
Improvements in Polynomial-Time Feasibility Testing for EDF

Alejandro Masrur Sebastian Drössler Georg Färber
Institute for Real-Time Computer Systems
Technische Universität München, Germany

{Alejandro.Masrur, Sebastian.Droessler, Georg.Faerber}@rcs.ei.tum.de

Abstract

This paper presents two fully polynomial-time sufficient
feasibility tests for EDF when considering periodic tasks
with arbitrary deadlines and preemptive scheduling on
uniprocessors. Both proposed methods are proven, ana-
lytically and by means of an extensive experimental com-
parison, to be more accurate than known polynomial-time
feasibility tests. Additionally, we show for a wide interval
of practical processor utilization that one of these methods
presents almost the same efficiency, in terms of accepted
task sets, as the more complex pseudo-polynomial-time ex-
act feasibility tests.

1. Introduction

For the case where periodic tasks with arbitrary dead-
lines are preemptively scheduled under EDF (Earliest Dead-
line First) on a uniprocessor, exact feasibility tests with
pseudo-polynomial complexity are already known, e.g. [2]
and [8]. However, faster polynomial-time sufficient tests
are still preferable for some applications where, for exam-
ple, schedulability has to be tested online. Furthermore,
the more predictable running time of polynomial-time al-
gorithms is an additional advantage in the latter context.

In this paper, we show how it is possible to achieve more
accuracy in polynomial-time feasibility testing for EDF un-
der the given conditions. We propose two feasibility tests
basing actually on same idea as the density condition [10],
[7] and as Devi’s condition [4], i.e. to reduce algorithms’
complexity by sacrificing exactness.

The next two sections provide a survey of related work
and a description of the used task model. Posteriorly, the
tight relation between Devi’s condition and the best known
feasibility bound is pointed out in section 4. In section 5,
we prove analytically that a slight, but for the purpose of
this paper profitable, improvement of the best known feasi-
bility bound is possible. Section 6 presents two better fully
polynomial-time feasibility tests for EDF; one of them ex-

hibits complexity O(n2) while the other has same complex-
ity as Devi’s condition, namely O(n log n). Additionally,
section 7 outlines results from thorough experiments com-
paring our proposed methods against the best known feasi-
bility tests for EDF. Finally, some concluding remarks are
presented in section 8.

2. Related work

In [6], Liu and Layland showed that a feasibility test for
synchronous tasks, scheduled preemptively under EDF and
on a uniprocessor, can be performed as follows in polyno-
mial time, when deadline (di) is equal to period (pi) for
every task: U =

∑n
i=1

ei

pi
≤ 1. In this inequality, ei is the

worst-case execution time of the i-th task, n is the number
of tasks and U is called processor utilization. Afterwards in
[2], Baruah et al. proved that applying the utilization test of
Liu and Layland is also valid when di ≥ pi holds for all i.

When deadlines are allowed to be less than periods, the
complexity grows considerably. However, assuming the
processor utilization to be less than 100% for a synchronous
scheduling, Baruah et al. also proved that if a deadline is
missed, this happens before a maximum time upper limit
known as feasibility bound. This result allowed Baruah et
al. to design a pseudo-polynomial time algorithm for the
case where deadlines are not forced to be equal to periods.

Another pseudo-polynomial time algorithm for di ≤ pi

was presented by Ripoll et al. in [8]. Ripoll et al. intro-
duced two better feasibility bounds, which they combined
in an efficient algorithm. On the other hand, George et al.
considered in [5] also the case di > pi and got a feasibility
bound, referred as George’s bound in this paper, with the

expression: In =
∑n

i=1
(pi−min(di,pi))·ui

1−U , where ui = ei

pi
.

George’s bound reduces to Ripoll’s bound if di ≤ pi holds
for all possible i and it is the best known feasibility bound
for EDF in case that no restrictions are imposed to di.

The other feasibility bound presented by Ripoll et al.
is based on the busy period analysis, whose calculation
itself presents pseudo-polynomial complexity. This lat-

ter pseudo-polynomial feasibility bound was also indepen-
dently obtained by Spuri [9].

All exact algorithms, including the one of Albers and
Slomka [1], present pseudo-polynomial complexity. In or-
der to reach polynomial complexity in feasibility testing for
EDF, when di can be less than pi, exactness must be sacri-
ficed. Based on this idea, Liu in [7] and Stankovic et al. in
[10] propose independently the density test, which results
by replacing pi by min(di, pi) in the utilization test of Liu
and Layland, that is:

∑n
i=1

ei

min(pi,di)
≤ 1.

Assuming that tasks are sorted by non-decreasing dead-
lines di, Devi presented in [4] a better approach in terms
of accepted task sets than the density condition. However,
Devi’s condition describes a higher complexity O(n log n)
because of requiring sorted task sets.

3. Task model and notation

In this section, we specify some more details about the
task model and notation already used for related work.

We consider a set τ of periodic real-time tasks, which
are fully preemptable and independent. As already men-
tioned, we assume that τ is scheduled on a uniprocessor.
Each task Ti in τ is characterized by its period of repetition
pi, its relative deadline di and its worst-case execution time
ei. Another parameter of tasks is the initial release time or
phase φi. For this paper, it is assumed that φi = 0 holds for
all tasks, i.e. τ is a synchronous task set. Relative deadlines
di are not restricted and they can be less as well as greater
than the respective periods pi for 1 ≤ i ≤ n, where n is the
number of tasks in τ .

For remaining sections, we assume that the total proces-
sor utilization given by τ is less than 100%, i.e. U < 1
holds. In addition, the time is represented by the real-valued
t ≥ 0, whereas George’s bound for τ is denoted by In.

4. Devi’s condition and George’s bound

The relation between Devi’s algorithm and the best
known feasibility bound was indirectly shown in [1]. How-
ever, the following lemma formulates this relation in a more
explicit way.

LEMMA 1 Assuming that tasks in τ are sorted according
to non-decreasing relative deadlines, Devi’s condition is
equivalent to an iterative calculation of George’s feasibility
bound. The task set τ is feasible, if George’s bound for the
first k tasks is less than or equal to dk for every possible k,
where 1 ≤ k ≤ n.

Proof: It is assumed that tasks are sorted according to
non-decreasing relative deadlines, so if i < j holds, di ≤ dj

will also hold. Devi’s condition states that τ is feasible if

the following inequality holds for every possible k, where
1 ≤ k ≤ n [4]:∑k

i=1
ei

pi
+ 1

dk

∑k
i=1

(
pi−min(pi,di)

pi

)
· ei ≤ 1.

Reordering terms, we get
∑k

i=1

(
pi−min(pi,di)

pi

)
· ei ≤(

1−
∑k

i=1
ei

pi

)
· dk, and finally:∑k

i=1
(pi−min(pi,di))·ui

1−Uk
≤ dk.

Where Uk =
∑k

i=1
ei

pi
and ui = ei

pi
, i.e. the left side

of this latter inequality is George’s bound Ik for the first k
tasks. The thesis follows.

Lemma 1 suggests that improving the best known feasi-
bility bound also results in better polynomial-time feasibil-
ity tests. This aspect is analyzed in the next sections.

5. Improving George’s bound

In this section, we prove that it is possible to reach a
slight but anyway useful improvement of the best known
feasibility bound. For the sake of clarity, the following
lemma restates one of the theorems presented by George
et al. in [5].

LEMMA 2 If the schedule of a given synchronous task set τ
is not feasible, i.e. a deadline is missed for the first time at
tmiss, then tmiss < In holds, where In is George’s bound.

Proof: This lemma simply excludes the possibility
that tmiss = In holds. Because a deadline is missed
at tmiss, the total execution demand of τ at tmiss is
greater than the available time tmiss, i.e. tmiss <
h(tmiss). Where h(t) is the demand bound function
defined by Baruah et al. in [2] and has the expres-
sion: h(t) =

∑n
i=1 max

(
0, b t−di

pi
c+ 1

)
· ei. Con-

sidering min(pi, di) instead of di, we obtain: tmiss <∑n
i=1

(
b tmiss−min(pi,di)

pi
c+ 1

)
· ei. And removing the

floor function, we reach:
tmiss <

∑n
i=1

(
tmiss−min(pi,di)

pi
+ 1

)
· ei.

Reshaping this inequality to obtain tmiss, we get the ex-
pression tmiss < In. In words, George’s bound is always
greater than the time instant at which a deadline is missed
for the first time.

LEMMA 3 If a deadline is missed for the first time at tmiss,

then tmiss < I
(1)
n =

c(0)
x ·ex+

∑n

i=1;i6=x
(pi−min(pi,di))·ui

1−U−x
,

where ui = ei

pi
, U−x =

∑n
i=1;i 6=x ui and c

(0)
x is given by

max
(
0, d In−dx

px
e
)

.

Proof: We know from lemma 2 that tmiss is always
less than In. Consequently, c

(0)
x = max

(
0, d In−dx

px
e
)

is equal to or greater than the amount of jobs of task
Tx in the interval [0, tmiss]. Additionally, as a dead-
line is missed at time tmiss, the total execution de-
mand in [0, tmiss] is greater than tmiss, i.e. tmiss <∑n

i=1;i 6=x max
(
0, b tmiss−di

pi
c+ 1

)
· ei + c

(0)
x · ex ≤∑n

i=1;i 6=x

(
b tmiss−min(pi,di)

pi
c+ 1

)
· ei + c

(0)
x · ex.

By removing the floor function and reshaping to get
tmiss, we obtain:

tmiss <
c(0)

x ·ex+
∑n

i=1;i6=x
(pi−min(pi,di))·ui

1−U−x
.

LEMMA 4 In > I
(1)
n =

c(0)
x ·ex+

∑n

i=1;i6=x
(pi−min(pi,di))·ui

1−U−x

holds, where ui = ei

pi
, U−x =

∑n
i=1;i 6=x ui and c

(0)
x is given

by max
(
0, d In−dx

px
e
)

.

Proof: From the derivation of In, we know that the
approximated total execution demand, which results by re-
moving the floor function and considering min(pi, di) in-
stead of di, is equal to In. This can be mathematically ex-
pressed as follows:
In =

∑n
i=1;i 6=x

(
In−min(pi,di)

pi
+ 1

)
· ei + c′x · ex.

In the previous inequality, we have substituted the term
In−min(px,dx)

px
+ 1 by c′x. Reshaping to get In, we have:

In =
c′x·ex+

∑n

i=1;i6=x
(pi−min(pi,di))·ui

1−U−x
.

Finally, it is easy to see that c′x > c
(0)
x holds, where c

(0)
x

is equal to max
(
0, d In−dx

px
e
)

. The thesis follows.

Lemma 4 shows that it is possible to achieve an im-
provement, based on lemma 3, of the best known feasibility
bound. Following theorem demonstrates that a recursive ap-
plication of lemma 3 is also valid.

THEOREM 1 If a deadline is missed for the
first time at tmiss, then tmiss < I

(k)
n =∑k

i=1
c
(i−1)
i

·ei+
∑n

i=k+1
(pi−min(pi,di))·ui

1−U−1;...;−k
, where ui = ei

pi
,

U−1;...;−k =
∑n

i=k+1 ui, c
(i−1)
i = max

(
0, d I(i−1)

n −di

pi
e
)

,

I
(0)
n = In is George’s bound and 1 ≤ k ≤ n.

Proof: We know from lemma 3 and lemma 4 that
tmiss < I

(1)
n < In holds. Consequently, considering x = 1

in lemma 3, we have that c(0)
1 = max

(
0, d In−d1

p1
e
)

is equal
to or greater than the amount of jobs of task T1 in the inter-
val [0, tmiss]. In the same way, c

(1)
2 = max

(
0, d I(1)

n −d2
p2

e
)

is equal to or greater than the amount of jobs of task
T2 in [0, tmiss]. We proceed analogously to lemma 3 to

get: tmiss < I
(2)
n =

c
(0)
1 ·e1+c

(1)
2 ·e2+

∑n

i=3
(pi−min(pi,di))·ui

1−U−1;−2
,

where U−1;−2 =
∑n

i=3 ui. Exactly as in lemma 4, it can be

easily proved that tmiss < I
(2)
n < I

(1)
n < In holds. Pro-

ceeding recursively for the first k tasks and 1 ≤ k ≤ n, we
get:

tmiss <

∑k
i=1 c

(i−1)
i · ei

1− U−1;...;−k

+
∑n

i=k+1(pi −min(pi, di)) · ui

1− U−1;...;−k
. (1)

The right member of this inequality is I
(k)
n , where c

(i−1)
i

is given by max
(
0, d I(i−1)

n −di

pi
e
)

. Note that for k = n,

inequality 1 reduces to tmiss < I
(n)
n =

∑n
i=1 c

(i−1)
i · ei.

6. Polynomial-time feasibility tests for EDF

In this section, we prove that it is possible to build
polynomial-time sufficient feasibility tests for EDF basing
on theorem 1.

LEMMA 5 Assuming that tasks in τ are sorted according to
non-decreasing relative deadlines, τ is feasible under EDF
if I

(k)
k ≤ dk holds for every k, where 1 ≤ k ≤ n and I

(k)
k is

the feasibility bound of theorem 1 for the first k tasks.

Proof: Let us analyze the case k = 1—only for T1;
if I

(1)
1 ≤ d1 holds, there are no deadlines in [0, I

(1)
1), be-

cause tasks are sorted according to non-decreasing relative
deadlines—d1 is the shortest one, and theorem 1 excludes
the possibility that a deadline miss happens at t = I

(1)
1 . As

a consequence, the task set with only T1 is feasible. For
k = 2, we compute I

(2)
2 —only for T1 and T2; if I

(2)
2 ≤ d2

holds, the task set with only T1 and T2 is also feasible be-
cause T1 alone was proven to be feasible in the previous
step and there are no deadlines of T2 in [0, I

(2)
2). Moreover,

a deadline miss cannot happen at t = I
(2)
2 according to the-

orem 1. For k = 3, we compute I
(3)
3 —only for T1, T2 and

T3; if I
(3)
3 ≤ d3 holds, the first three tasks are also feasible

because T1 and T2 together were proven to be feasible in the
previous step and there are no deadlines of T3 in [0, I

(3)
3).

A deadline miss cannot happen at t = I
(3)
3 because of theo-

rem 1.
Now, let us assume that I

(k)
k ≤ dk holds for 1 ≤ k ≤

n−1. If I
(n)
n ≤ dn also holds, τ is feasible because the first

n− 1 tasks were proven to be feasible in the previous steps
and there are no deadlines of Tn in [0, I

(n)
n). In accordance

to theorem 1, a deadline miss can neither happen exactly at
t = I

(n)
n . The thesis follows.

LEMMA 6 A polynomial-time feasibility test based on the-
orem 1 is more accurate than Devi’s condition.

Proof: Immediate from lemma 1 and lemma 4.

6.1. Feasibility test with O(n2)

Figure 1 presents an algorithm with O(n2) denominated
ptftn2, which bases on lemma 5. Theorem 1 assumes that
George’s bound In = I

(0)
n is known. Thus, this latter must

be calculated before I
(n)
n can be obtained.

After sorting tasks according to non-decreasing relative
deadlines, the algorithm of figure 1 computes iteratively the
feasibility bound of theorem 1 for the first k tasks, where
1 ≤ k ≤ n. For the reason that it generally delivers bet-
ter results, we begin calculating I

(k)
k from the task with the

longest deadline Tk on. This proceeding affects in no way
the validity of theorem 1, because this latter makes no as-
sumption on tasks’ order.

In every iteration of the nested for-loop, I
(k−i+1)
k is cal-

culated and compared to dk. If for any step I
(k−i+1)
k ≤ dk

holds, the first k tasks will be feasible because of lemma 5
and of taking into account that theorem 1 guarantees that
I
(k−i+1)
k ≥ I

(k)
k holds for 1 ≤ i ≤ k. In this latter case,

the algorithm continues running towards k = n. However,
if i = 1 is reached, i.e. I

(k−i+1)
k = I

(k)
k is reached, and

I
(k)
k > dk holds, we would not be able to make any asser-

tion about the feasibility of the first k tasks, so that we will
have to consider them as not feasible.

6.2. Feasibility test with O(n log n)

A complexity O(n log n) is possible by limiting the
nested for-loop in figure 1 to certain number of iterations.
We propose to fix these iterations to 100, what results in an
algorithm we call ptftnlogn-100. However, it might be bet-
ter to choose this value according to particular cases. We
denominate these similar algorithms by ptftnlogn-x. Fig-
ure 2 shows necessary changes on ptftn2 in order to obtain
the less complex ptftnlogn-100.

7. Experimental results

In this section, we present and evaluate some exper-
iments comparing the proposed algorithms with already
known polynomial-time feasibility tests. Furthermore, we
extended this comparison to include the fastest exact fea-
sibility test, called AllApprox, presented in [1]. Mentioned
algorithms are contrasted with respect to accuracy and their
running time. In order to achieve a sensible comparison,
random task sets were uniformly generated for different
processor utilizations as recommended in [3]—UUniFast
was applied.

Uk = rk = 0;
sort according to non-decreasing di;
for k = 1 to n /*n=number of Tasks in τ*/

Uk = Uk +
ek
pk
;

rk = rk + (pk − min(pk, dk)) · ek
pk
;

if Uk ≥ 1
return("not feasible");

end
/*If Uk < 1, we can find George’s bound*/

I
(0)
k

=
rk

1−Uk
;

ri = rk;
Ui = Uk;
for i = k to 1 /*Bound of theorem 1*/

c
(k−i)
i = max

(
0, d

I
(k−i)
k

−di

pi
e
)
;

Ui = Ui − ei
pi
;

ri = ri − (pi − min(pi, di)) · ei
pi

+ c
(k−i)
i · ei;

I
(k−i+1)
k

= ri
1−Ui

;

if I
(k−i+1)
k

≤ dk

break;
elseif i == 1 /*last iteration?*/

return("not feasible");
end

end
end
return("feasible");

Figure 1. Algorithm ptftn2

7.1. Performance comparison

Figure 3 illustrates the performance, in terms of accepted
task sets, versus processor utilization. To obtain task param-
eters, we proceeded as follows: Once generated ui as men-
tioned above, we created periods pi also in a random way
with uniform distribution; consequently, we got ei = ui ·pi.
Relative deadlines di were uniformly chosen from the range
[ei, pi]. Additionally, we sampled the utilization axis in
2.5% hops, for which the huge amount of 10000 different
task sets were generated each time. In this manner, different
curves were created for 5, 10, 100, 500 and 1000 tasks per
task set. These curves were averaged together in figure 3 in
order to show how feasibility tests behave independently of
the number of tasks n.

As depicted in figure 3, ptftn2 performs almost as well
as exact algorithms in the utilization range (0, 85%]. This
algorithm outperforms all known polynomial-time tests for
utilizations in (60%, 90%), reaching a peak at U = 0.8 of
about 40% more accepted task sets over Devi’s test.

On the other side, ptftnlogn-100 accepts around 10%
more task sets than Devi’s test in the utilization range
(70%, 90%). As expected, the performance of this latter
algorithm degrades to that of Devi’s test as n increases.

Figure 4 shows a performance comparison versus gap,

Uk = rk = 0;
iters = 100;
sort according to non-decreasing di;
for k = 1 to n /*n=number of Tasks in τ*/
...

i = k;
/*Bound of theorem 1, only iters tasks*/
while i > 0

...
if I

(k−i+1)
k

≤ dk

break;
elseif i == 1 || i == k − iters

return("not feasible");
end
i = i − 1;

end
end
return("feasible");

Figure 2. Algorithm ptftnlogn-100

where gap is defined as the difference between pi and di.
The gap axis was also sampled in 2.5% hops, for which
again 10000 different task sets were generated each time.
Figure 4 presents the average behavior for 5, 10, 100, 500
and 1000 tasks per task set too. For this plot, processor
utilization was fixed to 80%. Periods pi and worst-case
execution times ei were selected in the same way as be-
fore. This time, deadlines were chosen by di = pi − gap,
where gap ranges between 0 for di = pi and 100% for
di = ei. The proposed ptftn2 performs almost like exact
algorithms and outperforms all polynomial-time tests in the
gap range (30%, 55%). On its part, proposed test ptftnlogn-
100 performs better than all polynomial-time tests for gaps
in (35%, 55%). Again, the performance of this latter test
worsens as the number of tasks increases.

Figure 5 shows the schedulability versus number of tasks
for 80% processor utilization. The number of tasks was in-
cremented in 50-task steps, while for each step 10000 task
sets were generated. Test ptftn2 performs almost like exact
tests as the number of tasks grows. As expected, the perfor-
mance of ptftnlogn-100 falls rapidly for n > 100.

7.2. Comparison of running time

We implemented algorithms on Matlab—besides using
Matlab’s sortrows for sorting task sets where necessary,
routine testlist.add, for adding elements to a sorted list,
in AllApprox was implemented with O(log n). Algorithms
were timed on a 2GHz Intel Core 2 Duo machine running
Windows XP. For creating curves, no distinction was made
between feasible and unfeasible task sets.

Figure 6 compares the average running time versus uti-
lization. Here again, we proceeded as described above in or-

40 50 60 70 80 90 100
0

20

40

60

80

100
independent of n

utilization [%]

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

AllApprox
Devi’s test
ptftn2

ptftnlogn−100
density test

Figure 3. Schedulability vs. utilization

10 20 30 40 50 60 70
0

20

40

60

80

100
U=0.8, independent of n

gap [%]
%

 s
ch

ed
ul

ab
le

 ta
sk

 s
et

s

AllApprox
Devi’s test
ptftn2

ptftnlogn−100
density test

Figure 4. Schedulability vs. gap

0 200 400 600 800 1000 1200
0

20

40

60

80

100
U=0.8

number of tasks

%
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

AllApprox
Devi’s test
ptftn2

ptftnlogn−100
density test

Figure 5. Schedulability vs. number of tasks

der to generate curves independently of the number of tasks.
As it can be observed, proposed algorithms are around two
orders of magnitude faster than AllApprox in the utilization
interval (0, 70%], but they are almost two orders of magni-
tude slower than the density test. In (70%, 90%), the run-
ning time of ptftn2 gets drastically closer to Allapprox, but
there is still approximately an order of magnitude between
them. This drastic change experienced by ptftn2 responds to
the fact that the feasibility bound I

(k)
k of theorem 1 is calcu-

lated as it gets necessary—if I
(k−i+1)
k ≤ dk holds for any i,

the calculation of I
(k)
k will be broken off, see figure 1—and

as expected, we need to calculate the whole I
(k)
k for higher

40 50 60 70 80 90 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

feasible & unfeasible task sets, independent of n

utilization [%]

av
er

ag
e

ru
nn

in
g

tim
e

[s
] (

lo
ga

rit
hm

ic
)

AllApprox
Devi’s test
ptftn2

ptftnlogn−100
density test

Figure 6. Running time vs. utilization

10 20 30 40 50 60 70
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

feasible & unfeasible task sets, U=0.8, independent of n

gap [%]

av
er

ag
e

ru
nn

in
g

tim
e

[s
] (

lo
ga

rit
hm

ic
)

AllApprox
Devi’s test
ptftn2

ptftnlogn−100
density test

Figure 7. Running time vs. gap

utilizations. Around 85% utilization, the running time of
ptftn2 falls gradually because more task sets are found un-
feasible with less iterations.

In figure 7, the average running time for U = 0.8 versus
gap is plotted. Task sets were generated as previously in
order to reach curves that are relatively independent of n.
In this case, algorithms behave similarly to figure 6.

On its side, figure 8 depicts the running time of algo-
rithms for U = 0.8 as the number of tasks grows. The
number of tasks was incremented in 50-task steps proceed-
ing exactly as already described. The running time of ptftn2

remains an order of magnitude faster than AllApprox as n
grows, but it gets worse in relation to the other polynomial-
time algorithms.

8. Conclusions

In this paper, two better polynomial-time sufficient fea-
sibility tests were presented for EDF considering arbitrary
relative deadlines and a preemptive uniprocessor schedul-
ing. For complexity O(n2), we proved that our proposed
test ptftn2 outperforms Devi’s condition in the sense of ac-
curacy. Moreover, we showed that ptftn2 behaves almost
like exact feasibility tests in terms of accepted task sets and
for the utilization range (0, 85%]. A complexity O(n log n)
was also shown to be possible, however, the performance

0 200 400 600 800 1000 1200
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

feasible & unfeasible task sets, U=0.8

number of tasks

av
er

ag
e

ru
nn

in
g

tim
e

[s
] (

lo
gr

ar
ith

m
ic

)

AllApprox
Devi’s test
ptftn2

ptftnlogn−100
density test

Figure 8. Running time vs. number of tasks

of our suggested test ptftnlogn-100 deteriorates towards the
one of Devi’s test as the number of tasks n grows. As stated
in section 6.2, it is additionally possible to design other tests
with complexity O(n log n) that might be more convenient
for particular applications.

Finally, considering that ptftn2 performs well when pro-
cessor utilization is less than 90%, we believe it to be the
best alternative to more time-consuming exact algorithms in
many practical situations. In addition, as the running time is
kept moderate for most practical application, e.g. n ≈ 600,
we believe ptftn2 also to be more recommendable than the
other polynomial-time feasibility tests.

References

[1] K. Albers and F. Slomka. Efficient feasibility analysis for
real-time systems with edf scheduling. Proceedings of the
DATE 05 Conference, March 2005.

[2] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. Proceedings
of the Real-Time Systems Symposium, December 1990.

[3] E. Bini and G. Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 30(1-2):129–154,
2005.

[4] M. Devi. An improved schedulability test for uniprocessor
periodic task systems. Proceedings of the 15th Euromicro
Conference on Real-Time Systems, July 2003.

[5] L. George, N. Rivierre, and M. Spuri. Preemptive and non-
preemptive real-time uniprocessor scheduling. Rapport de
Recherche RR-2966, INRIA, 1996.

[6] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in hard real-time environments. Journal of the
Association for Computing Machinery, 20(1):40–61, 1973.

[7] J. Liu. Real-Time Systems. Prentice Hall, 2000.
[8] A. Ripoll, I. Crespo and A. Mok. Improvement in feasibility

testing for real-time tasks. Real-Time Systems, 11(1):19–39,
1996.

[9] M. Spuri. Earliest Deadline Scheduling in Real-Time Sys-
tems. PhD Thesis at Scuola Superiore S. Anna, Italy, 1995.

[10] J. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo.
Deadline Scheduling for Real-Time Systems: EDF and Re-
lated Algorithms. Kluwer, 1998.

