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Chapter 1

Introduction

The history of integrated digital circuits is a history of success as microelectronics

pervade the everyday life of modern people. The most important fact for enabling

the success of integrated digital circuits is the ability to produce more and more

functions on each chip for drastically reduced cost per function. This is only pos-

sible by scaling down the dimensions of the basic building blocks – the transistors.

With smaller sizes more transistors can be placed on each chip which led to Gordon

Moore formulating his famous law in 1965 [Moo65] stating that the number of com-

ponents on each chip doubles every year. Moore reduced this to every two years in

1975 [Moo75] and this rate is still valid leading to billions of transistors on present

chips.

The concept of the Turing Machine [Tur36] is one of the fundaments of machine

computation. The Turing Machine is a theoretical concept and was never built as

such. It works by reading a character from a tape and depending on this character

and the internal state of the machine, the head moves on over the tape, writes to

the tape, and the internal state of the machine changes. The Turing Machine is the

basis for the theory of Finite State Machines (FSMs). It is stated that every com-

putation can be accomplished by such a Turing Machine and still most fabricated

ICs comprise state machines in order to control the computation of the data. One

fundamental implication is that the operations are synchronized. The state machine

changes states according to a time signal called clock. Therefore, the computations

of each step have to be finished before the next clock signal and the internal blocks

have to meet certain timing constraints.

Figure 1.1 shows a common circuit structure comprising a data path, a clock

path, and two registers. The data path performs the data computation and is

located between two storage elements or registers. The clock signal is transported

1
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Figure 1.1: Combinatorial path between two flipflops

over the clock path to the receiving register. Due to their physical implementation,

the registers exhibit two timing constraints. (i) The data through the combinational

data path has to arrive by at least the setup time tsetup before the clock edge and (ii)

the data signal has to remain stable for at least the hold time thold after the clock

edge. These two constraints ensure the correct latching of the data in the flipflops.

In order to ensure before fabrication that these constraints are met, timing anal-

ysis in different stages of the design is crucial. The focus of this work is the timing

analysis for semi-custom digital designs. In this design style, logic gates from a given

library are used to implement the required logic functions. The transfer character-

istics of the single gates have to be modeled in order to obtain sufficiently accurate

estimates for the delay of the entire circuit. As the values of the input signals of the

circuit are unknown at this stage, this delay estimate has to be independent of the

actual signal value assignments, which is called static timing analysis (STA).

The shrinking of feature sizes causes accuracy problems in the manufacturing

process. The physical structures could never be fabricated with infinite accuracy and

with smaller physical dimensions, these imperfections have a larger impact on the

timing of the circuit. The International Technology Roadmap For Semiconductors

(ITRS) [TIT07] contains some information on the expected development of threshold

voltage variation as an example. The values of the estimation are displayed in

Figure 1.2. The 3σ value of the variation of the threshold voltage is expected to rise

from 17% in 2007 to more than 35% in 2015. According to the ITRS, the need for

novel methods of timing analysis considering these variations is evident. Existing

methods of STA have to be extended to consider statistical variations of process
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Figure 1.2: Rise of threshold voltage variation.

parameters leading to statistical static timing analysis (SSTA).

1.1 State-of-the-Art

This section gives an overview of the development in the area of timing analysis of

digital circuits. It starts from the basic approach to static timing analysis, covers the

methods used in industry today and ends with the latest publications of the research

community. The first subsection deals with the development of deterministic STA.

The second part introduces more process related publications, where the origins,

statistical metrology (measurement, characterization, and modeling [SFS+99]) and

implications of process variations are discussed. The third part shows the various

statistical extensions to deterministic static timing analysis in a mainly chronological

order.

1.1.1 Deterministic Static Timing Analysis

Figure 1.3 shows the three main problems which can be identified for timing analysis:

1. Waveform modeling: The waveform has to be described in a way that is com-

patible with the gate model. Starting with just the arrival time, current indus-

trial tools also model the slope. Methodologies proposed in research literature

model the shape of the waveform as well.



4 CHAPTER 1. INTRODUCTION

waveform
model

gate
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receiver

Figure 1.3: Three essential models for timing analysis

2. Gate modeling: The gate model describes the timing characteristics of a single

cell considering the input waveform and the output load. The development

progressed from a fixed delay to a load dependent delay, further to the consid-

eration of slope and, latest, the shape of the waveform. Since the first linear

models proved insufficient, nonlinear analytical models as well as look-up ta-

bles were used to capture nonlinear dependencies.

3. Receiver modeling: The receiver or load of a gate consists of the interconnect

and all connected gates in the fanout. The entire receiver structure has to be

modeled with compatibility to the gate model. The most common modeling

is to use a single capacitor, while the value of this capacitor can be computed

in various different ways. Only recently, these single capacitances became

insufficient and are replaced by more complex structures.

An overview of the literature dealing with these three problems, waveform model-

ing, gate modeling, and receiver modeling is given in the following. In the beginning

of static timing analysis, only the arrival time is propagated through the circuit

in a path-based or block-based manner. Fall delays and rise delays are considered

separately but the impact of different slopes or loads is neglected. The author of

[Hit82] describes how the delay of combinational blocks between memory elements

must meet certain timing constraints. The delay must not be too large or too small,

otherwise the resulting data can not be successfully captured by the memory ele-

ments at the end of the combinational block. Further, the two basic procedures for

traversing a circuit are described: Path enumeration and block-based analysis.

Path enumeration works by starting from a particular start point and traversing

the circuit backwards until a primary input or other terminal node is reached. This

method is very accurate and can detect and eliminate paths which can never be

sensitized. However, this method suffers from the high number of possible paths

through a circuit and thus, high computational effort.
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The second option, block-based traversal, starts at primary inputs or the output

of memory elements. All elements to which this starting point is connected to by

signals are processed and for each element the earliest and latest arrival times for

the output signal is computed. Doing so, the output arrival time of each element is

computed only once. The way of proceeding through all elements is adopted from

the Project Evaluation and Review Technique (PERT). The block-based method is

significantly faster than the path-based approach but tends to be pessimistic. Be-

cause the logic function of the gates are neglected, specific paths cannot be excluded

from the analysis. Thus, paths which would not affect the arrival time at the output

– as these paths are not sensitized – would influence the outcome of the analysis

possibly leading to a later arrival time.

In order to incorporate the load of the connected cells in the fanout, analytical

models were proposed. According to [Sap04] , one of the first approaches models the

gate delay as a linear function of the purely capacitive output load: D = k1CL + k2

with gate delay D and output capacitance CL. Due to the factor k in the linear

expression, this model and later models enhancing this basic analytical delay model

are called k-factor models. One of these enhancements was introduced in [HJ87]

where the authors proposed a method to also incorporate the dependence of the in-

put slope to the gate delay. The authors show an analytical solution for the CMOS

inverter output response to an input voltage ramp instead of the step response. The

delay of a gate is expressed by the step response delay plus a correction term. This

correction term is linearly dependent on the input transition time. Hence, the influ-

ence of the input transition time can be considered in the computation of the delay

of the inverter [WE93].

A major problem for this delay model is the nonlinearity of the relationship

between input transition time, load capacitance and delay. To capture this non-

linearity, an empirical approach evolved, which uses look-up tables. The values for

gate delay and output transition time are stored dependent on load capacitance and

input transition time. This delay model is called Nonlinear Delay Model (NLDM) as

the nonlinear functions are represented by the look-up tables. The table structure

is depicted in Figure 1.4. The entries of the tables as well as the input capacitance

of each library cell are obtained during library characterization.

Using these tables, a combinational circuit consisting of cells from the previously

characterized library can be analyzed with high efficiency. Starting at a primary in-

put the input transition time is known as the input signal is known. The output
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Figure 1.4: Look-up tables for deterministic STA. The tables store delay d and
output slope sout depending on input slope sin and output load CL

load is composed of the input capacitances of the receiving gates and the equivalent

capacitance of the interconnect. With this data, the values for the gate delay and

the output transition time can be read from the tables. The delay is added to the

arrival time at the input and the result is the arrival time at the output. Thus, the

previously described block-based traversal of the circuit is extended by the depen-

dency of the input slope to the gate delay and the slope of the signals are propagated

through the circuit together with the arrival time.

With scaling down feature sizes, increasing interconnect resistances and decreas-

ing gate capacitances lead to inaccurate results when assuming purely capacitive

load at the output [DMQP94]. However, the complex interconnect structures are

reduced to a single effective load capacitance in order to use the existing analytical

or table-based methods. In [QPP94] the authors address this problem and describe

how the resistance of interconnects become more relevant as the length of connected

lines does not scale down with feature sizes as the density is growing. Once the wire

resistance reaches the values of gate resistance, a significant part of the load capac-

itance is shielded from the driving gate. Thus, the delay of the driving gate will be

smaller as the gate can not “see” the full capacitance. As a solution to this problem

the authors propose the incorporation of a resistance model into the computation of

the effective capacitance. Mapping the effects of resistive shielding to the effective

capacitance allows the further usage of k-factor models.

The effects of resistive shielding on arrival time and slope is captured but the

underlying mechanism is still not addressed: Due to the increased resistance of the

interconnect, the signal waveforms show long “tails” at the end of a signal transition.

Such waveforms differ significantly from the ramp based model as it is used during
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propagating slope and arrival time. With shrinking feature sizes to the nanometer

region, however, this deviation from the ramp based model induces unacceptable in-

accuracies to the results of timing analysis [KL01]. It is crucial to refine the modeling

of the waveforms and thus to consider a wider range of different waveform shapes.

Besides the inaccuracy induced by overly simplistic driver models, a second effect

concerning the receivers gained importance. The input capacitance of a gate shows

increasingly nonlinear behavior. The main cause for that is the Miller effect. The

gate capacitance of the transistors depends on the drain voltage and as the drain

voltage changes during the switching of the cell, the input capacitance changes as

well.

An enhancement is needed which models the waveform more accurately and con-

siders nonlinear effects in the receiver model but is also compatible to established

NLDM in order to be applicable in the industry without changing the entire timing

concept. Two slightly different extensions of the NLDM were introduced as Com-

posite Current Source Model (CCSM) and Effective Current Source Model (ECSM).

ECSM was first introduced by [KL01] proposing to replace each gate by a current

source. The current is modeled by a piecewise linear function with one turning point

at Vth of the output voltage separating the saturation mode from the linear mode

of the transistors. The gate model consists of the current source parallel to a linear

resistor and parallel to an internal capacitance for small load capacitances. The

capacitance values are chosen to match library timing data at any operating point

in the look-up tables depending on sin and CL.

The meaning of ECSM changed slightly as a new ECSM was developed [Kez06].

Load-slope look-up tables are still in use but now for each combination of load and

slope a time-voltage waveform is stored as depicted in Figure 1.5. During STA,

for a specific effective output load and an input slope the time-voltage waveform is

retrieved from the tables. This waveform is then converted to a current waveform

and applied to the complex interconnect structure. Solving this system yields the

arrival time and slope at the input of the next gate. In order to account for the

Miller effect, the receiver gates are modeled by a variable capacitor.

The second extension to NLDM is CCSM which differs only slightly from ECSM.

Instead of time-voltage waveform, CCSM stores time-current waveforms. This re-

sults in a different library characterization but the general STA procedure is equal

to the procedure using ECSM.
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Figure 1.5: Look-up tables for different waveforms depending on input slope and
output load and π-model driven by a current source.

load
arbitrary

arbitrary
load

I(Vin, Vout)
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Figure 1.6: Current source model comprising a voltage controlled current source and
intrinsic capacitance

In [HYO04] the authors introduce equivalent waveforms. The equivalent wave-

form is a waveform with a different arrival time than the original waveform but with

a standard shape. This equivalent waveform produces the same output waveform as

the original input waveform. The use of only standard shapes simplifies the consid-

eration of waveform dependencies. This approach is not used widely by research or

industry.

Another approach with different modeling and without compatibility to NLDM

is the Current Source Model (CSM) (see Figure 1.6). The output current is still

stored in look-up tables and instead of current waveforms, the static current de-

pending on Vin and Vout is stored. These values are obtained by a DC sweep during

library characterization. The input signal for one cell is known as well as the initial

value of the output voltage. For each time step of the input transition, the current

into the receiver model can be retrieved from the look-up table. Solving the appro-

priate differential equation yields the voltage waveform at the input of the following
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gate.

The different approaches for CSM differ in the additional elements in the gate

model. The authors in [CW03] propose to use a voltage-controlled current source

(VCCS) and a constant, intrinsic capacitance. This intrinsic capacitance is used

to reflect the effects of parasitic capacitances in the gate. The capacitance value is

determined by matching the output signal of the model to the output signal of a

transient simulation on transistor level.

In [KTV04] the CSM is enhanced by capturing the Miller effect, using an ad-

ditional capacitance between the input and output nodes of a gate. Introducing

crosstalk into current source models was shown in [KTV04] and also the more de-

tailed modeling of the receiver. A further improvement was described in [FNP06]

using an additional capacitance between the input node and ground and in [NP06]

the authors describe a CSM method not storing the current in the tables but the

derivatives of the current with respect to time. These values are dependent on in-

put voltage and output load. Using these values the output current is progressively

computed by numerical integration. The authors state that their model is superior

as it reflects the effects of the parasitic capacitances more accurately.

Apart from the current source models, the authors in [ADI03, ADI05] model

the waveform using the Weibull function. It is an exponential expression with two

parameters resembling typical waveforms. The two parameters can be interpreted

as slope and shape parameters. Look-up tables are used to propagate the Weibull

parameters through the circuit.

Another timing methodology based on HSPICE simulation of individual cells was

proposed in [CM06]. Not the entire waveform but only the delay and the transition

time are propagated.

1.1.2 Technology Data

The aim of all the methods described above is to analyze the timing properties of

a given circuit for a set of fixed device parameters. However, these parameters de-

viate from their intended values due to manufacturing imperfections. This section

gives an overview of the published literature on the topic of technology data and

manufacturing variations.

Variation can be classified into global and local variations. Global variations

affect each device on one die equally, i. e. all devices on one die have the same pa-
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rameter values but different values to devices on other dies. Local variations affect

each device differently.

In the design of digital circuits, global variations can be considered by corner

case analysis. The set of parameters which causes the worst timing result, e.g. the

largest delay of a data path, is determined and the design is tweaked until the timing

constraints are met assuming that worst-case corner. As this approach is relatively

uncomplicated, the focus of the following is more on local variations.

In contrast to digital circuits, where the influence of absolute values of param-

eters are dominant, in analog circuit design the values relative to others are more

significant than their absolute values. One example is the ratio of the widths of

two transistors in a current mirror. The deviation from the intended ratio is called

mismatch. These relative values are not affected by global, i.e. perfectly correlated,

variations but by local variations. Therefore, local variations became an issue in

analog circuit design much earlier than in digital circuit design.

One example for a publication from the analog domain dealing with mismatch is

[LHC86]. The authors present measurement data from a 3µm CMOS process with

excluded influence of global variation showing more than 11% relative standard de-

viation σVth
/Vth of the threshold voltage of a p-channel MOS transistor. This value

is for the smallest transistor investigated and it is shown that the relative standard

deviation depends linearly on 1/
√

LW , where L and W is the transistor length and

width respectively.

The influence of local variations on the delay of digital paths was examined in

[EBSLM97]. The influence of threshold voltage variation on gate delay was deter-

mined for a 0.5µm CMOS process resulting in a relative standard deviation of up to

5%. This value falls below 1% for larger transistors and higher ratio of supply volt-

age and threshold voltage VDD/Vth. The effect on the path delay was investigated

by a test structure of a 24 bit carry select adder. The relative standard deviation

of the delay of a path of four gates was measured as up to 10% for a 0.5µm process

using the lowest threshold voltage and the smallest transistors. This value rose up

to 15% for a 0.35µm process. The projection of gate delay variation shows the rise

from 5% for a 0.5µm CMOS process up about 15% for a 0.18µm process. Further,

it was shown that local variations have most impact on designs with many critical

paths with small logic depth, e.g. in highly pipelined circuits.

Also the author in [Nas00, Nas01] shows the trends and sources of process vari-
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Figure 1.7: Technology parameter variation [Nas00] for device parameters (Leff ,
Tox, Vth) and wire parameters (W,T, H, ρ)

ability and how intra-die variations gain importance in the future. The author shows

numbers for the 3σ value relative to the nominal value. The variation of Vth is shown

to rise from 10% in 1997 for 250nm to 15% in 2006 for 70nm. Besides this moderate

increase, the development of the variation of other parameters is considered being

more dramatical. The variation of the effective channel length rises from 30% to

45% in the same time range. The contribution of devices (34%) and wires (66%)

to the overall delay variation is specified as well as the impact of device and wire

parameters on delay. It is shown that the wire parameters have a significant share

of the overall delay variation of 66%.

In [BKN+03] the authors present measurement data showing the larger variabil-

ity in operating frequency of manufactured chips due to process variations. The 3σ

value of the Vth variation is stated as 30mV causing a 30% variation in the chip

operating frequency. It is also shown that lowering Vth and the logic depth increases

the performance but also increases the variability of the delay of the entire chip.

The authors in [OMC+00, OMC+02] show measurements from a 180nm process re-

vealing a large intrachip Lgate variation of 10% in average causing a variation of the

delay of the critical path of up to 17%. The authors claim further, that the variation

of the gate length is rather systematic spatial than random. Thus, the actual value

of the gate length depends on the location of the gate on the die and the proposed

method to consider this effect is to use different values of the gate length for each

gate depending on the location after placement.
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Figure 1.8: A CD contour map as the average over all measured wafers [CS03a]

[CS03a] shows measurements of critical dimension (CD) done by electrical mea-

surements or scanning electron microscopy. The different scales of systematic vari-

ation is described. The given CD contour map of measured data is reprinted in

Figure 1.8. The contour map is obtained by computing the average of the measure-

ments on all wafers at the positions on the map. The systematic variation of the

CD can be seen by the spatial dependence inside each die and also over the entire

wafer.

Similar countour maps for a 130nm process are given in [FCC+05] and the prob-

lem of modeling spatial correlations is addressed. The authors propose a piecewise

linear function of the correlation coefficient depending on the distance. [Kuh07]

provides some data of variations of the threshold voltage down to 45nm stating an

increase of the standard variation σ from 25mV for 130nm to 45mV for 45nm. The

author also proposes a way of simulating the effect of random dopant fluctuation

on the threshold voltage. He uses a three-dimensional numerical model with an

adaptive local meshing scheme. The results showed a significant deviation from the

measurements indicating room for process improvement.

The effect of non-rectangular gate (NRG) for a 65nm process is discussed in

[SBS+07]. NRG is caused by the distortion of the light as the optical wavelength of

157nm is much larger than the minimum feature size. The authors point out that
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this effect mainly influences the off-current of the transistor which can deviate up

to 20X. This causes a large deviation of the leakage current. The on-current on the

other hand is only deviated by up to 5%. In [YLNC08] the authors mention the

increasing impact of NRG on the threshold voltage and describe the integration of

this effect together with line edge roughness and random dopant fluctuation into a

standard SPICE environment avoiding complex atomistic simulations.

Possible improvements to deal with the increasing influence of process variations

are classified in [BBC+08, BBC+07]. The authors note that the basis of improve-

ments is the statistical metrology. This measurement and modeling of process vari-

ations generates data which is crucial for the further operations. The metrology

data can be handed over in two different directions: The process and equipment

control on one hand and to the circuit design in the other hand. The latter aims

for a design which is robust to process variations called design for manufacturability

(DFM). “A core need is variation impact analysis, particularly tools that can utilize

richer representations of process variations, such as statistical timing analysis with

spatially correlated process variations” [BBC+08]. The state of the art of this topic

will be the focus of the next section.

1.1.3 Statistical Statistic Timing Analysis

Due to unavoidable variations in the fabrication process, the parameters of the cir-

cuit elements deviate from their nominal value. Most of these deviations are random

variations which can be described by a probability density function (pdf). The tradi-

tional way of dealing with these variations is to model the pdfs by intervals formed

by the extreme points of the distribution. The points in the process parameters

space which lie on the extreme value of every parameter are referred to as corners.

The worst-case corner shows the worst combination of extreme points. Therefore,

it used to be sufficient to show that the circuit works for the worst-case corner in

order to show that it works for all other corners.

For long data paths between two registers, the slowest case for the data path and

the fastest case for the clock path is the worst case as a setup time violation can

be caused if the data signal does not arrive at the receiving register early enough

before the clock signal. For short data paths on the other hand, the worst case is the

fastest case for the data path and the slowest case for the clock path as a hold time

violation occurs if the data signal of the next clock cycle arrives at the receiving

register before the previous data has been latched properly. Regardless wether it

is the slowest or the fastest case, the most problematic corner is always referred to
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as worst-case. The process parameters will not exceed the worst-case parameter set

and thus all chips will meet the timing specifications. This concept works well if

the process parameters on one die are perfectly correlated, i.e. all devices are in the

worst-case corner if one device is in the worst-case corner.

However, with increasing relevance of within-die (i.e. uncorrelated, local) pro-

cess parameter variations, the delay of the worst-case corner will be overestimated

which can be overly pessimistic [SSB05] if the worst-case is the slowest case or even

optimistic if the worst-case is the fastest case. If the worst-case is the slowest case,

meeting the constraints at the overly pessimistic worst-case corner implies spending

a substantial amount of time and area and loosing power efficiency without much

benefit. If it is vice versa, the timing constraints could be violated even though

the timing check passed. In addition to that, the number of corners in the process

parameter space rises exponentially with the number of process parameters. There-

fore, it becomes increasingly difficult to determine the worst-case corner.

First attempts to reduce pessimism is the consideration of within-die variations

by an on chip variation factor (OCV). The OCV contributes to the fact that the

influence of local variations declines for longer paths. Thus, different factors are

multiplied on path delays depending on the length of the path. It became clear,

however, that process variations need to be considered statistically and that the

traditional concepts of timing analysis had to be changed to incorporate the statis-

tics of the parameters. This leads to statistical static timing analysis (SSTA). The

random variation of process parameters leads to a variation of gate delays and fur-

ther to variation of signal parameters such as arrival time and slope. These random

variations can be described by pdfs.

First publications on SSTA model gate delays as discrete pdfs [LCKK01, Nai02]

or piecewise linear pdfs [DK03]. The statistical information has to be propagated

through the circuit. Therefore, two basic operations need to be executed: The ar-

rival time at the input of a cell has to be added to the delay of the cell and as both

quantities are random variables, a statistical add function has to be available. While

the add function is straightforward, the second operation can become cumbersome:

If a gate has more than one input, the statistical maximum has to be computed

by a max function. The problem arises if the two input signals are not indepen-

dent because they share common gates in their path or the process parameters of

the gates in the paths are not independent. The problem with dependency is the

computational complexity: Each combination of samples of the pdfs on which the

two input signals depend has to be considered. The number of combinations rises
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exponentially in the number of dependent pdfs, e.g. common gates of two paths,

causing prohibitive computational complexity.

Therefore, instead of computing the exact pdfs, bounds were introduced and it

was proven that these bounds are never exceeded. [OK02] describes how to derive

the joint probability distribution of the delay of a number of paths. The authors

describe a way to obtain upper and lower bounds for the distribution of the maxi-

mum of the path delays in order to get an estimate on the circuit delay distribution.

[OB04] and [WO06] show how to obtain bounds for N most critical paths using

stochastic majorization. In [ABZV03b] the authors propose a block-based method

to obtain bounds on the circuit delay. The computation of these bounds is based

on neglecting some of the inputs or assuming independence between the arrival

times. In [ABZV03a, AZB03] the same method as before is used for obtaining the

bounds which are then refined by selective enumeration, i.e. the exact computa-

tion of some most significant nodes. The use of Bayesian networks is proposed in

[BVB05] in order to obtain bounds for the pdf of the circuit delay. The authors in

[JKN+03, JKN+06] show how to find the yield, i.e. the probability that the tim-

ing constraints are met by three different ways: 1) Dividing the feasibility region,

which is the area in the process parameter space which satisfies timing constraints,

into rectangles and integrate the jpdf inside the rectangles, 2) finding the maximal

ellipsoid inside the feasibility region and integrate over the volume of that ellipsoid

and 3) using tightness probability as in [VRK+04] (see below).

On the one hand, it seemed too complex to compute the exact pdf of a circuit and

on the other hand, it was observed, that most process variations can be modeled
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by Gaussian distributions with sufficient accuracy. As Gaussian distributions are

fully described by the mean value µ and the standard deviation σ, it is sufficient to

consider only these two characteristics of the random variables. In addition, it was

assumed to be sufficient to model the gate delay as a linear function of transistor

parameters. This is used in [GNDL01] in a path-based approached, where the n

most critical paths are obtained from STA and the sensitivities of the path delay

with respect to the process parameter variations are obtained. With this informa-

tion and assuming Gaussian random variables, the distribution of the path delay can

be computed. The linear assumption leads to a simple representation of the arrival

times in a circuit by weighted sums of process parameter variations referred to as

canonical sums. In [ABZ03] this form is used and a method is proposed to compute

the addition and bounded maximum operation of two of these canonical sums in

order to propagate the canonical sums through the circuit. [CS03b] describes how

an estimate of the maximum of two canonical sums can be computed using the work

of [Cla61]. In [OYO03] the authors describe in more detail how to obtain the sen-

sitivities for all relevant values of input slope and output load. The representation

of the transfer function of an interconnect structure in a canonical form is shown in

[AFP06] and [AFP07].

Using the canonical form solves the problem of reconvergent fanouts: The rep-

resentation as a sum of random variables keeps track of all variables from previous

gates. If two signals reconverge, the canonical sums of their arrival times show com-

mon variables. With this information the correlation between the two arrival times

can be obtained and used for the computation of the maximum. Besides the problem

of reconvergent fanouts, the problem of correlated process parameters still remains

open. The random variables used in the canonical form have to be independent. If

the process parameters are correlated, i. e. not independent, these parameters have

to be transformed into a set of independent variables.

Principle Component Analysis (PCA) can be used to decorrelate random vari-

ables. For Gaussian random variables uncorrelatedness also implies independence

(see Section 2.3.4). The PCA itself is described in [HKO01] while the application

to obtain a linear sum of process parameters is shown in [CS03b, CS05b]. A more

detailed description of the application to die-to-die and wafer-to-wafer variations

and the description of a constraint PCA can be found in [CKK+08].

For non-Gaussian random variables, PCA can not be used as uncorrelatedness

does not imply independence. A more complex transformation of a set of random

variables into a set of independent random variables is Independent Component
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Figure 1.10: Quad-tree partitioning of the die to model spatial correlations [ABZ03].

Analysis (ICA), which is also described in [HKO01] and applied in [SS06] and [SS08].

ICA was developed to separate different sources, e. g. audio signals, from a linear

mixture. The basic principle is the reduction of the Gaussianity of the output sig-

nals because a mixture of two random variables is always more Gaussian than the

original signals. ICA can be applied only on non-Gaussian random variables.

Apart from the transformation of the original random variables into independent

variables, other methods exist to obtain a sum of independent random variables more

directly. One such method for obtaining a canonical form representing correlated

delays is a quad-tree model [ABZ03]. Figure 1.10 shows how several layers are used

to partition the die into rectangles with lower layers showing a finer granularity of

the partitioning. One independent random variable is assigned to each rectangle.

Each parameter of a device on the die is represented by a sum of the random vari-

ables which are assigned to the rectangles in which this particular device is located.

In a similar way the die can be divided into a grid [CS03b, CS05b, CS05a, KS05,

SSA+05]. Besides quad-tree and grid-based models, correlations can also be mod-

eled by distance-dependent functions. In [FCC+05] a linear function was proposed,

but in [LWA06, XZH07a, XZH07b] it is shown that the resulting assumed covari-

ance matrix is not positive semidefinite and thus lacks the property of a covariance

matrix. Thus, a methodology is proposed to obtain a nonlinear spatial correlation

function and a correlation matrix from measurement data. In [LTCC08] a set of

polynomials is used as spatial correlation function using Singular Value Decomposi-

tion and Polynomial Fitting. The property of the correlation matrix being positive

semidefinite is obtained by a post-processing step. To overcome the problem of
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modeling the spatial correlation, the authors in [ISNM08] propose a Monte Carlo

based approach. In their work, a vector of sampled delays for each gate is used for

SSTA.

Using the linear canonical form, the addition of two arrival times or delays is a

straightforward addition of the appropriate coefficients. For the maximum operation

some of the authors use the analytical expression of Clark [Cla61] to compute the

moments of the maximum. A simpler approach to estimate the maximum of two

arrival times is to linearize the max function. In [VRK+04, VRK+06] the authors

introduce the idea of tightness probability and use it as factors of the canonical

form. The tightness probability is defined as the probability that one signal arrives

earlier than the other signal: P (a1 < a2). Wherein a1 and a2 are the arrival times

of the two signals. The linear expression for the arrival time o at the gate output

is then: o = P (a2 < a1)a1 + P (a1 < a2)a2. An extension to this linear approach is

presented in [ZCHpC06] where the authors propose to estimate the nonlinearity of

the max function at the current gate and keep a tuple of the input arrival times if

this estimate of the nonlinearity is above a certain threshold.

The assumption of linear influence of process parameters on gate delay is dis-

cussed controversially and some authors claim that linear modeling is too inaccurate.

In order to enhance the accuracy of the linear model, higher order timing models

were introduced: [LLGP04] shows how to represent a circuit performance f of an

analog or digital circuit by a transfer function of linear time invariant (LTI) system.

The cumulative density function (cdf) and probability density function (pdf) can

then be approximated by the step response and impulse response of the LTI system,

respectively. In [CZNV05] an additional term is introduced in the canonical form,

which captures nonlinear dependencies to process parameters. [ZCH+05, ZCH+06]

offer a quadratic gate delay model and the according atomic operations add and

max. A similar quadratic gate delay model is proposed [ZSL+05] but in addition

to that, also a quadratic wire delay model and a slightly different max operation is

shown. Apart from these polynomial models, [CC05, CC07] proposes an analytical

model for the gate delay and [BVGC06] enhances it by using Karhunen-Loève Ex-

pansion to model the spatial correlation between transistor parameters.

All methods mentioned above model only the delay and in some cases the slope.

With downscaling feature sizes, however, this simplification of the waveforms leads to

unacceptable inaccuracies of SSTA. Thus, similar as in the deterministic case, recent

publications propose the application of current source models to SSTA: [FNP06] uses

Markov chains to model the variations of the voltages at the output. The authors of
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[ZXA+07] model the variation of the waveform by basic operations like time shift,

time scale, voltage shift and voltage scale. The parameters of these basic operations

are then considered as random variables and propagated through the circuit in a

block-based manner. In [GV08] a variational current source gate model is proposed

but it remains unclear how the variation of the input signal propagates to the output.

Another wide field of research using the results of SSTA is the optimization of

circuits by altering design parameters. As this is not the main focus of this work,

only the work in [LLCP08] shall be mentioned. The authors describe a method of

finding the arcs of the timing graph which are best suited to be optimized, i.e. up-

or downscaled in order to improve the maximal frequency or the parametric yield.

1.2 Contributions of this Work

This work provides a novel path-based method for variational analysis of digital

integrated circuits. The method works on a netlist of a particular path of a digital

design, which includes all extracted parasitics after the layout. The intention is to

build a highly accurate and reliable reference tool for SSTA. Therefore, higher run-

times are accepted, even though these runtimes inhibit the use as a tool for timing

sign-off. The method extends an existing industrial tool, which provides the func-

tionality of deterministic timing analysis, the partitioning of a path into separate

stages and the determination of the critical path. This work adds the functionality

of statistical analysis to this tool.

Different to existing methods, the entire waveform resulting from analog simu-

lations as well as the complete interconnect structure and the dynamic load of the

fanout are considered. The result is the information of the variation of the voltage

at a number of points on the waveform at the output of a path. More precisely, the

influence of each transistor parameter on the voltage at each specific point is avail-

able. This information can be used to compute the probability of violating the timing

constraints or the optimization of the circuit to change the influence of specific pa-

rameters. The results show that the accuracy of the proposed method is comparable

to analog Monte Carlo simulation but with a considerably shorter execution time.

The method was implemented as an in-house reference tool at a leading manufac-

turer of integrated circuits with the need for evaluating available sign-off tools. The

following publications resulted from this work: [SLS+07, SKS08c, SKS08b, SKS08a]
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Chapter 2

Problem Formulation

2.1 Delay

The main characteristic of digital circuits is the processing of two distinc signal states

referred to as True/False, 1/0, On/Off or Vdd/Vss depending on the abstraction level.

The specification, which should be fulfilled by the circuit, can be represented by a

logic function. The logic function consists of basic operations, e.g. NAND, NOR,

etc., and each of these basic operations is represented by one logic gate in the circuit.

Each gate has a specified number of inputs and most gates have one output. The

gate library is the collection of all available gates and the optimal partitioning of

the logic function to basic operations has to be found.

The gates are built of transistors which realize the basic functionality of switches.

These switches connect or disconnect two circuit nodes and thereby control the

flow of electrons, i.e. charge, depending on the signal value of the control pin, i.e.

the gate, of the transistor. The transistor gates and various other parts of the

physical implementation shown capacitive behavior. These capacitors have to be

(dis-)charged whenever the signal value changes. This requires the transportation

of charge through the transistors. The transported amount of charge per time and

thus, the required time to (dis-)charge the capacitors depends on the physical prop-

erties of the transistors, e.g. threshold voltage or resistance in the on-state.

The delay of a logic gate is defined as the time from when the input signal crosses

half the voltage swing, (Vdd − Vss)/2, to when the output signal crosses half the

voltage swing. The gate delay depends on the physical properties of the transistors

as well. Not only gates but also interconnects cause delay, which is defined similarly

to the gate delay. The next section describes the problem of finding the delay of an

entire circuit, given the delay of the individual logic gates and interconnects.

21
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(a)

(b)

Figure 2.1: Example circuit (a) and corresponding timing graph (b)

2.2 Timing Analysis

The subject of timing analysis is to obtain the total delay of a circuit. An example

circuit is shown in Figure 2.1(a). The circuit is represented by a timing graph which

is a directed, acyclic graph (DAG) G = (N, E, ns, nf ) as in Figure 2.1(b) [Hit82].

N denotes the set of nodes, E the set of edges, ns the source node and nf the sink

node. The nodes represent primary input and output pins or the input and output

pins of the gates. The edges represent the delay between the nodes, which can be

either the gate delay or the interconnect delay.

The procedure of deterministic static timing analysis (STA) is to propagate the

timing information through the timing graph in order to obtain the arrival time at

the sink node nf . Let pi be a path in G, represented by an ordered set of edges from

the source node ns to the sink node nf . An example path is shown in a dashed

line in Figure 2.1. The methodology proposed in this work is intended to serve as

a verification tool to evaluate commercially available timing tools. Therefore, the

analysis is confined to particular paths pi. The path delay is not the delay of the

entire circuit, but the result can be compared to the results of the path analysis

of other tools. In addition, the proposed method enables the accurate analysis of

special paths which are critical for the design.

In the following, the gate delay is merged with the interconnect delay, as it is

analyzed in the same step and the two are physically closely related. The resulting

timing graph for the example path from Figure 2.1 is shown in Figure 2.2.
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Figure 2.2: Example path (a) and corresponding timing graph (b)

The timing information is now propagated from the source node ns to the sink

node nf through the path. Thus, the only operation which is needed is the transfer

of timing information through one node. The operation for merging two or more

incoming edges is not necessary in this path-based approach.

2.3 Variations

2.3.1 Uncertainties in Timing Analysis

During timing analysis of digital circuits, uncertainties arise from three different

directions:

1. modeling and analysis errors: The modeling of devices and interconnects is

based on simplifications, which cause inaccuracies. Also timing tools which

employ these models possibly induce further errors.

2. variations in the manufacturing process: Parameters of devices and intercon-

nects show die-to-die and within-die variations.

3. variations in the operating conditions: Supply voltage and temperature are

examples of operating conditions which are subject to variations and influence

the timing characteristics of the circuit.

The first influence occurs during the design process. During logic synthesis,

buffer insertion, and place and route, timing analysis is performed. However, at

each stage different inaccuracies are introduced due to effects such as undetected

false paths, error in the cell delay, error in the extraction of interconnect parasitics,

SPICE models, etc. All these effects cause the result of the timing analysis to be

close to reality but not perfectly matched.



24 CHAPTER 2. PROBLEM FORMULATION

Saturation Current
Gate Capacitance
Wire Resistance
Wire Capacitance

Gate Delay
Slope
Wire Delay
Waveform Shapes

Critical Dimension
Oxide Thickness
Channel Doping
Wire Width
Wire Thickness

Physical
Parameter
Variation

Electrical
Parameter
Variation

Timing
Variation

Figure 2.3: Variation of physical parameters causes variation in electrical parame-
ters, which causes variation in timing parameters [BCSS08].

The next influence is due to process limitations or equipment imprecision. This

influence is the main focus of SSTA and thus it is described in more detail in Section

2.3.2 below. Variations in operating conditions are especially relevant for circuits de-

signed to operate in changing environments, e. g. mobile or automotive applications.

Supply voltage and temperature influence the performance of a circuit and there-

fore, these influences have to be accounted for during the design. These variations in

operating conditions are usually captured by corner-case margins, as each individual

chip has to work properly under all temperature and supply voltage conditions.

2.3.2 Process Variations

With scaling feature sizes down to the nanometer region, it becomes harder to

achieve accurately manufactured chips. Parameters that show variation caused by

manufacturing inaccuracies can be classified into three categories:

1. physical parameters,

2. electrical parameters, and

3. performance or timing parameters.

The influence of physical parameters on electrical parameters and further on per-

formance parameters is shown in Figure 2.3. The variation of physical parameters

are due to various effects including chemical mechanical polishing (CMP). CMP is

used to planarize insulating oxides and metal lines. Other effects are the optical

proximity effect, which causes inaccuracies in structures which are smaller than the

wavelength of light used in the lithography and lens imperfections in the optical

system. Due to these and other effects, the parameters of devices and interconnects,

such as gate length or critical dimension (CD), gate-oxide thickness, channel doping

concentration, interconnect thickness and width, etc., show a substantial amount of
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variation.

The electrical characteristics of a device such as driving current or input capac-

itance depend on the physical parameters of the device. Thus, the variations of the

physical parameters causes a variation of the electrical parameters. And, further,

performance or timing parameters, e.g. delay, slope, or more complex quantities, in

turn depend on the electrical parameters and the timing or performance parameters

show variation as well caused by the variation of the electrical parameters.

It is important to note that more than one electrical parameter depends on a

single physical parameter. For example, the wire resistance and capacitance both

depend on the wire width and are thus correlated. The worst-case for wire resistance

would mean a thin wire while the worst-case for the wire capacitance would mean

a thick wire. Thus the worst-case for the wire delay – worst-case resistance and

capacitance – is physically impossible. This shows how important it is to correctly

consider the correlation between the electrical parameters.

Besides the three classes of parameters described above, a fourth class of pa-

rameters is introduced as model or transistor parameters. These are the parameters

of the device models, e.g. BSIM4.3. They can be either physical parameters like

channel length offset xl , electrical parameters like threshold voltage vth0 or param-

eters which are derived from physical and electrical parameters, e.g. electrical gate

equivalent oxide thickness toxe. Most tools operate on these model parameters and

therefore, in the following mainly model parameters are used.

2.3.3 Physical Parameter Variation

The classification of physical parameter variation can be based firstly, on whether

the variation is systematic or random or secondly based on the spatial range, i.e.

long-distance or short-distance effects. The classification is shown in Figure 2.4.

1. Systematic variations are deterministic variations caused by well-understood

physical effects. Systematic variations of physical parameters are mainly due

to optical proximity effects, CMP and the associated metal fill. Since these

effect are layout-dependent, they can be considered once the layout is finished.

Thus, the consideration of systematic variations is possible at the end of the

design process especially for timing sign-off. However, there is a need to include

systematic effects into the analysis of earlier stages of the design when the
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Figure 2.4: Classification of physical parameter variations [BCSS08].

layout is not available. Therefore, systematic variations are also considered

statistically even though they occur due to deterministic effects.

2. Random variations are purely random variations of the process parameters.

Before manufacturing, only the statistical characteristics are known and there-

fore, these variations have to be modeled by random variables. Examples for

random variations are line-edge roughness (LER) and random dopant fluctu-

ations (RDF).

Besides the classification into systematic and random variations, the variations

can be classified according to the spatial characteristics.

1. Die-to-die variations (global, inter-die variations) affect each device on one

die equally. This can be caused by a non-uniform etch concentration, which

causes CD variation. The concentration might be different in the center of the

wafer than on the edge causing a gradient in the CD. This gradient doesn’t

cause significant variation on one die but variation from one die located in the

center of the wafer to another die which is located on the edge of the wafer.

Other sources can be misalignment of the stepper carrying the lithography

masks or a drift of the intensity of the laser. The spatial range of die-to-die

variations could be further expanded to wafer-to-wafer, lot-to-lot, and fab-to-

fab variation.

2. Within-die variations (local, intra-die variations) influence each device on the

die differently. The CD of one transistor might be smaller than the CD of the

transistor in close proximity to the first one.
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Within-die random variations can be further classified into correlated and indepen-

dent parameter variations. Within-die systematic variations can not be independent

as they would be classified as random variations in that case. The reasons and im-

plications of correlations are explained in the following section.

2.3.4 Statistical Parameters

Distribution of a Random Variable

This section describes the mathematical basis for the description of statistical pa-

rameters by random variables. The notations are derived from [HKO01] and more

detailed information can be found in [Pap91]. Each statistical parameter s can be

described by a random variable and is characterized by its cumulative density func-

tion (cdf) Fs(s). The cdf shows the probability that the value of this parameter is

below a certain threshold s0:

Fs(s0) = P (s ≤ s0) (2.1)

For continuous random variables the cdf is a non-negative, nondecreasing continuous

function. The values of Fs lie in the interval 0 ≤ Fs(s) ≤ 1 and the limits are

Fs(−∞) = 0 and Fs(+∞) = 1. Another way of describing the distribution is the

probability density function (pdf) of a parameter s. The pdf is obtained as the

derivative of the cdf:

ps(s0) =
dFs(s)

ds

∣∣∣∣
s=s0

(2.2)

The pdf can also be computed from a known pdf using the inverse relationship

Fs(s0) =

∫ s0

−∞
ps(ξ) dξ (2.3)

For simplicity F (s) is used instead of Fs(s) and p(s) instead of ps(s) when no

confusion may arise.

Assume now that s = (s1, s2, . . . , sn) is a random vector with the continuous random

variables s1, s2, . . . , sn. The generalized form of the cdf becomes

Fs(s0) = P (s ≤ s0) (2.4)

and the pdf can be obtained by

ps(s0) =
∂

ds1

∂

ds2
. . .

∂

dsn
Fs(s)

∣∣∣∣
s=s0

(2.5)

The distribution of two different random variables s1 and s2 can be described by

the joint cumulative distribution function (jcdf)

Fs1,s2(s10 , s20) = P (s1 ≤ s10 , s2 ≤ s20) (2.6)



28 CHAPTER 2. PROBLEM FORMULATION

Similarly to Equation 2.2, the joint probability density function (jpdf) can be defined

by differentiating the jcdf Fs1,s2 with respect to both variables s1 and s2. Thus,

Equation 2.3 can be written as

Fs1,s2(s10 , s20) =

∫ s10

−∞

∫ s20

−∞
ps1,s2(ξ, η) dη dξ (2.7)

Integration of the jpdf ps1,s2(s1, s2) over the variable s2 leads to the marginal

density ps1(s1) of s1 and vice versa for ps2(s2):

ps1(s1) =

∫ ∞

−∞
ps1,s2(s1, η) dη (2.8)

ps2(s2) =

∫ ∞

−∞
ps1,s2(ξ, s2) dξ (2.9)

Expectations and Moments

In most cases, the exact pdf of a model parameter s is unknown. The only data

available are measurements from the production process. With this data expecta-

tions and higher order moments can be estimated. The expectation of a random

variable s is defined by

E{g(s)} =

∫ ∞

−∞
g(s) ps(s)ds (2.10)

The expectation can be estimated from measurements g(sj) by

E{g(s)} ≈ 1

K

K∑

j=1

g(sj) (2.11)

In the case of g(s) = s Equation (2.10) describes the first moment or mean of the

random variable

µs = E{s} =

∫ ∞

−∞
s ps(s) ds (2.12)

and the estimated mean value can be obtained by

µ̂s =
1

K

K∑

j=1

sj (2.13)

Higher order moments can be centered by subtracting the mean from the random

variable. The centralized second moment is called variance and is defined by

σ2
s = E{(s− µs)

2} (2.14)
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Considering more than one variable, vector notation for s is more convenient.

The second moment of pairs of elements in s is called covariance and given by

csi,sj = E{(si − µsi)(sj − µsj)} (2.15)

When no confusion can arise, the notation csi,sj may be simplified to ci,j and for

other variables respectively. The covariances of all statistical parameters si are put

together to form the covariance matrix

Cs = E{(s− µs)(s− µs)
T} (2.16)

The elements of the covariance matrix normalized by their variances are called cor-

relation coefficients

ρi,j =
E{(si − µsi)(sj − µsj)}

σiσj
(2.17)

Combining the correlation coefficients into a matrix yields the correlation matrix

Rs. The correlation matrix is symmetric (Rs = Rs
T ) and positive semidefinite

(aTRsa ≤ 0). Further, the eigenvalues of Rs are real and non-negative, all eigen-

vectors of Rs are real, and it is always possible to find mutually orthonormal eigen-

vectors.

Uncorrelatedness and Independence

The elements of a random vector are uncorrelated if the following condition holds

for the covariance matrix Cs:

Cs = E{(s− µs)(s− µs)
T} = D (2.18)

with the diagonal matrix

D = diag(c1,1, c2,2, . . . , cn,n) = diag(σ2
s1

, σ2
s2

, . . . , σ2
sn

) (2.19)

For the special case of two random variables s1 and s2, the condition leads to the

fact that their covariance c1,2 is zero

c1,2 = E{(s1 − µs1)(s1 − µs2)} = 0 (2.20)

or equivalently

E{s1s2} = E{s1}E{s2} (2.21)

It is important to note that the correlation coefficient does not capture the complete

relationship between two random variables. In order to completely describe the rela-

tionship or dependence copulas are needed. Only for special cases like the Gaussian
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distribution, the correlation coefficient describes the entire dependence between two

random variables.

Figure 2.5 shows distributions of two random variables p1 and p2. a) and b) show

two Gaussian random variables which are a) uncorrelated and b) correlated. Note

that the correlated variables are closer to a line through the center. c) and d) show

two uniformly distributed random variables. In c) they are perfectly correlated and

in d) the two variables are uncorrelated but not independent. These two random

variables in d) are obtained by rotating two independent random variables s1 and

s2: [
p1

p2

]
=

[
cos α − sin α

sin α cos α

][
s1

s2

]
(2.22)

with an arbitrary rotating angle α.

In general, uncorrelatedness does not imply independence of two random vari-

ables [Pap91]. Two random variables s1 and s2 are independent if and only if

ps1,s2(s1, s2) = ps1(s1)ps2(s2) (2.23)

The jpdf ps1,s2(s1, s2) must factorize into the product of their marginal densities

ps1(s1) and ps2(s2). Two independent random variables satisfy the following condi-

tion:

E{g(s1)h(s2)} = E{g(s1)}E{h(s2)} (2.24)

Comparing to (2.21) it can be seen, that independence is much stronger than un-

correlatedness and that uncorrelatedness only considers the second moment while

independence considers all moments. This aspect becomes especially interesting

when dealing with Gaussian random variables which are introduced in the follow-

ing.

Gaussian Random Variables

In this work, it is assumed that model parameters can be modeled by Gaussian

random variables with sufficient accuracy. Therefore, some details of the Gaussian

distribution are highlighted in the following. The n-dimensional vector s of random

variables is said to be Gaussian if the pdf of s has the form

ps(s) =
1

(2π)n/2(detCs)1/2
exp

(
−1

2
(s− µs)

TCs
−1(s− µs)

)
(2.25)

For just one single variable s this simplifies to

ps(s) =
1√
2πσ

exp

(
−1

2

(
s− µs

σ

)2
)

(2.26)
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Figure 2.5: a) uncorrelated Gaussian variables b) correlated Gaussian variables c)
perfectly correlated uniformly distributed variables d) uncorrelated but not inde-
pendent uniformly distributed variables (see Equation (2.22))
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Gaussian random variables have some special properties which make the assumption

of Gaussianity attractive:

1. The distribution is completely described by only first and second moments. If

the mean value µs and the standard deviation σs is known, the entire distri-

bution can be obtained. This becomes an advantage in SSTA if it is assumed

that signal arrival times are Gaussian as well. In which case, only the values

for µ and σ of the arrival time have to be propagated through the circuit in

order to compute a distribution of the arrival time at the output.

2. Gaussianity is preserved under linear operations. If x is a Gaussian random

vector and y = Ax a linear transformation, then y is also Gaussian with

mean vector µy = Aµx and covariance matrix Cy = ACx AT . This property

is useful if linear sensitivities of timing quantities to transistor parameters are

sufficient to achieve an acceptable accuracy. The transistor parameters can

be modeled as Gaussian random variables and the timing characteristics like

arrival time, slope or others will also remain Gaussian, which results in the

advantages of the first property.

3. The third property regards the uncorrelatedness and geometrical structure of

the Gaussian distribution. As mentioned earlier, the first and second moment

are sufficient to describe the Gaussian distribution. If two Gaussian variables

are uncorrelated according to Equation (2.21), Equation (2.23) holds as well

and thus, both variables are independent.

Any non-diagonal covariance matrix Cs, i.e. correlated random variables, can

always be written in the form

Cs = EDET =
n∑

i=1

λ ei e
T
i (2.27)

where E is an orthogonal matrix with columns e1, e2, . . . , es being the n eigen-

vectors of Cs and D = diag(λ1, λ1, . . . , λn) being the diagonal matrix com-

prised of the eigenvalues λi of Cs. Applying the rotation E to the centered

vector s

u = ET (s− µs) (2.28)

then yields a vector u of uncorrelated and hence independent Gaussian ran-

dom variables.

The eigenvectors ei and eigenvalues λi of Cs can be interpreted geometrically

as in Figure 2.6. All points on the jpdf with constant value (ps(s) = const)
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Figure 2.6: Geometric illustration of a two dimensional Gaussian distribution
[HKO01].

form hyperellipsoids centered at the mean value µs. The principal axes are

parallel to ei have the length λi. The figure intuitively shows, how a rotation

decorrelates the random variables.

Using Gaussian random variables leads to sufficient accuracy of the proposed algo-

rithm and also to a highly reduced complexity. Therefore, in the following Gaus-

sianity is assumed and correlation is used to describe statistical dependence between

random variables.

Correlations in SSTA

In the following, the implications of correlation for SSTA are highlighted. Correla-

tions can occur between transistor parameters and between timing parameters such

as arrival times and also between transistor and timing parameters. Correlations

between arrival times can be caused by two effects:

1. Spatial correlation denotes correlation of transistor parameters depending on

the distance to each other. Especially when systematic variations are modeled

as random variables, they often show significant correlation. E.g. a gradient on

the wafer leads to similar parameters for neighboring transistors. As the arrival

times at the output of the cells are determined by the transistor parameters,

these arrival times are also correlated.

2. Topological correlations arise when the circuit is analyzed in a block-based

manner. If the output of a gate is connected to more than one following gate

(fanout), the arrival times of all signals in the fanout cone are dependent on the
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first fanout gate. Thus, all of these signals are correlated. The computation

of the maximum arrival time at a reconvergence point becomes cumbersome.

As the proposed method is path-based, the problem of reconverging paths does

not occur. Therefore, the following focuses on spatial correlations. If two parame-

ters si and sj of devices on one die belong to the class of die-to-die variations, they

vary equally or in other words, these variables are perfectly correlated (ρi,j = 1).

Within-die variations, on the other hand, can be either correlated (0 < ρi,j < 1) or

completely independent (ρi,j = 0) as outlined in Section 2.3.3.

In order to capture correlations between parameters, the correlated parameters

are represented by weighted sums of independent random variables. Two perfectly

correlated parameters are described by one single random variable. If two parame-

ters show arbitrary correlation, two independent random variables are contained in

both weighted sums and the weights determine the correlation coefficient between

the two parameters. To adapt this to spatially correlated transistor parameters, sev-

eral methods have been published, which are all compatible with the SSTA method

proposed in this paper. The method based on principle component analysis (PCA)

and the method based on quad-tree partitioning of the chip will be explained in the

following.

If the covariance matrix of the parameters is known and it is assumed that the

random variables are Gaussian, PCA can be applied to generate the factors of the

weighted sums to represent each correlated parameter as a sum of independent ran-

dom variables [CS03b]. Let z ∼ N(0,Cz) be the vector of correlated Gaussian,

zero mean random variables that have to be represented as a weighted sum of the

independent, Gaussian, zero mean random variables p ∼ N(0, I) where Cz is the

symmetric and positive definite covariance matrix obtained by an appropriate cor-

relation model. Cz can be factored by the Cholesky factorization as

Cz = KKT (2.29)

For more detailed information refer to [GvL85]. Using the Cholesky root K the

vector z can be represented by

z = Kp (2.30)

and z will also be Gaussian with mean

E{z} = KE{p} = 0 (2.31)

and covariance matrix from (2.16):

E{(Kp)(Kp)T} = E{KppTKT} = KE{ppT}KT = KKT = Cz (2.32)
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During the analysis the independent random variables p are used and after perform-

ing the SSTA, the parameter set p can be transformed back to the original set z.

A second option was introduced on page 17 and Figure 1.10 as a quad-tree

model [ABZ03] where several layers are used to partition the chip into rectangles

with lower layers showing a finer granularity of the partitioning. One independent

random variable is assigned to each rectangle. Each parameter of a device on the

chip is represented by a sum of the random variables which are assigned to the rect-

angles in which this particular device is located.

Canonical Sum

The result of these and similar methods is a sum of independent random variables

and thus the processing of correlations can be considered a preprocessing step before

independent random variables are assumed for timing analysis. As it simplifies

the following, zero mean random variables are used and the mean is considered

separately from the sum.

This sum of independent random variables is called canonical sum as in [ABZ03,

VRK+04] and can be written for parameter pi as:

pi = pi,0 + δpi = pi,0 +
N∑

j=0

αi,jδp
′
j (2.33)

Wherein δp′j are the independent, zero mean random variables, resulting from the

correlation model above and pi,0 is the mean of pi. A more compact writing can be

obtained using vector notation:

p = p0 + δp (2.34)

Using this representation of varying transistor parameters, the next step is the

mapping to performance or timing parameters ui. A linear model is chosen to

represent this mapping. Such a linear model is valid only if the variations are not

too large. Experiments on industrial process data showed that variations stay well

within this linear region. If the transistor parameters are modeled by a canonical sum

and the mapping to performance parameters is linear, the performance parameters

may as well be represented by a canonical sum:

ui = ui,0 + δui = ui,0 +
N∑

j=0

αi,jδp
′
j (2.35)
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The parameters δp′j denote the independent parameters from the correlation model

or transformation of random variables. In section 3.4.1 it is shown how the canon-

ical sums of the performance parameters ui can be transformed into an expanded

representation leading to a smaller variation of these parameters.

The SSTA problem is now to obtain the coefficients αi,j for each cell and traverse

the circuit in order to obtain the αi,j for the desired performance parameters ui at

the output of the circuit.

2.4 Waveform Relevance and Suitable Modeling

Presenting the state-of-the-art in Section 1.1, the chronological development from

delay to slope and further to the consideration of waveform shapes was sketched. In

the problem formulation so far, only timing information or performance parameters

were mentioned. This should now be specified by answering the following question:

How accurately should the signals in the circuit be modeled?

Traditional approaches use arrival time and slope but the influence of wire re-

sistance is increasing and thus the relevance of waveforms. In order to quantify the

influence of signal shapes, a NAND gate with two inputs from an industrial library

is simulated with two differently shaped input waveforms. To ensure that these

waveforms are realistic, they are obtained by simulating the same gate twice with

different values of the resistance in the RC-load. The two resulting waveforms were

shifted and scaled such that the arrival time and slope matched. Figure 2.7 shows

these two input waveforms with equal arrival time and slope as well as the resulting

output waveforms. The difference of the delay for the two different waveforms at

the input is approximately 10%. This comparison shows that arrival time and slope

are not sufficient to model the waveforms when increasing wire resistance causes

deviation from standard waveform shapes. The problem of waveform based SSTA

can be divided into three parts similar to the classification mentioned earlier:

1. A suitable waveform model has to be found which can describe more details

of the waveform. The sensitivity coefficients in Equation (2.35) have to be

computed and propagated through the circuit. The result is the analysis of

the waveform variation of the output of the circuit.

2. The driver model has to be extended as well because classical tables can not

deal with waveform shapes. More sophisticated methods such as current source

models suffer from simplifications that cannot guarantee high accuracy for all

possible application scenarios.
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Figure 2.7: Two waveforms with equal arrival time and slope obtained by altering
the resistance of the interconnect

3. The receiver model has to be refined. As shown earlier, a simple capacitor can

not represent the resistance of the wires and also nonlinear input capacitances

of gates cause severe problems when using approximated models.

These three problems will be addressed in the next section. The choice how to solve

each problem is taken in favor of accuracy rather that runtime. The reason for that

is that a reference tool is needed to evaluate commercially available tools in cases

where Monte Carlo analysis is not possible due to runtime restrictions.

2.5 Integration into Industrial Context

The aim of this work is to provide a methodology which is not only of academic

interest but is also of use to industry partners. This methodology is intended to

extend current industry tools. Such a tool is the Path Delay Calculator (PDC) of

one of the leading global semiconductor manufacturers. The PDC is a block-based

STA reference tool based on transistor level simulations. It considers waveforms and

complex driver and receiver models including entire interconnect structures. In this

work the PDC is extended by statistical analysis to a path-based SSTA reference

tool. Future projects could endeavor to adopt the block-based procedure, which is

not the scope of this work.
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Chapter 3

Waveform Based Timing Analysis

This chapter describes the core ideas of a novel approach for path-based Statistical

Static Timing Analysis. The different aspects of modeling are highlighted followed

by the description of the nominal STA. After that, the consideration of parameter

variations is introduced and how these variations are propagated through a path.

At the end of the path the results are post-processed in order to compare them in a

quantitative manner to the results of a Monte Carlo analysis.

3.1 Modeling

As mentioned earlier, three models are needed for SSTA: Waveform model, driver

model and receiver model. These models are needed to traverse through a circuit

in a path-based manner. In a standard STA the timing properties of the individual

cells are obtained by analog simulations during library characterization. The current

industry standard uses two parameters to model the timing of the cells: The cell

behavior is parametrized by the delay and slew of the output signal as a function

of the slew of the input signal and the capacitive output load. The characterization

data is stored in look-up tables for each signal path through the cell and for each

standard cell available in the library. This data is then retrieved from the tables

by the STA tool. In contrast to this approach, which is of limited accuracy due to

its simplified waveform, receiver load, and interconnect modeling, a different, more

accurate approach is followed here. It is based on successive analog simulations along

the given timing paths. The circuit is traversed along the path gate by gate. For each

gate a transistor level simulation is performed to obtain the exact nominal output

waveform V out
nom(t), i. e. nominal output voltage. For the propagation of statistical

variations, three basic steps can be identified: Determining the influence of the

parameter variations of the current gate on the output of this gate, determining

the influence of the input waveform variation of the current gate on the output

39
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Figure 3.1: Waveform variations modeled by canonical sums of transistor parameters

of this gate, and the addition of these two influences with correct consideration of

correlations. This yields the variation of the output signal which can be used as the

variation of the input signal of the next gate. In the following, the three necessary

parts of modeling are described in more detail and after that, the traversal through

a path is explained.

3.1.1 Waveform Model

This work endeavors to provide a reference tool, which achieves the highest possible

accuracy but with a considerably shorter execution time than Monte Carlo SPICE

simulation. Thus, the amount of simplification is reduced to a minimum. The tool

is based on an analog simulator and thus, the best choice for the waveform model is

to consider the entire result of the analog simulator. The PDC follows this concept

and saves the entire analog waveform and uses it in the further analysis without any

simplifications. In order to model the variations of this waveform, specific points on

the waveform are selected and the variation at these points caused by the variations

of transistor parameters is modeled by variations of voltage at these points of time

on the waveform. The voltage variations are represented by canonical sums. This

waveform model is depicted in Figure 3.1. By changing the number of selected points

in time the accuracy can be traded in for runtime.

3.1.2 Driver Model

As for the waveform model, the focus is to achieve highest accuracy possible. Thus,

the driving gates are not modeled by look-up tables or current source models. The

entire transistor level netlist is considered. This model includes all parasitics in the
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gates as well as non-linearities and omits common sources of modeling inaccuracies.

The analog waveform is used as input of these gates and the output is also an analog

waveform.

3.1.3 Receiver Model

All relevant effects should be covered by the receiver model. State-of-the-art tools

model the receiver as an effective capacitance, e. g. models based on look-up ta-

bles, or πRC or similar structures, e. g. current source models. Effects like resistive

shielding of interconnects and non-linear capacitances at the input of logic cells due

to the Miller effect have to be considered by these simple models, which leads to

inevitable inaccuracies in the receiver modeling. To overcome this problem, the

entire transistor level netlist of the receiving structure is used. This includes all

cells connected to the output of the current cell as well as the entire interconnect

structure with all parasitics extracted from the layout.

3.2 Waveform-Based Nominal STA

As mentioned above, the proposed SSTA methodology is based on analog simula-

tions in order to achieve the most accurate result possible. The variational analysis

is based on the nominal waveform. This can be also seen as the operation point. All

sensitivities and other computations have to be executed assuming that particular

point. As the variation of the waveform is considered, the nominal waveform denotes

the operation point or the offset for the zero mean random variables. Therefore, the

first step is to determine the nominal waveform for the selected path. To take into

account the fact that the waveform depends on the dynamic load of the respective

gate, all simulations are performed on stages which include the cell under consider-

ation plus all relevant elements and interconnect structures in the fanout as can be

seen in Figure 3.2.

The first stage is simulated by the analog simulator using a given input waveform.

The result is the nominal waveform at the output of the first stage V out
nom(t). To

analyze the timing of the path, the process is repeated: The output signal of the

stage serves as input for the next stage and so forth. As each gate contains only

a small number of transistors, the individual simulations can be completed with

acceptable simulation times. As the complete waveforms as well as the full influence

of the interconnects are taken into account, this path-based STA approach reaches

accuracies that are comparable to that of SPICE simulations of the whole paths,
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Figure 3.2: Partitioning of a path into stages

while being much faster due to its successive nature [BM06].

3.3 Parameter Variations

3.3.1 Linear Modeling of Variations

As outlined earlier, the transistor parameters are subject to statistical variations.

Thus, the parameters p = (p1, . . . , pN ) of the transistors produced in silicon exhibit

deviations δp from the nominal values p0:

p = p0 + δp (3.1)

As a consequence of these variations, the timing behavior of the cells changes as

well. In Section 2.3.4 on page 35 the canonical sum is introduced to represent the

linear model of performance parameters, which is state-of-the-art.

In the following a similar linear analysis concept is described but in contrast to

existing methods the entire waveforms involved in the signal propagation are con-

sidered. Assume that a signal at a given node in the circuit is given by a voltage as a

function of time and transistor parameters, V = V (t,p). The canonical sum of per-

formance parameters from Equation (2.35) can be rewritten using time continuous

weights χν(t) to represent the variation of the nominal waveform:

V (t,p0 + δp) ≈ V (t,p0) +
N∑

ν=1

χν(t) δpν (3.2)

with

χν(t) ≡ ∂V (t,p0 + δp)

∂δpν

∣∣∣∣
δp=0

=
∂V (t,p)

∂pν
(3.3)
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In the case of time-discrete values of the signal and the respective sensitivities,

Equation (3.2) for time ti becomes:

Vi = V (ti,p0 + δp) ≈ V (ti,p0) +
N∑

ν=1

ki,ν δpν (3.4)

wherein the ki,ν are the weights of parameter δpν and time ti. The voltage variation

δVi at time ti is a zero mean random variable defined as

δVi =
N∑

ν=1

ki,ν δpν . (3.5)

Using matrix notation, the vector of zero mean random variables δV denoting the

voltage variations at different times can be written as

δV = K δp (3.6)

with the coefficients matrix K.

3.3.2 Statistical Variations

In a statistical framework, the deviations δp are assumed to be random variables,

which vary statistically from die to die, wafer to wafer, and lot to lot according

to given statistics. The statistical variations are represented by canonical sums as

introduced in Section 2.3.4. It is also shown in Section 2.3.4 how this representation

allows the consideration of correlations.

The current standard of library characterization distinguishes between global

and independent local variations. For this reason it is straightforward to divide the

transistor parameters into global parameters and local parameters. The determina-

tion of correlation coefficients between parameters of different transistors is still a

subject of current research and not integrated into the standard process of library

characterization. Thus, the currently available data does not allow the considera-

tion of correlation between parameters of different transistors. Note, however, that

spatial correlation can be integrated into the proposed method easily once the data

is available.

Global variables (denoted by zν , ν = 1, . . . , M) describe parameters which are

constant within one die, but vary from die to die, wafer to wafer, and lot to lot.

They are shared by all the cells in the design and induce correlations between the

various cells of a given design since changes in these variables affect all these cells in a
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coordinated manner. Local variables (in the following denoted by ζ
(i)
µ , µ = 1, . . . , L),

on the other hand, model independent variations from transistor to transistor within

the same die (e.g. due to dopant fluctuations etc.). They generate variations of

cell properties which are independent from cell to cell. Therefore, a general linear

response expression for a quantity Q that is characteristic for the given cell i,

Q(i)(p + δp) ≈ Q
(i)
nom +

N∑

ν=1

α
(i)
ν δp

(i)
ν (3.7)

more explicitly splits up into two types of contributions,

Q(i)(p + δp) ≈ Q
(i)
nom +

M∑

ν=1

αν,global δzν +
L∑

µ=1

α
(i)
µ,local δζ

(i)
µ (3.8)

which correspond to the global and local variations respectively. This careful dis-

tinction between global and local parameters becomes important in Section 3.4.2

when canonical sums have to be added.

3.4 Path-based Analysis

This section provides a methodology for path-based statistical timing analysis. After

the computation of the nominal waveform, which was described in Section 3.2, the

statistical variations are considered in the following. First, the behavior of a single

cell is explained. This procedure is successively applied on the cells of a particular

path.

3.4.1 Single Stage Analysis

As mentioned in Section 3.1, three basic steps have to be executed for the analysis

of a single stage:

1. computation of the variation of the output waveform due to variations of the

transistor parameters δpstage of the stage itself,

2. computation of the variation of the output waveform due to variations of the

input waveform δpinput, and

3. addition of the two influences above.

These three steps will be explained in the following. The different contributions are

sketched in Figure 3.3. In the next section a method to model waveform variations

of the output of a single stage by linear response methods will be derived.
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Figure 3.3: Single stage with parameter variations

Stage Parameter Variations

Without any variations, i.e. δp ≡ 0, the nominal input waveform V in
nom(t) gener-

ates the nominal output waveform V out
nom(t). Taking into account the variation of

the transistor parameters of the stage leads to a variation from this nominal wave-

form. The following approach is based on an analog simulator which can compute

the sensitivities ∂Vi/∂pν of voltages Vi = V (ti) at the output at time ti to tran-

sistor parameters pν . The chosen simulator employs adjoint networks in order to

compute sensitivities of measurements to a large number of parameters with little

overhead [DR69, PSD70, PRV95]. These sensitivities are the coefficients needed in

order to formulate the canonical sum for the variation of each voltage δVi at time ti

δVi = δV (ti) =
N∑

ν=1

∂Vi

∂pν
δpν =

N∑

ν=1

ki,νδpν (3.9)

The voltage variations (δV1, δV2, . . . , δVM ) will be interpreted as a continuous func-

tion δV (t) in order to obtain a more compact and general formulation:

δV (t) =
N∑

ν=1

∂V (t)

∂pν
δpν =

N∑

ν=1

χν(t)δpν (3.10)

wherein χν(t) is the time dependent sensitivity of the output voltage to the transis-

tor parameter pν . This linear approximation is only valid as long as the parameter

deviations are sufficiently small.

However, for longer paths this linearization error becomes worse. The reason is

that the main effect of parameter variations is a time shift of the waveform. This
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Figure 3.4: Example waveform with translation and voltage variations

time shift of the nominal waveform is a zero mean random variable as well. It

causes all voltages to vary in the same direction. For longer paths this time shift

variation becomes larger and thus the variation of the voltages due to the time

shift becomes larger as well. The result is a large variation that does not yield

much information and can be represented more efficiently. Such an approach is

the separate consideration of the arrival time variation. Figure 3.4 shows such an

extended representation with separate time shift variation and voltage variations.

The aim is to determine the variation in voltage caused by the time shift varia-

tion. In case of small variations, the time variation can be transformed into a voltage

variation by multiplying with the derivative with respect to time of the waveform

∆V (ti) ≈ ∂V (t)

∂t

∣∣∣∣
t=ti

∆ti (3.11)

If a change in parameters ∆p causes only a time shift ∆τ and no deformation then

holds

V (t,p + ∆p) = V (t−∆τ,p). (3.12)

The example in Figure 3.4 should be used to clarify this. At time t2 the nominal

voltage is V (t2). The aim is to determine the voltage after the waveform is shifted

to the right by a positive value of ∆τ = t2− t1 caused by a change of the parameters

∆p. Note that ∆ denotes deterministic alteration and δ denotes the respective

random variable. For the voltage at time t2 follows:

V (t2,p + ∆p) = V (t2 −∆τ,p) = V (t1,p) (3.13)
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Thus, a positive time shift ∆τ results in a negative ∆t. For a rising (falling) wave-

form this causes a negative (positive) voltage shift. This introduces a minus sign

changing (3.11) to

∆V (ti) ≈ − ∂V (t)

∂t

∣∣∣∣
t=ti

δτ (3.14)

Computing the sensitivity of the arrival time to the transistor parameters ∂τ/∂pj

as well, the influence of the transistor parameter variations on the time shift can be

determined and a canonical sum for the variation of the time shift can be written as

δτ =
N∑

ν=1

∂τ

∂pν
δpν =

N∑

ν=1

ϑνδpν (3.15)

The time shift variation influences all points on the waveform equally. Thus, the

voltage variation δṼ (t) caused by the time shift variation δτ can be computed using

Equation (3.11):

δṼ (t) = −
N∑

ν=1

∂V (t)

∂t

∂τ

∂pν
δpν = −∂V (t)

∂t
δτ (3.16)

Knowing the voltage variation which is caused by the variation of the time shift,

this contribution can be subtracted from the sensitivities χν(t) in Equation (3.10)

χ′ν(t) = χν(t)−
(
− ∂τ

∂pν

∂V (t)

∂t

)
(3.17)

leading to a new expression with a contribution from the time shift variation and

one from the reduced parameter variations.

δV (t) = −
N∑

ν=1

∂V (t)

∂t

∂τ

∂pν
δpν +

N∑

ν=1

χ′ν(t)δpν

= −∂V (t)

∂t
δτ +

N∑

ν=1

χ′ν(t)δpν (3.18)

The canonical sum for the voltage variations in the right hand side of Equa-

tion (3.18) now represents only the voltage variation without the variation caused

by the time shift. The variation caused by the time shift is considered separately

in the variable δτ . This variable is computed additionally and propagated through

the circuit as described in the following.
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Input to Output Transfer of Variations

After the examination of the influence of transistor parameter variations of the

current stage on the output waveform, this section deals with the influence of the

input waveform variations on the variations of the output waveform. As different

canonical sums are used for input and output variations, the sensitivities ϑν and χν

are replaced by ϑin
ν , ϑstage

ν , ϑout
ν , χin

ν , χstage
ν and χout

ν for input and output sensitivities

respectively. The variation of the arrival time at the input δτ in =
∑N

ν=1 ϑin
ν δpν is

simply added to the variation of the arrival time resulting from the variation of the

stage parameters δτ stage =
∑N

ν=1 ϑstage
ν δpν .

δτout =
N∑

ν=1

(
ϑin

ν + ϑstage
ν

)
δpν (3.19)

In the following the variation of the time shift is left out for the sake of clarity.

Assume that variations in the transistor parameters of previous stages lead to a

change in the signal at the input of the current stage.

V in(t) = V in
nom(t) + δV in(t) (3.20)

As the parameters of the current stage are not considered here, the random vector

δp denotes the variation of parameters from the previous stages. As long as the

alterations δpν of the corresponding transistor parameters, which determine the

input signal, are sufficiently small, the signal deformation δV in(t) depends linearly

on these deviations. Assume that the signal deformation is given by a canonical

expression of the form

δV in(t) =
N∑

ν=1

χin
ν (t) δpν (3.21)

where the sensitivity coefficients χν(t) are given by the computations of the previous

stages. This variation of the input waveform causes a variation of the waveform at

the output of the current stage:

V out(t) = V out
nom(t) + δV out(t) = V out

nom(t) +
N∑

ν=1

χout
ν (t) δpν (3.22)

with

χout
ν (t) =

∂V out
nom(t)

∂pν
(3.23)
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Figure 3.5: Auxiliary circuit to determine the sensitivities to input voltages.

The problem is to compute the sensitivity χout
ν (t) of the output voltage to the

input parameter variation. This computation has to be efficient and has to seam-

lessly integrate into the already existing path delay calculator (PDC) as mentioned

in Section 2.5. Thus, the aim is to find a suitable way of computing these sensitiv-

ities using the analog simulator. This can be achieved by formulating the needed

sensitivities as sensitivities of the output voltage to device parameters. These sen-

sitivities can be computed directly by the analog simulator. It is currently not

possible to compute sensitivities of the output voltage to the input voltage using

adjoint network analysis.

3.4.2 Sensitivities from SPICE Simulations

Two options can be identified to formulate sensitivities based on device parameters.

The idea behind both options is to use voltage dividers with a voltage source for each

voltage divider and to compute the sensitivities of the output voltage to one of the

two resistors of each voltage divider. The resulting auxiliary circuit can be seen in

Figure 3.5. With the correct scaling this directly yields the appropriate sensitivities.

The first option approximates the transfer characteristic of a cell by the time

dependent linear transfer function and obtains the output variation by integrating

over the transfer function and the input variation. The second option uses a more

direct and smoother approach, which yields the influence of the input variations to

the output voltage directly.

Approximating the Transfer Function

Each stage is considered as a linear system with input voltage variation δV in(t) as

input variable and output voltage variation δV out(t) as the output variable. The
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system is described by the linear operator T [Unb72]:

δV out(t) = T [δV in(t)] (3.24)

The system is assumed to be linear but is not time invariant because the input to

output characteristics change while the voltages change during the signal transition.

The idea is to estimate the impulse response h(t, τ) by measurements and to com-

pute the output variation by integrating the product of input variation and impulse

response. This will be derived in the following.

From the linearity of the operator T follows

T

[
N∑

ν=1

kν δV in,(ν)(t)

]
=

N∑

ν=1

kν T
[
δV in,(ν)(t)

]
(3.25)

Thus can be shown:

T

[∫ b

a
k(ν) δV in(t, ν) dν

]
=

∫ b

a
k(ν) T

[
δV in(t, ν)

]
dν (3.26)

The impulse function δ(t) is defined by:

x(t) =

∫ ∞

−∞
f(τ) δ(t− τ)dτ (3.27)

The response of the system to the impulse function is

h(t, τ) = T [δ(t− τ)] (3.28)

The output signal δV out(t) can be written as operator T applied to the input signal

δV in(t):

δV out(t) = T [δV in(t)] (3.29)

With Equations (3.27) and (3.26) follows:

δV out(t) = T [δV in(t)] = T

[∫ ∞

−∞
δV in(τ)δ(t− τ)dτ

]

=

∫ ∞

−∞
δV in(τ)T [δ(t− τ)] dτ (3.30)

and with Equation (3.28):

δV out(t) =

∫ ∞

−∞
δV in(τ)h(t, τ)dτ (3.31)
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Figure 3.6: Impulse Response

As the system is causal, the upper limit can be changed to t:

δV out(t) =

∫ t

−∞
δV in(τ)h(t, τ)dτ (3.32)

The following describes how to obtain the impulse response h(t, τ) needed for

Equation (3.32). The impulse response can be obtained by exciting the stage with a

single Dirac impulse at the input at time τ and measuring the voltage at the output

at time t. As the impulse occurs during the change of the signal value, the impulse

response h(t, τ) depends on τ . As the number of simulations should remain low,

it is desired to obtain h(t, τ) for all τ in one simulation run. The idea is to use

the built-in sensitivity analysis of the simulator and compute the sensitivity of the

output to the impulse at the input. But as the simulator is not able to determine

sensitivities with regard to input voltage, an analyzer circuit needs to be constructed

which is shown in Figure 3.5.

Instead of continuous signals δV in(t) and δV out(t) only a number of samples

δV in
j = δV in(tj) and δV out

i = δV out(τi) are considered. For each time τi there is

one voltage divider with resistors R′i and Ri and voltage sources δ(t− τi). As a real

Dirac impulse is numerically problematic, a Gaussian input signal Vi(t) is used:

δ(t− τi) ≈ Vi(t) =
θ

σ
√

2π
e

“
−0.5( t−τi

σ )
2
”

(3.33)

The width and thus the value of σ of the Gaussian signal should be small to

stay close to the Dirac impulse. However, the narrower the impulse is, the larger is

its maximal value. For a reasonable σ = 1 · 10−12s the maximum voltage would be

4 · 1011V , which causes problems in the simulator. Therefore, the scaling coefficient

θ is introduced. After the simulation this scaling is undone (see Equation (3.35)).

The output voltage Vvcvs(t) of the voltage controlled voltage source is the sum
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of the voltage differences over all resistors:

Vvcvs(t) =
∑

i

VR′i(t)− VRi
(t) (3.34)

All resistors have the same value which results in no change of the input signal

of the stage as all the voltage differences are zero. At the output the sensitivities of

the voltage to the resistor values can be computed. For each time τi there are two

resistors R′i and Ri where R′i is fixed and Ri is the resistor the sensitivity analysis

is performed to. The sensitivity analysis performed by the simulator yields the

sensitivity ∂V (t)
∂Ri

∣∣∣
t=ti

. Let Ri be the resistor connected to the approximated Dirac

impulse at time τi. Using the equations of a voltage divider, h(tj , τi) can be obtained

by:

h(tj , τi) ≈ 2
∂V (t)

∂Ri

∣∣∣∣
t=tj

R′i
θ

(3.35)

With this sampled transfer function the integration in 3.32 can be computed using

means of numerical integration like Simpson rule [Jen69].

The weakness of the proposed approach are numerical problems. The approxi-

mation of the Dirac impulse by a Gaussian function causes these problems. The σ

should be low to keep the signal narrow and to obtain a better match with the ideal

Dirac impulse. However, this signal has to be processed by the analog simulator

and for faster changing signals, the accuracy settings have to be chosen higher. This

leads to higher computation time. Even with extremely small timesteps and rigid

solver settings the results are not satisfying while the runtime becomes unacceptably

large. Therefore, a better possibility is described in the following, which does not

rely on extremely accurate approximations of Dirac impulses.

Direct Computation of the Variations at the Output

In the previous section, the voltage sources of the voltage dividers were approxima-

tions of Dirac impulses. This caused numerical problems. In the following, the same

auxiliary circuit is used but instead of approximated Dirac impulses, other signals

are used to avoid the numerical problems.

Equation (3.21) shows the canonical sum using time dependent sensitivities

χν(t). During SSTA, these sensitivities are in a sampled form but nevertheless

they can be used as sampled continuous functions. Each χν(t) represents the influ-

ence of parameter pν on the voltage at time t at the input. These functions are now
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Figure 3.7: Input signal V in(t)(a) and time dependent sensitivity χ(t)(b)

used as input voltages of the voltage sources:

Vν(t) =
χν(t)

θ
(3.36)

The normalization factor θ is necessary to obtain a reasonable voltage value that

does not cause problems in the simulator because of too large or too small values.

This procedure is illustrated using an example. Consider the input waveform

V in(t) in Figure 3.7(a) and the sensitivity χ(t) of the input voltage to one transistor

parameter, e.g. vth0 (b). In this example, the input voltage at time ta changes by

2mV if vth0 changes by 1mV as the sensitivity is 2. In the nominal case, the nominal

waveform is not altered, as the variation of the parameters is zero. The question

is: By how much does the output voltage at time ti change if the parameters are

altered? The sensitivity signal χ(t) is added with a factor k to the input waveform

and the resulting change in the output voltage has to be determined. Using finite

differences, the factor k can be chosen small and the resulting output voltage at time

ti will change by ∆V out(ti). The sensitivity is obtained by the quotient ∆V out(ti)/k.

The problem using finite differences is that the number of parameters and thus the

number of signals χν(t) can be large resulting in a high number of simulations. As

before, the computation can be transferred to the analog simulator using the voltage

dividers. The resulting circuit for one parameter is shown in Figure 3.8. Altering

the resistors R by ∆R would change the voltage at the input of the voltage adder

and results in the superposition of χ(t) and V in(t). Thus, it is the same effect as

using a small factor k for χ(t) directly as shown before. The difference is, that now

it is possible to let the sensitivities to the resistor R be computed by the simulator.
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Figure 3.8: Auxiliary circuit for a single input parameter.

As before, these sensitivities of the output voltage to the resistors ∂V out/∂Rν are

obtained. The sensitivities of the output voltage to the parameters at the input can

then be computed as

χout
ν (t) = 2

R′ν
θ

∂V out(t)

∂Rν
(3.37)

For more than one parameter the auxiliary circuit becomes larger. One voltage

divider and one voltage source is needed for each parameter influencing the input

waveform. Using the described procedure it is possible to efficiently compute the

needed sensitivities χout
ν (t) to set up the canonical sum for the voltages at the output

of the stage.

Addition of Input Variations and Stage Parameter Variations

In this section the last of the three steps of the analysis of one stage will be described.

After the calculation of the influence of the parameters internal to the stage and the

influence of the variation at the input of the stage, these two contributions have to

be added. It is crucial to note that the canonical sums of the input variation and

stage parameter variation can have common variables. This results in correlation

between the two contributions and this correlation has to be considered. For that

purpose the notation has to distinguish between input parameters pin
i and stage

parameters pstage
i .

Let P in and Pstage be the set of parameters at the input and internal to the

stage respectively. In case of only local variations, the two sets are disjoint (P in ∩
Pstage = ∅) as local parameters influencing previous cells will never influence the

current cell. Considering only global variations leads to the equality of the two
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sets (P in = Pstage). The value of the sensitivity at the output χout
ν (t) can then be

computed by

χout
ν (t) =





χtr
ν (t) : pν ∈ P in ∧ pν 6∈ Pstage

χstage
ν (t) : pν 6∈ P in ∧ pν ∈ Pstage

χtr
ν (t) + χstage

ν (t) : pν ∈ P in ∧ pν ∈ Pstage

0 : pν 6∈ P in ∧ pν 6∈ Pstage

(3.38)

where χtr
ν (t) is the sensitivity of the output voltage to the input parameter pin

ν from

Equation (3.37) and χstage
ν (t) is the sensitivity of the output voltage to the stage

parameter pstage
ν from Equation (3.18). The coefficients χout

ν (t) now contain the

influence of the input variation and the variations of the devices belonging to the

current stage. The output waveform variation is thus given by the canonical sum:

δV out(t) =
N∑

ν=1

χout
ν (t)δpν (3.39)

3.4.3 Propagation of Variations through a Path

After the analysis of one stage, the propagation through an entire path will be de-

scribed in the following. The path is traversed stage by stage and for each stage the

three basic computations are executed: Influence of the parameter variation of the

current stage on the output, influence of the variations of the input waveform on

the output and addition of both influences.

For each stage a transistor level SPICE simulation is performed to obtain the

exact output waveform for the nominal case. In addition to this, the sensitivities

discussed in the previous section are derived by an adjoint network analysis, which

is implemented in the employed simulator. The output waveform and the obtained

variations serve as input for the next stage. This is repeated until the end of the

path is reached. The following describes the iteration process in more detail.

First Stage: The non-varying input signal at the input node of the first cell is

given. The corresponding first stage consists of the first cell itself plus all relevant

cells and interconnect elements in the fanout that have an influence on the output

waveform of the first cell under consideration. The nominal simulation yields the

nominal output waveform of the first stage, V out
nom(t) ≡ V

(1)
nom(t), for given points in

time. Additionally, it explicitly derives the time derivatives ∂V
(1)
nom(t)/∂t of the out-

put signal at these points in time. As the input signal is fixed, the output waveform

of the first stage may only vary due to variations of the stage-internal transistor
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parameter variations δpstage
ν . In addition to the nominal output waveform V

(1)
nom(t),

an adjoint network analysis within the same simulation run derives the output volt-

age sensitivities ∂V
(1)
nom(t)/∂δpstage

ν and the delay sensitivity ∂τ/∂pstage
ν with respect

to these transistor parameter variations. Thus the output waveform deformation

according to Equation (3.10) as well as the time shift variation δτ (1) given by Equa-

tion (3.15) are explicitly known.

Stage i (i = 2, 3, . . . ): The intermediate stage i consists of cell i of the path, plus

all relevant cells and interconnect elements in its fanout, which have an influence on

the resulting output waveform of cell i. The input signal of this stage is the output

signal of the previous stage available from the previous simulation step i − 1. The

output waveform of the stage under consideration may vary due to variations of the

stage-internal transistor parameter variations δpstage,i
ν as well as the variation of the

input signal δV (i−1)(t) parametrized by the linear sensitivity coefficients calculated

in the previous step. Similar to the previous step, the nominal simulation for stage i

produces the nominal output waveform V
(i)
nom(t) and the time derivative ∂V

(i)
nom(t)/∂t.

In addition to this, the adjoint network analysis yields the output voltage sensitivi-

ties and the delay sensitivity with respect to the varying transistor parameters that

show up in Equation (3.10) for this stage. The variation parameters of the previous

stage are now the input variation variables of stage i, δpstage,i−1
ν = δpin,i

ν , while the

internal parameters of stage i and its receivers define the new stage internal vari-

ations δpstage,i
ν . The output time shift variation of the previous stage becomes the

input time shift variation of the current stage, δτout,i−1 = δτ in,i. As before, the

simulation run of step i yields the nominal output waveform, now of the stage i,

plus all the sensitivity quantities in Equation (3.10) for this stage.

Final Stage: The approach is iterated until the last stage of the given path

has been simulated. As a final result, the nominal output waveform of the path is

available, plus its variation properties as a function of all the transistor parameter

variations as given by Equation (3.18). The output variation is parametrized as a

time shift plus an additional waveform deformation. These variations are represented

by canonical sums. In most cases other quantities like the standard deviation of the

delay are more relevant. Therefore, the canonical sums have to be converted as

described in Section 3.5.

3.4.4 Lumping of Local Variations

The previous section described the propagation of random variables through a path

using canonical sums of transistor parameters. These canonical sums consist of
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all transistor parameters which influenced the devices on the path analyzed so far.

However, the number of variables can become very large for longer paths if local vari-

ations are considered. The reason is that each device has its own set of independent

random variables and each gate is composed of several of these devices. E.g., if each

gate consists of 20 transistors and three local variables are considered, this leads to

a growth of the canonical sum of 60 variables per stage. Global variations do not

cause this increase of variables as all devices share the same global random variables.

Even though the local variables cause significant overhead, this information is

not used at the end of the path. The variables are independent and thus no other

device will ever share one of the local variables. In order to eliminate this ineffective-

ness, the local variables δζ
(i)
µ can be lumped to a single independent variable after

the computation of each stage [ZCHpC06]. Thus,
∑L

µ=1 α
(i)
µ,local δζ

(i)
µ can be replaced

by the simple lumped expression ϑ(i) δη(i) with ϑ(i) ≡
√∑L

µ=1 α
(i) 2
µ,local and a new

single local variable δη(i) with zero mean and unit variance. Hereby, the number of

local variables is reduced at each stage during the propagation of the variations.

When considering spatial correlations by using a quad-tree model, a high num-

ber of variables is needed to capture the correlations. However, the variables can be

lumped once the path leads into a different partition of the respective layer. Using

other correlation models, the variables will be lumped once the correlation to the

other variables is negligible. This procedure keeps the number of variables in the

linear expression acceptable.

The disadvantage of this simplification method is that the information of the

contributions of the individual local variables is lost. This becomes especially im-

portant if the time shift variation is propagated separately and is added at the end

of the circuit. The voltage variations and the time shift variation are correlated be-

cause they both are influenced by the same random variables. This correlation can

be considered only by keeping the information about the individual contributions of

each random variable. More mathematical and quantitative details can be found in

Section 3.5.1.

3.5 Post-Processing of the Results

After the last stage is processed, the results have to be interpreted. Therefore,

some post-processing has to be done. This includes the composition of arrival time

variation and voltage variations and also the computation of variance or other quan-
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titative measures which can be used further in the design process.

3.5.1 Composition of Arrival Time Variation and Voltage
Variations

During the path-based analysis the voltage variations were propagated separately

from the variation of the arrival time. In order to obtain a meaningful result, these

two contributions have to be composed again. Note that the voltage variations also

contribute to the arrival time variation at the end of the path.

As mentioned earlier (see Equation (3.11)), the voltage variations can be trans-

formed into variation of the time at a fixed voltage. This is done with the voltage

variations of the waveform. The voltage variations δVi are obtained for certain times

ti. These variations can be transformed into variations of time δt̃i at fixed voltages

Vi, which are solely caused by the variation of the voltage by the following equation

δt̃i = −
N∑

ν=1

χν(ti)

(
∂V (t)

∂t

∣∣∣∣
t=ti

)−1

δpν (3.40)

This contribution is added to the time shift variation δτ which is propagated sepa-

rately through the path leading to the variations of time δti including both factors

– voltage variations and time shift variation:

δti =
N∑

ν=1

[(
ϑν − χν(ti)

(
∂V (t)

∂t

∣∣∣∣
t=ti

)−1
)

δpν

]
(3.41)

After these computations the canonical form for the variation of the time values is

available as

δti =
N∑

ν=1

ξi,ν δpν (3.42)

This representation is the final result of the statistical timing analysis. It is a sum

of independent random variables. The sensitivities ξi,ν can be used in the design

process as they reveal the influence of the various process parameters on the timing.

3.5.2 Computation of the Variance with Lumped Parame-
ters

In order to evaluate the accuracy of the proposed method, the result should be

mapped to a quantitative measure, which can be compared to a reference like Monte
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Carlo analysis. This quantitative measure can be the variance σ2
δti

of the time

variation. The mean value is zero, because only the variation around the nominal

value is considered. As the random variables are independent, the variance can be

computed by

σ2
δti

=
N∑

ν=1

ξ2
ν σ2

pν
(3.43)

Using the lumping technique described in Section 3.4.4 causes some problems as

the time shift variation and the voltage variations are correlated. These correlations

can not be considered by the canonical sum as the parameters are lumped after each

stage. In Equation (3.41) it is assumed that ϑν and χν are the coefficients to the

same independent parameter pν . However, if the local variables are lumped, the

random variable plocal contains all local variations. Such a random variable exists

in the canonical sums of the voltage variations as well as in the canonical sum of

the time shift variation and these variables are correlated. When the variation in

time caused by the voltage variation is added to the time shift variation propagated

separately, this correlation causes an error in the result.

The relative error gets smaller for longer paths because of two reasons: Firstly,

the relative influence of local variations becomes smaller by 1/
√

n with n being the

number of stages in the path. The second reason is that the coefficients for the

local parameters for the time shift variation get larger for longer paths as each stage

contributes while the coefficients of the voltage variation stays small. This effect

reduces the value of the covariance between the two parameters and thus the error

caused by neglecting that variance. This should be clarified by the following. Let

A = aTp be the canonical sum for the time shift variation in vector notation and

B = bTp the variation of the time caused by the voltage variation, again in vector

notation. Note that the local parameters p are the same for A and B and thus,

A and B are correlated. As in the chapters before, the random variables are zero

mean. Consider the variance of A + B

var(A + B) = var(A) + var(B) + 2 cov(A,B) (3.44)

While the variance of A is given as

var(A) =
N∑

ν=1

a2
ν σ2

pν
(3.45)
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the covariance cov(A, B) can be computed by definition by

cov(A, B) = E[AB] = E[aTpbTp] = E[aTppTb] =

= aT E[ppT ]b = aTCpb (3.46)

where Cp is the covariance matrix of p. Because all random variables in p are inde-

pendent of each other, the covariance matrix Cp simplifies to the diagonal matrix

Cp = diag(σ2
p1

, σ2
p2

, . . . , σ2
pN

) and Equation (3.46) becomes

cov(A,B) =
N∑

ν=1

aν σ2
pν

bν (3.47)

When the lumped variables are added without considering the correlation, the

term 2 cov(A,B) in Equation (3.44) is neglected. The relative error caused by this

can be computed as

err =
2 cov(A,B)

var(A) + var(B) + 2 cov(A,B)
(3.48)

=
2

∑N
ν=1 aν σ2

pν
bν∑N

ν=1 a2
ν σ2

pν
+

∑N
ν=1 b2

ν σ2
pν

+ 2
∑N

ν=1 aν σ2
pν

bν

This error function has a maximum at a = b and decreases for larger differences

between the elements of a and b. As mentioned earlier the coefficients of the time

shift variation will get larger during the propagation while the variation of the time

caused by the voltage variations stay small because the time shift is subtracted at

each stage. Therefore, the lumping of local parameters causes less error for longer

paths. For short paths, all local variables can be kept individually as the number of

local variables is small for a small number of devices in the path.

Table 3.1 shows the error caused by lumping local variations for chains of 4-input

NAND gates. The library gate with the maximal driver strength was chosen as this

gate comprises a large number of transistors and thus, a large number of random

variables for local variations is needed. For each gate 128 random variables are

needed to represent the local variations. The table shows how the error is smaller for

longer paths and how the speedup achieved by lumping rises for longer paths. This

significant increase is caused by the increasing number of random variables (N in

Equation (3.22)) and thus, the increasing number of voltage dividers in the auxiliary

circuit in Figure 3.5 on page 49 and sensitivity computations as in Equation (3.37).
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path length error speedup #RVs no
lumping

#RVs with
lumping

3 0.4% 3x 392 9
6 0.2% 7x 776 9

10 0.03% 14x 1288 9

Table 3.1: Implications of lumping local variables for paths of 4-input NAND gates.

The computations above aim for the determination of the variance of the time at

particular voltage crossing points. If Gaussian distributions are assumed, the entire

distribution is determined by the mean – which is zero in this case – and the variance.

For other distributions this is not always the case so the entire distribution can be

obtained by sampling the pν and evaluating (3.43) for each sample. This yields the

exact distribution and other quantities than just mean and sigma can be derived.

The following chapter provides some data of the results of the proposed method of

various circuit examples.
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Chapter 4

Results

4.1 Implementation

The proposed method was implemented as a set of Python scripts and executed on

a Linux machine. After the evaluation of the method, the program was ported to

integrate into an industrial framework using the in-house tool PDC. It was executed

on a single core of an Intel(R) Xeon(R) E5345 2.33GHz.

4.2 Setup of Monte Carlo Analysis

Equation (3.41) describes how the crossing time is influenced by a change of tran-

sistor parameters. In other words it is the linearization of the mapping function of

transistor parameters to crossing times. As long as the changes of transistor param-

eters remain small enough, this linearization can be used to compute the change

of a crossing time resulting from a change in a transistor parameter. This infor-

mation can be passed back to the designer in order to optimize the design, e.g.

for yield maximization. This sensitivity information can also be used to map the

statistical variations of the transistor parameters to variations of the crossing times

as described earlier. The focus of this work is not the design optimization but the

statistical analysis of the design. Therefore, the accuracy of the statistical results

are evaluated in the following and the results derived by the proposed method are

compared to Monte Carlo analysis.

The Monte Carlo analysis works by sampling the parameter space according to

the given distributions. In this case the distributions of the transistor parameters are

Gaussian. The statistical process data is provided by a manufacturer of integrated

circuits. The considered parameters were the global parameters vth0 (threshold

voltage), xl (gate length), toxe (electrical gate equivalent oxide thickness), and toxp

63



64 CHAPTER 4. RESULTS

(physical gate equivalent oxide thickness). The local parameters were delvto (local

threshold variation) and factu0 (mobility multiplication factor). These parameters

were selected as they showed the most significance in a wide range of simulations.

The number of samples has to be sufficiently large and has been set to 10,000 to

guarantee a reliable accuracy. For each of these samples of the transistor parameter

space, the path is simulated by a SPICE simulator and the result is saved. This

result can be the output waveform or numerical measures like the crossing times of

the same voltage levels as used during the SSTA. Before evaluating the statistical

results, the accuracy of the waveforms should be examined.

4.3 Influence and Accuracy of Waveforms

As mentioned earlier, the time shift variation is propagated separately. For each

stage the linear sensitivity of the stage delay to the stage parameters is obtained

and the result is added to the time shift variation at the input. The result should

be compared to existing methods. However, the models in these existing methods

show many different sources of inaccuracies. The modeling inaccuracies are hard

to evaluate as most models show no error for at least one operating condition. In

the following, the influence of waveform variation should be examined and thus, all

other sources of inaccuracies should be excluded.

Even though only arrival time and slope are considered in classical STA, the

library cells are characterized using standard waveforms as inputs. If the wave-

forms occurring in the actual test case are equal to these standard waveforms, no

error is introduced by considering only arrival time and slope. The same applies for

the receiver modeling. In order to exclude inaccurate interconnect and gate input

modeling, the best result possible should be assumed. Another possible source of

inaccuracies is the interpolation of previously characterized look-up tables. To ex-

clude this influence as well, it has to be assumed that the actual values for input

slope and output load are exactly one of the values of the cell characterization.

For state-of-the-art SSTA, the canonical sum of the delay of the current gate has

to be obtained from characterization data. If the characterization has been done for

the same conditions as in the actual circuit, the results are equal to the canonical

sum obtained by adjoint networks sensitivity analysis. By implementing existing

methods for STA and SSTA, arbitrary errors can be introduced by unreasonable

choice of model parameters. Thus, the result of such an implementation would not

be meaningful for a fair comparison.
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The only way to show the influence of waveform variation or advantage of consid-

ering this variation is to assume highest possible accuracy of existing methods. This

is achieved here by using stage-based analog simulations for the existing methods as

well. The only difference is that for the existing methods, only the delay variation is

propagated while for the method proposed in this work, the variation of the entire

waveform is propagated. For each instance of a cell the delay and the canonical

sum of the delay variation is computed by analog simulation. This is the best-case

accuracy of classical, table-based methods. Obviously, the analog simulations slow

down the classical methods by orders of magnitude but it is necessary to quantify

the influence of waveform variation.

In standard SSTA methods, analog simulations are only used during library

characterization for various different values of input slope and output load and one

standard waveform. Here, the characterization step is performed for each instance

of a cell in the circuit individually considering the actual input waveform shape in-

cluding the slope and the output load. This ensures the perfect match of the model

to this particular cell instance and the only error that is introduced derives from

not considering the waveform variation.

Figure 4.1 shows output waveforms of a chain of 10 minimal inverters with simple

RC interconnects. The values for load and slope lie within the library characteriza-

tion data of the cells. One arbitrary run of the Monte Carlo analysis was selected to

show the difference of the resulting waveforms. The error caused by neglecting the

waveform variation and only propagating the arrival time variation is shown. It can

be seen that neglecting the waveform variation causes a significant deviation from

the result of the SPICE simulation.

Some more output waveforms are shown in Figure 4.2. To illustrate the accuracy

of the proposed method, seven samples of the Monte Carlo simulation were arbitrar-

ily selected from all 10,000 Monte Carlo samples. For each sample, the waveform

which results from full-path SPICE simulation is compared to the waveform which is

obtained by the proposed method. The figure shows that the results of the proposed

method are close to the results of full-path SPICE simulation.

4.4 Statistical Results

It was shown that the sensitivity coefficients in the canonical sum can be used to

compute the output waveform from a given change of parameters. Now, the statisti-
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Figure 4.1: Output waveform for the nominal case and one Monte Carlo run ob-
tained by SPICE simulation, the proposed method, and the proposed method only
considering the delay variation.
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Figure 4.2: Output waveforms from the proposed method and from SPICE simula-
tion for arbitrary samples of the Monte Carlo simulation
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cal quantities should be evaluated against the result of Monte Carlo analysis. After

the simulation of all samples, the statistical properties like mean and variance of the

crossing times can be computed. For any of the crossing time variations the result

of the proposed SSTA can be compared to the result of the Monte Carlo analysis.

For the sake of a simplified presentation, only one of the crossing time variations

is selected. The most significant and mostly used crossing point is the one which

crosses Vdd/2 or half the voltage swing. This crossing point usually defines the ar-

rival time at the end of the path or the delay of the path if the arrival time at the

primary input is assumed to be zero. The variation of the delay is considered in the

following as a simple criterion for the accuracy of the proposed method.

The proposed method was evaluated on various generic cell chains and specific

paths from an industrial digital design with fully extracted post-layout parasitics.

The variation modeling was based on 4 global transistor parameters and 2 local pa-

rameters per individual transistor as described in Section 4.2. The underlying tech-

nology modeling, including the statistical information, is taken from a productive

90nm technology framework. The local parameters of each transistor are indepen-

dent of each other but correlations can be considered as described in Section 2.3.4.

The quantity chosen for comparison is the arrival time at the output of the path.

The mean of the arrival time is determined by the deterministic nominal simulation

and thus not of major interest. Therefore, the accuracy of the standard deviation

of the arrival time (σd) will serve as main quality criterion. To make sure that the

Monte Carlo reference simulation itself is sufficiently accurate we used 10,000 Monte

Carlo runs per testcase.

The first set of simple test cases consists of generic cell chains with 10 instances

of the identical library cell in each path connected by a simple interconnect structure

of 6 resistors and five capacitors between each cell. Minimally sized cells where cho-

sen to maximize the influence of parameter variations. Table 4.1 shows the number

and type of gates used in these simple test circuits, the required computation time,

the computation time for a corresponding Monte Carlo simulation, and the error in

the σd value, calculated as the relative deviation of the results from our approach

compared to the Monte Carlo reference.

The next set of test cases is a collection of specific paths from an industrial

digital design with extracted post-layout parasitic nets. The netlists of these paths

incorporate not only the gates in the path but also the relevant receiver gates in

the fanout of the respective gates. Table 4.2 shows the number of cells, the overall

number of resistors (#res) and capacitors (#cap) involved, the computation time
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Type #gates err σd rt rt(MC)
INV 10 3% 67s 6 · 103s
CLK BUF 10 3% 141s 14 · 103s
MUX4 10 2% 799s 131 · 103s
NAND4 10 1% 427s 34 · 103s
NOR3 10 3% 374s 32 · 103s

Table 4.1: Results for simple chains

#gates #res/#cap err σd rt rt(MC)
35 237/215 3% 923s 614 · 103s
35 241/219 5% 927s 608 · 103s
34 225/204 4% 907s 536 · 103s
50 108/44 5% 1400s 1.2 · 106s

Table 4.2: Results for paths from an industrial design

for the proposed method, the computation time needed for a full-path Monte Carlo

SPICE simulation, and the error of the standard deviation of the delay σd derived

by our method compared to the Monte Carlo simulation.

As the tables show, the difference between the σd obtained by the proposed

method and the σd from the full-path Monte Carlo SPICE simulation is excellent

(at most 5%) for both the generic cell chains and the real-life industrial examples,

while analyzing the industrial examples using the proposed method is 600-800 times

faster than the corresponding Monte Carlo simulation.

Next, the resulting probability density functions (pdfs) should be evaluated. Fig-

ure 4.3 shows the comparison of the histogram from the Monte Carlo simulation and

the Gaussian pdf with the variance resulting from the proposed method for the ar-

rival time ta, i.e. the crossing time of Vdd/2, of the output signal of the path. The

figure shows a close match between the histogram and the pdf. Thus, the assump-

tion of Gaussianity at the output of the circuit is reasonably accurate.

Due to the separation of a path into stages, the complexity of the proposed

method is linear in the number of gates in the path while the complexity for full-path

Monte Carlo SPICE simulation is higher. Thus the proposed method offers a highly

accurate statistical timing analysis considering the entire waveform between the

cells in cases where Monte Carlo analysis is prohibitive due to runtime constraints.

As such, it is ideally suited to be used as a reference for evaluating the accuracy of

commercial SSTA tools, which use simplifying assumptions to achieve greater speeds.
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Figure 4.3: Comparison of the histogram of the Monte Carlo simulation and a
Gaussian pdf with σ computed by the proposed SSTA.

The approach can also be used in a productive design environment to analyze in

more detail those paths that have been identified as being the statistically most

critical paths by a commercial SSTA tool.
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Chapter 5

Conclusion

Timing analysis is one of the major steps in the design flow of integrated digital

circuits. The downscaling of feature sizes increases the relevance of various new

effects which jeopardize the accuracy of standard timing tools. Two of these effects

are considered in this work:

1. The waveform has increasing importance on the timing behavior. Due to

higher resistances of the interconnect, the waveforms differ significantly from

standard shapes. Furthermore, nonlinear dynamic receivers have an influence

on the waveform. It was shown that it is crucial to consider the exact shape

of the waveform in order to obtain an accurate result for the timing properties

of a single gate and also of an entire circuit.

2. The relevance of parameter variations is increasing. With shrinking feature

sizes the imperfections in the manufacturing process lead to larger relative

deviations from the nominal values than in earlier process generations. As

these imperfections are not known during the design phase, the impact has

to be modeled or estimated. Traditional corner-based methods ensure correct

operation for worst-case parameter sets. These methods, however, lead to

an overdesign causing increased cost and power consumption. Therefore, the

device parameters have to be considered as statistical variables and the timing

of a circuit has to be computed in a statistical manner.

In this work, a novel path-based method for statistical static timing analysis

(SSTA) is proposed. It is based on successive analog simulations of the stages.

Each stage of a path consists of the driving cell, the interconnect structure and

all receiving gates connected to the output of the driving cell. The three parts of

modeling each stage were proposed as:

1. The waveform is the entire simulator output of the previous stage. This

output signal is used as an input for the current stage. The variation of the
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signal is modeled by the variation of the voltage at particular points on the

waveform.

2. The driving gate is the full transistor level netlist as defined in the library.

There are no simplifying abstraction made which could cause inaccuracies due

to modeling.

3. The dynamic load connected to the driving gate is the post-layout inter-

connect structure with all parasitic RC-trees. The gates connected to that

interconnect structure are also contained in the receiver because using only

a single capacitance for the gate input load neglects relevant effects like the

Miller effect.

The procedure for analyzing a single stage and propagating the variations from

the input of the stage to the output was partitioned into the following steps:

1. The nominal waveform is determined. The nominal waveform is determined

by the analog simulation of the entire stage for nominal transistor parameter.

2. The influence of the input waveform variation to the output waveform is

computed. This can be achieved either by estimating the linear, time variant

transfer function of the cell or by applying the parameter variations at the

input and computing the sensitivities on these variations. The latter is used

in this work as it is numerically advantageous for the analog simulator. The

computation of sensitivities to the input waveform variation is transferred to

the computation of sensitivities to resistors using a auxiliary circuit connected

to the input of the current stage.

3. The sensitivities to stage parameters are computed. The influence of

parameters internal to the stage is computed by the employed analog simulator

using adjoint network analysis.

4. Addition of both influences is performed. The variation caused by the

variation of the input signal is added to the variation caused by the stage pa-

rameter variations. During this addition, the occurrence of parameters in both

influences has to be considered in order to keep the correlation information

correctly.

The result of the proposed method is one weighted sum of transistor parameters

for each of the considered points on the output waveform of a path. With these

linear expressions the random variables of the transistor parameter variations can



73

be mapped to the variation of timing parameters such as the path delay.

The results show that the proposed method is suitable for accurate SSTA. The

aim of this work is to provide a reference methodology in order to evaluate com-

mercially available tools. Thus, it is acceptable that the runtime is too high for

timing sign-off. Only a small number of paths will be analyzed and the result will

be checked against the result of faster tools. Such a reference is necessary as ana-

log Monte Carlo simulation is too time consuming for most paths. In contrast to

recently published methods, this method avoids simplifications on most levels and

reaches accuracy comparable to Monte Carlo simulation. Other approaches are not

evaluated against analog Monte Carlo simulation of industrial designs with extracted

parasitics.

The proposed method is implemented as an in-house tool at a leading semicon-

ductor manufacturer for accurate and reliable SSTA reference.
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