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Abstract—We present a general rate duality between the multi-
ple access channel (MAC) and the broadcast channel (BC) which
is applicable to systems with and without nonlinear interference
cancellation. Different to the state-of-the-art rate duality with

interference subtraction from Vishwanath et al., the proposed
duality is filter-based instead of covariance-based and exploits
the arising unitary degree of freedom to decorrelate every point-
to-point link. Therefore, it allows for noncooperative stream-wise
decoding which reduces complexity and latency. Moreover, the
conversion from one domain to the other does not exhibit any
dependencies during its computation making it accessible to a
parallel implementation instead of a serial one. We additionally
derive a rate duality for systems with multi-antenna terminals
when linear filtering without interference (pre-)subtraction is
applied and the different streams of a single user are not treated
as self-interference. Both dualities are based on a framework
already applied to a mean-square-error duality between the MAC
and the BC. Thanks to this novel rate duality, any rate-based
optimization with linear filtering in the BC can now be handled in
the dual MAC where the arising expressions lead to more efficient
algorithmic solutions than in the BC due to the alignment of the
channel and precoder indices.

I. INTRODUCTION

In the past few years, dualities were successfully employed

as the linking element between the multiple access channel

(MAC) and the broadcast channel (BC). Thanks to various

versions of dualities, many regions of the MAC and the BC

were classified to be identical under a sum-power constraint.

First, the signal-to-interference-and-noise-ratio (SINR) regions

under single-stream transmission per user were shown to be

identical in [1], [2]. Second, the mean-square-error (MSE)

regions of the MAC and the BC coincide which has been

proven by means of the SINR duality in [3] and later in

[4] or directly in [5], [6]. And third, the rate regions of the

MAC and the BC under Gaussian signaling and nonlinear

interference cancellation have recently been shown to be the

same, see [7] for the single-antenna case, [8] for the multi-

antenna case, and [9] for the coincidence of the dirty-paper

coding rate region and the capacity region. A stream-wise

duality with power constraints on subsets of antennas which

holds for the optimum filters of a quality-of-service power

minimization was presented in [10] for systems with and

without nonlinear interference cancellation. Due to its stream-

wise nature, conversion from one domain to the dual is com-

plicated since it is not clear how to allocate the SINRs to the

users in case of multi-antenna terminals. Besides the capability

of proving congruency of two regions, dualities also deliver

explicit conversion formulas how to switch from one domain to

the other. In case of the rate duality in [8], (arbitrary) optimum

receive filters generating sufficient statistics are assumed both

in the MAC and in the BC. Given transmit covariance matrices

in the MAC are converted to transmit covariance matrices

in the dual BC. Dependencies during these transformations

prevent a parallel processing and force a serial implementation.

In addition, the received data streams have to be decoded

jointly which entails a high computational complexity.

Our contribution in this paper is twofold. First, we present

a novel rate duality for systems with nonlinear interference

cancellation. One of the key steps involved is the change from

the covariance matrices to the transmit filters by which we gain

an isometry as degree of freedom. This degree of freedom is

then used to decorrelate every point-to-point link thus making

a fast parallel stream-wise decoding possible. As the streams

of a single user now do not interfere with each other, we can

employ an SINR duality in the style of our MSE duality in

[5], [6]. Therein, the transmit filters in the dual domain are

scaled receivers of the primal domain and the receive filters

are scaled transmitters of the primal domain. We end up with

a system of linear equations to determine these scaling factors.

Our second contribution is a rate duality for linear filtering

applicable to multi-antenna terminals where different streams

of a user are not treated as self-interference. Up to now,

such a duality did not exist and hitherto existing dualities for

linear filtering treat different streams of a user as virtual users

contributing interference to the user under consideration, see

[1], [2], [11] for example. In general, the maximum possible

rate cannot be obtained when a duality based on virtual

users is applied. The underlying framework for the proposed

linear duality is similar to the proposed nonlinear duality

presented in the following. Key observation is again the fact

that decorrelation allows for a stream-wise decoding which

also achieves the rate that is possible under joint decoding.

II. SYSTEM MODEL

Two systems are considered, namely the MAC where K

multi-antenna users send their data to a common base station

which is equipped with N antennas, and the BC where

the signal flow is reversed, i.e., the base station serves the

users. In the former case the transmission between the kth

user and the base station is described by the channel matrix

Hk ∈ CN×rk with rk denoting the number of transmit

antennas at user k. The BC link, however, is characterized by



the Hermitian channel matrix HH
k . User k multiplexes Lk data

streams. If interference cancellation is applied in the MAC, we

assume for the sake of readability that the decoding order is

chosen such that user 1 is decoded last, whereas the reversed

encoding order is chosen in the BC, i.e., user 1 is precoded

first. For different sortings, the users have to be relabeled

correspondingly. Under these assumptions, the rate of user k in

the MAC with nonlinear interference cancellation reads as [12]

RMAC
k = log2

∣
∣σ2

ηIN +
∑

ℓ≤k HℓQℓH
H
ℓ

∣
∣

∣
∣σ2

ηIN +
∑

ℓ<k HℓQℓH
H
ℓ

∣
∣
, (1)

where σ2
η is the noise variance per antenna and Qℓ ∈ Crℓ×rℓ

denotes the transmit covariance matrix of user ℓ. Contrary, user

k’s rate in the BC with nonlinear dirty paper coding is [8]

RBC
k = log2

∣
∣σ2

ηIrk
+ HH

k

∑

ℓ≥k SℓHk

∣
∣

∣
∣σ2

ηIrk
+ HH

k

∑

ℓ>k SℓHk

∣
∣
, (2)

where Sℓ ∈ CN×N is the BC transmit covariance matrix of

user ℓ. If only linear filtering without interference subtraction

is applied, user k experiences interference from all other users.

III. RATE DUALITY FOR SYSTEMS UTILIZING

INTERFERENCE SUBTRACTION

A. Benefits of the Rate Duality with Interference Cancellation

Besides the ability to show congruency between the two

capacity regions, the decisive reason for utilizing the rate

duality is that all rate expressions are concave functions of

the transmit covariance matrices in the MAC but not in the

BC. Moreover, the optimal sorting of the users can easily

be obtained in the MAC. As a consequence, many rate-

based maximizations can be solved with efficient algorithms

converging to the global optimum in the MAC and afterwards

converted to the BC by means of the duality conversion

formulas.

B. State-of-the-Art Duality

By means of the MAC-to-BC conversion, we illustrate the

state-of-the-art rate duality from [8]. Both in the MAC and

in the BC, all rate expressions depend only on the transmit

covariance matrices and not on the matrix valued receive

filters since they are implicitly assumed to generate sufficient

statistics. Based on these statistics, the Lk data streams of user

k have to be decoded jointly. Given a set of transmit covariance

matrices {Qk} in the MAC which fulfills a total transmit

power constraint and obtains a rate tuple RMAC
1 , . . . , RMAC

K

under the assumption of optimum receive filters, the duality

in [8] generates a set of transmit covariance matrices {Sk}
for the BC that fulfills the same total transmit power con-

straint and achieves the same rate tuple RBC
1 , . . . , RBC

K . In the

BC, optimum receivers yielding sufficient statistics are again

required and all streams of every individual user have to be

decoded jointly as well.

Two key methods utilized are the effective channel and

the flipped channel idea. The former one implies that the

capacity of a point-to-point MIMO system with channel matrix

H subject to an additive Gaussian distortion (noise plus

independent interference) with covariance matrix X equals

the capacity of a point-to-point system with effective channel

matrix L−1H subject to additive Gaussian distortion with

identity covariance matrix if X = LLH. Given an arbitrary

effective channel of a point-to-point system, a system with

reversed signal flow and Hermitian effective channel (flipped

channel) has the same capacity [13]. According to (1), the rate

of user k in the MAC can be expressed as

RMAC
k = log2

∣
∣IN + X−1

k HkQkHH
k

∣
∣ , (3)

with the substitution Xk = σ2
ηIN +

∑k−1
ℓ=1 HℓQℓH

H
ℓ . Intro-

ducing the Cholesky decomposition Xk = LkLH
k , applying

the determinant equality |Ia +AB| = |Ib +BA| for arbitrary
A and B of appropriate dimensions, and inserting two identity

matrices Irk
= F−1

k Fk = F H
k F−H

k , (3) can be expressed as

RMAC
k = log2

∣
∣IN +L−1

k HkF−1
k FkQkF H

k F−H
k HH

k L−H
k

∣
∣ .

Now, L−1
k HkF−1

k can be regarded as the effective channel

for the covariance matrix FkQkF H
k . How Fk must be chosen

will be clarified below. Flipping the channel, outcomes in [8]

ensure the existence of a covariance matrix Zk ∈ CN×N with

RMAC
k = log2

∣
∣Irk

+ F−H
k HH

k L−H
k ZkL−1

k HkF−1
k

∣
∣ ,

tr(Zk) ≤ tr(FkQkF H
k ).

(4)

The rate of user k in the BC is (cf. Eq. 2)

RBC
k = log2

∣
∣Irk

+ Y −1
k HH

k SkHk

∣
∣

= log2

∣
∣Irk

+ F−H
k HH

k SkHkF−1
k

∣
∣ ,

(5)

with the substitution Yk =σ2
ηIrk

+
∑K

ℓ=k+1 HH
k SℓHk =F H

k Fk.

Equality between RMAC
k in (4) and RBC

k in (5) holds, if

Sk = L−H
k ZkL−1

k . (6)

Implicitly, Zk depends on Fk as will be shown soon. Thus, Sk

depends on Yk which itself is a function of all Sℓ with ℓ > k.

These dependencies require that Sk has to be computed before

Sk−1 and consequently, one has to start with the computation

of SK followed by SK−1, . . . , S1.

It remains to determine the matrices Zk ∀k. Introducing the
reduced singular-value-decomposition (rSVD)

L−1
k HkF−1

k = UkDkV H
k ∈ C

N×rk (7)

with the two (sub-)unitary matrices Uk ∈ C
N×rank(Hk) and

Vk ∈ Crk×rank(Hk), the matrix Zk reads as

Zk = UkV H
k · FkQkF H

k · VkUH
k . (8)

The proof for the sum-power conservation can be found in [8].

From the MAC-to-BC conversion, it can be concluded that

every rate tuple in the MAC can also be achieved in the dual

BC. Conversely, the transformation from the BC to the MAC

which follows from the same framework, states that every rate

tuple in the BC can also be achieved in the MAC. Hence, the

duality of these two domains is proven and as a consequence,

their capacity regions are congruent. Summing up, the state-of-

the-art rate duality including interference cancellation is serial



in two senses: First, it requires a serial implementation of the

covariance matrix conversion due to the dependencies of Sk on

Sℓ with ℓ > k. Second, the application of the duality requires

that the different streams associated to a user are decoded

jointly or, at the best, in a serial fashion.

C. Proposed Filter-Based Duality

The previously described state-of-the-art rate duality is

mainly deduced from information theoretic considerations,

where optimum receivers generate sufficient statistics and

capacity is achieved via joint decoding with inter- and intra-

user successive interference cancellation. Approaching from

a signal processing point of view enables us to derive a

novel intuitive duality of low complexity. Switching from

arbitrary sufficient statistics generating optimum receivers to

MMSE receivers, we are able to express all rates in terms

of error covariance matrices, which in turn only depend on

the transmit covariance matrices, i.e., on the outer product

of the precoding filters. The remaining degree of freedom is

a unitary rotation and we utilize this isometry in order to

decorrelate every single point-to-point link. Doing so, the error

covariance matrix becomes diagonal and capacity is achieved

with separate stream-wise decoding making intra-user inter-

ference cancellation superfluous. The fact that stream-wise en-

coding/decoding achieves capacity has already been observed

in [2], [14]. There, however, intra-user successive decoding

must be applied and all streams are decoded one by one.

As all rates can now be expressed as functions of the SINRs

of the individual streams, we apply a low-complexity SINR

duality in the style of our MSE duality in [6], [5]. In a nutshell,

the scaled MMSE receivers are used as precoders in the dual

domain and scaled precoding filters serve as the receive filters

in the dual domain. This dual domain features the same SINR

values as the original one and therefore achieves the same user

rates. In the following, we give an elaborate derivation of the

MAC-to-BC conversion.

1) Derivation: Assuming that every MAC covariance ma-

trix Qk = TkT H
k is generated by the precoder Tk ∈ Crk×Lk ,

the symbol estimate of user k in the MAC is

ŝk = Gk

[

HkTksk +
∑

ℓ>k

HℓTℓsℓ +
∑

ℓ<k

HℓTℓsℓ + η
]

,

where Gk denotes the receive filter of user k, sk its data vector

with identity covariance matrix, and η the additive noise. Since

interference caused by users l > k is removed by successive

interference cancellation, the MMSE receiver for user k is

Gk = T H
k HH

k

(∑

ℓ≤k

HℓTℓT
H
ℓ HH

ℓ + σ2
ηIN

)−1

. (9)

Using (9) and the matrix-inversion lemma, the MMSE error

covariance matrix Ck =E[(sk−ŝk)(sk−ŝk)H] reads as

Ck = ILk
−GkHkTk =

[
ILk

+T H
k HH

k X−1
k HkTk

]−1
, (10)

with Xk = σ2
ηIN +

∑k−1
ℓ=1 HℓTℓT

H
ℓ HH

ℓ . The rate of user k

can be expressed in terms of its error covariance matrix

RMAC
k = log2 |C

−1
k | = − log2 |Ck|, (11)

cf. (3). Note that the rate of user k is invariant to a unitary

matrix Wk multiplied from the right hand side to Tk yielding

T ′
k = TkWk. Moreover, the rate expressions of other users

only depend on the transmit covariance matrices and not on

the filters themselves therefore being also invariant to this

isometry. Last but not least, the transmit power tr(Qk) =
tr(TkT H

k ) = tr(T ′
kT ′H

k ) is invariant under this isometry Wk.

Although Wk does not influence the interference covariance

matrix experienced by any other user, it can be used as a

spatial decorrelation filter for every point-to-point link which

in conjunction with the MMSE receiver G′
k = W H

k Gk

diagonalizes the error-covariance matrix Ck. To this end, Wk

must be chosen as the eigenbasis of GkHkTk which is also the

eigenbasis of T H
k HH

k X−1
k HkTk. Due to the decorrelation, all

point-to-point links from the users to the base station achieve

capacity without intra-user successive interference cancellation

thus making separate stream decoding possible. This way, the

rate of user k can be expressed as the sum of the individual

streams’ rates, i.e., RMAC
k =

∑Lk

i=1 RMAC
k,i , where

RMAC
k,i = log2(1 + SINRMAC

k,i ).

Let t′k,i be the ith column of T ′
k and g′T

k,i be the ith row of

G′
k, then the general SINR definition in the MAC

SINRMAC
k,i =

|g′T
k,iHkt′k,i|

2

g′T
k,i

(

Xk +
∑

m 6=i Hkt′k,mt′Hk,mHH
k

)

g′∗
k,i

(12)

reduces for the special choice of the decorrelation filter Wk to

SINRMAC
k,i =

|g′T
k,iHkt′k,i|

2

σ2
η‖g

′
k,i‖

2
2 +

∑

ℓ<k

∑Lℓ

m=1 |g
′T
k,iHℓt

′
ℓ,m|

2
(13)

i.e., the summation over m in the denominator of (12) vanishes

as G′
kHkT ′

k is diagonal. Inserting G′
k into (13) yields

SINRMAC
k,i = t′Hk,iH

H
k X−1

k Hkt′k,i, (14)

according to the diagonal entries of W H
k C−1

k Wk, see (10).

In the dual BC with Hermitian channels, dirty paper coding

for inter-user interference presubtraction is applied with re-

versed order. The receivers perform a stream-wise decoding

based on the outputs of the receive filters Bk ∀k. Given

precoders P1, . . . , PK , the SINR of user k’s stream i is

SINRBC
k,i =

|bT
k,iH

H
k pk,i|

2

bT
k,i

(

Yk +
∑

m 6=i HH
k pk,mpH

k,mHk

)

b∗k,i

, (15)

and the rate of user k in the BC with stream-wise decoding

reads as RBC
k =

∑Lk

i=1 log2(1 + SINRBC
k,i ). Besides the de-

correlation, the flipping of transmit and receive filters is the

core of our duality: Scaled transmit matrices including the

decorrelation in the MAC act as receive filters in the BC and

scaled receivers in the MAC act as transmit filters in the BC:

pk,i = αk,ig
′∗
k,i and bk,i = α−1

k,i t
′∗
k,i. (16)

Plugging (16) into the general BC SINR expression (15) we

obtain by means of the diagonal structure of G′
kHkT ′

k

SINRBC
k,i =

α2
k,i|g

′T
k,iHkt′k,i|

2

σ2
η‖t

′
k,i‖

2
2 +

∑

ℓ>k

∑Lℓ

m=1 |g
′T
ℓ,mHkt′k,i|

2α2
ℓ,m

.



Equating SINRBC
k,i with the MAC SINR from (13), we get

α2
k,i

[

σ2
η‖g

′
k,i‖

2
2 +

∑

ℓ<k

Lℓ∑

m=1

|g′T
k,iHℓt

′
ℓ,m|

2
]

−
∑

ℓ>k

Lℓ∑

m=1

α2
ℓ,m|g

′T
ℓ,mHkt′k,i|

2 = σ2
η‖t

′
k,i‖

2
2,

(17)

which needs to hold for all users k and all streams i ∈
{1, . . . , Lk} thus generating the system of linear equations

M·
[
α2

1,1, . . . , α
2
K,LK

]T
= σ2

η

[
‖t′1,1‖

2
2, . . . , ‖t

′
K,LK

‖22
]T

(18)

with the
∑K

k=1 Lk ×
∑K

k=1 Lk block upper triangular matrix

M =






M1,1 · · · M1,K

0
. . .

...

0 0 MK,K




 . (19)

The off-diagonal blocks with a < b read as (cf. Eq. 17)

Ma,b = −(G′
bHaT

′
a)H ⊙ (G′

bHaT
′
a)T ∈ R

La×Lb (20)

with the Hadamard product ⊙, and Ma,a is diagonal with

[Ma,a]i,i = σ2
η‖g

′
a,i‖

2
2 −

∑

ℓ<a

Lℓ∑

m=1

[Mℓ,a]m,i. (21)

Since all off-diagonal elements of M are nonpositive and all

diagonal elements are nonnegative, M is a Z-matrix [15].

For σ2
η > 0, M is column diagonally dominant. So, M

is an M-matrix such that its inverse exists with nonnegative

entries [15] yielding valid solutions α2
k,i ≥ 0. Because of the

block upper triangular structure of M we can quickly solve

for α2
1,1, . . . , α

2
K,LK

via back-substitution, in particular since

the diagonal blocks Mk,k are diagonal matrices. Note that a

rank-deficient precoder Tm manifests in zero columns and zero

rows in M which have to be removed before inversion. The

respective α2
m,· and ‖t

′
m,·‖

2
2 in (18) also have to be removed,

and finally, pm,· = 0 and bm,· = 0 must be chosen.

Summing up the rows of (18), we obtain

K∑

k=1

Lk∑

i=1

α2
k,i‖g

′
k,i‖

2
2

︸ ︷︷ ︸

‖pk,i‖2

2

σ2
η = σ2

η

K∑

k=1

Lk∑

i=1

‖t′k,i‖
2
2, (22)

stating that the dual BC consumes the same power as the

MAC. Thus, the same or larger (if MMSE receivers are chosen

for B1, . . . , BK) rates can be achieved in the dual BC as in

the primal MAC under the same transmit power constraint.

The reverse direction of the duality transforming BC filters to

the MAC can be handled with the same framework. Due to

its similarity, we skip its derivation. From this direction of the

duality, it follows that the BC rate region is a subset of the

MAC capacity region. In combination with the former result

of the MAC-to-BC conversion stating that the MAC capacity

region is a subset of the BC rate region, the following theorem

becomes evident with the aid of [9] (cf. [8]):

Theorem III.1: The capacity regions of the MAC and the BC

are congruent under a sum-power constraint.

As a consequence, any optimization in the BC can be solved

in the MAC, which offers concave rate expressions suitable for

efficient globally convergent algorithms. Since both capacity

regions are congruent, we optimize over the same region and

therefore, do not introduce any suboptimality at this point.

Having found the solution in the MAC we can convert it back

to the BC by means of the duality. Optimality in one domain

translates itself to optimality in the other domain. The main

advantage of the proposed filter-based duality compared to the

state-of-the-art duality in [8] is that both the conversion and the

decoding in the dual domain can be parallelized and need not

be applied serially as in [8]. The computation of the transmit

and receive filters features no dependencies and the decoding

process does not require intra-user interference cancellation or

intra-user joint decoding of the streams, all streams of a user

can be decoded independently in parallel.

2) Algorithmic Implementation: Given arbitrary precoding

filters Tk ∀k in the MAC, MMSE receivers Gk are first

computed via (9) for all k, see Line 2 in Alg. 1. The decor-

relation filter Wk is chosen as the eigenbasis of GkHkTk

and afterwards, the transmit and receive filters are adapted,

see Lines 3 and 4. Thereby, a parallel stream-wise decoding

is possible without intra-user interference cancellation. Having

set up the linear system of equations in (18) which ensures the

conservation of the SINRs in the BC, the precoders Pk and

receivers Bk are computed with (16), cf. Line 8.

IV. RATE DUALITY FOR SYSTEMS WITHOUT

INTERFERENCE SUBTRACTION

In case of linear filtering, i.e., when nonlinear inter-user

interference cancellation is not applied, user k experiences

interference from all other users ℓ 6= k. Up to now, a rate

duality for the linear case without interference subtraction does

not exist in the literature when multi-antenna terminals are

involved and different streams shall not be treated as self-

interference. By jointly decoding the streams in the MAC,

user k can achieve the rate

RMAC
k = log2

∣
∣
∣IN +

(∑

ℓ 6=k

HℓQℓH
H
ℓ +σ2

ηIN

)−1
HkQkHH

k

∣
∣
∣

= − log2

∣
∣IN −X−1HkQkHH

k

∣
∣, (23)

with the substitution X = σ2
ηIN +

∑K

ℓ=1 HℓQℓH
H
ℓ . In con-

trast to systems with interference cancellation described in the

previous section, this matrix is common to MMSE receivers

Gk = T H
k HH

k X−1 (24)

for all users k and therefore has to be computed only once.

Applying Gk, user k experiences the error covariance matrix

Ck = ILk
− T H

k HH
k X−1HkTk, (25)

which is again decorrelated by the isometry Wk since the

rate RMAC
k = − log2 |Ck| is again invariant under this uni-

tary degree of freedom. Choosing Wk as the eigenbasis of

T H
k HH

k X−1HkTk, we adapt the receive filter G′
k = W H

k Gk

and the transmit filter T ′
k = TkWk. Due to the decorrelation,

the error covariance matrix W H
k CkWk is diagonalized and



all Lk streams of user k can be decoded separately yielding

the rate R
MAC,lin
k =

∑Lk

i=1 R
MAC,lin
k,i , with the rate

R
MAC,lin
k,i = log2(1 + SINRMAC,lin

k,i ) (26)

of user k’s stream i. Its SINR now reads as

SINRMAC,lin
k,i =

|g′T
k,iHkt′k,i|

2

σ2
η‖g

′
k,i‖

2
2 +

∑

ℓ 6=k

∑Lℓ

m=1 |g
′T
k,iHℓt

′
ℓ,m|

2
.

We apply the same rule for finding the precoding and receive

filters Pk and Bk of user k in the BC as we do in case of inter-

ference cancellation, i.e., pk,i = αk,ig
′∗
k,i and bk,i = α−1

k,i t
′∗
k,i,

see (16). With these transformations, the BC SINR reads as

SINRBC,lin
k,i =

α2
k,i|g

′T
k,iHkt′k,i|

2

σ2
η‖t

′
k,i‖

2
2 +

∑

ℓ 6=k

∑Lℓ

m=1 |g
′T
ℓ,mHkt′k,i|

2α2
ℓ,m

.

Equating the BC and MAC SINRs yields the system of

linear equations (18), where the matrix M is not block upper

triangular as in (19), since inter-user interference cancellation

is not applied:

M =






M1,1 · · · M1,K

...
. . .

...

MK,1 · · · MK,K




 . (27)

For this reason, (18) is solved via LU-factorization [16, Sec-

tion 3.2.5] and forward-backward substitution. The diagonal

blocks of M are diagonal matrices with diagonal entries

[Ma,a]i,i = σ2
η‖g

′
a,i‖

2
2 −

∑

ℓ 6=a

Lℓ∑

m=1

[Mℓ,a]m,i, (28)

such that M is again an M-matrix satisfying the power

conservation equation (22). With slight modifications, Alg. 1

can be used to perform the MAC-to-BC conversion without

nonlinear inter-user interference cancellation. In Line 2, Gk

must be computed according to (24), and in Line 7, the matrix

M follows from (27), (20), and (28). Again, the converse

direction of the duality underlies the same framework and

completes the proof of the duality in case of linear filtering

without inter-user interference cancellation:

Theorem IV.1: The MIMO MAC and the MIMO BC share

the same rate region under linear filtering and a sum-power

constraint both for separate and joint de-/encoding of each

user’s data streams.

This novel rate duality for systems without interference can-

cellation allows us to convert any rate-based optimization from

the BC to the MAC without loss of optimality. An immediate

benefit is that we can switch from the rate expression

R
MAC,interference
k = − log2

∏

i

[
ILk
− T H

k HH
k X−1HkTk

]

i,i

with separate stream decoding and hence self-interference to

the one in (23) with joint stream decoding

R
MAC,lin
k = − log2

∣
∣ILk

− T H
k HH

k X−1HkTk

∣
∣,

which is always larger than or equal to R
MAC,interference
k .

Moreover, the channel and precoder indices are aligned in

Algorithm 1 Novel stream-wise MAC-to-BC conversion.

1: for k = 1 : K do

2: Gk ← T H
k HH

k

( ∑

ℓ≤k HℓTℓT
H
ℓ HH

ℓ + σ2
ηIN

)−1

3: Wk ← eigenbasis(GkHkTk) decorrelation matrix

4: G′
k ←W H

k Gk and T ′
k ← TkWk decorrelate

5: end for

6: set up M with (19) – (21), remove zero columns/rows

7: solve for α2
1,1, . . . , α

2
K,LK

via (18)

8: pk,i = αk,ig
′∗
k,i and bk,i = 1

αk,i
t′∗k,i ∀k, ∀i

the MAC, see (23), whereas they aren’t in the BC. Although

(weighted) sum-rate maximization remains a nonconcave max-

imization in the MAC, the aforementioned indices alignment

allows for simpler expressions and reduced-complexity algo-

rithms. Last but not least, MAC precoders are characterized

by only
∑K

k=1 r2
k variables instead of N

∑K

k=1 rk in the BC.

Summing up, solving rate based optimizations with linear

filtering in the MAC and applying the proposed duality is more

efficient than solving the problem in the BC.
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