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Abstract

Genome sequencing projects continue to reveal the building blocks of life, producing

millions of amino acid sequences whose biological roles can be understood only when

the structure and function of these proteins are elucidated. Although experimental

structure determination methods become faster and cheaper and provide high quality

insights, only computational structure prediction methods can satisfy the demand

for structural data for the majority of proteins. Protein structures are predicted in

various levels of detail: It is approached by the prediction in one-dimension which

has the aim to detect local structural regularities like α-helices, β-sheets or backbone

turns. The next higher level of detail involves prediction in two-dimensions where

the protein contact map is a prominent representation.

Throughout this work an array of machine learning techniques is used to investi-

gate sequence-structure relationships in proteins, while a strong focus lies on neural

networks. One important advance made is the development of a novel bidirectional

Elman-type recurrent neural network with multiple output layers (MOLEBRNN)

capable of predicting multiple mutually dependent structural motifs. This computa-

tional architecture was successfully applied to develop the currently most accurate

predictor of β-turns and solvent accessibility, two important structural and func-

tional features of proteins. The advantage of the method introduced in this thesis

when compared to other predictors is that it does not require any external input

except for sequence profiles because interdependencies between different structural

features are taken into account implicitly during the learning process.

Finally, the first method to identify interacting residues and α-helices in mem-

brane proteins is presented. It is based on the analysis of co-evolving residues in

predicted transmembrane regions and the use of neural networks. The neural net-

work approach utilizes both input features commonly used for soluble proteins as

well as those specific to membrane proteins only, such as a residue’s position within

the transmembrane segment or its orientation towards the hydro- or lipophilic envi-

ronment. The predicted residue contacts were employed in a second step to identify

contacting helices with high accuracy.
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Chapter 1

Introduction

1.1 Nomenclature

The fundamental notion ‘structure’ describes the composition or appearance of

things that are somehow ordered. Structural biology is a scientific discipline that

aims to uncover topologies and shapes in biological macromolecules like proteins.

While structural biology traditionally is done in laboratories, the new branch, struc-

tural bioinformatics, is done by modeling molecule structures on silicon chips.

Proteins are macromolecules built of chained amino acids. They are essential

in organisms and are engaged in all biological processes of cells. They catalyze

biochemical reactions (enzymes), are responsible for the shape of biological com-

pounds (structural proteins), take roles in cell signaling or ligand transport, are

responsible for immune responses, can store molecules (Casein and Ovalbumin store

amino acids), and are even responsible for cell mechanics (for example Actin and

Myosin). Proteins occur individually or bound to other proteins or molecules where

they form complexes. In general two different types of proteins are distinguished:

globular proteins and membrane proteins. Globular proteins occur solute in water

while membrane proteins are attached to cell or organelle membranes. Depending

on the permanence of membrane association, membrane proteins aggregate mostly

in water, they are insoluble.

Biochemists distinguish four different levels of the protein structure. The primary

structure represents the sequence of amino acids in a protein, the secondary structure
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represents local structural regularities, the tertiary structure is the three-dimensional

structure of the protein while the quaternary structure involves protein-protein in-

teractions and represents the three-dimensional structure of protein complexes. In

three-dimensional space, where the tertiary and quaternary structures reside, a pro-

tein is fully defined after solving the positions of all atoms. On the one hand, the

highest level of detail is obtained in this three-dimensional representation, while on

the other hand its derivation demands time- and money-consuming methods in the

wet laboratory. The cheaper and faster in silico approach requires very sophisticated

methods which are still erroneous.

To support computational derivation of 3D-structures, less demanding struc-

tural features are desired, thereby accepting the drawback of being less informative.

Such features reside in lower dimensions; they are one- and two-dimensional. One-

dimensional structural features are for example, secondary structure, β-turn and

residue solvent accessibility states, features that can be represented by a sequence

of structural states associated to a corresponding residue. They reside in a single

dimension because a single value is sufficient to position the states in space. A

two-dimensional description of the protein structure is encoded in the contact-map.

Close amino acid residue contacts, found in the native three-dimensional structure,

are modeled in this two-dimensional coordinate system. Both axes of the coordinate

system represent the amino acid sequence of a given protein. If two residues at

positions i and j of the protein are in contact, the matrix element (i, j) reflects that

property. (In Section 1.2.2 the contact-map is described in greater detail. There,

Figure 1.2 shows an example.)

The research area ‘machine learning’ is embedded into the concept ‘artificial

intelligence’, a branch in computer sciences. Machine learning deals with the devel-

opment of algorithms and methods with the aim to allow machines to ‘learn’. The

machines learn rules during a training process involving examples, and the learned

rules can then be applied to examples not available during training. Machine learning

techniques are organized into branches where the two most common include super-

vised learning and unsupervised learning. Supervised learning searches for functions

by which input data can be mapped to associated output values. The training
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data consists of paired elements where input and output values are linked. During

learning the algorithm induces a mapping function from the training data. With

the found mapping function, examples with unknown output values can be linked

to predicted output values. This thesis exclusively deals with supervised learning

methods. Unsupervised methods are developed to find rules in data without output

values. Here, the aim is to find similarities and dissimilarities between the examples

in the data, similar examples are then grouped together.

Famous examples for supervised machine learning algorithms emerge from the

concept of artificial neural networks (ANN). ANNs are graphical models inferred

from biological neural networks. Being graph based, neural networks consist of in-

terconnected neurons with defined input and output connections. Similar to what

is thought to happen in biological neurons, artificial neurons accumulate the input

stimuli by gathering the weighted sum over the input connections; if this accumu-

lated input is larger than a certain threshold, the neuron output is activated which

influences subsequent neurons. There are infinite possibilities to interconnect the

neurons; experts can predefine the connections to model the full and functional

neural network.

Having defined the most important terms, now they are put in context and

related to this thesis: The goal of this thesis is the development of neural network

based machine learning methods specifically tailored to the prediction of structural

features of proteins. Two levels of structural complexity are considered, residing in

one- and two-dimensional space and globular and membrane proteins are inspected.

The task is to significantly contribute to research in structural biology.

1.2 Biological problem

Current life-science research is directed towards the understanding of full biologi-

cal systems. With the availability of high throughput sequencing techniques, huge

amounts of genetic data has been produced (Mewes et al., 1997; Lander et al., 2001;

Sequencing and Consortium, 2005). As a consequence deep insights into genomes

got available and the wish to understand biological systems arose. Towards under-
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standing these biological systems the deciphering of the genetic messages in protein

structures and functions is required. Although structural biologists are constantly

developing faster and cheaper methods to measure three-dimensional structures from

natively folded proteins, there exists a major discrepancy between the amount of

available genetic DNA sequences and protein structures. To bridge this gap compu-

tational methods are developed. The most important requirement for the realization

of structure prediction methods was found 35 years ago when Anfinsen (1973) dis-

covered that the amino acid sequence is dictating the protein structure. Later this

requirement was expanded as it was discovered that the native solution environment

plays an import role for protein folding (Dill, 1990). Today structure prediction

methods are so powerful that good results are obtained and far reaching conclusions

get possible (Petrey and Honig, 2005).

To drive research, three-dimensional or tertiary structure is not always necessary,

often other, less detailed structural descriptors are enough.

1.2.1 One-dimensional structure

The term ‘one-dimensional structure‘ was invented by Rost and Sander (1994b) and

terms projections of three-dimensional structures into one-dimensional sequences/ar-

rays. One-dimensional structure projection has the advantage that users can easily

get an overview about important structural elements. While full three-dimensional

structure requires software for visualization, one-dimensional structure is viewed in

ordinary text editors (Figure 1.1 shows one-dimensional structural features of the

first SCOP (Murzin et al., 1995) domain of example protein 1AKM from PDB.

1AKM plays a role in the urea cycle of humans). For example, the solvent accessi-

bility of all residues in a protein can be projected onto a one-dimensional sequence

with the characters ‘B’ and ‘E’ for buried and exposed. This declares the solvent ac-

cessibility state for each residue and gives a rudimentary overview about the residue

locations relative to the protein surface (Line AS1 in Figure 1.1). Secondary structure

can be projected onto a sequence with characters ‘H’, ‘E’ and ‘C’ that code for the

secondary structures α-helix, β-sheet and irregular, random coil (Line SS in Figure

1.1). The elements of the sequence are not required to be characters, float values
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Figure 1.1: Example of a protein with associated one-dimensional structural features
Shown is the first SCOP domain (d1akma1) of pdb entry 1AKM, chain A. First line (NM) shows the protein name. Line

SQ shows the peptide sequence. Line SS shows the secondary structure, where ‘H’ encodes the α-helix, ‘E’ encodes

the extended sheet and ‘C’ is representing random, unregular coils. Line AS1 encodes the solvent accessibility state

for all residues, here ‘E’ represents ‘exposed’ and ‘B’ buried residues. In this plot, exposed residues have 25% of

their surface area solvent accessible. Line BT encodes β-turns; the ‘T’ represents the turn state while ‘N’ is encoding

a non-turn state. The last line AS2 shows the percentage of solvent exposure for each residue.

are also allowed. For example, a float can describe the percentage of the residue

surface that is solvent exposed (Line AS2 in Figure 1.1). The following structural

features can be projected onto 1D sequences by applying geometric rules on the full

three-dimensional coordinates of the protein structure: secondary structure, solvent

accessibility, presence of β-turn, type of β-turn if present, type of extended sheet

(parallel or antiparallel sheet) if present, transmembrane state, direction of trans-

membrane segment, formation of crystal contact, amount of residue-residue contacts

at the given position.

Predicted secondary structure is used for a variety of biologically related analysis

and applications (examples in Pasta et al. (2003); Gamblin (2005) and Rigden et al.

(2002)). Predicted solvent exposure of residues is also helpful for biologists (Feder

and Bujnicki (2005) and Chmiel et al. (2005)). The prediction of transmembrane

segments in proteins was for example used by Faça et al. (2008).

Sure enough, methods that predict one-dimensional protein features are promi-

nently used within the domain of computational biology and bioinformatics. They

are used for analysis purposes, to enhance new upcoming tools and to provide inter-

mediary results. Especially, predicted secondary structure is often utilized. It can

enhance sequence alignments (Simossis and Heringa, 2005) and it is used for homol-

ogy detection (Ginalski et al., 2003). Definitely it helps to improve three-dimensional

structure prediction methods, ab initio methods (Bradley et al., 2003; Cheng et al.,
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2005) as well as template based methods (Chen et al., 2006; Chivian et al., 2003).

Additionally, predicted one-dimensional features help to predict other one-

dimensional structural features. Examples will follow in greater detail throughout

the thesis.

1.2.2 Two-dimensional structure

To represent the distances between all pairs of residues in a protein, the two-

dimensional structure representation is used. To do so, the distances between any

two residues i and j of a natively folded protein are measured. Next, a contact

criteria is employed on these distances: If the distance between two residues i and j

is less than a predefined threshold (often 8 Angstrom is used), this pair is in contact.

Following this definition, a two-dimensional symmetric matrix is built. It encodes

the contact state for all residue pairs ij by boolean matrix elements. Such a matrix

is called contact-map. An example is shown in Figure 1.2.

The contact-map of a protein can be used for a variety of applications. Proteins

can be superimposed and compared by their contact-map (Holm and Sander, 1996).

The contact-maps have been proposed as intermediate between primary structure

and tertiary structure where they have effectively served for 3D structure prediction

(Bonneau et al., 2002b; Ortiz et al., 1999) and it was shown that contact-maps can

be used to reconstruct the 3D coordinates of a protein (Vassura et al., 2008).

A further property of contact-maps is that various structural elements form cer-

tain patterns when plotted in two-dimensions. Figure 1.1 shows that the target

protein 1AKM has two long α-helices. These helices are represented by the contin-

uous dots parallel to the diagonal (marked A© and B© in Figure 1.2). In α-helices,

the residues i and i + 4 are in contact forming hydrogen bonds and these contacts

are responsible for the described pattern. Similarly 1AKM chain A contains two

β-sheet regions (positions 46-51 and 72-76) that, when visualized in a contact-map,

form pattern C©: dots arranged in a diagonal that is shifted off the bisecting line. For

β-sheets two topologies exist. They can interact in parallel and antiparallel manner.

The β-sheets in our example are parallel bound. For antiparallel bound β-sheets

the dot trace of the contact pattern would be oriented vertically on the bisecting



Biological problem 7

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

R
e
si
d
u
e
In
d
e
x

ResidueIndex

1akma

Figure 1.2: Example of a two-dimensional representation of a protein structure
Similar to Figure 1.1 the first SCOP domain of pdb entry 1AKM chain A is shown. If the spatial distance between

the Cβ atoms of two residues is less than 8 Angstrom a dot is plotted. Neighboring residues on the sequence are

omitted in the plot as they all meet the contact criteria. Marked are patterns that emerge from significant structural

features: Pattern A© and B© originate from α-helices, C© emerges from parallel β-sheets and the contact resulting

from a β-turn is emphasized by D©. Note: The contact-map is symmetric.

line. The symbol D© in Figure 1.2 corresponds to a β-turn. Phenylalanine at residue

position 51 (Phe51) forms a contact with the aspartic acid at position 54 (Asp54)

which results in the β-turn. This contact is recognized and can be observed in the

contact-map.

One application of contact-map prediction will be presented in this thesis: Pre-

dicted contacts between α-helical transmembrane residues are used to obtain helix-

helix interaction patterns.

Membrane protein topologies are often interpreted as two-dimensional. The first

dimension results from the sequence position and the second from the location in the

environment which can be intra-cytoplasmic, extra-cytoplasmic and integral. Know-

ing the transmembrane regions allows visualization in a two-dimensional plot. Com-
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Figure 1.3: Possible topologies of membrane proteins.
The protein labeled with 1© has three transmembrane regions. Its N-terminal end is located in the cytoplasma, its

C-terminal end in the extra-cytoplasmic solution. The protein labeled with 2© has two transmembrane regions, both

located in the intra-cytoplasmic area and the rightmost protein 3© has a single transmembrane region.

pare Figure 1.3 where two-dimensional representations of three possible α-helical

membrane proteins are shown.

In the process of this thesis another definition for two-dimensional membrane

protein structure was developed and defined. Contrary to the side view onto the

α-helical transmembrane protein (compare Figure 1.3), a view from above, from

outside of the membrane is introduced. For this novel perspective of membrane pro-

teins, not the locations of transmembrane segments are crucial, but the interactions

between them. A graph based scheme is introduced that models transmembrane

segments as vertexes and segment contacts as edges. This representation gives a

better structural overview and allows further analysis and structural classification

of membrane proteins.

1.2.3 Three-dimensional structure

The previously discussed protein domain is shown in cartoon representation in

Figure 1.4. Structural biology deciphers protein structures mainly by two meth-

ods: X-ray crystallography and NMR spectroscopy. X-ray crystallography, as the

name suggests, requires crystals for structure determination. The target protein
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Figure 1.4: SCOP Domain 1akma1 of Protein 1AKM, chain A visualized in three-
dimensions.
The protein backbone is colored from its N- to the C-terminal end, following a gradient from blue to red. Please

note, the protein is chopped at the red α-helix, after its first SCOP domain.

is dissolved, then the solution conditions are changed gradually. This causes the

proteins to gather and subsequently grow to larger crystals. The crystals are then

exposed to X-ray where they scatter the X-ray beam into distinct patterns. From

these patterns, also called ‘reflections’, the three-dimensional protein structure is

determined by Fourier transformation. Structure determination by X-ray crystal-

lography is limited due to the following reasons: Crystallization must result in large

crystals to obtain good subsequent structure resolution. To this end the optimal so-

lution conditions need to be determined which can be very time intensive. Another

limitation of X-ray crystallization is, that the protein structure in the crystal may

differ from the native structure.

The other important structure determining technique is NMR spectroscopy.

NMR structure determination utilizes the magnetic properties of certain atom nu-

clei. Magnetic fields influence the nucleus spins of the atoms in a molecule. The

scan for resonant absorption of electromagnetic radiation results in a spectrum which

fingerprints a particular molecule. Applying Fourier transformation on this NMR

spectrum achieves the protein structure. NMR spectroscopy is limited to small pro-

teins due to problems in resolving overlapping and broad peaks in the spectrum. Less
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frequently used is electron microscopy to determine protein structures. In particular

large protein complexes or membrane proteins are analyzed by electron microscopy.

Although the amount of resolved protein structures is rising exponentially1 the

gap between known protein sequences and resolved structures is still diverging.

Hence, the need for structure prediction software is still growing and mandatory.

Additionally, prediction software is getting more and more accurate which makes

them useful to understand phenomena in current molecular and cell biology and

allows application for structure-based drug design (Petrey and Honig, 2005). To

afford a significant contribution to biological research it is a demand on this disser-

tation to outperform previous methods. A development in computational biology

only has impact in research if it is applied and this is solely achieved when the newly

developed methods are better than available standards.

1.3 Computational solution

As deciphered protein structures are important in so many areas of biology and the

task is extremely challenging, the prediction has been fascinating researchers for

many years. Many attempts have been undertaken to achieve significant advances

towards computationally solved protein structures. It was realized that accurate

predictions in one and two dimensions are important intermediary steps and this is

targeted by this thesis.

1.3.1 State of the art

Prediction for 1D structure can be distinguished in methods that rely on amino acid

preferences, methods that exploit similar cases, and methods that purely rely on

generalizations derived via machine learning.

2D structure prediction can be subdivided in methods that exploit co-evolution

observed for neighboring residues, and again, machine learning methods are utilized.

1Protein Data Bank :: Yearly Growth of Total Structures :: http://www.pdb.org

http://www.pdb.org/pdb/statistics/contentGrowthChart.do?content=total&seqid=100
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Prediction of one-dimensional structure

Early attempts involved the analysis of amino acid preferences to gain insights into

1D structure. It was discovered that the 20 amino acids have different preferences

to occur in different structural states (e.g. Chou and Fasman (1974, 1979)). For

example, methionine, alanine, leucine, glutamate and lysine prefer to adopt helical

conformations, similarly asparagine, aspartic acid, proline, serine and glycine tend to

occur in β-turns. A comprehensive collection of such amino acid propensities respon-

sible for their occurrence in various structural environments is found in the AAindex

database (Kawashima et al., 2008). In general, utilizing propensities for structure

prediction pursues the following strategy: Starting from the N-terminal end of an

amino acid sequence, an algorithm is consecutively passing along all residues towards

the C-terminal end. All residues and their sequence neighborhood (which span a se-

quence window) are analyzed with respect to preferences for structural states. If the

average preference of the window is larger than a predefined threshold, the winning

structural state is assigned. In the early days only the single target sequence was

considered for prediction while later approaches incorporate evolutionary related se-

quences to derive a weighted outcome (e.g. Fuchs and Alix (2005); Kloczkowski

et al. (2002)).

The next class of methods utilizes databases with known structural assignments

to derive similar cases for structure prediction. Segments of the target sequence are

searched in the database and the structure of the best matching database sequence is

taken as prediction. Prominent methods realizing this method were described from

Yi and Lander (1993); Frishman and Argos (1996); Salamov and Solovyev (1997).

The third type of prediction methods employs big databases of known structure

conformations together with machine learning methods like Artificial Neural Net-

works (ANN), Support Vector Machines (SVM) or Hidden Markov Models (HMM).

The very first to utilize an ANN for secondary structure prediction were Qian and

Sejnowski (1988). Highly accurate ANN methods for one-dimensional structure pre-

diction are developed until now: Jones (1999); Pollastri et al. (2007); Pollastri and

McLysaght (2005); Rost et al. (2004) predict secondary structure, Kaur and Raghava
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(2004); Shepherd et al. (1999) predict β-turns, and Adamczak et al. (2005); Ahmad

et al. (2003b) predict solvent accessibility. Among these ANN methods, two types

of connection schemes are used which result in either feedforward neural networks

or recurrent neural networks. While feed-forward networks are limited to local se-

quence segments, recurrent networks overcome this limitation and consider larger

sequence neighborhood to predict local structural features. The recurrent network

type is implemented in this thesis for prediction in 1D. Recently researchers try to

replace ANN methods by SVM methods. These are thought to be unsurpassable

but according to the no-free-lunch theorems (Wolpert, 2001) this can not be stated

in general. Nevertheless the SVM has gained remarkable contributions in the field of

one-dimensional structure prediction, see for example: Kim and Park (2004, 2003);

Nguyen and Rajapakse (2005); Ward et al. (2003); Zhang et al. (2005).

Hidden Markov Models are also used to predict one-dimensional structure; mostly

secondary structure (Aydin et al., 2006; Martin et al., 2006) and membrane protein

topologies (Krogh et al., 2001; Käll et al., 2007) are predicted.

Prediction of two-dimensional structure

Probably the first method to explicitly predict residue contacts was published by

Göbel et al. (1994), based on co-evolving residues. Co-evolution at residue level

is observed when one residue in a protein mutates and causes a mutation of an-

other residue. This second residue may be nearby in structure where it is influenced

directly or it may reside somewhere else in the protein globule. However, the lat-

ter case is not fully understood, researchers refer to functional relationships (e.g.

both residues are situated at interaction pockets) or non-obvious structural reasons

emerging during protein folding. An example for co-evolving amino acids: A small,

buried residue mutates to a larger residue; this causes a mutation of a nearby, large

residue to a smaller one to clear potential steric stress. Any residue property can

cause a co-evolution event to preserve the proteins structure or function. Göbel et al.

(1994) presented a method that allows to quantify co-evolution of residue pairs by

correlation coefficients. In a straight forward case, large values correspond to more

likely contacts. Following that theory, the residue pairs can be ranked with respect
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to the size of the calculated correlation coefficients. A predefined amount of highly

ranked pairs is then selected for putative contacts.

Contact prediction methods based on residue co-evolution are continuously devel-

oped. Examples are Fleishman et al. (2004); Kundrotas and Alexov (2006); Olmea

and Valencia (1997); Shindyalov et al. (1994).

As stated above, machine learning methods are also used to predict residue-

residue contacts (Fariselli et al., 2001b,a; Pollastri and Baldi, 2002; Punta and Rost,

2005a; Shao and Bystroff, 2003; Cheng and Baldi, 2007). Correlated mutations are

used together with other features related to residue contacts and evaluated by ma-

chine learning methods which in general results in a higher predictive performance.

Current contact prediction methods for soluble proteins gain precisions as high as

30% (Cheng and Baldi, 2007).

Although prediction of residue contacts in soluble proteins is quite advanced by

now, there was no transfer of methods to contact prediction in membrane proteins.

1.3.2 Contributions of this dissertation

In the course of this thesis three methods have been developed that contribute

to the area of protein structure prediction. Two methods predict one-dimensional

structures of soluble proteins and one method was developed for the prediction of

two-dimensional structures in membrane proteins. They have in common that all

are neural network based. While contact prediction is done by a simple feedforward

neural network, one-dimensional structure is predicted by a novel multi output layer

Elman-type bidirectional recurrent neural network (MOLEBRNN). As it will be

seen, the novel MOLEBRNN is able to simultaneously predict multiple structural

aspects in 1D and, because of that, it is able to better tackle the prediction problems.

1.4 Organization of this thesis

Chapter 2 and 3 focus on the novel multi output layer Elman-type bidirectional

recurrent neural network MOLEBRNN used for 1D structure prediction. In Chap-

ter 2 MOLEBRNN is defined and its application on β-turn prediction is discussed.
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MOLEBRNN is shown to outperform current β-turn and β-turn type prediction

methods. This and the fact that MOLEBRNN advances current bidirectional recur-

rent neural networks are evaluated precisely. Due to the properties of MOLEBRNN

it is concluded that the method has the potential to be preferably applied on re-

lated 1D prediction problems. These need not necessarily adhere to the domain of

computational biology.

Chapter 3 discusses the extension of MOLEBRNN towards 1D solvent accessi-

bility prediction. SOPRANO is introduced which predicts three representations of

solvent accessibility in concert with β-turns and secondary structure. It is shown

that the underlying MOLEBRNN is capable of outperforming current solvent ac-

cessibility predictors. Up-to-date secondary structure prediction performances are

gained. Further it is emphasized that multiple prediction targets demand higher

network complexity.

In Chapter 4 an approach is discussed which tries to exploit the information en-

coded in nucleotide codons for secondary structure prediction. In the beginning of

this chapter various rationales are discussed which underline how the DNA sequence

could contribute to structure formation. Concrete application of codon profiles re-

veals a slight gain in prediction performance of secondary structure.

In Chapter 5 TMHcon is introduced which is predicting 2D structure of mem-

brane proteins. This method was developed together with Angelika Fuchs. Based

on a neural network, including correlated mutations, common features of globular

proteins and specific features intrinsic only to membrane proteins, TMHcon is the

first method for contact prediction of residues in transmembrane helices. As stated

above, its capability lies not only in the prediction of residue-residue contacts, it

also integrates the predicted contacts and produces a novel membrane protein rep-

resentation based on interacting transmembrane helices. This method and the novel

membrane protein representation significantly contribute to structure deciphering of

membrane proteins. The representation allows analysis of structural features leading

to a novel scheme to classify the membrane protein fold space which is targeted in

the near future. Membrane proteins with unknown structure may be arranged into

that fold classification by TMHcon.
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Chapter 6 summarizes the work presented, gives an overview on additional, but

not successive experiments, brings the treated aspects into context and finalizes the

thesis.
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Chapter 2

Prediction in 1D :: Prediction of

β-turn and β-turn types by

MOLEBRNN

2.1 Introduction

β-turns are defined as reversals in direction of the polypeptide chain consisting of

four consecutive amino acid residues, with the first and the last residue situated in

close proximity to each other and the two central residues not being part of an α-

helix (Venkatachalam, 1968). β-turns are classified into nine different types based on

the dihedral angles of their two central residues (Hutchinson and Thornton, 1996).

Local interactions in β-turns play an important role in initiating protein folding

and stabilizing protein structure (Zimmerman and Scheraga, 1977). Approximately

every fourth amino acid residue in globular proteins is found in a β-turn (Kabsch

and Sander, 1983), and most of the β-turns are located on the protein surface (Rose

et al., 1985) where they are often involved in intra-molecular binding, cleavage, and

posttranslational modification events. In particular, the role of β-turns in antigen

recognition and antibody binding has been documented (see for example Hinds et al.

(1991); Rini et al. (1993)). The binding specificity and sensitivity may depend on a

particular turn subtype (Bach et al., 1996; Li et al., 1999).
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The evolution of β-turn prediction methods closely followed the developments

in the area of protein secondary structure prediction. Early approaches (Chou and

Fasman, 1979; Hutchinson and Thornton, 1996) relied on β-turn type dependent

position specific potentials for each residue derived from known three-dimensional

structures of proteins. In particular it was found that β-turns tended to be enriched

in hydrophilic residues owing to their frequent solvent exposure (Rose et al., 1985).

Zhang and Chou (1997) extended this simple approach by considering residue cor-

relations between positions 1 − 4 and 2 − 3 in the turn tetra-peptides. Fuchs and

Alix (2005) additionally weight β-turn propensities according to evolutionary con-

servation of respective residue positions.

The second major group of methods is based on machine intelligence algorithms

that learn the mapping from the amino acid sequence to the residue β-turn propen-

sity when trained on a database of known conformations. Neural networks have been

widely used for this purpose, starting with the work of McGregor et al. (1989). Shep-

herd et al. (1999) applied a two-layer neural network architecture, with predicted

secondary structure included as additional information at the second stage. The

β-turn prediction accuracy was further boosted by utilizing PSI-BLAST derived

position specific scoring matrices rather than single sequences as input for neural

networks (Kaur and Raghava, 2003b) and the k-nearest neighbor algorithm (Kim,

2004). More recently, support vector machines (SVM) have become popular for

sequence-based prediction of structural features, including β-turns (Zhang et al.,

2005). Here, too, significant improvement was achieved by utilizing multiple se-

quence information.

Different types of protein structural features are intrinsically interdependent.

Some of them (e.g. α-helices and β-strands) are strictly mutually exclusive while

others display a varying degree of correlation (e.g. solvent accessibility and β-turn

propensity). It has long been realized that the incorporation of known or reliably

predicted information about one structural property can help to improve the pre-

diction accuracy of another target structural motif. Frishman and Argos (1997)

enhanced secondary structure prediction by excluding from consideration residue

positions with high β-turn propensity. Wood and Hirst (2005) reported a significant



Introduction 19

gain in secondary structure prediction accuracy due to the utilization of predicted di-

hedral angles as additional input. Another structural feature exploited for secondary

structure prediction is predicted solvent accessibility (Adamczak et al., 2005). Con-

versely, Kaur and Raghava (2003b) used predicted secondary structure for more

accurate prediction.

In all these cases the output of one or several prediction techniques was used

as additional input for predicting a single feature of interest. Up until now there

has not been an attempt to predict multiple structural features by a single method

in a synergetic fashion. In this thesis a generic computational method is presented

capable for the prediction of interdependent structural targets. A novel type of a

recurrent neural network architecture is introduced which has multiple output layers:

one for each prediction target. The introduced neural network is able to learn mutual

dependencies between prediction targets by adjusting the interconnection weights so

as to achieve the best possible prediction accuracy for all targets simultaneously.

It is demonstrated that this technique is efficient for predicting β-turns and β-turn

types in concert with secondary structure.

The initial considerations that lead to the development of the multi-target neural

networks trace to the book ‘Gödel Escher Bach’ of Douglas Hofstadter (Hofstadter,

1999). Hofstadter describes findings in neurosciences that state that the brain stores

knowledge in an interconnected fashion.

The here presented multi-target recurrent neural network conforms to the con-

cept of ‘multi-task learning’ (MTL) (Caruana, 1997). The rationale for multi-task

learning according to Caruana (1997) is that it can provide a data amplification ef-

fect, it allows for some targets to ‘eavesdrop’ on patterns discovered at other targets

and the network is specially tailored towards underlying global functions. Essentially

these three rationales can be attributed to the last one when obeying the following

explanation: Consider two prediction targets that are related and both depend on a

complicated hidden process that spans the observable prediction targets (Compare a

Hidden Markov Model where a hidden Markov chain generates observable features).

Further, consider the following example involving a single target prediction method;

this method trained in an ordinary way is, to some extend, not able to detect the
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underlying hidden process because this hidden process can not be sensed by one

single aspect only. In the case of additional prediction targets more features of the

hidden process are uncovered and a more global bias is induced. The hidden process

is uncovered by the above mentioned data amplification effect, all prediction targets

independently relate to the hidden process and thus introduce higher data density.

The ‘eavesdropping’ rationale can also be deduced to the hidden process: in the case

when all prediction targets are related and influence each other or depend on each

other.

2.2 Material and methods

2.2.1 Dataset or known β-turns and other secondary struc-

ture elements

For β-turn prediction a standard dataset is used. It contains 426 protein sequences

clustered at the 25% identity level and was described by Kaur and Raghava (2002).

Structures of all amino acid chains were solved by X-ray crystallography with a

resolution of at least 2.0Å and each contains at least one β-turn segment. The dataset

contains the total of 95844 residues. β-turn states of residues were determined from

the PDB (Berman et al., 2000) coordinate files by PROMOTIF (Hutchinson and

Thornton, 1996). Following the generally accepted definitions (Lewis et al., 1973;

Richardson, 1981) PROMOTIF identifies turns as any four consecutive residues such

that the distance between the residues i and i+ 3 is less than 7Å and residues i+ 1

and i + 2 are not part of an α-helix. Eight different β-turn types (I, II, V III, I ′,

II ′, V Ia1, V Ia2, and V Iba) are distinguished based on the dihedral angles φ and

ψ of the residues i + 1 and i + 2 (see table 2.1 which corresponds to the Table 1

in Hutchinson and Thornton (1996)). Both angles are allowed to deviate from ideal

angles by ±30◦, and one of the angles is allowed to deviate by ±40◦. Any turns that

do not conform to the definitions involving dihedral angles are grouped into type

IV . The general turn class contains any subtypes.

Secondary structure assignments were obtained by DSSP (Kabsch and Sander,
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β-Turn
Type

φ(i+ 1) ψ(i+ 1) φ(i+ 2) ψ(i+ 2) Remark

I -60◦ -30◦ -90◦ 0◦ Predicted

II -60◦ 120◦ 80◦ 0◦ Predicted

V III -60◦ -30◦ -120◦ 120◦ Predicted

I′ 60◦ 30◦ 90◦ 0◦ Predicted

II′ 60◦ -120◦ -80◦ 0◦ Predicted

V Ia1 -60◦ 120◦ -90◦ 0◦
Residue at i + 2 is a Prolin in
cis conformation

V Ia2 -120◦ 120◦ -60◦ 0◦
Residue at i + 2 is a Prolin in
cis conformation

V Iba -135◦ 135◦ -75◦ 160◦

IV Turns with angles not listed above Predicted

Table 2.1: Definitions of ideal β-turn types taken from Hutchinson and Thornton (1996).
The first column shows β-turn type names, the following four columns show the values of the dihedral angles φ and

ψ for the residues i+ 1 and i+ 2. In the Remark column “Predicted” indicates those β-turn types that are predicted

in this experiment.

1983). Following the usual practice the eight secondary structure types defined by

DSSP were collapsed to three states as follows: H (α-helix), G (310-helix) and I

(π-helix) became H, E (strand) and B (isolated β-bridge) became E, and S (bend),

T (turn) and C (coil) became C.

2.2.2 Neural network architecture

In this thesis two novel types of neural networks are introduced which are referred to

as EBRNN (Elman-type bidirectional recurrent neural network) and MOLEBRNN

(multi output layer Elman-type bidirectional recurrent neural network). Both net-

works are derived from the Elman network (Elman, 1990), a standard feed-forward

network (Figure 2.1, black nodes and connections) in which the nodes in the middle

layer are connected via context nodes to themselves (Figure 2.1, green nodes and

connections). These additional reverse connections are implemented by feeding the

output activations from the middle layer to the so called context nodes. As a re-

sult, for each stimulus currently being propagated through the network, the middle

layer activations from the previous input are also available. Thus, the standard El-

man network only considers information about past events in time or, in the case

of amino acid sequences, about residue positions on the left (upstream) from the

current position. More recently, Baldi et al. (1999) extended a standard recurrent
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Figure 2.1: The architecture of the various neural network types considered in this
work.
Black – a simple feed-forward network; green and black – the Elman recurrent network; green, black, and red –

the Elman-type bidirectional recurrent neural network (EBRNN); green, black, red, and blue – the multiple output

layer Elman-type bidirectional recurrent neural network (MOLEBRNN). See Materials & Methods for details.

neural network (RNN) by introducing a second context chain to store information

about future (downstream) events. They call their network architecture bidirectional

recurrent neural net (BRNN) because it captures both upstream and downstream

information. The Elman-type bidirectional recurrent neural network (EBRNN) is

obtained by adding a future context chain to the standard Elman network (red

nodes and connections in Figure 2.1). Using the notation of Baldi and co-workers,

the output prediction Ot of the EBRNN at a given sequence position t is:

Ot = (Ft, Bt)

The forward (upstream) context is encoded in the forward context chain Ft (black

and green network in Figure 2.1), the backward (downstream) context is encoded in

the backward context chain Bt (red network in Figure 2.1).

EBRNN differs from Baldi’s BRNN in two respects. First, the recurrent property

in BRNN is implemented by backward connections that bypass multiple hidden
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layers while in EBRNN the recurrent connections follow the original Elman design

such that the context nodes are activating the units of the nearest hidden layer.

Secondly, compared to EBRNN network, Baldi et al. not only have the forward

and backward context chains but also a third chain encoding the current external

input which is being propagated without recurrent connections to the output layer.

By contrast, in EBRNN the dependence of the output on the input signal is only

implicitly encoded in the context chains according to

Ft = φ(Ft−1, It)

Bt = β(Bt+1, It)

where φ and β are functions modeled by the network chains that perform the map-

ping of the current network input It and previous network states Ft−1 or subsequent

network states Bt+1. Building upon the EBRNN architecture another novel neural

network is introduced that is called multiple output layer Elman-type bidirectional

recurrent neural network (MOLEBRNN). As the name implies, MOLEBRNN may

have more than one output layer, each for a separate prediction target. In Figure 2.1

blue nodes and connections display a second output layer capable of predicting a sec-

ond target. This architecture not only allows for simultaneous prediction of multiple

target features (e.g. secondary structure, solvent accessibility, turns), but also leads

to higher prediction accuracy for individual targets due to its ability to learn inter-

dependencies between individual targets (see the Results section). MOLEBRNN is

designed for the prediction of classification and regression targets. For each position

t in a sequence of length T (t = 1, ..., T ) MOLEBRNN outputs a two-dimensional

vector

Ot =


(o1,1,t, o2,1,t, o3,1,t)

(o1,2,t, o2,2,t)

o1,3,t

 with

0 ≤ oi,j,t ≤ 1 and∑N(j)
i oi,j,t = 1 ifN(j) > 1
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where j is the index of a prediction target (e.g., turn, coil, helix). Within the

prediction target j, i is an available class (e.g., turn, no turn) and N(j) is the number

of classes. If j is a classification target, then N(j) > 1, and oi,j,t is interpreted as

the likelihood of the class membership. If N(j) = 1 , the value of oi,j,t denotes

the real valued prediction outcome for a regression problem, e.g. real value solvent

accessibility prediction. For a classification target j the sum
∑N(j)
i oi,j,t = 1 which

allows consistent interpretation of oi,j,t as the probabilities for a sequence position

t to belong to the class i of the target j. This is achieved by applying individual

softmax layers to the classification targets according to

oi,j,t =
exp(xi,j,t)∑N(j)

k exp(xk,j,t)

where xi,j,t is the weighted sum over all input connections in the i-th output unit

in the output layer of the j-th prediction target. In case of a regression problem,

the output of a single unit within the layer is obtained by the standard sigmoidal

activation function. As derived above, oi,j,t can be interpreted as the probability for

a given sequence position t to belong to a given class i of a prediction target j.

In general, the class is predicted whose probability is maximal. However, in case

of a two class problem with unbalanced class distribution, this may lead to sub-

optimal performance. The so-called post-scaling (Lawrence et al., 1998) is therefor

utilized which involves the application of an adjustable threshold τ on the network

output value of the positive class to filter the prediction outcome. In other words,

the positive class (the presence of a β-turn) is only predicted if oi,j,t for this class

is larger than τ . By modifying τ it is possible to control the balance between the

sensitivity and the specificity of the predictor.

As originally suggested by Jones (1999) the network input data for each amino

acid sequence is a position specific scoring matrix (PSSM) together with the gap

score and information content of all residue positions as obtained from PSI-BLAST

(Altschul et al., 1997) searches against the NCBI’s nonredundant protein sequence

database (NR (Wheeler et al., 2007); 4.8 million sequences, downloaded in March

2007). PSI-BLAST is applied such that it iterates three times and includes amino
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acid sequences in the profile if their E-value is smaller than 1 × 10−4. Predicted

coiled-coil segments and low complexity segments of the NR database proteins were

masked by pfilt (Jones and Swindells, 2002) and SEG (Wootton and Federhen, 1993),

respectively. Each PSSM was normalized by the standard logistic function to obtain

the value range [0, 1].

2.2.3 Implementation details of MOLEBRNN

This section will present the most important details concerning the implementation

of MOLEBRNN. The first part will introduce the used variables, the second part

will describe the forward pass, the third part will describe the backward pass and

finally the fourth part declares the weight updates. The forward pass is carried out

during prediction, the network input is propagated through all layers to produce a

network output. The backward pass is conducted during training, the network error

is propagated backward through all layers and all nodes determine their contribution

to the network error. During the weight update process the connection weights be-

tween the nodes are changed in response to the associated errors. The network error

is minimized during training. The processing of an bidirectional Elman-type recur-

rent neural network with multiple output layers is outlined. As training algorithm

BackPropagation Through Time (BPTT) (Williams and Zipser, 1995) was imple-

mented and weight updates are performed utilizing the RProp protocol (Riedmiller

and Braun, 1993) adjusted for recurrent networks. Weight update is performed after

a full epoch is processed.

Notions

It is important to realize that a recurrent neural network is a sequence learner. As

recurrent neural networks emerged from time series prediction the elements of a

sequence S are identified by timepoints t. All timepoints of the training data consist

of tuples ((se(t), so(t))), encoding for network input1 e and outputs o. The input se(t)

itself is encoding a one-dimensional array that represent the network input features.

1The symbol ‘e’ is used to abbreviate the network ‘entry’.
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Variable Description

S a training or test sequence

t a timepoint

(se(t), so(t)) all train sequences constitute tuples, the entry element se(t) represents the
input variables, while the output element so(t) constitutes observed class labels

se(t) a vector encoding all input features of a single instance in a sequence S at
timepoint t

se(t, i) a scalar value holding the value of feature i from an instance at timepoint t

so(t) a vector encoding the target network outputs

so(t, c, i) a scalar value holding the class value i of prediction target c at timepoint t

L the set of layers in the network

|L| the number of layers

l(i) layer at index position i

l(0) the output layer

l(|L| − 1) the input layer

c(l) returns all chains in the layer l

k the number of prediction targets

x(l, c, i, t) input of network unit i in chain c of layer l at timepoint t

y(l, c, i, t) output of network unit i in chain c of layer l at timepoint t

u(l, c) this function returns all network units in layer l and chain c

u(l, c, i) this function returns a specific unit i in chain c of layer l

E the total network error

ec,t the error of a single output chain c at timepoint t

W the set of connection weights

w[i, j] the weight for a connection from unit j to unit i

σ(x) = (1 + e−x)−1 the sigmoidal activation function

σ′(x) = σ(x)(1− σ(x)) the derivative of the sigmoidal activation function

Table 2.2: Summary of the notions used to describe the network algorithms.

The output at a specific timepoint so(t) is multi-dimensional. For MOLEBRNN the

various prediction targets are encoded in the first dimension and the value found for

a target, in the second dimension. A nominal class target is modeled by as many

network units as classes exist. The unit representing an observed class is trained to

take the value 1.0 while all other units aim for 0.0. A real valued regression target

is modeled by a single output unit which is trained to take the target value. An

example in the context of protein one-dimensional structure prediction would yield

a sequence S that represents a protein with the residue PSSM features constituting

the input elements se(t) and so(t) some prediction targets like secondary structure

or real value solvent accessibility rSA. The secondary structure target can take the

three values (H,E,C) which are modeled in MOLEBRNN by three different network

output units. If a specific instance of the training set is in helical state (H) then the

unit representing this state should output 1.0 after training, while the other units
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responsible for the values (C,E) should yield 0.0. The rSA represents a real value

regression target which is modeled by a single network output unit.

The training involves the presentation of training sequences to the network. An

epochwise operation (Williams and Zipser, 1995) is implemented: One full presen-

tation of all training sequences to the network is called epoch. During the epoch a

global network error is recorded that summarizes the individual errors of all single

sequences. When all training sequences are presented to the network the error is

used to deduce the weight updates.

The network implementation allows for multiple individual layers. A layer l is

defined by the unit connections (‘node’ is a synonym for ‘unit’) of the network.

Recurrent connections are only allowed within a layer and not between the layers.

The layers are connected by feed-forward connections. The network output layer is

denoted as l(0). The network input layer is denoted by l(|L| − 1), |L| denotes the

number of layers. The hidden layers are indexed by values > 0 and < |L| − 1. To

allow the bidirectional setup, the hidden layers contain two chains (see section 2.2.2)

called downstream and upstream chains. To allow k output targets, the output

layer l(0) contains k chains. The input layer l(|L|−1) contains a single chain that is

connected to both, downstream and upstream hidden layer nodes. The connection

weights w are denoted w[i, j] which encodes the connection from unit j to unit i.

A network unit has multiple inputs and one output. The inputs of an hidden

layer unit come from the outputs of all units in the previous layer that are in the

current chain (these are the feedforward connections, not time depending) and from

the outputs of all units in the current chain of the current layer (these are the

recurrent connections that introduce time dependency). There are no feedforward

or recurrent connections between the chains of the hidden layers!

The input and output for unit i in chain c and layer l at timepoint t is denoted

x(l, c, i, t) and y(l, c, i, t). The unit output y is derived from the input when applying

the sigmoidal activation function σ(x) = (1 + e−x)−1.

A summary of all variables introduced is found in table 2.2.
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Forward pass

The propagation of the network input to the output layer is shown in Listing 2.1.

For timepoints t where the unit output y(l, c, i, t) is not available (when t = −1

or t = |S|) y(l, c, i,−1) = y(l, c, i, |S|) = 0.0. There is only a single chain in the first

layer. All requests on specific chains from nodes in the second layer are ignored.

Backward pass

Neural networks in general are trained by minimizing the total network error E.

The total error E is the sum of all errors ec,t for a single output chain c and a single

instance (at timepoint t) available from the training dataset. This error ec,t when

using the softmax activation function is given by the cross entropy (table 2.2 gives

the overview on the variables used):

ec,t =
∑

j∈u(0,c)

so(t, c, j)ln (y(0, c, j, t))

where u(0, c) are the units in output chain c, so(t, c, j) holds the observed target

class value j at timepoint t for chain c and y(0, c, j, t) holds the output of unit j in

the output layer 0 of chain c at timepoint t.

Essentially the total error E of a neural network is a function of the connection

weights W : E(W ). During training, E is minimized with respect to W . The

alteration of W requires to estimate the partial derivative ∂E
∂W

that answers: How

does a change of W influence the error E? This derivate makes a statement on the

global network. When breaking it down to the individual units, it can be estimated

how much the output of each unit contributes to the total error (∂E
∂Y

), it can be

estimated how much the input of each unit contributes to the output ( ∂Y
∂X

) and how

much each of the input weights contribute on all unit inputs ( ∂X
∂W

). Essentially for

all nodes the partial derivative is solved

∂E(t)

∂W
=
∂E(t)

∂Y (t)

∂Y (t)

∂X(t)

∂X(t)

∂W

This derivative is time depending in recurrent units, the non time depending gradient
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1 { I n i t i a l d e f i n i t i o n s : }
2 σ(x) = (1 + e−x)−1

3 y(l, c, u,−1) = y(l, c, u, |S|) = 0
4 c(|L| − 1, i) = c(|L| − 1, 0)
5
6 Reset a l l un i t outputs y to 0 .
7 for t := 0 to |S| − 1
8 l := |L| − 1
9 begin

10 for a l l u in u(l, 0)
11 begin
12 y(l, 0, u, t) := s(t, u)
13 end
14 end
15 c := downstream
16 for t := 0 to |S| − 1
17 begin
18 for l := |L| − 2 downto 1
19 begin
20 for i in u(l, c)
21 begin

22
x(t, l, c, i) :=

∑
j∈u(l+1,c)

y(l + 1, c, j, t)× w[u(l, c, i), u((l + 1, c, j)]+∑
j∈u(l,c)

y(l, c, j, t− 1)× w[u(l, c, i), u(l, c, j)]

23 y(t, l, c, i) := σ(x(t, l, c, i))
24 end
25 end
26 end
27 c := upstream
28 for t := |S| − 1 downto 0
29 begin
30 for l := |L| − 2 downto 1
31 begin
32 for i in u(l, c)
33 begin

34
x(t, l, c, i) :=

∑
j∈u(l+1,c)

y(l + 1, c, j, t)× w[u(l, c, i), u((l + 1, c, j)]+∑
j∈u(l,c)

y(l, c, j, t+ 1)× w[u(l, c, i), u(l, c, j)]

35 y(t, l, c, i) := σ(x(t, l, c, i))
36 end
37 end
38 end
39 for t := 0 to |S| − 1
40 begin
41 for c in c(0)
42 begin
43 for i in u(0, c)
44 begin
45 x(0, c, i, t) :=

∑
cp∈c(1)

∑
j∈u(1,cp)

y(1, cp, j, t)× w[u(0, c, i), u(1, cp, j)]

46 y(0, c, i, t) := σ(x(0, c, i, t))
47 end
48 end
49 end

Listing 2.1: MOLEBRNN forward pass

• In line 3 the sequence borders are initialized with 0.
• In line 4 the rules to access the chains in the first layer l(|L|−1) are defined: the input layer |L|−1 contains

just a single chain responsible for downstream and upstream response.
• Line 8 defines to process the first layer in the following.
• Iterations following lines 15 and 27 is responsible for the downstream and upstream chains.
• First term in line 22 is responsible for the previous layer at current timepoint, while the second term for the

output within the current layer at previous timepoint. When incorporating the previous layer, only nodes
from the same chain c are considered. If the previous layer is the input layer l(|L| − 1) that contains just a
single chain, the nodes in this single chain are incorporated no matter what the chain in the current layer is.

• cp in line 45 endodes a chain in a previous layer. This can be nothing but downstream and upstream, only
the output layer allows other chains.
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in a downstream chain is derived from

∂E

∂wi,j
=
|S|−1∑
t=1

δi(t)xj(t− 1)

that is in turn used to update all weights.

The backpropagation through time is realized in Listing 2.2.

Weight update

Having computed the non time dependent version of the error gradient ∂E
∂W

allows

weight update:

∆W = −η ∂E
∂W

where η is the learning rate.

The weight update process is depicted in Listing 2.3.

2.2.4 Ensembles of neural networks

A two layer neural network ensemble is used to recognize β-turns in protein se-

quences. In the first layer (sequence-to-structure) multiply aligned amino acid se-

quences encoded in form of a position specific scoring matrix (PSSM) are mapped

into structural states of individual residue positions. The output of this first layer is

then fed into a second, structure-to-structure layer. Such two-stage approach was pi-

oneered in bioinformatics by Qian and Sejnowski (1988) and has been frequently used

for secondary structure prediction (Rost and Sander, 1993; Jones, 1999; Adamczak

et al., 2005). It is particularly efficient in detecting correlations between neighboring

residues and smoothing predicted secondary structure segments (Rost and Sander,

1993). In the implementation of the predictor, the first layer consists of five inde-

pendently trained neural networks with different numbers of hidden nodes. Each

network performs sequence to structure mapping. The second layer, consisting of

just one network, averages the outcomes of the first layer and accounts for residue

correlations.

To compare MOLEBRNN neural network design with EBRNN in terms of



Material and methods 31

1 Reset a l l p a r t i a l d e r i v a t i v e s δ to 0
2 for t := 0 to |S| − 1
3 begin
4 for c in c(0)
5 begin
6 for i in u(0, c)
7 begin
8 δ(0, c, i, t) = y(0, c, i, t)− so(t, c, i)
9 end

10 end
11 end
12 c = downstream
13 for t := |S| − 1 downto 0
14 begin
15 for l := 1 to |L| − 2
16 begin
17 for i := u(l, c)
18 begin

19

δ(l, c, i, t) = σ′(x(l, c, i, t))+

(∑
j∈u(l−1,c)

δ(l − 1, c, j, t)× w[u(l − 1, c, j), u(l, c, i)]+∑
j∈u(l,c)

δ(l, c, j, t+ 1)× w[u(l, c, j), u(l, c, i)]

)

20 end
21 end
22 end
23 c = upstream
24 for t := 0 to |S| − 1
25 begin
26 for l := 1 to |L| − 2
27 begin
28 for i := u(l, c)
29 begin

30

δ(l, c, i, t) = σ′(x(l, c, i, t))+

(∑
j∈u(l−1,c)

δ(l − 1, c, j, t)× w[u(l − 1, c, j), u(l, c, i)]+∑
j∈u(l,c)

δ(l, c, j, t− 1)× w[u(l, c, j), u(l, c, i)]

)

31 end
32 end
33 end

Listing 2.2: MOLEBRNN backward pass

• First term in line 19 corresponds to the derivative of the activation function σ′(x). Second term is responsible
for incorporating the unit error contribution from following layer l − 1 at current timepoint t and the third
term is responsible for the error contribution on units in the current layer from timepoint t+ 1. Note: this
is always available as time during BPTT is running backwards (see line 13).
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1 for c in c(0)
2 begin
3 for i in u(0, c)
4 begin
5 for cp in c(1)
6 begin
7 for j in u(1, cp)
8 begin

9 ∂E
∂w[u(0,c,i),u(1,cp,j)]

:=
∑|S|−1

t=0
δ(0, c, i, t)y(1, cp, j, t)

10 w[u(0, c, i), u(1, cp, j)] := w[u(0, c, i), u(1, cp, j)] + η ∂E
∂w[u(0,c,i),u(1,cp,j)]

11 end
12 end
13 end
14 end
15 c = downstream
16 for l := 1 to |L| − 2
17 begin
18 for i in u(l, c)
19 begin
20 for j in u(l + 1, c)
21 begin

22 ∂E
∂w[u(l,c,i),u(l+1,c,j)]

:=
∑|S|−1

t=0
δ(l, c, i, t)y(l + 1, c, j, t)

23 w[u(l, c, i), u(l + 1, c, j)] := w[u(l, c, i), u(l + 1, c, j)] + η ∂E
∂w[u(l,c,i),u(l+1,c,j)]

24 end
25 for j in u(l, c)
26 begin

27 ∂E
∂w[u(l,c,i),u(l,c,j)]

:=
∑|S|−1

t=1
δ(l, c, i, t)y(l, c, j, t− 1)

28 w[u(l, c, i), u(l, c, j)] := w[u(l, c, i), u(l, c, j)] + η ∂E
∂w[u(l,c,i),u(l,c,j)]

29 end
30 end
31 end
32 c = upstream(∗@@∗)
33 for l := 1 to |L| − 2
34 begin
35 for i in u(l, c)
36 begin
37 for j in u(l + 1, cp)
38 begin

39 ∂E
∂w[u(l,c,i),u(l+1,c,j)]

=
∑|S|−1

t=0
δ(l, c, i, t)y(l + 1, c, j, t)

40 w[u(l, c, i), u(l + 1, c, j)] := w[u(l, c, i), u(l + 1, c, j)] + η ∂E
∂w[u(l,c,i),u(l+1,c,j)]

41 end
42 for j in u(l, c)
43 begin

44 ∂E
∂w[u(l,c,i),u(l,c,j)]

=
∑0

t=|S|−2
δ(l, c, i, t)y(l, c, j, t+ 1)

45 w[u(l, c, i), u(l, c, j)] := w[u(l, c, i), u(l, c, j)] + η ∂E
∂w[u(l,c,i),u(l,c,j)]

46 end
47 end
48 end

Listing 2.3: MOLEBRNN weight update process

• cp in line 5 holds the chains in the previous layers which are exclusively downstream and upstream.
• In lines 15 and 32 the procession on the downstream and upstream hidden layer chains start.
• lines 22 and 23 describe the weight update for feedforward connections to the previous layer l+ 1 while lines

27 and 28 describe the weight update for recurrent connections within the current layer l.
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Setup name Description Prediction targets

Ensemble EBRNN
Five EBRNNs in the first layer and
one EBRNN in the second layer are
used.

Separate instances for secondary
structure, β-turn and β-turn types I,
II, V III and IV .

Ensemble EBRNN SSP

The single second layer EBRNN
gets input from the five first-
layer EBRNNs and, additionally,
from a secondary structure predictor
PSIPRED (Jones, 1999).

Separate instances for secondary
structure, turn and turn types I, II,
V III and IV .

Ensemble MOLEBRNN
Five MOLEBRNNs in the first layer
and one MOLEBRNN in the second
layer are used.

One instance to predict secondary
structure, turn and turn types I, I′,
II, II′, V III and IV simultaneously.

Table 2.3: Network setups used in this study.

Layer # Input # Hidden Output Layer Definition

Nodes Nodes

Sequence-to-Structure 22 20

In all networks, 3-state secondary
structure, the generic β-turn and the
individual β-turn types serve as
prediction targets resulting in 7 output
layers with 2 nodes (turns/non-turns)
and one output layer with 3 nodes
(3-state secondary structure)

Sequence-to-Structure 22 30

Sequence-to-Structure 22 40

Sequence-to-Structure 22 50

Sequence-to-Structure 22 60

Structure-to-Structure 85 5

Structure-to-Structure 85 10

Structure-to-Structure 85 20

Table 2.4: The structures of the used multi output layer Elman-type bidirectional re-
current neural networks.

β-turn and β-turn type prediction accuracy three different setups are employed:

Ensemble EBRNN, Ensemble EBRNN SSP, and Ensemble MOLEBRNN. The net-

works are additionally outlined in table 2.3. Both EBRNNs and MOLEBRNNs

employed in this work are precisely defined in tables 2.4 and 2.5 where the numbers

of nodes in all network layers are listed.

2.2.5 Performance measures

The accuracy of all predictions reported here was determined by full sevenfold cross-

validation. For β-turn prediction the following four parameters are used to measure

the performance of the classifiers and to compare the MOLEBRNN results to re-

ported values: i) Qtotal, the general prediction accuracy for two classes, ii) Qpred,
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Layer # Input # Hidden # Output Targets

Nodes Nodes Nodes

Sequence-to-structure 22 20 2 β-turn, β-turn types I, II, V III and IV

Sequence-to-structure 22 20 3 Secondary structure

Sequence-to-structure 22 30 2 β-turn, β-turn types I, II, V III and IV

Sequence-to-structure 22 30 3 Secondary structure

Sequence-to-structure 22 40 2 β-turn, β-turn types I, II, V III and IV

Sequence-to-structure 22 40 3 Secondary structure

Sequence-to-structure 22 50 2 β-turn, β-turn types I, II, V III and IV

Sequence-to-structure 22 50 3 Secondary structure

Sequence-to-structure 22 60 2 β-turn, β-turn types I, II, V III and IV

Sequence-to-structure 22 60 3 Secondary structure

Ensemble EBRNN 10 10 2 β-turn, β-turn types I, II, V III and IV

Ensemble EBRNN SSP 13 10 2 β-turn, β-turn types I, II, V III and IV

Ensemble EBRNN 15 10 3 Secondary structure

Table 2.5: The structures of the used Elman-type bidirectional recurrent neural net-
works.

the percentage of correct elements in the positively predicted set (also called pos-

itive predictive value or precision), iii) Qobs, the percentage of observed positive

elements predicted (also called recall or sensitivity), and iv) MCC, the Matthews

correlation coefficient with the value range of [−1, 1] where the values 0, +1, and

−1 indicate a random prediction, the best possible prediction, and a reverse pre-

diction, respectively. The values of these four performance measures will depend

on the threshold τ chosen. In 2.3 Results and discussion typically the measures

Qtotal, Qpred, Qobs and MCC are presented with τ adjusted such that the maximal

MCC (labeled by maxMCC) is obtained. In some cases predictive performance

is discussed for a different τ such that there is a trade-off between high MCC

and high Qtotal (labeled by tradeoff). In both cases the name of the network

architecture is labeled by ‘maxMCC’ or ‘tradeoff’ to indicate the choice of (e.g.,

Ensemble MOLEBRNN maxMCC). Further, threshold curves are presented where

the performance measures are plotted versus τ .

The ROC graph is another popular performance indicator. It visualizes the

relative trade-off between benefits (true positives) and costs (false positives) of each

prediction. It is a two-dimensional graph where true positive rate is plotted versus

the false positive rate when varying the threshold τ (Fawcett, 2004). To facilitate
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Figure 2.2: Composition of β-turns as found in the dataset.
Shown are the percentages and the counts of individual β-turn types and their combinations in β-turns.

comparison between different classifiers considered in this work, the information in

the two-dimensional ROC graph is compressed to a single scalar value, the area

under the ROC curve (AUC). AUC is usually interpreted as the probability that

the classifier will rank a randomly chosen positive instance higher than a randomly

chosen negative instance (Fawcett, 2004).

2.3 Results and discussion

2.3.1 Analysis of prediction target data

This study started by analyzing the interdependencies between the localization of

β-turns, different types of β-turns, and other secondary structure elements. Each

turn is of length four, and its type is defined based on the dihedral angles of the two

central amino acid residues (recall Table 2.1). Thus, by definition, each residue can

be part of at most three different β-turns (see Figure 2.2). In the dataset of 95844

residues, described in Section 2.2.1, there are 23134 residues, or 24%, in any of the

individual β-turn types, making the β-turn training dataset significantly unbalanced.

As described in Material and methods, the general target encompasses all individual
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Figure 2.3: Occurrence of β-turns within secondary structure elements.

β-turn types but from Figure 2.2 follows that nearly 60% of β-turns are of the type

I and IV .

The occurrence of β-turns in different secondary structure elements is shown in

figure 2.3. α-helices are nearly β-turn free due to the definition of β-turns that does

not allow the two central residues to be part of an α-helix. The β-turn content of

strands is also very low, represented for the most part by the turn type IV involving

untypical (irregular) dihedral angles (see table 2.1). As expected, most β-turns are

found in coils where they account for more than a half of all residues.

There are thus clear interdependencies between the secondary structure elements

considered here. Turns generally avoid α-helices and, except for the turn type IV ,

β-strands, while coil has a strong statistical preference to the β-turns of type I and

IV . This situation motivates the development of an integrated method that, when

predicting individual structural targets, would not only learn the presence or absence

of a single structural element, but would also gain additional information from other

structural targets being predicted for a given residue. The interdependence between

multiple secondary structure elements have already been used by other groups. For

example, Kaur and Raghava (2003b) and Fuchs and Alix (2005) show that con-

sideration of predicted secondary structure improves β-turn prediction. Vise versa,

knowledge about β-turns helps to improve secondary structure prediction (Frishman
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Network type Qtotal Qpred Qobs MCC AUC

Single EBRNN 75.0% 49.1% 64.4% 0.394 0.793

Ensemble EBRNN 76.4% 51.3% 66.0% 0.424 0.814

Ensemble EBRNN SSP 76.5% 51.4% 66.4% 0.427 0.822

Single MOLEBRNN 75.3% 49.7% 70.5% 0.428 0.819

Ensemble MOLEBRNN 77.9% 53.9% 66.0% 0.448 0.832

Table 2.6: Performance measures of β-turn predictors.

and Argos, 1997).

In contrast to these previous attempts, to the knowledge of the author, this is

the first approach to model such interdependencies via a single network. A BRNN

sequence learner is embodied instead of a feed-forward neural network. BRNNs have

the advantage of being able to tackle sequence prediction problems globally while

feed-forward networks require short sequence windows and can thus only consider

local structural context.

2.3.2 Predictive performance of EBRNN and MOLEBRNN

Prediction of β-turns

In Table 2.6 the performances are presented, derived from all network types de-

veloped for predicting β-turns from protein sequences. Layered architectures –

Ensemble EBRNN and Ensemble MOLEBRNN – display significantly better perfor-

mance compared to single networks in terms of Qtotal (overall prediction accuracy)

as well as MCC (Matthews correlation coefficient) and AUC (area under the ROC

curve). Incorporation of the secondary structure predicted by PSIPRED only has

a marginal effect on the performance of the Ensemble EBRNN. The latter already

reaches theMCC value of 0.424 even without secondary structure, while a previously

reported method (Fuchs and Alix, 2005) achieved MCC = 0.410 when PSIPRED

predictions are taken into account. The performance of the Ensemble MOLEBRNN

– Qtotal = 77.9% and MCC = 0.448 – is the highest reported in literature so far

(table 2.7). In particular, Ensemble MOLEBRNN outperforms the BETATURN

technique (Zhang et al., 2005) which is based on support vector machines.
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Method Name Reference Method Type Qtotal Qpred Qobs MCC

Ensemble MOLEBRNN This work MOLEBRNN 77.9% 53.9% 66.0% 0.45

Ensemble EBRNN SSP This work BRNN 76.5% 51.4% 66.4% 0.43

Ensemble EBRNN This work BRNN 76.4% 51.3% 66.0% 0.42

BETATURN Zhang et al. (2005) SVM 77.3% 53.1% 67.0% 0.45

BETATPRED2 Kaur and Raghava (2003a) MLP 75.5% 49.8% 72.3% 0.43

COUDES Fuchs and Alix (2005) Propensities 74.8% 48.8% 69.9% 0.42

KNN Kim (2004) KNN 75.0% 46.5% 66.7% 0.40

BTPRED Shepherd et al. (1999) MLP 76.0% 50.9% 63.0% 0.40

Chou-Fasman Chou and Fasman (1979) Propensities 74.3% 47.7% 54.3% 0.34

Table 2.7: Comparison of β-turn prediction methods.
The performance of all methods is reported for the same test dataset to allow direct comparison. Values for BTRED

and Chou-Fasman are taken from Kaur and Raghava (2002). Abbreviations: BRNN –bidirectional recurrent neural

network, SVM – support vector machines, MLP – Multi Layer Perceptron, KNN – k-nearest neighbors.
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Figure 2.4: β-turn prediction performance of Ensemble EBRNN,
Ensemble EBRNN SSP, and Ensemble MOLEBRNN.

A more detailed comparison of the MOLEBRNN with the ordinary EBRNN with

and without secondary structure considered is shown in figure 2.4. The threshold

curves together with the ROC graph and the high AUC (Table 2.6) clearly demon-
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Turn
Type

Method τ Qtotal Qpred Qobs MCC

I Ensemble MOLEBRNN maxMCC 0.168 82.5% 28.9% 56.9% 0.317

I Ensemble MOLEBRNN tradeoff 0.200 85.4% 31.7% 48.7% 0.314

I COUDES - 84.5% 30.8% 50.0% 0.309

I BETATURNS - 74.5% 22.1% 74.1% 0.29

II Ensemble MOLEBRNN maxMCC/tradeoff 0.293 96.2% 50.2% 25.2% 0.339

II COUDES - 91.0% 22.2% 52.8% 0.302

II BETATURNS - 93.5% 25.5% 52.8% 0.29

VIII Ensemble MOLEBRNN maxMCC 0.024 53.4% 4.7% 80.5% 0.109

VIII Ensemble MOLEBRNN tradeoff 0.072 93.0% 8.0% 19.0% 0.076

VIII COUDES - 90.7% 6.9% 18.7% 0.071

VIII BETATURNS - 96.5% 7.2% 2.8% 0.02

IV Ensemble MOLEBRNN maxMCC 0.130 72.3% 20.1% 63.8% 0.236

IV Ensemble MOLEBRNN tradeoff 0.204 85.2% 26.0% 29.3% 0.194

IV COUDES - 84.9% 20.7% 17.7% 0.109

IV BETATURNS - 67.9% 18.6% 72.0% 0.23

I’ Ensemble MOLEBRNN maxMCC/tradeoff 0.382 98.8% 59.3% 21.9% 0.356

I’ COUDES - 94.4% 11.6% 51.8% 0.226

II’ Ensemble MOLEBRNN maxMCC/tradeoff 0.079 98.6% 12.7% 16.3% 0.137

II’ COUDES - 94.6% 4.6% 32.8% 0.106

Table 2.8: Comparison of β-turn prediction methods.

strate the advantage of Ensemble MOLEBRNN over both Ensemble EBRNN and

Ensemble EBRNN SSP. As expected, precision continuously improves with higher

τ values. However, for very high τ values the Qpred curves become unstable due to

low number of instances available at such high thresholds τ . For all three curves

Qtotal reaches its maximum at τ values around 0.5. MCC is maximal at values

around τ = 0.3, close to the general occurrence of residues in the β-turn state which

is around 24%.

Prediction of β-turn types

Ensemble MOLEBRNN also clearly outperforms EBRNN and the state-of-the-art

methods developed by others in predicting individual β-turn types. In table 2.8

the performance of Ensemble MOLEBRNN is shown both for the threshold values

optimized to achieve the best possible MCC (labeled maxMCC) as well as for those
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Figure 2.5: Threshold and ROC graph for the β-turn type I prediction.

that provide a reasonable tradeoff between Qtotal and MCC based on the thresh-

old curves (labeled tradeoff, shown in figure 2.5 for the β-turn type I). In some

cases the maxMCC and tradeoff values correspond to the same τ value. As seen in

table 2.8, for β-turn types I and II Ensemble MOLEBRNN tradeoff performs bet-

ter than COUDES (Fuchs and Alix, 2005) and BETATURNS (Kaur and Raghava,

2004) both in terms of Qtotal and MCC. For the β-turn type I ′ and II ′ it also

outperforms COUDES while a comparison with BETATURN is not possible as the

latter method does not predict these β-turn types. For the β-turn types V III

and IV Ensemble MOLEBRNN tradeoff is better than COUDES, but compared to

BETATURNS it achieves worse Qtotal on β-turn V III and worse MCC on β-turn

IV . At the same time, for these two turn types Ensemble MOLEBRNN maxMCC

achieves worse Qtotal than both COUDES and BETATURNS (type V III only), but

itsMCC is significantly better. The final version of the MOLEBRNN software allows

the user to select one of the two modes – maxMCC or tradeoff – dependent on whether

better precision or better recall is desired. In all cases Ensemble MOLEBRNN is

characterized by better AUC values than other methods. To further illustrate the

advantages of Ensemble MOLEBRNN over Ensemble EBRNN, in figure 2.5 one set
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of threshold curves is exemplified together with the ROC graph for the β-turn type

I. For all measures used in this work the Ensemble MOLEBRNN is clearly better

than the EBRNN setup. Similar tendencies are observed for the β-turn types II,

V III and IV (data not shown). The AUCs for β-turn type I prediction are 0.804

for Ensemble EBRNN and 0.821 for Ensemble MOLEBRNN. Kaur and Raghava

(2004) obtain for β-turn type I an AUC of 0.746.

2.3.3 Performance for different combinations of prediction

targets

Experiments were conducted to find out how interdependencies between different

combinations of prediction targets influence the performance of the multiple output

architecture. To allow a direct comparison all performance measures were derived

from a sequence-to-structure model with 30 hidden nodes trained on the same data.

All experiments were carried out five times using random initializations of connection

weights in the neural networks, and the average outcomes were recorded. As seen

in figure 2.6, EBRNN (i.e. MOLEBRNN with a single output) performs worst in

predicting β-turns. The addition of output layers for the six β-turn subtypes (I, II,

I ′, II ′, IV and V III) results in increased performance. If secondary structure is

used as an output layer together with the β-turn target the performance is further

increased. The combined use of β-turns, β-turn types, and secondary structure

targets in eight output layers results in the best performance. This finding illustrates

the power of MOLEBRNN. Although the number of hidden nodes and the input

data stays constant the network manages to incorporate further knowledge during

training through additional output layers. Beyond each individual target function,

MOLEBRNN takes into account related targets to learn the problem of recognizing

residue secondary structure states globally. β-turns are a cumulative representation

of all β-turn types, and secondary structure indirectly correlates with β-turns. There

exists an hierarchy of the secondary structure elements, with β-turn types at the most

detailed level and secondary structure at the most general level. Curves in figure 2.6

imply that global features have a higher impact on prediction accuracy that local
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Figure 2.6: Performance of MOLEBRNN on different combinations of target classes.

ones. Thus, the secondary structure output layer influences the prediction accuracy

stronger than β-turn types. One reason for the weaker influence of β-turn types

could be the seldom occurrence of many turn types in the dataset. The knowledge

about the generic β-turn target is mostly obtained from the types I and IV while

the four rare types II, I ′, II ′ and V III do not contribute much. This is not the case

for secondary structure. All three secondary structure elements occur with nearly

equal frequency and a strong connection between coil and β-turns is found.

2.4 Conclusions

The data presented here demonstrate a better performance of recurrent neural net-

works compared to feed-forward neural networks when applied to β-turn prediction.

The MOLEBRNN architecture is able to learn multiple aspects of protein structure

and achieves the best performance reported so far both in distinguishing β-turns
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from non-β-turns and in predicting specific β-turn types. It is interesting to note

that while the SVM-based methods have recently surpassed neural networks in terms

of prediction accuracy, the success of the MOLEBRNN technique demonstrates that

the potential of neural networks has not yet been exhausted. The online version

of MOLEBRNN at http://webclu.bio.wzw.tum.de/predator-web/ can be applied to

predict β-turns in proteins.

http://webclu.bio.wzw.tum.de/predator-web/
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Chapter 3

Prediction in 1D :: Prediction of

multiple structural motifs in

soluble proteins

3.1 Introduction

Prediction of one-dimensional structural motifs from amino sequences constitutes

one of the most traditional and established areas of bioinformatics. The accuracy of

prediction tools has been steadily increasing over the past three decades, primarily

due to two factors: availability of ever increasing training sets of known structures

and the growing sophistication of algorithms applied to extract knowledge from

sequences. For example, in the early work of Chou and Fasman (1974) simple sta-

tistical propensities of amino acid occurrence in helices and strands extracted from

just 19 structures known at that time were used to predict protein secondary struc-

ture with 50-60% accuracy (Mount, 2004), while the accuracy of today’s state-of-the

art tools based on sophisticated machine learning techniques trained on thousands

of diverse structures is approaching 80% (Pollastri and McLysaght, 2005; Adam-

czak et al., 2005; Jones, 1999). Likewise, prediction of solvent accessibility improved

from 58% (Rost and Sander, 1994a) to 78-79% (Pollastri et al., 2007; Nguyen and

Rajapakse, 2005). Other structural features of interest that can be predicted from
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sequence alone include β-turns, structural class (α, β, or mixed), trans-membrane

helices, chain flexibility, and disordered regions, to name just a few.

A somewhat under-appreciated aspect of one-dimensional structure prediction

is that many protein features are in fact strongly inter-correlated. For example,

the location of β-turns where protein backbone abruptly changes its direction when

reaching the protein surface is obviously correlated with solvent accessibility, while

the very presence of isolated β-turns at a particular sequence site automatically ex-

cludes α-helical or β-strand conformation. Knowledge of one structural motif should

thus be helpful for predicting other motifs. Indeed, it has been shown that predicted

secondary structure is an informative feature for the prediction of solvent accessi-

bility (Garg et al., 2005) and vice versa (Adamczak et al., 2005). Consideration of

predicted β-turns leads to increased secondary structure prediction accuracy (Frish-

man and Argos, 1995) and again, an improvement for the reverse application was

also reported (Kaur and Raghava, 2003b). Another example where such trivial de-

pendencies have been successfully applied involves the prediction of β-sheet types

(parallel or anti-parallel) given predicted secondary structure (Zimmermann et al.,

2007). Whenever various structural aspects are interdependent, the utilization of

one predicted feature to improve the prediction of another feature becomes possible.

In this chapter the question is investigated whether a recurrent neural network

(RNN) able to predict various structural features simultaneously can outperform

one-dimensional structure prediction methods trained for a single prediction target.

It is hypothesized that a neural network designed to predict multiple interdependent

aspects and optimized during training for all these aspects simultaneously captures

important interdependencies intrinsic to protein structures and may show superior

performance when compared to single-target neural network methods. Specifically,

the aim in this work is to develop a method to predict solvent accessibility, secondary

structure and β-turns that exploits inter-correlations between these three features.

In the previous Chapter 2 an improvement in the prediction of β-turns and β-turn

types was shown by including a variety of related prediction targets in the RNN

output layer.

Currently web services exist that accomplish the task of predicting multiple
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structural features by running a variety of independent prediction methods concur-

rently and reporting all prediction results combined on a single page. Such services

are Distill, PredictProtein, PSIPRED Server or Jpred 3 introduced from Baú et al.

(2006), Rost et al. (2004), McGuffin et al. (2000) and Cole et al. (2008). These

methods are retrained on a regular basis which is required to cope with the increas-

ing amount of available protein structures. Opposite to this, the here described

predictor requires retraining of just a single instance.

Similar to the β-turn prediction in Chapter 2 the structural features selected

for this work have in common that they all are usually predicted from sequence

profiles obtained from multiple sequence alignments. Prominent solvent accessibility

predictors from Jones (1999); Kaur and Raghava (2003b); Adamczak et al. (2005) are

all using the raw PSI-BLAST PSSM output and fed this, after some preprocessing,

into machine learning algorithms, in the case of this three works, neural networks

were used and these were organized in a topology that is used similar to that proposed

by Qian and Sejnowski (1988): The output of an initial machine learning prediction

is fed into a second machine learning layer that smooths prediction and correlates

neighbored states. Here a method with similar architecture is described where all

first layer outputs are also fed into the second layer.

In this chapter the stages are described that lead to the development of a method

able to predict multiple one-dimensional features. The three structural motifs β-

turns, solvent accessibility and three state secondary structure are predicted and

the prediction performances are measured. In the beginning the performances on

the individual structural motifs are analyzed when predicted simultaneously. Then

it is analyzed whether there is a higher network requirement for multiple predic-

tion targets and how performance increases when compared to single target pre-

diction. In the last result section a strict comparison to available methods in

terms of solvent accessibility and secondary structure is shown. It is concluded

that that the here described MOLEBRNN based method outperforms to-date sol-

vent accessibility predictions and keeps up with current secondary structure pre-

diction methods. The final, download-able version is trained on a large nonredun-

dant dataset comprising proteins of known structure and dubbed SOPRANO, the
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solubility predictor applying neural networks with multiple outputs. SOPRANO is

available at http://webclu.bio.wzw.tum.de/soprano.

3.2 Material and methods

3.2.1 Protein set

Dataset used for method development

The development of this method is based on two different datasets. Essentially the

collection of nonredundant protein chains pdb select (Hobohm et al., 1992) is used

to compile the data. For method optimization and obtainment of initial performance

measures a dataset that was compiled from pdb select of June 2000 (Hobohm et al.,

1992) was used. This dataset was also used by Pollastri et al. (2002a) and their

protocol for preprocessing was transfered to this method: Chains were removed

with backbone breaks, missing atom descriptions, or format errors. This dataset

is called pdb select-2000 in the following. The pdb select-2000 dataset was also

used for comparison to Pollastri et al. (2002a) and Adamczak et al. (2004). The

final version of the predictor (SOPRANO) is trained on pdb select of October 2007.

Again the data is preprocessed in a similar way. In the following this dataset used

to build the final version will be called pdb select-2007.

Dataset based on Cuff and Barton (1999), used for comparison

For comparison of the here developed method to a variety of other predictors the

protein chains originally compiled by Cuff and Barton (2000) where also deployed.

This chains were selected very rigorously based on protein structure qualities and

redundancy criteria. Ahmad et al. (2003a) suggested to remove those chains that

were shorter than 30 residues and thus obtained a subset of the original Cuff and

Barton (2000) set of 502 protein chains. As many solvent accessibility predictors are

validated on the 502 protein chains, for validation and comparison purposes this set

is also deployed here. It is referred to as cb502 in the following.

http://webclu.bio.wzw.tum.de/soprano
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Dataset based on SABLE, used for comparison

The four control sets of Adamczak et al. (2004), S156, S135, S163 and S149 which

consist of 603 proteins altogether were also used for comparison. The protein list was

published in 2002 and non of which are homologue to the train set of Adamczak et al.

(2004) compiled from a nonredundant snapshot of PDB in August 2001. Because

it is newer, the train set covers a larger protein space than pdb select-2000 dataset

does and theoretically this 603 test proteins of Adamczak et al. (2004) should be

unrelated to the pdb select-2000 set. An analysis of the homology showed that 56

proteins in the test data of Adamczak et al. (2004) align at 35% sequence identity or

better. These 56 proteins are removed and from that, four test sets similar to those

from Adamczak et al. (2004) were obtained with the sets S156, S135, S163 and S149

now containing 138, 126, 147 and 136 proteins respectively.

Dataset based on Naderi-Manesh et al. (2001), used for comparison

Finally the Naderi-Manesh et al. (2001) dataset was utilized. It consists of 215

homology reduced protein chains which were also used by a variety of other methods.

Especially Pollastri et al. (2007), to my knowledge the best method to-date, report

performance measures on the Naderi-Manesh dataset, the reason why it is included

here.

3.2.2 Definition of prediction targets

In order to exploit the power of MOLEBRNN the following variety of prominent pre-

diction targets is defined. All of them are predicted simultaneously by MOLEBRNN.

Real value solvent accessibility

The number of water molecules that can adhere a residue in a three-dimensional

protein structure defines the solvent accessibility. DSSP (Kabsch and Sander, 1983)

can be used to calculate this number. Obviously residues of different sizes allow dif-

ferent numbers of water molecules attached such that a relative solvent accessibility
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Figure 3.1: Distribution and cumulative distribution of solvent accessibility in
pdb select June 2000 dataset.
Shown are the raw rSA distribution and the distribution obtained from sqrt(rSA). µ(rSA) = 0.310, µ(sqrt(rSA)) =

0.468, σ2(rSA) = 0.287, σ2(sqrt(rSA)) = 0.303, σ(rSA) = 0.536, σ(sqrt(rSA)) = 0.550.

(rSA(i)) has to be defined, that is independent of the residue type:

rSA(i) =
aSA(i)

maxj(aSA(j))

where aSA(i) is the absolute solvent accessibility of an amino acid residue i as ob-

tained from DSSP, j is the type of the residue and maxj(aSA(j)) holds the maximal

observable aSA for a given residue type. The maxj(aSA(j)) values where taken from

Ahmad et al. (2003a). rSA(i) takes values between 0.0 and 1.0 declaring the frac-

tion of residue enclosure. Figure 3.1 shows the distribution of rSA as observed in

pdb select-2000 dataset. As can be seen in the figure, rSA values are not uniformly

distributed: many residues are observed with low rSA while just very few residues

are found with large rSA values. To smooth the distribution rSA is transformed by

the square root to sqrt(rSA). The obtained distribution is also contained in Figure

3.1. It can be seen that sqrt(rSA) values occur much more uniformly distributed.

This novel target was developed in order to bias the method for large rSA values.

The sqrt(rSA) predictions can be converted back to the original relative solvent

accessibility by squaring them and obtain sqrt(rSA)2 which equals rSA. rSA and
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sqrt(rSA) as they are defined here are prediction targets that are to be predicted

by regression methods.

Discretized two-class solvent accessibility

As common in residue solvent accessibility prediction, not only real valued solvent

accessibility is predicted by regression but additionally rSA is discretized to ob-

tain two-class problems. Here the two classes define whether a residue is buried

or exposed. Depending on the threshold applied on rSA for discretization, different

amounts of residues in either state are obtained. rSA is discretized here with thresh-

olds 0.05, 0.1, ..., 0.5 and thus ten different two-class prediction targets are obtained.

Secondary structure

Secondary structure is defined equivalently to the ‘real time’ evaluation server EVA

(Eyrich et al., 2001). It is obtained from PDB (Berman et al., 2000) entry files

by DSSP (Kabsch and Sander, 1983) and the eight DSSP secondary structure ele-

ments were reduced to three states following the rules: [GHI] become H, a helix

representation, [EB] become E, the extended conformation and [CST ] become C,

representing irregular coil structures. These rules are considered as the most difficult

ones.

β-turns

Similar to the previous Chapter 2 β-turns are again included as prediction targets.

The β-turn was defined by Lewis et al. (1973) as four consecutive residues where the

first and the last residue have a distance in space of less than 7Å. The central two

residues are not allowed to be part of an α-helix. Essentially they form a tight turn

in the protein backbone. The β-turn states were obtained from PDB entry files by

PROMOTIF (Hutchinson and Thornton, 1996).
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3.2.3 Feature space

Equivalent to Chapter 2 and as described by Jones (1999) the raw position specific

scoring matrices (PSSM) generated from PSI-BLAST (Altschul et al., 1997) serve

as solely input to the predictor. The profiles were generated by blasting against a

modified sequence database. This sequence database was generated by processing

NCBIs non-redundant protein database (NR, Wheeler et al. (2007), downloaded in

October 2007) with cd-hit (Li and Godzik, 2006) to obtain sequence clusters at 98%

homology level. The homology reduced database has a size of 3.6 Mio sequences

and has the advantage of a reduced search time while prediction performance should

not be affected. Further the protein sequences were preprocessed by removing low

complexity regions found by SEG (Wootton and Federhen, 1993) and coiled coil

structures found by pfilt (Jones and Swindells, 2002). The PSI-BLAST search was

performed by iterating three times and setting the e-value cutoffs H for profile

sequences and E for output sequences to identical values 0.1×10−3. The raw PSSM

values were standardized by the standard logistic function to obtain a value range

of [0, 1].

3.2.4 Multiple output layer Elman-type bidirectional recur-

rent neural network MOLEBRNN

In this work again the novel neural network MOLEBRNN was utilized that is intro-

duced in section 2.2.2. MOLEBRNN (multi output layer Elman-type bidirectional

recurrent neural network) is displayed, together with the composing networks, in

figure 2.1.

Again an ensembles setup implemented in stacked networks is used to detect

correlations between neighboring residues and to smooth predicted structural seg-

ments. This stacking is realized with the common two-stage approach introduced

in computational biology by Qian and Sejnowski (1988). A first layer (often called

sequence-to-structure layer) maps the input features (see above) into the target

structural states and a second layer, the structure-to-structure layer, uses this initial

mapping as input to further optimize prediction. Similar to Chapter 2 on β-turn
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prediction, the first layer consists of independently trained MOLEBRNNs with 30,

40, 50 and 60 hidden units and their outcome is fed into a second layer MOLEBRNN

with 10 hidden units which performs the described correlating and smoothing ac-

tions. The full ensemble of predictors is called SOPRANO (the solubility predictor

applying neural networks with multiple outputs).

3.2.5 Evaluation of prediction

Due to the multiple prediction targets the prediction method has to be evaluated by

a variety of measures.

Evaluation of regression

Real value prediction targets are evaluated by Pearson’s correlation coefficient

(PCC), mean absolute error (MAE), and root mean square deviation (RMSD).

The Pearson’s correlation is defined as the ratio of the covariance between the pre-

dicted and observed real value target to the product of their standard deviations.

The mean absolute error states the average absolute difference between the predicted

and observed real value targets. Both measures are prominently used and defined in

greater detail in Ahmad et al. (2003a). The root mean square deviation (RMSD)

is given by

RMSD =

√∑n
i=1(x1,i − x2,i)2

n

where x1,i and x2,i are the observed and predicted real valued targets at residue

position i, n states the number of all residues in the test sets, independent to proteins.

Evaluation of classification

For the nominal prediction targets the performance measures accuracy, precision,

recall, gain and the Matthews correlation coefficient (MCC) were used. The

accuracy states the percentage of correctly predicted residues in any class. To com-

pute precision and recall a positive class needs to be defined, where here the solvent

exposed stated of a residue is used. The precision gives the percentage of residues

that are correctly predicted as solvent exposed from those residues that are predicted
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as such. The recall states the percentage of residues that are correctly detected from

all solvent exposed ones. For three-state secondary structure prediction the term Q3

is a synonym for the accuracy. Given the confusion matrix for a two class nominal

prediction target which is distinguishing the true positives (TP), the true negatives

(TN), the false positives (FP) and the false negatives (FN), accuracy, precision and

recall are defined in the equations:

accuracy = TP+TN
TP+TN+FP+FN

precision = TP
TP+FP

recall = TP
TP+FN

The Matthews correlation coefficient (MCC) is given again from the confusion ma-

trix following:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

It considers both classes and all values from the confusion matrix and thus is con-

sidered as best performance measure (Baldi et al., 2000). Its value range is [−1, 1];

large absolute values indicate good accordance between observed and predicted val-

ues while values around 0 indicate bad prediction.

The gain given from

gain = precision
r

with

r = TP+FN
TP+TN+FP+FN

= Positives
N

states the improvement the classifier achieves when compared to random prediction.

It is understood as a factor by which the prediction from the classifier is better than

random guessing.

For β-turns the performance measures MCC and accuracy are analyzed. As only

25% of all residues form β-turns, post-scaling was applied on the prediction outcome.

Post-scaling as described by Lawrence et al. (1998), improves performance in case of
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rSA Type PCC MAE RMSD

rSA 0.688 0.159 0.208

sqrt(rSA)2 0.686 0.155 0.213

sqrt(rSA) 0.718 0.167 0.211

Table 3.1: Performance of regression-based real-value solvent accessibility predictions.
Shown are the Pearson’s correlation coefficient (PCC), the mean absolute error (MAE) and the root mean square

deviation (RMSD).

unbalanced classes. A β-turn is only predicted if the network output responsible for

this structural target is larger than a adjustable threshold. Varying this threshold

influences MCC and the accuracy. Throughout the work MCC and accuracy of

the β-turn target is shown for the threshold where a maximal MCC is obtained.

(Compare maxMCC in Chapter 2.)

3.3 Results and discussion

3.3.1 Performance of motif prediction

In this section results are shown that were obtained from a MOLEBRNN that was

trained to simultaneously predict secondary structure, rSA, sqrt(rSA), three solvent

accessibility states and β-turns as defined in Material & methods. The reported

results were obtained from seven-fold cross-validation on pdb select-2000 dataset.

Real valued solvent accessibility regression

As described in Material & methods section 3.2.2, two types of real valued solvent

accessibility definitions were used: the general accepted rSA value and the modified

sqrt(rSA) version. In order to measure whether the modified square rooted version

performs as prediction target the predicted sqrt(rSA) value is reverted to sqrt(rSA)2

which is again comparable to the original rSA. All obtained evaluation values are

shown in table 3.1. In terms of RMSD the rSA prediction target is predicted best.

Also PCC is larger when compared to the sqrt(rSA)2 target. The comparison of

the MAE values indicates that the rescaled sqrt(rSA)2 target is predicted best.

The target sqrt(rSA) is predicted with best PCC but high MAE. A property
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Figure 3.2: Dependency of prediction error (RMSD) on solvent accessibility.
rSA and sqrt(rSA)2 targets plotted for comparison.

Threshold Accuracy Precision Recall MCC Gain

0.15 79.4764 0.814 0.851 0.569484 1.36

0.20 78.8077 0.795 0.822 0.571862 1.46

0.25 78.4006 0.775 0.792 0.568193 1.57

Table 3.2: Summary of performance measures for solvent accessibility two-class classi-
fication.
The threshold column indicates the relative solvent accessibility used to separate into the two classes buried and

exposed. Accuracy, precision, recall, MCC and gain are defined in Material & methods section.

of the measures MAE and RMSD is that they are distribution dependent. If a

distribution has high variance, MAE and RMSD are larger and vise versa. This

behavior is observed for the sqrt(rSA) target that has a higher variance (σ) than

rSA (see figure 3.1) and thus theMAE and RMSD are larger by definition. Another

aspect distinguishing the rSA and sqrt(rSA)2 targets is shown in figure 3.2. The

prediction of rSA performs better for exposed residues, it is worse for buried ones

when compared to the sqrt(rSA)2 target.

Multiplexed two-class solvent accessibility classification

The performance measures listed in this section are obtained from the same

MOLEBRNN as those in the previous sections. The results from the seven-fold

jack-knife validation are summarized in table 3.2. From figure 3.1 it follows that

the thresholds 0.20 and 0.25 are the most informative as they create almost equal

amounts of buried and exposed residues. The classification at these thresholds is
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Amino Acid Accuracy Precision Recall MCC Gain

W 70.2 54.1 35.5 0.248 1.23

C 78.6 45.7 35.6 0.276 1.16

K 87.2 91.3 94.5 0.290 1.09

R 77.3 83.2 87.9 0.340 1.22

Y 69.0 66.8 51.9 0.350 1.35

F 76.8 57.8 45.4 0.364 1.26

E 85.3 88.3 94.8 0.413 1.19

D 81.0 84.7 91.7 0.425 1.27

P 75.0 78.4 85.5 0.425 1.37

N 78.8 81.6 91.2 0.431 1.32

L 78.1 63.4 52.4 0.432 1.31

Q 81.1 84.3 92.3 0.432 1.28

I 80.0 59.3 53.9 0.436 1.26

H 73.1 76.1 78.7 0.444 1.42

G 74.2 74.1 82.2 0.473 1.47

V 79.4 68.0 59.0 0.492 1.37

S 76.6 76.9 88.1 0.496 1.46

T 76.6 78.5 84.0 0.506 1.47

M 78.0 69.1 66.9 0.512 1.43

A 78.2 71.6 79.6 0.562 1.52

Table 3.3: Performance measures for individual amino acids when predicting solvent
accessibility states buried and exposed with an rSA threshold of 0.20.
The rows are sorted according to increasing MCC.

hardest as there is no valuable a priori knowledge about the class distributions.

This consideration explains why the accuracy at these thresholds is so low compared

to most other thresholds. On the other hand MCC and gain are highest at threshold

0.20 which indicates that compared to random prediction, the classifier is improving

prediction the most.

To decode some further aspects on prediction performance it is analyzed whether

the different types of amino acids are predicted with different accuracy. The analysis

results are shown in Table 3.3 and Figure 3.3. Table 3.3 shows average performance

measures for all 20 amino amino acids when solvent accessibility is defined as two-

class problem and the rSA threshold to distinguish the buried and exposed state

is 0.20. It can be seen that there are great differences in prediction performance.

While the SA-state of Alanine, Methionine or Threonine is predicted with high

MCC, only low values are obtained for Tryptophan, Cysteine and Lysine. Looking

deeper into the properties of the various amino acids reveals the following: There is

a clear dependency between the maximal solvent accessibility value for amino acids
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Figure 3.3: Dependency of MCC prediction performance on amino acid properties.
Panel A shows MCC over the maximal aSA per residue, panel B shows the MCC over amino acid occurrence in

proteins, panel C shows a reverse quadratic dependency between residue exposure in percent and MCC and panel

D shows how prediction performance depends on the Kyte and Doolittle (1982) residue hydropathy index.

and the associated MCC prediction performance (see panel A in Figure 3.3). If

max(aSA(j)) for amino acids is high, the prediction performance on those residues

is low. This can be explained by the fact that large residues can interact with a

large number of other residues thus interaction pattern is difficult and can involve

many long range interactions which are not tackled to enough extend to gain good

performance. On the other hand, small residues interact with just few other protein

elements allowing the machine learner to evaluate the associated interaction patterns

successfully. The next clear dependency is found between the amino acid occurrence

and the MCC (visualized in panel B of Figure 3.3). The more often a specific type

of amino acid occurs the better its prediction performance. Again this finding can be

explained to some extend. If many residues of a specific type occur in a dataset the

residue’s properties can be learned to a greater extend and this results in a better

performance on those frequent residues. Further it has to be noted that mainly high

MCC values are obtained for amino acids thats class distribution is balanced (panel

C in Figure 3.3). Around half of the residues alanine or glycine are exposed when

a SA-threshold of 0.25 is applied which in turn maximizes performance in terms of

MCC. In panel D the dependency of prediction performance on Kyte and Doolittle

(1982) hydropathy index is shown. Compared to other articles (Wang et al., 2007;

Ahmad et al., 2003a) the performance in this work does not depend that much on
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residue hydropathy. There may be two reasons to describe this phenomenon: Firstly,

the different index used here to describe the residue hydropathy could influence the

analysis and secondly it could be that the performance of MOLEBRNN simply

correlates much better to the other residue properties analyzed in Figure 3.3.

β-turn prediction

MOLEBRNN in the given setup is able to predict β-turns with an accuracy of 76.9%

and gains an MCC of 0.44. This performance measures compare to the previous

chapter on β-turn and β-turn type prediction (compare Table 2.6) where an accuracy

of 77.9% and an MCC of 0.45 are gained. This time performance is slightly lower

which is explained by the missing β-turn sub classes that helped prediction in the

previous case.

3-state secondary structure

The secondary structure target is predicted with a residue based Q3 performance of

77.8% on the pdb select-2000 dataset after seven-fold cross-validation as described

above. The average protein based Q3 measure is 78.3% and SOV (Zemla et al.,

1999) being 73.9%.

3.3.2 Network requirements with increasing class complex-

ity

Choosing the number of hidden nodes in neural networks is crucial for optimal

network performance. If the network is designed too small or too large either its

accuracy or its ability to generalize is reduced (Swingler, 1996). When the number

of nodes is not sufficient, the network is not able to learn the target function. If too

many nodes are chosen the network is prone to overfit which again has a negative

impact on generalization. In the case of multiple output layers it is dealt with

the flow of complex information where it is inevitable to optimize this network

parameter. Figure 3.4 shows how increased class complexity influences network

size requirements. The EBRNN shown in this figure exclusively predicts the solvent
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Figure 3.4: Optimization of hidden nodes in the recurrent neural networks.
The accuracy for solvent accessibility two-class prediction with threshold 25% is shown over the number of hidden

nodes in the network.

accessibility two-class problem for threshold 25% while the MOLEBRNN predicts all

targets, rSA, sqrt(rSA), eleven two-class solvent accessibility targets and three-state

secondary structure. EBRNN performs best with 40 hidden nodes and MOLEBRNN

requires 120 to 140 hidden nodes. As expected from theory (Swingler, 1996), the size

requirement for an optimal MOLEBRNN is raised significantly. Further it is observed

that performance does not depend that much on the number of hidden nodes. Where

the EBRNN has a small range for optimal hidden nodes (low variability around 40

hidden nodes) the MOLEBRNN is not affected that much from the hidden nodes.

Figure 3.4 further shows that MOLEBRNN is gaining higher accuracy compared

to EBRNN. While EBRNN saturates at an accuracy of 77.71%, MOLEBRNN is

reaching 77.9% with 120 hidden nodes. This performance increase for MOLEBRNN

is observed for all targets and is maximal for the rSA regression target where EBRNN

gains a PCC of 0.667 and MOLEBRNN reaches a PCC as high as 0.679.

3.3.3 Comparison to other methods

Solvent accessibility prediction

Solvent accessibility is an important structural feature to describe three-dimensional

protein structure and thus has been predicted various times in the past (Pollastri

et al., 2002a; Ahmad et al., 2003a; Adamczak et al., 2004; Garg et al., 2005; Wang
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Dataset Remark Method PCC MAE RMSD

S163 full dataset SABLE-wa 0.65 15.5 21.2

S163 full dataset MOLEBRNN 0.6856 15.34 20.29

S163 147 protein chains MOLEBRNN 0.6838 15.37 20.32

S156 full dataset SABLE-wa 0.64 15.7 21.3

S156 full dataset MOLEBRNN 0.6743 15.67 20.56

S156 138 protein chains MOLEBRNN 0.6703 15.73 20.65

S135 full dataset SABLE-wa 0.67 15.3 20.9

S135 full dataset MOLEBRNN 0.6954 15.04 19.89

S135 126 protein chains MOLEBRNN 0.6947 15.03 19.88

S149 full dataset SABLE-wa 0.65 15.8 21.4

S149 full dataset MOLEBRNN 0.6714 15.8 20.69

S149 136 protein chains MOLEBRNN 0.6741 15.73 20.63

Table 3.4: Comparison to SABLE.
Shown are the performance measures for the four datasets used in Adamczak et al. (2004). See 3.2.1 Material &

methods section for detailed information on the datasets.

et al., 2007). In this section comparisons are shown that rank MOLEBRNN to

other prominent methods available. Essentially three comparison procedures are

embodied.

Comparison based on the SABLE dataset

The first comparison procedure undertaken measures the difference of MOLEBRNN

to SABLE described in Adamczak et al. (2004). The datasets described in 3.2.1

Material & methods are used to obtain the measures discussed in the following.

For comparison see Table 3.4 where the Pearson’s correlation coefficient (PCC),

the mean absolute error (MAE), and the root mean square deviation (RMSD)

are shown. For all four datasets, MOLEBRNN is gaining higher prediction perfor-

mance which is conserved for all measures. Only S149 is predicted with equal MAE.

As expected from theory the predictions on all “full datasets” (first two lines for all

datasets in Table 3.4) are better than the predictions on the redundancy removed

sets (last lines). The 56 proteins in the SABLE test sets which are similar to some of

the here used training proteins are responsible for this improved prediction. When

they are removed, the performance is not declining substantially and MOLEBRNN

is still capable to surpass SABLE .
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Target Method Citation PCC MAE RMSD

rSA MOLEBRNN this work 0.6833 0.1518 0.2017

sqrt(rSA) MOLEBRNN this work 0.7136 0.1655 0.2091

sqrt(rSA)2 MOLEBRNN this work 0.6813 0.1482 0.2068

rSA SVM-cabins Wang et al. (2007) 0.66 15.1 -

rSA Two-stage SVR Nguyen and Rajapakse (2006) 0.66 (0.68 a) 15.7 -

rSA SARpred Garg et al. (2005) 0.65 15.9 -

rSA MLR Wang et al. (2005) 0.64 16.2 -

rSA RVP-Net Ahmad et al. (2003a) 0.48 18.8 -

a The original publication states these two values. Not clear which one applies.

Table 3.5: Comparison of real value solvent accessibility regression with the cb502
dataset.

Comparison based on the Cuff and Barton (1999) dataset

Although the cb502 dataset from Cuff and Barton (1999) is aged, it is still a promi-

nent evaluation set used for comparison in a variety of structure prediction appli-

cations. As it was already generated in 1999 it does not cover the currently avail-

able protein structure space. Nevertheless the performance measures obtained from

MOLEBRNN on cb502 dataset are also presented. To become comparable a seven-

fold cross-validation scheme is adopted. In Table 3.5 the measures for MOLEBRNN

obtained from the cross-validation are shown. Compared to the other methods,

MOLEBRNN is first to obtain a Pearson’s correlation coefficient of 0.68. Further

the novel sqrt(RSA)2 target is predicted very well obtaining a very low MAE of

0.148 with a PCC of 0.68.

The performance of MOLEBRNN and recent methods on the discretized two-

class solvent accessibility targets is listed in Table 3.6. Again, MOLEBRNN clearly

outperforms all recent methods, it best predicts the cb502 proteins in terms of both

measures: prediction accuracy and MCC.

MOLEBRNN is able to predict β-turns with an accuracy of 75.6% and an MCC

of 0.43.

Secondary structure in the cb502 dataset is predicted with a residue based Q3 as

high as 77.2%. The protein based averaged Q3 and SOV measures are 76.6% and

72.4% respectively.
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Threshold Method Citation Accuracy MCC

0.15 MOLEBRNN this work 78.7924% 0.566062

0.20 MOLEBRNN this work 78.319% 0.566033

0.25 MOLEBRNN this work 78.0514% 0.558545

0.25 PSIMLRacc2 Qin et al. (2005) 77.7% 0.548

0.20 SARpred Garg et al. (2005) 76.4% 0.53

0.30 SARpred Garg et al. (2005) 76.6% 0.52

0.25 JNET Cuff and Barton (2000) 76.2% -

Table 3.6: Comparison of discretized two-class solvent accessibility prediction with the
cb502 dataset.

Comparison using the Naderi-Manesh et al. (2001) dataset

Finally, a comparison is given to methods where performance measures are avail-

able on the Naderi-Manesh (Naderi-Manesh et al., 2001) dataset. To our knowl-

edge, the best to date solvent accessibility prediction method, evaluated against

the Naderi-Manesh dataset is PaleAle published in (Pollastri et al., 2007). For the

comparison the proceeding was similarly to Pollastri et al. (2007). The most recent

pdb select dataset from October 2007, pdb select-2007 (see section 3.2.1 in Material

and methods) is used where 193 proteins were removed which were homologue to the

Naderi-Manesh proteins. Pdb select-2007 proteins were considered as homologue if

a Smith-Waterman local alignment between a pdb select-2007 and a Naderi-Manesh

protein is longer than 50 residues and contains at least 30% identical residues. The

MOLEBRNN machinery was then retrained with the obtained subset of pdb select-

2007. The performance measures listed in Table 3.7 were obtained when applying

MOLEBRNN on the 215 Naderi-Manesh proteins. Additionally, Table 3.7 compares

MOLEBRNN to other methods including PaleAle from Pollastri et al. (2007). The

table lists MOLEBRNN ahead of the best performing solvent accessibility predic-

tors. All methods are surpassed significantly. The top performing PaleAle which

uses large ensembles of bidirectional recurrent neural networks together with a sec-

ond, filtering layer is toped by MOLEBRNN. Please note, that MOLEBRNN is

not compared to PaleAle H (Pollastri et al., 2007). This method gains an accu-

racy of 86.0% on the Naderi-Manesh dataset by incorporating templates of known
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Method Citation rSA threshold Accuracy [%]

MOLEBRNN this work 0.15 80.3%

MOLEBRNN this work 0.20 79.7%

MOLEBRNN this work 0.25 79.5%

PaleAle Pollastri et al. (2007) 0.25 79.2%

NETASA Ahmad and Gromiha (2002) 0.25 70.3%

Two-stage SVM Nguyen and Rajapakse (2005) 0.25 78.1%

PP Gianese et al. (2003) 0.25 71.6%

Table 3.7: Comparison of MOLEBRNN to methods tested on the Naderi-Manesh dataset
(Naderi-Manesh et al., 2001).

structures. MOLEBRNN method is considered as ab initio, not requiring template

information and applicable on any soluble proteins.

Secondary structure, present in an additional output layer is predicted with Q3

and SOV accuracies of 79.1% and 76.0% respectively.

β-turns are predicted with an MCC of 0.454 and accuracy being 77.9%.

rSA is predicted with a Pearson’s correlation coefficient (PCC) of 0.71 and an

mean absolute error (MAE) of 0.148. For sqrt(rSA) a PCC of 0.743 is obtained

together with MAE 0.159 and sqrt(rSA)2 is predicted with PCC 0.709 and MAE

0.141.

Comparison of secondary structure prediction performances

In this section the secondary structure prediction performance measures obtained

from all datasets used are summarized and confronted to popular methods. We ex-

perienced that secondary structure prediction algorithms are difficult to compare.

Most methods are trained on different datasets with varying protein numbers. The

EVA (Eyrich et al., 2001) server has stopped evaluating methods in March 2003 of-

fering only 232 evaluation proteins. The common secondary structure performance

measures Q3 and SOV are listed in Table 3.8 where a comparison to other meth-

ods and associated datasets is shown. All these methods are currently available

for prediction and EVA considers them as most powerful. According to Table 3.8,

MOLEBRNN compares quite well and obtains a Q3 score as high as 79.1% on the
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Method Dataset Citation Q3
a SOV

MOLEBRNN pdb select-2000c this work 78.3% 73.9%

MOLEBRNN cb502c this work 76.6% 72.4%

MOLEBRNN Naderi-Maneshd this work 79.1% 76.0%

PSIPRED 187 CATH T-level proteins Jones (1999) 76.0% 73.5%

PORTER
2171 proteins from pdb select of De-
cember 2003

Pollastri and McLysaght (2005) 79.0%b 75.0%

SABLE2
603 PDB proteins published between
January and December 2002

Adamczak et al. (2005) 77.3%b -

a By default the averaged protein based Q3 measure is listed
b This is a residue based Q3 measure
c Measures obtained from seven-fold cross-validation
d Measures obtained when training on reduced pdb select-2007 dataset, see text

Table 3.8: Comparison of Secondary Structure Performance to popular methods.

Naderi-Manesh proteins. Still, it can not be claimed that MOLEBRNN is really

and significantly outperforming the other secondary structure prediction methods.

Therefor, the variance in the performance is too high ranging from 76.6% to 79.1%

given the cb502 and the Naderi-Manesh datasets which indicates high, but non com-

parable performance. At least MOLEBRNN is best applied for solvent accessibility

and allows the simultaneous prediction of secondary structure with performance not

lower than other methods. The most convincing feature of MOLEBRNN is the eval-

uation procedure applied. There are not much methods available that had been put

to the acid test.

3.4 Conclusion

This chapter showed that MOLEBRNN could successfully be extended from the

β-turn and secondary structure prediction system introduced in Chapter 2 to a

one-dimensional structure predictor additionally applicable on multiple solvent ac-

cessibility problems. The method is integrated into the software package SOPRANO

(solubility predictor applying neural networks with multiple outputs). The solvent

accessibility prediction performance is superior to all to-date methods available.

Secondary structure prediction performance is highly comparable to current devel-

opments. In this chapter it is shown that MOLEBRNN has a higher requirement
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for hidden network nodes when class complexity increases. The finding in Chapter

2 persists whereupon the performance of MOLEBRNN is increased compared to a

single target EBRNN.

By applying SOPRANO it is possible to simultaneously predict multiple one-

dimensional protein features singly based on PSI-BLAST generated sequence pro-

files. The method is applicable on genome scale. Its runtime is solely depending on

the execution time of PSI-BLAST and this time consuming step is required for most

other methods and essential for any protein analysis. The method is available for

download at http://webclu.bio.wzw.tum.de/soprano.

http://webclu.bio.wzw.tum.de/soprano/


Chapter 4

Prediction in 1D :: Secondary

structure prediction utilizing novel

codon profiles

4.1 Introduction

As discussed in the introduction to the thesis, it follows from Anfinsen (1973) that

protein structures and functions are solely determined by the peptide sequence.

Nevertheless in many biological systems, chaperones are required to assist protein

folding. During the folding they help to avoid aggregation or misfolding (Ellis, 1996;

Johnson and Craig, 1997). Hence, the chaperones introduce a mechanism to extend

beyond the Anfinsen (1973) theory. Additionally it was found that codon usage bias

influences folding (Frydman et al., 1994; Kolb et al., 1994; Komar et al., 1999). It

is said that folding in vivo is co-translational and a vectorial process (Komar et al.,

1999) and due to that the ribosome itself as well as the translation process are

affecting the folding mechanism and pathways (Komar et al., 1999). It was found

that rare codons are placed at particular sequence positions to slow down translation

and provide enough time for folding. Rare codons tend to occur at turn, loop and

domain linker positions (Thanaraj and Argos, 1996) and codon signals were found at

N- and C-terminal ends of secondary structure segments (Brunak and Engelbrecht,



68 Prediction in 1D :: Secondary structure prediction with novel codon profiles

1996; Oresic and Shalloway, 1998).

From all these relations found between codon biases and protein folding and

protein structure in this thesis it is concluded that the incorporation of codon profiles

could enhance prediction of secondary structure. If amino acid profiles are used as

sole input data for a predictor all the biases encoded in the codons and relating

to secondary structure are hidden. The information provided by codon profiles is

enriched over the amino acid profiles and in theory, covers these.

To the knowledge of the author there exist no secondary structure prediction

algorithms that utilize codon profiles as input data. Until now, the sole input to

structure prediction methods originate from peptide sequences. Secondary structure

prediction methods based on peptide sequences are highly sophisticated in exploiting

all information encoded in peptide sequences. Evolutionary information is derived

from large amounts of related sequences by utilizing PSI-BLAST (Jones, 1999),

condensed amino acid representations were introduced to provide specialized infor-

mation on residue properties (hydrophobicity and amino acid volumes are used for

example by Adamczak et al. (2005)) and Pollastri and McLysaght (2005) even utilize

the residue symbols B, U , X and Z in their profiles.

The development described in this chapter was started by calculating codon sec-

ondary structure propensities and compared these propensities to the amino acid

secondary structure propensities. This analysis revealed differences in the propensi-

ties of many codons and the associated amino acids and it was continued to develop

a secondary structure prediction method based on the codon profile.

The aim is to extend the information in the sequence representations by exploit-

ing codon usage bias information and to improve secondary structure prediction

accuracy. To evaluate improvements obtained from the codon profiles the predictor

was initially evaluated on standard amino acid profiles that constitutes a prediction

baseline. The performance on the codon profiles is then compared to the baseline.

Finally both profiles were merged and again evaluated the performance.



Material and methods 69

4.2 Material and methods

4.2.1 Protein set

For the prediction with codon profiles the pdb select25 (Hobohm and Sander, 1994)

database from March 2006 was used to compile the set of test and train protein

chains. This database contains 3080 entries with 459963 residues and was compiled

from PDB (Berman et al., 2000) by clustering all sequences to obtain a set where

sequence identity between all remaining proteins is lower than 25%. As this data

is way to large for training a classifier and contains too poor quality structures, a

filtering procedure was applied. All NMR structures were removed where chains

are shorter than 100 residues, and X-ray structures that have resolutions less than

2 Angstrom. This resulted in a dataset containing 798 protein chains with 162676

residues. In the following this dataset is referred to as pdb select-filtered.

4.2.2 Reduction of DSSP 8 secondary structure states to 3

target states

The gold standard secondary structures were computed by DSSP (Kabsch and

Sander, 1983) from the PDB entry files. Application of DSSP on a PDB entry

results in 8 different structure units. Only three types of secondary structures were

used for the predictions therefor again the structure states alpha helix (H), 310-helix

(G) and phi-helix (I) were merged to H, extended sheet (E) and beta-bridge (B)

were merged to E and bend (S), turn (T ) and coil (C) to C.

4.2.3 Representations of protein sequences

To obtain sequence profiles for all proteins and hence include evolutionary relation-

ships PSI-BLAST (Altschul et al., 1997) was applied. The number of PSI-BLAST

iterations was set to 3. Sequences with E-values better than 0.1 × 10−4 were in-

cluded in the profiles. EBI’s nonredundant coding sequence database (EMBL-CDS,

Kulikova et al. (2007)) taken in July 2006 was used as blast database. This database

contains 4.667.241 nonredundant nucleotide sequences and was downloaded from
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ftp://ftp.ebi.ac.uk/pub/databases/embl/cds/. The nucleotide sequences were trans-

lated to peptide sequences by the use of transeq, a tool from the EMBOSS package

(Rice et al., 2000). The standard genetic code was used. As discussed in the scope

of secondary structure prediction by Jones (1999) a raw blast database is prone to

errors that result from the iterative behavior of PSI-BLAST. Repetitive sequences

that often occur in low-complexity regions may get incorporated into intermediary

profiles. This leads to a search drift and unrelated sequences are found and incor-

porated in the blast profile. To avoid this drift the blast database was filtered the

same way Jones (1999) did. First all low-complexity regions were removed with

SEG (Wootton and Federhen, 1996), and secondly all coiled-coil regions predicted

with pfilt (Jones and Swindells, 2002) were removed. Finally the database contains

protein sequences were all problematic sequence segments are masked. PSI-BLAST

searches should end up with homologue sequences of high specificity.

Amino acid sequence profile

For each protein, the application of iterative PSI-BLAST results in a position specific

scoring matrix (PSSM). This matrix is of size n × m where n is the length of the

protein in scope and m is the number of standard amino acids namely m = 20. All

entries in this matrix are integers in range [−8, 8]. For neural network classifiers

the input values should comply with ranges [0, 1.0], hence the original PSSM-entries

were transformed by applying of the standard logistic function which is

y =
1

1 + e−x

where x is the original entry in the PSSM and y is the transformed entry in range

[0, 1.0]. This sequence representation by amino acid profiles will be called PSSM-

profile in the remainder of this chapter.

Codon score profile

As stated above the translated EMBL nonredundant coding sequence database

(EMBL-CDS) was used as blast database. Special sequence identifiers were de-

ftp://ftp.ebi.ac.uk/pub/databases/embl/cds/
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veloped for all sequences of the EMBL-CDS database which is the CRC32 checksum

generated from the raw nucleotide sequences. These identifiers were also used to

identify the peptide sequences resulting from the translation of EMBL-CDS. Having

done so, the PSI-BLAST search results in related peptide sequences with acces-

sion identifiers from the corresponding coding sequences in the original EMBL-CDS

nucleotide sequence database. For all peptide sequences in the PSI-BLAST out-

put their coding sequence can be aligned to the protein query sequence. From this

multi-sequence nucleotide alignment amino acid frequencies and scores can be cal-

culated in a similar way as the method PSI-BLAST does to compute the position

specific scoring matrices (PSSM). For the here described development the PSSM

computation was altered so that it is applicable on the 61 codons.

Similar to PSI-BLAST, the scores are computed by considering the background

frequencies P (m) of the 61 codons. This background was obtained from the EBI

nonredundant coding sequence database mentioned above.

The score for a codon S(i,m) at a given position i within a protein chain is

calculated from its logodds following

S(i,m) = log2
Q(i,m)

P (m)

where S(i,m) is the score for a codon m at sequence position i. Q(i,m) is the

observed frequency for position i and codon m. P (m) is the frequency, the codon

m occurs in the background model. Q(i,m) is defined in a very similar way as

done for PSI-BLAST. This includes the weighting scheme for all the homologue

coding sequences found. Here the procedure introduced from Henikoff and Henikoff

(1994) was implemented. This weighting of the aligned sequences results in a more

difficult computation of Q(i,m) because the number of sequences used to calculate

the frequencies is no longer properly defined. Please refer to Altschul et al. (1997) for

a precise discussion. To derive the scores, Altschul et al. (1997) introduce so called

‘target frequencies’ that are altered for the here developed purposes. The ‘target

frequencies’ encode the probabilities that a given amino acid is substituted by any

other amino acid or stays conserved while an evolutionary process occurs. Altschul
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et al. (1997) define it

q(i, j) = P (i)P (j)eλus(i,j)

where q(i, j) is the ‘target frequencies’ for the mutation of amino acid i into amino

acid j. P (i) and P (j) are the background frequencies for amino acids i and j. It is

required that the q(i, j) sum to 1.0. The parameter λu is adjusted to be a unique

positive number to fulfill this requirement. λu is kept constant after adjustment.

The values s(i, j) are the substitution parameters taken from PAM (Schwartz and

Dayhoff, 1978) or BLOSUM (Henikoff and Henikoff, 1992) matrices.

The ‘target frequencies’ are redefined in the following manner to cope with 61

codons

q(m,n) = P (m|aam)P (n|aan)P (aam)P (aan)eλus(aam,aan)

Here, m and n are the codons that mutate into each other. aam and aan are the

amino acids coded from codons m and n. P (m|aam) is the probability codon m is

used to code for amino acid aam. Similarly P (n|aan) is the probability for codon n to

encode amino acid aan. Further, P (aam) and P (aan) are the probabilities that amino

acids m and n appear in the background model, s(aam, aan) is the substitution score

taken from BLOSSUM62 substitution matrix (Henikoff and Henikoff, 1992) and λu

is taken from Altschul et al. (1997) and fixed at 0.27. The parameter λu is optimized

such that the 20x20 ‘target frequencies’ for all possible amino acid substitutions sum

up to 1.0. The conditional probabilities P (m|aam) sum to 1.0 for all codons that

encode a particular amino acid m. This causes the 61x61 q(m,n) ‘target frequencies’

also sum to 1.0.

The redefined ‘target frequencies’ are subsequently used in the formulas 4 and 5

of Altschul et al. (1997) to derive related position specific matrix scores.

Similar to the PSI-BLAST PSSM, the codon score profile contains the Shannon

entropy (Shannon, 1997) to encode the variability of the codons at all sequence

positions.

The 61 codon scores are filtered by the above described standard logistic function

while the Shannon entropy is used unfiltered as an input for the classifier.



Material and methods 73

4.2.4 Comparison of secondary structure propensities

The secondary structure propensities of codons and amino acids are defined as con-

ditional probabilities P (SS|Codon) and P (SS|aa). These probabilities were not

derived from single sequences, but multiple sequence alignments were used which

had been obtained from PSI-BLAST searches in the above described translated

nucleotide sequence databases. This is required because PDB entries can not be

mapped reliably to the underlying nucleotide sequences.

To compare the codon propensities with the amino acid propensities a param-

eter is introduced that is called enrichment E in the following. The enrichment is

calculated for all 61 codons plus the ‘gap’ symbol following

E(Codon, SS) =
P (SS|Codon)

P (SS|aaCodon)

where P (SS|Codon) is the propensity for a specific Codon to occur in secondary

structure state SS and P (SS|aaCodon) is the propensity for the amino acid aaCodon

that is encoded from Codon. If the enrichment takes the value 1.0 there is no dif-

ference between coded amino acid and codon. The more the enrichment deviates

from 1.0 the larger is the difference between the codon propensity and its associ-

ated amino acid. An example taken from the real values plotted in the Results &

discussion Figure 4.2 shows: The enrichment of CTC to form an ‘Extended Sheet’

is 1.054 compared to the coded amino acid leucine (L). This means that CTC is

occurring in extended sheet conformation more often with factor 1.054 compared to

its amino acid leucine. On the other hand occurrence of CTC in random coils and

alpha helices is reduced by the factors 0.972 and 0.987.

The enrichment is separately computed for the three secondary structure states

H,E,C. To uncover those codons with highest deviation in all secondary structure

states the ‘absolute enrichment’ aE is defined which is independent from the three

secondary structure states:

aE(Codon) =
∑

i in {H,E,C}
|E(Codon, i)− 1.0| × 100%
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4.2.5 Neural network architecture

For this test again the Elman-type bidirectional recurrent neural network EBRNN

as described in Chapter 2 was used. The network input is the sequence information

encoded in the profiles together and the network output is a probability vector

encoding the predicted probabilities for the three target secondary structure states.

Similar to Jones (1999) and the previously described one-dimensional structure

prediction methods again a two layered architecture was employed. A sequence-

to-structure layer consisting of different combinations of EBRNNs trained on the

various input data was used and the output of all predictors in the first layer were

fed into a structure-to-structure layer.

4.2.6 Evaluation of prediction performance

For parameter optimization and estimation of prediction accuracies a five-fold cross-

validation was applied; 4/5 of the proteins were used for training while the remaining

set of 1/5 was used for method testing.

The standard performance measures for secondary structure prediction were com-

puted, namely the Q3 measure together with the segment overlap measure (SOV )

(Zemla et al., 1999).

4.3 Results and discussion

4.3.1 Analysis of codon input data

The differences of secondary structure propensities between amino acids and their

corresponding coding codons were analyzed. The propensities for 20 amino acids

derived from the PSI-BLAST sequence alignments are shown in Figure 4.1.

Then the secondary structure propensities for all 61 codons were measured and

compared to the corresponding amino acid propensities. Each codon propensity is

compared to the propensity from the coded amino acid by the enrichment E (see

Material & Methods). The enrichment together with the individual codon occur-

rences are shown in Figure 4.2. It is observed, that 46 codons do have an absolute
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Figure 4.1: Secondary structure propensities for the 20 amino acids derived from the
PSI-BLAST alignments.
The top plot shows the occurrences of all amino acids in the pdb select-filtered dataset (Around 25% of the alignment

positions are gap positions.). The bottom plot shows the secondary structure propensities.

enrichment compared to the coded amino acid of at least 5%. Proline, known to be

a strong coil former and extended sheet and alpha helix breaker (compare Figure

4.1), is coded of the four codons CCT , CCC, CCA and, CCG. The analysis shows,

that the codon propensity of CCG is enriched for coding an alpha helix by 1%.

Leucine is known to be a strong helix former. By looking at the codon level one

observes, that the Leucine codon CTC is enriched by 1.5% to form beta sheets. Its

occurrence in helices is suppressed by 0.7%. The isoleucine codon ATA is forming

alpha helices more often than the amino acid phenylalanine while the helix propen-

sity of isoleucine is lower than that of phenylalanine. From the absolute enrichments

together with the occurrence plots on top of Figure 4.2 it is concluded that those

codons with low enrichment occur more frequently.

4.3.2 Performance improvement from codon profile

To be able to measure an improved performance using the codon profile, first the

bidirectional network was trained and optimized on amino acid profiles only. The

results of the recurrent neural networks on the amino acid profile are shown in
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Figure 4.2: Secondary structure propensity enrichments for the 61 codons compared to
the propensities from the coded amino acids.
The figure shows the enrichments of secondary structure propensities compared to the baseline of coded amino

acid propensity. The x-axis shows all individual codons together with their coded amino acid. The line ‘absolute

Enrichment’ shows the sum of all deviations, its values are printed on the right y-axis. The codons are sorted by the

absolute enrichment (see Material & methods). Methionine and tryptophan do not have a deviation because only a

single codon encodes these amino acids.
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Feature Set
#Input- #Hidden- #Output-

Q3 SOV
Nodes Nodes Nodes

amino acid only
profile

22 70 3 75.98% 71.36%

codon only profile 63 86 3 76.22% 71.77%

amino acid and
codon profiles

85 95 3 76.43% 71.80%

structure-to-
structure

9 20 3 77.77% 75.03%

Table 4.1: EBRNN performances of the analyzed classifiers.
For all feature sets, amino acid only profile, codon only profile and a combined set with amino acid and codon

profiles Q3 and SOV measures are listed. The last line lists the performance of a structure-to-structure classifier

when trained on the output of the classifiers in lines 1-3. The lines are sorted according to Q3 performances.

Table 4.1. Next the codon profile were utilized and the prediction algorithm was

optimized and trained. The performance measures from the codon profile are also

shown in Table 4.1.

A comparison of the Q3 measure (76.22%) with the best Q3 from the amino acid

only approach (75.98%) shows, that there is an improvement of 0.2%. This shows,

that there is some more information in the codon profile compared to the amino acid

only profile.

Finally both profiles were combined to see, whether this gives some further im-

provement. Again, Table 4.1 shows the results of an optimized EBRNN on both,

codon and amino acid profiles.

Again a slight improvement is obtained. Compared to the codon profile, the

combined feature set improves Q3 performance by 0.2%. Compared to the amino

acid only profile, Q3 is enhanced by 0.4%. Similar to the Q3 measure, SOV is also

improved from the codon profiles. While a SOV measure of 71.36% is obtained from

the amino acid only profile, performance increases to 71.77% if the codon profile is

used and saturates at that level when the merged profile is used.

Table 4.1 also clarifies that more complex input codings demand a higher com-

plexity of the EBRNN. This behavior is expected and was discussed from Swingler

(1996). While the amino acid only profile gets along with 70 hidden nodes, the

optimal network trained on the codon profile requires 86 hidden nodes. Finally, the

network trained on the merged profiles requires 90 nodes for optimal performance.
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Neural networks are ‘black box methods’, and therefor it cannot be explained why

only 4 more nodes are sufficient for the merged profile while the amino acid profile

requires 70 nodes and the codon profile requires 86 nodes.

4.3.3 Performance of two layered predictor

In order to produce the best performing secondary structure predictor all optimal

sequence-to-structure classifiers with their respective setups listed in Table 4.1 were

combined. The output of these classifiers, they produce posterior probabilities for

the three secondary structure states H, E and, C, is merged and supplied to the

structure-to-structure EBRNN classifier. On the pdb select-filtered dataset, this

classifier then gains Q3 and SOV measures of 77.77% and 75.03% respectively. Al-

though these measures seem quite impressive the developed method does not out-

perform other to-date secondary structure predictors. But since it was claimed that

codon profiles include much more information to aid prediction, nevertheless other

methods could not be outperformed significantly. The development of this method

was subsequently withdrawn.

4.4 Conclusion

The initial analysis uncovered that codon secondary structure propensities differ

from the secondary structure propensities of associated amino acids. This analysis

revealed that sequence representation solely based on amino acid data masks details

from underlying codons. Similarly to the findings discussed in Section 4.1 (Tha-

naraj and Argos, 1996; Brunak and Engelbrecht, 1996; Oresic and Shalloway, 1998)

secondary structure dependencies in the codon level were found.

Knowing about that dependencies a secondary structure predictor was designed.

To this end a sequence representation which encodes codon scores in the manner of

a position specific scoring matrix was developed. Three types of prediction systems,

based solely on amino acid profiles, based solely on codon profiles and based on a

combination of both profiles, were developed. The development involved searching

for the best EBRNN architecture that maximizes accuracy for all input profiles
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independently. Based on the secondary structure prediction accuracies of these three

predictors the different sequence representations were compared.

It was found that the lowest performance is obtained from the amino acid only

profile, the next best sequence representation was the codon profile while best per-

formance was gained by the combined setup involving the merged amino acid and

codon profiles.

Nevertheless, performance improvement was too low to significantly boost predic-

tion in a two layered setup. The performance gained from the structure-to-structure

EBRNN is not sufficient to compete with currently available secondary structure pre-

diction software. The secondary structure prediction evaluation server EVA (Eyrich

et al., 2001) lists Q3 performances of 79.9% for Porter (Pollastri and McLysaght,

2005) and 77.9% for SSpro4 (Pollastri et al., 2002b), while here only 77.8% were

gained. Hence, it was decided not to spend more time on the development of a

codon based secondary structure prediction method. A better method would be

obtained with more sophisticated machine learning algorithms that raise prediction

performance with the amino acid profiles to a level comparable to others. Then an

extension to the codon profile could surpass other methods.
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Chapter 5

Prediction in 2D :: Prediction of

contacts in membrane proteins

5.1 Introduction

Integral membrane proteins constitute ∼20-30% of the genome (Frishman and

Mewes, 1997; Krogh et al., 2001; Wallin and von Heijne, 1998) and are involved

in a large variety of essential cellular functions such as metabolite transport, reg-

ulation, host interaction and motility. The importance of membrane proteins is

further highlighted by the fact that 50% of all current drugs are targeted against

this class of proteins (Klabunde and Hessler, 2002). Two structural architectures

are known for polytopic membrane proteins: the α-helix bundle and the β-barrel.

While proteins of the first type are found in all cellular membranes, the latter class

is observed only in the outer membrane of Gram-negative bacteria, mitochondria

and chloroplasts. Due to this restriction in structural complexity it seems obvious

that structure prediction of membrane proteins should be clearly easier to tackle

compared to water-soluble proteins. However, so far no method could be devel-

oped which accurately predicts the 3D structure of a membrane protein based on

its sequence alone. To some extent this may be caused by the fact that membrane

proteins in general are significantly larger than globular proteins (Elofsson and von

Heijne, 2007). Additionally, with more high-resolution structures of α-helical mem-

brane proteins becoming available, it could be observed that α-helical membrane
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proteins comprise a clearly higher structural diversity than initially expected. They

can contain non-α-helical elements such as 310-helices, Π-helices or intrahelical kinks

(Riek et al., 2001), or may include reentrant loops which cross the membrane only

halfway and them turn back to the side where they entered the membrane (Viklund

et al., 2006). Helices can also be much longer and much more tilted than antici-

pated, as was observed for example in the case of the ClC chloride channel (Dutzler

et al., 2002). More irregular structures were found in the membrane-water interface

region such as interfacial helices positioned roughly parallel to the membrane surface

(Granseth et al., 2005).

While the problem of 3D structure prediction of membrane proteins is still far

from being solved, several sub-tasks resulting in 2D or so-called 2.5D structure pre-

dictions (Elofsson and von Heijne, 2007) have been addressed with more success.

Recent HMM-based topology prediction methods which incorporate evolutionary

information, such as HMMTOP2 (Tusnády and Simon, 2001) or polyPhobius (Käll

et al., 2007) are able to predict the correct number of transmembrane helices and the

correct orientation in the membrane in close to 70% of all cases (Elofsson and von

Heijne, 2007). Several methods have been proposed to identify non-canonical struc-

tural features such as kinks (Yohannan et al., 2004) and reentrant loops (Viklund

et al., 2006; Lasso et al., 2006). An even higher number of approaches have been

published dealing with the problem of predicting the degree of lipid-exposure of each

residue in a transmembrane helix (Beuming and Weinstein, 2004; Pilpel et al., 1999;

Adamian and Liang, 2006). Using an empirical scoring function, which combines

lipophilicity and residue conservation, an accuracy of 88% was obtained with one of

the most recent methods (Adamian and Liang, 2006).

However, less attention has been given to one of the most commonly addressed

2D structure prediction problems in soluble proteins – the prediction of residue-

residue contacts. For soluble proteins predicted contacts were successfully utilized

for 3D structure prediction (Bonneau et al., 2002b; Ortiz et al., 1999). Additionally,

predicted contacts can be used to identify incorrect models generated by a threading

method (Olmea et al., 1999) or to estimate folding rates (Punta and Rost, 2005b).

A variety of methods for contact prediction in soluble proteins have been developed,
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which either rely on correlated mutational behavior of residues (Fleishman et al.,

2004; Göbel et al., 1994; Kundrotas and Alexov, 2006; Olmea and Valencia, 1997;

Shindyalov et al., 1994) or use machine approaches (Fariselli et al., 2001b,a; Pollas-

tri and Baldi, 2002; Punta and Rost, 2005a; Shao and Bystroff, 2003; Cheng and

Baldi, 2007) and genetic programming (MacCallum, 2004). Within several editions

of the CASP experiment, contact prediction methods have been evaluated as an

independent category (Graña et al., 2005; Izarzugaza et al., 2007; Moult et al., 2003,

1997, 1999). Average prediction accuracies for the best performing contact predic-

tion groups of the CASP6 experiment ranged between 16% and 23% and were clearly

superior to contacts derived from predicted 3D structures (Graña et al., 2005).

Angelika Fuchs has recently conducted the first analysis of correlated mutations

in polytopic membrane proteins (Fuchs et al., 2007). In this study she was able to

show that co-evolving residues alone are not sufficient to predict helix-helix contacts,

but that these residues still carry a strong signal for the detection of interacting trans-

membrane helices due to their frequent occurrence in close sequence neighborhood

to helix-helix contacts (Fuchs et al., 2007).

This chapter presents the first neural-network based approach specifically de-

veloped for the prediction of helix-helix contacts in α-helical membrane proteins.

Based on the work of Angelika Fuchs (Fuchs et al., 2007) on correlated mutations

Angelika Fuchs and me jointly developed the here described extension

of the helix-helix contact predictor in membrane proteins. It is difficult to

decipher the respective contributions but a breakdown is attempted in the affected

sections.

The predictor integrates sequence profiles, correlated mutations, protein topol-

ogy, sequence separation and predicted scores for lipid-exposure. Using the best

performing predictor, an average prediction accuracy of 25.9% is obtained for the

L/5 highest scoring predictions (L being the combined length of the transmembrane

segments of the protein) based on a dataset of 62 membrane proteins with available

3D structure. It is further demonstrated how the predicted contacts can be uti-

lized to identify interacting transmembrane helices distant in sequence, which is an

important step in discrimination of different helix architectures of membrane pro-
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teins. Based on a simple selection procedure, which requires several predicted residue

contacts to rate a given helix pair as interacting, incorrectly predicted helix-helix

contacts are removed and that processing allows prediction of interacting helices

with a sensitivity of 53.1% and a specificity of 86.3%. This approach clearly out-

performs the results earlier obtained with correlated mutations alone (Fuchs et al.,

2007).

5.2 Material and methods

5.2.1 Dataset

A non-redundant dataset of membrane proteins with solved structure was con-

structed using the Protein Data Bank of Transmembrane Proteins (PDBTM, Tus-

nády et al. (2005)) and the dataset provided by the Stephen White laboratory at UC

Irvine (http://blanco.biomol.uci.edu/Membrane proteins xtal.html) as of Septem-

ber 17, 2007 (further referred to as the White dataset). Starting with the non-

redundant set of PDB chains containing α-helical transmembrane segments obtained

from the PDBTM, an initial dataset of those proteins was created, whose structure

was solved by X-ray with a resolution of less than 3.5Å and which contained at

least three transmembrane segments according to the PDBTM annotation. Since

this initial set consisting of 50 PDB chains was lacking several prominent membrane

proteins with solved structures such as rhodopsin, it was subsequently enriched with

sequences from the White dataset. To this end, first all chains with less than three

transmembrane segments in their PDBTM entry from the White dataset were elim-

inated. Additionally, all sequences with at least 40% sequence identity to another

sequence with better resolution (either within the White dataset or in the initial

dataset) or with a resolution worse than 4Å were removed. Both the moderate

threshold for sequence identity and the relaxed threshold for structural resolution at

this step are concessions needed to be made due to the limited number of available

membrane protein structures. The remaining 12 sequences were merged with the

sequences from the initial dataset to form the final set of 62 protein chains originat-

http://blanco.biomol.uci.edu/Membrane_proteins_xtal.html


Material and methods 85

pdb
chain

pdb
chain

pdb
chain

pdb
chain

pdb
chain

entry entry entry entry entry

1aig l 1bcc c 1eys m 1fft a 1fft c

1fx8 a 1jb0 a 1jb0 l 1kqf c 1l7v a

1m0k a 1orq c 1pw4 a 1q16 c 1qle c

1rh5 a 1u19 a 1vf5 a 1vf5 b 1xio a

1xme a 1yew b 1yew c 1zcd a 2a65 a

2a79 b 2acz c 2acz d 2agv a 2axt a

2axt b 2axt c 2axt d 2b2f a 2b76 c

2b76 d 2bg9 a 2bhw a 2bl2 a 2bs2 c

2c3e a 2cfp a 2evu a 2exw a 2f93 a

2fbw c 2fbw d 2fyn a 2gfp a 2gif a

2gsm a 2hi7 b 2hyd a 2ic8 a 2jaf a

2nmr a 2nr9 a 2nwl a 2o9d a 2oau a

2onk c 2uuh a

Table 5.1: The identifiers of the used PDB protein chains.

ing from 52 PDB structures (Table 5.1). Exact transmembrane segment positions

and the in/out topology for each protein were obtained from the recently developed

TOPDB (Tusnády et al., 2008), which contains comprehensive topology information

derived both from literature and public databases for a large number of membrane

proteins. For two cases (2UUH chain A and 1ORQ chain C) no entry could be

found in the TOPDB, therefor transmembrane positions for these proteins from the

PDBTM and the in/out topology from OPM (Lomize et al., 2006) were obtained.

The final dataset includes proteins with three up to thirteen transmembrane

segments with close to 25% of all sequences (15 out of 62) containing ten or more

transmembrane segments. Despite the liberal threshold of 40% sequence identity

used for the construction of the dataset, the pairwise sequence identity in the final

dataset is low, with less than 2.5% of all possible sequence pairs having a sequence

identity above 30% and less than 0.5% having a sequence identity above 35%. Since

the aim is to predict structural contacts within the transmembrane parts of each

protein, the pairwise sequence identities among proteins after aligning only their

concatenated transmembrane segments were also evaluated. Naturally, the obtained

values are slightly higher due to the hydrophobic nature of transmembrane segments.

Still, less than 5.5% of all protein pairs had a sequence identity of higher than 35%.

The preparation of the datasets was conducted by Angelika Fuchs.
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5.2.2 Contact definition

The same helix-helix contact definition was used as described in Fuchs et al. (2007).

Briefly, two residues within different transmembrane segments were considered in

contact if the minimal distance between side chain or backbone atoms was less than

5.5Å. While contact prediction methods developed for soluble proteins mostly use

Cβ-distances and a contact threshold of 8Å, this contact definition incorporating side

chain atoms is considered to be more appropriate for membrane proteins with their

regular α-helix bundle structure. The difficulty of the contact prediction problem

for membrane proteins is not influenced by the choice of contact criterion since the

number of observed contacts remains basically the same. Using the contact criterion

the observed contact density (the number of observed contacts divided by the number

of possible pairs) was 0.021 while the usage of the Cβ contact criterion resulted in a

contact density of 0.020 for the dataset of 62 membrane proteins.

Contacts were defined by Angelika Fuchs.

5.2.3 Contact density

To estimate the optimal number of contacts to predict per protein, the dependency

between the number of transmembrane residues and the amount of helix-helix con-

tacts was investigated. The observed contact density within the transmembrane

parts of the 62 transmembrane proteins was compared to the corresponding val-

ues derived for soluble proteins taken from the 25% homology threshold list of the

pdb select database from October 2007 (Hobohm and Sander, 1994). Two different

subsets of pdb select were used, one comprising all 3652 pdb select proteins be-

longing to the SCOP (Andreeva et al., 2008) classes all-alpha, all-beta, alpha and

beta (a/b), alpha and beta (a+b) and multidomain proteins and one subset con-

sisting of all-alpha proteins only. In any case, contacts were calculated according

to the definition given above. For every dataset linear functions were fitted. They

are describing the dependency of the number of observed contacts on the length of

the protein (for membrane proteins only the transmembrane parts were considered).

The following (rounded) dependencies between the number of considered residues
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Figure 5.1: Contact density (number of contacts depending on protein length) of mem-
brane proteins compared to soluble proteins.
The amount of contacts for any type of proteins is linearly proportional to the protein length. Most contacts are

found for soluble proteins. All-alpha proteins have fewer contacts than soluble proteins in general, but still more

contacts than the analyzed membrane proteins. Disregarding contacts between adjacent transmembrane helices,

even fewer contacts are observed. The fitted curves represent contact functions that can be used for the selection of

an appropriate amount of contacts (see Section 5.2.3). In comparison to the observed number of contacts, the L/5

line shows the commonly used selection criterion, which is quite stringent.

L and the amount of observed contacts C were found: For soluble proteins in gen-

eral C = 3.15L − 76.5, for all-alpha proteins C = 2.5L − 75 and for the membrane

proteins C = 2.25L− 100 (Figure 5.1).

The procedure resulting in the definition of contact densities and associated func-

tion fitting was iteratively carried out by both authors.

5.2.4 Input features

The prediction of spatial contacts between two amino acid residues is generally based

on the analysis of multiple sequence features. These features can be divided into

out-of-context features defined for single residues without any contact related infor-
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mation, features targeting properties related to residue pairs in contact, and features

that describe global properties of the proteins. Contact prediction is then derived

by mapping these features onto the contact state of the residues under observation.

Over the last years, machine learning algorithms have become a method of choice to

obtain such mapping in an automated fashion (Fariselli et al., 2001b,a; Pollastri and

Baldi, 2002; Punta and Rost, 2005a; Cheng and Baldi, 2007). The better the chosen

features relate to the contact information of two residues, the better the mapping

and thus the better the predictive performance of the developed algorithm. Accord-

ingly, for the membrane protein contact prediction problem, prominent features were

selected. Some of these are used for globular protein contact prediction and others

included various features that are available for membrane proteins only.

Out-of-context features

The out-of-context features describing individual residues are: windowed PSSM

(position-specific scoring matrices) profiles, the position of each residue within the

transmembrane helix (cytosolic side of the membrane, hydrophobic core or extracel-

lular side), and the orientation of its side chain, i.e. whether the residue is facing

towards the lipophilic membrane or the protein interior. The PSSM profiles were

obtained using PSI-BLAST (Altschul et al., 1997) searches against the NCBI’s unfil-

tered NR database (Wheeler et al., 2008), with three iterations and the inclusion of

related database sequences into the profile with an E-value threshold of 1×10−4. The

raw profiles from PSI-BLAST contained scores for all residue positions representing

their amino acid preferences. These scores were transformed by the standard logistic

function to obtain values in the range [0..1]. In order to include information about

adjacent residues as well, a window of five residues to the left and five residues to the

right was employed together with the central target residue. An additional feature

was included to indicate whether the window was not built properly due to missing

data (i.e. at the end of the protein sequences). The position of each residue within

the transmembrane helix was encoded by two distinct features. First, a boolean

vector of length S was used to represent each transmembrane helix divided into a

set of S fragments of equal size. The values of the vector were initialized with 0 and
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the value at vector index s = b S
N
× ic was set to 1 with N representing the length

of the transmembrane helix, i being the position of the described residue within the

transmembrane helix numbered from 1 to N from the N- to C-terminal end and the

function f(x) = bxc returning the largest integer which is less or equal the real num-

ber x. Based on preliminary optimization experiments, the parameter S was fixed at

S = 7. Second, a boolean vector of size three was used, to encode whether a residue

lies close to the extracellular side of the membrane, close to the cytoplasm or within

the hydrophobic core of the helix. A region of seven residues was used to define

both the extracellular or cytoplasmic side of the helix. The side chain orientation

of each residue was calculated using LIPS (Adamian and Liang, 2006), a method

for the prediction of transmembrane helix orientation with the reported accuracy of

close to 90%. LIPS defines seven helical surfaces called faces which are identified

based on the average lipophilicity and the conservation of residues within each face.

Large LIPS scores indicate that a particular face is oriented towards the membrane

while low scores indicate an orientation towards the hydrophilic membrane protein

interior. The helix orientation was encoded in a boolean vector of length seven with

the elements in the vector representing the seven helical faces ordered by increasing

average lipophilicity. The vector is initialized by zeros. If a residue is member of

the helical face with the i-th highest LIPS score, this i-th element is set to 1 in

the boolean vector. A single residue can participate in up to three helical faces, as

defined by Adamian and Liang (2006).

Features of residue pairs

To represent properties pertinent to paired residues, two features were considered:

sequence distance between the residues and predicted correlated mutation rates in-

dicating co-evolving residues. The distance between two residues was encoded by

a boolean vector of length eight corresponding to sequence separations of less than

25, 50, 75, 100, 150, 200, 300 residues, or more. For a given pair of residues having

a sequence separation corresponding to the vector element i, not only this vector

element was set to 1 but also all vector elements at positions ≤ i.

Residue co-evolution was calculated using three different prediction methods.
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The algorithm McBASC (Olmea and Valencia, 1997) was applied in two variations,

using either the McLachlan (McLachlan, 1971) or the Miyata (Miyata et al., 1979)

substitution matrix, and the modified version of the OMES algorithm (Fodor and

Aldrich, 2004). Multiple sequence alignments used for the calculation of correla-

tion scores were obtained from the PSI-BLAST alignments. First, all positions were

removed from the full length PSI-BLAST alignment which did not correspond to

any transmembrane segment of the PDB sequence resulting in an alignment rep-

resenting only the transmembrane parts of the reference sequence. Following the

procedure described in Fuchs et al. (2007), sequences thought to be inappropriate

for the prediction of correlated positions were discarded. The raw correlation scores

were standardized individually for all proteins following the formula y = x−min
max−min ,

where x is the raw correlation score and min and max are the minimal and maximal

scores observed for a given protein and algorithm. Applying this type of standardiza-

tion conserves relative scores but makes results from different proteins comparable.

As Fuchs et al. (2007) previously established, co-evolution in membrane proteins

occurs much more often at residue pairs in close vicinity to an actual helix-helix

contact than at the contact positions themselves. Therefor not only the correlation

scores found for the pair of residues i and j under observation were included, but

also adjacent residue pairs with a window size of 5 centered around the positions i

and j, respectively were encoded.

Global features

Two global protein features were considered in the neural network: protein length

and the number of transmembrane helices. Both descriptors are again encoded as

boolean vectors using the same strategy as described for the sequence distance. The

protein length vector has a size of five elements corresponding to protein lengths of

less than 100, 200, 400, 800 or more residues. The vector describing the number of

transmembrane helices has a length of ten encoding proteins with 3, 4, 5, 6, 7, 8, 9,

10, 11 or 12 and more transmembrane regions.
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Figure 5.2: Input features used for the prediction of helix-helix contacts of membrane
proteins.
The feature complexity increases from NN1 to NN4. All feature sets enclose all less complex feature sets. The NN4

set contains all applied features. NN4-D contains all the features of NN4. Here only residue pairs are considered

that are distant in sequence, lying on non neighboring α-helices only.

Combination of features

Each input vector representing a residue pair contains out of context features for

both participating residues, residue pair features, and global features of the partic-

ular protein. To estimate the importance of the various features, input vectors of

increasing complexity were constructed and thereupon iteratively improved predic-

tion performance (Figure 5.2). Starting with an input vector consisting of only those

features available also for soluble proteins (NN1 and NN2, without and with cor-

related mutations, respectively), membrane protein specific features were gradually

added (NN3: position within transmembrane segment and total number of trans-

membrane helices; NN4: side chain orientation). The NN4 implementation was

additionally evaluated with a dataset that did not include instances with residue

pairs from sequentially adjacent helices (termed NN4-distant or NN4-D) in order to

find out how the predictive performance depends on short range contacts between

neighboring helix pairs. Throughout this work, NN4, the neural network based

on the full set of input features, is synonymously also referred to as TMHcon, the

name of the final version of the contact predictor which is also available on-line

(http://webclu.bio.wzw.tum.de/tmhcon/) together with the predictor NN4-D.

The following features were developed and incorporated by myself: PSSM pro-

files, residue distance, protein lengths, position within the transmembrane segments

http://webclu.bio.wzw.tum.de/tmhcon/
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and the number of transmembrane segments. Angelika Fuchs provided all correlated

mutations and came up with the idea about the LIPS scores. The idea to NN4-D

came from myself. The association of features to networks was organized by Angelika

Fuchs.

5.2.5 Neural network architecture and training

Similar to many contact prediction methods for globular proteins, feed-forward neu-

ral networks specially trained for data with biased class distributions was used.

Every network consisted of the same number of input nodes as features available. It

had two output nodes which represent the two prediction classes ‘contact’ (positive

class) and ‘nonContact’ (negative class). The number of hidden nodes was varied in

order to optimize prediction performance, and finally an architecture with 90 hid-

den nodes was chosen. Generally, during each training iteration of a neural network,

called epoch, a set of instances is presented to the neural network, the average error

on the given set is estimated and this error is used to calculate the weight update

for all node connections. The presentation and weight update process is repeated

until a defined stop criterion is reached. The contact prediction network was trained

such that for each epoch all positive (contact) instances of the training proteins

were selected and for all these proteins an equal number of negative instances was

randomly sampled. The training was iterated over 200 epochs.

The neural network was implemented and trained by myself.

5.2.6 Measuring contact prediction performance

To assess the prediction performance of the neural networks the leave-one-protein-

out jackknife cross-validation was applied. This tests the method on a single protein

while all other proteins are used as training set. Performance measures are obtained

for the test protein and the procedure is repeated for all proteins. The overall predic-

tion performance is calculated by averaging the individually obtained performance

results leading to an accurate assessment of method performance. Following com-

mon practice the number of predicted contacts was chosen based on the length of the
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protein L. Since the aim is to predict helix-helix contacts within the transmembrane

helices of a protein only, L was calculated as the sum of the lengths of all trans-

membrane helices of a given protein. Reported contact prediction accuracies are

based on the L/5 highest scoring residue pairs, a threshold commonly used in con-

tact prediction assessment (Izarzugaza et al., 2007). From this number of predicted

contacts the prediction accuracy (fraction of correctly predicted contacts out of all

predicted contacts) was calculated. Additionally, the coverage (fraction of correctly

predicted contacts out of all observed contacts) was calculated. In order to investi-

gate the position of predicted contacts with respect to observed helix-helix contacts,

a ‘δ-Analysis’ (Ortiz et al., 1999) was embodied which calculates the fraction of cor-

relations between residues i and j given an observed contact between residues in the

interval i− δ, i+ δ and j − δ, j + δ. A value of δ = 4 was used to determine the

fraction of predicted contacts where both participating residues lie within one helix

turn of residues forming an inter-helical contact.

Performances were measured by procedures of both authors. They applied indi-

vidual versions, resulting in double checked values.

5.2.7 Identification of interacting helices

To apply the obtained contact predictions for the problem of identifying interacting

pairs of transmembrane helices, a dataset of helix-helix pairs from the dataset of 62

membrane proteins was constructed. From the total number of 1486 helix pairs, 714

helix pairs were considered to be in contact since they contained at least one residue

pair less than 5.5Å away from each other. Using this dataset of helix pairs interact-

ing transmembrane helices were predicted based on the number of predicted contacts

for every helix pair. To this end, the initial list of predicted contacts was compiled

based on two different strategies, either using the protein length based L/5 criterion

or employing the formula for the number of observed contacts found for a given

number of residues described in Section 5.2.3. Several thresholds for the required

number of predicted contacts for a positive prediction were evaluated by calculating

the sensitivity and specificity of each obtained prediction. The significance of each

prediction was calculated based on a chi-square test. For comparison reasons, inter-
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acting helices were also predicted with the previously developed method HelixCorr

(Fuchs et al., 2007), which uses solely correlated mutations for the prediction process.

Starting with the development of Fuchs et al. (2007), the here required sophis-

tication for the identification of interacting helices was jointly developed by both

authors.

5.3 Results and discussion

5.3.1 Prediction of helix-helix contacts using neural net-

works with increasing complexity

Machine learning techniques have been applied for the prediction of amino acid

contacts in soluble proteins for more than five years (Fariselli et al., 2001b,a; Pol-

lastri and Baldi, 2002; Punta and Rost, 2005a; Cheng and Baldi, 2007). Here the

first application of neural networks for the specific problem of predicting helix-helix

contacts in membrane proteins is introduced. Using contact data derived from 62

membrane proteins with solved structure, five neural networks were trained for the

prediction of helix-helix contacts. While four of these networks were developed in

order to analyze the influence of different input features on the resulting prediction,

the neural network NN4-D included the same input features as the network NN4, but

was trained only on long-range contacts lying on non-neighboring transmembrane

helices. Such long-range contacts are particularly important for the discrimination

between membrane protein folds resulting from different helix packing in α-helix

bundles and therefor, the aim was to especially predict them with high reliability.

Influence of different input features on the prediction of helix-helix con-

tacts

Following the strategy reported for the first contact map predictions using neural

networks in globular proteins (Fariselli et al., 2001b,a), neural networks of increasing

complexity were constructed by incorporating an increasing number of input features

(see Figure 5.2). While the first two neural networks (NN1 and NN2) included
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Predictor L/5 Contact density formula

Acca Acc (|δ| = 4)b Covc Acc Acc (|δ| = 4) Cov

[%] [%] [%] [%] [%] [%]

NN1 17.2 65.2 2.3 10.5 61.2 10.6

NN2 18.9 68.4 2.6 11.4 65.4 11.6

NN3 23.5 78.7 3.2 15.7 70.8 15.8

NN4 25.9 78.5 3.5 15.8 70.7 16.0

NN4-D 14.8 50.2 3.9 10.0 46.0 10.1

a Prediction accuracy: Fraction of correctly predicted contacts out of the total num-
ber of predicted contacts.

b Prediction accuracy (|δ| = 4): Fraction of predicted contacts lying within one helix
turn of an observed contact.

c Coverage: Fraction of correctly predicted contacts out of the total number of
observed contacts.

Table 5.2: Contact prediction with neural networks of increasing complexity.
Contact prediction accuracy, accuracy (|δ| = 4) and coverage are reported based both on the selection of the L/5

highest scoring residue pairs (L being the length of the concatenated transmembrane segments), and after selecting

the expected number of contacts derived using the contact formula for membrane proteins describing the observed

number of contacts in dependence on the number of participating residues (see Materials & methods).

only sequence features also available for soluble proteins (e.g. sequence profiles,

sequence separation, protein length and correlated mutations), membrane protein

specific features were incorporated in the neural networks NN3 and NN4 (position

of each residue within a transmembrane helix, number of transmembrane helices

and orientation of each residue). This step-wise procedure reveals the contribution

of individual feature sets, in particular those not available for soluble proteins and

therefor missing in earlier studies on contact prediction with neural networks.

In agreement with publications on contact prediction for soluble proteins, the L/5

highest scoring contact pairs for every protein were selected and the accuracy and

the coverage are reported based on this procedure. Additionally the delta-accuracy

(|δ| = 4) was calculated. As described above, this measure describes the fraction of

predicted contacts that are found within one helix turn of an observed contact and

therefor lie in close sequence neighborhood to an actual helix-helix contact (Table

5.2). As seen in Table 5.2, prediction accuracy increases by more than 8% with

the addition of more and more input features. While the incorporation of correlated

mutations leads to an improvement of 1.6% accuracy, the most significant increase in

prediction accuracy of 4.6% is achieved with the first addition of membrane protein

specific features in NN3. The incorporation of LIPS scores in NN4 leads to a further
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Figure 5.3: Observed and top L/5 predicted contacts between transmembrane helix 1
and transmembrane helix 2 of the protein 1VF5, chain A.
(a) Predictions with NN2. (b) Predictions with NN3. NN3 includes information about each residue’s position

within the transmembrane helix and therefor is aware of the helix orientation. While NN2 has problems to detect

the antiparallel character of the helix interaction and predicts many contacts off diagonal, NN3 exclusively predicts

contacts that capture the anti-parallel interaction pattern.

improved prediction accuracy of 25.9%. Since the number of analyzed predictions

is equal for all neural networks, the coverage increases accordingly. The same trend

can be observed for the accuracy (|δ| = 4), which increases by more than 13% from

NN1 (65.2%) towards NN4 (78.5%). Interestingly, the observed value is basically

constant between NN3 and NN4. In both cases around 78% of all predicted contacts

are found in close sequence neighborhood to an observed helix-helix contact. Since

the number of predicted contacts located close to an actual contact stays the same

while the number of correctly predicted contacts increases from NN3 towards NN4,

the addition of LIPS scores seems to be helpful in determining the exact position

of helix-helix contacts, which are otherwise only located slightly misplaced from the

correct position.

Since the most remarkable increase in prediction accuracy is obtained from NN2

towards NN3 with the inclusion of a feature group defining each residue’s position

within the transmembrane helix, the predictions of NN3 was investigated in greater

detail. As can be seen from the example in Figure 5.3, the given relative position

of each residue within the transmembrane helix seems to aid the neural network
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in detecting the parallel or antiparallel interaction pattern of two transmembrane

helices and therefor constrains predicted contacts. Figure 5.3a illustrates observed

and the top L/5 predicted contacts for residues on transmembrane helices 1 and 2

from cytochrome B6 (1VF5 Chain A) when using NN2. Here, contacts are predicted

for the given two transmembrane helices, but the algorithm is not able to detect in

which orientation the two helices are positioned relative to each other, resulting in

a significant deviation of the predicted contacts from the known ones. In contrast,

NN3 (Figure 5.3b) is able to deduce information on the helix orientation, and thus

the predicted contacts lie on the correct diagonal of the contact map. The neu-

ral network is constrained by the transmembrane residue positions: a residue near

the extracellular membrane surface cannot contact a residue near the cytoplasmic

membrane surface.

The feature contributions were jointly analyzed by both authors.

Dependence of the contact prediction performance on the number of

transmembrane helices

For the best performing neural network NN4 it was further analyzed how the predic-

tion success depended on the number of transmembrane segments within a protein.

Therefor the set of 62 membrane protein was grouped into subsets of proteins with

a similar number of transmembrane segments and calculated the prediction accu-

racy and coverage for every subset (Table 5.3). As expected, prediction accuracy

decreases for large proteins. For proteins with eight or more transmembrane helices

prediction accuracies of close to 20% are obtained, while proteins with less than

eight transmembrane segments prediction accuracies of 25% or more were achieved.

Interestingly, the fraction of predicted contacts in close vicinity to observed contacts

(accuracy (|δ| = 4) is largely independent of the protein size since in proteins having

more than ten transmembrane helices contacts are still detected with an accuracy

(|δ| = 4) of more than 80% which is even slightly above the mean value found for

all proteins (78.5%, Table 5.2). However, the best contact predictions are obtained

for proteins with seven transmembrane helices. These proteins typically belong to

the class of G-protein coupled receptors (GPCRs) whose structures largely resemble
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TMS N(Proteins) N(Contacts) L/5

Acca [%] Acc (|δ| = 4)b [%] Covc [%]

3-4 19 260 33.1 77.7 7.8

5-6 17 359 25.1 72.4 4.2

7 7 201 40.3 93.5 5.0

8-10 7 242 19.0 71.9 2.6

>10 12 549 20.9 80.1 2.2

a Prediction accuracy: Fraction of correctly predicted contacts out of the total number
of predicted contacts.

b Prediction accuracy (|δ| = 4): Fraction of predicted contacts lying within one helix
turn of an observed contact.

c Coverage: Fraction of correctly predicted contacts out of the total number of observed
contacts.

Table 5.3: Contact prediction using NN4/TMHcon for subsets of membrane proteins
grouped according to their number of transmembrane helices.
Reported prediction accuracies, accuracies (|δ| = 4) and coverage are based on the selection of the L/5 highest

scoring residue pairs.

the canonical α-helix bundle structure with only few helix-helix contacts between

sequentially distant transmembrane helices (Palczewski et al., 2000), facilitating con-

tact prediction for these targets.

Angelika Fuchs performed the here described analysis.

Dependency of the contact prediction performance on the number of

selected contacts

The dependency of prediction quality on the number of predicted contacts was also

investigated. Figure 5.4 illustrates how the obtained prediction accuracy and the

coverage depend on the cutoff for the number of analyzed contacts. While NN2

performs better than NN1, as do the two neural networks with membrane protein

specific input features NN3 and NN4 compared to NN1 and NN2, the improvement

of NN4 compared to NN3 is varying with the number of selected contacts. While

for large numbers of predicted contacts NN3 and NN4 perform more or less with

equal accuracy and coverage, the highest improvement of prediction accuracy due

to addition of LIPS scores as input features in NN4 is obtained for small numbers

of predicted contacts (L/3 or less). The same can be observed from Table 5.2 where

the quality measures are reported for predictions with the number of predicted con-

tacts determined using a contact formula. This formula was derived from available
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Figure 5.4: Contact prediction accuracy (a) and coverage (b) of different neural networks
as a function of the number of predicted contacts (L/X).
As expected, the accuracy is increasing while the coverage is decreasing for more stringent criteria. Both performance

curves increase steadily for the NN1-NN3 architectures while the improvement of NN4 is less clear cut. L/X scaling

for NN4-D is not comparable to the other architectures since the number of possible residue pairs and the number

of observed contacts is different.

membrane protein structures describing the number of expected contacts for a given

number of participating residues (see section 5.2.3 in Materials & methods). A higher

number of predicted contacts lead to an obvious decrease in prediction accuracy in

favor of an increased coverage. While the increase in prediction accuracy from NN1

towards NN3 is still clearly visible, NN3 and NN4 perform with more or less equal

accuracy and coverage.

This analysis was carried out by myself.

Contact prediction in membrane proteins compared to soluble proteins

It is well known that the prediction of intra-molecular amino acid contacts gets

increasingly difficult with decreasing contact density (fraction of observed contacts

among the total number of possible residue pairs, Punta and Rost (2005a)). This is

the reason why contact predictions for large proteins are generally less successful than

predictions for small proteins (Fariselli et al., 2001b; Pollastri et al., 2002b), and why

all-alpha soluble proteins, whose contact density is roughly only a half of the contact

density found for all-beta proteins (Punta and Rost, 2005a) were consistently found

to pose special difficulties for the prediction. To compare the success of the contact

prediction for membrane proteins at least at a very basic level to the results obtained
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for soluble proteins, the contact density for the membrane proteins in the dataset

was calculated. Figure 5.1 shows the dependency of the number of observed contacts

in a protein on the protein length for four different types of proteins: soluble pro-

teins, soluble proteins in the SCOP class all-alpha, the 62 membrane proteins (only

transmembrane segments considered), and the 62 membrane proteins where residue

pairs lying on neighboring helices were not considered. For all four datasets linear fits

were calculated. While all-alpha soluble proteins were found to possess slightly fewer

contacts than soluble proteins in general, as was reported earlier (Punta and Rost,

2005a), the number of observed contacts within membrane proteins was found to

be even more reduced compared to soluble proteins in general and all-alpha soluble

proteins in particular. When residue pairs on neighboring helices were ignored, the

number of observed contacts was further decreased significantly, indicating that the

prediction of helix-helix contacts in membrane proteins is at least of comparable dif-

ficulty to the prediction of intra-molecular contacts within all-alpha soluble proteins,

if not more difficult. Thus, compared to prediction accuracies reported for all-alpha

soluble proteins (20% for a L/10 prediction based on 30 proteins at a sequence sep-

aration of 8 (MacCallum, 2004), 24% for a L/2 prediction based on 131 proteins

and a sequence separation of 6 Punta and Rost (2005a)), the here described contact

predictor for membrane proteins has equal quality to state-of-the-art methods for

soluble proteins. This is also true for the prediction of long-range contacts. Using

the neural network NN4-D, which predicts only contacts between non-neighboring

transmembrane helices, a prediction accuracy of 14.8% (Table 5.2) can be obtained.

Reported values for all-alpha soluble proteins with a sequence separation of at least

24 amino acids range between comparable values of 13.5% (L/2 prediction, Punta

and Rost (2005a)) and 15.3% (L/10 prediction, MacCallum (2004)).

Both authors worked on this analysis.

5.3.2 Prediction of interacting helices

After demonstrating the capability of the method to predict helix-helix contacts

in membrane proteins with equal accuracy to state-of-the-art methods for soluble

proteins, the potential application of these predicted contacts for another structural
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problem in membrane proteins was further investigated: the identification of in-

teracting helices. With more and more 3D structures of membrane proteins being

available, it is now common understanding that alpha-helical membrane proteins

may deviate remarkably from simple helix bundle structures. A study on helix-

packing arrangements proposed a possible number of 1,500,000 different folds for a

membrane protein with seven transmembrane helices (Bowie, 1999). Recent studies

trying to classify the naturally occurring membrane protein fold space suggested a

limited number of ∼250-500 different membrane protein folds (Martin-Galiano and

Frishman, 2006; Oberai et al., 2006). However, the difficulty of membrane protein

structure determination has led to the estimation that three more decades will be

required to obtain a structural representation of 90% of the current membrane pro-

tein sequence space (Oberai et al., 2006). Therefor, the reliable prediction of helix

interaction patterns may be a valuable tool to distinguish membrane proteins of

different folds without knowing their structure or to assign a new protein sequence

to a known membrane protein fold. Based on the dataset of 62 proteins used for

the contact prediction, a dataset of 1486 helix pairs was compiled. In this dataset

714 helix pairs were rated as interacting since they contained at least one helix-helix

contact in the corresponding 3D structure. To predict interacting helices using the

obtained contacts two different strategies were employed and compared.

The initial idea was to select the L/5 highest scoring contact pairs (with L being

defined as the sum of the transmembrane segments’ lengths) and every helix pair

is predicted as interacting it if has at least one predicted contact. However, as

can be seen from Figure 5.1, the solely sequence length dependent threshold L/5

is much too restrictive to obtain a number of contacts typical for an alpha-helical

membrane protein. Additionally it was observed that the number of contacts per

helix pair predicted by NN4/TMHcon tends to increase with the number of observed

contacts per helix pair (Figure 5.5). After selecting predicted contacts based on the

contact density formula introduced in the Material & methods section, helix pairs

with more than 5 actual helix-helix contacts were found to have on average 15

predicted contacts (median: 8) while helix pairs with only a small number of helix-

helix contacts between one and five had nine predicted contacts on average (median:
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Figure 5.5: Dependency of the number of predicted contacts on the number of observed
contacts.
Helices with a given number of observed helix-helix contacts (0 1-5, or more than 5) were grouped. The number or

predicted contacts increases in average with the number of observed contacts.

3).

The second prediction strategy for interacting helices was developed based on this

observation. The initial number of predicted contacts for every protein is derived

from the contact density formula. Afterwards, a threshold of required contacts for

an interacting helix pair is applied to remove wrongly predicted interacting helices.

Similar to the approach introduced for the HelixCorr method (Fuchs et al., 2007),

this contact threshold can be used to achieve predictions of increasing specificity at

the cost of decreasing sensitivity.

Using these two strategies (termed length-based prediction and contact-based

prediction) interacting helix predictions for all four neural networks could be ob-

tained and specificity, sensitivity, accuracy and significance based on a chi-square

test for each prediction was calculated (Table 5.4). Since the contact-based predic-

tions made at different thresholds of required contacts are hard to compare, always

those those predictions measures are presented where the specificity is closest to 80%

and 90%. As can be seen from Table 5.4, the contact-based selection resulted in a
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Method
Thres-

N(predicted)b
Neighboring Accu- Sensi- Speci-

P-value
hold a [%] c racy tifity ficity

HelixCorr
C7 462 0.381 0.662 0.429 0.798 7.36× 10−21

C11 292 0.428 0.743 0.304 0.903 2.35× 10−23

NN1

L/5 359 0.604 0.721 0.363 0.870 1.76× 10−25

C4 494 0.579 0.713 0.493 0.816 2.71× 10−36

C9 336 0.732 0.774 0.364 0.902 4.43× 10−34

NN2

L/5 327 0.651 0.761 0.349 0.899 2.28× 10−30

C3 531 0.571 0.718 0.534 0.806 5.06× 10−42

C7 366 0.724 0.795 0.408 0.903 2.05× 10−43

NN3

L/5 380 0.697 0.761 0.405 0.882 1.97× 10−36

C4 565 0.593 0.729 0.577 0.802 1.04× 10−50

C10 373 0.796 0.796 0.416 0.902 8.39× 10−45

NN4
(TMHcon)

L/5 413 0.654 0.780 0.451 0.882 3.72× 10−46

C4 587 0.571 0.722 0.594 0.789 5.10× 10−51

C9 397 0.756 0.804 0.447 0.899 8.48× 10−51

NN4-D
C7 324 - 0.580 0.438 0.807 1.76× 10−18

C10 212 - 0.665 0.329 0.899 3.49× 10−21

NN4/NN4-D
C9/C10 552 0.543 0.748 0.578 0.820 2.09× 10−56

C9/C15 485 0.619 0.781 0.531 0.863 2.24× 10−58

a Predicted contacts used for the identification of interacting helices were selected with two different
procedures. L/5 corresponds to the length based selection of predicted contacts while CX describes
the number X required contacts for an interacting helix pair after compiling an initial list of contact
predictions using the contact density formula for membrane proteins described in Materials & methods.

b The number of predicted interacting helices.
c The percentage of neighboring helix pairs out of the total number of predicted interacting helices.

Table 5.4: Prediction of interacting transmembrane helices using helix-helix contacts
predicted by neural networks of increasing complexity.
For comparison, results obtained with HelixCorr, a method using only correlated mutations for the identification of

interacting helices, are also reported.

more significant prediction for all of the four neural networks than the length-based

selection.

The parameter optimization and subsequent analysis was done by Angelika

Fuchs.

Prediction performance of neural networks with increasing complexity

A comparison of the performance of the different neural networks produced similar

results to those obtained in the analysis of predicted helix-helix contacts. Predictions

based on the same selection strategy showed a clear increase in accuracy, sensitivity
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and p-value at the same specificity level with increasing complexity of the used

neural network. For example, using length-based (L/5) selection, all four neural

networks resulted in a prediction of interacting helices with a specificity between

87% and 89%, while the prediction accuracy increased from 72% towards 78%. At

the same time, the sensitivity increased by 9%, and the p-value decreased from 1.76×

10−25 to 3.72× 10−46 (Table 5.4). The same can be observed using a contact-based

selection strategy. When predictions with the same specificity (for example 90%)

were compared, again accuracy and sensitivity increased (3% and 8%, respectively,

in the case of 90% specificity) while the p-value decreased (from 4.43×10−34 towards

8.48× 10−51, again for predictions with 90% specificity).

Angelika Fuchs performed the here presented analysis.

Prediction of interacting helices distant in sequence

For every prediction also the fraction of predicted interacting helices that are neigh-

boring in sequence was calculated. Despite all deviations from the canonical alpha-

bundle structure found in membrane proteins, neighboring helices still have a clearly

higher probability for interaction with each compared to non-neighboring helix pairs

(80.5% compared to 37.9% for non-neighboring helix pairs in the dataset). There-

for, a primitive way of predicting interacting helices in membrane proteins would be

to predict all neighboring helices as interacting and non-neighboring helices as not

interacting. While this prediction method would lead to a high prediction accuracy

of 80.5% in the case, its subsequent application for the discrimination of different

membrane protein folds would be impossible, since no differences in the helix packing

of proteins with the same number of transmembrane helices could be determined.

Optimally, one would therefor wish to obtain predictions with a small fraction of

neighboring helices (possibly close to the naturally occurring fraction of 39.9% in

the dataset), to get a maximum of information about the specific fold of the pro-

tein. A comparison of NN1 and NN2 (Table 5.4) reveals that the incorporation of

correlated mutations as input feature results in predictions of higher sensitivity and

accuracy at equal specificity with a slightly smaller fraction of neighboring helices

in the set of predicted helices using the contact-based selection (with 90% speci-
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ficity 73.2% neighboring helices with NN1 and 72.4% with NN2). The additionally

detected interacting helices are therefor primarily long distance helix pairs, imply-

ing that co-evolving residues are generally independent of sequence separation (see

also the discussion of HelixCorr results below). In contrast, the first incorporation

of membrane protein specific features (residue position within the transmembrane

helix as well as the total number of transmembrane helices) within NN3 resulted

in a strong increase of the number of neighboring helices in the prediction (at 90%

specificity 79.6% with NN3 compared to 72.4% with NN2). This demonstrates a

general tendency of the neural network to learn about the helix-bundle structure of

membrane proteins from basic membrane protein specific input features. The ad-

dition of LIPS scores within NN4 reduces the fraction of neighboring helices again

to a final value of 75.6% for the prediction with 90% specificity. Since the fraction

of falsely predicted non-interacting neighboring helices decreases at the same time

(from 17.2% with NN3 towards 15.3% with NN4), the inclusion of LIPS scores (the

predicted orientation of each residue towards the membrane or the protein interior)

seems to prevent the incorrect prediction of those amino acid residues as being in

the contact state which would originally be well positioned on neighboring helices

to form a contact in a perfect helix bundle structure.

In order to increase the fraction of non-neighboring helices in the final predic-

tion a neural network was trained especially on long-range contacts by omitting all

helix-helix contacts from neighboring helices from the training set (NN4-D). Using

contacts predicted by this neural network and selected according to the contact for-

mula derived for non-neighboring helices (see Materials & methods) a prediction of

distant interacting helices was obtained. Due to the increased difficulty of predicting

contacts on non-neighboring helix pairs resulting from the smaller contact density

(Figure 5.1), the sensitivity and accuracy of this prediction was clearly lower than

those obtained for the full dataset (Table 5.4). However, at 80% specificity still

43.8% of all distant interacting helices could be correctly predicted. More than 32%

of these interacting helices were predicted with close to 90% specificity. To enhance

the original NN4/TMHcon prediction with long distant interactions the helix pairs

predicted from NN4-D were included into the single NN4/TMHcon prediction. Af-
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ter adding all helix pairs with at least 10 predicted contacts (corresponding to the

90% specificity prediction of NN4-D), the significance of the prediction increased to

2.1 × 10−56 (Table 5.4). While still 57.8% of all interacting helices were predicted

with a specificity of 82%, the fraction of neighboring helices decreased to only 54.3%.

This prediction was further improved by raising the threshold of required contacts

for NN4-D, corresponding to the increased difficulty of long-range contact predic-

tion. With 15 required contacts a final prediction with a significance of 2.2× 10−58,

a sensitivity of 53.1% and a specificity of 86.3% was obtained. The fraction of

neighboring helices was only 61.9%, a clear improvement compared to the original

TMHcon prediction.

To come up with the optimal combination of NN4 with NN4-D, both authors

discussed the processing jointly. The here shown analysis was performed by Angelika

Fuchs.

5.3.3 Application of TMHcon to three membrane proteins

with recently solved structure

To test the TMHcon prediction ability under ‘real-life’ conditions, the newly devel-

oped method was applied to three membrane proteins whose structure was solved

after the construction of the data set: the site-2 protease (3B4R Chain B, Feng et al.

(2007)), the sodium-potassium pump (3B8E Chain A, Morth et al. (2007)) and the

plasma membrane proton pump (3B8C Chain A, Pedersen et al. (2007)). None of

these proteins had more than 30% sequence identity to any of the proteins in the 62

protein data set. Transmembrane helix positions determined from the 3D structure

were obtained from PDBTM. Additionally transmembrane helices were predicted by

Phobius (Käll et al., 2007) to simulate the case when no protein structure is avail-

able. While Phobius predicted transmembrane helix number and position consistent

with the PDBTM annotation in the case of 3B8C, one transmembrane helix was

not detected in the case of 3B4R, and two were missing in the case of 3B8E. Sub-

sequently, the helix-helix contacts were predicted both with TMHcon and NN4-D

and the derived contacts were used to predict the helix-helix interaction patterns



Results and discussion 107

for all three proteins. The same prediction parameters were chosen as in the most

significant earlier prediction. This requires at least 9 predicted contacts by TMHcon

or 15 predicted contacts by NN4-D in order to predict a helix pair as interacting.

While for all three proteins an average prediction accuracy (L/5) for helix-

helix contacts close to 20% was obtained for transmembrane helices taken from

the PDBTM, this value decreased to only 13% in case transmembrane helices were

predicted with Phobius. However, the fraction of predicted contacts within one helix

turn of an observed contact was remarkably high both for transmembrane helices

taken from PDBTM and predicted by Phobius, resulting in an even higher accuracy

(|δ| = 4) than in the original data set (87.1% for Phobius, 86.3% for PDBTM).

Therefor, the majority of all predicted contacts were found on actual interacting

helices (Figure 5.6a) regardless of the method used for determining transmembrane

helix positions. Accordingly, the predicted helix interaction patterns closely resemble

the actually observed patterns (Figure 5.6b).

Angelika Fuchs carried out the analysis. Myself provided the raw predictions.

5.3.4 Comparison to other contact prediction methods

To further assess the benefit of the here described contact prediction method which

is specifically developed for membrane proteins, the obtained prediction results were

compared to predictions obtained using available state-of-the-art contact prediction

methods. Despite the fact that these predictors were developed exclusively for solu-

ble proteins, they might still be capable of detecting the contact pattern originating

from the alpha-helical bundle structures of membrane proteins. Accordingly, predic-

tions were obtained for the set of 62 membrane proteins using the contact predictor

PROFcon (Punta and Rost, 2005a), a neural network based predictor ranking among

the best performing methods in the CASP6 competition, as well as using SVMcon

(Cheng and Baldi, 2007), a contact map predictor based on support vector machines,

one of the top predictors in the CASP7 experiment. Since both methods returned

predicted contacts for the full length sequence of each protein, obtained predictions

were filtered by removing all contacts lying outside the transmembrane parts of the

protein or within the same transmembrane helix. From the remaining contacts, the
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Figure 5.6: Prediction of helix-helix contacts and interacting helices for three membrane
proteins newly added to the PDB (3B4R Chain B, 3B8C Chain A, 3B8E Chain A).
(a) Contact map of 3B8E (Chain A). Shown are only the transmembrane parts of the protein as given by the PDBTM

database. Observed helix-helix contacts are depicted in blue, the L/5 best predicted contacts by TMHcon are shown

in pink. Only six predicted contacts are found on non-interacting transmembrane helix pairs. (b) Observed helix

interactions and predicted helix interactions for all three proteins based on transmembrane segments predicted by

Phobius or extracted from PDBTM. Circles represent transmembrane helices while connection lines represent an

interaction between the participating helices. The thickness of the connection line in the case of the observed

helix interactions corresponds to the number of observed helix-helix contacts. Interacting helices were predicted by

compiling an initial contact list from predictions obtained with TMHcon and NN4-D using the contact formula for

membrane proteins or distant contacts in membrane proteins, respectively and selecting all helix pairs with at least

9 helixhelix contacts predicted by TMHcon or 15 helix-helix contacts from NN4-D. Bold connections lines in the

case of predicted helix interactions indicate interacting helices predicted both by TMHcon and NN4-D.

top L/5 scoring ones were selected for every protein and every method (Table 5.5).

Using PROFcon, predictions could be obtained for 43 proteins out of the total set

of 62 proteins. However, since PROFcon restricts the number of returned contacts

to 2L, the number of proteins with predicted contacts within their transmembrane

helices was only 24. Based on the L/5 selection criterion, an average contact pre-

diction accuracy of 4.2% was obtained for these 24 proteins. The accuracy (|δ| = 4)

was found to be 36.8%. Despite these low values, PROFcon was still able to pro-

duce comparable results to TMHcon in individual cases with a maximum prediction

accuracy of 21% and a accuracy (|δ| = 4) of 98% obtained for the ammonia channel

AmtB (2NMR| Chain A). Using SVMcon, predictions were obtained for all 62 pro-

teins. The average prediction accuracy was 9.3% and the delta prediction accuracy
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Predictor N(Proteins) N(Contacts) L/5

Acca [%] Acc (|δ| = 4)b [%] Covc [%]

HelixCorr 62 4822 10.8 51.9 4.4

PROFCon 24 503 4.2 36.8 0.2

SVMCon 62 1600 9.3 55.8 1.3

TMHcon 62 1611 25.9 78.5 3.5

a Prediction accuracy: Fraction of correctly predicted contacts out of the total number of
predicted contacts.

b Prediction accuracy (|δ| = 4): Fraction of predicted contacts lying within one helix turn of
an observed contact.

c Coverage: Fraction of correctly predicted contacts out of the total number of observed
contacts.

Table 5.5: Contact predictions for 62 membrane proteins using external contact predic-
tors or TMHcon.
Reported prediction accuracies, accuracies (|δ| = 4) and coverage are based on the selection of the L/5 highest

scoring residue pairs.

(|δ| = 4) was 55.8%, resulting in total in a clearly superior prediction compared to

PROFcon without reaching the prediction accuracies obtained with TMHcon. Again

the obtained prediction quality was significantly differing among proteins with eight

proteins having a prediction accuracy of 20% or more while 23 proteins were found

with no correctly predicted contact at all. The best prediction using SVMcon was

obtained for the sensory rhodopsin II with a prediction accuracy of 31% and an

accuracy (|δ| = 4) of 97%. Based on these results it is clear that the development of

a membrane protein specific contact predictor is necessary since currently available

contact predictors are not able to predict contacts within transmembrane helix over

a large set of proteins.

The neural network based predictions were also compared to predictions with

the earlier developed HelixCorr method (Fuchs et al., 2007). HelixCorr is a consen-

sus approach for detecting co-evolving residues in transmembrane helices in order

to predict helix-helix contacts and interacting helices. This method was applied

to the dataset of 62 membrane proteins using the same alignments consisting of

concatenated transmembrane segments which were also used for deriving correlated

mutations used as input feature for the neural networks. To improve prediction accu-

racy, HelixCorr includes a filtering step, where all predicted co-evolving residue pairs

on helices with fewer correlations than a given threshold are removed. In agreement

with Fuchs et al. (2007) 5 correlated pairs were required as filter threshold for the
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helix-helix contact prediction. Similar to the previous work which was based on the

careful analysis of 14 membrane proteins with solved structure, a prediction accuracy

for helix-helix contacts of roughly 10% (Table 5.5) was obtained. HelixCorr is easily

outperformed by even the most basic neural network reaching a prediction accuracy

of 17% (Table 5.2). The same is true for the prediction accuracy (|δ| = 4) where

the most basic neural network achieves a more then 10% higher quality score than

HelixCorr (64.6% compared to 51.9%). This observation is consistent with reported

results for soluble proteins where the prediction of intra-molecular contacts was im-

proved by at least 7% after using a neural network instead of correlated mutations

alone (Fariselli et al., 2001a). It was also analyzed how well HelixCorr performs in

the prediction of interacting helices compared to TMHcon based on the 62 protein

data set. Again, the increase in prediction quality from HelixCorr towards TMHcon

is quite remarkable. In order to obtain comparable results between HelixCorr and

the neural networks the above mentioned filter threshold of HelixCorr was varied

and here the results for those filter thresholds are reported when prediction is re-

sulting in a specificity close to 80% and close to 90% (Table 5.4). In both cases

TMHcon predictions of basically equal specificity to comparable HelixCorr predic-

tions resulted in a clearly higher sensitivity and accuracy. An increase in accuracy

of up to 6% (HelixCorr with 7 required contacts (C7) was observed when compar-

ing to TMHcon with 4 required contacts (C4)). In sensitivity an increase of up to

16% (again HelixCorr/C7 compared to TMHcon/C4) was observed. The significance

of the prediction increased from 7.4 × 10−21 to 5.1 × 10−51. However, it must be

noted, that the fraction of neighboring helix pairs is significantly lower in the case

of HelixCorr compared to any prediction obtained by a neural network (42.8% with

HelixCorr/C11 compared to maximal 79.6% with NN3/C10). While neural networks

tend to learn that neighboring transmembrane helices have a higher probability for

interacting with each other, co-evolving residues are much more independent of this

fact. Since in the predictions more importance is attached to higher specificity than

sensitivity, resulting in a limited number of predicted interacting helix pairs. This

leads to an enrichment of neighboring helices in the prediction of the neural net-

works. In contrast, the prediction from HelixCorr with a fraction of close to 40%
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neighboring helices resembles nearly perfectly the naturally occurring fraction of

39.9% neighboring helices in the total set of interacting helices (285 out of 714).

Using the predictions of myself, Angelika performed the required analyses.

5.4 Conclusion

The experimental determination of membrane protein structures is still a difficult

and time-consuming process. Computational methods for the prediction of struc-

tural features of membrane proteins are therefor required to close the gap between

available sequence and structure data of membrane proteins. While a large number

of algorithms are already available for the prediction of membrane protein topology

or the prediction of lipid-exposed surfaces (for reviews see Elofsson and von Heijne

(2007); Punta et al. (2007)) here the first method is presented which uses neural net-

works for the prediction of helix-helix contacts. Based on a data set of 62 membrane

proteins with solved structure a prediction accuracy of close to 26% was obtained

with the best predictor TMHcon, which therefor performs with equal accuracy to

available contact predictors for soluble proteins. Furthermore, it is demonstrated

that predicted contacts can be a valuable tool for the detection of interacting he-

lices. Since recent membrane protein structures have shown that membrane proteins

can adopt folds of much broader variety than originally expected, the identification

of interacting helices can lead to the distinction of different helix architectures or to

the assignment of a membrane protein sequence to a related fold. The application of

TMHcon to three proteins with only recently solved structure such as the sodium-

potassium pump, resulted in the prediction of a helix interaction pattern closely

resembling the observed pattern. TMHcon is available for download and off-line

usage at http://webclu.bio.wzw.tum.de/tmhcon.

The website was designed by Angelika Fuchs, myself implemented the final pro-

gram version.

http://webclu.bio.wzw.tum.de/tmhcon
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Chapter 6

Conclusion

The goal of this thesis was the development of prediction algorithms specially tai-

lored for structural features of proteins. In the course of this thesis, one- and two-

dimensional structural features of proteins had been considered. Prediction meth-

ods were developed for globular proteins and proteins embedded in cell membranes.

This chapter summarizes the most important contributions, discusses limitations

and, provides an outlook to potential future work.

6.1 Summary

The developments for this thesis center around machine learning, in particular there

is a strong focus on artificial neural network models. In the Chapters 2 and 3 a novel

type of recurrent neural network is introduced and applied on one-dimensional struc-

ture prediction. The network was developed by integrating various approaches from

related works and is finally arisen as visualized in Figure 2.1. The novelty becomes

apparent in the combination of ordinary recurrent neural networks with multi-task

learning and their subsequent application on structure prediction. Although multi-

task learning was already introduced ten years ago (Caruana, 1997) it has never

been used to extend recurrent neural networks and it was never applied in the area

of computational biology. The most common approaches for one-dimensional struc-

ture prediction employed in computational biology are setups where problems are

tackled in a sequential way. The classic application is to use predicted secondary
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structure in subsequent predictions. Opposite to that, the methodology introduced

here allows prediction of multiple structural features in a synergetic fashion and

even more: higher prediction performance is expected as already hypothesized from

Caruana (1997).

In Chapter 4 one experiment on secondary structure prediction is described that

was canceled due to insufficient performance. Compared to a variety of other exper-

iments conducted during the course of this thesis, the codon profiles described there

were the most promising yet. For a list of other canceled experiments see section

6.2.

In Chapter 5 a method is introduced that is again based on a neural network.

This time a single neural network is used to predict contacts of residues in trans-

membrane helices of membrane proteins. The introduced neural network approach

outperforms an older development of Fuchs et al. (2007) that solely relied on cor-

related mutations. The neural network can outperform the original development,

thanks to its ability to integrate additional features; here at most 595 features were

used. Moreover in Chapter 5 not only an algorithm is introduced but also a scheme is

designed that allows visualization of interacting trans-membrane helices in a graph-

ical representation. A quick overview on membrane protein topologies is enabled

by that representation as well as a subsequent application to organize membrane

proteins into structural classes. The graphical representation offers possibilities to

measure the differences between two trans-membrane proteins and via this distance

metric the proteins can get classified in a hierarchical way similar to the SCOP

classification (Murzin et al., 1995).

6.2 List of canceled secondary structure predic-

tion experiments

Many experiments on secondary structure prediction had to be aborted due to insuf-

ficient performance. The following list gives an overview of the experiments carried

out which aimed for the integration of various additional data.
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6.2.1 Meta models with predictions from PREDATOR

PREDATOR (Frishman and Argos, 1997) internally computes seven types of propen-

sities, three of them constitute locally derived likelihoods for the three classes C, E

and H, obtained from a k-nearest neighbor classifier (Aha et al., 1991), three are

estimated non-locally, based on patterns of potentially hydrogen bonded residues de-

scribing propensities for the formation of parallel, anti-parallel β-sheets and α-helices

and the seventh value holds a propensity for turn formation. These were used for

the following two-layered architecture with the sequence-to-propensities layer per-

formed by PREDATOR and the propensities-to-structure constructed from a meta

classifier like k-nearest neighbor or multi-layer perceptron – performance gain was

not enough.

6.2.2 Consideration of taxonomic characteristics

To this end a bachelor thesis was arranged. The student Michael Lidschreiber imple-

mented various ways to perform the prediction with taxonomically separated data.

The rationale therefor is that the different species bare slightly different setups for

secondary structure (Lidschreiber, 2005), and that the taxa of all target proteins

are known. Three clades eukaryots, prokaryots and viruses were considered. All

train data was separated into these clades, including the blast databases, and spe-

cific secondary structure predictors were developed – to-date algorithms could not

be surpassed.

6.2.3 Inclusion of predicted FunCat classifications

All training proteins were automatically classified into FunCat (Ruepp et al., 2004)

categories. All these categories were then modeled in the feature space of a classifier

– evaluation revealed no gain in performance.

6.2.4 Integration of predicted secondary structure content

The rationale for this purpose is that an a priori knowledge about the content of

secondary structures in a protein could bias a classifier to better detect the secondary
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structure state of residues in an local environment. Actually a significant gain in

performance was noticed when observed secondary structure content was included

in the classifier feature space – with predicted secondary structure content, the

performance was neutralized.

6.2.5 Integration of predicted contact order

The contact order (Plaxco et al., 1998) is defined as the average sequence separation

between contacting residues in the native state. It strongly correlates with the folding

rate of a protein. Ab initio 3D structure prediction programs like Rosetta have

problems predicting structures of proteins with high contact order (Bonneau et al.,

2002a). The rationale for using it as a feature for secondary structure prediction

comes again from the idea to bias the classifier to detect more ‘complex’ proteins

and utilize that information to better discover local structural features – no change

in prediction performance was obtained.

6.2.6 Integration of correlated mutations

Similar to Frishman and Argos (1996) the integration of long-range residue interac-

tion was attempted. The three algorithms successfully utilized in chapter 5 were used

to detect correlated mutations in proteins and therefrom obtain residue-residue con-

tacts. Then new features were developed for all residues in a protein. The features

encoded whether a particular residue is mutating in a correlated way with another

residue in this protein and what sequence separation is observed to this other residue.

These new features were merged with the original PSSM values and used for training

and prediction – the classifiers could not extract meaningful information from this

setup.

6.2.7 Model of hydrogen bonding patterns

Another way to integrate long range interactions was to integrate hydrogen bonding

patterns. Each residue can form two hydrogen bonds: One bond can be established

between the hydroxy-group which is a hydrogen bond donor and the other bond
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can be established with the nitrogen as bond acceptor. Knowledge of the hydrogen

bonding patterns of a protein reveals the secondary structure. DSSP (Kabsch and

Sander, 1983) for example uses the hydrogen-bonding patterns to assign secondary

structure, hence the hydrogen-bonding patterns are sufficient but not necessary for

secondary structure assignment. For all residues the hydrogen bond patterns were

predicted and these predicted bonds were then used as additional input features –

when using observed hydrogen bonds, accuracies of 90% and beyond were obtained,

but predicted ones did not help.

6.2.8 Integration of profile derivatives

This technique relates to image recognition tasks that include derivatives to detect

edges or ridges in pictures (Lindeberg, 1996). This can be obtained by subtracting

neighbored color intensities and high values then obviously indicate large changes.

Such processing was adopted for PSSM profiles and introduced into the ordinary

features. Actually a slight performance gain was observed. But again not enough to

outperform other methods.

6.2.9 Integration of missed protein cleavage sites

Peptide mass fingerprinting is a technique to identify currently expressed proteins in

whole cells. Trypsin is used to cleave the proteome and mass spectrometry (MS) is

subsequently used to obtain the masses of the obtained cleaved protein segments. A

priori knowledge about the sequences of the proteom and the trypsin cleavage sites

allows protein identification. When performing cleavage experiments one observes

potential cleavage sites that should be detected from trypsin, but are missed. It is

hypothesized that these sites are inaccessible in natively folded proteins and hence

may serve as determinants for one-dimensional structural features. Huge amounts of

cleavage data was obtained from Jürgen Cox (Max Planck Institute of Biochemistry)

and experiments were conducted to exploit them for structure prediction – no gain

in performance was derived.
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6.3 Discussion

This thesis applies machine learning techniques to predict structure-based features

of proteins. In the following the most prominent issues are summed up and brought

in context.

The structural features predicted in this work are important for a large variety of

applications. For many tasks the knowledge about these features are quite sufficient

and allow to come to conclusions. Two examples that point out this statement follow

now: Personal communication with Roland Arnold who is working on a predictor

which allows the discovery of type III and IV secreted proteins revealed that he

and his colleagues are analyzing the secondary structure and solvent accessibility of

protein segments responsible for secretion. By doing so they try to uncover structural

patterns detected by the secretion system. The second example shows that predicted

secondary structure was successfully used to describe protein complexes. Philip

Wong discovered that proteins participating in protein complexes are constrained in

secondary structure content (Wong et al., submitted).

An important aspect discovered in this thesis is that the algorithms are cru-

cial for a successful method development. The algorithms developed here for one-

dimensional structure prediction managed to surpass straight forward approaches

although merely being based on standard input data. The discussion of canceled

experiments in Section 6.2 and the description in Chapter 4 reveal that additional

descriptors were less successful to surpass current methods. Herein possibilities arise

to continue development, for example: The utilization of the codon profile described

in Chapter 4 together with the more sophisticated MOLEBRNN might even surpass

SOPRANO introduced in Chapter 3.

By contrast the improvement that TMHcon described in Chapter 5 obtains com-

pared to the original version of Fuchs et al. (2007) is possible because the used neural

network offers to integrate a multitude of data. Here a combination of applied algo-

rithm and utilization of meaningful data is responsible for the success.

Another important aspect associated with the input data is: Throughout the

work no positive effect of global protein descriptors used for the prediction of lo-
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cal features was detected. The features based on the taxonomy, FunCat, predicted

secondary structure content and, the contact order (Section 6.2) are non-varying

within a given protein and hence considered as global. No positive effect emerged

when these features were included. For TMHcon two global features were utilized:

The length of the proteins and the number of trans-membrane helices. No spe-

cial tests were conducted with these features but it is strongly believed that their

contribution to the performance is not measurable.

Although not directly approached in this work, it should be noted that method

assembly is crucial when providing downloadable software. When developing a pre-

diction system, cross-validation is the method of choice to get insights into perfor-

mances. The cross-validation procedure in general is well described and compara-

tively straight forward, but whenever the full prediction system has emerged and

the individual parts are assembled, a significant deliberation is required to ensure

that the final product has equal performance as the development revealed.

A literature search uncovers that multi-task learning did not play a big role

in machine learning after being introduced. Caruana (1997) and related work of

Suddarth and Kergosien (1990); Suddarth and Holden (1991) used artificial data

to analyze the influence of multiple prediction targets. It was not applied on real

world data for a long while. Today, greater interest is put on multi-task learning.

Four articles relating to multi-task learning have been submitted to the Interna-

tional Conference on Machine Learning 2008 (ICML2008), one of these presenting

a neural network approach (Collobert and Weston, 2008) dealing with natural lan-

guage processing (NLP) and the other dealing with HIV Therapy Screening (Bickel

et al., 2008) which is directing towards applications in computational biology. The

work presented in Chapters 2 and 3 is the first one to settle multi-task learning in

computational biology and structural bioinformatics. Similar to natural language

processing, prediction of one-dimensional protein structures offers a great variety in

prediction targets which is best modeled by multi-task algorithms. There is hope

that MOLEBRNN will be applied in various domains of science and thus will bring

forth research on sequence learning.
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6.4 Final conclusions

The work carried out for this thesis is centered around machine learning algorithms,

particularly round neural networks, applied to predict one- and two-dimensional

protein structures. The task was to contribute to structural biology by establishing

methods in the bioinformatics domain.

To reach these goals a variety of attempts were undertaken. Initial developments

are summarized in section 6.2. All these developments remained far from the goal

to significantly contribute to structural biology. The first meaningful approach is

discussed in Chapter 4 but the achieved results were not enough to alert the public.

During this initial progress the integration of additional data played the major role.

The goals of this thesis were reached when the focus was put on algorithm devel-

opment. Soon after implementing the multi output layer Elman-type bidirectional

recurrent neural network (MOLEBRNN), an integrated β-turn, β-turn type and sec-

ondary structure predictor was invented that was thought to appeal to 3rd parties

(Kirschner and Frishman, 2008)1. Continual development with MOLEBRNN en-

abled insights in the capacities resting on the concept of multi-task learning and

allowed the extension towards SOPRANO (solvent accessibility predictor applying

neural networks with multiple outputs), the best method to-date for prediction of

solvent accessibility in proteins (Kirschner and Frishman, submitted)2. Besides not

only solvent accessibility prediction with SOPRANO is to be mentioned but also

its ability to predict secondary structure and β-turns, which is outstanding and

comparable to current methods, if not superior.

Parallel to the development of predictors for one-dimensional protein structures,

work was done together with Angelika Fuchs aiming at the prediction of two-

dimensional protein structures. As Angelika already had done much preparatory

work we soon came up with TMHcon (Fuchs et al., 2008)3, a method to predict

helix-helix contacts of trans-membrane proteins. This method is the first one to uti-

lize a neural network for contact prediction in membrane proteins. Additionally, a

1http://webclu.bio.wzw.tum.de/predator-web
2http://webclu.bio.wzw.tum.de/soprano
3http://webclu.bio.wzw.tum.de/tmhcon

http://webclu.bio.wzw.tum.de/predator-web
http://webclu.bio.wzw.tum.de/soprano
http://webclu.bio.wzw.tum.de/tmhcon
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novel representation for the interactions of trans-membrane helices was introduced.

The professional work on one-dimensional protein structure prediction offered

the possibility to collaborate with two teams and contribute predicted secondary

structure for downstream analysis (Smialowski et al., 2006; Wong et al., submitted).
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