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ABSTRACT 
The paper presents an orthogonally-anchored adaptive linear in- 
terference rejection technique in space-time rake processing. With 
the use of a super short training sequence, the initial space-time 
adaptive filtering vector composed of two mutually orthogonal com- 
ponents is calculated by using a projection-based filter optimiza- 
tion technique. The adaptive filter optimization based on the pre- 
optimized initial weight vector is implemented to efficiently sup- 
press the multiuser access interference in the filtering procedure. 
In contrast to the blind space-time rake processing, the compu- 
tation efficiency exhibited in the suggested approach is achieved 
by implementing the linear optimization for the filtering vector 
in reduced-dimensional (or full-dimensional) space-time complex 
vector spaces instead of using eigenvector-based processing, in 
which the optimization of the filtering vector in full-dimensional 
data vector space is required. 
Key words : Space-time filtering, Adaptive interference rejection, 
DSICDMA 

1. LNTRODUCTION 

In DSICDMA space-time (ST) rake processing, the existing blind 
techniques are often based on two operations, the MMSE (MVDR) 
optimization and eigenvector estimation [ 11-[3]. Aside from the 
heavy computational requirements, a large number of samples are 
required in the blind adaptive algorithms to approach the perfor- 
mances of their ideal counterparts [4]. To develop computationally 
efficient ST rake processing approaches, therefore, will be of great 
significance for DSKDMA mobile communication systems. 

Recently, several linearly constrained adaptive algorithms [5] 
[6] are suggested for blind linear interference suppression in DS/ 
CDMA communications. In these time-only processing, an uncon- 
strained optimization structure, the generalized interference can- 
celler (GJC) structure [7 ] ,  is commonly used to solve the con- 
strained problems. In the GIC structure as shown in Figure 1, 
the upper path filtering vector w,, is designated as the code se- 
quence of the desired user, while the lower path adaptive portion 
is designed to include a blocking matrix G and an adaptive vec- 
tor w <, . With linear constraints, G is chosen to make the adaptive 
component Gw, orthogonal to the quiescent vector w q ,  so that 
the desired signal can be extracted without distortion regardless of 
how the algorithm updates the weight vector [7]. When one at- 
tempts to extend these blind time-only detection schemes directly 
to the antenna array based filtering, i t  seems that the eigenvector 
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techniques should be employed to obtain the quiescent vector 2up 

as well as the blocking matrix G.  Therefore, the computational 
complexity is increased. 

In contrast to the blind processing, the auxiliary vector (AV) 
based ST rake filtering approach was recently proposed in [8] to 
exploit the computational efficiency by using the training sequence 
and reduced-dimensional filter optimization technique. Unfortu- 
nately, the filter vector in [8] is based on the ST data vector of 
dimension M ( L  + L,  - l), where M ,  L and L,  denote the num- 
ber of antennas, the spreading factor and the maximum delay of 
all the dominant multipaths, respectively. The filter optimization 
is conducted with respect to q bit-level ST samples obtaining from 
the received training sequence of length q. In order to get a statis- 
tical efficient filtering vector, the value of q must be several times 
the value of M ( L  + L ,  - 1).  This is absolutely impossible in 
DSKDMA communications, where super short training sequences 
are expected. 

J I  

Figure 1: The generalized interference canceller 

Borrowing the idea of reduced-dimension optimization from 
[SI, we present a training sequence based adaptive linear interfer- 
ence cancellation scheme in this paper. We suggest a different ST 
data vector structure in contrast to that used in [8] for ST rake 
processing. The structure exploits the large value of DSlCDMA 
processing gain and facilitates the use of super short training se- 
quences in DSlCDMA systems. In the scheme, the projection 
based linear optimization in reduced-dimensional (or full- dimen- 
sional) ST complex vector subspaces is employed to get an initial 
adaptation weight, and the adaptive optimization for the filter with 
the GIC structure is conducted to efficiently suppress MA1 in adap- 
tive ST filtering. 
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2. SIGNAL MODEL 

Consider an asynchronous DSlCDMA system with K users. Af- 
ter periodic spreading and BPSK modulation, the resulting signals 
are simultaneously transmitted over additive white Gaussian noise 
(AWGN) multipath channels. We assume that each user has N 
dominant multipaths and the receiver is chip-synchronized to the 
desired user. With the narrow-band signal model, the output of the 
antenna array after carrier demodulation can be written as 

where 

K-1 N-1 

with 
d k ( , r ) :  the chip sequence of the k t h  user after spreading 
each data symbol b k  ( j )  E { 1? -11 by using a periodic PN 
sequence c k  ( 1 )  E { 1! - 1) 1 = 
hk,*: the impulse response of the rrth multipath channel 
from the kth user to the antenna array; 
ak,,,: the array response vector corresponding to the rrth 
multipath of the kth user; 
$( t )  and T,: the pulse shaping function and the chip inter- 
val ; 
/>k.n and r ~ , ~ :  the complex amplitude and delay for the rrth 
multipath of the kth user. 

For an antenna array with M sensors, qL array data vector 
z( , r ) ,  'r = 0, .. qL - 1, of dimension M can be obtained by 
directly sampling (1 data bits at chip rate (or by applying chip- 
matched filtering followed chip-rate sampling to q data bits). 

For ST rake processing, the ST data vector structure is formed 
by extending the space-only data vector from dimension M to an 
ML,-dimensional ST data vector y(r), where L, denotes the max- 
imum delay (in chip duration) of all the dominant multipaths, to 
capture the diversities offered by the multipath channels, i.e., 

. . ! L - 1; 

y(7') = (zH(.) 2 ( 7 '  + 1) . . . z'y. + L ,  - 1)]"> 
7' = o > .  . '  ,qL - 1. (4) 

The corresponding ST covariance matrix R E C ' M L c x M L ~  can 
be estimated by 

3. PROJECTION-BASED INITIAL WEIGHT 
OPTIMIZATION 

For training sequence based ST processing, we apply the Maximal 
Ratio Combining (MRC) approach to obtain a basic filtering vector 
corresponding to the kth user. 

For the (qL) ST inputs { y(r)? 'T = . . ! qL-1} correspond- 
ing to q training bits, the outputs of the filter w q  can be written as 

(7)  

where - denotes the normalization operation. Let us denote by 
d ( j ?  I )  the output of w, corresponding to the Ith chip of the j th  
bit. After despreading d(;j! I )  to &,(j, I ) ,  the bit decision can be 
made by 

H d(r . )  = w q  Y(r . )>  I' = U > .  . . ,qL - 1. 

L 

f=1  

Using the filter outputs I ~ ( T ) ,  the reconstruction of the filtering 
vector w, can be implemented by 

,L-1 

w* = 2- y(,r)&r). (9) 
( I L  r=o 

In order to examine the quality of the filtering vector w,, let us 
consider the projection g1 of vector 6, onto the ST subspace or- 
thogonal to the basic filtering vector w,. i.e., 

g1 = (I - w , w ~ ) w , >  (10) 

where I is the identity matrix of size ML,  x ML,. If the length 
of the orthogonal projection g1 is zero, the vector W ,  will be a 
perfect or desired filtering vector for filtering the training data. It 
means that all the MA1 vectors are orthogonal to w q ,  and the filter 
can completely eliminate the ST MAIs in training data. When 
((gl / I 2  > 0, the filtering vector aii, can not reject all the ST MAIs. 
In this case, a new ST filtering vector can be formed by linearly 
combining w, and gl  as 

w1 = w, -p lg l .  ( 1  1 )  

The scalar p1 is chosen to minimize the mean output energy (Max- 
imize the mean output SINR) 

M O E  = E { ( < y ( r ) , ~ l  >)'}! ' ~ = 0 ! . . . , q L - l .  (12) 

It is easy to obtain pl = g7Rwq . The choice of p l  will try to 

make the w1 as close as possible to the perfect filtering vector in 
the ST subspace spanned by W, and g l .  

Applying w1 to filtering the training data again, we can use 
the outputs (il (1.) of the filter w1 to reconstruct the MRC filtering 
vector as 

qL-1 

jr;H.Rgl 

where 
(14) 

Let us examine the orthogonal projection of wl onto the ST sub- 
space Spurt { w ! g ], 

&) = wyy(.), 7' = 0:. . . ! q L  - 1. 

QZ = (1 - [ % > ~ l l [ ~ * , ~ , l H ) ~ l .  (15) 

Again, if ( (g2((2 = 0, the filter wl can completely eliminate the 
MAIs in the training data. For nonzero I(gzllz, a new filtering 
vector lying in S p a : r 1 , { 2 u ~ ! g ~ , g ~ }  can be constructed as 

(16) w2 = w1 - p2g2. 
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The scalar p2 = g r R w l  is chosen to minimize the mean output 

energyE{(< y ( ~ ) , w 2  >)') ofwz. 
We can form at most M L,  - 1 projection vector g;? i = 1, . . ., 

M L ,  - 1, by repeating the above procedure to get an optimum fil- 
tering vector in the full-dimensional ST space Span { w,, g l , s * . , 

(17) 

g,HRgz 

gMLc.-l], i.e., 

where 
W, = W, - Gp, 

G = [S~!...,~ML,--II? 
/.L = [/&I " '  /".ML,-l]T. (18) 

In order to lower the computational complexity in full-dimension 
optimization, the optimization can be conducted in a reduced- di- 
mensional space by constructing the matrix G (as well as the cor- 
responding vector p ) as G = [gl,.  . . , gi] for any 0 < i < 
M L ,  - 1. 

4. ADAPTIVE ST INTERFERENCE CANCELLATION 

For a filter w with the canonical representation (The filtering vec- 
tor is composed of two components each orthogonal to another) 
[9], the fact that minimizing the mean output energy of the filter is 
equivalent to minimizing the mean square error [9] motivates us to 
consider the following filter optimization in the sense of minimiz- 
ing MOE 

minwHRw> W (19) 

with 
(20) 

where w is an M L ,  x 1 filtering vector, R denotes the covariance 
matrix of the input data vector of the filter. The vector wg  and 
matrix G are obtained by using approaches shown in last section. 

For the adaptive vector w a ,  the stochastic gradient optimiza- 
tion technique can be used to yield the adaptation equation as 

(21) 

where y ( r )  and d(r)(d(r) = w H ( r ) y ( r ) )  representthe input and 
output of the filter w at time ' r ' ,  respectively, and q is a small step 
size. Obviously, the filtering vector w,, will be the initial weight 
vector w (0) of w in Eqn. (20) by choosing w a  (0) = p. 

Taking the resulting filtering vector wo from the training-based 
optimization as the initial adaptive filtering vector will result in the 
following advantages in adaptive filtering: 

The orthogonality between tiiQ and Gp is directly intro- 
duced into the relation between the nonadaptive component 
and the adaptive component in the complete adaptive filter- 
ing vector W.  Thereby, the signal cancellation phenomenon 
in the adaptive interference suppression procedure can be 
avoided. 
The initial adaptive weight from the training sequence based 
optimization will be of high quality, so that fast conver- 
gence in the adaptive filter optimization can be obtained and 
low bit error ratios (BER) already in the starting phase can 
be achieved. 
Without eigendecomposition, the linear optimization of the 
filtering vector in reduced-dimensional subspace can be com- 
monly applied to the two optimization stages. 

w = W, - Gw., 

w,(r + 1) = w,(r) + q d * ( r ) G H y ( r ) ,  

5. SIMULATION EXAMPLES 

In the simulation examples, a linear array with M = 5 anten- 
nas uniformly spaced by half-wavelength is used to receive the 
DSKDMA signals from K = 6 independent users. We assume 
that each user signal experiences N = 4 multipaths. All the multi- 
paths for 6 users are uniformly distributed in (- : ! :). The delay- 
line model is used to generate multipath for each user. The delay 
of the desired direct-signal is set to be 0, and the delays of the other 
23 multipaths are uniformly distributed in (0, 4T,), hence Lc = 4. 
The INRs (in dB) of the 5 direct interference signals each corre- 
sponding to the shortest delay for an interference user are fixed at 
0, 1, 3, 4.5, 7, respectively. The INRs of the 3 indirect multipaths 
for each interferer are uniformly distributed in (0 ,5 )dB  lower than 
the INR of the direct interferer. In each example, independent 200 
AWGN channels are used for statistics. 

In Figure 2, we examine the BER performances of filter w, 
and wl for the ST data vector structure suggested in the paper 
(DSl in figure) in comparison with that of the corresponding filters 
for the ST data vector structure (DS2 in figure) used in [SI. In this 
example, both the training sequence of length q = 16 and the 
L = 32 periodic spreading sequence for each user are randomly 
generated. 
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Figure 2:  BER performances of different filters versus SNR. 

The second example is given to show the advantages of the 
adaptive interference cancellation following the basic projection- 
based optimization of the filtering vector over the basic projection- 
based optimization. We first form the filter w5 by using the train- 
ing sequence. The weight vector w5 is then used as the initial 
adaptive weight (nonadaptive component plus adaptive compo- 
nent) of the adaptive filter w. A small step size q = 0.0001 is 
used in adaptation. The BER performances of w5 and w are given 
in Figure 3. For comparison, the performances of w I, w 1 and the 
training-based MMSE filter are also given. In this example and 
next example, the 2-bit training sequence [1,-1] and L = 64 pe- 
riodic code sequence randomly generated for each user are used. 

In Figure 4, the BER performances of different filters versus 
the near-far coefficient (NFC) are investigated. In this example, 
the SNR of the desired direct-signal is fixed at l0dB The INRs 
(dB) of the 5 direct interferers are set to be [O? 1,3, 4.5,7] x NFC 
with NFC changing from 0.5 to 5 with step 0.5. The SNRs(1NRs) 
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Figure 3: BER performances of different filters versus SNR. 

of the 3 indirect multipaths for each user are uniformly distributed 
in (0?5)dB lower than the SNR(1NR) of the direct signal. = 
0.00001 is used. 

I 

Ilt f 

10 2 5  l5 35 Near-Far Coentcienl 
4 5  

Figure 4: BER performances of different filters versus NFC. 

6. CONCLUSIONS 

The proposed linear interference suppression scheme exploits the 
use of super short training sequences with large spreading factors. 
In the scheme, the filtering vector optimization is implemented 
through first the projection based optimization then the adaptive 
optimization, so that more efficient MA1 suppression in contrast to 
the basic AV technique can be achieved. Since the suggested filter 
optimization technique can be conducted in reduced-dimensional 
ST complex vector subspaces without any matrix inversion and 
eigendecomposition operation, the low computational costs are re- 
quired in contrast to the general blind filtering technique. The sug- 
gested approach can be directly extended to other adaptive algo- 
rithms of the GIC structure. 
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