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Abstract

Complex multimedia systems like telepresence and teleaction systems are rapidly gaining

relevance in both modern science and technology. The challenging integration of various

multimodal data streams is a main topic in current research activities. While the pro-

cessing and coding of video and audio data as the two most important modalities for the

human being has been excessively thematized in the past years, the haptic modality was

neglected in comparison. Haptics, representing all kinds of information the human being is

able to perceive via the means of touch, movement, force, and orientation, pose numerous

interesting challenges as far as data reduction and real-time transmission are concerned.

This dissertation presents a broad spectrum of information about the haptic modality fo-

cusing on possibilities to reduce the amount of data transmitted in haptic teleinteraction

systems without impairing the functionalities or even endangering the user. After present-

ing signal statistics based compression approaches the main contribution of this thesis, the

so called deadband approach, is described in detail. This approach exploits the percep-

tion capabilities of human beings to reduce the amount of packets transmitted in haptic

teleinteraction systems. The deadband approach and its extensions are thoroughly tested

in various experiments, ranging from simple one degree-of-freedom perception threshold

examinations over three degree-of-freedom haptic interaction with virtual remote environ-

ments to the examination of its influence on task performance in a real telepresence and

teleaction system. It is found that it provides significant data reduction gains while main-

taining the performance of the systems. Also a theoretical point of view is given by the

mathematical derivation of the output signal behavior when using the deadband approach

on different kinds of input signals leading to further understanding of the theoretical foun-

dation the approach is based on. In summary, this dissertation proves the legitimacy of

the presented data reduction approach for haptic data and also defines its limitations and

rules of application.
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Kurzfassung

Telepräsenz- und Teleaktionssysteme finden zunehmend Anwendung in wichtigen Zukunfts-

gebieten wie der Medizintechnik, der Raumfahrttechnik, der Produktionstechnik und der

Sicherheitstechnik. Eine grosse Herausforderung in diesem Zusammenhang ist dabei die

Integration der vielen multimodalen Datenströme, die in einem solchen Szenario auftreten.

Während die Verarbeitung, Codierung und Übertragung von Video- und Audiodaten in

den letzten Jahren intensiv behandelt wurde, wurde die haptische Modalität im Vergleich

stark vernachlässigt. Haptische Daten, also zusammenfassend alle Arten von Informatio-

nen, welche der Mensch durch Berührung, Bewegung, Kraftausübung und seine Orientie-

rung im Raum wahrnehmen kann, stellen interessante Anforderungen an die verwendeten

Verfahren bei der Echtzeitübertragung und Kompression. Diese Dissertation bietet ein

weites Spektrum an Informationen über die haptische Modalität als solches und legt dabei

ihren Schwerpunkt auf Möglichkeiten, die Menge an übertragenen Daten in Teleinterakti-

onssystemen zu reduzieren ohne dabei deren Funktion oder Sicherheit zu beeinträchtigen.

Neben Ansätzen, welche die Signalstatistik für die Kompression ausnutzen, wird der soge-

nannte Deadband-Ansatz vorgestellt. Dieser Ansatz nutzt die Schwächen und Grenzen der

menschlichen Wahrnehmung aus, um die Anzahl der übertragenen Pakete in haptischen

Teleinteraktionssystemen so gering wie möglich zu halten. Der Deadband Ansatz und

seine Erweiterungen werden sowohl durch Simulation als auch experimentell untersucht.

Die Experimente reichen von einfachen Aufbauten mit nur einem Freiheitsgrad über die

Interaktion mit einer virtuellen entfernten Umgebung in drei Freiheitsgraden bis hin zur

Untersuchung des Einflusses der Datenreduktionsverfahren auf die Aufgabenperformanz

in einem realen Telepräsenz- und Teleaktionssystem. Ein Hauptergebnis dieser Arbeit ist,

daß der vorgestellte Deadband-Ansatz die übertragene Datenmenge signifikant reduziert,

ohne die Wirklichkeitsnähe des Systems maßgeblich zu beeinträchtigen.

Neben praktischen Untersuchungen, geht diese Arbeit auch auf die theoretischen Hinter-

gründe des Deadband-Ansatzes ein. Das Signalverhalten bei der Anwendung des Verfah-

rens auf verschiedene Arten von Eingangssignalen wird mathematisch modelliert und analy-

siert. Die Ergebnisse führen zu einem grundlegenderen Verständnis der Leistungsfähigkeit

und Anwendbarkeit des untersuchten Ansatzes. Zusammengefasst lässt sich sagen, daß

diese Dissertation die Einsatzfähigkeit des präsentierten Datenreduktionsansatzes für hap-

tische Daten erfolgreich verifiziert und dabei ebenfalls über seine Schwächen und möglichen

Einsatzgebiete aufklärt.
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Chapter 1

Introduction

1.1 Telepresence and Teleaction Systems

Telepresence and teleaction (TPTA) systems have been and still are the subject of intensive

interdisciplinary research covering the areas of network communication, computer science,

robotics, system theory, control theory and psychology. TPTA systems allow a human

operator to be present in and interact with a remote environment that can for example be

distant, scaled to macro or nano dimensions, hazardous for a human being or even virtual

reality. This is achieved by the sensing, transmitting, and displaying of multiple modalities

the human operator needs for natural interaction and the feeling of presence.

A TPTA system as visualized in Figure 1.1 consists of three main components: the human

system interface (HSI), the teleoperator (TOP) and the communication link connecting

those two. The HSI consists of input devices, typically haptic devices for position and

orientation input, and output devices for multiple modalities (e.g. head mounted device

for stereo-video, headphones for audio) and the haptic devices for force and torque feedback.

By means of the HSI the human operator (OP) commands the position and velocity of

the teleoperator during the observation of and interaction with the remote environment

through multi-modal feedback. The teleoperator itself is a robot equipped with multiple

sensors (e.g., video-camera, microphones, and force/torque sensors) and, in order to be

able to interact with the remote environment, it is also equipped with haptic actuators

(e.g., grippers or more anthropomorphic limbs). The multimodal sensor data including the

interaction force with the environment is fed back to the HSI and displayed to the operator.

The communication link bidirectionally transports the multimodal data streams. Under

the assumption of an ideal TPTA system, the operator feels as if he were in place of

the robot interacting with the remote environment or, in other words, feels completely

1
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Operator

Human-System-
Interface
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Teleoperator

Sensors
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Local Control
Loop

Remote Control
LoopBarrier

Communication

Response

Command

Figure 1.1: General overview of a TPTA system.

immersed.

The main focus of this dissertation lies on the haptic (force feedback) subsystem, specifically

on the data reduction and transmission of haptic data streams within a TPTA system.

1.1.1 Application Scenarios

Today, only a limited number of haptic teleoperation systems are available. This is first

and foremost because of the immense technological and interdisciplinary challenges those

systems pose. Nevertheless, in the near future technology will be advanced enough to enable

TPTA systems for the use in a vast number of application scenarios. In the following we

take a closer look at some of the most promising approaches.

1.1.1.1 Telemaintenance

In complex industrial scenarios maintenance of machines and other complex technological

systems is one very important factor. In case of failure an expert for the respective system

has to be found and this expert in most cases has to personally inspect and evaluate

the problem before being able to fix it. Personal attendance of highly trained personnel

is often necessary and therefore requires additional travel time. This constant traveling

significantly decreases the work efficiency of the expert.

In one possible scenario in the near future the expert stays at one place or even at home

and only operates his HSI which he uses to connect to a corresponding maintenance-TOP

at the site where the failure occurred. He is then able to quickly evaluate the problem
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using the sensors and actuators of the TOP and eventually fix it right away or can initiate

additional tasks like ordering spare parts. Once he is done at one site he can disconnect

und reconnect to the next client within minutes. No need to travel for many hours or even

days. This is both very positive for the expert himself, who no longer needs to travel, and

the client, who gains much shorter response times to maintenance requests.

Somehow related to telemaintenance, telepresence in hazardous environments concentrates

on the work in environments where a human being is not able to perform tasks or is at

least strongly handicapped by protective equipment. Examples for this are the maintenance

work inside a radiation exposed nuclear reactor core, operation under high pressures of the

deep sea or tasks to perform in the cold and gravityless regions of space.

Systems as described in [56, 57, 48, 64, 60, 59] show the research in the direction that

possibly makes this vision reality in the not-so-distant future. Features like bimanual haptic

interaction and the possibility to explore wide remote environments build the foundation

for an immersive and transparent TPTA system for telemaintenance.

1.1.1.2 (Tele-)Education

Teleeducation is already done in multiple forms like students attending lectures over the

Internet via Audio-/Video-Streaming. The special case of haptic teleeducation is not yet

used. For this type of teleeducation, a student can be taught in multiple ways: By using

an affordable haptic display device at home, the student can try to fulfill a mechanic task

like making a knot using surgical instruments. A supervisor at the university can watch

the progress of the task and give tips and hints how to improve their performance. It is

even possible to have the supervisor haptically guide the student as if he held the students

hand. The student then feels the guidance forces and they help him/her in the learning

process.

Furthermore it is possible to store haptic interaction data for educational purposes. For

example the trajectory and contact forces of a complicated procedure executed by the

supervisor can be stored and used later on to guide the students in learning the procedure.

The student then is either guided along the trajectory of the procedure or presented with

the contact forces while watching the procedure’s video recording or a combination of both.

Examples for haptic (tele-)education can be found in [71, 74, 35, 18] but this is only a

small sample of research activities in this field.



4 CHAPTER 1. INTRODUCTION

1.1.1.3 Microassembly

Due to the ongoing trend of downsizing technological systems in order to make them easier

to handle, increase their efficiency and lowering their material cost it becomes more and

more difficult to handle the mechanical parts of such systems. A human being is not able

to handle objects below a certain size without technological help. And even with help of

microscopes and tweezers the miniaturization of processed objects is limited and handling

becomes more difficult and tiresome for a human being.

TPTA systems in the context of microassembly tasks offer the possibility to scale sensed

haptic data like forces and positions from a micro-environment to a manageable size for a

human. With such a system, given appropriate sensors and actuators exist in the respective

size, it would be possible to directly and comfortably interact with objects the size of

microns or even nanometers.

Exemplary work in the direction of microassembly can be found in [72, 42, 58] where

both micro and nanomanipulation systems are developed and evaluated. Of course a

combination of microassembly and telemaintenance or teleeducation is possible but also

complicates the involved systems.

1.1.2 Haptic Data

1.1.2.1 Classification

The main novelty of TPTA systems in comparison to well known remote controlled systems

is the transmission of haptic data. Haptic data (from the Greek haptesthai: to touch) in

general consist of any type of mechanical quantity a human being is able to acquire with

its sense of feeling. This ranges from positions and velocities over forces and torques to

temperature, roughness and viscosity only to name popular examples.

Generally a differentiation between kinesthetic, proprioceptive and tactile information is

made:

• Kinesthetic data can be described as the kind of data that is sensed by special

organs in muscles, tendons, joints, and bones and is stimulated by body movement

and stress on extremities and limbs. Kinesthetic data can be positions, orientations

and derivatives thereof (velocity, angular velocity, acceleration, angular acceleration),

forces and torques.

• Proprioceptive data is sensed within the human body and gives information about

body posture mainly based on data by sensors in skeletal joints, the inner ear, and
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the central nervous system. This possible types of data are similar to the examples

given for kinesthetic data but in this case they affect the whole body instead of only

extremities and limbs.

• Tactile data is mainly sensed by the skin. A number of different mechanoreceptors

near the surface of the skin provide sensory to acquire environmental contacts in

the frequency range of 50-350Hz and can thereby differentiate several properties like

temperature, roughness, geometry and slippage.

1.1.2.2 Haptic Data in TPTA Systems

Haptic data signals as used in TPTA systems represent the progression of mechanic quan-

tities like position, angle, velocity, angular velocity, acceleration, angular acceleration as

well as force and torque over time. These quantities are sampled by respective sensors at

a constant rate, typically in the range 500–1000Hz with a typical resolution of 16bit per

Degree of Freedom (DoF). The high sampling rate is necessary to encompass the whole

range of human haptic perception as well as, in the context of TPTA systems, to ensure

the tracking performance and stability of the local control loops at the HSI and the TOP.

Transmitted data is mostly of kinesthetic nature because this type requires the least tech-

nical effort to sense and display. Proprioceptive displays as used in flight simulators or

theme park thrill rides are rarely used in TPTA systems as well as tactile displays, which

usually require a large amount of micromechanical effort and are therefore hard to place

at the most important locations of human interaction, the hands and fingertips.

Currently available TPTA systems like bimanual systems with additional finger force feed-

back easily have more than 20 DoF. At every sampling instance, i.e., 500 to 1000 times per

second, a data packet consisting of all current sample values is generated and sent over the

communication link. The bidirectionally transmitted position/velocity and force/torque

data packets serve as reference input for the local control loops at the HSI and the TOP.

As can be seen from the structure of a TPTA system, where the HSI is used to control

positions at the TOP which eventually lead to force feedback at the HSI which again in-

fluences position input, a global control loop is closed by the communication system. It is

clearly evident that the communication introduces transmission delay in this control loop.

Furthermore, delay in a closed loop system leads to instability if not treated by appropriate

control measures [17]. The more delay is introduced the more conservative the control has

to be designed in order to guarantee stable operations at any time. This on the other hand

leads to a strong deterioration of immersiveness, and in many cases to the inoperability of

the TPTA system [39, 38, 55, 54, 70, 13]. Thus, hard real-time constraints apply for the

haptic data stream, and this constitutes the fundamental difference to standard streaming
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multimedia such as video and audio. The primary design goal for a communication system

for TPTA systems is to keep the introduced delays and the amount of data being sent as

small as possible.

Usually dedicated lines or high speed local area networks are used for the transmission

of haptic data. Coming from its ubiquitous nature it becomes more and more desirable

to use the Internet as the communication infrastructure. Unfortunately, the transmission

characteristics of the Internet are far from being optimal. For efficient transmission of

haptic data over the Internet, data reduction techniques have to be used to lower the

amount of data and possibly even the rate at which packets are transmitted. Reduced

packet rates put less demand on the Internet connection and therefore lower the probability

of congestion along the transmission path. High packet rates (1000Hz) as we can observe

them for traditional transmission of haptic data are hard to maintain over the Internet

[50]. One possible solution to this challenge is the real-time coding of haptic data.

1.1.3 Frequency Characteristics of Haptic Data

By analyzing the position, velocity, force and torque signals transmitted in a TPTA-system

in the frequency domain, some characteristic properties can be observed. During free

space movement using the HSI, i.e., no environment contact takes place, quick changes

in direction and sudden accelerations or decelerations rarely occur. The inertia of human

extremities in combination with the used force feedback device itself limits the velocity and

rapidity of human movements. Thus, the corresponding velocity signal mainly consists of

low frequencies. As soon as the TOP hits an object in the remote/virtual environment, this

resulting force feedback is signaled back to the OP. In this case, movement quickly comes

to a halt which directly leads to a transient velocity signal with broad energy distribution

in the frequency domain. Similar characteristics can be recognized in the force signal

transmitted from the TOP which is displayed to the human OP by the HSI. As long as

the TOP does not encounter direct contact to objects in the remote environment, there

will be no force feedback signaled and displayed to the OP. Hitting a stiff object in the

remote environment results in a sudden peak in the generated force signal which is also

characterized by a broad energy distribution in the frequency domain. In order to keep

in contact with the encountered object, the OP usually maintains a low contact force

against the object, either to make sure not to lose contact or to explore its surface. The

OP’s applied contact force and the corresponding force feedback signal may vary over

time but usually show smooth signal behavior in this state of manipulation. Hence, the

corresponding force feedback signal shows most energy in low frequency regions. Figure 1.2

depicts a few seconds of a typical force feedback signal recorded during a TPTA experiment.

The sudden force replies from the TOP when contact with a remote object in the distant
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Figure 1.2: An examplary haptic force signal.

environment occurs are clearly visible. Also, when the operator is keeping contact with the

touched object we see the smoothly varying change in the amplitude of the force signal.

Summarizing these observations, the velocity and force signals in telepresence systems

consist mainly of low frequency content. Only at the event of sudden contact in the

remote environment, the signals tend to become transient which leads to a broad energy

distribution in the frequency domain. This however is only true if the used velocity and

force/torque sensors deliver a signal with almost no noise. While this is true for most

force/torque sensors of better quality, the velocity signal is almost always generated as the

first order derivate of the position signal and therefore contains quite high noise levels.

1.1.4 Coding of Haptic Data

The multimodal data transmitted in TPTA systems consists of both well known types

of data like video streams (both mono and stereoscopic) and audio streams and also of

haptic data generated by force/torque or position/velocity sensors. In the past, but also

today significant research efforts in the fields of audio and video coding can be observed.

In contrast, the coding of haptic data has received only limited attention. With recent

advances in virtual reality, telerobotics, and telepresence and teleaction however, the topic

is rapidly gaining relevance. Once haptic data has to be transmitted or stored an interest

in compressing this kind of data emerges.

Fundamentally, a differentiation of real-time or in-the-loop coding and offline coding is
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necessary. The aforementioned constraints on the communication of haptic data only

apply to real-time coding. But of course some research effort has been made on the offline

coding of haptic data as well. Apart from that differentiation it has to be mentioned that in

principle the coding of data in general can be either lossy or lossless. For obvious reasons,

lossy compression achieves much higher compression gains compared to lossless coding but

introduces errors in the signal. The delicate part of lossy coding is to introduce a kind of

error which does not or only marginally influence the performance of the system the data

is used in.

First efforts in offline coding can be found in [66, 67] where a number of different approaches

of effectively sampling haptic data and first applications of DPCM and ADPCM are shown

for mostly lossless offline coding purposes. In some scenarios so called haptic sessions

are recorded and stored. Instead of using conventional compression techniques like ZIP

or RAR, techniques especially tailored to the coding of haptic data yield significantly

higher coding gains as shown for example in [62] where, among other techniques, the main

contribution of this dissertation is used to achieve lossy compression ratios of 127:1 and

above for so called “haptic media files”, which basically are compilations of recorded haptic

data streams with some side information.

Much more interesting, especially in the context of TPTA systems, is the real-time coding

of haptic information. Traditional block-based compression techniques are not applicable

because of the additional delay introduced by building blocks of data. Stream-based tech-

niques like differential coding followed by entropy coding (e.g., [13] or Section 2.1) work

quite well with up to 90% packet payload reduction. Approaches using DPCM, ADPCM

and Huffman Coding [52, 37] for real-time coding also work well, but they all suffer from

a bad packet header to payload ratio. For instance, if a haptic data stream carries 3-DoF

data with 16bit resolution the payload of one packet is 6byte. In comparison, the UDP/IP

header of this packet is 28byte. Additionally, approaches suffering from the negative ef-

fects of differential coding like vulnerability to packet loss are obviously less suitable for

packet-based communication in TPTA systems. But coding of haptic data is not only of

interest in TPTA systems. In [21] compression based on predictive coding is applied in

order to improve the communication between a haptic device and the controlling host with

respect to sampling rate and data rate. In this context the efficient coding of haptic data

is beneficial to the fidelity and transparency of a haptic input/output device.

All the mentioned approaches have in common that they only exploit statistical signal

properties for data reduction. In comparison, the approach presented in this disserta-

tion exploits the characteristics of human haptic perception in order to reduce the packet

transmission rate in networked TPTA systems. To our best knowledge, this is the first

psychophysics-based haptic data reduction approach in scientific literature.
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1.1.5 The Human Haptic System

Since the main goal of the work presented in this dissertation is the effective coding of

haptic data based on the exploitation of limitations of human haptic perception, we need

to take a look at the mechanisms a human being uses to perceive and generate haptic

information.

1.1.5.1 Cutaneous Perception

The skin is the largest sensor of the human body. It is responsible for cutaneous perception

and is therefore equipped with a number of different receptors. The combination of the

stimuli sensed by these receptors results in haptic or tactile sensation.

First we take a look at the mechanoreceptors which are responsible for sensing mechanical

stimuli. The four types in the skin are [31, 22, 69]:

Merkel receptor

This receptor has the shape of a disc and is mostly placed between the upper skin

(epidermis) and lower skin (dermis). It senses pressure stimuli in the frequency

range from 0.3Hz to 10Hz in small, well defined areas. It slowly adapts its perception

behavior to applied stimuli and is therefore able to sense intensities of stimuli.

Meissner corpuscle

This is a conglomerate of a number of flat-shaped cells. It is located in the dermis

right beneath the epidermis and senses low frequency vibrations from 3Hz to 50Hz.

Its field of perception is small and well defined and adapts itself rapidly to stimuli.

Ruffini cylinder

This receptor consists of many fibers located within a hull shaped roughly like a

cylinder. It is located within the dermis and mainly senses stretching and static

force stimuli in the frequency range from 0Hz to 10Hz in a large indistinct area. Its

adaptation to stimuli is rather slow.

Pacinian corpuscle

Shaped like an onion, this is a capsule around a nerve fiber located deep within

the skin in the subcutaneous fat areas. It is basically an acceleration and vibration

detector in the frequency range from 10Hz to 500Hz. It covers a large, indistinct area

of skin and rapidly adapts to stimuli.

The adaptation behavior of receptors can be described as follows: Slow adaptation means

that the receptor senses the stimulus for a very long time before the perception fades while

the stimulus is still there. For example a watch is not consciously felt at the wrist. After
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some time we don’t feel it anymore although it is still there. Rapid adaptation of course

is the exact opposite. Only the initial event once a stimulus occurs is sensed by a rapidly

adapting receptor. One could say that a slowly adapting receptor senses the state of a

stimulus whereas a rapidly adapting receptor senses the change of a stimulus.

Note that the four receptor types cover all possible combinations of large and small area

of reception and slow and rapid adaptation to stimuli.

Since the human skin is also able to feel temperature there are also so called thermorecep-

tors [31, 22, 45]. There are separate receptors for warm and cold:

Warm fibers

These receptors respond to increasing temperatures in the range from 30◦C to 48◦C

where higher temperature leads to more intensive sensation. It does not respond to

mechanical stimulation and is located in the dermis.

Cold fibers

Located directly beneath or within the epidermis, the sensation created by these

receptors gets higher with decreasing temperatures. The detection range of these

receptors starts at 5◦C and ends at 43◦C.

In the temperature range from 30◦C to 36◦C a human being usually does not perceive any

temperature chages of the skin. Outside of this range, perception is essentially provided

by the associated receptor type.

If mechanical stimulation is so large that tissue damage is imminent or the skin is exposed

to temperatures above 45◦C or below −15◦C another type of receptor comes into play: the

pain receptors or nocireceptors. Nocireceptors have receptive fields of around 25mm2 and

lead to a pain response in the brain when triggered.

The spatial resolution of thermoreceptors is lower than those of nocireceptors or mechanore-

ceptors but is increased by combining the sensations of the three.

The combination of all those receptor types enables the high resolution of the tactile

perception of a human being.

1.1.5.2 Kinesthesia

Kinesthesia describes the ability of a human being to sense the position and movements

of the body and its parts. This information is taken and consolidated from a couple of

different receptor types [22].

Joint position receptors
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These are mainly the already known Ruffini cylinders and Pacinian corpuscles which

are located within the joints together with free nerve endings. During body move-

ment the pressure on those receptors changes according to the joint position. This

sensation of pressure is interpreted by the central nervous system as joint position.

Consequently the change in pressure is evaluated as angular motion of the joint.

Muscle tension receptors

There are two types of receptors within muscles. Muscle spindles are located in

between muscle fibers and can detect their respective movements created by both

passive and active stretching. Golgi tendon organs are located between a muscle and

its respective tendon and measure muscle tension. These two receptors in combi-

nation can sense both tension strength and rate of increase/decrease of tension and

are therefore the most important force receptors during bodily interaction with the

environment.

In combination with the cutaneous senses a perception of forces and positions in a very

large range is possible.

1.1.5.3 Sensory Motor Control

The interaction of the human motor system, consisting of muscles, joints, tendons, and

bones and the sensory system described above constitutes the human sensory motor system.

Since haptic interaction with objects requires delicate control of forces and positions, the

human developed a very powerful sensory motor control mechanism. The simple example

of grasping and lifting a wet glass illustrates the function principle of sensory motor control.

First the visual system localizes the glass and we move our hand in the right position to

grasp the glass with all four fingers and the thumb. As soon as our fingertips touch the

surface, the combined sensation of thermoreceptors and mechanoreceptors tells the brain

that the object is wet and that slippage may be a problem. In the next step force is applied

by the fingers to build up enough friction that the glass can be lifted. Here both the tactile

receptors in the fingertips and the kinesthetic receptors in the muscles and joints serve as

sensors in the force control loop to keep the applied force stable and at an adequate level.

Next the hand is moved upwards to lift the glass. As soon as gravitation pulls the glass

down, shear forces and possible slippage are detected and measured in the fingertips by the

respective mechanoreceptors. In the following the grasping force is adaptively increased

to reliably prevent slippage. This force control usually takes place reflex based at an

unconscious level to prevent unnecessary delays in the control loop. After this a steady

grasp is established and the glass can be manipulated further.
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Of course this description is quite simplified but still shows the complex interaction of

sensors and actuators of the human body in order to achieve a relatively simple task.

The main interaction tools of the human are its hands. The human hand with its four

fingers and the opposing thumb is a very versatile gripping and interacting device. It

allows both high grasping forces and stability using the so called power grasps where both

palm and the whole fingers are used to encompass an object as well as highly dexterous

manipulation using the so called precision grasps where only the thumb and one or more

fingertips are used to precisely manipulate an object.

1.1.6 Limitations of the Human Haptic System

Human perception has been investigated intensively during the past two centuries. In

this context, the respective perceptual properties for all kinds of stimuli put on the human

body have been studied. Despite the very sophisticated nature of human haptic perception

and interaction there are still limitations in various aspects of haptic sensations and motor

control. We are especially interested in those limitations because we want to exploit them

in the coding process.

1.1.6.1 Resolution and Bandwidth

First we take a look at the resolution and bandwidth requirements of human haptic in-

teraction since these are the first candidates of properties a data reduction system could

base upon. According to the properties of the receptors used to sense haptic information

the frequency resolution of human haptic perception ranges from 0 to 500Hz. Although

[68] mentions that frequencies of up to 10000Hz can be required for skillful manipula-

tive tasks, current teleoperation hardware runs at sampling frequencies of 1000Hz which

directly reflects the capabilities of the receptors in the skin.

It is also important to note that human input and output capabilities are very asymmetric

what haptic information is concerned. While being able to sense frequency stimuli of up

to 500Hz the human haptic system is only able to produce frequencies of up to 10Hz.

1.1.6.2 Detection Thresholds: Weber’s Law

Although absolute perception thresholds, e.g., the smallest stimuli a human being is able to

detect, are known for haptic perception, this property is hardly usable for coding purposes.

Relative detection thresholds, e.g., the amount by which a stimulus has to change before
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this change becomes perceivable, on the other hand represent a good starting point for

perceptual coding.

Just like a lot of other perceptual modalities, human haptic perception can be well approx-

imated by Weber’s Law. Ernst Weber was an experimental physiologist who in 1834 first

discovered the linear relationship

∆I

I
= k or ∆I = kI (1.1)

between the stimulus intensity I and the smallest still perceivable change of the stimulus

intensity ∆I. The constant k is in modern psychophysics literature referred to as We-

ber constant or Just Noticeable Difference (JND) (in older literature ∆I has been called

JND) or Differential Threshold. The JND is measured in psychophysical experiments and

represents a statistical rather than an exact quantity. The JND usually reported is the

difference that a person notices in 50% of the trials.

For haptic perception, i.e., force, limb position, and velocity, the JND is in the range

from 5% to 15%, depending on the type of stimulus and the limb/joint where it is applied

([44, 22, 19]). This means that if, for example, the displayed force at the HSI changes its

magnitude by less than the JND, the operator would not notice this change.

1.2 Chapter Summary

Various interesting application scenarios for TPTA systems with even more to come in the

near future are the basis for more intensive research in the field of coding and transmission

of haptic data which plays an important role in such systems. The unique set of proper-

ties and challenges this kind of multimedia data presents, leads to approaches which are

different from standard audio and video coding.

In order to be able to exploit limitations of human haptic perception and sensory motor

control a deeper knowledge of the underlying mechanisms is very useful and can directly

lead to first data reduction approaches when it is combined with the knowledge of the

characteristics of examplary haptic signals.



Chapter 2

Compression and Data Reduction of

Haptic Data

In the following a number of possible approaches for the data reduction and compression

of haptic data is presented. We will use the following definitions of terms compression and

data reduction throughout the rest of this work. The term compression is usually used for

approaches which try to code information using less bits than in the original representation.

Source coding is another term for data compression. Data compression can be both lossy

or lossless. In contrast to that the term data reduction describes a lossy approach of

minimizing the amount of data by omitting part of the information. This omission takes

place in the original representation of the data.

First a lossless compression approach for haptic data is evaluated. After that the main

contribution of this dissertation is presented: a psychophysically motivated data reduction

approach for real-time haptic data streams, the so called deadband approach.

2.1 Differential Entropy Coding

Due to the relatively high sampling frequency required for haptic data streams and the

frequency characteristics described in Section 1.1.3, the changes in sample values of a

degree of freedom from one sample to the next are relatively small. During operation with

the telepresence system presented in [13] subsequent samples are either identical or only

change by a small amount. (see Figure 2.1). Such a distribution is well compressible using

a DPCM-based compression scheme. Only the changes from one sample to the following

are transmitted or in other words the current sample serves as the first order prediction of

the following sample and only the prediction error is encoded. As a sampling resolution

14
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of 16bit per DoF is enough in most cases the resulting range after differential coding is

about 7-10bit wide. Entropy coding of the prediction error allows for the use of adaptive

codeword lengths depending on the relative frequency of occurrence of the difference to

code. For example the most frequent input symbol, in this case the 0, would yield a very

short codeword of the length of only one or two bit. Less frequent input symbols are

represented by longer codewords.
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Figure 2.1: Relative frequency of positions and their changes from sample to sample in the

TPTA-System presented in [13].

2.1.1 Non-Adaptive Huffman Coding

The first approach presented in literature uses Huffman coding [41] as the entropy coding

scheme. More specifically, the non-adaptive variant of this source coding method is used.

In order to encode the input symbols a probability table has to be created first. This

is done by recording the relative frequencies of the signal to code as shown for example

in Figure 2.1. Of course, the coding efficiency is higher if the exact signal statistics are

known. Unfortunately, this is not the case for the real-time application scenario since there
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is no time to analyze the data to encode beforehand. The only possibility in this case is

the statistical analysis of a large number of sample data sets for the specific application

scenario.

The generated probability table, in which the relative frequencies of all possible input

symbols are recorded, is then used to generate the so called Huffman Tree (see [41] for

details) which offers a very efficient way of encoding and decoding of the input symbols.

Depending on the implementation only very little computational resources are necessary for

the en/decoding. Usually a certain number of DoFs are sampled every sampling instance

and have to be transmitted immediately because of the restrictions of haptic real-time

communication (see 1.1.2.2).

2.1.1.1 Procedure

The procedure in a real-time TPTA system is as follows. For every sampling instance a

set of n quantized sample values is read from the sensors of a n-DoF system. In the next

step differential coding for every DoF is performed. After that, the n differences of the

set are encoded one after the other using a different Huffman Tree. Individual probability

tables are used for each DoF of the signal so that a total number of n different tables are

necessary. The signal properties of the different DoFs of a haptic data stream can vary

considerably. Therefore it is not a good idea to use only one table for all DoFs.

Since the resulting Huffman code is prefix free, which means a symbol is decodable without

knowing its length beforehand, it is possible to directly concatenate the encoded symbols

of the different degrees of freedom even if they use different Huffman trees for encoding.

The only thing the decoder needs to know is the order in which the DoFs are encoded.

In this way very efficient bit streams can be built because almost no side information is

needed to decode when the sequence and the respective probability tables for the DoFs are

known at the receiver side.

2.1.1.2 Table Misses

As mentioned, the tables we use to encode differential haptic data are 7 to 10bit wide.

Nevertheless it is still possible that values occur after differential coding that do not fit

into this table since differential coding by itself does not decrease the size of the source

alphabet. If a value after differential coding is not covered by the probability table we call

this a table miss. In order to be able to treat table misses we introduce a special symbol in

the source alphabet which marks table misses. If a table miss occurs, the special symbol
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is encoded and the absolute value of the table miss before differential coding (full 16bit

length) is appended directly after the special symbol.

This special treatment of table misses is not necessary by default. If we used probability

tables double the size of the source alphabet before differential coding, every possible value

would be covered. But for the special properties of haptic data this method works well

because table misses are very rarely encountered. The reduced memory consumption and

reduced complexity by having small source alphabets outweighs the very small increase in

redundancy introduced by the way table misses are treated here.

2.1.1.3 Results

Since haptic data has very favorable characteristics for differential Huffman coding some

experimental measurements have been made. For example for haptic data with 16 bit

resolution and 500 Hz sampling rate as encountered during operation of the TPTA system

in [13], the differential Huffman coding scheme reduced the amount of data communicated

to about 10% to 25% of the uncompressed rate.

2.1.2 Adaptive Arithmetic Coding

Arithmetic Coding (AC) is an efficient approach for redundancy reduction in data streams.

Just like Huffman coding it is a method of entropy coding. In comparison to Huffman

coding, AC overcomes the limitation of needing a fixed number of bits as the coded rep-

resentation of an input symbol. Therefore it is possible to get very close to the entropy

of the source signal which represents the theoretical lower bound. AC has been proposed

by Abramson and Elias in the 1960s. In 1976 first finite precision implementations were

shown and in 1979 and 1980 the algorithm as it is still used today has been proposed in

[61] and [34]. It is well described in [20] and since it is known to be a very good candidate

for entropy coding it was further investigated for its usability in TPTA systems.

2.1.2.1 Properties

One important property of AC is that it produces an incremental, non-final code. That

means that if a symbol sequence abc is encoded to a bit sequence xyz, this bit sequence xyz

may only be decoded to ab. The symbol c may be decodable as soon as the next symbol

is encoded or even later. In order to be able to decode the complete sequence, either the

number of encoded symbols has to be known in advance or a special symbol which marks

the end of the sequence has to be introduced.
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Non-final code also means that we cannot determine which bits in the encoded bitstream

represent a certain input symbol. We always need the complete preceding bit sequence in

order to decode the stream at a certain position.

Once we want to use AC to compress haptic data in real-time, a number of additional

challenges arise.

2.1.2.2 Procedure

The arithmetic coding of haptic data works almost the same as for Huffman coding (see

2.1.1.1). Of course the n different DoFs after being differentially coded are processed by an

arithmetic coder with the corresponding probability table. The result is only one bitstream,

where all the n differences are encoded and multiplexed. This stream has to be sent to the

receiver and can be decoded there using the respective decoder and probability tables.

2.1.2.3 Adaptivity

AC can be applied either with or without adaptive probability tables. In comparison to

adaptive Huffman coding, where the Huffman-tree has to be rebuilt from time to time

to adapt to changing signal properties, with AC it is very simple to implement signal

dependent behavior. One can even start off with equally distributed symbol probabilities

and build the table from scratch.

For haptic data, it makes sense to keep track of the last couple of seconds and build the

table from the relative occurrences of values in that time. For this, a FIFO queue with

the most recent 1 to 10 thousand samples (depending how localized the adaptation should

work) is kept in memory. The probability table is the table of the relative number of

occurrences of values in this queue. With every incoming new value, the respective counter

is increased by one. At the same time the counter of the value which falls out at the end

of the queue is decreased by one.

In case static tables shall be used, a table can be built from the recordings of a number of

experiments.

2.1.2.4 Table Misses

Table misses if the source symbol lies outside the 7-10bit wide probability table are treated

almost identically as in the case of Huffman coding. The only difference is that the 16bit-



2.1. DIFFERENTIAL ENTROPY CODING 19

sample before differential coding is appended after the bit in the bitstream which leads to

a decodable out-of-table special symbol.

2.1.2.5 Bit Sequence

Because of the non-final code structure it is impossible to know where a transmitted bit

sequence ends. In packet based networks the smallest data unit used is 8bit long (byte). If

a transmitted bit sequence ends somewhere in the middle of a byte and the rest of the byte

is filled with zeroes, the receiver is by no means able to distinguish whether the zeroes at

the end of the stream belong to the code or whether they are only left empty. One way to

get around this problem is to send the number of valid bits along with the sequence. This

clearly introduces additional redundancy in the data stream. The other possible way is to

only send complete bytes of code. We consider this to be the better solution although it

introduces at least one sampling step of additional delay.

2.1.2.6 Finishing Sequence

Generally the code generated from a number of symbols can not be decoded back to the

original symbols right away. Some information of the last symbols is still in the encoder,

represented by the current encoding interval bounds (see [20] for details). Once the next

symbols are encoded the first set of symbols becomes decodable. However, it is possible to

make the sequence decodable right away. To do this, the final code has to be produced by

flushing all residual data from the encoder. This is done by generating a number of bits

which clearly define a value inside the final interval in the encoder. Once this finishing

sequence is appended to the produced code, it becomes decodable. The drawback of this

approach is the redundancy added by the finishing sequence and that the encoder and

decoder have to be restarted afterwards.

2.1.2.7 Delay

If we use the method of sending only complete bytes of the encoded bitstream we face the

problem that we cannot send data directly after encoding. Even if the encoded bitstream

is exactly a multiple of 8bit long we would not be able to decode it at the receiver because

it is non-final code.

For example if one set of sample data is encoded and results in 27bit of code, we can not

send those 27bit to the receiver yet. We would have to use zero-padding to fill the last

byte up and the receiver would not be able to distinguish between code and padding bits.



20 CHAPTER 2. COMPRESSION AND DATA REDUCTION OF HAPTIC DATA

But even if one set of input data would result in 32bit of encoded bitstream it would be

of no use to send those 4byte right away because the last symbol of the set would not be

decodable yet.

One possibility to circumvent any delays is the application of the finishing sequence after

every set of data. But because of the redundancy the finishing sequence and the zero

padding introduce we do not use this method.

Once the following set of data is encoded and appended to the bitstream, we can send a

number of complete bytes and can be sure that the previous set of values can be decoded.

We can say we have an inherent one step delay in the system. At a sampling frequency of

1000Hz which is generally used for haptic data this one time step equals 1ms. This delay

is considered not critical.

2.1.2.8 Delay Constraint

Because of the fact that AC makes it possible to encode very frequent source symbols at

an average of less than one bit per symbol it is possible that even over multiple time steps

the encoder doesn’t produce enough output code to fill a whole byte of data. In this case

transmission should be forced in order to stay below a certain delay bound. There are two

possible solutions for this case:

The first possibility is to introduce another special symbol into the alphabet which repre-

sents forced transmission. For forced transmission the encoder encodes this special symbol

right after the last payload symbol and also appends the finishing sequence. Once the

decoder receives and decodes this special symbol it restarts decoding from scratch with the

next received packet of bitstream.

The second possibility is to use the finishing sequence directly after the last payload symbol

and send the data right away. In this case it is necessary to tell the decoder that the bits

following after the last payload symbol are not part of the code and that it has to restart

decoding with the next packet. This can be achieved by a one bit field in the header of

each packet (since some header information is almost always necessary) which is either

zero if the decoder should restart decoding with the contained data or one if it is just code

continuation.

The first approach should be taken if delay violations happen seldom. This can be the

case because either the number of encoded values in every time step is large or the delay

constraint is not very strict. The second approach should either be taken if one bit is

available in the header anyway or forced transmissions are expected very frequently. This

is mostly the case for small amounts of values in one packet or a very strict delay constraint.
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2.1.2.9 Results

We can see that using adaptive arithmetic coding for the real-time transmission of haptic

data is not trivial. Table 2.1 shows that some additional gain over Huffman coding is

possible using this scheme. Transmitted data sets were always the same and both the

Huffman coder and the AC without adaptation worked with the optimal probability table

calculated from exactly the encoded data set. The adaptive AC always used the most

recent 5000 samples to build its current table.

Type average bit/symbol

Huffman 5.161

Static arithmetic 5.157

Adaptive arithmetic 4.660

Table 2.1: Compression effectiveness under optimal circumstances.

2.1.3 Compression based on Signal Statistics: Conclusion

Despite this significant compression gain achievable, differential entropy coding suffers from

multiple downsides in the field of real-time haptic data transmission.

One drawback is that it leads to a problem in case of packet loss on the channel. The

difference values affected by this disruption of the data stream do not reach the destina-

tion. Therefore a constant offset appears in the subsequently reconstructed values. To

compensate for this offset, it is necessary to transmit absolute values every n samples or

in case a packet loss was detected.

But the main reason why these approaches are not as efficient as hoped for is the bad packet

header to payload ratio of a haptic data stream as already mentioned in the Introduction.

Even very good compression on the payload itself is useless if a big share of the necessary

network bitrate is caused by packet headers. Therefore, the compression schemes in the

following sections aim at packet rate reduction rather than payload compression.

2.2 1-DoF Deadband Approach

The basic idea of the psychophysically motivated data reduction approach presented here is

to transmit data only if the operator is likely to detect the change compared to previously

transmitted data. Related schemes are the deadband approach applied in networked control
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systems [53] where signal changes are not transmitted unless they exceed a certain fixed

threshold and the well-known ∆-modulation ([65, 32]). In our approach, the threshold is

not fixed but depends on the magnitude of the current output signal. The deadband that

is formed by applying this threshold value with respect to the most recently transmitted

magnitude value will be called p in the following. p is a percental value. The deadband

principle as we apply it here is illustrated in Figure 2.2. The parameter k in Weber’s

Law (Equation 1.1) basically states the upper bound of the deadband p. If, for example,

the user is presented with a force of 1N and the deadband is given with p = 10% the

next force sample value is only transmitted once it goes either below 0.9N or above 1.1N.

Every force change in the interval from 0.9N to 1.1N is considered imperceptible by the

human operator and therefore not necessary to be transmitted. Once p is larger than k

the deviation between the transmitted and original signal is likely to become perceivable

to the user and interaction may feel distorted and the quality of immersion is reduced.

To apply the deadband algorithm, the magnitude of the difference d between an initial

value xi and a current value xc has to be computed. This is done by calculating the

absolute difference between those two sample values and comparing it to a threshold value

(the deadband p multiplied by the initial value xi).

d = |xi − xc|
d ≤ |p · xi| =⇒ Do nothing (2.1)

d > |p · xi| =⇒ Transmit new value xc

As the control loops at the HSI and the TOP require an input signal at a constant high

sampling rate, samples which are not transmitted have to be reconstructed at the receiver

side. It is straightforward to apply a zero-order-hold strategy, where the value of the most

recently received sample is held until a new sample arrives (hold last sample).

t

Figure 2.2: 1-DoF deadband applied to a signal. Grey samples are not sent. Black samples

are signaled to the receiver.

Note that every data reduction in a closed loop system has an influence on the system

dynamics, and as such possibly on the stability. Stability under lossy data reduction as

well as effects of additional communication delay have been investigated in other works
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of the author ([9, 8]), and will not be treated here. Furthermore, we will consider a

position/velocity-force architecture here, where the position/velocity is transmitted from

the HSI to the TOP and the force from the TOP to the HSI. The velocity as well as the

force is processed using the deadband approach. In order to prevent a drift between the

positions of the HSI and the TOP resulting from the lossy nature of the data reduction

algorithm, additionally a position update is sent with every velocity packet.

The deadband data reduction approach will be abbreviated by DBDR in the rest of this

work.

2.3 3-DoF Deadband Approach

In TPTA applications we often encounter haptic devices with multiple degrees of freedom

(DoF), often 3. A 3-DoF device typically uses the three Cartesian components (or an-

other representation of 3D space) of the current velocity or force. Applying the 1-DoF

DBDR approach to every single component of the Cartesian representation is a straight-

forward extension, which, however, turns out to be very inefficient with respect to the data

transmission rate.

If random movements with identically distributed directions and magnitudes of forces and

velocities are examined, the component with the lowest magnitude and therefore the small-

est deadband is mostly responsible for packet generation. The probability of having a

component with low magnitude therefore increases with the number of components used.

It becomes obvious that the more DoFs a system has, the less efficient the DBDR approach

becomes if separately applied to each DoF.

To overcome the aforementioned limitation we propose a multidimensional deadband ap-

proach. This approach is motivated by recent psychophysical results [25] indicating the

validity of the straightforward extension of Weber’s Law to n dimensions. In the follow-

ing we explain the extension of the one-dimensional deadband (a numeric interval, see

Equation 2.1) to two dimensions where the deadband becomes a circular area. In 3D a

spherical volume element serves as deadzone (we will denote a multidimensional deadband

as deadzone from now on) and the extension is similar to the 2D case.

From now on vector values are considered and are denoted in bold letters xi and xc, and

d represents the magnitude of their difference. Accordingly, the deadzone algorithm reads

as follows

d = |xi − xc|
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d ≤ p · |xi| =⇒ Do nothing (2.2)

d > p · |xi| =⇒ Transmit new vector xc

ix

cx

Deadzone p=25%

ci xx −

ip x⋅

α

Figure 2.3: Geometrical description of a 2-DoF deadzone.

Figure 2.3 illustrates the resulting deadzone. The deadzone is represented by a circle

around the tip of vector xi with radius p · |xi|. The angle between xi and xc is denoted

by α. The multi-DoF deadband principle is visualized in Figure 2.4. If the tip of vector

xc lies within the deadzone circle, the deadband is not violated and thus no new value is

transmitted. If the tip lies outside the deadzone circle, updated sample values are sent.

The circular shape of the deadzone makes it computationally easy to calculate whether the

deadzone is violated or not. The size of the deadzone circle depends only on the length of

vector xi whereas the maximum of the angle α depends only on the deadband factor p.

The angle α reaches its maximum, when

xc ⊥ xi − xc (2.3)

and

|xi − xc| = p · |xi| (2.4)

i.e., xc is tangential to the deadzone circle. p is assumed to be significantly smaller than

1. So αmax can be calculated as follows:

sin αmax =
|xi − xc|
|xi|

=

=
p · |xi|
|xi|

= (2.5)

= p

αmax = arcsin p (2.6)
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Figure 2.4: Criterion for transmission of new values in the 2-DoF case.

In this case |xcαmax| would be

cos αmax =
|xcαmax|
|xi|

|xcαmax| = cos αmax · |xi| (2.7)

= cos(arcsin p) · |xi|

This means that no matter how large a sampled 2-DoF variable (velocity, force, . . . )

is, once it changes its direction by αmax an updated value will be sent to the receiver.

The multidimensional deadband algorithm hence provides constant directional sensitivity

independent from the deadband parameter p. The implications of this important property

of the isotropic deadzone are yet unknown and would be an interesting subject to further

experiments.

The extension of this approach to 3D is straight forward. The vectors xi and xc become

3-dimensional, the circular deadzone becomes a spherical deadzone. The tip of xc has to

lie outside this sphere to trigger an update value. The values of αmax and |xcαmax| stay the

same, because the vectors xi and xc define a plane in which the above calculations hold.



26 CHAPTER 2. COMPRESSION AND DATA REDUCTION OF HAPTIC DATA

2.4 Extensions of the Deadband Approach

2.4.1 Model-based Prediction

In order to further reduce the number of transmitted packets, signal prediction is used

on both sides of the system as shown in Figure 2.5. On the OP side a force predictor

is used to estimate future force values from the incoming force values. On the TOP

side the same predictor is fed with the values sent to the OP side. The fact that the

predictors on OP and TOP side are strictly coherent (neglecting the unavoidable delay

between the models because of transmission delays) enables us to only send packets over

the network if the current actual signal differs from the predicted signal by more than the

deadband/deadzone. A similar prediction is performed for the velocity values which are

transmitted in the opposite direction.

HSI TOP

Prediction
Model (v)

Prediction
Model (f)

Position + Velocity

Force

Prediction
Model (v)

Deadband

Prediction
Model (f)

Deadband

Figure 2.5: System with model-based prediction for higher packet rate reduction.

As an example of such a real time signal prediction a relatively simple linear predictor is

implemented and experimentally analyzed in this work.

xi =

{
xnew value sent/arrived

xi−1 + xnew−1−xnew−2

tnew−1−tnew−2
(ti − ti−1) else

(2.8)

where {xi,xi−1,xi−2, . . .} are the most current values output by the model and

{ti, ti−1, ti−2, . . .} are the corresponding time instances. {xnew,xnew−1,xnew−2, . . .} and

{tnew, tnew−1, tnew−2, . . .} are the last sent/received values and the corresponding time in-

stances.

With this predictor the signal is estimated by following the slope given by the last two

received signal values. Once the predicted signal differs too much from the actual signal,
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a new correct value is transmitted and the new prediction starts from there. More specifi-

cally, if the actual value falls outside the psychophysically motivated deadband around the

predicted value we consider the prediction error to be noticeable and correct it by sending

the actual value.

The control loops which secure the safe operation of both OP and TOP are normally

updated at a fixed sampling rate. Having a prediction model as shown above enables us

to use almost arbitrary sampling rates for those control loops. A strict match between

OP and TOP sampling rates is no longer necessary, because the prediction model can be

evaluated at any sampling rate and is updated as soon as it differs from the desired values.

The DBDR approach combined with model based prediction will be abbreviated by DBDR-

P in the remainder of this work.

2.4.2 Filtering of Input Signals

Polynomial extrapolation, here a first order extrapolation, is known to be sensitive to

high-frequency disturbances. Any high frequency sensor noise on the input signal results

in large prediction errors and as a result in an unnecessary high utilization of the com-

munication link. In real TPTA systems, especially the velocity signal is very noisy as it

is not measured directly but derived from a discrete time difference approximation of the

measured quantized position signal. Noise naturally also occurs in force measuring but

does not have the spiky behavior of the velocity signal. This is one of the reasons why

the compression of force signals works significantly better than the compression of velocity

signals for the approaches described in Sections 2.3 and 2.4.1 as will be later demonstrated

in our experimental results.

In order to be able to predict future samples more accurately and therefore increase com-

pression performance we denoise the input signal using a fast Kalman filter. A snapshot of

a velocity signal in one of our experiments with and without filtering can be seen in Figure

2.6.

How the Kalman filter is used in our system is shown in Figure 2.7. To be computationally

efficient and to cause as little delay as possible we need a filter which has a low complexity

and can be applied to a signal sample by sample. The Kalman filter [46] in a simplified

form fulfills those needs. We use a scalar Kalman filter for every DoF separately to keep

computational complexity low.

A discrete one dimensional signal of sample values xk (the real signal without noise) is

approximated by an estimated signal x̂k. Therefore measurements zk are taken every

sampling instant and the following algorithm is applied:
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Figure 2.6: Velocity signal before and after pre-filtering.
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Figure 2.7: Application of the Kalman filter in the system.

1. Calculation of the innovation I, which is the difference between the measurement

and the estimation:

I = zk − x̂k−1 (2.9)

2. Calculation of the variance of the innovation I:

S = P + R (2.10)

where P is the variance of the prediction error (calculated below) and R, the variance

of the measurement noise, which is also the only parameter we use to adjust the filter

characteristics.
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3. After that we calculate the gain K for the estimation step:

K =
P

S
(2.11)

4. Then finally the estimation becomes:

x̂k = x̂k−1 + K · I (2.12)

5. Calculation of the new variance of the prediction error:

Pnew = Pold + Q−K · Pold (2.13)

where Q is the variance of the process noise. We set it to 1 to have only one filter

parameter.

Steps 1 through 5 are executed every sampling instant and the filtered signal values x̂k are

taken as input signals instead of the noisy measurements.

The filter characteristics can be adjusted by changing the parameter R, the variance of the

measurement noise, which weighs the measured values against the predicted value which

in our filter is simply holding the last value. A low R leads to a high confidence that

measurements are correct, therefore measurements are weighted more for the filter output

than the prediction and vice versa. The example in Figure 2.6 was recorded using R = 100,

which was chosen as a good tradeoff between noise reduction and system response during

the preparation phase of the experiment. This was also the value which was used for the

velocity signal in the psychophysical experiment in Section 2.5.2.3.

Because the main reason of filtering the input signals is to get rid of signal noise, other kinds

of filters like standard low-pass filters can also be used. The only important things are that

the filter delay is kept at a minimum and the high frequency noise is suppressed effectively.

The Kalman filter behaves very well in both properties and additionally performs best

when gaussian noise is encountered.

The DBDR-P approach combined with Kalman filter based preprocessing of the input

signals will be abbreviated by DBDR-PF in the remainder of this work.

2.5 Psychophysical Evaluation

Several experiments have been conducted in order to verify the proposed data reduction

techniques. A 1-DoF experiment is used to determine the detection threshold of the dead-

band parameter p and to relate it to the JND k. In the 3-DoF experiments the user utility

of the proposed 3-DoF approaches is determined.
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2.5.1 1-DoF Approach

The main challenge of the approaches presented in the last sections is to minimize the

network traffic while maintaining maximum possible immersiveness. As a first step psy-

chophysical experiments were conducted for the 1-DoF case in order to determine the

maximum value of the deadband parameter p where a degradation of the immersiveness is

not perceivable. Furthermore, the effect on the network traffic is studied.

2.5.1.1 Setup

The experimental setup consists of two identical 1-DOF haptic devices connected to a

PC and a stiff wall as the environment (see Figure 2.8). The angle is measured by an

incremental encoder, the force by a strain gauge. The sensor data is processed in the

PC where all control algorithms including the DBDR algorithm are implemented. The

velocity/position is transmitted to the TOP acting as the set value for the local control loop

of the TOP. The TOP tracks the movement of the HSI and communicates the measured

contact force back to the HSI as the set value for the force control loop.

Figure 2.8: Experimental setup with two 1-DOF haptic devices [1].

2.5.1.2 Procedure

Altogether 14 subjects (3 female, 11 male, aged 20–50) were tested for their detection

threshold of the deadband parameter p. The subjects sat in front of the HSI lever and were

told to operate it with their preferred hand. They were equipped with earphones to mask

the sound the device motors generate. During a familiarization phase the subjects were told

to feel the hard contact, a stiff wall by which the lever movement was restricted at the TOP

side, through the system at a sampling rate of 1000Hz and without any DBDR algorithm

applied. As soon as they felt familiar with the system the measurement phase began. The

deadband parameter detection thresholds were determined using a three interval forced
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choice (3IFC) paradigm. The subjects were presented with three consecutive 20s intervals

in which they should operate the system. Only in one of the three intervals, which was

randomly selected, the DBDR algorithm with a certain value p was applied. The other

two were presented without DBDR. Every three intervals the subject had to tell which

of the three felt different from the other two. The experiment started with a deadband

parameter p = 2.5% and was increased after every incorrect answer up to a maximum of

25%. When an answer was correct, the same value was used again until three consecutive

right answers were given. After this first pass, the subjects were told what the distortion

feels like and with what kind of technique they should be able to perceive it best. Then the

same procedure as before was applied (2nd pass). After another three consecutive right

answers p was reduced by 50% without telling the subjects and the procedure was repeated

in order to verify the detection threshold one more time (3rd pass). The mean value of the

three p values at which the consecutive right answers occurred were taken as the deadband

detection threshold for the specific subject.

2.5.1.3 Results
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Figure 2.9: Subject-specific detection thresholds for p in the 1-DoF experiment.

The specific results for every subject are shown in Figure 2.9. Comparing the results of

the three passes for the individual subject, all subjects had a significantly higher detection

threshold in the first pass when they did not know what kind of distortion they had to ex-

pect. Hence, the distortion introduced by the DBDR approach is not necessarily perceived

as disturbing or impairing the contact impression. The subject specific detection thresholds

are in the range between 10% and 22.5%. Only one subject managed to detect the distor-

tion introduced by p = 10%. For the remaining 13 subjects corresponding to 93% a higher
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Figure 2.10: Influence of the deadband width on the packet rate: Average number of

transmitted packets as a function of the deadband parameter p.

threshold was determined. Eleven subjects (79%) had a detection threshold p > 11%. The

measured detection thresholds are in the range of the JNDs reported for velocity and force

perception [22, 44]. It should be noted, however, that JNDs are typically determined in

static conditions. Here a temporal change of the signal is considered. The relation between

the JNDs obtained by psychophysical experiments for static conditions and our deadband

results for dynamic manipulation conditions requires further investigation.

In order to investigate the effect of DBDR on the packet rate the induced network traffic was

recorded during the experimental user study. The mean percentage of transmitted packets

as a function of the deadband parameter p is shown in Figure 2.10. 100% represent the

standard approach with 1000 packets/s on the forward and the backward path, respectively.

As expected, higher deadband parameters lead to higher traffic reduction. The traffic

volume induced by velocity packets is already at 25% at a deadband size of p = 10%

and keeps falling with increasing deadband size. The impact on the number of force

packets transmitted is even higher. Already at p = 2.5% the network traffic volume in

the backward path is less than 10% of the standard approach. At p = 10% only 15%

of the original number of packets is transmitted. This means an average network traffic

reduction by 85%. 93% of the subjects were not able to feel the distortion introduced by

the corresponding deadband parameter.
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2.5.2 3-DoF Approaches in Virtual Environments

In order to verify the presented 3-DoF DBDR approaches (3-DoF DBDR, 3-DoF DBDR-P,

and 3-DoF DBDR-PF), several experiments were conducted using a commercially avail-

able 3-DoF haptic device. In contrast to the previous experiment, not a single detection

threshold is determined, but the quality of immersiveness is rated over a range of dead-

band values as a first step towards a user utility function. The influence of the deadband

is further investigated separately for the force and the velocity data.

Figure 2.11: The SensAble Phantom Omni device used for the experiments

[www.sensable.com].

The conducted experiment for the 3-DoF DBDR approaches was a haptic interaction task

with a virtual remote environment. The hardware and software setup is as follows: On

the OP side the haptic display device SensAble PHANTOM Omni (see Figure 2.11) serves

as the HSI. Over a 100Mbit/s Ethernet LAN connection this OP side transmits current

position and velocity samples to a simulated haptic environment on another machine in

the same LAN.

2.5.2.1 Setup of the OP Side

Haptic Display Device

The haptic device is capable of 6-DoF input and 3-DoF output. This means that both

the endeffector’s position in space as well as its orientation can be read from the device

drivers. In contrast to that it is only possible to output forces in 3-DoFs namely the three

directions in space. The torques necessary for altering the endeffector’s orientation cannot
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be produced. In our experiment, the additional 3-DoFs of endeffector orientation are only

used to display the 3D-cursor of the graphical display correctly. They are neither sent to

the TOP side nor do they have any other influence.

Graphical Display

The graphical display consists of an OpenGL-based 3D visualization of the workspace.

Both the current cursor position and the position of the haptically manipulated object are

displayed. See Figure 2.12 for an impression of the HSI graphical display.

Figure 2.12: The graphical display of the OP side (HSI).

This display shows a grey sphere in the middle of the workspace of the haptic display

device along with the blue cursor which signifies the current position and orientation of

the device.

The pose of the haptic display device is sampled at 1000Hz. The graphical display is

refreshed with the standard refresh rate of 60Hz.

Deadzone Implementation

The three components of the current device velocity are combined in a 3D vector. Accord-

ing to Equations 2.2 in Section 2.3 the size of the deadzone is calculated. The reference

(or initial) vector is always the one which was last transmitted to the receiver. Every 1ms

a new value of the 3D velocity vector is read from the device drivers and it is decided

whether its tip lies in the deadzone or not. According to the result of the decision, a new
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vector is sent to the receiver or the new vector is discarded. In case DBDR-P is used, a

respective prediction step is introduced and the decision is based on the prediction error

(see Section 2.4.1). If DBDR-PF is used an additional Kalman-prefiltering of the velocity

signal taken from the device is done (see Section 2.4.2).

Position Update

In such a deadband system the sending of velocity values only would result in a more or

less severe degradation of position tracking. It is therefore necessary to send the actual

position values along with the current velocity values so that the TOP can take care of

position errors. Since the packet sizes are very small this additional amount of data is

negligible. The packet rate is not increased.

2.5.2.2 Setup of TOP Side

Virtual Environment

The virtual environment is implemented by a C++-Class which manages the positions and

properties of virtual objects which are to be manipulated as well as the positions of one

or more users interacting with the environment. It is capable of 3-DoF input and 3-DoF

output. This means it is fed with a 3-DoF velocity input (along with a 3-DoF position

input for reasons of position tracking) and calculates the resulting forces for this position.

The environment as well as the haptic display device at the OP side are refreshed at a

rate of 1000Hz. Unlike the systems in [36] and [43] which also implement a virtual haptic

environment it is intentional that all computations concerning the haptic feedback are done

centralized on one machine like in [23]. This central approach is chosen in order to have a

system which is as comparable as possible to a real TPTA system. Also different from [26]

where only one packet is in transit at all times for stability reasons, the presented system

communicates in both directions at the same time. Stability problems were not observed.

Sphere Object

The only object in the virtual environment in this experiment is a sphere in the middle of

the virtual workspace. This sphere is registered with the sphere in the graphical display

(see Section 2.5.2.1) so that contacts between the cursor and the sphere in the graphical

display exactly correspond with contacts in the virtual environment. The virtual sphere

is fixed at the center of the workspace and can be touched with the virtual cursor. The

resulting force during the interaction is calculated by Hooke’s Law

F = u · b (2.14)
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where u is the stiffness of the sphere and b the amount of penetration into the sphere

body. F is the resulting force magnitude. The direction of the force always points from

the sphere center to the actual cursor position. It is calculated as

F =
x− s

|x− s|
· (r − |x− s|) · u (2.15)

where the resulting force vector F is determined from the current position of the user x,

the sphere position in space s, the sphere radius r, and the stiffness u.

Deadzone Implementation

The initial vector for the deadzone calculation is the force vector which was last sent to the

OP side. Every time the virtual haptic model is updated it either sets the most current

position and velocity values for the user position (in case an update packet has arrived) or

calculates a new position from the last known user position, the last known user velocity,

and the exact time since the last update. This updated position is then used to calculate

an updated force which then is used as the current vector for the deadzone calculations.

In case the deadzone is violated by the new vector, a new packet containing the updated

force vector is sent and the sent vector serves as the new initial vector. In case DBDR-

P is applied an additional prediction step for the reference force is introduced before the

deadzone decision. DBDR-PF additionally introduces prefiltering of the actual force signal

taken from the virtual environment model.

2.5.2.3 Subjective Evaluation

Ten test subjects underwent the experimental procedure described in the following to deter-

mine suitable values for the deadband parameters so that no degradation of immersiveness

can be noticed.

The following cases were considered:

• 3-DoF DBDR on velocity values only as described in Section 2.3

• 3-DoF DBDR on force values only as described in Section 2.3

• 3-DoF DBDR-P on velocity as described in Section 2.4.1

• 3-DoF DBDR-P on force as described in Section 2.4.1

• 3-DoF DBDR-PF on velocity as described in Section 2.4.2

• 3-DoF DBDR-PF on force as described in Section 2.4.2
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The subjects are first presented with a system without DBDR to get used to handling the

device and to experience what it feels like. Then a heavily distorted system is shown to

the subjects in which they can clearly feel the kind of distortion which is introduced into

the system by the DBDR algorithm with very high deadband parameters p. This phase is

called the familiarization phase.

After the subjects feel familiar with the system and they know the kind of distortion

they are presented with, two test runs are conducted each consisting of twelve 30-second

intervals (24 intervals in 12 minutes total) in which the subjects were told to haptically

explore the virtual environment and to assess the quality of the haptic presentation. In

the first run with twelve intervals the DBDR approach is only used for the velocity values

which are sent from the OP to the TOP. In the second run the deadband is only used on

force values which are sent from the TOP to the OP. During the tests, the subjects wore

headphones so they could concentrate on their haptic sensations.

In the 12 intervals of each run we apply a randomly chosen order of the following possible

deadband values: 0%, 2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 20%, 25%, 30%, 35%, and 40%.

The subjects did not know either which value was currently used or in which communication

direction the DBDR was applied.

After every interval the subject was required to rate the presentation. If it felt exactly

like the undistorted signal from the familiarization phase, they should give a rating of 10

points. If it felt just as bad as the heavily distorted signal from the familiarization phase,

they should give a rating of 1 point. The ratings in between could be chosen according to

the quality of the presentation where higher ratings signify better quality.

2.6 Performance

The results for the mentioned 3-DoF approaches can be seen in Figures 2.13 and 2.14.

2.6.1 3-DoF without prediction and filtering

The results are represented by the solid lines in Figures 2.13 and 2.14.

From Figure 2.13 it can be observed that a deadzone usage on velocity values seems to

be far less perceptible than on force values. One can see that the velocity deadband

can be increased to up to 20% while still reaching an average rating of almost 7 points,

which most subjects described as barely perceivable distortion. In comparison, the force

deadband should not be far above 5% for the average rating to also stay above 7 points.
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Figure 2.13: User ratings for the deadband presentations in the 3-DoF approaches.
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Figure 2.14: Resulting packet rates of the 3-DoF approaches.

This behavior has two reasons. The first reason lies in the fact that the used TOP is a

VR environment. Position errors can be corrected by just setting the actually transmitted

position value as the current position. In a real TPTA system it is more difficult to correct

this position error because the endeffector has to be moved towards the correct position.

This introduces additional distortion whereas in VR environments the position can be

updated instantaneously.

The second reason lies in the DBDR principle itself. As we have mentioned in Section 2.2,

a new value is only transmitted if the user can sense the introduced change. This is of

course true for the direction from the TOP to the OP. The transmitted forces are directly

sensed by the human being. In contrast to this in the other direction no human sensory

system is involved. So there is basically no reason to transmit new velocity values adapted

to human perception. Velocity updates are processed by a non-human system which uses it

merely to generate new force values for the HSI. Therefore environment dynamics affect the

possible degree of deadband application. Consequently we can see that it is often possible
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(at least in the presented case, which somehow stands for most VR haptic environments) to

use deadband transmission far beyond human haptic sensory capabilities for the direction

from OP to TOP.

With respect to the resulting packet rates the first observation is that, in general, more

velocity packets than force packets are generated as can be seen in Figure 2.14. This also

has multiple reasons. First, velocity packets have to be sent all the time for tracking the

endeffector whereas force packets only need to be sent when contact with the environ-

ment takes place. Secondly, force usually reaches higher magnitudes (and therefore higher

deadbands) more quickly than velocities. In the case of this experiment the test subjects

are in contact with the environment almost all the time, and so velocity is mostly small

whereas force is quite high in most cases. The third reason lies in the differentiation of

already noisy position values in order to get the desired velocity signal. This differentiation

amplifies the noise and this high amount of noise is therefore another reason for triggering

the deadband, especially when it is small in magnitude.

It can be observed that with 0% deadband less than 1000 packets per second are sent.

This comes from the fact that even with 0% deadband a change in the measured variable

must occur to trigger a new packet transmission. In the case of calculated forces of the VR

environment, force is exactly zero while no contact to the environment is made. Therefore

only in case of contact packets are sent. Knowing that, we can conclude that during the

experiments with 0% deadband the subjects had contact with the environment about 87%

of the time.

In comparison to our results for the 1-DoF case in Section 2.5.1.3 we can conclude that the

deadband usage in three dimensions leads to similar tendencies in packet rate reduction

as the 1-DoF approach but is not quite as effective. Packet rates for velocity packets are

reduced by almost 75% when using a barely perceivable 20% deadband. For force packets

a reduction by almost 90% is possible by chosing the also barely perceivable 5% deadband.

2.6.2 3-DoF with linear prediction

The dashed lines in Figures 2.13 and 2.14 show the corresponding results.

The ratings in Figure 2.13 given by the test subjects are almost always above those of

the previously mentioned case. Hence it is possible to use even larger deadbands when

prediction is applied in this case.

We can see that even the simple linear prediction model in 2.4.1 reduces the packet rates

in comparison to the 3-DoF approach in the previous paragraph. In Figure 2.14 we observe

an improvement of 28% and 25% for a 20% velocity deadband and a 5% force deadband,
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respectively. The total savings in comparison to transmission without deadband are 83%

and 93% for velocity and force packets, respectively.

One possibility to further improve this approach is to use more sophisticated prediction

methods. However, the limiting factor is signal noise as the following experiment shows.

2.6.3 3-DoF with linear prediction and filtered input signals

The results are represented by the dash-dotted lines in Figures 2.13 and 2.14.

In Figure 2.13 we can see an almost linear decrease in the ratings for both types of data

with increasing deadband value. We assume that values of 7 and higher represent a good

feeling of immersion in the system. Consequently, we can say that 10% deadband for both

velocity and force should not be exceeded so as not to sacrifice immersion.

With respect to packet rates, compared to the results from the previous paragraph where

no pre-filtering was applied, we can observe a drastic decrease in velocity packet rates,

especially for small deadband values. This is exactly the benefit the pre-filtering was

supposed to give. This has two main reasons. First, during motion phases with small

velocities the velocity noise triggered unnecessary packet transmissions. With reduced

noise in the signal this happens considerably less often. Secondly, less noise makes it easier

to estimate and predict signal slopes.

For force packet rates the improvements are not as significant as in the velocity case. The

reason for this is the fact that we have considerably lower noise levels on the force signal

to begin with. The pre-filtering step is therefore not as efficient here as for velocity signals.

Still we can observe a significant improvement (55%) in packet rate at 2.5% deadband in

comparison to the LP case. This means almost 93% packet rate reduction in comparison

to the original rate with only a minimal 2.5% deadband applied.

Finally we can state that the proposed pre-filtering step for prediction based deadband

transmission of 3D haptic data works well for velocity and force data. At a combination of

7.5% deadband for velocity and 2.5% deadband for force we achieve a reduction of packet

rate to 8.7% of the original rate for velocity and 7.4% for force with barely noticeable

influence on immersiveness.

2.7 Chapter Summary

In this chapter first steps in the compression of haptic media data and the main contribu-

tion of this thesis, the DBDR approach with its extensions, are presented and discussed.
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Intensive experimental uses studies were conducted to prove the effectiveness of the DBDR

approaches.

It is very likely that the presented results can be transferred to more complex scenarios and

tasks. The operation of more complex or more dynamic scenes should not be very different.

The results from [44, 22] are for static conditions. However, all our results point in the

direction that thresholds similar to the static JND are valid for the dynamic case. To the

best of our knowledge, research in psychophysics has not yet considered spatio-temporal

behavior of the JND in literature.

Perceptual thresholds in combination with the resulting packet rates allow us to choose

optimal trade offs. For force samples it is generally not necessary to choose thresholds

higher than a few percent because packet rates are already very low at this point. For

velocity it is highly dependent on the amount of noise in the signal, but generally we can

say that 10 to 20 percent should be possible in most cases.

With increasing system complexity in terms of the number of DoFs used for interaction,

the approaches become less efficient. This is because only three directional or angular

DoFs can be combined in a reasonable way. If more DoFs are used they have to be

grouped and every group may trigger a packet transmission at every sampling instant.

Finding reasonable combinations of more than 3 DoFs in the case that data generation is

synchronized over these DoFs is subject to future research.



Chapter 3

Influence of Deadband Compression

on Task Performance in a real TPTA

System

The previously described approaches for multi-DoF haptic data reduction were so far only

employed in virtual environments. The obvious next step is to examine their viability in

real TPTA systems, where both HSI and TOP are real robots with all necessary sensors and

actuators and control systems to keep each side and the whole system stable. Therefore,

an experiment was conducted in order to study the influence of the DBDR and DBDR-P

schemes on the performance of such a real TPTA system.

3.1 Hardware Setup

The hardware setup of the performed experiments consists of the DeKiFed (HSI) and

DeKiTop (TOP) devices described in [47]. The 4-DoF design of the described system was

truncated to a pure 3-DoF architecture with purely translational actuation and sensory.

The SCARA type arms use DC-motors with Harmonic Drives in the joints to provide high-

performance and low-friction tracking and force feedback. Both the HSI and the TOP are

equipped with a force/torque sensor at the endeffector (TOP) and the handle (HSI) making

it possible to exactly track the forces encountered with the environment. At the TOP these

are the contact forces with the remote environment, at the HSI the actual force feedback

to the human operator is measured.

The control systems are implemented in MATLAB/SimuLink and compiled for the real-

42
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time capable Linux derivative RT-Linux. Separate PCs with reasonably dimensioned hard-

ware and RT-Linux as the operating system are running the control applications for the

HSI and TOP, respectively. These PCs are part of the 100MBit/s institute Ethernet net-

work, which was used for UDP/IP communication. The robot hardware itself is connected

to the PCs using special I/O-PCI cards.

3.1.1 HSI Side

The HSI of the system is also called master side in the following. The HSI, as shown

in Figure 3.1, is a 3-DoF translational input device with four active joints of which only

three were used in the experiment. The two joints with vertical rotation axis are used for

sensing and actuating the x-y-plane of the workspace. The joint with horizontal rotation

axis in combination with a parallelogram mechanism senses and actuates the z-direction.

The handle is mounted on a force/torque sensor and the unused joint on the off-joint side

of the parallelogram mechanism. A power grasp is used to hold the handle and to control

the position of the HSI and, through the TPTA system, the TOP. The original setup of

the HSI is bimanual but only the right hand side is used in the presented experiment.

3.1.2 TOP Side

The TOP of the system is also called slave side in the following. Since the HSI and the

TOP have mainly identical configuration, the HSI description fits also for the TOP at least

concerning the x-y-actuation. The z-direction has an inverse parallelogram configuration

to the HSI, where the unused joint and the force/torque sensor are mounted on the bot-

tom of the parallelogram mechanism. Comparing Figures 3.1 and 3.2 quickly reveals the

similarities and differences. As the actual endeffector a steel stick with a wooden tip is

used which is mounted directly into the force/torque sensor.

3.1.3 Video Transmission

In order to allow for visual feedback of the remote environment a camera is mounted at

one specific angle which allows for a good view of the whole interaction scene as shown in

Figure 3.3. The camera resolution is 640x480 pixels with 30 frames per second. The video

stream was encoded using an MPEG4 codec and is transmitted via the Ethernet network

to another PC where the picture is decoded and displayed to the test subjects.
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Figure 3.1: The Human System Interface of the TPTA system.

The video presentation itself was intentionally held as simplistic as possible. The test

subjects should mainly rely on their haptic feedback of the remote environment instead of

heavily relying on the visual feedback.

3.2 Control Scheme and Stability Measures

Since the experiment was conducted without delay on the communication channel in order

to evaluate the influence of the DBDR schemes on task performance alone, no special

control measures were taken to compensate for transmission delays. The system itself

uses an update rate of 1000Hz in the HSI and TOP control loops and to communicate

current sensor data between HSI and TOP, thus generating 1000 packets per second in

each direction of the network connection in the uncompressed state.

First tests during the preparation phase of the experiment used velocity control at the TOP

side to follow the users trajectory at the HSI. This of course works well if no compression

takes place. However, if DBDR schemes are in place, this leads to a position drift between
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Figure 3.2: The Teleoperator of the TPTA system.

HSI and TOP which increases with longer execution times and increasing deadband size.

In consequence the control scheme on the TOP side was changed to position control. By

sending both the current velocity and the position information from the HSI to the TOP

with every update packet, the current position is always known. In times when no new

update packet arrives, the current position is predicted from the most recently transmitted

velocity and position vectors and the time since the last update by using the following

linear extrapolation:

pn+1 = pn + vcts (3.1)

where pn+1 is the new position in the current sampling step, pn is the position in the

previous sampling step, vc is the most recent velocity value received from the HSI and ts
is the sampling time. Since this approach basically predicts the current position of the

HSI, the unavoidable prediction error has to be corrected when the next packet arrives.

Then the actual position of the HSI is known again and the TOP has to be positioned

accordingly. This can lead to rapid TOP movements if the prediction error becomes too

large. Since this only occurred for quite high deadband values and worked flawlessly for

practical deadband values, this approach was used in the experiment.
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Figure 3.3: The video display at the HSI.

At the HSI force control was used to present the user with the transmitted force values

of the TOP side environment interaction. Since the quite simple combination of position

control on the TOP side and force control at the HSI tends to become unstable when hard

contacts are encountered, a force gain of 0.5 was introduced in the system as a stabilization

measure. This means that the human operator only feels half the force the sensors on the

TOP side record. This kind of force scaling does not overly influence the perception of the

remote environment but greatly helps with stability. Since the manipulated object was

very hard and stiff, this measure was used in the experiment.

3.3 Data Reduction Scheme

In order to implement the data reduction scheme into the system, a special MAT-

LAB/SimuLink Block had to be developed, which supports the transparent data reduction

using the DBDR and DBDR-P schemes. Since the TPTA system allows for telemanipula-

tion in 3 degrees of freedom, the 3-DoF DBDR approach with isotropic spherical deadzone

was used as described in Section 2.3. The evaluation was done for deadband values of 0%,

2.5%, 5%, 7.5%, 10%, 12.5%, and 15%. Additionally, the prediction approach as described

in Section 2.4.1 was used in combination with all deadband values, except for 0% where

prediction is unnecessary, resulting in a total of 13 parameter sets. A Kalman filtering of

input signals was not necessary in this setup, since the control schemes themselves already

implement low-pass filtering on the velocity signal.
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In the direction from the HSI to the TOP packets consisting of 3-DoF position and 3-DoF

velocity samples are sent. These values are quantized with 16bit resolution resulting in a

payload size of 12bytes per packet. The transmission of update packets is purely based on

the velocity signal by using the 3-DoF DBDR approach on it. The position information

is only sent due to necessary position correction at the TOP side as explained above.

The model based prediction approach was also only used on the velocity signal. Since

the payload size is very small compared to the header size of 30bytes (20bytes IP, 8bytes

UDP, and 2bytes application protocol), the additional position information is negligible

especially if taken into account that the DBDR approach aims at packet rate reduction

rather than total data rate reduction.

In the direction from TOP to HSI packets consist of 3-DoF force information, also sampled

at 16bit resolution resulting in total payload size of 6bytes and also 30byte header infor-

mation. No additional information (like the position information in the opposite direction)

is necessary here because there are no drift effects for force feedback. The 3-DoF DBDR

and DBDR-P approaches are used directly on those force values.

3.4 Task and Manipulated Environment

The manipulated object is a massive plastic profile which has the shape of a one dimensional

waveform on the upper side. It is shown in Figure 3.2. The profile itself weighs about 3kg

and is very rigid and stiff. It is aligned with the Cartesian axes of the TOP so that the

x-axis of the TOP lies orthogonal to the wave profile, the y-axis lies parallel to the wave

profile. In z-direction (the vertical axis), the profile is mounted on a wooden block, so

that the whole depth of the profile could be reached by the endeffector without leaving the

optimal workspace of the TOP. The profile itself is made of black plastic and its center

along the x-axis is marked by white dots on the maxima of the waveform to give a guidance

of the optimal manipulation route.

The task the test subjects had to perform during the experiment is described in the fol-

lowing. After the initialization of the HSI and the TOP, which leads to both of them being

positioned at a fixed starting position, the subject has to move the TOP to either the

right or the left edge of the profile as instructed by the conducting person and touch the

profile at the white point in the middle of the edge. Starting from there, the subject has

to follow the surface along the marked center line across all the waves until he/she reaches

the other side of the profile. We call this the contact phase. After reaching this point the

subjects are to return to the starting point on the other side of the profile in free space over

the profile. We call this the free space phase. The subjects are instructed to try to keep

contact to the profile surface for the whole time during the contact phase and to keep the
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contact force as constant as possible. They are also told to perform the task as precisely

and as quickly as possible.

The video feedback during the experiment was supposed to provide the necessary infor-

mation about reaching the starting point and keeping the correct heading across the wave

surface since the white markers were clearly visible although a real 3D impression was

not provided because neither camera movements nor stereo vision was allowed. The in-

tentionally limited video view of the remote environment forced the test subjects to rely

their actions more on their haptic feedback through the TPTA system as it is normally

necessary for interacting with their environment. This way, a disturbance of the haptic

feedback should be detectable more easily, which was the intention of the experiment.

3.5 Experimental Procedure

Test subjects were first introduced into the experiment with a short summary about the

procedure that awaited them. Their task was described as the evaluation of the quality

of an interface for human-robot interaction. After that they were led into the actual

experiment site which was shielded against external influences by three cardboard walls.

Only the haptic HSI and the monitor displaying the video feed were visible to the subjects.

Then the subjects were introduced to the operation of the haptic HSI. They were told

that touching it is possible after it has reached it’s initial position. Touching it before that

would lead to system malfunction. After that the so called familiarization phase took place.

The subjects were able to freely use the TPTA system to explore the remote environment

without the influence of any compression technique in order to get comfortable with its

operation. They were also shown what the procedure, which they were to complete in the

upcoming tests, looked like and could try it out beforehand. Subjects were also told to try

to complete the task as quickly and as precisely as possible and to try to stay in contact

with the surface of the test object at all times.

The subjective quality of the human-robot interaction interface was assessed using

Scheuchenpflugs “Fragebogen zu Präsenz und Immersiver Tendenz in virtuellen Realitäten”

(Questionnaire on presence and immersive tendencies in virtual realities) [63], which is a

renowned way of evaluating this kind of system from a psychologist’s point of view. The

subjects were told to fill in the first page of the questionnaire where questions about hand-

edness, experience with human-robot interfaces, and experience with 3D computer games

were asked as the next step of the experiment. The following pages had to be filled in after

every pass in the experiment.

After that the subjects were told that they have to wear headphones with white noise from
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now on to shield them from external auditory influences.

In each of the 13 passes each test subject had to complete, they first waited for the HSI

to reach the initial position. Then they were shown a paper card indicating the side (left

or right) from where the next pass of the experiment should start from. After trying to

complete the task under the given circumstances of DBDR and DBDR-P as fast and as

precise as possible, the subject filled in another page of the questionnaire, where three

questions concerning the quality of presentation in the last pass were posed.

The 13 passes of the procedure with the parameters described above were used in totally

randomized order. Each pass took between 30s and 90s to complete, depending on the

speed the respective test subject felt comfortable with. If one of the above mentioned task

goals were obviously not met by the participant, for example no contact with the edge

at the beginning or the end of the test run, not reaching the other edge of the profile, or

other obvious misunderstandings of the task took place, the test run was repeated. Any

abnormal test situations, especially repeated test runs, were noted down in the experiment

protocol to be able to explain possible problems during the data interpretation later in the

process.

After the test subjects finished their 13 test runs, each one had to pass an evaluation of

his/her motor-sensory coordination skills using the Motor-Sensory Coordination test of the

Wiener Test System. This was done in order to be able to identify test subjects which have

difficulty with the skill the given task requires or exceed the normal population’s abilities

by far and consequently to be able to exclude those subjects from the analysis.

The complete test procedure took 45 to 60 Minutes per test subject.

3.6 Test Subjects

32 test subjects were recruited from both the staff of the involved institutes and the general

public to take part in the experiment. Their average age was 28.03 years with a standard

deviation of 5.30 years. 9 of the subjects were female, 23 were male. 4 of the subjects

were left handed, 28 were right handed. Due to a large number of incomplete or missing

data sets, one subject had to be excluded from the analysis. The test for motor-sensory

skill showed that none of the 31 remaining subjects showed noticeable deviations from the

average population in this respect. 6 of the subjects said that they had much experience

in the usage of robotic systems whereas the other 25 stated that they had little to no

experience in that respect. All test subjects did not differ much in their experience with

3D computer games (average time per week: 0.81 hours with an standard deviation of 1.54

hours).
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3.7 Experimental Goal

There are three main questions which were supposed to be answered by conducting this

experiment.

1. Influence of the DBDR in 7 steps, each with and without model based prediction

(DBDR-P), on the packet rates in the TPTA system and if an increase of the dead-

band parameter and switching on prediction always results in a significantly lower

packet rates.

2. Influence of the deadband and prediction parameters on the perceived quality of the

haptic human-robot interface. Quality assessment was done based on the questions

of the aforementioned psychological questionnaire.

3. Influence of the DBDR and DBDR-P approaches on the task performance during the

experiment. Task performance was assessed through task completion time, contact

loss, contact ratio, contact force behavior and track deviation during the experiment.

All necessary experimental data was recorded in millisecond accuracy.

The variables encountered in the experiment are classified into independent and depen-

dent variables. Independent variables are varied according to the experimental setup and

procedure in order to find dependencies between them and the dependent variables, which

are measured or otherwise assessed during the experiment.

Independent variables:

• Deadband parameter (varied in 7 steps from 0% to 15%)

• Prediction parameter (varied in 2 steps, on and off)

Dependent variables:

• Network packet rate (measured)

• Subjective Quality of the Interface (assessed by questionnaire)

• Task completion time (measured)

• Number of contact losses (measured)

• Contact ratio (measured)

• Contact force behavior (measured)

• Position tracking accuracy (measured)
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3.8 Statistical Methodology

3.8.1 ANOVA

The statistical analysis in the following is based on the assumption that the assessed

dependent variables are normally distributed. Based on this assumption it is determined if

certain dependencies between independent and dependent variables, so called effects, are

statistically significant or not. Additionally, it is determined how much confidence we can

place in a dependency by determining the significance level of an effect.

Since no dependencies between the different dependent variables were found, univariate

variance analyses (ANalysis Of VArinace, ANOVA, see [49, 27, 40]) between the dependent

and the independent variables are done.

In all cases ANOVA is performed it is determined if a significant main effect can be de-

tected. If no significant main effect is detected, no further analysis of the different levels

of independent variables is necessary. If this is not the case, i. e., a significant main effect

is present, a more granular assessment of the different levels of independent variables is

necessary to see which one caused the effect.

To determine both the main effect and the so called single contrasts between the different

levels of the independent variables and the reference case a so called F-test is performed. It

is part of the ANOVA and determines whether the ratio of the between-group-variability,

the variability between test and reference cases, and the within-group-variability, the vari-

ability within the test cases, is significant or not. It is given in the notation

F (x, y) = v, p = w (3.2)

where x is the amount of degrees of freedom of the between-group-variability, y is the

amount of degrees of freedom of the within-group-variability, v is the so called F-value

which directly leads to w by looking up v in the probability table of the F-distribution. w

is the probability that the test cases and the reference case are significantly different. In

our case we consider effects lower than p = 0.05 as significant as usual in psychophysical

studies.

When many test cases are compared to one reference case (in our case all the test runs

with deadband parameters of 2.5% and more are compared to the reference case with no

deadband) using ANOVA, this is called “repeated measures ANOVA”.
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3.8.2 Sphericity

When using repeated measures ANOVA as the analysis tool, the data has to be checked

for sphericity first. Sphericity is a measure for the equality of the variances encountered

in the different runs in a repeated measures ANOVA. Mauchly’s Test [51], a well known

test for sphericity, is used in our case to verify this requirement. In case the sphericity

test fails, so called Greenhouse Geisser corrections [33, 28] are applied to be able to reach

correct conclusions from the ANOVA. The amount of degrees of freedom changes in case

such a correction is applied.

3.8.3 Friedman Variance Test

In case the underlying experimental data is not normally distributed, ANOVA does not

work by definition. One solution in such a case is the Friedman Variance Test [29, 30]

proposed by Milton Friedman which is used to handle such tests without the underlying

assumption of normality.

3.8.4 Wilcoxon Signed-Rank Test

If paired comparisons between two test cases have to be made and the data of those test

cases is not normally distributed, the Wilcoxon Signed-Rank Test [73] can be used to

determine if the differences between the cases are significant or not.

3.9 Experimental Results

3.9.1 Experimental Data

Since the very detailed recording of all involved experimental data in millisecond accuracy

led to about 350 Megabytes of result data per test subject, an automated approach to

extract all interesting variables from the raw data was used. A MATLAB script was used

to parse both the data from the master and the slave of one experimental run and to

extract the following variables in a form that could be read into the SPSS statistics suite

for further analysis:

dataset

Name of the dataset directory.
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deadband

Deadband parameter used for this dataset.

prediction

Whether prediction was used in this dataset or not.

testnum

Number of this test run in the 13 runs each subject had to complete.

direction

Whether the test run started from the right or the left side of the test object.

packetsmaster

Number of packets sent by the master side.

packetsmastertime

Number of milliseconds that it took to send the master packets.

packetsmasterratio

Average number of packets per second encountered at the master side.

packetsslave

Number of packets sent by the slave side.

packetsslavetime

Number of milliseconds that it took to send the slave packets.

packetsslaveratio

Average number of packets per second encountered at the slave side.

taskcompletiontime

Time in milliseconds from the first contact on the starting edge to the final contact

at the same edge after crossing the plastic profile and moving the TOP back to the

starting point.

tctpenalty

When some part of the task was not or erroneously fulfilled this is different from 0

(which means everything went OK). Possible errors were, firstly, that the subject did

not return to the starting position after crossing the profile, and secondly, the target

area at the final position was not reached correctly but the free-space movement was

done.

contactdur

Number of milliseconds the contact phase with the object lasted while crossing it.
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forcemean

The mean value of the measured contact force during the contact phase.

forcevar

The variance of the measured contact force during the contact phase.

trackdeviationymean

The mean value of the tracking deviation orthogonal to the movement direction

during the contact phase.

trackdeviationyvar

The variance of the tracking deviation orthogonal to the movement direction during

the contact phase.

numlostcontact

Number of contact losses during the contact phase which lasted longer than 50ms.

contactdurratio

Ratio of the duration of the contact phase and the total duration of contact losses.

In the following the measured influence of the independent variables on the dependent

variables is presented. For every dependent variable two plots show the effect of the DBDR

approach and the DBDR-P approach on the respective variable. The plots are followed by

the respective statistical analysis for the two cases and after that a brief interpretation is

given if possible.

3.9.2 Achieved Packet Rate Reduction

Obviously, the most important goal of the DBDR approaches in the conducted experiment

is the packet rate reduction performance. If the approach is to be employed, it is always

necessary to weigh the packet rate reduction performance against the encountered quality

deterioration. One major purpose of the presented experiment is to give examples of which

performance parameters deteriorate with increasing data compression and which do not.

First we take a look at the encountered packet rates for the different compression pa-

rameters on the master and the slave side. Master packets carry position and velocity

information while slave packets carry force information. Figures 3.4 and 3.5 show the

mean packet rates and their standard deviations.

Since testing the packet rate data sets for normal distribution yielded negative results,

Friedman variance tests were used instead of the standard parametric ANOVA. It was

first examined if the encountered packet rates varied significantly with the compression
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parameters. If a significance was detected, Wilcoxon Signed-Rank Tests were conducted

to do pairwise comparisons between each deadband parameter step and their respective

predecessors (e.g. 2.5% compared to 0%, 5% compared to 2.5%, and so on). After that,

additional pairwise comparisons were done between each deadband parameter without

prediction and with prediction in order to determine when the application of the prediction

algorithm makes sense in general.

3.9.2.1 Master Side
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Figure 3.4: Measured packet rates and their standard deviations for different data reduction

parameters without (left) and with (right) prediction for the master side.

The Friedman variance test on the packet rates on the master side yielded strong signifi-

cance in both the cases without prediction (χ2(6) = 177.61, p < .001) and the cases with

prediction (χ2(6) = 148.89, p < .001).

The pairwise comparison using the Wilcoxon Signed Rank Tests for the significance of

packet rate reduction between deadband parameter steps and their respective predecessor

yielded high significance (p < .001) in all cases. That means that every increase of the

deadband parameter by 2.5% in the experiment yielded another significant reduction of

the packet rate on the master side.

The evaluation if prediction leads to further significant packet rate reduction was done by

pairwise comparison of the rates of the same deadband parameter steps with and without

prediction. By looking at the results for the master side, we can see that the cases with

prediction led, inversely to our expectations, to an increase in packet rates in all cases.

This is a first surprising result, since there seems to be a greater difference of prediction
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behavior to the VR-case described in Section 2.4.1 as anticipated. In a real TPTA-system,

with the control approach used in this experiment, prediction is not worthwhile, at least

for velocity and position data.

3.9.2.2 Slave Side
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Figure 3.5: Measured packet rates and their standard deviations for different data reduction

parameters without (left) and with (right) prediction for the slave side.

The Friedman variance test on the packet rate generated by the slave side of the experi-

ment (containing force information) yielded strong significance for both the cases without

prediction (χ2(6) = 148.89, p < .001) and with prediction (χ2(6) = 132.34, p < .001).

Pairwise comparisons in the case without prediction between deadband parameter steps

and their respective predecessors yielded the results shown in Table 3.1. We can see very

strong significance for the first three deadband parameter steps from 2.5% to 7.5% and

borderline non-significance for the fourth step at 10% (due to Bonferroni-corrections the

significance level begins at .008 here) and another significant change at 15%. We can

state that increase of the deadband parameter in the range up to 7.5% leads to significant

changes. After that changes are sometimes not significant any more. By looking at the

respective figure we can confirm this, because for parameters greater 7.5% the packet rate

is already very low and decreases only marginally for higher values.

The same analysis is done for the case with prediction. Results are shown in Table 3.2.

Here again significant changes are recorded up to a deadband of 7.5% and again for 12.5%.

Since the packet rates are already very low for 12.5% we can say that worthwhile packet

rate reductions only take place for deadbands up to 7.5%.
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Comparison of deadband % Probability significant

0 and 2.5 p < .001 yes

2.5 and 5 p < .001 yes

5 and 7.5 p < .001 yes

7.5 and 10 p = .01 no

10 and 12.5 p = .27 no

12.5 and 15 p < .008 yes

Table 3.1: Significance of packet rate reduction difference between subsequent deadband

parameter steps on the slave side without prediction.

Comparison of deadband % Probability significant

0 and 2.5 p < .001 yes

2.5 and 5 p < .008 yes

5 and 7.5 p < .008 yes

7.5 and 10 p = .89 no

10 and 12.5 p < .001 yes

12.5 and 15 p = .20 no

Table 3.2: Significance of packet rate reduction difference between subsequent deadband

parameter steps on the slave side with prediction.
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Deadband in % Probability significant

2.5 p < .001 yes

5 p = .06 no

7.5 p = .14 no

10 p < .05 yes

12.5 p = .31 no

15 p = .10 no

Table 3.3: Significance of packet rate reduction difference between cases with and without

prediction on the slave side.

The results of the pairwise comparisons between the cases of one deadband parameter

with and without prediction are shown in Table 3.3. We can see that only deadband

parameters of 2.5% and 10% prediction lead to significant gains whereas for the other

parameters prediction is not worthwhile. The only really strong significance was detected

at 2.5% so that we can reason that prediction above this value should not be used for force

transmission, especially when taking the results of the following task performance analysis

into account. But at least for the force transmission case, prediction leads to packet rate

reduction in contrast to velocity/position transmission discussed above.

3.9.3 Subjective Quality

The subjective quality assessment of the human system interface used for the experimental

task is a very important measure for the performance of the data reduction algorithms.

Subjects had to answer 3 questions concerning the subjective quality after every test run of

the experiment. The scale for all three questions ranged from 1 (best quality) to 7 (worst

quality). For the evaluation, the average score of these 3 questions was used as the main

quality measure.

In Figure 3.6 the average ratings and their standard deviations for all combinations of

independent variables, i.e., all 7 deadband settings respectively with and without prediction

are shown.

In the case where DBDR was used to reduce the amount of data communicated in the

system an ANOVA was conducted to evaluate whether the encountered differences in

the quality ratings are significant or not. The analysis showed no significant dependency

(F (6, 180) = 1.17, p = .33) between the assessed quality ratings and the size of the used

deadband parameter which seems reasonable when looking at the left diagram in Figure 3.6

where no real dependency is visible.
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Figure 3.6: Subjective quality ratings (1=best, 7=worst) and their standard deviations the

test subjects gave for different data reduction parameters without (left) and with (right)

prediction.

Deadband in % F-statistics significant

2.5 F (1, 30) = 0.14 p = .71 no

5 F (1, 30) = 9.67 p < .05 yes

7.5 F (1, 30) = 3.83 p = .06 no

10 F (1, 30) = 13.97 p < .05 yes

12.5 F (1, 30) = 39.28 p < .001 yes

15 F (1, 30) = 25.18 p < .001 yes

Table 3.4: Significance of effects in subjective quality assessment while using the DBDR-P

approach.

The ANOVA performed for the case where DBDR-P was used showed a very significant

main effect (F (6, 180) = 10.22, p < .001) which could have also been anticipated from

Figure 3.6. The single contrasts for this case are shown in Table 3.4. We can see that

only in the 2.5%-case a non significant quality deterioration was measured. The 7.5%-

case is only borderline non significant with its p = .06. Therefore we can state that the

DBDR-P approach did not perform very well in this real TPTA-system unless it is used

in conjunction with very low deadband values.
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3.9.4 Task Performance

3.9.4.1 Task Completion Time

The assessment procedure for the task completion time is described in detail in Section 3.4.

The test subjects had to haptically follow the plastic profile and subsequently return to the

starting position in free space movement. Since the subjects were told to fulfill the task as

quickly and as precisely as possible, some of the subjects emphasized the speed whereas

others took more care of the precision of their task execution. This is probably the reason

for the relatively high level of the encountered standard deviations. The exact measured

task completion times are shown in Figure 3.7.
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Figure 3.7: Measured task completion times and their standard deviations (in s) for dif-

ferent data reduction parameters without (left) and with (right) prediction.

Since Mauchly’s Test showed that the conditions for sphericity (see 3.8.2) were not fulfilled

in this case, the according corrections were applied to the degrees of freedom of the ANOVA.

In the case without prediction a significant main effect was detected (F (4.05, 121.45) =

2.75, p < .05). In order to further evaluate when the greatest dependencies were detected,

the single contrasts are shown in Table 3.5. The analysis shows that all deadband sizes

had at least an almost significant effect (highest p = .08 for 7.5%) on the task completion

time in comparison to the uncompressed 0% case.

The analysis of the cases including the prediction approach also shows a significant main

effect (F (4.55, 136.60) = 3.73, p < .05). Table 3.6 gives details on the single effects. We

can see that the 2.5%, 12.5%, and 15% case show significant effects whereas the 5%, 7.5%,

and 10% cases don’t.
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Deadband in % F-statistics significant

2.5 F (1, 30) = 3.75 p = .06 no

5 F (1, 30) = 12.80 p < .01 yes

7.5 F (1, 30) = 3.38 p = .08 no

10 F (1, 30) = 10.52 p < .01 yes

12.5 F (1, 30) = 5.39 p < .05 yes

15 F (1, 30) = 7.58 p < .05 yes

Table 3.5: Significance of effects on task completion time while using the DBDR approach.

Deadband in % F-statistics significant

2.5 F (1, 30) = 10.42 p < .05 yes

5 F (1, 30) = 0.59 p = .45 no

7.5 F (1, 30) = 2.86 p = .10 no

10 F (1, 30) = 2.14 p = .15 no

12.5 F (1, 30) = 11.66 p < .05 yes

15 F (1, 30) = 10.42 p < .05 yes

Table 3.6: Significance of effects on task completion time while using the DBDR-P ap-

proach.

The results from the test for influences of the compression parameters on the task comple-

tion time are somewhat inconclusive. On the one hand it seems that the DBDR approach

without prediction, even in the low 2.5% case, causes strong deterioration in task comple-

tion time, whereas in the case with prediction three parameter sets did not cause significant

deterioration. Especially the 5% case is odd because it goes from very strong significance

without prediction to no significance at all with prediction. It seems that the vague ex-

perimental guideline to complete the task as quickly and as precisely as possible may have

led to a behavior of test subjects to do some of the test runs slower but more precise and

others quicker and less precise in a completely random manner.

3.9.4.2 Number of Contact Losses

During the contact phase of the experiment test subjects often had a hard time maintaining

contact to the profile surface because of the very sharp turns that were necessary to follow

it. Especially if they focused on quick task completion it became more difficult to maintain

steady contact. One of the measured performance parameters was the number of contact

losses longer than 50ms during the contact phase. In Figure 3.8 the recorded average

number of contact losses and their standard deviations are shown.
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Figure 3.8: Measured number of contact losses and their standard deviations for different

data reduction parameters without (left) and with (right) prediction.

Deadband in % F-statistics significant

2.5 F (1, 30) = 2.40 p = .13 no

5 F (1, 30) = 3.67 p = .07 no

7.5 F (1, 30) = 0.78 p = .39 no

10 F (1, 30) = 7.95 p < .01 yes

12.5 F (1, 30) = 3.84 p = .06 no

15 F (1, 30) = 7.90 p < .01 yes

Table 3.7: Significance of effects on the number of contact losses while using the DBDR

approach.

Since Mauchly’s Test showed that the conditions for sphericity (see 3.8.2) were not fulfilled

for the contact loss data set, the according corrections were applied to the degrees of

freedom of the ANOVA.

In both cases with and without prediction a significant main effect was detected

(F (4.49, 134.80) = 2.38, p < .05 for the case without prediction and F (3.72, 111.45) =

15.12, p < .001 for the case with prediction). Corresponding tendencies are also visible in

the respective figures.

For the case without prediction the respective comparison tests to the reference case of

0% deadband are shown in Table 3.7. We can see significant effects for the 10% and 15%

cases and two borderline not significant results in the 5% and 12.5% cases. Interestingly,

the 7.5% case has the least significance.
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Deadband in % F-statistics significant

2.5 F (1, 30) = 14.58 p < .05 yes

5 F (1, 30) = 10.04 p < .05 yes

7.5 F (1, 30) = 12.85 p < .05 yes

10 F (1, 30) = 18.85 p < .001 yes

12.5 F (1, 30) = 31.48 p < .001 yes

15 F (1, 30) = 48.29 p < .001 yes

Table 3.8: Significance of effects on the number of contact losses while using the DBDR-P

approach.

In the case with prediction the single contrasts to the 0% deadband reference shows signi-

ficance for all test cases, where the first three (2.5%, 5%, and 7.5%) show smaller signifi-

cance than the other three (10%, 12.5% and 15%).

For the parameter of encountered contact losses during the contact phase of the experiment

we can see that deadbands lower than 10% lead to no significant deterioration of contact

behavior if no prediction is used. With activated prediction, all deadbands lead to signifi-

cant deterioration of contact losses which again shows that the prediction approach seems

not a valid solution in real TPTA systems with the used control structure in comparison

to virtual TOPs.

3.9.4.3 Contact Ratio

Another interesting performance parameter is the contact ratio which describes what rel-

ative part of the time during the contact phase was actually spent in contact with the

environment. It is calculated as follows:

Contact Ratio =
Time in contact

Total duration of contact phase
(3.3)

Consequently, a value of 1 or 100% means, that the test person maintained contact to

the surface the whole time without a single interruption. This would be the optimal case.

The contact ratio reflects the ability of the test person to control the TOP with sufficient

precision to maintain contact with the environment using the TPTA system. Figure 3.9

shows the recorded mean duration ratios and their standard deviations for both the cases

with and without prediction.

As in many of the cases before, Mauchly’s Test showed that the conditions for sphericity

were not fulfilled for the contact ratio data set. Accordingly, corrections were applied to
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Figure 3.9: Measured ratio between the actual contact time and the length of the contact

phase for different data reduction parameters without (left) and with (right) prediction.

the degrees of freedom of the ANOVA.

The statistical analysis showed no significant main effect for the case with no prediction

(F (3.92, 117.46) = 0.34, p = .85). For the case with prediction, there also was no detectable

main effect (F (4.36, 130.88) = 1.15, p = .34). As we can also see by looking at the figures,

the case with prediction shows greater deviations than the case without prediction which

is also reflected by the p-values of the F -tests.

Consequently, we can state that the applied data reduction algorithms did not have a

significant effect on the contact ratio of the test subjects in the presented experiment.

3.9.4.4 Contact Force Behavior

While the test subjects performed the contact phase of the experiment, the contact force

applied to the remote environment was measured. The variance of this contact force is one

measure for the task performance because it reflects the amount of precision and control

the subjects were able to bring across the TPTA system to the remote environment. The

measured force variance values are shown in Figure 3.10 for both the cases with and without

prediction.

Mauchly’s Test showed that the conditions for sphericity (see 3.8.2) were not fulfilled for

force variance. Therefore the according corrections were applied to the degrees of freedom

of the ANOVA.
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Figure 3.10: Measured force variance during the contact phase for different data reduction

parameters without (left) and with (right) prediction.

The statistical analysis showed no significant main effects for neither the case without pre-

diction (F (1.55, 46.59) = 0.80, p = .43) nor for the case with prediction (F (2.23, 66.84) =

1.18, p = .32). Still, a slight tendency for higher force variances is visible in the respective

figure for the higher deadband parameters when prediction is active.

Not a real performance measure but also of interest is the applied mean force during the

test runs. Figure 3.11 shows the measured mean force in all cases.

Since no significant effects were found in this case, we can state that the DBDR approach

did not significantly interfere with the contact force behavior during the presented TPTA

experiment.

3.9.4.5 Track Deviation

During the contact phase of the experiment the test subjects ought to follow a track across

the plastic profile which was marked by white dots on the surface. One parameter to

measure task performance is the deviation from this optimal path. Since there was no

way to haptically sense the correctness of the current path, the subjects had to rely on

the intentionally suboptimal video feedback from the remote environment. The measured

variance of the track deviation is shown in Figure 3.12 for both the cases with and without

prediction.

Again here Mauchly’s Test showed that the conditions for sphericity (see 3.8.2) were not

fulfilled, so the according corrections were applied to the degrees of freedom of the ANOVA.
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Figure 3.11: Measured mean contact force during the contact phase for different data

reduction parameters without (left) and with (right) prediction.

For both the case without prediction (F (3.62, 108.71) = 1.49, p = .22) and the case with

prediction (F (3.70, 111.12) = .54, p = .69) no significant main effect was detected.

Also interesting is the mean track deviation the subjects encountered during their test runs.

The mean deviation from the optimal track is shown in Figure 3.13. Note that almost all

mean values are negative. That most likely comes from the setup of the experiment where

HSI positions closer to the body of the operator result in negative deviations from the

optimal track. Since human interaction precision decreases with the distance from the

body this result is not surprising.

No significant effects were detected in this case. This leads to the conclusion that the

DBDR and DBDR-P approaches did not deteriorate the tracking efficiency of the test

subjects in this experiment. It is most likely that the encountered tracking errors result

more from the relatively bad video feedback from the remote environment.

3.10 Discussion

There are several interesting conclusions to be drawn from the experimental results. The

first and most obvious one is that the usage of a linear signal model based prediction does

neither lead to packet rate reduction in all cases nor does it seem otherwise suitable because

it leads to strong deterioration of task performance and perceived quality.

The reason for this bad performance lies in the handling of position/velocity transmission
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Figure 3.12: Measured variance of the track deviation during the contact phase for different

data reduction parameters without (left) and with (right) prediction.

in this system setup. As stated in Section 3.2 the actual TOP position is based on a

prediction according to the last transmitted position and the respective velocity at that

time and the elapsed time since. So even if only DBDR is in place the TOP position is

already predicted. This works well, as the experimental results show. When model based

prediction is added with the DBDR-P approach, which tries to linearly predict velocity

from the last two transmitted velocity samples we basically have a position prediction

running based on a velocity prediction. This quickly leads to increased position errors

which have to be corrected by sudden movements of the TOP when they occur. While

this is not a big problem in virtual remote environments where such position errors can be

compensated easily by simply setting new positions for the virtual TOP, a real TOP has

to be moved to the correct position by accelerating and decelerating it in a very short time

period, which always leads to disturbances in the system when it is necessary.

There are a couple of possible measures to deal with this disadvantage in position/velocity

transmission. One would be to introduce a control system that allows for less sudden

position corrections, possibly by adding increments to the set positions which lead to a

correct position over the next n steps. Another possibility would be to introduce fixed

rate updates at 10 to 50Hz to keep the necessary corrections small so they don’t disturb

interaction that heavily. It would also be possible to keep track of the position error at

the TOP side since all information to do that are also available at the OP side. By setting

a reasonable threshold for the position error, an update packet could be sent accordingly.

Solutions like this should be tested in further experiments to evaluate whether they work

well or lead to more challenges along the way.
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Figure 3.13: Measured mean of the track deviation during the contact phase for different

data reduction parameters without (left) and with (right) prediction.

While the DBDR and DBDR-P approaches did not deteriorate most of the task perfor-

mance parameters, their influence on task completion time remains inconclusive. While

significant adverse effects were found for otherwise well performing parameter sets, non-

significant influence while using otherwise bad performing parameter sets were also

recorded. The most likely reason for this behavior is the ambiguous nature of the task

explanation which required both speed and precision at the same time.

3.11 Chapter Summary

This chapter tries to determine the influence of psychophysically motivated data reduction

approaches, namely the DBDR and DBDR-P approaches on the task performance in a

real TPTA system. Many different aspects of task performance and also the achieved data

reduction performance is assessed and analyzed in order to be able to give guidelines and

useful information for the application of such algorithms in real TPTA systems.

The experiment described in this chapter was a joint effort of the author and the Human

Factors Institute at the University of the Armed Forces in Munich which provided the

psychological background for the statistical analysis and the professional conduction of the

experiment itself. All the hardware of the experiment has been used by courtesy of the

Institute of Automatic Control Engineering at TU München. The experimental design, the

communication software incorporating the examined data reduction algorithms, the data

extraction from the measurement logs as well as interpretation of the statistical analyses
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were the main contributions of the author.

The results indicate that the combination of the DBDR-P approach on velocity data and

position control does not work well in real TPTA systems while working perfectly well

in virtual remote environments. But after ruling out signal model based prediction in

the control architecture as used in the experiment we can state that the DBDR approach

without prediction works very well in the presented TPTA system. It does not lead to

significant deterioration of subjective quality perception, does not significantly increase the

number contact losses in complex contact situations, does not lead to significant changes

in contact force behavior, and does not significantly deteriorate tracking accuracy. On

the other hand it does significantly affect packet rates across the network by up to 93%

of the original rate for velocity/position packets and up to 91% of the original rate for

force packets (at 15% deadband). Still at a deadband parameter of 7.5% which represents

a reasonable value where the hardware is almost not stressed at all by sudden position

corrections and there is no significant packet rate gain any more at the slave side, rates are

already at 87% for both velocity/position and force transmission.

We can finally conclude that the 3D-deadband approach also works well in real TPTA

systems.



Chapter 4

Theoretical Analysis of the

Deadband Approach

After demonstrating the effectiveness of the deadband approach for various scenarios in

the last chapters, a more theoretical view is now presented in order to further analyze its

characteristics. In the following, the deadband approach is studied in terms of an adaptive

sampler. Hence, we now refer to it as the deadband sampler.

4.1 Types of Sampling

Sampling is omnipresent in today’s digital technology. Generally, sampling describes the

transformation of a continuous signal into a discrete signal. Special forms of sampling like

oversampling and undersampling are also used to transform one discrete signal represen-

tation into another.

While the dimension in which sampling can take place is quite arbitrary, we concentrate on

the sampling in the time domain. In the vast majority of cases uniform sampling is used,

where a signal is sampled in certain constant intervals, the sampling period ts, resulting in

the sampling frequency fs = 1
ts

.

In order to be theoretically able to reconstruct the continuous signal, a sampling frequency

of at least fs = 2fm has to be used to sample the signal, where fm is the highest frequency

in the continuous signal. This is known as the Nyquist-Shannon sampling theorem and is

a very basic concept in signal processing.

For perfect signal reconstruction, the sampled values have to have infinite resolution. In re-

ality quantization is used to make the sampling values manageable but this also introduces

70



4.2. PRINCIPLES OF THE DEADBAND SAMPLER 71

irreversible loss of information.

In comparison with well known uniform sampling non-uniform sampling opens up a whole

lot of new possibilities in signal processing but also introduces additional reconstruction

problems.

Non-uniform or adaptive sampling allows for irregular sampling intervals which may be

tailored to the specific signal properties at a given time. Signal parts with low frequency

content can be represented using fewer samples compared to parts with higher frequency

content. On the other side, signal reconstruction becomes more difficult because the actual

sampling frequency at a given signal position is not always easy to determine.

Almost all the work on non-uniform sampling seeks for the goal of best possible signal

reconstruction. In comparison to this goal, the deadband sampler described in this work

aims at the selection of the least number of samples from a signal which then result in

a perceptually identical reconstructed signal. In other words, the signal deterioration or

sampling noise introduced by the sampler should be below the perceptual threshold of a

human being.

4.2 Principles of the Deadband Sampler

As the deadband sampler uses the underlying principle of the deadband approach presented

in Section 2.2, it is also based on Weber’s Law (see 1.1.6.2). It therefore generates a constant

output signal q as long as the input signal does not exceed the deadband threshold q ± pq

which would optimally correspond to the actual perception threshold of a human being.

Once this threshold is exceeded, the output signal is updated to the current signal value

and this value is held at the output until the new threshold around the output signal

is exceeded. This results in irregular sampling intervals and therefore in non-uniform

sampling.

A comparison with classic predictive compression techniques as discussed in [24] yields

some similarities. An approach mentioned in [24] checks whether the prediction error at

the sender side exceeds a given threshold. If this is the case, the new value is sent. If it is

not the case, the predicted value is used at the receiver side. The deadband sampler differs

in two major aspects from this classic approach. Firstly, the deadband sampler changes

the threshold linearly with the amplitude of the current output value and secondly, the

linear relationship is chosen to reflect the perception capabilities of a human being.

The deadband sampler is usually used on already sampled input signals in order to non-

uniformly downsample them. Note that it would still be possible to use the deadband
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sampler on a continuous input signal as well.

4.2.1 Input-Output relationship

Deadband
Samplerxi qi

Figure 4.1: The block diagram of the deadband sampler.

The main rule how the output signal is generated is described in the following. The discrete

input signal is defined as:

xi ∈ (−∞, +∞) i = 1 . . . N (4.1)

where i is the sequence number of a sequence of N input samples.

The output signal of the quantizer qi is generated by the following rules:

qi =

{
xi−m if xi−m(1− p) < xi < xi−m(1 + p)

xi else
(4.2)

and

qi−1 . . . qi−m = xi−m (4.3)

for

i−m ≥ 1 (4.4)

where m samples back in the signal the last threshold violation took place. We call xi−m the

reference value. p is the deadband threshold approximated by Weber’s Law. As previously

described, p in most cases ranges from 0.05 to 0.15 for human haptic perception.

4.2.2 Update rate behavior

For the transmission of sensor data over limited channels using the deadband approach it

is very useful to know in advance which p will be necessary in order to generate a certain

output rate. Since this behavior strongly depends on the input signal we have to make a

few simplifications. In the following we derive the update rate behavior for the deadband

sampler for different types of input signals.
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4.2.2.1 Complexity Considerations

To explain the necessity of deeper theoretical considerations despite the simplicity of the

deadband approach we give a short example of the complexity for the case of an independent

and identically distributed (iid) input signal. Special cases for this type, namely uniformly

distributed and normally distributed input signals, will be looked at later. First we present

some principal ground rules of the theoretical analysis.

At first glance one might think that with an iid input signal an analysis would be very

simple because of the independence of the samples. Unfortunately this is not the case as

is easily proven by a simple simulation. Looking at Figure 4.2 we can see the results of

a simulation run of one million normally distributed sample signals with 10 steps each,

which were processed using the deadband sampler and analyzed for the probability of each

sample in the signal sequence violating the currently active deadband threshold.
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Figure 4.2: Probabilities of deadband bound violation for p = 0.1 (top) to p = 1 (bottom)

for the first ten steps of a normally distributed input signal.

Assuming that the probability that one value of the input sequence lies within the deadband

bound of another input value is γ we can derive the probability for the first steps in the

sequence for violating the deadband bound.

For the first sample, the value x1 has to be sent to the receiver. Therefore, the probability

of bound violation is 1 in this case. This is also true in the simulation.

For the second sample, the deadband bound is violated once the value x2 does not lie

within the deadband bound around the first sample x1. Therefore the probability for this

case is 1− γ. This is also true for all p in our simulation.
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For the third sample, the deadband bound can be violated in two different ways. The first

possibility is that the third sample x3 violates the deadband around x2. However, this does

only matter if x2 itself lay outside the deadband around x1 and became the new reference

value. So the probability for this first case is (1−γ) · (1−γ). The second possibility is that

the third sample x3 violates the deadband bound of x1 in the case that x2 lay within the

deadband bound of x1 and therefore did not become the new reference. The probability

for the second case is γ · (1− γ). To get the probability that x3 violates the threshold, we

must add up these two probabilities:

(1− γ) · (1− γ) + γ · (1− γ) = 1− 2γ + γ2 + γ − γ2 = 1− γ (4.5)

We can see that the probability that x3 violates the threshold is the same as for x2, namely

1 − γ. If we compare this result with the simulated probabilities of bound violation in

these steps we can clearly see that this is not correct. Especially for higher values of p

the simulated probabilities for x3 differ by quite a large margin from the probabilities for

x2. Therefore this case is not as trivial as it seems at first and the simple assumption that

there is a certain γ throughout the whole signal is wrong.

The reason for this discrepancy is that γ is only the correct probability for the second step.

In all following steps there are strong dependencies between the probabilities in the current

step and those of the previous steps which lead to changes in the probability distribution

of the output signal which is then no longer Gaussian. Therefore it is in no way possible

to give a γ which is constant over the whole signal because the probability distribution

of the output signal changes with every step. The probability that a new incoming signal

sample violates the currently active threshold therefore depends on the whole history of

bound violations in the past of the signal.

In order to further explain how the probabilities for an arbitrary signal model can be

calculated, we have to formalize the behavior of the system. In general we can say that

for every step it is either possible that the new incoming input value violates the active

deadband or it does not. Depending on the signal model it can be necessary to know

the complete past of the input and output signals in order to determine the probability

for the violation or compliance in the next step. Therefore we need a way to distinguish

between all possible signal behaviors as far as bound violation is concerned. The only way

to represent this is a binary tree. The two leaves of every node represent bound violation

and no bound violation. This tree would then look like as shown in Figure 4.3.

The superscripted bit sequences t in Figure 4.3 (e.g. q101
3 ) denote the sequence of bound

violation (1) and no bound violation (0) along the signal. The index is the sequence

count as already introduced earlier. Each of the nodes in the binary tree has a specific
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q11

q102 q112

q1003 q1013 q1103 q1113

. . . . . .. . . . . . . . . . . .. . . . . .

Figure 4.3: Binary tree structure representing all possible output sequences concerning

bound violations.

probability that a signal reaches it. This probability depends on the probability of some or

all preceding nodes in direction to the root. So for example the probability that a signal

experiences a violation in step one, no violation in step two and again a violation in step

three, i.e., q101
3 , depends on the probability of q10

2 and q1
1 or at least one of the two.

In order to determine the probability of occurrence for each node in the tree, a signal

model dependent algorithm has to be applied on the preceding nodes in the tree. The

algorithms for some types of input signals will be given later on in detail. It is always

necessary that the distribution and behavior of the input signal model is known as well as

the output distributions of the preceding nodes. Following the notations from above, the

distributions of the involved signals are denoted Dqt
i

for the distribution of the deadband

sampled output signal at step i of the signal. t is the bit sequence which describes the

history of the signal up to the node (again 1 for bound violation, 0 for compliance). Note

that all Dqt
i

except for Dq1
1

are not real PDFs, because their integral is not 1 as necessary

for a real PDF but the probability of occurrence of the respective tree node Pqt
i
. In order

to convert them to real PDFs a correction factor of 1
P

qt
i

has to be applied. We call those

functions Dqt
i

partial PDFs from now on, knowing we can convert them to real PDFs any

time using the aforementioned correction factor.

4.2.2.2 Convergence

The first level of the tree only consists of one node, namely q1
1. The second level of the

tree consists of two nodes, q10
2 and q11

2 , level three of four nodes and so on. The n-th

level consists of 2n−1 nodes. Of course, if all node probabilities of one level are summed

up the result is always 1. If we want to determine the probability that a signal violates

the deadband bound in step n, denoted as PLn in the following, we have to sum up all

probabilities in level n of the tree that correspond to a violation in step n. These are 2n−2

values, namely all with a 1 at the end of the superscript. For the first levels this looks as

follows:
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PL2 = Pq11
2

PL3 = Pq101
3

+ Pq111
3

(4.6)

PL4 = Pq1001
4

+ Pq1011
4

+ Pq1101
4

+ Pq1111
4

...

As we can see from the simulation shown in Figure 4.2 the probability PLn quickly converges

to a certain value. We call this value the steady state probability PSS. PSS represents the

average probability that a bound violation takes place in every step of the whole signal

and therefore is exactly the measure we look for to represent the update rate behavior of

the deadband sampler. By multiplying the incoming rate Rx with PSS we get the average

outgoing rate Rq or, expressed differently

Rq

Rx

= PSS (4.7)

the data reduction ratio of the deadband sampler is PSS.

Of course, steady state probability convergence depends heavily on the signal model itself.

In Figure 4.4 we can see the convergence behavior for four different signal models, two

iid, a uniformly distributed signal ranged from 0 to 1 and a standard Gaussian distributed

signal, and two non-iid signals, a Gaussian autoregressive signal with AR-coefficient 0.5

and a Gaussian autoregressive signal with AR-coefficient 1 (Wiener Process or random

walk model). Both the random increment in the AR cases and the Gaussian iid signal

itself had zero mean and a variance of 1 (N (0, σ2 = 1)). We will have a closer look at

these signal models in the following sections. In the figure, we can observe multiple things.

We can see that for smaller p the convergence is faster than for larger p. For the Gaussian

signal model the convergence is faster than in the uniform case. The Gaussian AR-case

converges more slowly with growing AR-coefficient until in the case of the Wiener Process,

no convergence takes place because of the unbounded nature of the signal.

In the following we will take a closer look at different input signal models and the deadband

sampler’s behavior for those models.

4.3 iid Input Signals

First we present the tree generation algorithm for iid input signals. To make the operating

principle of the algorithm clear we start off at the first input sample. Since we assume
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Figure 4.4: Steady state probability convergence for different signal models for p = 0.3 and

p = 0.8.

that no deadband threshold has been established at the beginning of the signal or, in other

words, the initial value is assumed to be zero with the deadband also being zero, the first

sample definitely violates the deadband and becomes the first reference value (assumed it

is not zero). Therefore the PDF of the first deadband sampler output sample is the same

as the input signal.

Dq1
1

= Dxi
(4.8)

The probability of occurrence of this node, denoted as Pqt
i
, can be calculated as the integral

over the PDF. In general

Pqt
i
=

+∞∫
−∞

Dqt
i
(x)dx (4.9)

and in this special case

Pq1
1

=

+∞∫
−∞

Dq1
1
(x)dx = 1 (4.10)

For the next level in the tree, which corresponds to the second sample in the signal, the

first time two outcomes are possible: Either the new incoming input sample value violates
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the deadband bound around the current reference value and becomes the new reference

and output value, or it complies to the deadband bound and the reference and output

value stays the same. The ways of calculating the partial PDFs of these two cases are

quite different.

We start with the calculation of Dq10
2

. In this case the second sample lies within the

deadband bound around the first. In order to determine the partial PDF of possible values

in this node of the tree we need to solve the following equation:

Dq10
2

(x) = Dq1
1
(x)

x(1+p)∫
x(1−p)

Dx2(y)dy (4.11)

The integral over the input signal distribution Dx2 within the limits from x(1−p) to x(1+p)

yields the probability that a new input value lies within the deadband bound of a certain

value x. This probability is multiplied by the probability of occurrence of a certain value

x in the distribution of possible values in node 1 of the tree Dq1
1
. The equation evaluates

this for all possible values of x and thereby yields the desired distribution of values in node

10 of the tree Dq10
2

by weighting every possible value in the distribution in node 1 with the

respective probability of the input signal staying within the deadband around it.

Note that in Equation 4.11 integration is done over the PDF of the input signal Dx2 whereas

the output distribution Dq1
1

is used directly. This is the case because the input signal does

not violate the deadband bound and is therefore discarded and only the probability of it

staying within the bound is of interest. In consequence we need the distribution of values

which pertain through this step, namely the output values after step one, and modify it

by the probabilities that no bound violation takes place.

Of course, the probability of no bound violation in step two of the signal is then

Pq10
2

=

+∞∫
−∞

Dq10
2

(x)dx (4.12)

making it easy to calculate the probability of bound violation:

Pq11
2

= 1− Pq10
2

(4.13)

Unfortunately this is not enough to be able to propagate further down the binary tree. We

need the exact partial PDF at node 11 of the tree. Its calculation is a bit more complicated

than in Equation 4.11:
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Dq11
2

(x) = Dx2(x)

Pq1
1
−

x
1−p∫
x

1+p

Dq1
1
(y)dy

 (4.14)

The integral over the output distribution Dq1
1

yields the probability that a given new input

value x lies within any possible deadband around any last output value. The integral limits

are determined as follows:

q − pq < x < q + pq

q(1− p) < x < q(1 + p) (4.15)

(1− p) < x
q

< (1 + p)

1

(1− p)
> q

x
>

1

(1 + p)
x

(1− p)
> q >

x

(1 + p)
(4.16)

So when determining the probability that some new input value lies within the bound

around a fixed output signal we need Equation 4.15 as used in Equation 4.11. Vice versa,

when determining the probability of all output values that generate a deadband bound

where a fixed input value lies within, we need Equation 4.16, as applied in Equation 4.14.

Since we want to know the probability that a new input value x lies outside of the deadband

bound of any possible preceding output value, we need the complementary probability

which is represented by the term in large brackets. This term therefore represents the

probability that a given new input value becomes the new output and reference value.

Multiplying this term by the probability of occurrence of every input value yields the

desired distribution.

Note that this time integration is done over the output distribution Dq1
1

whereas the input

distribution Dx2 is used directly. In contrast to Equation 4.11 every value in the input

distribution is multiplied by the probability that this value violates the bound around any

possible output value.

At first glance one would think that the straightforward way of calculating Dq11
2

would be

D(x) = Dq1
1
(x)

1−
x(1+p)∫

x(1−p)

Dx2(y)dy

 (4.17)
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but this would yield the distribution of output values which generate a deadband bound

which is violated by the new input value. Therefore these new incoming input values

replace the old output values and become the new reference values. The distribution of

replaced old output values is of no interest to us. Consequently, this does not yield the

correct distribution of the respective tree node. The integral over this distribution still

yields the correct probability simply because it is the complementary case to Equation

4.14.

The straightforward way to propagate further down the tree would now be to use Equa-

tions 4.11 and 4.14 on the respective output distribution of a tree node to calculate the

distributions of its two successors down the tree. The generalized forms of these equations

are:

Dqt0
i+1

(x) = Dqt
i
(x)

x(1+p)∫
x(1−p)

Dxi+1
(y)dy (4.18)

and

Dqt1
i+1

(x) = Dxi+1
(x)

Pqt
i
−

x
1−p∫
x

1+p

Dqt
i
(y)dy

 (4.19)

Using these equations to generate the binary tree allows us to calculate the steady state

probability for iid signals. Since the probability of threshold violation converges to the

steady state probability after five to seven steps in the signal the according five to seven

tree levels have to be generated to calculate PSS.

The generation of the whole binary tree structure is necessary in general and is the solution

for any signal model. Of course the above equations only work for the iid signal case but

tree generation methods for other signal models are presented later on. However the iid

signal case offers a means of simplification because of its independent signal behavior.

Since Equations 4.18 and 4.19 have to be used on every node of a tree level in order to get

to the next it would be useful if we could use them on a sum of different nodes to keep

the amount of computations low. By taking a look at Equation 4.18, we can see that the

integral part is independent from the position in the tree because the distribution of the

input signal Dxi
is always the same in the different tree nodes of one step and in this iid case

even over all steps since the input signal is independent. Therefore all output distributions

in one tree level can be combined into one distribution by summing them all up. By doing

so already in the second tree level, we combine the outcome of the deadband violation
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distribution and the deadband compliance distribution into one output distribution for the

whole tree level. Two nodes can be combined like this

Dq0
1
(x)

x(1+p)∫
x(1−p)

Dx2(y)dy + Dq1
1
(x)

x(1+p)∫
x(1−p)

Dx2(y)dy =
(
Dq0

1
(x) + Dq1

1
(x)
) x(1+p)∫

x(1−p)

Dx2(y)dy

(4.20)

Therefore the equation to get to the next tree level would then be

Dq0
i+1

(x) =
(
Dq0

i
(x) + Dq1

i
(x)
) x(1+p)∫

x(1−p)

Dx(y)dy (4.21)

where qt
i with t being only 0 or 1 means the sum of all node distributions at tree level i

with 0 or 1 at the end of the superscript respectively.

Of course in order to fully incorporate this simplification it ought to be possible for Equa-

tion 4.19 also. Since when combining all output nodes of one tree level Pqt
i

will become 1

and again the input distribution in one tree level is always the same, the calculation can

be simplified as follows:

Dx2(x)

Pq0
1
−

x
1−p∫
x

1+p

Dq0
1
(y)dy

+ Dx2(x)

Pq1
1
−

x
1−p∫
x

1+p

Dq1
1
(y)dy

 =

= Dx2(x)

1−
x

1−p∫
x

1+p

(
Dq0

1
(y) + Dq1

1
(y)
)
dy

 (4.22)

resulting in the following equation to get to the next step in the signal:

Dq1
i+1

(x) = Dx(x)

1−

x
1−p∫
x

1+p

(
Dq0

i
(y) + Dq1

i
(y)
)
dy

 (4.23)

This of course makes it very easy to get down the tree, since we only have to evaluate

Equations 4.21 and 4.23 once per tree level to generate the distributions for deadband

violation and compliance and therefore the probabilities of violation and compliance as the

integrals over those distributions.

Two special cases of iid input signals are presented in the following.
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4.3.1 Gaussian Input Sequence

4.3.1.1 Signal characteristics

We consider a normally distributed input sequence with zero mean and variance 1, i.e.,

xi ∈ N (0, σ2 = 1) (4.24)

The PDF of the input signal is then:

Dxi
(x) =

1√
2π

e−
x2

2 (4.25)

4.3.1.2 First tree levels

The calculation of node probabilities down the tree looks as follows. Naturally, q1
1 is

normally distributed because it just assumes the input distribution:

Dq1
1
(x) = Dx1(x) =

1√
2π

e−
x2

2 (4.26)

Following the principles from above, the partial PDF of q10
2 can be calculated as

Dq10
2

(x) = Dq1
1
(x)

x(1+p)∫
x(1−p)

Dx2(y)dy =
1√
2π

e−
x2

2

x(1+p)∫
x(1−p)

1√
2π

e−
y2

2 dy =

=
1√
8π

e−
x2

2

(
erf(

x(1 + p)√
2

)− erf(
x(1− p)√

2
)

)
(4.27)

This is the distribution of all q1
1 which are not replaced as reference value by a new x2

and therefore become q10
2 . Thus, to determine the probability that x2 lies within the

deadband bound of q1
1 we have to integrate over the partial PDF. Because of its symmetrical

distribution around 0, the equation can be written as:

Pq10
2

= 2

+∞∫
0

1√
8π

e−
x2

2

(
erf(

x(1 + p)√
2

)− erf(
x(1− p)√

2
)

)
dx =

=
1√
π

(arctan(1 + p)− arctan(1− p)) (4.28)
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The solution is obtained using the Taylor-series for the standard error function (erf).

It can also be solved using the Cumulative Distribution Function (CDF) of the Cauchy-

Distribution, as we basically look at the ratio of two standard normally distributed vari-

ables. Unfortunately, this is the only probability which can be given in closed form. Further

down the tree the distributions are no longer standard Gaussian. Fortunately, the proba-

bility of q11
2 (when x2 violates the deadband bound around q1

1) can be easily calculated:

Pq11
2

= 1− Pq10
2

(4.29)

As already shown in Equation 4.14, the PDF of q10
2 can not be calculated that easily. Since

x2 replaces q1
1 as the reference value we are not interested in the distribution of all q1

1 which

are replaced as reference value by a new x2. Instead we need the distribution of all possible

values of x2 that violate the deadband bound to be able to go further down the tree. For

positive values of x and q the distribution can be calculated as follows:

Dq11
2

(x) = Dx2(x)

1−

x
(1−p)∫
x

(1+p)

Dq1
1
(y)dy

 =

=
1√
2π

e−
x2

2

(
1− 1

2

(
erf(

x

(1− p)
√

2
)− erf(

x

(1 + p)
√

2
)

))
(4.30)

We now know the distributions of all the tree nodes after the first two steps in the signal

sequence. Unfortunately, the partial PDFs become more complex the further we go down

the tree. The partial PDFs of the output values in step three of the input sequence x3

would be:

Dq100
3

(x) = Dq10
2

(x)

x(1+p)∫
x(1−p)

Dx3(y)dy (4.31)

Dq101
3

(x) = Dx3(x)

Pq10
2
−

x
(1−p)∫
x

(1+p)

Dq10
2

(y)dy

 (4.32)

Dq110
3

(x) = Dq11
2

(x)

x(1+p)∫
x(1−p)

Dx3(y)dy (4.33)

Dq111
3

(x) = Dx3(x)

Pq11
2
−

x
(1−p)∫
x

(1+p)

Dq11
2

(y)dy

 (4.34)
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Since the simplification for iid signals shown in Equations 4.21 and 4.23 can be used here,

the calculation of those four node distributions is not necessary. Still the problem remains

that calculating the partial PDFs further down the tree is no longer possible in a closed

form solution. We therefore numerically solve the integrals to calculate the partial PDFs

of all nodes in the binary tree up to the desired tree level for both the general and the

simplified case.

4.3.1.3 Validation and Steady State Probability

As shown previously, even for a simple signal model, the analytical solution for the update

rate of the deadband sampler becomes rather involved. To show that this analysis holds, we

determined the partial PDFs of the nodes in the binary tree for the first three levels by both

simulation over 10000000 sample signals and by numerical solution of the aforementioned

formulae. We show both the correctness of the general approach of calculating the whole

tree (Equations 4.18 and 4.19) and the simplified approach (Equations 4.21 and 4.23). As

you can see in Figure 4.5, the grey signal represents the simulation, and the black line is

the numerical solution. Numerical solutions and the general numeric approach are in very

good agreement (in this case for p = 0.8). In Figure 4.6 the simplified approach is shown

where only two partial PDFs have to be calculated per tree level (Step 10 and Step 11).

These two partial PDFs are then summed up to generate the new output PDF (Step 2).

From this PDF, two new partial PDFs are generated (Step 20 and 21) which are again

summed up (Step 3) and so on.

As stated above, we can calculate an estimate of the steady state probability PSS by adding

up all probabilities for a deadband bound violation at one level of the binary tree. Using

the simplified approach enables us to go down the tree very quickly and calculate the

violation probabilities very accurately. As we can see in Figure 4.7 level two in the tree

(sample two of the input signal) is enough for p = 0.1 to p = 0.4. For p = 0.5 to p = 0.7

level three would be a good approximation and for p = 0.8 to p = 0.9 level four, five or

even six would be necessary.

As mentioned earlier, the steady state probability PSS directly represents the relative

update rate at the output of the deadband approach. Figure 4.7 also shows the analytically

derived PSS for values of p from 0.1 to 0.9 for the first 10 steps in the input sequence using

the simplified approach and the corresponding simulation results. We can see an almost

perfect agreement for all probabilities in the Figure. The steady state probability is reached

later in the sequence for higher p. For the case of p = 0.3 in Figure 4.7, an update rate of

90% or equivalently a rate reduction of 10% can be observed.
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Figure 4.5: Simulation (grey signal) and analytical derivation (black line) of the PDFs of

q for the first three tree levels of the input sequence for p = 0.8. All plots have the same

scale.

4.3.2 Uniform Input Sequence

4.3.2.1 Signal characteristics

In this section an input signal with uniform distribution from -1 to 1 is analyzed.

xi ∈ U(−1, 1) (4.35)

The PDF of the signal is then:
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Figure 4.6: Simulation (grey signal) and analytical derivation (black line) of the PDFs of

q for the first three tree levels using the simplified approach for iid signals and p = 0.8. All

plots have the same scale.

Dxi
(x) =


0 : x < −1
1
2

: −1 ≤ x ≤ 1

0 : 1 < x

(4.36)

4.3.2.2 First tree levels

In the following, the first three tree levels are calculated in closed form in order to prove

that the theoretical tree generation formulae are correct. The uniform signal model allows

for simple integration steps which led to problems in the uniform case. The downside are

discontinuities in the partial PDFs because of the non-continuous nature of the input PDF.

In order not to introduce additional discontinuities the general tree generation approach is
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Figure 4.7: Simulation (black lines) and analytical derivation (black crosses) of the steady

state probability (the average probability that a new input value violates the active dead-

band bound) for p = 0.1 (top) to p = 0.9 (bottom) for the first ten samples of the input

signal calculated using the simplified approach for iid signals.

used here and not the simplified version. It is getting complicated enough in the general

case and would be very hard to follow in the simplified approach.

The first level of the tree with only one node (q1
1) is very easy to calculate, because the

first sample in the signal always violates the current deadband bound. Therefore the

distribution of q1
1 equals the distribution of the input signal.

Dq1
1
(x) = Dx1(x) =


0 : x < −1
1
2

: −1 ≤ x ≤ 1

0 : 1 < x

(4.37)

The second level of the tree consists of the nodes q10
2 and q11

2 . First we explain the calcu-

lation of Dq10
2

which can be done according to Equation 4.11. Because all distributions in

this signal model case are symmetric around zero we only calculate the positive part of the

distributions. The non-continuous nature of the input signal distribution requires different

intervals in which the integrals are evaluated. In this first case, the integration limits are

x(1−p) and x(1+p) in which we need to evaluate the integral over the input signal. Since

we are only interested in values of p from 0 to 1, we must evaluate if the interval limits

conflict with the borders of the input and output distributions. The lower limit x(1 − p)

becomes x in the worst case that p = 1 and stays below x for 0 < p < 1, therefore this is

no problem in any case. The upper limit x(1 + p) becomes greater than 1 and therefore
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exceeds past the discontinuity of the distribution if the following is true:

x(1 + p) > 1

x >
1

1 + p

So we need to evaluate the integral for two different cases:

For x < 1
1+p

:

D1
q10
2

(x) = Dq1
1
(x)

x(1+p)∫
x(1−p)

Dx2(y)dy =
1

2

x(1+p)∫
x(1−p)

1

2
dy =

1

2
xp (4.38)

and for x > 1
1+p

:

D2
q10
2

(x) = Dq1
1
(x)

1∫
x(1−p)

Dx2(y)dy =
1

2

1∫
x(1−p)

1

2
dy =

1

4
+ x

(
p− 1

4

)
(4.39)

The calculation of Dq11
2

is similar according to Equation 4.14. The only difference is the

integral limits to be checked for violations. The lower integral limit x
1+p

is also no problem,

because it never exceeds x for our given range of p. The upper integral limit x
1−p

becomes

greater than 1 in the case:

x

1− p
> 1

x > 1− p

So the two interval cases are:

For x < 1− p:

D1
q11
2

(x) = Dx2(x)

1−

x
1−p∫
x

1+p

Dq1
1
(y)dy

 =
1

2

1−

x
1−p∫
x

1+p

1

2
dy

 =
1

2
− x

(
p

2(1− p2)

)
(4.40)

And for x > 1− p:
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D2
q11
2

(x) = Dx2(x)

1−
1∫

x
1+p

Dq1
1
(y)dy

 =
1

2

1−
1∫

x
1+p

1

2
dy

 =
1

4
+ x

(
1

4(p + 1)

)
(4.41)

Since we can analytically derive the closed form solution of these integrals there is no

need to use numerical approaches. The simulations shown in Figure 4.8 were done to

immediately confirm the correctness of the calculations. We can see a very good match

between simulation and analytical derivation. The intersection of the black lines marks

the spot where the two integrals meet.
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Figure 4.8: Simulation (grey) and analytical derivation (black lines) of the PDFs of q for

the second tree level of a uniform input sequence for p = 0.5.

Since we need the probabilities of the tree nodes in the second level to propagate to the

third level of the tree, we have to calculate:

Pq10
2

= 2

1∫
0

Dq10
2

(y)dy = 2


1

1+p∫
0

D1
q10
2

(y)dy +

1∫
1

1+p

D2
q10
2

(y)dy

 = (4.42)

= 2


1

1+p∫
0

1

2
ypdy +

1∫
1

1+p

1

4
+ y

(
p− 1

4

)
dy

 =
p2 + 2p

4(1 + p)
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Pq11
2

= 2

1∫
0

Dq11
2

(y)dy = 2

 1−p∫
0

D1
q11
2

(y)dy +

1∫
1−p

D2
q11
2

(y)dy

 = (4.43)

= 2

 1−p∫
0

1

2
− y

(
p

2(1− p2)

)
dy +

1∫
1−p

1

4
+ x

(
1

4(p + 1)

)
dy

 =
−p2 + 2p + 4

4(1 + p)

Of course it is also possible to evaluate

Pq11
2

= 1− Pq10
2

(4.44)

as an easier way to get Pq11
2

.

In the third level of the tree we have to determine four different distribution functions. We

begin with Dq100
3

(x), which is determined as follows:

Dq100
3

(x) = Dq10
2

(x)

x(1+p)∫
x(1−p)

Dx3(y)dy (4.45)

Since Dq10
2

(x) has a discontinuity in 1
1+p

the resulting distribution will also consist of at

least two parts. The discontinuity of Dx3(y) is at 1, but if x = 1
1+p

the upper limit of the

integral will be 1 as well. So the whole integral consists of only two continuous parts:

For 0 < x < 1
1+p

:

D1
q100
3

(x) = D1
q10
2

(x)

x(1+p)∫
x(1−p)

Dx3(y)dy =
1

2
xp

x(1+p)∫
x(1−p)

1

2
dy =

1

2
x2p2 (4.46)

and for 1
1+p

< x < 1:

D2
q100
3

(x) = D2
q10
2

(x)

1∫
x(1−p)

Dx3(y)dy =
(

1

4
+ x

(
p− 1

4

)) 1∫
x(1−p)

1

2
dy = x2 (1− p)2

8
−x

1− p

4
+

1

8

(4.47)

Unfortunately, the distribution of Dq101
3

(x) is more complicated. It is determined as:

Dq101
3

(x) = Dx3(x)

Pq10
3
−

x
1−p∫
x

1+p

Dq10
2

(y)dy

 (4.48)
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Because the integrand Dq10
2

(y) has discontinuities at 1
1+p

and 1 we again need to split the

integral into different parts. First, we need to know for which x the upper limit of the

integral reaches the first discontinuity:

x

1− p
=

1

1 + p
=⇒ x =

1− p

1 + p
(4.49)

Second, we need to do the same for the second discontinuity:

x

1− p
= 1 =⇒ x = 1− p (4.50)

And third, we need to check if the lower limit of the integral violates the first discontinuity:

x

1 + p
=

1

1 + p
=⇒ x = 1 (4.51)

This means that it reaches the first discontinuity for x = 1, but since x doesn’t get any

higher this doesn’t matter.

Therefore the integral consists of three parts which are the following:

For 0 < x < 1−p
1+p

:

D1
q101
3

(x) = Dx3(x)

Pq10
2
−

x
1−p∫
x

1+p

D1
q10
2

(y)dy

 = −x2 p2

2(1− p2)2
+

p2 + 2p

8(1 + p)
(4.52)

For 1−p
1+p

< x < 1− p:

D2
q101
3

(x) = Dx3(x)

Pq10
2
−


1

1+p∫
x

1+p

D1
q10
2

(y)dy +

x
1−p∫
1

1+p

D2
q10
2

(y)dy


 =

= −x2 p2 − 4p− 1

16(1− p)(1 + p)2
− x

1

8(1− p)
+

2p3 + 6p2 + 5p + 1

16(1 + p)2
(4.53)

And for 1− p < x < 1:
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D3
q101
3

(x) = Dx3(x)

Pq10
2
−


1

1+p∫
x

1+p

D1
q10
2

(y)dy +

1∫
1

1+p

D2
q10
2

(y)dy


 =

= x2 p

8(1 + p)2
+

p3 + 3p2 + 2p

16(1 + p)2
(4.54)

To proof the correctness of these results so far a simulation run was conducted. The

results are shown in Figure 4.9. It is clearly shown how the different functions match the

simulation in their respective interval of validity.
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Figure 4.9: Simulation (grey) and analytical derivation (black lines) of the PDFs of q100
3

(left) and q101
3 (right) in the third tree level of a uniform input sequence for p = 0.5.

As the next step, we calculate the distributions which originate from node q11
2 in the second

level of the tree. We begin with Dq110
3

(x), which is determined as follows:

Dq110
3

(x) = Dq11
2

(x)

x(1+p)∫
x(1−p)

Dx3(y)dy (4.55)

Again, we need to take a look at the discontinuities. The integrand has its only disconti-

nuity at 1. Dq11
2

(x) has a discontinuity at 1 − p. For x < 1 − p the integral stays within

continuous limits. Therefore the first part of Dq110
3

(x) lies in the interval 0 < x < 1−p. The

second discontinuity of Dq110
3

(x) takes place where the integrand reaches its discontinuity,
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which is at 1
1+p

as already determined earlier. This leaves us with two discontinuities in

the resulting distribution and therefore three continuous parts, which are:

For 0 < x < 1− p:

D1
q110
3

(x) = D1
q11
2

(x)

x(1+p)∫
x(1−p)

Dx3(y)dy = −x2 p2

2(1− p2)
+ x

p

2
(4.56)

For 1− p < x < 1
1+p

:

D2
q110
3

(x) = D2
q11
2

(x)

x(1+p)∫
x(1−p)

Dx3(y)dy = x2 p

4(1 + p)
+ x

p

4
(4.57)

And for 1
1+p

< x < 1:

D3
q110
3

(x) = D2
q11
2

(x)

1∫
x(1−p)

Dx3(y)dy = −x2 1− p

8(1 + p)
+ x

p2

8(1 + p)
+

1

8
(4.58)

Finally we take a look at the distribution of q111
3 which can be determined as:

Dq111
3

(x) = Dx3(x)

Pq11
3
−

x
1−p∫
x

1+p

Dq11
2

(y)dy

 (4.59)

And again we need to determine the discontinuities. Dx3(x) has no discontinuities in the

evaluated range from 0 to 1 but Dq11
2

(y) has two at 1− p and 1. The upper integral limit

reaches 1− p when

x

1− p
= 1− p =⇒ x = (1− p)2 (4.60)

The second discontinuity takes place when the upper integral limit reaches 1:

x

1− p
= 1 =⇒ x = 1− p (4.61)

And again, we need to check if the lower limit of the integral violates the first discontinuity:



94 CHAPTER 4. THEORETICAL ANALYSIS OF THE DEADBAND APPROACH

x

1 + p
= 1− p =⇒ x = 1− p2 (4.62)

This means that the lower limit does violate the discontinuity and therefore there is a third

discontinuity of the resulting distribution.

The four parts of the distribution are:

For 0 < x < (1− p)2:

D1
q111
3

(x) = Dx3(x)

Pq11
2
−

x
1−p∫
x

1+p

D1
q11
2

(y)dy

 =

= x2 2p2

(1− p2)3
− x

2p

(1− p2)
− p2 − 2p− 4

8(1 + p)
(4.63)

For (1− p)2 < x < 1− p:

D2
q111
3

(x) = Dx3(x)

Pq11
2
−


1−p∫
x

1+p

D1
q11
2

(y)dy +

x
1−p∫

1−p

D2
q11
2

(y)dy


 =

= x2 p2 − 4p− 1

16(1− p2)2(1 + p)
+ x

1− 3p

8(1− p2)
− p2 − 4p− 7

16(1 + p)
(4.64)

For 1− p < x < 1− p2:

D3
q111
3

(x) = Dx3(x)

Pq11
2
−


1−p∫
x

1+p

D1
q11
2

(y)dy +

1∫
1−p

D2
q11
2

(y)dy


 =

= −x2 p

8(1 + p)2(1− p2)
+ x

1

4(1 + p)
− p2 − 2p− 4

16(1 + p)
(4.65)

And for 1− p2 < x < 1:

D4
q111
3

(x) = Dx3(x)

Pq11
2
−

1∫
x

1+p

D2
q11
2

(y)dy

 =
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= x2 1

16(1 + p)3
+ x

1

8(1 + p)
− 2p2 − 2p− 5

16(1 + p)
(4.66)

In order to confirm the results for the last two distributions another simulation run was

conducted. The results are shown in Figure 4.10. We again see a very good agreement of

the simulated distribution and the analytical derivations in their respective intervals.
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Figure 4.10: Simulation (grey) and analytical derivation (black lines) of the PDFs of q110
3

(left) and q111
3 (right) in the third tree level of a uniform input sequence for p = 0.5.

4.3.2.3 Steady state probability

Since we analytically derived the tree node probabilities for the first three levels of the

binary tree we are now able to calculate the approximate steady state probability PSS for

uniform input signals in these levels. We already calculated Pq10
2

and Pq11
2

earlier which

are the approximated steady state probabilities for bound violation (Pq11
2

) and no bound

violation (Pq10
2

) in the second level of the tree. In order to get the approximated steady state

probability for bound violation in the third tree level, we need to sum up all probabilities

in which a bound violation took place, in this case Pq101
3

and Pq111
3

. To calculate those two

probabilities, we have to integrate over the respective partly continuous distributions. As

we have seen above Dq101
3

consists of 3 continuous parts and Pq111
3

of even four. On the

other hand, Dq100
3

consists of only two parts and Dq110
3

of three parts. Therefore the easier

way to calculate PSS3 would be:

PSS3 = 1−
(
Pq100

3
+ Pq110

3

)
(4.67)
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So we calculate the probabilities Pq100
3

and Pq110
3

:

Pq100
3

= 2

1∫
0

Dq100
3

(y)dy = 2


1

1+p∫
0

D1
q100
3

(y)dy +

1∫
1

1+p

D2
q100
3

(y)dy

 =

=
p4 + 3p3 + 4p2

12(1 + p)2
(4.68)

Pq110
3

= 2

1∫
0

Dq110
3

(y)dy = 2


1−p∫
0

D1
q110
3

(y)dy +

1
1+p∫

1−p

D2
q110
3

(y)dy +

1∫
1

1+p

D3
q110
3

(y)dy

 =

=
2p6 + 2p5 − p4 + 10p3 + 22p2 + 12p

24(1 + p)3
(4.69)

Finally, the approximate steady state probability in tree level three is:

PSS3 = 1−
(
Pq100

3
+ Pq110

3

)
= 1− 2p6 + 4p5 + 7p4 + 24p3 + 30p2 + 12p

24(1 + p)3

=
24 + 60p + 42p2 − 7p4 − 4p5 − 2p6

24(1 + p)3
(4.70)

In Figure 4.11 the simulation run for the steady state probability is shown. The crosses

mark the probabilities obtained using above formulas. We see an excellent match of simu-

lation and analytical derivation in the first three tree levels.

Since every new step in the signal leads to additional discontinuities in the signal, we stop

our analytical derivation at step 3 of the signal. While the methodology stays the same

for later steps of the signal, the actual calculation becomes rather involved very quickly.

4.4 Autoregressive Input Sequence

4.4.1 Signal Characteristics

In this section an autoregressive input signal with normally distributed increment is ana-

lyzed. The signal model can be described as:

xi+1 = axi + η (4.71)
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Figure 4.11: Simulation (black lines) and analytical derivation (black crosses) of the steady

state probability (the average probability that a new input value violates the active dead-

band bound) for p = 0.1 (top) to p = 0.9 (bottom) for the first ten steps of a uniformly

distributed input signal.

where η ist normally distributed with zero mean and variance 1 or in short:

η ∈ N (0, 1) (4.72)

with the distribution

Dη(x) =
1√
2π

e−
x2

2 (4.73)

a is the autoregression factor which in our case is varied from 0 to 1. With a = 0 this signal

model becomes equivalent to a normally distributed input sequence as already discussed

in Section 4.3.1. For a = 1 the input sequence becomes the so called random walk model,

also called the Wiener Process.

In this signal model the values in the input sequence are no longer independent from

each other as in the iid cases. Also the input distributions change over time in the input

sequence. Since this represents a far more realistic behavior for haptic signals, the autore-

gressive input sequence is certainly a step in the direction of more realistic signal models.

Of course, this also makes the analytical derivation far more complex as well.
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4.4.2 Tree Generation Algorithm

As already observed before for other signal models, the first tree node or root node q1
1

simply assumes the input distribution of x1, if we assume x0 = 0 as in all previous cases.

Dq1
1
(x) = Dx1(x) = Dη(x) =

1√
2π

e−
x2

2 (4.74)

In the second tree level, the two node distributions can be calculated similarly to the iid-

gauss sequence, but with incorporation of the autoregression factor a. The equation for

deadband compliance is:

Dq10
2

(x) = Dq1
1
(x)

x(1+p−a)∫
x(1−p−a)

Dη(y)dy (4.75)

We can see that the integral borders are both shifted by −a in comparison to Equation 4.11

which represents the same tree node without autoregression. For a = 0 the equation

becomes the same as Equation 4.11 that means integral borders are symmetric around

x. For a = 1 the borders become −xp and xp and are symmetric around 0. This can be

explained as follows: When a = 1 the value from the first step in the input sequence is kept

without regression and the second η is simply added to this value. Since the first value

defines the deadband, the increment in the second step has to be within the deadband

borders in order to comply. Therefore the integral borders are symmetric around 0 for

a = 1.

The equation for deadband violation is:

Dq11
2

(x) =

x
1+p∫
−∞

Dη(x− ay)Dq1
1
(y)dy +

+∞∫
x

1−p

Dη(x− ay)Dq1
1
(y)dy (4.76)

For a = 0 this equation becomes the same as Equation 4.14. The integrals cover all values

y which do not generate a deadband bound where a given x lies within. Therefore x

would certainly violate the bound around those y and become the new reference value.

The integrals calculate the probability that this x becomes the new reference value. This

is done by integrating over the probability that y occurs in the output distribution q1
1

multiplied with the probability that an η will occur which leads to the desired x when

added to y. This yields the correct output distribution.
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Unfortunately, the strong dependency in the input signal for a > 0 leads to further com-

plications beginning with the third tree level. Distribution Dq10
2

(x) shows the probabilities

at the deadband sampler’s output in the case no violation took place at the second step.

But although the output value didn’t change since no violation took place, the second

value in the input sequence is the one used to generate the third value according to the

signal model. The output distribution at this node gives no information about the current

state of the signal and can therefore not be used as the reference for nodes q100
3 and q101

3 .

Consequently, only the nodes where a deadband violation took place (the ones with a 1 at

the end of the superscript) can be used as reference nodes for further propagation down

the tree because only the output distributions at these nodes represent the exact state of

the signal at these points.

Accordingly, all node distributions have to be calculated based on the distribution of the

last deadband violation on the way back to the root node. It is very easy to see which

node has to be used as reference by looking at the binary superscript. So for example for

the calculation of the distribution of node q101001
6 node q101

3 would be the reference node.

The tree generation equations have to be extended of course. Equations 4.75 and 4.76 are

only applicable if the node to calculate directly follows a deadband violating node.

We first present the equations for nodes q100
3 and q101

3 where the reference lies 2 steps back

before giving the generalized solution.

For q100
3 the solution is:

Dq100
3

(x) = Dq1
1
(x)

(x−xa)+xp∫
(x−xa)−xp

Dη(η1)

(x−(xa+η1)a)+xp∫
(x−(xa+η1)a)−xp

Dη(y)dydη1 (4.77)

The outer integral has the same borders as in Equation 4.75 but slightly transformed into a

notation, where the single sided deadband size is added to the middle for the upper border

and subtracted from the middle for the lower border. This integral covers the inside of the

deadband. Because the reference lies two steps back, not only one random increment is

added but two. Additionally an autoregression step takes place between the two. The inner

integral covers all values of the second increment which lead to deadband compliance for

a first increment given in the outer integral. Figure 4.12 shows how the algorithm works.

In step i the deadband is defined by the current reference value x. In the next step it is

multiplied by the autoregression factor a. Now the first increment η1 is added. We need

to look at all possible η1 which lead to deadband compliance in the next step. For every

one of those possible η1 we need to make another autoregression step, which means that

the current value has to be multiplied by a again. From this value we again need to find
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all possible second increments η2 which again lead to deadband compliance. Those steps

have to be repeated for every step the reference signal lies back in the past.

0

0

i+1

i+n

i
0 Deadband

0

0

p=0.3

a=0.5

+η1

+ηn

a=0.5

Figure 4.12: Deadband compliance over multiple steps when the reference signal lies back

n steps in the case of an autoregressive input signal.

In order to write this is a general form, it is useful to introduce

c1 = xa

c2 = (c1 + η1)a

c3 = (c2 + η2)a

cn+1 = (cn + ηn)a (4.78)

because then we can write

Dqt10···0
i

(x) = Dqt1
i−n

(x)

(x−c1)+xp∫
(x−c1)−xp

Dη(η1)

(x−c2)+xp∫
(x−c2)−xp

Dη(η2) · · ·
(x−cn)+xp∫

(x−cn)−xp

Dη(y) dydηn−1 · · · dη2dη1

(4.79)

For every step the reference signal lies back in the past an additional integral is necessary.

Unfortunately the computational complexity for numerically solving this equation increases

exponentially with every additional integral.
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Deadband violation after 2 steps looks as follows:

Dq101
3

(x) =

x
1+p∫
−∞

Dq1
1
(y)

(y−ya)+yp∫
(y−ya)−yp

Dη(η1)Dη(y − (ya + η1)a) dη1dy +

+

+∞∫
x

1−p

Dq1
1
(y)

(y−ya)+yp∫
(y−ya)−yp

Dη(η1)Dη(y − (ya + η1)a) dη1dy (4.80)

Figure 4.13 helps to explain what happens here. For the calculation of the probability

density at value x in the output distribution we have to consider all values y which do

not cause a deadband where x lies within. The arrows at the top of the figure symbolize

those values y. For each of those y we have to find the probability that it leads to output

value x over n− 1 steps of deadband compliance and a violation in the last step. In order

to do that, we calculate the deadband around y because the n − 1 following steps need

to comply to it. Those n − 1 steps of compliance are treated similarly to Equations 4.77

and 4.79. The final step is different again. With this step n we need to reach the desired

output value x and therefore need to calculate the probability that the final ηn is exactly

the right number to reach x from the value reached after the n− 1 complying steps before.

By using adapted Equation 4.78, replacing x with y in c1, the generalized form of the

equation can be written as

Dqt10···1
i

(x) = (4.81)

=

x
1+p∫
−∞

Dqt1
i−n

(y)

(y−c1)+yp∫
(y−c1)−yp

Dη(η1) · · ·
(y−cn−1)+yp∫

(y−cn−1)−yp

Dη(ηn−1)Dη(y − cn) dηn−1 · · · dη1dy +

+

+∞∫
x

1+p

Dqt1
i−n

(y)

(y−c1)+yp∫
(y−c1)−yp

Dη(η1) · · ·
(y−cn−1)+yp∫

(y−cn−1)−yp

Dη(ηn−1)Dη(y − cn) dηn−1 · · · dη1dy

Also here, the computational complexity for a numerical solution increases exponentially

with n.

4.4.3 Validation and Steady State Probability

To validate the correctness of the calculations above the equations were solved numerically

for a number of parameter sets of p and a. Due to the high complexity of the problem
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Figure 4.13: Deadband violation after multiple steps of compliance when the reference

signal lies back n steps in the case of an autoregressive input signal.

only the first 5 tree levels were calculated in high resolution where the distributions were

sampled at intervals of 0.02 from -6 to 6. Three examples for different parameter sets are

shown in Figure 4.14.

Of course the estimation of the steady state probability PSS is of high interest to us since

it represents the update rate behavior of the deadband sampler for the given signal model.

In Figure 4.15 the comparison between the simulation of deadband violation probabilities

over 1000000 sample signals is compared to the numerical calculation of those probabilities

for four different autoregression parameters (a = 0.2, a = 0.5, a = 0.8, a = 1.0) and

for deadband parameters from p = 0.1 to p = 0.9. We can see a very good agreement

between simulation and numerical calculation. The small errors for smaller p result from

the limited resolution of the numerical calculations which leads to increased errors in

the low-p cases. Higher resolutions were unfeasible due to the exponential increase of

computational complexity. Even for the presented results four parallel 3GHz-cores were

used over a whole week of computation time.

We can also see, that PSS is not always reached after 5 steps. For a = 0.2 and a = 0.5 the

results in level 5 seem to be good estimates for it but for a = 0.8 a few more steps would
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Figure 4.14: Three examples of signal distributions (simulation is grey, numerical cal-

culation black) in tree level 5 for different parameter sets of p and a in the case of an

autoregressive input signal.

be necessary for an exact result. For a = 1.0 the unbounded nature of the signal in this

case does not allow for computation of a PSS but we can say that it finally converges to

PSS = 0 for n → +∞.

4.5 Comparison to Real Haptic Signals

Despite the fact that the presented autoregressive signal model is a step into the right

direction of more realistic signal models, it is still a long way to go from here. If we take

a look at the update rate reductions encountered in the previous chapters we can roughly
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Figure 4.15: Simulation (lines) and numerical calculation (crosses) of deadband bound

violation probabilities for different deadband parameters p and different autoregression

parameters a for an autoregressive input sequence.

say that with a deadband parameter of p = 20% we encounter update rate reductions in

the region of 90%. By looking at Figure 4.15 we can see that even for an AR-coefficient of

a = 0.8 the update rate converges somewhere around 0.8 leaving us with an update rate

reduction of 20%.

The main reason for this discrepancy lies in the fact that due to the bounded nature and

the signal statistics of the AR-process for 0 < a < 1 the signal hardly reaches regions

in which the variance of the random increment η is small enough in comparison to the

absolute amplitude of the signal so that it barely triggers the deadband as it is the case

in real haptic signals where the signal change is mostly small compared to the absolute

amplitude.
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A first possibility to further enhance the signal model would be to introduce a constant

offset c into the signal model. The equations would then look like

xi+1 = axi + η

yi = c + xi for i = 1 . . . N (4.82)

to generate a new signal model yi. c should then be adequately chosen according to the

behavior of real haptic signals. One way to parameterize would be to measure the ratio

of the variance of the change per step and the average amplitude of the real signal and

adapt c accordingly, so that the ratio of c and the variance of η matches this measurement.

A quite realistic signal model for the velocity during free space motion or the force signal

during continuous contact could be the result.

Another extension of the signal model would be necessary in order to correctly represent

the transient behavior of haptic signals when encountering contact. The velocity suddenly

becomes very low and on the other hand force values increase instantly. For the modeling

of this behavior a two-state Markov model, one state representing free space motion and

the other representing contact, would be suitable. The transition probabilities could be

parameterized according to measurements of average contact duration and contact proba-

bility in real haptic signals. Depending on the state of the Markov model two appropriately

dimensioned signal models could be used to generate the next output samples.

4.6 Chapter Summary

This chapter presents theoretical work on the update rate of the deadband sampler for

different signal models. Two general types of signal models are examined: iid signals and

autoregressive signals with iid increment. For all presented signal models theoretical results

for the calculation of output distributions and probabilities are given which are validated

by numerical and simulative results.

The results of this chapter show the surprising complexity of the theoretical deduction

of the signal behavior of an, at first glance, very simple algorithm. It becomes clear

that the nonlinear nature of the deadband algorithm leads to challenges in the theoretical

analysis. Nevertheless this chapter presents solutions for some interesting signal models

and successfully verifies them.

Although even the most realistic signal model presented here leads to a significant difference

in terms of the update rate when compared to experiments with real haptic signals, its
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theoretical analysis forms a solid base for more realistic signal models. Discovering and

understanding how the theoretical analysis for the deadband sampler can be done for

different signal models greatly helps with its practical applications.

The next steps should be to identify how the presented signal models can be changed or

extended in order to better reflect haptic signals encountered in TPTA systems and so

further extend and simplify the theoretical analysis for these models. One possible exten-

sion would be the inclusion of multiple degrees of freedom since the presented approaches

only cover 1-DoF signals. The final goal would be the exact prediction of the update rate

behavior of a TPTA system which uses the deadband approach for data reduction.



Chapter 5

Conclusion and Outlook

Telepresence and teleaction systems will greatly gain in public, scientific, and economical

interest in the near future. The rapid advances in technology of sensor and actuator

hardware, control systems, network capacities, and data processing and coding will allow

for efficient, reliable and cost-effective usage of such systems in many aspects of human

society.

Hardware

Despite ongoing research over many years, current hardware for TPTA systems is still not

as functional as desired. Sensors for force and torque already reach high precision and

reliability levels and reach desirable sizes for their integration in lightweight high-fidelity

systems. In contrast, actuators for tactile modalities like surface structure, vibrations

and temperature are still in early development stages. Robotic systems that are able

to cover the whole workspace of a human being and which are able to produce forces

and torques in a range of human interaction forces/torques are still very large, heavy,

and extremely expensive. Humanoid robots certainly lead in the right direction of how

teleoperator systems should look like, but their dexterity and versatility is also still very

limited. Still, recent advances in these areas point out that there will be decent hardware

systems for the use in TPTA in the near future.

Control Systems

It was already pointed out throughout this dissertation that the underlying control struc-

ture of the TPTA system plays a fundamental role for its safe and reliable operation. Both

the local control loops at the HSI and the TOP and the global control loop over the com-

munication systems need close consideration concerning their control structure and control
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algorithms. The desirable behavior of the HSI and the TOP for example would be very low

mechanical resistance during free-space motions and very rigid and stiff behavior during

hard contacts. Since it is difficult to find a single control approach which equally satisfies

both of these desired properties, hybrid approaches become more and more popular. For

the control of the global control loop across the communication system it is very impor-

tant to be able to compensate for the imperfections of the communications link. One main

problem is the inherent unavoidable delay which long distance communication introduces.

This delay, which would lead to system instabilities if not properly dealt with, is adressed

by the use of wave variables (Scattering Transformation) on the transmitted data. Still

higher delays lead to worse transparency of the system. Therefore keeping delays to the

absolute minimum is and will be the primary design objective of TPTA communication

systems.

Network Systems

The underlying transport network also plays an important role for the operation of TPTA

systems. For crucial tasks a dedicated line is still the favorable solution today, mainly

due to the missing quality of service support of the Internet in its current state. Recent

advances in networking technology and especially network resilience will help to make the

Internet much more reliable and also faster and more versatile. Therefore its usage as the

primary infrastructure for crucial and time-critical data will certainly increase in the near

future.

Coding of Multimedia Data

The efficient coding of audio and video data is subject of intensive ongoing research. Mainly

the great demand of powerful compression algorithms in the home entertainment industry

supports those efforts and leads to quick progress in compression ratio and quality. TPTA

systems only partly profit from this intensive research, since the requirements on the coding

schemes in such a system are different from those in the entertainment sector. In TPTA

systems, very low delay solutions are desirable for both video and audio whereas quality

and high compression gain are the prime objectives in the entertainment sector. And of

course since the demand for the compression of haptic data has not even emerged in this

sector very little research has been done so far.

Outlook

As the usage of TPTA systems will always coincide with the need of efficient data transmis-

sion using specialized approaches for the different modalities needed for good immersion of

the human operator in the remote environment, the work presented in this dissertation will
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certainly be continued and extended in the upcoming years. Some possibilities to further

enhance the described approaches as well as new research directions originating from this

work can be the following.

The exact form of the deadzone in the multi-DoF deadband approaches would be one

interesting point for further research. The assumption of an isotropic deadzone seems

straight forward and could certainly be adapted more precisely to human haptic perception

by respective experiments. First steps were already made but both methodology and

experimentation need more refinement to reach conclusive results.

In its current state, only three degrees of freedom of haptic data can be combined in a

reasonable way to form a conclusive vector representation on which the DBDR approach

can reliably work on. In systems with many more DoFs the same problem as in the

transition from 1-DoF to 3-DoF would arise. It would be very interesting to find reasonable

representations, possibly in higher dimensions, to cope with this problem. A first idea could

be the combination of three translational and three rotational DoFs in a combined pose

representation.

In the various experiments, especially with real TPTA systems, an optimized solution for

the functional transmission of position data would be desirable. The DBDR approach only

works on velocity and does not make sense on pure position data. Therefore the omission

of sample values while using the DBDR approach leads to position drifts at the TOP which

tend to increase over time. The use of position control at the TOP side with predicted

positions while no new samples are transmitted works well for virtual TOPs but leads

to sudden hardware movements in real TPTA systems when the position prediction error

becomes too large. An approach to deal with this complication would be very desirable and

should be investigated thoroughly because of its high practical relevance. Possible solutions

like regular updates at lower frequencies to keep the prediction error small, additional

position error tracking at the OP side, or position error concealment at the TOP side

would be only a few possible approaches.

With respect to the influence of compression schemes on task performance, numerous in-

teresting experiments could be conducted. Primarily, a more sophisticated TPTA system

with higher transparency and optimized control schemes would be a very interesting plat-

form for experimental testing. One could hope for more detailed results on parameter

ranges to use and on the severity of certain distortions to task performance.

From a theoretical point of view it would be of considerable interest to find a suitable signal

model to describe the behavior of haptic data in detail with a number of parameters which

can be related to the task or the environment at hand. Possible parameters could be the

ratio of free-space motion and contact, average force exertion, stiffness of the environment
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etc. After the derivations done in this dissertation it would be very hard to find a theoretical

solution for such a signal model, but at least simulations would be much more accurate.
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