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Abstract

The understanding of flow phenomena is of great interest in different areas of natural
sciences. In this thesis, the following aspects related to the quantitative and qualita-
tive flow exploration are investigated. Firstly, a novel reconstruction method has been
developed, which employs a physics-based filter operation to generate a velocity field
that is consistent with the underlying flow model described by the Navier-Stokes equa-
tions. Interactive steering of the reconstruction process is achieved by exploiting pro-
grammable graphics hardware as a co-processor for numerical computations and the
interactive visualization of 2D flow fields. The quality of the proposed method has
been estimated via the reconstruction of velocity fields from synthetic and real-world
image sequences of laminar flow.

Secondly, a new feature-based importance-driven technique for visual exploration
of complex flows in 3D space, so called anchor lines, has been introduced. Anchor lines
are integral curves started in regions of high importance and accompanied by the par-
ticles seeded in the close vicinity of these regions. Experimentally it has been proven
that seeding anchor lines based on the finite-time Lyapunov exponent - a scalar quan-
tity that characterizes the rate of separation of infinitesimally close particles - allows
for significant reduction of the amount of conveyed information, yet emphasizing the
important flow structures. The efficiency of anchor lines is demonstrated by exploring
several complex flow scenarios in 3D space.

Thirdly, motivated by the importance of tensor quantities in physics and particularly
in fluid mechanics, a new method for interactive and intuitive tensor field exploration
based on the GPU particle tracing approach has been developed. In this case, the vector
field is derived from the diffusion tensor field by solving the associated eigenvalue
problem. The benefits of using this approach for the visualization of diffusion tensor
fields are shown in investigation of diffusion properties of biological tissue.






Zusammenfassung

Das Verstindnis von Stromungsphdnomenen ist in verschiedenen Bereichen der Natur-
wissenschaften von besonderem Interesse. Die folgenden Aspekte der qualitativen und
quantitativen Stromungsuntersuchung werden in dieser Dissertation untersucht. Er-
stens wurde ein neues Rekonstruktionsverfahren entwickelt. Diese Methode mittels
einer physikbasierten Filteroperation ein Geschwindigkeitsfeld erzeugt, das mit dem
zugrunde liegenden Modell konsistent ist, welches durch die Navier-Stokes-Gleichungen
beschriebenen wird. Die interaktive Steuerung des Rekonstruktionsprozesses wird durch
den Einsatz programmierbarer Graphikhardware als Coprozessor fiir numerische Berech-
nungen und die Visualisierung von 2D Stromungsfeldern erreicht. Die Qualitét der
vorgeschlagenen Methode wird durch die Rekonstruierung von Geschwindigkeitsfeldern
aus synthetischen und experimentellen Bildsequenzen von Laminarstromungen bes-
timmt.

Zweitens wurde eine effiziente merkmalsbasierte und wichtigkeitsgesteuerte Tech-
nik zur visuellen Erforschung von komplexen Stromungen im dreidimensionalen Raum,
so genannte Ankerlinien, vorgestellt. Ankerlinien sind Integralkurven, die in Bereichen
hoher Wichtigkeit gestartet werden und die von den Partikeln begleitet werden, die
in der unmittelbaren Umgebung dieser Bereiche eingestreut werden. Es wurde ex-
perimentell gepriift, dass das Einbringen der Ankerlinien ausgehend vom zeitbegren-
zten Lyapunov-Exponenten - ein skalar Wert, der das Mass der Separation infinitesimal
naher Partikel charakterisiert - eine signifikante Reduktion der Menge der dargestell-
ten Informationen ermdglicht und dennoch die wichtigen Stromungsstrukturen her-
vorhebt. Die Effizienz von Ankerlinien wird anhand der Untersuchung einiger kom-
plexer Stromungsszenarien im 3D demonstriert.

Drittens wurde, motiviert durch die Wichtigkeit von Tensorgréssen in der Physik,
und im Besonderen in der Fluidmechanik, eine neue Methode zur interaktiven und intu-
itiven Untersuchung von Tensorfeldern basierend aut GPU-Partikelverfolgungsverfahren
entwickelt. In diesem Fall wird das Vektorfeld vom Diffusions-Tensorfeld abgeleitet,
in dem das dazugehorige Eigenwertproblem geldst wird. Die Leistungstihigkeit dieser
Technik zur Visualisierung von Diffusions-Tensorfeldern werden durch die Untersuchung
von Diffusionseigenschaften von biologischem Gewebe gezeigt.
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Chapter 1

Introduction

1.1 Motivation

The investigation of flow fields is of great importance in many areas of science from
fluid mechanics and aerodynamics to biology and medicine. In general, the exploration
of flow fields is performed on an interdisciplinary level implying close collaboration
between physicists, mathematicians, computer scientists, and engineers in a particular
applied science, e.g., fluid dynamics, biology, or medicine (see Figure 1.1). Typically,
physicists are setting up the experiment and are performing the measurements of the
flow, taking into account the specifics of the investigated phenomena explained by the
engineers. The result of such measurements is a bulk of raw data, e.g., images in a 2D
or 3D spacial domain, which have to be processed and discretized by mathematicians,
taking into account the features of the underlying process suggested by the engineers.
Alternatively, the digital representation of the flow can be obtained as the output of
numerical simulations. The task of computer scientists is to efficiently represent the
digital data by means of computers and other related equipment in order to help the
engineers to interpret the results and to gain insight into the phenomena of their interest.

Looking over all these complications related to the flow exploration, two reason-
able questions arise: Why would anyone need to spend all these efforts to study the
flow? Why not just gain insight by direct observations? There are several answers
for these questions. The direct observation can only provide the qualitative description
of the flow while the detailed dynamics and precise mechanisms of feature develop-
ment remain concealed deep inside of the flow. Moreover, in complex flow scenarios
the characteristic features of the flow are appearing, developing, and disappearing, and
there is no possibility to reverse the process or stop it to study these features in more
detail.
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Figure 1.1: Flow exploration.

Thus, the flow investigation should be performed via thoroughly planned experi-
ments, allowing for capturing of instantaneous flow states, efficient extraction of all the
meaningful information from the recordings, and explanatory quantitative analysis of
the results. In this way, the insight gained during the experiments can be efficiently
shared and discussed among the scientists, helping them to conduct the research in a
new light. Taking into account the recent advances in computational fluid dynamics,
it is also of increasing importance to use the results of experimental studies for the
validation of numerical flow models.

In order to understand the unknown flow phenomena, it is necessary to find out,
what is happening inside of the flow domain under investigation. In other words, it
is important to obtain the physical properties of the flow, such as velocity, pressure,
density, viscosity, etc., and determine their dynamics. Furthermore, it is of great inter-
est to figure out how the characteristic flow pattern is affected by the change of these
quantities or the influence of external forces. Today, due to the progress in lasers, opto-
electronics, video and computer techniques made in the last few decades, it has become
possible to obtain the important physical quantities of the flow at high frame rates and
store them as a sequence of instantaneous flow states [RWKO1].

The velocity of the flow and quantities derived from it are the most important phys-
ical properties of the flow as they reveal its dynamics. Note that in general, it is not
possible to measure the velocity directly. Quantitative flow exploration is not an ex-
ception from this rule. The standard method to evaluate the instantaneous velocity in
each point of the flow domain is to seed the particle tracers into the flow and record
the subsequent particle images at appropriate frame rates. In this way, the displacement
of each particle or at least a group of particles can be defined. Knowing the timestep
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between the flow recordings, instantaneous velocity maps can be computed. If the par-
ticles are small enough and closely follow the flow without altering it or lagging behind
it, the instantaneous velocity map extracted from the particle images corresponds to the
actual flow field up to a certain degree of accuracy [Wes97].

Despite its seeming simplicity, the reconstruction of vector fields from experimental
image sequences is a challenging task. While setting up the equipment for flow mea-
surements, each flow situation should be carefully analyzed and experimental setup
adjusted according to the application-specific requirements. For instance, when the
measurements are performed in flows induced by living organisms, substantial efforts
should be made to avoid any artificial intrusion into the natural environment of the
organisms that could affect their behavior. Possible application-specific restrictions
imposed on flow measurement systems involve reduction of seeding density and re-
strained characteristics of particle tracers, limitations on lighting conditions, restricted
range of temperatures, etc. Moreover, the phenomenon under investigation per se can
be characterized by very complex flow pattern covering a wide dynamic range of ve-
locities within the flow domain. In addition taking into account general measurement
imperfections and discretization errors of the imaging process, the problem of the re-
construction of vector fields from experimental image sequences becomes undercon-
strained. Therefore, it is nearly impossible to reconstruct the admissible flow fields
from such sequences using standard methods. Recently, model-based approaches posi-
tioned themselves as an efficient means to resolve the aforementioned problems. These
methods introduce additional constraints to the intrinsically ill-posed problem based on
a priori information, and thus allow for the reliable reconstruction of flow fields from
experimental image sequences.

Once the velocity field is reconstructed, it should be visualized in an efficient and
intuitive way in order to provide the observers with meaningful information for the un-
derstanding of the flow phenomenon under investigation. The simplest method for 2D
flow portrayal is an arrow plot, where each arrow is associated with the velocity vec-
tor at a given position in the spatial domain of the flow. However, this representation
does not give all the insights that can be gained from the velocity field. Many sophis-
ticated visualization algorithms described in the literature allow for the extraction of
more valuable information, such as path-lines, vorticity, shear, strain, topological struc-
ture of the flow, etc., which enable the observer to see the unseen. Since all the data for
2D flow is stored in one plane, its visualization is more or less straightforward. Using
the wide range of techniques proposed so far, the 2D flow information can be already
efficiently presented to the observer [PvW93].
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In 3D flows the situation is much more complicated: the large amount of densely
packed self-obstructing information should be depicted at once, still enabling the user
to intuitively untangle the complex data dependencies and clearly see the interweav-
ing flow patterns. A number of sophisticated algorithms have been already elaborated
for this purpose and offered for exploitation to engineers. However, judging by their
tendency to use good old 2D arrow plots dragged through the volumes instead, the vi-
sual representation of 3D vector fields is still a great challenge for the visualization
community [FG98].

Since many physical properties of fluid flow, such as rate of strain, stress, velocity
gradient, etc., are described in terms of tensor data, it is highly important to enable the
visualization of this data as well. It is worth mentioning that direct measurement of ten-
sor fields is not possible in general. Tensors belong to a special category of multivariate
data, incorporating valuable physical information about the underlying phenomenon.
Taking into account the challenge of visualizing the vector fields which are essentially
the tensor fields of first-order, visualization of general tensors, e.g., stress or strain rep-
resented by second-order tensors, is not a trivial task. The physical interpretation of
the results of visualization is highly important and it strongly depends on a particular
application. However, it is not obvious how to find the intuitive “mapping” between the
mathematical and physical properties of the tensors. Therefore, visualization of tensor
fields is another open question in the area of visual flow exploration.

Despite of the great advances in different branches of science collaborating under
the headline of flow exploration, there is still a long thorny way to go pursuing the main
goal of the research in this area. According to the observations made by McCormick
et al. [MDB&7], scientists want to literally interact with their computational or exper-
imental data and they want to see immediately how the phenomenon under investiga-
tion is affected by the change of parameters. In other words, the interactive steering
and dynamical modification of the investigation process has to be achieved. Thus, the
main goal of visualization is to provide the scientific exploration with new insights,
encourage the creation of new approaches, and change the way scientists do science
[MDB87]. Therefore, our goal is to follow this direction and to make our contribution
by developing novel approaches.

1.2 Contribution

This dissertation presents various methods dedicated to two aspects of flow exploration:
the reconstruction of flow fields from experimental image sequence and the interactive
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visualization of flow fields. Flow exploration is a challenging task, requiring a certain
knowledge in many disciplines, including mathematics, physics and, in particular, fluid
mechanics, and computer graphics. Therefore, the chapters describing each method
contain a lot of expressions specific to all of these areas. In order to allow the reader to
understand these specific terms, I tried to briefly explain and emphasize the most rele-
vant terms in introductory sections. The most essential formulae and short theoretical
background underlying the application-specific processes are also provided. Moreover,
since the central theme of the whole thesis draws on the theory of flow fields, a detailed
introduction into this topic is included as well.

1.2.1 Tribute to the Particle Engine

All the problems investigated in this thesis are related to the flow. Taking into account
its long history, which started from qualitative analysis performed via passive obser-
vation of moving particle tracers immersed into the flow, and nowadays enabling a
comprehensive quantitative analysis of the flow phenomena under investigation, parti-
cle tracing has established itself as one of the most powerful and intuitive techniques
for flow visualization. Moreover, there is a vast number of applications, where moving
particles (discrete or connected) allow to reveal the features within the investigated data
set and give insight into the underlying process. A number of research papers published
by our Chair [Cha] as well as two international contests, which we have won, embrac-
ing different scientific areas from flow visualization and medicine to geomechanics and
tectonics, prove the value of the particle tracing paradigm.

As a consequence of collaborative research conducted in our Chair, particle tracing
has been efficiently implemented on programmable graphics hardware, which allows
for interactive streaming and rendering of millions of particles and enables the virtual
exploration of high resolution data fields [KKKWO0S5]. Additionally, our particle en-
gine has been extended by a linear algebra framework and a Navier-Stokes simulation
module [KWO03], which allows to interactively modify the flow field and immediately
visualize the effects of imposed changes.

All of the methods presented in this thesis are implemented as modules within the
particle engine framework and they extend it into a comprehensive tool for interactive
flow exploration, which includes numerical simulation, model-based reconstruction,
and feature-based flow visualization. Since many co-workers of our Chair as well as
students have contributed to the particle engine framework, I cannot use “I”’ when I
describe the developed methods in this thesis. Moreover, all my publications include
the co-authors, which contributed in different ways to the work associated with these
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papers. Therefore, through the rest of this thesis I will use the academic we in order
to acknowledge the collaboration with my colleagues and partners of interdisciplinary
projects.

1.2.2 Contribution

The main results of the four-years work described in this dissertation are the following
novel algorithms:

 a model-based approach for the reconstruction of flow fields from image pairs,

* anchor lines: a feature-based importance-driven technique for flow visualization,

* visualization techniques for diffusion tensor fields based on the particle tracing
paradigm.

All of these algorithms incorporate knowledge from different areas of science. There-
fore, the value of this dissertation cannot be judged solely by the number of algorithms.
Theoretically sound modeling, careful adjustment of these algorithms, and their effi-
cient implementation, is what makes the most value and was most time consuming. In
the following few paragraphs, the history behind each algorithm is briefly summarized,
which in my opinion describes the research process itself, and thus, the contribution of
this dissertation.

A Model-based Reconstruction Algorithm

The development of the reconstruction algorithm has been the most theoretically in-
volved and challenging problem investigated in this thesis. The consecutive devel-
opment of this method is also depicted by the number of publications dedicated to it
[KGW06, PDK+06, KGW108]. First of all, we have had to make a motivated choice
on the direction of development of the reconstruction algorithm, based on an analysis of
the drawbacks of already existing algorithms. The results of our investigations on this
issue are summarized in Section 2.3. As the result of this research, we have decided to
follow the most promising direction related to the class of model-based reconstruction
algorithms.

Since we have chosen the model-based direction, a lot of literature has been inves-
tigated in order to find the appropriate models and physically-based scaling factors to
make the reconstruction of vector fields reliable and consistent with the actual model
of the underlying flow phenomenon. It is worth mentioning that initially the purpose
of this reconstruction algorithm was to improve the quality of flow fields reconstructed
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from image sequences recorded in experiments with microorganisms. Therefore, re-
lated work about the characteristic pattern of the underlying flow, as well as assump-
tions about the numerical flow model have been thoroughly investigated. The result of
this research on the border between microbiology and fluid mechanics is presented in a
compressed form in Section 4.3.

As the final step, we have thoroughly validated the proposed reconstruction method
and compared its performance to other algorithms. Validation is a crucial issue for algo-
rithms in general and it is especially critical for algorithms dealing with real-world ex-
perimental data. We have tested our reconstruction algorithm quantitatively using syn-
thetic data sets for which the ground truth vector field is known, and semi-qualitatively
for experimental image sequences recorded in two different experiments with living
microorganisms. The results of validation are presented in Chapter 4.

Anchor Lines

We have started the development of the anchor lines technique from experiments on
the visualization of various complex flow fields in 3D. In this way, the implementation
basis for interactive visualization of unsteady 3D flows with a diversity of visualization
options including volume rendering of the derived flow properties has been established
[BSK*07]. However, the problem of adequate visual perception was unresolved in all
of our experiments. We have studied the literature related to this problem arising in
many areas of science, including medicine.

Focus and context techniques have appeared to us as the most promising direction
allowing to reduce the amount of information displayed at once, yet emphasizing the
important structures within the data set. While in medicine it is straightforward to
choose what is of importance, the decision on importance of a region in fluid flow is
a non-trivial task. A number of recent research papers on flow visualization has been
dedicated to topological and feature-based visualization methods. Therefore, in our first
experiments we have computed various quantities from given vector fields and used
these quantities as importance measures for emphasizing the flow features. Focus and
context techniques based on these measures have been adopted and embedded into the
particle engine. Moreover, several information reduction techniques based on similarity
of flow regions, for example arrow clusters, have been implemented [BKKWO0S8]. The
aforementioned improvements within the particle engine framework are described in
more detail in Section 5.3.

While experimenting with the visualization of complex flow phenomena, we have
noticed that sometimes, when the seeding probe for particles is sufficiently small, the
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trajectories traced by the particles can evolve into a complex but clearly visible flow
pattern. It was also observed that seeding the particles in other regions yields a bundle
of trajectories of similar shape. Inspired by these experimental results, we have studied
the theory behind this phenomenon and found out that the quantity, which describes
the degree of separation between the particle trajectories, is the finite-time Lyapunov
exponent. Thus, employing the finite-time Lyapunov exponent as importance mea-
sure, we have discovered the theoretically sound and physically meaningful method for
detection of heterogeneous regions in the flow and we called it anchor lines. The theo-
retical aspects as well as implementation issues related to this technique are presented
in Chapter 6.

Visualization Techniques for Diffusion Tensor Fields

Before we have started to work with diffusion tensors, we were looking for appeal-
ing and unusual areas of application for the particle tracing paradigm. Our attention
was drawn to the diffusion process in highly anisotropic tissues such as the human
brain, where molecular pathways reveal the direction of actual neural fibers. By thor-
ough modification of the routines for classical particle/line tracing based on the phys-
ical meaning of the underlying diffusion tensors and integration of a number of new
medically-based visualization modes we have created an efficient and interactive tool
for intuitive visualization of diffusion tensor fields [KKWO05].

It is worth mentioning that we have encountered a number of application-specific
problems on implementation stage. To resolve them, we consulted the literature ded-
icated to diffusion tensor fields. We have discovered several theoretical issues related
to tensor fields in medical applications, which have never occurred to us while we have
been working solely with vector fields. This includes the non-iterative solution of the
eigenvalue problem associated with tensors, the diffusion-driven line/particle propaga-
tion algorithm, the visualization of anisotropy, the medically-based termination criteria
for the line/particle propagation procedure, etc. All of these issues are addressed in
detail in Chapter 7.

1.2.3 OQutline of This Thesis

The hierarchical structure and logical ordering of this dissertation is as follows. Since
the thesis deals with two aspects of flow exploration, namely reconstruction and visu-
alization, the text is split into two logical parts: Model-Based Reconstruction of Vector-
Fields from Image Sequences and Interactive Visualization of Flow Fields. Each part
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contains an introductory chapter into the subject, where the terminology, the theoreti-
cal background, and related work are presented in a compressed format. The developed
methods are described in detail in the following chapters. The efficiency of each algo-
rithm is demonstrated in a number of examples including a performance analysis at the
end of the corresponding chapter.

Chapter 2 provides an introduction to the subject of flow fields. It contains the
mathematical and physical definition of flow fields as well as the information about
the main types of flows and their features in terms of fluid mechanics. Additionally,
a short description of the most popular methods for experimental flow measurement
is presented, including an example of the experimental setup adjusted for experiments
with microorganisms. An overview of existing reconstruction techniques from image
sequences, compiled at the end of this chapter, exposes the general problems related to
the reconstruction process.

Chapter 3 is dedicated completely to the model-based reconstruction method and
provides theoretical as well as practical aspects of its development. The theoretical
part contains an overview of the algorithm including the functional scheme and the
block diagram, the choice of the basis approach for the prediction step, as well as the
description of various flow models incorporated into the correction step. The practical
part addresses application-specific numerical and implementation issues related to the
proposed reconstruction method.

Chapter 4 compiles the results of the validation of the model-based reconstruction
algorithm presented in Chapter 3. In order to give a methodological overview of the
validation process, a list of error measures as well as a short description of the external
software applications involved in the validation process, including the standard tools
for the reconstruction of flow fields from image sequences, is provided in the begin-
ning of this chapter. A thorough validation of efficiency and accuracy of our algorithm
in comparison to standard approaches is performed using two different synthetic im-
age sequences, each supplied with the ground truth vector field. Furthermore, a semi-
qualitative analysis of the efficiency of our method is demonstrated in an application to
two real-world microbiological image sequences. The results of the reconstruction for
experimental image sequences have been compared to the results provided by a particle
tracking algorithm applied to several particles segmented from the images. The com-
parison of our method to standard methods in terms of computational costs is presented
at the end of this chapter.

Chapter 5 gives an introduction to the second main topic of the thesis: interac-
tive visualization of flow fields. A short overview of the state-of-the-art techniques
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describes solved and unsolved problems related to flow visualization in general. The
basic mathematical description of the particle tracing paradigm underlying the proposed
visualization methods can be found in this chapter as well. In order to give the reader a
rough idea about the technical foundation of the developed visualization techniques, we
briefly summarize the most important aspects related to the efficient implementation of
the core particle tracing algorithm on the GPU.

Chapter 6 provides a detailed description of the anchor lines technique. It con-
tains the relevant information on theoretical as well as practical aspects related to the
computation of the finite-time Lyapunov exponent. The description of the anchor lines
technique itself includes a discussion about the problems encountered during the im-
plementation and their practical solution. The efficiency of anchor lines in combination
with other feature-based techniques is demonstrated by employing them for visualiza-
tion of different flow scenarios.

Chapter 7 1s focused on the visualization of diffusion tensor fields. The chapter
starts from a concise theoretical background for diffusion tensors and their properties
as well as an overview of the related work on visualization of diffusion tensor fields.
Then we proceed by presenting the details on the implementation of our method, includ-
ing a number of encountered difficulties and their elimination. Finally, the advantages
of the proposed visualization technique are shown using the rendering results and the
performance analysis.

The main results of this thesis as well as directions for further research are summa-
rized in Chapter 8.



Part 1

Model-Based Reconstruction of
Vector-Fields from Image Sequences
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Chapter 2

Experimental Exploration of Flow
Fields: From Theory to Practice

The logical step before delving deep into the implementation of any algorithm is to
clarify the terminology, specify the input and the output of the algorithm, and describe
its desired behavior in defined terms. This chapter provides an introduction into flow
fields and flow measurement techniques as well as a review of related work in the area
of flow field reconstruction.

2.1 Flow Fields

Before starting with the description of reconstruction and visualization of flow fields,
let us first clarify, what do the flow fields represent. Surprisingly, there is no unique
definition of the flow field. In various areas of science and even within the same sci-
entific domain the term “flow field” is interpreted in different ways. In this section we
will show several common definitions.

In mathematics and physics, a field is a map that assigns to each point in a given
spatial domain and/or temporal domain a certain value. Fields can consist of scalars,
vectors, or tensors or any combination of these quantities [SPS99]. For example, a
three-dimensional vector field in 3D can be represented by a global analytical function
f(x,y, z) defined over a bounded spatial domain £ C fR3. Alternatively, the vector
field can be specified by a map F: R — JR3. A field value ® can be found at any point
(x,y, z) of the domain by direct computation of the value of the analytical function
at this point: & = f(z,y, z). Note that the situation is a bit more complicated in the
discrete case: the field is specified only at grid nodes. Thus, in order to get a field value

13
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at any position within a grid, an interpolation between the values at the neighboring
grid nodes is required.

2.1.1 Flow Fields in Fluid Mechanics

In fluid mechanics and other technical sciences all liquids and gases are considered
as fluids. Fluids are substances, for which even a small shear force applied externally
causes a deformation of their molecular structure. This deformation of the internal fluid
structure essentially is the flow. In general, the fluid flow can be caused by action of
various types of external forces, such as gravity, pressure differences, rotation, shear,
and surface tension.

While all fluids behave similarly under the action of external forces, their macro-
scopic properties differ considerably. Among the most important and simple properties
of fluids are the density and viscosity. Although there is a substantial difference be-
tween liquids and gases, both types of fluids obey the same laws of motion. In terms
of field theory, a fluid is a continuum with respect to all relevant properties: all the
properties of interest are defined everywhere within a given domain [FP02].

In fluid mechanics the term flow is sometimes related to the moving fluid itself with
all its properties. From this point of view, which is traditionally called Eulerian ap-
proach, a flow field is a collection of all the relevant properties of the fluid defined ev-
erywhere over the spatial as well as temporal domain [PG92]. Thus, each entry of the
flow field consists of a number of scalar (density, pressure, viscosity), vector (velocity,
acceleration), and even tensor (stress, strain) values [LV84].

More often, the term flow denotes the motion of fluid or fluid dynamics. This ap-
proach takes its roots from the first scientific attempts to understand flow phenomena.
To get a rough idea about the structure of the underlying flow the observer needs to see
how, namely with which speed and in which direction, the particle tracers are advected
within the flow. In this case, the flow field is the corresponding velocity vector field
of a fluid or just vector field under investigation. Thus, the expression “reconstruction
of a flow field” is related to the reconstruction of velocity vectors in each grid point of
the fluid domain. An example of the reconstruction of a velocity vector field from a
real-world flow image is presented in Figure 2.1. Note that the properties of the flow
field are the quantities derived from the velocity vector field.

The velocity is the time derivative of the position. Therefore, a velocity vector field
can be constructed if we compute this time derivative at every point in space. In the
simplest case, the time-independent (steady) vector field over the spatial n-dimensional
domain €2 can be computed as follows:
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(b)

Figure 2.1: Separated flow behind wing: (a) particle image; (b) reconstructed instantaneous
vector field.
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Thus, the velocity vectors at every point p in space are tangent to the flow lines p(t)
visualized by the particle paths at this point (see Figure 2.2 (a)). In the flow field
described by Equation 2.1 particles seeded at the same position in space will follow the
same path independent of the time instant when the particles are released [JirO3].

fluid velocity

V(X,Y,z,t)

\
(xy.2) f
P, 1)
moving
fluid .-
(a) (b)

Figure 2.2: Flow field in: (a) fluid mechanics; (b) vector calculus.

In general, the velocity vector field itself can vary in time, causing the particles re-
leased at the same position in different moments of time to follow different trajectories.
In this case, given the particle locations, the velocity vector field over the n-dimensional
spatial domain €2 and temporal domain IT can be computed as follows:
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V(p(t), t) = % , V(p(t), t) e R"™ (2.2)
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Note that with constant ¢, Equation 2.2 simplifies to Equation 2.1 for the steady flow
situation.

2.1.2 Flow Field in Vector Calculus

In vector calculus there is no definition for a flow field as such. However, there is
a rigorous definition of the velocity map of the fluid in 3D, which assigns a vector
V(p, t) to each point (p, t) in its domain €2:

V(p, t): R — K3 (2.3)

The term flow is associated with any vector field, no matter whether it is a velocity fluid
map or any other abstract vector field. Flow is defined as the mapping ¢(p, t), which
associates the position of the point p at time 0 with the position of this point after time
t has elapsed. Analytically, ¢(p, t) is defined as follows [MT95]:

6. 1) = V(g(p, 1)),
é(p, t) = p. (2.4)

A graphical interpretation of the flow field definition given by Equation 2.4 is depicted
in Figure 2.2 (b).

2.1.3 Flow Field as Dynamical System

Flow can be also considered from a completely different point of view: dynamical
systems. Dynamical systems represent the evolution of a collection of interdependent
quantities M within the common system according to a specific set of rules. The do-
main ® spanned by the system variable values is called the phase space of the dynam-
ical system. A set of values M (¢) build up the specific state of the system at a specific
time ¢.

The evolution function I'* of a dynamical system can be obtained as the solution of
a differential equation of motion:

OM(t)

5 = ~(M(t), t). (2.5)
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Technically, v(M(t), t) represents the velocity vector at position M(¢) in the phase
space at time ¢. Thus, v(M(t), t) specified over the whole domain © is the velocity
vector field defined at each position in the phase space. In this sense, flow can be
interpreted as a special class of dynamical system [L6f98], for which the temporal
domain is restricted to the non-negative real numbers. Depending on the content of the
phase space, the flow field can be considered either as a velocity vector field or as a
complex vector field, with each entry consisting of a collection of different quantities
of the dynamical flow system (cf. Section 2.1.1).

2.1.4 Fluids and Flows

Fluid flows are characterized by a number of different physical parameters. The density
p, dynamic viscosity p, and velocity V are of particular interest for fluid mechanics.
Depending on these parameters, flows can be classified in different ways. Note that
this division into classes is not fixed, transitions between the different types of flows
commonly take place.

Creeping, laminar, and turbulent flows. Depending on the speed of the flow, creep-
ing, laminar, and turbulent flows' can be distinguished . At low speed, characterized
with the Reynolds numbers Re <1, the flow is dominated by the viscous forces, pres-
sure, and body forces and is called creeping flow. This regime takes place in the flows
through porous media, flows in narrow tubes, or in experiments conducted on micro-
scopic scales.

The flows at increased velocities, characterized by a broad range of Reynolds num-
bers, are called laminar flows. Inertial forces in these flows are strong enough to move
the fluid particles further even if the action of the external force has ended. The im-
portant feature of these flows is that the fluid particles follow the smooth trajectories
without intermixing with the particles on the other fluid “layers”. Laminar flows are
the most common observed flows in the every day life.

A further increase in velocity leads to the turbulent flow regime, characterized by
rather random, and instable flow patterns. Frictional force in such flows can be ne-
glected. This type of flows can be observed, for example, in wind-tunnel experiments
or, in real life, in the clouds behind an aircraft [FP02].

Compressible and incompressible flows. One of the important properties of flows is
incompressibility. If the density of a fluid is constant under different conditions, this
fluid is considered to be incompressible. Gases at low velocities, as well as most liquids,

! There are also subsonic, sonic, and hypersonic flows, but we do not consider them in this work.
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are considered to be nearly incompressible. On the other side, if the density of a fluid is
affected by the change of the pressure values, this fluid is considered to be compressible
[GDN98]. At high velocities (e.g., supersonic and hypersonic flows), most of the fluid
flows become compressible.

Viscous and inviscid flows. Separation of flows in viscous and inviscid is related to
viscosity, the property of fluids that generates frictional forces within the fluid. In this
sense, if the frictional forces are very strong, fluids are called viscous, otherwise —
inviscid. In idealized form, gases are regarded as inviscid fluids. On the other side,
honey or oil are highly viscous flows [GDN98].

It is worth mentioning that fluid mechanics is also dealing with other classifications,
which are based on many other physical properties of the fluid flows, such as buoyancy
or phase. Considering all the phenomena affecting the fluid flows and all the types of
flows is out of the scope of this thesis. Therefore, we consider only a limited num-
ber of flow types. All the flow scenarios used for the validation of our reconstruction
algorithm in Part I are constrained to creeping and laminar incompressible viscous one-
phase flow models. Since the visual exploration of turbulent flows is a great challenge
for the visualization community, the efficiency of developed visualization methods is
demonstrated using this type of flows in Part II.

2.2 Flow Measurement

The most ancient and intuitive way to investigate flow is to passively observe the mo-
tion of particles seeded in the flow. In this way the great artist and scientist of the XVI
century Leonardo Da Vinci provided the first detailed drawings of the complex struc-
tures within the turbulent flow (see Figure 2.3 (a)). A further great step forward in the
flow exploration was made several centuries later by Ludwig Prandtl, who performed
a qualitative analysis of the basic features of unsteady flows by careful planning the
experiments and being able to vary a number of parameter settings (see Figure 2.3 (b))
[RWKO1].

The development of the laser in the mid-1960s provided the researchers in exper-
imental fluid mechanics with non-intrusive optical measurement techniques, and thus
enabled for the first time the acquisition of time-resolved velocity information at a point
in a flow [Hal88]. Today, the progress made with optical and video-recording tech-
niques and the rapid development of computer-aided systems allows for the extraction
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Figure 2.3: History of flow exploration: (a) turbulence sketch by Leonardo Da Vinci; (b)
Ludwig Prandtl in front of his water channel.

Table 2.1: State-of-the-art techniques for flow measurement.

Abbreviation | Full Name Measured quantity Reference
PLV Pulsed-Light Velocimetry velocity Vv [Adr91]
PSP Pressure Sensitive Paint pressure P [LCBS97]
TSP Temperature Sensitive Paint heat transfer, H

temperature T [LCBS97]
BOS Background Oriented Schlieren density gradient ~ Vp | [RRO1]
AMA Acoustic Microphone Array dynamic pressure  p(t)

on the surface [BFHT02]
IPCT Image Pattern Correlation Technique | deformation Ax | [Kir04]

of the model

of the whole field quantitative flow velocity information in a plane or even in a volume
of the flow.

2.2.1 Variety of Flow Measurement Techniques

Today the most important physical properties of the flow can be measured quantitatively
at high frame rates in a wide range of experiments from blood micro-channel to indus-
trial wind-tunnel. Fluid mechanics exploits several measurement techniques to acquire
the flow quantities of interest [KomO7]. The state-of-the-art techniques commonly used
in the fluid mechanics laboratories are listed in Table 2.1.

Taking into account the variety of different flow features which can be explored,
we will restrict ourselves to one feature, velocity, and focus on the exploration of ve-
locity flow fields. Thus, Part I of this thesis is devoted to the reconstruction of velocity
fields from the measurements provided by Pulsed-Light Velocimetry (PLV) [Adr91].
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This choice is motivated by the increasing popularity of the PLV techniques, especially
Farticle Image Velocimetry (PIV), and a never-ending challenge related to the inves-
tigation of flow dynamics represented by velocity fields requiring the elaboration of
efficient reconstruction and visualization techniques.

PLV is a group of particle-imaging techniques which indirectly measure the veloc-
ity flow fields by observing the motion of small distinguishable regions (markers) of the
flow at two or more time steps. Solid and liquid particles present in liquids and gases
are usually considered as markers. Additionally, gaseous particles can be also applied
as markers in liquid flows. Other types of markers are fluorescenting molecular patches
and speckle patterns formed by densely overlapping particles. The quantitative anal-
ysis of motion of image markers yields the displacement field of marker images. The
velocity field is obtained using the fundamental definition of the local velocity given
by Equation 2.2 [Adr91]. The large scale classification of PLV techniques based on the
type of particle tracers and their seeding density is shown in Figure 2.4.

Particle tracers Molecular tracers

¢ PLV
NS>> 1 NS<< 1
N,>>1 - N >>1 ‘—+—¢NI<<1 |
chromatic rescent

LSV PIV PTV

Figure 2.4: Various forms of pulsed-laser velocimetry (PLV). The abbreviations stand for:
LSV — Laser speckle velocimetry, PIV — Particle image velocimetry, PTV — Particle tracking
velocimetry.

The dimensionless numbers /N and /V; in Figure 2.4 correspond to the source den-
sity and the image density [Adr91]. The source density corresponds to the mean number
of particles in a resolution volume and can be used to define the number of the overlap-
ping particles in the image plane. The image density is equal to the average number of
particles in an interrogation area.

Interestingly, the experimental setup for all the PLV techniques based on particle
markers is nearly the same, except the seeding density. Since almost all the experimen-
tal image sequences investigated in this thesis were recorded using PIV, a more detailed
description of this method is provided in the next section.

2.2.2 Particle Image Velocimetry

Farticle Image Velocimetry (PIV) is a well established non-intrusive PLV technique for



2.2. FLOW MEASUREMENT 21

measuring whole field instantaneous velocity maps indirectly via the displacement of
flow particle tracers within a certain time interval At¢. The particle tracers can be nat-
urally contained in the flow, as it is the case in microbiological PIV investigations (see
Section 2.2.3), or artificially seeded into the flow before the experiment is started, as it
is usually the case for most experiments not involving living beings. The typical exper-
imental setup for PIV systems, as it is arranged, for example, for flow investigation in
a wind tunnel, is presented in Figure 2.5.

Flow with £
particles ~=3

* Particle image positions at t
o Particle image positions at t+At

S/
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Imaging optics
Flow direction

Image plane

—
=

Figure 2.5: Experimental setup for PIV systems.

In most applications, a selected plane in the flow seeded with particles is illuminated
twice by a thin laser light-sheet. The light scattered by the particle tracers towards the
recording optics in the time moments ¢ and ¢  is stored in a single frame or in two
frames on the image plane of a special cross-correlation CCD? sensor. The capturing
CCD camera is adjusted in such a way that its optical axis is perpendicular to the laser-
sheet. The output of the CCD sensor is transferred in digital format into the memory of
a computer, where the automatic analysis of the recorded flow images (reconstruction)
is performed [RWKO1].

Being methodologically developed from the Laser Speckle Photography (LSP) and
terminologically described by [PH84] and [Adr84], the PIV technique has quickly be-
come a state-of-the-art universal technique for quantitative measurement of flow veloc-
ity fields. There are several reasons for this increased interest in the PIV technique over

2 CCD stands for charge-coupled device.
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the last two decades:

Fast measurements. Today it is possible to perform the flow measurements online
[RWKO1]. The newest camera CMOS? sensors are able to perform full-resolution
(1600x1200) measurements at 1000 fps and partial-resolution measurements at
up to 60000 fps [ILA].

Simple particle seeding. In most practical applications the extreme efforts to provide
the high concentration of seeding particles without alternating the underlying flow
as required for LSP techniques are not justified [Adr84, PH84]. Thus, PIV with its
relatively low particle density is the natural choice for many experiments. More-
over, in some applications the particles are naturally contained in the flow, thus
the artificial flow seeding becomes unnecessary.

High quality wide range measurements. PIV provides the accurate high quality mea-
surements of instantaneous velocity fields at every grid point of the flow domain.
The laboratory scales of the measured flows are spanning the range from microm-
eters per second to several hundreds meters per second [Adr05].

Possibility to repeat the velocity evaluation. Since PIV records the full information
about the flow field into the storage device, these data can be easily exchanged
many times between many research groups for reconstruction and analysis. The
information about the velocity fields is completely contained in the PIV record-
ings, thus the repetition of the experiment becomes unnecessary.

Possibility to calculate additional quantities. Ensuring that the flow fields are mea-
sured at each point of the dense grid, PIV enables the high quality acquisition of
such important derived properties of the flow field as the deformation tensor and
thus vorticity and rate-of-strain [Adr91].

Vast area of applications. Due to the flexibility and scalability of the PIV method, it
can be applied to steady and unsteady flows of different nature. Investigations in
various areas of natural sciences from aerodynamics to microbiology have proven
this. Additionally, taking into account all its capabilities, PIV has become a pow-
erful tool for experimental validation of numerical codes and models of complex
flows [RWKOT].

3 CMOS stands for complementary metaloxidesemiconductor.
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Besides the classification by the seeding density of the flow, PIV techniques can be
also categorized by the number of illuminations and/or frames per recording. Accord-
ingly, there exist three modes for the recording of the illuminated flow: single, double,
and multi-frame mode. Depending on the camera settings, PIV images can be captured
with single, double, and multi- exposure. All the possible combinations of PIV modes
according to the number of frames and the exposure type are combined in Figure 2.6.
The filled circles in the picture are the particle images written onto the current frame
and the empty circles correspond to the particle images stored in the previous frames.
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Figure 2.6: PIV modes according to the number of illuminations and/or frames per recording.

Finally, the PIV measurements can be distinguished by the dimensionality (D) and
the number of components (C) per velocity vector. Besides the classical 2D-2C PIV
recordings, there also exist 2D-3C and 3D-3C PIV modes. While 2D-3C techniques
perform the slice-by-slice flow volume measurements allowing for extraction of the
third component of velocity, 3D-3C methods enable the full-value three-dimensional
measurements of the flow volume.

2.2.3 Application of Particle Image Velocimetry to Microbiological Experiments

Despite the fact that the experimental settings for PIV measurements in most applica-
tions are quite similar, each application should be carefully analyzed and the experi-
mental setup should be adjusted according to the specific requirements for this appli-
cation. This is especially the case when the measurements are performed for flows
induced by living organisms, in particular, microorganisms. The restrictions imposed



24 CHAPTER 2. FLOW FIELDS: FROM THEORY TO PRACTICE

on the experimental setup are caused by the necessity to maintain the biocompatibility,
and thus to avoid any artificial intrusion into the natural milieu of the organisms that
could affect their behavior.

In biological systems, fluid motion is induced via different types of activity of the
organisms such as locomotion through the fluid volume (for motile organisms) or cilia
beat and stalk contraction (for sessile organisms)*. The activity of microorganisms
is governed by the principles of minimum energy and is aiming towards the efficient
feeding processes or movement into the location with more favorable environmental
conditions, which in general is supposed to ensure the flourishing of the biological
system. Therefore, a better understanding of natural biological processes caused by
living organisms is of ever growing interest in different areas of industry from food
production to water purification. PIV enables the investigation of the fluid exchange
characteristics and the dynamics of the induced micro-flows, thus allowing researchers
to gain insight into the mechanisms steering the biological processes and helping to
adapt them for technical applications.

In an experimental setup for the investigation of living microorganisms the bio-
compatibility implies that the illumination must not be too powerful, and thus the
traditional laser-sheet technique is not applicable for PIV measurements in this case.
Moreover, the density and the size of seeded particles should be carefully adjusted
[HOP*07, PKD"07]. Since microorganisms are able to efficiently detect the synthetic
particle tracers and reject them as soon as they approach their “mouth”, traditional par-
ticle tracers cannot be used to seed the flow. On the other hand it was observed that
biotic particle tracers, such as yeast cells are recognized by the microorganisms as
nutrients and thus almost perfectly follow the flow [HOP'07].

Taking into account all these restrictions, the experimental setup of a PIV system for
investigation of fluid flows induced by living microorganisms is adjusted as follows. An
inverted microscope [Gol98] equipped with differential interference contrast [MurO1]
is used to observe the flow. The light source included in the microscope is used for
illumination. The camera is mounted directly onto the microscope objective. The biotic
particle tracers are injected into the flow using a pipette. Finally, the sequences of
illuminated instantaneous flow images are recorded and stored in the same way as for
all PIV techniques.

* Motile organisms are able to move spontaneously and independently. Sessile organisms are permanently at-
tached or fixed to some surface and are not able to move freely.
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2.3 Reconstruction Techniques

After the introduction into the subject, we are now ready to describe the behavior of
the target reconstruction algorithm and to define its input and output. While doing this,
it is important to keep in mind Figure 1.1 since it gives the global picture of the flow
exploration process. A schematic representation of the target reconstruction algorithm
as a black box is depicted in Figure 2.7.
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Flow properties

Goal: Given an input image sequence, compute the corresponding vector field (VF) as fast as
possible. The reconstructed VF should match the underlying flow pattern with a high
level of accuracy.

Remarks:

1. Incorporate all the available and relevant information about the experimental setup into the re-

construction process.
2. Provide interactive steering of the reconstruction process via user-friendly interface and direct

visualization of the current result.

Figure 2.7: Description of the reconstruction algorithm.

In simple words, the reconstruction process (or in some literature interrogation) is
the procedure which extracts the velocity vector field from a given image sequence.
Since the reconstruction process is strongly dependent on the mode of PIV recordings
(cf. Figure 2.6), it is important to define precisely which mode was employed to acquire
the data sets used for the validation of the proposed reconstruction method in Chapter 4.
All the investigated experimental images are recorded using the multi-frame single ex-
posure technique. Knowing the index number of each image, the direction of the flow
can be unambiguously defined. To keep the further text concise, the terms “digital im-
ages”, “PIV images”, “particle images” or just “image sequence” will be used instead
of the precise term “multi-frame single exposure digital images”.

Given a sequence of digital images, there exist several ways to extract the displace-
ments of the particle tracers and, thus, the velocity vector field. One of the oldest meth-
ods to obtain the quantitative information about the flow from the images was known

already several decades ago [FT32]. This method is closely related to PTV and is per-
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formed by manual tracing of particle images. It is clear that this approach is applicable
when only a few clearly distinguishable particles can be observed in the images. Taking
into account ever increasing length of image sequences and spatial image resolutions in
combination with the increasing complexity of the flow patterns under investigation, it
is reasonable to exploit high-performance computers for the reconstruction purposes.

Nowadays, there exist three main groups of algorithms dedicated to the reconstruc-
tion of velocity fields from image sequences: cross-correlation based methods (CC),
optical flow based methods (OF), and computerized version of particle tracking (PT).
Taking into account the success in computational fluid dynamics and numerical simu-
lations in general, model-based approaches built upon either of three algorithms, CC,
OF, or PT, are becoming a new powerful means for the reliable reconstruction of vector
fields [BAHHO92].

According to the description of the reconstruction algorithm, it should evaluate the
velocity vector field. Since PT-based methods allow only for tracking of individual par-
ticles, the stated task cannot be performed by definition (cf. Section 2.1). On the other
hand, CC and OF based techniques provide the reconstruction of the whole velocity
fields. Therefore, these methods can be used as a basis for a new reconstruction al-
gorithm. A brief description of CC- and OF-based methods with their advantages and
disadvantages is presented in Sections 2.3.2-2.3.4.

2.3.1 Image Registration

Before describing in more detail each class of the reconstruction algorithms, based on
either CC or OF, it is important to mention that all of them can be unified under the term
Image Registration (IR). In computer vision, image registration is the process, which
computes a motion field that best aligns pixels in one frame of the image sequence
with those in subsequent frames [BAHHO92]. More precisely, given two images, the
reference image R and the template image T, the task is to find a spatial transformation
o that deforms T in such a way as to minimize the difference between R and modified

T:
Dist (R, T o ) = min, (2.6)

where D1ist denotes an appropriate distance measure. With respect to the assumed
transformation ¢, image registration techniques can roughly be classified into the fol-
lowing categories: parametric, quasi-parametric and non-parametric. Parametric ap-
proaches impose specific restrictions on the transformation, e.g., requiring the trans-
formation to be rigid, polynomial, affine, etc. Quasi-parametric methods describe a
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motion of a pixel as a combination of a parametric component valid for the entire inter-
rogation region and a spatially varying local component. Non-parametric approaches,
on the other hand, are much more flexible in the type of transformation they compute.
They are typically employed for the registration of measured real-world objects for
which it is not always possible to find a parametric equation that properly describes the
transformation of all the heterogeneous parts of these objects. CC and OF techniques
fall into the category of non-parametric approaches.

Since the non-parametric minimization problem is ill-posed at the origin, it is usu-
ally solved using a regularization term, or smoother Sm:

7(d) := Dist(R, T;d) + aSm(d) = min, (2.7)

Here the transformation is split into a trivial part and the displacement d, such that
p(x) = x -+ d(x) and Dist(R, T; d) = Dist (R,T(.+d(.))). The regularizing
term Sm can be chosen according to the properties of the deformed materials, for
example, it can be based on the elastic potential (elastic registration), or the Navier-
Stokes equations (fluid registration). A comprehensive survey of methods commonly
applied in image registration along with a detailed description of parametric and non-
parametric motion models can be found in [Mod04].

2.3.2 Techniques Based on Cross-Correlation

Given a number of point samples in two images, the natural way to find the interde-
pendency between these samples is to analyze them using statistical approaches that
probabilistically insure the proper matching between the samples and provide the aver-
age displacement of a group of particles within a small interrogation area. In order to
evaluate the velocity in the whole field, all the interrogation areas covering the whole
image space should be analyzed.

Employing the theory of linear digital signal processing each interrogation area
in the particle image can be considered as a signal og(x, y) defined over the two-
dimensional domain®. The counterpart of this signal o (x, y) can be found in subse-
quent particle images. The temporal modifications of the signal are mainly caused by
the unknown spatial displacement function d(z, y). Mathematically, these temporal
modification can be described by the discrete convolution function:

3 Here (x, y) denote the coordinates within the two-dimensional domain.
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One of the standard statistical approaches for finding a spatial displacement function
d[x, y| is cross-correlation analysis. The discrete cross-correlation function CC[z, y]
of the sampled regions oo[z, y| and oy [z, y] is given by the expected value:
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The clearly distinguished peaks of this function correspond to the regions, where
the samples o[z, y| in one image match up with their shifted counterparts o[z, y]
in a subsequent image. The position of the highest peak corresponds to the average
displacement of particles within the interrogation region. In this way, the main idea un-
derlying the cross-correlation based techniques is to detect the highest cross-correlation
peak and to find its position in every interrogation area within the image, yielding the
extraction of the whole velocity vector field [WGI1].

The first digital implementation of this class of algorithms, named digital PIV
(DPIV) was independently proposed in [WG91] and [Wes93]. At the core of this im-
plementation is the property of Fourier transform, which simplifies the time-consuming
cross-correlation operation in the spatial domain to trivial multiplication in frequency
domain. It was shown by Willert and Gharib [WG91] that employing the fast Fourier
transform (FFT) dramatically speedups the whole process without loss of precision.
The latter fact made DPIV the best choice for experimental flow investigation for many
years.

Throughout all the years of DPIV development, various sources of errors causing
a decrease in precision of the reconstructed vector fields were discussed and multiple
improvements were suggested by different authors. All the reported accuracy problems
are related to measurement imperfections, quantization, and discrete stochastic nature
of cross-correlation underlying the reconstruction method [Sca02]. The following types
of reconstruction errors are distinguished in the literature:

* The in-plane loss of pairs is related to the disparity between the interrogation win-
dow size and the actual particles displacement. As a consequence, the dynamic
range of velocity is limited [Adr91].
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» The out-of-plane loss of pairs occurs due to the three-dimensional nature of the
underlying flow. In this case the particles are leaving the plane of observation,
and thus, corresponding pairing cannot be established [WG91], [HDG97].

* A velocity bias (underestimation) is related to the limitations imposed onto the
size of the interrogation window, which enforces to compromise between spatial
resolution and accuracy [Wes93].

* Peak-locking effect, which introduces a bias towards integer values of the dis-
placements and occurs due to poor spatial resolution of particle images, wrap-
around errors of the FFT, truncated particles at the borders or interrogation areas,
or an inappropriate choice of the interpolation function for peak finding [Wes93],
[NLRa].

* Peak broadening is caused by the presence of large velocity gradients. Loss of
pairs in this case occurs due to the deformation of particle image pattern.

* Limitation of spatial resolution imposed by the insufficient number of particles
within the interrogation window.

A variety of heuristical methods allowing for the elimination or partial reduction of
these artifacts have been suggested in the literature. In the following we will shortly
summarize the proposed heuristical methods.

The various sources of the peak-locking phenomenon have been detected and ana-
lyzed in [PALO, LK95, Wes98, NLRa]. The techniques proposed in order to eliminate
this effect can be roughly classified into two groups. The first category of algorithms
suggests to extend the support and improve the interpolation scheme in the correlation
peak estimator [WG91, Wes93, MSLJ00, CKO0S5, Roe]. The second group of algorithms
is based on the iterative image-deformation technique [HFW93], which aligns the in-
terrogation window along the flow and allows to get better statistical estimates of the
correlation peak [TD95, JJDAF95, FD0O, CKO05, Sca02, WG03, NOBTO05]. In addition,
it was proven that normalization of the cross-correlation function allows to avoid the
peak-locking problem related to the wrap-around error of the FFT method and particle
truncation effect on the borders of the interrogation area [RRK9S].

Since all the types of errors inherent to the DPIV method are mainly related to the
discrete and stochastic nature of the cross-correlation process, compensation of this
feature yields the solution to several problems simultaneously. In this way, the image-
deformation methods and image-shifting techniques [Wil00, LPWO03, YJW04] suited
for elimination of the peak-locking effect also partially resolve the problem due to the
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presence of velocity gradients within the interrogation region [Sca02, NOBTO0S5]. The
image deformation methods align the particle images along the flow and adjust the
correlation function for local velocity changes, thus preventing the averaging of the
velocity within the interrogation window and preserving the velocity gradients.

Furthermore, many efforts have been spent on the improvement of the quality of the
reconstructed vector fields in terms of spatial resolution, accuracy, and dynamic range.
Following this trend, several iterative prediction-correction schemes [SR00, NLRO1]
and techniques directly modifying the correlation criterion [LK0O, WMO1] have been
proposed. Moreover, many authors suggested hierarchical approaches which increase
the spatial resolution of the reconstructed velocity fields and simultaneously reduce the
bias error [KAZ95, HarO0Ob, RFH02, NLR *b, Sca04]. Unfortunately, it was shown that
according to the one-quarter rule® [Adr97], even the most sophisticated hierarchical
methods do not always produce satisfactory results in the presence of low magnitude
displacements [GJ03, YIW04, TMKKOS5]. To cure this problem, it was suggested to
use the hierarchical methods in combination with improved correlation peak-finding
procedures and outlier removal techniques in each iteration or each level of the hierar-
chy.

The presence of outliers or spurious vectors, which significantly deviate in magni-
tude or/and direction from its close neighbors, is a critical point for all the CC-based
reconstruction methods. The spurious vectors inevitably appear due to the presence
of noise in measured particle images and the stochastic nature of the cross-correlation
process, which destroys the correspondence between the position of the maximum peak
of the correlation function and the true displacement. The problem of outliers was thor-
oughly discussed in the literature and various methods for detection and correction of
these spurious vectors in the post-processing stage have been suggested. Most of the
outlier-removal methods are based on traditional thresholding, filtering, and improved
interpolation schemes[Wes94, NLR97, RWKO01, Bol99, GDCO00, YIW04, WS05]. Fi-
nally, some authors are arguing for incorporation of the outlier detection procedure
directly into the cross-correlation process, avoiding the post-processing step [HarOOa,
RNI00].

Despite the fact that many heuristical approaches already have been proposed in
order to improve the quality of the vector fields reconstructed by means of CC-based
techniques, there is still an open discussion regarding several aspects: biased veloc-
ity estimation caused by the in-plane/out-of-plane loss of pairs and the finite extent

® One-quarter rule: to retain a large fraction of pairs of particle images within the interrogation area the maximum
displacement should be less than one-quarter of the size of this area.
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of the interrogation window, inefficiency of peak searching algorithms, and a neces-
sity to compromise between the accuracy and spatial resolution. A more detailed
overview of various CC-based techniques with an extensive discussion about its ad-
vantages and disadvantages in application to different flow situations can be found in
[RWKOT1, Sca02, Adr05, NOBTOS].

It is worth mentioning that an iterative coarse-to-fine multigrid algorithm with win-
dow shift and deformation [Sca02] combined with the outlier correction on each step is
considered to be the state-of-the-art CC-based method for high quality reconstruction
of vector fields from PIV images [NOBTO5].

2.3.3 Techniques Based on Optical Flow

Originally, optical flow (OF) was developed for detecting motion of large objects in real
world scenes [HS81]. Inspired by the promising results demonstrated by the CC-based
techniques with image deformation [HFW93, TD95] and supported by the ability of
OF to return dense motion fields independent of the interrogation window size, several
researchers [QPK98, MP99, RKSNO5] proposed to adapt the OF method for fluid flow
exploration. It was shown that the conceptual problems inherent to the CC-based DPIV
techniques, namely, the trade-off between spatial resolution and reliability of the re-
constructed vector fields as well as insufficient capability to resolve the strong velocity
gradients encountered within the interrogation area, can be overcome by using OF’, and
thus OF-based methods can be considered as a powerful alternative for investigation of
particle image sequences.

Mathematically, the concept of optical flow is based on a continuous variational
formulation for global estimation® of a vector field over the whole image. More pre-
cisely, the definition of optical flow is as follows [HS81]. Given two images, the optical
flow (OF) estimates the apparent motion of brightness patterns in those images. The
main idea is to minimize a global cost function representing the rate of change of image
brightness F:

G = Eyu+ Eyv + B, (2.10)

where u and v are the components of the OF vector, i.e., the unknown velocity com-
ponents; F, and £, are the spatial derivatives of brightness, and F; is the derivative of
brightness with respect to time. Since the original problem is ill-posed, an additional

7 Not all of the many OF implementations [BFB94] are well suited for DPIV applications [QPK98].

8 There also exist methods relying upon the local spatial and spatiotemporal brightness constancy assumption of
OF [LK81, BG88]. However, the OF scheme by [HS81] is considered to be a better choice for DPIV applications
[HHNT07].
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constraint or regularizer (cf. Equation 2.7) assuming smooth movements between ad-
jacent cells is introduced:
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Accompanied with such a regularizer the minimization problem is posed as follows:

2= / / (?C + ) dx dy, (2.12)

where « is used to weight the smoothing term in such a way as to compensate for
the noise in the image brightness measurements in real-life experiments. By using the
calculus of variations, Equation 2.12 can be transformed into a system of two elliptic
partial differential equations:

alAu — E, (Eyu + Eyv + E) = 0,
aAv — E,(Byu + Ep +E) = 0. (2.13)

The partial differential equations are finally transformed into a set of finite difference
equations using any suitable discretization scheme. The resulting sparse linear system
can then be solved for the velocity (u, v) using standard iterative methods.

As it was shown by many authors [RKSN05, CHA 06, NOBTO05], the OF-based
method offers a range of advantages over their CC-based counterparts: high resolution
(velocity vectors are given in each pixel of the original image) and high accuracy of the
reconstructed velocity fields; robustness to noise and thus increased value in application
to real-world data sets; complete elimination of outliers, and in the case of multigrid
implementation, high-speed performance [MP98, RKSNOS5]. Moreover, it was reported
that in contrast to CC-based techniques, OF-based approaches are also able to provide
reliable results for highly non-rigid passive scalar images (see e.g., [JCTO01]), where no
separated particles can be distinguished [RSO7].

However, similar to all reconstruction methods, the standard OF approaches are
prone to numerical errors and have some weaknesses, especially when applied to ex-
perimental PIV images. Some of these disadvantages, such as the sensitivity to the
changes in brightness pattern and the reduction of accuracy of the reconstruction re-
sults in presence of large particle displacements, are common to most of the standard
reconstruction algorithms, regardless of the underlying algorithm, CC and OF.

Many heuristical approaches have been proposed in order to eliminate the reported
artifacts. Due to its global nature, the OF method does not undergo the problems linked
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to the discrete and local nature of the CC-based methods such as in-plane loss of pair-
ing’, or averaging the velocity vectors over the interrogation window. Taking into ac-
count that the OF techniques originally have been devised to perform the analysis of
quasi-rigid objects, most of the improvements aimed to make the OF approaches more
suitable for fluid flow applications. In this way, it has been proven that the natural
choice for an additional smoothing constraint for the OF problem (cf. Equation 2.11)
is a function which incorporates all the relevant information about the flow into the
reconstruction process. Such information-embedding techniques belong to the class of
so called physics-based or more general model-based approaches and are considered in
more detail in Section 2.3.4.

2.3.4 Hybrid and Model-Based Techniques

Looking through the vast body of published literature on the subject, one can be as-
tonished how many authors were independently coming up with similar ideas such that
only implementation differences or the style of description of the methods allow to
distinguish them. It is interesting to see how the authors from different communities,
image processing and experimental fluid mechanics, were trying to resolve the same
problem and were looking at it from different points of view. The results were given
for the same image sequences, however, the way how the methods were described were
different. If the image processing researchers (mathematicians) are rather focused on
mathematical proofs of their methods and their papers are densely seeded with lengthy
formulae, experimental fluid mechanics researchers (practical physicists) are mainly
interested in physical value of the methods in terms of reliability and physical insight
to be gained from the results of the reconstruction.

The terminology used in the literature for the description of the methods themselves
and their validation were also different and, surprisingly, the authors from one com-
munity were referencing only the papers from their community, almost ignoring the
counterparts developed at the same time in the other community. Lately, however, the
mutually beneficial tendency of exchanging and merging the methods between the two
worlds can be clearly observed. Perhaps the advent of the Internet as a powerful tool for
researchers played a crucial role in establishing this tendency. Nowadays, typing a few
keywords in the web search machines allows to find in a few seconds dozens of refer-
ences, regardless of the date of publication, community, and country these publications
were issued from.

° Note that due to the presence of particles leaving the image domain, on the borders of the images the problem
is still unsolved.
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Taking into account the number of different approaches, we are not attempting to
review all of them here. However, we will roughly classify the most successful al-
gorithms and briefly outline them in this section. Since our objective is to develop a
new model-based reconstruction method, it is important to know, what has been done
already and which direction should be followed in order to create a more efficient al-
gorithm. It is worth mentioning that among the existing model-based approaches, there
exist implementations for both basis algorithms: CC and OF.

Class 1: Coarse-to-Fine OF-Based Approaches with Physics-Based Constraints

At the core of efficient implementation of this class of algorithms is the universal
framework for hierarchical model-based motion estimation, proposed by Bergen et al.
[BAHHO92]. This framework draws on a coarse-to-fine refinement strategy combining
a global model that constrains the overall structure of the estimated motion and a local
model that is used in the estimation process. Being defined in general terms, hierarchi-
cal framework has an advantage of compatibility with different motion representations
from OF to parametric transformation, and various areas of application, from robotics
to vehicle navigation, where the motion observation can be of interest. The ability to
accurately recover large-scale motion is achieved due to an efficient computation of
large displacements on a coarser level of the hierarchy. In addition, this framework
provides a significant speedup.

A rough idea of the hierarchical approaches is to compute the large scale motion
on a low resolution image and then use the higher resolution information to improve
the accuracy of the estimated displacement field by incrementally estimating the small
displacements. The basic stages of the algorithm are:

Hierarchy construction: A multi-resolution hierarchy of images is built from the orig-
inal images. This can be implemented, by using, for example, the Laplacian pyra-
mid [BAS83].

Motion estimation: Given a current state estimate'?, the incremental displacements
can be computed by minimizing a suitable error measure, which is built upon the
model-based constraints and assumption of local brightness constancy within the
image.

Image warping: The flow field, computed on the previous stage, is used to warp (de-
form) the image towards the current state. The warped image is used for the error
computation in further iterations.

10" An iteration within one level or a level itself can be considered as a state.
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Coarse-to-fine refinement: The current motion estimates are propagated from one
level/iteration to the next level/iteration, where they are used as initial estimates.
The propagation from one level of the hierarchy to the next one is performed via
a pyramid expansion operation. The transitional flow field between the levels is
computed using a combination of global and local parameters.

The multi-resolution hierarchy of images is computed only once and is used on the
subsequent stages of the algorithm. Motion estimation, image warping, and coarse-to-
fine refinement procedures are iteratively repeated starting from the coarsest level up to
the finest level of the hierarchy. Depending on the implementation of the motion esti-
mation algorithm, the displacement field on each level is computed using any suitable
iterative technique, e.g., the Gauss-Seidel relaxation method.

The algorithms, belonging to class 1 are built upon the above sketched hierarchical
framework. The minimization problem in this case is stated in terms of OF devised
by Horn and Schunck [HS81] and encompasses the continuity equation into the regu-
larization term [Sut94, GP96, CMP02, CHA ™06, HHN'07] or simply uses a modified
continuity equation instead of the brightness constancy constraint [WALL97, NINT03].
Furthermore, some authors include the residuals of the Navier-Stokes equations as ad-
ditional physics-based constraints into the minimization function [NINT03]. Several
approaches also take into account the physical boundaries of the flow, such as ob-
stacles within the flow domain, and incorporate them into the minimization process
[WALL97, NINT03].

Class 2: Alternative Approaches for Solution of Joint Minimization Problems

Similarly to class 1 algorithms, the reconstruction problem is stated as an inverse prob-
lem with embedded physics-based constraints. Then this problem is wrapped into a
more general joint problem described in terms of systems theory and solved using the
method from a specific branch of this theory.

In this light, Okuno et al. [OYNOO] considered the whole reconstruction process
as a dynamical system (cf. the definition of the flow field in Section 2.1.3) functioning
according to the continuity equation and the Navier-Stokes equations. From this point
of view, the reconstruction problem is transformed into a parametrization problem of
a non-linear dynamical system, where the estimated image is constantly modified ac-
cording to the laws governing this system and compared to the observed image. The
iterative process is continued until the difference between the observed and the esti-
mated images computed via cross-correlation is sufficiently small. The corresponding
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optimization problem is solved using methods from evolutionary programming.

Another, non-iterative approach was suggested by Kimura et al. [KSK*02]. The
reconstruction process is considered as an artificial neural network, or adaptive system,
obeying the continuity equation. The artificial neural network is added as an additional
constraint into the minimization problem, which is finally solved using a gradient-based
method such as OF [HS81]. Note that in contrast to the approach suggested by Okuno
et al. [OYNOO], this method does not perform an iterative image modification.

It is interesting to point out that both evolutionary programming and artificial neu-
ral networks are rather general-purpose approaches, and thus exploiting them compli-
cates the analysis of stability and reliability of these algorithms. Recently, Ruhnau
and Schnorr [RSO7] proposed the Optical Stokes Flow, a variational approach using
the time-independent Stokes equation as prior knowledge. This approach considers the
motion characteristics of a viscous fluid in the optical flow estimation in that it com-
putes external and body forces acting on the fluid in such a way as to yield a velocity
field equal to the optical flow field. By integrating this restriction into the coupled opti-
cal flow system of equations a constrained minimization problem is derived. The latter
problem is solved using the iterative coarse-to-fine approach [BAHH92, RKSNO5].

Class 3: CC-Based Approaches with Iterative Window Shift and/or Deformation

The approaches of this class are tailored to cure one of the main drawbacks of the
conventional CC-based approaches, their inability to recognize the strong velocity gra-
dients within the interrogation area and, as a consequence, reduction of accuracy of the
estimated vector field in this area. As it was observed by Huang et al. [HFW93], the im-
age pattern within the interrogation area tends to continuously change its position and
shape in the spatiotemporal domain. The authors suggest to reproduce the correspond-
ing deformation within the correlated image pair and thus to increase the correlation
between the two interrogation windows. The unknown displacement distribution is es-
timated by means of a Taylor series. The choice of the order of the series expansion
leads to a compromise between the accuracy and the computational cost of the recon-
struction [Sca02]. According to the choice of the truncation order, all the algorithms of
class 3 can be further categorized as follows:

Zero-order: a uniform window deformation is associated with this subclass of algo-
rithms. There are two variations of these methods: techniques with simple win-
dow extent [KA90, Adr91, FS97, Wes00, GLSO1] and techniques with a discrete
[Wes97, WMOO] or fractional window offset [Sca02].
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First-order: linear image deformation using the current estimated displacements over
the interrogation area is performed on each stage of this group of algorithms
[HFW93, JIDAF95, SR99].

Higher-order: in this case a non-linear image transformation is defined on the basis
of the governing flow equations [TD95, FD0O, RSYO1, NOBTO5].

Most of the algorithms of this class are implemented using the coarse-to-fine strat-
egy [BAHH92, SR99]. Some of them suggest to use a more robust technique, e.g.,
phase-correlation, for a large scale motion estimation at the coarsest level of the hier-
archy [TMKKOS5]. In addition, an appropriate choice of image interpolation, displace-
ment prediction-correction and correlation peak-fit schemes is of crucial importance
[Sca02]. Moreover, despite of the complexity of class 3 algorithms, the outliers can
still be present in the reconstructed vector field and on intermediate stages. Thus, it is
strongly recommended to use this class of algorithms in combination with the outlier
removal techniques applied after each iteration [Sca(02].

Class 4: Advanced Outlier Removal Techniques for CC-Based Methods

The presence of outliers in the reconstructed vector field is inherent to all of the CC-
based approaches, no matter how sophisticated they are (cf. class 3). Thus detection of
these spurious vectors and their efficient removal is a crucial issue for CC-based tech-
niques. Besides the various median-based [Wes94, RWKO01, WSO05] and interpolation-
based [YJWO04] outlier-handling techniques, various advanced methods relying upon
the prior knowledge about the underlying flow have been proposed in the literature.

Several authors suggest to build a new cost function based on the governing flow
equations, initialize the optimization framework with original results of the CC-based
algorithm and solve the corresponding problem by finding the displacement field which
conforms to the specified flow equations [ONI97, KYKI98].

Taking into account the randomized nature of outliers, many authors suggested to
use an artificial neural network to solve the corresponding physically constrained op-
timization problem [GP97, LabO1, LJL03, SBB04]. Recently, in context of microflu-
idics, Petermeier et al. [PKD107] suggested to embed the underlying flow equations
into the so called functional nodes of the artificial neural network. Additionally, these
authors have proven that in application to micro-flows, the simplified flow equations
based on the Taylor hypothesis (Taylor 1938) can be efficiently incorporated into the
reconstruction process.
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Chapter 3

Model-Based Flow Reconstruction

Despite the fact that the experimental arrangements for the PIV measurements are quite
similar in most applications, the experimental setup must be carefully adjusted accord-
ing to the application-specific requirements. It is especially important when the mea-
surements are performed in flows induced by living organisms. In this case, any arti-
ficial intrusion into the natural environment of the organisms, which may affect their
behavior, must be avoided. Therefore, taking into account these application-driven
restrictions imposed on the experimental setup in combination with general measure-
ment imperfections and discretization error of the imaging process, the problem of
the reconstruction of vector fields from experimental image sequences becomes un-
derconstrained. Therefore, it is nearly impossible to reconstruct admissible flow fields
from such sequences using standard methods. The recently proposed model-based ap-
proaches have demonstrated promising results in resolving the aforementioned prob-
lems. These methods incorporate a priori information about flow as additional con-
straints into intrinsically ill-posed problem, and thus, allow for reliable reconstruction
of flow fields from experimental image sequences.

The reconstruction method we have developed was inspired by non-parametric im-
age registration techniques used in medical imaging to find the correspondence between
images of the same anatomical structure taken under different conditions (e.g., different
relative camera-patient position, different methods of acquisition, etc.). The reconstruc-
tion results demonstrated by Modersitzki [Mod04] for the case of fluid registration were
especially valuable for us to make a choice of direction for algorithm development. The
argumentation for this reconstruction method is technically sound and, furthermore, it
is based on the laws of physics, which the investigated image sequences have to obey.
Like true experimentalists, we decided to implement the method and check whether its
application to PIV image sequences makes sense at all, before delving into the abyss of
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theoretical investigations. The preliminary results were quite promising, though many
conceptual and implementation issues needed further elaboration. Therefore, the direc-
tion for further research has been approved.

This chapter is completely devoted to the developed model-based reconstruction
approach. The theoretical aspects involved in this method as well as practical details
and implementation issues are thoroughly described therein.

3.1 Method: Compilation and Assembly

In terms of image registration (IR), the goal of the model-based reconstruction algo-
rithm is the computation of a non-parametric transformation describing the motion of
particle tracers seeded in the flow given as a sequence of instantaneous flow images. We
exploit a priori knowledge about the physical model of the flow to make the transforma-
tion consistent with the laws of physics. In the tradition of advanced class 3 algorithms
described in terms of control theory (cf. class 2 in Section 2.3.4), the proposed method
can be seen as an automated feedback control system, which performs the model-based
global filter operation that corrects a predicted flow field appropriately. A coarse func-
tional scheme of such a control system for flow reconstruction is presented in Figure 3.1
(cf. a black-box version of this scheme in Figure 2.7).

Re T~~~

density p
User At, error g, ... Imageo Imagel ‘e Flow
viscosity p
T~

Image processing | VF Physics—based VF
technique . corrector corrected

vector field

Reconstruction process

Figure 3.1: Coarse functional scheme of the model-based reconstruction algorithm.

Thus, our reconstruction algorithm represents an interaction between the three main
components: input information, including the parameters of experimental setup and
user requests; image processing module, which estimates the difference between the
images at the current stage of the algorithm; and physics-based correction module,
which corrects the vector field in each iteration.

In order to support the reconstruction for a wider spectrum of flows, which in gen-
eral are obeying the Navier-Stokes equations (NSE), a complete NSE-solver is included
into the physics-based correction module. It is worth mentioning that some flows, such



3.1. METHOD: COMPILATION AND ASSEMBLY 41

as creeping flow, can be described using the simplified version of NSE, the Stokes equa-
tions. Since the choice of the model is a crucial point for the model-based algorithms,
more details about the chosen flow models for the investigated test cases in Chapter 4
are provided in Section 3.1.3.

3.1.1 Algorithm Overview

The developed algorithm inherits many ideas from class 2 and class 3 algorithms (cf.
Section 2.3.4). In addition, the most valuable suggestions for each of these classes
were taken into account. Briefly summarizing, the suggested method extends related
model-based approaches in the following ways:

 Rather than penalizing optical flow (OF) with a model-based regularizer, a flow
field is first predicted by classical OF [HS81] and then corrected by applying a
global filter operation.

e The model-based filter implements a numerical solver for the NSE, and it is thus
suitable for the class of viscous, incompressible fluids. It simulates the effect of
external forces applied to the fluid, with the direction of these forces being given
by the predicted velocity field.

* In contrast to other approaches, the NSE-solver does not perform a simulation
of the fluid motion over time, but it corrects the instantaneous flow field in one
particular time step. The process is iteratively performed until the average of the
predicted displacements becomes smaller than a user-defined threshold. More
details on this issue are given in Section 3.2.6.

* Boundaries and boundary conditions are considered in the model-based correc-
tion step. In this way it is possible to simulate the interaction between the fluid
and the obstacles in the flow (e.g., microorganisms in a test case investigated in
Section 4.3).

» All stages of the iterative process have been implemented on programmable graph-
ics hardware. For the first time ever it is thus possible to interactively control spe-
cific flow parameters as well as experimental settings within the reconstruction

process.

A block diagram of the algorithm is presented in Figure 3.2. In order to better juxtapose
the functional scheme of the algorithm and its block diagram, the functional modules
of the algorithm are shaded with grey rectangles.
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Figure 3.2: Block diagram of the proposed predictor-corrector scheme.

First, the displacement field VF; is predicted using OF. Next, the NSE-solver is
applied to compute the corrected field. In the context of PIV, the displacement simulates
the movement of particles from their initial positions to the destinations in the reference
image R. Thus, the resulting vector field VF, is used to displace pixel values in the
template image T. This process is iteratively repeated on the deformed template D(T)
and the reference image R. The iteration stops when image T finally matches image R,
or at least when both images are close to each other with respect to any suitable error
measure. An illustration of three iterations of the reconstruction process is presented in

Figure 3.3.
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Figure 3.3: Illustration of the reconstruction process: (a) Functional scheme: Module P reads
images T and R and computes (predicts) the displacement field. Module F filters the predicted
displacement field. Module Defo deforms T towards R using the filtered displacement field. (b)
Iterative deformation of image T towards image R.
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The result of each iteration is the predicted displacement field VF,, the corrected
field VF., and the deformed image D(T). The output after all iterations is the corrected
flow field VF, which complies with the assumed physical model of the flow. In the
following we will describe the different parts of the proposed algorithm in more detail.

3.1.2 Choice of Flow Predictor

In order to make a choice of image processing technique to use on prediction step of
our method, we took into account the following observations:

* In contrast to cross-correlation (CC) based techniques, there is no limit (up to the
image resolution) on the spatial resolution of the estimated motion vector field.
Thus, in each iteration we obtain a dense initial velocity field that can directly be
used to compute the external force field in the NSE simulation at the same scale
as the simulation grid, i.e., the pixel grid.

» The OF approach gives a smooth motion vector field even if the particle seeding
density is low, which is the case in some applications, like biocompatible micro-
scopic PIV systems. This, in turn, yields a smooth external force field, which is
important to avoid numerical instabilities in the NSE simulation.

* In contrast to OF-based approaches, the CC-based methods assume that the ve-
locity gradient of the flow within an interrogation window is negligible. This
greatly affects the variation of the derived external force field and it results in
slower convergence of the iterative predictor-corrector approach.

Guided by this strong argumentation on behalf of OF-based approaches, the OF tech-
nique was chosen as a basis for the predictor scheme of the proposed model-based
algorithm.

3.1.3 Flow Models for Correction Step

The choice of the flow model for physics-based approaches plays a crucial role. More-
over, the implementation of the corrector module is directly based on a particular flow
model. Therefore, in this section we provide a theoretical description of the general
flow model, represented by the NSE and two flow models employed for the investiga-
tion of specific flow situations in Chapter 4.
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General Flow Model: Navier-Stokes Equations

In general, laminar flows of viscous, incompressible fluids are described by the Navier-
Stokes equations — the fundamental differential equations describing the dynamics of
fluid flow [GDN98]. The dimensionless form of these equations in the 2D case is given
by:

0 1 0

G_TZ — EVQU —Ve(uV)+g, — a—i, momentum equation, (3.1

0 1 0

0_?; — EV% —Ve(wV)+g,— 0_];’ momentum equation, y 3.2)
divV=VeV =0, continuity equation (3.3)

where u and v are the two components of the velocity vector V = (u, v)T; ¢ is the time
variable; x, y are the components of the coordinate system assigned to the flow domain;
Gz gy are the components of external force G = (g, ¢,)* to be considered at every grid
point; p is the pressure. The dimensionless quantity [?e is called the Reynolds number
and can be computed as follows:

Re = pUy L/p, (3.4)

where p is the density of the fluid, U, and L are the characteristic velocity and length!,
and p is the dynamic viscosity of the fluid.
The operators, gradient V and Laplace V? (or A), are defined as follows:

Vu = (Ou/dx, Ou/dy)’,
Pu 0%
Viu = — + —. 3.5
“ 0x? + Oy? (3-5)
Thus, taking into account Equation 3.5 and unpacking the dot-product operator? in
Equations 3.1-3.3 leads to:
: ]
ox —
du

Ve(uV) = uVeV+VeVu=u <—+—>—|—Vo
Oy

0 (00 u o) | o) G0
ox oy 'y Ox oy
O(v? O(uw
Tee) = 2, 0

'E.g., in a wind-tunnel, U, and L could be the upstream velocity and the length of an obstacle in the flow.
2V eV = 0du/dx + dv/dy
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As in the case of any partial differential equations, the treatment of boundary regions
is of great importance for the solution of the NSE. The boundary regions are the regions
on the border of the fluid domain or on the border of fluid-structure interface, where a
particular boundary conditions should be specified. In general, there are five different
types of boundary conditions [GDN9S]:

* No-slip: No fluid penetrates the boundary and the fluid is at rest there. Example:
all the solid bodies immersed into the fluid.

e Free-slip: No fluid penetrates the boundary. However, there are no frictional
loses at the boundary. Example: the plane/line of symmetry for a symmetric flow
situation.

* In(out)-flow: The velocities along the boundary are given. Example: the inlet
region in a channel.

 Periodic: Occur for problems that are periodic in one coordinate direction.

For all the cases studied in Chapter 4 the no-slip boundary conditions are imposed.

Creeping Flow Model: Stokes Equations

According to the definition from Section 2.1.4, creeping flow (or Stokes flow) is a low
speed flow, characterized by a low Reynolds number ([2e < 1) and dominated by the
viscous forces, pressure, and body forces [FP02]. Thus, the inertial terms in the NSE
can be neglected resulting in a simplified version of momentum equations:
Vp = upAV + G,
VeV = 0. (3.7

Note that Equation 3.7 represents a steady or time-independent flow model.

Stokes Flow Model with a Single Stokeslet

In particular, when the force field G is given by a single point force G or stokeslet,
Equation 3.7 can be rewritten as follows [BO96]:
Vp = pAV +Gi(p — po),
VeV = 0. (3.8)

where §(p — po) is the Dirac delta function and py is a position of a point force appli-
cation.
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The action of a single stokeslet results in the development of one or several viscous
eddies, and thus initiates an interesting flow situation [LB81]. For example, when
the stokeslet is originated at height h above a planar no-slip boundary and is oriented
orthogonal to this boundary, the resulting stream line pattern corresponds to a single
toroidal eddy (in 3D) around the stokeslet. As depicted in Figure 3.4, the axial cross-
section of this toroidal eddy represents two axisymmetric vortices.

4 T T T T

Stokeslet ) . )
-3 -2 -1 0 1 2 3

0

Figure 3.4: Stream lines corresponding to a stokeslet at (0, 1) above a plane boundary (y = 0).

An analytic solution of Equation 3.8 is described by the Green’s function and the
corresponding stream function ¥ (r, z) is given by:

Lty 1w
= or’ " r 9z’
2 2 2
W(r, ) = G r B r B 2hr<z . (3.9)

81 | (12 + (2 — h)Q)% (r2 4+ (z + h)Q)% (r2+(z + h)Q)%

where 7 and z are the radial and axial coordinates in a cylindrical polar coordinate
system [AB78].

3.2 Algorithm Implementation

This section provides a detailed description of each part of the proposed model-based
method. In particular, the implementation issues related to mapping the employed nu-
merical algorithms onto graphics hardware are discussed.
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3.2.1 Motivation for Performing Computations on Graphics Hardware

Over the last few years, graphics processing units (GPUs) have evolved towards highly
parallel and fully programmable computing architectures, which are key to high perfor-
mance and cost-effective super-computing. On current GPUs parallel processing units
can be accessed via high-level programming languages. In addition to computational
functionality these units provide an efficient interface to local graphics memory. This
allows for high-performance read-write access to data that are stored on the GPU, and in
particular it provides an efficient means for the communication of intermediate results
in iterative algorithms.

In recent years, one direction of research has led towards the implementation of
general techniques of numerical computing on such processors. These developments
have shown that the GPU can significantly outperform CPU implementations for both
compute- and memory-intensive applications. A comprehensive overview and collec-
tion of references in this particular area can be found in [OLG"07].

Since both the prediction and the model-based correction steps of the proposed re-
construction method involve complex numerical algorithms, it is important that these
methods are realized as efficiently as possible (cf. Figure 2.7). Therefore, we imple-
ment all the stages of the reconstruction process on programmable GPUs.

For the solution of linear systems of equations, underlying the involved numerical
methods, we employ a library for linear algebra on GPUs [KWO03]. This library pro-
vides classes for vectors and matrices as well as standard operations on and between
them, with all of these operations performed at full 32-bit floating-point precision. In
particular, this framework allows for the efficient representation of sparse matrices on
the GPU, including matrix-matrix and matrix-vector operations. Matrices as well as
vectors are stored as 2D memory objects (textures) in a compact format on the GPU.
We use this framework for the numerical solution of the NSE, and we describe a novel
implementation of a multigrid approach for solving the OF equations in Section 3.2.3.

3.2.2 Flow Prediction

The GPU-implementation of the OF algorithm takes advantage of the special struc-
ture of the OF system matrix. By using a standard finite difference discretization the
OF differential equation, Equation 2.13, is transformed into the following set of linear
equations:

E%um + EIEin’j — oz(—4um- + Ui—1,5 -+ Uj 5—1 -+ Uiy1,5 -+ ui,j+1) = —ExEt (310)
ExEyum + E;Ui’j — oz(—4v2-,j =+ Vi—1,j + Vi j—1 + Vi41,5 + Ui,j+1> = —EyEt. (311)
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The partial spatiotemporal derivatives E,, £,, and £, at pixel [¢, j] are approximated
using central differences as follows [HS81]:

~

E, = i (Eig1k — Eijk + Eiv1 10 — Eijre
+Eiv1 01— Eijir1 + Biv1js1h+1 — Eijrips1) s (3.12)
E, ~ 3(Eijsik— Eijr+ Eiyijeik — B
+Eijr1p1 — Bijrnr + Eiv1 o1 — Bt jkt1) s
By = 3(Eijrs1 — Eijr+ Eiv1 k1 — Biv1jk
+Ei i1 — Eijrig + B jri ke — Biv1jek)
where 7, j, and £ are the indices along the axes of the spatiotemporal cuboid build from

the image pairs: ¢, j are the spatial axes within the image plane and % is the temporal
axis (see Figure 3.5 (a)).
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Figure 3.5: Estimation of partial derivatives: (a) spatiotemporal cuboid; (b) filling up the aux-
iliary vectors EopoEo11E010E001 and E111E100E101E110-

Taking into account that the GPU performs operations on all components of a 4D-
vector simultaneously and swizzling of components is not counted as an operation
[HLS], the partial derivatives for each pixel can be approximated in only four HLSL?
instructions:

floatd diff = E111E100E101E110 + EoooEo11Eo10Eoo1§
float3 ExEjE; = diff.xxx + diff.wwy,
ExEyEy += diff.zyz;
ExEyE; —= diff.yzw;

where EoooEo11Eo10E001 and Ei11E100E101E110 are 4-component vectors, filled up with the
intensity values at position [z, j] in the input image textures as depicted in Figure 3.5 (b).

3 High Level Shading Language, a programming language for GPUs.
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Combining and rearranging Equations 3.10-3.11 for all pixels in the image yields
a system of linear equations. Since the number of unknown velocity vectors is equal
to m X n, the number of pixels in the image, and each velocity vector has two com-
ponents, the corresponding system matrix is a sparse band-diagonal matrix of size
2mn X 2mn. An example of such a band-diagonal matrix for an image of size 3 x 3 is
depicted in Figure 3.6. We denote a combined column of velocity vector components
(1005 -5 Uy |V00s -y Umn) as UV.

Ugp Up1 Upz Uip U1 Upp Upg Upg Uxs Voo Vo1 Vo2 Vip Vi1 Viz Voo Vo1 Vo2

d €
Cl dl el
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b
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ag Bg Cg Dg Voo

Figure 3.6: Pattern of the left-hand side of the linear system of equations for OF computation:
example for 3 x 3 images.

In the GPU-library special classes are available to handle such sparse band-diagonal
matrices. As demonstrated in Figure 3.6, the OF system matrix has only seven filled
bands. Thus, this matrix can be efficiently stored into seven textures of resolution
2mn. While computing the derivatives on the borders of the image, the mirror boundary
conditions are imposed. An example of band-textures for a 3 x 3 image is depicted in
Figure 3.7.

After all the necessary textures including the one for the right-hand side are filled
up, the corresponding system of linear equations can be solved for the unknown ve-
locity field VF using standard iterative methods (e.g., the conjugate-gradient method)
implemented within the GPU linear algebra framework. Due to the massive parallelism
available on recent GPUs coupled with an efficient memory interface to local data ob-
jects, the matrix generation is efficiently performed on the GPU. This allows to avoid
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Figure 3.7: Example of band-textures filling for 3 x 3 images.

the costly transfer operations between the CPU and the GPU [KWO03].

3.2.3 Multigrid Optical Flow

Since OF-based techniques tend to be rather slow due to the numerical complexity of
the employed solvers, considerable effort has been put into the development of ad-
vanced numerical techniques like multigrid schemes in a number of research projects
[MP98, KR03, RKSNO5]. In addition to providing significant speedup, multigrid tech-
niques allow for reliable reconstruction of large displacements [BAHH92, RKSNO5].
In our paper [KGW'08] underlying Part I, for the first time ever to our best knowledge,
an efficient implementation of multigrid OF on GPUs was demonstrated.

The essential step in the multigrid method is a coarse grid correction. The equation
to be solved on the finer grid is K> UV® = f®. On a coarser grid of size H, the defect
equation K e = r is used instead of the fine grid defect equation K* e® = r®. Here, K*
and K" are the system matrices on the fine and the coarse grid, respectively. Variables e®
and e" are the absolute errors between the exact solution and the approximate solution
on either grid, and ™ and r" are the residuals on these grids. To establish a relation
between e® and e”, and between r® and r¥, linear transfer operators I} and I} are em-
ployed. For a good introduction to the theory and applications of multigrid approaches
let us refer to [Hac94, BHMOO].

Given these linear operators as well as an initial approximation UV® = V" of the
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OF values for two images on a fine grid, a new approximation of UV® can be computed
as it is shown in Figure 3.8.

TwoGridCorrection (K®, UV®, £B) {

1. = fr_xhypd
2. rfH = IE t

3. Kiel = rH

4. et = Ikef

5. UV® = UVh et

Figure 3.8: Two-grid correction scheme.

This two-grid correction can be extended to a full multigrid V-cycle by applying
the two-grid correction recursively to step 3: TwoGridCorrection(K¥, e, rf). Tt is
straightforward to implement such a V-cycle using matrix-vector operations as they are
provided by the employed GPU-library. For the transfer operators we use 2D texture
interpolation, which takes advantage of the regular grid structure underlying the OF
computations.

In order to exploit the multigrid approach to its full potential, the Galerkin prop-
erty* has to be enforced. This implies, that once the OF matrix has been updated, the
multigrid hierarchy has to be rebuilt in the following way:

H Hih th
Kt = 17 kP 1B

The matrix layout for update operation on the highest level of the multigrid hierarchy
is illustrated in Figure 3.9.

Note that entries in both the restriction matrix I and its transpose I result from
the five-point stencil used to locally interpolate the values given on a regular grid struc-
ture. Consequently, these entries do not have to be stored explicitly, but they are used
as constants in the update of XK. In order to support update operations we have ex-
tended the GPU-library by a special routine for the multiplication of the banded system
matrix with seven non-zero diagonals and the respective procedural matrices used to
enforce the Galerkin property (cf. Figure 3.9). Taking into account that the structure
of the matrix on each level does not change, the implementation only has to respect the

increasing number of diagonals in the matrices on ever coarser levels.

* The Galerkin property ensures a consistent calculation on different levels of resolution, and thus it guarantees
fast convergence of the multigrid scheme.
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Figure 3.9: Multigrid update operation: layout of the matrices used to enforce the Galerkin
property.
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3.2.4 Vector Field Correction

To correct the predicted displacement field we employ a GPU-based simulation system
[KWO3]. In particular, we use this system to solve the incompressible NSE. Besides
excellent performance, the system provides a variety of different parameters to model
the fluid properties. To obtain the solution for the NSE (see Equations 3.1-3.3), we
solve explicitly for the velocity V = (u,v)T and implicitly for the pressure p. First,
by ignoring the pressure term p, an intermediate velocity is computed using the time
discretization of the momentum equations:

a® = o 45t {i <82u - 82”) _ o) _ 9uy) +gm] :

Re \ 0x? = 0Oy? ox dy
G ; 1 [(0*v % I(uv)  I(v?)
o) = i) 4 gy {E (6m2 + ay2) ~ o oy —i—gy] . (313)

The computation of the velocity and pressure fields is carried out on a uniform stag-
gered 2D grid with the number of grid points equal to the size of the original image pair.
On this grid, the Laplace operator V2« is discretized by means of central differences,
and, as proposed by [Sta99], the advection part V - V'V is solved by tracing the velocity
field backward in time. To make the resulting intermediate vector field free of diver-
gence, the pressure is used as a correction term. Mass conservation of incompressible
media leads to a Poisson equation for updating this pressure term:

52 (it+1) 5?2 (it+1) 1 8—(it) a—(it)
P P (“ Y ) (3.14)

Ox? * oy? T 5t \ o + Ay
Equation 3.14 is solved using a GPU-based conjugate-gradient method (CG). Finally,
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the computed pressure values are substituted into the following equations for velocity

calculation: )
it+
LD ) 6tap ’
ox
] ) o (4t+1)
W) = g P (3.15)
dy

In each iteration ¢t, pressure and velocity are computed starting with their values from
the previous iteration. Initial conditions for the Poisson equation (3.14) in the first
iteration can be set to zero or they can be guessed based on a priori knowledge about
the experimental settings. In the current implementation, which does not perform a
dynamic simulation of the fluid motion, the OF solution, i.e., the displacement field
disp,., which is properly scaled according to the experimental setup, is used as initial
condition for the velocity Uygg (in the first iteration).

The scaling takes into account the characteristic length L and velocity U, the time
step At between two subsequent image frames as recorded by the imaging system, and
the pixel size pxsize in meters:

Unse = VF, /Uy = (dispgy - pxsize) / (Uy - At) (3.16)

where Unsg is a dimensionless velocity used in the NSE; disp,, is the displacement
field returned by the OF and measured in pixels px; pxsize is the scale-factor measured
in m/px; VF}, is the velocity from the OF solution VF, converted from px into metric
units m/s; U, is the characteristic velocity measured in m/s; and At is the time step
between the subsequent images measured in s.

After the first correction step the velocity computed by the NSE-solver is an ap-
proximation of the flow field that carries particles in one time step from their initial
positions to their destinations. In terms of image deformation, this means that the par-
ticles advected with this approximated flow field within the deformed image did not
yet arrive at their expected positions in the reference image. In order to “move” the
particles closer to their destinations, external forces have to be applied. These forces
are in the opposite direction to the drag forces, which resist the movement of a solid
object through a fluid. For viscous flows with Re <1, which is the case, for example,
for flows induced by microorganisms, the external force required to move a spherical
particle of radius r through the fluid of viscosity u at velocity V is defined according
to Stokes’ law [Lig75] as:

Fstokes = 6mpurV =
= 6mpur VF, =67 pur - (dispyy - pxsize/At). (3.17)
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Thus, on all subsequent iterations the OF solution is first scaled according to Equa-
tion 3.16 and Equation 3.17 and then used as external force field in the NSE-solver:

 Fsiokes - L/UZ 61 pr - (dispyyg - pxsize - L/ (At - UZ))

FStokes NSE AV AV (318)

In order to get a global pictures of the transformation and transfer of physical and
mathematical quantities between the modules of the reconstruction algorithm, it can be
useful to draw a scheme similar to circuit diagrams in electronics [Hor89], taking into
account multiple inputs/outputs and interpreting the modules and scaling operations
as electrical elements. The diagram constructed according to these rules, including
the physical interpretation, measurement units, and appropriate scaling factor for each
variable, is presented in Figure 3.10.

e L [k i L i“i}
p(pxsizef UZ | ) [m 'S m} [3} [kg] M| [m]
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Figure 3.10: Circuit diagram of the reconstruction algorithm: transfer of variables between the
modules of the reconstruction algorithm.

The boundary conditions for the NSE-solver should be carefully adjusted according
to a particular flow situation. In the case of obstacles immersed into the flow, they
should be first extracted from the original image pairs (if parameters of the obstacles
are not provided separately) and forwarded to the NSE-solver as a bit mask. The type
of boundary conditions on the border of the interface fluid—obstacle is set to no-slip
(cf. Section 3.1.3) for all flow situations considered in Chapter 4. The treatment of the
boundary conditions is described in more detail in Sections 4.2-4.3 for each test case.

5 In the NSE described by Equations 3.1-3.3, the force is a dimensionless quantity [GDN98].
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3.2.5 Image Deformation

Prior to each iteration, the template image T is displaced towards the reference image
R. Conceptually, in a forward mapping every pixel of the template is displaced along
the respective velocity vector. Technically, in order to avoid invalid deformations in the
transformed image as they typically arise in forward mapping approaches, backward
mapping of the template image Im.% using the inverse velocity field is employed. This
means that the value of the pixel at position [x + disp(x,y).x, y + disp(x,y).y] in
the template image Im,,, is written into the pixel at position [x,y] in the deformed
image Imges, where disp(x, y) corresponds to the displacement field computed in every
iteration. The image deformation procedure for both forward and backward mapping
is depicted in Figure 3.11. Since the deformation process is performed on the GPU
as well, fetching respective values from the target positions can greatly benefit from

hardware-assisted 2D texture interpolation.
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Figure 3.11: Image deformation procedure (execution and example): (a,b) forward mapping
and (c¢,d) backward mapping.

® The reference image R and the template image T correspond to Im; and Im..; with respect to acquisition time ¢.
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As it is illustrated in Figure 3.2 and Figure 3.3, in the very first iteration of the
algorithm the input for the OF computation is the original image pair. In subsequent
iterations the predicted vector field VF,, is computed by the OF approach from the ini-
tial reference image Im, and the deformed image Im.,s, Imgesr = D(Imyyq). As the
magnitudes of subsequent displacements are gradually decreasing in general, so do the
additional external forces considered by the NSE-solver in every correction step. To
avoid the accumulation of roundoff errors and errors caused by the used interpolation
scheme on a discrete pixel grid, the deformation is always performed on the initial tem-
plate image using the accumulated displacement values, i. e. the accumulated velocity
field. Furthermore, as suggested by Scarano [Sca02], advanced interpolation schemes
can be adopted to achieve more accurate results for image deformation.

3.2.6 Stopping Criteria

The iterative correction process is stopped once the average magnitude of the vectors
predicted in iteration it becomes smaller than a user-defined threshold’. This threshold
is dependent on the flow scenario, and it is specified relative to the average magni-
tude of the predicted displacement field computed in the very first iteration. In all the
experiments investigated in Chapter 4 the user-defined threshold was set to 5%.

To improve the precision of the error test, the relative displacements are computed
per pixel and then averaged. As in every iteration the difference between the reference
image and the template image with respect to a suitable distance measure is reduced,
the predicted displacement field VFI(,l) has the largest magnitudes in the first iteration
compared to all subsequent iterations. Thus, it makes sense to:

1. Scale the magnitudes of VFp(it) with the corresponding magnitudes of VFI(,i),

2. Calculate the average, which can be efficiently done on the GPU using so called
vector reduce operation [KWO03].

Mathematically, for it > 1 the preliminary computations for the error test operation can
be summarized as follows:

Eit (VFp(n)) = Z Z {HVFP(”) [, 7]
j=1 i=1

Jveealy e

7 Tteration it is the current iteration. Since T is becoming closer to R in each iteration, the magnitudes of the
vector field computed by the OF over these images are supposed to decrease with the number of iterations.
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For noisy real-world image sequences, it can happen that the graph of the error
it (VFP(”)) contains a number of sharp peaks. In this case, in order to increase the
robustness of the error test, we can compute the average error £;; over the three previous
iterations. Note that on the first three iterations the computation procedure of the error
is slightly different. The calculation of &;; for the first four iterations is illustrated in
Figure 3.12.

VH . VF, . VR, . VF, -
v v v v Y Y Y -
1 €5(VF,) €3( VF3) €4(VFy)
it=1 it=2 it=3 =415 | ‘2
: iy I Ny
€1 en.3 | €2 g[1..3] —>5/2 8_,3 1.3] | L5 5/3 &. el

Figure 3.12: Computation of €, the average error over the three previous iterations: example
for the first four iterations.

It is worth mentioning that besides the error metric given by Equation 3.19 any other
suitable error metric can be used to stop the iterative prediction-correction process. For
example, instead of vector magnitudes of the predicted vector field, the angle differ-
ence between the spatially corresponding vectors of corrected vector fields VF.(*) and
VF. (=1 could be of interest.
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Chapter 4

Validation of the Reconstruction
Method

In this chapter we compare the proposed predictor-corrector algorithm to other ap-
proaches. We show that the proposed method can estimate motion vector fields at
high quality and performance, and we demonstrate the advantages of the OF-based ap-
proaches over the CC-based approaches for the prediction of the displacement field in
every iteration of the predictor-corrector scheme.

4.1 Introduction into Validation Techniques

The quality of the reconstruction algorithm is estimated based on the degree of accuracy
of the reconstructed vector field, on the robustness of the algorithm to noise, and, in
general, on its performance. As it was pointed out by Okamoto et al. [ONSKO0O0], given
as input only an image sequence obtained from a real-world experiment, there is no
standard way to evaluate the accuracy of the reconstructed data. In order to enable the
validation of the reconstruction method, the authors suggested to use standard images
for particle-image velocimetry.

Standard images for validation along with the corresponding ground truth velocity
fields are typically synthesized by numerical methods of computational fluid dynamics.
In this way, the vector fields reconstructed by different techniques can be compared to
the ground truth velocity field. The degree of mismatch between these vector fields is
used as a quality measure of the reconstruction process.

There also exists another type of standard images, i.e., PIV images of well-studied
flow situations obtained from real-world experiments, for which reliable estimates are

59
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available. Due to measurement imperfections and discretization errors, the real-world
PIV images always contain a certain degree of noise. Therefore, applying the recon-
struction method in these complicated conditions allows for testing out the robustness
of the method to noise. However, for an arbitrary real-world experiment the flow under
investigation is typically unknown, and thus no reliable estimate is available. In this
case, neither precise validation nor quantitative comparison to the other methods can
be done, and only a qualitative error analysis is possible [BTOS5].

In this sense, we have chosen two groups of image sequences for validation of our
reconstruction algorithms: synthetic image sequences and real-world images obtained
from experiments on living microorganisms. Within each group, we have tested PIV
images with different particle image densities and different types of particle tracers (cf.
Section 2.2.2). The synthetic image sequences include PIV images with classical par-
ticle image density (cf. Figure 2.4) and high particle image density, where no separate
particles can be distinguished (dye advection or passive scalar images). For both syn-
thetic sequences the ground truth velocity field is known. The real-world experimental
image sequences were recorded using two different modes: classical PIV and PTV.
Since the correct vector field is unknown for experimental image sequences, we have
compared the results of the reconstruction from these images to the velocity vectors of
several well-distinguished particles, which were computed by using the PT technique.

4.1.1 Error Measures

There exist many different ways to evaluate the quality of the reconstructed vector field
if the ground truth velocity flow field is available. One commonly used technique is to
evaluate the per-pixel error map using some error measure. Appropriate error measures
for velocity vector fields are absolute length difference and angular deviation of the
vectors without taking into account their lengths [BFB94, BK02].

Another technique is to calculate the overall error for the whole image using the
per-pixel error map [GMNT98]. A number of different standard error measures, such
as average, root-mean-square, signal-to-noise ratio [WDG97], etc., from statistics can
be used for this purpose. Interestingly, some authors also use the L; norm for length
error computation instead of the L, norm. Due to the fact, that in this case the error
is computed along the vector components (catheti) and not along the vector itself (hy-
pothenuse), the resulting error for the L; norm is lower. The error measures used for
validation of our reconstruction method are listed in Table 4.1.

In Table 4.1, V,.; corresponds to the ground truth velocity vector field and V to the
velocity vector field computed using the proposed model-based reconstruction method.
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Table 4.1: Error measures used for validation of the reconstruction algorithm.

Name Formula Units
Vr 1;7 ./‘ V 7:7 P ] - .
2 | Angular eanglis 4] = arccos ( ;f[ ] ° [V 7]> y  if{Vree [3,7]#0, V[i,5]#0} o
< difference ang|® 7] = H ref H2 H ”2
g , otherwise
)
X
% Absolute o L o .
dt: length 5len[laﬂ = Hvref[l-,.]] - V[’L,J]H2 : At/pXSIZC px
difference
Average 1 i i
angular Eang = Eangli, J] ’
difference mxn j=14=1
Average 1 i i
length Elen = Elen!t; J] px
difference mxn j=1i=1
£ RMSgignar® RMS, >
SNR = 101 —signal L — 101 ref % where
E o810 RMS oise” 810 RMSgi? |’ where
E I K 2
9 . . Q2 _— q
5 rS;ggal—to—nonse RMS:, = - Z ||Vref [Zvjmg dB
j=11i=1
1 m n
Q2 A o .. o2
RMSZ = MSE = —— 373~ [Veerli, 1] = VI, 1
7j=11=1
.12
Peak H}@X <HVr9f [Z’]} H2>
signal-to-noise PSNR = 101log; & ) dB
ratio RMSqir

RMS is the root-mean-square error and MSE is the mean-square error. Note that for
convenience reasons, the length difference is measured for displacement vectors rather
than for velocity vectors themselves.

4.1.2 Software Tools Used for Reconstruction

For comparative analysis of the accuracy of the reconstruction process provided by the
proposed model-based algorithm, we estimate the velocity fields from synthetic and
real-world image pairs using the following approaches:

CC: multi-pass cross-correlation,

OF: optical flow (OF),

CC+NS: proposed model-based predictor-corrector with CC as predictor,

OF+NS: proposed model-based predictor-corrector with OF as initial predictor.
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In these comparisons a multi-pass CC approach (EDPIV of the National Center of
Physical Acoustics at the University of Mississippi!) was used. An initial interroga-
tion window size of 32x32 pixels, a final window size of 8 x8, and a grid cell size of
2x2 pixels were selected for best quality. Advanced median filter and target vector
techniques were used for the detection and correction of erroneous vectors. The OF
approach we employed is based on the classical OF algorithm with first-order regular-
ization [HS81]. The proposed predictor-corrector step is carried out several times to
demonstrate the convergence behavior of our approach.

In order to extract the obstacles within the fluid domain from a given image, any
suitable segmentation algorithm can be employed. In the investigated test cases, the
obstacles are present in experimental image sequences, which depict a part of a real
microbiological environment. The most appropriate segmentation tool in this case is a
tool fine-tuned for extraction of biological structures from medical images. In our work
we use an efficient segmentation method based on random walks [GSAWO0S].

4.2 Results of Reconstruction: Synthetic Image Pairs

In this section, we study synthetic image pairs of two different 2D flow scenarios, for
which the velocity fields are known: a Navier-Stokes flow that was produced by nu-
merical simulation of a swirling motion induced by user-defined external forces and
the Lamb-Oseen viscous vortex flow [CW05].

4.2.1 Navier-Stokes Simulation (Dye Advection)

For this test case, the synthetic images were obtained by passively advecting dye? in a
Navier-Stokes flow (cf. Section 3.1.3) and by capturing the dye intensity at two differ-
ent time steps. The velocity field is the numerical solution to the NSE equipped with
a user-defined swirl-like external force field. The numerical simulation is the same as
the one integrated into the model-based correction step. The flow was simulated using
the following parameters: grid size of 256 x256 pixels, the Reynolds number Re = 10,
density p = 1000 kg/m?3, dynamic viscosity g =0.001kg/(m - s), time between two
exposures At =0.775 ms, and pixel size pxsize =3.906 ym. The simulation yields
maximum and average displacements of 1.1 pixels and 0.2 pixels between two expo-
sures, respectively. Figure 4.1 shows the ground truth velocity profile overlaid on (a)

! The EDPIV software package is available at
(http://opticallab.ncpa.olemiss.edu/EdpivPE3_intro.htm).
2 Further on, we refer to this test case as “dye advection”.
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one of the synthetic images, (b) an intensity coding of the velocity magnitude and (c)
the vorticity magnitude®.
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Figure 4.1: Navier-Stokes flow: (a) Ground truth velocity field overlaid on one of the original
images. (b) Intensity coding of the velocity magnitude and (c) the vorticity magnitude.

The appropriate parameters of the flow model used in the reconstruction algorithm
for this test case are as follows. First of all, we use the full version of the NSE-solver.
The Reynolds number is not much larger than 1, thus we still can scale the external
forces according to Equation 3.17. In order to use this scaling, we should first define
the size of the particles seeded in the flow. However, in the recorded images of advected
dye no separate particles can be distinguished. Therefore, without loss of generality,
we choose the size of hypothetical particles to be equal to the size of a pixel. Since
there are no obstacles present within the flow domain and there are no walls around the
outer flow domain, outflow boundary conditions are imposed.

Figure 4.2 visualizes the spatial error distributions of the velocity magnitude €1, j]
and the velocity direction €447, j] reconstructed by all four approaches. The model-
based techniques (16 predictor-corrector iterations) clearly outperform the CC and OF
approaches. In particular, the model-based approach using the OF predictor yields the
best result (€1, = 0.084 pixels and €,,, = 13°).

The per-pixel map of the estimated vorticity magnitude is depicted in Figure 4.3.
The intensity coding of the vorticity magnitude reveals the fact that both the CC ap-
proach and the OF approach underestimate the vorticity. Both model-based approaches
compensate for the loss in angular momentum. In particular, the OF+NS approach
yields the best results: the reconstructed vorticity pattern almost matches the ground
truth vorticity pattern.

A comparative visualization of the reconstructed velocity fields using overlaid arrow
plots is shown in Figure 4.4. Black arrows correspond to the ground truth velocity
field. Red arrows depict the vector fields reconstructed with (a) CC, (b) CC+NS, (c)

3 The vorticity magnitude in the 2D case is computed as: w = % — %.
x y
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Figure 4.2: Navier-Stokes flow: Top row: Spatial error distribution of the velocity magnitude
€1enlt, J]. (@) CC, Eon = 0.196 px. (b) CC+NS, €l = 0.12 px. (¢) OF, &, = 0.169 px.
(d) OF+NS, i, = 0.084 px. Bottom row: Spatial error distribution of the velocity direction
Eang[t, J]. (@) CC, Eang = 32°. (f) CC+NS, Eang = 22°. (8) OF, Eang = 24°. (h) OF+NS, éapg =
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Figure 4.3: Navier-Stokes flow, estimated vorticity magnitude: (a) CC, (b) CC+NS, (c¢) OF,
and (d) OF+NS.

OF, and (d) OF+NS. While the CC+NS approach can reconstruct most of the main flow
structures, it cannot compensate for the high rate of erroneous velocities introduced by
the CC predictor. The OF+NS approach yields the best results and recovers the flow at
extremely high accuracy.

Figure 4.5 shows the graph of the average error of the velocity magnitude &, the
graph of the average angular error €,,,, and a combined graph of SNR and PSNR statis-
tics, as functions of the number of iterations for each of the evaluation methods. Due
to the highly non-uniform nature of the flow, including multiple small-scale structures,
the CC approach has severe problems in reconstructing the velocity field. After the first
iteration the model-based approaches already yield better results than the CC and the
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Figure 4.4: Navier-Stokes flow: Ground truth vector field (black arrows) versus reconstructed
vector fields (red arrows) using (a) CC, (b) CC+NS, (c¢) OF, and (d) OF+NS. Visually, the less
of the black arrows can be seen the more accurate is the reconstruction with respect to direction

and length.

OF methods. With increasing number of iterations the predictor-corrector approaches

improve the reconstruction quality even further, with the OF+NS approach showing a

much faster convergence than the CC+NS approach. Moreover, the CC+NS approach

improving the results after the Sth iteration. This is due to the fact that after some

stops

iterations the corrected displacements become too small and heterogeneous for the CC
approach (the prediction step) to detect the resulting deformations.
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Figure 4.5: Error plots as functions of the number of iterations: (a) average error of the velocity
magnitude €ey,, (b) average angular error €,,,, (¢) combined SNR and PSNR statistics.

4.2.2 Lamb-Oseen Vortex

Particle distributions in the Lamb-Oseen vortex flow are given on a 256 X256 pixel grid,
which corresponds to 1x 1 m? fluid domain. The fluid in this particular flow situation is
air, for which p=1.205kg/m® and 1 =1.821-107kg/(m-s). The characteristic length
is equal to the radius of the Lamb-Oseen vortex L = 0.167m. The time step between
two exposures is At =1 s, and the pixel size is pxsize = 3.906 mm. The experimental
setup yields maximum and average displacements of 0.55 and 0.29 pixels between two
frames, respectively. Figure 4.6 (a) shows one of the synthetic images. The ground
truth velocity profile overlaid on the intensity coded per-pixel maps of the velocity and
the vorticity magnitudes is shown in Figure 4.6 (b) and Figure 4.6 (c), respectively.

The parameters of the flow model for the reconstruction algorithm appropriate for
the Lamb-Oseen vortex flow are as follows. First of all, we use the full version of the
NSE-solver. The Reynolds number (Re = 52) is quite small*, thus we can still scale
the external forces according to Equation 3.17. The radius of the particle tracers is
2.93 mm. Since there are no obstacles present within the flow domain and there are no
walls around the outer flow domain, outflow boundary conditions are imposed.

The same qualitative analysis as in the first experiment was carried out using 18
(OF+NS) and 8 (CC+NS) predictor-corrector steps in the model-based approach. Fig-
ure 4.7 shows the per-pixel error in the estimated velocity magnitudes €, and velocity
directions €.y, and it confirms our previous results on the quality of the four evalua-
tion methods. Again, the model-based approach using the OF predictor yields the best
results (€jen = 0.026 pixels and &,,, = 0.79°).

* In general, Stokes’ law is valid only for Re < 1. However, our goal is to use the model within the filter
operation. Therefore, it is acceptable that the model describes the flow approximately and not necessarily precisely.
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Figure 4.6: Lamb-Oseen vortex flow: (a) One of the original images. Ground truth velocity
field overlaid on an intensity coded per-pixel map of (b) the velocity magnitude and (c) the
vorticity magnitude.
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(ﬂ

Figure 4.7: Lamb-Oseen vortex flow: Top row: Spatial error distribution of the velocity magni-
tude €1en[i, j]. (@) CC, Ele, = 0.054 px. (b) CC+NS, e, = 0.042 px. (¢) OF, &1, = 0.065 px.
(d) OF+NS, €, = 0.026 px. Bottom row: Spatial error distribution of the velocity direction
Eang[t, J]. (&) CC, Eang = 1.24°. (£) CC+NS, ang = 1.23°. (8) OF, Eang = 0.99°. (h) OF+NS,
Eang = 0.79°.

Figure 4.8 shows the distribution of the vorticity magnitude for all four approaches.
The intensity coding reveals that the OF method underestimates this quantity, whereas
the CC method yields a slight overestimation. In either case the predictor-corrector
approach compensates for this error.

As illustrated in Figure 4.9, for the Lamb-Oseen flow the convergence behavior of
all four approaches is similar to the behavior we observed in the dye advection exper-
iment (cf. Figure 4.5). Although CC+NS starts with a lower reconstruction error in
this example, OF+NS still significantly outperforms CC+NS due to its faster conver-
gence and the stagnation of CC+NS after a few iterations. Interestingly, the graph of
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Figure 4.8: Lamb-Oseen vortex flow, estimated vorticity magnitude: (a) CC, (b) CC+NS, (c)
OF, (d) OF+NS.
the average angular error ,,,, for the CC+NS approach starts below the average angular
error level for the CC approach but then rapidly approaches this level and stops there.
Such behavior is mainly influenced by the large spatial region of the flow field with
strong velocity gradients around the center of the vortex, where the correction step can-
not compensate for the inability of the CC method in the prediction step to reconstruct
highly heterogenous motion within the interrogation window.
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Figure 4.9: Error plots as functions of the number of iterations: (a) average error of the velocity
magnitude €y, (b) average angular error €.y, (¢) combined SNR and PSNR statistics.

Moreover, as can be concluded from a comparative analysis of the error graphs pre-
sented in Figure 4.5 and Figure 4.9, the convergence rate of the reconstruction algorithm
for dye advection flow is significantly higher than that for Lamb-Oseen flow. There are
several possible explanations for such a phenomenon. First of all, Lamb-Oseen flow
field spans a high dynamic range of velocity magnitudes. Due to discretization errors
of the imaging process in the regions of low velocity magnitude (in the center of the
vortex), the recorded particle images are randomly distorted and thus the restoration
of reliable information from such images can be complicated. On the other hand, in
the particle images obtained for the dye advection experiment, there are no particles as
such, and thus even in the presence of low velocity magnitudes, the image distortion is
not that severe. Second, Stokes’ law is not very well suited for the Lamb-Oseen flow
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with Re=>52, yet the algorithm still converges at a sufficiently high rate.

Even though no significant difference in the velocity fields can be observed from these
plots, the graph of convergence behavior (Figure 4.9) as well as the intensity-coded
spatial error distributions of the velocity magnitude €., and the velocity direction ;4
(Figure 4.7) clearly show the advantage of our model-based approach with OF as pre-

A comparative visualization using overlaid arrow plots is shown in Figure 4.10.

dictor over the other approaches.
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4.3 Results of Reconstruction: Experimental Image Pairs

From a wide range of application areas for real-world PIV-experiments, we have chosen
a group of micro-flow experiments on living microorganisms. Given a typical biologi-
cally active liquid environment naturally seeded with nutrient particle tracers, the PIV
method offers an excellent opportunity to investigate the motion and fluid exchange
characteristics of microorganisms. The motivation for this investigation is two-fold:
first of all, the flow model underlying the micro-flows, the Stokes flow, is very simple
yet challenging, due to its natural instability [HOP"07] and limitations of the imaging
and particle seeding processes resulting from the necessity to maintain the biocom-
patibility (cf. Section 2.2.3). Second, gaining insight into the natural biomechanical
processes and bioconvection involving the microorganisms is of vital interest to the
community.

Due to restrictions imposed on biocompatible microscopic PIV systems, the recon-
struction of admissible flow fields from captured images is highly complicated. In
this section, we demonstrate the effectiveness of our model-based approach for the re-
construction of flow fields induced by living microorganisms. In particular, we show
that due to the combination of experimental procedures and advanced computing tech-
nology we can reconstruct flow fields that conform to the characteristic flow patterns
observed in nature.

We should mention here that all of our computations are performed under the as-
sumption that the particle movement and the reconstructed flow patterns are two-dimen-
sional. In the experiments we perform on living organisms this assumption is not valid
in general, and as a consequence the proposed method cannot always reconstruct the
fluid motion in a reliable way. On the other hand, as we will describe in Sections 4.3.1
and 4.3.2, the experimental setup we used was chosen in such a way as to enforce the
two-dimensional condition. Even though this might prohibit the accurate reconstruction
of the real flow patterns, it allows us to effectively validate the results of our approach
in a real-world scenario.

The world of microorganisms is incredibly diverse and includes bacteria, fungi, ar-
chaea, and protists, as well as some microscopic plants and animals. Thus, instead of
referring to the investigation of flow patterns initiated by microorganisms, we should be
more specific. In this thesis we study the fluid flows induced by sessile ciliates® Opercu-
laria asymmetrica which form their colonies on the surface of granular activated sludge

5 Sessile microorganisms are organisms which are usually permanently attached via stalk to a solid substrate
of some kind (e.g., granular activated sludge). The name ciliate comes from the presence of hair-like organelles
(“organs” of microorganisms) called cilia.
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growing in bioreactors for biological wastewater treatment. A detailed description of
these species, their geometries as well as the fluid flows induced by the motion of these
organisms can be found, e.g., in [BOB98, FL03, Utz03, HOP*07]. Figure 4.11 (a),(b)
shows a single tree-like colony and a schematic anatomical structure of these species.
Figure 4.11 (c) illustrates a characteristic flow pattern induced by ciliates [FLO3].

2 Lugsteiner

Figure 4.11: Sessile peritrich ciliate Opercularia asymmetrica: (a) a single tree-like colony, (b)
schematic anatomical structure, (¢) characteristic flow pattern [FL0O3].

In Figure 4.11 (c) arrows indicate the direction of particles motion, straight lines
confine the region where particles are moving towards the mouth of one ciliate, and
“EF” denotes egested food. Two microscopic PIV experiments with different parame-
ter settings have been carried out to obtain the images of seeded particles in the flow
investigated in Sections 4.3.3-4.3.4.

4.3.1 Experimental Apparatus

In the experiments a light transmitted microscope Axiotech 100 (Carl Zeiss, Germany)
with 20x and 50x optical magnification was used. The observation volume was illu-
minated by a standard light source integrated into the microscope, and biocompatible
flow tracers (yeast cells with characteristic size of 5-10 ym) were seeded into the vol-
ume. Images were captured by a CCD camera with macro-zoom lens at a frame rate of
25 s7! [KZDO7].

From the experiments it could be observed that the fluid motion is induced by nat-
ural bioconvection processes, and that the microorganisms have different strategies of
flow control via cilia beat and contraction of the zooid® itself. The typical flow pat-
tern is characterized by clearly distinguishable large-scale viscous eddies in the close
vicinity of the oral cavity of the ciliates. The distance of the vortex center from the
substrate surface, where the ciliates reside, can be used as the characteristic length L,

5 Zooid (or protozoon) is the main body of the microorganism (see Figure 4.11 (b)).
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which is of the same order of magnitude as the length of the organisms (50 pm). The
measured flow field exhibits maximum velocities of 25 pm/s at around 20 pm ahead
of an individual ciliate, and it extends 200 um from the location of the ciliate. The
nodding motion’ of the protozoon is found not to obey any periodic law. In groups of
protozoa an instationary flow field is produced by alternating cilia beats.

Since the fluid surrounding the microorganism is water®, the Reynolds number,
computed according to Equation 3.4, is around 1.25x 1073, This implies that the un-
derlying flow is governed by the Stokes equation (cf. Section 3.1.3). It was proven that
the Stokes drag force (cf. Equation 3.17) dominates by far all other forces acting on the
tracer particles, and that it is in the order of magnitude of 10-100 pN. Thus, the forces
exerted on the fluid by a ciliate to induce and maintain the fluid motion against viscous
dissipation should also be around 10-100 pN [HOP*07].

4.3.2 Flow Model

The bioconvection processes caused by sessile organisms suggest that these organisms
exert a net force on the fluid towards or away from the boundary. The boundary is
the organism itself and the substrate where it resides. This process leads to a single
toroidal eddy above the oral cavity of the organism, which is very similar to a toroidal
flow pattern corresponding to a stream function given by Equation 3.9 and illustrated
in Figure 3.4 [OYBO1, BOB98]. The experimental investigation of the fluid flow in-
duced by such microorganisms is usually carried out between a microscope slide and
cover plate, which represent impenetrable plane boundaries to the fluid and squeeze
the toroidal eddy in direction perpendicular to these planes as depicted in Figure 4.12
[LB81, BO96, BOB9S].

2D: cross—section W

Figure 4.12: Toroidal eddy (red tubes) induced by the microorganism (blue bell) which resides
between the microscope slide and the cover plate. The cross-section plane passes through the
main axis of the microorganism.

7 Being a sessile microorganism, a ciliate can vary its inclination angle with respect to its initial orientation by
adjusting the stalk. This motion is referred to as nodding motion [HOPT07].
8 For water 4 = 10" %kg/(m -s) and p = 10% kg/m>.
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As suggested in [Lir82] and [BOB98], the action of a single sessile microorganism
residing between the slide and the cover plate can be modeled by a single stokeslet (cf.
Section 3.1.3) acting normal to a plane boundary and parallel to two infinite parallel
plates. The stokeslet is situated at the tips of the cilia (approximately 10 pm from the
peristomal disk® of the ciliate), aligned along the main axis of the microorganism and
pointing towards the oral cavity of the organism as illustrated in Figure 4.13 (b). The
magnitude of the point force is set according to the maximum of the velocity magni-
tudes computed in the very first iteration. This model is simple, but according to a
quantitative analysis performed in [HOP"07] it reproduces the main structures of the
fluid flow very well. Therefore, we incorporate this model in combination with the
Stokes flow assumption into our model-based reconstruction method.

In case of a single toroidal eddy it is possible to select a slice in the investigated
fluid volume where the fluid motion is in a two-dimensional plane. The flow pattern
in this cross-section consists of two counter-rotating eddies. Since the toroidal vortex
is usually situated right above the oral cavity of the microorganism, the best choice
for a cross-section plane is the plane through the main axis of the microorganism (cf.
Figure 4.12). Since the depth of the focusing plane of the microscope used in our
experiments does not exceed 10 um, the average diameter of the microorganism’s zooid
is approximately 20 ym, and the flow field extends about 200 ym from the location of
the microorganism [PKD"07], the necessary condition for two-dimensionality can be
provided. Additionally, in order to satisfy the condition for cross-sectional flow to be in
plane, only the specimens located nearly parallel to the microscope slide and the cover
plate should be considered [HOP*07].

One additional question that should be addressed is how to determine the shape
of the fluid boundaries considered in our approach. Currently, the microorganisms
themselves are considered as obstacles, and the shape of the organisms is extracted
from image pairs by a standard segmentation technique [GSAWO0S5]. On the other hand,
especially the oral apparatus is very complicated and, what is even more important,
the position and shape of organelles within the oral apparatus can suddenly change
[SIa81, ZCO01, Utz03]. Moreover, as it was observed in several research studies, the
flow in the close vicinity of the oral cavity is highly unsteady and erratic [May00,
HOP*07]. According to these observations, some particle tracers can pass aborally
while others move straight into the oral cavity, some of them might be even rejected
by the microorganism. The precise modeling of such phenomena is still an open area
of research, and it is in particular not within the scope of this thesis to develop such a

? Peristomal disk is the part of the oral apparatus of the organism covering the oral cavity (see Figure 4.11 (b)).
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model or to simulate the fluid flow based on such a model. Instead, we use the large
scale model suggested by Blake and Otto [BOB98] in our model-based reconstruction
method. Since the outer part of the oral apparatus of the microorganism resembles a
flexible funnel (see Figure 4.11 (a),(b)), which can suddenly change its shape, dilate
and close its stem, the “mouth” of the organism is modeled as a rather shallow rounded
cavity (see Figure 4.13 (b) and Figure 4.16 (¢)).

Concluding the discussion about the fluid boundaries, the boundary conditions ap-
plied in the NSE-solver are as follows. Since the liquid surrounding the microorgan-
isms is neither penetrating their zooids nor the substrate, no-slip boundary conditions
can be applied to the extracted microbiological structures. As only a small part of the
whole fluid environment of the microorganisms is covered in our experiments, outflow
boundary conditions have been enforced for the outer domain border.

4.3.3 Experiment in Water Environment

In the first experiment [PKD"07], the images were acquired using 20x optical magni-
fication. The recorded particle images have a high signal-to-noise ratio and a resolution
of 860x 1024 pixels corresponding to 505 ym x 602 um. Yeast cells with a character-
istic size of 5-10 pum served as biocompatible tracer particles; a 1:100 yeast to water
solution was used. Figure 4.13 (a) shows one of the recorded images. Since the colony
of microorganisms is located only in the left upper corner of the image, sub-images of
size 256 X256 pixels were cut out of the original images (see Figure 4.13 (b), top).

In Figure 4.13 the following objects can clearly be distinguished: large dark objects
indicating the substrate on which ciliates form their colonies, bell-shaped objects with
clearly visible outer contours (species of Opercularia asymmetrica), and round small
objects (yeast cells). From the observation that some particles have sharp contours
while others are blurred one can conclude that some particles are situated outside the
focus plane of the microscope. Figure 4.13 (b), bottom, shows the segmented structures
that were used as flow boundaries in the numerical solution of the NSE.

The reconstructed velocity fields for all four evaluation methods are shown in Fig-
ure 4.14. In the OF+NS approach, 8 predictor-corrector iterations were performed.
As expected, the CC approach failed to reconstruct an admissible velocity field due to
the low number of tracer particles. As a consequence, we stopped the evaluation with
the CC+NS approach after the first iteration. The OF and the model-based OF+NS
approaches are capable of recovering a flow field that conforms to the characteristic
pattern of the fluid flow observed in nature. However, in regions where particles are
not present, the OF approach reconstructs velocities close to zero. Moreover, it fails
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Figure 4.13: Experiment in water environment: (a) Recorded image of particles in the flow
induced by living ciliates. (b) Cut out image (top) and segmented flow boundaries (bottom).

to recover a strong viscous eddy induced by the movement of the active ciliate. The
predictor-corrector approach resolves both problems as it extracts a strong viscous vor-
tex to the left of the ciliate and estimates velocity distributions according to the laws of
fluid dynamics in regions with low particle density.

To demonstrate the reliability of the estimated velocity field, we used a Particle
Tracking (PT) technique to determine the velocity at selected positions in the domain,
and we then analyzed the deviation of our solution from these velocities. Particles were
first segmented manually and correspondences between particle pairs in consecutive
images were established. Velocities were then reconstructed from the trajectories of
these particles over time. Figure 4.15 shows a graphical illustration of the segmented
particles and their velocities (red circles with arrows) overlaid on the velocity field
reconstructed with (a) OF and (b) OF+NS. In this experiment, the maximum and av-
erage displacement magnitudes of all of the tracked particles are 3.1 and 0.41 pixels,
respectively. Our measurements indicate that the velocity magnitudes estimated with
OF deviate significantly from the values computed with PT (., = 0.4 pixels). The
velocity distribution obtained with OF+NS, on the other hand, matches the reference
distribution very well (€., = 0.1 pixels). This result also indicates the improvements
that can be achieved by using the proposed model-based predictor-corrector scheme.
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Figure 4.14: Experiment in water environment: Reconstructed velocity fields using (a) CC, (b)
CC+NS, (c) OF, and (d) OF+NS. Only the model-based OF+NS approach can reconstruct one
of the vortices typically observed in nature.

4.3.4 Experiment in Milk Solution

In the second experiment [KZDO07], the same imaging device as in the first experi-
ment with 50x optical magnification was used. Sub-images of resolution 860x 860
pixels were cut out of the original scans. A 1:3 milk to water solution was used as
tracer medium, with fat and proteins of characteristic size 0.3-3 pm serving as tracer
particles'®. The light transmission properties of milk prevent particle motion in out-of-
focus layers to be captured. On the other hand, low image contrast combined with high

10 A 1:3 milk to water solution has viscosity 1 = 1.3-107kg/(m - s) and density p = 1.01-10% kg/m?.
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Figure 4.15: Experiment in water environment: Comparison of particle velocities computed
with PT (red arrows) and (a) OF (black arrows), (b) OF+NS (black arrows). The circles indicate
tracked particles and the red arrows visualize their velocities. Note that black and red arrows
are constant in length for better visibility.

particle density introduces additional difficulties for the reconstruction algorithms. Fig-
ure 4.16 shows (a) one of the real-world images, (b) a superposition of 9 images with
additional contrast enhancement to emphasize particle trajectories in the image, and
(c) the segmented domain boundaries. The red circles with arrows in Figure 4.16 (b)
correspond to tracked particles and their velocities.

80.75

80.75 161.5 242.25 X,pm
(a) (b)

Figure 4.16: Experiment in milk solution: (a) Recorded image of particles in the flow induced
by living ciliates. (b) Contrast-enhanced superposition of 9 subsequent images and tracked
particles with their velocities (red circles with arrows). (¢) Segmented flow boundaries.

Figure 4.17 shows that all four evaluation methods were able to reconstruct the

main structures in the flow: two nearly axisymmetric viscous eddies separated by the
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extended medial axis of the ciliate. However, in some regions the velocity vectors re-
constructed by the CC approach are not aligned with the corresponding particle traces
in the superposed image. For example, non-zero velocities are extracted across the mi-
croorganism and the velocity direction is slightly deviating from the superposed particle
traces in the vicinity of the vortex centers, where the velocity magnitudes are low and
the velocity directions within a small area are heterogeneous.
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Figure 4.17: Experiment in milk solution: Reconstructed velocity fields using (a) CC, (b)
CC+NS, (¢) OF, and (d) OF+NS. All four approaches are capable of reconstructing two nearly
axisymmetric viscous eddies. Only OF+NS is able to reconstruct the true velocity in the vicinity
of the oral cavity of the ciliate and around the vortex centers.

Although both the CC and the OF approaches can reconstruct the characteristic
flow patterns in most regions of the domain, in the vicinity of the oral cavity of the
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ciliate the velocity is unexpectedly low'!. In these regions, the velocity magnitudes
are so high (up to 8 pixels per exposure time) that both approaches fail to recover the
particle movement. The model-based approaches, on the other hand, can successfully
reconstruct the velocity distribution even in these regions. Furthermore, close to the
vortex centers, where the velocity magnitudes are low, the advantages of the OF+NS
approach can be also clearly seen.

The accuracy of the OF+NS approach is analyzed using the PT-based technique de-
scribed in the first experiment (cf. Section 4.3.3). Figure 4.18 compares the reference
velocities obtained with PT to the results using (a) the CC+NS and (b) the OF+NS
approaches. While the CC+NS approach yields an average error in the velocity mag-
nitude €., = 0.15 pixels, the velocity magnitudes estimated by the OF+NS approach
are almost equal to the reference values (€., = 0.08 pixels). The comparison confirms
our previous results, and it demonstrates the capability of the model-based approach to
significantly improve the reconstruction process in real-world scenarios.

E I N e E FIN AL A A mmra s nmma N

=1 SN IR NP YY.E  FRERRECR - S Y = P (PPN VRN - SRR
- F rf/fif,dr/.-—-—.u-nﬁ.\\\\\\\. - = V1 FP Isg F Fm s AN NN
> P sza-wq.\\\\\\\.%\ > FrT ffilf----O.\\\\\t\ ~
P - P - h e N N T O R T v !z'f/.f!‘}'?})/”-\‘\\\'\\\ SE N
rrrrrar 1L /—-H\\\E\\\\\\x r11‘:‘f3f [/ /—"“—\\EH\\\\&
t1ttt1otid Z==NAY VMV VALY tX1TEEEDY B F /f-\‘\\\ NANNN N
ol AW I | gl AN W BN i da §s 7

—_ i
N 1\1\\\&\{ .ruuﬁu: N :»\u\hx&f&uﬁuu /A
%‘I i Toils i B NS N NG T ) \/bl/fl fdd ] % ROl S N N § NS AT L]
R TN o L --f Y ey e d B a— \r-‘k‘- —a N i A {/{{
N \...— - -—/fa-ff:r.‘er P N 3 Q@&-—/fﬂt’f;f’ef

¥ 10 \\\\*—.».--—4—-.-.».—.-—4- - j._{ e B R T e e e i —
SRR | Attt A i i ~ e t e e e e A
- | T 1~ '\_w—%—b’a’d—o—-@— B t =N~ PR LS et
LD‘J‘ e L s o - DI - I '-"li N e e e
s I{I{/r%/rm——u\\\ \.\‘-.n.‘-.ﬁ -l //I.{/t‘/?’/e‘-.-\.\\\ S L S L
ol PR ff«‘x\ B s ae= | ©of tet sl /g?"#q‘s AR AR
— /”“,'“/d b \'\'\A\'\\\‘«"- — ff//f///# NN RN NA N AR
[ o A b\\\'\\\\"\\ J\ili’l.’ll X NN M\\\‘\\\‘\\
IR EE a.r&n S S YO ~Vd1e0ivl \ r D - RN
IIJ%J Ly //f?l\\]\‘\!\'\\ tid Y LV /fff?t\i\‘!\‘\\\
B JJI{ t VAt 13 IBRE AR -1 .’a’li lob VAN 35— 211\&\\\1!11
) FaaI VWSE S ad ittt o TIIIIIUNNNSNSE T i rr ittt
™~ -HHI.QL\ \Q“ﬂ*ov Zprt frdipd ™ JJH&\::\ \W\‘W ArtPLArErT
O w~t L LV ANMNNN S mvrerppag r f f 7| O /o~ IN VS ANNNS AN i p g s r £} ]
ORI =SNEAMNNANNNNSN S e rmrmm p p f f | OOf A7 ASNANNAMNNNNN N s a fp 2 f 2 f 77
VNNV L VA NN NSy aGh s p s p a2 R U TR T T T T T S E B

~/rNd \-\\\\\-—-—.--..«-_.,-;1///11} -—\\\/Jj\\\\ NN AN F A PAJSJ AL

\‘-\\f{ !,*‘\\: \-;-»-.-,--'-a)auurz/) }\-—.-..——{ ‘1!}:.:.‘:‘:‘\--—-;4/{;;}1//

T T

0 80.75 161.5 242.25 X,pm 0 80.75 161.5 242.25 X,pm

(a) (b)

Figure 4.18: Experiment in milk solution: Comparison of particle velocities computed with PT
(red arrows) and (a) CC+NS (black arrows), (b) OF+NS (black arrows). The circles indicate
tracked particles and the red arrows visualize their velocities. Note that black and red arrows
are constant in length for better visibility.

" According to the observations in nature, the largest velocity magnitudes are expected in the vicinity of the oral
cavity of the microorganism.
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4.4 Performance Evaluation

All our evaluations were run on a standard 3 GHz Intel Pentium 4 CPU with 2 GB RAM
and a GeForce 8800 GTX graphics card with 768 MB local video memory. Timing
statistics including the number of CG-iterations (NSE-solver) and V-cycles (multigrid
OF-solver) performed in one predictor-corrector cycle are presented in Table 4.2. Since
the OF computation and the numerical solution of the NSE are the most time consuming
parts of our approach, timings for these parts are shown separately in columns two and
three, respectively. The total time required to complete one iteration is given in the
fourth column. In order to estimate the performance for larger resolutions we run our
method on the full resolution images (860 x 1024) available from the first experiment.
The timings are shown in the third row. All timings are given in seconds.

Table 4.2: Timings for one predictor-corrector iteration on the GPU.

OF Multigrid )
Data set runtime [s] NSE rl.mtlm.e [s] Total
(#V-cycles) (#CG iterations) runtime [s]
Experiment 1: (256 x 256) 0.037 (5) 0.027 (20) 0.067
Experiment 2: (512 x 512) 0.160 (5) 0.112 (40) 0.300
Reference: (860 x 1024) 0.693 (5) 0.503 (80) 1.341

The timings show that the technique we propose still performs at nearly interactive
rates even for high resolution images of up to 10241024 pixels. Thus, the system
offers the possibility for in situ reconstruction of flow fields from consecutive image
sequences. Even more importantly, for the first time it is now possible to interactively
control specific parameters of both the flow model and the reconstruction process, and
to obtain direct feedback of the imposed changes.

The interface assigned to the reconstruction process enables the user to change phys-
ical properties of the underlying flow model such as Re, pi, and p, the smoothness crite-
rion «, and experimental settings (time interval At between frames, pixel size, etc.). In
particular, in experimental fluid dynamics, where the exploration of fluid flow is often
an iterative process based on rather vague assumptions on the underlying models, we
expect this flexibility of increasing importance.

It is worth noting that with respect to previous hierarchical implementations of the
OF computation on CPUs, the proposed GPU-based implementation shows excellent
performance. Compared to the most recent timings given in [BWF*05] and [RKSNO5],
the GPU-implementation outperforms advanced CPU solutions by a factor of about 2-3
and a factor of 8-10 respectively.
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In addition, as both the OF computation and the NSE-solution run on the GPU, they
can be directly coupled with an interactive visualization module running on the same
architecture [KKKWO5]. In the current application this module provides to the user
multiple visualization options for 2D flow fields, including particle tracing and stream
lines or stream balls visualization. There is also an opportunity to choose among the
various types of differential quantities'?, such as vorticity w and shear-strain e, for
filling up the overlay map rendered behind the visualized geometry primitives. Some
results are shown in Figure 4.19. In this way, we can entirely avoid any data trans-
fer between the CPU and the GPU, which otherwise slows down the overall system

performance.
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Figure 4.19: Visualization modes available in the GPU-based framework for visual flow explo-
ration: (a) particle tracing, (b) stream lines, (c¢) stream lines overlayed on the vorticity map, (d)
stream balls seeded in a small probe (green square) and overlayed on the shear-strain map.
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The shear-strain in the 2D case is computed as: exy = 57 + 5, -
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Part 11

Interactive Visualization of Flow Fields
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Chapter 5

State-of-the-Art Techniques for Flow

Visualization

Flow exploration plays an important role in research in many fields of science from in-
dustrial experiments in wind tunnels (aerodynamics) to investigation of micro-flow in
blood vessels (medicine). As mentioned in Section 1.1, flow exploration encompasses
three main procedures: flow measurement and reconstruction of flow fields from mea-
sured data, or, alternatively, simulation of flow fields using numerical codes of compu-
tational fluid dynamics, and visualization of flow fields. This chapter is dedicated to
the latter aspect — visualization.

It is a well known fact that, except for some unique individuals, human beings are
not able to gain much insight from an excessive amount of digital information presented
solely in numbers. Therefore, efficient methods are required in order to visualize the
numbers and to enable the observer to see the unseen. Scientific visualization is a field
of science, dedicated to the problem of mapping the numbers to visual representations
allowing to understand the data under investigation. A particular branch of scientific
visualization suited specifically for fluid flows is flow visualization. 1t is worth mention-
ing that techniques used for efficient flow visualization sometimes can be successfully
applied in areas which do not explicitly deal with fluid flows.

Flow visualization has a centuries-long history and probably exists as long as fluid
flow research itself. Until the development of flow measurement techniques allowing
for quantitative flow analysis, the only way to investigate the real flow was its direct
experimental visualization. An overview of such methods along with beautiful flow
pictures can be found, for example, in [Dyk82, Mer87, SLBS03]. Undoubtedly, di-
rect flow exploration is appealing from an experimental point of view: it allows the

85
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researcher to get an impression about the flow without any calculations; the amazing
flow patterns it reveals inspire the development of new theories for fluid flows, and it
enables the qualitative verification of a new theory or flow model. However, there are
several problems preventing the use of these methods in all applications. Firstly, flow is
inevitably affected by experimental equipment in most cases. Moreover, not all param-
eters can be directly visualized. Finally, experimental equipment for the investigation
of large scale flows, such as wind tunnels, is not affordable for every fluid mechan-
ics laboratory. Since visualization does not require expensive equipment and does not
change the natural flow conditions while providing a range of digital information about
the flow, it opens new opportunities for quantitative flow exploration.

In this chapter, we briefly summarize the state-of-the-art techniques used for flow
visualization. More information about the ongoing research in this area as well as a
rich collection of references related to this topic can be found in [PvW93, PVH'02,
PVH™'03, LHZP05, Lar08]. Furthermore, we provide a description of an efficient im-
plementation of fundamental flow visualization algorithms on the programmable graph-
ics processing units (GPU), which lies at the core of our particle engine. This informa-
tion is intended to help the reader understand the implementation issues described in
Chapters 6 and 7 without looking through a detailed description of the particle engine
given in [KKKWO5]. Finally, we present an extension of the GPU particle engine for
additional visualization modes allowing for feature-based focus and context visualiza-
tion of flow fields.

(b)

Figure 5.1: Amazing flow phenomena: (a) wake vortex study at Wallops Island; (b) the Von
Karman vortex street at the coast of Baja California, Mexico.
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5.1 Introduction to the Visualization of Vector Fields

Many of the quantitative flow visualization methods developed in the last two decades
draw on the early-days experimental flow visualization techniques: path lines, streak
lines, and time lines. These techniques mimic the experimentally obtained flow pattern
at the same time incorporating additional quantitative information into the visualiza-
tions. The process of flow visualization can be represented as a pipeline consisting of
the following stages [PvW93]:

* Low level data processing: modification or selection of the data, in order to reduce
the amount or improve the information content of the data. Typical examples of
low level data processing are domain transformation, interpolation, sampling, and
noise filtering.

* Visualization mapping: translation of the physical data and derived quantities
to suitable visual primitives and attributes. This is the most challenging part of
the process since it is not a trivial task to visualize the physical meaning, which
probably has never been seen, through geometrical objects on the screen.

* Rendering and display: transformation of the mapped data into displayable im-
ages and their output onto the screen. Typical operations performed on this stage
are viewing transformations, lighting calculations, and hidden surface removal.

Sometimes, flow data generation is considered to be a part of the first stage of the visu-
alization pipeline [MDB87, PvW93]. However, in our terminology, the entire process
including the flow field acquisition is referred to as flow exploration, and, in turn, the
visualization pipeline is denoted as visual flow exploration. Thus, we will use our defi-
nitions to avoid any ambiguity. All currently existing approaches for quantitative flow
visualization can be classified into the following groups [Lar0O8]:

Direct: The whole flow field is portrayed using minimum com-
putations in the most straightforward way. Typical tech-
niques belonging to this class are 2D plots and 3D vol-
umes seeded with arrow-shaped primitives at given posi-
tions within the flow domain or filled up with color-coded

scalar flow properties such as velocity magnitude at every

pixel/voxel. The main advantages and disadvantages of this
class of algorithms are:

¢ immediate and intuitive exploration of flow data in 2D,

© visual complexity and cluttering in 3D;
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Dense, texture-based: A dense representation of the flow is gen-
erated by using the texture derived from the vector field.
The direction of flow motion is taken into account via

smearing of texture values along the vector field using the
convolution function. The most successful techniques be-
longing to this class are: spot noise, line integral convolu-
tion (LIC), image space advection (ISA), and image-based
flow visualization (IBFV) [LHD"04]. These techniques
have the following benefits and drawbacks:

@ detailed view, clear perception of flow features,
¢ advantages of direct and geometric techniques,
© time-consuming and prone to aliasing,

© visual complexity and cluttering in 3D;

Geometric: The geometric objects are used to represent the flow
and its dynamics. The flow features are first extracted via
integration of the flow field and then displayed using ge-
ometric objects. Typical examples include stream lines,
streak lines, and path lines. Stream surfaces and stream par-

ticles also belong to this class [WE04]. The pros and cons
of geometric flow visualization are:

@ intuitive flow visualization,

Stream balls,
illuminated lines

@ clear perception of flow features,

© efficient placement of geometric objects in both 2D
and 3D is a non-trivial task,

© visual complexity and cluttering in 3D;

Feature-based: Core flow features such as topological skeleton
and coherent structures are extracted from the flow field and
used for visualization. This allows to reduce the amount

of displayed information, while emphasizing the prominent
structures of the flow. We will describe these techniques in
more detail in Section 5.3. The main disadvantage of this

class of techniques is high computational costs for feature
extraction.
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One important criterion for classification of visualization techniques is the level of
displayed information. According to Hesselink et al. [HPvWO94], the following three
categories of methods can be distinguished. Elementary approaches display detailed
information at a single point, without taking into account information from neighboring
points. Local techniques incorporate information about the neighborhood of some point
into a representative geometric object. Finally, global methods represent the whole
vector field via a few primitives.

For example, arrow plots and line-type approaches are considered as elementary
techniques, and stream surfaces as local [HJO4]. Since the main topological features of
the vector field, critical points and separatrices, completely determine the nature of the
flow, the topology-based methods fall under the category of global.

For the sake of clarity, in this thesis we will use only two classes: local and global.
In this way, glyph plots are treated as local and topology-based methods as global. Clas-
sifying line-type approaches as local, in our opinion, is somewhat misleading. Since
lines are computed over the region, they do show the structures within the flow. Thus,
we will refer to lines also as global technique according to our classification.

5.1.1 Particles Tracing: Basics

Since particle tracing is at the core of our GPU particle engine, it makes sense to briefly
describe the basic mathematics behind this paradigm. In Section 2.1, we have already
introduced the notion of flow lines, or integral curves, or also characteristic curves,
which are the lines traced by the particles immersed into the flow. The velocity vectors
are tangent to these lines at every position in space (cf. Equation 2.2). In this case,
given a velocity vector field the flow lines can be constructed via integration:

to
Ppath (5 Po, to) = Po +/V(Ppath (55 Pos to) , S) ds,
t

to
Pstream (t; Po, tO) = Po + /V(pstream (S; Po, tO) ) T) dS,
t

Pstreak (57 Po, t) = ppath (tu Po, 8)7 ERS [tminyt]a

Streak lines
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where path line represents a trace left by a particle in the flow; stream line is a trajectory
drawn in the “frozen” flow field, i.e., the instantaneous flow field at the specified time
7; and streak line is a pattern made by dye particles being injected into the flow for
some period of time s € [tin, t] at a fixed position pg.

In general, a given vector field is specified at discrete grid points. Hence, numerical
integration schemes should be employed to reconstruct the integral curves from this
vector field. One of the simplest integration scheme is the Euler scheme of first-order.
Applying this scheme to the path line formula in Equation 5.1, each position on the
path line is computed as follows:

p(t+ At) =p(t) + V(p(t)) - At. (5.2)

The Euler scheme is fast and simple, however, it does not always provide satisfactory
results in terms of accuracy. When accuracy is a critical point, higher-order integration
schemes can be exploited, e.g., Runge-Kutta of fourth-order [PTVFO07].

It is worth mentioning that different rendering modes lead to different visualizations
of the same integral curves. For example, if the computed positions are connected by
line segments, we get a piecewise representation of an integral curve. On the other
hand, if instead of line segments spheres are rendered an their size is modulated by the
magnitude of velocity at corresponding positions, so called stream balls are depicted.
Finally, if instead of displaying static line segments or balls, a single discrete particle
is traced along the integral curve, an animated visualization is achieved. All of these
rendering options are included in the GPU particle engine and are briefly described in
the next section.

5.2 Efficient Particle Tracing on the GPU

The first version of the described particle engine on GPUs was created in 2004 inspired
by progress going on at that time in many areas of science. The advent of powerful
computers and the development of new numerical techniques to simulate flow as well
as experimental techniques to measure flow at high speed resulted in a huge amount of
flow field data sets, which require efficient means for their visual exploration. The most
efficient visualization methods at that time were based on the particle tracing paradigm
[PVH"02] since this approach intuitively represents the flow structures in a similar
way, as it is done by experimental flow visualization techniques. In order to acceler-
ate the output of extracted flow features and to enable interaction with the data, most
techniques suggest to precompute the flow properties and upload them onto the GPU
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for rendering [BKHJO1]. The remaining approaches exploit the efficiency of parallel
architectures [BL91, ZH97] or data partitioning techniques and caching strategies for
particles [USM96, CE97]. None of these techniques provide the computation of parti-
cle trajectories on the fly and tracing millions of them at interactive rates. On the other
hand, due to the rapid progress of highly parallel graphics architectures, GPUs have
been introduced as powerful tools not only for computer graphics purposes, but also
for scientific computations [LBS03, TvWO03, KSE04, KLLRS04]. These observations
motivated us to develop an efficient method, which reveals the flow dynamics in a most
intuitive way, while at the same time computing on the fly and displaying the quanti-
tative information about the flow properties, such as vorticity or velocity magnitude,
exploiting the efficiency of parallel computations on the GPUs.

The particle engine, which we briefly describe in this section, is suited for inter-
active visualization of steady 3D flow fields on uniform grids. For more details, the
interested reader is referred to [KKKWOS5]. To fulfill the requirement of interactivity,
we trace all the particles in parallel on the GPU, which has been proven to be more
than three times as efficient as a CPU-based solution. Moreover, the time-consuming
transfer operation from CPU to GPU is avoided by implementing the particle tracing
completely on graphics hardware . In this way, the proposed GPU particle engine al-
lows for interactive streaming and rendering of millions of particles, and thus, enables
virtual exploration of high resolution fields in a way similar to real-world experiments.

The ability to display the dynamics of large particle sets using visualization op-
tions like shaded points or oriented texture splats provides an effective means for visual
flow analysis that is far beyond existing solutions even nowadays. For each particle,
flow quantities like vorticity magnitude and the \; criterion' can be computed and dis-
played on demand. Built upon a previously published GPU implementation of a sorting
network, visibility ordering of semitransparent particles is implemented. To provide
additional visual cues, geometric objects such as stream ribbons are constructed and
displayed using the GPU.

5.2.1 Particles: Advection and Rendering

On recent programmable graphics cards it is possible to allocate and use two types of
memory objects for read and write operations: vertex buffers and textures [Gra03]. It
is worth mentioning that GPUs allow to store the volumetric data in 3D textures and
support automatic tri-linear interpolation for such textures. The possibility to create

"' \5 is the second largest eigenvalue of the matrix nym + Qisym, where Qgym and Q2aeym are the symmetric
and antisymmetric parts of the velocity gradient matrix. A2 can be used, e.g., for vortex detection [JH95].
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custom functions (shaders) for vertex and fragment processing stages extends the tra-
ditional graphics pipeline and offers new opportunities to programmers as depicted in
Figure 5.2. This functionality enables the construction, manipulation, and rendering of
geometric data on the GPU. Hence, particle tracing can be entirely performed on the
GPU without any read back to application memory.

Render To Vertexarray

_{:Venexshader — V — —

Render To Texture

T Texture| [Texture|-- - [Texture
I =

H — —» H—> | Blending/Ops| —»

Figure 5.2: Rendering Pipeline with Programmable GPU.

In general, rendering on programmable GPU is performed as follows. The vertex
shader processes the input information about the vertices of some geometric primitive
stored in an associated vertex buffer, projects the vertex positions into screen space,
and outputs them. In addition, a number of auxiliary parameters for each vertex can be
output as well. This information is transferred to the fragment shader, which performs
the per-fragment operations and outputs the result onto the screen.

GPU-based particle tracing employs several 2D textures of the same size m X n
that store the updatable attributes for each particle P[i, j]*. Moreover, a discrete steady
velocity field is stored in the separate 3D texture, VFTex3D. The particles are traced in
space according to the vector field values fetched from VFTex3D using the numerical
integration schemes, such as the Euler scheme (cf. Equation 5.2). The computation of
some particle attributes, such as position, requires the value of these attributes at the
previous step. Since simultaneous read and write operations into the texture are not
available on current GPUs, a ping-pong technique has to be employed in order to keep
information from the previous step. Several attributes can be efficiently computed and
stored in different textures using a multiple render target technique (MRT). It is worth
mentioning that each texture object can have up to four 32-bit components on current
graphics hardware.

2 Since particle has many attributes we denote it with a double letter P in the same way as the other multivariate
quantities such as matrices and tensors.
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The particle tracing algorithm involves the following basic operations:

* Birth-death-incarnation: At birth, a randomly selected life time is assigned to
each particle. This time is decreasing in each update operation, and when it be-
comes zero, the particle dies and gets reincarnated at its initial position stored
in the starting position texture StartPosTex together with its starting life time.
When the particle goes out of the flow domain, it also dies and gets reincarnated.

* Advection: In each advection step the current particle position is fetched from the
position texture PosTex(t—1) and advected. Additional particle attributes can be
updated as well. The result of such update operation for position and life time is
stored in PosTex(¢), and for additional attributes in auxiliary textures.

* Rendering: Particles are rendered according to their positions stored in PosTex(t)
using different visualization modes, including shading, lighting, and color-coding
based on their attributes, e.g., vorticity or \s.

The initial particle positions can be specified using different spatial distribution func-
tions, e.g., regular or random distributions over the rectangular seeding probe. In order
to achieve the impression of homogeneously seeded particles following the flow, the
life times are randomized. In this way, no “mass death” or “mass reincarnation” occur,
which means that particles are appearing and disappearing randomly in such a way that
it does not distract the user’s attention from the moving particles. The position and size
of the seeding probe can be arbitrarily modified by the user. The result of such a modifi-
cation is the transformation matrix M, which is applied to the starting particle positions.
Moreover, the user can arbitrarily modify the number of particles to be traced. In this
case, the size of the particle attribute textures as well as the starting particle positions
have to be modified.

The update operations — including the advection for particle attributes — are per-
formed using the off-screen rendering technique as follows. A stream of m x n frag-
ments corresponding to a contiguous block of pixels in screen space is generated. The
fragment output is rendered into an equally sized render target associated with the par-
ticle attribute texture at time step ¢. Figure 5.3 illustrates this procedure. For time-
dependent attributes, each fragment [i, j| gets as input the corresponding pixel [, j]
from the attribute texture computed at the previous time step (¢ —1). Different oper-
ations f(texo,...,tex,) can be performed over the fragments before they are finally
output into the render target.

In the case of advection, it is necessary to know the current particle’s velocity stored
in VFTex3D. Thus, first of all, for each output fragment with texture coordinates [i, j],
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Figure 5.3: Update of particle attributes using the off-screen rendering technique.

the particle position is fetched from PosTex|, j]. Then, the vector field value is looked
up at this position in VFTex3D[PosTex][i, j]].

It is worth mentioning that the advection step occurring directly after the particle
birth and incarnation slightly differs from the subsequent advection steps. First of all,
the positions, which are fetched from StartPosTex, are specified over the unit cube.
In order to fit them into the user-defined seeding probe, these positions should be trans-
formed using the transformation matrix M of the seeding probe. In this way, all posi-
tions are transformed into world-space, and thus, further actions can be performed in
the same way as in the following advection steps.

Once all the necessary particle attributes are computed, the particles can be rendered
using the capabilities provided by DirectX Shader Model 3.0 or higher [Gra03]. Each
entry of the vertex buffer is associated with a single particle. Since all particle attributes
are stored in textures, a special function is required which maps the 1D index identify-
ing a particle within the vertex buffer to the 2D index related to the texture coordinates
assigned to this particle within the attribute textures. To find this mapping function, the
texture coordinates assigned to a particle are written into the vertex buffer entry associ-
ated with this particle. Thus, in the rendering stage, all required attributes connected to
a particle have to be extracted from the attribute textures in the vertex shader and for-
warded to the fragment shader, where the attribute-based color is assigned to the output
vertex.

There are two general ways, how the particles can be represented: simple one-pixel
points or geometric objects centered at the particle positions. The latter case can be
further classified as simple glyphs without directional information and glyphs aligned
along the flow to emphasize the direction of the velocity vector at the current particle
position. The points are primitives, which do not require significant GPU power to
render them. On the other hand, geometric objects typically consist of a number of
primitives. Thus, rendering them puts considerable burden on the rendering process.
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Sprite Atlas

Since using the geometric objects (meshes) allows for displaying additional important
information, such as flow direction, which is not possible by using a static point, it
is of interest to employ objects of different shapes in the visualization. An efficient
technique to eliminate the time-consumption for geometry processing of meshes is to
use the conception of virtual geometry represented via point sprites. Technically, a
point sprite is a textured quad rendered at a specified position on the screen. The
geometry processing time for such point sprites is significantly lower than that for real
geometric objects.

Virtual geometry is a “photograph” of a real object, which can be attached to a point
sprite. More precisely, virtual geometry represents a projection of a real object oriented
according to the specified transformation matrix and written into the texture. A single
picture obtained from a certain position does not describe a variety of possible object
orientations in space. Therefore, a number of projections captured from different points
of view onto the real object is stored in a sprite atlas.

Since the rotation about the Z-axis takes place in the screen plane, it can be obtained
via rotation of texture coordinates, assigned to the fragments of the point sprite. On the
other hand, rotations about X and Y axes extend beyond the screen space, and thus, in
general, both of them should be taken into account. However, if the object is symmetric
about the X-axis, it is sufficient to store only the rotation about the Y-axis. In this
way, only one “view-dependent” row of object projections is required to recover all the
possible orientations of this object.

The oriented point sprites usually have elongated shape in order to better visualize
the directional information. To make the rendered object longer or shorter, scaling
along its major axis is performed. This longitudinal deformation is taken into account
by adding several “view-dependent” rows with different scaling factors into the sprite
atlas.

For rendering the point sprites, an appropriate sub-image from the whole sprite atlas
should be selected. This selection is performed in a fragment shader via the transforma-
tion Mg;, of texture coordinates tc[z, y] assigned to the point sprite by the GPU. My;,
is a 2 x 2 matrix computed as follows:

Mdir = Mtrans ) Mrota
where Mians = Translate(arcsin (2), [[V|]2) (5.3)
Mot = ! Y ’

—gi’
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where V is the velocity vector of the particle represented by a point sprite, and (z, 7, 2)
are the components of the normalized V. Since for all fragments of the point sprite
V is constant, Mg;, can be computed in the vertex shader (thus, once per sprite) and
passed to the fragment shader as a parameter. In this way, efficient rendering of virtual
oriented glyphs is performed.

Note that all the point sprites by default have the same size, which can be pro-
grammed. To give the impression of perspective projection, this size is scaled with the
z-component of the particle position projected into screen space. Examples of visual-
izations using point sprites are depicted in Figure 5.4.

(a) (b)

Figure 5.4: Visualization using point sprites: (a) simple points, (b) virtually aligned point
sprites.

In order to perform correct rendering of semi-transparent particles, they should be
depth-sorted first. Since sorting is a computationally expensive procedure, its efficient
implementation is a critical point for maintaining the interactivity. We have imple-
mented an efficient bi-tonic merge sorting algorithm as suggested in [KSWO04]. It is
worth mentioning that in many cases an approximate rendering without sorting using
the additive alpha blending can be employed.

5.2.2 Lines: Tracing and Rendering

From an implementation point of view, the algorithm for tracing lines on the GPU is
different than the algorithm for tracing particles. This is because in order to construct
a line, all positions on this line must be computed. Afterwards, these positions can be
connected with line segments, or some other rendering mode can be employed. In the
current implementation, line tracing is performed as follows.

Assume that m x n lines of the same length [ need to be traced. Line tracing can
be done in parallel for all lines by updating the position for each line at each time step
t and storing it into the texture LPosTex[t] of size m x n. Performing this operation
[ times for the full line length, a stack of [ textures is obtained. Instead of storing [
textures of size m X n, they can be packed block-wise into one texture FullLPosTex
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of size m x (n-1). In the particle tracing algorithm, the ping-pong technique is used
to work around the inability of current GPUs to perform simultaneous read and write
operations into the same texture. In this case, the previous positions are stored in the
auxiliary texture. For lines, the previous positions are fetched from the last block stored
within the block-texture FullLPosTex (see Figure 5.5 (a)).

Q N v >
Vertex buffer \ \

lic,,[0]

Figure 5.5: Lines in the GPU particle engine: (a) construction, (b) rendering.

Rendering of lines is performed in a different way than the rendering of particles.
The vertex buffer is used to store the texture coordinates tcy,|t] of the upper left cor-
ner of the ' block within the block-texture FullLPosTex, which corresponds to the
currently rendered ¢** line segments. Since all the lines have the same length, one ver-
tex buffer is sufficient. While rendering the lines, the cycle runs through all of them,
processing in each iteration an entire line. The shift in texture coordinates tcgp;ss |7, J]
within the block for each line is computed using the 2D index [i, j] of the line and
passed to the vertex shader, where it is summed up with the offset of the t' block
within FullLPosTex (see Figure 5.5 (b)).

In addition to standard lines, advanced line-rendering techniques, such as stream
ribbons and shaded lines, are implemented in our particle engine as well. If point
sprites are rendered instead of line segments, the appearance of stream balls is achieved.
Different line-based visualizations are shown in Figure 5.6.

5.2.3 Extension for Unsteady Flow Fields

It is worth mentioning that we have extended our particle engine for the interactive
visualization of large unsteady 3D flow fields on uniform grids [BSK*07]. For this
purpose, a novel dual-core approach has been proposed in order to asynchronously
stream such fields from the CPU, thus enabling the efficient visual exploration of large
time-resolved sequences. This approach decouples visualization from data handling,
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(a) (b)
Figure 5.6: Visualization using lines: (a) simple stream lines, (b) stream balls, (c¢) stream
ribbons.

resulting in interactive frame rates. Moreover, new strategies for the visualization of
integral curves have been developed. To provide additional visual cues, GPU-based
volume rendering of scalar flow features as well as focus and context techniques for
polygonal meshes have been integrated. The efficiency of the proposed techniques has
been demonstrated via the visual analysis of the Terashake 2.1 earthquake simulation
data [BSK107].

5.3 Feature-Based Extensions for the GPU Particle Engine

Synthetic low-speed Oscillation Vortex roll-up Hairpin vortices
streak generated due

to continuous
streamwise injection

Inrush
flow intensifies

weak vorticity
concentration region

ASecondary
-

streamwise
vortices

Figure 5.7: Flow features example: schematic of the break-up of a synthetic low-speed streak
generating hairpin vortices [AS87].

While traditional techniques for flow visualization such as path lines or oriented
glyphs visualize the vector field in a simple way, feature-based techniques raise to a
higher level of abstraction, by extracting physically meaningful structures from the
underlying flow field. Based on these features only the important and interesting infor-
mation is depicted to the user. Thus, the amount of data displayed at once can be sig-
nificantly reduced. As a consequence, the visual perception of the characteristic flow
structures is improved. While studying this abstract definition, two reasonable ques-
tions arise: what is the feature and which regions should be considered as “interesting”
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or “important”?

Taken from the dictionary, the definition of a feature is as follows: a prominent
or distinctive aspect, quality, or characteristic. In this way, in fluid flows the vortices,
vortex cores, separation regions, heterogeneous regions, critical points, etc. can be
considered as features. After these features are detected, the regions where they appear
are treated as “important”.

A fundamental method of feature-based visualization is selective visualization [van95].
The feature extraction pipeline lying at the core of this method is depicted in Figure 5.8.

Selected Regions of Attribute
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[ Selection } {Connectivity} {Calculation} [ Mapping }

Expression Criteria Method Function
A A A A
1] 1] 1] 1]
e e e e e ----- I o - ------- - ----—————-- 4
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Figure 5.8: The feature extraction pipeline.

The selection step corresponds to a binary segmentation of the original data set
based on some criterion (threshold). If the voxel is selected according to this threshold,
the corresponding bit in the bit-mask is set to “1”, otherwise to “0”. In general, a num-
ber of thresholds can be used. Another way to select data is to allow the user to do this
according to his/her needs [FG98]. Moreover, to achieve a smooth visual appearance
in transition regions between the selected and unselected voxels a transparency blend-
ing function can be employed. In the clustering step all selected points are combined
into coherent regions [HWHJ99], which are considered as objects. The attributes, such
as position, volume, and orientation, are computed for these objects in the attribute
calculation step. Finally, the calculated properties are depicted using some geometric
objects (iconic mapping step). In this way, all the unselected/uninteresting regions can
be automatically discarded.

Exploiting powerful importance-driven approaches, such as the focus and context
techniques, which were recently adopted for flow visualization, the unimportant regions
can be rendered as a context information, e.g., using volume rendering. This enables
the visualization of connections and transitions between the different regions within
the flow domain and helps to understand the flow under investigation in all its integrity.
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Other importance-driven approaches allow for reduction of the amount of information
based on varying the density of the displayed primitives [TvW99, MTHGO3], or their
shape [DHO02]. In order to increase the effectiveness of these methods even more, addi-
tional depth cues, such as fogging, motion parallax, depth-of-field, halos, shading and
lighting, can be employed [PVH"02].

Inspired by the efficiency of importance-driven techniques employed for the visu-
alization of complex data sets from various scientific areas [VGB 05, BSK*07], we
adopted these techniques for interactive flow visualization. In the next sections we
briefly describe which extensions we have made in the particle engine in order to en-
able the interactive and intuitive feature-based visual exploration of flow fields.

5.3.1 Feature-Based Techniques for the Particle Engine

To enable focus and context techniques in particle-based flow visualization, we use the
following two strategies. Firstly, the spatial density of the visualized particles is adapted
according to the importance classification. Secondly, the appearance of the rendered
particle primitives reflects the importance of the region they are traveling through. In
the following, we describe how to adjust the shape and appearance of the rendered
particle primitives based on their importance.

Scale-Space Particles

This method exploits the spatial importance function Imp(p), which is defined by a
combination of a spatial attenuation function att(p, pr) decreasing with the distance
to a user-specified focus point ps and an importance scalar volume impVol containing
some arbitrary importance measure:

Imp(p) — [0,1] = att (p, pr) ® impVol (p), (5.4)

where @ is an operator combining values of the functions att(p, po) and ¢mpVol(p)3.
It is assumed, that “0” corresponds to unimportant regions and “1” to important regions.

In the rendering stage the number of rendered particle primitives is reduced based
on the values of Imp(p). For this purpose an approach similar to illustrative vol-
ume rendering [YCO04] is employed. A random value rnd[i, j| € [0..1] is assigned
to every particle P[i, j| seeded into the flow at position pl[i, j|. This random value is
used as a selection threshold. In the current implementation, a particle is rendered if
Imp (pli,j]) > rnd[i, j|. Thus, more and more particles are removed with decreasing

3 The value at any position p in a scalar volume impVol can be obtained using trilinear interpolation.
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importance. To enable clear distinction between the important and unimportant regions,
as well as to emphasize characteristic flow structures, additional modulation operations
are performed on the particle size (size), color (col), and transparency (transp). The
overall modulation function is specified in Figure 5.9.

Modulate ([i,j], rnd[i,j], p[i,j], sizeo, Csizer Coransp) {

if(Imp (pli,j]) > rndli, j]) { // Selection
transp(i,j] = (1—Imp (pli,j])) - Ciransps // Transparency modulation
sizeli,j] = sizeg + (1 —Imp (p[z,j])) - Csize; // Size modulation
col[i, ] = LUT[transpli, j]] ; // Color modulation
} else
discard; // Do not render

Figure 5.9: The overall modulation function for focus and context importance-based rendering.

In Figure 5.9, size is the basis size for particles, Cs;.. and Cy;4y,5, are the user-defined
thresholds specifying how fast particles are vanishing and fading out according to the
decreasing importance. Finally, the color of every particle can be modulated by means
of a user-defined color transfer function LUT [transp[i, j]] . An example of a flow field
visualization using the overall modulation function is shown in Figure 5.10 (a).

(b)

Figure 5.10: Importance-driven feature-based visualization: (a) scale-space particles; (b) clus-
ter arrows; (¢) two views of velocity magnitude as importance measure shown at different reso-
Iution levels, where coarser levels are from top to bottom, red-opaque primitives correspond to
low and white-transparent ones to high velocity magnitudes.
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Feature-Based Measures

To enable the intuitive visualization of flow features, we have integrated a number of
different importance measures based on physical properties of the flow. In addition
to the velocity and its magnitude, the following scalar quantities of the vector field
F = (F,, F,, F.)" are used:

* Vorticity magnitude — the magnitude of the flow circulation:

w = (wx,wy,wz)T
[ OF; B % 4 OF, B oF,\ . N % B OF, 5
n oy 0z 0z ox Y ox oy ’
w = [, (5.5)

* Helicity density — the extent to which corkscrew-like motion occurs:

h=weF =w,F, + w,F, + w.F, (5.6)

» Streamwise vorticity — the component of the vorticity w that is parallel to the

mean velocity vector F: L
w, = w e F/|[F (5.7)

* Maximum Finite-Time Lyapunov Exponent — the maximum rate of separation of
particles in a dynamic system (see Section 6.1 for more details on this quantity):

Ugt(P) =In V Amax((c> / |At|

All these measures are hierarchically encoded in a pyramidal data structure. We
use a min—max and an average pyramids of volumes, where the first level is of the
size of the original vector field and each successive volume is reduced by a factor of
two in each dimension. The type of the importance measure stored in the pyramid and
the level that should be considered as impVol can be specified by the user. By using
linear interpolation between the levels of the hierarchy, such a multi-resolution data
representation allows to define the importance measure at arbitrary degree of fidelity
(see Figure 5.10 (¢)).

Cluster Arrows

In order to further improve the importance-driven visualization mode, we have intro-
duced cluster arrows, a sparse and static visualization metaphor. Cluster arrows are
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geometric primitives that represent dynamically similar regions in the flow. The simi-
larity criterion is based on angular difference ¢,,, |7, j] between the velocity Vi, j| and
the average velocity V within the region 91, of n voxels:

1
cangling] = arccos | | = > Vli,j] | ¢ V[i.j]
{i,7}eMn
= arccos (VOV[i,j]). (5.8)

The centers of the clusters are computed in a preprocess step using a region growing
approach. To find a cluster, i.e., the region satisfying the condition (,,; < threshang
V{i,j} € M,—26), we randomly select a grid point that has not yet been processed,
and we inspect the velocities of all of its 26 neighbors (1y4) in the grid. If none of the
velocities Vi, j] € 96 diverges more than a given angle thresh,,, from the average \Y
of all velocities in that region, we continue to grow the cluster until no further expansion
is possible. The average velocity V for all grid points within the determined region is
stored as a representative for this region. The process is continued until the entire
domain is partitioned into clusters.

During rendering, V is used to draw an oriented geometric primitive, scaled accord-
ing to the cluster size. A minimum and maximum size of the clusters can be chosen by
the user. The cluster information is also used as an additional importance metric for the
rendered particle primitives. Therefore, for every sample point in the grid we store the
size of the corresponding cluster, and we fade out rendering primitives with increasing
cluster size as demonstrated in Figure 5.10 (b).

5.3.2 Rendering Issues for Focus and Context Visualization

In addition to the overall modulation function Modulate(...) described in Figure 5.9,
we have proposed an efficient approach — particle morphing — which allows to adjust
the shape of the primitives according to the importance of the regions, in which they are
rendered. To enable this visualization mode, we have extended the sprite atlas described
in Section 5.2.1 by the form factor. More precisely, we build ¢ of these atlases, where ¢
is the number of prototype glyphs of a particular shape. Each atlas is stored in a single
slice of a 3D texture.

To continuously morph from one primitive into another one, we interpolate be-
tween the respective views of both primitives using 3D texture interpolation (see Fig-
ure 5.11 (a)). The color and transparency of the interpolated views can be further mod-
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ulated using the transfer function Modulate(...) defined in Figure 5.9. It should be
mentioned here that the proposed technique can only be used if the views of two prim-
itives that are morphed into each other are stored in successive 3D texture slices. As
the morphing in the current implementation is always in a strict order, this require-
ment does not pose any limitations. An example of a visualization using the particle
morphing technique is shown in Figure 5.11 (b, c).
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Figure 5.11: Particle morphing. (a) Image-based morphing from an arrow into an ellipsoid.
Examples of visualizations using: (b) pure particle morphing, (¢) particle morphing combined
with overall modulation function.

It is worth mentioning that the proposed technique does not result in any noticeable
artifacts, if the prototype objects have similar geometries. Additionally, the high visual
quality is achieved because we first blend between two views and then perform the
scaling of the result to the adequate size of the primitives. Furthermore, it is clear that
we can easily build additional atlases for arbitrary primitives in-between the given basic
shapes and store them in a 3D texture. This will yield even more flexibility in selecting
particular shapes and their appearance in regions that cannot be clearly classified in
terms of importance and unimportance.



Chapter 6

Flow Visualization with Anchor Lines

As shown in Chapter 5, the combination of a particle tracing method with feature-based
focus and context techniques provides an efficient means for intuitive 3D visual flow
exploration enabling the extraction of local flow features while still revealing the global
flow information. However, in complex 3D flow scenarios, such as turbulent flows,
even these sophisticated rendering techniques with importance-blending options still
deliver an excessive amount of visual information and thus do not allow to discover the
interesting formations among the other densely interweaved and possibly unimportant
flow structures. To overcome this problem, we propose anchor lines, a new focusing
strategy for particle tracing that allows to enhance characteristic flow structures based
on spatial attraction and separation of particles within the flow.

The idea behind anchor lines stems from the observation that one is typically not
interested in a detailed visualization of flow regions in which the seeded particles do not
diverge. In order to describe the flow structure in such regions, it is sufficient to render
only a few representative primitives. On the other hand, it is of interest to highlight the
regions with more complex behavior of particle traces, for instance, at separatrices or
at critical points of the flow fields, such as saddles or sources, where the trajectories of
the neighboring particles significantly deviate from each other over time.

In order to define the degree of divergence of particle traces, we use the finite-time
Lyapunov exponent — a scalar quantity that measures the rate of separation of infinites-
imally close particles in the flow. This quantity is used to guide the seeding of anchor
lines. The local flow features in the regions of interest are emphasized by accompanying
the anchor line with glyphs, rendered only when the corresponding particles (accom-
panying particles) leave the anchor, thus allowing for substantial reduction of visual
information depicted at once. The proposed anchor line technique is incorporated into
the GPU-based particle engine framework described in Section 5.2. The effectiveness

105
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of this tool for the visualization of 3D flow fields is demonstrated using synthetic as
well as real simulation data.

6.1 Finite-Time Lyapunov Exponent

The notion of the Lyapunov exponent is inherited from the theory of dynamical sys-
tems, where it is used to study the asymptotic behavior of infinitesimally close par-
ticles in time-independent systems [Lia66, BP02]. At this point, let us remind that
the fluid flows can be also considered from the perspective of dynamical systems (cf.
Section 2.1.3).

Motion of particles in dynamical systems is often studied in terms of the trajectories
they trace in phase space [Wig92]. In application to fluid flows, this approach is referred
to as Lagrangian, in contrast to the Eulerian point of view traditionally used in fluid
dynamics, which considers every quantity at a fixed point in the spatial and temporal
domain (cf. Section 2.1.1). Interestingly, even for the simple case of a velocity field,
the solution of an ordinary motion equation p,(t) = V(p(¢), ¢) (cf. Equation 2.2),
can be described by quite complex and seemingly chaotic trajectories.

In general, a velocity field in fluid dynamics is only known over a finite time in-
terval. This is the case, for example, for both flow fields numerically simulated ac-
cording to the Navier-Stokes equations and experimentally measured flow fields. The
time-dependent flow fields are typically characterized by the emergence of pronounced
flow structures, which modify the particle trajectories. These suddenly appearing flow
formations are often referred to as coherent structures. In time-independent systems,
coherent structures correspond to unstable and stable manifolds, which attract and repel
the particles, respectively (see Figure 6.1 (a)). Since coherent structures divide dynam-
ically different regions in the flow and reveal the global flow geometry, they allow for
quantitative and qualitative analysis of time-dependent flow fields. It is worth noting
that in time-dependent systems, coherent structures themselves vary in time.

Due to its asymptotic nature, the classical Lyapunov exponent is only suited for
studying time-independent systems, which are defined over an infinite period of time.
In many practical applications, however, time-dependent dynamical systems, especially
unsteady flow fields, are typically observed over a limited period of time, beyond of
which their behavior is unknown. The analysis of such dynamical systems is enabled
by using the finite version of the Lyapunov exponent, i.e., the Finite-Time Lyapunov
Exponent (FTLE). In particular, the FTLE can be used to find coherent structures (also
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called separatrices) in unsteady flows [SLMO05]. The effectiveness of the FTLE fields'
for the investigation of arbitrary instationary dynamical systems is demonstrated, e.g.,
in [VHGO02, ISM05, LCM*05].

6.1.1 Theoretical Aspects

Before giving the definition of the FTLE, let us first slightly rewrite the flow field defi-
nitions given in Section 2.1, taking into account the initial conditions: particle position
Po and the starting time of observation ty. Thus, Equation 2.2 becomes:

6.1)

p(t; to,po) = V(p(t; to, o), t),
p(to; to,Po) = Po.

Note that according to Equation 6.1, the particle trajectory is a function of its initial
position py, initial time ¢(, and time ¢. Given a position py in 3D space, initial time %,
and final time ¢;, Equation 2.4 describing the flow map can be rewritten as follows:

P! R — R py - @l (pe) = p(ti; to, Po)- (6.2)

According to theorems on local existence and uniqueness of solutions [Arn92] of Equa-
tion 6.1, the flow map qbi(l) has the following properties:

#2p) = p, 63)
() = R (o' (p)) = ol (@l (p)).

The Finite-Time Lyapunov Exponent

The motivation to use the FTLE for the computation of coherent structures is based
on the following observations. The FTLE is a scalar value which characterizes the
average separation between the trajectories over the time interval (f; — ¢y). On the
other hand, analyzing the divergence between the particle trajectories over time allows
to define the dynamically distinct regions within the flow, and thus the corresponding
separation borders, which essentially are the coherent structures. The integrated nature
of the FTLE is especially important for unsteady flow fields, because it allows to reveal
the actual transport behavior. In contrast, the stream lines, which are drawn over the
instantaneous vector field, can significantly deviate from the real particle paths.

! The FTLE varies as a function of space and time, thus it can be regarded as FTLE scalar field.
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Figure 6.1: Illustrations to separatrices and trajectory stretching: (a) two points on either side
t0+At( )

of a stable manifold; (b) Notation used for gradient "OTP computation (2D case).

Theoretically, the phenomenon of separation of particle trajectories over time is de-
scribed in terms of amount of stretching about the trajectory. In order to understand
the notion of stretching about the trajectory, let us imaging a particle traveling from

102 (p), where it arrives after time

its initial position p at time ¢ to its destination ¢
interval At. While it moves, the particle gets perturbed by an arbitrarily oriented in-
finitesimal distortion 0p(t) (see Figure 6.1 (b)). At time moment ¢, the perturbed point

is described as p = p + dp(tp). After a time interval At the perturbation becomes:

0p(to + At) = ¢0"(p) — ¢l (p) =
d¢t0+At )
= 906 ®)sp4,) + O lom(ta) ). (6.4)
where the remainder term from the Taylor series expansion O (||0p(to)||*) can be ne-
glected. Thus, the magnitude of the perturbation can be defined using the standard
Euclidean norm as follows:

to+AL

|0p(to + Ab)||2 = <5p(t0), [ Ctlop

deplotAt
[ ¢dp ]5p(to)>, (6.5)

where [-]T denotes the transpose operation of [-]. The symmetric matrix

d¢to+m] [d¢to+At]

C =
dp dp

(6.6)

is the finite-time Cauchy-Green deformation tensor. Note that C is a function of t,, At,
and p. These dependencies are omitted only for the sake of notational brevity.
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If the perturbation dp(¢) is aligned with the eigenvector corresponding to the largest
eigenvalue Apax Of C, the maximum stretching is taking place. Thus, if we treat A ax
of C as an operator, i.e., Apmax(C), then the condition of maximum stretching can be
written as:

ax [9p(to + A1) = W%(to), Auman(€)-30(1)

=V Amax(©) - 13D(t0) |2, 6.7)

where %(to) is the perturbation aligned with the eigenvector associated with Apax(C).
Equation 6.7 can be rewritten as:

max [[3p(to + A)l> = exp (@ - |At]) - [3p(to)o (6.8)

where

o (p) = In(VAn(C)) /1At (6.9)

is the largest finite-time Lyapunov exponent with a finite integration time At and as-
sociated to a point p at time ty,. Note that the | - | operator gives the possibility
to perform the computations with both positive and negative time intervals At. For
more detailed information about the FTLE and its application the reader is referred to
[HalO1, SLMOS, SPO7].

Example of the FTLE Field

In order to illustrate the relation between the FTLE field and the particle trajectories,
we will demonstrate a simple example. First, let us consider a generic saddle point and
its associated stable and unstable manifolds (see Figure 6.1 (a)). If we integrate two
neighboring points that are initially on either side of a stable manifold forward in time,
then these points will eventually diverge from each other. Likewise, if we follow two
neighboring points placed on either side of an unstable manifold, then these points will
separate from each other, if we integrate backward in time. In this way, both stable and
unstable manifolds serve as separatrices, i.e., they separate the qualitatively different
trajectories.

At this point, let us consider a particular vector field in 2D and qualitatively describe
its FTLE field. A simple flow scenario, showing two counter-rotating vortices (double
gyre in [SLMO5]) is depicted in Figure 6.2 (a). As can be observed from the picture,
the trajectories of the neighboring particles that started near to the axis of symmetry
between the two vortices diverge most. Taking into account the definition of the FTLE,
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Figure 6.2: FTLE for two counter-rotating vortices vector field: (a) stream lines of the vector
field; (b) computed FTLE field.

given by Equation 6.9, we can conclude that the FTLE field has the largest values along
the axis of symmetry between the two vortices (see Figure 6.2 (b)).

6.1.2 Implementation Issues

This section provides a detailed algorithmic description of the FTLE computation, and
discusses several problems we have encountered and solved on the implementation
stage. The pseudo-code of the algorithm for the computation of the FTLE field from a
given velocity field is presented in Figure 6.3.

Compute_FTLE_field (VFy, ..., VEyiar; At; steps) {
1. Initiate particle positions on Cartesian grid: p(to);
2. = At/steps;

3. // Compute flow map: ¢;:17N

4. for( t=ty; t<tog+At; t=t+~v )

5. ¢£3'7: p(t+v) = AdvectParticles (p(t); VE:)

deptotAt
6. Compute gradient of q’)ingAt: %;
7. Compute Cauchy-Green tensor: C; // Equation 6.6
8. Compute maximum eigenvalue of C: Apax(C);
9. Compute FTLE: opf; // Equation 6.9
}

Figure 6.3: Algorithm for the computation of the FTLE field.

As can be seen from Figure 6.3, the algorithm for the computation of the FTLE
field is conceptually quite simple. However, several implementation aspects require
particular attention. In the following, we will describe the most crucial issues regarding
the computation of the FTLE fields in more detail.
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Flow Map Computation

The most time consuming part is the computation of the flow map qﬁigJ“At over the

specified time interval At. In order to evaluate ¢§3+At, the particles should be advected
from their initial positions p(t,) along the flow field to their final positions p(to + At).
This can be done, using standard numerical integration schemes, i.e., Euler or Runge-
Kutta. Both integration methods can be implemented straightforward on both CPU
and GPU [KKKWO05]. This raises the question about the choice of an appropriate
algorithm with regard to computational efficiency and numerical accuracy. As it was
shown by Shadden et al. [SLMOS5], the Euler scheme does not produce sufficiently
accurate results for turbulent flows, thus the application of a more precise (and more
numerically involved) schemes is required. In particular, in our current implementation
we employ the Runge-Kutta integration scheme of fourth-order.

Regarding the computation costs of the algorithm, it should be taken into account
that the velocity vector field of an unsteady flow is defined over a discrete set of points
in both spatial and temporal domains. If we use linear interpolation for both spatial
(3D) and temporal domains, the simplest Euler integration scheme requires 12 lookup
operations into the velocity field (6 per one time step — for all direct neighbors of the
voxel along the coordinate axes X, Y, Z). On the other hand, the accurate integration
methods require several vector field values at different spatial and temporal locations
per one integration step. Thus, the evaluation of the flow map for 3D flows using
these schemes requires 6 X k1 X ko operations, where x; corresponds to the number of
queries in the spatial domain and x5 in the temporal domain. Moreover, several authors
demonstrated that a linear interpolation scheme does not always yield sufficiently ac-
curate results and suggested to use a third-order interpolator instead [SLMO0S5, LMO05].
It is worth mentioning that for our applications the linear interpolation scheme demon-
strated satisfactory results.

While computing the flow map ¢§g+m, there is one important issue to be addressed:
the influence of the integration time At on the quality of the FTLE fields. A thorough
discussion on this matter can be found in [LL0O4]. In simple words, the shape of coher-
ent structures in the FTLE field becomes more prominent when the integration time At
increases. The explanation for this phenomenon is very simple: the further away from
the center of the structure the neighboring particles are originated, the longer time is
required for them to separate. However, fluid flows are usually observed over a finite
time interval At; thus, the velocity field is known only within this limited period of
time At and it does not make sense to trace the particles beyond it.

Regarding the finiteness of both spatial and temporal domains, there is another
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closely related problem to be solved. This problem occurs when the particles are leav-
ing the domain. In this case, no reliable estimate of the vector field is available. One
solution to this problem is to limit the area, where the particles will be initiated, and
to choose the integration time At in such a way that no particle will leave the domain
within this specified period of time. In this case, there is a risk though that the flow
structures in the FTLE field will be smeared or will not be visible at all. The easiest
way to treat this problem is to setup sufficiently large margins, where the particles will
be initiated. However, for high-speed flows this method will result in undesirably wide
empty borders around the data set, where the FTLE is not defined.

At this point we should explain why the treatment of the boundary regions is the
problem per se. Let us imagine the situation when one particle is leaving the domain,
but its neighboring particles still stay for some period of time within the domain. Note
that the particle outside of the flow domain is still possibly traveling in the close vicin-
ity of its inside-of-domain neighbors. If we will just stop advecting the particle outside
of the flow domain but still use it to construct the Cauchy-Green tensor C, the com-
puted amount of stretching — and thus the FTLE values a,%t(p) for this particle and its

neighbors — will be artificially high.

We have founded the following practical solution to the problem associated with the
boundary regions, where the particles are leaving the domain (see Figure 6.4). First,
we define the safety time threshold #,¢, based on the time interval needed for a particle
traveling along the diagonal of the volumetric flow domain with velocity V equal to
the average velocity V of the vector field to leave the flow domain. In the presence
of obstacles within the flow domain, the voxels occupied by the obstacles should be
excluded from the consideration while computing the average velocity for the flow
field. Then the time interval, arbitrarily chosen by the user ¢,s.,, 1S tested against Zg,f,
and the minimum is chosen: At = min(¢yser, tsafe). In this way a reasonable time
interval for the integration can be set up. The particles leaving the domain are simply
projected onto the borders of the flow domain and the velocities from these projected
positions are selected respectively.

Note that the suggested treatment of the particles leaving the flow domain does not
yield the exact FTLE values close to the domain borders, yet it still produces more
plausible results than filling up the wide borders around the data set with zeros.

In close relation to the question of boundary treatment, a similar problem occurs on
the border of the fluid-obstacle interface. Note that this problem is many-sided and there
is still an open discussion on this matter. For instance, the FTLE values a,%t(pstagnaﬁon)
in the vicinity of stagnation points will be extremely high. Typically, it is assumed that
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Handle_boundary_regions (VE; V; tuser; Pout; domainDiagonal) {

1. Compute V excluding obstacles;

2 Compute ftgafe = domainDiagonal/||\~7H2;

3. At = min(tuser, tsafe);

4 Clamp velocities of particles outside of the flow domain

Pout to the velocities of their projections Projyomain(Pout)
onto the volumetric flow domain:

V<p0ut) = V(Projdomain [pout] );

}

Figure 6.4: Treatment of particles leaving the domain and the choice for integration time At.

high FTLE values are associated with the “interesting” regions in the flow. In regard
to these two facts, the following problem can arise. One could argue that high FTLE
values are a desired effect in this case since the flow is deformed by the obstacle, and
the presence of this obstacle essentially introduces the new flow structures within the
flow domain (imagine the turbulence patterns in the clouds behind the plane). On the
other side, if we start a path line in a narrow region in the vicinity of a stagnation point,
the result will not give much insight about the data set beyond of this narrow region
around the stagnation point, and thus this region cannot be considered as the region of
interest.

In our implementation we stop advecting the particles when they land on the obsta-
cle, while still advecting the neighboring particles that successfully passed the obstacle.
We leave it up to the user to decide whether to consider the regions with extremely high
FTLE values on the border of the interface fluid-obstacle as interesting or not.

Cauchy-Green Tensor Computation

to+At
Once the flow map qb,ﬁg*m is available, its gradient “’T(p) should be computed.

Since the particles are initiated at the grid points, the gradient can be computed us-
ing standard differencing schemes, e.g., central differences. If the central differences
approach for the 3D case is applied the computation of the flow map gradient can be
written as follows:

$E:i)1,j,m - xffﬁ’l,j,k] xff}jll,k] - x&)—l,kl E:,lj?km - mff}j?k,l]
$ffﬂ>uk] - :cfff)mk] y[(z‘t,%l,k] - y[(it,(;)flyk] Z[(it,(a):)kﬂ] - é’i??kfu
d¢%(p) — ygi;$ﬂ __ygil$k] yﬁ?LLH __yﬁﬁlLH yﬁég+ﬂ __ygél—ﬂ (6 10)
® R Tiin — Thlian Yok — Yiooiw ey — Zegwon |
Z[(iti)l,j,m - Zfiti)l,j,m z[(f;ll,k] - Z[(;,E)—w Z[%,)Hu - [(z't,;,)k—u
_xffﬂ’l’j,k] - xfitg)l,j’k] yfjgll’k] - yf:,?)—l,k] z[(ifng] - Z[(itg,)k—n_
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The notation used in Equation 6.10 is illustrated in Figure 6.1 (b). To avoid visual
clutter, the 2D version of this notation is used. The distances between the neighboring
points at time ¢, are simply the lengths of the grid voxel sides. The flow map operation

ié perturbs the particle stencil, and thus changes the distances between the neighboring
points. The depicted stencil deformation in Figure 6.1 (b) visually illustrates the notion
of stretching about the trajectory.

While computing the gradient flow map, special attention should be paid to bound-
ary regions of the flow domain and to the flow-obstacle interface. Since not all of the
six neighbors of the voxel are available, it makes sense to use forward and backward

differences schemes in these regions.
to+At

. n p
After the gradient of the flow map —t—

Cauchy-Green tensor C is performed via standard matrix transpose and multiplication

is computed, the evaluation of the

operations. Eigenvalues of the symmetric tensor C can be found using any standard
method. Since the characteristic polynomial of the corresponding matrix is cubic in the
3D case, we exploit Cardano’s solver to find its roots [PTVF07] and thus eigenvalues
of the tensor C. After sorting, Apmax(C) is used to compute the FTLE value a,%t(p)
according to Equation 6.9.

6.2 Anchor Lines

As can be seen from the images presented in Chapter 5, the importance-driven tech-
niques proposed so far in the literature still output an excessive amount of information
in both focus and context regions. In order to reduce the amount of data depicted at
once, while emphasizing the interesting flow structures, we introduce anchor lines, a
new technique for the extraction of locally important information encoded within the
flow velocity field.

The anchor line technique is inspired by ideas presented in [LG98], where short
stream lines called streamlets were placed in the vicinity of characteristic trajectories
to show the local flow behavior along these trajectories. The proposed anchor lines are
employed for local analysis of the vector fields based on the FTLE measure. In particu-
lar, they visualize the degree of separation between the neighboring particles over time
and the rate of this separation. In this section we describe in detail the construction of
anchor lines, their placement strategies, as well as rendering aspects of anchor lines and
their accompanying particles.
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6.2.1 Computation

In general, the FTLE is an averaged measure of an infinitesimally small deformation
in the vicinity of a point in the phase space of a dynamical system. Applied to fluid
flow fields, the FTLE quantifies the amount of stretching of a fluid element over a fixed
period of time (see Section 6.1). Intuitively, the larger the FTLE value at a given point,
the more stretching about the trajectory seeded at this point occurs. Furthermore, the
FTLE allows to locate transport barriers and it has been studied for the analysis of
transport and mixing characteristics in multi-dimensional flows [HalO1, LSMO06].

Seeding

Conceptually, the anchor lines correspond to the path lines in the vector field. The
starting positions of these lines can be arbitrarily selected by the user within the flow
domain. Similarly to streamlets [LG98], the local information along the anchor line A
is visualized by additional particles (accompanying particles) P4 seeded in the vicinity
of the starting position of this line. The amount of particle scattering Ar around the
seeding positions of the corresponding anchor lines is selected by the user.

In addition to the user-controlled placement of anchor lines, we propose to select the
starting points of these lines automatically, based on the FTLE value. In particular, we
initiate the points randomly in the interior of a user-defined probe, and then reject those
ones, which have the associated FTLE value a'tAOt(p) below a certain threshold o, It
is worth noting that the FTLE is precomputed at every point of the given sampling grid.

The reason for restricting the placement of anchor lines to regions of high FTLE is
as follows. While the FTLE characterizes the rate of separation of particles, it does nei-
ther indicate into which direction particles separate nor does it tell where the particles
separate along a trajectory. Anchor lines placed in regions of high FTLE, on the other
hand, are able to answer both questions and can thus be used for an improved analysis
of the flow. Figure 6.5 demonstrates this property (the description of the visualized data
set is given in Section 6.3.1).

(a) (b)
Figure 6.5: Anchor lines placed in regions of high finite-time Lyapunov exponent (depicted in
grey) can effectively emphasize the dual vortex structure of the flow.
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Tracing

For efficiency reasons, anchor lines are always traced in parallel with their accompany-
ing particles. In every integration step the Euclidean distance between a particle P4 and
the current point on the respective anchor line A is used as a measure for the deviation.
Since in complex flow scenarios an anchor line and a trajectory of an accompanying
particle can deviate from each other and again approach each other, it makes sense to
consider the maximum deviation (max Dev) of a particle along its path. In some cases
it can be also useful to compare the lengths of the particle trajectory and the corre-
sponding anchor line?. The process of computation of both measures for the particle
deviation is illustrated in Figure 6.6.

[Po= 3| + [Py=ay| +
RN Ip-a, +

(b)

Figure 6.6: Measures for the particle deviation: (a) based on the accumulated lengths of the
particle trajectory P 4 and the corresponding anchor line A, (b) maximum deviation max Deuv.

6.2.2 Details on the GPU Implementation

The attributes of particles and lines are stored in texture objects on the GPU. A set of
attributes associated with each particle consists of the following quantities:

age — the age of the particle needed for particle tracing [KKKWO05];

maxDev — the maximum deviation of the particle from its anchor line;

(r,y,2) the particle’s position p;

(TayYa, 2a) — the corresponding position a on the particle’s anchor line.

The maximum number of components per pixel available in a GPU texture object
is four. Thus all the attributes listed above can be stored in two 2D textures of the same
size m, X n,. For brevity, we will use the following notations for these textures:

PPosTex: ’x ‘y ‘z ‘age‘ ALPosTex: ’xa Ya | 2a | mazDev
(1 texel) R G B A (1 texel) R G B A

% More precisely, the lengths of a piecewise approximation of these lines can be compared.
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Thus, PPosTex is the texture storing the particle positions (p) and their age (age),
and ALPosTex is the texture containing the anchor lines positions (a) and the maxi-
mum deviation (max Dev). As it was described in [KKKWO05], particle tracing requires
a pair of textures of the same size for particle positions, which are alternatively updated
in every advection step (ping-pong technique). Thus, in total, four textures are needed
to perform the parallel tracing of anchor lines and particles.

The multiple render target (MRT) technique allows to trace the anchor lines and the
particle trajectories in parallel. In general, the number of anchor lines is supposed to
be much smaller than the number of accompanying particles. However, to exploit the
MRT technique, the render targets should be of the same size and format [DX9]. Thus,
we have to “smear” the anchor line positions into the texture of the same size as the
particle position texture, i.e., 1m,, X n,. In order to prove that this redundancy does not
induce a significant drop of performance, the following observations should be taken
into account:

* If the textures of the same size are used, no manipulation of texture coordinates
should be performed to access the anchor line position in ALPos Tex correspond-
ing to a given particle position in PPosTex. In fact, the same texture coordinates
are used for the texture fetch in this case.

* The costly texture lookup operation into ALPosTex is required for each particle
position in any case, no matter which size of the texture is used to store the anchor
line positions.

* Storing the anchor line positions in a texture of the same size as the number of
lines, i.e., m;xn;, and thus giving up the possibility to exploit the MRT technique,
leads to the necessity to compute the particle trajectories and anchor lines in two
passes, which is less efficient than using the MRTs.

Therefore, the usage of the “oversized” texture to store the anchor line positions does
not lead to a drop of performance and we accept it in our implementation. On the other
hand, for convenience reasons, the starting positions of the anchor lines are stored in the
texture ALStartPosTex of size m;xn; corresponding to the actual number of anchor
lines. A block diagram of the seeding procedure for anchor lines and accompanying
particles using the texture notation is shown in Figure 6.7.

Technically, the maximum deviation maxz Dev of particles from their anchor lines
is computed as follows. We compute in each advection step ¢ for each particle P4 its
next position PPosTex|i, j|(¢)°, the next position ALPosTex|i, j|(t) of its anchor line

3 In texture coordinates, spanning the range from 0.0 to 1.0, integer indices [4, j] correspond to tcz, y].
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i L]
Ar | Onax, FTLE, User Points, ALSt ar t Pos Tex TTHESP #|IHGW
#lines=m x n,, #particles=m,x n,

v

D — —
{ij}; in+j<#lines; \+@— {s,t}; s:nz t<#particles; s++,t++
] Rl :
@ | p = md | |[s: (., 1]%[m, n, ]

prp

— B2 [st]=
{i,j}; in+j<#lines; i++,j++ > sject [ [m,.n]
ALStartPosTex[i,j] = accept g + PPosTex[s,t] = ALStart PosTex[s, t] +
=UserPoints[i,j] ‘ ALSt art PosTex[i,j] =p ‘ + probeScale -Ar -rnd
v

Anchor lines (user-defined) Anchor lines (FTLE-based) Accompanying particles

Figure 6.7: Block diagram of the seeding procedure for anchor lines and accompanying parti-
cles. The following parameters are specified by the user: Ar — the amount of particle scattering,
Omax — the threshold for the FTLE values, UserPoints — a set of points, and probeScale — the
scaling factor of the user probe-cell placed inside of the flow domain.

A, and the distance between these positions distance(t). The distance distance(t)
is compared to this distance computed in the previous advection step distance(t — 1)
and the maximum value is stored in ALPosTex(¢).w. The pseudo-code of the parallel
tracing of the particle trajectories P4 and the corresponding anchor line A including
the computation of max Dev for a single particle P4 at time ¢ is listed in Figure 6.8.

AdvectionStep (1, At, tc[z,y], myxn;; VF (t) , ALStartPosTex, PPosTex (t — 1) , ALPosTex (f — 1) ;
Ar, probescale, PStartPosTex) {

1. if(out of grid or too old) {

2 tcm,cho,-[ﬁ,y] = <Ltc[z,y] . [mp,np]J % [Tnl, nl])/[ml,m]; Texture coordinates for A
3 ALPosTex(t).xyz = ALStartPosTex[tCanchor]-XyZ; Init A

4 ALPosTex(t).w = 0 Init maximum deviation

5. randomShift = (probeScale - Ar) - PStartPosTex.xyz; Scatter positions

6 PPosTex(t).xyz = ALPosTex(t).xyz + randomShift; Init position of Py

7 PPosTex(t).w = PStartPosTex.w; Init age of Pag

8. } else {

9. PPosTex(t).xyz = PPosTex(t—1).xyz + VF(PPosTex(t— 1), 1) At; Advect Py

10. PPosTex(t).w = PPosTex(t—1)w — 1; Change age of Py

11. ALPosTex(t).xyz = ALPosTex(t—1).xyz + VF(ALPosTex(t— 1), t) - At Advect A

12. distance = |PPosTex(t).xyz — ALPosTex(t).xyz‘;

13. ALPosTex(f)w = max (ALPosTex(t —1).w, dista,nce): Maximum deviation maxDev

Figure 6.8: Parallel tracing of the particle trajectory P4 and the respective anchor line A: per-
pixel operations when the Euler integration scheme is exploited. Output: textures ALPosTex(t)
and PPosTex(t).

In Figure 6.8, line 5, the texture PStartPosTex contains the random starting po-
sitions of the particles within the unit cube and their randomized maximum allowed
ages. The variable probeScale denotes the scaling factor of the user probe-cell placed
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inside of the flow domain. The variable randomShift (line 5) stores a shift from a
given position ALPosTex[1i, j|(f).xyz in a random direction PStartPosTex.xyz by a
random distance within a sphere of radius Ar. In texture read-write operations, the
texture coordinate indices tc[z, y| are omitted for brevity. Therefore, each operation of
type texture(t) should be interpreted as texture[tc.x, tc.y|(t). The whole process
of initialization and tracing of the accompanying particles and the respective anchor
lines including their initialization is visualized in Figure 6.9.

ALSt art PosTex PPosTex(0)

D
~\

mm Anchor line

@ Accopmpanying
Tracing particles

Initialization

Figure 6.9: Initialization and tracing of anchor lines and accompanying particles.

If all the particles are launching at the same time in a close proximity to each other,
it gives the impression that the particles are moving in packets of fixed size. In order to
avoid this, the maximum allowed age of the particles is randomized [KKKWO05]. If a
particle’s age exceeds this limit or if the particle moves outside of the specified domain,
then this particle is reincarnated in the vicinity of the starting position of the respective
anchor line (cf. Figure 6.8, line 6).

6.2.3 Rendering

Usually, a few anchor lines are already sufficient in order to visualize the structures
of interest in the flow. We found out, that assigning distinctive colors to these lines
allows to visualize several flow structures at once in a most intuitive way. Logically,
the accompanying particles P4 inherit the color of the respective anchor line .A.
Transparency modulation is a common technique used for highlighting and fading
out the features in the visualized scenes. In this regard, we provide the user with a
variety of modes for anchor lines rendering. In the simple mode, the anchor lines them-
selves are rendered using a standard stream balls technique for flow field visualization
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with enabled lighting [KKKWO5]. Since the stream balls are represented by a 3D ge-
ometry object, its shape is adequately perceived via correct lighting computation. The
accompanying particles are rendered as opaque 3D oriented glyphs. An example of
anchor lines rendered using the simple mode is shown in Figure 6.5.

In order to emphasize the flow features using the transparency modulation (focus-
and-context mode), the focus and context techniques available in the extended version
of the GPU particle engine (see Section 5.3) can be enabled. Since the anchor lines
represent a part of the topological skeleton of the flow field, they can be highlighted by
being rendered absolutely opaque. In this case, the transparency of the accompanying
particles can be modulated according to a particular transfer function (see Figure 6.12).

In addition to focus and context feature blending, the accompanying particles P4
can be modulated based on their maximum deviation max Dev from the corresponding
anchor line A (anchor-based mode). Thus, particles close to the line can be faded out
while they are rendered more and more opaque once they start to separate from their
anchor. Since the max Dev is used as a criterion for fading out, once the particle devi-
ates more than a specified threshold from the corresponding anchor line, it is rendered
opaque along the remaining path no matter whether it again approaches the respective
anchor line or not.

Intuitively, in the regions characterized by a high similarity between the neighbor-
ing vector field values, the particles are remaining close to the respective anchor lines.
Thus, assigning high transparency to these particles and showing only the correspond-
ing anchor line (anchor-based mode), allows for automatic reduction of excessive in-
formation in such regions. On the other hand, in highly heterogeneous regions where
the separation rate is considerably higher, the accompanying particles are emphasized
(see Figure 6.10). From the transparency of particle P4 it can be directly derived how
much this particle separates from the respective anchor line A over time. The time
required for a particle to deviate by a specified distance from the anchor is not directly
encoded as a visual attribute in the current implementation, but it can be determined
from the animation of particles over time. In general, it could be also encoded as an
additional attribute like color or size.

6.3 GPU Particle Engine with Anchor Lines

The proposed anchor line technique for flow visualization has been integrated into the
GPU particle engine described in Sections 5.2-5.3. In this section the efficiency of
the particle engine equipped with anchor lines is validated using several simple flow
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(b)

Figure 6.10: Anchor lines (path lines) and accompanying particles seeded close to their starting
points. While particles exactly follow some of the lines ((a): red, magenta, gold; (b): blue, red,
yellow), along other lines the particles diverge from their anchor lines at different speed ((a):
blue, light blue, yellow; (b): green, magenta, purple). To improve the visual perception of
the correspondence between anchor lines and particles, for every anchor line A is assigned a
unique color that is inherited by the accompanying particles P4. Anchor-based mode: particle
transparency is inversely proportional to its separation distance maxDev from the anchor line.

scenarios and time-varying sequences of complex fluid flows. Moreover, the overall
performance of the extended GPU particle engine is discussed.

6.3.1 Description of the Data Sets Used for Validation

In order to demonstrate the efficiency of the particle engine with anchor lines, the fol-
lowing data sets of 3D flows given on Cartesian grids have been used:

* Double-vortex flow: A steady axisymmetric flow with two counter rotating vor-
tices, which was computed using the following analytical expression for velocity
V= (Vo,V,, V2):

Ve = (—y +0.5) + (0.5 — 2.0-2)/10.0

Vy, = (20-2 —0.5) + (0.5 — y)/10.0

V., = —z/10.0.
The computed velocity field corresponds to a spiral-like flow around the Z-axis
with the velocity magnitude decreasing towards the main axis of the spiral. The

velocity field was mirrored to obtain the two symmetric vortices. An example of
visualization of this data set is presented in Figure 6.5.
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* Flow around a box: Result of a 3D time-dependent simulation of an incom-
pressible turbulent flow around a square cylinder at Re = 22.000. The simula-
tion was performed using a spectro-consistent discretization of the Navier-Stokes
equations [VV98]. The simulation was carried out on a rectilinear grid of size
256 %448 x64.

* Flow around a cylinder: Large eddy simulation of an incompressible unsteady
turbulent flow around a wall-mounted finite cylinder at Re =200.000 [FWTOS5].
22 time steps were simulated. The size of the data grid is 256 x128x128. This
data set is visualized in Figure 6.10.

e Karman vortex street: Result of a 3D simulation of an incompressible unsteady
flow over an immersed thin rectangular obstacle at Re = 100. The simulation
was performed via numerical solution of the Navier-Stokes equations according
to [GDN98]. The data set contains 30 time steps, each of which is represented by
a volume of size 256 x 64 x 64.

6.3.2 Results of Visualization and Performance

To validate the effectiveness of the GPU particle engine with anchor lines, we demon-
strate additional images of the described data sets rendered using different importance-
based visualization techniques in Figures 6.11 and 6.12. With respect to the generated
static portrayal, it is worth mentioning that the benefits of particle-based flow visual-
ization can best be perceived in an animation. In a still image, oriented particles can
clearly convey the direction of the flow, but in contrast to LIC, for example, coherent
particle trajectories can hardly be observed.

All of our rendering tests were run on a dual core Core2 Duo 6600 equipped with
an NVIDIA Geforce 8800 GTX graphics card with 786 MB local video memory. In
terms of performance, it can be observed that on recent GPUs the particle advection
step consumes only a negligible fraction of the overall time. For instance, in a steady
field about 100 millions of particles can be integrated per second using an embed-
ded Runge-Kutta scheme of fourth-order on our target architecture. Although this rate
drops significantly in the unsteady case (20%—40%), where streaming the time steps
consumes most of the time, we can still trace about 20 millions of particles per sec-
ond in a time-varying flow field of size 256 x256x256. For more detailed timings the
reader is referred to [KKKWO05] and [BSKT07].

The overall performance of the GPU particle engine strongly depends on the number
and the size of the rendered particle primitives. In particular, the more large particles are
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(b)

Figure 6.11: The visualization of the Karman vortex street: (a) an isosurtace of the FTLE,
(b) two anchor lines placed in the region of high FTLE. From the particle distribution in image
(b) one can see where particles start to separate from their anchor, and the transparency coding
shows how fast they separate.

(a) (b)

Figure 6.12: Anchor lines seeded in the region of high FTLE: (a) in the Karman vortex street,
(b) in the flow around a box. In both images, the distribution of the FTLE field is visualized
using volume rendering (focus-and-context mode).

rendered the faster the application becomes raster bound and the overall performance
can decrease considerably. On the other hand, since the importance-driven approaches
including the proposed anchor lines technique can effectively reduce the amount of ren-
dered particles, in none of our rendering experiments the performance dropped below
100 fps.
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Chapter 7

The Application of Particle Tracing to
Tensor Field Visualization

Visual exploration of tensor fields is highly important in many areas of natural sciences.
Tensors belong to a special category of multivariate data, incorporating valuable phys-
ical information about the underlying phenomenon. The classical examples of quanti-
ties represented by tensors include viscous stresses, rate of strain, and velocity gradient
describing the flow properties in fluid mechanics; stress and strain expressing the re-
sponse of material to applied forces in solid mechanics and tectonics; diffusion tensors
characterizing Brownian motion of water molecules within the tissue in medicine, etc.

Mathematically, a tensor is described by a number of correlated scalar functions
defined over a multi-dimensional domain. For example, the fundamental tensor fields
encountered in engineering and the physical sciences consist of second-order tensors,
which in the 3D case have nine components. Since it is meaningless to display all these
interconnected components independently, the visualization of tensor data is a chal-
lenging task. Moreover, the physical interpretation of mathematical tensor features is
highly important and it strongly depends on a particular application. This implies that
the methods, suitable for the tensor fields arising in one area of natural sciences are not
always applicable to the tensor fields in another area. Furthermore, the study of inter-
dependencies between the mathematical and physical properties of the tensors is often
complicated by the lack of measurement techniques for experimental investigation of
tensor fields in some applications.

A number of approaches for tensor field visualization have been proposed in the
last few years. However, due to the intrinsic complexity of the data to be visualized,
all of these approaches have disadvantages and need further elaboration. For instance,

125



126 CHAPTER 7. PARTICLE TRACING FOR DIFFUSION TENSOR FIELDS

many visualization methods rely upon the mathematical properties of the tensors and
do not give any physical interpretation of the results of visualization. Other approaches
incorporate physics but are implemented only for simple 2D cases. In general, most
of the presented approaches are showing either local features of the tensor fields, or
their global structure, and thus do not allow for a complete understanding of the un-
derlying tensor data. Therefore, the development of more efficient methods for visual
exploration of tensor fields is of vital interest for the scientific community.

In this chapter we introduce GPU particle tracing for the visualization of 3D diffu-
sion tensor fields. The developed method provides efficient and intuitive means to show
the dynamics in diffusion tensor fields, and it can thus be applied for the exploration of
the diffusion properties of biological tissue. For about half a million particles, recon-
struction of diffusion directions from the tensor field, time integration and rendering
are performed at interactive rates. Different visualization options like oriented particles
of diffusion-dependent shape, stream lines or stream tubes facilitate the use of parti-
cle tracing for diffusion tensor visualization. The efficiency of the proposed method is
demonstrated on real-world data sets of biological tissue.

7.1 Visualization of Diffusion Tensor Fields

The diffusion properties of biological tissue can be measured using diffusion tensor
magnetic resonance imaging' (DT-MRI) [BML94]. The imaging process reveals the
diffusion of water molecules depending on the shape and orientation of tissue cells,
i.e., the diffusion is anisotropic within fibrous material while there is an equal diffusion
probability in real matter of other types. The diffusion probability is characterized by a
second-order tensor, which describes the orientation and mutual alignment of molecular
pathways as a function of spatial position. Since molecular pathways reveal the con-
nectivity between the biological regions, visualization of diffusion tensor fields helps
to investigate the local and global structure of biological tissue.

In order to keep the text in this chapter concise and clear we use the standard termi-
nology specific for anatomical description of biological tissue and, in particular, human
brain. These terms are compiled in Figures 7.1 and 7.2. Figure 7.1 (a) shows one slice
through a DT-MRI scan visualized as a matrix of images, each of which displays a sin-
gle component of the matrix representation of the diffusion tensor. Figure Figure 7.1 (b)
illustrates the notion of three reference planes parallel to the principal axes of the body:
sagittal, coronal, and axial. The large scale neural pathways within the human brain

! A short form of this term is diffusion tensor imaging (DTI).
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are depicted in Figure 7.2. For more detailed information on neuroanatomy the reader
is referred to [AB98, KW98, Hen00].

(b)

Figure 7.1: Diffusion tensor imaging of the human brain: (a) DT-MRI scan as a matrix of
images by analogy with diffusion tensor matrix itself; (b) reference planes through the brain
parallel to the principal axes of the body.

7.1.1 Diffusion Tensors and Their Properties

Diffusion is the transport of one material through another by the action of random
molecular motion due to thermal energy (Brownian motion). The fundamental equa-
tions describing the diffusion process are referred to as Fick’s laws. According to the
first Fick’s law, the movement of a material by a diffusion (called flux J) is propor-
tional to the gradient in the concentration C of the material [Cra75]. In three dimen-
sions, Fick’s laws generalized to a first-order model (linear transform) describing the
materials with an arbitrary internal structure can be written as follows:

J = -DVC, 1% Fick’s law;

oc _ (7.1)

% Ve (DVC), 2" Fick's law,
where the vector J is the direction of the overall motion, or net flux, of the material with
concentration gradient VC. Materials are considered to be isotropic if the direction of
the net flux is parallel to the concentration gradient. In contrast, there are anisotropic
materials, which have a directional microstructure enforcing the diffusion in some di-
rections to be faster than in others.
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Figure 7.2: Neural pathways in the human brain: (a) corpus callosum, (b) superior longitudinal
fasciculus and U-shaped fibers, (¢) corona radiata, optic tract, and pyramid, (d) pyramidal tract.

In Equation 7.1 the diffusion coefficient D is a second-order diffusion tensor, which

can be expressed mathematically as a 3 X 3 symmetric semi-positive matrix:

D TT D Ty D Tz
D=| D, D, D,. |. (7.2)
D zT D zy D 2z

From a physical point of view, the tensor D describes the probability density of
where a particle’s Brownian motion will move it over time. Thus, following the com-
mon classification, diffusion tensors can be represented as ellipsoids with main, medium,
and minor axes corresponding to the eigenvectors e, ez, eg of the tensor — with respec-
tive eigenvalues Ay > Ao > A3. The relative differences between the eigenvalues are
related to the anisotropy of the diffusion. Three basic types of anisotropy are usually
considered in the literature (see Table 7.1).

Besides the mapping of local anisotropy to the shape of geometrical icons, a number
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Table 7.1: Classification of diffusion tensor anisotropy.

Name ‘ ‘ linear/prolate ‘ planar/oblate ‘ spherical
. /\1 — )\2 2()\2 — )\3) 3/\3
Coefficient SR S T P Ao M A P s B—
R (D VD D Y B AP I TP PR Vil L VRS PR W
Visualization
of different color encoding schemes have been proposed:
R G B
Scheme 1: ’ I ‘ f2 ‘ As ‘ (7.3)
Scheme2: | J, | FA | Ay | (7.4)
Scheme 3: ’ &) ‘ Cp ‘ Cs ‘ (7.5)
Scheme 4: | ra.ley,| | FA leq,| | Fa e, | (7.6)
Scheme 5: | ra-|e1,| | RA-|e1,| | RA-|ey,| (7.7

Here, the coefficients jiq, j10, As, Jy, FA, RA are computed as follows:

U1 = % Z )\i, 1°* central moment of eigenvalues,
J2%) = % Z ()\z — M1 )2, 24 central moment of eigenvalues,
— XOi—m)® :
A3 = 3z skewness of eigenvalues,
Ju = Z )\22, invariant of tensor D,
_ 3 [mw : ,
FA = 2\ T fractional anisotropy,
A2 . .
RA = Vo relative anisotropy

A thorough discussion of diffusion tensors and quantities derived from them can be
found, for example, in [Kin03, MAAT03].

7.1.2 Previous Approaches

The existing approaches to visualize the diffusion in real tissue can be classified into
two major categories: glyph-based techniques and fiber tracking®. Glyph-based meth-
ods reveal local variations in diffusion tensor fields by mapping tensor properties like

2 Fiber tracking is also referred to as tensor lines and directional tracking.
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orientation or anisotropy to the shape or appearance of graphical primitives, i.e., el-
lipsoids [LAK 98], composite shapes [WMM™02], or superquadrics [Kin03]. In con-
trast, fiber tracking of massless particles along the most probable diffusion directions
in tensor field data [DH92] allows for the classification of anatomical structures, e.g.,
the white matter fiber tracks. Different geometric representations like stream lines
[WKL99, MCCvZ99] and stream tubes [ZCML00, DZDLO01], or stream surfaces [ZCMLO0O,
VBvVP04] have been employed to visualize these structures. To improve the qual-
ity and stability of such tracking techniques, regularization and filtering approaches
[CAAOI1, ZB02, GFP'02] along with heuristics to determine the most probable di-
rections [WKL99, ZB02] have been proposed. Dedicated color and opacity mapping
schemes to visually emphasize particular features in diffusion tensor data have been
presented in [WKL99, KW99, WMM 02, Kin03]. Examples of visualization of diffu-
sion tensor fields using the existing approaches are shown in Figure 7.3

{)\1, )\2, )\3} eigenvalues
D |:> {el, e2, 63} eigenvectors
€3 RGBFFA'{\elX\,\ely\,\811\} s
RGB,= { €, C,,Cs}

€;

(S50

Color-mapping * Fiber-tracking

Figure 7.3: Existing approaches for the visualization of diffusion tensor fields.

While tracking-based techniques can effectively visualize global behavior of ten-
sor fields as well as reveal the connectivity information between the distinctive spatial
regions in tissue, glyph-based imaging techniques for visualizing 3D fields can suc-
cessfully illustrate the local features in such fields. However, when using such methods
it is difficult to effectively control glyph density, shape and appearance in a way that
depicts both the vectorial information of the diffusion, such as principal directions,
and the scalar properties of the diffusion, such as anisotropy and magnitude. Neither
tracking-based nor glyph-based techniques allow for interactive exploration of large
tensor fields, and they typically fail to visualize and analyze the diffusion dynamics in
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real tissue.

In this chapter, we propose an interactive technique based on the GPU particle trac-
ing for diffusion tensor field visualization. This method can display the dynamics of
large particle sets in flow fields (see Section 5.2), and it can thus be applied to investi-
gate the diffusion in biological tissue in real time. A number of visualization options
like oriented texture splats, stream lines and stream tubes provide the user with an ef-
fective means for the visual analysis of 3D diffusion tensor fields given on a Cartesian
grid.

7.2 Diffusion Tensor Field Visualization Using Particle Tracing

To interactively explore the dynamics in 3D diffusion tensor fields, we employ a hardware-
accelerated particle system for visualizing steady 3D flow fields on Cartesian grids
(GPU particle engine) described in Section 5.2 and proposed by Kriiger et al. [KKKWO0S5].
This approach allows for interactive streaming and rendering of millions of particles,
and it enables virtual exploration of high resolution fields. In application to 3D diffusion
tensor fields, the ability to display the dynamics of large particle sets using visualization
options like oriented texture splats, stream lines, and stream tubes provides an intuitive
means for the visual analysis of these fields that is far beyond existing solutions.

7.2.1 Algorithm

To employ the GPU particle engine for tensor field visualization, a number of data-
specific extensions have been integrated. In particular, the direction vector along which
a particle is traced first has to be reconstructed from the tensor field. The basic dif-
ferences between particle tracing in flow fields and in tensor fields are illustrated in
Figure 7.4.

The specific extensions we have integrated to accommodate the use of particle trac-
ing for tensor field visualization are briefly summarized as follows:

* The six distinct entries of the diffusion tensor D, D, D,., Dy,, D,., D, are
stored in two 3D RGB texture maps. Since hardware-accelerated tri-linear inter-
polation of 32 bit floating point textures is not supported on GPUs, we use 16 bit
floating point textures in the current implementation. If this precision is not suffi-
cient, hand—coded interpolation of 32 bit floating point values can be performed in
a fragment shader. As shown in [KKKWO05], this only results in a slight decrease
in performance.
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Figure 7.4: Differences between particle tracing in a vector field and in a tensor field. Note that
the advection of a particle in a tensor field as proposed in [WKL99] requires both the current
and the last particle direction.

* To derive a vector field for particle tracing, the eigen-decomposition of the resam-
pled tensor is computed on the flyat every particle position *. For this purpose, we
have implemented a non-iterative analytical algorithm proposed by Hasan et al.
[HBPAOI1] on the GPU. If the tensor is not positive-definite, or if its eigenvalues
are degenerate (equal to each other), the propagation process is terminated.

* For the rendering of textured particle sprites, two different texture atlases for ten-
sor visualization have been designed. The first atlas extends the one proposed
in [KKKWOS5] by an additional scaling factor used to emphasize the diffusion
anisotropy ¢, = ¢ + ¢,. The second one contains precomputed views of short
stream tubes at different orientation and size. By texturing particle sprites with
the image of the respective view — scaled according to the tensor attributes — the
appearance of closed stream tubes can be simulated.

* Sice opposite eigenvector directions are both valid, particle tracking in 3D tensor
fields along the largest eigenvector of the tensor can lead to ambiguous results.
To avoid it, the outgoing particle direction is computed as a linear combination of
the deflected incoming direction and the principal eigenvector [WKL99].

* A number of different criteria to stop particle propagation [Kin03] have been inte-
grated. In particular, if the fractional anisotropy F'A is less than a given threshold,

3 The interpolation of precomputed eigenvectors and eigenvalues does not allow for a consistent computation of
diffusion direction [Kin03, ZB02].
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a particle trace is stopped. In addition, if F'A is above a threshold, it is used to
modulate the particle transparency. In this way, particles can be faded out contin-
uously in nearly isotropic regions.

* The user can interactively select and change tensor-specific parameters, such as
the color mapping scheme, the threshold of the fractional anisotropy used to
fade out particles, and the propagation algorithm (along the largest eigenvector
or along the deflected direction).

The theoretical aspects as well as implementation issues related to the application of
particle tracing for tensor field visualization are covered in the next sections.

7.2.2 Propagation of Particles and Lines

The basic idea of the algorithm is quite simple. However, in order to make it efficient,
on implementation stage many different aspects should be taken into account. In this
section we will describe in more detail the particular implementation issues, encoun-
tered problems, and their solution.

Efficient Solver for the Eigenvalue Problem

In general, the eigenvalue problems of symmetric matrices of arbitrary size are solved
using specialized iterative approaches, for example, the Jacobi method [PTVF07]. Since
the diffusion tensor D is represented by a 3 x 3 matrix, the characteristic polynomial for
this matrix is a cubic function. In this case, the eigenvalues of the tensor can be com-
puted by finding the roots of this cubic polynomial, exploiting, for example, Cardano’s
solver [PTVFO7]. However, there is a more efficient method to find the eigenvalues
and eigenvectors, using diffusion tensor invariants [HBPAO1]. As reported by Hasan et
al. [HBPAO1], this algorithm can increase the speed of eigenvalue/eigenvector calcula-
tions by a factor of 5-40 over standard iterative Jacobi or singular-value decomposition
techniques.

Diffusion Tensor Invariants

The characteristic equation of the Cartesian diffusion tensor D is given by:

det (D — AEsy3) = — (A’ = N7y + \I, — I3) =0, (7.8)

where {Z;, Z,, Z3} are the principal invariants of D, which are related to the eigenval-
ues {1, A2, A3}, and E33 is the 3 x 3 identity matrix.
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The three invariants are defined from Equation 7.8 as follows [BT68, Bas97]:

Il = Trace(D) = sz + Dyy + Dzz = /\1 + )\2 + Ag (79)
Iy = (DewDyy+ DyyD..+ Dy, D..) — (D2, + D2, + D2)) =

= Ado+ Ads + Ao (7.10)
Iy = det(D) = D,,D,,D..+2D,,D,.D,. — (D..D?, + D,,D?, + D,,D2,) =
= Aidos. (7.1

By using the three principal invariants {Z;, Z,, Z3} defined by Equations 7.9-7.10, the
eigenvalues and eigenvectors of D can be found via the analytical diagonalization of
D. Note that this diagonalization is specific to the positive-definite symmetric Cartesian
tensors.

Determination of the Eigenvalues

The following rotationally invariant variables are defined in terms of {Z;, Z,, Z3}:

a=(1,/3)" —T,/3 and b= (T,/3)° — 1T, /6 + I3/2. (7.12)

Since for real eigenvalues, a > 0 and b*> < a3, the following expression can be com-

0 = arccos <§\ﬁ> /3. (7.13)
a a

The sorted eignevalues (A; > Ay > \3) may now be expressed as follows:

puted:

A= Iy/3+2y/acos(8),
Ao = I,/3 —2y/acos(m/3+0), (7.14)
A3 = 11/3 —2y/acos(m/3 —0).

Note that the eigenvalues do not require sorting due to the cosine function and the fact
that 0 < 6 < /3 is assured for a positive-definite diffusion tensor matrix. The third
eigenvalue can also be obtained using the trace invariance property, A3 = Z; — A1 — As.

Determination of the Eigenvectors

After the sorted eigenvalues have been computed, the i*" (i = 1, 2, 3) eigenvector, e; =
€z, €iys eiz}T, may be calculated by solving the linear system of equations, De; = \;e;.
Due to the fact that (—e;) is also a solution to the eigenvector problem D(—e;) =
Ai(—e;), a sign ambiguity in the vector direction is unavoidable.
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The calculation of the orthonormalized eigenvectors proceeds as follows:

Ai = Dy —Ni; Bi= Dyy =iy Ci=D.. — N\

iz = (DayDy: — BiDy.) (DizDy — CiDyy) (7.15)
€y = (szDyz - Cliy> (Da:zDzy - Az'Dyz) ) (7.16)
iz = (DuyDy. — BiDy2) (DyzDyy — AiDy.) (7.17)

where ¢ = 1,2,3. The normalized eigenvector corresponding to J\; is then computed

éi = ei/\/ eiTei. (718)

Note that the third eigenvector can be also obtained via the cross product between the

as:

other two orthonormal eigenvectors €; and €.

Cautions

Prior to obtaining the eigenvalues and eigenvectors, it is strongly suggested [HBPAO1]
to enforce a nonnegative-definite real eigenvalue mask*. This mask includes all vox-
els satisfying the necessary and sufficient conditions that assure the convexity of the
diffusion ellipsoid [Bel60]:

Z3 >0, and (Dij and D;;D;; — ij) >0, for¢,7=uxvy, orz. (7.19)

Since diffusion measurements usually have some random noise that makes the tissue
water diffusivities unique and rarely equal, the enforcement of this positive-definite
mask additionally assures that:

()\1, Ao, and )\3) > 0, (7.20)

which will reduce the chance of division by 0 in Equation 7.18. The mask will remove
very-low-signal regions and regions outside of the investigated tissue. However, it will
not remove the voxels with degenerate eigenvalues, where a = 0 (see Equation 7.12).
This case rarely occurs in high quality measurements of diffusion processes in biologi-
cal tissue and corresponds to highly isotropic regions.

Adjusting Particle Tracing for Diffusion Tensor Fields

While classical particle tracing in vector fields is quite simple, it is more computation-
ally involved in diffusion tensor fields and a number of different problems have to be

* Interestingly, we have found out that if the matrix is symmetric but nor positive-definite, the algorithm still
returns the correct eigenvalues.
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resolved during the computations. Firstly, as it was depicted on the comparative block
diagram presented in Figure 7.4, and briefly summarized in Section 7.2.1, the direction
of tracing first has to be derived using the eigenvectors of diffusion tensor . The eigen-
vector &; corresponding to the largest eigenvalue )\, is a candidate for the direction of
particle advection. The eigenvalues {1, Ao, A3} and the eigenvector &, are efficiently
computed using the non-iterative algorithm described in the previous subsection and
implemented on the GPU.

Once the eigenvector €; is computed, the next problem arises. As it was shown in
the previous subsection, both of the eigenvectors €; and —é&; are valid solutions for the
related eigenproblem [DH92]. To resolve this ambiguity, the assumption of continuity
and smoothness of tensor fields in general [DH92] and, in particular, in biological tissue
under normal conditions can be exploited [WKL99]. Thus, starting with either direc-
tion of eigenvector &; (¢ = 0), we proceed by testing whether the currently computed
eigenvector &, (t) is co-aligned’® with the eigenvector computed on the previous advec-
tion step &, (¢ — 1). If this is not the case, we flip the sign of the current eigenvector
é1(t).

However, with only flipping of the sign, the problem of correct particle tracing is not
yet resolved. In addition, the following observations should be taken into account. Due
to the stochastic nature of the diffusion process, the eigenvector €; only shows the most
probable direction of propagation of water molecules through the tissue. There exist
regions within the tissue where the probability of diffusion in all directions is nearly
equal. These regions are characterized by the high degree of isotropy (or low degree of
anisotropy). Thus, in such regions the direction of the eigenvector does not correspond
to the actual direction of diffusion and the classical tracing algorithm becomes unstable.
To cure this problem, Weinstein et al. [WKL99] proposed a heuristical algorithm for
stabilized propagation of tensor lines, based on the deflection principle. The deflection
direction d¢ is simply the incoming direction vector d;, (from the previous advection
step), transformed by the tensor:

dger = Ddjy. (7.21)

In order to make the propagation vector properly scaled with respect to the diffusion
term, a normalization of the input tensor field should be performed [KinO3]. Thus, in
a preprocess step, all the values in the tensor field are scaled by a factor of (2/Anax),
where A\, 1S the largest eigenvalue found within the whole data set.

3 This is done by a simple sign-test of the dot-product between the eigenvectors.
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Given vectors €1, d;,, and dg., the propagation direction is computed as the linear
combination of these vectors:

dout = é1 + (]- - Cl) ((]- - wpunct) din + wpunct ddef)7 (722)

where the coefficient ¢; is the anisotropy metric defined in Table 7.1 and wpynet 1S @
user-controlled parameter, which determines the relative contribution of d;, and dges.
This coefficient can take values from O to 1 and it is highly dependent on the data
under investigation. Figure 7.5 illustrates the effect of application of (a) the standard
method and (b) the heuristical algorithm based on the deflection direction for tensor
line propagation.

(a) (b)

Figure 7.5: Effect of applying different techniques for tensor line propagation: (a) standard line
propagation technique, (b) heuristical algorithm with deflection.

In Figure 7.5 (a) the disadvantage of the standard propagation technique can be
clearly observed. Due to the unresolved ambiguity related to the choice of direction for
eigenvector €q, the line segments in this case are wasted on “reversing” the direction
and tracing forwards and backwards multiple times. On the other hand, the applica-
tion of the heuristical algorithm yields smooth appearance of tensor lines revealing the
prominent structures within the human brain data set. The red framebox in Figure 7.5
corresponds to the seeding probe for starting positions of tensor lines.

There is one more problem, untypical for particle tracing in most flow scenarios.
The flow fields are usually defined for each voxel within the flow volume (cf. Sec-
tion 2.1.1 for the definition of the flow field based on the notion of continuum). Thus,
the particle tracing can be performed everywhere within the flow domain. In contrast,
this is not the case for diffusion tensor fields. For instance, in highly isotropic regions,
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there is no preferred direction of diffusion, the water molecules are diffusing randomly
in all directions. Such regions usually do not contain the structures, which could be of
interest from the medical or physical point of view. Thus, without the loss of gener-
ality, the particles should be stopped in these regions®. Moreover, taking into account
that data sets of biological tissue usually contain the tissue itself surrounded by an air
environment (for example, a DT-MRI scan of a human brain), it is clear that no particle
tracing should be performed outside of the biological tissue under investigation. There-
fore, for biological data sets, a bit-mask ValidBitMask of valid regions within the
volume is usually provided with the data set. Sometimes, invalid regions are contained
inside of the biological tissue, caused by imperfection of measurement procedures. The
cases when the propagation of a particle or a line must be terminated are summarized
in Table 7.2.

Table 7.2: Propagation termination criteria for diffusion tensor fields.

<

5 . Usual for Particle age is expired,

5 = particle tracing Particle position p(t) is out of flow domain.

g =

2 +

g % Diffusion ¢ D(p(t)) is degenerate or non—positive—definite
g i< ! u510r}ﬁensor (see cautions given by Equations 7.19, 7.20),
& spectiic ValidBitMask( p(¢)) indicates invalid data.

According to [KKKWO05], after the propagation is terminated, the particles should
reincarnate at their initial positions. Applied to diffusion tensor fields, this approach
also requires a modification. It can happen that the particles are initiated close to the
regions, where they have to stop rather soon after they started. Thus, reincarnating
them at the same starting position will lead to high frequency flickering, which can
fatigue the user and distract him from focusing on more important regions in the data
set. We found out that a better choice is to reincarnate the particle every time in a
new position, using a shift in a random direction from the stored starting position.
There is no randomize function available on the current graphics hardware, therefore
it is not possible to randomize the initial particle positions on the GPU every time it is
necessary’, as it can be easily done on the CPU. Fortunately, in our application, it is
sufficient to provide a single randomized direction and shift all the starting positions of
the currently reincarnating particles along this vector.

% Otherwise, these particles will chaotically move in a close vicinity of their initial positions that can distract the
user from seeing the important structures.
"It can be done on the CPU and then uploaded to the GPU, however, this will significantly drop the performance.
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Line-Packing Technique for Tensor Lines

While there is no conceptual difference between tracing the lines or particles, the ren-
dering techniques are obviously different for these geometrical objects. While the parti-
cles are unconnected discrete objects, the line is a piecewise continuous representation
of a particle path. The construction and rendering of both objects for classical particle
tracing applications is quite simple. According to the line tracing algorithm proposed
by Kriiger et al. [KKKWO05] and described in Section 5.2.2, all the lines have the same
number of vertices assigned to them. While this strategy is very efficient for the clas-
sical particle tracing, it results in a waste of memory for the particle tracing applied to
diffusion tensor fields. Taking into account the additional data-specific termination cri-
teria described in the previous subsection, the problem is as follows. If a line started in
a close vicinity to a region marked as invalid, it will be terminated after a few segments.
In this case, the rest of the vertices will be unused. Assume that the line length is 1000
segments, and there is a hundred of these lines to be displayed. Termination of 30%
of the lines after 100 advection steps leads to wasting 27000 of 100000 segments. The
result displayed on the screen will be much sparser than if we would draw the same
number of lines with the same length in a standard vector field.

In order to resolve this problem, we suggest to restart the line at some random posi-
tion in a way similar to particle reincarnation. More precisely, if the line is terminated,
we reuse the rest of the memory resources allocated for this line object to trace another
line, started at a random position. In this way, several short lines can be packed into the
resource of size equal to the default line length. Exploiting this line-packing technique,
attention should be paid that the “jump” regions between the lines are blended out®.

The idea behind the line-packing technique is illustrated by example in Figure 7.6.
Since one line-restart occurs during the construction process, the vertex buffer is shared
between two tensor lines. Similar to particle tracing for vector fields, we use the fol-
lowing notation: PosTex for the position texture and DirTex for the direction texture.
Indices “0” and “1” are assigned to these textures according to a ping-pong technique.
The current position and direction are represented by colored rectangles: light blue for
Line; and pink for Line,. The jump-flag is visualized as a thin box attached to a col-
ored rectangle associated with the current position. The empty box corresponds the
jump-flag turned off, and the filled black box signalizes that the jump-flag is switched
on.

To randomize the restarting positions of the lines we use a similar strategy as for

8 For this purpose we use the discard statement available in HLSL [HLS, Gra03], which allows to discard the
current fragment.
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Figure 7.6: Sketch of the line-packing technique: one line-restart yields two tensor lines packed
into one vertex buffer. The current position and direction are emphasized by the colored rectan-
gles. The thin black box corresponds to the jump-flag switched on.

particles. For each advection step, a random shift vector RndDir is forwarded to
the shader. If the line has to be restarted, RndDir is added to the position stored
in the starting position texture StartPosTex for the lines. The special jump-flag (w-
component of the pixel value in PosTex) is used in order to distinguish between the
“jump” segment and the segment belonging to a tensor line. The pseudo-code for one
advection step of the tensor line propagation algorithm with the line-packing technique
is depicted in Figure 7.7. Note that this step is performed as a per-pixel operation for
each line in DirectX Pixel Shader [Gra03].

In Figure 7.7, At is the advection step size for the Euler integration scheme. The
purpose of the other input and output variables (textures) is as follows:

Input variables:

3D textures: TensorField represents two textures, which store the tensor values and the validity
bit-mask ValidBitMask available from the measurements;

2D textures: StartPosTex stores the starting positions for the lines; PosTex(t — 1) and
DirTex(¢ — 1) are the textures, which store the positions and directions respectively com-
puted in the previous advection step for all lines;

Output variables:

2D textures: PosTex(t), DirTex(t), EigenvaluesTex, EigenvectorTex store all line attributes
(positions, directions, eigenvalues, and eigenvectors, respectively) computed in the current
advection step for all lines.

The effect of the application of the line-packing technique is depicted in Figure 7.8.
While the texture resources were allocated for four lines of the same length, line-
packing traces ten lines of shorter length (Figure 7.8 (a)). The line “jumps” are ex-
plicitly visualized as white line segments in Figure 7.8 (b).
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LinePropagation(Tensorli'ield, StartPosTex, RndDir, A¢f, lineIdxli,j],
PosTex(t — 1), DirTex(t— 1)) {
1. RestartPos = StartPosTex(t —1) + RndDir;

// Get tensor field values via tri—linear interpolation

2. if(PosTex(t—1).w is true) // Last position is valid
3. D = TensorField(PosTex(t—1));
4. else
5. D = TensorField(RestartPos);
6. EigenvaluesTex = ComputeEigenvalues(D);
Line propagation
7. if(D is valid ) { See cautions given by Equations 7.19 and 7.20
8. EigenvectorTex = ComputeEigenvector,El(]D), EigenvaluesTex);
/ Compute the propagation direction according to Equation 7.22
9. DirTex(t) = Deflection(DirTex(tf 1), EigenvectorTex, EigenvaluesTex);
10. PosTex(t) = PosTex(t —1) + DirTex(t)-At;
11. PosTex(t).w = true; // Position is not a jump
12. } else {
13. EigenvectorTex = [1,0,0];
14. DirTex(t) = EigenvectorTex;
15. PosTex(t) = RestartPos;
16. PosTex(t).w = false; // Position is a jump

18. if( PosTex(t) is out of flow domain )
19. PosTex(t) = PosTex(t—1);

}

Figure 7.7: Advection step of the tensor line propagation algorithm with line-packing.

(@ (b)

Figure 7.8: Line-packing technique: (a) effect of application: 10 lines of different lengths
computed vs. 4 lines of the same length allocated, (b) visualization of “jump” segments (white).

7.2.3 Rendering Aspects

Conceptually, all rendering modes employed for diffusion tensor field visualization
are similar to the modes used for classical vector field visualization and presented in
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[KKKWO05]. However, a number of data-specific modifications and extensions, de-
scribed in this section, had to be added.

Extension of the Sprite Atlas Techniques for Diffusion Tensor Fields

An efficient rendering technique for aligned glyphs is presented in [KKKWO35]. Instead
of real geometry this approach displays textured point sprites. The texture attached to
the point sprites represents a projection of a real geometry object oriented according
to the specified transformation matrix. A number of such object projections captured
from different points of view onto the real object are stored into the sprite atlas. For
rendering the point sprites, an appropriate sub-image from the whole sprite atlas should
be selected. This selection is performed in a fragment shader via the transformation
My;, of texture coordinates assigned to the point sprite by the GPU (cf. Equation 5.3).
A short overview of this technique is given in Section 5.2.1.

With regard to diffusion tensor field visualization, the orientation of the ellipsoid
is chosen in the same way as for classical particle tracing: along the direction of the
particle propagation. However, the meaning of the shape of the rendered primitive for
a particle is of high importance. As depicted in Table 7.1, the elongated cigar-shaped
tensor ellipsoids correspond to regions characterized by linear type of anisotropy, typ-
ical for fibrous structures within the biological tissue. On the other hand, ellipsoids
degenerated into a sphere represent highly isotropic regions within the real matter, for
example, cerebral fluid in human brain. Therefore, instead of arbitrary scaling of the
aligned sprites, the diffusion tensor specific scaling based on some anisotropy measure
is required.

In our implementation we use the overall anisotropy metric ¢, = ¢;+c,. As denoted
in [Kin03, ZB03], the linear ¢; and planar ¢, metrics both increase in regions with higher
anisotropy (see the definitions of ¢; and ¢, given in Table 7.1), the anisotropy metric c,
can be used as an alternative to the F'A or RA metrics described in Section 7.1.1. Note
that by construction c, never takes values beyond the range [0, . .., 1)°, and thus can be
efficiently employed to adjust the general sprite atlas for the visualization of diffusion
tensor fields.

Taking into account the aforementioned observations, the diffusion tensor specific
sprite atlas can be constructed as follows. The sphere is chosen to be the starting shape
(scale 1.0) for the sprite atlas. The other rows are created by deforming (scaling) the
sphere along two principal directions down to scale 0.0. In this way, the sprite atlas,

% In the isotropic regions ¢, = 0 and in highly anisotropic regions ¢, == 1.
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involving the full spectrum of ellipsoids for all the discrete values of the ¢, anisotropy
measure, can be created (see Figure 7.9). For rendering, the appropriate row from the
sprite atlas is chosen based on the ¢, measure. For instance, if ¢, = 0, the first row
of the atlas will be chosen (spheres), or if ¢, = 1, the last row of the atlas will be
chosen (thin cigar-shaped ellipses). Hence, the transformation matrix Mg;, given by
Equation 5.3 can be rewritten as follows:

3111; = M‘]cjrgns ’ Mro‘w
here MP! =~ = Translate( arcsin(2), ¢,
w trans ( ( ) ) (723)
I\/Hrot = ‘ ~ ?{ ] )

The process of selection of an appropriate picture from the sprite atlas and its transfor-
mation according to My}, is illustrated in Figure 7.9.

= [Foatet j= 2| |~ [Roatet )[Rl
1 ir
- 1 . -

5 15 orientation 1 o=t 7 x JO é{
:—‘ 2| aresin(z). |~ @,ml

Figure 7.9: Rendering of aligned glyphs using the sprite atlas. The transformation of texture
coordinates of a point sprite is performed according to M3, given by Equation 7.23.

Tensor tubes

For the rendering of tensor tubes we use similar techniques as for particles. In this
way, we do not render the real tube geometry, but a number of closely placed point
sprites'’. To make a collection of sprites appear as a smooth tube, a cylinder is used as
a prototype shape for the tensor tube sprite atlas. The cylinder, whose section through
the main axis is a square, is used for the first row of the atlas corresponding to the

10 For tensor lines, however, we use the real geometry, i.e., the connected line segments.
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isotropic case (see Figure 7.9). For rendering, instead of connecting the line positions
with line segments, we display a point sprite with the image of a projected cylinder at
these line positions. If the integration step size is chosen to be sufficiently small, the
discontinuities between the cylinders are not noticeable in the final image. If the step
size is large, then the separate cylinders can be observed. In this case, the tensor tube
mode simply converges to the mode of diffusion aligned glyphs of cylindrical shape.

Blending Options and Color Mapping

A number of diffusion tensor based blending options and color mapping schemes have
been integrated into the particle system for tensor field visualization. The user has the
possibility to vary the corresponding thresholds and choose between the different color
mapping schemes. The variety of color mapping schemes implemented is listed in
Section 7.1.1. Once the eigenvalues and eigenvectors are computed and stored into the
2D texture objects for particles or for tensor tubes, they can be used to compute the color
mapping of the user’s choice on the fly. Since the formulae for color mapping schemes
are very simple, computing them every time the user has chosen another scheme does
not induce a drop of performance. Moreover, if the colors for each particle or line
segment are computed on the fly, there is no need to store them in extra texture objects,
thus, the valuable video memory can be preserved for other purposes.

One very important aspect is the transparency of the rendered primitives and their
size. Typically, the isotropic regions are not of interest in medical applications. There-
fore, the particles (represented by spheres) in such regions should not be rendered at all.
Since the ¢, measure is computed on each advection step for each particle, we check
its value, and discard the particle completely if ¢, corresponding to its current position
is 0. On the other hand, the regions of low non-zero anisotropy could be still of interest
or they could be used as a context for other more important regions in biological tissue.
Taking into account that the most important regions correspond to fiber tracks, which
are characterized by a degree of anisotropy close to 1.0, a smooth blending function
between the highly isotropic and highly anisotropic regions can be employed.

In general, the blending function should satisfy the following conditions. The
upper-bound case: if the regions are characterized by ¢, > 0o max, they must be
rendered absolutely opaque. The lower-bound case: if the regions are associated with
Ca < Oiso_min, they must be completely discarded. The normal case: if regions have
Oiso.min < Ca < Oiso_max» Some smooth blending equation should be employed to
render them. Additionally, the validity bit-mask ValidBitMask!! available from the

' Each “bit” of the validity bit-mask is denoted for further use as valid Bit.
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measurement procedure should be applied in order to completely discard the regions
marked as “invalid” according to this bit-mask. Note that in general, the bit-mask does
not exactly store bits, but rather floating point scalar values. In this case, the values
contained in such a bit-mask can be interpreted as the probabilities of the correspond-
ing tensor values to be valid (1.0) or invalid (0.0). Therefore, an additional validity
threshold 0,4 can be involved in the transfer function. In the current implementation
the following transfer function Opacity(aniso) for opacity values is employed:

valid = min <(validBit/avahd), 1.0> (7.24)

aniso?® - valid

iso_min -~ 0: i s L
7 — ( Oiso_min ) (725)

Otherwise : 0,

Opacity(aniso) =

where aniso is some anisotropy metric, for example, ¢, or FA. The upper bound of the
transfer function is modulated using the scaling by s, min. The families of graphs of
the transfer function Opacity(aniso) with parameters ois,_min and valid are depicted
in Figure 7.10.
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Figure 7.10: Families of the transfer function for opacity Opacity(aniso): (a) for valid =
const and varying 0iso_min, (b) for varying valid and two fixed oiso_min values, 1.0 (blue) and
0.25 (red).

As can be observed from the graphs in Figure 7.10 (a), the smaller s, min, the
steeper is the graph of the transfer function. In the boundary case, when o5, min = 0,
the graph degenerates into the unit step function, which means that all the primitives
will be rendered opaque, independently of the degree of anisotropy associated with
their positions.
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The effect of scaling with an additional parameter, valid, can be clearly observed
in Figure 7.10 (b). If 0y = 1, then only 100% valid data is rendered as absolutely
opaque. In this case, valid is solely defined by the probability given in valid Bit. The
lower this probability, the less opacity should be assigned to the displayed data. This
is illustrated by the graphs unbending towards the aniso-axis and approaching it at
the boundary case (valid = 0). If valid = 1, then the opacity of the displayed data is
solely modulated by the anisotropy level aniso and the threshold o,;,. By construction,
0 < walid < 1, thus the situation when valid > oy,;q does not make the graph of the
transfer function any steeper than for the boundary case oy, = 1.

It is worth mentioning that when semi-transparent objects are present in the scene,
correct ordering of these objects in 3D space is a crucial issue. In our application,
we can choose between two options: real sorting of particles and corresponding at-
tributes using the bitonic sorting algorithm implemented on the GPU [KKKWO0S5] or
a “fake” sorting mode, enabled via additive blending [BKKWO0S8]. When the latter
case is chosen, the opaque and almost opaque objects should be rendered with first the
depth-write-test enabled, and then the rest of the objects (semi-transparent objects) are
rendered using the additive blending mode with the depth-write-test disabled.

7.3 Results and Performance

In this section, we demonstrate the efficiency of the proposed particle tracing method
for visualization of diffusion tensor fields in terms of computational costs and rendering
performance as well as its effectiveness for the exploration and gaining insight into the
real-world data sets of biological tissue. The following two data sets were investigated
in our rendering experiments: the human brain data set of resolution 148 x 190 x 160
and the canine heart data set of resolution 256 x 256 x 256. Each entry in both data sets
consists of six diffusion tensor components and an additional validity bit valid Bit. Dif-
ferent visualization options and color mappings were selected to emphasize particular
diffusion properties and anatomical structures in these data sets. In all examples, vi-
sual exploration was performed in real-time, thus allowing for an effective and intuitive
analysis of biological tissue.

7.3.1 Performance

All of our experiments have been conducted on a NVIDIA Quadro FX 4400 graphics
card equipped with 512 MB video memory. Rendering was performed into a view-
port of 1280x 1024 pixels. Table 7.3 gives timings for the advection and rendering
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of particles. Timings in the second column include all operations that are carried out
until updated particle positions are available in the current particle container, i.e., ten-
sor interpolation, eigen-decomposition, and particle advection using Euler integration.
The third and the fourth columns include timings for the rendering of diffusion-aligned
point sprites. To demonstrate the dependency of performance from the number of gen-
erated fragments, differently sized sprites are used. The last column shows the time that
is required to reconstruct different amounts of stream lines of length 100. In all these
tests, a 2562 tensor data set (canine heart) was visualized.

As can be seen, even for large particle sets the GPU implementation still allows
for the interactive visual exploration of tensor fields. It is interesting to note that with
increasing fragment size the rendering stage quickly becomes fragment bound. More-
over, the number of generated fragments strongly depends on viewing parameters, such
as field of view and the distance of particles to the camera. As it is rather difficult
to provide precise and meaningful timing statistics for different amounts of particles in
combination with differently sized point sprites, we give specific timings for all the gen-
erated images shown in the following. Also, since for fibers the number of advection
steps is proportional to their length, the approximate time for tracking and rendering
a fiber of an arbitrary length can be computed as the time needed for one segment
multiplied by the number of segments.

particles | advection only <1 ;ir;eerll:e‘d ;r;k;ti)ixels lines | length 100
642 1434 700 470 64 130
1282 343 185 123 128 100
2562 83.2 43.7 28.8 256 78
5122 19.4 8.4 5.9 512 55

10242 4.2 2.0 1.6 1024 38

Table 7.3: Application performance in frames per second, for different amounts of particles and
for stream tubes each consisting of 100 segments.

In contrast to previous approaches, where only the final rendering of precomputed
entities can be done interactively, the proposed method provides an even more intuitive
means to explore high resolution diffusion tensor fields. In particular, the user can
interactively select the seeding density of particles as well as parameters specific to
the propagation process. By using these options, pathways can be visualized at almost
arbitrary resolution. The advection of oriented particles allows for the simultaneous
exploration of both local and global diffusion tensor properties. Fiber structures can be
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observed without that particle positions have to be connected. Even in still images the
fibrous structures in the investigated tissue can clearly be seen.

7.3.2 Rendering Examples

In this section, we show screenshots of the dynamic 3D tensor field visualization includ-
ing various visualization options (Figures 7.11 to 7.17). Although the images already
show the functionality of the particle engine, we should note here that the real benefit
of the presented approach is a lot more apparent in the animation.

In Figure 7.11, colored point sprites of size 5 x 5 pixels were rendered to visualize
the human brain data set. The F/A-based color mapping scheme (Equation 7.6) was
used. By fading out particles in regions showing low anisotropy, highly anisotropic
brain structures, such as corpus callosum, corona radiata and pyramid, are emphasized
and can clearly be distinguished in the generated image (cf. Figure 7.2).

In Figure 7.12, diffusion-dependent oriented sprites were used to render a close up
view of the corona radiata. According to the F'/A-based color mapping scheme, an optic

tract can be clearly distinguished by the green color!2.

To generate the image, 64K
point sprites of size 45 x 45 pixels were rendered at 6.1 frames per second.

The left image in Figure 7.13 shows a visualization of the corona radiata using
stream tubes. The seeding probe from which particle traces were initially released is
shown as wire frame in red. Overall, 512 traces of a maximum length of 600 were
traced. Textured point sprites of size 15 x 15 pixels were rendered using the texture
atlas described above. Reconstruction and rendering was performed at 2.4 frames per
second. As can be seen, this visualization option helps to track the bunches of fibers
with biologically similar properties, and it allows the expert to follow the paths of single
fibers. On the right of Figure 7.13 the superior longitudinal fasciculus is rendered by
means of colored stream lines. The axial slice along the fasciculus was chosen as
seeding region. 512 lines of a maximum length of 600 were computed and displayed
at 10 frames per second. Both images show nicely the property of stream tubes and
stream lines to effectively reveal spatial relationships between different tracks.

The axial, coronal, and sagittal slices through the human brain are visualized in
Figure 7.14 using diffusion-dependent sprites. In combination, shape and color of the
rendered ellipsoids give a good impression of the degree of anisotropy and the main dif-
fusion direction within the corresponding brain structures. The brain structures them-
selves, such as pyramidal tracts, U-shaped fibers, superior longitudinal fasciculus and

2 The main diffusion direction is along the Y-axis, which corresponds to the green channel of the RGB color
scheme.
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others, are clearly visible in all slices. The axial and sagittal slices were rendered using
64K particles of size 20 x 20 pixels at 10.8 frame per second. The coronal slice was
produced using 256K particles of size 10 x 10 pixels at 4.5 frames per second.

Visualizations of the canine heart data set are shown in Figures 7.15-7.17. Fig-
ure 7.15 shows the longitudinal and latitudinal heart slices, rendered with textured point
sprites. The orientation of the sprites corresponds to the helical construction of the heart
muscle, and the spatial positions depict the heart structure consisting of four chambers
and several valves in between. The animation of 64K particles of size 25 x 25 pixels
runs at roughly 8 frames per second.

Figure 7.16 shows images of the heart data set rendered from different view points
using aligned diffusion-dependent point sprites. In the interactive animation, the clock-
wise and counter-clockwise motion of particles along the muscle structure can be clearly
tracked. Both images were rendered using 64K particles at 25 x 25 and 45 x 45 pixels
per point sprite, respectively. Accordingly, the application performance dropped from
9.4 frames per second to 7.4 frames per second.

Stream tubes were used in Figure 7.17 to visualize the heart data set. On the right,
tubes were colored according to Equation 7.4. Both images were generated using 1K
stream tubes of maximum length of 1K in combination with point sprites of size 5 X
5 pixels to render the texture-based tube segments. Reconstruction and rendering of
stream tubes was performed at 1.5 frames per second.
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(@)

(b)

Figure 7.11: Visualization of the diffusion tensor field measured in a human brain: (a)
Oiso.min = 0.05, (b) Tiso_min = 0.2. Below a given anisotropy threshold oiso_min the trans-
parency of rendered particle primitives is inversely proportional to the measured anisotropy. In
this way, particles in regions of low anisotropy are continuously faded out. 64K particles of size
5 x b pixels were rendered at roughly 40 frames per second.
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Figure 7.12: Brain structures: By using the color mapping scheme described in Equation 7.6,
the optic tract (green) and corona radiata (blue) fibers can be clearly distinguished. At 6.1
frames per second, 64K particles were advected and rendered using textured sprites of size
45 x 45 pixels.
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(@)

(b)

Figure 7.13: Brain structures: (a) corona radiata is visualized using stream tubes. (b) the axial
slice along the longitudinal fasciculus is rendered by means of simple stream lines. The FA-
based color mapping scheme (Equation 7.6) is applied. 512 fibers with a maximum length of
600 were generated and rendered at 2.4 and 10 frames per second, respectively.
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(a)

(b)

(©)

Figure 7.14: Brain structures: (a) axial, (b) coronal, and (c) sagittal slices through the data set.
The coronal and sagittal slices are color coded using Equation 7.6, and Equation 7.5 is used
to color the axial slice. The axial and sagittal slices were rendered using 64K particles of size
20 % 20 pixels at 10.8 frames per second. The image of the coronal slice was generated at 4.5
frames per second using 256K particles of size 10 x 10 pixels.
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Figure 7.15: Longitudinal (a) and latitudinal (b) slices of the heart muscle are reconstructed
and rendered at 8 frames per second. The helical orientation of the heart muscle fiber becomes

apparent from the latitudinal slice. Both slices also depict the four-chambered structure of the
heart. The FA-based color mapping scheme was chosen.



7.3. RESULTS AND PERFORMANCE 155

Figure 7.16: Heart muscle: Two different views of the data set are shown. The helical structure
of the heart muscle can be easily tracked on both images. The F'A-based color mapping scheme

(Equation 7.6) was applied. 64K particles of size 25 x 25 pixels (left) and 45 x 45 pixels (right)
were animated at 9.4 and 7.4 frames per second, respectively.
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Figure 7.17: Heart muscle: Two different views of the data set are shown. The color mapping
schemes described in Equation 7.6 (left) and Equation 7.4 (right) were used. 1K stream tubes of
maximum length of 1K were reconstructed and rendered with point sprites of size 5 X 5 pixels.
Both images were generated at 1.5 frames per second.



Chapter 8

Conclusion and Future Work

In this thesis, several novel methods have been introduced within the context of flow ex-
ploration, a challenging interdisciplinary area of research, encompassing a wide range
of versatile topics. Despite the diversity of these topics, they can be roughly classified
into three main groups: flow measurement, reconstruction of flow fields from measured
data, and visualization of the results of reconstruction. All of these problems occur in
a particular flow situation to be explored and in the ideal case must provide a thorough
understanding of the flow phenomena under investigation. This thesis is devoted to the
reconstruction of flow fields and their visualization. In this short chapter, I will briefly
summarize what has been done in this regard and outline the directions for further re-

search.

8.1 Conclusion

Since all of the proposed algorithms are dedicated to fluid flow, it is natural that all
of them are built upon one paradigm, which intuitively describes the flow per se: the
particle tracing. The efficiency of this concept has been proven by a number of papers
published by our Chair [Cha] on renown conferences and two international visualiza-
tion contests [SKKWO05, SKB*06] which we have won. The diversity of topics covered
in these publications is ranging from numerical simulation of flow fields and visualiza-
tion of earthquakes, to completely different areas related to rendering of special effects
for computer games. In the following, I will briefly summarize my contribution to
the scientific flow exploration represented by several modules described in this thesis
and developed within the framework of the GPU-based particle engine. It is worth
mentioning that together with these modules the particle engine has evolved into a

comprehensive tool for interactive flow exploration.
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8.1.1 Reconstruction Algorithm and its Validation

The reconstruction of velocity vector fields from experimental image sequences is a
non-trivial problem, especially when a number of restrictions is imposed on the exper-
imental setup in order to satisfy the application-specific requirements. In the first part
of this thesis (Chapters 3 and 4), a new model-based prediction-correction technique
for the reconstruction of fluid motion from captured images of particles seeded into the
flow has been described. Since this technique incorporates a priori knowledge about the
induced flows into the reconstruction process, it is able to recover relevant flow features
at high fidelity. In contrast to previous approaches, flow boundaries and obstacles in the
flow are considered in the correction step.

It have been shown, that exploiting a GPU simulation engine to efficiently predict
the flow field as well as to compute the model-based correction of this field, interactive,
yet high quality reconstruction is possible. As timings indicate, the proposed technique
can be seen as a first step towards the integration of the reconstruction process into
real-time scenarios such as high-speed PIV-systems. Furthermore, interactive visual
exploration of the reconstructed flow field provides the expert with direct feedback of
the changes imposed by the variation of specific model parameters.

By means of the presented technique one additional step towards the use of phys-
ical knowledge in a mathematically and numerically sound way for the evaluation of
PIV image sequences have been made. Moreover, another important aspect, which is
playing an ever increasing role in experimental procedures, has been emphasized: the
possibility to gain insight by interactively steering all the specific process parameters
involved in the experiment.

Furthermore, a thorough validation of the proposed reconstruction method has been
performed and its performance has been compared in terms of quality of the recon-
structed vector field and computational time to other algorithms. In particular, the ef-
ficiency of this reconstruction method has been shown in application to experimental
image pairs captured by biocompatible microscopic PIV-systems. Such systems are
characterized by limited illumination power and particle density, and they make it dif-
ficult for standard evaluation methods to faithfully reconstruct the fluid motion.

8.1.2 Interactive Visualization of Flow Fields

In the second part of the thesis, two novel approaches for the interactive visualization
of flow fields have been presented. Moreover, a result of collaborative research in our
Chair — a GPU-based particle engine — is briefly summarized in Chapter 5 in order to
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provide a high-level description of the implementation foundation for the two novel
visualization methods described in Chapters 6 and 7.

Anchor Lines: Feature-Based Importance-Driven Technique for Flow Visualization

In order to solve the problem of an adequate perception of complex flows in 3D space
arising in their visual exploration, a new focus strategy for particle tracing has been
introduced in Chapter 6. The proposed technique is called anchor lines, which are
essentially the integral curves started in regions of high importance and accompanied
by the particles seeded in the close vicinity of these regions.

It is a challenging task to decide which regions in the flow are of interest and many
different importance metrics can be suggested. After all, the choice may be based
solely on a personal opinion of the user or be strictly application-specific. In this thesis,
it has been proven that one of the best criteria to guide the classification is the degree of
particle separation over time, which is described by the finite-time Lyapunov Exponent
(FTLE). In particular, it has been demonstrated that seeding the particles in regions of
high degree of particle separation indicated by high FTLE values yields a rich spectrum
of various trajectories traced by the accompanied particles.

In Section 6.3.2, it has been shown that rendering only the particles which signifi-
cantly deviate from their anchors and otherwise displaying solely the anchors, leads to
a significant reduction of information, yet highlighting the important flow structures.
The effectiveness of the proposed technique has been exhibited by the examples of vi-
sual exploration of several complex flow scenarios in 3D space. It is worth mentioning
that the benefits of using this technique for real-time flow field visualization are more
apparent in the animation and interaction with the developed software application.

Finally, working with the associated software tool, the user can control the visual-
ization by a few parameters such as the size and location of a seeding probe; the thresh-
old of importance related to the minimum degree of particle separation; the radius of
particles scattering around the starting position of the anchor line; the size, shape and
transparency of particles traced through the flow, as well as the number and type of
various rendering modes to be displayed at once, etc. In addition, the FTLE measure
is directly derived from the flow and is employed to adaptively modify the particles’
visual attributes.
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Visualization of Diffusion Tensor Fields

The visualization of tensor fields arising in many areas of natural sciences is a highly
important and relatively poorly investigated topic. In Chapter 7, an efficient and effec-
tive visualization system for 3D diffusion tensor fields has been presented. This system
allows for visual exploration of such fields at interactive rates and at arbitrary level of
detail. The user can interactively select regions of interest by positioning a particle
probe of adjustable position and size. A number of different visualization options and
physically-based parameters can be selected to change the medical interpretation and
visual appearance of the displayed information.

In this way, by using the proposed system, local variations in diffusion tensor fields
as well as anatomical structures can be visualized at interactive rates. Due to the pos-
sibility to simulate the dynamic behavior of massless particles in the derived diffusion
field, a very intuitive approach for understanding of diffusion tensor fields has been
presented. In contrast to previous methods, real-time advection and rendering of large
particle sets produces animations that closely and intuitively mimic the underlying dy-
namic diffusion process.

8.2 Future Work

Taking into account the versatility of the problems which have been investigated in this
thesis, there is a wide range of directions for further research. These directions are
related to both theoretical aspects and implementation issues.

8.2.1 Reconstruction Algorithm

The proposed reconstruction algorithm can be extended in several ways. Since the
efficiency of the method has been proven for the 2D case, a strong motivation for the
re-implementation of this algorithm for the 3D case is provided. Taking into account
that all of the real-world experiments are essentially performed in 3D space, it could
be of interest to compare the results of the reconstruction from 2D images performed
under the assumption that sought for vector field approximately represents a 2D slice
of a complete flow situation and the results of the reconstruction from complete 3D
measurements of the same flow scenario.

The extension to 3D requires corresponding re-implementation and rearrangement
of all the involved numerical procedures. While some of them, for instance, image
deformation by a given vector field in 3D, can be implemented straightforward, other
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procedures involve a lot of work in order to make them computationally efficient. More-
over, the size and complexity of the associated mathematical problems will dramatically
increase. This could lead to severe problems related to numerical accuracy and consid-
erably decrease the stability of the involved numerical solvers. Thus, a thorough theo-
retical analysis of the related stability problems and the development or adaptation of
alternative numerical procedures could be required. For instance, in computational fluid
dynamics it is a well-known fact, that standard first-order finite element discretizations
may result in non-physical pressure oscillations or even in so-called locking effects,
where the zero velocity field is the only one satisfying the incompressibility condition.
To cope with this problem, mixed finite elements, for example, Taylor-Hood element
based on a square reference element with nine nodes can be employed while solving the
Navier-Stokes equations [RSO7]. Better results in terms of numerical convergence of
optical flow solution can be achieved using, e.g., a mimetic finite differencing scheme
[YRMSO5].

Furthermore, from a theoretical point of view, it is of interest to incorporate alterna-
tive physical flow models into the system, in particular, numerical solvers to simulate
such models. In this way, the proposed techniques can also be adjusted for scenarios
where the flow does not comply with the incompressible viscous flow model. On the
other hand, the theoretical research can also be pursued further into the direction of a
more accurate model for flows induced by microorganisms. In this sense, the following
issues could be of particular interest. The flow model based on Taylor’s hypothesis
can be incorporated as suggested in [PKD"07] and compared to the currently imple-
mented Stokes model. Another theoretically involved challenging task is the treatment
of boundary conditions imposed by the presence of non-solid living organisms in bi-
ological application. Moreover, since feeding/discharging cannot be treated using a
classical law of energy conservation, related inflow and outflow conditions should be
carefully adjusted.

In addition, research could also be directed towards the investigation of the behavior
of living organisms and the dependency of exchange characteristics of the induced flow
on the presence of external factors. Moreover, the optimality of experimental param-
eters can be investigated: which time interval between the recordings is sufficient in
order to reliably reconstruct the underlying flow field, which size of particles should be
used in order to avoid the alternation of the flow pattern, which optical density should
particles have in 2D and 3D cases, etc. Yet another challenging and difficult task is
related to the investigation of the process of formation of a toroidal eddy and the de-
termination of the critical physical conditions when the organism decides to break the
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established flow pattern, for example by sudden and very fast contraction of its body.

8.2.2 Anchor Lines

Several directions can be suggested for further research about the anchor line technique
presented in this thesis. Since many numerical simulations are performed on unstruc-
tured grids, one important extension is related to the re-implementation of the proposed
technique for data sets defined on such grids. As none of the procedures involved in
the computation of anchor lines inherently depends on the uniform grid structure, this
extension is expected to be straightforward, at least from an algorithmic point of view.
However, the realization of real-time approaches for GPU-based particle tracing in un-
structured grids leaves sufficient room for further research.

Another interesting issue that can be addressed is related to the investigation of topo-
logical features as a candidate for importance measure and comparison of its efficiency
to the FTLE-based importance measure. I believe that especially the combination of
topological features with anchor lines to highlight coherent structures in the flow is an
interesting visualization option.

It is worth mentioning that in addition to the FTLE, there also exists a finite-size
Lyapunov exponent measure that characterizes how long it takes for particles until they
separate to a fixed distance. Such information can be useful to predict the development
of a specific flow pattern and even to guide it. The investigations in this direction can
be especially valuable for turbulent flow scenarios.

A challenging starting point for further research is related to the investigation of
areas of application of anchor lines. For instance, it could be of interest to investigate
the efficiency of using this technique for visualization of the results of reconstruction
of image sequences obtained in experiments with microorganisms. The behavior of
organisms directly affects the flow pattern and, as a consequence, transport and mixing
characteristics in the environment surrounding them . Therefore, in such flow scenarios
anchor lines could be adjusted for the exploration of transport and mixing characteris-
tics in biological systems.

Taking into account that the FTLE quantity defines the amount of stretching about
the trajectory, it could be employed for the visualization of deformations of fluid ele-
ments. More suitable rendering modes for anchor lines and accompanying particles can
be invented for this purpose. Since deformation is directly related to the deformation
tensor, this idea could be elaborated further as a new paradigm for visualization of mul-
tivariate fields, in particular, velocity vector fields combined with rate-of-strain tensor
fields, which are especially valuable in fluid mechanics application.
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Finally, the idea to employ anchor lines in combination with focus and context
techniques for the efficient visualization of uncertainty sounds appealing. By simply
replacing focus by certainty and context by uncertainty the proposed techniques can be
used to distinguish between regions containing reliable and non-reliable information.
The questions how to find meaningful seeding positions for anchor lines and how to
adjust the accompanying particles for uncertainty visualization suggest the way for
further research in this area.

8.2.3 Visualization of Tensor Fields

In regard to the visualization of diffusion tensor fields, there are several directions for
improvements and further research. Firstly, in the current implementation, the overall
anisotropy measure is used to define the shape of the diffusion ellipsoid. Such treatment
does not allow to distinguish between regions of linear and planar anisotropy, which is
in many cases unsatisfactory. Therefore, the sprite atlas for diffusion tensor fields can
be extended about an additional dimension incorporating the information about the
third principal direction of anisotropy.

An additional problem related to the regions of planar isotropy is related to the fact
that these regions essentially represent nodes, where fiber tracks are crossing. Since
such nodes play a crucial role in the investigation of the connectivity between differ-
ent regions within biological tissue, tracing a single line in such region is not always
sufficient [WLWO0O]. Furthermore, the second-order diffusion tensor model fails to re-
cover the correct directions of anisotropy in regions, where many fibers are crossing.
To eliminate this limitation, a new method for high quality measurement of diffusion
in biological tissue — high angular-resolution diffusion imaging (HARDI) — has been
recently proposed [TWBW99]. As a consequence, new visualization techniques are
awaited. Since HARDI data is described by a higher-order tensor model, rather than by
a simple 3 x 3 second-order tensor model, it is a challenging task to visualize such data.

Second-order tensor fields are fundamental in engineering and physical sciences. In
fluid flows, stresses, viscous stresses, rate of strain, turbulent charge, turbulent current,
and momentum transfers are all described in terms of tensor data. In fact, the steady-
state Navier-Stokes equations describe gas flows with only one quantity — momentum
flux density — which is itself a tensor field. Visualization methods using hyperstream-
lines were suggested to visualize such fields [DH92]. However, hyperstreamlines in
many cases reveal only the mathematical properties of the tensor fields and do not
provide intuitive physical interpretation [HFH"04]. It is worth mentioning, that the
examination of tensor fields arising in fluid mechanics is relatively new and the physi-
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cally sound visualizations of tensor quantities in well-known fluid mechanics problems
have not been presented so far [KKLO04]. Therefore, the development of intuitive vi-
sualization methods that enable physical understanding of tensor fields arising in fluid
mechanics is a challenging direction for further research.

It is worth mentioning that visualization methods for tensor fields arising in one
particular application are not always suited for other applications [HS]. For example,
it is quite intuitive to trace particles along the main principal direction of the tensor in
diffusion tensor fields, because it mimics the averaged motion of water molecules along
the fiber tracks. On the other hand, tracing particles along the principal directions of
the velocity gradient tensor is misleading. Furthermore, tensors with the same physical
name are treated differently in different fields of natural sciences. For example, strain
and stress tensors are present in solid mechanics and fluid mechanics, however their
physical interpretation and treatment in these disciplines is different.

Finally, visualization techniques for tensor fields presented so far address symmet-
ric second-order tensors in both 2D and 3D. The methods for asymmetric and mixed
tensors as well as for higher-order tensors are still absent. More precisely, there are
only a few research papers on this matter [HS, ZYLLO7], and due to the complexity
of the underlying problem they deal only with 2D tensors or they do not provide a
physical interpretation of the visualizations. Therefore, visualization of tensor fields
of complex types (asymmetric and mixed, or of higher-order) encountered in different
areas of natural sciences is still an unexplored area of research.
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