van Driest damping, ◦ DNS of del Álamo et al.

[32].
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Figure 5.14: Compensated mean velocity profile for turbulent channel flow at Reτ = 950. −−−−−−−

ALDM with van Driest damping, ·−·−·− dynamic Smagorinsky model, ◦ DNS.
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5.3.2 Grid-Resolution Study for Channel Flow

The choice of an appropriate computational grid is crucial for obtaining reliable pre-

dictions. This is the case for explicit and implicit LES. Whereas explicit LES may use

grid-independent filtering, the grid resolution directly defines the range of resolved scales

with implicit LES. In the following the effect of spatial resolution on the implicit SGS

model of ALDM is studied qualitatively.

In smooth or well-resolved flow regions, discretization schemes of the ALDM family be-

come equivalent to a second-order accurate centered scheme. A formal grid-convergence

study of a numerical method would amount to increasing the grid resolution towards

that required for DNS where the implicit LES reaches its formal order of accuracy. Note

in particular that a consistent and stable implicit LES does always converge to DNS for

increasing resolution. However, implicit-LES discretization schemes are not intended for

use on DNS grids, where competitive results can be obtained by simpler methods.

ALDM is designed for finite grid size in under-resolved turbulence simulations, where

the truncation error of the discretization scheme functions as SGS model. Analyses of

turbulence models are often performed on the basis of pre-computed DNS data. However,

these so called a priori analyses suppress the inherent dynamics of an LES and can

lead to questionable conclusions concerning the behavior in actual LES. SGS models

represent the statistical effect on the resolved scales of their non-linear interaction with

unknown SGS. Hence, LES cannot deliver an exact instantaneous reproduction of the

turbulent SGS stresses computed from DNS data. Accuracy of LES can be measured

only in a statistical sense with respect to an accurate prediction of statistical properties

of the resolved scales. It can be argued that results from LES should be compared

with statistics computed from filtered DNS solutions. For implicit LES, however, grid

resolution and filter width are linked so that for the purpose of a grid-resolution study,

implicit-LES data for different spatial resolutions are compared with unfiltered DNS

data.

We perform an LES of turbulent channel flow at Reτ = 590 according to the reference

DNS data provided by Moser et al. [121] using four different grids with 123 to 723 cells.

The grid parameters are given in Tab. 5.3. Using a spectral flow solver, the reference

DNS was conducted on a grid with 384 × 257 × 384 modes.

The two coarser LES grids do not allow for an accurate computation of the friction

velocity from the viscous sublayer. For this reason, the mean velocity profile and resolved

Reynolds stresses are plotted in outer scaling, i.e., they are normalized with bulk

velocity (5.3) and channel half-width. The results in Fig. 5.15 show convergence towards
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G12 streamwise direction Lx = 2πH Nx = 12 h+
x = 308.9

wall-normal direction Ly = 2H Ny = 12 h+
y = 19.2 – 227.2

spanwise direction Lz = πH Nz = 12 h+
z = 154.5

G24 streamwise direction Lx = 2πH Nx = 24 h+
x = 154.5

wall-normal direction Ly = 2H Ny = 24 h+
y = 6.1 –122.8

spanwise direction Lz = πH Nz = 24 h+
z = 77.2

G48 streamwise direction Lx = 2πH Nx = 48 h+
x = 77.2

wall-normal direction Ly = 2H Ny = 48 h+
y = 2.3 – 60.7

spanwise direction Lz = πH Nz = 48 h+
z = 38.6

G72 streamwise direction Lx = 2πH Nx = 72 h+
x = 51.5

wall-normal direction Ly = 2H Ny = 72 h+
y = 1.4 – 41.5

spanwise direction Lz = πH Nz = 72 h+
z = 25.7

Table 5.3: Grids for LES of turbulent channel flow at Reτ = 590. The cell dimensions are computed

from the nominal Reτ .

the DNS with decreasing grid width. This tendency is most visible for the wall-normal

Reynolds stress and the Reynolds shear stress, whereas the streamwise Reynolds

stress is rather insensitive to the grid resolution. Generally, we observe a monotone

convergence towards the DNS.

Whereas for most explicit SGS models insufficient resolution can lead to numerical in-

stability, apparently the grid resolution for ALDM can be chosen only with respect to

the desired accuracy. ILES at insufficient resolution degenerates to laminar flow. At

least 83 cells are required to maintain turbulence for the present channel flow.
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Figure 5.15: Grid resolution study for LES of turbulent channel flow at Reτ = 590. Mean velocity

profile for implicit LES using ALDM with van Driest damping on grid −−−−−−− G72 ,

·−·−·− G48 , −−−− G24 , −··−··− G12. ◦ DNS.

-1.0 -0.8 -0.6 -0.4 -0.20

0.006

0.012

0.018

0.024

〈u
′ u

′ 〉/
U

2 bu
lk

y/H
-1.0 -0.8 -0.6 -0.4 -0.20

0.001

0.002

0.003

0.004

〈v
′ v

′ 〉/
U

2 bu
lk

y/H

-1.0 -0.8 -0.6 -0.4 -0.20

0.002

0.004

0.006

〈w
′ w

′ 〉/
U

2 bu
lk

y/H
-1.0 -0.8 -0.6 -0.4 -0.2-0.003

-0.002

-0.001

0

〈u
′ v

′ 〉/
U

2 bu
lk

y/H

Figure 5.16: Grid resolution study for LES of turbulent channel flow at Reτ = 590. Profile of resolved

Reynolds stresses for implicit LES using ALDM with van Driest damping on grid

−−−−−−− G72 , ·−·−·− G48 , −−−− G24 , −··−··− G12. ◦ DNS.
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5.3.3 Zero-Pressure-Gradient Turbulent Boundary-Layer Flow

A suitable test scenario for validation of the numerical method for boundary layer flows

is a zero-pressure-gradient (ZPG) boundary layer, where many analytical and computa-

tional data are available for reference. The intuitive approach would be to simulate the

spatial development of a boundary layer using an extensive computational domain. A

popular alternative is temporal boundary layer simulation, where the spatial evolution

is modeled by the temporal evolution in a narrow computational box moving with the

flow. The temporal approach requires only a fraction of the computational time of a

spatial simulation. The transferability of numerical results between temporal and spatial

description is limited by effects of finite domain size and boundary conditions. These

differences are important if processes leading to laminar turbulent transition are to be

studied, but the impact on many integral quantities, such as mean velocity profile and

skin friction coefficient, is small.

We perform a temporal simulation of ZPG boundary-layer flow in a double-periodic

computational domain. The computational box has the extents 48δ×124δ×128δ and is

discretized with 48× 96× 256 cells in streamwise × wall-normal × spanwise directions,

respectively. A no-slip condition is imposed at the wall and the free-stream interface

is modeled by the decay condition, see Sec. 7.2.4. Periodic boundary conditions are

imposed in streamwise and spanwise direction. The flow is initialized at time t = t0 as a

laminar Blasius boundary-layer profile with thickness δ and free-stream velocity U∞,

superimposed with low-amplitude white-noise fluctuations. This initial disturbance is

expected to grow during the simulation and eventually leads to transition of the flow to

a turbulent state.

Laminar-turbulent transition is one of the most demanding test cases for LES. When

white noise is used, most energy is injected into decaying modes and only a low percent-

age of the disturbance excites the instability modes of the laminar flow. For the onset of

transition the SGS model must not affect the growth and amplification of these unstable

modes. Most eddy-viscosity SGS models do not satisfy this requirement without ad hoc

modifications.

The large spanwise extent of the computational domain was chosen in order to improve

the accuracy of turbulence statistics that are computed from instantaneous snapshots

by spatial averaging. Fig. 5.17a shows the friction coefficient

Cf =
2U2

τ

U2
∞

(5.13)
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Figure 5.17: (a) Evolution of friction coefficient Cf in temporal LES of ZPG flow. −−−−−−− present

LES, −−−− laminar theory Cf ∼ (Rex)−1/2, ·−·−·− turbulent theory Cf ∼
(Rex)−1/5. (b) Evolution of the shape factor H12. −−−−−−− present LES, ◦ DNS [166].

for a temporal LES using ALDM. During the growth of the laminar boundary layer the

friction coefficient follows the theoretical solution

Cf ∼ (Rex)
−1/2 , (5.14)

where the Reynolds number is defined as

Rex =
tU2

∞
ν

. (5.15)

One can clearly see that the boundary layer undergoes laminar-turbulent transition.

Eventually the friction coefficient follows the turbulent law

Cf ∼ (Rex)
−1/5 . (5.16)

The evolution of the shape factor H12 (7.9) is shown in Fig. 5.17b. The prediction of our

temporal LES with ALDM is in good agreement with DNS by Spalart [166] in the later

turbulent stages. Results from LES and DNS do not match for the lowest Reynolds

number Reδ1 = 500 (Reδ2 ≈ 300). Spalart’s DNS give turbulent velocity profiles that

can hardly be obtained by natural transition at this small Reynolds number. Note

that the critical Reynolds number for linear stability theory [146, 173] of a Blasius

profile is Reδ1 = 520. In order to remedy this disagreement, Spalart [166] proposed

to distinguish between developed turbulence and sustained turbulence and argued that

boundary-layer turbulence cannot be fully developed at Reynolds number lower than

Reδ2 = 600, but the turbulence, once imposed, can be sustained in the simulations at

much lower Reynolds numbers.
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Figure 5.18: Profiles of mean velocity and Reynolds stresses for turbulent ZPG boundary layer flow

at Reδ2
= 670. −−−−−−− present LES, symbols denote reference DNS [166].
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Figure 5.19: Profiles of mean velocity and Reynolds stresses for turbulent ZPG boundary layer flow

at Reδ2
= 1410. −−−−−−− present LES, symbols denote reference DNS [166].

In the turbulent regime the performance of the implicit SGS model is evaluated by

comparing profiles of mean velocity and Reynolds stresses with DNS data. Fig. 5.18

and Fig. 5.19 show results for the mean velocity profile and Reynolds stresses from

LES and DNS at Reδ2 = 670 and at Reδ2 = 1410, respectively. ALDM apparently

predicts the anisotropic turbulence statistics correctly. Characteristic boundary-layer

parameters are given in Tab. 5.4.
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Reδ2 Reδ1 Cf · 103 H12 H32

1st station reference 670 1000 4.8 1.49 n/a

present 662.8 1008.0 4.79 1.52 1.74

2nd station reference 1410 2000 4.2 1.42 n/a

present 1419.9 2028.3 4.07 1.43 1.76

Table 5.4: Characteristic parameters of the temporal boundary-layer simulations.

5.4 Summary

In this chapter, the implicit SGS model based on ALDM has been applied for LES of

wall-bounded flows. Model parameters have been determined previously for isotropic

turbulence at infinite Reynolds number. It is possible that the optimal values of

these parameters might be weakly Reynolds-number dependent. However, contrary to

common experience with most eddy-viscosity models, the current results do not support

such a conclusion for the implicit model of ALDM. It is found that these parameters

give good predictions also for the logarithmic region of boundary layers in terms of mean

flow and turbulence statistics.

The response of the nonlinear deconvolution scheme to flow anisotropy is analyzed.

With standard weight functionals based on total variation, the effective discretization

becomes a strongly anisotropic near walls resulting in a modest underestimation of the

wall-friction velocity. The prediction of the wall-shear stress can be improved if this effect

is properly compensated by a van Driest-type damping functional. The particular

choice of the damping functional plays a minor role.

For validation, several LES have been performed for incompressible channel flow and

for transition to turbulence in a Blasius boundary layer. Results from implicit LES

compare well with DNS data. Predictions for the anisotropic Reynolds stresses show

improvement over results obtained at same resolution with the dynamic Smagorinsky

model, which is one of the classical explicit SGS models. This improvement can be

attributed to the tensor character of the effective viscosity of the implicit model. The

computational results provide convincing evidence that ALDM can be employed for the

prediction of wall-bounded flows without adjustment of parameters.



— CHAPTER SIX —

EXTENSION TO

PASSIVE-SCALAR MIXING

In this chapter, ALDM is extended to LES of passive-scalar mixing. We demonstrate

that an optimized discretization scheme can be derived within the same framework as

for the momentum equation. Specific problems of the turbulent transport of passive

scalars are addressed with respect to their consequences on SGS modeling. A new im-

plicit model is derived and analyzed for freely decaying three-dimensional homogeneous

isotropic turbulence. The resulting new adaptive advection algorithm is then applied

to scalar transport in turbulent channel flow, demonstrating that the implicit model

correctly predicts mean flow and turbulence statistics for a flow configuration exhibiting

anisotropic and inhomogeneous turbulence1.

6.1 The Passive-Scalar Transport Equation

We consider the turbulent transport of passive scalars, which do not measurably affect

the velocity field. This case represents a one-way coupling of the scalar to the fluid.

Hence, the closure problem is restricted to the scalar transport equation. Turbulence

modeling and discretization for the momentum equations remain unchanged.

The transport of a passive scalar c in an incompressible fluid is governed by

∂tc + ∇ · F (u, c) = 0 , (6.1)

supplemented with appropriate initial and boundary conditions. The scalar flux function

is

F (u, c) = uc − 1

ScRe
∇ c , (6.2)

where u and Re are velocity vector and Reynolds number of the transporting flowfield.

Sc is the Schmidt number. Sc = ν/κ is defined as the ratio of kinematic viscosity ν and

the diffusivity κ associated with the scalar quantity c. Depending on the application, c

can be concentration, temperature, or any kind of passive marker.

1 This chapter is based on Refs. [70, 71]
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Figure 6.1: Critical test cases for predicting the proper subgrid diffusion in large-eddy simulations

of scalar mixing. Left: Low Schmidt number regime. Right: High Schmidt number

regime at moderate Reynolds number. −−−−−−− scalar variance ; −−−− kinetic energy

; ·········· numerical cutoff wavenumber.

Following Leonard [92], the discretized equation is obtained by convolution with a

homogeneous filter kernel G

∂tc + G ∗ ∇ · F (u, c) = 0 , (6.3)

and subsequent grid truncation

∂tcN + G ∗ ∇ · FN(uN , cN) = −G ∗ ∇ · τSGS . (6.4)

The overbar denotes the filtering c = G ∗ c and the subscript N indicates grid functions

obtained by projecting continuous functions onto a numerical grid with finite resolution.

The flux (6.2) is formally linear in c. However, the evolution of a non-uniform scalar

field is subject to the velocity dynamics. Small-scale fluctuations of velocity and scalar

are correlated in the presence of a scalar-concentration gradient. The subgrid tensor

τSGS = F (u, c) − FN(uN , cN) (6.5)

originates from the grid projection of advective terms. It represents the effect of the

action of subgrid scales and has to be approximated by a SGS model to close Eq. (6.4).

This modeling task is far from trivial. One reason is that the various regimes that exist

for the passive-scalar variance spectrum have to be recovered by the SGS model. These

regimes originate from the difference between typical length scales characterizing the

viscous cutoff of the velocity field and the diffusive range of the scaler field [8]. In the

following, two cases that are of particular interest in LES are discussed for homogeneous,

isotropic turbulence.
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The scalar fluctuations are driven by the stirring induced by the velocity field. Different

scalar-transport regimes are associated with certain ranges of Reynolds and Schmidt

numbers. The first regime is associated with small Schmidt numbers Sc ≤ 1. With

respect to LES, this regime is most relevant for large Reynolds numbers, where the

kinetic-energy spectrum develops a broad inertial range

Ê(ξ) = CKε2/3ξ−5/3 (6.6)

at wavenumbers ξ ≪ ξK ,

ξK =
ε1/4

ν3/4
(6.7)

being the Kolmogorov wavenumber. In this regime, the scalar-variance behaves simi-

lar to the kinetic-energy. Obukhov and Corrsin applied Kolmogorov’s equilibrium

theory to the scalar variance and derived a diffusive cutoff at

ξD =
ε1/4

κ3/4
. (6.8)

The scalar-variance spectrum depends on the kinetic-energy transfer ε and the scalar dif-

fusion χ. From dimensional arguments [28] follows that it exhibits an inertial-convective

range

Êc(ξ) = COCε−1/3χξ−5/3 (6.9)

with scaling Êc(ξ) ∼ ξ−5/3 at wavenumbers ξ ≪ ξD. CK and COC are Kolmogorov

constant and Obukhov–Corrsin constant, respectively. An analysis of the shape of

Êc(ξ) in the diffusive-range ξD ≪ ξ is presented by Batchelor et al. [7].

In LES, the filter width is typically chosen in such a way that the numerical cutoff

wavenumber ξC is within the inertial range (6.6). For a coarse representation of the

scalar dynamics, we also assume that ξC ≪ ξD such that the SGS energy transfer does

not directly depend on Re and Sc. A representative example for this regime is LES of

isotropic turbulence at Sc ≈ 1 and Re ≫ 1.

A more complex situation is encountered if the Schmidt number is much larger than

unity, Sc ≫ 1. In this regime two distinct inertial ranges exist for the scalar-variance

spectrum. An inertial-convective range (6.9) is observed for scales within the Kol-

mogorov inertial range ξ ≪ ξK of the kinetic-energy spectrum. At smaller scales,

the energy spectrum already decays exponentially whereas the scalar fluctuations are

not yet affected by diffusion. A second inertial range, the viscous-convective range, is

observed for the scalar-variance spectrum at ξK ≪ ξ ≪ ξB, ξB being the Batchelor

wavenumber

ξB =
ε1/4

ν1/4κ1/2
. (6.10)
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Based on an analytical model for the distortion of small scalar blobs, Batchelor [8]

derived

Êc(ξ) = CBν1/2ε−1/2χξ−1 (6.11)

for the viscous-convective range ξ ≪ ξB and an exponential decay

Êc(ξ) = CBν1/2ε−1/2χξ−1 exp(−CB(ξ/ξB)2) (6.12)

in the viscous-diffusive range ξ ≫ ξB. Employing a more sophisticated statistical

method, the Lagrangean-history direct-interaction (LHDI) approximation, Kraich-

nan [88] found further evidence for the ξ−1 scaling in the viscous-convective range, but

a less rapid decay in the viscous-diffusive range

Êc(ξ) = CBν1/2ε−1/2χξ−1 (1 + (6CB)1/2ξ/ξB) exp(−(6CB)1/2ξ/ξB) . (6.13)

Recent numerical studies (see Bogucki et al. [12] and Yeung et al. [185], e.g.) tend

to favor the results of Kraichnan. The numerical parameter CB is the Batchelor con-

stant. Various experimental, analytical, and numerical determinations of the numerical

constants CB, CK , and COC have been proposed. Unfortunately, the reported values

scatter a lot. This inherent uncertainty has consequences on the calibration of SGS

models, as will be discussed in Section 6.3.

If the grid cutoff ξC lies within the inertial-convective range the same SGS modeling can

be used as for the Sc ≤ 1 case. A different approach is required if the numerical cutoff

is chosen within the viscous-convective range. This velocity-resolving case is typically

associated with low Reynolds numbers in LES. Generic sketches of corresponding

kinetic energy spectra, scalar variance spectra, and numerical cutoff for the two regimes

Sc ≤ 1 and Sc ≫ 1 are shown in Fig. 6.1.

Another difficulty in solving scalar transport equations is associated with a numerical

problem. At high Schmidt numbers, even an incompressible and smooth flowfield will

generate a filtered scalar field with steep concentration gradients that can only be cap-

tured and not resolved by the numerical discretization. Standard centered differencing

schemes tend to non-physical oscillations unless they are supplemented with a numerical

regularization.

6.2 Discretization-Scheme Design

For brevity of notation and without loss of generality, the following summary is given

only for one coordinate direction. A staggered arrangement of velocity, pressure, and
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Figure 6.2: Staggered grid arrangement. Top: Filtered solution. Bottom: Reconstructions of unfiltered

solution in a finite volume discretization.

scalar (see Fig. 6.2) is used to allow for an accurate and stable solution of the pressure-

Poisson equation in 3-D incompressible flows.

As mentioned above, the framework for our implicit LES is provided by the finite-volume

method of Schumann [148] that implies reconstruction of the unfiltered solution at cell

faces and the approximation of the physical flux function by a numerical flux function.

The unfiltered velocity solution at cell faces is reconstructed, i.e., deconvolved and in-

terpolated, by ALDM as proposed in Chapter 2. This operator can also be employed for

reconstruction of the unfiltered scalar concentration without modifications. The approxi-

mately deconvolved solution (ũN , c̃N) is inserted into a consistent numerical flux function

F̃N . The numerical flux applies to advection only; diffusion is discretized by standard

finite differences. Based on dimensional arguments and numerical experimentation led

to the following modification of the Lax-Friedrichs flux

F̃N

∣∣∣
i±1/2

= F

(
ũR

i±1/2 + ũL
i−1±1/2

2
,
c̃R
i±1/2 + c̃L

i±1/2

2

)

− σi±1/2

(
c̃L
i±1/2 − c̃R

i±1/2

)
, (6.14)

where σj±1/2 can be any shift-invariant functional. Note that velocity and scalar are

defined at different positions, as shown in Fig. 6.2. The indices are given in specific

coordinate systems relative to the original position on a staggered grid. From a di-

mensional argument follows that σj±1/2 is a velocity. In order to obtain a Galileian

invariant discretization, we define

σi±1/2 = σc

∣∣ũR
i±1/2 − ũL

i−1±1/2

∣∣ , (6.15)

where σc is another free parameter of the discretization.

The extension to three dimensions is straight forward and follows the approach for

the momentum equation. All LES presented throughout this chapter are based on
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an implementation of the simplified adaptive local deconvolution (SALD) method, see

Appendix B.

6.3 Implicit SGS Modeling

We employ the approach detailed in Chapter 3 and analyze the spectral numerical diffu-

sivity of discretization methods for the passive-scalar transport equation. The a posteri-

ori analysis revealed that the solution-adaptive deconvolution operator with parameters

γk,r is responsible for a sharply rising cusp of the spectral numerical diffusivity at high

wavenumbers. The spectral numerical diffusivity due to the flux function (6.14) is al-

most constant at a level which can be adjusted by the free parameter σc. A similar

observation was made for ALDM, where it was found that adaptive stencil selection

provides an approximation for the cusp of the spectral eddy viscosity and the numerical

flux function is responsible for the plateau value, see Figure 5.3a. We opted for adjusting

σc only, while using the same values for γk,r as for the momentum equation, since no

reliable closed-form expression for the subgrid diffusivity spectrum κSGS(ξ) is available.

An EDQNM analysis leads to the conclusion that κSGS(ξ) is proportional to the spectral

eddy viscosity νSGS(ξ). However, this finding is questionable because several contradic-

tory results from measurements and direct simulations are pointed out in the literature

(see Lesieur [93], e.g.). On the other hand, the integral amount of necessary subgrid

diffusion can be estimated by a simple analysis. In our test configurations, isotropic

turbulence at high Péclet numbers Pe = Sc · Re, diffusion is exclusively provided by

the SGS model, i.e.,

χSGS ≈ χ . (6.16)

We define the equivalent subgrid diffusivity

κSGS =

∫
κSGS(ξ)ξ2Êc(ξ)dξ
∫

ξ2Êc(ξ)dξ
. (6.17)

From Eqs. (6.6), (6.9), and (6.16) follows

κSGS =
2

3
C−1

OCε1/3ξ4/3
c

=
2

3
C−1

OCC
−1/2
K Ê(ξc)

1/2ξ−1/2
c (6.18)

=
CK

COC

νSGS (6.19)
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for the low Schmidt number test case. Assuming identical spectral distributions, the

equivalent subgrid diffusivity is obtained from the subgrid viscosity by multiplication

with the ratio of Kolmogorov constant and Obukhov–Corrsin constant. Available

data for both constants scatter a lot. The Obukhov–Corrsin constant is commonly

in the range 0.68 ≤ COC ≤ 0.83 (McComb [115]). The range of reported values for the

Kolmogorov constant is even larger, mostly within 1.4 ≤ COC ≤ 1.8 (Yeung and

Zhou [186]).

Our initial estimate for the proportionality constant in Eq. (6.19) was CK/COC = 2.0.

However, with parameters optimized accordingly, the scalar-variance spectrum was found

to vary strongly in time even if the case considered was statistically stationary. At time

instants it can be as flat as ξ−1 for LES of low Schmidt number isotropic turbulence.

The slope of the mean spectrum is close to ξ−5/3 but clearly not steep enough. Numerical

experimentation led us to

CK/COC ≈ 2.3 (6.20)

which gives much better results.

The theoretical scalar-variance spectrum in high Schmidt number isotropic turbulence

is given by Eq. (6.11). The presence of the viscosity in this equation does not imply that

the scalar SGS model has to incorporate the Reynolds number, but rather that τSGS

depends on the shape of the viscous range of the kinetic-energy spectrum. The character-

istic time scale (ν/ε)1/2 can be computed analytically in velocity-resolving simulations.

This leads to an exact constraint for the equivalent eddy-diffusivity

κSGS = C−1
B

(ν

ε

)−1/2

ξ−2
c , (6.21)

which has to be met by the implicit SGS model.

Considerable uncertainty remains regarding the value of the Batchelor constant.

Batchelor [8] originally proposed CB = 2.0. Using analytical theories, Kraichnan

[88] derived CB = 2.04 for a Gaussian velocity field but, by taking into account ex-

perimental data, stated CB likely to be considerably larger for actual Navier-Stokes

turbulence. Later Qian [141] found CB = 4.47. When fitting experimental or direct nu-

merical simulation (DNS) data, the chosen functional law for the viscous-diffusive range

can be a reason for large differences in CB: Bogucki et al. [12] found CB = 3.9 for

DNS data at 3 ≤ Sc ≤ 7 fitted to the Batchelor spectrum, whereas a fit of the same

data to the Kraichnan spectrum gives CB = 5.26. Yeung et al. [185] came to the

conclusion that the value of CB is not universal. Rather, CB required for an optimal fit

of the Kraichnan spectrum with their DNS data increases with Schmidt number,
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γ
+1/2
2,0 γ

+1/2
2,1 γ

+1/2
3,0 γ

+1/2
3,1 γ

+1/2
3,2 σc

if Sc ≤ 1 1.00000 0.00000 0.01902 0.08550 0.89548 0.61500

if Sc ≫ 1 1.00000 0.00000 0.01902 0.08550 0.89548 0.30000

Table 6.1: Optimized discretization parameters for LES of passive-scalar mixing.

being CB = 3.5 for Sc = 1 and CB = 5.5 for Sc = 64. Since the spectra at Sc ≃ 1 do not

exhibit a visible viscous-convective range, only the latter value can be considered as a

relevant measure for CB, which we note is in reasonable agreement with CB = 5.26±0.25

found by Bogucki et al. [12] for relatively low Schmidt numbers 3 ≤ Sc ≤ 7. We

opted for

CB = 5.0 (6.22)

for calibration of the implicit SGS dissipation in the regime of high Schmidt numbers.

Table 6.1 summarizes the values for the free discretization coefficients that were selected.

These parameters are optimized based on an analysis of the numerical diffusivity of the

model in LES of passive-scalar mixing in freely decaying isotropic turbulence at high

Péclet number. This analysis also revealed that different parameters are required

for the two Schmidt-number regimes. Hence, two sets of parameters were determined

representing two SGS models: one for the low-Schmidt-number regime and one for the

high-Schmidt-number regime.

6.4 Validation for Forced Isotropic Turbulence

As first test case the new model is applied to passive-scalar mixing in forced isotropic tur-

bulence. An extra source term was added to the right-hand side of the Navier-Stokes

equations and the scalar-transport equation. This forcing results in a production of scalar

variance and kinetic energy that compensates diffusion and dissipation while preserving

the shape of the spectra. By construction, only large scales |ξ| ≤ 2 are directly affected

by the forcing.

We have performed two simulations, one for each scalar-mixing regime. For the low-

Schmidt-number regime, the computational Reynolds number Re = 1/ν is Re = 104

and the Schmidt number is Sc = 1. The high Schmidt number model is tested for

Reynolds number Re = 20 and Schmidt number Sc = 400. The grid is composed

out of 323 evenly-spaced cells. For the lower Reynolds number, the Kolmogorov

length scale is on the order of the mesh size.
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Figure 6.3: Mean 3-D spectra of kinetic energy and scalar variance for implicit LES of large-scale

forced isotropic turbulence. (a) Re = 104 and Sc = 1. (b) Re = 20 and Sc = 400.

−−−−−−− scalar variance; −−−− kinetic energy; ·········· analytical expressions for scalar

variance.

After an initial transient, samples of the 3-D scalar-variance and kinetic-energy spectra

were collected until the mean spectra were converged. The resulting 3-D mean spec-

tra are shown in Fig. 6.3. A small gap in the lines marks the wavenumber ξC = 15.

Wavenumbers ξC < |ξ| <
√

3ξC are only partially represented in Cartesian-grid

physical-space simulations. Results of both simulations agree reasonably well with the

theoretical expectation, which verifies a posteriori the parameter selection which was

based on the corresponding theoretical prediction.

6.5 Application to Turbulent Channel Flow

6.5.1 Test case and computational setup

Reliable reference data are very rare for flows at higher Schmidt numbers. Most SGS

models for scalar transport have been validated only for Sc < 1 since DNS of developed

turbulent flows at Schmidt numbers Sc ≫ 1 have only recently become feasible. Today,

such DNS are still limited to very moderate Reynolds numbers. Schwertfirm and

Manhart [150] performed DNS of the transport of passive scalars in turbulent channel

flow at Reynolds number Reτ = 180 and at Schmidt numbers Sc = 1, 3, 10, and

25. In order to validate the new model for wall-bounded flows, implicit LES have been

conducted, where computational setup, Reynolds number, and Schmidt numbers

are adapted to the DNS reference.

The computational domain is a plane channel that has the extents 2πH × 2H × πH

in streamwise, wall-normal, and spanwise direction, respectively. Periodic boundary
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Figure 6.4: Mean velocity profile and Reynolds stresses in turbulent channel flow at Reτ = 180.

−−−−−−− implicit LES with SALD, ◦ DNS data of Moser et al. [121].

conditions are imposed in streamwise and spanwise direction. No wall model is used in

the simulations, rather the no-slip condition is imposed directly on the velocity field.

The scalar is added to the fluid at one wall and removed at the opposite wall, i.e., the

wall concentration

CW = ±1 (6.23)

of the scalar is kept constant.

The computational domain is discretized by 48 × 48 × 48 cells. The grid is stretched in

wall-normal direction using the hyperbolic tangent function (5.2) to increase resolution

in the vicinity of the walls.

6.5.2 Velocity Field

Figure 6.4 shows mean velocity profile and Reynolds stresses from implicit LES. We

observe a good agreement with the reference DNS data. The profiles of higher-order

moments show small discrepancies, which are inevitable when an unfiltered DNS is

compared with LES on coarser grids (see also section 6.5.4). Note that similar results for

the velocity field alone can be obtained with fewer grid points than used here. However,

the relative resolution requirement for the scalar field increases with the square root of

the Schmidt number. This scaling holds for the Batchelor scale

ηB =
ν1/4κ2/4

ε1/4
=

ηK√
Sc

, (6.24)

the equivalent of the Kolmogorov scale ηK = (ν3/ε)1/4, and for the thickness of the

diffusive sublayer. To be able to use the same computational grid for Schmidt numbers
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Figure 6.5: Profiles of mean scalar concentration and scalar variance in plane channel flow at Reτ =

180 and Sc = 1. Implicit LES with parameters optimized for −−−−−−− high Schmidt

numbers, ·−·−·− low Schmidt numbers, ◦ DNS of Schwertfirm and Manhart [150].

between 1 ≤ Sc ≤ 25, we chose a grid with 483 cells.

6.5.3 Scalar Statistics

In the following, the computational results are normalized with bulk velocity Ubulk, chan-

nel half width H , and wall concentration CW , or with friction velocity Uτ =
√

ν〈∂yu〉wall,

viscous length scale l+ = ν/Uτ , and friction concentration

Cτ = κ〈∂yc〉wall/Uτ . (6.25)

We have performed implicit LES at Schmidt numbers Sc = 1, 3, 10, and 25 with model

parameters optimized for high and for low Schmidt numbers. Figures 6.5 and 6.7 show

profiles of mean scalar concentration 〈c〉 at Sc = 1 and Sc = 25. The mean concentration

scales as 〈c〉 = Scy+ at the wall and obeys a logarithmic law as y+ increases. Since the

scalar is transferred from one wall to the other, the wake region shows ∂y〈c〉 6= 0 at
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Figure 6.6: Profiles of mean scalar concentration and scalar variance in plane channel flow at Reτ =

180 and Sc = 3. Implicit LES with parameters optimized for −−−−−−− high Schmidt

numbers, ·−·−·− low Schmidt numbers, ◦ DNS of Schwertfirm and Manhart [150].

the centerline of the channel. The LES results agree well with the reference DNS.

Differences between the predictions of the two proposed models are marginal for the

mean concentration profiles. This changes when the scalar variance 〈c′c′〉 is considered.

Comparing both models, the parameter set optimized for high Schmidt numbers gives

always slightly higher fluctuations. The low-Schmidt-number model gives better results

at Sc = 1, see Fig. 6.5, whereas it underestimates the scalar variance at Sc = 25, see

Fig. 6.7. The model optimized for high Schmidt numbers gives excellent results for

Sc = 25. Implicit LES at Sc = 3 (see Fig. 6.6 and 6.9) and Sc = 10 (see Fig. 6.12

and 6.13) show the same tendency as the Sc = 25 case. Profiles of the turbulent scalar

transport 〈c′u′〉 and 〈c′v′〉 are displayed in Fig. 6.8 and Fig. 6.10 for Sc = 1 and

Sc = 25, respectively. The two proposed variants of model parameters perform equally

well. An excellent agreement with the DNS is observed for the streamwise component

normalized with Ubulk and CW . The same quantity shows a small bias towards lower

values when normalized with Uτ and Cτ . The wall-normal component 〈c′v′〉 shows the
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Figure 6.7: Profiles of mean scalar concentration and scalar variance in plane channel flow at Reτ =

180 and Sc = 25. Implicit LES with parameters optimized for −−−−−−− high Schmidt

numbers, ·−·−·− low Schmidt numbers, ◦ DNS of Schwertfirm and Manhart [150].

opposite behavior; the values are slightly lower when normalized with Ubulk and CW , but

match the DNS perfectly with normalization by Uτ and Cτ .

We note that the implicit modeling approach gives good results for scalar mixing in

turbulent channel flow although the model parameters were derived for isotropic tur-

bulence. For the Schmidt-number range considered, the role of an optimal parameter

choice is less important for turbulent channel flow than for isotropic turbulence. Results

from both versions of the implicit model are in good agreement with DNS. Although

differences are small, nevertheless for the low-Schmidt-number scheme slightly bet-

ter predictions can be observed at Sc = 1, whereas the high-Schmidt-number scheme

performs slightly better at Sc > 1.

A rigorous test for validating simulations of the heat or mass transfer from a wall to a
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Figure 6.8: Turbulent transport of a passive scalar in plane channel flow at Reτ = 180 and Sc = 1.

Implicit LES with parameters optimized for −−−−−−− high Schmidt numbers, ·−·−·−
low Schmidt numbers, ◦ DNS of Schwertfirm and Manhart [150].

fluid is based on the non-dimensional transfer coefficient

K+ =
κ

Uτ∆c
〈∂yc〉wall

= Cτ/|CW | , (6.26)

made dimensionless with the friction velocity Uτ and the potential ∆c. The transfer

coefficients is presented as a function of the Schmidt number in Fig. 6.11. Results for

implicit LES agree very well with the reference DNS. The error of K+ for the LES is less

than 2.2% at Sc = 1 and 1.6% at Sc = 25. Results for the two proposed SGS models

deviate by less than 0.25%. It is observed that the models perform slightly better for

their respective calibration range.

As mentioned before, data for profiles of scalar variance and turbulent transport are

very rare, especially at high Schmidt numbers. The transfer coefficient K+ offers the

opportunity for a comparison of different modeling approaches in the asymptotic regime
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Figure 6.9: Turbulent transport of a passive scalar in plane channel flow at Reτ = 180 and Sc = 3.

Implicit LES with parameters optimized for −−−−−−− high Schmidt numbers, ·−·−·−
low Schmidt numbers, ◦ DNS of Schwertfirm and Manhart [150].

at higher Schmidt numbers. For this purpose, implicit LES have been performed at

Schmidt numbers up to Sc = 1000. We use the same computational grid as before,

noting that for the highest Schmidt numbers even the mean scalar gradients are barely

resolved. In spite of that, the SGS model gives physically meaningful predictions for the

mass transfer coefficient K+, see Fig. 6.11. Since DNS data are not available, the LES

results are compared with experimental data for turbulent pipe flow. Fig. 6.11 shows

two experimental correlations by Shaw and Hanratty [152]: The fit

K+ = 0.0889Sc−0.704 (6.27)

is preferred by the authors because it gives a better overall correlation with their mea-

surements, whereas the alternative form

K+ = 0.0649Sc−2/3 (6.28)

is more appropriate from a theoretical point of view [81]. The LES results support either

correlation, depending on whether the magnitude of K+ or on the trend with increasing
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Figure 6.10: Turbulent transport of a passive scalar in plane channel flow at Reτ = 180 and Sc = 25.

Implicit LES with parameters optimized for −−−−−−− high Schmidt numbers, ·−·−·−
low Schmidt numbers, ◦ DNS of Schwertfirm and Manhart [150].

Schmidt number is considered. Nevertheless, the observed agreement is very good

considering the coarse resolution, and the fact that different Reynolds numbers and

different flow geometries, plane channel and pipe, are compared.

Because Eulerian DNS are prohibitively expensive at high Schmidt numbers, Pa-

pavassiliou and Hanratty [127] developed a Lagrangean technique which they ap-

plied to turbulent channel flow. These simulations at a slightly lower Reynolds number

of Reτ = 150 predict significantly larger values of the transfer coefficient [127, 128], see

Fig. 6.11. Na et al. [124] supported such results by Eulerian DNS for the smaller

Schmidt numbers. The results demonstrate the high sensitivity with respect to the

Reynolds number and the importance of an accurate representation of the turbulent

velocity field. We note that the effect of Reynolds number diminishes quickly as the

Schmidt number increases and is negligible for Sc ≥ 100. For low Schmidt numbers

Sc ≤ 10 the fit

K+ = 0.0509Sc−0.546 (6.29)
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Figure 6.11: Dimensionless mass transfer coefficient K+ for channel flow at Reτ = 180: △ implicit

LES with parameters for low Schmidt numbers, ▽ implicit LES with parameters for

high Schmidt numbers, ◦ DNS [150], ⋄ semi DNS [149]. � K+ for DNS [124, 127, 128]

of channel flow at Reτ = 150. × K+ for LES of channel flow at Reτ = 640 using the

dynamic mixed SGS model [17]. Lines denote curve fits of Shaw and Hanratty [152]

to experimental data for turbulent pipe flow: ·−·−·− K+ = 0.0649 Sc−2/3
−−−−

K+ = 0.0889 Sc−0.704.

is proposed by Na et al. [124], whereas our LES results and the reference DNS at

Reτ = 180 rather give

K+ = 0.041Sc−0.5 . (6.30)

To deal with the resolution requirements at high Schmidt numbers, Schwertfirm

and Manhart [149] propose a semi-DNS methodology. Semi-DNS is an accurate but

still rather expensive method, where the flow field is fully resolved and an SGS model is

added to the scalar transport equation. Fig. 6.11 shows results for semi DNS at Sc = 100

and 1000. The semi-DNS data for Sc = 100 are in perfect agreement with our LES data

and the Lagrangean DNS, whereas the LES result for Sc = 1000 lie 10% below

that for the semi-DNS, suggesting that the grid-resolution limit of the implicit LES is

reached. Satisfying the resolution requirements imposed by the momentum equation,

our computational grid is relatively coarse for LES of scalar mixing at high Schmidt

numbers. Nevertheless, the computational results suggest that LES on this grid can

deliver reliable results up to Sc = 500. For the present study no wall modeling is

applied. Whether the resolution limit can be pushed to higher Schmidt numbers by

using wall models remains an open question to be studied in future work.

Classical LES of turbulent channel flow at high Schmidt number have been performed

by Calmet and Magnaudet [17] using the dynamic mixed model (DMM) of Zang

et al. [190]. The chosen Reynolds number of Reτ = 640 made it necessary to use

much finer grids than in the present study. The DMM results for K+ lie above all other
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Figure 6.12: Grid-convergence study for implicit LES of passive-scalar transport in turbulent channel

flow at Reτ = 180 and Sc = 10. Implicit LES using the high Schmidt number SALD

method on a grid with −−−−−−− 643 cells , ·−·−·− 483 cells , −−−− 323 cells −··−··−
243 cells. ◦ DNS of Schwertfirm and Manhart [150]

numerical predictions for channel flow but match well with Eq. 6.27. The discrepancy

with other channel-flow data is opposite to the Reynolds-number trend predicted by

the DNS cited above, which give larger K+ for smaller Reτ . Therefore, it is unclear

whether this result can be attributed to the Reynolds number or reflects modeling

uncertainties.

6.5.4 Grid-Resolution Study

The LES presented in the preceding section were performed on identical grids with 483

cells. Although this resolution was chosen somewhat arbitrarily, implicit LES using this

grid accurately predicts the passive-scalar statistics for Schmidt numbers 1 ≤ Sc ≤ 25.

In the following we study the effect of grid resolution qualitatively. Statistics of LES data

at different spatial resolutions are compared with statistics of unfiltered DNS data. For
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Figure 6.13: Grid-convergence study for implicit LES of passive-scalar transport in turbulent channel

flow at Reτ = 180 and Sc = 10. Implicit LES using the high Schmidt number SALD

method on a grid with −−−−−−− 643 cells , ·−·−·− 483 cells , −−−− 323 cells −··−··−
243 cells. ◦ DNS of Schwertfirm and Manhart [150]

increasing resolution, LES results should converge to those of DNS. Figures 6.12 and 6.13

show profiles of mean scalar concentration, scalar variance, and turbulent transport for

DNS and LES of turbulent channel flow at Reτ = 180 and Sc = 10. The reference DNS

was conducted by Schwertfirm and Manhart [150] on a grid with 720 × 300 × 384

cells. DNS data are compared to four LES on grids with 243, 323, 483, and 643 cells,

respectively. The results from implicit LES with 643 cells are in very good agreement

with the reference DNS. The results for lower resolutions show convergence towards the

DNS with decreasing grid width. This tendency is most visible for the turbulent scalar

transport, Fig. 6.13, whereas the scalar variance itself is rather insensitive to the grid

resolution, Fig. 6.12. Generally, we observe monotonic convergence toward the DNS.
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6.6 Summary

The implicit SGS modeling environment provided by the adaptive local deconvolution

method has been extended to LES of passive-scalar mixing. A difficulty of this modeling

task is that the various regimes that exist for the passive-scalar variance spectrum have to

be recovered by the SGS model. Our analysis revealed that two different parameter sets

are required: one set for low Schmidt numbers and one set for high Schmidt numbers.

The choice of model parameters has been validated for forced isotropic turbulence and

for turbulent channel flow. Both applications demonstrate that implicit LES provides

reliable predictions of the turbulent transport of passive scalars for a wide range of

Schmidt numbers.

A key issue in LES is how an SGS model that is calibrated for isotropic turbulence

handles the near wall turbulence. We conclude that the implicit modeling approach gives

good results for the turbulent transfer of heat or mass from walls without additional

modeling. ALDM results compare well with experimental data and with numerical

predictions obtained from considerably more expensive numerical methods.



— CHAPTER SEVEN —

LES OF TURBULENT

BOUNDARY-LAYER

SEPARATION

Highly resolved large-eddy simulations of turbulent boundary-layer separation are

presented in this chapter. The behavior of incompressible fully-turbulent flat-plate

boundary-layer flow subjected to a constant adverse pressure gradient (APG) is in-

vestigated. Reynolds number and pressure-gradient parameters are adapted to the

experimental setup of Indinger et al. [77] who conducted measurements in a closed-

circuit water tunnel. A special focus of the analysis is placed on scaling laws for the

mean-velocity profiles under non-equilibrium conditions approaching pressure-induced

separation1.

7.1 Introduction

There is considerable controversy regarding the behavior of the mean-velocity profile of

turbulent boundary layers approaching separation [45, 77, 108]. Asymptotic expansions

predict a pressure-gradient independent inner region, provided that the Reynolds

number is sufficiently large [126]. While some experiments [103, 159, e.g.] suggest that

the classical logarithmic law of the wall is valid even under a strong adverse pressure

gradient and non-equilibrium conditions, other experiments indicate that, based on inner

scaling, the mean velocity profile is not self-similar when approaching separation [33, 125,

e.g.].

Recently, Indinger et al. [77, 78] have presented measurements for a fully-turbulent

flat-plate boundary layer with a constant APG. Fig. 7.1 shows the experimental setup

in the test section of a closed-circuit water tunnel with flow from left to right. The

measurements were conducted in the boundary layer developing on an inclined flat plate.

A flexible curved wall on the opposite side is used to generate a pressure gradient, where

1 This presentation is based on Refs. [64, 67]
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the pressure-gradient parameters can be controlled by adjusting the curvature. The test

section has an overall length of 0.8 meters and a cross section area of 0.4 × 0.4 square

meters. The flat plate, inclined by 4 degrees, has an overall length of 0.725 meters

and a flap at the end to prevent trailing-edge separation. The plate surface is made

from mirrored glass, which facilitates optical measurements close to the wall. Several

auxiliary devices are necessary to control the flow quality. A bypass system below the

flat plate and a suction system have been installed to control the stagnation-point flow

at the elliptic leading edge of the plate. To prevent boundary-layer separation at the

opposite wall due to curvature effects, a second suction system consisting of three slots

is installed at the upper rear end of the test section. For a detailed description of the

experimental facilities refer to Indinger [76].

In the spanwise center plane, the static wall pressure and profiles of the streamwise

velocity component were measured using pressure taps and a one-component LASER

Doppler anemometry (LDA) system, respectively. For measurements of the wall shear

stress, a Preston tube was employed.

Figure 7.1: Experimental setup in the test section of a water tunnel [78]. The computational domain

of the present LES is marked by the dashed white line.

The available measurement data do not provide the fully-3-D statistics that are essential

for an analysis of the turbulent non-equilibrium flow. To gain a deeper understanding

of wall-bounded turbulence in the vicinity of massive pressure-induced separation a

numerical investigation by LES was carried out that is reported in the following.

Numerical investigations of boundary-layer separation are rare in the literature. The
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applicability constraints of available turbulence models are well known for pressure-

induced boundary-layer separation. Direct numerical simulations provide high accuracy

but are limited to low Reynolds number and moderate flow complexity. A frequently

cited study is that by Na and Moin [122, 123] where turbulence is barely developed.

Spalart and Coleman [167] performed DNS of weakly separated boundary-layer flows.

Manhart and Friedrich [109] presented DNS of weak separation adapted to the

experiment by Kalter and Fernholz [82], where Reynolds number of the DNS is

half of the experimental one.

To our knowledge, this work represents the first successful reproduction of an experiment

of massively separated flow by LES. The Reynolds number based on the local free-

stream velocity and momentum thickness is Reδ2 = 670 at the inflow and Reδ2 = 5100 at

the separation point. Clauser’s pressure-gradient parameter increases monotonically

from β = 0 up to around β = 100 since a constant pressure gradient is prescribed

corresponding to the reference experiment. It should be noted that under the conditions

considered here the adverse pressure gradient leads to a highly unsteady and massive

separation. Neither separation nor reattachment are fixed in space. Showing a strongly

irregular shape, the instantaneous separation line has spanwise and temporal excursions

that are significantly larger than the mean boundary-layer thickness.

7.2 Computational Setup

7.2.1 Numerical Method

The incompressible Navier-Stokes equations are discretized on a staggered

Cartesian mesh. For time advancement the explicit third-order Runge-Kutta

scheme of Shu [153] is used. The time-step is dynamically adapted to satisfy a

Courant-Friedrichs-Lewy condition with CFL = 1.0. All results presented in

this chapter are obtained by the SALD method, see Appendix B, which represents a

computationally efficient implementation of ALDM. The pressure-Poisson equation

and diffusive terms are discretized by second-order centered differences. The Poisson

solver employs fast Fourier transforms in the spanwise direction and the stabilized

bi-conjugate gradient (BiCGstab) method [160, 174] in the streamwise and wall-normal

directions. The Poisson equation is solved at every Runge-Kutta substep.

Computational results presented in Section 5.3.3 have approved that our numerical

methodology allows for accurate predictions of turbulent boundary-layer flows. The

applicability of ALDM for separated flows has been established by Ref. [74].
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7.2.2 Computational Grid

The computational domain considered in the LES is indicated by a dashed white line in

Fig. 7.1. It has an overall physical length of 1.01 meters. The spanwise and wall-normal

extents are 0.036 meters and 0.15 meters, respectively. For comparison, the displacement

thickness of the inflow boundary layer is δ∗(x = 0) = 0.0008 meters. In the following all

data are made dimensionless with reference length 1 meter and reference velocity 1 meter

per second, i.e., all measures are given in SI units except if mentioned otherwise. The

Cartesian grid consists of 2038×144×144 finite volumes. The spacing is homogeneous

in streamwise and in spanwise directions, where the cell dimensions are hx = 5 · 10−4

and hy = 2.5 · 10−4 , respectively. In the wall-normal direction a hyperbolic stretching is

used to increase resolution near the wall. The computational grid classifies the present

LES as highly resolved. Cell sizes are chosen as to allow for a reliable simulation of the

incoming ZPG boundary layer flow, see Tab. D.5.

7.2.3 Statistical Analysis

For statistical analysis, the simulation was run for tave = 23.7 seconds of physical time2

after reaching a stationary state. A clearer picture of the sample size is obtained from the

averaging time expressed in typical boundary-layer time scales, i.e., tave/(δ∗/U∞) for the

outer region and tave/(l+/Uτ ) near the wall. A typical timescale of the wall-turbulence,

the ratio of turbulent kinetic energy to its production rate, is about 15 wall time units

l+/Uτ [166]. As shown in Tab. D.5, the statistical analysis is conclusive for the attached

flow up to x ≤ 0.475 meters. The separation bubble itself exhibits a much larger time

scale than the boundary-layer turbulence. Fully converged statistics from the available

samples cannot be expected for higher-order statistics at locations within the separated

zone.

7.2.4 Boundary Conditions

The computational domain considered in the LES as indicated in Fig. 7.1 represents

only a part of the experimental facility. The flow within the computational domain is

determined by the surrounding flow which has to be represented by imposing appropriate

boundary conditions. At the domain boundaries three layers of ghost cells are added so

that stencils reaching beyond the domain boundary can be used. The methods employed

for assigning data to these ghost cells are described in the following.

2 tave = 23.7 seconds correspond to roughly 11 500 CPU hours on a NEC SX8 vector machine.
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Spanwise periodicity was imposed since the flow is supposed to be homogeneous in this

direction. At the surface of the flat plate a no-slip condition u = 0 and a homogeneous

Neumann condition for the pressure ∂yp = 0 is imposed. The viscous sublayer layer is

resolved and no wall model is used. The ghost cells are filled with the analytical solution

for Stokes flow as recommended by Morinishi et al. [120].

The free-stream interface is modeled by prescribing a Dirichlet condition for the

pressure p = pfs(x, t). The velocity is locally split in the instantaneous spanwise mean

umean =

∫
udz∫
1dz

and local instantaneous fluctuations

ufluc = u − umean .

Mean velocity and fluctuations are extrapolated from the computed domain to the ghost

cells in such a manner that ∂yumean = 0 and ∂yufluc = −αufluc are fulfilled, respec-

tively. The latter results in the decay condition ufluc(y) ∝ exp (−αy). The value of

the parameter α = 1/(4hy) was determined from the wavelength of numerically induced

oscillations that were observed when the decay condition was not used. This free-stream

boundary condition allows for both outflow and inflow. Ghost cells are filled by using a

discrete second-order approximation of the above equations.

In the experiments, the pressure has been measured at the plate surface only. For

optimum agreement of the wall-pressure distribution with the experimental data, the

free-stream pressure boundary condition for the present LES was reconstructed by a

large number of low-resolution trial computations. The resulting free-stream pressure

boundary condition is a function of the streamwise coordinate defined by

pfs(x, t) = ρ

x∫

0

(0.79 − 0.60 x′) b(x′, t) dx′ , (7.1)

where ρ is the fluid’s density. In the experimental facility, flow separation causes a

breakdown of the constant pressure gradient by its displacement effect. Therefore a

positive pressure gradient should be imposed only within the zone of attached boundary
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layer flow. In order to ensure smooth transients, we define

b(x, t) =





0 , x < (xB − xRB)

1 + x−xB

xRB
− 1

2π
sin(2π x−xB

xRB
) , (xB − xRB) ≤ x < xB

1 , xB ≤ x < xE

1 − x−xE

xRE
+ 1

2π
sin(2π x−xE

xRE
) , xE ≤ x < (xE + xRE)

0 , (xE + xRE) ≤ x

. (7.2)

Time dependency enters trough xE = xD(t) + 0.1 where xD(t) is the instantaneous

position of the spanwise averaged detachment line. A summary of all parameters is

given in Table 7.1.

Parameter Value

xB starting point of nominal pressure gradient −0.025

xRB length of starting ramp 0.02

xE end nominal pressure gradient xD + 0.1

xRE length of end ramp 0.15

xD location of spanwise averaged detachment line variable

Table 7.1: Parameters for the free-stream pressure boundary condition.

At the inlet, fully turbulent inflow data are generated using a recycling technique, similar

to that of Lund et al. [106]: Instantaneous turbulent structures are extracted at a

downstream distance lrec ≈ 40δ∗. Inside the boundary layer, target profiles for the

fluctuating velocities are taken from Spalart’s zero-pressure-gradient boundary-layer

DNS [166] at Reδ2 = 670. In the outer flow region, isotropic turbulence is assumed

with a turbulence level of Tu = 0.03 matched to the experiment. For the pressure a

homogeneous Neumann condition ∂xp = 0 is used. Figure 7.2 shows mean velocity

profile and Reynolds stresses at x = 0, the inflow plane is located at x = −0.045.

Recycling techniques can sustain spurious oscillations with a wavelength proportional to

the recycling length. In order to damp these oscillations the re-scaling factors are com-

puted for each ghost-cell plane separately: For the innermost ghost-cell plane, target pro-

files are taken from the DNS of Spalart [166]. For the remaining two upstream planes,

the target fluctuation profiles are damped in such a way that ∂x〈u′u′〉 = 〈u′u′〉/lrec is

satisfied.
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Figure 7.2: Mean velocity profile and Reynolds stresses at x = 0.

(a) −−−−−−− 〈u〉 , −−−− 〈v〉. (b) −−−−−−− 〈u′u′〉 , ·−·−·− 〈v′v′〉 , −··−··− 〈w′w′〉 ,

−−−− 〈u′v′〉.

At the outlet the ghost cells are filled by extrapolation. For a second-order centered

discretization ∂xp = 0 and ∂2
xu = 0 are fulfilled . No artificial damping or sponge zone

is used.

7.3 Results and Discussion

7.3.1 General Overview

A first impression of the investigated flow can be obtained from the mean streamlines

in Fig. 7.3. Contour plots of the mean velocity solution as well as for mean pressure

are shown for the entire computational domain in Fig. 7.4. The influence of a strong

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0
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0.1
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y
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Figure 7.3: Mean streamlines.

adverse pressure gradient is evident. The mean-flow deceleration results in an increasing

fraction of back-flow events and eventually causes strong boundary-layer separation. The

boundary-layer separation is accompanied by a large wall-normal velocity component

and intense interactions with the outer flow.
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Figure 7.4: Contours of (a) mean streamwise velocity, (b) mean wall-normal velocity, and (c) mean

pressure.

Fig. 7.5 shows mean profiles of the streamwise and wall-normal velocity components

for several downstream stations. In this figure, the shape of the separation bubble is

indicated by two lines that represent different criteria: The locations where the mean

streamwise velocity component does vanish, i.e. 〈u〉 = 0, and the locations where forward

flow and upstream flow have equal probability (χ = 0.5). Both criteria give a similar

result, however, some differences can be observed close to the separation point. The wall-

normal extent of the separated region is slightly thicker for χ = 0.5 than for 〈u〉 = 0.

The probability of back flow is quantified by the reverse-flow parameter

χ =
1

2
− 1

2

〈
u

|u|

〉
(7.3)

which measures the fraction of time that the flow moves upstream. Wall-normal profiles

of χ are shown in Fig. 7.6 and streamwise profiles are shown in Fig. 7.7a. We observe

that flow separation is accompanied by the shift of the location of maximum χ away

from the wall towards the detached shear layer.
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Figure 7.5: Mean velocity profiles at several downstream stations. −−−−−−− mean velocity, −−−−

〈u〉 = 0 , ·········· χ = 0.5 .
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Figure 7.6: Reverse-flow-parameter profiles at several downstream stations.

The following terminology has been proposed by Simpson [156, 158] to define the separa-

tion state quantitatively: Incipient detachment (ID) occurs with χ = 0.01, intermittent

transitory detachment (ITD) occurs with χ = 0.2, transitory detachment (TD) occurs

with χ = 0.5, and detachment (D) occurs where the time-averaged wall shearing stress

is zero. The corresponding locations for the LES of the present configuration are given

in Tab. 7.2. In agreement with most available data, our computational results confirm

that TD and D occur at the same location.
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Term Definition Location

ID incipient detachment χ = 0.01 x = 0.287

ITD intermittent transitory detachment χ = 0.2 x = 0.457

TD transitory detachment χ = 0.5 x = 0.502

D detachment 〈τw〉 = 0 x = 0.502

Table 7.2: Separation state near the wall for present LES in Simpson’s terminology.
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Figure 7.7: (a) Reverse-flow parameter: −−−−−−− at the wall and −−−− maximum value. (b) Mean

static pressure at the −−−− free-stream interface and at the −−−−−−− wall. The ··········
dotted line denotes the target pressure gradient of 810 Pa/m according to experimental

reference data.

7.3.2 Separation Dynamics

The separated-flow region reflects the turbulent nature of the incoming boundary layer

and shows a rather complex behavior. In front of the large separated zone, small zones

of reverse flow are continuously formed which then either slowly move downstream and

join the separated region or disappear shortly after their appearance. This highly active

zone ranges from x = 0.4 to x = 0.55. We have observed that the separated zone can be

divided into two subregions that move independently. Also typical for this configuration

is secondary flow separation which occurs inside large separated regions. Figure 7.8

shows the footprint of the turbulent boundary layer separation, i.e., the locations with

zero instantaneous wall-shear stress as a function of time. Figure 7.9 shows contours of

the instantaneous streamwise wall-shear stress. Different regimes of wall turbulence can

be distinguished. Typical streaky structures dominate the boundary layer at the inflow.

As the flow experiences the adverse pressure gradient, the average width of the streaks
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Figure 7.8: Footprint of the spanwise averaged separation bubble. Shown are locations of zero instan-

taneous wall-shear stress. The right figure is a closeup of the most active region.

grows and their relative length decreases. Intermittent backflow is observed from x = 0.1

onwards. There is no well-defined separation line, instead the fraction of separated flow

zones increases gradually. Energetic streak-like structures can penetrate deeply into the

detached region. Within the separated region eddies with large spanwise extents are

dominating. Secondary flow reversion occurs in several regions. Streaky structures are

found again shortly before the reattachment.
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Figure 7.9: Instantaneous contours of the wall-shear stress.
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Figure 7.10: Instantaneous snapshot of vortical structures visualized by iso-surfaces of the Q criterion

and flow separation visualized by the iso-surface of zero streamwise velocity, part one.

The reattachment line is much smoother than the detachment line. Generally, the flow

structures observed at and after reattachment are one order of magnitude larger than

those within the attached boundary layer before separation. A flow visualization is

presented in Fig. 7.10.

7.3.3 Comparison of Numerical and Experimental Results

The mean static pressure imposed as a boundary condition at the free-stream interface is

shown in Fig. 7.7b. The mean pressure distribution at the wall is the nonlinear response

of the flow and strongly influenced by the boundary-layer separation. The oscillatory

motion of detached flow regions has a significant effect on the upstream flow resulting in

a deviation of the wall pressure from the imposed free-stream condition, see Fig. 7.7b.

The resulting wall-pressure gradients 〈∂xp〉wall/ρ for LES and the experiment are shown

in Fig. 7.12a. Taking into account the noise in derivatives computed from experimen-

tal data, LES results and experiment agree well. This first impression is confirmed

by the observed deceleration of the free-steam velocity U∞, see Fig. 7.12b, that can

be measured more accurately. Mean-flow deceleration is directly caused by the APG

through Bernoulli’s equation and the excellent agreement of U∞ confirms that both

the pressure gradient and the mean streamline curvature are reproduced correctly.
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Figure 7.11: Instantaneous snapshot of vortical structures visualized by iso-surfaces of the Q criterion

and flow separation visualized by the iso-surface of zero streamwise velocity, part two.

A turbulent boundary layer can by characterized by several length scales. The boundary-

layer thickness δ serves as a measure for the largest structures in the boundary-layer flow.

It is defined as the distance away from the wall where 99 percent (δ99) of the free-stream

velocity U∞ is reached. In APG boundary layer flow, however, the velocity is not constant

in the free stream. For the experimental data, Indinger [76] has manually selected the

LDA measurement points representing the transition region between boundary layer and

free stream. For the LES, the boundary layer edge is determined as the point where the

streamwise velocity starts to diverge from the linear dependency on wall distance of the

external flow. The velocity at this point is defined as U∞ and δ follows from

δ = y (〈u〉 = Uδ) (7.4)

with

Uδ = 0.99 U∞ . (7.5)

Length scales based on integral definitions are less sensitive to errors. Fig. 7.13 shows

the boundary-layer displacement thickness

δ1 =

∞∫

0

(
1 − 〈u〉

Uδ

)
dy , (7.6)
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Figure 7.12: (a) Mean pressure gradient at the wall, and (b) free-stream velocity at the boundary-layer

edge for ◦ experiment and −−−−−−− LES.

the boundary-layer momentum thickness

δ2 =

∞∫

0

〈u〉
Uδ

(
1 − 〈u〉

Uδ

)
dy , (7.7)

and the boundary-layer energy thickness

δ3 =

∞∫

0

〈u〉
Uδ

(
1 −

(〈u〉
Uδ

)2
)

dy. (7.8)

Pressure gradient and incipient separation result in a fast growth of the boundary-layer

thicknesses, see Tab. D.5. We observe a very good agreement between experiment and

simulation for δ1, δ2, and δ3, see Fig. 7.13.

The different thickness measures are used to define non-dimensional parameters which

characterize the shape variation of the mean velocity profile. The parameters H12 and

H32, see Fig. 7.14, are defined as the ratio of displacement thickness to momentum

thickness

H12 =
δ1

δ2

, (7.9)

and as the ratio of energy thickness to momentum thickness

H32 =
δ3

δ2
, (7.10)

respectively. Near the inflow, H12 is around 1.5. The parameter H12 increases with

incipient backflow and doubles its value before boundary-layer separation. H32 shows
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Figure 7.13: Integral measures for the boundary-layer thickness: (a) boundary-layer thickness, (b)

displacement thickness, (c) momentum thickness, (d) energy thickness. −−−−−−− LES , ◦
measurement.

a notable inflow transient, that might result from the fact that the pressure gradient

adjusts rapidly behind the inflow boundary. After this transient, H32 decreases from

about 1.75 to a minimum of about 1.5 at detachment. Simulation and experiment show

essentially the same behavior, where the LES predicts slightly higher values for H32 and

slightly lower values for H12 than those determined experimentally.

Dimensionless pressure-gradient parameters are frequently used to classify and to com-

pare APG boundary-layer flows. Fig. 7.15 shows four widely used parameters, namely

the Clauser pressure parameter [25]

β =
δ1

ρU2
τ

〈∂xp〉 , (7.11)

the Patel pressure gradient [129]

∆P =
ν

ρU3
τ

〈∂xp〉 , (7.12)
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Figure 7.14: Shape parameters: (a) H12 displacement thickness to momentum-loss thickness, (b)

H32 energy-loss thickness to momentum-loss thickness. −−−−−−− present LES , ◦ LDA

measurement.

the pressure-gradient parameter of Castillo et al. [19, 20]

Λδ2 =
δ2

ρU2
δ ∂xδ2

〈∂xp〉 , (7.13)

and the acceleration parameter

K =
ν

U2
δ

〈∂xUδ〉 . (7.14)

The latter parameter has the advantage that it does not incorporate the pressure gradient

and the wall-shear stress. By Bernoulli’s equation its link to the pressure gradient is

K = − ν

ρ U3
δ

〈∂xpδ〉 . (7.15)

Clauser [25] proposed β = const as criterion for determining the equilibrium similarity

state of boundary layers with pressure gradient. The pressure-gradient parameter ∆P

was used by Patel [129] for grading the severity of the pressure gradient as it affects

Preston-tube measurements. In more recent analysis, Castillo and George [19]

argued that rather a constant value of the pressure parameter

Λ =
δ

ρU2
δ ∂xδ

〈∂xp〉 , (7.16)

is the necessary condition for equilibrium. Castillo et al. [20] found that Λδ2 ≈ Λ has

nearly the same value, Λδ2 = 0.21 ± 0.01, for most APG equilibrium boundary layers
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Figure 7.15: Pressure-gradient parameters (a) Clauser pressure-gradient parameter, (b) Patel

pressure gradient, (c) dimensionless pressure-gradient parameter K, (d) dimensionless

pressure-gradient parameter Λδ2
. −−−−−−− present LES , ◦ experiment.

and that even separating boundary layers have a tendency to remain in an equilibrium

state. Following this result, most experimentally studied boundary layers are equilibrium

boundary layers. The boundary layer flow investigated in this work is in strong non-

equilibrium state under both the β criterion and the Λδ2 criterion, see Tab. D.5. The

parameter values computed from the LES and the experimental data agree well, see Fig.

7.15.

The characteristic velocity of the near-wall region is the wall-friction velocity Uτ =√
ν| 〈∂yu〉 |wall. Fig. 7.16a shows the experimental wall-friction velocity and that of the

present LES. Some differences between LES and experiment are evident. They become

more visible for the local non-dimensional wall-friction coefficient Cf = 2U2
τ /U2

δ shown

in Fig. 7.16b. We believe that these differences result mostly from uncertainties in the

experimental determination of the wall friction3. Indinger used a Preston tube to

measure the dynamic pressure at the wall from which the wall-friction velocity Uτ was

3 Indinger, personal communication
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Figure 7.16: (a) Wall-friction velocity Uτ −−−−−−− present LES, ◦ Preston-tube measurement. (b)

Local wall-friction parameter Cf −−−−−−− from present LES, ◦ Preston-tube measurement,

−−−− correlation of Fernholz [39] using LES data, � correlation of Fernholz [39]

using LDA measurements.

computed by means of tabulated calibration data of Head and Ram [59]. By construc-

tion, Preston-tube measurements are inaccurate for flow regions with instantaneous

backflow, i.e. from ID onwards. Even for attached flow the accuracy is limited under

the presence of strong pressure gradients [129].

This issue is now investigated more closely by using another means of computing Cf

from experimental data. Following Fernholz [39], the functional

Cf = 0.058 lg

((
8.05

H12

)1.818
)1.705

Re−0.268
δ2

(7.17)

allows to approximate the local wall-friction coefficient from the non-dimensional integral

parameters H12 (7.9) and Reδ2 (7.20) which are less sensitive to measurement errors. In

Fig. 7.16b this correlation is applied to both the experimental and the numerical data. A

good agreement of simulation and experiment is observed. In the region with significant

backflow, between ID and D, the correlation functional of Fernholz [39] gives Cf almost

identical to that computed from the wall-friction of the LES.

The viscous length scale l+ = ν/Uτ characterizes the size of the smallest coherent struc-

tures that occur close to the wall. An integral scale based on an defect formulation and

the wall-friction velocity is the Rotta-Clauser length

∆RC =

∞∫

0

Uδ − 〈u〉
Uτ

dy. (7.18)
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Figure 7.17: Length scales based on wall-friction for −−−−−−− present LES and for ◦ Indinger’s Pre-

ston-tube measurement. (a) viscous length-scale. (b) Rotta-Clauser length.

Graphs for both length scales are presented in Fig. 7.17 showing a good agreement be-

tween LES and experiment. Differences between LES and experiment can be attributed

to the Preston-tube measurement of Uτ as mentioned before.

From the characteristic scales of the boundary layer various non-dimensional Reynolds

numbers can be computed. Fig. 7.18 shows the displacement-thickness Reynolds

number

Reδ1 =
Uδδ1

ν
(7.19)

and the momentum-thickness Reynolds number

Reδ2 =
Uδδ2

ν
, (7.20)

for experiment and computation, which are in good agreement.
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Figure 7.18: (a) Reynolds number based on momentum-loss thickness, (b) Reynolds number

based on displacement thickness, and −−−−−−− present LES and ◦ LDA measurement.
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Figure 7.19 shows mean velocity profiles at six downstream stations that are represen-

tative for APG turbulent boundary-layer flow approaching separation. Also shown are

available measurements. The data are not normalized in order to allow for a direct and

unbiased comparison of experimental and numerical results. The mean velocity profiles

of the present LES are in excellent agreement with the experiment.

7.3.4 REYNOLDS Stress and Anisotropy Tensor

In addition to mean-velocity profiles, Indinger provides second-order correlations of

the streamwise velocity. LES and experiment compare well for the streamwise-normal

component of the Reynolds-stress tensor, see Fig. 7.21. We observe a characteristic

change of the shape of the Reynolds-stress profiles. With decreasing distance from

separation the stress maximum associated with the buffer layer weakens and a new

maximum is formed in the outer part. Contours of the turbulent kinetic energy and the

Reynolds shear stress for the LES prediction are shown in Fig. 7.20.
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Figure 7.20: Contours of turbulence energy and mean Reynolds shear stress.

Both the simulation and the experiment show the same quantitative profiles and tenden-

cies. After a perfect match at the first stations the experimental fluctuations are slightly

lower than the prediction at the later stations. Noted that this finding is consistent with

the fact that not only the LES but also the measured data are filtered. Indinger [76],

page 182 states 5.6 · 10−4 for the spanwise extent of the LDA system’s measurement vol-

ume, which corresponds to twice the LES filter width. Additional smoothing operations

are involved in the analysis of the LDA data.
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Figure 7.19: Mean velocity profiles (raw data) −−−−−−− 〈u〉 and −−−− 〈v〉 for LES, ◦ 〈u〉 for LDA.
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Figure 7.21: Reynolds stress tensor (raw data) −−−−−−− 〈u′u′〉 , −··−··− 〈v′v′〉 , ·−·−·− 〈w′w′〉 ,

and −−−− 〈u′v′〉 for LES, ◦ 〈u′u′〉 for LDA.
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The traceless Reynolds stress anisotropy tensor is

aij =

〈
u′

iu
′
j

〉

〈u′
ku

′
k〉

− 1

3
δij , (7.21)

where δij is Kronecker’s delta. Following Lumley and Newman [105] and Lumley

[104], the local Reynolds-stress anisotropy can be characterized by the invariants

I2 = −aijaji

2
(7.22a)

I3 =
aijajkajk

3
(7.22b)

of the anisotropy tensor. Note that for the first invariant immediately follows I1 = aii ≡ 0

from definition (7.21). Typical anisotropy states correspond to certain regions in the

(I3, I2) plane, the so-called anisotropy-invariant map. Isotropic turbulence corresponds

to (0, 0). Axisymmetric two-component turbulence is found at (−1/108, −1/12) and

perfect one-component turbulence corresponds to (2/27, −1/3). All realizable states of

turbulence are found within a triangular region, the Lumley triangle, spanned by these

three limits. The thin dashed lines in Fig. 7.23 denote the edges of the physically realistic

region which are given by the states of axisymmetric turbulence |I3/2|1/3 = (−I2/3)1/2

(where I3 < 0 corresponds to axisymmetric contraction and I3 > 0 to axisymmetric

expansion) and by the two-component state 1/9 + I2 + 3I3 = 0.

Non-zero components of aij are shown in Fig. 7.22. We study the anisotropy state at

four stations of attached flow, at separation, and at one station for detached flow. The

curves are very similar. In the logarithmic layer of attached flow we find a plateau with

a11 = 0.2 . . . 0.3 , a22 = −0.15 . . .−0.2 , a33 = −0.03 . . .−0.06, and a12 = 0.12 . . .−0.15.

a11 shows a peak with amplitudes up to ≈ 0.5 near the wall. This peak disappears at

separation but develops again within the separated flow region. Although isotropic fluc-

tuations were induced at the inflow plane, the free-stream turbulence is not isotropic due

to the deceleration trough the pressure gradient and due to the unsteady forcing by the

separation bubble. Nevertheless, the Reynolds stresses develop towards an isotropic

state at the boundary layer edge. The invariant maps, Fig. 7.23, show clear differences

between the anisotropy state of attached flow and of flow being about to separate. How-

ever, the paths of the anisotropy state with increasing wall distance show a common

pattern for the considered stations. All paths start with two-component turbulence at

the wall and then move along the upper bound towards the one-component state. Within

the buffer layer the paths turn and follow the line of axisymmetric expansion towards

isotropic turbulence. A kink is observed in the log layer, where all components of aij

exhibit a plateau. All paths end close to the isotropic state.



120 LES OF TURBULENT BOUNDARY-LAYER SEPARATION

0 0.2 0.4 0.6 0.8 1-0.4

-0.2

0

0.2

0.4

0.6

x = 0.1

aij

y/δ
0 0.2 0.4 0.6 0.8 1-0.4

-0.2

0

0.2

0.4

x = 0.2

aij

y/δ

0 0.2 0.4 0.6 0.8 1-0.4

-0.2

0

0.2

0.4

x = 0.3

aij

y/δ
0 0.2 0.4 0.6 0.8 1-0.4

-0.2

0

0.2

0.4

x = 0.4

aij

y/δ

0 0.2 0.4 0.6 0.8 1-0.4

-0.2

0

0.2

0.4

x = 0.5

aij

y/δ
0 0.2 0.4 0.6 0.8 1-0.4

-0.2

0

0.2

0.4

x = 0.6

aij

y/δ

Figure 7.22: Components of the Reynolds stress anisotropy tensor −−−−−−− a11, −··−··− a22,

·−·−·− a33, −−−− a12.
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Figure 7.23: Lumley’s invariant maps for the Reynolds stress anisotropy tensor. Turbulence can

occur only within the −−−− triangular region.
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7.3.5 Skewness and Kurtosis

Indinger has sampled sufficiently large data sets so as to allow for the computation of

higher-order statistics of the streamwise velocity. We present experimental and numerical

results for skewness

γ1 =
〈u′3〉

〈u′u′〉3/2
(7.23)

and excess kurtosis

γ2 =
〈u′4〉
〈u′u′〉2 − 3 (7.24)

in Fig. 7.24 and in Fig. 7.25, respectively. Despite some scatter near the wall and

some spurious data points at the later stations, an excellent match is observed between

experiment and LES.

The turbulence is not exactly but close to Gaussian in the log layer, whereas pronounced

non-Gaussian statistics are found in the laminar sublayer and in the wake region. From

this we may conclude that the flow is in an equilibrium-turbulence state in the log layer

and in the free stream, whereas non-equilibrium dominates the near wall region and the

outermost part of the boundary layer.

For the streamwise component a constant wall-asymptotic value of γ1(u) ≈ 1.25 is found

for all stations 0.15 ≤ x ≤ 0.4. Characteristic excursions to the opposite sign (with

respect to the wall asymptote) are observed at the boundary layer edge. As expected,

the skewness of the spanwise velocity w is zero. The skewness of the wall-normal velocity

is approximately proportional to that of the streamwise component with opposite sign.

At the wall, γ1(v) is in the range of 0.35 . . . 0.7. For all components the wall asymptotes

agree well with the expectation for ZPG wall-bounded turbulence based on DNS and

experiments, see Kim et al. [87], e.g.. We conclude that the pressure gradient’s influence

on the skewness is relatively small.

The excess kurtosis is essentially positive for all velocity components within the boundary

layer. Only the streamwise component shows slightly negative values for the logarithmic

layer where the other components tend to the Gaussian value γ2 = 0. Sharply rising

cusps are found at the boundary layer edge, the peak is strongest for γ2(u). We note that

the magnitude of this peak is very sensitive and may change if more samples were taken.

The wall-asymptotic value of the streamwise component is γ2(u) ≈ 3.8 at x = 0.15 and

rises to about γ2(u) ≈ 4.3 at x = 0.4. The kurtosis of w is always positive and follows

about the same trends as that of u.
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Figure 7.24: Skewness: −−−−−−− streamwise, −−−− wall-normal, and −··−··− spanwise component

for LES. ◦ streamwise component for LDA.
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Figure 7.25: Excess kurtosis: −−−−−−− streamwise, −−−− wall-normal, and −··−··− spanwise com-

ponent for LES. ◦ streamwise component for LDA.
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The wall-normal component, however, shows a steep rise towards the wall. The wall

asymptotic value reaches γ2(v) ≈ 6.5 at x = 0.15 and γ2(v) ≈ 27 at x = 0.4. A similar

behavior of the wall-normal kurtosis was reported for DNS of ZPG turbulence. Kim et al.

[87], for example, found values of γ2(v) = 19 in the viscous sublayer of turbulent channel

flow at low Reynolds number. In contrast, most experiments indicate a maximum

of γ2(v) in the buffer layer and a decrease towards the Gaussian value as the wall is

approached. Lyons et al. [107] argue that this frequently observed discrepancy is caused

by filter operations involved in the analysis of measurement data. A detailed analysis

by Xu et al. [183] corroborated this hypothesis. They found that high values of the

wall-normal kurtosis result from characteristic spikes with large negative values in the

time series of v. These events are associated with exceptionally strong sweeps that are

very rare in space and time.

7.3.6 Scaling Laws for the Mean Velocity Profile

Scaling in inner coordinates

Present LES and experimental results show consistently that the mean velocity profile

can no longer be described by the classical log law alone. Figure 7.3.6 shows mean

velocity profiles from LES in inner scaling with the friction velocity Uτ and viscous

length scale l+. The scaled velocity profiles do not collapse in the wake region and the

classical log region is shortened.
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Figure 7.26: Classical inner scaling tested for mean velocity profiles for LES of attached, decelerated

boundary layer flow. Left: with negligible backflow; Right: approaching separation

0.1 ≤ χ ≤ 0.5.

Indinger et al. [77] claimed also that the log region is affected by the pressure gradi-

ent and reasoned that the failure of the classical inner scaling coincides with the first
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occurrence of instantaneous reverse flow. Indeed, the experimental data, see Fig. 7.3.6,

shows a systematic downshift of the log layer with increasing reverse-flow frequency.
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Figure 7.27: Experimental data in inner coordinates with wall-friction measured by Preston tube.

The present LES, however, reveals that inner scaling remains valid even for substantial

backflow and intermittent transitory detachment, see Fig. 7.3.6. The inner scaling is

valid up to the point where the wall-friction velocity becomes smaller than twice the

value of Simpson’s [157] velocity scale

Up =

(
ν

ρ
|∂xp|

)1/3

(7.25)

based on the pressure gradient, see Fig. 7.28. This mismatch between experiment and
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Figure 7.28: Friction velocity −−−−−−− Uτ compared to pressure-gradient velocity scale −−−− Up.

LES is attributed to the Preston-tube measurement technique used for determining

the wall-shear stress. A small systematic difference in the determined wall friction can

lead to the observed trend of the logarithmic law. Evidence is provided in Fig. 7.29 where
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the experimental velocity profiles are normalized with the numerical prediction for the

wall-shear stress at the respective positions. We find that now also the experimental

data support the inner scaling for the entire range.
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Figure 7.29: Left: Experimental velocity profiles scaled with wall-friction from LES. Right: Numerical

velocity profiles for identical positions.

Other approaches to scalings in inner coordinates [11, 110, e.g.] showed no improvement

over the classical scaling with Uτ and l+ for the wall near region of attached APG

boundary-layer flow with moderate reverse flow frequency.

Scaling in mixed and outer coordinates

The classical approach to scaling in outer coordinates based on Uδ and δ does not give

satisfactory results for our boundary layer data, see Fig. 7.30. In order to improve on this,

von Kármán [177] proposed a defect form for the mean velocity and a mixed scaling

based on the friction velocity and the boundary layer thickness. As a variant of von

Kármán’s scaling, the Rotta-Clauser length (7.18) can be used for scaling the wall

distance. Both scalings have been developed for ZPG boundary layers. The application

to the present case shows that neither the original nor the modified von Kármán

scaling reproduce pressure-gradient effects correctly, see Figures 7.31 and 7.32.

Zagarola and Smits [187] found that velocity profiles of ZPG turbulent pipe flow

approximately coincide if they are scaled in a defect form with the velocity scale Uδδ1/δ.

This scaling leads to a reasonable collapse of the velocity profiles of the present APG

boundary layer. The region for which good agreement is observed covers almost 90

percent of the boundary layer thickness, see Fig. 7.33. To our surprise the collapse is

even better for the later stations with frequent flow reversal.
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Figure 7.30: Classical outer scaling tested for mean velocity profiles of attached, decelerated boundary

layer flow. Left: linear plot; Right: semi-logarithmic plot.
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Figure 7.31: von Kármán scaling [177] tested for mean velocity profiles of attached, decelerated

boundary layer flow. Left: profiles for negligible backflow; Right: approaching separation

0.1 ≤ χ ≤ 0.5.
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Figure 7.32: Modified von Kármán scaling based on the Rotta-Clauser length. Left: profiles

for negligible backflow; Right: approaching separation 0.1 ≤ χ ≤ 0.5.
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Figure 7.33: Zaragola-Smits scaling tested for mean velocity profiles of attached, decelerated

boundary layer flow. Left: profiles for negligible backflow; Right: approaching sepa-

ration 0.1 ≤ χ ≤ 0.5.

7.4 Summary

We have presented well resolved LES of an incompressible fully-turbulent flat-plate

boundary layer subjected to a constant adverse pressure gradient. The APG leads

to a streamwise increasing fraction of back-flow events that eventually results in strong

boundary-layer separation. Reynolds number and pressure-gradient parameters are

adapted to measurements conducted by Indinger et al. [76–78] in a closed-circuit

water tunnel. The computational results are discussed in detail and validated against

experimental data. Experimental and numerical flow data agree very well thus confirm-

ing both the quality of the experimental setup (spanwise homogeneity, e.g.) and the

applicability of our LES methodology.

Conclusions are drawn concerning the scaling of the mean velocity profile of turbulent

boundary-layer flow under non-equilibrium conditions in the vicinity of pressure-induced

separation. The present LES and the experimental results show consistently that the

mean velocity profile can no longer be described by the classical log law. However, while

Indinger found that the failure of inner scaling coincides with the very first occurrence

of instantaneous reverse flow, the present numerical study reveals that inner scaling and

the logarithmic law of the wall remain valid. This mismatch between experiment and

LES is traced back to the Preston-tube measurement technique that was used to

determine the wall-shear stress experimentally. The agreement with the LES improves

significantly when the numerically predicted wall-shear stress is used for determining

the scaling parameters of the experimental velocity profiles. Our results suggest that

inner scaling is valid even under strong adverse pressure gradients if the wall-friction
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velocity is larger than Simpson’s velocity scale based on the pressure gradient and that

the outer scaling of Zagarola and Smits [187] is valid for 0.1δ < y ≤ δ. The latter

finding is consistent with experimental results of Indinger et al. [77].

The main objective of this work is SGS-model development and validation. For this

reason, results of a physical flow analysis are not discussed in depth. The reader is en-

couraged to refer to Appendix D of this work, where supplementary data are presented.
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CONCLUSION

Further development of large-eddy simulation faces a major obstacle in the strong cou-

pling between subgrid-scale modeling and the truncation error of the numerical dis-

cretization. SGS models generally operate on scales that are marginally resolved by the

underlying numerical method. This mutual interference can have large and generally

unpredictable effects on the accuracy of the solution. On the other hand, one can ex-

ploit this link by developing discretization methods from subgrid-scale models, or vice

versa. Approaches where SGS models and numerical discretizations are fully merged are

called implicit LES.

Previous approaches to implicit SGS modeling relied on the application of preexisting

discretization schemes to fluid-flow turbulence. Consequently methods with suitable

implicit SGS model were usually found by trial and error, which had frequently led to

the belief that an implicit subgrid-scale model is merely inferred by the choice of dis-

cretization. Comparative studies have shown that stabilizing under-resolved simulations

by upwind or non-oscillatory schemes is insufficient for accurately representing SGS tur-

bulence. Employing implicit LES for prediction requires numerical methods that are

specially designed, optimized, and validated for the particular differential equation to

be solved. A full coupling of SGS model and discretization scheme cannot be achieved

without incorporating physical reasoning into the design of the implicit SGS model.

The starting point of this work was to improve on these modeling uncertainties by ex-

ploring how implicit subgrid-scale models can be derived systematically. A procedure

for design, analysis, and optimization of nonlinear discretization schemes for implicit

LES was proposed: First, a general non-linear discretization scheme with yet undeter-

mined but adjustable truncation error is to be designed. The resulting method should

be as simple as possible to facilitate computation at reasonable cost, but as complex

as necessary to allow for implicit modeling. In a second step, this general method is

analyzed with respect to its implicit SGS modeling capabilities. This is accomplished

by the identification and modification of discretization parameters inherent to the dis-

cretization scheme. Finally, appropriate values of the discretization parameters have to

be determined in such a way that the truncation error of the method acts as a physical

SGS model.
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This procedure has then been applied in the development of a novel nonlinear discretiza-

tion for implicit LES. Implicit SGS modeling has been carried out for several canonical

situations including isotropic turbulence, wall-bounded flows, and passive-scalar mixing.

A suitable environment for the discretization design was provided by Schumann’s

concept of a finite-volume method. Finite-volume discretizations involve averaging and

reconstruction steps that are related to filtering and deconvolution well known in explicit

SGS modeling. The numerical truncation error of finite-volume methods readily appears

as a divergence of a tensor which is advantageous with respect to physically motivated

implicit modeling. Explicit deconvolution-type SGS models so far had been limited to

linear deconvolution. By employing methods that are well established for essentially non-

oscillatory finite-volume discretizations, the concept of approximate deconvolution was

extended to the solution-adaptive nonlinear case: With the new method a local recon-

struction of the unfiltered solution is obtained from a solution-adaptive combination of

Harten-type deconvolution polynomials. Deconvolution is regularized by limiting the

degree k of local approximation polynomials to k ≤ K and by permitting all polynomials

of degree 1 ≤ k ≤ K to contribute to the approximately deconvolved solution. Adap-

tivity of the deconvolution operator is achieved by dynamically weighing the respective

contributions. A suitable consistent numerical flux function operating on the approx-

imately deconvolved solution provides secondary regularization. The solution-adaptive

stencil-selection scheme and the numerical flux function contain free parameters which

can be used to adjust the spatial truncation error of the discretization. The resulting

method which we refer to as the adaptive local deconvolution method, ALDM for short,

represents a full merging of numerical discretization and SGS model. Incorporating

the essential elements of LES, filtering and deconvolution, the implicit model of ALDM

combines an implicit tensor-dissipation regularization with a generalized scale-similarity

approach.

In classical numerical analysis, the truncation error is analyzed in the limit of small

grid size compared to the smallest flow scale, and discretization coefficients are chosen

in such a way that the formal order of accuracy of the discretization is maximum. In

LES the chosen grid size essentially defines the smallest represented physical scale. At

a finite grid size, the numerical truncation errors interfere with the subgrid-scale model.

In particular for implicit LES, numerical discretization and turbulence model are in-

distinguishable. Unlike with high-order shock-capturing schemes, such as the WENO

method where one tries to maximize the formal order of accuracy for smooth solutions,

free parameters of ALDM were selected in such a way that the truncation error of the

discretization functions as physically motivated SGS model. For the purpose of finding

suitable discretization parameters the modified differential equation of the discretization
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method was analyzed by measuring the spectral numerical dissipation in numerical sim-

ulations of freely decaying homogeneous isotropic turbulence. This a posteriori analysis

followed from the hypothesis that the primary purpose of an SGS model is to provide

the correct spectral distribution of the dissipation of resolved scales by interactions with

modeled SGS stresses. A semi-analytical expression for the eddy-viscosity spectrum of

isotropic turbulence at high Reynolds numbers has been provided by Chollet and

Lesieur based on the eddy-damped quasi-normal Markovian (EDQNM) theory. A

robust automatic optimization procedure based on an evolutionary approach was then

used for minimizing a functional that measures the difference between the spectral nu-

merical viscosity of ALDM and the eddy viscosity from EDQNM. With the optimized

discretization parameters the numerical viscosity matches the theoretical requirements

of EDQNM when isotropic turbulence at high Reynolds numbers is considered. The

normalized eddy-viscosity spectrum of ALDM exhibits a low-wavenumber plateau at

the correct level and reproduces the typical cusp shape up to the cutoff wavenumber

at the correct magnitude. Note that the Chollet–Lesieur eddy viscosity is not en-

forced. Only for inertial-range isotropic turbulence it is necessarily recovered due to the

parameter calibration.

The final implicit SGS model was validated for decaying homogeneous isotropic turbu-

lence with a Kolmogorov spectrum throughout all represented wavenumbers in the

limit case of large Reynolds number. The energy spectrum decayed self-similarly while

preserving the ξ−5/3 law up to the largest wavenumbers. The observed decay rate of the

resolved turbulent kinetic energy agrees well with theory. This agreement is not surpris-

ing but confirms the parameter calibration for this particular case at large Reynolds

numbers. Assuming an ideal Kolmogorov spectrum constitutes a theoretical test

that cannot be studied experimentally because this spectrum does not possess a devel-

oped infra-red range and because the integral length scale is not allowed to grow. As

physically more relevant test, LES initialized with spectrum and Reynolds numbers

adapted to the wind-tunnel experiments of Comte-Bellot and Corrsin were per-

formed. These and other validation cases for unbounded flows suggest that the model

may be more generally valid. It is possible that the optimal values of the model param-

eters might be weakly Reynolds-number dependent, however, contrary to common

experience with most eddy-viscosity models, our up-to-date results do not support such

a conclusion for ALDM.

The response of the nonlinear deconvolution scheme of ALDM to flow anisotropy was

analyzed for turbulent channel flow. With standard weight functionals based on total

variation, ALDM possesses a strongly anisotropic discretization near walls resulting in

a modest underestimation of the wall-friction velocity. The prediction of the wall-shear
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stress can be improved if this effect is properly compensated by a van Driest-type

damping functional. The particular choice of the damping functional plays a minor

role. Results for implicit LES of turbulent channel flow compare well with DNS data in

terms of mean flow and turbulence statistics. Predictions for the anisotropic Reynolds

stresses show improvement over results obtained at same resolution with the dynamic

Smagorinsky model, which is one of the most advanced classical explicit SGS models.

This improvement is attributed to the tensor character of the effective viscosity of the

implicit model. The computational results provide convincing evidence that ALDM can

be employed for the prediction of wall-bounded flows without additional adjustment of

model parameters.

The implicit SGS modeling environment provided by ALDM was also extended to LES

of passive-scalar mixing. An adaptive advection algorithm for passive scalars was devel-

oped where free parameters in the discretization of the passive-scalar transport equation

were calibrated in such a way that the implicit SGS model matches the requirements of

turbulence theory in freely decaying isotropic turbulence at high Péclet number. A dif-

ficulty of this modeling task was that the various regimes that exist for the passive-scalar

variance spectrum have to be recovered by the SGS model. The presented analysis re-

vealed that two different parameter sets are required; one set for low Schmidt numbers

and one set for high Schmidt numbers. The choice of model parameters was validated

for passive-scalar mixing in forced isotropic turbulence and in turbulent channel flow.

Both applications demonstrate that implicit LES can provide reliable predictions of the

turbulent transport of passive scalars for a wide range of Schmidt numbers.

As a final test case an incompressible fully-turbulent flat-plate boundary-layer flow sub-

jected to a constant adverse pressure gradient was considered. Reynolds number and

pressure-gradient parameters were adapted to the experimental setup of Indinger.

The computational predictions were validated against the experimental data. Exper-

imental and numerical results agree very well thus providing a final validation of the

ILES methodology proposed here. Conclusions were drawn concerning the scaling of the

mean velocity profile of turbulent boundary-layer flow under non-equilibrium conditions

in the vicinity of pressure-induced separation. Present LES and experimental results

showed consistently that the mean velocity profile can no longer be described by the

classical log law. However, while Indinger found that the failure of inner scaling coin-

cides with the very first occurrence of instantaneous reverse flow, the present numerical

study reveals that inner scaling and the logarithmic law of the wall remain valid for

intermittent detachment. This mismatch between experiment and LES was traced back

to the Preston-tube measurement technique that was used to determine the wall-shear

stress experimentally. The agreement with the LES improved significantly when the nu-
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merically predicted wall-shear stress was used for determining the scaling parameters of

the experimental velocity profiles. The results suggest that inner scaling is valid in the

near-wall region even under strong adverse pressure gradients if the wall-friction veloc-

ity is larger than Simpson’s velocity scale based on the pressure gradient. Consistently

with experimental results of Indinger, it was found that the scaling of Zagarola

and Smits is valid for the outer region.

In conclusion, ALDM has shown the potential to be a reliable, accurate, and efficient

discretization method for implicit large-eddy simulation. The novel method and the

resulting implicit subgrid-scale model were formulated for turbulent flows governed by

the incompressible Navier-Stokes equations and for passive-scalar mixing. Various

applications demonstrated the good performance of the implicit model. Computational

results agree well with theory and experimental data and show that the implicit SGS

model performs at least as well as established explicit models. This is possible be-

cause physical reasoning was incorporated into the design of the discretization scheme,

and because discretization effects were fully taken into account within the SGS model

formulation.
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BURGERS TURBULENCE

This chapter gives a brief report on the development of an implicit SGS model for the

one-dimensional viscous Burgers equation that paved the way to implicit LES of three-

dimensional Navier-Stokes turbulence. The presentation is based on Refs. [1, 61, 72].

A.1 BURGERS Equation

The underlying conservation law is the viscous Burgers equation, where the flux

F (u) =
1

2
u2 − ν

∂u

∂x
(A.1)

is to be substituted in
∂u

∂t
+

∂F (u)

∂x
= 0 . (A.2)

The initial-value problem is solved on a mesh xi = ih with equidistant spacing h and

i ∈ Z. We call xi the cell centers and xi±1/2 the cell faces of cell i. The grid function

uN = {ui} represents a discrete approximation of u(x) by ui
.
= u(xi).

A.1.1 Discretization design

Consistently with the finite-volume approach of Chapter 2, top-hat filtering (2.10) ap-

plied to the flux derivative ∂F (u)/∂x in Eq. (A.2) returns

G ∗ ∂F (u)

∂x
=

F (ui+1/2) − F (ui−1/2)

h
, (A.3)

which requires an approximation of the solution u(x) at each cell face. The use of a top-

hat filter G allows for a primitive-function reconstruction ũN of u(x) from uN at xi±1/2

by the ALDM reconstruction scheme, see Section 2.3. The resulting reconstructions at

the left and right faces of cell i are denoted by ũL
i−1/2 and ũR

i+1/2, respectively.
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Specifically for the underlaying conservation law, an appropriate numerical flux function

F̃N needs to be devised which approximates the respective physical flux F . One choice

for the 1-D Burgers equation is a modified Lax-Friedrichs flux function

F̃N (xi+1/2) =
1

2

(
F (ũR

i+1/2) + F (ũL
i+1/2)

)
− σi+1/2

(
ũL

i+1/2 − ũR
i+1/2

)
,

where σi+1/2 is a shift-invariant functional of uN . During computational experimentation

we found that the following numerical flux function for our purposes leads to favorable

error cancelations

F̃N(xi+1/2) = F

(
ũR

i+1/2 + ũL
i+1/2

2

)
− σi+1/2

(
ũL

i+1/2 − ũR
i+1/2

)
. (A.4)

The dissipative weight in Eq. (A.4) can be chosen as σi+1/2 = |ui+1 − ui|, e.g..

A.1.2 Modified-Differential Equation Analysis

The modified differential equation for uN is

∂uN

∂t
+

∂FN (uN)

∂x
= GN . (A.5)

A finite-volume approximation of Eq. (A.2) is given by

∂uN

∂t
+ G ∗ ∂F̃N (ũN)

∂x
= 0 , , (A.6)

where the truncation error of the discretization is

GN = G ∗ ∂FN (uN)

∂x
− G ∗ ∂F̃N (ũN)

∂x
. (A.7)

If GN approximates the physical subgrid stress in some sense for finite h we obtain an

implicit subgrid-scale model contained within the discretization.

The exact expression for the convective part of the Burgers equation is

G ∗ ∂FN (uN)

∂x
= uN

∂uN

∂x
+

1

12

∂uN

∂x

∂2uN

∂x2
− 1

720

∂uN

∂x

∂4uN

∂x4
h4+

+
1

30240

∂uN

∂x

∂6uN

∂x6
h6 + O

(
h8
)

,

(A.8)

where derivatives are to be taken at the cell centers xN .
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MDEA is performed here for the semi-discretization only. This is consistent with the

spatially-filtered interpretation of the LES equations, the time step being sufficiently

small for the spatial truncation error to be dominant. Based on the results of Section

A.2.3 we argue that this is indeed the case for a time-step size ∆t chosen according to

the Courant-Friedrichs-Lewy limit [29]

∆t = CFL
h

max
x

∣∣∣∣
∂F

∂u

∣∣∣∣
(A.9)

with CFL ≤ 1. For time-integration we have tested two different explicit Runge-Kutta

schemes, as detailed below. For implicit time integrations or larger time-step sizes an

extension of MDEA to full discretizations should be considered. In this case, however,

the LES is in effect space and time filtered [3]. For all computations the diffusive terms

are discretized by a 4th-order central finite difference.

A.2 Adaptation for Given Explicit SGS Model

On the example of the Smagorinsky model we demonstrate in this section how a given

explicit SGS model can be matched by adjusting parameters of the generic implicit SGS

model. The Smagorinsky model formulated for the Burgers equation is

τSmag = −CSh2

∣∣∣∣
∂u

∂x

∣∣∣∣
∂u

∂x
.

The effective explicit SGS model that is to be inserted on the right-hand side of the

filtered equations is

GSGS = −∂τSmag

∂x
= 2CSh2

∣∣∣∣
∂u

∂x

∣∣∣∣
∂2u

∂x2
.

Since our concern is not to assess the quality of the Smagorinsky model itself, the

particular value of the Smagorinsky constant CS is unimportant. In the following

computational experiments we will use CS = 0.2. With the implicit SGS approach,

we can identify model parameters in such a way that the resulting implicit formulation

matches with the explicit model for K=3 up to order O(h3) as given in Tab. A.1.

Choosing σi+1/2 = 9 CS

∣∣∣ũ−
i+1/2 − ũ+

i+1/2

∣∣∣ in Eq. (A.4), the truncation error GN follows as

GN = 2 CS

∣∣∣∣
∂u

∂x

∣∣∣∣
∂2u

∂x2
h2 − 1

6
CS

∣∣∣∣
∂u

∂x

∣∣∣∣
∂4u

∂x4
h4 + O

(
h6
)

. (A.10)
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Parameter γ
+1/2
1,0 γ

+1/2
2,0 γ

+1/2
2,1 γ

+1/2
3,0 γ

+1/2
3,1 γ

+1/2
3,2

Value 1
1

3

2

3

4

10

3

10

3

10

Table A.1: Result for the discretization parameters γk,r to match the explicit Smagorinsky model.

A.2.1 Results for Forced BURGERS Turbulence

A relevant one-dimensional model for Navier-Stokes turbulence is a properly forced

Burgers equation. Here we employ a stochastic force as suggested by Chekhlov and

Yakhot [22],

∂u

∂t
+

1

2

∂u u

∂x
= ν

∂2u

∂x2
+ f(x, t) , (A.11)

on a 2π-periodic computational domain. As Reynolds number we choose 1/ν = 105.

The random force f(x, t) is defined in wavenumber space as

f̂(ξ) = A
eiφ

√
|ξ|

√
∆t

, (A.12)

where A = 0.04 and −π ≤ φ ≤ π is randomly chosen for every wavenumber and at every

time step. With this forcing a resemblance of Navier-Stokes small-scale dynamics is

obtained which is different from the large-scale forced or decaying Burgers solution,

where the small scales are shocks. After an initial transient a stationary state is reached

which exhibits an 〈Ê(ξ)〉 ∼ ξ−5/3 inertial range where

Ê(ξ) =
1

2
|û(ξ)|2 (A.13)

and û(ξ) is the Fourier transform of u(x) at wavenumber ξ. The dissipation scale is of

order ηK ≈ 10−3. The time-step size ∆t is determined from Eq. (A.9) with CFL = 0.5.

Time integration is performed with the TVD Runge-Kutta scheme of Shu [153].

Discretizations of Eq. (A.11) were integrated up to t = 500. Averages were gathered after

a short initial transient. Figure A.1 compares the prediction of the implicit Smagorin-

sky model with results obtained with a spectral and dealiased discretization where the

Smagorinsky model is added explicitly.

We note that the prediction by the implicit Smagorinsky model agrees for the inertial-

range well with that of the explicit Smagorinsky model. Discrepancies at large

wavenumbers are caused by terms of O(h4) by which the implicit model differs from

the explicit one.
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Figure A.1: Averaged energy spectra 〈Ê(ξ)〉 for the stochastically forced Burgers equation; −−−−−−−

implicit Smagorinsky model, −−−− explicit Smagorinsky model, ·········· line with

ξ−5/3 rule; (a) with N = 32, (b) with N = 256.

A.2.2 Results for Decaying BURGERS Turbulence

The solution u is L-periodic. For consistency with the results of Aldama [3] we set

ν = 0.02, L = 500. The initial data are computed from a distribution with initial

spectrum

Ê(ξ) = Aξ′4e−σ2ξ′2/2 ,

where ξ′ = 2πξ/L, A = 10722.08, σ = 19.89. The time-step size ∆t is determined by

Eq. (A.9) with CFL = 0.5. For reference we perform a direct simulation with a de-

aliased spectral discretization at a resolution of 8192 points, for which it was shown that

the mesh-Reynolds number is on the order of unity [3], and a LES with a de-aliased

spectral discretization and an explicit Smagorinsky model.

In Figure A.2 the decay of total energy

k(t) =
1

2

+∞∫

−∞

|û(ξ)|2 dξ (A.14)

of the different LES computations is compared with the direct simulation, showing a

reasonable agreement between implicit and explicit Smagorinsky model.

For illustration we show in Fig. A.3a snapshots of the solutions at time t = 180.

Instantaneous energy spectra follow the theoretical ξ−2 drop-off and show again a good

agreement between explicit and implicit Smagorinsky model, an example at t = 180

for N = 256 is shown in Figure A.3b.
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Figure A.2: Temporal evolution of total energy k(t) as predicted by the implicit Smagorinsky

model compared with the direct simulation −−−−−−− ; △ implicit Smagorinsky model

with N = 256, ♦ implicit Smagorinsky model N = 512, � explicit Smagorinsky

model with N = 256, © explicit Smagorinsky model N = 512.

A.2.3 Effect of Time Integration

To check for the effect of time integration we have repeated some of the above compu-

tations with the third-order low-storage Runge-Kutta scheme of Williamson [182]

and with different CFL numbers.

Figure A.4 shows for the forced Burgers case that changing the integration scheme

has only very little effect on the results. Reducing the time-step size to CFL = 0.1 and

to CFL = 0.01 has no visible effect on the results, Figure A.5. A similar behavior was

found for the case of decaying Burgers turbulence.

A.3 SGS Modeling by Evolutionary Optimization

For determining optimal parameters we consider the case of the stochastically forced

Burgers equation as described in section A.2.1. Here, however, a large-scale forcing

is employed which maintains a 〈Ê(ξ)〉 ∼ ξ−2 spectrum. We consider this reference case

for optimization since we found that the cost-function sensitivity on the parameter set is

more pronounced than for the 〈Ê(ξ)〉 ∼ ξ−5/3 case. Also, the dependency on the choice

of the initial random seed is less strong which facilitates ensemble averaging. Finally,

having derived optimal parameters for one case we can test their prediction quality for

other cases.
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Ê
(ξ

)

ξ

Figure A.3: (a) Instantaneous solution compared with the direct simulation −−−−−−− at time t = 180;

−−−− implicit Smagorinsky model with N = 256, ·−·−·− explicit Smagorinsky

model with N = 512, −··−··− implicit Smagorinsky model with N = 256, ·−−·−−

explicit Smagorinsky model with N = 512. (b) Instantaneous spectra at t = 180

and N = 512, −−−−−−− implicit Smagorinsky model, −−−− explicit Smagorinsky

model.

We add the inverse Fourier-transform of

f̂(ξ) =

{
A eiφ

|ξ|
√

∆t
, |ξ| ≤ ξN/4

0 , otherwise
(A.15)

to the right-hand side of Eq. (A.11). In (A.15) −π ≤ φ ≤ π is randomly chosen for every

wavenumber and at time t and A = 0.04. The cost function used for optimization is

C = |p − pth| +

√√√√ 1

|ξ1 − ξ2|

ξ2∑

ξ=ξ1

(
ln〈Ê(ξ)〉 − a − p ln ξ

)2

. (A.16)

p and a are the parameters of the estimate

〈ln Ê(ξ)〉 ≈ p ln ξ + a (A.17)

which is fitted to 〈Ê(ξ)〉 by a least-squares estimate over the wavenumber range ξ1 =

0.1ξN ≤ ξ ≤ ξ2 = 0.9ξN . The second term on the right-hand side of Eq. (A.16) measures

the deviation from a logarithmic law, whereas the first term measures the deviation from

the theoretically predicted exponent pth. For the solution of the Burgers equation the

periodic interval −π ≤ x ≤ π is partitioned into N = 128 intervals. Time integration is

performed for 0 ≤ t ≤ 140 and statistical samples for computing the cost function are

collected for t > 7, after an initial time transient. For all computations the time-step

size is adjusted according to Eq. (A.9) with CFL = 0.5.
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Figure A.4: Averaged energy spectra 〈Ê(ξ)〉 −−−−−−− implicit Smagorinsky model with TVD

Runge-Kutta, −−−− implicit Smagorinsky model with low-storage Runge-

Kutta, ·········· line with ξ−5/3 rule; N = 256.

A representative example for the convergence history of the evolutionary algorithm is

shown in Figure A.6. The mutation variance decreases exponentially over the number of

generations with a fitted convergence rate of −0.03, whereas the cost function decreases

algebraically. For the cost function the variation over the statistical ensemble at each

generation is indicated by the dashed line for the best cost function and the dash-dotted

line for the worst cost function.

Optimal parameters are determined for two different choices of the smoothness measure

βk,r, the total-variation (TV) form Eq. (2.33) and the WENO form defined by Jiang

and Shu [80] as

βk,r =
k−1∑

l=1

xi+1/2∫

xi−1/2

h2l−1
x

(
∂lϕ̌k,r(x)

∂lx

)2

dx , (A.18)

where ϕ̌k,r(x) is the interpolation polynomial for a generic filtered grid function ϕN

on the respective stencil (k, r). Evaluating Eq. (A.18) for the employed Harten
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Figure A.5: Averaged energy spectra 〈Ê(ξ)〉 −−−−−−− implicit Smagorinsky model with CFL = 0.5,

−−−− implicit Smagorinsky model with CFL = 0.1, ·−·−·− implicit Smagorinsky

model with CFL = 0.01, ·········· line with ξ−5/3 rule; N = 256 grid points.

reconstruction polynomials, we obtain

β1,0 = 1 ,

β2,0 = (ϕi+1 − ϕi)
2 ,

β2,1 = (ϕi − ϕi−1)
2 ,

β3,0 =
13

12
(ϕi − 2ϕi+1 + ϕi+2)

2 +
1

4
(3ϕi − 4ϕi+1 + ϕi+2)

2 ,

β3,1 =
13

12
(ϕi−1 − 2ϕi + ϕi+1)

2 +
1

4
(ϕi−1 − ϕi+1)

2 ,

β3,2 =
13

12
(ϕi−2 − 2ϕi−1 + ϕi)

2 +
1

4
(ϕi−2 − 4ϕi−1 + 3ϕi)

2 .

The resulting optimal parameters are given in Tab. A.2. Note that for the WENO

choice of the smoothness measure the stencil is effectively fixed and nonlinear effects of

subgrid-scale smoothness on the candidate-stencil weights are suppressed.

Given the numerical flux function Eq. (A.4) with σi+1/2 = |ui+1 − ui| the implicit SGS
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Figure A.6: Convergence histories for the stochastically forced Burgers equation monitored over

500 generations: (a) mutation variance, (b) cost function; −−−−−−− average cost function,

−−−− best cost function in ensemble, ·−·−·− worst cost function in ensemble.

Parameter γ
+1/2
1,0 γ

+1/2
2,0 γ

+1/2
2,1 γ

+1/2
3,0 γ

+1/2
3,1 γ

+1/2
3,2

TV measure (2.33) 1 0.999847 0.000153 0.998532 0.001326 0.000142

WENO measure (A.18) 1 1 0 1 0 0

Table A.2: Result obtained by evolutionary optimization for the parameters γ
+1/2

k,r , for the TV form

and the WENO form of the smoothness measure βk,r.

model can be determined with MDEA according to section A.1.2 as

G N =

(
−0.11108

(
∂u

∂x

∂2u

∂x2
+ u

∂3u

∂x3

)
+ 0.66667

∣∣∣∣
∂u

∂x

∣∣∣∣
∂2u

∂x2

)
h2+

+

(
−0.00371

∂u

∂x

∂4u

∂x4
+ 0.16661

∣∣∂u
∂x

∣∣
∂u
∂x

∂2u

∂x2

∂3u

∂x3
− 0.02174

∂2u

∂x2

∂3u

∂x3
+

+0.00005 u

(
∂2u
∂x2

∂u
∂x

)2
∂3u

∂x3
+ 0.11095

∣∣∣∣
∂u

∂x

∣∣∣∣
∂4u

∂x4
− 0.00014 u

∂2u
∂x2

∂u
∂x

∂4u

∂x4
+

+0.00005

(
∂2u
∂x2

)3

∂u
∂x

+ 0.00010

∣∣∂u
∂x

∣∣
∂u
∂x

(
∂2u
∂x2

)3

∂u
∂x

+ 0.00555 u
∂5u

∂x5


h4 + O

(
h6
)

(A.19)
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for the case of the TV smoothness measure and

GN =

(
−0.11111

(
∂u

∂x

∂2u

∂x2
+

∂3u

∂x3
u

)
+ 0.66667

∣∣∣∣
∂u

∂x

∣∣∣∣
∂2u

∂x2

)
h2+

+

(
−0.00370

∂u

∂x

∂4u

∂x4
+ 0.16667

∣∣∂u
∂x

∣∣
∂u
∂x

∂2u

∂x2

∂3u

∂x3
− 0.02160

∂2u

∂x2

∂3u

∂x3
+

+0.11111

∣∣∣∣
∂u

∂x

∣∣∣∣
∂4u

∂x4
+ 0.00556 u

∂5u

∂x5

)
h4 + O

(
h6
)

(A.20)

for the case of the WENO smoothness measure.

A.3.1 Results for Forced BURGERS Turbulence

In this section we compare the optimal implicit SGS model results with results for the

implicit Smagorinsky model, as discussed in Section A.2. Recall that the results

obtained for the implicit Smagorinsky model were in reasonable agreement with

those obtained with an explicit Smagorinsky model in combination with a spectral

discretization.

In Figure A.7 averaged energy spectra are shown for the case of the stochastically forced

Burgers equation with 〈Ê(ξ)〉 ≈ ξ−5/3 spectrum, Eq. (A.12). Since the leading-order

terms of the truncation error in Eqs. (A.19) and (A.20) are nearly the same the computed

average spectra hardly differ for the two choices of the smoothness function. For both

formulations the agreement with the theoretical spectrum is significantly better than for

the implicit Smagorinsky model.

Similar observations hold for the stochastically forced Burgers equation with 〈Ê(ξ)〉 ≈
ξ−2 spectrum, Eq. (A.15), see Figure A.8. Except for wavenumbers near the Nyquist

wavenumber ξN the prediction of both formulations result in very similar predictions.

Near ξN the higher-order contributions of the truncation error in Eqs. (A.19) and (A.20)

become more significant and cause some differences.

It should be emphasized that although the optimal model parameters have been derived

for the ξ−2-forcing a good prediction capability is also achieved for the ξ−5/3-forcing case.
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Figure A.7: Averaged energy spectra for forced Burgers turbulence with 〈Ê(ξ)〉 ≈ ξ−5/3 spec-

trum: (a) N = 32, (b) N = 256; −−−−−−− implicit Smagorinsky model, ·−·−·− opti-

mal parameters with TV smoothness measure, −−−− optimal parameters with WENO

smoothness measure, ·········· line with ξ−5/3 rule.
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Figure A.8: Averaged energy spectra for forced Burgers turbulence with 〈Ê(ξ)〉 ≈ ξ−2 spectrum:

(a) N = 32, (b) N = 256; −−−−−−− implicit Smagorinsky model, −−−− optimal

parameters with TV smoothness measure, ·−·−·− optimal parameters with WENO

smoothness measure, ·········· line ≈ ξ−2.

A.3.2 Results for Decaying BURGERS Turbulence

In this section we apply the implicit SGS models derived above to the case of decaying

Burgers turbulence, according to Section A.2.2. In Figure A.9 the decay of total

kinetic energy over time is compared between the optimal implicit SGS model with the

TV smoothness measure, the optimal implicit SGS model with the WENO smoothness

measure, and the implicit Smagorinsky model of Section A.2.
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Figure A.9: Temporal decay of total turbulent kinetic energy: (a) N = 32, (b) N = 256; −−−−−−− fully

resolved spectral simulation, △ implicit Smagorinsky model, � optimal parameters

with TV smoothness measure, © optimal parameters with WENO smoothness measure.

Also for this test case the results confirm that the optimal models result in a significantly

improved prediction compared with the implicit Smagorinsky model. For illustra-

tion a snapshot of the instantaneous solutions for the fully resolved simulation and the

different LES at two different resolutions is shown in Figure A.10.
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Figure A.10: Instantaneous solution for the fully resolved simulation and for the LES of decaying

Burgers turbulence at time t = 180: (a) LES with N = 32, (b) LES with N =

256; −−−−−−− fully resolved spectral simulation, −··−··− implicit Smagorinsky model,

−−−− optimal parameters with TV smoothness measure, ·−·−·− optimal parameters

with WENO smoothness measure.
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A.4 Summary

Prior to the development of ALDM for the Navier-Stokes equations, tools for sys-

tematic implicit subgrid-scale modeling have been tested for a one-dimensional trans-

port equation. The viscous Burgers equation is considered as a relevant model for

Navier-Stokes turbulence. In particular this holds for the case of a stochastically

forced Burgers equation where the forcing spans the entire wavenumber range. We

have studied approaches for driving discretizations of the Burgers equation towards

an optimized or otherwise designed truncation error. It is argued that the truncation

error has the same functionality as an explicit subgrid-scale model in flow regions of

developed turbulence. On the example of the Smagorinsky model it is demonstrated

that a given explicit SGS model can be matched by an implicit one. In this case the

only benefit of the implicit SGS model is that no explicit computation of model terms

is necessary. Implicit model parameters can, however, also be subjected to systematic

optimal selection. Optimization target is a generic reference flow configuration which

represents the essential properties of flow configurations to which the implicit model will

be applied. We have demonstrated that a set of optimal parameters for the case of the

large-scale forced Burgers equation delivers also good results for other forcings and

for decaying turbulence.



— APPENDIX B —

SIMPLIFIED ADAPTIVE

LOCAL DECONVOLUTION

(SALD) METHOD

B.1 Simplified Algorithm

The original formulation of ALDM [69] can be further simplified to accelerate compu-

tation. In the following, the differences between the original ALDM and the simplified

adaptive local deconvolution (SALD) method [63, 66] are briefly described.

ALDM is formulated for the incompressible Navier-Stokes equations and applies to

the convective flux F = uu, where u is the velocity vector. In the framework of a finite-

volume discretization, filtering u = G ∗ u with kernel G(x) = Gx(x) · Gy(y) · Gz(z)

applied to the flux divergence ∇ ·F (u) returns the flux through the surfaces of cell Ωi,j,k.

By Gauss’ theorem we obtain

[
G ∗ ∇ · F

(
G−1 ∗ u

)]
i,j,k

=
1

hxi
Gy ∗ Gz ∗

(
1

f (G−1 ∗ u)i+ 1

2
,j,k −

1

f (G−1 ∗ u)i− 1

2
,j,k

)

+
1

hyj
Gz ∗ Gx ∗

(
2

f (G−1 ∗ u)i,j+ 1

2
,k −

2

f (G−1 ∗ u)i,j− 1

2
,k

)

+
1

hzk
Gx ∗ Gy ∗

(
3

f (G−1 ∗ u)i,j,k+ 1

2

−
3

f (G−1 ∗ u)i,j,k− 1

2

)
(B.1)

where the flux vector
l

f = ulu denotes the l-direction component of F . As a consequence

of this identity finite-volume schemes require a reconstruction of data at the faces of the

computational volumes.

Numerical experiments [63] show that the implementation of ALDM can be simplified

significantly without affecting the prediction capability of the implicit SGS model. The



152SIMPLIFIED ADAPTIVE LOCAL DECONVOLUTION (SALD) METHOD

SALD method is based on the simplification

[
G ∗ ∇ · F

(
G−1 ∗ u

)]
i,j,k

≈ 1

hxi

(
1

f (G−1
x ∗ u)i+ 1

2
,j,k −

1

f (G−1
x ∗ u)i− 1

2
,j,k

)

+
1

hyj

(
2

f (G−1
y ∗ u)i,j+ 1

2
,k −

2

f (G−1
y ∗ u)i,j− 1

2
,k

)

+
1

hzk

(
3

f (G−1
z ∗ u)i,j,k+ 1

2

−
3

f (G−1
z ∗ u)i,j,k− 1

2

)
.

(B.2)

The original formulation of ALDM [69] employs a standard Gaussian quadrature rule

with kernel Ck to approximate the filter operation Gl ∗ Gm over the cell faces and a

solution adaptive deconvolution scheme to approximate G−1. The SALD method uses

a simple second-order accurate approximation of Gl ∗ Gm, i.e., no explicit filtering over

the faces of the computational cells is applied. The benefits of higher-order schemes

were found to be negligible since second-order accurate interpolants contribute to the

deconvolution operator. Furthermore, approximate deconvolution G−1 is applied only

in those directions for which interpolation at cell faces is necessary. With the SALD

method, the fully 3-D scheme of the original ALDM is replaced by a single 1-D step at

the target cell-face. Deconvolution is not performed in the transverse directions.

B.2 Numerical Results

B.2.1 Homogeneous Isotropic Turbulence

As a first test case the numerical schemes are applied to decaying grid-generated tur-

bulence. The computations are initialized with energy spectrum and Reynolds numbers

adapted to the wind-tunnel experiments of Comte-Bellot and Corrsin [27], see

Section 4.4 for a detailed description.

We present numerical results for implicit LES with the original ALDM scheme and with

successively simplified formulations. Figure B.1a compares results obtained by 4th-order

(C4 of Eq. 2.18) with those obtained by a second order (C2 of Eq. 2.18) Gaussian

quadrature rule for the approximation of the filter operation Gl∗Gm. It is found that the

choice of the integration kernel has marginal effects on the computed energy spectra. The

effect of omitting deconvolution in the transverse directions, i.e., the difference between

full and simplified ALDM, is negligible, see Fig. B.1b.
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Figure B.1: Instantaneous 3-D energy spectra for LES with 643 cells of the Comte-Bellot –

Corrsin experiment. (a) −−−−−−− ALDM with full deconvolution and C2, −−−−

ALDM with full deconvolution and C4. (b) −−−−−−− SALD, −−−− ALDM with full

deconvolution and C2. Symbols represent experimental data of Comte-Bellot and

Corrsin [27].

B.2.2 Turbulent Channel Flow

As an example for anisotropic wall bounded turbulence, we simulate channel flow at

Rebulk = 6875 (Reτ = 395). Reference DNS data is provided by Moser et al. [121]. The

computational domain measures 2πh×2h×πh (streamwise × wall-normal × spanwise),

where h is the channel half width. The spectral DNS of Moser et al. required 256 ×
193×192 grid points. The computational grid of the present LES consists of 64×68×64

cells with grid stretching applied in the wall-normal direction.

Figures B.2 and B.3 show profiles of mean velocity and Reynolds stresses from LES

with the original and the simplified scheme. The differences between the original and

the simplified model are marginal. This holds even for the pressure fluctuation, see Fig.

B.4, for which differences between DNS and LES are most clearly manifested. Both LES

agree well with the reference DNS data. Note the correct wall-asymptotic behavior of

the Reynolds stresses of both LES, see Fig. B.3.

B.3 Efficient Implementation

B.3.1 Weight Functionals

It is interesting to note that the evolutionary optimization finally selected γ
+1/2
2,0 = 1

and γ
+1/2
2,1 = 0. Consequently, solution adaptivity is ruled out for all but the third-order

stencils. It is therefore not necessary to compute the weight functionals ω1,r and ω2,r.
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Figure B.2: Mean profiles of velocity for LES of turbulent channel flow at Reτ = 395. −−−−−−− SALD,

−−−− ALDM with full deconvolution and C2, ◦ DNS [121].

The advantage of the total-variation smoothness measure, definition (2.33), over smooth-

ness measures proposed by Liu et al. [102] and by Jiang and Shu [80], see, e.g., definition

(A.18), is that

βk,r (ϕN , xi) = βk,r−1 (ϕN , xi−1) (B.3)

can be exploited to improve computational efficiency.

B.3.2 Vectorization

Although LES does not aim at resolving all spatial scales of turbulent fluid motion, it

often requires large computational grids with tens of millions of grid points. On each grid

point, however, only few operations have to be performed in one time step. This implies,

to our experience, a poor ratio of usable to peak performance on scalar machines, where

frequent cache use is the key to high efficiency. Applying the identical operation to vast

data fields is much better suited to vector machines.

During the course of this work a flow solver has been written that is optimized for

parallel high-performance vector computers [63]. In the following we discuss the special

requirements concerning the efficient implementation of ALDM on vector computers,

particularly with regard to the NEC SX-8 cluster at the Stuttgart High-Performance

Computing Center (HLRS).

On inhomogeneous grids spatially varying coefficients are needed for deconvolution, in-

terpolation, and differencing. These coefficients are usually computed in advance of the

actual simulation. Due to memory limitations one tries to avoid to store 3-D coefficient

arrays whenever possible. Orthogonal Cartesian grids allow for a reduction of these
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Figure B.3: Mean profiles of Reynolds stresses for LES of turbulent channel flow at Reτ = 395.

−−−−−−− SALD, −−−− ALDM with full deconvolution and C2, ◦ DNS [121].

memory requirements from ∼ (Nx ×Ny ×Nz) to ∼ (Nx +Ny +Nz)/3, since a coefficient

varies only in one spatial direction. The drawback associated with such an implemen-

tation is that the average computational loop length is reduced by the same amount.

With typical LES, the respective lengths are of the order of the machine vector length,

resulting in a significant number of unused vector elements during computation. In or-

der to avoid this problem, we perform an explicit vectorization, where the physical 3-D

arrays are projected onto a 2-D computational space. In computational space, an array

has at most two dimensions ξ and η, where the number of cells in the first direction Nξ

is the lowest common multiple of the machine-vector length and the respective physical

vector length. To limit the required expansion, we allow 2 vector elements to be unused.

The transformation does not require any additional operations at runtime because it

only affects pre-computed coefficient arrays and loop-length parameters.

The explicit vectorization method is combined with a re-sorting algorithm. That is,

before and after performing expensive operations, all arrays are re-sorted in such a way

that the operation is then performed on the first index. The re-sorting routine consumes
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Figure B.4: Mean profiles of pressure and pressure fluctuations for LES of turbulent channel flow at

Reτ = 395. −−−−−−− SALD, −−−− ALDM with full deconvolution and C2, ◦ DNS [121].

less then 1% of the overall computational time but accelerates in particular the decon-

volution procedure significantly. As side effect, all operations need to be implemented

only for one spatial direction when re-sorting is employed.

B.3.3 Parallelization

Parallelization of our flow solver is generally achieved by domain decomposition. The

effective stencil of deconvolution operator and numerical flux function covers 7 cells,

requiring knowledge of the solution in three neighbor-cells to each side. The discretiza-

tion stencils are not modified at flow boundaries or sub-domain interfaces. Rather, the

computational sub-domains are covered by three layers of ghost cells for coupling of

the solution with neighboring sub-domains. We follow a dual strategy for filling these

ghost cells. A shared-memory openMP parallelization is employed for sub-domains on

the same computer node, whereas information between different nodes is exchanged us-

ing MPI. Compared to the fully MPI parallelized implementation, the computational

overhead of the shared-memory parallelization with openMP is small.

B.3.4 Performance

The present simulations were performed on a NEC SX-8 cluster, where the computa-

tional performance of our implementation could be measured with ftrace. The strategy

based on transformation and re-sorting results in efficient vectorization and memory

access. Typically the average vector length is 255.2 out of possible 256. The vector

operation ratio is 99.6 percent. For the LES presented in Chapter 7 the CPU-time
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consumption was divided as follows: ≈ 85% iterative solver for the pressure Poisson

equation, ≈ 6% per cent right-hand side of the Navier-Stokes equations, ≈ 9% con-

current statistical analysis, and < 1% auxiliary subroutines. Depending on the problem

size, the measured number of floating point operations per second (Flops) and CPU for

the deconvolution operator and the numerical flux function were 12 − 13 GFlops and

8 − 10 GFlops, respectively. The overall performance and the parallel performance are

substantially affected by the solver for the pressure Poisson equation. Using a 3-D

conjugate-gradient-method based solver for the pressure Poisson equation, the over-

all performance was ≈ 9 GFlops. Somewhat lower GFlops values were achieved with

FFT-based solvers. Despite the favorable problem size, the overall performance of the

implementation with spanwise FFT and 2-D BiCGstab was typically 6 GFlops per CPU.

B.4 Summary

Recommendations for the efficient implementation of ALDM for the incompressible 3-D

Navier-Stokes are given and a simplification of ALDM is proposed leading to the

simplified adaptive local deconvolution (SALD) method. With the SALD method, the

fully 3-D reconstruction scheme of the original ALDM is replaced by a single 1-D step

at the target cell-face. This allows for considerable savings of computational resources.

SALD is about twice as fast as the original ALDM, whereas the prediction power of

the implicit model is preserved. The method is computationally more efficient than a

second-order central scheme with a dynamic Smagorinsky model.

For incompressible flows a fractional-step approach is pursued where a pressure correc-

tion is subsequently computed solving a Poisson equation. Flows in complex geometries

with non-periodic directions require the use of iterative Poisson solvers, consuming typ-

ically about 60% and sometimes up to 95% of the computational time. It is recommended

to use the SALD method whenever the CPU-time consumption of the discretization of

the convective term is relevant. This holds in particular for flow configurations where

efficient FFT-based solvers for the pressure Poisson equation are available, such as

homogeneous turbulence and channel flow.
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NEAR-WALL SCALING OF

ALDM WEIGHT FUNCTIONS

One reason for the good performance of the implicit model of ALDM might be the

solution-adaptivity of the local deconvolution operator. Fig. C.1-C.6 show the profiles

of mean values and fluctuations of the weight functions of the deconvolution operator in

turbulent channel flow at Reτ = 395. We note that ALDM responds to flow anisotropy

and grid stretching by becoming anisotropic in the near wall region. The resulting

weights prefer the stencil that is closer to the wall as shown, e.g., for the wall-normal

velocity component in Fig. C.1. This weight distribution leads to an upwind bias for

fluid moving away from the wall (ejections) and to a downwind bias for fluid moving

towards the wall (sweeps). A central scheme is reproduced only at the channel centerline

and at 1 or 2 other planes within the logarithmic layer.
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Figure C.1: Time-averaged weight functions of ALDM for the central deconvolution of the streamwise,

wall-normal, and spanwise velocity component. Implicit LES of turbulent channel flow

at Reτ = 395. −−−− ω3,0 , −−−−−−− ω3,1 , ·−·−·− ω3,2.
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Figure C.2: RMS fluctuations of averaged weight functions of ALDM for the central deconvolution of

the streamwise, wall-normal, and spanwise velocity component. Implicit LES of turbulent

channel flow at Reτ = 395. −−−− ω3,0 , −−−−−−− ω3,1 , ·−·−·− ω3,2.
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Figure C.3: Time-averaged weight functions of ALDM for the upward deconvolution of the streamwise,

wall-normal, and spanwise velocity component. Implicit LES of turbulent channel flow

at Reτ = 395. −−−− ω3,0 , −−−−−−− ω3,1 , ·−·−·− ω3,2.



NEAR-WALL SCALING OF ALDM WEIGHT FUNCTIONS 163

-1,0 -0,5 0,0 0,5 1,0
0,00

0,01

0,02

〈ω
+

1
/
2

3
,r

(u
)′

2
〉

y/h

0 20 40 60 80
0,00

0,01

0,02

〈ω
+

1
/
2

3
,r

(u
)′

2
〉

y/l+

-1,0 -0,5 0,0 0,5 1,0
0,00

0,01

0,02

〈ω
+

1
/
2

3
,r

(v
)′

2
〉

y/h

0 20 40 60 80
0,00

0,01

0,02
〈ω

+
1
/
2

3
,r

(v
)′

2
〉

y/l+

-1,0 -0,5 0,0 0,5 1,0
0,00

0,01

0,02

〈ω
+

1
/
2

3
,r

(w
)′

2
〉

y/h

0 20 40 60 80
0,00

0,01

0,02

〈ω
+

1
/
2

3
,r

(w
)′

2
〉

y/l+

Figure C.4: RMS fluctuations of averaged weight functions of ALDM for the upward deconvolution of

the streamwise, wall-normal, and spanwise velocity component. Implicit LES of turbulent

channel flow at Reτ = 395. −−−− ω3,0 , −−−−−−− ω3,1 , ·−·−·− ω3,2.
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Figure C.5: Time-averaged weight functions of ALDM for the downward deconvolution of the stream-

wise, wall-normal, and spanwise velocity component. Implicit LES of turbulent channel

flow at Reτ = 395. −−−− ω3,0 , −−−−−−− ω3,1 , ·−·−·− ω3,2.
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Figure C.6: RMS fluctuations of averaged weight functions of ALDM for the downward deconvolu-

tion of the streamwise, wall-normal, and spanwise velocity component. Implicit LES of

turbulent channel flow at Reτ = 395. −−−− ω3,0 , −−−−−−− ω3,1 , ·−·−·− ω3,2.
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SUPPLEMENTARY

APG BOUNDARY-LAYER DATA

As supplement to Chapter 7, additional results from the large-eddy simulation of tur-

bulent boundary-layer separation are given in the following. These data are presented

here in order to maintain the main part’s concise form.

D.1 Instantaneous Wall-Shear Stress

Contours of the instantaneous wall friction are shown in Figs. D.1–D.4. Typical streaky

structures dominate the boundary layer at the inflow. As the flow experiences the ad-

verse pressure gradient, the average width of the streaks grows and their relative length

decreases. Intermittent backflow is observed from x = 0.1 onwards. There is no well-

defined separation line, instead the fraction of separated flow zones increases gradually.

Within the separated region eddies with large spanwise extents are dominating. Sec-

ondary flow reversion occurs in several regions. Streaky structures are found again

shortly before the reattachment. Generally, the flow structures observed at and after

reattachment are one order of magnitude larger than those of the attached boundary

layer before separation.
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1 3.5 6

x

Figure D.1: Instantaneous contours of the wall-shear stress.
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Figure D.2: Instantaneous contours of the wall-shear stress.
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Figure D.3: Instantaneous contours of the wall-shear stress.
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D.2 Momentum Balance

The streamwise momentum balance is

0 = −∂x 〈u〉 〈u〉 − ∂y 〈u〉 〈v〉 − ∂z 〈u〉 〈w〉 (convection)

−∂x 〈p〉 (pressure normal stress)

+ν ∂2
x 〈u〉 + ν ∂2

y 〈u〉 + ν ∂2
z 〈u〉 (viscous shear stress)

−∂x 〈u′u′〉 − ∂y 〈u′v′〉 − ∂z 〈u′w′〉 (Reynolds stress)

(D.1)

The individual contributions to the stress balance are shown in Figures D.5 and D.6.

We note that the above listed stresses do not balance completely in LES since the SGS

model results in another stress contribution. The incoming flow shows essentially the

same characteristics as zero-pressure-gradient turbulent boundary layers. The dominant

stresses are the viscous stress and the Reynolds stress, which balance each other. The

influence of the pressure gradient is relatively small. It is balanced by convection in the

outer part and by the Reynolds stress near the wall. Since the flow is decelerated

by a constant pressure gradient, the importance of the pressure force and the therewith

linked convection increases compared to Reynolds stress and viscous shear stress. The

viscous stress becomes progressively smaller with increasing x as the flow approaches

separation. At separation, also the contribution of convection vanishes over the largest

part of the boundary layer, see Fig. D.6, and the entire pressure force has to be balanced

by the Reynolds stress.

The wall-normal momentum balance reads

0 = −∂x 〈v〉 〈u〉 − ∂y 〈v〉 〈v〉 − ∂z 〈v〉 〈w〉 (convection)

−∂y 〈p〉 (pressure normal stress)

+ν ∂2
x 〈v〉 + ν ∂2

y 〈v〉 + ν ∂2
z 〈v〉 (viscous shear stress)

−∂x 〈v′u′〉 − ∂y 〈v′v′〉 − ∂z 〈v′w′〉 (Reynolds stress)

. (D.2)

Figures D.7 and D.8 reveal that convection and viscous stress contribute negligibly to the

wall-normal stress balance in the attached boundary layer. The wall-normal Reynolds

stress ∂y 〈v′v′〉 is balanced by a negative pressure gradient ∂y 〈p〉 /ρ. This changes only

close to separation, where the fast growth of the boundary layer results in relevant

contributions of the convection. The viscous stress plays no role at all.
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Figure D.5: Streamwise momentum balance in outer and inner scaling: −−−−−−− convection −−−−

pressure normal stress −··−··− viscous stress ·−·−·− Reynolds stress .
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Figure D.6: Streamwise momentum balance in outer and inner scaling: −−−−−−− convection −−−−

pressure normal stress −··−··− viscous stress ·−·−·− Reynolds stress .
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Figure D.7: Wall-normal momentum balance in outer and inner scaling: −−−−−−− convection −−−−

pressure normal-stress −··−··− viscous stress ·−·−·− Reynolds stress .
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Figure D.8: Wall-normal momentum balance in outer and inner scaling: −−−−−−− convection −−−−

pressure normal-stress −··−··− viscous stress ·−·−·− Reynolds stress .
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D.3 Budgets of Turbulence Energy

The transport equation for the mean turbulent kinetic energy k = 1
2
〈u′

ku
′
k〉 derived from

the Navier-Stokes equations is

0 = − 〈uk〉 ∂k

〈
u′

ju
′
j

〉
(mean convection)

−
〈
u′

ju
′
k

〉
∂k 〈uj〉 (production)

− ν
1

2

〈(
∂ku

′
j + ∂ju

′
k

)
2
〉

(dissipation)

+ ν
1

2
∂kk 〈u′

iu
′
i〉 + ν ∂ij

〈
u′

iu
′
j

〉
(molecular diffusion)

− 1

2
∂k

〈
u′

ju
′
ju

′
k

〉
(turbulent diffusion)

− ∂k 〈u′
kp

′〉 . (pressure transport)

(D.3)

The individual contributions to the turbulent-kinetic-energy budged indicated in (D.3)

are analyzed in Figures D.9 and D.10.

The incoming flow obeys all characteristics of turbulent boundary layers as known from

classical textbook presentations, e.g., Pope [136]. The mean-flow convection is negligi-

ble. In the viscous sublayer, y < 4l+, the budget is dominated by the viscous diffusion

(positive) and the viscous dissipation (negative). In the buffer layer relevant contribu-

tions are made by turbulent convection and pressure transport. The largest individual

contribution is the turbulence production term. Turbulence energy is generated near

the wall, mostly below y < 50l+. The production peak is observed at y ≈ 10l+ within

the buffer layer. In the logarithmic layer, for y ≥ 40l+, the dominant balance is between

production and dissipation. Turbulent convection gains importance again at very low

magnitudes in the outer part of the boundary layer. This situation changes with increas-

ing x. When the flow approaches separation, more and more turbulence is generated in

the wake region. A new production maximum develops around y = 0.5δ, where produc-

tion is partially balanced by turbulent convection and viscous dissipation. We note that

the budget does not sum up to zero, see Fig. D.10. This is due to a coarse grid reso-

lution. The grid points are concentrated near the wall to allow for reliable predictions

of the incoming boundary layer flow. At later stations the boundary layer growth into

coarser grid regions. This results in an increased proportion of non-represented viscous

diffusion and dissipation. These unresolved contributions are represented by the SGS

model.
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Figure D.9: Resolved budget of turbulent kinetic energy in outer and inner scaling: −−−−−−− production

·−·−·− viscous diffusion −−−− viscous dissipation −··−··− pressure transport ··········
turbulent convection ·−−·−− mean convection .
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Figure D.10: Resolved budget of turbulent kinetic energy in outer and inner scaling: −−−−−−− produc-

tion ·−·−·− viscous diffusion −−−− viscous dissipation −··−··− pressure transport

·········· turbulent convection ·−−·−− mean convection .
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D.4 Passive Scalar Mixing

In addition to the experimental setup, transport equations were solved for a passive

scalar with Schmidt number Sc = 1. The scalar c is transported from an isothermal

wall with CW = c(y = 0) = 1 to a fluid with C∞ = c(y ≫ δ) = 0 in the free stream.

In this section, a brief description of selected results will be given. A deeper analysis of

passive scalar mixing in this APG turbulent boundary layer will be the subject of future

work. Figure D.11 gives an overview of mean concentration and scalar variance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

-1 0 1
〈c〉

y

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

-0.05 0 0.05
〈c′c′〉

y

x

Figure D.11: Mean scalar concentration and scalar variance for LES of adverse-pressure-gradient

turbulent-boundary-layer flow.

Mean scalar profiles are presented also in Fig. D.12 in a larger scale. Fig. D.13 shows

profiles for the scalar variance and the turbulent transport. Individual terms of the

scalar-variance budget

0 = − 〈uk〉 ∂k 〈c′c′〉 (mean convection)

− 2 〈c′u′
k〉 ∂k 〈c〉 (production)

− 2κ 〈∂kc
′∂kc

′〉 (dissipation)

+ κ ∂kk 〈c′c′〉 (molecular diffusion)

− ∂k 〈u′
kc

′c′〉 (turbulent diffusion)

(D.4)

are presented in Figures D.14 and D.15.
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Figure D.12: Mean scalar concentration profiles in outer coordinates.
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Figure D.13: Scalar variance and turbulent scalar transport.

−−−−−−− 〈c′c′〉/C2
W , −··−··− 〈u′c′〉/(CW Uδ), ·−·−·− 〈v′c′〉/(CW Uδ).
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Figure D.14: Budget of scalar variance in outer and inner scaling: −−−−−−− production −−−− dissi-

pation ·−·−·− molecular diffusion ·········· turbulent diffusion ·−−·−− mean convection
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Figure D.15: Budget of scalar variance in outer and inner scaling: −−−−−−− production −−−− dissi-

pation ·−·−·− molecular diffusion ·········· turbulent diffusion ·−−·−− mean convection

.
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D.5 Tabulated Data

x U∞
1
ρ
〈∂xp〉w 1

ρ
〈∂xp〉δ β ∆P Λδ2 K · 106

0.000 1.08291 0.79704 0.80273 0.21147 0.00402 0.11883 -0.55130

0.025 1.06389 0.80311 0.80892 0.26891 0.00459 0.15843 -0.57432

0.050 1.04442 0.80752 0.81048 0.33786 0.00523 0.19263 -0.61607

0.075 1.02471 0.80391 0.80884 0.42120 0.00596 0.19936 -0.64948

0.100 1.00451 0.80587 0.80886 0.52406 0.00681 0.24510 -0.69847

0.125 0.98385 0.80912 0.81062 0.65241 0.00783 0.24609 -0.73679

0.150 0.96274 0.81782 0.81494 0.81586 0.00906 0.28928 -0.79628

0.175 0.94107 0.82474 0.81944 1.02652 0.01059 0.26931 -0.83023

0.200 0.91887 0.83119 0.82675 1.30804 0.01255 0.33134 -0.92305

0.225 0.89609 0.83582 0.82997 1.67371 0.01493 0.28855 -0.96947

0.250 0.87257 0.84330 0.83410 2.19344 0.01824 0.32845 -1.07840

0.275 0.84825 0.84761 0.83486 2.93184 0.02275 0.36080 -1.18242

0.300 0.82330 0.84815 0.82682 4.03893 0.02933 0.33653 -1.28200

0.325 0.79800 0.82933 0.80429 5.74363 0.03915 0.30300 -1.34920

0.350 0.77263 0.80239 0.76987 8.43214 0.05399 0.30139 -1.46339

0.375 0.74779 0.73644 0.70056 12.9488 0.07963 0.26313 -1.46390

0.400 0.72474 0.64549 0.61454 20.8566 0.12517 0.23709 -1.44083

0.425 0.70352 0.54465 0.51373 35.5964 0.21712 0.20034 -1.39420

0.450 0.68484 0.38556 0.40634 65.8372 0.43552 0.16506 -1.24816

0.475 0.66911 0.29530 0.32513 146.976 1.16080 0.14100 -1.12488

0.500 0.65521 0.24531 0.26163 3456.13 107.717 0.12193 -1.03131

0.525 0.64345 0.13132 0.20864 500.266 4.97482 0.10877 -0.88769

0.550 0.63338 0.16326 0.19328 145.313 0.62344 0.11153 -0.81419

0.575 0.62421 0.09033 0.17879 169.465 0.64971 0.12165 -0.78046

0.600 0.61558 0.04861 0.16615 226.380 0.85531 0.13327 -0.70608

Table D.2: Pressure gradient and pressure-gradient parameters.
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x hx/l
+ hy/l

+ hz/l
+ taveUδ/δ1 taveUτ/l

+

0.000 32.58 1.56 – 65.2 16.29 31755.6 85538.7

0.025 31.24 1.50 – 62.5 15.62 26888.5 78649.0

0.050 29.92 1.44 – 59.8 14.96 22944.1 72158.3

0.075 28.63 1.37 – 57.3 14.32 19680.3 66072.2

0.100 27.39 1.31 – 54.8 13.69 16950.9 60440.2

0.125 26.16 1.26 – 52.3 13.08 14643.3 55164.5

0.150 24.97 1.20 – 49.9 12.48 12652.9 50223.4

0.175 23.74 1.14 – 47.5 11.87 10926.9 45431.1

0.200 22.50 1.08 – 45.0 11.25 9404.9 40806.2

0.225 21.27 1.02 – 42.5 10.63 8056.4 36447.5

0.250 19.93 0.96 – 39.9 9.96 6852.3 31998.2

0.275 18.52 0.89 – 37.0 9.26 5776.8 27629.8

0.300 16.96 0.81 – 33.9 8.48 4806.4 23171.0

0.325 15.26 0.73 – 30.5 7.63 3934.7 18766.1

0.350 13.51 0.65 – 27.0 6.76 3168.6 14710.2

0.375 11.50 0.55 – 23.0 5.75 2507.3 10661.2

0.400 9.47 0.45 – 18.9 4.73 1952.5 7225.7

0.425 7.42 0.36 – 14.8 3.71 1510.3 4441.2

0.450 5.44 0.26 – 10.9 2.72 1169.2 2387.4

0.475 3.64 0.17 – 7.3 1.82 913.2 1069.9

0.500 0.50 0.02 – 1.0 0.25 725.0 30.4

0.525 1.92 0.09 – 3.8 0.96 587.2 299.9

0.550 3.77 0.18 – 7.5 1.89 485.8 1145.8

0.575 3.62 0.17 – 7.2 1.81 411.1 1058.1

0.600 3.23 0.15 – 6.5 1.61 355.8 839.2

Table D.1: Grid parameters and averaging time in outer and inner time units.
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x δ δ1 δ2 δ3 H12 H32

0.000 0.00590 0.00081 0.00054 0.00095 1.49 1.76

0.025 0.00674 0.00094 0.00063 0.00111 1.48 1.76

0.050 0.00752 0.00108 0.00073 0.00128 1.48 1.75

0.075 0.00828 0.00123 0.00083 0.00145 1.48 1.75

0.100 0.00905 0.00140 0.00094 0.00164 1.49 1.74

0.125 0.00983 0.00159 0.00106 0.00185 1.50 1.74

0.150 0.01068 0.00180 0.00120 0.00207 1.51 1.73

0.175 0.01155 0.00204 0.00134 0.00231 1.52 1.72

0.200 0.01254 0.00232 0.00150 0.00258 1.54 1.71

0.225 0.01360 0.00264 0.00169 0.00288 1.56 1.70

0.250 0.01475 0.00302 0.00190 0.00323 1.58 1.69

0.275 0.01605 0.00348 0.00215 0.00361 1.62 1.68

0.300 0.01758 0.00406 0.00244 0.00407 1.66 1.67

0.325 0.01938 0.00481 0.00279 0.00460 1.72 1.65

0.350 0.02150 0.00578 0.00321 0.00522 1.80 1.63

0.375 0.02414 0.00707 0.00370 0.00594 1.91 1.60

0.400 0.02729 0.00880 0.00428 0.00674 2.06 1.58

0.425 0.03102 0.01104 0.00489 0.00758 2.26 1.55

0.450 0.03542 0.01388 0.00551 0.00841 2.52 1.53

0.475 0.04041 0.01736 0.00610 0.00920 2.85 1.51

0.500 0.04591 0.02142 0.00667 0.00998 3.21 1.50

0.525 0.05184 0.02597 0.00715 0.01067 3.63 1.49

0.550 0.05804 0.03090 0.00749 0.01124 4.13 1.50

0.575 0.06433 0.03598 0.00777 0.01178 4.63 1.51

0.600 0.07031 0.04101 0.00791 0.01215 5.18 1.54

Table D.3: Boundary-layer thickness and shape parameters.
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x Reδ Reδ1 Reδ2 Reτ Cf · 103 χwall

0.000 7478 1025 686.9 384.39 5.285 0.000

0.025 8389 1168 787.1 420.88 5.035 0.000

0.050 9194 1319 890.1 450.08 4.793 0.000

0.075 9926 1480 997.3 473.93 4.559 0.000

0.100 10641 1651 1108.5 495.70 4.340 0.000

0.125 11325 1834 1224.8 514.59 4.129 0.001

0.150 12032 2032 1347.2 533.09 3.926 0.001

0.175 12728 2249 1477.3 548.71 3.717 0.001

0.200 13487 2491 1618.7 564.34 3.502 0.002

0.225 14265 2765 1774.7 578.45 3.289 0.003

0.250 15065 3083 1945.7 587.82 3.045 0.004

0.275 15935 3456 2135.8 594.34 2.782 0.007

0.300 16944 3912 2354.6 596.28 2.477 0.013

0.325 18099 4490 2608.6 591.39 2.135 0.025

0.350 19448 5227 2903.2 581.10 1.786 0.050

0.375 21127 6187 3242.5 555.26 1.382 0.097

0.400 23156 7463 3628.8 516.98 0.997 0.169

0.425 25548 9092 4030.1 460.69 0.651 0.262

0.450 28391 11129 4418.8 385.66 0.369 0.351

0.475 31649 13601 4777.9 294.63 0.174 0.432

0.500 35212 16427 5115.5 68.77 0.009 0.503

0.525 39044 19562 5382.5 200.71 -0.053 0.532

0.550 43030 22912 5551.6 437.75 -0.207 0.617

0.575 47003 26293 5680.8 466.29 -0.197 0.611

0.600 50668 29550 5699.2 453.83 -0.160 0.593

Table D.4: Reynolds numbers, friction coefficient, and reverse-flow parameter.
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[95] Lesieur, M. & Métais, O. 1996 New trends in large-eddy simulations of tur-

bulence. Annu. Rev. Fluid. Mech. 28, 45–82.



BIBLIOGRAPHY 197

[96] Leslie, D. & Quarini, G. 1979 The application of turbulence theory to the

formulation of subgrid modelling procedures. Journal of Fluid Mechanics 91, 65–

91.
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