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1. Introduction and outline

Polymers are long, chain-like molecules, formed by the sequential addition of chemical
subunits. Their technological applications are wide spread. Plastic materials consist
of entangled synthetic polymers and are omnipresent in our daily life. The physical
properties of polymers are also used in less obvious technological applications. For
example, their ability to stabilize colloidal solutions [I] is used in the food and cosmetic
industry for the production of emulsions. Polymers serve as lubricants or even as
adhesives in the automotive industry [2]. Apart from their industrial importance,
many biomolecules belong to the class of polymers. Omne of the most prominent
example certainly is the DNA molecule, which carries the genetic information of life.
The mechanical properties of biopolymers like actin or microtubules determine the
stability of biological cells and even their motility [3]. The dynamics of polymeric
liquids leads to surprising effects, experienced in every day’s life: the viscoelastic
property of starch solution makes it possible to walk on it whereas one starts sinking
as soon as one stops to move. Also, nearly everybody has experienced the shear
thinning property of ketchup. Under the influence of shear stress by shaking the
bottle, the liquid flows more easily.

To explain all these effect, a profound understanding of the static and dynamic
properties of polymers is indispensable. Due to the large number of internal de-
grees of freedom, methods from statistical mechanics are applied to describe polymer
conformations from a theoretical point of view [4H6]. The non-equilibrium polymer
dynamics is of prime importance. In most technological applications, polymers are
subject to external fields or flows, for example from stirring or pumping a polymer
solution. As in silicon technology, miniaturization is a key concept for microfluidic
devices with applications in biosensing or gene chips [7H9]. For these devices, sur-
face effects are of increasing importance which makes a sound analysis of interfacial
dynamics necessary.

The development of new experimental techniques in the last few decades shed new
light on the dynamics of polymers. Classical techniques like light scattering or bire-
fringence experiments [I0-HI2] bear the disadvantage of averaging over a macroscopic
number of molecules. Also the time resolution of such experiments is limited. Only
recently, the observation of single molecule dynamics in external flow with a high
temporal resolution has become possible with fluorescence microscopy [13} [14]. Some
snapshots of the configurations of a single DNA molecule in steady shear flow are
shown in Fig. These observations can be directly compared to theoretical and
numerical results. Despite the tremendous increase in computer power over the last
years, all-atomistic simulations are still limited to short polymer chains. Therefore,
coarse-grained methods, which describe the solvent molecules on a continuum level
are widely used [15HI7].
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Figure 1.1.: Fluorescence microscopy pictures of a 22 pym long lambda bacteriophage
DNA (A-DNA) in steady shear flow v(z) = 4zé, of viscous sugar solution [I3]. The
single pictures from left to right are time series of the polymer trajectory with time
intervals of 6 s (A, C) and 0.84 s (B) between the images. The upper left vertical bar
indicates 5 um. Polymers in shear are repeatedly stretched and recoiled by the flow.
Thus, large shape fluctuations are observed for the polymers. Repeatedly coil-stretch
transitions (A) or folded and kinked polymer configurations (C) are observed. The
timescale of the polymer motion is determined by its longest relaxation time 7. The
Weissenberg number Wi = 47 is a measure of the flow strength relative to the polymer
relaxation dynamics. Polymers are found to be distorted by the flow at Wi 2 1. The
shear rate ¥ = 1 s~!, at which the above pictures are recorded, corresponds to a
Weissenberg number of Wi = 19 for this kind of DNA.
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Figure 1.2.: Water droplets on a rough, superhydrophobic (a) and smooth hydropho-
bic surface (b). Fig. (c) shows a top view and (d) the cross section of the super-
hydrophobic surface [I§]. The rough surface is constructed out of aligned polyacry-
lonitrile (PAN) nanofibers. Their tip diameter is roughly 100 nm with an average
distance of 500 nm. The liquid stays on top of the fibers with air in between the
fibers (Cassie state). This leads to a very high contact angle of 174°, Fig. (a). On the
smooth surface where the nanofibers are not aligned parallel to the surface normal,
the contact angle is 101°, significantly smaller compared to the rough surface.

Although these coarse graining techniques deliver valuable insights into the dynam-
ics of polymers, they are limited due to the neglect of the microscopic solvent structure.
Continuum theories are not able to capture effects arising from the discrete nature of
the solvent constituents. Since most biological and technological processes take place
in aqueous solution, water is one of the most important solvents. By itself, water has
remarkable properties such as its potency as a solvent or its crystallization behavior.
Water molecules are built out of two hydrogen and one oxygen atoms. Due to the high
electronegativity of the oxygen atom, the water molecules are polar with the negative
partial charge located on the position of the oxygen. The interaction between wa-
ter molecules is governed by the formation of strong hydrogen bonds between single
molecules. At room temperature, water molecules are in constant thermal motion
which leads to a lifetime of a single H-bond in the picosecond range [19]. This hy-
drogen bonding network is destroyed at a free surface and therefore leads to a strong
decrease in internal energy. This results in the high surface tension of liquid water
which is only exceeded by liquid mercury [20].

The structural changes of water at liquid/solid interfaces are of particular interest.
Surfaces can be classified according to the contact angle, the angle which is formed by
a liquid droplet on the surface. This angle ranges from zero degrees at very hydrophilic
surfaces which show complete wetting, to almost 180° on structured hydrophobic, so
called superhydrophobic surfaces [21], see Fig. The self-cleaning property of these
surfaces, also known as the Lotus effect bears potential for various technological ap-
plications. On the other hand, droplet formation is inhibited on hydrophilic surfaces,
which can be used for anti fogging coatings [22]. These hydrophobic and hydrophilic
effects have also implications on the dynamics of biological systems, since life normally
takes place in aqueous solution. For example, protein folding dynamics is influenced
by those hydrophobic interactions [23].
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In hydrodynamic theory, the no-slip boundary for flow at surfaces is widely used.
This means that the relative fluid velocity at the liquid/solid interface is zero. From
atomistic simulations as well as from experiments, it turns out, that this assump-
tion is not valid in general [24]. The amount of slippage and its dependence on
surface parameters is still under debate and has to be examined in more detailed.
For microfluidic applications, the boundary condition for fluid flow on the nanoscale
is important due to the increasing hydrodynamic resistance for small channel dimen-
sions. In biology, boundary effects become crucial for the transport through biological
membrane channels [25].

Due to the complexity of the water structure and the long ranged electrostatic
interactions between single water molecules, analytical approaches are not able to
fully explain the water properties. All-atomistic simulations can shed light on the
dynamic and equilibrium water properties.

Outline of the Thesis

This thesis is divided in two parts, referring to the level of coarse-graining in the mod-
eling of the considered systems. In the first part, non-equilibrium polymer dynamics
is described within the framework of Brownian Dynamics. In this method, the effect
of the solvent molecules is taken into account in an effective way, leading to stochas-
tic forces on the polymer. This approach allows the simulation of sufficiently long
trajectories for a statistical analysis. The general framework of Brownian Dynamics
with included hydrodynamic interactions is explained in chapter 2| In chapter [3] we
repeat classical simulations of coarse-grained DNA molecules in shear [17, 26] and
find a novel regime where the chain diameter depends on the shear strength in a
non-monotonic fashion. Experimentally, this regime is easily reachable with natural
DNA at elevated shear strengths. After this, surface effects for non equilibrium poly-
mer dynamics are discussed. The coupling of hydrodynamic interactions and thermal
fluctuations leads to a repulsion of polymers from interfaces in external fields as well
as in shear flow. On the basis of a Fokker-Planck analysis, orientation distribution
functions for the polymers are calculated to quantify the strength of this repulsion.
Scaling laws are derived analytically, which are favorably compared with extensive
simulations. In the last chapter of the first part, the electrical manipulation of end
grafted DNA molecules and their possible use for biosensing purposes are discussed.
It is shown that the different bending stiffness of single and double stranded DNA as
well as the adsorption of ligands lead to measurable effects on the DNA dynamics,
which explains experiments on the electrical switching of end attached DNA [27, [2§].

Whereas in the first part, the effect of the solvent molecules is incorporated within
a continuum description, the second part of the thesis analyzes the structure of in-
terfacial water on an atomistic level. Firstly, Molecular Dynamics (MD) simulation
techniques are shortly explained and the equilibrium structure of water at different
hydrophobic surfaces are analyzed in detail. From the microscopic simulations, macro-
scopic, experimentally measurable quantities like contact angles are determined. In
the following chapter, we use non-equilibrium Molecular Dynamics (NEMD) simula-



tions to examine the hydrodynamic boundary condition at hydrophobic surfaces. This
boundary condition can be characterized by the so called slip length, which quantifies
the velocity difference between the solid and the fluid phase at the interface. We find
a quasi universal relationship between this slip length and the contact angle. We also
checked for the effect of dissolved gas on interfacial properties, as dissolved gas and
surface-adsorbed nano-bubbles are often involved in explanations of strange surface
effects such as giant-slip or large hydrophobic attraction [29H32]. However, we find
only mild effects of surface-adsorbed gas on the slip length.

In chapter[J] the preceding examinations are extended to polar, hydrophilic surfaces.
Especially, we focus on the shear viscosity in the interfacial layer and on the diffusive
properties for water molecules close to the surface, obtained from NEMD. We do not
find evidence for a layer of frozen water or for an increase in the interfacial viscosity
of several orders of magnitude at hydrophilic surfaces, as was often reported in the
literature [33H37].

The next logical step would be to simulate polymeric molecules using atomistic
simulations and to check for effects that in principle can not be obtained with coarse-
grained simulations. Some preliminary results of the non-equilibrium adsorption of
carbon nanotubes on hydrophobic surfaces are presented in the outlook section. This
is an open field for future investigations.



1. Introduction and outline




Part |I.

Coarse-grained dynamics of
polymers at interfaces






2. Coarse-grained polymer dynamics

The first part of this thesis discusses polymer dynamics with focus on hydrodynamic
effects for polymer motion close to interfaces. This section introduces the theoretical
concepts, namely Brownian Dynamics methods, used for the analysis. Polymers in
solution randomly change their shape and position due to the thermal motion of
the surrounding solvent particles. Since an explicit description of all solvent degrees
of freedom is computationally very demanding, they are implemented in a coarse-
grained fashion via a diffusion equation. The so called Smoluchowski or Fokker-Planck
equation describes the motion of the solute by the time evolution of its probability
distribution. The basic assumptions for this method are that the time and length
scales for the polymer motion are much larger than those of the solvent molecules and
that a linear relation between fluxes and forces holds. These assumptions are fulfilled
for most polymer solutions. Subsequently, a short derivation of the Smoluchowski
equation will be given.

Let ¥({x},t) be the N dimensional density probability distribution of the spatial
coordinates {z} = x1,...,xny. From Fick’s law, the probability current is given by
the gradient of the probability distribution times a diffusion tensor D and by the
deterministic velocities v,,,

Jn({z},1) ZDnma Y({z},t) +on¥({x},1) (2.1)

where 0, is the short-hand notation for 9/0x,,. The motion of a Brownian particle
will drag the surrounding fluid along with it, which leads to a coupling between differ-
ent particles. This coupling is implemented by a tensorial mobility, which in general
depends on the configuration of all Brownian particles. Then, the deterministic ve-
locities are given by the force on the particle, stemming from the potential energy U,
times the mobility matrix pmn,

Up = Z frm [—0mU ({2})] - (2.2)

The calculation of the mobility matrix will be explained in the following section In
equilibrium, the distribution function for a canonical ensemble with temperature T is
given by the Boltzmann distribution, ¥({z}) oc exp(—U/kgT). Since in equilibrium,
the probability current vanishes, the diffusion constant reads Dy, /kBT = fimn. With
the continuity equation, div j = — ¥, the time derivative of the probability distribution
is given by the Smoluchowski or Fokker-Planck equation,

U({ah,t) = 3 Outun {0nU ({2 })] U({a}, ) + ke T (0¥ ({2}, 0]} (23)

n,m
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The next two sections are concerned with the calculation of the mobility matrix and
the implementation of the above equation in computer simulations.

2.1. Hydrodynamic interactions

For the investigated length scales in this study, the low Reynolds number regime
applies [38]. This means that the system is over-damped and inertial effects are
negligible. The Reynolds number for fluid density p, viscosity 7, typical velocity v
and length scale L,

_ pvlL
n

is the ratio between inertial and viscous effects. For the time and length scales in
polymer dynamics, the Reynolds number is normally much smaller than unity. For
example, consider a micrometer sized object, L. ~ 1 um, moving with a velocity of
v ~ 1 ym/s in water, characterized by p ~ 10® kg/m? and 7 ~ 1073 Pas. Then, the
Reynolds number is Re ~ 1079, thus much smaller than unity. Therefore, neglecting
the inertia term in the Navier Stokes equation is a good approximation. With these
approximations, the equations of motion for an incompressible fluid are given by the
stationary Stokes equations

Vp(r) — g VPv(r) = £r) (25)
V-v(r) = 0

Re (2.4)

for the fluid velocity field v(r) with pressure p(r) and force density f(r).

For point-forces, so called Stokeslets, at positions r;, egs. and can be
solved by the appropriate Greensfunction G(r,r;). Due to the linearity of the Stokes
equation, the fluid field at position r is given by the superposition of the single solu-
tions,

v(r) = Z G (r,r;)f(r;). (2.7)

For bulk flow, i.e. v(|r—r;| — 00) = 0, the Greens function G of the Stokes equation
is given by the Oseen tensor

0 (v ) — A0 1 Tal'g
Copleers) = Goul) = g (as + 27" (2.8)

with Cartesian components «, 3 and relative coordinate r = r; — r;. The hydro-
dynamic interactions are long ranged and decay linearly with the inverse distance
~1/r.

The Greens function G for fluid flow in the semi infinite space z > 0 with a no slip
boundary at z = 0, i.e. v(r)|,—o = 0, was first derived by Blake [39]. It is constructed

by a set of appropriate image sources at positions R = r; —r;- = (zi—xj,¥i—Yj, zi+25)
and reads

G%"(r;,r;) = G'(r) - GO(R) + GP(R) - G°P(R). (2.9)

10
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The wall Greens function G" contains the bulk Oseen tensor G from eq. (2.8)), the
Stokes doublet

1 o /r
ba(r) = ——223(1 = 20p.) =— (3 2.1
Gap(r) - 23 ( 5ﬂz)8rﬁ <T3> (2.10)
and the source doublet,
0
Gop (r) = 22(1 - 25&)%6&@)- (2.11)

Given an ensemble of IV particles with acting forces F;, the particles will move along
with the generated fluid velocity field with

N
vi(r) =Y pij(ri,r;)F;, (2.12)
j=1

with the mobility matrix p;;. For finite size particles, the no-slip boundary condition
on the particle surface is approximately taken into account via a multipole expansion
to second order in terms of the particle radii a; [40} 41],

a; o ai s
pij(ri,rj) = (1 + éVri) 1+ gvrj G(r;,rj) (2.13)

for i # j and 7;; > (a; + a;). For bulk flow, this leads to the Rotne-Prager tensor for
the hydrodynamic interaction between spherical particles [42]. In unbounded flow,
the self mobility tensor p; is diagonal and determined by the mobility of a single
sphere with radius a, uf;ﬁ = 168 with po = 1/(67na).

Close to a no-slip boundary, the self mobility tensor is obtained from eqs. (2.9
in the limit r; — r; and regularized far away from the surface by the bulk
sphere mobility o [41]. This leads to different mobilities for perpendicular and lateral
motion with respect to the interface,

w(z) = o {1562%(2)3%0(3)4 (2.14)

9a 1 /a\3 a\4
Hilz) = po {“sﬁz (%) ]*O() (2.15)
dependent on the distance z from the interface. The self mobility decreases near the
boundary and its value for lateral motion is larger than for perpendicular motion with
respect to the boundary [39].

To illustrate the hydrodynamic effects at a no-slip boundary, Fig. shows the
streamlines (solid lines) and lines of constant solvent velocity (broken lines) generated
by a cylinder composed out of 10 beads that is moving perpendicular (a-d) and parallel
(e-f) to the surface. The streamlines are given by the space curves which are always
tangential to the fluid velocity field,

dr(s)

== = vi(r(s)). (2.16)

11



2. Coarse-grained polymer dynamics

Figure 2.1.: Generated streamlines (solid black lines) for parallel (Fig. a) and b)) and
for perpendicular (Fig. ¢) and d) ) orientation, with respect to the surface normal,
of a straight cylinder composed out of 10 beads that is moving vertically away from
the surface. The plots show the far (Fig. a) and c) ) and the near (Fig. b) and d) )
field of the fluid velocity. Figs. e) and f) show the streamlines for a cylinder which is
moving parallel to the surface in x-direction. The dashed red lines show the contour
lines of the absolute value of the fluid velocity.

12



2.2. Langevin equation

To second order in the multipole expansion, the fluid velocity field which is created
by N spherical particles with acting forces F; is obtained from eq. ([2.7))

N

a2
v(r)=>_ (1 + 6v§j> G%(r,r;)F;. (2.17)

=1

The streamlines shown in Fig. are calculated by a numerical integration of eq.
with the velocity field given in eq. . The forces F; on the beads of the cylinder
are numerical adjusted such that each bead is moving with the same velocity. Two
different orientations of the cylinder are displayed. It is interesting to observe that
the presence of the wall leads to circulating flows in the far field (see e.g. a) and
c)). For the lateral motion, an interesting symmetry-breaking occurs: In front of the
cylinder the fluid is pushed away from the surface, behind the cylinder the fluid is
moving towards the surface. This will be important for the calculation of the lift force
of a cylinder in chapter

2.2. Langevin equation

Since eq. is a high dimensional partial differential equation, it is often more
suitable to use the corresponding Langevin equation. The Langevin equation describes
the stochastic time evolution of the coordinates of single particles instead of their
probability distribution. Thermal fluctuations are incorporated via stochastic forces
acting on the particles. For N particles with potential energy U in an external flow
vo(r), the Langevin equation is given by

N
i(t) ==Y pij Ve, U{ry}) + > Ve Dij+ vo(ri) + &i(t), (2.18)
=1 j

which is equivalent to the Fokker-Planck diffusion equation in eq. (2.3)) [5] 43}, 44] for
vo = 0. The random velocities &; have zero mean and fulfill the fluctuation dissipation
theorem,

(el () = 2k Tl s(t — t). (2.19)

This relation has to be satisfied in order to reproduce, in the stationary state, the
appropriate equilibrium distribution which is given by the Boltzmann distribution o
exp(—U({r;})/kBT). Therefore, N correlated random numbers have to be calculated
at each timestep which is implemented via a Cholesky decomposition of the mobility
matrix [I5]. Since the diffusion tensor D;; = kgT' p;; is in general not only dependent
on the relative coordinates of the beads but also on their absolute position in space,
the divergence term in the Langevin equation has to be added [5]. Note, that the
divergence term vanishes for unbounded flow, but has to be retained in the presence
of a no-slip wall.

In the simulations, polymers are composed out of N connected beads with radii a.
The linkage is assured by some connecting potential, chosen according to the desired

13



2. Coarse-grained polymer dynamics

polymer model. For the Brownian dynamics simulations, we use a rescaled, discrete
version [I5HIT7), 43H45] of eq. (2.18]),

N
Fi(t+ A —T(At) = = > 1 Vi u({En}) + Y Vi, g + fiovo(rs) +&(t). (2.20)
=1 j

All lengths are scaled by the bead radius, ¥ = r/a and energies by thermal energy,
u({Fn})ksT = U({rn}) which leads to rescaled mobilities fi;; = p;;AtkgT/a® with
time step At and solvent velocity © = va/(uoksT'). If the external velocity field is
given by simple shear flow, v((¥) = AT,é,, this rescaling scheme leads to a rescaled
shear rate,

a2

poksT

=7

(2.21)

The random velocities which couple the system to a heat bath are modeled with
Gaussian white noise and fulfill the fluctuation dissipation theorem, (& (t)€;(')) =
2f1;;0(t — t'). Numerically, the Cholesky decomposition of the mobility matrix is
implemented with a LAPACK [46] routine, which considerably speeds up the computer
simulations compared to an implementation given in ref. [47]. The rescaled time
step jig = poAtkpT/a® is chosen small enough such that discretization effects are
negligible. Mostly, a value fig = 10™* is used in the hydrodynamic simulations.
Since the mobility matrix is a slowly varying function of the bead separation, it is
not updated at every single timestep for computer time reasons. The update frequency
is chosen differently for different polymer lengths. It has been checked that this
procedure is a good approximation for the desired accuracy, see appendix

14



3. Polymers in shear flow

Any fluid flow past a solid boundary gives rise to shear flow. Especially for microflu-
idic applications with their high surface to volume ratio, surfaces are omnipresent.
Therefore, the dynamics of particles immersed in shear flow is of special importance.
Polymer solutions in external flow exhibit interesting rheological phenomena like shear
thinning or thickening [48]. To analyze these properties, a profound understanding of
polymer dynamics in shear flow is necessary.

Whereas birefringence or light scattering techniques are able to deliver insight into
the average deformation and orientation of polymers in flow [10, 12], no explicit
information on the trajectories of single molecules with high temporal resolution was
traditionally obtained. Only since the last 15 years, single molecule dynamics in shear
flow can be directly observed via fluorescence microscopy [13], see also Fig. Large
fluctuations in the chain extension are observed, suggesting an end-over-end tumbling
motion. This stems from the fact, that simple shear flow can be decomposed into
equal amounts of rotational and elongational flow. The polymer is rotated by the
flow, and therefore is in configurations where it is compressed or elongated by the
flow, see Fig. The velocity gradient of the flow gives rise to hydrodynamic drag
forces on the molecule. If the drag force is larger than the entropic force, which keeps
the polymer in a coiled configuration, the polymer chain is elongated. The effect of
the shear flow on the polymer extension is often given in terms of the dimensionless
Weissenberg number Wi = 47 which is the product of the shear rate 4 and the longest
relaxation time 7 of the polymer. For Wi > 1, the hydrodynamic drag exceeds the
entropic force and the polymer is elongated by the flow.

From the direct imaging of the polymer motion [I3], it was confirmed, that the
extension of polymers in shear does not reach a stationary state. Rather, the poly-
mer is repeatedly stretched and compressed. More than 30 years ago, de Gennes [49]
proposed a simple dumbbell model to describe polymer dynamics in shear flow. For
simple shear flow, he showed, that there exists no sharp coil-stretch transition in
contrast to flows with unequal amount of elongational and rotational components.
Different dumbbell models have been used extensively to examine quantities like vis-
cosity, average extension or tumbling frequencies [50-53]. Due to the enormous in-
crease of computer power over the last decades, simulations of more realistic polymer
models [54H56] give further insight in the polymer dynamics.

Most publications only report for an increase in polymer extension with increasing
shear [10, 13}, 57, B8]. However, there is some experimental evidence that polymers
are compressed again at very high shear rates from birefringence experiments [59] 60]
which has not yet been observed in single molecule experiments. A compression at
high shear rates is also seen in simulations of bead-rod models, but only without
excluded volume interactions [61], [62]. Although hydrodynamic interactions amplify
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3. Polymers in shear flow
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this effect, the compression is also present for freedraining polymers. In the following
sections, we want to identify the effects which lead to this compression at high shear
rates. Starting from simple dumbbell calculations, a general introduction of polymer
dynamics in shear flow is provided. Subsequently, we use various polymer models and
analyze in detail the compression at high shear rates.

3.1. Simulations

In the simulations, the polymer dynamics in simple shear flow with shear rate + is
described by eq. with vo(r;) = ¥z;é;. A polymer is modeled by N connected
beads with radii a and coordinates r;. The potential energy of the polymer u({ry}) =
uc({rn}) + urs({rn}) in eq. (2.20) consists of a potential uc({ry}), which acts on
neighboring beads and assures the chain connectivity. Different functional forms for
this potential are used to examine the dynamics and configurations of distinct polymer
models. Also, the effect of excluded volume interactions are examined, which are
implemented via a truncated, repulsive Lennard Jones potential

ey =35 () o (2)

T T
ij=1 K Y
i#j

for Tij < 2a (3.1)

with 7;; = |r; — r;|. This potential prevents sphere overlap and leads to a swelling of
the chain in equilibrium. A value of ¢ = 1.2 is sufficient to keep overlapping of the

16



3.2. Dumbbell Model

polymer beads at a negligible level in the simulations. For the simulations without
excluded volume effects, the Lennard Jones potential is set to zero, ur;({rny}) =0.

Special importance is put on the hydrodynamic interactions (HI). Since a polymer
bead will drag the surrounding fluid along with it, this will influence also the other
particles immersed in the fluid. The hydrodynamic interactions are incorporated via
the mobility matrix defined in eq. . For unbounded flow, the mobility matrix is
given by the Rotne-Prager Tensor [42],

a,.0 2 af a,.0
aB; 1 ag | T 2a° (6 ror
,u” (r) = 87‘(’71’]7‘ |:<(5 + 7"2 ) + ’)"T (3 - 7"2 for r Z 2a. (32)
and]]

1 9r 3r rorf
of _ 1—2216 - f 2a. 3.3
iy (x) 6mna K 32) 8T 390 2 ] or T (8:3)

For the freedraining (FD) simulations, i.e. without hydrodynamic interactions, the
mobility matrix is diagonal and independent of the polymer conformation,

1 (r) = 6156°° po. (3.4)

3.2. Dumbbell Model

A very crude, nevertheless helpful model for polymer dynamics is the dumbbell model,
which consists of only two connected beads with radii a. The dynamics of this model
in shear flow has been extensively studied before [50H53]. We use dumbbell models
with three different connecting potentials (r = r; — ra):

ﬁ?ﬂ Harmonic dumbbell
ue(r) = { =29 (1 — 12/R2) FENE dumbbell (3.5)
325 (r —ro)? Fraenkel dumbbell

The Harmonic dumbbell is a good approximation for real polymers only for small
distortions from their equilibrium configuration. In this regime, the free energy of a
polymer is quadratically dependent on its extension, which leads to a restoring force
which is linearly depending on the extension, just like a harmonic spring. Due to the
finite contour length of real polymers, the restoring force diverges as the extension
approaches the contour length Ly. The finite extensibility becomes apparent in non-
linear force extension curves measured in polymer stretching experiments [63-65].
This finite extensibility is included in the FENE dumbbell by a divergence in the
restoring force if the extension approaches the maximal extension Rg. For small
extensions /Ry < 1, the FENE model is equal to the Harmonic dumbbell model.
The Fraenkel dumbbell describes best the situation of stiff polymers, for which the
end to end distance is always close to their contour length.

'In the simulations with excluded volume effects, sphere overlapping is negligible. Therefore, only
the mobility matrix given in eq. (3.2) is used for the simulations with excluded volume effects.
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3. Polymers in shear flow

In contrast to the FENE and Fraenkel dumbbell, an analytic solution can be given
for the Harmonic dumbbell in shear flow. Neglecting hydrodynamic interactions and
without excluded volume interactions, the Langevin equation eq. for the bead
connecting vector r = r; — ro with the mobility matrix given in eq. reads

o= —%r”” +Ar® + £° (3.6)

P/ _%ry 2 (3.7)

o= g (3.8)
with the inverse relaxation time 77! = 2uokpTy / a? of the dumbbell and

(X (DE°(t')) = 4poknTdapd(t — ). (3.9)
The analytic solution of the above equation reads [51]

r'(t) = e TE"(0) +4tr*(0))

+ /Ot dt' e [T () 1 At — )€ ()] (3.10)
r (t) = e Tr*(0) + /O t dt’ e~ =)mgz(hy, (3.11)

with the solution of the y-component analogous to the z-component. In the long time
limit ¢ — oo, where initial conditions are unimportant, the average distance of the
two beads is calculated to be

1
R2=(r®) = 6uokpTr [1 + 6#’72} : (3.12)

This implies, that the average extension of a Harmonic dumbbell is monotonically
increasing with Weissenberg number Wi = 7.

In Fig. simulation results are shown for the different dumbbell models. In
Fig. ), the broken lines correspond to the prediction for the Harmonic dumbbell,
eq. . Neither hydrodynamic interactions nor excluded volume effects, which are
only important for small extensions of the dumbbell, lead to substantial changes in
the dynamics. The data of the Harmonic dumbbell follow nicely the predicted scaling
given in eq. (3.12), validating that the discretization scheme of the Langevin equation
is a good approximation to the analytic solution. The extension of the Fraenkel
dumbbell only follows this scaling at high shear rates. At low shear rates, the average
extension is determined by the parameter rg in eq. . At high shear rates, the
average extension is much larger than the equilibrium distance R/ro > 1. In this
limit, the Fraenkel dumbbell is equal to the Harmonic dumbbell.

While the average extension for the Harmonic and Fraenkel dumbbells diverges for
increasing shear rate, the FENE dumbbell captures the feature of finite extensibility
of the polymer, Fig. [3.2b). Although there exists no analytic solution, this model
is the most realistic one. For all three dumbbell models, the average extension is
monotonically increasing with increasing shear rate.
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3.3. Gaussian polymers
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Figure 3.2.: Extension R, dependent on the shear rate 5 = §a?/(uoksT) for the dif-
ferent dumbbell models with spring constants 7. The data show results with and
without hydrodynamic interaction (+hi) and excluded volume effects (+ex). Fig. a)
shows the extension scaled by the bead radius of Harmonic (H) and Fraenkel (F)
dumbbells. The broken lines show the analytic result for the Harmonic dumbbell,
eq. (3.12). In (b), the extension, scaled by the maximal distance Ro/a = 10 of FENE
dumbbells is depicted.

3.3. Gaussian polymers

Since a simple dumbbell model is not able to capture effects of polymer dynamics that
have to do with internal modes, more realistic polymer models are now considered.
In the Gaussian model, the polymer consists of N harmonically connected beads, i.e.
the connecting potential is given by

N-1

ue(frin) =3 #ﬁm with ry =r; —1;. (3.13)
=1

For an ideal polymer, the force constant v = 3(a/b)? is given by the ratio between
the Kuhn length b and the radius a of one polymer segmentﬂ Without excluded
volume interactions and without HI, this polymer model corresponds to the so called
Rouse model. Its special importance stems from the fact that due to the linear force
law between the beads, analytic solutions for quantities like the average extension or
relaxation times can be derived via a normal mode analysis. The equation of motion
for the ith bead within the Rouse model is obtained from eq. with the diagonal

2The Kuhn length represents the stiffness of the polymer chain and is defined by the end to end
distance L and the contour length Lo of the polymer: b = (L?)/Lo.
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3. Polymers in shear flow

mobility matrix given in eq. (3.4),

: 1 .

ry = —;(I‘l — I'Q) + or; + Sl (314)
. 1 N

r, = —;(21} —r,_1— I'i+1) + or; + Ez (3'15)
. 1 N
iy = —_(ry —rNn-1) + 01 + &N (3.16)

with the flow field 6 = 0., and 771 = pokgTy/a?. In the continuum limit, in which
the polymer is represented as a continuous space curve, a transformation to normal
modes

1 [N
X, = N/ dn cos(pmn/N)r,(t) with p=0,1,2,... (3.17)
0

leads to a decoupling of different modes [5],

X, =-7," X, +6X,+f, (3.18)
with

—1 _ kBT poy (pm\2
1 _ L

The random forces f,, are uncorrelated for different modes,

(LI (X)) = 0pg0°Po(t — ) 2kBT /G, (3.20)

with (o = N/po and (, = 2N/pg for p = 1,2, ... . Therefore, the equation of motion
for the single modes are independent of each other and have the same form as the
kinetic equation of the harmonic dumbbell. The solutions are similar to those given
in eqs. . In the long time limit, ¢ — oo, the correlations between the single
modes are given by [66]

(Xp () XG(@)) = (Xp()Xg(1) = dpg ’fBT? (3.21)
(XIOXI0) = by kBTz—Z [1+;(yrp)z].

The averages of the product between different Cartesian components yield zero, i.e.
<X§X£ ) < 0a3. The coordinates of the beads r; are given by the backward transfor-
mation,

(o]
ri=Xo+2 X, cos (z%) (3.22)
p=1

In equilibrium, the polymer chain is in a coiled configuration. The components of
the radius of gyration tensor R, characterize the extension of the polymer coil in the
Cartesian direction «,

a2 i X a _ pa)2
(R = < S8 — Rg) (3.23)
i=1
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3.4. Polymers with constant contour length

with the center of mass Rg of the polymer. Within the framework of the Rouse
model, the radius of gyration can be calculated analytically. Noting that the center
of mass is given by Rg = X,

2

N
(RaY?) = JIVZ< 23" X cos (i) > (3.24)
1= p=1

1
4 N
N/o di pqzl<X§‘Xg‘) cos (2%) cos (z%) . (3.25)
Using eq. (3.21)) and integrating the above equation leads to the components of the
gyration tensor [66],

&

Na2 K/ 1\? Na2
RZ 2 — Ry 2 — < > e — 326
(Ry)” = (RY) 7 2 \pm 6 (3.26)
Na? rd
@2 % I ()2 2
(Ry) o [ +315(771) (3.27)

The radius of gyration is monotonically increasing with Weissenberg number Wi =
A11. Fig. shows the x—component of the radius of gyration for a N = 100 polymer
together with the above prediction. Eq. nicely fits to the simulation data. In-
cluding the repulsive Lennard Jones potential (+ex) leads to a swelling of the polymer
chain at zero shear rate. At elevated shear rates, excluded volume interactions do not
have a big effect on the results, since the polymer is greatly extended and sphere over-
lapping occurs very sparsely. Excluded volume effects also lead to a coupling between
the different Cartesian components, thus there exists no simple analytic solution as
for the Rouse model.

With included hydrodynamic interactions (+hi), the shear-extension curve does not
change qualitatively. At low shear rates the polymer is less extended compared to the
freedraining case. The hydrodynamic interactions screen the shear flow, therefore less
drag is exerted on the polymer. At high shear rates, where the polymer is strongly
elongated and the inter bead distances become large, hydrodynamic interactions be-
come unimportant and the extension is equal to the freedraining situation.

3.4. Polymers with constant contour length

One major drawback of the Gaussian polymer model is the neglect of the finite ex-
tensibility. Within simulations, a more realistic model includes the constant contour
length of the polymer by using Fraenkel springs between the polymer beads,
N-1 5
p— P— . J— 2

uc({rn}) = ; @(’rz rit1| —2a)”. (3.28)
For large enough values of v, contour length fluctuations of the chain become negligi-
ble. A value of 7 = 10% in the simulations is sufficient to keep the inter bead distance
close to 2 at moderate shear rates. For very high shear rates, the spring constant is
increased to keep the contour length constant.
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3. Polymers in shear flow
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Figure 3.3.: x-component of the radius of gyration for a N = 100 Rouse polymer
(symbols), dependent on the rescaled shear rate 7 = Ya?/(uoksT). Ry(0) denotes the
absolute value of the gyration radius, Ry = [(R)? + (Rj)* + (R;)Q]l/ 2 at zero shear

rate. The lines show the analytic result for the Rouse model, given in eq. (3.27)).

3.4.1. Extension in shear flow

To characterize the extension of the polymer, the radius of gyration R, and the
end to end distance L in dependence of the shear rate is shown in Figs. [3.4] and
Initially, the polymer extension is increasing with increasing shear rate for all
considered polymer models. With included hydrodynamic interactions, the polymers
are stretched more slowly, Fig. [3.4h). This is due to the fact that the shear flow
is screened inside the polymer coil, leading to less drag on the beads. The increase
in relative extension with shear strength is larger for long polymers since the drag
of the flow increases with the size of the polymer coil, Fig. As can be seen
in Fig. [3.4h), the normalized extension of chains without excluded volume effects is
larger, consistent with other publications [61]. Nevertheless, this is due to the smaller
size of a polymer coil in equilibrium when there is no repulsion between the beads.
The absolute value of the polymer extension is similar at moderate shear rates.

A further increase in the shear rate leads to a noticeable effect: after the initial
increase with shear rate, the extension of the polymers with HI starts to decrease for
o 2 1. The freedraining polymers only show this compression at high shear rates
if excluded volume interactions are absent. This effect is biggest for the polymers
with hydrodynamic interactions where the beads can penetrate each other. There,
the radius of gyration becomes even smaller than its equilibrium value, see Fig. 3.5
For longer polymers, this compression effect is more pronounced. A compactification
of polymers in shear flow is only seen for polymers with N = 40 (+ex,+hi). This is
consistent with the dumbbell results, i.e. N = 2, in section where no compression
for dumbbells was observed.

At the shear rate with maximal extension, 4 ~ 1(10) for the HI (FD) polymers,
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3.4. Polymers with constant contour length
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Figure 3.4.: a) Normalized radius of gyration versus rescaled shear rate for N = 100
polymer chains. The data show the dependence of R, on excluded volume (fex)
and hydrodynamic (+hi) interactions. b) Average end to end distance L = |ry — rq|
of polymers with excluded volume interaction. The polymers are stronger stretched
without hydrodynamic interaction (-hi). The FD polymer does not show the com-
pression at high shear rates.
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Figure 3.5.: Normalized radius of gyration versus rescaled shear rate for polymer
chains of different lengths. Hydrodynamic interactions are included for all polymers.
One can see the effect of excluded volume interactions.
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3. Polymers in shear flow
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Figure 3.6.: Cartesian components of the radius of gyration for a N = 100 polymer
without hydrodynamic interactions. On the right side, the coordinate system is shown.
The blue arrows denote the direction of the shear flow.

the polymers are far from being fully extended most of the time. The average end to
end distance is in the range between 30 % and 50 % of the polymer contour length,
see Fig.|3.4b). The extension of polymers with different lengths in shear flow is found
to be a universal function of the Weissenberg number Wi [I7, 58], the product of
the shear rate and the relaxation time of the polymer. From the simulations, the
relaxation time of a N = 100 polymer (+ex,+hi) is 7 = 7a?/(uoksT) =~ 200, see
appendix With the shear rate at maximum extension 7 ~ 0.5, this corresponds
to a Weissenberg number Wi = 47 ~ 100. In experiments on 22 ym A-DNA [I3]
a mean maximum fractional extension of roughly 40 % is observed at shear rates of
4 s~! which corresponds to Wi ~ 80 with the experimentally measured relaxation
time 7 = 19 s. Hence, the simulation data of the polymer extension with HI and
excluded volume interactions are in good agreement with these experiments.

As polymers in shear flow align in the direction of the shear, the z-component of the
gyration tensor is largest. Fig. shows the Cartesian components of the radius of
gyration for freedraining polymers. The y- and z-components decrease monotonically
with increasing shear rate, with the z component always smaller. The z-component is
initially increasing with increasing shear rate. Without excluded volume interactions,
it decreases at high shear rates. The z-component of the gyration radius is much larger
than the other components. Thus, the polymer is strongly aligned with the z-axis,
resembling a one dimensional object at high shear rates. In Fig. [3.7 snapshots of a
FD polymer without excluded volume interactions at different shear rates are shown.
From the histogram of Ry in Fig. it is clearly seen that without excluded volume
effects, a strong compression is present at high shear rates. At the lowest depicted
shear rate 4 = 1, the polymer gets fully extended from time to time which is seen
from the last peak in the graph. With increasing shear, the distribution becomes more
narrow and fully extended polymer configurations have negligible statistical weight.
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3.4. Polymers with constant contour length
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Figure 3.7.: Snapshots of a N = 100 freedraining polymer without excluded volume
interactions at 4 = 1 (a), ¥ = 103 (b) and 4 = 10° (c).
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Figure 3.8.: Histogram of the x-component of the gyration radius of a N = 100 FD
polymer without excluded volume interactions at different shear rates.
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3. Polymers in shear flow

Figure 3.9.: Components of the radius of gyration for a N = 100 polymer with in-
cluded hydrodynamic interactions.

Also with included hydrodynamic interactions, see Fig. the z-component of
the gyration radius is dominant. Compared to the freedraining results, the y- and
z-components decay more slowly with increasing shear rate. The polymer is stronger
compressed in the z-directions than in the y-direction, in agreement with simulations
on long DNA molecules [58]. With excluded volume interactions, the y-component
is slightly increasing for 4 > 10, the shear rate at which the z-component has its
minimum. Since the polymer is compressed in the z-direction, the polymer beads have
to evade in the other directions. At very high shear rates, the polymer is elongated
again in the x-direction.

Without excluded volume interactions, the configuration is even more different
compared to the freedraining case. After the shear rate of minimum extension, the
y-component becomes even larger than the z-component. At these shear rates, the
polymer resembles an ellipsoid with its long axis aligned along the direction per-
pendicular to the shear plane. This alignment of polymer chains is also observed
in experiments [59) [60]. This is in striking difference to the polymer alignment at
moderate shear rates where the polymer is aligned with its longest axis along the
z-direction. Configurations at different shear rates are shown in the snapshots taken
from the simulation trajectories in Fig. [3.10

Histograms of the different components of the gyration radius for a polymer with
HI and without excluded volume interactions are shown in Fig. together with
parts of the trajectories. The depicted shear rates correspond to the maximum and
minimum extension of the polymer. At 4 = 0.5, the trajectory of the z-component
exhibits big fluctuations which lead to the broad probability distribution. This broad
distribution is due to the tumbling motion of the polymer. At 4 = 10, single, very
narrow peaks in the trajectory of the xz-component are present. They have negligible
statistical weight since the histogram for the x-component does not show a broad
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3.4. Polymers with constant contour length

distribution. If a protrusion of the compressed polymer in the z-direction occurs,
it is rapidly pulled back inside the polymer coil. The distributions of the y- and
z-component are narrow and do not change qualitatively with shear rate. Their
trajectories do not show the peak like structure of the z-component.

3.4.2. Shear rates at maximum / minimum extension

From Fig. it is seen, that the shears rate at minimum and maximum extension
depend on the polymer length. To determine the position of the extrema, the radius
of gyration versus the logarithm of the shear rate was fitted in an appropriate region
to a parabolic function. Fig. shows the results of the fitting procedure for all
considered polymers with included hydrodynamic interactions. From the double log-
arithmic scale in Fig. the position of the extrema seems to be a power law of
the polymer length. With excluded volume interactions, the position of the minimal
polymer extension is increasing with increasing polymer length with 4~ ~ (L/a)"7.
If the beads are free to penetrate each other, the position of minimum extension is
decreasing with shear rate. The shear rate at maximum extension of the polymer
chains is decaying for longer polymers, 7* ~ (L/a)~'*. For the position of the maxi-
mum, excluded volume effects only lead to minor changes as expected: the structure
of the polymer at maximum extension is quite open and overlaps between the polymer
beads occur sparsely.

Within the Zimm-Model and excluded volume interactions, the relaxation time of
a polymer is increasing with polymer length, 7 ~ N3a3n/kgT with v = 0.6 [5].
This implies, that the Weissenberg number at which the polymer extension starts
to decrease with increasing shear is only weakly dependent on the polymer length,
Wi* = 4% ~ (L/a)?*. Indeed, it was found before that the extension of polymers
with different length in shear flow have the same form, if the extension as a function
of the Weissenberg number is plotted [17, [58].

3.4.3. Rotation frequency

Further insight can be achieved by analyzing the rotational frequency wy, of the poly-
mers in shear flow. The rotation frequency is determined via the calculation of the
angular momentum L = I-w; with the inertia tensor I. The angular momentum and
the inertia tensor are calculated for each configuration in the trajectories. Details of
the computation of the angular velocity are given in appendix This definition of
the rotational frequency has the advantage that wy, also includes internal rotation of
the polymer: wy can also be finite for constant external shape of the polymer. Such
an internal rotation, also called tank treading, is often observed for the dynamics of
vesicles in shear flow [67, [68]. From symmetry arguments, the only component which
has a finite average is wY.

Whereas the rotational component of the shear flow is linearly increasing with shear
rate, the rotation frequency of polymers does not. A polymer is distorted in the flow
and thermal fluctuations lead to a sub-linear scaling of the tumbling frequency with
shear rate. The tumbling frequency of a polymer in shear flow can be calculated
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3. Polymers in shear flow

Figure 3.10.: Snapshots of polymers with included hydrodynamic interactions.
Figs. (a-c) show a N = 100 polymer without excluded volume interactions at
¥ =05 (a), ¥ = 10.0 (b) and ¥ = 50.0 (¢). In Figs. (d,e), configurations of a
N = 200 polymer with excluded volume interactions at 4 = 0.1 (d) and 7 = 10 (e)
are depicted.
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3.4. Polymers with constant contour length

Figure 3.11.: Histograms for the components of the radius of gyration for a N = 100
polymer (-ex,+hi). The insets show parts of the simulation trajectory of the gyration
tensor at 4 = 0.5 (upper inset) and 4 = 10 (lower inset).
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Figure 3.12.: Position of the extrema of the radius of gyration for polymer with and
without excluded volume interaction but with included hydrodynamic interactions.
The positions are obtained by fitting the data in an appropriate region to a parabolic
function.
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Figure 3.13.: Rotational frequency @¥ = w¥ a*/(uoksT) for polymers of different
length. Hydrodynamic interactions are included for all polymers. The broken line is

a guide to the eye with oc 32/3.

using a dumbbell model. It is found, that the mean tumbling frequency can be
expressed by wy, o« 7 Wi¥3(R,/R)?/3 for Wi > 1 [69]. R, is the equilibrium
gyration radius, R the polymer extension in shear and 7 denotes the relaxation time
of the polymer. For small extensions R < Ly, the extension is linearly dependent on
the Weissenberg number, R/R, oc Wi. Then, the tumbling frequency is independent
of the Weissenberg number and given by the inverse relaxation time of the polymer,
wr, o< 771 In the non-linear extension limit, R ~ Lg, the polymer is substantially
stretched and therefore has the configuration of a rigid rod. This leads to a tumbling
frequency wy, o< 7 'Wi?/3. In experiments with 22 and 84 pm long DNA, tumbling
frequencies are found to scale with Wi%/? [55, [69]. This scaling is also observed in

numerical simulations at high shear rates [70].

In Fig. m the mean rotation frequencies (w¥) for polymers of different length are
shown. The data are consistent with the expected 42/3 scaling. Also, the rotation
frequency increases with decreasing polymer length since the relaxation time increases
for longer polymers. Without excluded volume interactions, the rotation frequency
strongly increases in the shear rate region where the compression takes place. This is
due to the fact that at these shear rates, the polymer is very compact and therefore

rotates faster.

3.5. Semiflexible polymers

Until now, results for flexible polymers in shear flow were shown. Many flow exper-
iments use DNA molecules which exhibit a bending stiffness. Therefore, simulations
for semiflexible polymers are performed. In addition to the connecting potential in
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Figure 3.14.: Normalized gyration radius for polymers with the parameters of 500 nm
and 800 nm long DNA with hydrodynamic and excluded volume interactions. The
upper x-axis shows the unscaled shear rate 4 = 5 pokpT/a®> = 4 kgT/(6mna®) for
n =022 Pas, a = 1 nm and kT = 4 x 1072! J at T = 300 K, the parameters of
the single molecule experiments in [I3]. 7 here corresponds to a highly viscous liquid
compared to the viscosity of water, 7,0 = 1072 Pas.
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Figure 3.15.: a) Histograms of the end to end distance for the 500 nm long DNA
model at different shear rates. b) Cartesian components of the radius of gyration for

the 500 nm long DNA model.
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3. Polymers in shear flow

eq. (3.28), a bending potential between the polymer beads is introduced,

N-1 N-1
gl l
c({rn}) = Z; (i = ria| — 20)° + 2_; oo (1= cos ;). (3.29)

¥; denotes the bond angle at bead i, I, is the so called persistence length which
provides a measure of the polymer chain stiffness. For L /I, < 1 the polymer resembles
a rigid rod whereas for L/l, > 1, the limit of a flexible chain is reached. A value of
l, = 50 nm is used, which corresponds to the persistence length of DNA at high salt
solution [71].

Fig. shows simulation data for polymer chains with included bending rigidity,
hydrodynamic interactions and excluded volume effects. The parameters are chosen
to render 500 nm and 800 nm long DNA. The diameter of a DNA chain is only 2 nm
which leads to bead numbers of N = 250 and N = 400. In this regime, the polymers
can not be considered as flexible since the contour length is at most 16 times the
persistence length. The simulation of even longer DNA molecules within this model
is not possible due to the enormous computational costs. Even for the used chain
length, error bars are considerable due to the limited length of the trajectories.

Only a minor initial increase in polymer extension with increasing shear is observed.
Due to the bending stiffness, the end to end distance at equilibrium already is 50%
of the contour length, see Fig. ), thus even higher than the maximal extension
of flexible polymers in shear flow. At zero shear rate, the end to end distance shows
a relatively sharp distribution, Fig. ) At higher shear rates, the distribution
becomes wider due to the tumbling motion of the polymer chain. Also for this polymer
model, a compression at shear rates 4 > 0.01 is observed. The Cartesian components
of the radius of gyration show similar behavior as those for the flexible polymers.
In Fig. ), the x-component of the gyration tensor is largest, which means that
the polymer is aligned in the direction of the shear flow. The polymer is compressed
along the other directions. This compression is strongest along the z-direction. At
high shear rates, the conformation of the semiflexible polymer chain is very similar
to the flexible chains. With increasing shear rate, the strain on the polymer becomes
larger. Thus, the polymer is easily deformed at high shear strengths, just like flexible
polymers. Therefore, the same scaling relations for the shear rates at maximum and
minimum extension with polymer length found for flexible polymers in section
are expected to also hold for semiflexible polymers.

3.6. Scaling explanations

To summarize, nearly every considered polymer model with constant contour length
is subject to a compression at high shear rates. In contrast, no dumbbell model
captures this effect nor is it observed for short polymers or for the Rouse model. Hy-
drodynamic interactions and the neglect of excluded volume interactions amplify this
effect, as there is no compression seen for freedraining polymers with excluded volume
interactions. With included hydrodynamic interactions, the drag on the polymer is
smaller since the shear flow is screened by the other polymer beads. If the beads are
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3.7. Anisotropic dumbbell

Figure 3.16.: Dumbbell model

(1) (1 with two different spring con-
z —_— z stants, dependent on the dumb-
bell orientation. The blue arrows

[ Y v, ‘ denote the direction of the shear
.% | flow. For configurations in which

T x X the dumbbell is compressed, a
%. § soft spring constant ~v_ is used
(I). If the dumbbell is stretched
by the shear flow, a stiffer spring

- constant vy is used (II).

free to penetrate each other, the polymer size shrinks which also leads to decreasing
drag on the polymer. Consequently, the polymer coil is less extended by the flow.

The compression at high shear rates stems from the fact that polymer coils with
constant contour length are more easily compressed than expanded. For example,
a single hairpin is easily compressed in one direction since the polymer chain can
evade in the other directions. In contrast, such a hairpin is only slowly extended,
like a rope traveling over a pulley. With increasing shear rates, these folded polymer
configurations are more abundant as can be seen in the snapshots, Fig. [3.10g). At
low shear rates, the polymer structure is quite open and easily extended by the flow.
At higher shear rates, the polymer is in a compact configuration and the constraining
effect of the constant contour length is clearly visible: the shear flow mainly pulls on
single hairpins which are only slowly unfolded by the flow. On the other hand, the
polymer is easily compressed by the flow since it can evade in the €, direction.

A further increase in the shear rate leads to an extension of the compact polymer.
The polymer will be stretched if the strain e during one half of the tumbling period
overcomes some critical value. The length of this period is given by the inverse
tumbling frequency wzl ~ 4~2/371/3 The stretching (and also compressive) force on
the polymer is linear in shear rate which leads to

€~ F‘shear‘*‘)g1 ~ ;Vl/37-1/3Rg/,uO' (330)

Therefore, the strain increases with increasing shear rate. At very high shear rates,
the strain is large enough to unfold the polymer and the polymer is stretched again.
Another argument for the final stretching can be given by considering the zero tem-
perature limit which is reached in the limit ’y — 00. Almost all polymer configurations
(except high symmetry configurations) lead to a completely stretched chain, aligned
with the x—axis.

3.7. Anisotropic dumbbell

To validate these considerations, a dumbbell toy-model can be constructed which
captures the above mentioned effects. Firstly, the dumbbell has to be more easily
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3. Polymers in shear flow
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Figure 3.17.: a) Simulation results for a FENE dumbbell (-ex,-hi) with different spring
constants for extension (v4) and compression (y_) and Ry = 10. The solid circles show
data of an anisotropic dumbbell where the different spring constants are only used
if R < R,. b) Normalized probability distribution of the extension of an anisotropic
FENE dumbbell with v_ = 0.1, v+ = 10.0, Ry = 10 and R, = 2 at different shear
rates.

stretched than compressed by the shear flow. Using a FENE dumbbell, the force ex-
tension curve could be modeled with two different spring constants: for configurations
where the shear flow compresses the dumbbell, (I) in Fig. a softer spring (v_)
is used. For configurations in which the dumbbell is stretched by the shear (II), a
stiffer spring constant () is assumed. This model shows an decreasing extension
with increasing shear, see the open symbols in Fig. )

To account for the initial extension at moderate shear rates, the model has to be
modified. Only compact polymer configurations are more easily compressed than ex-
tended. Therefore, the two different spring constants are only used if the extension
is below some threshold, R < R, otherwise the spring constant v = ~_ is indepen-
dent of the dumbbell orientation. The simulations of such a dumbbell, full circles in
Fig. [3.17h), show indeed the same behavior as observed in the polymer simulations.
Although the parameters of the models have to be adjusted for the compression effect
to occur, the non monotonous shear extension curves from section are qualita-
tively reproduced.

However, this phenomenological dumbbell model does not yield the correct equi-
librium distribution, which is a Gaussian for flexible polymers. In the histograms
shown in Fig. 3.17b), the feature of two different spring constants is clearly visible,
as there are two different peaks present in the equilibrium case. This is due to the
very artificial force extension curve. However, even if this simple dumbbell model is
not possible to account for the much richer configuration space of real polymers, the
compression effect can be explained at least qualitatively.
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3.8. Comparison to experiments

3.8. Comparison to experiments

Although there exist some experimental indications for the polymer compression at
high shear rates [59], it was not yet observed in single molecule experiments. The
compression of the polymers in shear flow only occurs at high shear rates. In the
following, we give precise predictions for the shear rates at which this compression
starts, using realistic polymer models for flexible as well as for semiflexible polymers.

From light scattering experiments on a polymer solution, a decrease in polymer
extension for 800 nm long, flexible polymer chains was observed at shear rates of
500 s~! [59]. The monomer radius of the used polymer is 2 nm, thus corresponding
to a polymer chain with 200 beads. From the simulations described in section [3.4.1] a
N = 200 flexible polymer is compressed by the shear flow for shear rates higher than
4* ~ 0.13. With the experimental viscosity of 0.1 Pas of the polymer solution, this
yields an unscaled shear rate of 3 x 10% s7!, thus much larger than the shear rate in
the experiments. However, a semidilute polymer solution was used in the experiments
in contrast to our single molecule simulations. Interactions between different polymer
chains could explain this discrepancy.

Since many flow experiments use DNA molecules, we want to estimate the shear
rate which is necessary to observe the compression for DNA. Because we are not able
to simulate micrometer sized DNA chains with our polymer model, we will extrapo-
late the results obtained for shorter chains. Polymer chains with the parameters of
500 nm long DNA are found to be compressed at shear rates larger than 4* ~ 0.01 in
section 3.5 With increasing length, the shear rate at the maximum polymer extension
was found in section to decay with increasing polymer length, 4* ~ (L/a)~ 4.
Thus, an unscaled shear rate 4* ~ 50 s~! is obtained for 22 ym long DNA and a
solvent viscosity of n = 0.22 Pas, the parameters of the experiments in Ref. [13]. This
shear rate is roughly ten times larger than the shear rate used in these experiments.
However, these flow strengths are easily achievable in shear flow experiments.
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4. Shear-induced repulsion of a
semiflexible polymer from a wall

In the previous chapter, polymer dynamics in unbounded shear flow is studied. This
chapter studies the hydrodynamic effect of a no slip boundary on the polymer motion
in shear flow. Due to the interplay of the flow field at the surface and the orientation
induced by the shear flow, polymers are repelled from the interface.

For soft matter in external flows, hydrodynamic boundaries are of prime impor-
tance, partly because they are abundant in nano-fluidic devices, but also since surface
effects hold potential for intelligent particle manipulation, segregation and modifi-
cation. For a spherical particle in shear at a no-slip boundary, cross streamline
migration occurs only for nonzero Reynolds numbers [72]. In contrast, repulsion from
surfaces is possible even at zero Reynolds numbers for non-spherical or deformable
particles, such as flexible polymers [73H76], fluid vesicles [68, [77, [78] or droplets [79].
For pressure-driven Poiseuille flow between two walls a diffusion-based mechanism
gives rise to a force component towards the walls [73, [74], which however is irrel-
evant for the single-wall scenario studied in this chapter. Previous analytic studies
were confined to simple dumbbell models or zero temperature, neglecting the coupling
between conformational and hydrodynamic degrees of freedom, but numerical simula-
tions provided ample evidence that hydrodynamic repulsion for deformable polymers
persists even in the presence of thermal fluctuations.

In this chapter we extend an analytic theory for a simplified dumbbell model at a
single no-slip surface [76, [79] to a stiff rod of finite length L. The dynamics of dumb-
bells and polymers in steady unbounded shear flow has been the subject of numerous
analytical and numerical studies [50, 52, 55] [69] 80, 81]. It turns out that polymers
preferentially align along the shear direction, but, due to Brownian motion, the orien-
tation distribution function is asymmetric with respect to the direction of shear. Close
to a no slip boundary the orientation distribution function is only slightly modified as
long as steric effects are absent. In our approach, the hydrodynamic torques and lift
forces are used on the Fokker-Planck level to calculate stationary and temperature
dependent orientation distribution functions. We show that the asymmetric orienta-
tion distribution together with the hydrodynamic flow field leads to a non vanishing
average lift force acting on the polymer. The generated lift force scales asymptotically
as L8/332/3T/3 with shear rate 4 and temperature T, thus demonstrating the impor-
tance of length effects, as confirmed by extensive hydrodynamic simulations for stiff
rods. The lift force is long-ranged and decays inversely proportional with the square
of the surface separation. Numerically, similar scaling is obtained for semiflexible
polymers and even for flexible polymers at high enough shear rates.
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4. Shear-induced repulsion of a semiflexible polymer from a wall

4.1. Methods

In the hydrodynamic simulations, a polymer is composed of N spherical beads with
radii a. In the zero Reynolds number limit and neglecting particle inertia, the time
evolution of the coordinate of sphere i is given by the Langevin equation, eq. .
The unperturbed fluid flow is a linear shear flow, vo(r) = yr.é,.

Hydrodynamic effects are incorporated via the mobility matrix p;; which is ob-
tained from the Green’s function of the Stokes equation that satisfies the no-slip
condition on a planar boundary, eq. . The finite sphere radii are approximately
taken into account via a multipole expansion to second order in terms of the bead
radius a, eq. .

The potential between the beads

N
u(fen}) = £ [( N) -z

i=1

2
+urs({rn})+

N—-1 N—

4la2(|1‘i —1ip1] — 20)° + Z l—p(l —cosd;) (4.1)

=1 i=

[y

)

renders an elastic polymer with the rescaled stretching modulus v and a bending stiff-
ness given by the persistence length [,, where 1J; denotes the bending angle at sphere
1. The bead connectivity is achieved by connecting subsequent beads with Fraenkel
springs. A truncated repulsive Lennard Jones potential, eq. with € = 1.2 pre-
vents sphere overlap. The harmonic potential of strength kj constrains the center of
mass of the polymer to a fixed distance from the wall close to Z and at the same time
allows to determine the average lift force according to (F) = k(3N | (2:/N)—Z)/N,
very similar to a laser trap. We choose kz, = 20/a® for N = 2 and k;, = 10/a? other-
wise. The planar boundary is impenetrable, i.e. sphere coordinates are restricted to
Z; > Q.

4.2. Dumbbell calculations

We first reconsider a dumbbell consisting of only two spheres at separation L. Its
orientation is characterized by the angle § with the surface normal and the in-plane
angle ¢, while Z denotes the distance of the center of mass from the surface, as
depicted in Fig. [4.1p). The present formulation differs fundamentally from previous
approaches [76, [79]; it brings out the intricate coupling between particle orientation
and lift force in a clear fashion and allows for generalization to a finite-length rod.
The deterministic sphere velocities of the dumbbell in shear flow follow from eq.
as

vi = pu(Fr+Fy) +pp(Fr —F) +921€, (4.2)
vy = p(Fr—F) 4+ pua(Fr+Fs) + Y22€,
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4.2. Dumbbell calculations
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Figure 4.1.: a) Definition of the coordinate system and angles used for the dumbbell
model. b) Angular distribution function p(6) for a flexible polymer with L/a = 20
at shear rate 4 = 1 in bulk (symbols) and at surface separation L/Z =1 (line). The
inset shows the distribution ¢(¢) of the lateral angle ¢ in bulk for 4 = 1 (solid line)
and 4 = 100 (dashed line).

The force Fs = Fs# acts along the connecting vector # and keeps the sphere distance
fixed. Fj is determined via the constraint (vq —va) - = 0 and reads to leading order

() ®)]) oy

with the rescaled shear rate, ¥ = ya?/(kgT o).

The constraint force Fy leads to a disturbance of the linear shear profile and due to
the no-slip boundary, flow field components in the direction of the shear gradient are
generated. The lift force F;, = —F7&, acts equally on both beads and is determined by
the requirement of fixed center-of-mass distance from the boundary, i.e. (vi+vsy)-€é, =

0. From egs. we obtain up to O [(L/Z)?, (a/L)]

aFp(6,0) . 9L
kel 6422

which corresponds to the lift of a stresslet at a distance Z above the surface [79].
Obviously, for isotropic dumbbell orientations, the average lift is zero. The lift
force decays with the inverse square of the separation from the surface, as con-
firmed by experiments with deformable droplets [79]. From egs. , the hy-
drodynamic torques M, = 6mna(L/2)(v1 — va) - &, with a = ¢, 6 and unit vectors
€9 = (cos¢cosf, singcosf, —sinf) and ey = (—sin¢g, cos¢, 0), follow up to
O[(L/Z)?] as

My(,0)/(ksT) = (1/2)4(L/a)?cos ¢ cos® 6 (4.6)
My(¢,0)/(kgT) = —(1/2)7(L/a)?sin ¢ cos 6. (4.7)

The torque Mjy is strictly positive, reflecting the shear-induced dumbbell rotation,
while My drives the lateral angle ¢ towards zero. To leading order, the hydrodynamic

F y L
a%s _ —l—cosgbcosesinH <1+O

kT 2a

cos ¢ sin 6 cos B[1 — 3 cos® 6], (4.5)
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4. Shear-induced repulsion of a semiflexible polymer from a wall

torques do not depend on the wall distance Z. This insensitivity is confirmed by
simulation data in Fig. ) by comparing the angular distribution function p(f) in
bulk and close to the surface (for Z/L = 1) for a flexible polymer with N = 10 and
l, = 0. In the inset we demonstrate that the angular distribution ¢(¢) is symmetric
and peaked around ¢ = 0 with a decreasing width for increasing shear rate ﬁ To
analytically calculate the azimuthal angle distribution p(#), the full probability distri-
bution function (PDF) is factorized as P(6, ¢) ~ p(0)q(¢) and the lateral distribution
function is approximated by a delta function, ¢(¢) = 0(¢). Separating rotational and
translational motion, the distribution function p(6) obeys the Fokker Planck equation

Op(0,t) = 11,09 [—Mp(0)p(0,t) + kT Opp(0,1)] . (4.8)

where pu, denotes the rotational mobility. Defining the unit-less angular potential of
mean force

[ _ / .
Bp(0) = — /0 d@’W — _(5/4)(L/a)*(8 + cos Bsin 6), (4.9)

the stationary solution can be written as [82]

G
p(0) o< exp(—Ep(0)) (C —/ do’ exp(Eg(Q’))) . (4.10)
0

The constant C' is chosen to fulfill the correct boundary condition p(6) = p(6 £ ).
In the limit of zero temperature, p(f) is a delta function peaked at the marginally
stable point § = 7/2 where the acting torque is zero. With increasing temperature,
the peak broadens and shifts. The position of the maximum 6* follows from eq. (4.10))
via Ogp(0*) = 0 and for large 7 reads [52] [69]

A* o [{(Lja)?) ", (4.11)
with A = 7/2—6. A Taylor expansion of eq. (4.10)) around #* yields the inverse width
[83])(9)}9:9* /p(0*) ~ (A*)~2 [52,[69]. For increasing shear strength, the peak of the
distribution function 6* shifts closer to 7/2 while the width decreases. The average lift
follows by weighting the lift force eq. (4.5]) with the normalized probability distribution
p(0) and integrating over dumbbell orientations

a(Fr)
kT

N /0” do sin(0)p(0)aFL(0)/(ksT) ~ (L/2)* 5%/ (L/a)™** [1 + O(A")].
(4.12)

The leading term is the lift force eq. evaluated at the optimal angle 8* =
w/2 — A*. To estimate the correction term, we used that the normalized probability
distribution function p(#) can be expressed in terms of a scaling function normalized as
[ dxg(xz) = 1 and satisfying g(0) = —¢”(0) =1 and ¢/(0) = 0. Using the scaling form
p(A) = g(A/A* —1)/A*, and assuming the second moment of g(z) to exist, the inte-
grand in eq. can be straightforwardly expanded in powers of A*. Remarkably,
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4.3. Lift force for a rigid rod

the average lift force is long-ranged and decreases quadratically with inverse separation
from the wall, similar to the zero-temperature result for vesicles in shear flow [68, [77].
Restoring unrescaled parameters, the scaling (F) ~ 42/3a%/3L*/3T"/3 /72 is identical
to the case of a FENE dumbbell at high shear rates [76], which clearly demonstrates
the nontrivial coupling of temperature and hydrodynamic shear: at zero temperature
the mean lift force vanishes.

4.3. Lift force for a rigid rod

Using our approach based on the angular potential of mean force Ep, these results for
the dumbbell model can be straightforwardly generalized to a stiff cylinder of length
L that is composed of N = L/(2a) beads. Summing over all bead pairs with distance
Lij = 2a(i — j) yields to leading order in a/L and L/Z the lift force per bead

TOd 7 Z FL ¢a ij /NNFL( )(L/a) (4'13)

).]! Z<-]

and the torque generating angular potential

Eg(0) = > Ep(6, Lij) ~ (L/a)*Ey(6). (4.14)
1,55 1<J
Applying the same asymptotic analysis of the Fokker-Planck equation that leads to

eqs. and ( -, we obtain
Afoq o< [H(L/a)) 13 (4.15)

in agreement with recent results for a semiflexible chain in bulk [81]. The average lift
acting on the whole rod is up to corrections of order O(A*)

L(Fp*) LN (LN 2o
kBiT—CL 7 w g (4.16)

with a numerically determined prefactor ¢y, ~ 1072, In unrescaled units the lift force
on the rod reads L(Fj°d) ~ 42/3q*/3[3/3TV/3/72 and thus exhibits a distinctively
different dependence on the length L when compared to the dumbbell results.

4.4. Simulation results

To test the predictions eqgs. , hydrodynamic simulations are performed for
dumbbells as well as for polymers of varying stiffness in linear shear flow at a no-slip
surface. For the dumbbell, two beads with radii @ at an equilibrium distance L are
used, polymers are modeled by N connected beads giving a length of L = 2aN. The
rescaled stretching modulus, if not explicitly given, is v = 8000 and keeps contour
length fluctuations at a negligible level. The inverse quadratic decay of the average
lift force with increasing separation Z from the wall is confirmed by the simulations
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4. Shear-induced repulsion of a semiflexible polymer from a wall
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Figure 4.2.: Average lift for a dumbbell in linear shear flow. The symbols correspond
to the simulation data, the solid lines show the predicted scaling from eq.
with adjusted prefactor. a) shows the dependence on surface separation Z (for fixed
L/a = 6,4 =10, v = 1.6 - 10%), (b) the dependence on the dumbbell length L (for
fixed L/Z = 1, 4 = 50, v = 1.6 - 10*) and (c) the dependence on shear strength 4
(fixed Z/L =1, L/a =6, v/5 = 1.6 - 10%).

for dumbbells and for finite-length polymers in Figs. [£.2h) and [{.3p), respectively.
The Z-scaling is identical for stiff rods, semiflexible as well as flexible polymers. This
can be traced back to the fact that the orientation distribution function is to a very
good approximation independent of Z and thus the prefactor of the lift force eq.
is the only place where the surface separation Z enters.

For dumbbells, the lift force decreases at constant L/Z and constant shear rate
’Ly for varying bead separation L with the predicted L=2/3 power law, as shown in
Fig. 4.2b). For finite-length stiff rods, in contrast, the lift force increases with in-
creasing length and confirms the scaling eq. with L?/3 at constant L/Z | see
Fig.4.3b) (filled squares). To prevent rod bending in the simulations, the persistence
length has been chosen proportional to the monomer number, l,/L ~ N. Since flexi-
ble polymers become less extended with increasing monomer number N at constant
shear rate, the scaling prediction in eq. is not expected to be valid. Indeed, the
lift force for flexible polymers, open circles in Fig.|4.3b), does not increase significantly
with monomer number N. Semiflexible polymers with /,/L = 1 show a somewhat
intermediate behavior (filled triangles in Fig. 4.3b).

With increasing shear rate % the predicted behavior (Fp) ~ 42/3 is confirmed in
fig ) for a dumbbell and in fig ) for a polymer consisting of N = 10 beads.
To suppress chain stretching and bending at high shear rates 7, the stretching and
bending moduli constants are for the data in Figs. ) and ) chosen as v ~ 4 and
ly/L ~ 4. Although the scaling dependence of the lift force on 7 is derived for stiff
rods, it is also obeyed quite accurately by semiflexible (l,/L = 1) and even flexible
(I, = 0) polymers, see Fig. [4.3c). This can be traced back to an unfolding of flexible
chains at elevated shear flows, rendering similar configurations for flexible and stiff
polymers. To back up this idea, Fig. shows the distribution of the normalized end
to end distance R/L for flexible and semiflexible polymers with different lengths. For
flexible chains, the fully stretched state is highly probable, but the population of the
highly stretched state becomes less significant as the length increases at constant shear
rate (see inset). This explains deviations from the rod scaling for very long flexible
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Figure 4.3.: Average lift force for polymers obtained from simulations (symbols), com-
pared with the scaling predictions from eq. denoted by solid lines. (a) shows
the dependence on the surface separation Z for polymers of different bending stiffness
(for fixed ¥ = 10, L/(2a) = N = 10, v = 8000), (b) shows the length dependence of
the lift at Z/L =1 and :y = 10. For the simulation of stiff rods, the persistence length
was adjusted like [,/L = 50N to prevent chain bending for longer rods. (c) shows
the lift force for increasing shear strength 4 (for fixed L/(2a) = N = 10, v = 8000,
L/Z = 1). The squares show data where bending and stretching is prevented by

choosing a persistence length 1,/(L%) = 100 and stretching modulus v/(%) = 8000,

and follow the predicted scaling o< 72/% most accurately.

chains observed in Fig. ) Semiflexible chains with [,/ L = 1 are predominantly in a
stretched configuration but also show increased bending with increasing chain length,
see Fig. Due to the predominance of stretched configurations for semiflexibe and
flexible polymers, the angular distribution functions, Fig. are quite similar to those
of rigid polymers.

Our analysis of the lift force, leading to eq. (4.16]), does not include conformational
changes of the polymer. Since semiflexible and flexible polymers undergo large shape
variations during the flipping process, deviations from eq. are expected. Never-
theless, some general conclusions can be drawn from the simulations results. As seen
in Figs. ) and c¢), more flexible polymers exhibit consistently higher repulsions.
At these high shear rates, flexible polymers are predominantly in a fully extended
configuration at orientation 6* = 7/2 — A*, similar to rigid polymers. During a chain
flip, the chain is compressed at orientations § 2 /2 for which the lift force is attrac-
tive, and fully stretched for orientations 6 < 7 /2 for which the lift force is repulsive.
Since the lift force increases with extension, see eq. , the net effect will be an
enhancement of repulsion for flexible polymers. Along the same lines, our simulations
suggest that flexible chains show higher flipping frequency compared to stiff polymers.

4.5. Discussion and conclusion
The hydrodynamic repulsion of polymers in shear flow at low Reynolds number con-
sidered here leads to a drift away from the wall and thus to the formation of a

depletion layer close to the wall, in agreement with previous simulations [73, [75] [76].
This hydrodynamic repulsion of polymers thus competes with bare surface-polymer
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interactions and in principle can trigger a shear-induced desorption transition. Since
the lift force decays inverse quadratically with distance, the corresponding potential
of mean force decays inversely with separation and thus like unscreened electrostatic
interactions. According to the theory of polymer adsorption [83], such a long-ranged
repulsive potential will turn any adsorption transition into a discontinuous one.

Let us finally estimate the shear strength needed to achieve a noticeable polymer
depletion. The repulsive potential of mean force Eg4. for the entire rod is obtained
from the hydrodynamic force by integration from bulk to a distance Z = L/2 where
steric wall-rod interactions come into play,

L2

Bio— [ dZ (F2))(L/20), (4.17)
oo

and is in the following compared to thermal energy, kgT'. Using eq. (4.16)), the critical

shear rate at which F4.s ~ kT turns out to be

Yies = kpT/(610)c,**(L/a) 2L, (4.18)

A typical example for a nanorod is the tobacco mosaic virus with length L = 300 nm
and radius ¢ = 9 nm. Inserting the viscosity of water at room temperature, n =
1073 Pas, and the prefactor ¢, ~ 1072 as extracted from simulations in Fig. [4.3b),
we find 4., ~ 5- 10* s~! which corresponds to a high but not unreachable shear rate.
For longer polymers the critical shear rate will be further reduced. The corresponding
Reynolds number is Re = L?p¥/n ~ 5-1073, where the water density is p ~ 103 kg/m3,
and thus turns out to be still small, justifying our use of the Stokes equation.

For flexible polymers the Weissenberg number Wi, which is the product of the
shear rate and the relaxation time, Wi ~ 47 , is given by Wi ~ 4nmR3/(kgT), where
R ~ 1,(L/l,)" is the scaling prediction for the radius of a polymer chain satisfying
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4.5. Discussion and conclusion

L > 1,[84]. Chain stretching sets in when Wi ~ 1 [49], giving a critical shear rate for
chain stretching of

» kT kT
Vstretch nRg nlg(L/lp)?)y .

(4.19)

Above that shear rate, the chain exhibits stretched configurations. In the case ¥, ;. >
V.5 the desorption criterion Eg.s > kg should be satisfied at the stretching threshold

Veireten- With egs. (4.18] [4.19)), this leads to the condition
ba S (L/1). (4.20)

Since v &~ 3/5 this expression is always fulfilled for polymers much longer than their
persistence length, L > [, i.e. in the flexible limit. The inequality ¥5, ... > Vies
implies that as soon as flexible polymers are stretched by the shear flow, the lift force
will lead to a depletion layer at the boundary, in good agreement with numerical
observations [73H76].
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5. Hydrodynamic lift of a moving
nano-rod at a wall

The situation where a body is pulled laterally over a substrate by an external force
is experimentally relevant for sedimentation and surface-based electrophoresis [85].
Similarly to the shear-flow case, a lift force is obtained for a sphere only if one in-
cludes inertia or non-Newtonian effects [86]. In this chapter we consider a cylinder
or rod-like object that is pulled by an external force parallel to a wall and subject to
thermal noise at zero Reynolds number. As was shown long time ago, the no-slip wall
induces a torque [87H89], which in conjunction with the known anisotropic hydrody-
namic mobility tensor of a cylinder [38] leads to a repulsion away from the wall. We
extend these results to the finite-temperature case by constructing from the hydrody-
namic torque the orientational distribution function from which thermally averaged
lift forces are derived. Our analytical results (confirmed by extensive hydrodynamic
simulations for dumbbells as well as bead-spring-like stiff polymers) show that in the
high-temperature limit the lift force is i) long-ranged and decays as the inverse square
of the wall-cylinder distance and ii) proportional to the square of the driving force.
Our high-temperature lift-mechanism is relevant for stiff polymers close to surfaces
that are subject to gravitational forces or electric fields at low enough salt concen-
trations so that screening can be neglected [85]; in fact, for weakly adsorbed rods a
hydrodynamically driven desorption transition is predicted.

In our hydrodynamic simulation, the rod is composed of N spherical beads of radii
a. The velocity of the ¢ th bead is determined by the position Langevin equation in
eq. (2.18) with zero external flow vp =0

Z“w [=V,U({rp}) + Fég] + > Vo pijkT + &i(2). (5.1)
J

Hydrodynamlc interactions between beads and the no-slip boundary condition on the
surface are taken into account on the Stokes-level (i.e. for zero-Reynolds number) via
the mobility tensor p;; in the same way as in the preceding chapter. The interaction
between beads is determined by the potential U in eq. . For the dumbbell simu-
lations (N = 2) we choose v = 1600, otherwise v = 8000, which keeps contour-length
fluctuations at a negligible level of less than 5 %. A harmonic spring with stiffness kr,
constrains the rod center of mass to an average distance close to Z from the surface.
This allows us to extract the distant-dependent average of the lift-force per monomer,
Fp, in a numerically simple and efficient way. We choose kr, = 20/a? for N = 2 and
kr = 10/a® otherwise. The no-slip surface is modeled as infinitely repulsive for the
bead centers, i.e. z; > a is enforced by bead reflection. The external force F' acts par-
allel to the surface on all beads and represents the dissipative action of a gravitational

47



5. Hydrodynamic lift of a moving nano-rod at a wall

or electric field. The simulation time of up to 3 - 107 iteration steps was always much
longer than the rod orientational relaxation time. We explicitly checked for sufficient
equilibration by starting simulations with different initial conditions. Error bars were
determined by block averaging.

An intuitive explanation for the wall-induced rod orientation follows from inspection
of Blake’s Green’s function G". Fig. ) shows fluid streamlines for a point force
acting parallel to the no-slip surface. As can be seen, the normal component of the
fluid velocity points away from the wall in front of the force locus, behind the point
force the fluid is moving towards the wall, which follows from the necessity to have
flow stagnation at the surface. Since the Stokes equation is linear, the fluid flow profile
around a cylindrical object can be constructed by adding several so-called Stokeslets
as shown in Fig. [p.1p). The net effect is a torque, acting to move the leading front of
the cylinder away and the trailing part towards the surface [87-89], see also Fig. [2.1f).
As shown below, in the stable configuration the moving rod makes a finite angle with
the surface, and due to the pronounced mobility anisotropy of any elongated object a
finite lift force perpendicular to the surface (and thus to the pulling direction) results.

5.1. Scaling theory for dumbbell

We first consider a simplified dumbbell geometry consisting of 2 beads that are subject
to an external lateral force F = Fé, each, see Fig. [5.1b). The beads are fixed at
a mutual distance L, which is enforced by a spring force Fy that acts along the
connecting vector #. The lift force ¥, = —Fré, holds the center of mass fixed at
height Z above the interface located in the x — y-plane at z = 0, in the same way as
described in the previous chapter. The velocities of the two beads are calculated from
the product of the mobility matrix p;; as defined in eq. and all forces,

vi = p(F+F,+Fp)+pp(F-F,+Fp) (5.2)
vo = pp(F-F,+Fr)+pn(F+F,+Fp)

where 7,7 = 1,2 and 7 # j. The equations that fix the constraining force magnitudes
Fs and Fp, are given by

(Vl - VQ)’f‘ = 0 (54)

(V1 + Vg)éz = 0. (5.5)

By perturbatively solving these equations, the lift force follows for arbitrary dumbbell
orientation for large separation, Z > L, and slender rods, a < L,

% = :—Z cos(¢)sin(26) + O ((Z)Q , g) ; (5.6)

where 6 denotes the angle of # with the surface normal, ¢ the angle of # in the
x — y — plane with the external force direction and Z the distance of the cen-
ter of mass from the surface, see Fig. [5.1p. Eq. (5.6) corresponds to the lift on a
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5.1. Scaling theory for dumbbell
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Figure 5.1.: a) Streamlines for a point force (Stokeslet) in the x — z plane. The
position of the point force, pointing to the right, is indicated by the triangle. The
arrows denote the direction of the flow. b) Sketch of the coordinate system and of
the dumbbell model.

slanted dumbbell in bulk, effects due to the no-slip surface only contribute in next-
leading order and are neglected in our scaling considerations. The angular veloci-
ties perpendicular to # are defined as vy = (vi — v2)ép and vy = (Vi — va)é, with
ég = (cos(¢) cos(f),sin(¢) cos(f), —sin(f)) and éy = (—sin(¢), cos(¢),0). The torques
are defined as My, (4—¢,0) = L/2 - 6mnav, and follow for a/L < 1 and L/Z < 1 to
leading order as [87]

2

% = 392<§> cos(¢) cos(26) (5.7)
2

% = —3% <§> sin(¢) cos(0). (5.8)

At the equilibrium orientation, defined by vanishing torques My = My = 0, the
rod makes an angle of w/4 with the surface, i.e. 6* = n/4 and ¢* = 0 (valid for
large separation from the surface). For the treatment of thermal effects, we define
a generating functional F via the relations M(¢,0) = —r x VE(¢,0), or, explicitly
My = —€é4 OpE(¢,0) and My = —ég(1/sin(#)) 0pE(¢,6). This functional, which
can be interpreted as a non-equilibrium version of the orientation free energy, can be
written in closed-form as

2
EW.¢) J <§> cos(¢) cos(6) sin(0). (5.9)

aF 32

Factorizing the Langevin equation into the dissipative translational motion along the
external force direction and the slaved orientational relaxation, the dumbbell orien-
tation probability P(¢,0) can be shown to obey a Boltzmann distribution at finite
temperature, i.e. P(¢,0) = Z lexp(—FE(¢$,0)/kgT), where the partition function
Z ensures correct normalization [90]. In the asymptotic zero-temperature limit, i.e.
at strong torques, aF'(L/Z)? > kgT, the probability distribution approaches a delta
distribution centered at the stable rod orientation; the average lift force scales linearly

49



5. Hydrodynamic lift of a moving nano-rod at a wall

with the pulling field F', is independent of temperature, and reads for a/L < 1 and
L/Z <1,

/2 ™
= [ 2% /0 d05in(0) FLP(6,60) = Fy(6=0.0 = 0") =

(5.10)
where eq. (5.6) was used. In the high temperature limit, i.e. aF(L/Z)? < kgT, we
approximate P(¢,0) ~ %(1 — BE(¢,0)). Using eq. 1) and eq. 1} the resulting
lift now is second order in F' and decays inversely with the square of the distance from
the surface,

1 w/2 T
() o~ o [ ds / d0sin(0) Fy(1 — BE(9,0))
™ J—zn/2 0
9 a (L 2aF2
~ 640L<z) T (5:11)

5.2. Simulation of dumbbell model

To directly check eq. for a numerically inexpensive case, we perform hydro-
dynamic simulations of a dumbbell consisting of two beads (N = 2) connected by a
spring. In Figs. ) - ¢) we separately compare the dependence of the lift force (FT)
on the separation between the beads, L, the mean height from the surface Z, and the
pulling force F' in the high-T limit. The predictions of eq. are shown as a solid
line and the simulation results as points, and the excellent agreement demonstrates
the accuracy of the scaling theory including the numerical prefactor.

Although the Stokes equation is linear, the mean lift force (F7) shows a quadratic
dependence on the pulling force F' in the high-T limit, see Fig. ); this is due to
the interplay of hydrodynamic and thermal orientation effects. At high fields, on the
other hand, the lift force is expected to scale linearly with F', see eq. . Equating
egs. and suggests the crossover to occur at aF'/kgT ~ 27(Z/L)?. Fully
consistent with this estimate, Fig. |5.2c) indicates that the high-T result breaks down
for pulling forces aF'/kgT > 25 for a distance Z/L = 1.

5.3. Finite-length rod

We now consider a cylinder composed of N beads and length . = 2Na. Due to
different mobilities y and p ) for cylinder motion parallel and perpendicular to its
axis, respectively, the cylinder velocity is not parallel to the pulling force unless the
force acts perpendicular or parallel to the cylinder axis. In bulk and thus neglecting
effects due to the wall (which contribute only to next-leading order in L/Z), the lift
force F, is obtained by decomposing the pulling force F' into contributions parallel
and perpendicular to the cylinder axis [5],

Fy _ sin(20) cos(¢) (/s —1) (5.12)

F 21+ cos2(8) (uy/nr —1)]
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Figure 5.2.: High-temperature simulation results (data points) for (a-c) the average
lift force Fy, for a dumbbell compared with the scaling prediction eq. (lines), and
(d-f) the average total lift LF}, for a cylinder with ,/L = 100 compared to eq.
with an adjusted prefactor ¢, = 0.9 - 107* (lines). a) Dependence on the dumbbell
length L at a pulling force of aF' = 10 kgT and Z/L = 1. b) Dependence on the wall
distance Z at aF = 10 kT and L/a = 6. ¢) Dependence on the pulling force F' at
fixed L/a = 6 and Z/L = 1. d) Data for a cylinder with L/a = 20 at aF = 1 kgT
(#) and aF = 2 kT (A) at varying distances Z from the wall. e) Data for different
length L (with N = L/(2a) ) for fixed total force LF' = 40 kgT (A) and for a constant
pulling force per bead, aF' =1 kgT (#), Z/L = 1. f) Data for L/a =20 at Z/L =1
for varying pulling force F'.
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5. Hydrodynamic lift of a moving nano-rod at a wall
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Figure 5.3.: Angular probability distribution functions for a rod with L/a = 20 and
persistence length [,/ L = 100 from simulations (symbols) compared to the theoretical
prediction P(cos(f),$) = Z~1exp[—E(cos(#), ¢)/(ksT)] (lines) with the orientation
generating functional from eq. (5.13)). Fig. a) shows the PDFs for external fields
LF =10 kgT and LF =40 kgT at Z/L = 1. In Fig. b) the PDF for cos(#) is plotted
for an external field of LF =40 kgT at Z/L = 2 and Z/L = 3. The numerical error
is shown for one data point in b).

and vanishes for an isotropic object with s/, = 1. Eq. is the continuum
version for a finite-length cylinder of the dumbbell result in eq. . We calculate
the torque acting on the cylinder by factorization into N beads. Each pair of beads
makes a contribution Ej; to the total orientation generating functional, which follows
from eq. by inserting the bead separation L;; = |r; — r;| for the length of the
dumbbell. The total torque generating functional F follows by summing over all pairs
(,7) in the limit L/Z < 1 and N > 1 as

E=Y"YE;= —%COS(@ cos(0) sin(6) <§)2 gLF [1 +0O (Z g)] (5.13)

i=1 j<i

where Z denotes the center of mass distance of the rod from the surface. Applying the

high temperature approximation as in eq. (5.11)) and using p/p1. = 2 [5] in eq. (5.12),
the lift force per monomer follows as

(Fr) ~ (L) Z)?L?F? /(akgT) (5.14)

with the prefactor ¢, = (10 — 37)/2048 ~ 2.8 - 104, The low-T result, valid for
L*(L)Z)?F/a > kT, is simply (F1) ~ F/3. In the hydrodynamic simulations the
rod is modeled as N connected spheres with a persistence length [, that is 100 times
larger than the contour length L. The simulation data are compared in Figs. )—
f) with the scaling prediction eq. shown as solid lines, where the numerical
prefactor of the scaling law is determined to be ¢;, = 0.9 - 10~% and thus differs by
a factor of about 3 from the analytic result. The deviation can be attributed to the
neglect of the no-slip boundary condition on the rod in the scaling argument, which
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5.4. Conclusion

is approximatively taken into account in the numerics via self-consistent solution of
the force-velocity matrix using a multipole expansion, and to higher-order corrections
for finite L/Z, N and a/L. Fig. [5.2d) shows the Z-dependence of the lift force for a
cylinder with N = 10 beads, confirming the quadratic decay with the inverse distance
from the interface, consistent with eq. . According to eq. , the total lift
force LF7y, for constant total pulling force LF' and fixed L/Z should increase linearly
with the cylinder length L, as indeed seen in ) As a consequence, if the pulling
force per monomer, F', is independent of the cylinder length L, corresponding to
a gravitational or electric force, the total lift force LF} scales as L° at fixed wall
separation Z. Fig. |5.2f) confirms the quadratic dependence of the lift force F7, on
the pulling force F' for constant length L and wall separation Z. For higher pulling
forces F' or longer rods, the average lift deviates from the scaling result because 1)
the high temperature approximation breaks down and ii) the rod becomes bent which
invalidates the dumbbell model, as will be explained below.

At the heart of the mechanism for the hydrodynamic lift lies the partial cylinder ori-
entation. In Fig. mwe show the angular probability distribution function (PDF) as a
function of the angle 6 and (in the inset) ¢. For increasing pulling force F' or decreas-
ing distance from the surface Z, the PDF becomes more anisotropic and a maximum
around § = 0* ~ 7 /4 and ¢ = ¢* = 0 builds up. The lines show the PDF as calculated
from eq. using the definition P(cos(#), ) = Z~ ! exp[—FE(cos(f), )/(ksT)] and
predict the shape of the PDFs in a qualitative manner. Compared to P(6), the PDF
for ¢ is much closer to the isotropic case. This is due to the fact that the first correction
in the high temperature limit to P(¢) = Z~! [dcos(f) exp[—FE(cos(),¢)/(ksT)]
from the isotropic case is only second order in F/(kgT). Deviations of the simula-
tion data from the predictions occur because the orientation generating functional £
is only asymptotically exact in the limits L/Z — 0 and N — oo, and the no-slip
condition on the bead surface is omitted in the scaling arguments.

A different hydrodynamic orientation mechanism that does not depend on the pres-
ence of a no-slip wall and that competes with the scenario discussed up to now is
obtained for flexible rods, which are bent into a horse-shoe shape and orient perpen-
dicularly to the applied force [91]. For a perpendicular configuration, the lift force is
drastically reduced. If rod bending with increasing external fields is prevented by in-
creasing stiffness, the angular PDFs approach a delta function peaked at ¢*, 6* in the
limit of zero temperature. According to eq. , in this limit the lift force scales
linearly with the external force, which is demonstrated in Fig. [5.4l For increasing
driving field F', the PDF's indeed become more sharply peaked. In the simulations,
the ratio [,/F' is held constant so that the rod bending is comparable for all field
strengths.

5.4. Conclusion
In this chapter it is shown that a rod which is subject to thermal noise and driven by

an external force laterally to a hydrodynamic no-slip boundary, experiences a repulsive
lift away from the wall in the zero-Reynolds-number limit. The lift is caused by a
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Figure 5.4.: Simulation results for a cylinder with L/a = 20 at fixed height Z/L =1
in the low temperature limit. The average lift force scales linearly with the lateral
pulling force, in qualitative accord with eq. . The insets show the angular
PDFs at different field strengths. The persistence length of the rod is adjusted as
l,/F =50 La/(kgT) to prevent bending.

hydrodynamic orientation of the rod. Scaling relations for the repulsion are derived
in the high and low temperature limits, and are tested with extensive hydrodynamic
simulations both for a simplified dumbbell model as well as for finite-length rods.
In the low-T limit, valid for strong driving fields F' or small separations Z from the
surface, the repulsive force is constant. In the high-T limit, the repulsion is still
long-ranged but decays quadratically with the distance from the surface. Therefore,
the corresponding interaction potential decays inversely with the wall-separation like
1/Z as the Coulomb potential. Since Coulomb interactions are screened in aqueous
solution, we conclude that the hydrodynamic lift is more long-ranged than any other
direct interaction observable in nature. One consequence is that adsorption transitions
are turned discontinuous even in the presence of minute lateral driving forces [83], as
confirmed by recent hydrodynamic simulations of laterally driven polymers close to
an adsorption transition [90]. Note that the resulting lift force F7, is independent of
the solvent viscosity since the driving force F' is used as the independent parameter.

In the following, we briefly compare the magnitude of the hydrodynamic repulsion
with the typical adsorption strength of polymers at solid surfaces. The force needed to
desorb a single polymer from a substrate can be conveniently measured by the atomic-
force-microscope (AFM); for a surprisingly wide class of polymers and substrates, en-
compassing polycations and polyanions for varying salt concentrations and at charged,
hydrophobic, or metallic substrates, the plateau force for desorption is found to be
of the order of 50 pN [92, 03]. Assuming a monomer length of about 0.25 nm, this
corresponds to an adsorption free energy of the order of 3 kg7’ per monomer. We
compare with the free energy obtained by an integral over the lift force in the high-T
limit, eq. , with a prefactor of ¢, ~ 1 x 107* obtained from the simulation
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data, Baes ~ — [2?dZ [cr(L)Z)*L2F?/(akpT)] =~ 2cr(L/a)*kpT(Fa/kgT)% The
lower integration boundary L/2 reflects the minimal separation at which the rod is
able to rotate without steric interactions with the wall, and the consistency of the
high-T assumption will be checked below. Assuming a Kuhn polymer segment to
consist of 5 monomers, realistic for typical synthetic polymers, we expect rod-like
behavior up to a length of L/a ~ 10. Furthermore assuming that each monomer
bears one elementary charge and a ~ 0.25 nm, the lift energy per monomer becomes
of the order of thermal energy, Fg.s ~ kT =~ 25 meV, for a lateral electric field of
F ~ kgT/a ~ 2-10® eV/m. Such large forces can be experimentally realized with
electrodes at micrometer separations. Due to the cubic dependence of the lift-free
energy Eg.s on the rod length L/a, the electric field needed for desorption drastically
goes down with increasing L. For DNA with L/a ~ 100 the electric field that gives
Eges ~ kpT is only F ~ kpT/a ~ T - 109 eV/m, and for more elongated rods even
smaller driving fields are sufficient. Note that these simple estimates are strictly valid
only for rods shorter than the ionic screening length, a complication that is absent for
gravitational forces. Our usage of the high-T result for the calculation of the threshold
Ejes ~ kT turns out to be valid for short enough rods as long as L/a < 2000 [90].
These findings indicate that the repulsive hydrodynamic lift can be used in nano-chip
applications for inducing the desorption of for example DNA segments by applying
lateral electric fields.

An interesting question concerns the crossover between the surface-induced rod
orientation discussed in this chapter and the afore-mentioned rod-bending-induced
hydrodynamic orientation which is operative already in the bulk and leads to a perpen-
dicular orientation to the driving field [91] and thus weakens the lift force drastically.
For quantitative comparison of the two competing effects, we derive the scaling form of
the wall induced orientational order in the high temperature limit. The orientational
order parameter W,,,; is defined with respect to the zero-temperature orientation of
a driven rod, ¥p = (cos(¢*)sin(0*), sin(¢*)sin(6*) ,cos(6*)) with (¢*,0*) = (0,7/4)

and reads

Uyl = ;<(f~f~0)2> _ % (5.15)
where T denotes the orientation unit vector of the rod. At infinitely high temperature
or in the absence of a pulling force, one expects isotropic orientation with W,,.; = 0,
while Wqn = 1 is expected at zero temperature in the fully aligned state. Using a
Boltzmann distribution with the orientational energy eq. , the high temperature
scaling is to leading order

3 (L\?[(L\? aF aF \?
v =— 1= — O — 5.16
wall = 5120 <Z> (a) T ((k:BT> (5.16)
and depends quadratically on the rod length at constant L/Z. In contrast, the orienta-
tional order parameter due to rod bending, denoted as ¥p.,q and defined with respect

to the direction parallel to the pulling force, is Wpeng ~ —(L/a)*(L/l,)(aF /kgT)? [01]
and scales quartic with the rod length L at constant rescaled persistence length [,/ L.
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5. Hydrodynamic lift of a moving nano-rod at a wall

Note also that the wall-induced orientation W,,; is linear in the applied force F
(while the resulting lift is quadratic), whereas the bending-induced orientation Wpepq
is quadratic in F' as it depends on hydrodynamic rod bending in the first place [91].
In conclusion, only for stiff filaments or short enough filaments is the lift scenario
discussed in this chapter operative, otherwise hydrodynamic rod bending comes into
play. For flexible polymers with a persistence length much smaller than the contour
length, [,,/L < 1, preliminary simulation results suggest that some of the effects found
in this chapter survive [90], but it is obvious that the scaling description is modified
in a fundamental way.
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6. Dynamics of end grafted DNA
molecules and possible biosensor
applications

Microfluidic devices [8, 9] are becoming indispensable tools in chemistry, biology and
medicine. Much effort is put into the development of so called labs-on-a-chip, which
promise fast and parallel realization of a large variety of different experiments. The
investigation of DNA, attached to solid substrates, has recently attracted a lot of
attention. In microarray technology [94) 05], end grafted DNA strands are used for
the sequential analysis of DNA probes. Applications for biosensing [96-98] are also
possible. From a more fundamental point of view, the complex behavior of polymers
at interfaces [84), [85] [99) [100] is not yet fully understood and poses a challenging
theoretical and experimental problem.

Since DNA [63, [101] is a highly negatively charged polyelectrolyte , it can be ma-
nipulated using electric fields [I02HI04] when grafted on conducting surfaces. Under
physiological conditions, salt ions are present in the solvent, leading to screening of
electrostatic potentials. If a voltage is applied at a surface which is in contact with a
salt solution, ions will accumulate at the interface to compensate the charge induced
on the electrode. The width of this diffuse double layer is typically of the order of
a few nanometer, over which the electric field drops down. By the formation of a
nanoscopic electric double layer, an applied voltage of 1V gives rise to high electric
fields up to 107 V/cm. These electric fields are strong enough to manipulate nega-
tively charged DNA. At positive surface potentials, the negatively charged DNA tends
to be adsorbed on the interface due to electrostatic effects [105] [106]. By reversing
the surface charge, DNA molecules can be forced to stand upright on the surface,
which has been detected by fluorescence methods [28|, [107]. Deeper insight into the
underlying mechanisms of the molecular dynamics of grafted DNA chains is not only
important for the development of actively controlled biosensors but also because this
DNA system serves as a model for the wide-ranging class of linear polyelectrolytes.
In this chapter, we will be mostly concerned with the dynamical response of grafted
charged chains under the action of externally applied electric fields.

6.1. Experimental motivation

This theoretical study was motivated by experiments with end grafted DNA chains
on a gold surface [28]. In these experiments, a self assembled layer of short single
stranded DNA chains with a thiol linker at their 5 end was chemisorbed on the
surface from aqueous solution. The chains had a contour length of 16 nm in double
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Figure 6.1.: Experimental data for the time resolved measurements of the electrically
induced, mechanical switching of a layer of 16 nm long DNA strands. The upper
graphs show the electrochemical response of the electrode. The lower graph shows
the height of the end points of the DNA above the surface measured by fluorescence
methods. The upper red curve corresponds to the data of the ds-DNA, the lower
curve to the data of the ss-DNA. The solid lines are exponential fits to the data.

stranded form. The adsorption process was controlled in a way that the surface
coverage was low enough, so that steric interactions between the adsorbed chains are
negligible. The upper 3’ end was labeled with a dye which was continuously excited
by an Argon ion laser. Since the fluorescence intensity is dependent on the height of
the dye from the metallic surface due to quenching, the variation of the distance of
the chain ends from the gold surface can be measured and therefore the response of
the end-tethered DNA strands to the applied surface potential. The applied voltage
was repeatedly switched from plus to minus while recording the fluorescence signal.
When the measurements were terminated, the layer of the single stranded DNA was
hybridized with complementary strands leading to a layer of double stranded DNA.
Then the same measurements were performed. Fig. shows the result of these
measurements.

At positive surface potentials, the negatively charged DNA feels an electrostatic
attraction to the surface and tends to be in a flat conformation on the surface. This
is seen in the experiments by a decreasing fluorescence signal when switching from
negative to positive surface charge. When reversing the applied voltage, the DNA is
repelled from the negatively charged surface. This leads to an upright conformation
of the chains which is experimentally seen by an increase of the observed fluorescence
intensity. Observing the time constants for the up- and down-switching dynamics,
a different behavior is found between single stranded (ss) and double stranded (ds)
DNA. While the stiff chains show similar time constants, the flexible strands lie down
significantly faster than they stand up. As is suggested by our simulations, this is
related to different kinetic modes of motion. Due to the rigidity of the ds DNA,
the strands have to perform a rotation around their anchoring point whereas the ss
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DNA is pulled down segment by segment towards the attractive surface. One part
of this chapter will therefore deal with the mechanism of these flexibility dependent
switching dynamics. One cautious remark is in order: In the experiments the time
scale of charging of the double layer at the gold surface is set by its capacitance and
the resistance of the electrolyte solution. This time scale turns out to be of the order
of 100 microseconds [28] and is thus much larger than the time scale of DNA diffusion
or rotation which is of the order of a few tens of nanoseconds. The different mobilities
of double and single stranded DNA thus is only a small modulation of the much larger
double layer capacitor charging time.

A possible application of this system are actively controlled biosensors. Molecules
which are present in the solution can bind to suitably modified ends of grafted DNA
chains. Big adsorbates will increase the friction for the motion of the chains which
will lead to a slowing down of the switching dynamics. Also the adsorbate charge will
effect the kinetic behavior. By observing the response of the system to the switching
of the surface potential one could infer which species are present in the solution.

6.2. Methods

To investigate the dynamics of the system, we use Brownian dynamics simulations.
Since the computational effort for molecular dynamics simulations of tethered DNA
molecules with explicit solvent [I0§] is not tractable for longer oligonucleotides at the
typical time scales of switching experiments, we use coarse grained methods where the
solvent is modeled implicitly and the DNA chain is replaced by beads. Within this
method, thermal fluctuations, resulting from the solvent molecules colliding with the
polymer, are represented as random forces acting on the chain. The DNA molecules
are represented by a bead spring model, where the bending rigidity is explicitly taken
into account [91], [109], 110].

The polymer dynamics is described by the Langevin equation, eq. . Hydro-
dynamic interactions are taken into account via the wall Greens function, eq. ,
obeying the no-slip boundary condition at the position of the interface. The finite par-
ticle size is incorporated via a multipole expansion, eq. . The DNA is modeled
as N connected beads with radii a with the intrachain potential given in eq. .

Two nucleic acid monomers are represented by one simulation bead which leads to
a bead radius of 0.34 nm. The simulation of a chain with 24 beads thus corresponds
to a 16 nm long, 48 mer DNA strand. Double stranded DNA has a persistence length
of 50 nm [63] which is roughly three times the contour length of the used chains.
This means that the ds DNA is a rather rigid but still bendable rod. In contrast,
the ss DNA has a persistence length of only 2-3 nm [I11], leading to a much more
flexible behavior. Fig. shows the conformational difference between double and
single stranded DNA. The parameter for the strength of the harmonic longitudinal
potential of neighboring beads is fixed to a value of v = 400, ensuring that fluctuations
of the contour length of the DNA stay small.

To prevent the beads from overlapping, a truncated, repulsive Lennard Jones po-
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a) b)

cosnet ot M

Figure 6.2.: Typical conformation of double-stranded (a) and single-stranded (b) DNA
at a screening length k' = 3.0 nm. The chains are modeled with 24 beads corre-
sponding to 16 nm long molecules. The persistence lengths used are a) [, = 50 nm
and b) [, = 2 nm.

tential, divided by kg7, with € = 3.0 is included,
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accounting for the hard-core repulsion between different beads with radii a; and a;.
The first bead of the DNA is held fixed on the substrate by virtual forces. The solid
- solvent interface is modeled as infinitely repulsive, i.e. the single beads are reflected
at the boundary.

Electrostatic forces are treated within the Debye Hiickel approximation. In the
presence of salt ions with a concentration c¢; and with valency q, the electrostatic
potentials are screened with the inverse Debye length x = \/8mlgq?cs . This leads to
a repulsive potential between the charged beads of the chain (Ip = €?/(4weksT) (Ip
denotes the Bjerrum length) given by

Umon (Ty — Tj) = qiqjlie_"lri_r”. (6.2)
ri — 1y
In the presence of salt ions, the effective charge of the single beads is reduced by
counterion condensation [84] 112 [113]. This leads to a renormalized charge of 1le per
simulation bead, i.e. ¢; = 1.
Finally, the beads are subject to the externally applied electric field of the surface
which leads to an energy

N q;ieV(
usurf({ri}) = : Oeina (63)
=0

When switching the surface-DNA interaction by applying an external negative (posi-
tive) voltage Vj at the surface, the strands feel a repulsive (attractive) force, leading
to an upright (flat) conformation of the chain at the interface.

In the experiment, the gold surface is covered with a layer of spacer molecules
(mercaptohexanol), which modifies the electrostatic DNA - surface interactions [28].
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The spacer molecules can be viewed as a layer of low dielectric constant on top of the
metal surface. This layer counterbalances the attractive image-charge interaction of a
DNA charge due to the metal [I05] [106] and leads to a strong repulsive image-charge
interaction for small distances, as can be shown theoretically on the Debye-Hiickel
level [114]. Indeed, in experiments it is seen that physisorbed DNA desorbs when
mercaptohexanol molecules are added to the solution and adsorb on the gold surface.
The effect of image charges is thus neglected in the theoretical modeling. This is
further justified by the fact that the applied surface potentials of the order of 0.125
V are large compared to image charge interactions.

6.3. Simulation results

The dynamical response of one grafted DNA chain, modeled by 24 beads, to an
alternating surface potential was simulated by integrating equation . In the
simulations we switched the Debye-Hiickel potential instantaneously from a positive
value to a negative value, thereby assuming that the double layer charge-reversal is
instantaneous. This approximation is justified since the double-layer time constant
is proportional to ax~? and thus smaller than the DNA relaxation time which is
proportional to L3. All lengths are expressed in terms of the monomer bead radius
a, energies in units of kg7, leading to a rescaled time

keT
BY ¢

t= :
6mna’

(6.4)

The integration constant was chosen such that the displacement of the single beads
per integration step is in the order of at most five percent of the bead radius. In most
cases we choose k~! = 3.0 nm, corresponding to 10 mM monovalent buffer solution
and Vp = 4+ 0.125 V. The contour length of the chains was L = 16 nm. The ds DNA
has a bending rigidity of /, = 3.125 L and thus much larger than the contour length,
the flexible ss DNA a persistence length of [, = 0.15 L and thus smaller than the
contour length. The solid - liquid interface is located in the x — y plane at z = 0.

6.3.1. Influence of flexibility

The switching behavior of the single stranded DNA is quite different from that of the
double stranded DNA if one looks at the single trajectories of the z-component of the
end to end vector of the chain. There is a noticeably dispersion for the down-switching
trajectories while their slope is almost equal (Fig. ), whereas the flexible DNA
does not show this feature (Fig. ).

This statistical behavior in the down-switching dynamics for the ds DNA is due
to its rigidity. To get to the surface, starting from an upright conformation, the
strand has to rotate around its anchoring point and the electrostatic torque due to
the surface potential has to overcome thermal fluctuations. Because of the symmetry
of the electrostatic torque, this can only happen if the strand is sufficiently tilted by
an angle o with respect to the surface (Fig. . The torque is generated by the

61



6. Dynamics of end grafted DNA molecules and possible biosensor applications

T T
1} L b) -
038 - 08 .
o6t =06l -
o e
04| 0401 i
02 02} §
() brsswenn 1 0 1
0 1000 2000 0 1000 2000

-
)

Figure 6.3.: Z-component of the end to end vector of double ( a), I, = 3.15 L) and
single (' b), [, = 0.15 L) stranded DNA (k7! = 3 nm, L = 16 nm). The starting
surface potential is +0.125 V. At ¢ = 200 the potential is switched to —0.125 V, at
t = 1600 it was switched back, denoted by the vertical lines. The gray lines show
single trajectories. The average (black line) is taken from 30 simulated trajectories.

potential energy U of the strand in the electric field of the surface.
T=(rxV)U (6.5)

If a denotes the angle between the strand and the surface normal, the only non
vanishing component of T is given by the partial derivative T, = —9,U. For a rod
of length L and total charge Q with one end fixed on the surface, and assuming an
electrostatic potential as defined in eq. , the angular-dependent potential energy
is given by

bQ
U(Oé) _ / ds 7‘/06—5005(04)5
0 L

_ & —kLcos(a) ~ _&
- Lkcos(a) (6 1) ~ Lkcos(a)’ (6:6)

The rod will be rotated deterministically around its fixed end when the generated
torque, given by
COU(ae)  QVp sin(ac)

T(a.) = ~ .
(ac) Do kL cos?(ac) (6.7)

becomes bigger than kgT'.

If the angle is too small, the strand shows diffusive rotation. This leads to a random
distribution of starting times for the deterministic rotation of the strand around its
first bead. This feature gets more pronounced for increasing rigidity of the strand, i.e.
going to the rigid rod limit, because chain bending is still possible for the ds DNA.

Since the ss DNA is very flexible, it can be pulled down bead by bead when switching
from repulsive to attractive surface potential. The single trajectories in Fig. do
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Figure 6.4.: Scheme of the configuration of a rigid

strand grafted to the surface. The electrostatic po-

tential of the surface is screened within the screen-
L ing length k! above the surface. The angle «

has to be large enough so that the electrostatic
K torque exceeds the strength of angular thermal
fluctuations.

Figure 6.5.: Snapshots of the downswitching dynamics for double (upper row) and
single (lower row) stranded DNA at different times ¢ after the surface voltage was
reversed. The ss DNA lies down significantly faster than the ds DNA since it is pulled
down bead by bead.

not exhibit a broad distribution as it is the case for the ds DNA. In Figs. [6.5] and [6.6]
snapshots at different simulation times are shown to elucidate the different behavior
of single and double stranded DNA.

When switching from positive to negative surface potential, no dispersion in the
single trajectories both for the flexible and rigid strands is observed. Since all the
monomers are close to the wall at the beginning, the repulsion acts on all monomers
equally, and the strand starts to stand up. Due to the screened surface potential,
only the beads close to the wall are feeling a repulsive force. The beads closest to
the boundary then pull the others away from the surface, finally reaching an upright
conformation (Fig. . During the switching process, ds DNA is always in a straight
configuration whereas the ss DNA shows significant crumpling. Note, that the equi-
librium end to end distance for the ds DNA is bigger than that for the more flexible ss
DNA (Fig. . This is due to the more straight conformation of the rigid ds DNA.

The switching behavior also depends on the salt concentration and thus on the value
of the Debye screening length x~!. Fig. show the response of single and double
stranded DNA to alternating surface potentials. With increasing screening length,
the electrostatic forces become more long ranged. Firstly, the single monomers are
repelling each other, this leads to a stretching of the DNA strands with decreasing
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Figure 6.6.: Snapshots of the upswitching dynamics for double (upper row) and single
(lower row) stranded DNA at different times ¢ after the surface voltage was reversed.

salt concentration. Secondly, more and more DNA segments are feeling the surface
potential with increasing screening length, the down and upward motion of the chain
gets faster. On the other hand, since we are working at constant surface potential, the
absolute forces exerted on the monomers close to the surface increase with decreasing
screening length, since the value of the electric field E = VV(2) = kVjexp(kz)é,
generated by the surface potential also depends on the screening constant. This
increase of the electric field leads to a pronounced chain bending of the ds DNA at
the beginning of the downward motion making the dynamics more similar to that of
the flexible strands. For decreasing x~! the critical angle for the down-switching of
the ds DNA gets bigger, leading to a slowing down of the motion.

The above mentioned effects partly counterbalance each other. For all used param-
eters k71, the ss DNA lays down significantly faster than it stands up while for the ds
DNA the time constants for the up and down-switching motion are close to each other
(Fig. . The time constants obtained by fits of the data sets to single exponential
functions are listed in table Especially for the downward motion, average trajec-
tories are not well reproduced by single exponential functions. Therefore the fitting
interval was chosen in a range where the agreement with the graphs was sufficient.
Nevertheless, these switching times 7 are dependent on the range of that interval.

The absolute time scales for the experimental and the theoretical results differ
substantially from each other. As explained before, in the experiments the gold surface
is charged over the electrolyte - solution which acts as an electric resistance and
thus determines the charging time of the electric double layer in a decisive manner.
This charging time turns out to be of the order of hundreds of microseconds [28]
and thus much larger than the DNA relaxation times which are in the nano-second
range. Therefore, the absolute time constants of the switching process measured in
the experiment and in the simulation can not be compared. Rather, the experiments
served as a motivation for the present simulation studies. Experimental studies with
a much shorter charging time constant are currently under development. Incidentally,
the orientational relaxation times we find in the hydrodynamic simulations are of the
same order as the ones inferred from all-atomistic MD simulations [108].
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Figure 6.7.: Z-component of the end to end vector of double ( a), [, = 3.125 L) and
single (' b), I, = 0.15 L) stranded DNA with contour length L = 16 nm for different
values of the screening length x~!. The starting surface potential was +0.125 V.
At £ = 200 the potential was switched to —0.125 V, at £ = 1600 it was switched
back, denoted by the vertical lines. The graphs were obtained by averaging over
30 single trajectories. The dashed lines are showing the exponential fit function for

x~1 = 5.0 nm to obtain the switching constants 7 from table .
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Figure 6.8.: Up - and down - switching time constants for various values of kL. The
switching times are obtained from the data shown in Fig. by fitting the switching
process to exponential functions (upswitching: f(x) = ag(1 — exp(—(f —200)/7yp) + C
for 200 < # < 1600, down - switching: f(z) = agexp(—(t — 1600)/Tgoun) + C, for
1650 < £ < 2200, the constant C' was determined by the equilibrium z-component of
the end to end vector at positive surface potential).
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k! (nm) 0.68 1.24 3.0 5.0
single stranded DNA
Tup 123.2 (24.6 ns) 81.0 (16.2 ns)  91.7 (183 ns)  76.3 (15.3 ns)
Tdown 72.5 (14.5 ns) 37.6 (7.5 ns) 33.5 (6.7 ns) 41.7 (8.3 ns)
Tup/ Tdown (sim.) 1.7 2.2 2.7 1.8
Tup/Tdown (exp.) - - 2.1 -
double stranded DINA
Tup 192.8 (38.6 ns) 185.3 (37.0 ns) 107.7 (21.5 ns) 104.0 (20.8 ns)
Tdown 151.9 (30.4 ns) 149.6 (29.9 ns) 124.4 (24.9 ns) 121.2 (24.2 ns)
Tup/ Tdown (sim.) 1.3 1.2 0.9 0.9
7_up/'rdoum (exp.) - - 0.9 -

Table 6.1.: Up - and down - switching time constants for single and double stranded
DNA in rescaled time units ¢, obtained by fits of the data shown in Fig. to single
exponential functions. The numbers in brackets correspond to the real time scale
evaluated by eq. (6.4), t/t ~ 0.2 ns at ng,0 = 1072 Pas, kgT = 25 x 1073 eV and
a = 0.34 nm. The experimental data is taken from [2§].

6.4. Effect of an end-tethered ligand

A possible application of the electrical switching of DNA strands is a biosensor.
Molecules, present in the solvent, are envisioned to be able to bind at the end of
the DNA strands via some suitably chosen end groups. This changes the dynamical
response of the DNA - chains, which can then be detected. Since different molecules in
general have different charge and size, one could determine which molecule is present
from the characteristic switching behavior. Experimentally this could be achieved by
recording the fluorescence signal of dye labeled DNA strands.

6.4.1. Ligand size

To model an end-adsorbed molecule on the DNA chain, an additional sphere was
attached to the strand. The hydrodynamic effect of the different size of the last bead
is taken into account by changing the corresponding radius in the multipole expansion
(eq. for the HI between the beads. The different radius also changes the self-
mobility. Big adsorbate sizes give rise to enhanced friction which slows down the
switching dynamics of the strands. Fig. middle shows a snapshot of an end grafted
DNA with an adsorbed molecule with a radius ten times the DNA monomer size. The
right part of the figure shows the stream lines and demonstrates that although the
stream lines do not perfectly superimpose with the surface of the large bead at the
end, some of the hydrodynamic effect due to the terminal bead is captured by the
Rotne-Prager Green’s function.

The radius of the last bead was varied from the DNA monomer radius up to ten
times the DNA bead radius. The charge of the adsorbed molecule was set to zero.
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D

Figure 6.9.: The left picture shows a schematic view of an end grafted double stranded
DNA, consisting of 24 beads, with an adsorbed molecule of radius ay = 10a on
top. The middle picture is a simulation snapshot at repulsive surface potential. The
generated streamlines when dragging this chain along the surface normal are shown
to the right.

The results are shown both for ds and ss DNA (Fig. .

For slightly higher radii of the adsorbate, almost no difference is seen in the switch-
ing dynamics. With increasing size of the last bead, a down-slowing of the motion is
observed due to the larger friction. Since the beads can not penetrate into the sur-
face, the minimal height for the chain at attractive surface potentials becomes larger.
Because of the screened surface potential, the effective repulsion when switching to
negative surface charge is not as strong as for small adsorbates. This also decreases
the starting slope for the up-switching dynamics of the strands.

For the rigid ds DNA, a second effect additional to the increased friction, should
slow down the dynamics of the switching. Since the starting times for the downward
motion are diffusion limited, one expects an effect due to the lower diffusion constant
of the last bead. To observe this feature, the strands have to be in equilibrium at
repulsive surface potentials when reversing the surface charge. This is not the case in
the simulation which can be seen in Fig. [6.10a) where the z-component of the end to
end vector of the chain with an adsorbed molecule of radius 10a is not equilibrated
when changing to positive surface charge. Since a bead with radius R has almost the
same friction as a rod of length 2R, the situation should be approximatively the same
when adsorbing a neutral chain with length 2R on top of an end tethered chain.

6.4.2. Ligand charge

The effect of the ligand charge can also be probed. Fig. [6.11| shows the dynamical
response of ds and ss DNA with an additional charged bead on top. The radius of
the adsorbate was set to the same value as the radius of the DNA monomers.

For negatively charged adsorbates, a stiffening of the strands can be seen. The equi-
librium end to end distance in the upright position increases for increasing negative
charge. This is due to repulsion of the negative DNA monomers from the negative
adsorbate. This effect is bigger for the ss DNA, since it is less stretched than the ds
DNA due to its smaller persistence length.
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Figure 6.10.: Z-component of the end to end vector of double ( a), [, = 3.125 L) and
single ( b), I, = 0.15 Lg) stranded DNA (s~ = 3.0 nm). An additional neutral bead
with different radius any was adsorbed at the end of the chains. R, is scaled with the
total contour length L = Lg 4+ a + an, with Lg = 16 nm being the length of the bare
DNA. The simulations started with positive surface charge, the switching times are
marked with the vertical lines. The graphs were obtained by averaging over 30 single
trajectories.
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Figure 6.11.: Z-component of the end to end vector of double (Fig. a), I, = 3.125Ly)
and single (Fig. b) I, = 0.15Lg) stranded DNA (k! = 3.0 nm). An additional charged
bead (the charge is given in units of the DNA monomer charge) with the same radius
as the DNA monomers was adsorbed at the end of the chains. R, is scaled with the
total contour length L = Lg + 2a, with Ly = 16 nm being the contour length of the
bare DNA. The simulations started with positive surface charge, the switching times
are marked with the vertical lines. The graphs were obtained by averaging over 30
single trajectories.
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Figure 6.12.: Snapshots of double stranded DNA with an adsorbed molecule of charge
+10 e at negative surface potential a) and at positive surface potential b)

The dynamics of the switching process is also changed. At positive surface poten-
tials, the negatively charged adsorbate is attracted to the surface, accelerating the
downward motion. For positively charged adsorbates, the motion is slowed down, and
vice versa for the upward process. This effect only applies when the last bead is close
to the surface, due to the screening of the surface potential.

For strongly positively charged ligands, the dynamics changes drastically, as can
be seen from the simulations of a DNA chain with an adsorbed molecule with ten
times the positive charge as one DNA monomer. The last bead on top of the double
stranded DNA is very close to the surface for negative surface charge. The DNA is
approximatively bent to a semicircle (Fig. ) The bending energy is too low to
overcome the attractive potential between the surface and the molecule. If the surface
potential is reversed, the DNA lies partly down on the surface, but the last part is
repelled from the wall due to the large repulsion between the molecule and the surface
(Fig. [6.12p).

The more flexible ss DNA shows a different behavior. Since the energy cost due
to bending is quite low, the strand wraps around the strongly positively charged
molecule to minimize its electrostatic energy (Fig. . The positive adsorbate
charge is screened by the negative DNA. The strand shows qualitatively the same
switching behavior as the bare ss DNA, since the overall charge still is negative, but
the extent of the up and down motion is significantly reduced.

6.4.3. Switching of two - component chains

Instead of attaching one single molecule to the end of a DNA strand, one could also
think about adsorbing another strand on top of the other. By this mechanism one
could probe the presence of other DNA strands in solution and detect adsorbing events
or hybridization with chains of varying length.

In the simulation, ds DNA is attached to a single stranded chain while the link
between the two chains is fully flexible and freely rotating. The simulations were
performed for an anchored ss DNA with a ds DNA on top, both with equal length,
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Figure 6.13.: Snapshots of single stranded DNA with an adsorbed molecule of charge
+10e at negative surface potential a) and at positive surface potential b)

Figure 6.14.: Height of the end point of the two-component chain (L = 32 nm) above
the surface. The gray lines show the single trajectories, the black line denotes the
average. The chain consists of an anchored ds DNA with a flexibly connected ss
DNA on top (a) and the other way round for (b). For comparison, the results of a
L = 32 nm long single stranded DNA are shown as the red line. At the beginning,
the surface potential is +0.125 V. It is reversed at the position of the vertical lines.
The average was taken over 30 trajectories.
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Figure 6.15.: Snapshots of the conformation of the two-chain system. (a) shows a
surface-anchored ds DNA with a terminally attached ss DNA chain at negative surface
potential, (b) shows a surface-anchored ss DNA with a terminally attached ds chain
during the downswitching process, i.e. after switching the surface potential from
negative to positive.

and vice versa. If one compares the height of the chain end from the surface, no
big difference in the switching dynamics is found between the two conformations
(Fig. . Both show a dispersion of the single trajectories. For the grafted double
stranded DNA (Fig. [6.14h and [6.15h ), the random distribution is due to the effect
discussed in section A similar behavior is observed for the system where the
flexible DNA is fixed to the surface. When switching the surface potential from
negative to positive potential, the ss DNA is pulled down, dragging the second strand
along with it. Since the second strand is pulled only at its end, it tends to align
perpendicular to the wall. If the ss DNA is adsorbed on the surface, the ds DNA
is still in an upright position, so that the same effect as before leads to the random
distribution of the trajectories. Fig. shows a snapshot of the simulation at
positive surface potential.

6.4.4. Collective effects

In experiments, one typically deals with a whole layer of grafted chains. The ques-
tion arises, if hydrodynamic interactions between different chains would significantly
change the dynamical behavior. One can show, that the solvent flow field due to a
point-force near a no slip boundary pointing parallel to the surface normal decays
as r—3 [I15]. For grafting densities at which the chains do not overlap, collective
effects should be small. When including minimal image boundary conditions in the
simulation, the dynamics shows almost no difference in the switching behavior. As
long as the strands do not overlap, which will lead to steric interactions, it is a good
approximation to neglect collective effects.
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6.5. Conclusion

In this study, the electrical switching of an end grafted DNA chain was investigated
using Brownian dynamics simulations. Due to its higher bending rigidity, ds DNA
shows a different dynamical response to the external electric field than the more
flexible single stranded DNA. The stiff chain shows a broad distribution of trajectories
in the down-switching process since it has to perform rotational diffusion until it is
tilted enough, with respect to the surface, so that the torque, exerted through the
surface potential, exceeds thermal fluctuations. The ss DNA shows no such dispersion,
because it can be pulled down bead by bead since the energy associated with chain
bending is small. These findings are in qualitative agreement with recent experimental
results [28].

The opportunity to use this system for biosensing purposes is also discussed. It is
possible to modify the system by attaching an additional bead on top of the chain
with varying radius and charge. This influences the dynamical response of the system
which can be detected and evaluated to identify the adsorbed molecule. Also, end
attached single stranded DNA can be partially hybridized by DNA chains present in
the solvent, making it possible to be sensitive for the binding of DNA chains, since
this also leads to a characteristic signature in the switching dynamics.
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7. Interfacial water

In contrast to the first part of the thesis, in which the solvent molecules are described
in a coarse grained fashion, the solvent molecules are modeled on an atomistic level in
the following chapters. Due to the neglect of the solvent degrees of freedom, continuum
models fail to correctly describe water specific effects since water is a polar molecule
and interacts strongly via directional hydrogen bonds. Although hydrodynamic theory
holds surprisingly well even down to Angstrom scales, the material equations have to
be obtained from atomistic simulations. The hydrodynamic boundary condition and
the viscosity profile of water at surfaces is of particular interest and will be discussed
in the following chapters.

Water is by far the most important liquid, not only in biology but also in many
industrial and technological applications and every day’s life. Its properties such
as its potency as a solvent or its crystallization behavior are remarkable. For many
applications like in microfluidics or biology, the behavior of interfacial water is of prime
importance. The geometric constraint of a solid surface as well as the interactions of
the water with the substrate lead to structural changes of the liquid compared to its
bulk properties. Surfaces can be divided into two classes according to their affinity
to water: hydrophilic, water attracting and hydrophobic, water repellent surfaces.
At charged or partially charged surfaces, the polar water molecules can increase their
internal energy from Coulomb interactions. Consequently, surfaces which bear electric
charges belong to the class of hydrophilic surfaces. In contrast, non polar surfaces are
mostly hydrophobic since the water molecules experience a loss of hydrogen bonding
at the interface. These hydrophobic and hydrophilic effects have implications on the
solubility of particles or for protein folding problems.

We want to analyze the structure and dynamics of interfacial water via molecu-
lar dynamic (MD) simulations. Firstly, we concentrate on the equilibrium properties
of water in contact with a hydrophobic diamond surface. Our main focus is on the
calculation of the contact angle, the angle a liquid droplet forms on the surface. By
a variation of the simulation parameters, the hydrophobicity of the surface is modi-
fied and quantified by the contact angle. The following chapter [8| then analyzes the
hydrodynamic boundary condition at these surfaces in non-equilibrium shear flow
simulations. The slip length at the hydrophobic diamond surface is only 2 nm. From
simulations with different surface hydrophobicities, we find a quasi-universal depen-
dence of the slip length on the contact angle. We also show that the presence of
surface adsorbed gas only moderately increases the slippage. Chapter [J] then extends
the analysis of hydrophobic surfaces to polar, hydrophilic surfaces. From the velocity
profile in the interfacial region and the diffusion of the water molecules we do not
find evidence for a layer of frozen water or for an increase in the interfacial viscosity
of several orders of magnitude at hydrophilic surfaces, as was often reported in the
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7. Interfacial water

literature [33H37].

7.1. Molecular Dynamics simulations

In MD simulations, the system is modeled on an atomistic scale. The trajectories of
the constituents are calculated using Newton’s equations. Particles interact via bond-
ing interactions, often modeled with harmonic springs and cosine series for torsional
potentials [IT6], and non-bonded Coulomb and Dispersion interactions. Dispersion
interactions between particle species A and B with distance r are described by a 6-12
Lennard Jones potential,

utr) = e | (722) " - (722 (7.)

r

In the simulations, the Lennard Jones interactions are truncated at a radius Ry =
0.8 nm to speed up the computer simulations. The same cutoff radius is used for
the short ranged electrostatic interactions. A variation in the cutoff radius Ry leads
to a noticeable change in the simulation results. The effect of the cutoff radius on
the contact angle of the diamond surface is discussed in detail in section Long
ranged electrostatic interactions are calculated with the Particle-Mesh Ewald (PME)
method [117, II§]. For all simulations, we use the SPC/E [119] water model. In
this three site model the water molecule bears partial charges go = —0.8476 e and
qu = 0.4238 e at the position of the oxygen and hydrogen nuclei. The OH bond length
is 0.1 nm with a tetrahedral bond angle of § = 109.5° at the oxygen position. The
Lennard Jones potential is centered at the oxygen position with the parameters given
in Tab. Periodic boundary conditions are applied in all three spacial directions.
The simulations are performed in the NAP,T ensemble, i.e. at fixed particle number
N, surface area A, temperature 1" and vertical pressure P,. This means that the
height of the box is free to fluctuate. The whole system is coupled to a heat bath
at 300 K and to a pressure of 1 bar via the Berendsen algorithm [120] with coupling
constants 77 = 0.4 ps (temperature) and 7, = 1.0 ps (pressure). All bonds including
hydrogen atoms are constraint via the LINCS [12I] algorithm. The simulations are
carried out with the GROMACS [122] package.

7.2. Surfaces

We consider a hydrophobic, hydrogen terminated diamond surface. The diamond slab
is modeled with 2323 carbon atoms, arranged in the well known double face-centered-
cubic lattice with lattice constant a = 3.567 A. The surface normal of the (100) plane
points in the é, direction. The lateral extension of the slab is 3.0 x 3.0 nm?, its thick-
ness is 1.5 nm. The atoms of the diamonds are connected by harmonic bond and angle
potentials. Also, torsional degrees of freedom are considered with the force constants
of the GROMOS96 version 53A6 force field [123]. The surface layer of the diamond
is reconstructed and terminated by H atoms, which leads to an ideal hydrophobic
surface. Carbon atoms and water molecules interact via the Lennard Jones potential
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7.2. Surfaces

atom types o [nm] e [kJ/mol]

C-C 0.3581 0.2774
0-0 0.3166 0.6502
C-O0 0.3367 0.4247

Table 7.1.: Forcefield parameters of the GROMOS forcefield for carbon and the
SPC/E water model for the Lennard Jones potential given in eq. 1'

density [ kg/l ]
density [ kg/l ]

Figure 7.1.: Water density profiles for different liquid/solid interaction energies and
surface structures. The center of the topmost surface atoms is located at z = 0.
Fig. (a) shows the water density profiles of the diamond surface for different lig-
uid/solid interaction energies eco given in kJ/mol. In (b), the density profiles for the
different surface structures shown in Fig. are plotted for the standard GROMOS
value eco = 0.42 kJ/mol.

in eq. with interaction parameters given in Tab. For tuning the hydropho-
bicity of the surface, the liquid/solid interaction energy eco between surface atoms
and water molecules is varied in the range between 0.11 kJ/mol - 0.72 kJ/mol, while
the interaction range oo is held constant. Decreasing the liquid/solid interaction

energy leads to increasing hydrophobicity since the water molecules are less attracted
by the solid.

A variation in the interaction energy leads to changes in the water density close to
the interface, Fig. [7.1a). The density profiles are obtained in simulations of the dia-
mond surface in contact with 1850 water molecules in a 3.0 x 3.0 x 8.0 nm? simulation
box in the NAP,T ensemble. For not too low values of eco, a layering of the water
molecules is clearly visible from the peaked structure of the density profile. For the
standard GROMOS value eco = 0.42 kJ/mol, the water density in the first layer is
roughly twice the bulk density. Lowering the interaction energy results in a decrease
of the height of these peaks and even makes them vanish for the lowest interaction
energy. The density profile for the lowest interaction energy is similar to an air/liquid
interface. Therefore, by tuning the interaction energy, a smooth transition from a
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diamond

Figure 7.2.: Hydrophobic diamond surfaces. The rough surfaces are constructed by
deleting some of the surface atoms.

liquid/solid to a liquid/air interface is obtained.

Apart from the smooth diamond surface, we also use surfaces with different degrees
of nano-roughness. These surfaces are constructed by setting the interaction between
selected surface atoms and all water molecules to zero. The different surface structures
are shown in Fig. Surface R; is constructed by erasing every third pair of rows
of surface atoms, and surface Rg is obtained by the deletion of every second pair
of rows. For the construction of Rg, every second single row of carbon atoms is
deleted. The roughest surface, Ry, is generated by removing carbon atoms down to
the fourth surface layer of carbon atoms. Again, deletion of a surface atom merely
means that eco is set to zero for this distinct atom. Note, that these surfaces are
not superhydrophobic surfaces for which the length scale of the surface structuring is
much larger. Rather, these surfaces are used in chapter [§| to examine the influence of
surface structure on the hydrodynamic boundary condition. From the density profiles
in Fig.[7.1b), it can be seen that the water molecules fill the gaps, left by the deleted
surface atoms.

7.3. Contact angle

One important and experimentally easily accessible parameter is the contact angle.
This contact angle is in the range from 180° (air) up to 0° for very hydrophilic surface.
On smooth surfaces, contact angles up to 130° are observed [125]. For higher contact
angles a patterned surface is required. In MD simulations, this angle can either be
determined via the simulation of a nanodroplet on the surface or via the calculation
of the surface tension. In this study, the latter method is used to compute the contact
angle.

7.3.1. Calculation of the contact angle

Via Young’s law [120], the contact angle is given by

MNs — Vsv
Vv ’

cosf = — (7.2)

with the surface tensions of the liquid/solid (ls), solid/vapor (sv) and liquid/vapor
(Iv) interfaces. In the simulations, the surface tension is obtained from the diagonal
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Figure 7.3.: Contact angles for water in contact with the diamond surface determined
via the virial tensor in dependence of the interaction energy eco. a) shows also data
for the simulation of a nano droplet in contact with the diamond surface [124]. In b),
also data for the rough surfaces are shown.

components of the virial tensor [127],

1

Y= ﬂpﬂzz - (Hm: + Hyy)]~ (73)

with surface area A and the virial tensor

N

M = (O _riFY) (7.4)

=1

with the positions r; and forces F; of the single particles. For the calculation of the
virial tensor, one diamond slab in contact with 1850 water molecules in a 3.0 x 3.0 x
8.0 nm? box is simulated. The surface atoms are frozen and all interactions between
the surface atoms are switched of. This procedure yields the difference 15 — sy of the
surface tensions. To calculate the surface tension of the air-water interface, a water
film consistent of 751 molecules is simulated in a 3.0 x 3.0 x 12.0 nm? box in the
NV T-ensemble which yields a surface tension of v, = 0.0527 N/m. The systems first
were equilibrated for at least 200 ps with subsequent production runs of 5 ns.
Fig.[7.3R) shows the results for the evaluation of the contact angle for the diamond
surface, compared to the results obtained from the simulation of a nanodroplet on
the surface [I12§]. The data for the droplet method are taken from Ref. [124] and
are in excellent agreement with the method used in this work. The contact angle at
the diamond surface with the standard GROMOS forcefield, see Tab. is 106°. In
Fig.[7.3b), we plot the results as 1+ cos(f) as a function of the liquid/solid interaction
energy eco. We obtain a nearly linear dependence of 1 + cos(#) as a function of eco.
This observation can be rationalized as follows: the surface tension of the liquid/solid
interface can be calculated from the work Hps per surface area, which is necessary
to separate a slab of liquid from a slab of solid. This work is given as the sum of
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7. Interfacial water

the surface energies of the two created interfaces, i.e. solid/vapor and liquid/vapor,
minus the energy of the destroyed liquid/solid interface [126],

Hip = Ysv + Vv — Vs- (75)

The work Hjs is given by the negative liquid/solid interaction energy of a solid slab in
contact with the liquid and can be calculated approximately, assuming homogeneous
solid and liquid densities ps and p;. In this simple calculation, electrostatic contri-
butions, the inhomogeneous water density close to the surface as well as interfacial
entropy are neglected.

The interaction energy of one single liquid molecule with the solid phase is given
by

00 2m 1
vs(z0) = ps/ dr/ do dcos 6 r2u(r)
20 0 zo/T

o
= 27rps/ dr (r* — zor)u(r), (7.6)
20
with the intermolecular liquid/solid interaction potential w(r) and the coordinate
system shown in Fig. [7-4 If the intermolecular potential consists of a short ranged
repulsive and a long ranged attractive part, the water will occupy the region where
the potential energy is negative to minimize its internal energy. With vis(z) < 0
for 0/ < z < oo, Hyo is obtained by the integration over all liquid molecules. An
integration by parts then leads to

H12 = —pl/ dZU]S(Z) (77)

!

= —7pips [/:j dz 23u(z) — o’ /;O dz ZU(Z)] : (7:8)

If the Lennard Jones potential in eq. is used for the intermolecular potential,
His is a linear function of the interaction energy between the water molecules and
the surface atoms eco. From Young’s equation, eq. , it follows, that the cosine
of the contact angle is linearly dependent on the interaction energy,

- H
| +cosh— v v =M Mz €CO- (7.9)

Mv Vv

As can be seen in Fig. [7.3p), the linear dependence of 1 4 cos@ is a good fit to the
data points. For smaller values of eco the water density at the interface decreases
and entropic effects connected to interfacial shape and density fluctuations become
important, invalidating the simple arguments that lead to eq. . In principle, one
would expect complete drying, i.e., § — 180°, as eco — 0. In Fig. [7.3h), 6 versus eco
is plotted, which is more compatible with a drying transition as eco — 0.

7.3.2. Cutoff dependence

In MD simulations, the Lennard Jones interactions are usually truncated at some
distance Ry for computer time reasons. In the above simulations, the cut off radius was
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solid

Figure 7.4.: Coordinate system for the
calculation of the liquid/solid interaction

energy in eq. .
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Figure 7.6.: Water density profiles at the
diamond surface with eco = 0.11 kJ/mol
(a) and eco = 0.57 kJ/mol (b) for two
different cutoff radii Ry.
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Figure 7.5.: Contact angles at the dia-
mond surface for different liquid/solid in-
teraction energies eco and different cutoff
radii Ry.
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Figure 7.7.: Contact angles for one dia-
mond surface with eco = 0.57 kJ/mol
with different cutoff radii. The plot
shows the contact angles obtained from
simulations (o) and from the calculation
of Hys in eq. - . The surface ten-
sion of the hquld/vapor interface is ob-
tained from simulations for both cases.
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7. Interfacial water

always Rg = 0.8 nm. It turns out that this commonly used procedure largely influences
the value for the contact angles. In Fig. the contact angles at the diamond surface
are shown for different liquid/solid interaction energies eco and for different values of
Ry. The liquid/vapor surface tension was also calculated for different cutoff radii by
the simulation of a water film of 1807 water molecules in the NVT ensemble which
yields a surface tension of 0.0543 N/m at Ry = 0.8 nm. For the very hydrophobic
surfaces, i.e. large contact angles, a variation in the cutoff radius does only lead to
minor changes. In contrast, for the more hydrophilic surfaces, a change in the cutoff
radius leads to substantial changes for the contact angles. Increasing the cutoff radius
leads to smaller contact angles, i.e. less hydrophobic surfaces. A variation in Ry also
leads to changes in the density profiles, see Fig.[7.6] For lower cutoff radii, the water
density at the surface decreases.

The dependence of the contact angle on the cutoff radius Ry can be explained by
the calculation of the liquid/solid surface tension. Therefore, a finite cutoff radius
is included in the calculation for His in eq. . For a finite cutoff radius, the
interaction energy of one single liquid molecule with the solid phase in eq. now
reads

Ry 2
27 pg dr (r* — zgr)u(r) for 0<zg< R
vis(20) :{ e oy ( orju(r) 0= (7.10)

0 for zo > Rp.

The necessary work per surface area to separate the solid from the liquid is then given
by

Ro 1 /15\ 3 o \2 o \®
His = —p /UI dzg 7)IS(ZO) = 2mecopsp1 !8 <2> - <R0> + O <R0>

for the intermolecular potential given in eq. ([7.1]). For the Lennard Jones potential,
the lower integration boundary is given by (¢o//o) = (2/15)Y/° to leading order in
o/Ry. Compared to the result in the limit Ry — oo, Hi2 decreases by 40 % if a cutoff
value of /Ry = 0.3 is used. Fig. shows contact angles dependent on the cutoff
radius for one diamond surface with eco = 0.57 kJ/mol from simulations and from the
evaluation of eq. . In the calculation, the bulk water and diamond densities are
used for ps;. Due to approximations made for the calculation of the surface tensions
in eq. , the data do not coincide with those of the simulations. However, the
qualitative dependence on the cutoff radius is similar for both data sets. An increase
in the Lennard Jones cutoff leads to decreasing contact angles since the liquid/solid
interaction energy increases due to the larger integration volume for large cutoff radii.

This strong dependence of the contact angle on Ry leads to consequences for the
parameters used in MD simulations. To correctly characterize and model surfaces
in MD simulations, it is not sufficient to choose the Lennard Jones parameters o
and e. For a consistent treatment of the liquid/solid interface, also the value for the
cutoff radius has to be specified. For all subsequent simulations, a cutoff radius of
Ry = 0.8 nm is used.

(7.11)
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In the preceding chapter, the equilibrium properties of liquid/solid interfaces are dis-
cussed. In contrast, this chapter presents results for non-equilibrium flow situations.
On the nanoscale, the hydrodynamic boundary condition at the liquid/solid interface
is of particular importance for microfluidic applications [8, 9] or biological systems,
such as the transport through membrane channels [25]. Due to the increasing surface
to volume ratio, interfacial effects become crucial for small volumes. Applications
are also found in the automobile industry. Mechanical components which are coated
with hydrophobic, diamond like carbon exhibit very low friction properties [129} [130],
which will lead to increased efficiencies.

Over the past years it has become clear, that the no-slip boundary condition, i.e.
zero interfacial fluid velocity, does not necessarily hold at nanoscopic length scales [24]
131]. At hydrophobic surfaces, partial slip occurs which can be quantified by the slip
length b. This length is defined via the gradient of the fluid velocity field v(z) parallel
to the surface normal at the surface [131],

(IVol = [v]).—., = bl(0V/02) 2=z, (8.1)

with the velocity vg and position zg of the surface, see Fig. Large slippage
will amplify the flow rate for pressure driven flow, which enhances fluid transport in
narrow channels. However, a considerable increase is only obtained if the slip length
is comparable to the channel dimension. For electrically driven flow, even small slip
lengths in the nanometer range lead to a considerable increase in flow [132]. Therefore,
a profound understanding of the flow boundary condition at surfaces is necessary.

We use non-equilibrium Molecular Dynamics (NEMD) simulations to investigate
the hydrodynamic boundary condition at a hydrophobic diamond surface. These sim-
ulations reveal slip lengths of only two nanometers on a hydrophobic diamond surface.
The dependence of the slippage on surface hydrophobicity and surface roughness is ex-
amined and we find a quasi-universal relation between the slip length and the contact
angle of the surface. Experiments yield slip lengths ranging from nanometers [I33-
136] up to micrometers [137, [138]. A collection of experimental and theoretical results
can be found in [I39]. A possible explanation of large slip measurements is the pres-
ence of a thin gas layer at the surface [29, [BT]. In simulations of a Lennard-Jones
liquid it was found that the slip length is only moderately increased under the pres-
ence of dissolved gas [140)]. Using a realistic water model and gas parameters, we also
observe only modest enhancement of the slippage. However, the presence of large gas
nanobubbles on the surface [I41HI45] could significantly increase the slip length and
could explain the measurement of large slip lengths.
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p(2) { -V, 0 2 v(2)

Figure 8.1.: Snapshot of the system with 4 nm gap size (left). Not shown is the second
water film. The diamond slab is 1.5 nm thick and has 3.0 x 3.0 nm? lateral extension.
In the middle, the water density profile is shown. The right figure shows the solvent
velocity profile for vy = 0.02 nm/ps and the definition of the slip length b. The vertical
lines denote the surface velocity +vy.

8.1. Shear flow simulations

We use NEMD simulations to examine sheared water layers confined between hy-
drophobic, hydrogen-terminated diamond slabs. The system consists of two diamond
blocks, described in section which are separated by two SPC/E water slabs of
thickness Z ~ 4 nm. This corresponds to roughly 1000 water molecules in each water
film. In Fig. [8.1h), we show a snapshot of the simulation system, where only one of
the water slabs is shown.

A Couette shear flow is induced by attaching harmonic springs with spring constants
k = 1000 kJ mol~! nm~2 to the upper and lower surface. The upper spring is pulled
with a velocity of vguf = vg in the z-direction and the lower spring with vg,t = —vg
such that the net momentum vanishes. The movement of the diamond surfaces creates
a linear velocity profile for the solvent flow, see Fig. [8.1b). Using the definition of
a partial slip boundary condition at the position of the surface in eq. , the slip
length b is obtained by extrapolating the velocity profile. For that purpose, the
velocity profile is fitted to a linear function. The location of the surface at which the
slip boundary condition is applied is defined by the center of the topmost layer of
surface atoms. In the simulation cell, there are four identical liquid/solid interfaces,
leading to four slip lengths. Error bars are given in terms of their standard deviation.

The systems are equilibrated for 200 ps and then subsequent production runs of up
to 30 ns are performed. Several simulations with the same parameters are performed
and all trajectories are used for the further analysis.

The used Berendsen weak-coupling thermostat is in principle critical for shear sim-
ulations and it needs to be demonstrated that it does not influence the resulting slip
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Figure 8.2.: Slip length b versus shear rate for different water film thicknesses at the
diamond surface. The liquid/solid interaction energy is eco = 0.4247 kJ/mol, the
standard value of the GROMOS forcefield.

lengths from shear flow simulations. This issue has been checked by performing two
benchmark simulations, where a Berendsen thermostat with velocity scaling in all
Cartesian directions and a Nose-Hoover thermostat with velocity scaling only in the
y—direction are applied, during otherwise identical simulations [I46]. We found no
difference between these different simulation protocols.

8.2. Shear rate dependence

Since experimental shear rates are substantially lower than the rates used in MD simu-
lations, a careful examination of the applied pulling velocities is necessary. Therefore,
shear flow simulations for the diamond surface at different shear rates are performed,
to rule out nonlinear artifacts. Fig. shows slip lengths for different shear rates
ranging from 10° up to 5-10'° s~ Up to shear rates of 10'° s=1, b is almost inde-
pendent of the shear rate. To obtain reliable data at acceptable computational cost
the value 4 = 10'% s7! is utilized for all subsequent shear simulations. The slip length
for the diamond surface is only 2 nm. Fig. also shows data for different water film
thicknesses. The slip length is not sensitive to the width of the water film. Even for
the thinnest water film of 2 nm, which corresponds to roughly five water layers, bulk
like behavior for the flow is observed. For all other shear flow simulations, the water
film thickness is 4 nm.

8.3. Slippage at different surfaces

The surface structure could be crucial for the amount of slippage. Therefore, 'nanor-
ough’ surfaces described in section [7.2] are used in the shear flow simulations. Besides
the surface structure, also the liquid/solid interaction energy is varied to examine
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Figure 8.3.: Slip length b plotted versus the liquid/solid interaction energy eco (a)
and versus 1/e; (b). The graphs show data for the diamond and for the rough
surfaces.

the slippage in dependence of the hydrophobicity of the surface. For decreasing in-
teraction energies, i.e. more hydrophobic surfaces, the slip length is increasing, see
Fig. ) Even for the lowest interaction energy, the slip length is below 20 nm.
The slip length on the rough surfaces is always smaller than at the smooth diamond
surface. At the roughest surface Ry, the slip length is smallest. Increasing surface
roughness leads to smaller values for b, since the friction at the liquid/solid interface
is enhanced by the stronger corrugation of the liquid/solid interaction potential. This
can be understood in the limit of a perfectly smooth liquid/solid interaction potential.
In this limit, the system is invariant under lateral translation, which would lead to an
infinite slip length.

8.4. Slip length and contact angle

To rationalize the dependence of slippage in terms of the surface properties, especially
on the interaction energy eco, we follow an argument of Bocquet and Barrat [147, [148].
There, the slip length is determined via the friction at the liquid/solid interface. The
friction, i.e. viscous force F' per surface area A, exerted by the wall on the fluid is
given by its viscosity n times its velocity gradient at the position of the surface,

ez = )] (8:2)

Using eq. (8.1) an expression for the friction force per surface area is obtained (for
simplicity, vg = 0),

F, n B
= bvx(z = 2p). (8.3)
As for any dissipative mechanism, a Green-Kubo formula can be derived, leading to
ve(z = 2 >
(Fows = ~2C 220 [T o R0) (8.9
kBT 0
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Figure 8.4.: Slip length versus contact angle for all considered surfaces and interaction

parameters.

in the linear response regime. The subscript NE denotes the non equilibrium av-
erage for the situation of the sheared liquid. The autocorrelation function can be

approximated by
[ a om0 (8.5)

The diffusive timescale 7 = ¢2/D is given by the diffusion constant D and the lat-
eral length scale of the surface, . From dimensional arguments, (F2) o (eco/o)?.
Therefore, the slip length depends inverse quadratically on the interaction strength,
b 66%. In Fig. ), we replot the slip length as a function of the inverse square
of the interaction energy. Since the data points fall on a straight line for the differ-
ent surfaces, the validity of the scaling considerations is confirmed. Making use of
eq. ((7.9), a simple relationship between the slip length and contact angle is obtained,

b o (14 cosf)™2 (8.6)

Fig. [84] shows the data for the slip length, plotted versus the contact angle for all
considered surfaces. The effects of roughness on b on the one hand and on 6 on
the other hand partially cancels out. Increasing roughness leads to decreasing slip
lengths due to the enhanced friction. Since the liquid/solid contact area is increased
on a rough surface, the liquid/solid interaction energy becomes larger which leads
to decreasing contact angles. Despite the rough estimates leading to eq. , the
simulation results follow nicely the predicted scaling. The dependence of the slip
on the contact angle shows the same dependence also for different surface structures
such as fcc(100) Lennard Jones surfaces or alkane chains [146]. This quasi-universal
relation between contact angle and slippage is of particular interest, since the contact
angle is an experimentally easily accessible quantity.
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z Figure 8.5.: A thin gas layer of viscosity 7y with
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1o and the solid (gray area) leads to an apparent
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“1b v(z) bulk region is determined by the viscosities in the
bulk and interfacial region, eq. (8.7)).

8.5. Slippage and depletion length

An alternative theory for the slip length at the liquid/solid interface is based on the
existence of a thin vapor layer with thickness § between the solid and the liquid phase.
The viscosity ns of this layer is substantially lower than the bulk water viscosity ng
which will lead to an apparent slip length b, see Fig. Since the viscous stress
F/A = n(z)0,v(2) = 1n(2)7¥(z) is constant in the system, the ratio of the viscosities
is given by those of the velocity gradients in the two different regions,

Yo _ s
Vs Mo

With the definition of the slip length in eq. (8.1)), the fluid velocity at the gas/liquid
boundary reads

(8.7)

v(z=10) = (0 +b)jo = 6. (8.8)

With eq. (8.7)), this leads to an expression for the apparent slip length which is linearly
dependent on the width of the vapor layer [29]

=d(no/ns — 1). (8.9)

To test this prediction, we used two different definitions of the vapor layer width
d: (i) the position where the water density is half its bulk value and (ii) as an excess
quantity for the density profile [127]

5= /0 "z [1= ()6t - pet] (8.10)

p{”s are the bulk densities of the liquid and solid phase. The depletion length can be
directly calculated from the density profiles of the simulations. Since for the rough
surfaces, the determination of the depletion length is difficult due to the ambiguity in
the definition of the position of the liquid/solid interface, only data for the diamond
and the two smoothest Ry and Ry surfaces are shown. For both definitions, we do
not find a linear dependence of the slip length on the depletion width, see Fig.
Therefore we can not support this two-viscosity picture. Furthermore, the depletion
length is less than a molecular diameter which makes the definition of an effective
viscosity for such a thin layer difficult. Fig. shows a snapshot of the liquid/solid
interface together with the width of the depletion layer, defined by eq. .
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8.5. Slippage and depletion length

0.3 T
O diamond
= A R1
c O R2 A
= O
Py
S 0.2F . o o] 1
=
=3 o A 0 5 10 15 20
r e B L |
% oA O'3f® e o e
S 01%n Eool 4 4
D o s
g‘ © 0.1f .
© al
0 | | |
0 | | |
0

5 10 15
dip length (b) [ nm]

20

Figure 8.6.: Depletion length § versus the slip length. The depletion width was de-
termined using the definition (ii) given in eq. (8.10) and the criterion (i) where the
water density is half its bulk value (inset).
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b ox 6%,

89
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Figure 8.8.: Plot of the inverse square of the depletion length versus the liquid/solid
interaction energy eco (a) and versus the cosine of the contact angle (b). The deple-
tion length is defined in eq. (8.10f). The broken lines show a linear fit for the diamond
data.

The dependence of the slip length on the depletion length in Fig. [8.7]is well described
by the scaling relation b &< *. In Fig. [8.8n), the depletion length in dependence of
the liquid/solid interaction energy is plotted which suggests the scaling 62 o eco.
Using eq. , the scaling of the depletion length with contact angle is obtained,

672 o<1+ cosf (8.11)

which is confirmed by the simulation data shown in Fig. [8.8b). With eq. , the
quartic dependence of the slip length on the contact angle is obtained.

However, under the assumption of a vacuum layer of width ¢ between the solid and
the liquid phase, the lower integration boundary in eq. is given by d which would
lead to Hyz o €co/62. From Young’s equation eq. and from eq. the scaling
14cosf x eco/ 62 is obtained, in contradiction to the above considerations which led
to eq. .

¢ is rather a measure of the density depletion of the liquid from the surface than
the width of a vacuum layer at the surface. Since eq. was derived under the
assumption of constant liquid density and neglecting interfacial entropy, this simple
theory can not explain the dependence of the slippage on the depletion length. Thus,
a full statistical treatment of the interface is necessary.

Even for contact angles of 140°, the slip is less than 20 nm, see Fig. [8.:4] whereas
recent experiments yield still larger slip lengths, for example 20 nm at a contact angle
of 105° [I36]. This disagreement could be explained by the strong dependence of the
slip length on the depletion length. Compared to experiments for silanized surfaces,
the simulations underestimate the depletion length typically by a few Angstroms [29].
Furthermore, the depletion length increases if dissolved gas is present in the water
film.
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8.6. Dissolved gas

A B  eap [kJ/mol] oap [nm)]

Ne Ne 0.6398 0.3136
Ne O 0.4951 0.3293
Ne C 0.4213 0.3351
Ar Ar 0.9964 0.3410
Ar O 0.8049 0.3285
Ar C 0.5257 0.3494
Og Og 0.4016 0.3030
Og O 0.5110 0.3098
O C 0.3338 0.3306

Table 8.1.: Lennard Jones parameters for the simulation of a water film with dissolved
gas. The parameters for the noble gases are taken from the GROMOS forcefield, those
for the oxygen gas from [149]. O; denotes the oxygen of the water molecules, Oy that
of the oxygen gas.

8.6. Dissolved gas

To examine the effect of dissolved gas particles in water, the same shear flow simula-
tions with added gas particles in the water film for the diamond surface are performed.
In each gap between the solid slabs, 10 gas particles are inserted. We examine differ-
ent types of gas particles. Species X (m, = 12.01 u) interacts equally with all other
atoms present in the system via a purely repulsive potential,

Vx (r) = dex (U—X)m (8.12)

r

with the ox = 0.3581 nm and ex = 0.2774 kJ/mol, the Lennard Jones parameter of
carbon.

Also, parameters from the GROMOS force field are used to model the noble gases
Ne (mye = 20.18 u) and Ar (m 4, = 39.95 u). For the diatomic oxygen gas Oy (mo =
16.00 u), the Lennard Jones parameters are the same as those used in Ref. [149]. The
bond length between the two oxygen atoms is constraint to 1.21 A. These gas particles
interact via the Lennard-Jones potential in eq. with the surface atoms and water
molecules. The interaction parameters for all considered gas types are summarized in
Tab. Rl

For the simulations with dissolved Argon gas and gas type X, the surface hydropho-
bicity is varied. Therefore, the Lennard Jones interaction energy of the surface atoms
ecc is varied while the Lennard Jones diameter oo¢ is held fixed. For the simulations
with Argon, all interaction energies involving the surface atoms are then recalculated
by

ECAr = VECCEATAr and €CO = \/€CCEOO- (8.13)

For the simulations with gas type X, only the liquid/solid interaction energy eco is
varied, while the gas/solid interaction is unchanged. For the oxygen molecules and
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8. Water slippage at hydrophobic surfaces

neon atoms, only the diamond surface with the standard parameters for the carbon
atoms are used. The simulation procedure and other parameters are identical to those
described in section [B.1]

8.6.1. Gas adsorption

Fig. shows the density profiles from the shear simulations. No difference in the
density profiles is observed for equilibrium simulations. The densities are averaged
over the four interfaces of the simulation cell. The gas atoms accumulate at the
hydrophobic interface. A gas accumulation at hydrophobic surfaces was previously
observed in MD simulations of Lennard Jones fluids [I40] and in grand canonical
Monte Carlo simulations with the SPC water model [149]. The density of neon, argon
and oxygen gas at the interface is increased by a factor of roughly 20 - 60 compared to
the density inside the water slab. The gas adsorption is restricted to one monolayer of
gas particles, since there is only one narrow peak present in the density profiles shown
in Fig. 8.9a). The density of the purely hydrophobic gas type X at the interface is
increased by a factor of more than 150. All X atoms are mostly present on one surface
and the formation of a big cluster of gas atoms can be seen in the simulations, see
Fig. 8710} This strong clustering is reflected in the shoulder of the X-density profile
in Fig. [8.9a). The other gases do not exhibit such a clustering. Their densities are
more or less equally distributed on the two slabs and no big cluster is observed in the
simulations. A representative snapshot of one simulation with dissolved argon atoms
is shown in Fig. [8.11

A variation of the surface hydrophobicity does not lead to qualitative changes in
the density profiles. The accumulation of Argon atoms is strongest at the most hy-
drophobic surface (eco = 0.26 kJ/mol). This effect is also observed for gas type
X. This strong gas accumulation is not seen in simulations of dissolved gas between
polar, hydrophilic surfaces. In Fig. also the density profile of dissolved argon gas
between two polar, hydrophilic surfaces is shown. The gas density at this surface is
only twice the bulk value. The hydrophilic surface is covered with polar OH groups
(zou = 1/4) and will be described in chapter [9] Although the gas particles Ne, Ar
and O are predominantly close to the interface, they are still free to desorb from the
interface as can be seen in the snapshot shown in Fig. [8.11] The gas accumulation
at the interface is not due to the Lennard Jones interaction between the surface and
the gas atoms, since also the gas type X with the purely repulsive potential has an
increased density at the surface. Rather, the water structure with its hydrogen bond-
ing network is less perturbed if the gas particles are present at the interface than in
the bulk liquid. Therefore, gas adsorption at a hydrophobic surface is energetically
favorable.

As soon as the gas particle agglomerate, the question arises if the amount of gas
is still solvable in water. For example, experimentally, a mole fraction of 0.25 x 10~4
Ar-Molecules (0.23 x 10~* for Og) is soluble in water at a partial gas pressure of
1 atm and 7" = 298.15 K [I50]. In the simulations, the total pressure is fixed at 1 bar
~ 1 atm. Since the partial pressure of water vapor at room temperature is roughly
0.02 atm, the partial gas pressure in the simulation is comparable to the experimental
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Figure 8.9.: a) Density profiles for different gas types at the diamond surface. The gas
densities are scaled by their bulk concentrations. The center of the topmost carbon
surface atoms is located at z = 0. The total amount of dissolved gas is ten gas particles
per water slab, except for one simulation for Oy with only four oxygen molecules per
water slab. For Ar and X, also data for different surface hydrophobicities are shown.
The density of the most hydrophobic gas type X is scaled by p/2ppuk. For comparison,
the water density profile (not normalized) without dissolved gas for the standard
GROMOS parameter eco = 0.425 kJ/mol is also shown. Additionally, data for the
simulation of dissolved argon gas between two hydrophilic surfaces is shown. The
hydrophilic surface (zou = 1/4) bears polar OH groups and is described in chapter [9]
In b), the density profiles from equilibrium (¥ = 0) and non-equilibrium (§ # 0)
simulations are shown for argon gas and eco = 0.4247 kJ/mol. The concentrations
are scaled by the bulk concentration for (¥ # 0). The density profiles are not sensitive
to shear flow.
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8. Water slippage at hydrophobic surfaces

Figure 8.10.: Snapshot of a simulation for ~ Figure 8.11.: Snapshot for the simula-
gas type X (green atoms) at the diamond  tion of the diamond surface (eco =
surface (eco = 0.57 kJ/mol). The gas  0.4247 kJ/mol) with Argon gas (orange
molecules form one big cluster atoms).

situation, pgas =~ (1 — 0.02) atm ~ 1 atm. From the density profiles, it is obtained,
that the value of the mole fraction of dissolved argon gas in the bulk liquid is much
higher than the experimental solubility with a value of about 5 x 1073, similar to
the mole fraction of 4 x 103 of the oxygen gas. However, no phase separation is
observed in the simulations. At room temperature and an ambient pressure of 1 bar,
the distance between particles in the gas phase is roughly 3 nm, thus comparable
to the overall size of the simulation box. Since the particle number is held constant
in the simulations, phase separation would lead to a huge increase in the liquid/gas
interface in the simulations which is prevented by the high surface tension of liquid
water. Nevertheless, reducing the amount of gas particles in the computer simulations
does not lead to qualitative changes. This issue has been checked by one simulation
run with only four oxygen molecules per water gap. In the normalized density profiles
in Fig. ), no difference is seen between the two different oxygen concentrations.

8.6.2. Stability of gas clusters

For gas type X which has a purely repulsive interaction potential, large clusters of gas
atoms are observed, Fig. The question arises how these cluster can be stable,
since their gas pressure is significantly higher than the outer pressure of pg = 1 bar.
For hard spheres with diameter o and for semi spherical cluster shape, the gas pressure
is given by

N o\3
Py~ keT T [1 +N (E) } (8.14)

with the volume V = 27R3/3 and the particle number N of the cluster. From the
snapshot in Fig. the radius of the bubble is R ~ 0.7 nm. With the particle
diameter ox = 0.36 nm, this leads to a pressure of 1.3 x 10% Pa ~ 103 py. This
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Figure 8.12.: Water density profiles with and without dissolved gas at the diamond
surface. The topmost layer of the surface atoms is located at z = 0. The wa-
ter/solid interaction energy is varied, eco = 0.255 kJ/mol, 0.425 kJ/mol and
0.570 kJ/mol, from a)-c). The contact angles for these interaction energies corre-
spond to # = 136°, 106°, and 80°.

pressure has to be counterbalanced by the Laplace pressure pr, = 2vi,/R, which is
due to the liquid/vapor surface tension,

PL + Po = pG- (8.15)

With the liquid/vapor surface tension from the simulations of v, ~ 0.05 N/m, the
Laplace pressure pr, ~ 1.5 x 10® Pa is similar to the gas pressure inside the bubble.
The bubble will only be stable, if it experiences a restoring force for small fluctuations
in R around its equilibrium value R.. This criterion yields

d(pr., + po — pa)
dR R=R.

3 2 3

o N o

1+N| — T —
+ (Re> + 3kB VR, (Re>

2pc N? o \*
R. + Sk:BTVRe (Re) (8.16)
where eq. and pL(R = R.) = pg(R = R.) have been used. Since the gas
pressure for particles with a purely repulsive interaction potential is always positive,
the inequality shown above is always fulfilled. Thus the clusters observed in the
simulations are mechanically stable.

Experimentally observed nanobubbles does not have a semi spherical shape but have
much larger diameters than bubble heights [141]. This leads to a smaller curvature
and therefore significantly reduces the Laplace pressure which leads to an decrease
of the gas density inside the bubble. Despite the mechanical stability of these bub-
bles, their thermodynamic stability is still under debate [30] and deserves a thorough
examination.

0 <

2Ny 3 N
— kT —
R R BV

8.6.3. Dissolved gas and slip length

Due to the accumulation of gas particles at the surface, the interfacial water density
decreases, see Fig. This decrease in water density is small and comparable for
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8. Water slippage at hydrophobic surfaces

gas  eco [kJ/mol]  byes [nm] b [nm]
Ar 0.255 8.92 £ 212 7.54 £0.76
X 0.425 2.69 £ 0.18 2.17 £ 0.15
Ne 0.425 253 £0.10 2.17£0.15
Ar 0.425 2.77 £0.55 2.17 £ 0.15
02(10) 0.425 2.61 £0.10 2.17£0.15
02(4) 0.425 2,57 +£0.24 217 £0.15
X 0.570 1.19 £ 0.19 0.75 £ 0.10
Ar 0.570 1.42 £0.04 0.75 £0.10

Table 8.2.: Slip lengths for shear flow simulations with dissolved gas (bgas) for the
hydrophobic diamond surface. The standard GROMOS parameter for the carbon
water interaction energy corresponds to eco = 0.425 kJ/mol. For comparison, also
the results for the simulations without gas are shown (bp).

all considered gases. The purely repulsive gas X leads to slightly bigger changes in
the water density. On the diamond surface, the adsorption of the gas particles always
enhances the slip length only slightly. The largest relative change in slip length b with
and without gas is seen for the highest liquid/solid interaction energy. There, the slip
length roughly doubles when Ar atoms are present.

Dissolved gas only moderately amplifies the slip length which is still in the range of
a few nanometer in our simulations. Thus, large slip measurements are not caused by
surface adsorbed gas layers. However, experimental measurements suggest the forma-
tion of gas-nanobubbles at the liquid/solid interface [I41HI45]. The lateral dimension
of these bubbles is in the order of 100 nm, with a height of several nanometers which
could significantly enlarge the slip length. These gas cavities are much larger than
the used simulation box and can not be observed in our simulations. The presence of
such nanobubbles could lead to much larger values for the slip length than found in
this study.
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9. Water at hydrophilic surfaces

In the previous chapters, the dynamics and structure of liquid water at non polar,
hydrophobic interfaces is discussed for equilibrium and non-equilibrium situations.
Compared to hydrophobic substrates, hydrophilic surfaces are much more abundant
in nature, with examples ranging from biological membranes to metallic surfaces,
which attract the polar water molecules via induced image charges. In the following
sections, water properties at hydrophilic, polar interfaces are examined.

At hydrophobic surfaces, the water molecules experience a loss of hydrogen bonding
compared to the bulk configuration, which leads to a decrease in internal energy.
At polar, hydrophilic surfaces, interfacial water molecules can form hydrogen bonds
with polar surface groups, which can lead to even stronger liquid/solid interactions
compared to the bulk liquid interaction. Some hydrophilic surfaces show complete
wetting, which means that the contact angle can be as low as zero degrees.

Computer simulation studies show, that although the water density profiles for
hydrophilic and hydrophobic surfaces are comparable, the diffusion of single water
molecules is decelerated at hydrophilic interfaces [I51]. However, in these studies
it was found that the residence time of water molecules at these surfaces is only
weakly sensitive to the surface hydrophilicity. In our study, we can not confirm this
counterintuitive result. The residence time at hydrophilic, polar surfaces of the water
molecules is found to be roughly twice as large as at a hydrophobic surface. The
diffusion of the water molecules in the interfacial layer is slowed down compared to the
diffusion in bulk water. At the hydrophilic surfaces, this effect is stronger compared
to the non polar surface. Due to the polar surface groups, the water molecules are
stronger attracted to the hydrophilic surface.

This strong liquid/solid interaction also influences the viscosity of the interfacial
region. Experiments report on viscosities for strong confined water between mica
surfaces, which are comparable to the bulk viscosity [152), [153]. These findings are
also confirmed by computer simulations for thin water films. Only sub-nanometer
confinement leads to an increase in viscosity of approximately 80 times the bulk vis-
cosity [I54]. Other experiments and simulation studies report on a strong increase in
viscosity of several orders of magnitude for highly confined water films [36}, 37, [155].
Also, the structure of water at hydrophilic surfaces is under debate. Spectroscopy ex-
periments and computer simulations find an ice-like structure of thin water films [33-
35, I56HI58]. These crystal like structures are identified via a sharp drop in the diffu-
sion constant and via a substantially increased shear viscosity. Also, these crystal-like
phases can sustain shear stresses. At hydrophobic interfaces, this ice like water struc-
ture is not observed.

To clarify the structure and properties of water at hydrophilic surfaces, we perform
MD simulations of water at polar, hydrophilic surfaces. In non equilibrium shear
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9. Water at hydrophilic surfaces

flow simulations, the shear viscosity profile of interfacial water is obtained from the
fluid velocity profiles. By this method we are able to locally probe the shear viscosity
of water close to interfaces without effects stemming from a strong confinement of
the water film. In contrast to hydrophobic surfaces, we find an increase in the vis-
cosity of interfacial water at hydrophilic surfaces. This increase is stronger at more
hydrophilic surfaces with an interfacial viscosity which is roughly four times the bulk
value. Therefore, we do not observe a drastic increase in viscosity at hydrophilic sur-
faces. Also, the diffusion at hydrophilic interfaces is only moderately slower compared
to the hydrophobic surfaces. These results do not support a solid-like structure or
tightly bound layer of interfacial water at hydrophilic interfaces.

9.1. Static properties

In the MD simulations, we use two different hydrophilic surfaces with polar surface
groups. The surfaces are constructed out of the H-terminated diamond surface, de-
scribed in section Every forth (zog = 1/4) or eighth (zog = 1/8) surface
carbon atom is substituted by an C-O-H group with angular and torsional force po-
tentials. The bond angle at the oxygen atom is 108°. The partial charges are set to
go = —0.674 e, g = 0.408 e and go = 0.266 e. These parameters are taken from the
GROMOS96 forcefield for serine. Fig. shows the top view of the two hydrophilic
surfaces. As in the two preceding chapters, we use the SPC/E water model and
the GROMOS forcefield. The Lennard Jones parameters of the atoms are given in
Tab. and the simulation parameters are the same as in section

Compared to the hydrophobic diamond, the water molecules are attracted more
strongly to the surface. As can be seen in the density profiles in Fig. the liquid is
closer to the surface compared to the hydrophobic interface. Also, the first water peak
is more pronounced and has a smaller width for the hydrophilic surfaces. Only minor
differences are seen between the two different hydrophilic surfaces. For the larger OH
density, the first water peak is slightly higher and closer to the the interface. The
hydrophilic surfaces exhibit complete wetting, meaning that the contact angle is 0°.

9.2. Interfacial shear viscosity

To examine the shear viscosity of interfacial water at hydrophilic interfaces, non-
equilibrium molecular dynamic simulations are performed. The simulation system
consists of two solid slabs with distance Z =~ 4 nm. The gap is filled with water and
the two surfaces are pulled with velocities vg = 0.02 nm/ps in opposite directions in
the same way as described in section

The velocity profiles, Fig. differ qualitatively from those obtained for the hy-
drophobic surfaces: close to the surface, the gradient of the velocity profile is smaller
than in the middle of the water gap. In contrast, the gradient of the velocity profiles
at the hydrophobic surfaces is constant, even close to the interface, see Fig. At the
hydrophilic surface, the water molecules at the interface are dragged along with the
surface. The region over which this sticking of water molecules occurs is roughly the
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9.2. Interfacial shear viscosity

Figure 9.1.: Top view of the hydrophilic diamond surface surface with xop = 1/4
(left) and zom = 1/8 (right).
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Figure 9.2.: Density profiles for the two hydrophilic surfaces with zoy = 1/4 and
xon = 1/8. For comparison, the density profile of the hydrophobic diamond is also
shown. The top layer of carbon atoms is located at z = 0.
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Figure 9.3.: Water density profiles (top row) and velocity profiles (bottom row) for
the the hydrophilic surfaces with zog = 1/8 (left) and zog = 1/4 (right). Fig. b)
shows the density profiles and more averaged velocity profiles (+) close to the surface.
The fit functions for the velocity profile in the peak region and in the bulk region are
shown as solid and broken lines. The gray shaded areas give the extent of the peak
region.
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9.2. Interfacial shear viscosity

xon o [1/ns] s [1/ns] Ns/Mo slip length [nm]

1/4 13.4 3.6+0.8 3.7+£09 —0.32£0.01
1/8 12.8 5.9+1.0 22+£04 —-0.29£0.01

Table 9.1.: Shear rate and viscosities for the mid- and interfacial region and the cor-
responding slip length, obtained from the velocity profiles of the non-equilibrium MD
simulations.

extent of the first water layer. This feature is due to the strong interaction between
the hydroxyl surface groups and the water molecules. These findings are in agreement
with velocity profiles obtained from simulations of sheared water films between mica
surfaces [159].

Since the shear viscosity is linearly dependent on the inverse of the velocity gradient,
it is possible to define two different viscosities in the system. One in the surface region
(ns) and the other one in the bulk region (7)), see also Fig. 8.5l To obtain the shear
rates in the two regions, the velocity profile is fitted to a linear function in the region
of the first water peak and in between. The fit region for the velocity profile of the
interfacial layer starts at the position where the water density is for the first time
equal to the density at the first density minimum and ends at the position of the first
water density minimum, shown as the gray shaded areas in Fig. This definition
is used since the velocity profile shows big fluctuations close to the surface. Due to
the small amount of water molecules in the very proximity of the solid surface, the
statistics are not sufficient to obtain a smooth velocity profile. The ratio of the two
viscosities is then determined by the ratio of the velocity gradients in the interfacial
(%s) and bulk (o) region, eq. (8.7).

In Tab. [0.1] the numerical values of the interfacial viscosities are shown. For the
more hydrophilic surface (xog = 1/4), the interfacial viscosity is larger by a factor
of four compared to the bulk viscosity. The less hydrophilic surface exhibits a similar
interfacial viscosity, roughly twice the bulk value. For both surfaces, the change in
viscosity is moderate and does not support an ice-like interfacial water structure.

As for the hydrophobic surfaces, eq. can be used to define a slip length b.
Therefore, the velocity profile is fitted in the bulk region to a linear function and
extrapolated. By definition, the bulk region is ranging from the first to the last min-
imum of the water density profile, which is depicted as the white region in between
the gray shaded areas in Fig.[9.3n). The location of the slip boundary is defined as
the center of the oxygen atoms of the OH surface groups. This procedure leads to a
negative slip length of roughly 0.3 nm, see Tab. This would correspond to the
situation of a velocity profile which is linear in the mid region and constant over a
length of 0.3 nm from the surfaces. For constant viscosities in the bulk and interfacial
region, egs. can be used to determine the ratio of the two viscosities. How-
ever, since the viscosity will be a continuous function of the distance from the surface
and the definition of the exact width 0 of the surface layer is difficult, this procedure
is not useful for the determination of the interfacial viscosity.
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9. Water at hydrophilic surfaces

From the velocity profiles, only the ratio between the interfacial and the bulk vis-
cosity can be calculated. For the explicit determination of the viscosities, the force
acting on the diamond slabs is needed. In the simulation, the two solid slabs are
attached to harmonic springs which are pulled with constant velocities +vg. From
the average displacement of the slabs from the minimum of the spring potential, the
average force on the slabs can be directly read of. The shear viscosity is given by

F
Ozz = 1 = N0, vy =Ny (9'1)

and relates the stress tensor 0., to the gradient of the velocity profile with the asso-
ciated shear rate 4 = 0,v,. F' denotes the viscous force from the liquid, acting on the
slabs with surface area A. Since in the simulation cell two water films are present,
the viscosity is given by

_ k)2
Ao

F./2
Ns = "
A

and

o (9:2)
with the average forces F;, (i = 1,2) on the two slabs. From the shear rate, obtained
from the velocity profiles, and the average force measured in the simulations, the
viscosities given in Tab. are obtained from the above equations.

The viscosity 79 in the inner region of the water film is similar for the hydrophilic and
hydrophobic surfaces. The moderate confinement of 4 nm is not large enough to lead
to strong deviations from the bulk viscosities, since the values for the bulk viscosity
of the water film are in good agreement to the literature value n = 0.642 cp [160] for
the SPC/E water model, obtained in non equilibrium simulations. The SPC/E water
model still underestimates the viscosity of real water, n = 0.851 cp [161].

Since the used shear rates 4 ~ 10'° s~! are much larger than those typically used
in experiments, it is crucial to check if the linear response regime is reached. We
account for this issue by performing two benchmark simulations with double and half
of the diamond pulling speed. Since neither the measured bulk viscosities nor the slip
length changed with different pulling speed, see Tab. we infer that the system is
still in the linear response regime.

9.3. Diffusion

The viscosity of a liquid directly affects the diffusion constant for a particle with
radius a, which is given by the Stokes-Einstein relation D = kgT'/67na. Diffusion
constants are calculated measuring the mean square displacement or from the velocity
autocorrelation function. This leads to difficulties for the determination of a local
diffusion constant inside a small layer, since the particles will rapidly diffuse out of
the considered slab. Another route to estimate diffusion constants perpendicular to a
certain liquid layer is the examination of the correlation for a function f(z) which is
unity if the particle is inside the layer and zero otherwise.

f(z) = (9.3)

1 ifzp<z<2z9+ Az
0 else
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9.3. Diffusion

rog wo [ps/nm] 1o [1073 Ns /m?] 7, [1073 Ns /m? ]

1/4 0.02 0.73+0.03 2.7+0.7
1/8 0.02 0.71£0.01 1.5+0.3

0 0.02 0.66 £ 0.06 -
ron vo [ps/nm] 1o [1073 N's /m? | b [nm]
1/4 0.01 0.71 £ 0.03 —0.31 £0.01
1/4 0.04 0.722 + 0.005 —0.317 £ 0.004

Table 9.2.: Simulation results for the viscosities calculated by means of eq. . The
errors of the viscosities are calculated from the uncertainties of the measured spring
force and of the shear rate. Also the results of two benchmark simulations at half and
double pulling speed are shown. The interfacial viscosity is not calculated for these
simulation runs. Due to the shorter simulation run, the velocity profile can not be
determined with the necessary accuracy.

The autocorrelation function (ACF) of f(z) is then given by

cty=N! /dz/dz' p(z, 2", ) f(2) f(2")po(2)), (9.4)

with the probability p(z,2’,t) that a particle is at z at time ¢, given that it was at
z" at t = 0. The normalization constant A assures that C'(0) = 1. p(z,2,t) is the
solution of the well known one dimensional diffusion equation for a particle in an
external potential W (z),
1
o) = 0. (D) | LW ) +o | pie 0} (9.5)
B

p(z,2',0) = 6(z—2"). (9.6)

For bulk water with zero external potential and position independent diffusion con-
stant D, the solution is given by

2z — 2?2
p(z, 2, t) = (47 Dt) Y2 exp <_<4Dt)> (9.7)

with the boundary condition p(z,2’,t) — 0 for |z — 2’| — oo. Since for bulk water,
the density po(z) is constant, the autocorrelation function in eq. (9.4) is given by

z0+Az 20+Az _ N2 Az
~ ManDrA?2] V2 (1= =27 o (0.
o) /ZO dz/zo d-' [4rDi(Az)?] = S 99)

for long times t > (Az)?/D. The above equation is compared to simulation results
for an N P,T ensemble of 6000 water molecules in a 3 x 3 x 20.6 nm? box. As for the
other simulations, the system is coupled to a pressure of 1 bar and to a temperature
of 300 K. The obtained autocorrelation functions in Fig. are then fitted to C(t) =
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9. Water at hydrophilic surfaces

Az D [nm?/ns ]

0.1 2.65
0.2 2.75
0.4 2.84
1.0 2.87

Table 9.3.: Diffusion constants for bulk water, obtained from a fit of the ACF to
C(t) = ag + a1t~ /2. The ACF is fitted in the region where the function shows power
law behavior.

ag 4 ait~/2. The diffusion constant is then determined to be D = (Az)?/(4mwa?).
This procedure yield diffusion constants for bulk water of 2.65 — 2.87 nm?/ns, see
Tab. These values are in good agreement with other publications: for the SPC/E
water model, the diffusion constant was determined to be D = 2.70 — 2.79 nm?/ns
[162]. Experiments on the self diffusion of real water yield a value of 2.30 nm?/ns at
298 K [163, [164]. Although the obtained diffusion constants are reasonable, one has
to be concerned about a few issues, when estimating the diffusion constant by means
of eq. .

Since the height Z of the simulation box is finite, C'(¢) does not decay to zero but
C(t) — (Az)/Z for t — oo. For long times, the probability density is homogeneous
across the box, p(z,2',t) — 1/Z for t — oo. Then

fzzo+Az dz szO+AZ dz! (1/ZBox) As
C(t - OO) = 2 +Az :S +Az = ' (99)
I dz fzoo dz' §(z —2')  ZBox

20

The timescale on which equilibrium is reached inside the box is given by 7p ~ Z2/D.
For a 20 nm long box, this time is about 100 ns, thus much longer than the simu-
lation duration. Also, eq. is only an approximation for the real solution, since
periodic boundary conditions are used in the simulation. Nevertheless, as long as the
considered layer is small compared to the overall box size, these effects are only small
corrections.

For water molecules close to the solid/liquid interface, the solution of the diffusion
equation, eq. , is much more complicated. Generally, the liquid particles will
experience a non zero surface potential W(z) and the mobility of a single water
molecule will depend on its distance from the surface. Due to the symmetry breaking
of the interface, the diffusion tensor is anisotropic with different components for the
lateral and the perpendicular direction with respect to the interface. Simulations have
shown that the water molecules are more mobile along the lateral direction [I5I]. More
sophisticated models are necessary to calculate the diffusion constant in the interfacial
layer under the presence of a surface potential [I65]. As a crude approximation, the
solution of the diffusion equation in front of an interface for a position independent
diffusion constant and zero external potential is considered. Since there is no flux of
particles across the interface, the first derivative of the probability distribution must
be zero at the location of the surface, z = 0. Then, the solution of eq. is given
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c(t)
c(t)

‘ 00 00l ———4 """
t[ps] t [ps]

Ll .
1000

Figure 9.4.: Autocorrelation functions for bulk water for different layer thicknesses Az
with linear (a) and logarithmic scale (b). The legends give the width of the considered
layer in nanometer. In the linear plot, also one fit function for Az = 0.4 nm is shown,
in the right plot, all fit functions are shown. The depicted fit functions are obtained
from fitting the ACF in a region where the power law behavior is best. The fits lead
to the data shown in Tab. (9.3

Figure 9.5.: ACFs for water at the hydrophilic and hydrophobic surfaces inside a
Az = 0.1 nm wide region, centered at the first water peak. Also, the ACF for bulk
water with a slab thickness of Az = 0.1 nm is shown. Fig. a) shows the ACFs together
with the fitfunctions C(t) = ag + a1/vt. In Fig. b) the ACFs and the exponential
fitfunctions C(t) = exp(—t/7T) + ag are shown. The fits lead to the data shown in

Tab.
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9. Water at hydrophilic surfaces

rog Az[nm] D[nm?/ns] 7 [ps]
1/4 0.8 0.19 65
1/8 022 0.55 50
0 0.24 1.66 36 a
1/4 0.0 0.06 75
/8 0.10 0.20 50
0 0.10 0.85 27
bulk 0.0 2.65 5.0 .

Table 9.4.: Diffusion constants obtained from fitting the ACF to y = ag + a1/+/t in
the region of the first water peak (upper part) and in a 0.1 nm region centered at the
position of first water peak (lower part). The region of the first water peak is ranging
from the position where the water density is for the first time equal to that of the
first water density minimum up to the position of the first water density minimum.
The two different slab regions are indicated in the figure on the right hand side. D is
obtained from fitting the ACF to the functional form C(t) = ag + a1/+v/t in that time
interval where the agreement with a power law is best. The time constant 7 results
from fitting the functions to C(t) = agexp(—t/7) + a1 for 0 < ¢ < 100 ps. The ACF's
in the first water peak together with the fits are shown in Fig. Also, the results
for bulk water are shown. For the determination of 7, the autocorrelation function is
fitted to C(t) = agexp(—t/7) + a1 in the interval 0 < ¢ < 20 ps.
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9.3. Diffusion

p(z,7,t) = (4w Dt) /2 [exp <—@;l;;)2) + exp (—%)} . (9.10)

The solution for two parallel walls with absorbing boundary conditions can be con-
structed from the infinite superposition of eigenfunctions of the diffusion equation [165].
Assuming a constant density p inside the layer, the autocorrelation function eq.
decays with the inverse square root of time for long times (¢ > (Az)?/Dt). In contrast
to the bulk solution in eq. , the prefactor is larger by a factor of two.

0

20+Az 20+Az 2
- [ e e [z+o<(AZ> )]
1 Dt(A2)2 ).y . 4Dt
Az

V7Dt

Fitting of the ACFs obtained from the simulation data to a function y = ag+ a1z~
leads to the diffusion constant D = (Az)?/(ma?) for the diffusion perpendicular to
the considered layer. The autocorrelation functions, shown in Fig.[9.5] are obtained
from the simulation of one solid surface in contact with water in a 3.0 x 3.0 x 8.0 nm
box in the N P,T ensemble. Two different regions of the water slab are considered for
the estimation of the diffusion constant, depicted in Tab. The first one extends
over the entire first water peak in the density profile. By definition, it starts at the
position where the water density is for the first time equal to water density at the first
minimum and it ends at the position of the first water density minimum. The second
corresponds to a 0.1 nm wide layer, centered at the maximum density of the first water
peak. The diffusion constant decreases for the more hydrophilic surfaces, see Tab.
Compared to the bulk value, the diffusion constant is only moderately reduced at the
hydrophobic surface, whereas it is reduced by a factor of more than ten at the most
hydrophilic one in the peak region. For the smaller water slab in which the water
molecules are on average closer to the surface, the difference between the hydrophilic
and the hydrophobic surface is even more pronounced. This is due to the fact that the
surface potential which is experienced by the water molecule decreases with increasing
distance from the surface. However, care has to be taken with the interpretation
of the obtained diffusion constant due to the crude assumptions. The neglect of
the surface potential, of the position dependent mobilityﬂ and the assumption of a
constant density in the peak region will certainly lead to changes in the calculation
of the real diffusion constant. However, a simple solution of the diffusion equation
without these assumptions is not possible any more.

Another property of interest is the timescale 7 on which a water molecule stays
in the first water layer. This timescale is estimated from the initial decay of the

z0+Az 20+Az

cit) = Nl/ dz/ dz' p(z, 2, t)po(2)
20 2
1

Q

(9.11)

1/2

'From hydrodynamic theory, the mobility of a single sphere approaching a no slip boundary is
decreasing, which was shown in chapter @
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9. Water at hydrophilic surfaces

autocorrelation functions in Fig.[9.5l For the hydrophilic surfaces, this decay constant
is between 50 and 65 ps, thus roughly twice as long as for the hydrophobic surface (7 =
36 ps), see Tab. This decay time is indeed sensitive on the surface hydrophilicity,
in contrast to the results in Ref. [I51], where the residence time is insensitive to the
surface hydrophilicity. The longer residence time at the hydrophilic surface is due to
the fact that the water molecules are more strongly attracted to the polar surfaces.
Even for the hydrophobic surface, the residence time is much longer than for bulk
water. In bulk water, this time constant for the same slab thickness is only 5 ns, see
Tab. thus comparable to the lifetime of a single hydrogen bond 755 ~ 1 ps [19].
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10. Summary and outlook

This work presents theoretical results on interfacial polymer and water dynamics.
In the first chapter, the importance of polymer and water dynamics in science and
in technological applications is discussed and a general overview of the main issues
is provided. Coarse-grained and all-atomistic simulations as well as analytic non-
equilibrium Fokker-Planck techniques are employed.

The first part of the thesis is concerned with non-equilibrium polymer dynamics.
The effect of solvent molecules are implemented within a continuum hydrodynamic
theory which is explained in chapter [2| Chapter [3| provides a general survey on poly-
mer dynamics in unbounded shear flow and different polymer models are introduced.
In Brownian Dynamic simulations, we find that after an initial stretching of the poly-
mer with increasing shear strength, the polymer extension decreases at higher shear
rates. This effect is caused by the configurational constraints arising from the con-
stant contour length of the polymer and has not been observed in single molecule
experiments.

Chapter (4] then analyzes the effect of a no-slip boundary on the the polymer dy-
namics in shear flow. Due to the orientation of a polymer in shear flow together with
the hydrodynamic interactions at the interface, a repulsion of the polymer from the
boundary is observed. We quantify this repulsion in terms of shear rate, polymer
length and temperature. The analytic calculations are validated by the results of hy-
drodynamic simulations. Chapter [5| discusses the repulsion of polymers at interfaces
in external, constant fields. Again, the coupling between thermal fluctuations and
hydrodynamic interactions drives the polymer away from the interface. Hydrody-
namic simulations confirm the predicted dependence of this lift force on parameters
like polymer length, external field strength and distance from the wall. The electrical
manipulation of end grafted DNA is discussed in chapter [0] of the first part. Ef-
fects, arising from the different bending stiffness of single and double stranded DNA
are examined. Possible biosensing applications of this system are discussed by the
adsorption of ligands at the free end of the DNA.

In contrast to the first part where the solvent molecules are incorporated in a
coarse grained fashion, the second part analyzes the equilibrium and non-equilibrium
structure of interfacial water on an atomistic level. Via Molecular Dynamics simula-
tions, the equilibrium water structure at a hydrophobic diamond surface is studied
in chapter Contact angles are determined for different degrees of the surface hy-
drophobicity. In the subsequent chapter [8] these surfaces are used in non-equilibrium
shear flow simulations to examine the hydrodynamic boundary condition. We find a
quasi-universal relationship between the contact angle and the slip length. In shear
flow simulations with dissolved gas, we only find mild effects of a surface adsorbed gas
layer on the slip length. The last chapter of the second part extends the preceding
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10. Summary and outlook

Figure 10.1.: In Fig. a), carbon nanotubes of 3.3 nm length with diameters ranging
from 0.4 nm to 0.8 nm are depicted. Fig. b) shows a simulation setup to analyze
the nanotube dynamics in shear flow. The nanotube is immersed in a water film
between two surfaces. The two surfaces are then pulled in opposite directions which
leads to a shear flow profile inside the water film, in the same way as presented in
chapter [8] Preliminary simulation results suggest that the nanotubes are adsorbed at
the interface.

studies of non-polar, hydrophobic surfaces to polar, hydrophilic surfaces. The shear
viscosity in the interfacial water layer at the polar surfaces is moderately increased
by a factor of four, compared to bulk water. The diffusion of single water molecules
is found to be slower at the hydrophilic surfaces than at the hydrophobic interfaces.
However, we do not observe an increase in viscosity of several orders of magnitude or
a solid like water structure at hydrophilic surfaces.

A natural extension of the MD simulations would be to apply this technique to large
objects in interfacial flow. Preliminary results on the adsorption of carbon nanotubes
at hydrophobic interfaces indicate that the nanotubes are adsorbed on the surface,
see Fig. Using the setup described in chapter [§] the effect of shear flow on the
adsorption and orientation dynamics of the carbon nanotube can be analyzed. First
results suggest that the adsorbed tube rather glides than rolls on the surface in shear
flow. The knowledge of the hydrodynamic boundary conditions at the liquid/solid
interface and at the nanotube surface and of the effective surface potential obtained
from these simulations will be crucial for the explanation of the dynamics.

However, the MD simulation technique is computationally very demanding and is
therefore restricted to small systems with dimensions of a few tens of nanometer.
Nevertheless, the results obtained in the all-atomistic simulations for the interfacial
energies, slip lengths and depletion thickness can be fed into coarse-grained simulation
models. Our approach thus constitutes an example of multi-scale modeling of complex
matter at interfaces.
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A. Appendix

In this appendix, calculations and details of the computer simulations are shown.
In section [A.1], computational details of the coarse-grained polymer simulations are
described which lead to a speedup in computer time. As a test of the polymer simula-
tions, scaling relations from polymer theory are compared to the simulation results in
section Section explains the details for the calculation of the tumbling fre-
quency of polymers in shear flow. Lastly, section[A.4]is concerned with the calculation
of the contact angle in the MD simulations.

A.1. Updating the mobility matrix

The inclusion of hydrodynamic interactions in Brownian Dynamics simulations leads
to increasing computational effort, especially for large systems, i.e. long polymers.
The calculation of the mobility matrix for N particles requires O(N?) computational
steps. To implement the fluctuation dissipation theorem, eq. , a Cholesky de-
composition of the mobility matrix is performed which is a O(N?) process. Although
the use of optimized LAPACK [46] routines leads to a considerable increase in compu-
tational speed, most of the computer time is spent on the evaluation of the mobility
matrix and on its Cholesky decomposition. The hydrodynamic simulations are sped
up considerably by updating the mobility matrix only every nth step. In Fig.
the performance of the simulations on a AMD opteron CPU for different values of
n is shown. The accuracy of this procedure is checked by analyzing the radius of
gyration of a N = 100 polymer at 4 = 1, see Fig. Within error bars, the data
are not affected by the update frequency, since the mobility matrix is a slowly varying
function of the particle distance (o< 1/r). Also, we use relatively small timesteps of
fip = 107%. To account for sufficient accuracy at moderate computational cost, we
choose n =5 for N < 100, for longer polymers, the mobility matrix is updated every
20th step.

A.2. Equilibrium properties of polymers

In this section, simulation results of equilibrium properties for flexible polymers are
compared to predictions of polymer theory. The polymer beads are connected by the
potential given in eq. . The spring constant is stiff enough such that the bond
length between neighboring beads can be considered as constant. In all simulations,
excluded volume and hydrodynamic interactions are included.
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A.2.1. Radius of gyration

One important test of the simulation procedure is the scaling of the radius of gyration,

N
R = g D =) (A1)
i,j=

with polymer segment number N. For a self-avoiding, flexible polymer, the scaling of
the radius of gyration is given by R, = (RJ* + Ry’ + RZZ)I/2 ~ N” with v =~ 3/5 [B].
Simulation results for polymers of different length Ly = 2Na with hydrodynamic
interactions and excluded volume interactions are shown in Fig. The simulation
data nicely obey the scaling given in eq. (A.I]).

A.2.2. Relaxation time

The timescale of polymer dynamics in equilibrium is given by its longest relaxation
time 7. Several methods exist for its estimation from the simulations. From the
decay of the trajectory of the end to end vector of an initially fully stretched polymer,
the relaxation time can be estimated with an exponential fit function. Nevertheless,
the obtained relaxation times depend on the fit region. We use the decay of the
autocorrelation function of the end to end vector or the radius of gyration of a polymer
in equilibrium, to determine the relaxation times. Therefore, the autocorrelation
function is fitted to an exponential function C(t) = exp(—t/7). Within the Zimm
model in good solvent [5], i.e. with HI and excluded volume interactions, 7 oc N3¥
with v &~ 3/5. Our results for the relaxation time follow nicely the predicted scaling,

see Fig. [A.4]
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A.3. Tumbling frequency of polymers

Since the polymer shape in external shear flow is not constant, a well suited definition
of the tumbling frequency is necessary. In our approach, the tumbling frequency w of
a polymer with N beads is defined via the angular momentum

N
L= Zri X Vi, (AQ)
=1

with the positions r; and the velocities

Vi(t) _ I'i(t—i-AA)—I‘i(t)' (A?))

of the polymer beads. The angular momentum of the polymer is given by L(t) =
I(t) - w(t) with the inertia tensor

N
Ig = bapri—1i7, (A.4)
=1

which depends on the polymer conformation. The tumbling frequency is obtained
from the inverse of the inertia tensor,

w(t) =171(t) - L(¢). (A.5)

The average rotation frequency is then calculated by a time average over the simula-
tion trajectory.

A.4. Contact angle from MD simulations

In this section, the calculation of the surface tension for the liquid/solid interface is
described in more detail. We consider a solid slab with the surface normal in the
z-direction in contact with a liquid. From the simulations, the surface tension can
be calculated either via eq. or via the integration of the difference between the
normal and tangential pressure

oo
= [ dlpale) - mlo) (A.6)
—0o0

which are equivalent [I66]. From mechanical stability, the normal component of the
pressure tensor p,(z) = p,.(2) is constant, whereas the tangential component p;(z) =
(Pex +Pyy)/2 depends strongly on position close to the interface due to the interaction
between the solid and the liquid phase. Clearly, in bulk, the two components are equal.
The pressure tensor consists of a kinetic term from the momentum of the molecules
and of a potential term from the intermolecular forces, given in eq. (7.4),

Vo = Z mivai” + 11, (A.7)
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with particle index ¢ = 1..IN.

In the simulations for the surface tension of the solid/liquid interface, we switched
off all interactions between the atoms of the solid. Then, these atoms must be held
fixed artificially. This directly provides 715 — sy in eq. . For these simulations,
the calculation of the surface tension by the pressure tensor does not give the correct
result, since the kinetic energy is included in the pressure tensor, while the atoms
of the solid slab are frozen in the simulation. Since the routine g energy of the
GROMACS [122] package uses the pressure tensor to calculate the surface tension,
this leads to erroneous results if some atoms in the system are held fixed artificially.
Therefore, from eqgs. , the contact angles are calculated by the components
of the virial tensor of the liquid/solid (ls) system with the frozen surface atoms and
by the virial tensor of the liquid/vapor (lv) system by

QHIzSz - H}rsz - ny ) Alv
21y, — Ik, — Ty Al

cosf = — (A.8)

with the surface areas A and A of the two systems.
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