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Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik

der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Thomas Eibert
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Abstract

In this thesis, novel methods of nonlinear system identification and new approaches in

physiological modeling and rehabilitation engineering are presented. Thereby, a contri-

bution to the advancement of the repetitive peripheral magnetic stimulation (RPMS) is

made. The RPMS is an innovative approach in rehabilitation of sensorimotor deficits like

paresis and spasticity, e.g. after stroke. The key issues of the current RPMS-research are

the further analysis of the underlying therapeutic mechanisms and the optimization of

the proprioceptive afferent input patterns by inducing functional synergistic-antagonistic

movements in the arm, hand and fingers.

First of all, new methods for parameter identification in the presence of linear, nonlin-

ear and separable nonlinear parameterization are introduced. Conditions for parameter

convergence are developed using a stability framework from nonlinear dynamic system

theory. The proposed theoretic framework is generic and can be applied to a variety of

problems. Here, it is used to identify the plant of the RPMS-induced index finger extension

and flexion. For this purpose, an adequate biomechanical and neurophysiological model

is developed that includes the RPMS-induced force generation, the segment dynamics, the

dynamic relaxation effect as well as a simplified model of the spastic joint torque. This

approach yields the basis for three applications that contribute to the above mentioned

key issues: System identification-based therapy assessment and monitoring, dual channel

position controlled RPMS and EMG-driven position control.

Zusammenfassung

In der vorliegenden Arbeit werden neue Methoden der nichtlinearen Systemidentifikation

und neue Ansätze der physiologischen Modellbildung und des Rehabilitation Engineering

vorgestellt. Hierdurch wird auch ein Beitrag zur Weiterentwicklung der repetititiven pe-

ripheren Magnetstimulation (RPMS) geleistet. Die RPMS ist eine innovative Methode zur

Rehabilitation sensomotorischer Defizite wie Parese und Spastik infolge eines Schlagan-

falls. Die Kernpunkte der aktuellen RPMS-Forschung sind die weitere Aufschlüsselung der

therapeutischen Wirkungsmechanismen sowie die Optimierung des propriozeptiven Affe-

renzenmusters durch Induktion funktioneller synergistisch-antagonistischer Bewegungen in

Arm, Hand und Fingern.

Es werden zunächst neue Methoden der Parameteridentifikation bei linearer, nichtli-

nearer und separierbarer nichtlinearer Parametrierung vorgestellt. Asymptotische Stabi-

lität der vorgestellten Ansätze wird mit Hilfe von Methoden aus der Theorie nichtli-

nearer dynamischer Systeme bewiesen. Die vorgestellte Theorie ist generisch und kann

somit bei einer Vielzahl praktischer Probleme zum Einsatz kommen. In dieser Arbeit

wird sie zur Identifikation der Regelstrecke
”
RPMS induzierte Zeigefingerextension und

-flexion“ eingesetzt. Hierfür wird ein biomechanisches und neuromuskuläres Modell ent-

wickelt, das die RPMS induzierte Krafterzeugung, die Segmentdynamik, den dynamischen

Relaxationseffekt sowie ein vereinfachtes Modell für das spastische Gelenkmoment umfasst.

Der gewählte Gesamtansatz stellt die Grundlage für drei beispielhafte Anwendungen dar,

die einen Beitrag zu den oben genannten Kernpunkten leisten: Therapieevaluierung und

-monitoring basierend auf Systemidentifikation, zweikanalige positionsgeregelte RPMS und

EMG-gesteuerte Positionsregelung.
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1 Introduction

This chapter aims to introduce the reader to the research areas that are within the scope

of this thesis: Stroke rehabilitation, nonlinear system identification, physiological model-

ing and rehabilitation engineering. This introduction does not provide a comprehensive

overview of the related state of the art since this issue is covered at the beginning of each

of the subsequent chapters.

1.1 Motivation

A stroke is a sudden, temporary insufficiency of the cerebral1 blood supply that may be

caused by thrombosis, embolism or a hemorrhage. As a consequence, the affected brain

area can be irretrievably damaged, leading to sensorimotor deficits like paresis on one side

of the body (hemiparesis), one-sided spasticity, deficits in speech, and one-sided visual

dysfunctions. In Germany, each year approximately 150,000 people suffer a stroke [57]

and this number is increasing. About 90% of the stroke survivors suffer a persistent

hemiparesis of the upper extremities, and in 30%-40% the paresis is so severe that the

affected limb con no longer be used [65]. Particularly a paresis of the arm and hand impairs

daily life activities and thus, the quality of life is reduced dramatically. This emphasizes

the necessity of innovative techniques in rehabilitation of central paresis.

Cortical reorganization abilities2 form the basis of relearning the lost motor functions. In

order to activate a beneficial reorganization process, the lost proprioceptive input should be

reactivated. Conventional physiotherapy aims to achieve such an activation through exter-

nally applied movements [160]. Thus, the sensors in muscles, tissue and skin are activated

and send proprioceptive information to the central nervous system (CNS) which facilitates

a relearning process. In order to assist the physiotherapists during these exercises, robots

have been developed and applied for rehabilitation of lower and upper extremities (see

e.g. [136; 161]). Apart from applying peripheral limb manipulation to a passive patient,

physiotherapy tries to allow the patient to actively participate as far as possible. As an

example, the ”Constraint Induced Movement Therapy” (CIMT, [168; 169]) forces the pa-

tient to use his/her paretic arm and hand by strapping the other one. A similar goal is

pursued with the development of patient-cooperative rehabilitation robotics [138; 139].

However, the muscles of those patients that do not have the ability of voluntary partici-

pation will not be activated during classical physiotherapy. In this case, muscle activation

can be achieved by artificial muscle stimulation that represents a different approach of mo-

1Fundamental terms concerning the sensorimotor system and sensorimotor deficits are explained in Ap-
pendix B.

2The ability of the human brain to perform structural reorganization is called plasticity. The human
brain remains plastic until old age.
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tor rehabilitation. Aside from the well-known functional electrical stimulation (FES, [159]),

there exists the repetitive peripheral magnetic stimulation (RPMS, [166]). With both meth-

ods terminal motor branches are depolarized by applying external electric fields so that

the respective muscle contracts. Thus, adequate (indirect) efferent3 signals by means of

activation of mechanoreceptors as well as inadequate (direct) efferent signals by means of

antidromic4 conduction are elicited. Due to the combination of adequate and inadequate

input to the CNS, the muscle stimulation therapy has a great potential to supplement the

motor rehabilitation. A comprehensive review of the clinical uses of FES in the context of

motor rehabilitation is presented in [159].

Though the FES activates somatosensory nerve fibers, a major drawback consists of the

equal activation of cutaneous receptors. Apart from leading to pain, this may also result

in an additional increase of spasticity. Hence, the use of FES for therapeutic purposes

appears limited, see [28], e.g.. Contrary to FES, the RPMS is a deep penetrating, focused

and painless stimulation method. Its application to stroke rehabilitation is developed

within the Sensorimotor Research Group, Technische Universität München

(TUM) under the responsibility of Professor em. Dr. med. Albrecht Struppler.

Numerous clinical experimental studies showed that the proprioceptive inflow induced

by RPMS elicits conditioning effects on various levels of the sensorimotor and cognitive

systems: RPMS can effectively suppress spasticity [166; 167], has a modulatory effect on

the postural component of motor performances like the stabilization of the elbow joint in

a relaxed state [165], and can improve higher (integrative) sensory functions like spatial

cognition in patients [80; 81]. Also, recognition errors of different tactile stimuli can be

clearly reduced after RPMS [63]. In [215], a PET H2O
15-study showed an increase of

activation of the parieto-premotor network following RPMS-treatment which indicates a

significant conditioning effect of RPMS on the cortical level.

Stroke researchers agree that it is yet unclear which of the available methods and tech-

nologies are the best to be used, and that the answer to this question might differ from

patient to patient (see e.g. [161]). They also agree that available methods often yield

an unsatisfactory therapeutic outcome. Therefore, there is a strong demand for research

on stroke rehabilitation. Due to the functional variety of open questions in this working

field, research on rehabilitation is undertaken best in teamwork of neurologists, engineers

and physiotherapists. This thesis has evolved in an interdisciplinary working environment

provided by tight collaboration of the Institute of Automatic Control Engineer-

ing and the Sensorimotor Research Group, both at TUM. It was the goal of the

presented work to develop and apply control engineering methods that will ultimately

yield improvements of the RPMS-therapy. To this end, fundamental research in system

identification in physiological modeling has been performed.

The discipline of system identification can be broken down into mathematical model-

ing and parameter identification. System identification represents an essential interface

between control engineering and medicine. Models are a substitute for the original system

and are used in the context of physical, biomedical, chemical or economical processes. A

3Afferent nerve signals propagate from receptors and sense organs toward the CNS, while efferent nerve
signals propagate in opposite direction.

4An orthodromic impulse propagates along an axon in its normal direction, away from the soma. An-
tidromic impulses run in the direction opposite to normal.
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good model accurately describes the system characteristics of interest, and hence, yields

a comprehensive, convenient and inexpensive possibility to investigate the properties of

the original system. In medical research, there are in general two applications for models:

Analysis and control. In the analysis application, the model is often employed for sim-

ulations that aim to gain insight into the system, supplement diagnostics and to reduce

the number experiments performed in human subjects. If the model is embedded into an

on-line system identification procedure, it can be used for model-based patient monitoring.

In the control application where the human is part of the plant, models can be used for

controller design or they can even be embedded into the underlying control algorithm.

Models of physiological systems are often of macroscopic character since the underlying

microscopic processes may be highly complex. It is therefore a challenging task to develop

a model that is only as detailed as necessary to describe the dominant characteristics with

sufficient accuracy. Further challenges in modeling physiological systems are nonlinear-

ities, time variant behavior and inter- and intrapersonal differences. Hence, the model

parameters have to be adapted to the respective subject once a mathematical formulation

is found that qualitatively approximates the system.

Methods for parameter identification have been a field of research for several decades,

now. A parameter identification method is required to converge to the optimal parameter

values in a reasonable amount of time with a reasonable computational effort. It is the

purpose of fundamental research on parameter identification to provide generic methods

that have been formally proven to converge under well defined conditions. Thus, the

user can apply theoretically verified algorithms which he/she can rely on. Another aim of

fundamental research is to utilize theoretical insight into the underlying adaptive systems

in order to formulate design rules that can be easily applied by the user. As will be

explained in Chapter 2, mathematical models where the parameters occur nonlinearly can

be treated much less generally than linearly parameterized models. In case of nonlinear

parameterization, often a system-by-system investigation is necessary since there is no

general theoretic framework. This becomes obvious if one remembers that the unimpressive

term ”nonlinear” really means ”everything except linear”, and thus covers a huge number

of system classes. Since nonlinear parameterization is intrinsic to many plants there is still

a strong demand for research on nonlinear parameter identification.

1.2 Contributions and Outline of this Thesis

To develop a successful stroke rehabilitation, the following components are required: Un-

derstanding of the underlying pathophysiological mechanisms, methods for objective ther-

apy assessment, optimization of the proprioceptive input patterns and incorporation of

the patients’ voluntary efforts as far as possible. The central goal of this thesis is to

provide methods and techniques that have the capability to contribute to all of the above-

mentioned components. Fig. 1.1 illustrates the integration of the proposed techniques into

an RPMS-therapy environment. The development of the methods, models and exemplary

applications presented in this thesis was inspired by the application framework illustrated

in Fig. 1.1. However, it is also the goal of this thesis to present generic results that can

also be applied to other problems. The parameter identification algorithms are derived as
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general methods and thus can be applied to any arbitrary system identification problem

that meets the respective mathematical constraints. Further the proposed neuromuscular

and biomechanical models will be useful in different contexts and applications.

Afferent

signals

Efferent

signals

Desired
trajectory
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processing
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Fig. 1.1: Schematic of an integrated therapy environment: (a) Automated therapy monitoring
and assessment by means of system identification. (b) Position controlled induction
of functional movements using multiple stimulators. (c) Incorporation of the patient’s
effort using EMG-signal processing.

The following four paragraphs correspond to the Chapters 2-5 and summarize the main

scientific contributions of each chapter:

Parameter Identification in the Presence of Linear, Nonlinear and Separable

Nonlinear Parameterization

In Chapter 2, parameter identification methods are presented, that enhance the current

methodical state of the art. As will be shown, it is an essential distinction whether the

parameters occur linearly of nonlinearly in the model equation. Therefore, three different

classes of parameterization are systematically treated. The focus is on plant configurations

where an unknown subplant whose output is not directly measurable but filtered a known

LTI-transfer function is to be identified. This structure occurs in many kinds of mechanical,

electromechanical and biomechanical systems. The applied adaptive laws that govern the

parameter convergence, are based on the recursive least squares algorithm and gradient

based methods like the Levenberg-Marquardt algorithm. The parameter convergence of

the adaptive systems is proved using stability concepts of nonlinear differential equations.

Based on Lyapunov’s theory, conditions are derived that guarantee asymptotic stability,

i.e. convergence of the model parameters to their true value.
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Model of the Spastic Index Finger

In Chapter 3, a neuromuscular and biomechanical model of the RPMS-induced index fin-

ger movement is developed. It comprises the submodels ”force generation”, ”force trans-

mission”, ”length-velocity-dependencies”, ”segment dynamics” and ”spastic joint torque”.

The model is developed based on numerous experiments that were conducted with a rea-

sonable number of participants in order to obtain representative parameters. The mod-

els of ”force transmission” and the ”length-velocity-dependencies” were taken from lit-

erature since there exist well-established results. The ”force generation” is described in

Hammerstein-structure with activation delay. The ”segment dynamics” are approximated

with differential equations of motion including static nonlinear functions as it is known

from robotics, e.g.. Additionally, a relaxation effect is taken into account by means of

a dynamic velocity feedback. Most available biomechanical limb models describe ”big”

limbs like the forearm, thigh and shank with relatively high inertia, and high gravitational

force components such that the relaxation effect is neglected. Our experiments show that

this simplification does not apply for ”small” limbs like the index finger. The ”spastic

joint torque” model is derived based on force-torque measurements carried out with stroke

patients that suffer from spasticity in the finger flexors.

All proposed submodels are successfully verified by means of model output error evalu-

ations. Thus, a qualitative model is obtained that approximates an ”average plant” of the

RPMS-induced index finger movement.

Automated Model Individualization

In Chapter 4, the scientific innovations presented in the previous chapters are combined:

The qualitative index finger model is individualized to the respective subjects using the

proposed parameter identification methods. For this purpose, the index finger model is

transformed into a mathematical formulation that conforms with the structures of the

appropriate error models of Chapter 2.

Due to the macroscopic character of the index finger model, inconsistencies and struc-

tural uncertainties are inevitable. The proposed mathematical formulation addresses this

problem with the incorporation of a priori knowledge as long as it exists and with flex-

ibility to structural and parametric uncertainties where a priori knowledge is poor. The

derivation of appropriate equations is facilitated if the designer has the freedom to use

nonlinear parameterization. Thus, the parameter identification methods for nonlinear and

separable nonlinear parameterization ultimately enable the proposed approach.

Based on the stability conditions formally derived in Chapter 2, persistently exciting

input sequences are developed that finally guarantee parameter convergence.

Techniques for the Improvement of the RPMS-Therapy

In Chapter 5, the three goals summarized in Fig. 1.1 are exemplarily realized:

• System identification-based extraction of the patient parameters spasticity level and

muscular fatigue during RPMS

• Position controlled induction of the index finger extension and flexion using two

stimulators
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• Patient driven position control taking into account the patient’s voluntary muscle

activation

The parameter identification presented in Chapter 4 yields the basis for all three applica-

tions. In a pilot study with stroke patients, it is shown that a system identification-based

spasticity quantification during RPMS is possible. The experimental results are controlled

with biomechanical reference measurements. The identification of muscular fatigue is car-

ried out with healthy subjects. Based on the identified model, a linearizing computed

torque controller with a linear state feedback control cascade is implemented for dual coil

RPMS. Experiments with healthy subjects show a good controller performance and the

general feasibility of the position control concept. The position controller is combined

with an adaptive trajectory generation that is driven by the patient. An EMG-signal pro-

cessing cascade is presented that has the capability to detect voluntary muscle activity

at the stimulated muscle. This information is used to implement an RPMS-supported in-

dex finger extension that facilitates the motion intended by the patient similar to servo

steering. The concept is tested and evaluated with healthy subjects. The tests show the

feasibility of the approach.
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2 Parameter Adaptation and Stable

Error Models

2.1 Introduction

System identification is the discipline of constructing mathematical models from observing

the input/output behavior of an in general nonlinear dynamic system. It is of great interest

to engineering, physics, biology, chemistry and economics [163]. In all these fields, models

play an important role. They predict the behavior of the real system and are useful, often

essential for system analysis, process design, process optimization, supervision and fault

detection. In biomedical research, there are in general two applications for such models:

On the one hand they help to gather a deeper insight into physiological processes which

are of importance for the analysis of pathophysiologies. Thus, the number of experiments

performed in human can be reduced and diagnostics and patient monitoring can be im-

proved. On the other hand, simulations based on models are used in the context of control

strategies where the human is part of the plant.

The procedure of system identification can roughly be divided into the choice of the

model structure, i.e. complexity, order, dynamics and parameter identification, i.e. find-

ing the optimal model parameters. The theory of established methods has been well

investigated [97; 118; 122]. An overview of the application to physiological and biomedical

systems is given in [83; 180]. It is essential to distinguish whether the parameters occur

linearly or nonlinearly in the equation. In the case of linearly parameterized models, there

exists an extensive theoretical framework that allows analyzing generic system classes in

terms of stability and performance of the parameter identification. These results have been

reported in [8; 90; 106; 118; 144; 158].

However, nonlinear parameterization is often intrinsic to physical and biological sys-

tems. Some examples are friction models [7], nonlinear damper models [85], a fermenta-

tion process [17], biochemical processes [18] and neural systems [31]. One of the possible

approaches is to use a suitable diffeomorphism which yields a linearly parameterized trans-

formed model. However, finding the transformation may be nontrivial which substantially

limits the applicability. Furthermore, linear parameterization of systems where the pa-

rameters occur nonlinear increases the dimension of the parameter space which can result

in overparameterization. If the original constitutive equations of a modeled process can

be maintained for identification, the parameters keep their physical integrity. Thus, it is

easier to analyze the identification results with respect to plausibility and initial parameter

estimates can be meaningfully determined.

Since nonlinearly parameterized models do not share many properties, often system

by system investigations are necessary. As a consequence, there is a strong demand for
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2 Parameter Adaptation and Stable Error Models

research that aims to provide general methods for analysis and design of parameter adapta-

tion algorithms for nonlinearly parameterized models. This conclusion can be emphasized

by searching the scientific database http://isiknowledge.com: The search entry ”System

Identification” OR ”Parameter Identification” OR ”Parameter Adaptation” OR ”Adaptive

Systems” yields yearly increasing numbers of journal publications (725 articles in 2007).

Parameter identification can be done either off-line or on-line. While off-line identifica-

tion may be useful if the plant parameters are constant on-line methods have the capability

of tracking (at least slowly) time-varying parameters. On-line identification is applied for

adaptive and self-tuning control purposes as well as for monitoring, supervision and failure

detection in a large variety of application areas. In the following, only on-line algorithms

will be considered.

In this chapter, methods for system identification dealing with certain classes of linear,

nonlinear and a mixed linear/nonlinear parameterization are introduced. The focus is

on a configuration where the output signal of the system to be identified is not directly

accessible but only the response of a known LTI-plant W can be observed. This structure

occurs in many kinds of mechanical, electromechanical and biomechanical systems. The

problem has first been addressed for linearly parameterized systems in [118] by introducing

the so called error models 1-4.

The most important results of the last decade for nonlinear parameterization can be

found in [22; 100; 173; 174]. In [100], the Min-Max-Algorithm is introduced that fits the

derivative of a Lyapunov-candidate to specific algebraic inequalities leading to asymptotic

stability, i.e. parameter convergence. The known LTI-system has to be of relative degree

one and the nonlinear parameters occur through additive scalar nonlinear functions. In [22],

the Min-Max-method is advanced so that the known dynamic system W may be nonlinear

but first order, and the parameters may occur in a general nonscalar nonlinear function. In

[174] and [173], a method is introduced, where nonlinear parameters of nonlinear dynamic

input affine systems are identified. The proposed method applies to a class of nonlinear

parameterizations satisfying a specific monotonicity constraint. The adaptation method is

a gradient based switching algorithm.

The novel scientific contributions introduced in this chapter are:

• Introduction of a modified Levenberg-Marquardt algorithm for numerically robust

parameter identification.

• Enhancement of error models 1-4 [118] by replacing the gradient search adaptive law

by a Recursive Least Squares algorithm.

• Formulation of conditions that provide parameter convergence for nonlinear param-

eter identification using gradient based algorithms. Specifically the configuration in

series with a known LTI-system mentioned above will be considered.

• Formulation of conditions that provide parameter convergence for mixed lin-

ear/nonlinear parameterization using the separable least squares algorithm. Again,

the configuration with a known LTI-system is specifically considered.

This chapter is organized as follows: In Section 2.2 a fundamental theoretical framework

and state of the art theory of relevant parameter identification methods that will be used
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2.2 Fundamentals and Definitions

u y u y
LL

Fig. 2.1: Block diagram representation of signals and LTI-systems: Thick signal arrows (block
diagram on the right) represent a vector of signals, i.e. u(t) = [u1(t) . . . ur(t)], e.g..
In this case, the LTI-block L represents r independent SISO LTI-systems so that
[y1(t) . . . yr(t)]

T = L(u(t)) := [L(u1(t)) . . .L(ur(t))]
T .

throughout this chapter are introduced. Subsequently, theory of linear, nonlinear and

mixed linear/nonlinear parameterization is described in Sections 2.3, 2.5 , and 2.6, respec-

tively. Section 2.7 concludes this chapter with a summary and discussion.

2.2 Fundamentals and Definitions

The theory of system and parameter identification is often treated in discrete time formula-

tion. This is motivated by the fact that the adaptation algorithms are usually implemented

in discrete time and furthermore, the discrete time representation of dynamic systems can

easily be transformed into a convenient model equation formalism (see Section 2.2.1).

The analysis of convergence and stability properties of the proposed adaptation algo-

rithms will be done with stability concepts of continuous time nonlinear differential equa-

tions. Therefore, continuous time formulation will be used. Since for analysis and design,

digital control systems can be treated as continuous time systems if high sampling rates

are used, the derived stability properties apply for discrete implementation, too. Time

continuous signals will be denoted as s(t), their discrete equivalents as s(k) with k =̂ kTs,

whereas Ts is the sampling time of the discrete implementation. This is a slight revision

of notation for sake of a better readability. Further continuous time variables are τ and

T with their respective discrete equivalents given by j and N . If either a property applies

for both time domains, or the domain is clear from the context, the time argument may

be skipped.

Furthermore, operator notation will be used in order to describe the response or an

LTI-system L to its input signal u(t) as y(t) = L(u(t)). The operator notation is defined

for SISO systems only. For sake of a better readability, the abbreviation [y1(t) . . . yr(t)]
T =

L(u(t)) := [L(u1(t)) . . .L(ur(t))]
T is defined. The corresponding graphical representation

is depicted in Fig. 2.1.

The system L can be characterized either in state space with {cTL, AL, bL} and with its

state χ ∈ R
n or as transfer function GL(s) = cTL(sI − AL)−1bL.

2.2.1 Identification Structure, Error Models and Model Equations

Output Error Configuration and Error Transfer Functions

Throughout the thesis, parameter identification is accomplished with supervised learning

methods in output error configuration as depicted in Fig. 2.2. Plant, model and adaptation
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Fig. 2.2: Basic structure of parameter identification: Output error configuration. All estimated
variables are labeled with a ”ˆ”.

algorithm constitute an adaptive system with the input v ∈ R
r, the output y, the measured

output yz, the measurement noise z, the plant parameters ξ ∈ R
p, the output error e =

yz − ŷ, and the parameter error ξ̃ = ξ − ξ̂. It is the objective of supervised learning

to minimize a measure of the output error (prediction error) e by finding the optimal

parameter estimates ξ̂
opt

. If the model approximates the plant exactly and in the noise

free case (z = 0), we have ξ̂
opt

= ξ. Since the output error e is measurable it is used to

tune the unknown but adjustable parameter error ξ̃.

The main focus of this chapter is on plants that can be divided into an unknown part

n(ξ, v) with output yn in series with a known SISO LTI-system W (see Fig. 2.3) whereas

W is defined as

χ̇ = Awχ + bwyn, χ ∈ R
n

y = cTwχ . (2.1)

Note that the subsystem n(ξ, v) can be static as well as dynamic. Since the output yn is

not measurable, the error en = yn − ŷn cannot be calculated. However, the known LTI-

system W can be simulated in order to filter ŷn as depicted in Fig 2.3, and to obtain ŷ.

Thus, the output error e = y − ŷ can be calculated and used for parameter identification.

If χ(0) = χ̂(0), the output error is given by

e = W(yn − ŷn) . (2.2)

The dynamics between en = y − yn and e is denominated as error transfer function Gw(s)

with Gw(s) = cTw(sI−Aw)−1bw. The plant state error is defined as χ̃ = χ−χ̂ and hence, the

state of an adaptive system structured according to Fig. 2.3 is given as xT = [χ̃T ξ̃
T
] x ∈

R
n+p.
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Error Models

As mentioned before, it is the aim of the adaptive systems considered in this chapter to

drive the parameter error ξ̃ to zero, i.e. lim
t→∞

ξ̃ = 0. In order to analyze the convergence be-

havior of an adaptive system, often the underlying error model that describes the dynamic

relationship between the parameter error and the output error is examined. Considering

the configuration of Fig. 2.3, the error equation

˙̃χ = Awχ̃+ bw(yn(v) − ŷn(ξ̂, v))

e = cTwχ̃ (2.3)

can be derived whereas it is assumed that χ̂(0) = χ(0). The adaptation algorithm (compare
to Fig. 2.2) can be written as

˙̂
ξ = g(e, y, v)

˙̃
ξ = −

˙̂
ξ (2.4)

Eq. (2.3) together with Eq. (2.4) constitute the error model (EM) of the adaptive system.

Its state is defined by xT = [χ̃T ξ̃]. This definition has first been introduced in [119].

The EM is stable if ξ̃ remains bounded, asymptotically stable if lim
t→∞

ξ̃ = 0, and unstable

otherwise.

Plant

Model

n(ξ, v)n(ξ, v)

n(ξ̂, v)n(ξ̂, v)

W

W

W

vv

y
χ

χ̂

χ̃

ynyn

en

ŷnŷn ŷ

ee

Fig. 2.3: Output error configuration with a plant that can be structured as subsystem n(ξ, v)
with unknown parameters whose output yn is not directly measurable but filtered with
a known LTI-system W. If χ(0) = χ̂(0), the block diagram manipulation that leads
to the graph on the right is formally correct and thus, χ̃ = χ− χ̂ and en = yn − y.
The measurable output error e can be interpreted as the actual error en filtered by
the error transfer function Gw(s).
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Model Equations

The model equations ŷn = n(ξ̂, v) can be distinguished with respect to their parameteri-

zation. In the following, three classes are considered:

n = θ̂
T
ϕ(v) (2.5a)

n = n(η̂, v) (2.5b)

n = θ̂
T
ϕ(η̂, v) (2.5c)

A linear regression (LP-) model (2.5a) can be expressed as scalar product of a vector of

”linear parameters” ξ̂ = θ̂ ∈ Ωθ ⊂ R
m and an input regressor ϕ(v). In a nonlinear

regression (NLP-) model (2.5b) the parameters ξ̂ = η̂ ∈ Ωη ⊂ R
q occur nonlinear. Ωθ

and Ωη are closed and bounded subsets of R
m and R

q, respectively. The parameters of

a separable nonlinear regression (SNLP-) model (2.5c) can be separated into linear and

nonlinear parameters (ξ̂
T

= [θ̂
T
η̂T ]). The total number of parameters in (2.5c) is given as

p = q +m.

If ŷn(ξ̂, v) is a purely static nonlinearity, the equations (2.5a)-(2.5c) apply for continu-

ous time as well as for discrete time domain. If ŷn(ξ̂, v) represents the approximation of

dynamic behavior, it is convenient to use discrete time formulation. Then, the dynamics

can be incorporated either with a difference equation or with a truncated convolution sum.

The former leads to an input regressor ϕ(v(k)) = [ŷ(k) ŷ(k − 1) . . . ŷ(k − ny) v(k) v(k −

1) . . . v(k− nu)]
T and the model results in a NARX- (nonlinear autoregressive with exoge-

nous input) structure. With ϕ = [v(k) v(k − 1) . . . v(k − nu)]
T as input regressor of the

latter, a NFIR- (nonlinear finite impulse response) model is obtained. Details can be found

in [122], e.g..

2.2.2 The Neural Observer

The neural observer is an extension of the error transfer function method illustrated in

Fig. 2.3. It has first been introduced in [151] and [69]. The dynamic behavior of the error

transfer function Gw(s) is important for the convergence properties of the adaptive system.

By using an observer structure (Fig. 2.4) instead of a pure parallel model (Fig. 2.3), the

properties of Gw(s) can be designed. The block diagram manipulation of Fig. 2.4 applies

for the initial conditions χ(0) = χ̂(0) and yields the error transfer function

Gw,obs(s) = cTw(sI − Aw + lcTw)−1bw .

Thus, the poles can be placed arbitrarily by adapting the observer gain vector l. The

observer error eobs is fed into the adaptation algorithm (2.4).
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vv ∫

∫

∫

n(ξ, v)
n(ξ, v)

n(ξ̂, v)
n(ξ̂, v)

bw

bw

bw cTw

cTw

cTw

Aw

Aw

Aw

l

l

eobs

eobs

enW

Wobs

χ

χ̂

χ̃

Fig. 2.4: Neural observer: Manipulation using block diagram algebra. The dynamic relation
between en and eobs is governed by eobs(s) = Gw,obs(s)en(s).

2.2.3 Parameter Identification Algorithms

Least Squares Optimization

The well-known least squares method was first developed by Gauss in 1795. The optimal

parameters are defined by the optimization problem

ξ̂
opt

= arg min
ξ̂
E(ξ̂) . (2.6)

If the error criterion E(ξ̂) is defined as a quadratic function of the output error e, which is

by far the most common criterion in practice, Eq. (2.6) represents a least squares problem.

For on-line identification, there exist well-known least squares optimization methods that

are shortly summarized in Tab. 2.1. Detailed derivations can be found in [98; 122] (discrete

time) and in [162] (continuous time). Here, the derivation of the discrete time algorithms is

shortly sketched following the explanation of the recursive maximum likelihood algorithm

as it is referred to in [98]. In order to track time varying parameters, the error criterion

should weight more recent data higher. This is achieved by using the forgetting factor λ

(0 < λ ≤ 1) that determines the decay of previous data. Thus, the cost function

Ek(ξ̂) =
1

2

k∑

j=0

λk−je(ξ̂, j)2 (2.7)

is introduced with the model error e(ξ̂, k) = y(k) − ŷ(ξ̂, k).

Let ξ̂(k) be a be the latest available estimate that minimizes Ek−1(ξ̂). In order to

compute ξ̂(k+1), the second order Taylor expansion Lk(ξ̂) is considered as a model of the

behavior of Ek in the neighborhood of the current estimate ξ̂(k):

Ek(ξ̂) ≈ Lk(ξ̂) = Ek(ξ̂(k)) + E ′
k(ξ̂(k))[ξ̂ − ξ̂(k)] +

1

2
[ξ̂ − ξ̂(k)]TE ′′

k(ξ̂(k))[ξ̂ − ξ̂(k)] .

(2.8)

13
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In order to find ξ̂(k + 1), the minimum of the quadratic model function L is computed by

setting L′ = 0. This leads to

ξ̂(k + 1) = ξ̂(k) −
[
E ′′

k (ξ̂(k))
]−1

E ′
k(ξ̂(k))

T . (2.9)

Differentiating Eq. (2.7) with respect to ξ̂ yields

E ′
k(ξ̂) = −

k∑

j=0

λk−jψ(ξ̂, j)e(ξ̂, j)

= λE ′
k−1,2(ξ̂) − ψ(ξ̂, k)e(ξ̂, k)

≈ −ψ(ξ̂, k)e(ξ̂, k) , (2.10)

with the gradient vector

ψ(ξ̂, k) = −
∂e(ξ̂, k)

∂ξ̂
= ∇ŷ(ξ̂, k) . (2.11)

This approximation follows from the assumption that ξ̂(k) is indeed the optimal estimate

at time t− 1, i.e. E ′
k−1,2(ξ̂) = 0. Note, that the gradient is a row vector since it is defined

as a single-line Jacobian. Differentiating once more gives

E ′′
k (ξ̂) ≈ H(k) = λH(k − 1) + ψ(ξ̂, k)Tψ(ξ̂, k) . (2.12)

This approximation H(k) of the Hessian Matrix E ′′
k (ξ̂) is usually taken in order to reduce

computational load (see [123],[98], e.g.). With these simplifications the update law for the

nonlinear parameters can be written as

ξ̂(k + 1) = ξ̂(k) +H(k)−1ψ(ξ̂, k)T e(ξ̂, k) . (2.13)

which corresponds to the GN-algorithm in Tab. 2.1. Note that replacing H(k) with the

unity matrix I results in the GS-algorithm and replacing H(k) with R(k) = H(k) + δI

leads to an LM-update law. The damping factor δ decides whether to make a parameter

update in GN-direction (small δ) or a small step in gradient direction (big δ) which will

be explained in more detail in Section 2.3. It is worth noting that the GS-algorithm and

the GN-algorithm are equivalent to LMS and RLS, respectively, when applied to an LP-

Problem. In the relevant literature, GS, GN and LM from Tab. 2.1 are often referred to

as gradient based recursive adaptation algorithms.

The correspondence between the continuous forgetting factor λc and discrete forgetting

factor λd can easily be derived as

λd =
1

1 − Ts lnλc
(2.14)

as it is explained in Appendix A.3. The subscript may be dropped in the following if the

meaning is clear from the context. The estimator gain γ influences the adaptation speed.
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Tab. 2.1: Error criteria and adaptive laws for on-line least squares optimization: The laws LMS
and RLS relate to LP-models (2.5a) whereas the laws GS, GN and LM have to be
applied in case of NLP-equations (2.5b).

Discrete time Continuous time

Error criterion E(ξ̂, k) =
1
2

∑k
j=0(y(j) − ŷ(ξ̂, j))2

E(ξ̂, t) =∫ t
0 (y(τ) − ŷ(ξ̂, τ))2dτ

Error criterion with
forgetting factor

E(ξ̂, k) =
1
2

∑k
j=0 λ

k−j
d (y(j) − ŷ(ξ̂, j))2

E(ξ̂, t) =∫ t
0 λt−τ

c (y(τ) − ŷ(ξ̂, τ))2dτ

Least Mean
Squares (LMS)

θ̂(k + 1) = θ̂(k) + γϕ(k)e(k)
˙̂
θ = γϕ(t)e(t)

Recursive Least
Squares (RLS)

θ̂(k + 1) = θ̂(k) + γΠ(k)ϕ(k)e(k)

Π(k)−1 = λdΠ(k − 1)−1 + ϕ(k)ϕ(k)T

˙̂
θ(t) = γΠ(t)ϕ(t)e(t)

Π(t)−1 =
∫ t
0 λt−τ

c ϕ(τ)ϕ(τ)T dτ

Gradient Search
(GS)

η̂(k + 1) = η̂(k) + γ∇ŷ(k)T e(k) ˙̂η(t) = γ∇ŷ(t)T e(t)

Gauss-Newton
Algorithm (GN)

η̂(k + 1) = η̂(k) + γH(k)−1∇ŷ(k)T e(k)

H(k) = λdH(k − 1) + ∇ŷ(k)T∇ŷ(k)

˙̂η(t) = γH(t)−1∇ŷ(t)T e(t)

H(t) =
∫ t
0 λt−τ

c ∇ŷ(τ)T∇ŷ(τ)dτ

Levenberg-
Marquardt
Algorithm (LM)

η̂(k + 1) = η̂(k) + γR(k)−1∇ŷ(k)T e(k)

H(k) = λdH(k − 1) + ∇ŷ(k)T∇ŷ(k)
R(k) = H(k) + δ(k)I

˙̂η(t) = γR(t)−1∇ŷ(t)T e(t)

H(t) =
∫ t
0 λt−τ

c ∇ŷ(τ)T∇ŷ(τ)dτ

R(t) = H(t) + δ(t)I

The Separable Least Squares Algorithm

A separable nonlinear least squares problem is represented by a model equation according

to (2.5c). This separable problem was first addressed in [55] with the introduction of the

Separable Least Squares (SLS-) Algorithm. On-line versions have first been introduced in

[35] and [123]. For the derivation, the off-line algorithm is discussed first.

With the vector/matrix notations

y =




y(1)

...

y(N)



 and Φ(η̂) =




ϕT (η̂, v(1))

...

ϕT (η̂, v(N))





(2.15)

the off-line error criterion of a SNLP-model can be written as

EN,1(ξ̂) =
1

2N

∥∥∥y − Φ(η̂)θ̂
∥∥∥

2

2
, (2.16)
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2 Parameter Adaptation and Stable Error Models

ξ̂
T

= [θ̂
T
η̂T ].

With this notation, it is easy to see that if the nonlinear parameters η̂ were known, the

linear parameters θ̂ could be calculated by solving the linear least squares problem

θ̂opt = Φ(η̂)+y (2.17)

with the pseudoinverse Φ(η̂)+ := (Φ(η̂)T Φ(η̂))−1Φ(η̂)T . By replacing θ̂ in (2.16) with (2.17),

an error criterion

EN,2(η̂) =
1

2N

∥∥y − Φ(η̂)Φ(η̂)+y
∥∥2

2
(2.18)

is obtained, where the linear parameters have been eliminated. Golub and Perreyra set up

the following theorem (proof see [55]):

If η̂
opt

is a minimizer of EN,2(η̂), and θ̂opt = Φ+(η̂
opt

)y, then, ξ̂
opt

= [θ̂
T

opt η̂
T

opt
]T also

minimizes the original error criterion EN,1(ξ̂) and thus, EN,2(η̂opt
) = EN,1(ξ̂opt

).

Therefore, the SLS-algorithm divides the calculation of ξ̂
opt

into two steps:

1. Minimize EN,2(η̂) in order to obtain η̂
opt

.

2. Use the optimal value η̂
opt

to calculate θ̂opt with linear regression according to

Eq. (2.17).

Hence, the minimization using an iterative nonlinear search algorithm can be accomplished

within a reduced parameter set.

Remark 2.2.1 The minimization problem defined with the error criterion (2.16) could

in principle be solved by applying nonlinear optimization algorithms to the full functional

without exploiting the SLS-structure. An advantage of the SLS-method lies in the reduced

computational cost. The main advantage however, is the reduction of the dimension of the

optimization problem. This contributes significantly to the performance of the estimation

process [134]. In [89] it could be shown that the SLS-scheme always converges faster than

the minimization of the full functional (2.16).

The on-line algorithm is introduced following the derivation in [123]. The reformulation

of (2.18) in summation form at the time instance k yields

Ek,2(η̂) =
1

2

k∑

j=0

λk−j

(
y(j) − ϕ(η̂, j)T

(
k∑

n=0

λk−nϕ(η̂, n)ϕ(η̂, n)T

)−1

·

(
k∑

n=0

λk−nϕ(η̂, n)y(n)

))2

=
1

2

k∑

j=0

λk−j(y(j) − ŷ(η̂, j))2

=
1

2

k∑

j=0

λk−jǫ2(η̂, j) . (2.19)
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By applying the steps (2.10)- (2.12) to the SLS-error criterion (2.19), the update law

η̂(k + 1) = η̂(k) +H(k)−1ψ(η̂, k)T ǫ(η̂, k) . (2.20)

is derived, which corresponds to the GN-algorithm in Tab. 2.1. Again, replacing H(k)

with I results in the GS-algorithm and replacing H(k) with R(k) = H(k) + δI leads to an

LM-update law. It remains to calculate the gradient vector ψ(η̂, k). From Eq. (2.19) and

with the definitions

Π(k)−1 =

k∑

n=0

λk−nϕ(η̂, n)ϕ(η̂, n)T

= λΠ(k − 1)−1 + ϕ(η̂, k)ϕ(η̂, k)T (2.21)

and

f θ̂(k) =
k∑

n=0

λk−nϕ(η̂, n)y(n)

= λf θ̂(k − 1) + ϕ(η̂, k)y(k) (2.22)

it follows

ǫ(η̂, k) = y(k) − ϕ(η̂, k)T Π(k)f θ̂(k) . (2.23)

Thus, the ith component of the gradient vector ψ(η̂, k) is

ψ(η̂, k)i =
∂ϕ(η̂, k)T

∂η̂i
Π(k)f θ̂(k) + ϕ(η̂, k)T

∂Π(k)f θ̂(k)

∂η̂i

= ϕ
i
(η̂, k)TΠ(k)f θ̂(k) + ϕ(η̂, k)TΠ(k)

·(f θ̂

i
(k) − Πi(k)

−1Π(k)f θ̂(k)) , (2.24)

whereas

Πi(k)
−1 = λΠi(k − 1)−1 + ϕ

i
(η̂, k)ϕ(η̂, k)T + ϕ(η̂, k)ϕ

i
(η̂, k)T (2.25)

and

f θ̂

i
(k) = λf θ̂

i
(k − 1) + ϕ

i
(η̂, k)y(k) (2.26)

and with

ϕ
i
(η̂, k) =

∂ϕ(η̂, k)

∂ηi
.

For the update of the linear parameters it follows

θ̂(k + 1) = Π(k)f θ̂(k) (2.27)

from (2.23), which is the same as the RLS-algorithm (derivation see Appendix A.1).
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2.3 A Modified Levenberg-Marquardt Algorithm

Due to its fast convergence and robustness, the LM-algorithm is one of the most commonly

used techniques for nonlinear local optimization. However, the choice of the damping factor

δ requires expertise and insight into mechanisms of gradient based iterative optimization.

The rules for the choice of δ proposed in literature (see [114; 124; 179], e.g.) are derived

for off-line identification and do not address problems specific to recursive adaptation.

Therefore, rules for adjusting the damping factor of the LM-algorithm will be derived

which address particular problems of on-line identification. A simple example is given to

illustrate the benefit of the proposed method.

2.3.1 Method

The following considerations are based on the derivation of the recursive GS-, GN- and

LM-adaptation algorithms in Section 2.2.3. It is well known that simple gradient search

may converge very slowly: One would like to make large steps down the gradient when

the gradient is small and small steps when the gradient is large to avoid going too far.

The GS-update rule does just the opposite of this. The GN-algorithm approximates the

cost function with a quadratic function and jumps to the minimum of this approximation

in one step. Hence, if this approximation is proper, the GN-algorithm may converge very

fast. Usually, this is the case close to the minimum. Far from the minimum where the cost

function often tends to be linear, gradient search will perform better. Obviously, these two

methods are complementary in the advantages they provide. Therefore, Levenberg [96]

and Marquardt [107] suggested a damped GN-method where in the parameter update of

Eq. (2.13) the Hessian matrix is replaced by

R(k) = H(k) + δ(k)I,

with the unity matrix I and the so called damping factor δ. The effect of the damping

factor can be explained intuitively:

1. For large values of δ

(H(k) + δ(k)I)−1 ≈
1

δ(k)
I

is obtained which yields a short step into the steepest descent direction. This may

perform well if the current estimate ξ̂(k) is far from the solution, where the curvature

of the error criterion is often small and thus, a linear approximation is good.

2. If δ is very small

(H(k) + δ(k)I)−1 ≈ H(k)−1

is obtained which yields a GN-parameter update which may perform well close to

the minimum where the error criterion can often be approximated with a parabolic

function.
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There is a possibility to adjust δ by evaluating the model Lk(ξ̂(k)) (2.8) of the actual cost

function as it is proposed in [124]. This can be achieved by calculating the gain ratio

g =
ra

rp

=
Ek(ξ̂(k)) − Ek(ξ̂(k + 1))

Lk(ξ̂(k)) − Lk(ξ̂(k + 1))
(2.28)

which is the relation between the actual reduction ra and the predicted reduction rp of the

cost function. For the on-line identification, the following updating rules are proposed:

• If g ≤ β (with 0 ≤ β ≤ 1, β = 0.25, e.g.) the approximation Lk is considered as

inappropriate and δ(k + 1) should be increased by a factor κ in order to reduce step

size and go more into gradient direction.

• If g ≥ 1 − β the approximation Lk is considered as proper. Hence, δ(k + 1) should

be increased by a factor κ in order to enlarge the step size and to go more into

GN-direction.

During off-line identification, the search algorithm is stopped, when the minimum is

found. The on-line algorithm is continuously functional, since the plant parameters might

change. This may lead to near singular Hessian matrices H(k) close the minimum. If the

model equation ŷ(ξ̂, k) is overparametrized, H(k) will always be singular at the minimum,

since there exists an infinite number of solutions. In order to avoid this, it is proposed to

evaluate a condition number of R(k) before inverting the matrix. The invertibility can be

evaluated by calculating the ratio

sr =
max(Si)

min(Si)

of the largest and the smallest singular value of R(k) (see [5], e.g.). The following rule is

formulated in order to avoid a singular Hessian matrix:

• If the condition number sr(k) > ν the diagonal elements will be strengthened by

adjusting δ(k) to δ(k) + δs.

This rule is applied consecutively to the update rules for the damping parameter δ(k).

Remark 2.3.1 The calculation of the gain ratio g according to Eq. (2.28) may be compu-

tationally expensive. It is therefore advisable, not to compute the full functional (2.7) but

only

Ek(ξ̂) =
1

2

k∑

j=k−kh

λk−je(ξ̂, j)2 ,

whereas the time horizon Th = Tskh should not be chosen longer than the time horizon of

exponential forgetting.

2.3.2 Simulative Example

In the following example, the modified LM-algorithm has been applied for the adaptation

of the nonlinear parameter estimates η̂ of an SNLP-model (2.5c). The plant is formulated

in discrete time with a static nonlinear function

w(v(k)) = η1v(k) + η2v(k)
2 + η3v(k)

3 (2.29)
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Fig. 2.5: Parameter swarms η̂(k) obtained with the GS-, LM-, and the modified LM-algorithm.

in series with a PT1-system

y(k) = θ1y(k − 1) + θ2w(v(k)) . (2.30)

Thus, the model equation can be formulated as

ŷ(ξ̂, k) = θ̂
T
ϕ(η̂, v) = [θ̂1 θ̂2]

[
y(k − 1)

w(η̂, v(k))

]
(2.31)

which is a NARX-model in SNLP-form. Note that the ”nonlinear parameters” η actually

occur linearly in the plant equation. Nevertheless, the SLS-structure can be exploited.

The plant parameters have been chosen to η1 = 1, η2 = 2, η3 = 3, θ1 = 0.99 and

θ2 = 1 − θ1. This plant has been chosen, since its overparameterization is easy to see:

The gain of the complete plant is a product of the gain of w(v(k)) and the gain of the

PT1-system. I.e., there exist an infinite number of solutions for the model (2.31). The

parameter adaptation has been implemented according to the SLS-algorithm introduced

in Section 2.2.3 with a sample rate of Ts = 0.001 s. Three different adaptation-algorithms

for the identification of η̂ have been implemented: GS, LM and the modified LM. The

design variables have been chosen to γ = 1, β = 0.25, κ = 1.1, ν = 1000, and δs = 0.1.

The parameter swarms η̂(k) are depicted in Fig. 2.5.
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2.3.3 Discussion

All three algorithms converge to a solution on the line c[1 2 3]T . The simple gradient

search is by far the slowest. The LM-algorithm is fastest, but close to the minimum, a

huge parameter update occurs and the algorithm converges to a different solution. This in-

appropriate behavior is due to numerical problems caused by a poorly conditioned Hessian

matrix. The bottom graph illustrates the result obtained with the modified LM. It shows

fast convergence but remedies the numerical problems of the conventional LM-algorithm.

2.4 Error Models for Linear Parameterization

In this section, the parameter identification of LP-models (2.5a) in the configuration as

illustrated in Fig. 2.3 is discussed. In [118], four error models (EM 1-4) have been intro-

duced. They are summarized as block diagrams with their respective error model equations

in Fig. 2.6. Since EM 2 is a special case of EM3, it is not considered at this point. The

adaptive law that is used for EMs 1-4 is the gradient search algorithm (LMS, respectively

since LP-models are considered). In [118], the EMs 1-4 are proven to be asymptotically

stable, i.e. lim
t→∞

θ̃ = 0 using a Lyapunov approach. In the following, the error models

A1-A3 are introduced and asymptotic stability is proven. They correspond to EMs 1, 2

and 4, but instead of gradient search the RLS-algorithm is applied as adaptive law. Note,

that EM A1 is by no means new, but just the pure RLS-algorithm analyzed with the error

model approach. It is introduced since the theoretical derivations are fundamental for EM

A2 and EM A3.

2.4.1 Error Model A1

From the block diagram in Fig. 2.7, the equations of EM A1 can be inferred as

e = θ̃
T
ϕ(v)

˙̂
θ = − ˙̃θ = γΠ(t)ϕ(v)e , (2.32)

and the state is defined as x = θ̃. The update law for Π(t)−1 is given with

Π(t)−1 =

∫ t

0

λt−τϕ(τ)ϕ(τ)Tdτ (2.33)

(compare to Tab. 2.1).
In order to prove asymptotic stability of (2.32) the Lyapunov candidate

V (x) = θ̃
T
Π(t)−1θ̃ (2.34)

is proposed. The time derivative of (2.34) evaluated along the parameter drift (2.32) yields

V̇ (x) =
˙̃
θT Π(t)−1θ̃ + θ̃

T d

dt
(Π(t)−1)θ̃ + θ̃

T
Π(t)−1 ˙̃

θ (2.35)
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Using the Leibniz rule, the time derivative d/dt(Π(t)−1) can be calculated as

d

dt
(Π(t)−1) = ϕ(v)ϕ(v)T + lnλ

∫ t

0

λt−τϕ(v(τ))ϕ(v(τ))Tdτ . (2.36)
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Fig. 2.6: Error models 1,3 and 4: In EM 4 the ”filtered regressor” ϕ
f

= W(ϕ) is defined. EM
4 with augmented error ee can be shown to be equivalent to EM4 by applying block
diagram manipulation. The motivation for the error augmentation will be explained
in the context of EM A3 in Section 2.4.3.
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v

γ

∫

ϕ(v)

ϕ(v)

θT

θ̂

˙̂
θ

e

Π(t)ϕ(v)

Fig. 2.7: Block diagram of error model A1.

Inserting (2.36) into (2.35) yields

V̇ (x) = −γeϕ(v)T Π(t)T Π(t)−1θ̃

+θ̃
T
(
ϕ(v)ϕ(v)T + lnλ

∫ t

0

λt−τϕ(v(τ))ϕ(v(τ))Tdτ
)
θ̃

−γθ̃
T
Π(t)−1Π(t)ϕe . (2.37)

With Π and Π−1 symmetric, V̇ (x) is calculated as

V̇ (x) = −γe2 + e2 − | lnλ|V (x) − γe2

= (1 − 2γ)e2 − | lnλ|V (x) ≤ 0 (2.38)

for γ > 1/2. From this result it can be concluded that the EM (2.32) is stable and hence, θ̃

is bounded. Asymptotic stability cannot be concluded since V̇ (x) is only negative semidef-

inite (e = θ̃
T
ϕ(v) can be zero for θ̃ and ϕ linearly dependent). For further considerations,

V̇ (x) is bounded from above with (1− 2γ)e2 ≥ V̇ (x). Hence, integrating V̇ (x) over a time

interval T yields
∫ t0+T

t0

V̇ (x, τ)dτ = V (t0 + T ) − V (t0) ≤ (1 − 2γ)

∫ t0+T

t0

(θ̃(τ)Tϕ(v(τ))2dτ . (2.39)

By applying the Cauchy-Schwarz inequality to the integral on the right hand side of (2.39)

it can be bounded from below:
∫ t0+T

t0

(θ̃(τ)Tϕ(v(τ))2dτ

∫ t0+T

t0

12dτ ≥

(∫ t0+T

t0

|θ̃(τ)Tϕ(v(τ))1|

)2

⇔∫ t0+T

t0

(θ̃(τ)Tϕ(v(τ))2dτ ≥
1

T

(∫ t0+T

t0

|(θ̃(τ)Tϕ(v(τ))|dτ

︸ ︷︷ ︸
I

)2

. (2.40)
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2 Parameter Adaptation and Stable Error Models

In [118], it has been shown that the integral I relaxes the inequality I ≥ ǫ > 0 for some

positive constant ǫ if the input regressor ϕ(v(t)) satisfies

1

T

∫ t0+T

t0

|wTϕ(v(τ)|dτ ≥ ǫ1 (2.41)

for every unit vector w ∈ R
m and for a positive constant ǫ1. The proof of (2.41) is

mathematically involved and is described in detail in [118]. Condition (2.41) is also known

as ”linear persistent excitation” condition ([118], e.g.). If (2.41) holds, the input regressor

is said to be linear persistently exciting (l.p.e.). With I ≥ ǫ > 0 it follows

V (t0 + T ) − V (t0) ≤ (1 − 2γ)
ǫ2

T︸ ︷︷ ︸
−κ

< 0 for γ >
1

2
. (2.42)

Since the estimator gain γ is a design parameter, κ can be chosen arbitrarily with 0 < κ ≤

V (t0) and it follows:

∀κ with 0 < κ ≤ V (t0) ∃ T > 0 ⇒ V (t) ≤ V (t0)− κ ∀ t ≥ t0 +T, i.e. lim
t→∞

V (t) = 0 .

(2.43)

For (2.34) to be a Lyapunov function, the matrix Π−1 has to be strictly positive definite.

As shown in Appendix A.2, matrices of the form M = aaT are positive semidefinite and

not necessarily positive definite, and therefore, Π(t)−1 can become positive semidefinite.

Using the l.p.e.-condition (see [162], e.g.)
∫ t0+T

t0

ϕ(v(τ))ϕ(v(τ))Tdτ ≥ αI (2.44)

for any t0 > 0, with α and T positive constants and with the unity matrix I, it can be

concluded that Π(t)−1 is positive definite in case of a linearly persistently exciting input

regressor ϕ(v(t)). Note that according to the derivations in [118], the l.p.e.-condition

(2.44) is equivalent to (2.41). The update rule of the matrix Π−1 incorporates exponential

forgetting. Using the derivations in Appendix A.3, the matrix update can as formulated

in Laplace domain as

Π−1(s) =
K

1 + sT1

(ϕϕT )(s)

with K = −1/lnλ and T1 = −1/lnλ. For 0 < λ < 1 the PT1 system is asymptotically

stable and the output Π−1 remains bounded for a bounded input ϕϕT . From the above

derivations it can be concluded that (2.34) is a Lyapunov function with limt→∞ V (t) = 0.

It is radially unbounded and decrescent since Π−1(t) is bounded. Hence, the origin x = 0

of EM A1 defined with Eq. (2.32) is globally uniformly asymptotically stable, i.e. the

parameter error θ̃ converges to zero.
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v

γ

∫

ϕ(v)

ϕ(v) W

WθT

θ̂

˙̂
θ

e

Π(t)ϕ(v)

Fig. 2.8: Block diagram of error model A2.

2.4.2 Error Model A2

Using the derivations and definitions of Section 2.2.1, the equations of EM A2 (Fig. 2.8)

are given with

˙̃χ = Awχ̃ + bw(θ̃
T
ϕ(v)

︸ ︷︷ ︸
en

)

e = cTwχ̃ (2.45)

and

˙̂
θ = − ˙̃θ = γΠ(t)ϕ(v)e . (2.46)

The state of EM A2 is defined as xT = [χ̃T θ̃
T
]. It is assumed that the LTI-system W

is strict positive real (SPR) and therefore, the famous Kalman-Yakubovich-Lemma (KYL)

applies: For an SPR-system {cT , A, b} there exist symmetric positive definite matrices P

and Q that satisfy

ATP + PA = −Q (2.47a)

Pb = c . (2.47b)

For a positive real (PR-) system, a positive semi-definite Matrix Q = QT satisfies (2.47a).

Note that an asymptotic stable LTI-system that is not PR still satisfies (2.47a) with P =

P T > 0 and Q = QT > 0.

The stability of EM A2 is analyzed with the Lyapunov candidate

V (x) = χ̃TP χ̃+ θ̃
T
Π(t)−1θ̃ . (2.48)

Using Eq. (2.36) and the KYL, the time derivative of (2.48) evaluated along the parameter

drift (2.46) yields
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2 Parameter Adaptation and Stable Error Models

V̇ (x) = ˙̃χTPχ̃ + χ̃TP ˙̃χ + ˙̃θT Π−1θ̃ + θ̃
T d

dt
(Π−1)θ̃ + θ̃

T
Π−1 ˙̃θ

= (Awχ̃+ bwen)TPχ̃ + χ̃TP (Awχ̃+ bwen)

−γeϕT ΠT Π−1θ̃

+θ̃
T
(
ϕϕT + lnλ

∫ t

0

λt−τϕϕTdτ
)
θ̃

−γθ̃
T
Π−1Πϕe

= χ̃T (AT
wP + PAw)χ̃ + enb

T
wPχ̃+ χ̃TPbwen

−2γeθ̃
T
ϕ+ (θ̃

T
ϕ)2 − | lnλ|θ̃

T
Π−1θ̃

= −χ̃TQχ̃+ 2(1 − γ)ene+ e2 − | lnλ|θ̃
T
Π−1θ̃ (2.49)

with 0 < λ < 1. The term ene is not positive ∀ t and thus, (2.49) is indefinite. Therefore,

(2.48) is not a Lyapunov function. Bounding V̇ (x) from above with 2(1−γ)ene+e
2 ≥ V̇ (x)

and integrating V̇ (x) over time yields
∫ t

0

V̇ (x(τ))dτ = V (x(t)) − V (x(0)) ≤ 2(1 − γ)

∫ t

0

en(τ)e(τ)dτ

︸ ︷︷ ︸
I1

+

∫ t

0

e(τ)2dτ

︸ ︷︷ ︸
I2

. (2.50)

For all t, I2 ≥ 0 ∀t holds. Integral I1 can be bounded from below, too according to
∫ t

0

en(τ)e(τ)dτ =

∫ t

0

en(τ)W(en(τ))dτ ≥ 0 ∀ t (2.51)

if χ̃(0) = 0. Eq. (2.51) follows from an important property of positive real systems: Given

a PR system S with input u, output y and state z, then
∫ t

0

u(τ)T y(τ)dτ =

∫ t

0

u(τ)TS(u(τ))dτ ≥ 0 ∀ t if z(0) = 0 . (2.52)

The proof can can be found in [82], e.g.. It can further be guaranteed that I1 > 0 if either

of the following conditions applies:

i) en(t) > 0 ∀ t

ii) en(t) < 0 ∀ t

Assuming that either condition i) or ii) applies and choosing the estimator gain

γ >
I2
2I1

+ 1 (2.53)

it follows

V (x(t)) − V (x(0)) ≤ −κ with 0 < κ ≤ V (x(0)) (2.54)

and therefore,

∀κ with 0 < κ ≤ V ((x(0)) ∃ T > 0 ⇒ V (x(t)) ≤ V (x(0))− κ ∀ t ≥ T, i.e. lim
t→∞

V (t) = 0 .

(2.55)
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v

γ

∫

ϕ(v)

ϕ(v)

θT

W

W

θ̂

˙̂
θ

eϕ
f

Π(t)ϕ
f
(v)

Fig. 2.9: Block diagram of error model A3.

Following the considerations for EM A1, it can be concluded that the radially unbounded

storage function (2.48) is positive definite in case of an l.p.e. input regressor ϕ(v) (see (2.41)

or(2.44)). Furthermore, Π(t)−1 is bounded and hence, (2.48) is a decrescent function.

Thus, if ϕ(v) is l.p.e. and either of the conditions i) or ii) applies, the origin x = 0 of

EM A2 is globally uniformly asymptotically stable.

2.4.3 Error Model A3

If the LTI-system W is not SPR but asymptotically stable, the error model A3 is proposed.

It is obtained by replacing the gradient algorithm in EM 4 (Fig. 2.6) with the RLS-

adaptation law. Its structure is depicted in Fig. 2.9.

With the definition of the filtered regressor

ϕ
f
(v) = W(ϕ(v)) (2.56)

the equations

e = W(θTϕ(v)) − θ̂
T
W(ϕ(v)) = θTW(ϕ(v)) − θ̂

T
W(ϕ(v)) = θ̃

T
ϕ

f
(v)

˙̂
θ = − ˙̃θ = γΠ(t)ϕ

f
(v)e (2.57)

constitute the EM A3 with

Π(t)−1 =

∫ t

0

λt−τϕ
f
(τ)ϕ

f
(τ)Tdτ . (2.58)

The transformation W(θTϕ(v)) = θTW(ϕ(v)) in (2.57) applies since the parameter vector

θ is constant.

Asymptotic stability of W is required since the filtered regressor ϕ
f

might not be

bounded and could not be computed uniquely otherwise. Hence, in case of an asymp-

totically stable system W, the equations (2.57) are formally equivalent to the equations

(2.32) of EM A1. Therefore, the stability proof of EM A1 also applies to EM A3 and it

can be concluded that the origin of (2.57) is globally uniformly asymptotically stable if

ϕ(v) is l.p.e. and if W is asymptotically stable.
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v

γ

∫

∫

ϕ(v)

ϕ(v) θT W

Wobs

Wobs

θ̂

˙̂
θ

ϕ
f

Π(t)ϕ
f
(v)

bw cTw

Aw

l
eobs

e1

ee

Fig. 2.10: Error model A3 with augmented error ee in combination with a neural observer.

In practical applications the known LTI-system W often appears as double integrator

with Gw(s) = 1
s2 which does not meat the requirement of asymptotic stability. In the

following, it is shown how EM A3 can still be applied by using a neural observer (Section

2.2.2).

Inspired by the EM 4 with augmented error ee (Fig. 2.6), the configuration illustrated

in Fig. 2.10 is proposed. The LTI-Blocks Wobs are equivalent to the dynamic system

Wobs in Fig. 2.4. With the appropriate choice of the observer gain l, the system Wobs is

asymptotically stable.

The augmented error ee is given by

ee = Wobs((θ
T − θ̂

T
)ϕ)

︸ ︷︷ ︸
eobs

+Wobs(θ̂
T
ϕ) − θ̂

T
Wobs(ϕ)

= θTWobs(ϕ) − θ̂
T
Wobs(ϕ)

= θ̃
T
ϕ

f
(2.59)

with ϕ
f

= Wobs(ϕ). For the derivation of (2.59), the block diagram manipulation of Fig.

2.4 is used to calculate eobs.

The augmented error ee and the filtered regressor ϕ
f

= Wobs(ϕ) are fed into the param-

eter adaptation algorithm and thus, the adaptive law

˙̂
θ = −

˙̃
θ = γΠ(t)ϕ

f
ee (2.60)

is obtained with Π(t)−1 according to (2.58). Equations (2.59) and (2.60) are equivalent to

(2.57) and hence, the configuration of Fig. 2.10 yields and implementable version of the

EM A3 combined with a neural observer.
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2.4.4 Discussion

The RLS-algorithm with forgetting factor is in practice the most common method for

the identification of linearly parameterized time varying plant. Compared to the LMS-

algorithm, it shows much faster convergence. Furthermore, the RLS-algorithm is less

sensitive to noise and disturbances than LMS. Therefore, the error models 1-4 introduced

in [118] have been modified by using the RLS-algorithm as adaptive law instead of the LMS-

algorithm. The new error models are called EM A1-A3. On the basis of the fundamental

theory of the error model framework introduced in [118], the convergence behavior of EM

A1-A3 has been analyzed and conditions have been formulated that guarantee asymptotic

stability. Similar to the EM 4 in [118], EM A3 is the most general case since the error

transfer function Gw(s) does not need to be SPR. The dynamics of Gw(s) may even be

unstable, since they can be stabilized when combining EM A3 with a neural observer.

2.5 Error Models for Nonlinear Parameterization

In this section, parameter identification of NLP-models according to Eq. (2.5b) is consid-

ered. Particularly, systems whose output yn is not directly measurable but filtered by a

known LTI-system (compare configuration Fig. 2.3) are analyzed. However, in order to

derive important convergence conditions for certain classes of NLP-models, first, the case

of an accessible output ŷn is investigated. Throughout this section, parameter convergence

is analyzed within the error model framework introduced in Section 2.2.1.

2.5.1 Error Model B1

EM B1 is depicted in Fig. 2.11. In the following, the adaptation laws GS and GN (see Tab.

2.1) will be considered and the respective error models will be referred to as EM B1-GS

and EM B1-GN. It is well known that the parameter error of EM B1 will converge if the

quadratic error criterion (see Tab. 2.1) is convex. In the following, different conditions

that guarantee stability will be derived.

Error Model B1-Gradient Search

The EM B1-GS is given by the equations

e = y − ŷ = n(η, v) − n(η̂, v)

˙̂η = − ˙̃η = γ∇nT e . (2.61)

Its state is defined by x = η̃. With the decrescent radially unbounded Lyapunov candidate

V (x) =
1

2
η̃T η̃ (2.62)

it follows

V̇ (x) = η̃T ˙̃η = −γη̃T∇nT e . (2.63)
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vv yy

ŷŷ

γγ
∫∫

n(η, v)n(η, v)

n(η̂, v)n(η̂, v)

∂n(η̂,v)

∂η̂

∂n(η̂,v)

∂η̂ H−1∇nT

η̂η̂ ˙̂η˙̂η

ee

Error model B1-GS Error model B1-GN

Fig. 2.11: Error models B1-GS and B1-GN: Note that the gradient
∂n(η̂,v)

∂η̂
= ∇n is a row

vector.

It can be seen that the stability condition V̇ (x) ≤ 0 cannot be generally guaranteed.

In order to derive constraints for n(η̂, v) that will guarantee stability, first, scalar pa-

rameterization (q = 1) is considered, i.e. ŷ = n(η̂, v). Let’s assume that n(η̂, v) is strictly

monotonic with respect to η̂, i.e. ∂n(η̂,v)/∂η̂ > 0 ∀ η̂ or ∂n(η̂,v)/∂η̂ < 0 ∀ η̂. Fig. 2.12 illustrates

a strictly monotonically decreasing function n(η̂, v∗) at a particular input v∗. For case 1

and case 2 it follows

sign(η̃1)sign(∇n)sign(e1) = 1

sign(η̃2)sign(∇n)sign(e2) = 1 .

The same result is obtained when considering a strictly monotonically increasing function.

Hence, with a positive estimator gain γ we have

V̇ (x) = −γη̃∇ne < 0 ∀ η̃\{0} , (2.64)

i.e., in the scalar case, the origin η̃ = 0 of (2.61) is globally uniformly asymptotically stable

for strictly monotonic parameterization.

Case 1 Case 2

e1

e2

n(η̂, v∗)

η̂1 η̂2η η̂η̃1 η̃2

Fig. 2.12: Example of a monotonically decreasing parameterized function n(η̂, v∗).
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In the nonscalar case we have

η̃T∇ne = η̃1∇n1e+ . . .+ η̃q∇nqe (2.65)

and the condition of strictly monotonic parameterization does not imply sign(η̃T∇ne) = 1.

For further considerations, the definition of local parameterization is introduced:

Definition 2.5.1 Local Parameterization

Given a function n(η̂, v) : R
q × V → R with V ⊂ R

r. For every parameter η̂i, i = 1 . . . q,

there is a region Vi with Vi ⊂ V and with Vi ∩Vj = 0 for i 6= j. A parameter η̂
i
is called

local if its value affects the value of n(η̂, v) only if v is element of the region Vi, i.e.

∂n(η̂, v)

∂η̂i
= ∇ni ≈ 0 for v /∈ Vi .

The region Vi is denoted as the activation region of the parameter η̂i.

If the function ŷ = n(η̂, v) is locally parameterized, Eq. (2.65) is given with

η̃T∇nT e ≈ 0 + . . .+ η̃i∇nie+ . . . 0 (2.66)

for v ∈ Vi, i = 1 . . . q. Furthermore, in case of local and strictly monotonic parameteriza-

tion we have

η̃T∇nT e ≈ η̃i∇nie > 0 (2.67)

for v ∈ Vi, i = 1 . . . q. Thus, the time derivative V̇ (x) (2.63) is negative semidefinite

function and stability can be concluded for EM B1-GS. It can clearly be seen that V̇ = 0

only if η̃i = 0 and v ∈ Vi or v /∈ Vi, i = 1 . . . q. If it can be guaranteed that during the

time interval [t0, t0 + T ], the input v(t) has been element of every activation region Vi we

have ∫ t0+T

t0

V̇ (x, τ)dτ = V (t0 + T ) − V (t0) ≤ −κ with κ < 0 . (2.68)

Definition 2.5.2 Nonlinear Local Persistent Excitation (n.l.p.e.)

Given a locally parameterized function n(η̂, v) : R
q × V → R with the input space V ⊂

R
r. The input v(t) is nonlinearly locally persistently exciting (n.l.p.e.) if during every

consecutive finite time interval [tk, tk + T ] with tk+1 = tk + T and k = 0, 1, 2 . . .∞, v(t)

passes through every activation region Vi.

If v is n.l.p.e it can be concluded that

∀κ with 0 < κ ≤ V (t0) ∃ δ > 0 ⇒ V (t) ≤ V (t0)−κ ∀ t ≥ δ, i.e. lim
t→∞

V (t) = 0 (2.69)

and thus, the following corollary can be formulated:

Corollary 2.5.3

Given a function y = n(η, v) with unknown parameters η and its approximation ŷ = n(η̂, v):

With local and strict monotonic parameterization of n(η̂, v) and with the bounded input sig-

nal v(t) being n.l.p.e., the gradient search algorithm yields uniformly globally asymptotically

stable parameter adaptation, i.e. lim
t→∞

η̃ = 0.
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Error Model B1-Gauss-Newton

The equations

e = y − ŷ = n(η, v) − n(η̂, v)

˙̂η = − ˙̃η = γH(t)−1∇nT e (2.70)

constitute the error model B1-GN. The state is defined as x = η̃. The matrix H(t) is an

approximation of the Hessian of the error criterion E(η̂, t) =
∫ t

0
λt−τ (y(τ) − ŷ(η̂, τ))2dτ

and is calculated as H(t) =
∫ t

0
λt−τ∇ŷ(τ)T∇ŷ(τ)dτ =

∫ t

0
λt−τ∇n(τ)T∇n(τ)dτ (see Tab.

2.1). Note that H(t) as well as H(t)−1 are symmetric as well as positive semidefinite. If

condition (2.44) applies for the gradient vector ∇n, i.e.
∫ T+t0

t0

∇n(v(τ))T∇n(v(τ)) ≥ αI for α > 0 , (2.71)

H(t) and H−1 are even positive definite.

For the analysis of the convergence properties, the Lyapunov candidate

V (x) = η̃TH(t)η̃ (2.72)

is proposed. It is radially unbounded and if (2.71) is relaxed, V (x) is positive definite and

decrescent. The time derivate evaluated along the parameter drift ˙̃η yields

V̇ (x) = ˙̃ηTH(t)η̃ + η̃T Ḣ(t)η̃ + η̃TH(t) ˙̃η

= −2γη̃T∇nT e+ (η̃T∇nT )2 − | lnλ|V (x)

≤ (η̃T∇nT )2 − 2γη̃T∇nT e . (2.73)

This inequality is obtained following the argumentation for the derivation of (2.49). Con-
sidering the integral equation
∫ t0+T

t0

V̇ (x, τ)dτ = V (t0 + T )− V (t0) ≤

∫ t0+T

t0

(η̃(τ)T∇n(τ)T )2dτ

︸ ︷︷ ︸
I1

−2γ

∫ t0+T

t0

η̃(τ )T∇n(τ)e(τ)dτ

︸ ︷︷ ︸
I2

(2.74)

it follows that V (t0 + T ) − V (t0) < 0 if v is n.l.p.e and if n(η̂, v) is strict monotonically

parameterized and with γ > I1
2I2

. Thus, conclusion (2.69) applies also for EM B1-GN and

the following corollary can be formulated:

Corollary 2.5.4

Given a function y = n(η, v) with unknown parameters η and its approximation ŷ = n(η̂, v).

With strict local an monotonic parameterization of n(η̂, v) and with a bounded input sig-

nal v(t) being n.l.p.e. and being such that the gradient vector ∇n(v) meets the condition

(2.71), the Gauss-Newton algorithm yields uniformly globally asymptotically stable param-

eter adaptation, i.e. lim
t→∞

η̃ = 0.
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vv yy

ŷŷ

γγ
∫∫

n(η, v)n(η, v)

n(η̂, v)n(η̂, v)

∂n(η̂,v)

∂η̂

∂n(η̂,v)

∂η̂ H−1∇nf
T

W

W

W

W

W

W
∇nf∇nf

η̂η̂ ˙̂η˙̂η

ee

Error model B2-GS Error model B2-GN

Fig. 2.13: Error models B2-GS and B2-GN: The dashed block is applied only if the parame-
terization of n(η̂, v) is quasilinear. Otherwise the gradient is not filtered and the
dotted block is replaced with a neural observer (see Section 2.2.2).

2.5.2 Error Model B2

With error model B2 the case of a non measurable output yn = n(η, v) is considered

whereas it is assumed, that the nonlinearity n(η, v) is locally and strict monotonically pa-

rameterized. The system output y = W(yn) is measurable whereas W is an asymptotically

stable and known LTI-system. Similarly to Section 2.5.1, two different adaptation laws

will be distinguished and the corresponding error models will be referred to as error model

B2 - Gradient Search and Error Model B2 - Gauss-Newton (See Fig. 2.13).

Error Model B2 - Gradient search

The equations of EM B2-GS can be derived analogous to EM A2 and are given by

˙̃χ = Awχ̃+ bw(n(η, v) − n(η̂, v)
︸ ︷︷ ︸

en

)

e = cTwχ̃ (2.75)

and

˙̂η = − ˙̃η = γ∇nfe , (2.76)

whereas the filtered gradient is introduced as ∇nf = W(∇n). This is inspired by the

filtered regressor ϕ
f

that occurs in EM 4. The state of EM B2-GS is defined as xT =

[χ̃T η̃T ].
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In order to analyze the convergence behavior of EM B2-GS, the positive definite and

radially unbounded Lyapunov candidate

V (x) = χ̃TP χ̃+
1

2
η̃T η̃ (2.77)

with P = P T > 0 is proposed. The time derivative evaluated along the parameter drift ˙̂η

can be calculated as

V̇ (x) = −χ̃TQχ̃+ 2χ̃TPben − γη̃T∇nf
T e (2.78)

whereas property (2.47a) is applied. Eq. (2.78) is indefinite and hence, (2.77) is not a

Lyapunov function. The last term of (2.78) can be written as

γη̃T∇nf
T e = γη̃TW(∇nT )W(en) . (2.79)

Since ŷ = n(η̂, v) is locally and strict monotonically parameterized, the relation of the

signs of ∇ni and en is

∇nien =

{
> 0 if sign(η̃

i
) > 0

< 0 if sign(η̃
i
) < 0

(2.80)

as it is illustrated in Fig. 2.12.

It is obvious that this relation is generally not maintained for the filtered signals W(∇nT
i )

and W(en). Since this relation is crucial for parameter convergence, two conditions are

given where each of them provides maintenance of (2.80) in case of filtering with W:

i) The bandwidth of the signals ∇ni(η̂, v) and en(η̂, v) is small compared to the band-

width of the LTI-System W.

ii) The parameterization of ŷn is quasilinear, i.e. ŷn ≈ n(η̂∗, v) + ∇n(η̂∗, v)(η̂ − η̂∗).

If condition i) applies, the filtering with W can be approximated with a multiplication

by a constant K. Thus, the filtering of the gradient (dashed block in Fig, 2.13) can be

omitted and we have ∇niW(en) ≈ K∇nien and the sign-condition (2.80) applies also to for

the filtered signal W(en). This condition can be relaxed by either applying an appropriate

input signal v or by applying a neural observer.

In case ii) we have en = yn−ŷn ≈ (ηi−η̂i)∇ni. Note, that this approximation is exact for

LP-systems. Thus, W(∇ni)W(en) ≈ W(∇ni)W((ηi − η̂i)∇ni) and for a parameter change

η̂(t) that is slow in the sense that the bandwidth of η̂(t) is smaller than the bandwidth of

W, we can write W(∇ni)W((ηi − η̂i)∇ni) ≈ (ηi − η̂i)W(∇ni)
2. Thus, condition (2.80) can

be relaxed.
Integrating (2.78) over a time period yields

∫ t0+T

t0

V̇ (η̃, τ)dτ = V (t0+T )−V (t0) ≤ 2

∫ t0+T

t0

χ̃T (τ)Pben(τ)dτ

︸ ︷︷ ︸
I1

−γ

∫ t0+T

t0

η̃(τ)T∇nf (τ)T e(τ)dτ

︸ ︷︷ ︸
I2

(2.81)

since χ̃TQχ̃ is positive definite. If either condition i) or ii) applies, and in case of v being

n.l.p.e, the integral I2 is strictly positive. It follows that V (t0 + T )− V (t0) < 0 if γ > 2I1
I2

.

Therefore, (2.69) applies also for EM B1-GN and the following can be concluded:
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(a) (b)

ϕ ϕϕ
f

ϕ
f

γγ

˙̂
θ

θ̃

˙̂η

∇n ∇nf enen,f
WWWW

Fig. 2.14: Block diagrams of adaptation laws for error model 4 (a) and Error model B2-GS
(b).

The origin x = 0 of EM B2-GS is globally uniformly asymptotically stable, i.e. the

parameter error converges to zero, if the input v is n.l.p.e. and if either condition i) or

condition ii) applies. Since conditions i) and ii) are derived in a nonformal descriptive

manner the convergence of EM B2-GS has not formally been proven, but design rules that

guarantee parameter convergence are provided by means of obvious conclusions.

Remark 2.5.5 The reasoning for the filtering method applied for EM 3 and EM 4 [118]

as well as for the error models introduced in this chapter can be explained in an illustrative

manner. For the actual least mean squares algorithm the update law is given with
˙̂
θ = γϕen

with en = θ̃ϕ. In case of a non-measurable error en the update law is given as
˙̂
θ = γϕe

with e = W(en) = W(θ̃
T
ϕ) in case of EM 3. For EM 4, the output error is calculated as

e = θ̃W(ϕ). Since for EM 3, the LTI-System W is required to be SPR, the phase shift

between e and en is less than π/2, and hence the products ϕie have mostly the same sign

as the products of the actual update law ϕien. I.e., the direction of the parameter drift
˙̂
θ

remains correct. If W is not SPR, the phase shift can only be guaranteed to be less than

π so that the product ϕe may yield a wrong parameter update direction. In order to find a

remedy, the filtered regressor ϕ
f

= W(ϕ) (see Fig. 2.14 (a)) is introduced that is exactly

in phase with e = θ̃W(ϕ) and thus, the direction of parameter adjustment is maintained.

In the NLP case, the filtering of the gradient (Fig. 2.14 (b)) does not necessarily yield

in phase condition of en,f and ∇nf since the signals en and ∇n have in general different

spectra and thus, they are delayed differently by the filter W. If quasilinear conditions apply

(condition ii)), two signals with similar spectra, namely ∇ni and (ηi − η̂i)∇ni (see above)

are filtered with W so that in-phase conditions can be guaranteed.

Error Model B2 - Gauss-Newton

The equations

˙̃χ = Awχ̃+ bw(n(η, v) − n(η̂, v)
︸ ︷︷ ︸

en

)

e = cTwχ̃ (2.82)
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and

˙̂η = − ˙̃η = γH(t)−1∇nfe . (2.83)

constitute the EM B2-GN. Its state is defined as xT = [χ̃T η̃T ] and the matrix H(t) is

calculated asH(t) =
∫ t

0
∇nf(τ)

T∇nf(τ)dτ . The time derivative of the Lyapunov candidate

V (x) = χ̃TPχ̃+ η̃TH(t)η̃ (2.84)

evaluated along the parameter drift (2.83) yields

V̇ (x) = −χTQχ+ 2χ̃TPben − 2γη̃T∇nf
T e+ η̃T (∇nf

T∇nf + lnλH(t))η̃

= −χTQχ− | lnλ|η̃TH(t)η̃ + 2χ̃TPben + (ηT∇nf
T )2 − 2γη̃T∇nf

T e

≤ 2χ̃TPben + (ηT∇nf
T )2 − 2γη̃T∇nf

T e (2.85)

whereas the time derivative of H(t) is calculated analogous to (2.36). Integrating (2.85)
over a time period yields
∫ t0+T

t0

V̇ (x, τ)dτ = V (t0 + T ) − V (t0)

≤

∫ t0+T

t0

(
2χ̃T (τ)Pben(τ) + (ηT∇nf

T )2
)
dτ

︸ ︷︷ ︸
I1

−2γ

∫ t0+T

t0

η̃(τ)T∇nf (τ)T e(τ)dτ

︸ ︷︷ ︸
I2

(2.86)

With the same reasoning as for EM B2-GS conclusion (2.69) applies if γ > I1
2I2

. Thus, if

∇nf relaxes condition (2.71) and if the input v is n.l.p.e, and if either condition i) or ii)

applies, the origin x = 0 is globally uniformly asymptotically stable. Hence, the parameter

error η̃ converges to zero.

2.5.3 Discussion

For a certain class of nonlinearly parameterized models, it could be shown that gradient

based parameter identification methods are asymptotically stable and hence, converge to

the global minimum.

The EM B1 has been investigated in order to derive the corollaries 2.5.3 and 2.5.4 that

are fundamental for the analysis of EM B2. Furthermore, the corollaries 2.5.3 and 2.5.4

can be useful in case of a measurable output yn as it is assumed in EM B1, too since the

analytic proof of locality and monotonicity of the model equation might be simpler then

the convexity proof of the quadratic error criterion.

With EM B2, conditions have been formulated that yield asymptotically stable param-

eter identification of a locally and monotonically parameterized system whose output yn

is not directly accessible, but filtered by a known LTI-system W. If W is asymptotically

stable, the adaptation converges either in case of quasilinear parameterization, or if the

bandwidth of W is fast compared to the bandwidth of the signal yn. If this condition is
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2.6 Error Models for Separable Nonlinear Parameterization

not met, or if W is not asymptotically stable, the dynamics of the error transfer function

can be modified with the implementation of a neural observer.

It is worth to test the property of quasilinearity and thus the necessity of a neural

observer, since its usage is accompanied by the amplification of sensor noise. The measured

plant output y is amplified by the observer gain l and thus, the measurement noise is

amplified as well. If a fast dynamic performance is required, a high observer gain l has to

be chosen which causes a high sensitivity with respect to noise. In practice, it is advisable

to implement an observer in any case since it provides an additional degree of freedom for

the design of the adaptive system. However, the poles of the error transfer function should

be placed just as far into the left half of the s-plane as necessary.

Gradient based adaptation algorithms like the GS-, GN- and LM-method are easy to

implement and furthermore, they are integrated as ready-to-use routines in many software

packages like Matlab and Simulink [109]. Therefore, it was the aim of the above derivations

to broaden the classes of parameter adaptation problems to which they are applicable.

2.6 Error Models for Separable Nonlinear

Parameterization

In this section, methods that have been derived for EM A and EM B will be applied to

SNLP-model equations (2.5c). First, the SLS-algorithm introduced in Section 2.2.3 will be

rewritten with continuous time equations, and in the error model framework. Depending on

the adaptive law applied for the identification of η, it is referred to as EM C1-GS/GN. Note,

that EMs C1-GS/GN are not new but introduced as recursive SLS-algorithm in [123]. The

formulation in the error model framework yields the basis for further derivations explained

in this section. Subsequently, EM-C2-GS/GN will be introduced as a method to identify

SNLP-plants whose output is not directly measurable, but filtered by a known LTI-system

W. The EM-C2 is developed following the derivations and arguments introduced for the

error models A3 and B1.

2.6.1 Error Model C1

Error Model C1-GS

The error model C1 is given by the error equation

ǫ = θTϕ(η, v) − θ̂(η̂)Tϕ(η̂, v) = θTϕ− θ̂(η̂)T ϕ̂ (2.87)

and by the adaptive laws
˙̂
θ = −

˙̃
θ = γθ̂Πϕ̂ǫ (2.88)

and
˙̂η = − ˙̃η = γη̂ψ

T ǫ . (2.89)

The state is defined as xT = [θ̃
T
η̃T ]. The block diagram is depicted in Fig. 2.15. The

corresponding time continuous update equations of (2.21), (2.22), (2.25) and (2.26) are
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ǫ

v

y

y

ŷ

γθ̂

γη̂

H−1ψT

∫

∫

η̂
˙̂η

θ̂˙̂
θ

θTϕ(η, v)

ϕ(η̂, v)

∂ϕ(η̂,v)

∂ηi

Π
(2.90)

f θ̂

(2.91)

Πi

(2.92)

f θ̂

i

(2.93)

ψi

(2.24)

Fig. 2.15: Error Model C1: Replacing the inverse approximate Hessian matrix H−1 with the
unity matrix I results in EM C1-GS. Calculating H as H(t) =

∫ t

0
λt−τψ(τ)Tψ(τ)dτ

results in EM C1-GN.

given with

Π(t)−1 =

∫ t

0

λt−τϕ(η̂, v)ϕ(η̂, v)Tdτ , (2.90)

f θ̂(t) =

∫ t

0

λt−τϕ(η̂, v)y(τ)dτ , (2.91)

Πi(t)
−1 =

∫ t

0

λt−τ
(
ϕ

i
(η̂, v)ϕ(η̂, v)T + ϕ(η̂, v)ϕ

i
(η̂, v)T

)
dτ , (2.92)

and

f θ̂

i
(t) =

∫ t

0

λt−τϕ
i
(η̂, v)y(τ)dτ . (2.93)

The elements of the gradient vector ψ are calculated according to (2.24). The RLS-

parameter update (2.88) is equivalent to the update formula (2.27) as proposed in [123]

which is shown for the discrete time domain in Appendix A.1. The formulation (2.88) is

chosen instead of (2.27) to be consistent with the formulae of EM A.

If η̃ converges to zero, the convergence analysis of θ̃ is equivalent to EM A1. Therefore,

as a necessary condition for asymptotic stability of the origin x = 0 the input regressor

ϕ(η̂, v) has to be l.p.e..

In order to analyze the convergence of the nonlinear parameters η̂, the Lyapunov ap-

proach of EM B1 is used and analogous to Eq. (2.62) the Lyapunov candidate

V (x) =
1

2
η̃T η̃ (2.94)
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is proposed. The time derivative evaluated along (2.89) is obtained as

V̇ (x) = −γθη̃ψ
T ǫ . (2.95)

For further analysis, first, the property of local parameterization is investigated. The

SLS-algorithm minimizes the error criterion (2.19) that solely depends on the nonlinear

parameters η̂. It incorporates the model error ǫ(η̂, k) that is given with Eq. (2.23). From

rewriting the right side of (2.23) as

y − ϕ(η̂)T Πf θ̂ = y − ϕ(η̂)T θ̂(η̂)

a model equation that solely depends on η̂ can be inferred as

ŷ(η̂) = ϕ(η)T θ̂(η̂) = ϕ(η̂)T Πf θ̂ . (2.96)

Rewriting Eq. (2.24) as

ψi =
∂
(
ϕ(η̂)T θ̂(η̂)

)

∂η̂i

=
∂ϕT (η̂)

∂η
i

θ̂(η̂) + ϕ(η̂)T
∂θ̂(η̂)

∂η̂i

(2.97)

illustrates how the gradient vector ψ implicitly incorporates the change of the linear pa-

rameters θ̂ that is caused by a change of η̂. From the assumption of ŷ = θ̂
T
ϕ(η̂, v) being

locally parameterized, it follows that ϕ
i
= ∂ϕ/∂η

i
≈ 0 for v /∈ Vi. As a consequence, Πi and

f θ̂

i
will decay to zero due to exponential forgetting. Thus, ψi ≈ 0 after a decaying time if

v /∈ Vi. Since the forgetting factor λ is a design parameter, it can be chosen appropriately.

From the above considerations, the following corollary is deduced:

Corollary 2.6.1 Given the approximation ŷ(θ̂, η̂) = θ̂
T
ϕ(η̂, v) of the plant y = θTϕ(η, v).

If ŷ(θ̂, η̂) is locally parameterized with respect to η̂, then, also the transformed model equa-

tion (2.96) is locally parameterized. This conclusion holds under the assumption that the

bandwidth of exponential forgetting is greater than the bandwidth of the input signal v. The

time constant of exponential forgetting is determined by forgetting factor λ.

From Corollary 2.6.1 it follows

V̇ (x) ≈ −γθ(0 + . . .+ η̃iψiǫ+ . . .+ 0) (2.98)

for v ∈ Vi, whereas according to Definition 2.5.1, Vi is the activation region of the ith

nonlinear parameter. If furthermore, Eq. (2.96) is strictly monotonically parameterized,

the stability analysis of the origin η̃ = 0 follows the reasoning of EM B1 (Section 2.5.1).

Thus, in case of an l.p.e input regressor ϕ(η̂, v) and a n.l.p.e. input v, the origin of EM

C1 x = 0 is uniformly globally asymptotically stable if the original model equation ŷ(θ̂, η̂)

is locally parameterized and if the transformed model equation (2.96) is monotonically

parameterized.

Unfortunately, it could not generally be shown that monotonicity of Eq. (2.96) with

respect to η̂i follows from monotonicity of the original model equation ŷ(θ̂, η̂).
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Error Model C1-GN

EM C1-GN (Fig. 2.15) is given by the error equation (2.87), the adaptive laws (2.88) and

˙̂η = − ˙̃η = γη̂H
−1ψT ǫ (2.99)

whereas the approximate Hessian H is calculated as

H(t) =

∫ t

0

λt−τψ(τ)Tψ(τ)dτ . (2.100)

Following the derivations of EM B1-GN, the derivative of the Lyapunov candidate V (η̂) =

η̃TH(t)η̃ can be calculated as

V̇ (η̃) ≤ −2γη̂η̃
TψT ǫ+ (η̃TψT )2 . (2.101)

Therefore, if the model equation ŷ = θ̂
T
ϕ(η̂, v) is locally parameterized with respect to η̂

and if (2.96) is strictly monotonically parameterized, the stability concept of EM B1-GS

applies to EM C1-GS, as well.

2.6.2 Error Model C2

In this section, SNLP-plants with unknown parameters θ and η whose output yn is not

directly measurable but filtered by a known LTI-system W are considered. A configuration

is proposed where the method of error augmentation in combination with a neural observer

is applied (Fig. 2.16) in order to obtain an asymptotically stable error transfer function

whose poles are placed such that its bandwidth is greater than the bandwidth of the signals

to be filtered. Thus, EM C2 can be reduced to EM C1.

Error Model C2-GS

As it can be inferred from the block diagram in Fig. 2.16, the EM C2-GS is constituted by

the equations

ǫe = Wobs(θ
Tϕ(η, v) − θ̂

T
ϕ(η̂, v))

︸ ︷︷ ︸
ǫobs

+Wobs(θ̂
T
ϕ(η̂, v)) − θ̂

T
Wobs(ϕ(θ̂, v)) (2.102)

= θT Wobs(ϕ(η, v))
︸ ︷︷ ︸

ϕ
f

−θ̂
T
Wobs(ϕ(η̂, v))
︸ ︷︷ ︸

ϕ̂
f

, (2.103)

˙̂
θ = −

˙̃
θ = γθ̂Πϕ̂f

ǫe (2.104)

and
˙̂η = − ˙̃η = γη̂ψ

T ǫe . (2.105)

In order to calculate f θ̂ and f θ̂

i
according to (2.91) and (2.93) the signal

yobs = ǫobs + Wobs(ŷn) = Wobs(yn) (2.106)
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ŷn
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ϕ(η̂, v)

∂ϕ(η̂,v)

∂ηi
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(2.90)
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(2.91)

Πi
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ǫe

ǫe

yobs
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Fig. 2.16: Block diagram of EM C2: Replacing the inverse approximate Hessian matrix
H−1 with the unity matrix I results in EM C2-GS. Calculating H as H(t) =∫ t

0
λt−τ

η̂ ψ(τ)Tψ(τ)dτ results in EM C2-GN. The method of error augmentation in
combination with a neural observer is used in order to change the bandwidth of the
error transfer function and to obtain the signal yobs = Wobs(yn)

is used instead of y.

If the observer poles are placed such that the dynamics of resulting error transfer func-

tion are fast compared to the bandwidth of the occurring signals, we have ϕ
f
≈ Kϕ,

ϕ̂
f
≈ Kϕ̂ and yobs ≈ Kyn with K representing the static gain of Wobs. Therefore, EM

C2-GS approximates EM C1-GS. Thus, the convergence properties of EM C1-GS apply to

EM C2-GS, as well.

Note that even with unstable dynamics of W, the proposed method can be applied as

long as the error transfer function is asymptotically stable.
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Error Model C2-GN

The equations of EM C2-GN (Fig. 2.16) are given by (2.102), (2.104) and the adaptive

law
˙̂η = − ˙̃η = γη̂H

−1ψT ǫ (2.107)

with H according to (2.100). If the observer is designed such that the bandwidth of the

error transfer function is greater than the bandwidth of the signals involved, EM C2-GN

approximates EM C1-GN and thus the stability results of EM C1-GN apply to EM C2-GN,

as well.

2.6.3 Discussion

The SLS-algorithm is a very efficient method for the identification of mixed-linear-nonlinear

parameterized model equations. It incorporates standard adaptive laws such as the RLS-

algorithm for the linear parameters and gradient based methods for the nonlinear param-

eters. Therefore, it can be easily implemented using standard routines.

With Corollary 2.6.1, the locality condition of EM B applies to EM C, as well. Hence,

asymptotically stable parameter identification can be guaranteed by the monotonicity con-

straint together with local parameterization just as derived for EM B. With the presented

theory, the number of parameter adaptation problems to which the SLS-algorithm is ap-

plicable could be enlarged. The analytic monotonicity analysis of the transformed model

equation (2.96) might not be trivial. However, in practice, a simulative examination of the

monotonicity condition is sufficient.

By implementing a neural observer and using the method of error augmentation, the

SLS-algorithm can be applied to SNLP-models whose output yn is not directly measurable

but filtered by a known LTI-system. With EM C2 this method is introduced within the

error model framework. With the application of the EMs C1 and C2 to a physiological

system in Chapter 4, an example is given where the methods derived in this chapter will

be exemplified.

2.7 Summary and Conclusions

In this chapter, on-line parameter identification in the presence of linear, nonlinear and

separable nonlinear parameterization has been addressed. The focus has been on the iden-

tification of plants with unknown parameters whose output yn is not directly measurable

but filtered by a known LTI-system W. The measurable output of W is fed into an adap-

tation algorithm in order to drive the parameter error to zero. Throughout the chapter,

the method of error augmentation in combination with a neural observer is used: To either

place the poles of the error transfer function such that it can be approximated as a constant

gain, or in order to stabilize error transfer functions that are not asymptotically stable.

For identification in the presence of linear parameterization, the error model A has

been developed. It can be considered as add-on to the fundamental error models 1, 3 and

4 introduced in [118]. Global asymptotic stability, i.e. convergence of the parameter error

to zero could be formally proven. The adaptation law is of RLS-type and hence, yields
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superior convergence properties compared to the LMS-type law applied with EM 1,3 and

4. The RLS-algorithm is known to converge faster and to be less sensitive to measurement

noise. If the error transfer function is not asymptotically stable, error augmentation in

combination with a neural observer can be applied to allow identification anyhow.

In case of NLP-plants, global asymptotic stability of GS-Type and GN-Type algorithms

could be proven for local monotonic parameterization. If the NLP-part is quasilinear pa-

rameterized, the filtered gradient is introduced in order to generate in-phase conditions for

the adaptation law. This method is inspired by the filtered regressor of EM 4. If quasi-

linearity does not apply, a neural observer can be used in order to increase the bandwidth

of the error transfer function. Then, the algorithm converges not only for local monotonic

parameterization but also if the quadratic error criterion can be considered as benign. I.e.,

in a certain region around the global minimum, the criterion is strictly decreasing so that

there are neither plateaus nor local minima. Of course, local parameterization reduces the

requirements on the input signal in order to be persistently exciting.

Also in case of quasilinear parameterization it might be beneficial to apply a neural

observer if the error transfer function lowpasses information in the signal yn. The poles

of the neural observer have to be placed carefully since fast poles lead to a high observer

gain l which amplifies measurement noise.

Finally, the identification of SNLP-plants has been addressed. The usage of SNLP-

models allows combining the advantages of linear and nonlinear parameter identification

methods. On the one hand, a priori knowledge can be incorporated by using nonlinear

parameterized nonlinear model equations whose shape is similar to the curve to be ap-

proximated. On the other hand, linear parameterized models like polynomials or NRBF-

networks for static approximation of FIR-model for dynamics plants can be applied where

a priori knowledge is poor. It could be shown that from local parameterization of the plant

y = θTϕ(η, v) with respect to η it follows locality of the model equation ŷ(η̂) that solely

depends on the nonlinear parameters. This result can be useful when designing persis-

tently exciting input signal, since monotonic parameterization allows applying an n.l.p.e.

input signal. If ŷ(η̂) is strictly monotonically parameterized, the convergence condition

of EM B apply to EM C, too. Unfortunately monotonicity of ŷ(η̂) cannot be concluded

from monotonicity of the original equation yn = θTϕ(η, v) and thus, monotonicity has to

be verified separately. Convergence can also be guaranteed, if the error criterion is benign.

The adaptation laws are of RLS-type for the linear parameters and of GS/GN-type for the

nonlinear parameters. The input signal has to be l.p.e. with respect to the input regressor

ϕ(η̂, v) and n.(l.)p.e. depending on the type of nonlinear parameterization. By combining

the methods of error augmentation and neural observer with EM C1, the error model EM

C2 is obtained that allows to apply the SLS-algorithm to SNLP-model whose output is

not directly measurable but filtered by a known LTI-system.

It is important to note that the stability properties derived for GN-type adaptive laws

apply to the Levenberg-Marquardt algorithm, as well. This is due to the positive defi-

niteness of the damped Hessian R = H + δI that occurs in the LM-parameter update

law.
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2 Parameter Adaptation and Stable Error Models

The most important results of this chapter are summarized in Fig. 2.17 together with

the existing related fundamental methods. It illustrates the enhancement of the current

state of the art that has been created by the introduction of the error models A,B and C.
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3 Neuromuscular and Biomechanical

Modeling

3.1 Introduction

In this chapter, a model of RPMS-induced index finger i.e. the relationship between the

peripherally applied magnetic field pulses the resulting movements is developed. This

model represents the basis for the three applications developed in this thesis: System

identification based therapy evaluation, induction of position-controlled limb motion and

patient driven RPMS-therapy. The model developed in this chapter predicts the behavior

of the plant qualitatively and is used for the development, the simulative implementation

and the evaluation of the above mentioned applications.

The plant of the muscle stimulation induced limb motion will be subdivided into the

blocks ”force generation” (often called muscle activation dynamics), ”force transmission”

(tendon leverage, e.g.), ”segment dynamics”, ”length-velocity-dependencies” (the ability

of the muscle to generate force depending on its length and its change of length), and

”spastic joint torque” as illustrated in Fig. 3.1. The last block accounts for the limb

motion-dependent increase of muscle tone called spasticity (see Appendix B.4) that may

occur after neurological damages.

Stimulation
input

Force generation
(muscle activation

dynamics)

Force
trans-
mission

Segment dynamics
Joint

torques
Limb

motion

Length-velocity-dependencies

Spastic joint torque

Fig. 3.1: Block diagram overview of the plant ”muscle stimulation induced limb motion”.

Neuromuscular and biomechanical models have been developed for general muscle force

driven limb motion caused by physiological muscle activation. Reviews are given in stan-

dard biomechanics literature (see [86], e.g.). In the framework of muscle stimulation, these
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3.2 Fundamentals and Definitions

models have been applied to FES-induced limb motion (see [140; 176], e.g.) as well as to

RPMS-induced motion of the elbow joint [6].

The most widely used biomechanical muscle model was developed by A.V. Hill in

1938 [67; 68]. The Hill-type muscle model accounts for passive elastic and passive vis-

cous properties of the muscle with spring- and damper-elements in parallel to an active

contractile element. Often, these passive elements, as well as the model for the length-

velocity dependencies are summarized as ”muscle contraction dynamics” (see [135], e.g.).

Here, the passive muscle properties are considered within the block ”segment dynamics”.

Also the torques caused by spasticity will be mathematically integrated within the equa-

tion of the segment dynamics. Although these modifications do not strictly represent the

physiological structure of the considered plant, they result in a mathematical description

that is formally equivalent to the Hill-type topology. These modifications provide a simpler

model structure that is advantageous for the system identification that will be presented

in Chapter 4. Differences and similarities of the proposed structure in Fig. 3.1 compared

to models that reflect the plant topology will be discussed within the following sections.

The novel scientific contributions presented in this chapter are the proposition and

verification of models for the force generation, the segment dynamics and the spastic joint

torque in the index finger. The classical modeling approach for the segment dynamics is

extended to account for a relaxation phenomenon and thus, a much better approximation

accuracy is obtained. It is shown that the spastic joint torque occurring with spastic paretic

patients can be approximated by a simple static model that can easily be integrated into the

segment dynamics. The models are parameterized and verified by means of measurements

carried out with healthy subjects as well as with spastic paretic patients.

This chapter is structured as follows: In Section 3.2 fundamentals like the principle of

the RPMS-induced neural excitation, a mathematical formulation of the magnetic pulses,

anatomical terms and coordinate systems are introduced. In the Sections 3.3 - 3.7, models

for every block of the overview in Fig. 3.1 are proposed. The order mainly follows the chain

of action from the stimulation input to the limb motion. The block ”force transmission”

is prefaced, since it introduces fundamental terms.

3.2 Fundamentals and Definitions

3.2.1 Neuromuscular Excitation with RPMS

In order to stimulate a muscle or a muscle group with RPMS, magnetic field pulses are

applied with a magnet coil placed above the respective innervation zone. This results in

the depolarization of the terminal motor branches. The functional principle is depicted

in Fig. 3.2. In Fig. 3.3 two typical coil configurations are illustrated as they are used for

RPMS-induced elbow and index finger movements.

The relevant physiological aspects of nervous conduction and muscle contraction are

summarized in appendix B.1. In this section, technical and physical aspects as well as the

mathematical abstraction of the magnetic field pulses as a system input will be described.
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replacements

Skin

Limb

Tendon

Innervation zone

Magnetic
field pulses Stimulation

coil

Terminal
motor branches

Terminal
sensory branches

Fig. 3.2: Principle of the peripheral magnetic stimulation: A magnet coil is placed above
the innervation zone of the respective muscle. The magnetic field pulses induce an
electrical field inside the tissue which results in a depolarization of the terminal motor
branches. Thus, the muscle contracts and exerts a force that is transmitted via a
tendon to the respective limb.

(a) (b)

Fig. 3.3: Different coil configurations: (a) A butterfly coil placed above the biceps muscle
for the RPMS-induced elbow flexion. (b) A small circular coil placed above the
innervation zone of the finger extensors.

Pulse Generation

A stimulation unit for peripheral as well as for transcranial magnetic stimulation consists

of a stimulator whose circuits produce current pulses which is attached to a magnet coil.

Fig. 3.4 illustrates the schematic of the stimulator circuit. A trigger signal fires the thyris-

tor. Thus, the capacitor is discharged and a current pulse flows through the coil. The

stimulators used by the Sensorimotor Research Group [175], feeds the coil current back

into the capacitor in order to reduce energy consumption. Therefore, the pulses occur in
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I(t)

t

I(t)

Coil
Tp

1/frepStimulation
circuit

Charging
circuit

Fig. 3.4: Left: Functional schematic of the stimulation unit: The most important elements
are a capacitor and a thyristor-circuit that together with the stimulation coil act as
a controllable LC-oscillator. Details about the stimulators used for the experiments
of this thesis are presented in [175; 181]. Right: In order to optimize the energy
consumption of the stimulator, alternating current pulses are applied to the coil [175].
The pulse width Tp of the sinusoidal half waves amounts 90µs and the repetition
rate frep is variable up to 30Hz. The peak value of I(t) goes up to 3 kA which
corresponds to a magnetic flux density of approx. 2T, depending on the particular
coil.

alternating polarity as depicted in Fig. 3.4. These devices are able to generate current

pulses with a repetition rate of frep = 30Hz.

The stimulation coil consists of isolated copper windings, a temperature sensor to pre-

vent overheating, a plastic coating, and a handle. There exist different coil geometries

(round and butterfly, e.g.) and different sizes (typical diameter: 90mm). Specifications of

commercially available coils can be found in [104] and [105].

Neural Activation

The underlying physical principle of magnetic stimulation is the electromagnetic induction

that is governed by Faraday’s law:

~∇× ~E = −
∂ ~B

∂t
. (3.1)

It states that an electrical field ~E is induced inside the tissue by a time varying magnetic

field ~B (see Fig. 3.5).

By means of magnetic stimulation, only myelinated axons (see Appendix B.1.2

and B.1.3) are depolarized whereas thin nerve fibers like nociceptors are hardly activated

[27] (see also Tab. B.1). The mechanism of the enforced depolarization can be explained

with the equivalent circuit illustrated in Fig. 3.5. The electrical field ~E can be divided

into a component ~E|| parallel to the axon, and a component ~E⊥ perpendicular to the axon.

According to [182], the intensity of an electrical field induced by magnetic stimulation

is less than 104 V/m. Since the intensity of the electrical field caused by the membrane

potential (modeled with capacitor CM) ranges up to 107 V/m, the field component ~E⊥ is

comparatively small and has no depolarization effect.

In Fig. 3.5, only the component ~E|| is depicted. For sake of simplicity, it is assumed,

that the intensity of ~E|| is constant between two adjacent nodes of Ranvier which are
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~B(t)

I(t)

~E(t)

Myelinated axon

Nodes of Ranvier

∆x

U1 U2

RPRP

~E||,1 ~E||,2

I1 I2

RM RM CMCM

I3

Fig. 3.5: Left: The current pulse I(t) in the coil generates a magnetic field pulse ~B(t) that

induces the electrical field ~E(t). A myelinated axon passes the induction zone. Right:
Simplified equivalent circuit of the axon (modified from [182]): The nerve can be
modeled as a cylindrical capacitor with the myelin as electrically-insulating dielectric
layer. The capacity of a single section with length ∆x is modeled by the capacitor
CM and the leakage is modeled by a parallel resistor RM . The conductivity of the
axon plasma is modeled with the resistor RP . See Appendix B.1 for anatomical and
physiological background knowledge.

equidistantly allocated, i.e. ∆x = const.. Therefore, ~E||,1 results in a voltage U1 = ~E||,1∆x

and induces a current I1 = U1

RP
. With ~E||1 >

~E||2 it follows U1 > U2 and I3 = I1−I2 > 0, and

the positive current I3 neutralizes the capacitor CM . If the gradient of the electrical field
~E|| is big enough, the capacitor CM is discharged above the depolarization threshold and an

action potential is elicited that propagates along the axon as explained in Appendix B.1.3.

By physiological elicitation, the action potential starts at the soma and only propagates

in orthodromic direction. However, the RPMS-elicited action potential starts at the axon

and propagates in orthodromic as well as in antidromic directions.

The model of Fig. 3.5 is an oversimplification of the nerve and the surrounding tis-

sue. In reality, peripheral nerves are situated in highly non-homogeneous structures with

anisotropic conductivities [87] which have significant influence on the current densities.

Taking these properties into consideration requires extensive modeling of the tissue and

the electromagnetic propagation. Using RPMS, a muscle can be selectively activated simply

by observing the movements of the respective limbs during stimulation and by replacing

the coil if necessary. Therefore, no research on field propagation is done by the Sensorimo-

tor Research Group. Nevertheless, the prediction of the field distribution inside the tissue

can be of importance for diagnostic and therapeutic stimulation. For further information

the reader is referred to [11; 87; 112; 116; 143; 154].
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3.2 Fundamentals and Definitions

Repetitive Magnetic Field Pulses as Model Input

A magnetic field pulse has a pulse width Tp of approximately 90µs and activates motor

units of the stimulated muscle. The number of recruited motor units nonlinearly depends

on the magnetic flux density. In the following, the strength of magnetic pulses will be

referred to as stimulation intensity I that varies within the range 0 ≤ I ≤ 100 %. The

maximum value I = 100 % corresponds to the maximum magnetic flux density which

the respective stimulation unit can generate. The pulses are mathematically described as

discrete Dirac Delta functions representing the system input u that is calculated in discrete

time as

u(k) =

∞∑

j=0

I(k)δ(k − jkrep) (3.2)

with krep = 1
frepTs

. As described in the beginning of Chapter 2, simulations and algorithms

are implemented in discrete time with a sampling time Ts = 0.001 s.

3.2.2 Bones, Joints, Muscles and Tendons

Bones and Joints

Like all four digits of the human hand, the index finger consists of three bones that are

interconnected by rotational 1DOF joints. They are referred to as phalanx bones and are

attached to the metacarpal bones that are located in the palm. The bones and the joints

are illustrated and labeled in Fig. 3.6.

Distal phalanx DIP-joint

Medial phalanx

Metacarpal bone
MCP-joint

Proximal phalanx

PIP-joint

Fig. 3.6: Bones and Joints of the index finger: The metacarpal bone is located in the palm.
The three joints are known as the metacarpophalangeal (MCP), the proximal inter-
phalangeal (PIP), and the distal interphalangeal (DIP) joint.

Muscles and Tendons

The muscles involved in the index finger flexion and extension are the musculus (m.)

extensor indices proprius (EIP, index finger extensor) the m. extensor digitorum communis

(EDC) and the m. flexor digitorum profundus/superficialis (FDP/FDS, finger flexors), see

Fig. 3.7. Muscles are connected to bones via tendons and the EDC is attached to four

tendons that branch to all four digits. Hence, an isolated extension of either little finger,
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EDC EIPFDS

Fig. 3.7: Muscles involved in the index finger movement (Modified from [178]): Upper picture:
Extensor side of the lower arm with the m. extensor digitorum communis (EDC) and
the m. extensor indices proprius (EIP). Lower picture: Flexor side of the lower arm
with the m. flexor digitorum superficialis (FDS). The m. flexor digitorum profundus
(FDP) is not visible. It is located just below the FDS.

ring finger or middle finger is a complex interaction of EDC and FDP/FDS. Even though

it is possible to activate certain areas of these muscles more than others, most humans

are not capable of performing proper isolated extension movements. Only the index finger

is connected to a separate muscle, the EIP, whose tendon runs in parallel to the tendon

of the EDC. There is no separate flexor muscle but all four digits are connected with the

FDP/FDS. Fig. 3.9 illustrates the tendon arrangement of the extrinsic1 EIP-muscles in a

lateral view.

The RPMS-induced index finger extension is achieved by stimulating the EIP. The flex-

ion is accomplished by placing the coil above the innervation area of the FDP and FDS

and hence, an isolated RPMS-induced index finger flexion is not possible since the other

three digits are flexed, as well.

3.2.3 Coordinate Systems

The kinematics and the dynamics of the index finger are formulated using the coordinate

systems introduced in Fig. 3.10. Each of the three finger segments is characterized by its

length Li, radius Ri, mass mi and the coordinate system Si+1, with i = 1 . . . 3.

1An extrinsic muscle does not originate in the limb in which it is inserted whereas origin and insertion
of an intrinsic muscle are in the same limb.
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3.3 Force Transmission

Tendon of the EIP

Tendons of th EDC

Tendon of the FDP

Tendon of th FDS

Fig. 3.8: Tendons involved in extension and flexion of the digits (Modified from [178]).

Right lateral band

EIP

FDS

FDP

Fig. 3.9: Schematic anatomy of the tendons attached to the extrinsic muscle at the index
finger: The tendon of the EIP spans over the MCP-joint and is primarily attached
at the proximal phalanx. Subsequently, it spans over the PIP-joint and is finally
attached to the medial phalanx. Additionally, two lateral bands are branching on the
right and on the left side of the PIP-joint, span over the DIP-joint, and are attached
to the distal phalanx. The tendon of the FDS is attached to the medial phalanx.
The FDP-tendon passes through a slot of the FDS-tendon and connects to the distal
phalanx.

3.3 Force Transmission

The muscle force FM is transmitted via a tendon to the respective joint. The muscle joint

torque τM is induced depending on the tendon leverage h according to τM = FMh. For

the following considerations, it is assumed that the tendon strain can be neglected. This

assumption is justified by the small tendon forces that occur during extension and flexion

of the index finger in a normal range. A tendon strain model is introduced in [141], e.g..

Since viscous dissipative effects of the muscle-tendon unit are taken into account in the

model of the segment dynamics (Section 3.6), the force transmission can be modeled as

lossless.

The tendon leverage h results from the respective muscle and joint geometry. In general,

it is a function of angles α1 . . . αn of all joints the tendon spans. If the biomechanical

geometry is known such that the length lj of a muscle-tendon unit j is given as a function

53



3 Neuromuscular and Biomechanical Modeling

α1

α2 α3

α4

x0

x1

x2

x3

x4

z0

z1 z2 z3

z4

τ2

τ3

τ4

Fig. 3.10: Coordinate systems of the palm and index finger: The world coordinate system is
given with x0 and z0. It is assumed that the finger is not abducted (straddled) and
hence, the y-axes of all coordinate systems are in parallel. The z0-axes is parallel
to the ground, the z1-axes is in parallel to the back of the hand, the z2-, z3- and
z4-axis are in parallel to the respective finger segments. The torques τi, denote the
muscular driving torques τMi

acting on the MCP-, PIP-, and DIP-joint, respectively
(see Section 3.2.2).

lj(α1 . . . αn) of the relevant joint angles, the leverages can easily be calculated using the

principle of virtual work. The leverage hi,j(α1 . . . αn) of the jth muscle acting on the ith

joint is given as

hi,j(α1 . . . αn) =
∂lj(α1 . . . αn)

∂αi
. (3.3)

For further derivations see [135].

In the following, the functions lj(α1 . . . αn) for the EIP, FDS and FDP are derived from

a literature review.

3.3.1 Tendon Leverage of the Index Finger Extension

In [14], a model of the length of the muscle-tendon unit of the middle finger extensor is

introduced. So far, it is the only model that takes into account the lateral bands (see

Fig. 3.9) i.e. the angle α4. Motivated by the anatomical similarity, it is assumed that the

proposed model applies to the index finger, as well. Since the EIP-tendon (including the

lateral bands) is attached to all three phalanges, its elongation is given as

∆lEIP = ∆lEIP,2(α2) + ∆lEIP,3(α3) + ∆llat(α3, α4), (3.4)
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3.3 Force Transmission

whereas we have ∆llat(α3, α4) ≈ 0 for α3 > −40◦ since in this configuration there is no

tension on the lateral bands (see [212] for more detailed derivations). Furthermore, it is

assumed that during extension of the MCP-joint with constant angle α3, most of the force

is induced at the tendon attachment at the proximal phalanx.

r

rr
A1 A2

(a) (b) (c)

Fig. 3.11: (a) Pulley model of the EIP-tendon guidance over the MCP-joint in flexion configu-
ration. (b) The pulley model does not apply to extension configuration. (c) Pulley
model of the flexor tendons of the FDS and FDP as it is introduced in [101].

During RPMS, only the MPC-joint is extended. Our measurements demonstrated that

the PIP-joint of a relaxed index finger has an average flexion of α3 > −35◦. Therefore, the

tendon elongation during RPMS can be simplified as

∆lEIP = ∆lEIP,2(α2) . (3.5)

The MCP-joint can be approximated as a pulley with radius r that guides the tendon

(Fig. 3.11 (a)). This assumption is confirmed in [4], [14] and [47] but only applies to

α2 ≤ 0. If α2 > 0 (Fig. 3.11 (b)), it is not possible to find a relation by simple geometrical

considerations. During RPMS, the index finger is hardly in extension, i.e. α2 ≤ 0 and thus,

the relation (3.5) is given as

∆lEIP = −r∆α2 . (3.6)

Thus, using Eq. (3.3), the leverage hEIP is given as −r. The MCP-joint of the middle

finger has an average radius of r = 8mm [4; 14].

3.3.2 Tendon Leverage of the Index Finger Flexion

The tendons of the FDS and FDP are guided underneath the MCP-joint through the annu-

lar ligaments (also called pulleys) A1 and A2 (see Fig. 3.11 (c)). In flexion configuration,

this guideway can be modeled as a pulley with radius r that is equal to the radius of the

EIP-tendon pulley [101] (compare Fig. 3.11 (a)). Also the very fundamental investigation

with cadaver fingers reported in [4] describes a nearly constant tendon leverage (approx.

8mm) of FDS and FDP with respect to the MCP-joint.

FDS and FDP are connected to the distal and to the medial phalanges (Fig. 3.9) and

flex the MCP-joint only indirectly when the mechanical resistance of PIP-joint and DIP-

joint exceeds the resistance of the MCP joint. Therefore, a delay occurs when flexing

55



3 Neuromuscular and Biomechanical Modeling

the MCP-joint with stimulation of the FDS/FDP. However, once the MCP-joint begins

to flex, the configuration of the PIP-joint and DIP-joint remains almost constant and the

elongation of the muscle-tendon units is given as

∆lFDS = ∆lFDP ≈ −r∆α2 . (3.7)

Using Eq. (3.3), the tendon leverages are given as hFDS = hFDP = −r.

3.3.3 Discussion

The average radius r of the MCP-joint of the middle finger might differ from that of the

index finger. Reliable data for the index finger could not be found. However, the linear

force-torque relation r can be considered as a constant gain of the force generation model

and thus, it will be automatically adapted to the respective subject using the system

identification approach explained in Chapter 4.

3.4 Force Generation

The following derivations are based on the results in [6; 188; 191; 192] which are so far the

only publications that include RPMS-modeling. The transcutaneous functional electrical

stimulation (FES), see [129], e.g., is a related field of research where muscle activation

models have been derived (see [30; 135; 147; 176], e.g.). However, as shown in [6], there

exist fundamental differences in the nervous activation mechanisms of FES and RPMS such

that on cannot conclude that the models proposed for FES apply to RPMS. The RPMS-

activation model in [6] has been proposed for the m. biceps brachii (elbow flexor). In this

section, the activation dynamics of the EIP are modeled. Because of anatomical differences

between m. biceps brachii and EIP (size of muscle fibers and ratio of muscle fiber types,

e.g.), it is expected that the models differ from each other.

All experiments discussed in this section are performed under isometric conditions. The

terms isometric and non-isometric measurements will be used throughout this section and

therefore, a short clarification appears necessary: Under isometric conditions, the length

of the stimulated muscle remains nearly unchanged since the respective limb is attached

to a fixed, immobile force sensor. Hence, the measured response to stimulation represents

the muscle force. Under non-isometric conditions, the limb will move and therefore, the

position of the limb will represent the measured system output.

By means of isometric measurements, the plant of muscle force generation can be ana-

lyzed aside from the segment dynamics and muscle contraction dynamics. As shown in [6],

the Hammerstein structure (Fig. 3.12) that is often used to describe FES-induced muscle

activation dynamics qualitatively applies to RPMS, as well.

The subsystem ”force generation” (Fig. 3.1) consists of a physiological delay, the re-

cruitment characteristics, and the dynamic force response as illustrated in Fig. 3.13. The

recruitment is modeled with a static nonlinear function that describes the number of re-

cruited motor units depending on the stimulation intensity I. The dynamic force response
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u
n(u) LTI-system

yw

Fig. 3.12: Hammerstein cascade: A block structured nonlinear system that consists of a static
nonlinearity with input u in series with an LTI-system with output y.

of a single recruited motor unit to a magnetic stimulus can be described with an LTI-

system.

u

ρ(u)
Delay

Force generation

FM

Recruitment
characteristics

Dynamic
force response

Fig. 3.13: Hammerstein structure of the force generation model: The input u is given with
the magnetic stimulation pulses according to Eq. (3.2), the recruitment curve is
denominated with ρ(u) and the muscle force FM represents the model output.

3.4.1 Experimental Setup

The experiments explained in the following were performed with the setup depicted in

Fig. 3.14. During the experiments, all subjects were asked to relax their respective arm,

hand and fingers as much as possible, in order to avoid artifacts. The force sensor was

placed such that it touches the PIP-joint of the index finger when the MCP-joint is at its

equilibrium position α2,0. Therefore, during stimulation, the MCP-joint angle remained

constant and the length EIP-muscle-tendon unit did not change.

The relation between the sensor force Fs and the driving joint torque τ2 is given with

τ2 = L1Fs. Thus, the muscle force FM can be calculated as

FM =
τ2

r cos(γP )
= Fs

L1

r cos(γP )
. (3.8)

This formula takes into account the tendon leverage r as introduced in Section 3.3 and the

EIP pennation angle [95] γP . It describes the angle between the alignment of the muscle

fibers and the line of action along the tendon. In [95], an average value of γP = 6.3◦ was

determined.

In the following, the output signal Fs of the force sensor unit will be directly interpreted

as muscle force FM instead of using Eq. (3.8). Since the overall gain of the measured forces

is irrelevant for the following considerations, this is done for sake of a simpler notation but

without loss of generality.
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PC, Linux,
RTAI,
Matlab/
Simulink

Sensoray 626
I/O-Board

ADC
DAC
DIO

Stimulator

Force sensor

Measurement orthosis

Coil

Strain-gauges

Fs

L1

u

α2,0

Fig. 3.14: Experimental setup for isometric RPMS of the EIP: The subject’s hand is locked into
position with a measurement orthosis. The force Fs is measured with a self built
strain-gauge beam arrangement. The measurement signal of the strain-gauge full
bridge is amplified, filtered with an anti-aliasing filter and sampled with a Sensoray
626 multichannel I/O board [157]. The filter is a simple RC-low pass with a corner
frequency of 40 Hz. The I/O board is mounted on a Linux-PC with the real-
time operating system ”Real-Time Application Interface” (RTAI). The stimulator
is driven by a program that runs in real-time on the PC. The sample rate fs for all
experiments is set at fs = 1 kHz. A magnetic pulse is fired when a trigger signal
is sent. The stimulation intensity I of every pulse can be chosen arbitrarily with
an analogue control signal. Due to technical properties of the stimulation device,
there exists a hardware delay Td,hw between the trigger signal and the actual pulse.
In [212], this delay been determined to Td,hw = 2.6 ms.

3.4.2 Physiological Delay

Physiology

The increase of muscle tension follows the muscle action potential (MAP) with a delay Td,ph

(see Fig. B.4 and Appendix B.1.6). This delay is mainly due to the relatively slow MAP

conduction velocity of 2− 6 m/s. In [6], the delay occurring during FES and RPMS at the

biceps muscle has been analyzed in a comparative study. It could be shown, that the FES-

delay is more than twice as long (approx. 25ms) and shows a greater inter-personal variance

compared to RPMS. These differences can be explained by the propagation mechanisms

of both stimulation methods. In contrast to the magnetic field, the propagation of the

electrical current stimulus strongly depends on the properties of the tissue. In particular,

the nonlinear and time varying resistive and capacitive skin properties play an important

role in this process [34].

In [6], it could also be shown, that the physiological RPMS-delay depends neither on

the pulse width nor on the stimulation intensity. Therefore, all experiments described in
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3.4 Force Generation

the next paragraphs were conducted with the standard pulse width of our stimulators of

Tp = 90µs and with a stimulation intensity of I = 100 %.

Data Acquisition and Data Processing

The delay Td,ph is defined as the time between the actual magnetic pulse and the onset of

the force response FM(t), which is detected as the first positive zero crossing of ḞM(t) after

the magnetic pulse (Fig. 3.15). The hardware delay Td,hw is compensated by delaying the

trigger signal that is considered for data processing by 2.6ms.
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Fig. 3.15: Determination of the physiological delay Td,ph. The instant at which the magnetic
pulse is applied is labeled with a thick vertical line at t = 0. For a better illustration,
the sensor force FM and its time derivative ḞM are normalized with respect to their
maximum values.

As explained in Section 3.4.1, the force signal is filtered with a first order 40Hz low pass

filter for noise reduction and anti-aliasing. This filtering causes an additional delay that

would bias the determination of Td,ph. Therefore, the force signals are filtered backwards

in an off-line procedure with a digital 40Hz low pass filter in order to compensate for the

delay caused by the hardware filter.

Experimental results

The experiments were conducted with 14 healthy subjects. From every subject, 30 pulses

were recorded. For every pulse the delay Td,ph was determined according to Fig. 3.15. The

average delay T d,ph of a subject was calculated by averaging over 30 measurements of Td,ph.

The results are summarized in Tab. 3.1.
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Tab. 3.1: Average delay and standard deviation T d,ph±σTd,ph
calculated over 30 pulses applied

to each subject. Also the average delay T d,ph over all values T d,ph, the standard
deviation σT d,ph

, and the 95% confidence interval Ic [43] of T d,ph have been calcu-
lated.

Subject T d,ph ± σTd,ph
in ms

LS (f,23) 10.2 ± 3.6

BB (m,22) 9.3 ± 3.3

FH (m,22) 11.9 ± 3.1

DD (m,27) 11.0 ± 1.9

JS (f,21) 15.0 ± 3.3

DH (m,22) 12.3 ± 4.6

MK (m,24) 11.7 ± 3.5

TW (f,23) 14.8 ± 3.0

BG (m,24) 12.8 ± 4.1

CA (f,23) 11.6 ± 4.0

JM (m,23) 11.9 ± 3.8

AL (m,25) 14.4 ± 4.3

KS (f,23) 13.6 ± 4.2

AE (m,18) 12.9 ± 3.5

T d,ph ± σT d,ph
12.3 ± 1.7

Ic [11.3 13.3]

3.4.3 Dynamic Force Response to a Single Stimulus

Physiology

When a motor unit is activated, the muscle fibers contract and exert a force, as explained

in Appendix B.1.5. The force response, called twitch, is dynamic with a characteristic

shape as depicted in Fig. B.4. It decays after a period called contraction time.

Model

In the following, the muscle twitch is referred to as its force response FM,a(t). It can

be modeled as an impulse response of an LTI-system. Since FM,a(t) does not show any

oscillating behavior (see Fig. 3.16, e.g.), it can be concluded that the transfer function of

the impulse response model has real poles, only. In [6], model error analysis led to the

conclusion that a third order model yields a sufficiently accurate approximation. Therefore,

the transfer function

Ga(s) =
Ka

(1 + sTa)3
(3.9)
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is used as a model for the muscle twitch FM,a(t) of a recruited motor unit. The time

constant Ta adapts the model to the actual contraction time and Ka is a gain factor. The

time domain equation of (3.9) is calculated as

F̂M,a(t) =
Ka

2T 3
a

t2e
−t
Ta . (3.10)

For further considerations, Eq. (3.10) is time discretized and defined for negative and

positive time separately which yields

F̂M,a(k) =

{
0 for k < 0

Ka

2T 3
a
(kTs)

2e
−kTs

Ta for k ≥ 0
. (3.11)

Data Acquisition and Data Processing

The experiment was conducted with 14 healthy subjects. From every subject, 30 muscle

twitches were recorded. In [6], it was shown that the time constant Ta depends neither on

the stimulation intensity, nor the magnetic pulse width. Therefore, all pulses were applied

with I = 100 % in order to achieve the best possible signal-to-noise ratio and with the

standard pulse width Tp = 90µs.

To fit the model (3.11) to the measured data, all twitches were normalized such that their

peak value is equal to one. In Fig. 3.16, the normalized muscle twitches of every subject

are plotted. For a better illustration, every subject’s average muscle twitch FM,a obtained

from averaging over all 30 measurements is depicted. The time domain equation (3.10)

has to be normalized accordingly which yields

F̂M,a(k) =

{
0 for k < 0

1
(2Ta)2e−2 (kTs)

2e
−kTs

Ta for k ≥ 0
. (3.12)

The optimal time constant T a,opt of each subject was determined by initially minimizing

the quadratic error criterion

E(Ta) = ‖e(Ta)‖
2
2 =

∥∥∥FM,a − F̂M,a(Ta)
∥∥∥

2

2
(3.13)

for all 30 pulses, whereas e = [e(0) e(Ts) e(2Ts) . . . e(kTs)]
T . Minimizing Eq. (3.13)

is a nonlinear least squares problem that has been solved using the Matlab-function

”lsqnonlin” [109]. Secondly, the 30 resulting time constants of each patient were aver-

aged to T a,opt.

Experimental Results

Every muscle twitch was fitted to the model (3.12) in order to determine its time constant

Ta,opt. The subjects’ time constants were averaged to T a,opt. The model accuracy was

calculated for every subject with the NMSE(FM,a, F̂M,a(Ta,opt)) (see Appendix A.4). The

results are summarized in Tab. 3.2.
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Fig. 3.16: The graphs show the average muscle twitches FM(t) of every subject, the average

response FM(t) over all data sets FM(t), and the PT3-approximation F̂M(T a,opt, t)

calculated with the average time constant T a,opt obtained from all experiments with
14 subjects.

3.4.4 Dynamic Force Response to Repetitive Stimuli

Physiology

When a muscle is activated by a magnetic pulse train with a repetition rate frep, the muscle

twitches merge to an unfused or fused tetanus. This effect is called temporal summation

(see Appendix B.1.6). Examples are illustrated in Fig. 3.17.

Model

In contrary to physiological muscle activation, during magnetic stimulation, all recruited

motor units are activated synchronously. Therefore, the muscle force generation during

RPMS can simply be modeled as temporal summation of Eq. (3.11)

F̂M,rep(k) =

∞∑

j=0

F̂M,a(k − jkrep) , (3.14)

with krep = 1/(frepTs). In [6] it has been shown that the model (3.14) describes the temporal

summation with excellent accuracy.

Remark 3.4.1 There are also nonlinear repetition rate dependent characteristics of the

temporal summation (doublet- and triplet-effect [140]) that are not taken into account

in (3.14). In [6], the nonlinear temporal summation is built into the recruitment model.

Here, these effects are not considered, since only the repetition rate frep = 20 Hz is of

interest.
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Tab. 3.2: Time constants and accuracy of the PT3 muscle twitch approximation. For every
subject, the average value T a,opt and its standard deviation σTa,opt is calculated from
30 twitches. The NMSE represents the approximation quality averaged over 30
NMSEs calculated for every twitch of the particular subject. In the last two lines,
the average time constant T a,opt ± σT a,opt

the average NMSE of the whole sample,
and the 95% confidence interval Ic [43] are presented.

Subject T a,opt ± σTa,opt in ms NMSE in %

LS (f,23) 30.8 ± 1.5 3.0

BB (m,22) 28.7 ± 1.4 9.0

FH (m,22) 30.9 ± 1.1 4.6

DD (m,27) 29.5 ± 1.2 2.3

JS (f,21) 26.5 ± 1.3 5.3

DH (m,22) 24.9 ± 2.2 7.8

MK (m,24) 32.3 ± 1.2 4.2

TW (f,23) 27.0 ± 1.7 4.8

BG (m,24) 35.5 ± 1.3 5.5

CA (f,23) 27.0 ± 1.5 2.9

JM (m,25) 29.2 ± 1.5 19.7

AL (m,23) 26.3 ± 1.7 12.4

KS (f,23) 26.4 ± 1.7 10.1

AE (m,18) 29.9 ± 1.2 7.6

T a,opt ± σT a,opt
, NMSE 28.4 ± 2.2 7.2

Ic [27.1 29.7]

The examples in Fig. 3.17 are force responses to repetitive stimulation with stimulation

intensity of I(k) = 100%σ(k). Whereas σ(k) denotes the discrete Heaviside Step Function.

In the following, these force responses are referred to as step responses. After approx. 0.7 s

the step responses reach a plateau. In this ”steady state” FM,rep can be expressed as su-

perposition of a periodic part and a constant part FM,rep. From the model equation (3.14),

the constant part F̂M,rep can be derived as

F̂M,rep =
1

krep

krep−1∑

k=0

∞∑

j=0

F̂M,a(k − jkrep + fs/1Hz) ≈
1

krep

fs/1Hz∑

k=0

F̂M,a(k) , (3.15)

whereas it is assumed that the muscle twitch F̂M,a(k) is decayed after 1 s or k = fs/1Hz

samples. The complete derivation of Eq. (3.15) can be found in [6]. In the following, the

constant part F̂M,rep will also be denominated as gain of the temporal summation.

Besides the dynamics of every single muscle twitch, the temporal summation shows

a dynamic behavior, as well. The step responses of Fig. 3.17 can be interpreted as a
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superposition of a periodic ripple caused by the muscle twitch dynamics with an aperiodic

rise that will be referred to as dynamics of the temporal summation. These dynamics can

be approximated with a PT1 system and hence, the the equivalent model

Ge(s) =
Ke

1 + sTe
(3.16)

with its step response

F̂M,e(t) = Ke(1 − e
t

Te ) (3.17)

is proposed. For further considerations, Eq. (3.17) is time discretized and defined for

negative and positive time separately which yields

F̂M,e(k) =

{
0 for k < 0

Ke(1 − e
kTs
Te ) for k ≥ 0

. (3.18)

The force F̂M,e(k) directly depends on the repetition rate frep = 1/(krepTs) as it can be

inferred from Eq. (3.14), and thus, the time constant Te is specific to the particular choice

of frep. During therapy and during all our experiments, frep is chosen to 20Hz. Therefore,

only this repetition rate is considered.

Data Acquisition and Data Processing

During the experiments, 30 step responses were recorded from each of the 14 healthy

subjects. Since the temporal summation model (3.14) was shown to be valid in [6] and

the PT3 time constant Ta is independent of I and Tp, it is obvious that also the PT1 time

constant Te is independent of I and Tp. Thus, also during the step response experiments,

the stimulation parameters were chosen to I = 100 % and Tp = 90µs.

The model (3.17) was fitted to every measured step response by adapting time constant

Te. Therefore, the force signals were normalized with respect to the steady state value

FM,rep and the gain of model (3.18) was set to Ke = 1. In Fig. 3.17 the normalized results

of every subject are plotted. For a better illustration, every subject’s average step response

FM,rep obtained from averaging over all 30 measurements is depicted.

The identification of the optimal time constants Te,opt for every step response and the

average time constants T e,opt for every subject followed exactly the procedure as described

for the impulse response FM,a(t). The model evaluation was done by calculating the

NMSE(FM,rep, F̂M,rep(Te,opt)) according to Eq. (A.11) as explained in Appendix A.4.

Experimental results

Every subject’s time constant T e,opt was determined by averaging over 30 constants Te,opt

obtained from fitting the model (3.16) measured step responses. The model was evaluated

by calculating the NMSE as the average over all 30 NMSEs calculated for every model fit.

The results are summarized in Tab. 3.3.
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Fig. 3.17: The graph shows the average step responses FM,rep(t) of every subject, the av-

erage response FM,rep(t) over all data sets FM,rep(t), and the PT1-approximation

F̂M,e(T e,opt, t) calculated with the average time constant T e obtained from all ex-
periments with 14 subjects.

3.4.5 Motor Unit Recruitment

Physiology

The number of recruited motor units (MUs) can be modulated with the stimulation in-

tensity I. This relationship is called recruitment characteristics (see Fig. 3.13). The

modulation of the muscle force with the number of recruited motor units is also called

spatial summation (see also Appendix B.1.5). Due to the all-or-none principle of action

potential elicitation, no MU is recruited when stimulating with an intensity below a certain

threshold value Ithr. In the same manner, there exists a saturation value Isat at which all

motor units are active such that a further increase of I has no effect on the recruitment.

Model

To analytically describe the static nonlinear recruitment curve, the formula

ρ̂(I) = β1

(
(I − Ithr) arctan(αthr(I − Ithr)) − (I − Isat) arctan(αsat(I − Isat))

)
+ β2 (3.19)

is used that has been originally introduced in [135] as a model of the recruitment behav-

ior during FES. The parameters Ithr and Isat determine the threshold and saturation as

explained above. With αthr and αsat the curvature in the region of Ithr and Isat can be

adapted and β1, β2 are gain and offset values.
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Tab. 3.3: Time constants and accuracy of the PT1 approximation of the step response: For
every subject the average value T e,opt and its standard deviation σTe,opt is calculated
from 30 twitches. The NMSE gives the approximation quality averaged over 30
NMSEs calculated for every twitch of the particular subject. In the last two lines
the average time constant T e,opt ± σT e,opt

, the average NMSE of the whole sample,
and the 95% confidence interval Ic [43] of T e,opt are given.

Subject T e,opt ± σTe,opt in ms NMSE in %

LS (f,23) 176.8 ± 25.2 0.2

BB (m,22) 125.7 ± 20.1 0.2

FH (m,22) 173.0 ± 22.1 0.2

DD (m,27) 113.4 ± 12.0 0.3

JS (f,21) 112.4 ± 16.5 0.2

DH (m,22) 145.4 ± 11.8 0.2

MK (m,24) 114.3 ± 9.3 0.2

TW (f,23) 96.1 ± 18.1 0.2

BG (m,24) 102.3 ± 9.5 0.3

CA (f,23) 125.9 ± 7.9 0.2

JM (m,25) 111.7 ± 38.3 0.5

AL (m,23) 145.2 ± 18.9 0.2

KS (f,23) 123.7 ± 31.4 0.7

AE (m,18) 138.1 ± 24.6 0.3

T e,opt ± σT e,opt
, NMSE 128.9 ± 24.4 0.3

Ic [114.8 143.0]

Data Acquisition and Data Processing

For the experimental determination of the recruitment characteristics it is assumed that

the number of recruited motor units is proportional to the constant part FM,rep of the

isometric force in steady state (compare to Eq. (3.14)). Therefore, the absolute recruitment

characteristics are defined as

ρ(I) = FM,rep(I) . (3.20)

It is important to note that with this definition, ρ is actually not the number of recruited

motor units but a function that reflects its immediate effect. Thus, strictly speaking,

Eq. (3.19) is a gray box model for the cause and effect relationship between stimulation

intensity and isometric steady state force. In order to make the recruitment curves of

different subjects comparable the relative recruitment

ρr(I) =
ρ(I)

FM,rep(20 Hz, 100 %)
(3.21)
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was introduced. The value FM,rep(100 %) was obtained as the constant part of the force

response in steady state during stimulation with I = 100 % and frep = 20 Hz.

The measurement was conducted by modulating the stimulation intensity according to

I(t) = 100 % sin( t
T
) with 0 ≤ t ≤ T

2
. The periodic time was chosen to T = 80 s. Thus, the

variation of intensity was much slower than the dynamics Ge(s) that describes the dynamics

of the temporal summation occurring during repetitive stimulation with frep = 20 Hz.

Experimental results

The recruitment characteristics was determined for four healthy subjects. In Fig. 3.18 (a),

a measurement result from subject MB is depicted. The model (3.19) has been adapted

to the measured relative recruitment (3.21) by finding the optimal parameters Ithr, Isat,

αthr and αsat. This optimization problem has been solved using the Matlab-function

”fminsearch” [109]. Exemplary parameter sets obtained from 4 different subjects are

summarized in Tab. 3.4.

In contrary to the parameters of the activation dynamics, recruitment parameters that

are specific to a particular subject cannot be determined since the recruitment curve is

very sensitive to the position and orientation of the coil. This sensitivity is illustrated in

Fig. 3.18 (b).

Tab. 3.4: Model parameters and model evaluation for the recruitment characteristics: The
parameters have been determined by adapting the recruitment model to measure-
ments obtained from four subjects. The model is evaluated with the calculation of
the NMSE(ρ(I), ρ̂(I)) according to Eq. (A.11).

Subject Ithr in % Isat in % αthr αsat NMSE in %
MB 59.4 92.1 11.1 8.6 0.25
BB 38.9 71.1 10.3 5.5 0.36
DM 61.1 91.9 5.7 8.3 1.21
BG 65.1 120.2 6.3 7.9 0.8

3.4.6 Complete Model

The complete model is obtained by integrating the physiological delay Td,ph, the tempo-

ral summation F̂M,rep and the recruitment ρ̂(I) into a common model in Hammerstein

structure as depicted in 3.13. The equation is given as

F̂M(k) =
1

F̂M,rep(100 %)

[ ∞∑

j=0

ρ̂(jkrep)F̂M,a(k − kd,ph − jkrep)

]

=
1

F̂M,rep(100 %)

[
ρ̂(0)F̂M,a(k − kd,ph) + ρ̂(krep)F̂M,a(k − krep − kd,ph) + . . .

]
,

(3.22)
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Fig. 3.18: (a) Measurement results and model of the relative recruitment of subject MB: As
explained before, during the measurement, the stimulation intensity has been slowly
increased from 0% to 100% and decreased backwards with a sinusoidal signal I(t).
Both, the measurement during increasing and the measurement during decreasing
intensity are depicted. The model has been adapted to the curve obtained by
averaging both measurements. (b) Relative recruitment of subject BB: Coil position
1 was determined by searching for a position that yielded a very good recruitment.
Then, the coil was slightly moved into position 2. For both positions, the averaged
recruitment measurements are plotted with dashed lines, and the models are plotted
with solid lines.

whereas the physiological delay Td,ph is approximated with kd,ph = round(Td,ph/Ts). Using

Eq. (3.2), the recruitment value ρ̂(jkrep) is calculated as

ρ̂(jkrep) = ρ̂(u(jkrep)) = ρ̂
( ∞∑

i=0

I(jkrep)δ(jkrep − ikrep)
)

=

{
ρ̂(I(jkrep)) for i = j

0 else
. (3.23)
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According to Eq. (3.20), the gain of the linear temporal summation is included in the

absolute recruitment. Since this gain is also inherently included in the formula
∞∑

j=0

FM,a(k − jkrep)

that describes the temporal summation, the normalization with F̂M,rep(100 %) is necessary.

Remark 3.4.2 A correct gain of the model (3.22) could also be achieved by combining

the relative recruitment ρ̂r with impulse responses F̂M,a that are scaled to approximate a

muscle twitch with I = 100 %. The chosen definition is advantageous because the absolute

recruitment directly indicates the stimulation intensity steady state force FM,rep(I).

3.4.7 Discussion

The average physiological delay T d = 12.3 ms shows a relative average interpersonal stan-

dard deviation of 13.8 %. Within 12.3ms, the MAPs propagate a distance of 2.5-7.2 cm,

considering a propagation velocity of 2-6m/s (see Appendix B.1.6). Considering an EIP-

length of 9-13 cm, this distance is within a reasonable range.

The force response to a single stimulus, also called muscle twitch, is modeled with a

PT3 system. The average time constant T a = 28.4 ms shows a relative average interper-

sonal standard deviation of 7.7 % and a spans between 26.3ms and 35.5ms. A parameter

adaptation will be introduced in Chapter 4 that will individualize the dynamic muscle

twitch model to the respective subject. As the NMSE-evaluation indicates, the PT3-

system shows a very good approximation performance. In [6], the same model has been

successfully applied to the m. biceps brachii. The average time constant has been deter-

mined with 38.4 ms. Or rather, the m. biceps brachii has an average contraction time of

450ms whereas the EIP contraction time has been determined to 350ms. This result can

be ascribed to the different sizes of the respective muscles, since in a bigger muscle, the

MAPS have to overcome longer distances.

The enhancement of the mathematical description of the force response for repetitive

stimulation is trivial since the principle of temporal summation can be mathematically

expressed as summation of muscle twitches. This summation is possible since during

RPMS all motor units are recruited simultaneously. In [6], the excellent accuracy of the

summation approach (3.14) has already been shown. Here, the dominant dynamics of the

temporal summation are investigated. These dynamics depend on the repetition rate frep

and have only been analyzed for frep = 20 Hz since this repetition rate is our standard

during therapy, system identification and position-controlled movement induction. The

proposed equivalent system Ge(s) shows excellent model accuracy. The average time con-

stant T e = 128.9 ms has a relative average interpersonal standard deviation of 18.9 %. The

transfer function Ge(s) can be interpreted as an equivalent system with continuous input

that approximates the dominant dynamic behavior of the force produced by the repetitively

stimulated muscle. The knowledge of this dynamic behavior is important for tuning of the

on-line parameter identification of Chapter 4, and the design of the position-controlled

movement induction as it will be introduced in Chapter 5.
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Also the recruitment model yields a very good accuracy, as the model evaluation indi-

cates. The measurements of the recruitment characteristics show a large variation. This

can indeed be due to interpersonal differences of muscle sizes and muscle geometries. How-

ever, the position and the orientation of the coil has an even larger influence on the re-

cruitment curve. Therefore, the recruitment model has to be adapted each time the coil is

placed differently and the coil has to be fixated properly during parameter identification.

The complete model will be used for simulative studies. Since the simulations are

implemented in discrete time, a time discrete model is derived. When integrating the

recruitment curve and activation dynamics into one model equation, it has to be considered

that the gain of the temporal summation (compare to Eq. 3.15) is incorporated in the

absolute recruitment model (3.20), and is also inherently included in Eq. (3.14). This is

taken into account in Eq. (3.22) with the normalization with respect to F̂M,rep(100 %).

It is important to note, that the proposed model has a macroscopic character that does

not explicitly model the electrophysiological processes in the motor unit. Nevertheless,

the input-output behavior of the RPMS-induced force generation can be predicted with a

good accuracy that is sufficient for the simulative studies used in Chapter 4 and 5. Also

an explicit model of muscle fatigue, as it is introduced in [135] has not been derived. In

Chapter 5, it will be shown how muscle fatigue can be identified with an on-line parameter

identification of the model introduced in this section. Experiments that determine the

model parameters of the flexor muscles FDP/FDS have not been accomplished since it is

assumed that the proposed EIP model qualitatively applies to the flexors, too, and the

parameters are individualized by means of system identification, anyway.

3.5 Length-Velocity-Dependencies

Under non-isometric conditions, the length of the muscles attached to the moving limb

changes. As explained in Appendix B.1.6, the muscle’s capability of force generation

depends on its length and its velocity. This dependency is modeled with the force-length

curve (fl) and the force-velocity curve (fv) and is included into the model with the block

”length-velocity-dependencies” (see Fig. 3.1). Under isometric conditions, the output of

this subsystem remains constant and can be considered as a constant gain of the muscle

force generation.

The first mathematical model was introduced by Hill [67]. Since then, many slight

modifications of Hill’s muscle model were published and the most important contributions

are summarized in [135]. Most models were proposed on the basis of experiments with

frog leg muscle fibers. A break down of the block ”length-velocity-dependencies” of 3.1 is

depicted in Fig. 3.19. The gain factor that scales the output of the block ”muscle force

generation” is calculated as fl(α2)fv(α̇2).

3.5.1 Simulative Quantification

In order to simulate the force-length- and the force-velocity-behavior for the index finger

movements, the models proposed in [19; 20] were used. The main differences compared

with the models proposed in the publications summarized in [135] are: Experimental data
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3.5 Length-Velocity-Dependencies

fv

fl

flfv

α2

α̇2
Force-velocity

curve

Force-length
curve

Length-velocity-dependencies

Fig. 3.19: Break down of the block ”length-velocity-dependencies” of Fig. 3.1.

were obtained from rabbit muscles that are more comparable to human muscles than

frog muscles. Furthermore, the proposed force-velocity-curve includes a muscle length

dependency, too, which yields a better approximation than a pure velocity dependency.

The formulae are given as

f̃l(l) = exp

(
−

∣∣∣∣
(l) b1 − 1

b2

∣∣∣∣
b3 )

(3.24)

and

f̃v(l, v) =






c − v

c+ (dv1 + dv2l) v
for v ≤ 0

e − (fv0 + fv1l + fv2l
2
) v

e + v
for v > 0

, (3.25)

whereas l = l/lopt and v = v 1s/lopt, with the muscle length l, the velocity v = dl/dt and the

optimal length lopt at which the muscle can exert maximum force. The model parameters

are summarized in Tab. 3.5.

Tab. 3.5: Parameters of the f̃l and f̃v curves according to [19]: The model distinguishes slow
twitch fibers (Type I) and fast twitch fibers (Type II), see also Appendix B.1.6.

Muscle fiber type b1 b2 b3 c dv1 dv2
e fv,0 fv,1 fv,2

Type I 2.30 1.26 1.62 -4.06 5.88 0 0.18 -4.70 8.41 -5.34
Type II 1.55 0.81 2.12 -7.39 -3.21 4.17 1.05 -1.52 0 0

The optimal lengths l0 for the relevant muscles were taken from [95] and are as follows:

EIP: 105mm, FDP: 149mm and FDS: 140mm. The functions f̃l and f̃v depend on l and

v. In order to obtain functions fl and fv that depend on α2 and α̇2, the relationships (3.6)

and (3.7) have to be applied. The models (3.24) and (3.25) were simulated with position

and velocity ranges that definitely give lower and upper bounds for the MCP-joint motion

during RPMS. With −70 ◦ ≤ α2 ≤ 10 ◦ and −150 ◦/s ≤ α̇2 ≤ −150 ◦/s the factor flfv was

bounded with 0.94 < flfv < 1.06 for all three muscles involved. The ratio between Type I

and Type II fibers was chosen at 50%.
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3 Neuromuscular and Biomechanical Modeling

3.5.2 Discussion

This simulation result shows that during non-isometric RPMS, the scaling with flfv changes

the output of the block ”muscle force generation” by less then 6%. Hence, for the model-

based parameter identification applied to the plant ”RPMS-induced index finger extension

and flexion”, as it will be described in Chapter 4, the length-velocity-dependencies will be

neglected.

3.6 Segment Dynamics

In this section, a model is proposed that simulates the dynamic relationship between the

exerted muscle forces and the resulting motion of the index finger. In particular, the MCP-

joint of the index finger is considered. During all experiments described in the following,

the subject, its arm and its wrist remain in a fixed position, so that the coordinate system

S1 (Fig. 3.10) is stationary. It is furthermore assumed that the angles α3 and α4 remain

constant. Thus, the segment dynamics of the index finger are given with the second order

differential equation

α̈2 =
1

J
τn =

1

J
(τ2 −N1(α2) −N2(α̇2) − τrel) . (3.26)

The block diagram representation is illustrated in Fig. 3.20. The net torque τn acts on

the moment of inertia J and accelerates the finger. The nonlinearities N1(α2) and N2(α̇2)

that subtract from the muscular driving torque τ2 are explained in the following. Our

experiments have shown that the elastic joint properties are not purely static but are

characterized by relaxation effects. This is taken into account by the block ”relaxation

dynamics” that is explained in detail in Section 3.6.3.

τ2

τ2 τn

τrel

α̈2 α̇2

α2

α2
1/J

∫∫

Relaxation
characteristics

N1(α2)

N2(α̇2)

N1+N2+τrel

Segment dynamics

MCP-
joint

Fig. 3.20: Block diagram representation of the segment dynamics of the index finger motion
at the MCP-joint and sign conventions according to the directions of α2 and τ2
defined in Fig. 3.10.
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3.6 Segment Dynamics

3.6.1 Moment of Inertia

In order to calculate a J , the finger phalanges are modeled as solid homogeneous cylinders

with length Li and radius Ri (see Section 3.2.3). Thus, the mass mi of the ith phalanx is

calculated as

mi = πR2
iLids (3.27)

with the specific density ds = 1.1 g
cm3 [184]. The moment of inertia of each cylinder with

respect to the axis of rotation y2 is denoted with Ji,y2 and hence, J can be calculated as

J = J1,y2
+ J2,y2

+ J3,y2

= m1 (
R2

1

4
+
L2

1

3
) +

+m2

(
L2

1 +
L2

2

3
+
R2

2

4
+ L1L2 cosα3

)
+

+m3

(
L2

1 + L2
2 +

R2
3

4
+
L2

3

3
+ L2L3 cosα4 + 2L1L2 cosα3 + L1L3 cos(α3 + α4)

)
.

(3.28)

The derivation of Eq. 3.28 can be found in A.5.

3.6.2 The Nonlinearities N1(α2) and N2(α̇2)

The static nonlinear function N1(α2) summarizes the gravitational torque τg(α2) and the

elastic properties τep(α2) of the joint and of the attached muscle-tendon units and is given

with

N1(α2) = τg(α2) + τep(α2) . (3.29)

The gravitational component can be approximated using the cylinder model as used for the

moment of inertia J . The elastic joint and muscle properties τep(α2) can be approximated

with a double exponential function as

τep(α2) = a(eb(α2−α2,r) − ec(α2−α2,r)),

with the equilibrium joint angle α2,r and the design constants a, b and c (see [37], e.g.).

Fig. 3.21 illustrates a typical curve that shows a nearly linear behavior in a region around

the equilibrium angle.

The static nonlinear function N2(α̇2) comprises the joint friction τf (α̇2), as well as

viscous dissipative properties of the muscle-tendon unit τvm(α̇2) and is given as

N2(α̇2) = τf (α̇2) + τvm(α̇2) . (3.30)

The actual friction occurring in the joints is negligible compared to the viscous muscle-

tendon properties. The latter are typically approximated as

τvm ∝ sign(l̇m)|l̇m|
1/2,
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3 Neuromuscular and Biomechanical Modeling

with the muscle contraction speed l̇m (see [58; 60], e.g.). According to Eq. (3.6) and

Eq. (3.7), the muscle contraction speed l̇m is proportional to α̇2 and the approximation

τvm(α̇2) ∝ sign(α̇2)|α̇2|
1/2

applies (see Fig. 3.21).
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Fig. 3.21: Left: Model of the elastic joint properties τep in the index finger according to [37].
Typically, the torque increases rapidly near -90◦ flexion and in extension configura-
tion (α2 > 0.) Right: Model of the viscous dissipative properties of the muscle-
tendon-unit according to [58].

Average parameters of τg, τep, and τvm are not determined in experimental studies since

the nonlinear functions N1(α2) and N2(α̇2) will be adapted to the respective subjects using

a system identification approach as presented in Chapter 4.

Remark 3.6.1 As mentioned in the introduction of this chapter, the elastic and the vis-

cous muscle properties are usually modeled with separate equations and summarized to-

gether with the length-velocity-dependencies as muscle contraction dynamics. Here, they

are integrated into the segment dynamics in order to summarize all static nonlinear func-

tions, that are not involved in active muscle force generation, within the nonlinearities

N1(α2) and N2(α̇2). This is formally correct but does not reflect the topology of the plant

since the segment dynamics only describe the kinetics of the limb itself. Nevertheless, this

approach simplifies the mathematical description, and will be advantageous for the system

identification that will adapt the qualitative model to the respective subject as described in

Chapter 4.

3.6.3 Relaxation Characteristics

Our observations have shown that the approximation of the passive elastic properties with a

static function τep(α2), which is a sufficiently accurate model for the knee joint or the elbow

joint, e.g., does not suffice when modeling the passive elastic joint properties of the MCP-

joint. Instead, the passive torque is subject to a relaxation phenomenon that has to be

approximated with a dynamic model. In order to determine the relaxation characteristics,
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3.6 Segment Dynamics

torque-position-measurements are carried out. For these measurements, the Fingertester

depicted in Fig. 3.22 has been developed (see also Appendix C and [214]). It moves

the MCP-joint of the index finger in a horizontal plane along a predefined trajectory and

measures the exerted torque τme, whereas the direction of τme is defined equally to the

direction of τ2.

Phenomenon

If the MCP-joint is moved along a sinusoidal trajectory (α̇2 ≈ 20◦/s), a hysteresis-

shaped torque τme is recorded which significantly differs from a purely static approximation

(Fig. 3.23, left). The graph on the right hand side of Fig. 3.23 shows the measured torque

response to a position step ∆α2. As indicated with the dashed curve, τme can be approxi-

mated with a exponentially decaying process with the relaxation time constant Trel.

α2 τme

Fig. 3.22: The Fingertester: Self built measurement device that measures angle-torque-curves
of the MCP-joint.

Model

A Maxwell element is proposed as a model of the relaxation behavior illustrated in Fig. 3.23.

It consists of a linear damper in series with a linear spring. A schematic of the MCP-joint

with a mechanical equivalent is depicted in Fig. 3.24. Spring and damper of the Maxwell

element are characterized by the damping constant Drel, and by the spring constant Erel.

Based on the element equations τE = ErelαE and τD = DrelαD and the deformation

constraints α2 = αE + αD and τE = τD = τrel, the constitutive equation

τ̇rel = Erelα̇2 −
1

Trel
τrel (3.31)
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Fig. 3.23: Left: Measured torque τme during sinusoidal movement of the MCP-joint compared
to a static approximation. Right: Step response experiment and first order model.
The MCP-joint has been moved along a position step ∆α2. The initial angle α2,0

is given with the equilibrium position at which the finger remains without applying
muscle forces or external forces, i.e. N1(α2,0) = 0.

can be easily derived with the relaxation constant Trel = Drel/Erel. This differential equation

can be integrated into the segment dynamics (Fig. 3.20) with the PT1 transfer function

τrel(s)

sα2(s)
=

Erel

s+ 1/Trel

. (3.32)

N1(α2)

N2(α̇2)

α2

α2

τme

τme

Drel Erel

τrel

Maxwell
element

αd αeτD τE

Fig. 3.24: Proposed model of the passive joint properties: The nonlinearities N1(α2) and
N2(α̇2) are modeled as nonlinear spring and nonlinear damper. The Maxwell element
in parallel connection approximates the relaxation behavior.
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3.6 Segment Dynamics

3.6.4 Model Identification and Verification

To identify the parameters of moment of inertia and relaxation and the nonlinearities

N1(α2) and N2(α̇2), experiments with 18 healthy subjects were accomplished. The moment

of inertia was determined simply by collecting anthropometric data, whereas the relaxation

and the nonlinear functions were analyzed in a two stage system identification process. The

model was verified and evaluated by calculation of the relative model error.

Moment of Inertia

The lengths Li and the radii Ri of the index finger segments of 15 subjects were measured.
Subsequently, the moment of inertia J was calculated according to Eq. (3.28). The average
configuration of the PIP- and the DIP-joint were assumed to be α3 = −30◦ and α4 = −10◦

if wrist and fingers are in a relaxed position. The anthropometric data are summarized in
Tab. 3.6.

Tab. 3.6: Anthropometric data of the left index finger taken from 15 healthy subjects. Every
subject’s sex and age is indicated in parenthesis in the first column. Units: Li and
Ri in mm, J in 10−5kgm2. The last two lines indicate the average values µ, the
standard deviations σ, and the 95% confidence interval Ic [43].

Subject L1 L2 L3 R1 R2 R3 J

LS (f,23) 46 26 22 19 16 14 3.2

BB (m,22) 43 25 25 20 17 16 3.3

FH (m,22) 52 33 23 22 18 16 6.5

DD (m,27) 50 27 26 21 18 16 5.1

JS (f,21) 42 22 22 19 16 15 2.5

DH (m,22) 52 30 26 21 18 15 6.8

PB (f,50) 44 25 21 18 16 15 2.9

MK (m,24) 57 32 25 19 18 17 7.1

TW (f,23) 51 28 22 20 17 14 4.6

BG (m,24) 50 27 23 20 17 15 4.4

CA (f,23) 45 24 23 18 16 15 2.8

JM (m,23) 49 22 22 19 17 10 3.2

AL (m,25) 41 30 24 21 18 16 3.7

KS (f,23) 40 26 23 18 15 14 2.2

BES (m,22) 54 31 22 21 18 17 6.8

AE (m,18) 51 27 26 25 21 16 6.9

RH (m,18) 40 27 24 21 18 16 3.2

BS (m,18) 52 30 28 22 19 17 6.7

µ ± σ 47.7±5.2 27.3±3.2 23.7±1.9 20.2±1.8 17.4±1.4 15.2±1.6 4.6 ± 1.8

Ic - - - - - - [3.7 5.4]
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3 Neuromuscular and Biomechanical Modeling

Relaxation characteristics and the Nonlinearities N1(α2) and N2(α̇2)

The relaxation parameters and static nonlinearities were identified in a two stage identi-

fication process. The Fingertester (Fig. 3.22) was attached to the subject’s index finger.

During the measurements the subjects were asked to relax as much as possible so that no

muscular driving torque τ2 is applied. Thus, the finger was moved only with the driving

torque of the measurement device that is equal to measured torque τme.

In the first stage, the relaxation parameters were determined with a step response

experiment (see Fig. 3.23, graph on the right). The applied angular trajectory consisted

of three steps from the subject’s equilibrium position α2,0 to α2,0 + ∆α2 and three steps

in opposite direction, back into the equilibrium position. Each step was followed by a 70 s

period of constant position. The step size was chosen to ∆α2 = 30 ◦. The relaxation curves

recorded for each hand were averaged in order to reduce sensor noise and measurement

artifacts.

Immediately after the position step at time t+0 , the damper can be considered as stiff

and hence, the exerted torque is calculated as

τme(t
+
0 ) = Erel∆α2 +N1(α2,0 + ∆α2) . (3.33)

Subsequently, the damper becomes active until the spring Erel is completely relaxed.

Therefore, N1(α2,0 + ∆α2) can be inferred as τme(t → ∞) and the parameter Erel can

be calculated from Eq. (3.33). The relaxation time constant Trel is obtained with the tan-

gent method as indicated in Fig. 3.23. The parameter identification results are summarized

in Tab. 3.7.

Since the mean values T rel and Erel did not show significant differences between right

and left hand, further evaluations can be done with a calculation basis of 30 experiments.

The 95% confidence intervals as well as the mean values with standard deviation calculated

with a basis of 30 experiments are summarized in Tab. 3.8.

In the second stage, the static functions N1(α2) and N2(α̇2) were estimated using a

system identification approach that approximates N1(α2) and N2(α̇2) with normalized

radial basis function (NRBF-) networks (see Section 4.3.1). The model parameters were

adapted in output error configuration (see Section 2.2.1). Since the relaxation dynamics

were already identified, they were integrated as known subplant into the model, and only

the parameters of the estimated functions N̂1(α2) and N̂2(α̇2) were subject to identification

(see Fig. 3.25). Using Eq. (3.26) with τ2 replaced by τme, yields

τme = Jα̈2 +N1(α2) +N2(α̇2) + τrel .

Since the finger was moved along a trajectory with low acceleration and the moment of

inertia J is very small, the term Jα̈2 can be neglected.

As parameter identification, a Levenberg-Marquardt algorithm was applied (see [211]).

Details about the NRBF-approximation, the output error configuration and the LM-

adaptation are given in Chapters 2 and 4.

The identification results are depicted in Figs. 3.26 and 3.27. The position dependent

component N̂1(α2) follows the typical double exponential characteristics of the model il-
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3.6 Segment Dynamics

Tab. 3.7: Experimentally identified relaxation time constants Trel and spring constants Erel

from 15 healthy subjects. Sex and age of every subject are written in parenthesis in
the first column.The last two lines indicate the mean values T rel and Erel, and the
standard deviations σTrel and σErel.

Left hand Right hand

Subject Trel in s Erel in Ncm/◦ Trel in s Erel in ◦

AV (m, 39) 0.73 0.11 0.58 0.34

BS (f, 23) 0.38 0.12 0.41 0.16

DM (m, 23) 0.87 0.19 0.76 0.13

DD (m, 22) 0.76 0.14 0.58 0.15

EV (f, 37) 0.73 0.11 0.57 0.19

FK (m, 28) 0.54 0.09 0.49 0.22

JH (m, 33) 0.75 0.14 0.56 0.13

ML (f, 29) 0.93 0.07 0.95 0.03

MS (m, 23) 0.49 0.17 0.99 0.10

MR (m, 24) 1.29 0.10 1.25 0.09

MB (m, 28) 0.58 0.10 0.53 0.16

ME (m, 26) 1.05 0.18 1.03 0.18

MJ (m, 25) 0.59 0.13 0.53 0.14

SE (f, 22) 0.53 0.06 0.70 0.08

SS (f, 23) 0.42 0.09 0.91 0.07

T rel and Erel 0.71 0.12 0.72 0.14

σTrel and σErel 0.25 0.04 0.25 0.07

Tab. 3.8: Mean values T rel, Erel and standard deviations σTrel and σErel and the respective
95% confidence intervals Ic [43] calculated with a basis of 30 experiments.

Trel in s Erel in Ncm/◦

T rel and Erel 0.72 0.13
σTrel and σErel 0.25 0.05
Ic [0.63 0.81] [0.11 0.15]

lustrated in Fig. 3.21. Since the movement was accomplished in a range that is convenient

for the subjects, the recorded curve barely exceeds the linear region. A nonlinear increase

of the reset torque can be observed for angles α2 < −60 ◦, only.

The velocity dependent component N̂2(α̇2) does not coincide with the model of Fig. 3.21.

Only for angular velocities |α̇2| < 50 ◦/s the amount |N̂2(α̇2)| of mechanical resistance

increases. Every subject shows strong nonlinearities even with a decrease of mechanical

resistance for |α̇2| > 50 ◦/s. It is therefore assumed that the curves N̂2(α̇2) identified by

79



3 Neuromuscular and Biomechanical Modeling
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Ĵ α̈2

α2, α̇2, α̈2

Fig. 3.25: Output error configuration for the identification of the static nonlinearities N1 and
N2. All estimated values and functions are indicated with ”ˆ ”. The dashed lines
indicate that the term Ĵ α̈ is neglected.
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Fig. 3.26: Identification results of the position dependent passive joint torque N1(α2) from
the right hand of 15 healthy subjects.

the parameter estimation algorithm reflect not only passive viscous properties but also

phasic muscle stretch reflex activity (see Appendix B.3.4) occurring for angular velocities

|α̇2| > 50 ◦/s.

Model Verification

The model for the relaxation behavior and the static nonlinearities is verified by eval-

uating the NMSE(τme, τ̂me) (see Appendix A.4) for every subject, whereas τme =
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Fig. 3.27: Identification results of the velocity dependent passive joint torque N2(α̇2) from the
right hand of 15 healthy subjects.

[τme(0) τme(Ts) τme(2Ts) . . . τme(kTs)]
T . In Fig. 3.28, the model error e is plotted during

the process of parameter identification. The NMSE is calculated, once the parameters

have converged to their final value. The results are summarized in Tab. 3.9. Averaging

over all 30 results of Tab. 3.9 yields NMSE = 0.41 %. In order to evaluate, whether the

average values T rel and Erel of Tab. 3.8 provide a sufficiently accurate approximation for

every subject, the calculation NMSE of the was repeated when parameterizing the relax-

ation model with T rel and Erel instead of using the individual parameters identified in the

first stage. Then, the mean NMSE increased slightly to NMSE = 0.45 %.
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e = τme − τ̂me

Fig. 3.28: Exemplary illustration of the measured torque τme compared with the model output
τ̂me during parameter adaptation.
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Tab. 3.9: NMSE(τme, τ̂me) of the left and right hands of all 15 subjects, calculated according
to Eq. (A.11).

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
erel left in % 0.5 0.4 0.3 0.5 0.4 0.5 0.4 0.4 0.3 0.7 0.4 0.3 0.3 0.4 0.4
erel right in % 0.4 0.4 0.3 0.5 0.4 0.3 0.4 0.3 0.7 0.6 0.4 0.4 0.4 0.4 0.3

3.6.5 Discussion

The typical segment dynamics model consisting of a double integrator and two static non-

linearities turns out to be insufficient for the MCP-joint of the index finger. As shown

in [209], a purely static approximation of τme yields in average NMSE = 2.9 %. The re-

spective relative model error (see Eq. A.13) was calculated as er = 40, 3 %. When including

the relaxation model, the average NMSE can be reduced to NMSE = 0.41 %. Considering

that this corresponds to an average model error er = 6.71 %, it is clear that taking into

account the relaxation effect significantly improves the model accuracy. When parame-

terizing the relaxation model with the average parameters T rel and Erel that have been

experimentally determined from measurements of 30 hands the NMSE increases slightly

to NMSE = 0.45 %. From these results, it can be concluded that the average values

T rel and Erel obtained experimentally from a sample of 30 hands yield a valid general

approximation of the relaxation characteristics of the MCP-joint. The incorporation of

the relaxation model is crucial for the system identification of the RPMS-induced index

finger movement as introduced in Chapter 4. This can be easily understood when looking

at force-torque curve depicted in Fig. 3.23, and the output error configuration depicted

in Fig. 3.25. Similar to what will be implemented for the nonisometric identification de-

scribed in Chapter 4, the estimate τ̂rel of the relaxation torque is used to compensate for

τrel within the model (lower branch of output error configuration in Fig. 3.25). If the

relaxation is not compensated, the hysteresis-shaped curve of τme (left plot of Fig. 3.23)

yields ambiguous measurements for the same positions α2 which is an inconsistency the

identification algorithm cannot cope with.

The identified static nonlinearities N̂1(α2) depicted in Fig. 3.26 show the typical shape of

the double exponential model as it can be observed in the relevant literature. However, the

identification result of the velocity dependent component N̂2(α̇2) (Fig. 3.27) differs from

the typical friction model where the frictional reset torque τvm increases monotonically

with the joint velocity. Since this deviation has similar characteristics among the majority

of the subjects this deviation cannot be ascribed to voluntary muscle activity. Instead,

it is likely that phasic reflex activity occurring when muscle stretch velocity exceeds a

certain threshold is reflected in N̂2(α̇2). Since the functions N̂1(α2) and N̂2(α̇2) show

large interpersonal differences, they are be subject to system identification as presented in

Chapter 4.
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3.7 Spastic Joint Torque

Spasticity is defined as a velocity dependent increase of muscle tone during muscle

stretch [92]. The current state of the art concerning the underlying mechanisms is ex-

plained and summarized in Appendix B.3.4 and B.4. Since model-based spasticity quan-

tification is a goal of this thesis, in this section, a simple spasticity model is derived and

qualitatively verified.

3.7.1 Simplified Model

The schematic in Fig. 3.29 illustrates in a simplified manner, how spasticity results from a

lesion in the CNS (compare with Fig. B.13). As a result of a stroke or a spinal cord injury,

the input from higher levels (sensorimotor cortex, e.g.) may be reduced or completely

lost. Therefore, the activity of the muscle stretch reflex cannot be sufficiently regulated

any more. This is called reflex disinhibition. The clinical appearance is a nonphysiological

flexion of the affected limbs. The resulting spastic joint torque depends on the muscle

length and on the muscle velocity since Ia- and II-afferents are involved in the reflex loops.

The muscle length depends on the angle of the respective limb. Therefore, in the case of the

MCP-joint of the index finger, the spastic joint torque s(α2, α̇2) is introduced as a function

of α2 and α̇2. Since the position and the velocity information of the Ia- and II-afferents is

encoded with the firing rate of action potentials that are summed at the α-Motoneuron, it

is reasonable to model s(α2, α̇2) as a sum of a tonic and a phasic component:

s(α2, α̇2) = st(α2) + sph(α̇2) . (3.34)

This approach allows the integration of the spastic joint torque into the static nonlinearities

of the segment dynamics that are extended to

N1(α2) = τg(α2) + τep(α2) + st(α2) (3.35a)

N2(α̇2) = τf (α̇2) + sph(α̇2) . (3.35b)

Remark 3.7.1 Integrating the spasticity into the segment dynamics is physiologically in-

consistent since the spastic joint torque is generated by the effected muscles and therefore,

it should be integrated into the plant of muscle force generation. However, the proposed

model structure allows the application of a highly capable system identification approach as

it is discussed in Chapter 4. Furthermore, in the real plant, the relation between α2, α̇2

and s(α2, α̇2) is not static, since the reflex loop causes a delay, and the muscle activation is

a dynamic process. Though, during RPMS-induced movements, the bandwidth of the joint

angle signal α2(t) and the angular velocity signal α̇2(t) is small compared to the bandwidth

of the muscle activation dynamics. Thus, a static approximation is reasonable. Static

spasticity models have been proven valid in [38; 39; 150], e.g..
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Input from higher levels

α

α-Motoneuron Ia
II

Muscle spindle

Disinhibition

s(α2, α̇2)

Lesion

Fig. 3.29: Simplified spasticity schematic: A lesion in the central nervous system may decrease
the input from higher levels that inhibits the stretch reflex activity. This disinhibition
results in a spastic joint torque s(α2, α̇2). An explanation of the illustrated muscle
stretch reflex can be found in Fig. B.13.

3.7.2 Qualitative Model Verification

In order to verify, whether the separation of s(α2, α̇2) according to Eq. (3.34) is valid,

measurements with six patients were accomplished. Patient 1-5 have been suffering from

spastic paresis as a consequence of a stroke. Patient 6 has suffered from a dystonia2 by

birth. During the measurement, the MCP-joint torque was recorded while extending the

index finger with the Fingertester (see Appendix C). The velocity dependence of the

spastic joint torque was examined by extending the index finger at three different angular

velocities α̇2: 15, 30 and 60 ◦/s. The measuring results are depicted in Fig. 3.30.

Compared with the curves of N̂1(α2) that have been obtained as a system identification

result from healthy subjects, the curves measured from spastic patients show a higher

amount of reset torque. A qualitative inspection of the measurement results shows, that

τme increases when increasing α̇2. Furthermore, it can be seen, that the increase τme

remains nearly constant over the complete range of α2. Therefore, it can be concluded,

that the velocity dependency of spasticity is to a certain extent independent of the muscle

length. Thus, the approach (3.34), i.e. the separation of the spastic joint torque into a

sum of a purely position dependent and a purely velocity dependent component, can be

considered as valid, at least for the spasticity in the index finger flexors.

2Dystonia is a neurological disorder that affects the motor system: Muscle contractions may cause twisting
movements of the limbs or abnormal postures.
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Fig. 3.30: Measured MCP-joint torque τme of six patients: Patient 1-5 suffer from spastic
paresis as a consequence of a stroke, patient 6 suffers from a dystonia by birth.
Each patient’s index finger of the affected hand has been extended with three
different angular velocities.

3.7.3 Discussion

According to measurements at six spastic paretic stroke patients the spastic joint torque

in the MCP-joint can be separated into a tonic and phasic component. This separation is

inspired by the physiology of the stretch reflex that is dependent on I- and II-afferents. It

is important to note the this assumption has been verified by qualitative evaluation and

for the index finger, only. Therefore, the proposed model cannot be assumed to be valid in

general. Nevertheless, it is a useful approach for the special case considered in this thesis.

The result of this section allows a system identification based monitoring of changes in

spasticity with a break down into position and velocity dependent components. This can

be achieved simply by tracking the nonlinear functions N̂1(α2) and N̂2(α̇2).
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3.8 Summary and Conclusions

In this chapter, a model of the RPMS-induced index finger extension has been proposed.

For this purpose, the subplants illustrated in the general overview of Fig. 3.1 have been

considered separately.

The force transmission as well as the muscle contraction dynamics have been modeled

using existing knowledge gathered from a literature review, since a lot of research has been

done in this area and there exist well established results.

The segment dynamics are modeled using a combination of the classical structure of

a double integrator with static position and velocity feedback with a dynamic position

feedback that takes into account the strong relaxation effect in the index finger. The

relaxation model has been experimentally parameterized and verified. Compared to a

segment dynamics model with purely static velocity feedback, the incorporation of the

relaxation yields a decrease of the relative prediction error by more than 30%. This

improvement is crucial for the system identification introduced in Chapter 4.

Measurements with spastic patients have verified the simple model of the spastic joint

torque in the MCP-joint of the index finger. This model expresses the spasticity as a sum

of a purely static and phasic component and can therefore integrated into the equations of

the segment dynamics. These equations are subject to system identification as explained in

Chapter 4 and therefore, this approach provides the basis for the spasticity quantification

as it is presented in Chapter 5.

The proposed force generation model is based on the fundamental work presented in [6].

Model parameters that are specific to the EIP have been determined from experimental

studies and it was verified that the model structure of [6] provides an excellent prediction

of the input-output behavior. Additionally, a simplified model that predicts the dominant

dynamic behavior of the force generated during repetitive stimulation has been proposed

and experimentally verified. The detailed EIP-model based on [6] can be used for stud-

ies which require an accurately simulated plant. The simplified model provides useful

information for controller design.

For the verification and the parameterization of the different models, biomechanical

measurements were conducted. During the experiments, the subjects were required to relax

as much as possible to avoid artifacts and biasing. This is possible only, if the experimental

setup allows the subjects to adopt a convenient and relieving posture. Therefore, our

measurement devices, like the measurement orthosis, the force sensor (Fig. 3.14) and the

Fingertester (Appendix C), were carefully designed and constructed to meet not only

the technical requirements like resolution and accuracy, but also ergonomic aspects. All

measurements were repeated multiple times with the same subject in order to reduce

random errors as much as possible.
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4.1 Introduction

The system identification during RPMS yields the basis for the three goals formulated in

Chapter 1: Automated therapy monitoring and assessment during simulation, position

controlled induction of functional movements and the EMG-driven therapy mode.

The identification of the input-output properties of stimulated muscles and the attached

limbs has been a topic of active research for several decades. The resulting muscle-limb

models can be used for simulations that are useful in the context of neural prostheses

design, e.g.. For this purpose, qualitative knowledge of the model behavior obtained from

off-line identification is sufficient. If the model is used for adaptive control or monitoring

of patient parameters, like muscular fatigue, on-line parameter estimation methods have

to be applied. The identification can be conducted under isometric or nonisometric con-

ditions (see also Section 3.4). Under isometric conditions, the plant of force generation

can be identified, whereas under nonisometric conditions, additional information about the

segment dynamics and the passive elastic properties of joints muscles and tendon can be in-

ferred. Although muscle fatigue could be observed with isometric experiments, movement

dependent phenomena like spasticity can only be identified under nonisometric conditions.

In [6], a nonisometric on-line identification of an RPMS-induced elbow flexion and ex-

tension was developed. With the exception of this study, the current state of the art

comprises identification of electrically stimulated muscles only. In [53; 54], isometric mus-

cle models were identified by means of experiments using rabbit muscles. In [41], isometric

experiments with the human quadriceps muscle (shank extensor) were conducted. In [48]

and [133], the quadriceps was modeled, too and identified under isometric as well as un-

der nonisometric conditions. In all five studies off-line identifications were carried out.

On-line identification of the quadriceps under nonisometric conditions is described in [23]

and [147]. The parameter identification algorithm of the former requires either direct mea-

surement of the angular acceleration or its numerical computation. The measurement of

acceleration requires an additional sensor. The numerical computation limits the on-line

capability since extensive filtering is necessary in order to obtain useful signals. The lat-

ter approach only adapts the model parameters of the force generation and assumes the

remaining plant to be known. For the system identification based spasticity quantification

as it will be presented in Chapter 5 this assumption does not hold.

In this chapter, the system identification of the RPMS-induced index finger extension

will be introduced. The model that has been developed in Chapter 3 yields only qualitative

information. In order to obtain quantitative information that is specific to a subject, the

model has to be individualized. For this purpose, on-line parameter adaptation algorithms

based on the error models derived in Chapter 2 will be applied. First, isometric conditions
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are investigated in order to test and evaluate the identification of the force generation plant

separately. Secondly, nonisometric identification will be carried out. In both cases, first

simulations are implemented in order to test the performance, accuracy and robustness

of the proposed approach. Subsequently, the identification schemes are applied to data

obtained from real experiments with healthy subjects.

The novel scientific contributions introduced in this Chapter are the transfer of the

theoretical results derived in Chapter 2 into a real application on the one hand, and the

nonisometric on-line system identification of the RPMS-induced index finger extension with

a macroscopic model on the other hand.

This chapter is organized as follows: In Section 4.2, the isometric case is considered,

and a model equation is derived that will be formulated in SNLP-structure (compare to

Eq. (2.5c)). An identification scheme according to EM C1 will be presented. In Section 4.3,

the model equation is enhanced for the nonisometric case. The identification will be imple-

mented according to EM C2. Due to sampled data acquisition, input-output observations

are in discrete time and hence, the adaptive systems are implemented in discrete time, too.

Therefore, throughout this chapter, discrete time signals are used that are denoted as s(k)

with k =̂ kTs, whereas Ts = 1 ms is the sampling time of the discrete implementation.

4.2 Identification under Isometric Conditions

In isometric configuration, only the force generation part of the complete plant is considered

(compare Fig. 3.1 and Fig. 3.13). In order to integrate the plant of Fig. 3.13 into an adaptive

system, first a parametric model equation will be derived. The physiological delay between

the applied magnetic stimulus and the onset of the muscle twitch (see Section 3.4.2) will

not be integrated into the model equation. Instead, it will be taken into account in the

implementation of the identification algorithm as explained in Section 4.2.2.

4.2.1 Model Equation

Muscle Twitch

The muscle twitch (dynamic force response) can be approximated by a third order LTI-

system as verified in Section 3.4. Thus, it seems appropriate to utilize the coefficients of a

third order difference equation for parameter identification. This formulation has two main

drawbacks: Firstly, it predefines the model order that is in reality unknown. The third

order approximation is only a trade- off between model complexity and performance. The

shapes of the measured muscle twitches illustrated in Fig. 3.16 clearly show that an exact

reproduction could only be achieved with much higher order. As explained in [121], e.g.,

the predefinition of the model order when not exactly known may yield poor identification

results. Secondly, the difference equation approach yields a NARX-model equation that

has to be identified in equation error configuration [121] which is much more sensitive to

sensor noise.

For these reasons, an FIR equation is proposed that approximates the muscle twitch

with the truncated impulse response ĥ = [h(0) . . . h(m)]. Thus, the muscle force F̂M can
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be calculated as convolution of ĥ with the output of the recruitment function ρ̂(u(k)):

F̂M (k) =

m∑

i=0

ĥ(i)ρ̂(u(k − i)) . (4.1)

A contraction time of approx. 350ms and a sample time Ts = 1 ms yields m = 350 and thus

model (4.1) comprises 351 parameters that have to be adapted. In order to remedy this

shortcoming the number of parameters is reduced by expressing ĥ as a linear combination

of orthonormal basis functions (OBFs) [121].

As explained in [6] warped sine-functions

r1(i) =
(

m
2

)−0.5
exp

(
−(i−0.5)/ζ

)
with i = 0 . . .m

and rl(i) =
(

m
2

)−0.5
sin

((
l − 1

)
π
(
1 − exp

(
−(i−0.5)/ζ

)))
with

i = 0 . . .m

l = 2 . . .mr

(4.2)

are well suited basis functions for the approximation of the muscle twitch. These functions

were initially introduced in [84; 91]. The variable mr determines the number of basis

functions and the variable ζ is the so called form factor that determines the degree of

warping. The choice of mr and ζ is heuristic. However, in [91], the following rules of

thumb are given for the approximation non-oscillating systems like the muscle twitch:

Choose ζ ∼= T63/Ts whereas T63 is the time at which the system reaches 63% of its steady

state value of its step response and choose mr
∼= 6. Using matrix notation, the basis

functions can be summarized as

R =





r1(0) r1(1) . . . r1(m)

r2(0) r2(1) . . . r2(m)
...

...
. . .

...

rmr(0) rmr(1) . . . rmr(m)




=





rT
1

rT
2
...

rT
mr




. (4.3)

For a unique parameter identification the basis functions have to be orthonormal [121]. An

orthonormalized matrix R̃, i.e. R̃R̃
T

= I, can be obtained using the Cholesky orthonor-

malization

RT = R̃
T
C with RRT = CT R̃ R̃

T

︸ ︷︷ ︸
!
=I

C = CT C

⇒ R̃
T

= RT C−1 ⇒ R̃ =




r̃1(0) . . . r̃1(m)

...
. . .

...

r̃mr(0) . . . r̃mr(m)



 =




r̃T
1
...

r̃T
mr



 =
(
CT
)−1

R

(4.4)

whereas the matrix C summarizes the so called Cholesky factors (see [56],e.g.). It can be

computed using the Matlab-function ”chol” [109].

With the impulse response

ĥ(i) =

mr∑

l=1

θ̂M,lr̃l(i) ∀ i = 0 . . .m (4.5)
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Eq. (4.1) can be written as

F̂M(k) =

m∑

i=0

mr∑

l=1

θ̂M,lr̃l(i)ρ̂(u(k − i)) . (4.6)

whereas the number of parameters θ̂M,l has been reduced from m to mr.

Recruitment Characteristics

The recruitment curve is modeled according to Eq. (3.19) with the following modifications:

The gain β1 is set to β1 = 1 since the gain of the complete Hammerstein model is implicitly

included in Eq. (4.6), already. Since it is clear from physiology that ρ̂(0) = 0, the offset

value β2 is chosen appropriately. With the parameter vector η̂T = [Îthr Îsat α̂thr α̂sat] the

model equation of the recruitment curve is given as

ρ̂(η̂, u(k)) = (u(k) − η̂1) arctan(η̂3(u(k) − η̂1)) − (u(k) − η̂2) arctan(η̂4(u(k) − η̂2))

+ η̂1 arctan(−η̂3η̂1) − η̂2 arctan(−η̂4η̂2)︸ ︷︷ ︸
β2

. (4.7)

Complete Model Equation

The recruitment model is integrated into the muscle twitch model by inserting Eq. (4.7)

into Eq. (4.6) which yields

F̂M(k) =

m∑

i=0

mr∑

l=1

θ̂M,lr̃l(i)ρ̂(η̂, u(k − i))

=

mr∑

l=1

θ̂M,l

m∑

i=0

r̃l(i)ρ̂(η̂, u(k − i))

=
mr∑

l=1

θ̂M,l

[
r̃l(0)ρ̂(η̂, u(k)) + . . .+ r̃l(m)ρ̂(η̂, u(k −m))

]
. (4.8)

With u(k) = [u(k) . . . u(k − m)]T , ρ̂(η̂, u(k))T = [ρ̂(η̂, u(k)) . . . ρ̂(η̂, u(k − m))] and with

θ̂
T

M = [θ̂M,1 . . . θ̂M,mr ] it follows

F̂M (k) =
mr∑

l=1

θ̂M,l

[
r̃T

l ρ̂(η̂, u(k))
]

= θ̂M,1r̃
T
1 ρ̂(η̂, u(k)) + . . .+ θ̂M,mr r̃

T
mr
ρ̂(η̂, u(k))

= θ̂
T

M

[
r̃T
1 ρ̂(η̂, u(k)) . . . r̃

T
mr
ρ̂(η̂, u(k))

]T

= θ̂
T

M

[
R̃ρ̂(η̂, u(k))

]T

= θ̂
T

MϕM
(η̂, u(k)) . (4.9)

The result of Eq. (4.9) shows that the complete Hammerstein structure of the isometric

force generation can be expressed as SNLP-model according to Eq. (2.5c). The parameter
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Hammerstein model, Eq. (4.9)

u
e

y = Fs
∧
= FM

ŷ = F̂s
∧
= F̂M

ρ̂
u(k − kd,c)

Fig. 4.1: Output error configuration for identification of the plant ”muscle force generation”.

space is given with θ̂M ∈ Ωθ̂M
⊂ R

mr and η̂ ∈ Ωη̂ ⊂ R
q with q = dim(η̂). Hence, the

complete number of parameters is given with p = mr + q.

4.2.2 Identification Scheme

Output Error Configuration

The chosen output error configuration is depicted in Fig. 4.1. The magnetic pulses act

upon the plant, and the according weighted discrete Dirac Delta functions u(k) (com-

pare to Eq. (3.2)) represent the model input. The hardware delay Td,hw (Section 3.4.1)

and the physiological delay Td,ph (Section 3.4.2) are compensated by delaying the model

input u(k) by the complete delay time Td,c = Td,hw + Td,ph. In discrete time, a delay

of kd,c = ROUND (Td,c/Ts) is implemented. The experimental setup used for the isometric

identification is explained in Section 3.4.1. As explained in Section 3.4.1, the sensor output

Fs is equalized with the muscle force FM .

Parameter Adaptation Algorithm

The model has an SNLP-structure whose output ŷ is directly measurable. Therefore, the

parameter adaptation is done according to error model C1 (Section 2.6.1). In particular,

the nonlinear parameters η̂ are identified using the modified LM-algorithm as introduced

in Section 2.3 and thus, the calculations necessary for EM C1-GN have to be carried out:

The algorithm has to compute the update Eqs. (2.21), (2.22), (2.25) and (2.26) using the

input regressor ϕ
M

(η̂, u(k)) and its partial derivatives

ϕ
M,i

(η̂, u(k)) =
∂ϕ

M
(η̂, u(k))

∂η̂i
.
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With

ϕ
M

(η̂, u(k)) =
[
R̃ρ̂(η̂, u(k))

]T
= ρ̂(η̂, u(k))T R̃

T
(4.10)

we have ∂ϕ
M

(η̂, u(k))

∂η̂i
= ρ̂

i
(η̂, u(k))T R̃

T
(4.11)

whereas

ρ̂
i
(η̂, u(k))T =

∂ρ̂(η̂, u(k))T

∂η̂i

= [ρ̂i(η̂, u(k)) . . . ρ̂i(η̂, u(k −m))] .

In particular, the partial derivatives are calculated as

ρ̂1(η̂, u(k)) = arctan(−η̂3η̂1) − arctan(η̂3(u(k) − η̂1)) −
η̂3(u(k) − η̂1)

1 + η̂2
3(u(k) − η̂1)2

−
η̂2η̂1

1 + η̂2
3 η̂

2
1

,

(4.12)

ρ̂2(η̂, u(k)) = arctan(η̂4(u(k) − η̂2)) − arctan(−η̂4η̂2) +
η̂4(u(k) − η̂2)

1 + η̂2
4(u(k) − η̂2)2

+
η̂4η̂2

1 + η̂2
4 η̂

2
2

,

(4.13)

ρ̂3(η̂, u(k)) =
(u(k) − η̂

1
)2

1 + η̂2
3(u(k) − η̂1)2

−
η̂2

1

1 + η̂2
3 η̂

2
1

and (4.14)

ρ̂4(η̂, u(k)) = −
(u− η̂2)

2

1 + η̂2
4(u− η̂2)2

+
η̂2

2

1 + η̂2
4 η̂

2
2

. (4.15)

The influence of the parameters η̂3 and η̂4 on the shape of ρ̂(η̂, u(k)) is insignificant and

hence, their gradients ρ̂3(η̂, u(k)) and ρ̂4(η̂, u(k)) are small, as well. Therefore, they are

chosen constant and among the nonlinear parameters only η̂1 and η̂2 will be subject to

adaptation.

4.2.3 System Excitation

Local and Monotonic Parameterization

Following the corollary 2.5.3 and corollary 2.6.1, local parameterization (Definition 2.5.1)

of the original model equation ŷ(θ̂M , η̂, k) = θ̂
T

MϕM
(η̂, u(k)) and strict monotonic parame-

terization of its transformed model equation

ŷ(η̂) = ϕ
M

(η̂)T θ̂M(η̂) = ϕ
M

(η̂)T Πf θ̂M (4.16)

(compare to Eq. (2.96)) with respect to η̂ are necessary conditions.

Fig. 4.2 illustrates how the recruitment curve ρ̂(η̂, I) depends on the parameters Îthr and

Îsat. It is obvious that both parameters have an effect only on their respective activation

region, and that these regions hardly overlap for physiologically meaningful values of η̂.

Thus, the model ρ̂(I) can be considered as locally parameterized.

Definition 2.5.1 is given for a static function ŷ(k) = n(η̂, u(k)). In the static case, it

follows from locality that at any time instant k, a change of the parameter η̂
i
has no effect

on the output ŷ(k) if u(k) /∈ Vi. Here, the static function ρ̂(η̂, u(k)) is followed by the

LTI-system of the activation dynamics. Hence, at the time instant k, the output ŷ(k) is

affected by u(k) = [u(k) . . . u(k −m)]T with m = 350 and thus, locality of the complete

Hammerstein model can be achieved only if at every time instant k, u(k) is not element

of more than one activation region. Considering Eq. (3.2), it follows that stimulation

intensity vector I(k) = [I(k) . . . I(k−m)]T is required not to be element of more then one
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Fig. 4.2: Dependence of the recruitment curve on the parameters Îthr and Îsat.

activation region ρ̂(η̂, I). This can be approximately achieved by choosing an input with

hold times kh = round(Th/Ts) >> m at which I(k) stays within a particular activation

region an with fast transient interphases.

In order to maintain the locality for the transformed model equation (4.16), the factor

λd has to be chosen such that the exponential forgetting of the adaptation algorithm is

fast enough to maintain the property of locality for the SLS error criterion. For this

purpose, it is useful to calculate the time constant T1 of the PT1 behavior of exponential

forgetting with Eq. (A.10). Since the input u(k) first propagates through the ”memory”

of the Hammerstein model and subsequently through the ”memory” of the adaptation

algorithm, the hold time kh has to be long enough in order to account for both memories.

From experience it is proposed to choose the hold time as

kh = m+ round(T1/Ts) . (4.17)

As illustrated in Fig. 4.2, ρ̂(η̂, I) is strictly monotonic with respect to Îthr and Îsat. As

stated in Section 2.6.1, strictly monotonic parameterization of the original model equation

ŷ(k) = θ̂
T

MϕM
(η̂, u(k)) does not imply strictly monotonic parameterization of the trans-

formed model (4.16). Since it is nontrivial to show the strict monotonic parameterization of

the transformed model equation (4.16) analytically, Fig. 4.3 illustrates its properties within

a physiologically reasonable area of η̂. Obviously model (4.16) is strictly monotonically

increasing with η̂1 and η̂2.

Persistent Excitation

For the adaptation of the nonlinear parameters, the modified LM-algorithm (Section 2.3),

which is a second order GN-type method is used. Therefore, the input u(k) has to meet

the excitation requirements of EM C1-GN introduced in Section 2.6.1. Hence, the input

signal has to be n.l.p.e with respect to the nonlinear parameters and l.p.e with respect to

the linear parameters, i.e. the input regressor ϕ
M

(η̂, u(k)) has to relax condition (2.44).
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Fig. 4.3: Illustration of the monotonicity of the transformed model equation (4.16).

Additionally, the gradient vector ψ has to relax condition (2.71) and the requirements for

maintaining local parameterization summarized above have to be fulfilled.

More intuitively, the input-output signals fed into the adaptation algorithm have to

carry enough information to identify a model that is capable of describing the plant in

all relevant operating conditions. For a nonlinear system, all frequencies of interest have

to be excited in combination with all amplitudes spanned by the input space. During

RPMS, the plant is excited with Dirac Delta functions which cause impulse responses that

contain all information about the LTI-system. Choosing the stimulation intensity I(k) as

an amplitude modulated pseudo random binary (APRB-) signal with a uniform distribution

of 0 ≤ I(k) ≤ 100 %, combines all input amplitudes with all frequencies. However, when

changing the amplitude of I(k) with every pulse, the process has no time to settle due to

the PT1-dynamics of the temporal summation (see Section 3.4.4). Thus, the output FM(k)

would cover mainly operating conditions around FM(k) ≈ FM,rep(I = 50%) such that the

characteristics of ρ(I) are hardly visible at the output. To give the process enough time

to settle, I(k) has to be kept constant during a minimum hold time Th, which could be

chosen at Th ≈ 2T e.

The requirements of the formal as well as of the intuitive derivation can be relaxed

by choosing the stimulation intensity I(k) as uniformly distributed APRB-signal with

0 ≤ I(k) ≤ 100 % with a constant hold time Th.

The forgetting factor is chosen as λd = 0.99 s which yields a time constant of exponetial

forgetting of T1 = 0.1 s. With the rule of thumb (4.17), the hold time Th = 450 ms, i.e.

kh = 450 is obtained. Fig. 4.4 illustrates the input signal u(k) and the corresponding

output FM(k).
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Fig. 4.4: Simulated input-output behavior of isometric RPMS with a persistently exciting input
u(k): The stimulation intensity I(k) is modulated with an APRB-signal with constant
hold time kh.

4.2.4 Simulative Identification

Initialization

The activation dynamics are simulated according to Eq. (3.9) with Ta = T a = 28.4 ms

and the recruitment is simulated according to Eq. (3.19) setting αthr = 5, αsat = 4 and

η = [48 % 98 %]T . The delay is set to kd,c = 15 according to the average physiological delay

T d,ph = 12.3 ms and the hardware delay Td,hw = 2.6 ms.

The system is excited with the APRB-signal with a fixed hold time kh as depicted in

Fig. 4.4. The initialization and the choice of fiddle parameters of the adaptation algorithm

and of the model equation are summarized Tab. 4.1.

Parameter Convergence

Once the simulation is started, the parameter estimates were adapted and converged to

their true values. The parameter swarms η̂(k) and θ̂M(k) are illustrated in Fig. 4.5. Despite

the bad initialization of η̂(0), the algorithm converged after approx. 20 s.

In order to illustrate that the nonlinear parameters η̂ indeed converge to the global min-

imum, the SLS-error criterion Ek,2(η̂) was calculated according to Eq. (2.19) and plotted in

Fig. 4.6. Note that Ek,2(η̂) changes with time and the plot shows Ek,2(η̂) only at a certain

time instant. Because of the small forgetting factor λd = 0.99, the error criterion might

have local minima during small time periods in between, due to inappropriate excitation.

Therefore, the forgetting factor has been set to λd = 0.9999 in order to create Fig. 4.6. The

locus of the parameter estimate is not perpendicular to the level curves since the direction

of the Levenberg-Marquardt parameter drift differs from the steepest descent.
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Tab. 4.1: Initialization and choice of fiddle parameters of the SLS-scheme, the modified LM-
algorithm, and the model equation.

SLS scheme with modified LM-algorithm

η̂(0) [20 % 40 %]T

θ̂M(0) 0

H(0) diag(h11 . . . hqq), 0 < hii ≤ 0.001,

random uniform distribution

Π(0)−1 diag(h11 . . . hqq), 0 < hii ≤ 1000,

random uniform distribution

Πi(0)−1 0

f θ̂M (0) 0

f θ̂M

i
(0) 0

λd 0.99

γθ̂ 1

γη̂ 1

δ(0) 0.001

δs 0.01

κ 1.002

β 0.02

ν 1000

Model equation

m 350

mr 8

ζ 62

α̂thr 5

α̂sat 4

Evaluation

In Fig. 4.7, the plant output y(k), the estimate ŷ(k) and the model error e(k) = y(k)− ŷ(k)

during the adaptation process are depicted. The NMSE(y, ŷ) (Eq. (A.11)) calculated for

k = 20 · 103 . . . 30 · 103 yields 0.0028%.

Using formulae (4.5) and (4.7), the activation dynamics and the recruitment curve can

be reconstructed from the parameter estimates. The reconstruction result is depicted in

Fig. 4.8.

Remark 4.2.1 The reconstruction of the Hammerstein model is not unique, since the gain

of the complete system can be arbitrarily assigned either to the static nonlinearity or to the

LTI-system.
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Fig. 4.5: Parameter swarms of η̂(k) and θ̂M(k). In the left graph, the true values η are
indicated with straight lines.
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Fig. 4.6: Contour plot of the error criterion Ek,2(η̂) with locus of the parameter estimate η̂(k).

Therefore, a constraint has to be introduced. Here, the gain of the impulse response h(k)

is determined such that the constant part of its step response (compare to Eq. (3.15)) is

F̂M,rep ≈
1

krep

fs/1Hz∑

k=0

h(k)
!
= 1 (4.18)

when it is excited with a Dirac Delta pulse train with a repetition period of krep = 50 and

amplitude one. As a result, the normalized activation dynamics h(k) has no unit and the

unit of the denormalized recruitment function is Newton. This constraint allows to directly

infer the stationary value F̂M,rep(I) = ρ(I) from the recruitment curve.
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Fig. 4.7: Plant output y(k), its estimate ŷ(k), and output error e(k) during parameter adap-
tation.
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Fig. 4.8: Model reconstruction from the identification result: The blue dotted lines indicate
the simulated plant. The identified approximations are plotted with red solid lines.

4.2.5 Experimental Identification

The identification scheme that is explained in Section 4.2.2 and summarized in Fig. 4.16 was

applied to the data obtained from experiments with healthy subjects. The experiments that

are describd in the following, aimed to evaluate the capabilities of the proposed model and

identification algorithm under realistic conditions. The identification under nonisometric
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Fig. 4.9: Input-output behavior of isometric RPMS with a continuously modulated intensity
I(t).

conditions will be applied in the context of the position controlled movement induction as

it will be presented in Chapter 5.

Methods

As summarized in Fig. 4.16, the plant of the RPMS-induced muscle force generation was

identified in output error configuration with the example of the m. extensor indices pro-

prius (EIP). Just as for the simulative identification, the model parameters were identified

according to EM C1-GN using the modified LM-algorithm. Like all measurements un-

der isometric conditions the experiments were carried out using the setup illustrated in

Fig. 3.14.

All subjects were asked to relax as much as possible during stimulation. However, some

subjects had difficulties to relax the EIP because of the sudden changes of the stimulation

intensity as they occur in the APRB-signal (see Section 4.2.3). Therefore, to those subjects

a continuous intensity modulation has been applied as depicted in Fig. 4.9. The intensity

is modulated according to

I(k) = I0 sin(kTs/T ) , (4.19)

with T = 4 s and with 0 % < I0 < 100 % randomly chosen for every period T . Clearly, the

signal (4.19) relaxes the persistent excitation conditions derived in Section 4.2.3. However,

with the sinusoidal excitation the parameters converge slower than with an APRB-signal

since it takes more time to cover all operating conditions.

The small coils that were used for the EIP-stimulation have a small thermal capacity

and overheat after a stimulation of approx. 40-50 s. The parameter estimates might need

longer than that to converge. Therefore, for the experimental identification, the input-

output data of the plant were saved first, and then fed into the adaptation algorithm as if

they occur on-line. Thus, the stored data sequence could be repeated until the parameters

were converged.

99



4 System Identification During RPMS

Tab. 4.2: Initialization and choice of those fiddle parameters that have been modified compared
to Tab. 4.1 .

SLS scheme with modified LM-algorithm

η̂(0) [47 % 85 %]T

λd 0.995

γη̂ 0.1

Model equation

ζ 42

α̂thr 8

α̂sat 7

Initialization

Some initializations and fiddle parameters that were chosen for the simulative identifica-

tion were changed. These parameters are summarized in Tab. 4.2, the other parameters

remained unmodified and can be taken from Tab. 4.1. The initial parameter estimate η̂(0)

has been chosen as a good empirical value in order to be close to the minimum. For the

identification of experimental data, it turned out to be advantageous to choose a slightly

greater forgetting factor λd than for the simulative identification. This results in a slower

exponential forgetting and thus, the algorithm is more robust to disturbances like noise

and movement artifacts. For similar reasons, the estimator gain γη̂ has been reduced. The

identification turned out to be quite sensitive to the form factor ζ . An empirical value that

yielded good results for the most data sets was determined as ζ = 42. The algorithm is

much less sensitive to the curvature-parameters α̂thr and α̂sat. They have been chosen as

average values that were obtained from the experiments described in Section 3.4.5.

Parameter Convergence

The parameter swarms η̂(k) and θ̂(k) are illustrated with the plots of Fig. 4.10. Even

though the initial parameters η̂(0) have been chosen much closer to the minimum than for

the simulation (compare to Fig. 4.5), the convergence is much slower. This is mainly due

to the modified input signal and to some extent to the slower exponential forgetting. The

parameter estimates η̂ remain constant after approx. 90 s. This experiment was conducted

with a sinusoidal intensity modulation. When APRB-signals were used, convergence times

of approx. 60 s were obtained.

In order to demonstrate that the parameter estimates indeed reach a the global min-

imum within a physiologically meaningful region, the error criterion Ek,2(η̂) (compare to

Eq. (2.19)) was calculated. The contour plot together with the locus of η̂(k) is depicted in

Fig. 4.11. Note that Ek,2(η̂) changes with time so that the contour plot only illustrates the

error criterion at a particular time instance k. Especially during the first samples after the

algorithm is started, the input-output data are not informative enough to yield a benign
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Fig. 4.10: Parameter swarms of η̂(k) and θ̂M(k).
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Fig. 4.11: Contour plot of the error criterion Ek,2(η̂) with locus of the parameter estimate
η̂(k).

error criterion. This explains the big parameter steps into the wrong directions at the

beginning.

Evaluation

A comparison of the plant output y with its estimate ŷ during the parameter adaptation

process is depicted in Fig. 4.12. The model reconstruction of the simulative identification

could be compared to the identified plant, since the true recruitment and activation dy-

namics were exactly known. In order to evaluate the model of recruitment and activation

dynamics of the experimental identification, reference measurements have been carried

out: The subject’s forearm was fixated in the measurement orthosis, the coil was placed
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Fig. 4.12: Plant output y(k), its estimate ŷ(k) and output error e(k) during parameter adap-
tation (data set of subject MB).

above the innervation zone of the EIP and the force sensor was arranged at the PIP-joint

(compare to the schematic in Fig 3.14). Then, the absolute recruitment ρ(I) was measured

as described in Section 3.4.5, and the impulse response h(k) was measured by application

of single pulses as described in Section 3.4.3. Immediately after these reference measure-

ments and without rearranging the coil, the stimulation sequence that was utilized for

system identification (Fig. 4.4 or Fig. 4.9) was applied and the identification was carried

out with the measured input-output data.

Exemplary reference measurements, and the model reconstruction of subject MB are

depicted in Fig. 4.13. The experiment was carried out in total of six healthy subjects.

The system identification of the data of two subjects did not converge and the model

reconstruction yielded implausible results. Although the exact reason is unknown, it is

possible that the subjects were not able to relax during identification so that the underlying

model is inconsistent. Another two subjects had to be stimulated with the sinusoidal input

sequence (4.19) since they had difficulties to relax with the APRB-signal. Two subjects

felt comfortable with the APRB-signal. Accordingly, their parameter estimates converged

faster than during the experiment depicted in Fig. 4.10 where a sinusoidal input signal was

used.

The model reconstruction and the model output of the four subjects whose data sets

converged were evaluated by calculating the NMSE (Eq. (A.11)). The results are summa-

rized in Tab. 4.3.

4.2.6 Discussion

The identification of the simulated plant yields a negligible NMSE-value and an almost

perfect model reconstruction. The implemented simulation is based on the model derived
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Fig. 4.13: Model reconstruction from the identification result: The blue dotted lines indicate
the measured reference curves. The identified approximations are plotted with red
solid lines.

Tab. 4.3: Evaluation of the experimental identification during isometric RPMS : The identified
subplants ρ̂(I), ĥ(k) as well as the model output ŷ(k) were evaluated by calculating
NMSE(ρ(I), ρ̂(I)), NMSE(h, ĥ) and NMSE(y, ŷ). The results from the subjects
whose data sets did not converge are excluded.

P
P

P
P

P
P

P
P

P
P

P
P

PP
Subject

NMSE(x, x̂)

in % ρ̂(I) ĥ(k) ŷ(k)

MB 0.29 7.0 1.2
DM 0.37 5.3 1.3
BG 1.18 7.8 2.4
NN 0.6 4.6 1.5
Average 0.61 6.2 1.6

in Section 3.4. Since this model was proven to be a realistic approximation of the plant,

it can be concluded that the proposed model equation is very well suited to approximate

the plant of the isometric force generation.

The asymptotic stability of EM-C1 that was formally proved in Chapter 2 could be

verified by means of a practical example and a real application. Since the parameter space

of the nonlinear parameters is given with Ωη ⊂ R
2, the error criterion and the locus of

the parameter estimates η̂(k) could be visualized in order to verify the convergence to

the global minimum. The design rules for the adaptive system that have been derived in

Sections 2.5.1 and 2.6.1 on the basis of theoretical insight were successfully applied and
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turned out to be helpful guidelines. In particular, the design of a persistently exciting

input signal was facilitated.

The experimental identification showed an additional requirement that was not revealed

during simulation. The APRB-signal that was designed to meet the requirements of persis-

tent excitation is characterized by a discontinuous modulation of the stimulation intensity

I(k). These intensity steps were sensed as unpleasant by four out of six subjects and

hence they were not able to relax the stimulated muscles. Due to these disturbances the

adaptation algorithm did not converge. For two subjects, this problem could be remedied

by applying a smooth stimulation signal with a slow sinusoidal intensity modulation. This

input signal still meets the excitation requirements though it yields a slower convergence.

The data obtained from two of six subjects could not be identified at all. Probably, these

subjects were not able to relax sufficiently.

During experimental identification, the parameters did not converge as fast as in sim-

ulation. This is due to measurement noise, model inconsistencies like voluntary muscle

activity, and to the sinusoidal input signal. Nevertheless, the adaptation speed is fast

enough to track slowly varying effects like muscle fatigue as it will be shown in Chapter 5.

A lot of design parameters (Tab. 4.1) have to be tuned in order to obtain a satisfactory

performance of the adaptive system. However, the algorithm showed a critical sensitivity

with respect to the exponential forgetting parameter λd and the form factor ζ , only. The

initial guess η̂(0) should be chosen within physiological meaningful intervals. Otherwise

the properties of locality and monotonicity will be lost.

4.3 Identification under Nonisometric Conditions

Under nonisometric conditions, the plant depicted in Fig. 4.14 is considered. As was

discussed for the identification under isometric conditions, the physiological delay is not

integrated into the model equation but will be taken into account in the identification

configuration.

Compared to Fig. 3.1 the muscle contraction dynamics are neglected which is explained

and justified in Section 3.5. Furthermore, the block ”Force transmission” is not considered

since the tendon leverage can be approximated as constant factor (see Section 3.3). This

constant will be implicitly integrated in the muscle force generation so that the output of

the Hammerstein model is the muscular driving torque τM acting on the MCP-joint. It is

equal to the torque τ2 introduced in the coordinate systems in Figs. 3.10 and 3.20. For

sake of a better readability, the MCP-joint angle α2 is denoted as α since the angles α1,

α3 and α4 are not part of the model.

4.3.1 Model Equation

Model Structure

After applying block diagram manipulation to the plant depicted in 4.14, the equivalent

system of Fig. 4.15 can be obtained. Assuming that the moment of inertia J and the

relaxation characteristics are known, the structure of Fig. 4.15 divides the plant into a

subplant with output τ , whose parameters are unknown, and a known LTI-system W.
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Fig. 4.14: Block diagram of the plant ”RPMS-induced index finger extension”.
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Fig. 4.15: Plant of the RPMS-induced index finger movement structured as a subplant with
unknown parameters acting on a known LTI-system W.

With

v = [uα α̇]T (4.20a)

yn = τ (4.20b)

y = α (4.20c)

this structure coincides with the general identification structure introduced in Section 2.2.

The state χ of the subplant W is given as

χ = [α α̇ τrel]
T . (4.21)
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Parameterized Equation

The moment τ acting on W is calculated as

τ = τM −N1(α) −N2(α̇) . (4.22)

The muscle torque τM is the output of the Hammerstein structure of the force generation.

According to derivation (4.9) its approximation is given as

τ̂M (k) = θ̂MϕM
(η̂, u(k)) . (4.23)

The static nonlinearities N1(α) and N2(α̇) comprise the gravitational torque, elastic prop-

erties of joint and attached muscles, viscous effects and spasticity, as explained in Sec-

tions 3.6 and 3.7. For the parameter identification, they are approximated by an artificial

neural network whereas a Gaussian normalized radial basis function (NRBF) network

(see [121], e.g.) is chosen, as proposed in [6]. Compared to multilayer perceptron (MLP-)

networks, NRBF-networks show less accuracy and smoothness when approximating com-

plicated functions and are ill-suited for high dimensional input spaces. However, due to

their linear parameterization, fast adaptation algorithms can be used and there is no dan-

ger of local minima. Since the nonlinearities of the presented application are of simple

shape and have a one dimensional input, NRBF-networks match the needs.

A Gaussian radial basis function (RBF-) network approximates static nonlinear func-

tions by a weighted superposition of Gaussian functions

Bj(u) = exp

(
−

(u− ξj)
2

2σ2

)
(4.24)

with the function center ξj and the smoothing parameter σ that determines the width of

the Gaussian function. In order to remedy the drawbacks of an RBF-network such as dips

in the interpolation behavior the activation functions of an NRBF-network are normalized

by the sum of all non weighted basis functions. This yields

Aj(u) =
exp

(
−

(u−ξj)2

2σ2

)

∑mN

i=1 exp
(
− (u−ξi)2

2σ2

) , (4.25)

whereas the number of basis functions is given with mN . The output yNRBF of the NRBF-

network is calculated as

yNRBF (u) =

mN∑

j=1

θ̂jAj(u) = θ̂
T
ϕ(u) , (4.26)

with the vector of network weights θ̂ = [θ̂1 . . . θ̂mN
]T and the input regressor ϕ(u) =

[A1(u) . . .AmN
(u)]T . In the following, an equidistant distribution of the activation function

over the whole input space U ⊂ R with U = {u|umin ≤ u ≤ umax} is considered. Thus,

the distance between two activation functions is calculated as ∆ξ = umin−umax

mN−1
. In order to

choose the smoothing factor σ independently of ∆ξ, it is normalized according to σ = σ/∆ξ
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and thus, the activation functions are given as

Aj(u) =
exp

(
−

(u−ξj)2

2σ2∆ξ2

)

∑mN

i=1 exp
(
− (u−ξi)2

2σ2∆ξ2

) . (4.27)

The parameters ∆ξ and σ are heuristically predefined, therefore, only the network weights

θ̂ are subject to parameter identification.

According to Eq. (4.26), the nonlinearities can be approximated as

N̂1(α) = θ̂
T

N1ϕ(α) , (4.28a)

N̂2(α̇) = θ̂
T

N2ϕ(α̇2) . (4.28b)

With θ̂ = [θ̂
T

M θ̂
T

N1 θ̂
T

N2]
T , v(k) = [u(k)T α(k) α̇(k)]T and with

ϕ(η̂, v(k)) = [ϕ
M

(η̂, u(k))T − ϕ
N1

(α(k))T − ϕ
N2

(α̇(k))T ]T (4.29)

yn = τ can be approximated by

ŷn(θ̂, η̂, k) = θ̂
T
ϕ(η̂, v(k)) (4.30)

which is an SNLP-model according to Eq. (2.5c). The parameter space is given by θ̂ ∈

Ωθ̂ ⊂ R
mr+mN1+mN2 and η̂ ∈ Ωη̂ ⊂ R

q with q = dim(η̂). Hence, the complete number of

parameters is given by p = mr +mN1 +mN2 + q.

State Space Representation of W

From the block diagram in Fig. 4.15, the system differential equations of W can be inferred

as

α̈ =
1

J
(τ − τrel) , (4.31a)

τ̇rel = Erelα̇−
1

Trel
τrel . (4.31b)

With the output (4.20c) and the state (4.21), the state space representation becomes

χ̇ =




0 1 0

0 0 −1/J

0 Erel −1/Trel





︸ ︷︷ ︸
Aw

χ+




0

1/J

0





︸ ︷︷ ︸
bw

τ ,

y = [1 0 0]︸ ︷︷ ︸
cT
w

χ . (4.32)
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Model equation (4.30)

in configuration of Fig. 4.15

combined with a

neural observer

u
eα, α̇

y = α

ŷ = α̂
u(k − kd,c)

Fig. 4.16: Output error configuration of the identification of the RPMS-induced index finger
extension.

P2
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α

α+ c

Fig. 4.17: Schematic illustration of the goniometer that measures the angle α: As easily de-
rived from geometrical considerations, the angular sum of the three angles measured
with the potentiometers P1-P3 is calculated as α+ c, with some constant value c.

4.3.2 Identification Scheme

Output Error Configuration

The identification configuration is depicted in Fig. 4.16. The input of plant and model

and the compensation of the delay kd,c are equivalent to the isometric case explained in

Section 4.3.2.

The experimental setup conforms with that depicted in Fig. 3.4.1 except for the force

sensor which is replaced by a self-built goniometer (Fig. 4.17) that is attached to the index

finger.
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4.3 Identification under Nonisometric Conditions

Parameter Adaptation Algorithm

The underlying parameter adaptation algorithm adapts the model parameters η̂ and θ̂

according to EM C2 (Section 2.6.2) which incorporates a neural observer to obtain an

asymptotically stable error transfer function. Similar to isometric conditions, the nonlin-

ear parameters are identified with the modified LM-algorithm (Section 2.3). Therefore,

the derivations of EM C2-GN apply. The algorithm has to compute the update equa-

tions (2.21), (2.22), (2.25) and (2.26) using the input regressor ϕ(η̂, v(k)) and its partial

derivatives

ϕ
i
(η̂, v(k)) =

∂ϕ(η̂, v(k))

∂η̂i
.

With the results (4.10)- (4.15) and with (4.29), ϕ
i
(η̂, v(k)) is obtained as

ϕ
i
(η̂, v(k))T = [ϕ

M,i
(η̂, u(k))T 0T 0T ] . (4.33)

For the same reasons explained for isometric conditions, only η̂
1

and η̂
2

are subject to

parameter identification and hence only ϕ
1

and ϕ
2

have to be calculated.

Neural Observer Design

The application of EM C2 requires the application of a neural observer if either the LTI-

system W is not asymptotically stable, or the dynamic behavior is slow compared to the

occurring signals. Since the system matrix of the state space representation (4.32) has

not full rank, the system W is not asymptotically stable and a neural observer has to be

implemented. The dynamics of the error transfer function Gw,obs(s) should not have strong

oscillating behavior and a short settling time Tset. These properties can be obtained by

placing the observer poles according to the rules of optimal damping [152]. For second

order systems, it is well known that the damping of D =
√

(2)/2 results in a minimum

settling time. The rule of optimal damping is a generalization for systems of nth order.

For third order systems the desired denominator d(s) of the transfer function is given as

d(s) = 8T 3
syss

3 + 8T 2
syss

2 + 4Tsyss+ 1 , (4.34)

whereas the system time constant Tsys is related to the settling time as Tset = 13.28Tsys.

With the observer gain l = [l1 l2 l3]
T , the observer transfer function Gw,obs(s) = cTw(sI −

Aw + lcTw)−1bw of the system (4.32) is calculated as

Gw,obs =
Trels+ 1

JTrels3 + J(1 + Trell1)s2 + (ErelTrel + Jl1 + JTrell2)s + l1ErelTrel + l2J − l3Trel

.

(4.35)

Comparing the coefficients of Eq. (4.34) and of the denominator of Eq. (4.35) gives the

observer gain l.

The system time constant Tsys has to be chosen carefully. Choosing a small value yields

fast dynamics of the error transfer function but results in a high observer gain l. This may

cause problems if the plant output y is not noise free since the noise will be amplified by
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Fig. 4.18: Phaseplot of the signals [α(k) α̇(k)]T that result from an APRB-input-signal u(k).

l. Based previous observations, the empirical value Tsys = 0.01 s has been chosen which

yields a settling time of Tset ≈ 133 ms.

4.3.3 System Excitation

In case of an error transfer function with fast dynamics, EM C2 can be reduced to EM

C1. Therefore, the considerations of Section 4.2.3 also apply for the nonisometric case.

Since the input regressor has been extended by the NRBF-networks to approximate the

nonlinearities N1(α) and N2(α̇), the linear persistent excitation condition can be relaxed if

the complete input regressor (4.29) meets the condition (2.44), i.e. the covariance matrix

Π−1(k) remains invertible.

Since N̂1(α) and N̂2(α̇) are static functions, the specific excitation signal [α(k) α̇(k)]T

has to cover the complete input space of interest, and no requirements concerning any

information about dynamics have to be fulfilled. The excitation of the plant with the

APRB-signal of Fig. 4.4 results in a trajectory of [α(k) α̇(k)]T that is depicted in Fig. 4.18.

It can be expected that all covered operating points can be reproduced by the identification

results. Due to the excellent interpolation behavior of NRBF-networks, operating points

that are not excited in between should be reproducible.

4.3.4 Simulative Identification

As carried out for isometric identification, first a simulated plant is identified in order to

evaluate the approximation performance of the model equation, and to test the ability

of EM-C2 and the modified LM-algorithm with respect to this specific application. The

theory of the error models A, B and C is based on the assumption that the LTI-system

W is exactly known. However, in the presented application, the LTI-system consists of

a double integrator and the relaxation dynamics. The relaxation parameters Trel and
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4.3 Identification under Nonisometric Conditions

Tab. 4.4: Extension of Tab. 4.1: Additional fiddle parameters for nonisometric identification.

Model equation (NRBF-networks)

σ 0.55

mN1 12

mN2 12

αmin . . . αmax −48 ◦ . . . 0 ◦

α̇min . . . α̇max −180 ◦/s . . . 230 ◦/s

Neural observer

Tsys 0.01 s

Trel 0.72 ± 0.09 s

Erel 0.13 ± 0.02 Ncm/◦

Erel are not exactly known. Their average values were experimentally determined and

the parameter uncertainty was quantified by calculating the 95% confidence intervals (see

Tab 3.8). Therefore, the robustness of the presented identification scheme with respect to

an uncertain parameterization of W is evaluated with simulations.

Initialization

The force generation of the simulated plant is parameterized as explained for isometric

identification. For the nonlinearities N1(α) and N2(α̇) (formulae (3.29) and (3.30)) typical

functions as depicted in Fig. 3.21 have been used. The gravitational torque τg has been

calculated with data from Tab. 3.6 and with simple geometrical considerations. For the

moment of inertia J as well as for the relaxation parameters, the average values from

Tab. 3.6 and Tab. 3.7 have been simulated.

The initialization of the identification algorithm and the choice of fiddle parameters

has not been changed compared to the isometric case and therefore, the specifications of

Tab. 4.1 apply. Additional fiddle parameters for the NRBF-networks are summarized in

Tab. 4.4. The design of the neural observer is discussed in Section 4.3.2. The parameter

identification was carried out with exact parameterization of the neural observer as well

as with variations of Trel and Erel within the their 95% confidence intervals.

Parameter Convergence

Fig. 4.19 depicts the convergence of η̂(k), θ̂M(k), θ̂N1(k) and η̂
N2

(k) over time with exact

parameterization of the neural observer. Although the initialization η̂(0) = [20 %40 %]T is

far from the minimum, the algorithm converges after approximately 35 s. This convergence

speed was obtained with inexact parameterization of the neural observer, too. Once the

nonlinear parameters have settled, the linear parameters reach a steady state.

Fig. 4.20 shows a contour plot of the transformed error criterion Ek,2(η̂) that has been

calculated according to Eq. (2.19) as already explained for the isometric case. It shows
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Fig. 4.19: Parameter swarms of η̂(k), θ̂N1(k), θ̂N1(k) and θ̂N2(k). In the top left graph, the
true values η are indicated with straight lines.

that the true value η̂ = [48 % 98 %]T is indeed the only minimum within a physiologically

meaningful region of η̂.

Evaluation

The lower graph of Fig. 4.21 shows the output error e(k) = y(k)− ŷ(k) of the identification

structure EM-C2 as it is depicted in Fig. 2.16. Since the output of the neural observer

naturally follows the real output y, the observer error ǫobs(k) = e(k) is very small, even

though the parameters have not yet converged. To evaluate the approximation perfor-

mance, it is therefore reasonable to consider the error en(k) = yn(k)− ŷn(k) which is given

as eτ (k) = τ(k) − τ̂(k) (Fig. 4.21 upper graph).

The model reconstruction is illustrated in Fig. 4.22. The Hammerstein model is recon-

structed using the constraint explained in Remark 4.2.1 and the static nonlinearities are

computed using Eq. (4.26).

Remark 4.3.1 The identification of N̂1(α) and N̂2(α̇) is not unique since a constant offset

can be added either to N̂1(α) or to N̂2(α̇) without changing the sum N̂1(α) + N̂2(α̇). With

the constraint

N̂2(0)
!
= 0 (4.36)

a unique reconstruction is possible.
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Fig. 4.20: Contour plot of the error criterion Ek,2(η̂) with locus of the parameter estimate
η̂(k).
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The reconstruction in Fig. 4.22 shows the result obtained with exact parameterization

of the neural observer as well as the worst results obtained with inexact parameterization.

These reconstructions were obtained with the parameter variations summarized in the

first column of Tab. 4.5. The reconstructions of all other parameterizations within the
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Fig. 4.22: Model reconstruction from the identification result: The blue dotted lines indicate
the simulated plant. The identified approximations are plotted with red solid lines.
The reconstructions obtained with exact parameterization are almost congruent
with the given curves.

Tab. 4.5: NMSE-evaluation of the identification results: The results of the first row were
obtained with an exact parameterization of the neural observer. The other results
represent upper and lower error bounds obtained with an inexact parameterization
within the 95% confidence intervals of the relaxation parameters summarized in
Tab. 3.8.

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
PP

Observer
parameterization

NMSE(x, x̂)

in % ρ̂(I) ĥ(k) N̂1(α) N̂2(α̇) τ̂ (k)

T rel Erel 0.04 0.02 0.04 0.04 0.03

T rel + 0.05 s Erel + 0.02 Ncm/◦ 0.6 0.4 0.8 0.3 1.1

T rel − 0.05 s Erel − 0.02 Ncm/◦ 0.4 0.3 0.4 0.6 1.6

95% confidence intervals showed a higher accuracy. The model accuracy was evaluated by

means of NMSE-calculations. The results are summarized in Tab. 4.5.
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4.3 Identification under Nonisometric Conditions

4.3.5 Experimental Identification

In order to test the performance of the proposed identification scheme under realistic

conditions, data from stimulation experiments with healthy subjects were recorded. The

identification under nonisometric conditions will be applied in the context of spasticity

quantification as it will be presented in Chapter 5.

Methods

As summarized in Fig. 4.16, the plant of the RPMS-induced index finger extension was

identified in output error configuration. As described for the simulative identification,

the adaptive system was implemented according to EM C2-GN using the modified LM-

algorithm as adaptive law. The experimental setup conformed with the setup illustrated

in Fig. 3.14. Instead of the force sensor, a goniometer (Fig. 4.17) was attached to the index

finger.

The experiment was conducted with six healthy subjects. All subjects were asked to

relax their hand as much as possible. However, just as during isometric stimulation,

four subjects felt uncomfortable with the APRB-signal. Therefore, to those subjects the

sinusoidal excitation (4.19) was applied. This kind of excitation leads to phase plots in

the α − α̇−plane as it is depicted in Fig. 4.23. Although the input space to the static

nonlinearities N1(α) and N2(α̇) is covered incompletely, an identification is possible as the

simulations have shown. This is due to the excellent interpolation behavior of NRBF-

networks.

Just as during the isometric experiments, the small coils overheat after approx. 40-

50 s. Since the convergence time might be longer, especially with the sinusoidal excitation,

the input-output data are stored and fed into the adaptation algorithm as a repeating

sequence.

Initialization

The algorithm was initialized similar to the simulative case. Parameters that have been

changed are summarized in Tab. 4.6. As already explained for the experimental identifica-

tion under isometric conditions, the forgetting factor λd was increased and the estimator

gain γη̂ was decreased to make the algorithm more robust to disturbances. Also the pa-

rameters ζ , α̂thr and α̂sat were modified as it is explained for the isometric experiments.

The number of basis functions was slightly increased which yielded a better convergence

behavior. Lower and upper bounds for the approximation regions of the NRBF-network

were individually adapted. The relaxation is parameterized according to experimental re-

sults described in Section 3.6.3. The moment of inertia J is individually calculated for

every subject according to Eq. (3.28).

Parameter Convergence

The parameter swarms are illustrated in Fig. 4.24. The nonlinear parameters η̂ converge

after approximately 90 s. This experiment was carried out with a sinusoidal intensity

modulation. Using an APRB-modulation, a convergence time of approx. 60 s was achieved.
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Fig. 4.23: Phaseplot of the signals [α(k) α̇(k)]T that result from an input signal u(k) with
sinusoidal modulation of I(k).

Tab. 4.6: Initialization and choice of the fiddle parameters that have been modified compared
to Tab. 4.1 and Tab. 4.4.

SLS scheme with modified LM-algorithm

η̂(0) [47 % 85 %]T

λd 0.995

γη̂ 0.1

Model equation

ζ 42

α̂thr 8

α̂sat 7

mN1 16

mN2 20

αmin . . . αmax Individual

α̇min . . . α̇max Individual

Neural observer

Tsys 0.007 s

Trel 0.72 s

Erel 0.13Ncm/◦

J Individual

The linear parameters follow immediately. The locus of the parameter estimate η̂(k)

plotted together with the error criterion in Fig. 4.25 shows that the nonlinear parameters
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Fig. 4.24: Parameter swarms of η̂(k), θ̂M(k), θ̂N1(k), and θ̂N2(k).

indeed converge to the global minimum. Note, that Ek,2(η̂) changes with time so that the

contour plot illustrates the error criterion at a particular time instance k, only. Especially

during the first samples after the algorithm is started, the input-output data are not

informative enough to yield a benign error criterion. This explains the big parameter steps

into the wrong directions at the beginning.

Evaluation

The output error of the neural observer is very small due to the fast time constant Tsys of

the neural observer and thus, its evaluation is not very meaningful. In order to evaluate

the accuracy of the identified models, reference measurements were carried out. These ref-

erence measurements included isometric stimulations with force measurements on the one

hand and measurements with the Fingertester (see Appendix C) on the other hand. The

former was conducted immediately before the nonisometric stimulation sequence without

rearranging the coil position. In this isometric setup, the absolute recruitment ρ(I) and

the impulse response h(k) were measured as described in Sections 3.4.3 and 3.4.5. The

measurements with the Fingertester were conducted in order to determine the nonlinear

functions N1(α) and N2(α̇) as described in Section 3.6. Additionally, in a subsequent sim-

ulation, the identified models were run in parallel to the recorded data without observer

feedback in order to calculate the NMSE(y, ŷ). An exemplary model reconstruction of sub-

ject MB in comparison to the respective reference measurements is depicted in Fig. 4.26.
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Fig. 4.25: Contour plot of the error criterion Ek,2(η̂) with locus of the parameter estimate
η̂(k).
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Fig. 4.26: Model reconstruction from the identification result: The blue dotted lines indicate
reference measurements. The identified approximations are plotted with red solid
lines.

The experiments were conducted with the same six subjects as the isometric identification.

Again, two subjects felt comfortable with the APRB-signal, two had to be stimulated with
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Tab. 4.7: NMSE-evaluation of the identification results obtained from experimental data. The
results from the subjects whose data sets did not converge are excluded.

P
P

P
P

P
P

P
P

P
P

P
P

PP
Subject

NMSE(x, x̂)

in % ρ̂(I) ĥ(k) N̂1(α) N̂2(α̇) ŷ(k)

MB 0.4 10.3 24.3 54.9 4.9
DM 0.6 3.2 26.8 48.3 5.2
BG 1.0 6.2 45.7 58.3 9.2
NN 0.5 3.0 20.7 61.3 6.1
Average 0.63 5.7 29.4 55.7 6.5

a sinusoidal intensity modulation and two subjects could not be identified at all. The four

successfully identified curves as well as the model output of the parallel simulation were

evaluated with NMSE-calculations. The results are summarized in Tab. 4.7.

4.3.6 Discussion

The simulative identification with exact parameterization of W yields an almost perfect

model reconstruction with negligible small NMSE-values. Since the simulated plant is a

verified model of the RPMS-induced index finger extension, it can be concluded that the

proposed model equation is very well suited to approximate the real plant.

For the proposed approach, it is assumed that the relaxation parameters are known.

This inevitably incorporates parametric uncertainties. In order to quantify the effect of

these uncertainties on the overall identification result, worst case simulations were carried

out. For this purpose, the model of the relaxation characteristics was parameterized with

the boundary values of the 95% confidence intervals. Even with this worst case parameter-

ization, the identification results yield NMSE-values smaller than 1.7%. This robustness

is due to the neural observer. The observer structure reduces the influence of parametric

uncertainties on the output error just as it is known from the Luenberger observer. High

gains of a Luenberger observer not only yield fast error dynamics, but also small influence

of uncertain observer parameters on the observer output. The small NMSE-values indicate

that the proposed observer design is well suited to suppress the parametric uncertainties

that occur in the considered plant.

The asymptotic stability of EM C2 could be exemplified with a plant from a real ap-

plication. The convergence to the global minimum was verified by visualizing the error

criterion and the locus of η̂(k). The design rules for the adaptation algorithm and the neural

observer that were derived in Sections 2.5 and 2.6 based on stability analysis were success-

fully applied and turned out to be helpful guidelines. In contrary to other approaches of

identification under nonisometric conditions (see state of the art in the Introduction 4.1),

the EM C2 does not require the signal of angular acceleration. This is important for the

on-line capabilities since numerical computation of a reasonable acceleration signal from

a noisy position signal is often not possible. Clearly, the neural observer structure can
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increase noise when the observer gain is chosen too high. Therefore, the observer has to

be carefully designed.

The subjects that were identified were the same subjects that participated in the iso-

metric experiments. Similarly, the data sets of two subjects could not be identified, two

had to be stimulated with a sinusoidal input, and the other two felt comfortable with the

APRB-signal. The identifications of the four successfully stimulated patients converged

to the global minimum as it could be verified by visualizing the error criterion and the

locus of the parameter estimate η̂(k). The parameter convergence was slower than with

simulated data which is due to the smaller estimator gain γη̂, the bigger forgetting factor

λd and the faster observer time constant Tsys. These parameters were adjusted in order

to increase the robustness of the adaptive system with respect to disturbances and model

inconsistencies.

The comparison of the identified nonlinear functions N̂1(α) and N̂2(α̇) with their ref-

erence measurements shows significant differences. However, the identified recruitment,

as well as the activation dynamics conform with the reference measurements. Since the

NMSE-value of the overall model is small, it has to be concluded that the nonlinearities

were identified correctly and indeed differ from those measured with the Fingertester. This

conclusion can be justified by the physiology of sensorimotor integration:

Although the subjects are asked to relax, the muscles still show activity that is not

caused by RPMS. This activity is due to synaptic noise and reflexes (see Appendix B.3.4)

and results in a certain joint stiffness. This tonic joint stiffness is considered by the static

nonlinear functions N̂1(α) and N̂2(α̇) since it can be modeled as a position and velocity

dependent mechanical resistance. This fact will be utilized for the system identification

based spasticity quantification that will be explained in Chapter 5. The activity of the α-

motoneurons that conduct the action potentials from the CNS to the muscle is strongly af-

fected by the RPMS which can mainly be ascribed to antidromic blocking and an increased

Golgi tendon reflex. These effects have been reported in [93; 94; 111; 170]. Antidromic

blocking is caused by the antidromic action potentials (see Section 3.2.1). During the time

period in which an antidromic action potential propagates to the CNS, no orthodromic

signal can be conducted through the same axon since colliding action potentials will be

annihilated. The Golgi tendon reflex is caused by a change in muscle tension and has an

inhibitory effect on the homonymous muscle. In comparison to voluntary muscle activa-

tion or to the externally applied movements of the Fingertester, the RPMS-enforced muscle

contraction is less smooth. This is due to synchronous activation of the motor-units with

a frequency of 20Hz. Thus, the activity of the Golgi tendon organs is increased. Both, an-

tidromic blocking, as well as the increased activity of the Golgi tendon organs, reduce the

number of action potentials that reach the motor end plates of the axon. These inhibitory

effects result in a smaller mechanical resistance of the attached joint, the MCP-joint in our

case. All identification results of N̂1(α) and N̂2(α̇) showed a smaller gradients than the

respective reference measurements N1(α) and N2(α̇). Therefore, it is well-conceivable that

the identification results as well as the reference measurements are correct and reflect the

varying innervatory muscle activity.

All known references concerning nonisometric identification consider ”big” limbs like

the forearm or the shank (see state of the art in the Introduction 4.1). In big limbs, the
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gravitational component is dominant and relaxation phenomena can be neglected. Here,

a ”small” limb is considered where the gravitational torque is diminutive. Therefore, it

was necessary to model and to account for the relaxation characteristics. The proposed

approach is new and can easily be transferred to other small limbs.

4.4 Summary and Conclusions

The plant of the RPMS-induced index finger extension, consisting of force generation dy-

namics and segment dynamics including the relaxation behavior, can be accurately de-

scribed with the proposed model. Thus, it can be concluded that the simplifying assump-

tions like the negligible influence of the length-velocity-dependencies and the constant

tendon leverage apply, and that the approach of proposing a macroscopic model that only

takes into account the dominant characteristics was successful.

It can further be concluded that the proposed model equations are well suited to indi-

vidualize the model proposed in Chapter 3 to the respective subject. The equations can

be considered as a gray box approach [122]. It allows incorporating a priori knowledge

as far as it exists and is flexible to uncertainties where a priori knowledge is poor. A

good knowledge exists about the segment dynamics and the characteristic shape of the

recruitment function. The former is integrated by means of a white box model with known

parameters and the latter by a nonlinearly parameterized function that a priori approx-

imates the recruitment curve. Poor knowledge exists about the order of the activation

dynamics. Although in Chapter 3 a third order model has been proposed, a predefined

order as it could be realized with a difference equation does not yield satisfactory results.

Therefore, a truncated convolution sum with input space compression by means of OBFs

was used. This approach does not predefine the model order and was firstly proposed and

successfully tested in [6]. Ultimately, this gray box approach is responsible for the good

approximation behavior.

The adaptive system according to EM-C yields asymptotically stable parameter con-

vergence with a reasonable speed, i.e. the parameter convergence is fast enough for slowly

varying effects like muscular fatigue and spasticity. Robustness could be shown for un-

certainties of the relaxation parameters whereas the expected uncertainties were bounded

with the 95% confidence intervals of the relaxation parameters. The experiments were

not successful with 33% of the subjects which is probably due to insufficient voluntary

relaxation of the stimulated muscles. Since stroke patients suffer a partial or complete

paresis, this problem might be reduced. It can therefore be concluded that the system

identification is relevant for the further development of the RPMS-therapy.

The only work about nonisometric identification using a neural observer is presented

in [6] where EM 4 [118] was implemented. Since EM 4 requires a linearly parameterized

model equation, a model according to structure (2.5a) was developed. The linear parame-

terization leads to a bigger parameter space. Furthermore, it is more difficult to find good

initial parameter guesses. Nevertheless, the results are comparable with those obtained

with the SNLP-approach in this chapter. It is an advantage of the SNLP-approach that

the parameters of the recruitment characteristics Îthr and Îsat have a direct physiological

meaning which is not the case with an LP-approximation.
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4 System Identification During RPMS

The identification was carried out isometrically as well as nonisometrically. The iso-

metric experiment is easy to implement and can be useful for applications where on-line

adaptations are not necessary like the design of the position controller that will be explained

in Chapter 5. The implementation of the nonisometric case requires more expertise. How-

ever, during therapy, the index finger moves and thus, the on-line monitoring of patient

parameters like muscle fatigue or spasticity has to be carried out under nonisometric con-

ditions.
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5 Enhancements for the RPMS-therapy

5.1 Introduction

As stated in Chapter 1, it is a major goal of the current research to improve the RPMS-

therapy with the development an automated and objective therapy evaluation, an op-

timization of the proprioceptive input and an incorporation of the patient’s voluntary

activity. In this chapter, it will be shown how the system identification methods and the

neuromuscular modeling introduced in the previous chapters make major contributions to-

wards these goals: In Section 5.2 a system identification based quantification of spasticity

and muscular fatigue will be introduced and Sections 5.3 and 5.4 will describe a position

controlled and an EMG-driven position controlled RPMS-modes.

The quantification of spasticity is important for the assessment and planning of the

therapy as well as to gather insight into the underlying neurophysiological mechanisms.

Methods for spasticity assessment can be classified as clinical, electrophysiological and

biomechanical (see [127; 177; 185] for a review). Standard clinical methods like the mod-

ified Ashworth scale [15] deliver subjective results. Their reliability is controversially dis-

cussed [126]. EMG-measurements are error prone and time-consuming [13]. Biomechan-

ical methods comprise the measurement of joint-torque relations with dynamometers or

exoskeleton robotic devices [1; 49; 77–79; 99; 113]. These measurements yield reliable

results. However, expensive measurement devices are necessary and the attachment of the

device to the patient might be time consuming. In [52; 150], system identification based

methods for spasticity assessment were introduced which however are based on torque

measurements. In this chapter, a method for spasticity quantification is introduced that

is carried out during stimulation without using any extra equipment like force sensors or

EMG-devices. It is based on the macroscopic models developed in Chapter 3 and the

system identification method developed in Chapter 4. The novel method is tested and

evaluated experimentally with stroke patients.

Prevention of muscular overexertion during RPMS is important since the therapeutic

outcome is reduced, otherwise. During the position controlled movement induction, muscu-

lar fatigue cannot be observed by inspection since the controller just increases the controller

output if the actuator (the muscle) becomes weaker. Therefore, similarly to the spasticity

quantification, the muscle fatigue is monitored by means of system identification.

As explained in Chapter 1, proprioceptive input to the CNS is the basis of relearning

the lost motor functions after having suffered stroke. The therapeutic outcome of relearn-

ing coordinated finger movements like grasping or the precision grip of index finger and

thumb is still unsatisfactory [65]. In order to perform coordinated limb movements, the

patient has to retrain complex spatiotemporal activation patterns. It is assumed, that

the relearning of coordinated movements can be improved by task oriented therapy, i.e.

123



5 Enhancements for the RPMS-therapy

by inducing the same coordinated movements with muscle stimulation instead of inducing

random uncoordinated patterns. In [131; 132; 172], it was demonstrated that task-oriented

FES-therapy can improve voluntary reaching, grasping and walking functions in patients

following stroke and spinal cord injury. In addition, the results presented in [2; 3] con-

firm this assumption. For these reasons, a coordinated RPMS-induced movement of the

index finger is developed that aims to optimize the proprioceptive input to finally improve

the therapeutic outcome. A model-based position controller is implemented to make the

induced movement robust to disturbances and to provide the possibility of inducing move-

ments at arbitrary velocities chosen by the supervising therapist. The capability of the

proposed method is shown by means of experiments with healthy subjects.

So far, the only position controlled RPMS-induced limb motion can be found in [6] where

the position of the elbow joint is controlled by dual RPMS of the m. biceps and m. triceps.

Control strategies for FES-induced limb motion were developed mainly in the context of

neuroprostheses for cyclic movements of the lower extremities. In [76; 146], sliding mode

controllers were developed to control the knee-joint angle during quadriceps stimulation.

In [40; 142], the same plant was controlled with model-based linearizing controllers and

PID-control cascades. In [147], backstepping was used for position control of the knee-joint

angle. The control performances of the proposed methods showed similar results. FES-

induced hand and finger movements are commonly controlled with open-loop strategies.

In [29; 59; 120; 145], various strategies for hand opening and closing are proposed with the

purpose to implement grasping neuroprostheses. Comprehensive reviews on FES-induced

grasping can be found in [130; 159]. A position controlled muscle stimulation induced

extension and flexion of the MCP-joint of the index finger as it will be presented in this

chapter, cannot be found in the current literature.

If a patient shows some ability to contribute to the therapy by voluntary force genera-

tion, this skill should be encouraged. In [42; 70; 88], it has been shown that active patient

participation is essential for a successful motor rehabilitation. When using technical sys-

tems for rehabilitation, the patient’s intention has to be detected and taken into account

by the underlying algorithms in order to provide the possibility of active participation. In

this chapter, an EMG-driven position control is introduced that incorporates the volun-

tary muscle activity that is sensed by means of electromyography (EMG). The proposed

method ultimately yields the technical prerequisites to carry out a patient-cooperative

therapy mode of the task oriented RPMS. In [139], the term ”patient-cooperativity” is

defined as the ability of the technical system to take into account the patient’s intention

and voluntary efforts, rather than imposing any predefined movement or inflexible strat-

egy. In contrary to the position control with predefined trajectory, the EMG-driven mode

adaptively generates the trajectory dependent on the patient’s voluntary activity of the

stimulated muscle. The effect is a force support by means of RPMS that assists the patient

to carry out the intended motion. Thus, patients that are able to voluntarily generate a

force that is not sufficient to initiate a movement obtain a direct biofeedback about their

efforts. This kind of motivation is expected to increase the therapeutic outcome [138; 139].

The novel scientific contributions introduced in this chapter comprise a system identi-

fication based method for the quantification of spasticity and muscle fatigue, a position
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5.2 Quantification of Patient Parameters

controlled RPMS-induced extension and flexion of the index finger and an EMG-driven

RPMS-induced position control with adaptive trajectory generation.

5.2 Quantification of Patient Parameters

5.2.1 Spasticity Quantification

Principle

In Section 3.7, a phenomenological model of the spastic joint torque in the MCP-joint

of the index finger has been proposed. According to the formulae (3.35a) and (3.35b),

the tonic and the phasic spasticity components st(α) and sph(α̇) can be integrated into

the static nonlinearities N1(α) and N2(α̇) as additive terms1. In Section 4.3, it has been

shown that the static nonlinearities can be identified on-line during nonisometric RPMS.

All terms in (3.35a) and (3.35b) except the spasticity components are time invariant to a

large extent. Therefore, a change of spasticity between the particular times t1 and t2 can

be inferred as

∆st(α) = N1(α)
∣∣
t1
−N1(α)

∣∣
t2

∆sph(α̇) = N2(α̇)
∣∣
t1
−N2(α̇)

∣∣
t2
. (5.1)

Thus, using on-line parameter identification, a change of spasticity can be observed in a

time-continuous manner. In the following, a pilot study with four patients will be presented

that aimed to evaluate the capability of this approach. The evaluation was done by means

of comparative reference measurements. For this purpose, the spasticity was quantified in

before-after manner instead of performing a time continuous tracking.

Experimental Protocol

The patients were treated with conditional RPMS [165; 166] for three days. During con-

ditional RPMS, the flexor and extensor muscles of the upper and lower arm of the paretic

side are stimulated with alternating coil positions. Every day, three stimulation sessions

were carried out. During a stimulation session, magnetic pulse trains of 1.5 s, i.e. 30 pulses,

followed by a 3 s break are applied for a total time of approx. 15min.

Before the first treatment at day 1 (time t1), the spasticity was quantified with system

identification. Biomechanical reference measurements were carried out in order to evaluate

the identification results. The same measurement protocol was carried out after the last

stimulation session at day 3 (time t2).

The experiments were conducted with four patients where three of them suffer from

spastic paresis following a stroke. One patient suffered a cerebral hypoxia followed by

spastic tetraparesis with dystonia (see Tab. 5.1).

1Throughout this chapter, the coordinate system introduced in Fig. 3.10 with the denotation α = α2

applies.
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5 Enhancements for the RPMS-therapy

Tab. 5.1: Relevant data of the patients. (L.o.l.: location of lesion, t.s.l.: time since lesion,
Ashw. s. wr./fi.: Ashworth scale, wrist/fingers)

Patient Sex Age L.o.l.
T.s.l.
(yrs)

Symptoms
Ashw. s.
wr./fi.

Sensory
dysfunctions

CZ f 63

complete
middle cerebral
artery
infarction, right
side

9

Paresis of the
complete left
hemisphere,
spasticity in arm
and finger flexors

2/2

Proprioceptive
dysfunction in
wrist and fingers,
neglect of the
complete arm

RG f 64

vaso-spastic
partial middle
cerebral artery
infarction, right
side

6

Paresis of the
upper left
extremity,
spasticity in arm
and finger flexors

1-/2

Proprioceptive
dysfunction in
wrist and fingers,
neglect of the
complete arm

DL m 71

intracerebral
hemorrhage,
right side,
frontoparietal

5

Paresis of the
upper left
extremity,
minimal
voluntary flexion
of finger and
elbow, spasticity
in arm and finger
flexors

1/2 –

SU f 37
Cerebral

hypoxia
7

Spastic
tetraparesis,
ataxia, athetoid
dystonia

– –

System Identification Based Spasticity Quantification

The system identification of the RPMS-induced index finger extension was carried out

as explained in Section 4.3. The EIP of the patients was stimulated with an APRB-

modulated stimulation intensity I(k) (compare to upper plot of Fig. 4.4) for a period

of approx. 45 s. The data sets were identified with the identification scheme explained

in Section 4.3.2 and the estimates ρ̂(I), ĥ(k), N̂1(α) and N̂2(α̇) were obtained from the

respective reconstructions. In Fig. 5.1, exemplary estimates N̂1(α) and N̂2(α̇) obtained

from patient CZ are depicted. It can clearly be observed that both nonlinearities show a

smaller amount of reset torque after the therapy at time t2. According to the underlying

model this change is ascribed to a reduction of the spasticity level. When comparing

N̂2(α̇) in Fig. 5.1 with the identification results N̂2(α̇) obtained from healthy subjects (see

Fig. 4.13), it can be observed that the amount of reset torque of the patient is higher and
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Fig. 5.1: Identification results of patient CZ before therapy (dark curves) and after therapy
(bright curves).

that the patient’s curve is positive for positive as well as for negative angular velocities α̇.

Since this effect was observed at every patient and at none of the healthy subjects, it is

well-conceivable that this characteristic is due to the spastic flexor activity.

In order to quantify the change of the tonic spasticity component, the mean difference

∆ŝt = N̂1(α)
∣∣
t1
− N̂1(α)

∣∣
t2

(5.2)

is calculated as a characteristic number. As explained in the following section, the phasic

component can be compared to the reference measurement at the angular velocities α̇ =

30 ◦/s and α̇ = 60 ◦/s, only. Thus, the characteristic numbers

∆ŝph,30 = N̂2(30◦/s)
∣∣
t1
− N̂2(30◦/s)

∣∣
t2

∆ŝph,60 = N̂2(60◦/s)
∣∣
t1
− N̂2(60◦/s)

∣∣
t2

(5.3)

are calculated.

Reference Measurements

The Fingertester (see Appendix C) was used to move the patient’s MCP-joint of the index

finger from its equilibrium position with constant angular velocity α̇ in order to measure

the joint torque τme (compare to Fig. 3.22). In order to measure the tonic as well as

the phasic spasticity component, the extension was carried out at three different angular

velocities: α̇ = 15 ◦/s, α̇ = 30 ◦/s and α̇ = 60 ◦/s. An exemplary reference measurement of

patient CZ is depicted in Fig. 5.2. Clearly the curves measured at time t2 show a smaller

amount of reset torque and no increase at velocities α̇ = 30◦/s and α̇ = 60◦/s. From this
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Fig. 5.2: Reference measurements of patient CZ: The index finger was extended at three
different angular velocities. The dark curves indicate time t1 and the bright curves
indicate time t2.

result it can be concluded that the tonic spasticity as well as the phasic spasticity have

indeed decreased.

Since no phasic spasticity is expected at α̇ = 15 ◦/s, the characteristic number of the

tonic spasticity component can be calculated as

∆st = τme,15(α)
∣∣
t1
− τme,15(α)

∣∣
t2
. (5.4)

The characteristic number ∆sph,30 that quantifies the phasic component at α̇ = 30 ◦/s can

be calculated as

sph,30

∣∣
t1

= τme,30(α)
∣∣
t1
− τme,15(α)

∣∣
t1

∆sph,30 = sph,30

∣∣
t1
− sph,30

∣∣
t2
. (5.5)

Eq. 5.5 is applied for α̇ = 60 ◦/s, too.

Results

The characteristic numbers were calculated for each patient according to Eqs. (5.4)

and (5.5). In order to compare the identification-based results with the reference mea-

surements, the relative differences

dt =
∆st − ∆ŝt

∆st

dph,30/60 =
∆sph,30/60 − ∆ŝph,30/60

∆sph,30/60
(5.6)
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were calculated. The results of the characteristic numbers and the relative differences

are summarized in Tab 5.2. The results indicate that the identification based spasticity

quantification agree with the reference measurements by trend. An increase of the phasic

component as it could be observed at patient RG has been often observed after conditional

RPMS. The reason for the increase of tonic and phasic spasticity of patient SU is unclear.

Tab. 5.2: Results of the spasticity quantification: The unit of all ”∆”-numbers is Ncm, the
relative differences dt and dph are given in %. Patient CZ did not reach the angular
velocity α̇ = 60◦/s during stimulation at time t1. Thus, ∆ŝph,60 could not be
calculated. Note, that negative ”∆”-numbers indicate an increase of spasticity.

Patient Tonic component Phasic component

∆ŝt ∆st dt ∆ŝph,30 ∆ŝph,60 ∆sph,30 ∆sph,60 dph,30 dph,60

CZ 1.6 1.7 6.8 0.9 - 1.0 1.4 10.4 -

RG 8.5 9.2 7.6 -3.1 -5.7 -4.2 -6.0 24.9 4.4

DL 1.5 1.8 16.1 2.0 6.8 1.4 3.7 -49.7 -84.3

SU -2.9 -0.7 -325.5 -6.2 -9.4 -2.8 -3.3 -121.1 -189.1

5.2.2 Identification of Muscle Fatigue

Principle

In [135], a force generation model was developed on a physiological level, that incorpo-

rates the depolarization dynamics at the motor end plates, and in the T-tubuli as well

as the dynamics of Ca2+-release and Ca2+-bonding (see also paragraph ”Muscle Activa-

tion” in Appendix B.1.5). The process of fatiguing and recovery is ascribed to decrease

and increase of Ca2+-concentration in the sarcoplasmatic reticulum and modeled with a

nonlinear first order differential equation. The proposed model was successfully verified

with FES-experiments. On a phenomenological macroscopic level, the fatigue results in

a smaller amount of force and in a different shape of the recruitment curve. The latter

effect can be explained by the different recruitment characteristics of the different types of

muscle fibers (see Appendix B.1.6). Slow muscle fibers show a higher recruitment thresh-

old and a higher recruitment saturation than fast muscle fibers [66]. In the recruitment

model 3.19 this is reflected with the parameters Ithr and Isat. Since the fast fibers show a

higher fatigability, during stimulation their contribution to the absolute recruitment ρ(I)

is reduced compared to the slow fibers. This results in increasing values of Ithr and Isat.

The macroscopic force generation model developed in Section 3.4 can account for the

phenomenological effects as described above. In the following, it will be shown, how

the muscle fatigue can be tracked with on-line identification scheme introduced in Chap-

ter 4. First, a simulation is described that evaluates the approximation capabilities of the
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macroscopic model, subsequently, the experiment is described and evaluated. With our

equipment, the EIP cannot be stimulated longer than approx. 45 s due to overheating of

the small circular coils. Since the EIP does not show significant fatigue during this short

stimulation period, the fatiguing experiments were conducted with the m. biceps brachii.

Simulation

The model from [135] was originally proposed for the electrically stimulated m. quadriceps.

In [201], it was modified to approximate the magnetically stimulated m. biceps brachii.

The model was verified by means of isometric experiments (see schematic of Fig. 5.3) and

showed an excellent approximation behavior. The fatiguing parameters were manually

tuned such that the significant muscle fatigue that can be observed at the m. biceps during

a stimulation period of 60 s could be reproduced. The modified model was integrated as

simulated plant into the identification scheme of Fig. 4.1 and identified as described in

Section 4.2.

Fs

Force sensor

Stimulation
coil

90◦
Approx. 100◦

Orthosis

Fig. 5.3: Experimental setup for isometric stimulation of the m. biceps brachii. The sensor
force Fs represents the plant output.

The plant output y(k) = Fs(k), its estimation and the output error are plotted over

time in Fig. 5.4. The motor unit recruitment ρ̂(I) and the muscle activation dynamics

ĥ(k) were reconstructed after 30 s, and 60 s. From the small output error e(k), it can be

concluded that the macroscopic model is capable of approximating the physiological model.

The tracking performance of the on-line parameter identification is sufficient to follow the

fatiguing process. From the reconstruction (Fig. 5.5), it can be inferred that the fatigue

is accounted for with the recruitment model whereas the impulse response remains almost

unchanged.

Experiment

The experiment was carried out according to the setup depicted in Fig. 5.3. The subject

was stimulated over a period of 60 s. In [6], the contraction time of the m. biceps was

determined as 450 ms. For this reason, the length m of the impulse response was chosen to

450. The curvature parameters were chosen at αthr = 25 and αsat = 9. In order to have an
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Fig. 5.4: Plant output y(k), its estimate ŷ(k), and output error e(k) during simulative param-
eter adaptation.
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Fig. 5.5: Model reconstruction from the identified parameters after 30 s and after 60 s of sim-
ulation.

instant tracking of the plant, initial values η̂(0) and θ̂M(0) were obtained from a preceding

parameter identification. The other fiddle parameters remained unchanged compared to

Tabulars 4.1 and 4.2. Similar to Chapters 3 and 4, the sensor force Fs was defined as

system output y(k) = Fs(k).

The prediction error during identification is depicted in Fig. 5.6. The model was recon-

structed after 30 s and after 60 s of stimulation. The experiment shows that the on-line

identification is capable of tracking the fatiguing muscle, with a small prediction error.

Similar to the simulation phase, the activation dynamics remain almost unchanged, and

the muscle fatigue is reflected within the recruitment behavior. It can be observed that

the values of Ithr and Isat increase during stimulation. This observation coincides with

the model of [135] that accounts for this effect with a different fatigability and a different

recruitment behavior of slow and fast muscle fibers.
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Fig. 5.6: Plant output y(k), its estimate ŷ(k), and output error e(k) during parameter adap-
tation with experimental data.
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Fig. 5.7: Model reconstruction from the identified parameters after 30 s and after 60 s of stim-
ulation.

5.2.3 Discussion

Spasticity Quantification

As already discussed in Section 4.3.6, the identified nonlinearities N̂1(α) and N̂2(α̇)

(Fig. 5.1) differ from the reference measurements (Fig. 5.2). It is assumed that these

variations are due to antidromic blocking and an increased Golgi tendon reflex. However,

the characteristic numbers obtained from the before-after comparisons show similar ten-

dencies of estimated and reference values. Among all the patients that could be identified,

both methods conform to whether the spasticity has decreased or increased. Therefore,

it can be concluded that spasticity quantification during therapeutic muscle stimulation

based on system identification is possible. Patient RG showed a decrease of the tonic

component whereas the phasic component increased. This effect is often observed after

conditional RPMS.

It is important to note that the estimated nonlinearities N̂2(α̇) obtained from experi-

ments with spastic patients qualitatively differ from those obtained from healthy subjects
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(compare Fig. 4.13 with Fig. 5.1). The curves of spastic patients show positive torque val-

ues for positive, as well as for negative angular velocities. It is likely that this characteristic

is due to the spastic flexor activity.

The proposed spasticity quantification represents an automated method that can be

applied without using additional measurement devices. Since the underlying parameter

identification can be applied on-line, a time-continuous spasticity monitoring during ther-

apeutic stimulation can be implemented. However, the patient study revealed that there

are patients whose spasticity level is too high to induce a significant movement with RPMS.

The proposed method cannot be applied to such patients. For the further development of

the spasticity quantification during stimulation, the direct influence of the RPMS on the

joint stiffness (antidromic blocking, e.g.) has to be investigated. Moreover, it would be

advantageous to map the torque-angle curves obtained from the system identification into

a scheme such as the modified Ashworth scale that is easy to interpret, and familiar to

neurologist and physiotherapists. Both problems can be attacked only by means of patient

studies with a large number of participants which is beyond the scope of this thesis.

Identification of Muscle Fatigue

The macroscopic force generation model is capable of approximating the physiological

model proposed in [135] that takes into account fatiguing and recovery processes and the

on-line identification is capable of tracking the simulated as well as the real muscle fatigue.

Thus, it can be concluded that system identification based quantification of muscle fatigue

during therapy is possible.

Observing fatigue during therapy is important in order to avoid excessive strain. The

proposed method yields time varying absolute recruitment curves from which the force

generation ability can be inferred. In order to assess the muscle fatigue of the respective

patient such that the therapy is stopped before overexertion occurs, the recruitment curve

has to be mapped into a meaningful fatigue-parameter. Also for this purpose, a large data

basis is required which can be obtained from studies with a large number of participants

only.

5.3 Position Controlled Movement Induction

A position controlled RPMS-induced extension and flexion of the MCP-joint of the index

finger was implemented with dual RPMS (see Fig. 5.8). The plant input is given with the

magnetic pulses uex and ufl that act upon the EIP and the FDS/FDP, respectively. The

MCP-joint angle α is defined as plant output y.

In the following, first a simplified plant will be formulated. Subsequently, a controller

design will be proposed, and experimental results will be presented.

5.3.1 Simplified Plant

A block diagram of the plant is depicted in Fig. 5.9. Compared to the plant that has been

considered for the nonisometric identification (Fig. 4.14), the force generation has been
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Fig. 5.8: Schematic of the position controlled movement induction with dual RPMS.
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Fig. 5.9: Block diagram of the plant ”RPMS-induced index finger extension and flexion” with
dual RPMS.

extended by the recruitment ρfl(u) and the activation dynamics hfl of the flexor muscles

FDS/FDP. The muscular driving torque τM , as well as the plant output y = α conform

with the coordinate systems of Figs. 3.10 and 3.20 with τM = τ2 and α = α2. The flexor

torque τM,fl counteracts the extensor torque τM,ex and therefore, the respective stimulators

will never be active at the same time. This is accounted for by defining the input spaces as

uex := [0 % . . . 100 %] and ufl := [0 % . . .− 100 %] and with a negatively defined absolute

recruitment ρfl(ufl) as indicated in Fig. 5.9.

During repetitive stimulation with frep = 20 Hz, the relation between ρ(u) and τM is

dominated by the dynamics of the temporal summation. As explained in Section 3.4.4,

these dynamics can be approximated by a PT1-system with an average time constant
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T e,opt = 128, 9 ms. Thus, the step response shows a settling time of approx. 0.45 s (compare

to Fig. 3.17). This can be considered as fast compared to the dynamics of the desired

trajectories yd during therapy. Therefore, the activation dynamics hex and hfl will be

neglected for the following controller design. For sake of a simpler notation, the recruitment

functions will be summarized as

ρ(u) =

{
ρex(u) for u ≥ 0

ρfl(u) for u < 0
. (5.7)

Thus, the state space description of the simplified plant is given as

χ̇ =




0 1 0

0 0 −1/J

0 Erel −1/Trel





︸ ︷︷ ︸
Ap

χ +




0

1/J

0





︸ ︷︷ ︸
bp

(ρ(u) −N1(χ1) −N2(χ2)) ,

y = [1 0 0]︸ ︷︷ ︸
cT
p

χ , (5.8)

with the state χT = [α α̇ τrel].

5.3.2 Controller Design

Without formally applying the well-known method of exact input-output-linearization [74],

the plant (5.8) can be linearized by introducing the nonlinear transformation

u = ρ−1(ν +N1(χ1) +N2(χ2)) (5.9)

with the new virtual input ν. In the context of robot control, this method is known as

”computed torque” (see [153], e.g.). The computed torque controller is depicted in Fig. 5.10

(a). Inserting the transformation (5.9) into (5.8) yields the linearized plant

χ̇ = Apχ+ bpν (5.10)

y = cTp χ .

It can easily be shown that system (5.10) is controllable and observable. Therefore, a state

feedback controller with an additional integral control loop to eliminate the stationary

control error is proposed (Fig. 5.10 (b) and (c)). Following the standard pole placement

procedure (see [125], e.g.), the system matrix Ac of the controlled system is given as

Ac =

[
Ap − bp κ

T bpκI

−cTp 0

]
(5.11)

and the characteristic polynomial of the controlled system can be calculated as

P (s) = det(sI −Ac) . (5.12)

135



5 Enhancements for the RPMS-therapy

uex

ufl

ρ−1(·)

∫
κI

χI

κT N̂1(χ̂1) + N̂2(χ̂2)

yd w ν u

y

y

χ̂

Luenberger
oberserver of
plant (5.10)

(a)

(b)(c)

Fig. 5.10: Position controller: (a) Model based linearization by means of a computed-torque
controller (b) State feedback controller (c) Integral controller cascade.

The poles of the controlled system are placed according to a forth order standard transfer

function with optimal Integrated Time Multiplied Absolute Error (ITAE see [46], e.g.).

The ITAE-criterion yields fast settling with a small overshoot, and is well-approved for

many control applications. The desired fourth order polynomial is given as

Pd(s) = s4 + 2.1ω0s
3 + 3.4ω2

0s
2 + 2.7ω3

0s+ ω4
0 , (5.13)

whereas the settling time is given as Tset ≈ 5/ω0. The controller parameters κ and κI can be

determined by comparing the coefficients of (5.12) and (5.13). A Luenberger observer [125]

for the linearized system (5.8) is implemented in order to estimate the system state χ.

The observer dynamics are designed according to the ITAE-criterion as well. Its dynamic

behavior is chosen to be twice as fast as that of the controlled plant by choosing ω0,obs = 2ω0.

5.3.3 Experimental Results

The position controller was tested with healthy subjects. As depicted in Fig. 5.8, the lower

arm was fixated in an orthosis and a goniometer was attached to the index finger. The

extensor coil was placed above the innervation zone of the EIP and the flexor coil was

placed above the innervation zone of the FDS/FDP.

The controller of Section 5.3.2 requires estimates of the functions N1(χ1), N2(χ2),

ρex(uex) and ρfl(ufl). Therefore, a system identification procedure was carried out that

immediately preceded the control experiments. The EIP-recruitment ρex(uex), N1(χ1) and

N2(χ2) were identified with the nonisometric procedure explained in Section 4.3. The

FDS/FDS-recruitment ρfl(ufl) was identified under isometric conditions as explained in

Section 4.2.
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Fig. 5.11: Step responses at t0 of the position controlled system with different step sizes: At
t = t0 + 7s the system was disturbed by hanging a 20 g load at the finger tip.

The controller performance was evaluated with two different experiments. The dynamics

and the disturbance reaction of the controlled system (Fig. 5.11) was tested with steps of

the desired output yd(t). When the set point was reached, a 20 g load was hung at the finger

tip in order to disturb the system. The reference tracking behavior (Fig. 5.12) was tested by

letting the controlled system follow ramp trajectories of yd(t). The characteristic frequency

ω0 of the desired polynomial (5.13) was chosen heuristically. In both experiments, the best

results were obtained by choosing ω0 = 10 s−1.

5.3.4 Discussion

The plant is simplified by neglecting the activation dynamics hex and hfl as well as the

delay Td = Td,hw +Td,ph ≈ 15 ms (see Section 3.4.1 and 3.4.2). A continuous time controller

design is applied to the simplified plant. It can be shown by means of simulations that a

controller design for the exact plant only yields a minimal improvement of the controller

performance [212]. Furthermore, the higher order of the exact description requires a higher

order state observer for the real implementation. Increasing the order also increases the

sensitivity to noise that it will probably undo the small performance improvement.

The dynamics of the system are limited by the dynamics of the temporal summation

and the delay Td which result in an open-loop step response with a settling time of approx.

0.45 s (compare to Fig. 3.17). This limitation is considered by choosing the characteristic

frequency to ω0 = 10 s−1 which leads to a settling time of Tsys ≈ 5/ω0 = 0.5 s. The

experimental results of Fig. 5.11 approximately confirm this settling time. Faster dynamics

could not be implemented due to the limited plant input. Thus, the dynamic performance

or the proposed controller is close the practical limit.

Clearly, the development of a discrete time controller design for the exact plant that

considers the periodic impulse characteristic of the plant input can be expected to yield

slight improvements over the proposed methods, at least in theory. However, considering
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Fig. 5.12: Exemplary result of the trajectory tracking experiment: The upper graph depicts
the trajectories of the desired and the actual angle, and in the lower graph the
controller output is illustrated.

the slow movements during rehabilitation, the introduced method is reasonable. The

results from the step response experiment as well as from the ramp-tracking show a small

control error. Thus, it can be concluded that the performance of the proposed control

algorithm is adequate for the therapeutic movement induction.

A system identification procedure was conducted preceding the actual position control

experiments. Although, the experiment becomes more time consuming, the identification

of the flexor recruitment was carried out under isometric conditions. Nonisometric iden-

tification of the flexor recruitment did not yield satisfactory results. This is due to two

reasons: Firstly, the induced flexion movement is small (|∆α| ≤ 20 ◦) and thus, the input

of the identification algorithm has a small range. Secondly, the MCP-joint is flexed only

indirectly as explained in Sections 3.2.2 and 3.3.2. This results in a delayed onset of the

flexion movement, whereas the delay depends on the current geometrical configuration.

This effect is not considered in the underlying model, since it is almost impossible to

predict.

5.4 EMG-Driven Position Control

The position controller depicted in Fig 5.8 is enhanced with an adaptive trajectory gener-

ation driven by the voluntary activity of the stimulated muscle (see Fig. 5.13 a).

For the experiments of the EMG-driven position control, only the EIP is considered,

and the controller of Fig 5.10 is reduced to the control output uex. As a consequence,
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Fig. 5.13: Schematic of the EMG-driven position controlled index finger extension: (a) Adap-
tive trajectory generation (b) Extensor Coil (c) EMG-electrodes (d) Goniometer.

the index finger can only be extended from its equilibrium position and not flexed. This

reduces the hardware complexity during experiments, but does not limit the generality

of the introduced approach. Compared to the position control with predefined trajectory

(Fig. 5.10), the experimental setup is enhanced by surface EMG-electrodes (Fig. 5.13 c)

that are attached to the forearm above the innervation zone of the EIP. A short introduction

into the electrophysiology of EMG can be found in Appendix B.2.

As it will be explained in Section 5.4.2, the muscular activity at the EIP is detected

with a two-channel measurement. The raw EMG-signals are preprocessed by a self-built

artifact suppressing EMG-amplifier [6; 187]. The amplifier outputs c1 and c2 are fed into

the block EvMA (estimation of voluntary muscle activity). The EvMA represents a signal

processing cascade that will be explained in Section 5.4.2. The output a of the EvMA is a

measure for the voluntary muscle activity. This knowledge about the patient’s effort is used

to implement a patient cooperative therapy mode as it will be explained in Section 5.4.3.

Experiments have been carried out with healthy subjects. The results and the capability

of the proposed method with respect to an application in a rehabilitation environment will

be evaluated in Section 5.4.4.

The EMG-signals are sampled with a sampling period of Ts = 1 ms and processed in

discrete time. Therefore, discrete time formulation with k = t/Ts will be used throughout

this section.

5.4.1 Stimulation Artifacts and Signal Preprocessing

In the literature pertaining EMG-measurements at FES-stimulated muscles [148; 155; 156],

the EMG-signal is described as a superposition of three components:
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Stimulation Artifacts that are evoked by the electromagnetic fields during stimulation.

M-Waves representing muscular activity due to the synchronous activation of motor units.

Voluntary activity caused by the patient’s desire for muscular activity. Usually, the vol-

untary activity represents the wanted signal. It can be characterized as Gaussian

band limited colored noise with time varying variance [24].

In order to reduce the stimulation artifacts, a a self-built artifact suppressing EMG-

amplifier [6] is used. Stimulation artifacts can be subdivided in direct and indirect ar-

tifacts: The direct artifacts [6] caused by the magnetic pulses are suppressed by either

short circuiting the EMG-electrodes or by connecting the EMG-electrodes to the constant

voltage during a period S1 (see Fig. 5.14) in which the pulse is fired. The constant voltage

is set according to the last sensed voltage at the surface electrodes before the pulse. The

first method causes indirect artifacts due to repolarization processes of the ”skin-electrode-

capacitor” [6]. These effects can be reduced by the second method which was used for the

experiments in this chapter. In order to further reduce the effects of the indirect artifacts,

the amplifier input is connected to ground during a period S2 (see Fig. 5.14). Details about

the amplifier functionality and the origin of the artifacts can be found in [6; 187].

In order to illustrate the characteristics of the artifacts, single pulses were applied to

the EIP while a single channel EMG-signal c(k) and the isometric force Fs(k) (see setup

depicted in Fig. 3.14) were recorded (Fig. 5.14). The pulses have been applied with stim-

ulation intensities I = 0 . . . 100 %. From the signals c(k) in Fig. 5.14 an artifact pattern

before S2 and another right after S2 can be observed. During S2, no wanted signal can be

extracted since the signal pathway is opened. The former artifact is ascribed to leakage

currents of the stimulation device during the charging cycle that precedes the actual pulse.

The latter could be either due to leakage currents, or due to the repolarization of the skin-

electrode-capacitor. Both artifacts interfere with the EMG-signal of voluntary contraction

and have to be suppressed with further signal processing. Furthermore, the experiment re-

veals that the artifacts are independent of the simulation intensity. The force recordings in

the right graph of Fig. 5.14 indicate that the intensities I = 0 . . . 20 % are at subthreshold

level, i.e., no motor units are activated. However, the artifacts of subthreshold stimulation

do not differ from the others. From these measurements, it can be concluded, that an

m-wave as observed in [148; 155; 156] is not part of the detected signal since no m-wave

can be elicited with subthreshold stimulation.

5.4.2 Signal Processing

Fig. 5.16 yields an overview of the proposed signal processing cascade ”EvMA”. It com-

bines the established EMG-processing methods of spatial decorrelation [71] and signal

whitening [24] with an adaptive artifact filter and a weighted root mean square algorithm.

Despite from simple blanking strategies that loose all EMG-information during the blank-

ing period, several artifact removing strategies can be found in literature: Static comb

filter [51; 62], high-pass filter [148] and a linear adaptive prediction (LAP-) filter [62; 155].

Since the LAP-filter performs best in removing the RPMS-artifacts [210] it is used as

adaptive artifact filter for the EvMA-cascade.
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Fig. 5.14: Left: EMG-signals c(k) during single RPMS-pulses at the EIP with stimulation
intensities I = 0 . . . 100 %. The periods S1 and S2 are indicated with vertical lines.
Right: Corresponding force signals Fs(k) recorded with the setup for isometric
measurements (see Fig. 3.14). In both plots, the curves obtained from subthreshold
stimulation are indicated with dotted and dashed lines.

In order to reduce random variations in the EMG-amplitude that disturb the mean

amplitude of the muscular activity (see Appendix B.2), the EIP-activity is measured with

two pairs of electrodes. Improving the detection of muscular activity with multiple site

EMG-measurement was proposed and successfully evaluated in [26; 71; 164], e.g.. As

depicted in Fig. 5.15, the electrode pairs measure the EIP-activity at different positions and

thus the EMG-signals c1(k) and c2(k) carry different information. Both signals propagate

through the EvMA-cascade in parallel and are averaged in the end. Fig. 5.15 shows

an electrode configuration where both channels are aligned along the EIP-muscle fibers.

Different configurations were tested whereas the presented yielded best signal quality. The

issue of electrode arrangement is discussed in [210].

For sake of a better readability, the signal processing will be introduced for a single

channel c(k). Only for the introduction of the spatial decorrelation and the averaging both

channels are considered. The individual signal processing blocks are introduced in the

following paragraphs.

In order to illustrate the benefits of the particular processing steps, the EvMA is applied

to the data set depicted in Fig. 5.17: The EIP of a healthy subject was stimulated under

isometric conditions with a constant stimulation intensity of I = 60 %. The force generated

by means of stimulation amounts to approx. 1.7N. The subject was asked to generate an

additional amount of force voluntarily. From the force signal it can be inferred that the

subject first generated a constant force, subsequently a force ramp and three short force-

periods. As it will be shown, the EvMA-cascade estimates the corresponding voluntary
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Channel 1: c1(k) Channel 2: c2(k)

Fig. 5.15: Two channel electrode arrangement above the innervation zone of the EIP.
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Fig. 5.16: EvMA-cascade: The voluntary muscle activity a(k) is estimated from a two channel
EMG-measurement.

muscular activity a(k) that correlates with the voluntary force included in Fs(k) from the

signals c1(k) and c2(k).

Spatial Decorrelation

It is clear from intuition that simple averaging of the channels c1(k) and c2(k) will reduce

random signal variations. However, in [26; 71; 164], it was shown that a spatial decor-

relation of EMG-channels measuring the same muscle prior to computing the average,

improves the reduction of signal variations. Each of the electrode pairs covers a certain

region of the innervation zone where it is likely that the regions overlap. Thus, c1(k) and

c2(k) carry information from the intersection as well as from the non-overlapping part of

their respective regions. The former information is redundant. The spatial decorrelation

aims to equally weight the mutually uncorrelated information from each channel which

finally yields an optimal signal after averaging [24].
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Fig. 5.17: Raw EMG-signal c1(k) of channel 1 and isometric force Fs(k) during stimulation
with constant intensity. The RPMS-induced force shows a nearly constant level of
approx. 1.7N. The subject was asked to generate voluntary force that adds to the
RPMS-induced force. This additional forces occur at approx. 1.9 s-3.8 s, 4.8 s-8.7 s,
and at approx. 10 s, 11.5 s and 13.1 s.

As indicated in the first block of Fig. 5.16 the decorrelation can be achieved by simply

applying a principle component analysis (PCA) to the data of the channels c1 and c2
that yields a coordinate transformation into the new axis c1,d and c2,d. According to the

standard PCA-procedure (see [43], e.g.), the principle components of a two dimensional

data set are obtained as the major and minor axes of the ellipse spanned by the data set

(see first block in Fig. 5.16). The effect of the coordinate transformation is simply to rotate

the coordinate system so that an uncorrelated data set c1,d and c2,d is obtained. Following

the derivation in [71], where the coordinate transformation matrix Ξ is calculated using

the covariance method, the covariance matrix

Ψ = CTC =

[
σ2

c1,c1 σ2
c1,c2

σ2
c2,c1 σ2

c2,c2

]
(5.14)

has to be calculated, whereas

C =





c1(0) c2(0)

c1(1) c2(1)
...

...

c1(N) c2(N)




. (5.15)

With Ψ symmetric, the spectral theorem [9] can be applied and Ψ can be written as

Ψ = ΓΛΓT , (5.16)
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whereas the matrix Γ summarizes the eigenvectors γ
i
of Ψ and the diagonal matrix Λ con-

tains the respective eigenvalues λi. Similar to the standard PCA, in [71] the transformation

matrix is calculated as

Ξ =

[
1√
λ1

0

0 1√
λ2

]

ΓT =

[
γ1,1√

λ1

γ1,2√
λ1

γ2,1√
λ2

γ2,2√
λ2

]

(5.17)

and thus, the EMG-channels can be decorrelated as

cd(k) = Ξ c(k), (5.18)

with c(k) = [c1(k) c2(k)]
T and with cd(k) = [c1,d(k) c2,d(k)]

T . Note that in standard PCA,

a matrix ΓT
N that contains the unit eigenvectors with length 1 is used as transformation

matrix. The geometric interpretation is that the ellipse in Fig. 5.16 is only rotated and

not scaled and thus, the variances of the transformed signals equal the variances of the

original signals. The normalization of Eq. (5.17) has been proposed in [71]. It transforms

the ellipse into a circle, and thus yields spatially uncorrelated signals c1,d(k) and c2,d(k)

with equal variance. This yields further improvements in terms of reduction of random

signal variations. More detailed derivations can be found in [26; 71]. For the practical

application, the matrix C is obtained from calibration measurements that have to be

carried out before the actual experiment. Implementational details can be found in [210].

The benefit of the spatial decorrelation can only be seen after smoothing and averaging, and

is illustrated in Fig. 5.21: The activity signal a(k) that was obtained when including the

spatial decorrelation shows less variations than the signal a(k)ws that has been computed

while omitting the spatial decorrelation. When comparing the signals with the force signal

of Fig. 5.17, it can be observed that a(k) is stronger correlated to the voluntarily applied

force than a(k)ws.

Adaptive Artifact Filter

The LAP-filter [62; 155] takes advantage of the periodic nature and the self-similarity of the

stimulation artifacts, and the non-periodic and partly random nature of the wanted EMG-

signal. The left plot of Fig. 5.18 shows the amplitude spectrum of c1(k) calculated with

a discrete Fourier transform. In the frequency domain, the artifacts that occur with the

RPMS-repetition frep = 20 Hz are represented with narrow amplitude peaks at fk = 20 Hz

and multiples of 20Hz.

The output of the LAP-filter is calculated as

s(k) = cd(k) −
M∑

j=1

bjcd(k − jkrep) , (5.19)

with M filter coefficients bj and with krep = round(1/(frepTs)). For the adaptation of

the filter coefficients bj signal frames, each of length krep are considered. Hence, the krep

samples of the signal cd(k) of the jth frame are summarized as

cd,j = [cd(−(j + 1)krep + 1) cd(−(j + 1)krep) + 2 . . . cd(−(j + 1)krep + krep − 1) cd(−jkrep)]
T

(5.20)
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Fig. 5.18: Amplitude spectra of the signals c1,d(k) (left) and s1(k) (right).
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Fig. 5.19: EMG signal s(k) after LAP-filtering.

and the latest output frame s0 can be written as

s0 = cd,0 −

M∑

j=1

bjcd,j with s0 = [s(−krep + 1) . . . s(0))]T . (5.21)

The optimal filter coefficients bopt are found by minimizing the output energy sT
0 s0 [62].

Thus, the linear quadratic minimum problem

bopt = arg min
b

(sT
0 s0) (5.22)

has to be solved. Intuitively spoken, the LAP-filter predicts the krep-periodic parts of the

signal by a linear combination of the M frames cd,j preceding the current frame cd,0 and

eliminates the artifacts in the current frame cd,0 to a large extent by subtracting the predic-

tion. Naturally, the LAP-filter causes a signal delay of krepTs = 50 ms. Further derivations

and implementation details are presented in [210]. From the amplitude spectrum of the fil-

tered signal s1(k), depicted in right plot of Fig. 5.18, it can be seen that the periodic peaks

have been successfully removed. The time domain representation is depicted in Fig. 5.19.

It is obvious that the wanted signal was separated from the artifacts to a large extent.
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Adaptive Whitening

The amplitude estimation of EMG-signals can be improved by applying a whitening filter

prior to smoothing (see [25; 44; 71], e.g.). Signal whitening has become an established

EMG-processing method. One of the most successful approaches has been introduced

in [24] as ”adaptive whitening filter”. It is integrated into the EvMA-cascade. Since the

detailed filter design steps can be found in [24], in the following, only the main idea will

be shortly described.

The filter cascade of [24] consists of a fixed whitening filter, and an adaptive Wiener

filter together with an adaptive gain correction. It is assumed that the EMG-signal s(k)

can be modeled as

s(k) = ain(k) + ι(k) . (5.23)

The signal amplitude ai modulates a stationary Gaussian colored noise n(k), additionally a

stationary additive white background noise ι(k) is included. The whitening filter Hwh(fk)

aims to generate a filtered signal s̃(k) = aiñ(k)+ι̃(k) with a white spectrum noise ñ(k). It is

assumed that the amplitude ai is wide sense stationary (WSS), i.e. it remains constant over

a time period that is considered to produce the amplitude estimate at time i. Moreover,

the colored noise n(k) is modeled as output of an LTI-system Ht(fk) that has a white

noise w(k) with unit intensity, i.e. a power spectral density (PSD) of Sww(fk) = 1, as

input. By applying calibration measurements with 0% maximum voluntary contraction

(MVC) and with some other predefined value such as 50% MVC, e.g., the PSDs Sss(fk), Sιι

and Snn(fk) can be estimated. Thus, a filter Hwh(fk) with |Hwh(fk)| = |H−1
t (fk)| can be

designed that whitens the spectrum of n(k). As a result, the EMG-amplitude ai modulates

a noise signal ñ(k) with a constant PSD and thus, the discretely sampled EMG-signal is

orthogonalized [24]. That is, the correlation between successive EMG-samples is removed.

The adaptive Wiener filter Hwi(fk) aims to reduce the additive noise ι̃(k). Using the

facts that the noise ι̃(k) occurs additive and that Sññ(fk) = 1, the filter design is straight-

forward. In [24] it is described as

Hwi(fk, ai) =
a2

i

a2
i + Sι̃ι̃(fk)

. (5.24)

Finally, an adaptive gain d(ai) is multiplied with the output of Hwi(fk, ai) and thus, the

complete adaptive whitening filter cascade can be written as

Hawh(fk) = Hwh(fk)Hwi,ai
(fk)d(ai) . (5.25)

The amplitude correction is necessary to maintain the variance of the unfiltered signal s(k)

such that σ2
s = σ2

s̆ . Otherwise, amplitude information in s̆(k) is not consistent with the

original EMG-signal. The computation of d(ai) can be found in [24]. The amplitude ai is

estimated from the signal s(k) using a simple RMS-filter.

The benefit of the adaptive whitening filter can be observed best after signal rectification

and smoothing. Therefore, Fig. 5.20 shows the signal s1(k) compared to a signal s1(k)
nw

which has been obtained by omitting the adaptive whitening. It can be seen that the

whitened signal better correlates to the different levels of voluntary force (see Fig. 5.17).
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Fig. 5.20: EMG-signal s1(k) compared to a signal snw
1 (k) where the adaptive whitening has

been omitted.

Weighted Root Mean Square Filter

Moving average (MA-) filters or root mean square (RMS-) processing are well-established

methods for EMG-smoothing. Due to the signal squaring, the RMS-method emphasizes

fast rises in the EMG-amplitude [50]. Thus, it is well suited for the on-line observation of

a time varying EMG-level as is necessary for the EMG-driven position control. In order

to further decrease the random variations of the EMG-amplitude, a weighted RMS-filter

(wRMS) is developed. First, an RMS-signal

sRMS(k) =

√√√√ 1

KRMS

KRMS−1∑

j=0

s̆(k − j)2 (5.26)

is calculated, where KRMS represents the length of the considered data window. The

weighted smoothing aims to reduce strong deviations from the current average value

sRMS(k) by calculating

sυ(k) = sRMS(k) + sign(|s̆(k)| − sRMS(k))W (s̆(k), sRMS(k)) (5.27)

with the weighting function

W (s̆(k), sRMS(k)) = (|s̆(k)| − sRMS(k))υ . (5.28)

Choosing υ < 1, results in a signal sυ(k) where strong deviations from the average sRMS(k)

are stronger damped than small deviations. Finally, the weighted signal sυ(k) is RMS-

filtered according to

s(k) =

√√√√ 1

KRMS

KRMS−1∑

j=0

sυ(k − j)2 . (5.29)

In [210], it is shown that the wRMS-filter yields a superior EMG-smoothing compared

to an ordinary RMS-filter with a better correlation to the voluntary force. The wRMS-
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Tab. 5.3: Choice of the design parameters of the EvMA-cascade.

Parameter Value
M 15
υ 0.5

KRMS 200
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Fig. 5.21: Smoothed signals s1(k) and s2(k) and muscle activation signal a(k): The upper
graph shows the result when the spatial decorrelation is omitted. The lower graph
depicts the result obtained when the raw signals propagate through the entire EvMA-
cascade.

filtered signals s1(k) and s2(k) of the example in Fig. 5.17 are depicted in the lower graph

of Fig. 5.21.

Averaging

The EMG-amplitude is calculated by simply averaging both channels according to

a(k) =
1

2
(s1(k) + s2(k)) . (5.30)

The output of the EvMA-cascade produced with the example of Fig. 5.17 is depicted

in the lower plot of Fig. 5.21. The design parameters were chosen heuristically and are

summarized in Tab. 5.3.
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t

ymaxyd(t)

ẏd(t) = Kaa(t)

yr

Fig. 5.22: Adaptive trajectory generation: The sketch shows a possible desired trajectory yd(t).
The desired angular velocity is set to ẏd(t) = Kaa(t).

5.4.3 Patient Cooperative Therapy Mode

In contrast to the position controlled movement induction with predefined trajectory, the

patient cooperative therapy adaptively generates the desired trajectory depending on the

patient’s effort. As depicted in the block diagram of Fig. 5.13, the desired MCP-joint angle

yd is calculated as

yd(t) = Ka

∫
a(t) dt . (5.31)

I.e., the desired angular velocity ẏd is proportional to the voluntary activity a. Thus, a

”servo steering” for the MCP-joint is implemented that takes into account the patient’s

effort: If the patient shows zero voluntary activity, the index finger will not move but if

she/he shows a detectable amount of voluntary activity, the intended movement is sup-

ported by the RPMS-induced joint torque. The amount of RPMS-support can be adapted

to the patient’s needs with the gain Ka. This strategy aims to motivate the patient to

actively participate during rehabilitation.

In Fig. 5.22, a trajectory generation is proposed that starts at the resting position

yr. The patient has to reach a maximum extension ymax by generating voluntary muscle

contraction. The movement is supported by RPMS. When the maximum ymax is reached,

the algorithm is stopped, so that the finger returns into its equilibrium position.

5.4.4 Experiment and Results

Experiments were carried out with two healthy subjects. The experimental setup is de-

picted in Fig. 5.13. Before the experiment is started, calibration measurements for the

EvMA and a nonisometric system identification of the controller have to be carried out.

The first calibration measurement is done with 0% MVC in order to measure the back-

ground noise ν(k). Secondly, an EMG-measurement at approx. 50% MVC and thirdly, an

increasing contraction from 0%-100% are recorded. The latter measurements are needed

to estimate the PSDs of n(k) and s(k) (comp. to Eq. 5.23), and to calculate the decorre-

lation matrix Ξ.

During the experiments, Ka was chosen heuristically to 150◦/mVs. Due to background

noise and unfiltered artifacts, the activity signal a(t) is always slightly greater than zero
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Fig. 5.23: Experimental result of the EMG-driven position control: The subject was asked to
repeat the sequence illustrated in Fig. 5.22 three times. During this experiment,
the algorithm was restarted after every sequence by a myoelectric signal generated
with a full finger extension (rectangles at t ≈ 60 s and t ≈ 107 s). The upper graph
shows the subject’s voluntary activity a(t).

even if the subject is passive. Therefore, a threshold value athr = 0.005 mV was imple-

mented that had to be surpassed in order to generate a desired velocity of ẏd > 0.

The subjects were asked to activate their EIP so weakly that hardly any motion was

caused. The EIP-activation was detected by the EvMA and the trajectory yd(t) was

generated according to Eq. 5.31. An exemplary result is depicted in Fig. 5.23. In this

example, the subject repeated the extension sequence three times. The maximum angle

ymax was set at ymax = 0 ◦. A sequence was stopped when the subject reached ymax. A

new sequence was started with a myoelectric trigger signal. The graphs clearly show that

the angular velocity correlates with the voluntary activity. At t = 20 s, e.g., the finger is

held at constant position since the activity a(t) is below the threshold athr, whereas a high

velocity occurs at t = 40 s. Both subjects reported that the implemented algorithm indeed

feels like a servo steering that facilitates the index finger extension.

In order to evaluate the applicability of our setting to stroke patients, the mini-

mum amount of detectable voluntary joint torque τM was experimentally determined as

τM,min = 0.88 Ncm. Using the Fingertester (see Appendix C), the zero degree voluntary

contraction ZVDC torque which is in average needed to perform a zero degree extension,

was determined to τM,ZDV C = 4.88 Ncm. Therefore, the minimum amount of the detectable

joint torque can be expressed as

τM,min

τM,ZDV C
= 18 % . (5.32)
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Hence, the patient has to be able to generate less than one fifth of the amount of force

that is necessary for a zero degree extension. Considering that the ZDVC is far below

100%MVC, 18%ZDVC is a small amount of force and it can be expected that many

patients meet this technical requirement.

5.4.5 Discussion

With the EMG-driven position control, a method is introduced that facilitates the im-

plementation of a patient cooperative therapy mode with RPMS. Within the proposed

approach, the EvMA-cascade represents the key issue. It is able to separate the wanted

signal from the stimulation artifacts and to produce an activation signal that correlates

with the voluntary muscle activation. Due to the windowed signal processing of the LAP-

filter and due to the RMS-smoothing, the information in the activation signal a(k) is

delayed. The total delay can be adjusted by the choice of window length KRMS of the

RMS-filter. The heuristic choice of KRMS = 200 yields a practical trade-off between delay

and smoothing: It results in a total delay of approx. 250ms. Since none of the participants

reported a distracting effect, the delay of 250ms can be considered as irrelevant for the

desired application.

The artifacts depicted in Fig. 5.14 are specific to our stimulator and to our artifact

suppressing EMG-amplifier. However, artifacts caused by other hardware configurations

will be periodic, as well. As long as the artifacts show a self-similarity, it can be expected

that the LAP-filter will perform equally well with other hardware, too.

A fundamentally different idea for the force support of patient intended movement has

been presented in [137] with the method ”patient driven motion reinforcement” (PDMR).

The PDMR estimates the driving joint torque necessary to perform the current movement

based on a model of the equations of motion. The obtained torque estimate is commanded

as feed forward control to the plant. For the PDMR, no EMG-measurement is necessary.

However, the patient has to be able to initiate a detectable motion in order to initiate the

algorithm. The proposed EMG-based method can detect muscle contraction that does not

suffice to initiate any motion. This is particularly important for spastic patients where

the spastic joint torque counteracts the extension and thus considerable amount of force

is necessary to move the index finger.

The experiments with healthy subjects showed that a detection of a relatively small

amount of voluntary contraction can be detected at the stimulated muscle. Therefore, it

can be expected that patients with a small amount of voluntary contraction will be able

to use the proposed approach as rehabilitative therapy.

5.5 Summary and Conclusions

In this chapter, rehabilitation engineering solutions were presented that have the capability

to improve the motor rehabilitation with RPMS.

First, a quantification of the patient parameters ”spasticity level” and ”muscle fatigue”

was introduced. The spasticity quantification was tested in a pilot study with patients

and evaluated by means of reference measurements. The results showed that the spasticity
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data obtained from the system identification coincides with the reference measurements

by trend. I.e., both methods agreed on whether the spasticity increased or decreased.

It can therefore be concluded that system identification based spasticity quantification

during therapy is possible. However, the absolute quantification results differ from the

biomechanical reference measurements. As discussed in Section 5.2.3, this is possibly due to

antidromic blocking and an increased Golgi tendon reflex during RPMS. Thus, a spasticity

scale that applies during muscle stimulation has to be developed, in order to establish the

proposed method. Similarly, information regarding tolerable amounts of muscle fatigue

has to be gathered in order to extract meaningful conclusions from the identified fatigue

parameters.

Secondly, a position controlled extension and flexion of the MCP-joint with dual

RPMS was presented. The controller was applied to six healthy subjects and the per-

formance in terms of tracking accuracy and disturbance compensation was shown to be

absolutely sufficient for the desired application. The controller design comprises a model-

based linearization similar to computed torque and a state feedback controller with an

additional integral control loop. A task oriented RPMS-therapy could be further optimized

by inducing a coordinated movement of index finger and thumb to perform a precision grip

motion. The presented identification method and the control algorithm can be applied to

the thumb, as well. The hardware has to be extended by two more stimulators and coils

whereas one coil stimulates the m. abductor pollicis longus/brevis and the m. extensor

pollicis longus (thumb abduction, i.e. opening of the precision grip) and the other coil

stimulates the m. flexor pollicis longus (thumb adduction, i.e. closing the precision grip).

As a simplification, the EIP and the thumb abductor muscles can be recruited with a single

coil.

In order to evaluate the therapeutic effect of the position controlled RPMS, studies with

a large number of patients have to be carried out. A major shortcoming of the current

hardware is the fast overheating of the small coils used at the forearm that appears after

approx. 45 s of stimulation. For a therapy, stimulation periods of at least five minutes are

desirable. Thus, it is the most important step towards the establishment of the proposed

therapy to develop coils that are small enough to be placed at the forearm, produce a

sufficiently focal magnetic field, and do not overheat. A promising coil cooling approach

was introduced in [61] where the coil winding is made with circular hollow conductors.

The coil is cooled by circulating a cooling liquid through the conductors. Unfortunately,

the coils are too big and the magnetic field is not focal enough for a forearm application.

Another drawback of the current mechanical setup that might limit the clinical appli-

cation is the time consuming process of coil positioning. Every subject shows a slightly

different anatomy and thus, requires different coil configuration. However, once a proper

position is identified, a repositioning could be much faster. Thus, a setup has to be de-

veloped where the patient specific coil positions can be memorized. This can be achieved

by coil fixation arms with pitch lined scales at each joint so that the coil positions specific

to each patient can be measured and recorded. Furthermore, a spastic patient is usually

not able to place his forearm on an arm rest that is located too far away, such as next to

the chair she/he is sitting on. Therefore, the setup has to be ergonomic, i.e. the arm rest

(measurement orthosis in Fig. 3.14) has to be adjustable to the patient’s needs.
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With the EMG-driven position control, a method has been presented that allows to

enhance the RPMS-therapy by a patient cooperative therapy mode. The tests with healthy

subjects showed that the EvMA-cascade is capable of detecting small amounts of voluntary

muscle activity (≈18%ZDVC) at the stimulated muscle. Thus, it can be concluded that the

method can be applied to patients that are capable of generating some voluntary activity.

The system identification method introduced in Chapter 4 requires the subject to relax

as much as possible during identification. Since the EMG-measurement provides a method

to quantify the voluntary force, it is seductive to incorporate this information into the

system identification. This would broaden the applicability since the system identification

could be carried out even if the subject does not behave passively. As the comparison of

the EvMA-output with the measured voluntary force indicates, it can be detected whether

the subject is active or not and tendencies about the activity level can be inferred. This

information is adequate for the EMG-driven position control. However, a reliable quan-

titative prediction of the voluntary force is not possible since the signal variations that

do not correlate with the force are too big (see also [210]). Therefore, it can be expected

that the incorporation of the EMG-information into the system identification will not yield

satisfactory results.
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6.1 Major Results

Spastic paresis is a clinical picture that can occur after CNS-lesions. After a stroke, the

patients often suffer from hemiparesis in combination with spasticity. Hemiparesis is a

reduced ability to perform voluntary motor actions on one side of the body. Spasticity is

a motor disorder characterized by an increase of muscle tone in response to limb motion,

particularly in the flexor muscles. The most common rehabilitation methods are phys-

iotherapy, constraint movement therapy and robot aided movement therapy sometimes

in combination with virtual reality applications. Although the therapy has progressed,

often recovery levels are reached that are unsatisfactory concerning the patient’s ability

to perform daily life activities. Particularly the restoring of arm and hand functions like

reaching and grasping is still a major concern. Thus, there is a strong research demand

for innovative neurorehabilitation methods.

The RPMS represents such an innovative rehabilitation approach with a high potential

of improving the therapeutic outcome as it has been shown in numerous clinical studies.

The current research on RPMS aims to further explore the underlying neurophysiological

mechanisms and active principles of the rehabilitative effects. Furthermore, it is the aim

to optimize the proprioceptive input patterns for a further improved therapeutic outcome

with the ultimate goal to facilitate the relearning of functional movements like reaching

and grasping objects.

This thesis contributes towards these goals by developing control engineering methods

and applying them to the physiological system of the RPMS-induced index finger motion.

Therefore, new methods for parameter identification in the presence of linear, nonlinear

and separable nonlinear parameterization are introduced. Here, these methods are applied

to the RPMS-problem. However, the proposed theoretic framework is generic and can be

applied to a variety of systems. Moreover an adequate biomechanical and neurophysio-

logical model is developed that includes the RPMS-induced force generation, the segment

dynamics, a dynamic relaxation effect as well as a simplified model of the spastic joint

torque.

In the following, the major results of this thesis are summarized.

Parameter Identification

In Chapter 2, novel methods for parameter identification in the presence of linear, nonlin-

ear and separable nonlinear parameterization are presented. The parameter convergence

of the presented methods is analyzed using a stability framework of nonlinear dynamic

systems: Based on Lyapunov’s theory asymptotic stability, i.e., parameter convergence to

the global minimum, is proven under certain conditions. Thus, verified methods are pro-

154



6.1 Major Results

vided that broaden the class of identifiable systems. In case of linear parameterization the

well-known error models 1-4 [118] are shown to converge using the RLS-algorithm instead

of LMS. This yields a faster and more robust convergence. For nonlinear parameterization,

conditions are formulated that guarantee stability using simple gradient based algorithms

like GS, GN, or LM. These algorithms are well-known, easy to implement and are available

as standard routines. Finally, adaptive systems with mixed linear/nonlinear parameteri-

zation are analyzed and verified. The possibility to formulate model equations with mixed

parameterization yields additional freedom of design to the user and thus, facilitates the

incorporation of a priori knowledge about the system.

Neuromuscular and Biomechanical Modeling

In Chapter 3, a model of the RPMS-induced index finger movement is presented. It includes

a force generation model that is developed by means of experiments with healthy subjects

under isometric conditions. The generated force acts on the finger segments that are

modeled with dynamic equations of motion. The segment dynamics model incorporates

a non negligible relaxation effect and is developed and verified with experiments that are

conducted with healthy subjects. Based on the neurophysiology of spasticity, a simplified

mathematical description of the spastic joint is proposed that consists of two additive

static nonlinear functions that depend on the MCP-joint angle and the angular velocity.

The model is experimentally verified by conducting biomechanical measurements with six

spastic paretic patients.

Automated Model Individualization

In Chapter 4, a system identification approach is presented that individualizes the quali-

tative model to a respective subject. For this purpose, the model proposed in Chapter 3 is

formulated with a mixed linear/nonlinear parameterization. Using the error models pre-

sented in Chapter 2, adaptive systems are implemented. It is shown in simulations as well

as experimentally that the adaptive systems are asymptotically stable and thus converge

to the global minimum. The experiments are carried out under isometric and nonisometric

conditions.

Control Engineering Contributions to RPMS

In Chapter 5, it is shown how the methods, algorithms, and models proposed in the pre-

vious chapters can contribute towards an improvement of the RPMS-therapy. The system

identification during RPMS yields the basis for a therapy assessment and monitoring by

identifying the spasticity level and the muscular fatigue. The method is tested and eval-

uated in a pilot study with four spastic paretic patients. Furthermore, a model based

position controller with dual RPMS is implemented that provides the possibility to extend

and to flex the MCP-joint according to arbitrarily chosen trajectories. Finally, the posi-

tion control mode is extended by a patient driven adaptive trajectory generation. This

patient-cooperative mode supports the intended movement only as much as necessary and

thus motivates the patient to actively contribute during therapy. For this purpose, an

EMG-signal processing cascade is proposed that detects voluntary muscle activity at the

stimulated muscle.
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6.2 Conclusions and Outlook

The fundamental research on nonlinear parameter identification presented in this thesis

has enhanced the current state of the art and broadened the class of identifiable systems.

A major benefit of nonlinear parameterization is the capability of approximating systems

with their ”natural” physical equations. Thus, the parameters to be identified have a direct

meaning and the user can incorporate a prior knowledge as far as it exists. Often, equations

that arise from laws of physics or chemistry show nonlinear parameterization. However,

theoretic frameworks for nonlinear systems are usually not as nicely generalizable as it is

the case with linear systems. For this reason, there remain many classes of nonlinearly

parameterized systems that cannot be robustly identified with available methods. Partic-

ularly, there arise unsolved problems from systems with non-monotonic and non-convex

parameterization. Therefore, it can be concluded that it is worth to further enhance the

theory of adaptive systems with nonlinear and separable nonlinear parameterization.

Models of physical, chemical or physiological processes play an important role for system

analysis, controller design or monitoring purposes. In medical research, there are in general

two applications for models: On the one hand, they help to gain insight into physiologi-

cal processes and thus can yield important findings for the research on pathophysiology.

Ultimately, this results in a smaller number of human experiments. Furthermore, models

can be used for diagnostics and patient monitoring as it is presented in this thesis. On

the other hand, models can predict the system behavior which is used in the context of

control strategies where the human is part of the plant. The major challenge for the sys-

tem designer is to find a ”good” model: A good model is only as detailed as necessary to

sufficiently describe the characteristics of interest with a decent prediction error. Thus, the

designer has to identify the dominant characteristics of a plant and to justify the disregard

of the others.

In this thesis, a macroscopic model of the RPMS-induced index finger is presented where

dominant effects like the relaxation characteristics are included and other phenomena like

the force-length- and the force-velocity curves are neglected. The model includes a static

spasticity approximation that is a simplification of the real process, as well. However, from

the experimental model verifications, it can be concluded, that the proposed simplifications

are justified and the incorporation of the relaxation is necessary for obtaining sufficiently

small prediction errors.

Physiological modeling has been a research area for several decades. Nevertheless, re-

searchers are still making efforts on developing adequate models. As implied above, this

is due to the variety of applications that require different types of models with different

foci and a different level of details. Therefore, it should be the subject of future research

to develop libraries of models with a modular structure. This would provide the potential

of implementing models that satisfy the respective application requirement in a fast and

flexible manner. One of the first approaches towards this idea is presented in [21] with an

object-oriented model of the human cardiovascular system.

From the parameter identification experiments during RPMS, it can be concluded that

the proposed models and the proposed identification algorithms have the capability to

identify a highly nonlinear dynamic plant. Experiments on muscular fatigue showed that

156



6.2 Conclusions and Outlook

the on-line identification is capable of tracking slow parameter variations as they occur

during the RPMS-therapy. From experiments with spastic paretic patients, it can be con-

cluded that the spasticity level can be determined by means of system identification during

RPMS. However, it could be shown, that the spastic joint torque is directly affected by the

RPMS and thus, it is not directly comparable to spastic joint torques that occur during

passive movements as they are assessed with the modified Ashworth-scale, e.g.. Therefore,

future work should develop a spasticity scale that applies during muscle stimulation in or-

der to establish the proposed method. For this purpose, experiments with a large number

of participants have to be carried out.

The exemplary implementation of a dual coil position control of the index finger MCP-

joint showed a performance that is absolutely sufficient for the desired application of ther-

apeutic limb manipulation. The major benefit of a closed loop control over an open loop

implementation is the capability of tracking arbitrary trajectories that have been prede-

fined by a physiotherapist. This is important since a physiotherapist takes extremely care

to determine the velocity and range of the limb manipulation. According to her/his ex-

perience, she/he adapts the training to the therapeutic progress of the respective patient.

With the position controlled RPMS this individual motion induction can be maintained.

Although in this thesis, the control engineering problems for an RPMS-induced induction

of functional movements have been solved, there are a few practical issues that have to

be tackled in future work to facilitate the applicability in broad clinical studies. First of

all, coils have to be developed that do not overheat during a sufficiently long time period

and at the same time, generate a magnetic field that is focal enough to selectively activate

particular muscles in the forearm. Our current coils used for the stimulation of the EIP

and the FDP/FDS produce a very focal field. The focality is achieved by a small size of the

winding. This results in a relatively small thermal capacity and thus, overheating occurs

after approx. 45 s. A promising coil cooling approach was introduced in [61] where the coil

winding is made with circular hollow conductors. The coil is cooled by circulating a cooling

liquid through the conductors. Unfortunately, the coils are too big and the magnetic field

is not focal enough for the application at the forearm. Secondly, a fixture system has to

be developed where the arm of a spastic patient can be placed and fixated in a way that

is convenient for the patient. Thirdly, an adaptive and easy to use coil fixation system

has to be developed. To sum up, the practical requirements are non-overheating and focal

coils, patient-ergonomic positioning, fast and flexible coil mounting. These requirements

are nontrivial and have to be tackled by engineers together with physiotherapists and

patients.

The experiments with the EMG-driven position control show that the proposed signal

processing cascade is capable of separating the wanted EMG-signal from the direct and

indirect stimulation artifacts. Thus, the technical prerequisites for a patient driven RPMS-

therapy are created. From the experiments with healthy subjects it can be concluded that

the algorithm is capable of detecting small amounts of voluntary muscle activity as it will

be generated by paretic patients. The therapeutic benefits need to be evaluated in studies

with a large number of patients to address statistical significance.
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A Derivations and Auxiliary Results

A.1 Derivations concerning the SLS-Algorithm

In the following, it will be shown that Eq. (2.27) represents an RLS-algorithm. The matrix

inversion lemma (MIL) expresses the following inversion:

(A+ uvT )−1 = A−1 −
A−1uvTA−1

1 + vA−1u
. (A.1)

Applying the MIL to the update equation (2.21) yields

Π(k) =
(
λΠ(k − 1)−1 + ϕ(k)ϕ(k)T

)−1

=
1

λ
Π(k − 1) −

1
λ2 Π(k − 1)ϕ(k)ϕ(k)T Π(k − 1)

1 + 1
λ
ϕ(k)T Π(k − 1)ϕ(k)

=
Π(k − 1)

λ+ ϕ(k)T Π(k − 1)ϕ(k)
. (A.2)

From Eq. (2.27) it follows

f θ̂(k − 1) = Π(k − 1)−1θ̂(k) (A.3)
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A.2 Positive Semidefiniteness of M = aaT

With Eqs. (2.22), (A.2), and (A.3) the parameter update (2.27) can be written as

θ̂(k + 1) =
1

λ

(
Π(k − 1) −

Π(k − 1)ϕ(k)ϕ(k)T Π(k − 1)

λ+ ϕ(k)T Π(k − 1)ϕ(k)

)
(λΠ(k − 1)−1θ(k) + ϕ(k)y(k))

= θ̂(k) +
1

λ
Π(k − 1)ϕ(k)y(k) −

Π(k − 1)ϕ(k)ϕ(k)T Π(k − 1)Π(k − 1)−1θ̂(k)

λ+ ϕ(k)T Π(k − 1)ϕ(k)

−
1

λ

Π(k − 1)ϕ(k)ϕ(k)T Π(k − 1)ϕ(k)y(k)

λ+ ϕ(k)T Π(k − 1)ϕ(k)

= θ̂(k) +
(λ+ ϕ(k)T Π(k − 1)ϕ(k)) 1

λ
Π(k − 1)ϕ(k)y(k) − Π(k − 1)ϕ(k)ϕ(k)T θ̂(k)

λ+ ϕ(k)T Π(k − 1)ϕ(k)

−
1
λ
Π(k − 1)ϕ(k)ϕ(k)T Π(k − 1)ϕ(k)y(k)

λ+ ϕ(k)T Π(k − 1)ϕ(k)

= θ̂(k) +
Π(k − 1)ϕ(k)y(k) − Π(k − 1)ϕ(k)ϕ(k)T θ̂(k)

λ+ ϕ(k)T Π(k − 1)ϕ(k)

= θ̂(k) +
Π(k − 1)

λ+ ϕ(k)T Π(k − 1)ϕ(k)
ϕ(k)

(
y(k) − θ̂(k)Tϕ(k)

)

︸ ︷︷ ︸
e(k)

.

(A.4)

Inserting (A.2) into (A.4) yields

θ̂(k + 1) = θ̂(k) + Π(k)ϕ(k)e(k) . (A.5)

Choosing the estimator gain γ = 1, this is exactly the RLS-update rule introduced in Tab.

2.1, and hence, Eq. (2.27) is an RLS-algorithm.

A.2 Positive Semidefiniteness of M = aaT

For a matrix M = aaT the quadratic form vTMv is calculated as

vTMv = vTaaTv = (vTa)2 ≥ 0 .

Since vTa = 0 not only for v = 0 but also for v and a linearly dependent, the matrix M =

is only positive semidefinite and not positive definite.

A.3 Update Equations Interpreted as PT1-Filter

A.3.1 Continuous Time

The time continuous update laws with the exponential forgetting factor λc from table 2.1

conform with the equation

y(t) =

∫ t

0

λt−τ
c u(τ)dτ . (A.6)
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The output of an LTI-system with input u(t) that is described with its impulse response

g(t), can be calculated with the convolution integral

y(t) =

∫ t

0

g(t− τ)u(τ)dτ . (A.7)

The impulse response of a PT1-system with the transfer function G(s) = 1
1−sT1

is given

with g(t) = e
− t

T1 and thus, with Eq (A.7), its output is calculated as

y(t) =

∫ t

0

e
− t−τ

T1 u(τ)dτ . (A.8)

By inserting the reformulation

λt
c =

(
elnλc

)t
= et lnλc = e

− t
−

1/ln λc

into Eq. (A.6) and by comparing the resulting term with Eq. (A.8), it becomes obvious

that Eq. (A.6) describes the response of a PT1-system with T1 = −1/lnλc, K = −1/ln λc and

to the input u(t).

A.3.2 Discrete Time

The discrete time update laws with the exponential forgetting factor λd from table 2.1

conform with the equation

y(k) = λdy(k − 1) + u(k) (A.9)

which is basically the equation of a discrete time PT1-filter. Using the Explicit Euler

Method, the time constant T1 of the equivalent continuous time signal calculated as

T1 =
Ts

1 − λd
. (A.10)

A.4 Model Evaluation

A.4.1 Normalized Mean Square Error (NMSE)

The model accuracy can be evaluated by calculating the normalized mean square error

(NMSE)

NMSE(y, ŷ) =

∥∥y − ŷ
∥∥2

2∥∥y
∥∥2

2

100% (A.11)

with the reference data set y = [y(0) y(Ts) y(2Ts) . . . y(kTs)]
T and the approximation to be

evaluated ŷ = [ŷ(0) ŷ(Ts) ŷ(2Ts) . . . ŷ(kTs)]
T . Note that in literature, the model accuracy

is often evaluated by means of the ”variance accounted for” (VAF). The VAF is related to

the NMSE by

VAF = 100% − NMSE . (A.12)
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A.4.2 Relative Model Error

Another more intuitive measure for the model accuracy is given with the relative model

error

er =
‖e‖1∥∥y
∥∥

1

100 % =

∥∥y − ŷ
∥∥

1∥∥y
∥∥

1

100 % . (A.13)

The usage of the NMSE is more common since by squaring, big model errors are weighted

stronger then small ones. Thus, this measure more significantly evaluates the model accu-

racy.

A.5 Calculation of the Moments of Inertia for the Index

Finger Phalanges

The moment of inertia of a solid homogeneous cylinder with radius R and length L with

respect to the axis of rotation y (see Fig. A.1) is calculated as

Jcyl,y(R,L) = m

(
R2

4
+
L2

12

)
. (A.14)

x

y

R

z

L

Fig. A.1: Cylinder with centered co-
ordinate system.

J Jdd

m

Fig. A.2: Illustration of Steiner’s theorem:
Given J and d, the moment of in-
ertia Jd can be calculated.

According to Steiner’s theorem, given the moment of inertia J of an object (mass m)

with respect to an axis through the object’s center of mass, the moment of inertia Jd with

respect to a parallel axis with perpendicular distance d can be calculated as

Jd = J +md2 , (A.15)
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(see Fig. A.2). Using Eq. (A.15), the moment of inertia J1,y2
of the proximal phalanx is

calculated as

J1,y2
= Jcyl1,y(R1, L1) +m1

(
L1

2

)2

= m1

(
R2

1

4
+
L2

1

3

)
. (A.16)

The moment of inertia J2,y2
of the medial phalanx is given by

J2,y2
= Jcyl2,y(R2, L2) +m2d

2
2

= m2

(
L2

1 +
L2

2

3
+
R2

2

4
+ L1L2 cosα3

)
(A.17)

whereas d2 is given by the distance between the center of mass of the cylinder approximating

the medial phalanx and the origin of the coordinate system S2. The moment of inertia

J3,y2
of the distal phalanx is calculated as

J3, y2 = Jcyl3,y(R3, L3) +m3d
2
3

= m3

(
L2

1 + L2
2 +

R2
3

4
+
L2

3

3
+ L2L3 cosα4 + 2L1L2 cosα3 +

+L1L3 cos(α3 + α4)

)
(A.18)

with the distance d3 between the center of mass of cylinder three and the origin of S2.
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B The Sensorimotor System and

Sensorimotor Deficits

B.1 Relevant Neuromuscular Anatomy and Physiology

B.1.1 The Nervous System and Functional Nerve Cell Classes

The nervous system coordinates and controls our body functions. It is composed of trillions

of nerve cells which constitute a network that reaches from the brain through the spinal

cord into the periphery. The brain and the spinal cord form the central nervous system

(CNS) and the peripheral nerves, the autonomous nervous system (control of blood vessels

and internal organs) and the enteric nervous system (control of the gut activity) make up

the peripheral nervous system.

The nerve cells (also called neurons) can be divided into three functional classes: Af-

ferent neurons, efferent neurons and interneurons. Afferent neurons transmit information

from the periphery into the CNS whereas efferent neurons act vice versa. Interneurons

connect neurons within the CNS. They integrate afferent and efferent neurons into reflex

circuits and account for 99% of all neurons.

B.1.2 The Neuron

The individual neuron is the basic unit of the nervous system. A schematic of a neuron is

depicted in Fig. B.1. The cell body (soma) contains the nucleus. The branches originating

at the soma are called dendrites. They receive information from other neurons. The neuron

transmits information to other neurons or muscles, e.g. via a threadlike extension of the

soma called axon. Axons are often referred to as nerve fibers. Their length may extend a

meter or even longer. They may be either myelinated or unmyelinated. Myelinated axons

are covered by a thick layer of fatty material called myelin. In peripheral nerves the myelin

layer is formed by Schwann cells. The myelin sheath is interrupted by at regular intervals

by gaps called nodes of Ranvier. The axon branches at its end. The contacts between the

terminal branches and the target are accomplished by synapses. Synapses may be made

between nerve cells or between an axon and a non-neuronal cell such as a muscle fiber.

In the latter case they are called motor end-plates or neuromuscular end-plates (see also

Sec. B.1.5). The functional principle of synapses is not explained here but can be found

in [128; 183], e.g..

Outside the CNS, axons run in bundles called fascicles. The fascicles are summarized in

trunks that run alongside the major blood vessels and provide structural support. Some

nerve trunks transmit information from specific sensory organs to the CNS (sensory nerves)
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Axon

MyelinSoma

Dendrites

Nodes of
Ranvier

Terminal
branches

Fig. B.1: Myelinated nerve cell (modified from [183]).

Tab. B.1: Two kinds of peripheral nerve fiber classification taken from [128]: Erlanger and
Gasser in column 3, Lloyd and Hunt in column 4 whereas the former differentiates
the conduction velocity and the latter intends to indicate the position of innervation
of specific types of receptors. Lloyd/Chang applies to afferent (sensory) fibers only.

Diameter
in µm

Conduction
velocity in
m/s

Fiber classi-
fication

Cutaneous
nerve classi-
fication

Function

15-20 70-120 Aα - Motor: Control of skeletal muscles

15-20 70-120 Aα Ia Sensory: Innervation of primary mus-
cle spindles

Ib Sensory: Innervation of Golgi tendon
organs

5-10 30-70 Aβ II Sensory: Cutaneous senses, secondary
innervation of muscle spindles

3-6 15-30 Aγ - Motor: Control of Intrafusal Muscle
fibers

2-5 12-30 Aδ III Sensory: Cutaneous senses, especially
pain and temperature

≈3 3-15 B - Motor: Autonomic preganglionic
nerve fibers

0.5-1.0 0.5-2.0 C - Motor: Autonomic postganglionic
nerve fibers

0.5-1.0 0.5-2.0 C IV Sensory: Nociceptors and cutaneous
senses - pain and temperature

whereas others transmit signals from the CNS to specific effectors (motor nerves). Nerve

trunks that contain both fibers are called mixed nerves.

Table B.1 summarizes a classification of peripheral nerve fibers with respect to their

function and conduction velocity.
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B.1.3 Neuronal Signaling

Resting Membrane Potential and Action Potential

In order to transmit information, nerve cells change their membrane potential from its

resting level. In this context, the terms resting membrane potential and action potential

are important. The resting membrane potential is the steady transmembrane potential of

a cell that is not producing an electric signal. It is measured as voltage difference between

the intracellular and extracellular potentials. It exists because of an excess of negative

ions inside the cell and an excess of positive ions outside. Its magnitude varies from -5 to

-100mV, depending on the type of cell. In neurons it is generally -70mV.

Nerve and muscle cells are capable of producing action potentials. Their membranes

are called excitable and among many other functional units they contain voltage gated ion

channels. Among many types of ion channels the sodium and potassium channels mediate

the neuronal action potentials.

To generate an action potential, the membrane requires an electrical stimulus (change

of resting potential) that is greater than a certain minimum known as depolarization

threshold. Then the voltage gate ion channels open and hence the respective ions can

move between the intra and extracellular plasma down their electrochemical gradient. The

threshold of most excitable membranes is about 15 mV above the resting potential. During

the action potential the membrane potential reaches a peak value of +40 to +50mV before

repolarizing to its resting level. The exact mechanisms can be found in [128; 183], e.g..

The entire cycle lasts about 4ms and during so called refractory period (1-15ms) which

follows the action potential a second action potential cannot be generated. The refractory

period limits the firing frequency. Action potentials occur maximally or they do not occur

at all which is called the all-or-none principle.

Action Potential Propagation

When an action potential has been elicited, it propagates along the entire axon. As il-

lustrated in the upper picture of fig. B.2, the zone where the action potential takes place

will be at a different potential than the resting membrane. Hence, an electrical current

will flow between the two regions. This local circuit depolarizes the neighboring region

and thus, the action potential propagates. Thanks to the refractory period that occurs

after an action potential the direction of propagation is always orthodromic 1. The signal

propagation in myelinated axons differs from that in unmyelinated axons. Since the axon

membrane is in contact with the extracellular fluid only at the Nodes of Ranvier, and insu-

lated in between, the local current circuit is completed between two nodes. Therefore, the

action potential ”jumps” from one node to the next which is called saltatory conduction.

This results in a much higher conduction velocity.

1An orthodromic impulse runs along an axon in its normal direction, away from the soma. An antidromic
impulse in an axon refers to conduction in the opposite direction.
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Unmyelinated axon

Myelinated axon

Nodes of Ranvier

Fig. B.2: Simplified schematic for illustration of the action potential propagation (modified
from [128]).

B.1.4 Skeletal Muscle Anatomy

A schematic illustration of the human skeletal muscle is depicted in Fig. B.3. Every muscle

is connected with the skeleton at least at two fixation points, the origo and the insertio.

The muscle is composed of many bundles of muscle fibers called fascicles. The muscle fiber

length amounts between a few millimeters and approx. 30 cm and the thickness amounts

40-100µm. Muscle fibers are among the largest cells in the body. They are coated with the

sarcolemma, the cell membrane of a muscle cell. Every muscle fiber contains thousands

of protein filaments called myofibrils. The myofibrils are the contractile elements of the

muscle cell. Each myofibril has a consistent pattern of dark and light bands (A-band and

I-band). Therefore, the skeletal muscle is also called striated muscle. The small sections

between two Z-lines are called sarcomeres. The sarcomeres consist out of two contractile

proteins: The actin filaments and the myosin filaments. Actin filaments have a diameter of

5-8 nm and are fixated at the Z-lines. The myosin filaments have a diameter of 12-14 nm,

and are aligned in between the actin filaments. The myosin filaments overlap with the

actin filaments also when the muscle is relaxed. The area within a sarcomere where there

are only actin filaments is called I-band. In between two I-bands lies the A-band that

contains actin and myosin filaments as well. The H-zone only consists of myosin filaments

and the M-Line that controls the spacing between the myosin filaments.

B.1.5 Skeletal Muscle Physiology: Innervation, Activation and

Contraction

Muscle Innervation

The commands that result in a muscle action are generated in the motor cortex and

propagate via the spinal cord and via motoneurons into the muscle. Every skeletal muscle

is innervated by motoneurons that originate from the anterior horn of the spinal cord.

Before entering the muscle, every motor neuron splits up into a couple of terminal motor

branches. Every terminal motor branch is connected with one muscle fiber at the so called
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Fig. B.3: Histological and structural schematic of the skeletal muscle (modified from [149] and
[32]).

neuromuscular end-plates. A motoneuron with its terminal branches and every muscle

fiber it innervates constitute a motor unit (MU). The number of muscle fibers within each

MU can vary: Thigh muscles can have a thousand fibers in each unit, eye muscles might

have ten. In general, the number of muscle fibers innervated by a motor unit is a function

of a muscle’s need for refined motion.

Muscle Activation

The activation resulting from an incoming action potential requires an electromechanical

coupling between electrochemical signals and the actual muscle force generation. When

an action potential arrives at the neuromuscular end-plate it causes local membrane de-

polarization in the region of the end-plates (end-plate potential). This end-plate potential

elicits a muscle action potential (MAP) that propagates first in longitudinal direction

along the sarcolemma (see Fig. B.3) with a velocity of 2-6m/s by mechanisms similar to

those described for nerve cells. Subsequently, the signal propagates in transversal direction

along the T-tubules. Thus, the electrical pulse spreads inside the entire muscle fiber. The
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depolarization of the sarcolemma and the T-tubules causes a release of Ca2+ in the sar-

coplasmic reticulum (see Fig. B.3) which is an interconnected network of tubules, vesicles

and cisternae that surrounds the myofibrils. This release of Ca2+ ions causes the muscle

contraction.

Muscle Contraction

The calcium ions Ca2+ diffuse into the cytoplasm where they get into contact with the

myosin and actin filaments and bind with the troponin molecules of the actin filaments.

This enables the myosin molecule heads to ”grab and swivel” their way along the thin

filament which is the driving force of muscle contraction. This procedure is called the cross-

bridging cycle and requires adenosine triphosphate (ATP) as energy source. During muscle

contraction the actin filaments are drawn closer together. Thus, the ends of the sarcomere

are drawn in and the sarcomere shortens. During this shortening of the sarcomeres, there is

no change in the length of the filaments. This is known as the sliding-filament mechanism.

In order to finish the muscle contraction, a calcium pump transports the Ca2+ ions back

into the tubules of the sarcoplasmic reticulum so that the bindings between actin and

myosin filaments open up, and the muscle relaxes.

B.1.6 Skeletal Muscle Force Generation

The amount of force exerted by a muscle depends on many factors: The frequency at

which the MUs are activated, the number of active MUs, the current length and the

shortening velocity of the muscle. In the following, the underlying mechanisms will be

shortly described.

Temporal Summation

The force response of a single muscle fiber to a single action potential is called muscle

twitch (Fig. B.4). Following the MAP, there is an interval of a few milliseconds before the

tension of the muscle fiber begins to increase. During this latency, the processes associated

with the electromechanical coupling of the muscle activation are occurring. Then, the

activated muscle fiber exerts a dynamic force response that may take 10 to 400ms. The

duration of the twitch depends on the muscle fiber type and is called contraction time.

If a muscle is repetitively with an inter-stimulus time that is below the contraction time,

the generated force increases. This increase is called temporal summation. The principle

is illustrated in Fig. B.5. A maintained force generation is called tetanus, whereas the

unfused and fused tetanus is distinguished. The fusion begins at a stimulus-frequency of

approximately 20 Hz. By increasing the activation frequency the generated force will be

increased, as well. Due to the muscle fiber refractory period, the minimum inter-stimulus

time amounts approx. 8ms.

Spatial Summation

The spatial summation controls the exerted muscle force by the number active motor units.

The process of increasing the number of active MUs is called recruitment. According to
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Fig. B.4: A muscle twitch generated by a single muscle fiber following a muscle action potential
(MAP) (modified from [183]).
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Fig. B.5: Principle of temporal summation illustrated by simulated force responses of a muscle
to stimuli with repetition rates frep = 1 Hz, frep = 5 Hz, frep = 10 Hz and frep =
20 Hz.

the size principle of motor unit recruitment [64; 110], first, the small and slow muscle fibers

are recruited that are less sensitive to fatigue. Larger fibers that can produce a greater

force but are fast fatiguing will be additionally recruited if a greater amount of force is

required.
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Fig. B.6: Qualitative characteristics of the muscle’s ability to generate force depending on its
length and velocity configuration. Left: Force-length curve. The maximum Force
P0 is generated at the optimal length l0 Right: Force-velocity curve: The maximum
contraction velocity V0 occurs at zero load (modified from [6]).

There are major differences between physiological recruitment and enforced recruitment

by RPMS. In order to avoid fatigue, naturally alternating MUs are activated during a

maintaining force generation. During RPMS however, always the same MUs are recruited.

Thus, the artificially stimulated muscle exhausts much faster than during physiological

excitation.

Force-Length and Force-Velocity Relation

If a skeletal muscle is stretched, the amount of actively generated force will vary with

length (See Fig. B.6). The equilibrium length of a relaxed muscle is near the optimal

length l0 at which it can produce the maximum force. This relationship can be explained

in terms of the sliding-filament mechanism. The amount of overlap between actin and

myosin filaments is optimal at the muscle length l0. Stretching as well as shortening result

in suboptimal overlapping configurations.

The ability of force generation also varies with the contraction velocity. With increasing

load, the sliding of the filaments starts later, and becomes slower and smaller. The maxi-

mum shortening velocity depending on the applied muscle force, the so called force-velocity

curve is sketched in Fig. B.6. During muscle shortening, the myosin filaments have to break

up their bindings with the actin filaments more often which results in a smaller number

of cross-bridges. Thus, the force generation capability decreases. At contraction velocity

zero the maximum isometric force P0 is generated. Interestingly, the amount of generated

force increases further if the active muscle is stretched. During this so called lengthening

contraction cross-bridges are broken up by force which requires a greater amount of force

then maintaining in isometric contraction.

Muscle Fatigue and Muscle Fiber Types

When a skeletal muscle is repeatedly stimulated, the force it develops decreases. This

decline of muscle tension is known as muscle fatigue. Many factor can contribute to the

fatiguing process which is not yet fully understood. Two effects that could be proven are
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Fig. B.7: Principle of surface EMG: The MAP propagates along the muscle fiber and thus, a
potential difference udiff can be measured at the surface electrodes.

increase of potassium ions inside the T-tubules [183] that inhibits the conduction of muscle

action potentials and a decrease of calcium ion concentration in the sarcoplasmic reticulum

[45].

Muscle fatigue varies considerably with the muscle fiber types. As described earlier,

muscle fibers are summarized in MUs. Since all the fibers of one MU are of the same type

we can assign types of MUs instead of fibers. Basically there are three types of fibers:

slow-twitch oxidative fibers (Type I), fast-twitch oxidative fibers (Type IIa) and fast-

twitch glycolytic fibers (Type IIb). Oxidative and glycolytic fibers have different metabolic

characteristics. Oxidative fibers have a rich blood supply an aerobic metabolism and are

slowly fatiguing. Glycolytic fibers are surrounded by fewer blood vessels, they produce

their energy by means of anaerobic metabolism and are fatiguing much faster.

Most muscles are composed of all three muscle fiber types. Depending on the propor-

tions, the muscles differ considerably in contraction speed, strength and fatigability.

B.2 Surface Electromyography

Electromyography (EMG) is method that detects muscular activity by means of volt-

age measurements. Muscle action potentials (MAPs, see Section B.1.5) that propagate

along a muscle fiber can be detected by measuring potential differences at the skin surface

(Fig. B.7). As described in Section B.1.5, a MU consists of a motoneuron that innervates

several muscle fibers. Due to the spatial distribution of the motor end plates, the MAPs

of a single MU are temporally shifted. The superposition of these MAPs represents a

motor unit action potential (MUAP) as illustrated in Fig. B.8. During muscle activa-

tion, MUAPs are elicited at certain activation rates and numerous MUs are active. As a

consequence, numerous MUAP-wave-trains are generated. Contrary to needle electrodes

that are capable of detecting single MUAPs, surface electrodes measure a superposition of

MUAP-wave-trains as illustrated in Fig. B.9.
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Fig. B.8: Left: Schematic of a MU with four innervated muscle fibers. Right: A MUAP results
from the superposition of the temporally shifted MAPs.
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Fig. B.9: Generation of a MUAP-wave-train by periodic elicitation and superposition of all
MUAPs to a surface EMG signal (s-EMG).

The quality of a s-EMG signal depends on many factors. The most important are:

Electrode position, electrode-skin contact, depth of the muscle to be sensed below the skin

surface and signal processing methods. In general, there exists a monotonic relationship

between the amplitude of the EMG-envelope and the generated muscle force if the EMG-

signal is sufficiently smoothed. However, the amplitude of the surface EMG is a random

variable and its instantaneous value is not monotonic with respect to the force value.

Under non-isometric conditions the EMG-signal amplitude may change due to anatomical

modifications such as the muscle diameter. However, even during nonisometric contraction

with constant force the amplitude of the EMG-envelope is not constant since the spatial

configuration of the activated MUs changes. Thus, a strong signal is detected if more

MUs are active that are close to the electrodes and a weaker signal is detected otherwise.

Furthermore, constructive and destructive superpositions of MUAPs occur which also leads
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to variance in the EMG-amplitude that does not represent the variance in the muscle

activation. For further reading the references [50; 102; 103] are recommendable.

B.3 Motor Control and Sensorimotor Integration

Coordinated and purposeful movement is a fundamental aspect of human existence. There

are two types of voluntary motor functions: Maintenance of position (posture) and goal-

directed movements. Posture as well as movements are achieved by precise activation

patterns of many motor units in various muscles. Reflexes represent a basic mechanism

involved in both types of voluntary actions. Although reflexes are involuntary actions, they

are modified by commands from the CNS and from sensory inputs in order to support the

task execution.

Physiological understanding of what happens in the CNS during the execution of volun-

tary movements is still insufficient. Nevertheless, many key mechanisms are understood.

They will be shortly summarized in this section: The conceptual hierarchical organization

of the neural systems controlling the body movement, the integration of peripheral sensors

in motor control (sensorimotor integration) and the mechanisms of reflexes.

In this context, the terms afferent and efferent neural pathways are important. There-

fore, a short clarification appears necessary. Afferent neurons carry nerve action potentials

from the periphery towards the CNS. The corresponding signals are referred to as afferent

signals or afferent input. Vice versa, efferent neurons transport signals away from the CNS

into the periphery.

B.3.1 The Brain Motor Centers and Descending Motor Pathways

The major areas inside the brain that are involved in motor task execution are depicted

in Fig. B.10. The premotor, supplementary motor, primary motor, somatosensory and

parietal lobe association cortices make up the sensorimotor cortex.

The primary motor cortex (sometimes simply called motor cortex) as well as the so-

matosensory cortex can be somatotopically subdivided with a mapping of peripheral areas

to regions in the cortices. This somatotopic organization can be illustrated with the famous

motor homunculus and somatosensory homunculus (see [183], e.g.).

Beneath the cortex lies the brainstem with numerous highly interconnected structures.

It interacts with the cortex in order to control movements. It is not known to what extent,

if any, these structures initiate movements, but they play an important role in movement

planning and monitoring.

The cerebellum plays a vital role in the coordination of posture and rapid muscular

activity. It supplements the activities of other motor areas. It may also contribute to

motor learning.

The Thalamus is a major area for processing information from the sense organs. The

basal nuclei (also called basal ganglia) are located next to the Thalamus and form an

important link between the frontal lobes and the motor cortex. Their importance in the

control of motor functions is clear from movement dysfunctions in patients with lesions of

the basal ganglia.
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Premotor
area
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Fig. B.10: Major sensorimotor areas of the cerebral cortex and functional units in the brain
involved in motor task execution (modified from [183]). The brain division where
the somatosensory and the association cortex are located is called parietal lobe.
The motor cortices are located in the frontal lobe. The brainstem consists of the
midbrain, pons and medulla oblongata. Note that the brainstem and the thalamus
are not visible in the picture. They are located below the cortices in the area of
the respective dashed ellipses.

The connection between the sensorimotor cortex and the brainstem with the motoneu-

rons and the interneurons in the spinal cord is accomplished by two types of descending

pathways: The corticospinal pathways (also called pyramidal tracts) that origin in the

sensorimotor cortex and the brainstem pathways (also called extrapyramidal pathways)

originating in the brain stem.

B.3.2 The Hierarchical Structure of Motor Control System

The motor control system is formed by all functional units involved in the control of

purposeful muscle contraction. These units are organized hierarchically as illustrated in

Fig. B.11.

The initiation of a motor act begins with the intention and the appropriate plan that

is generated in the highest level of the motor control hierarchy. Very little is known where

exactly the plan is formed in the brain.

The middle level comprises parts of the sensorimotor cortex, the cerebellum, the basal

nuclei, the thalamus and the brainstem. Here, all the afferent information (from sensors

in the muscles, tendons and skin) is combined and integrated with the commands from

the higher level in order to create a motor program, i.e. the activation pattern that

is required to perform the desired movement. Postural control originates mostly in the
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Fig. B.11: Hierarchical representation of the human motor systems (modified from [128]).

brainstem, whereas goal directed movements additionally require the participation of the

sensorimotor cortex. The basal ganglia and the cerebellum play an important role in

motor control although they are not directly connected with the motoneurons. Instead,

they influence the sensorimotor cortex by way of the thalamus.

The motor program information generated in the middle level is transmitted via de-

scending pathways to the lowest level of the motor control hierarchy in order to execute

the motor task. The motoneurons that innervate the muscles originate in the brainstem

and in the spinal cord.

B.3.3 Muscle Sensors: The Proprioceptors

In order to carry out controlled movements, sensory information about muscle length,

velocity, and force are necessary. The receptors that provide appropriate signals are called

proprioceptors. The main proprioceptors are the muscle spindles and the Golgi tendon

organs.

Muscle Spindles

Muscle spindles are the proprioceptive position and velocity sensors and can be found in

most skeletal muscles. Their basic structure is illustrated in Fig. B.12.
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Fig. B.12: Anatomy of a muscle spindle (modified from [149]).

The muscle spindles are embedded in the muscle fibers. The functional units inside the

muscle spindle are formed by special types of muscle fibers called intrafusal fibers. The

fibers surrounding the spindle are called extrafusal fibers.

There are two different types of intrafusal fibers: The nuclear bag fibers and the nuclear

chain fibers (the terms reflect the arrangements of their nuclei). The afferent nerve fibers

originating in the muscle spindle are also of two types. The group Ia-fibers (compare

Tab. B.1) wind around the middle sections of both, bag and chain fibers. Fibers of group

II innervate almost exclusively the nuclear chain fibers. The two nerve groups respond

to muscle stretch in different ways. The rate of action potential firing in both kinds is

proportional to the muscle spindle length, i.e. the muscle stretch. However, the Ia fibers,

that innervate the nuclear bag fibers, too, are much more sensitive to changes of muscle

length. Therefore, Ia fibers (or primary fibers) carry position as well as velocity information

and group II fibers (or secondary fibers) transport position information, only. The medical

terms for position and velocity information are tonic and phasic information.

Contrary to the extrafusal fibers that are innervated by α-motoneurons, intrafusal fibers

are innervated by γ-motoneurons (see also Tab. B.1). The axons of the γ-motoneurons are

also known as fusimotor fibers. They innervate chain as well as bag fibers which contract

when activated. This mechanism changes the sensitivity of the spindles by adjusting the

tension of the intrafusal fibers.

Golgi Tendon Organs

The Golgi tendon organs are mechanoreceptors that lie within the tendons in the area

of the attachments to the muscle fibers. They are stimulated by the muscle tension and
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hence, act as force sensors. Their sensor information is transported to the CNS by group

Ib afferent fibers.

B.3.4 Reflexes

A reflex is an involuntary movement as response to a certain stimulus. A classic example is

the well known knee jerk or tendon-tap reflex. A reflex action is mediated via the reflex arc

that includes at least two neurons, an afferent sensory neuron and an efferent motor neuron.

They are interconnected in the spinal cord via just one synapse. Therefore, such reflexes

are known as monosynaptic reflexes unlike polysynaptic reflexes where interneurons are

interposed between the afferent and efferent neurons. Reflexes often are modulated by the

CNS, i.e. they can be inhibited as well as excited by neural input from higher levels.

Since understanding of the principles of the muscle stretch reflex and its interrelated

reflexes is important in the context of CNS lesions, they will be explained in the next

section.

Muscle Stretch Reflex, Flexion Reflex and Golgi Tendon Reflex

The muscle stretch reflex is illustrated on the left side of Fig. B.13. If a muscle is stretched,

the muscle spindles will generate action potentials. The primary afferent neurons are

directly connected to the α-motoneurons of the homonymous muscle (same muscle in which

spindle is located). Apart from this monosynaptic reflex loop, a disynaptic excitation of

α-motoneurons from group II afferents is mediated by excitory spinal interneurons. Since

group Ia as well as group II afferents contribute to stretch reflex actions, there is a phasic

as well as a tonic reflex component.

The stretch reflex contributes to muscle tone and helps to maintain posture. The flex-

ion reflex is an interrelated protective reflex that aims to rapidly withdraw a limb from a

threatening stimulus. In order to withdraw a limb, the flexors have to contract. This is

achieved by activation of the stretch reflex mechanism. At the same time the extensors

acting on the same joint have to relax. Therefore, the Ia afferents involved in the monosy-

naptic stretch reflex also inhibit the motor neurons controlling the antagonistic muscles

(see Fig. B.13). This pathway is mediated by inhibitory spinal interneurons and is known

as reciprocal inhibition.

Also the Golgi tendon reflex is strongly interconnected with the muscle stretch reflex

to which it acts complementary. For sake of simplicity it is not explicitly illustrated in

Fig. B.13. The Golgi tendon organs are connected to inhibitory interneurons (gray circles)

that act on the α-motoneuron of the homonymous muscle and to excitory interneurons

acting on the motoneurons of the respective antagonist. This reflex contributes to the

maintenance of posture.

A further mechanism that can inhibit reflex action is mediated by Renshaw cells. Some

motor axons branch back into the spinal cord and make contact with small interneu-

rons called Renshaw cells which are part of the postsynaptic inhibition acting on the

α-motoneurons. This self-inhibiting loop is known as recurrent inhibition.
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Fig. B.13: Left: Most important mechanisms of the muscle stretch reflex as a simplified
schematic. Right: Functional principle of the reciprocal inhibition. Gray circles: In-
hibitory spinal interneurons, presynaptic inhibition of group Ia- or group II-afferents.
Black circle: Inhibitory spinal interneurons, postsynaptic inhibition from Ia-afferents
(reciprocal inhibition), from Ib-afferents and recurrent inhibition (Renshaw cells).
White circles: Excitory spinal interneurons in excitory dysynaptic pathways from
group II-afferents. The actions of inhibitory as well as excitory interneurons can be
modulated by input from higher levels.

B.4 Paresis and Spasticity

The Research Group for Sensorimotor Integration aims to improve the rehabilitation of

sensorimotor dysfunctions after CNS-lesions, in particular after stroke. Usually, the pa-

tients suffer from hemiparesis which is a paresis in one body hemisphere. Paresis is defined

as a reduced ability to perform voluntary motor actions. A Paresis is less severe than a

plegia which is a condition of paralysis of parts of the body. In stroke survivors, hemiple-

gia will often improve to hemiparesis over time. Often paresis occurs in combination with

spasticity which will be explained in the next paragraphs.

Spasticity is a motor disorder characterized by a velocity- and position-dependent in-

crease of muscle tone in response to limb motion [12; 92]. Spasticity occurs as a result

of lesions in the CNS - either in the spinal cord or within the sensorimotor cortex. As a

consequence, signals with inhibitory effects on the stretch reflexes (see Section B.3.4) do

not reach the spinal motoneurons, or they are not any more generated. It is generally

agreed that the main factor underlying spasticity is a hyperexcitability of α-motoneurons.

A number of different factors contribute to spasticity and there arise still some open ques-

tions. In [75], there is an excellent review of the current knowledge concerning the origins

of spasticity. The main known factors are
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• Reduced presynaptic inhibition

Studies on presynaptic Ia inhibition lead to the conclusion that the inhibition is

generally weaker in spastic patients than in healthy subjects, see [33; 73; 117], e.g..

• Reduced reciprocal inhibition

A weak reciprocal Ia-inhibition has been reported in [16; 72; 186].

• Defective activation Ib Interneurons and reduced recurrent inhibition

It could be shown, that inhibitory pathways in Ib afferents or Renshaw cells are no

longer excited after CNS lesions, see [10], e.g..

• Increased activation of excitory interneurons

Interneurons mediating the disynaptic excitation of α-motoneurons from group II af-

ferents could be shown to have increased excitability, see [36; 115; 171], e.g.. Reflexes

of secondary afferents have been found to be significantly enhanced in patients with

hemiparesis [108] due to increased excitability of the respective interneurons.

As the above list implies, the term spasticity comprises not only the clinical appearance

of increased mechanical resistance during joint motion but all the underlying complex

pathologies affecting the reflex arcs. Nevertheless, the term spasticity is often used with the

meaning of spastic joint torque, since the level of spasticity can be assessed by joint torque

measurements during limb motion. Also within the thesis at hand the denominations

spasticity and spastic joint torque are used synonymously.
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C The Fingertester

The Fingertester (Fig. C.1) is a self-built actuated measurement device that extends and

flexes the index finger at the MCP-joint. The angle α2 (see coordinate system in Fig 3.10)

is position controlled and the joint torque τme is measured with a self-built torque sensor

(see also Fig. 3.22).

The subject’s forearm and the palm lie on the ground plate and are immobilized with

the fixation plates F and E. As it is illustrated in the side view (c), the pitch angle of

the ground plate can be adjusted. This is important to fit the complete device to the

subject’s forearm pronation1. Especially spastic patients often show a abnormal pronation

of the affected arm. If the device would force the arm into a position with less pronation,

spasticity could increase and bias the measurement.

The index finger is attached to the Fingertester with the collar D, made of elastic plastic

material. Different sizes have been assembled in order to guarantee a tight fitting. The

collar is attached to the torque sensor C in a slot and can be fixated manually with a knurled

thumb screw. The torque is measured with a U-shaped strain-gauge beam arrangement.

This idea has been proposed and successfully evaluated in [189]. The axis of rotation of

the motor B has to be centered over the axis of rotation of the MCP-joint. Therefore, the

position of the motor can be adjusted arbitrarily in the plane of the ground plate. The

angle α2 of the MCP-joint is measured with an incremental encoder.

For safety reasons, the subject holds a dead man’s switch with the hand that is not

attached to the Fingertester. If the switch is released, a relay in motor supply circuit is

released, too and the motor has no power. Additionally, torque and angle are supervised

by a software-watchdog that switches the device off if predefined limits are exceeded.

The Fingertester shows an angular resolution of 0.24 ◦ limited by the number of ticks the

encoder provides. The torque sensor shows a resolution of 0.08 Ncm. Also the evaluation in

terms of accuracy, linearity and crosstalk yielded an excellent performance with respect to

the application. The Fingertester has been developed within a student project and further

details can be reviewed in the project documentation [214].

1Pronation is an anatomical term to describe a rotation movement of a limb . Pronation is the opposite
of supination. We see our palm if the forearms are in supination position and if the forearms are in
pronation position the backs of the hands becomes visible.
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A
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C
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F

Fig. C.1: The Fingertester: (a) Complete device in top view. (b) Force sensor and collar for
the connection to the index finger. (c) Side view, the angle of the ground plate can
be adapted. A: Encoder, B: Motor and gear, C: Self built torque sensor, D: Finger
collar to connect the index finger to the Fingertester, E: Adjustable palm fixation,
F: Adjustable fixation plates for the forearm
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[114] J. J. Moré. The levenberg-marquardt algorithm, implementation and theory. Lecture

Notes in Mathematics, 630:105–116, 1977.

[115] H. Morita, C. Crone, D. Christenhuis, N. T. Petersen, and J.B. Nielsen. Modulation

of presynaptic inhibition and disynaptic reciprocal Ia inhibition during voluntary

movement in spasticiy. Brain, 124:826–837, 2001.

[116] S. S. Nagarajan and D. M. Durand. Analysis of magnetic stimulation of a concentric

axon in a nerve bundle. IEEE Transactions on Biomedical Engineering, 42(9):926–

933, September 1995.

[117] K. Nakashima, J. C. Rothwell, B. L. Day, P. D. Thompson, K. Shannon, and C. D.

Marsden. Reciprocal inhibition between forearm muscles in patients with writer’s

cramp, symptomatic hemidystonia and hemiparesis due to stroke. Brain, 112:681–

697, 1989.

[118] K. S. Narendra and A. M. Annaswamy. Stable Adaptive Systems. PTR Prentice Hall

Information and System Sciences Series. Prentice Hall, Inc., Englewood Cliffs, New

Jersey (USA), 1989.

190



[119] K. S. Narendra and P. Kudva. Stable adaptive schemes for system identification

and control - parts 1 and 2. IEEE Transactions on Systems, Man and Cybernetics,

4:542–560, November 1974.

[120] R. H. Nathan. Control strategies in FNS systems for the upper extremities. Crit Rev

Biomed Eng., 21(6):485–568, 1993.

[121] G. Nelles, W. Jentzen, M. Jueptner, S. Müller, and H. C. Diener. Arm training

induced brain plasticity in stroke studied with serial positron emission tomography.

NeuroImage, 13:1146–1154, June 2001.

[122] O. Nelles. Nonlinear System Identification — From Classical Approaches to Neural

Networks and Fuzzy Models. Springer Verlag, Heidelberg, Germany, 2001.

[123] L. S. H. Ngia. Separable nonlinear least-squares methods for efficient off-line and

on-line modeling of systems using kautz and laguerre filters. IEEE Transactions on

Circuits and Systems, 48(6):562–579, June 2001.

[124] H.B. Nielsen. Damping parameter in marquardt’s method. IMM, DTU, 1999. http:

//www.imm.dtu.dk/~hbn/publ/TR9905.ps (Dez. 2008).

[125] K. Ogata. Modern Control Engineering. Prentice Hall, Upper Saddle River, New

Jersey, USA, 4th edition, 2002.

[126] A. Pandyan, G. Johnson, C. Price, R. Curless, M. Barnes, and H. Rodgers. A review

of properties and limitations of the ashworth and the modified ashworth scales as

measures of spasticity. Clinical Rehabilitation, 13(5):373–383, October 1999.

[127] T. Platz, C. Eickhof, G. Nuyens, and P. Vuadens. Clinical scales for the assessment of

spasticity, associated phenomena, and function: A systematic review of the literature.

Disability and Rehabilitation, 27(1-2):7–18, 2005.

[128] G. Pocock and C. D. Richards. Human physiology – The basis of medicine. Oxford

University Press, Oxford, UK, 3rd edition, 2006.

[129] D. B. Popovic. Externally powered and controlled orthotics and prosthetics. In J. D.

Bronzino, editor, The Biomedical Engineering Handbook, chapter 138, pages 2086–

2099. CRC Press in Cooperation with IEEE Press, Boca Ranton, Florida (USA),

January 1995.

[130] M. R. Popovic, D. B. Popovic, and T. Keller. Neuroprostheses for grasping. Neuro-

logical Research, 24:443–452, 2002.

[131] M. R. Popovic, T. A. Thrasher, M. E. Adams, V. Takes, V. Zivonovic, and M. I.

Tonack. Functional electrical therapy: Retraining grasping in spinal cord injury.

Spinal Cord, 44(3):143–151, 2006.

[132] M. R. Popovic, T. A. Thrasher, V. Zivonovic, J. Takaki, and V. Hajek. Neuropros-

thesis for restoring reaching and grasping functions in severe hemiplegic patients.

Neuromodulation, 8(1):60–74, 2005.

191



Bibliography

[133] F. Previdi. Identification of black-box nonlinear models for lower limb movement con-

trol using functional electrical stimulation. Control Engineering Practice, 10(1):91–

99, 2002.

[134] F. Previdi and M. Lovera. Identification on non-linear parametrically varying models

using seperable least squares. Int. J. of Control, 77, 2004.

[135] R. Riener. Neurophysiologische und biomechanische Modellierung zur Entwicklung

geregelter Neuroprothesen. Dissertation, Fakultät für Elektro- und Informations-

technik, Technische Universität München, München, Germany, January 1997.

[136] R. Riener, M. Frey, T. Nef, M. Bernhardt, and G. Colombo. New developments in

rehabilitation robotics. In Proceedings of the IEEE conference on Mechatronics &

Robotics 2004, pages 1397–1402, sep 2004.

[137] R. Riener and T. Fuhr. Patient-driven control of FES-supported standing up. IEEE

Trans. On Rehab. Eng., 6:113–124, 1998.

[138] R. Riener, L. Lünenburger, and G. Colombo. Human-centered robotics applied to

gait training and assessment. Journal of Rehabilitation Research & Development,

43(5):679–694, 2006.

[139] R. Riener, L. Lünenburger, S. Jezernik, M. Anderschitz, G. Colombo, and V. Dietz.

Patient-cooperative strategies for robot-aided treadmill training: First experimental

results. IEEE Trans. on Neural Systems and Rehabilitation Engineering, 13(3):380–

393, 2005.

[140] R. Riener, J. Quintern, E. Psaier, and G. Schmidt. Physiologically based multi-input

model of muscle activation. In A. Pedotti, M. Ferrarin, J. Quintern, and R. Riener,

editors, Neuroprosthetics from basic research to clinical application, pages 95–114.

Springer–Verlag, Heidelberg, Germany, 1996.

[141] Robert Riener and Thomas Edrich. Identification of passive elastic joint moments

in the lower extremities. Journal of Biomechanics, 32:539–544, dec 1999.

[142] J. Riess and J. Abbas. Adaptive neural network control of cyclic movements using

functional neuromuscular stimulation. IEEE Trans. on Rehabilitation Engineering,

8(1):42–52, 2000.

[143] J. Ruohonen, P. Ravazzani, J. Nilsson, M. Panizza, F. Grandori, and G. Tognola.

A volume-conduction analysis of magnetic stimulation of peripheral nerves. IEEE

Trans. on. Biommed. Eng., 43:669–678, 1996.

[144] S. Sastry and M. Bodson. Adaptive Control: Stability, Convergence and Robustness.

Prentice Hall, Englwood Cliffs, NJ, USA, 1989.

[145] S. Saxena, S. Nikolic, and D. Popovic. An EMG-controlled grasping system for

tetraplegics. J. of Rehabilitation Research and Development, 32(1):17–24, 1995.

192



[146] T. Schauer, W. Holderbaum, and K. Hunt. Sliding-mode control of knee-joint angle:

experimental results. In Proceedings of the 7th conference of the international fes

society, pages 316–318, Ljubljana, Slovenia, September 2002.

[147] T. Schauer, N.O. Negard, F. Previdi, K.J. Hunt, M.H. Fraser, E. Ferchland, and

J. Raisch. Online identification and nonlinear control of the electrically stimulated

quadriceps muscle. Control Engineering Practice, 13:1207–1219, 2005.

[148] T. Schauer, R. Salbert, N. Neg̊ard, and J. Raisch. Detection and filtering of EMG for

assessing voluntary muscle activity during fes. In Proceedings of the 9th conference

of the international fes society, Bournmouth, UK, September 2004.

[149] R. F. Schmidt, editor. Neuro- und Sinnesphysiologie. Springer Lehrbuch. Springer–

Verlag, Heidelberg, Germany, 3. edition, January 1998.

[150] B.D. Schmit and W.Z. Rymer. Identification of static and dynamic components of

reflex sensitivity in spastic elbow flexors using a muscle activation model. Annals of

Biomedical Engineering, 29(4):330–339, February 2001.
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