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Abstract

In this work, the electronic structure of realistic semiconductor nanostructures subject
to external magnetic fields is calculated. To this end, a gauge-invariant nonpertur-
bative discretization scheme is developed for the multiband k-p envelope function
theory including strain as well as relativistic effects. The method avoids the gauge
dependent spectrum of a straightforwardly discretized minimal coupling Hamiltonian
by transferring Wilson’s formulation of lattice gauge theories to the field of semicon-
ductor physics. With this procedure, electron and hole spin g factors of InAs/InP
nanowire-based and InAs/GaAs self-assembled quantum dots are calculated. Excel-
lent agreement with recent experimental data verifies the accuracy of the approach.
For a concrete application proposal, the analysis is extended to vertically coupled
InAs/GaAs quantum dot pairs in external electric fields. For magnetic fields lying in
the growth plane, a giant electrically tunable anisotropy of hole g factors is predicted
that is introduced by piezoelectric charges. This effect allows bias controlled g fac-
tor switching and single-spin manipulations in a static magnetic field. In a regime
where the molecular wave functions form bonding and antibonding orbitals and for
vertical magnetic fields, the calculations reproduce experimentally observed resonant
enhancements of exciton g factors without any fitting parameters.

A second important topic of this work are optoelectronic properties of broken-gap
heterostructures. Standard effective mass theory fails to yield the correct occupa-
tion of electronic states in heterostructures with a type-II broken-gap band align-
ment, because the strong hybridization of conduction and valence bands prevents
an a-priori classification into electron and hole states. Therefore, a novel charge
self-consistent electronic structure scheme is developed that remains in the electron
framework throughout. Applying this procedure, optical transition energies are cal-
culated for a series of intrinsic InAs/GaSb superlattices with different layer widths.

Finally, the electronic structure of shallow impurities is studied in close collab-
oration with an experimental group. In this context, the energy shifts of acceptor
Zeeman levels in bulk silicon are calculated via isotope induced local fluctuations of
band gap energies. In addition, the contributions of quantum confinement and di-
electric screening to the localization of donor wave functions in silicon nanocrystals
are investigated.
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Zusammenfassung

In dieser Arbeit wird die elektronische Struktur von realistischen Halbleiter Nano-
strukturen in externen magnetischen Feldern berechnet. Zu diesem Zweck wird ein
eichinvariantes, nicht-storungstheoretisches Diskretisierungsverfahren fiir die Mehr-
band k-p Einhiillenden-Funktions-Theorie entwickelt. Die Methode umgeht die Eich-
abhéingigkeit des Spektrums eines direkt diskretisierten Hamilton Operators auf Basis
der minimalen Kopplung, indem Wilsons Formulierung der Gittereichtheorie auf das
Gebiet der Halbleiterphysik iibertragen wird. Mit dieser Methode werden Elektro-
nen und Locher Spin g Faktoren von InAs/InP Nanodraht basierten und InAs/GaSb
selbstorganisierten Quantenpunkten berechnet. Die ausgezeichnete Ubereinstimmung
mit neuesten experimentellen Daten bestétigt die Genauigkeit des Verfahrens. Zur
Erarbeitung eines konkreten Anwendungsvorschlags wird die Untersuchung auf senk-
recht gekoppelte Paare von InAs/GaAs Quantenpunkten in externen elektrischen
Feldern ausgedehnt. Fiir den Fall, dass das magnetische Feld in der Wachstumsebene
liegt, wird eine starke, elektrisch einstellbare Richtungsabhéngigkeit der Locher g
Faktoren vorhergesagt, die durch piezoelektrische Ladungen ausgelost wird. Dieser
Effekt erlaubt es g Faktoren spannungsgesteuert zu schalten und ermoglicht Einzel-
Spin Manipulationen im statischen Magnetfeld. In einem Bereich, in dem die moleku-
laren Wellenfunktionen bindende und antibindende Orbitale bilden und fiir senkrechte
Magnetfeldrichtung, reproduzieren die Berechnungen experimentell beobachtete, re-
sonante Verstidrkungen von Exziton g Faktoren, ohne Verwendung jeglicher Anpas-
sungsparameter.

Ein zweiter Schwerpunkt dieser Arbeit liegt auf den optoelektronischen Eigen-
schaften von Heterostrukturen mit unterbrochener Bandliicke. Die Standard Effektive-
Masse-Theorie scheitert daran, die korrekte Besetzung der elektronischen Zustéinde
fiir Heterostrukturen mit Typ-II Bandkanten Anordnung zu bestimmen. Dies ist
durch die starke Hybridisierung von Leitungs- und Valenzbéndern zu erkliren, die
eine a priori Klassifizierung in Elektron- und Lochzusténde verhindert. Daher wird ein
neuartiges, ladungsselbstkonsistentes Elektronische-Struktur-Verfahren entwickelt,
das durchgéingig im Elektronenbild bleibt. Mit dieser Methode werden optische
Ubergangsenergien fiir eine Reihe von eigenleitenden InAs/GaSb Ubergittern mit
verschiedenen Schichtdicken berechnet.

Abschlieflend wird in enger Zusammenarbeit mit einer experimentellen Gruppe
die elektronische Struktur von flachen Storstellen untersucht. In diesem Zusammen-

vii
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hang, werden die Energieverschiebungen von Akzeptor Zeeman-Niveaus in natiir-
lichem Silizium iiber Isotopen verursachte lokale Anderungen der Bandliicke berech-
net. Desweiteren werden die Einfliisse von quantenmechanischer Lokalisierung und
dielektrischer Abschirmung auf die Donator Wellenfunktionen in Silizium Nanokris-
tallen iiberpriift.



Introduction

The advances in semiconductor technology have made it possible, to fabricate devices
that are structured on a nanometer scale. This opens up promising possibilities
for the development of novel electronic and optical devices that rely on quantum
mechanical effects and consume much less power or allow much faster computations.
Rather than using electric charges, many next generation device concepts rely on
the spin degree of freedom for the logical units in quantum computation [1] or for
carrying information in spintronics [2]. Free carriers in low dimensional semiconductor
nanostructures are promising candidates that provide a natural two-level spin-1/2
system and allow good scalability. In many concepts developed so far, the spins
are being manipulated by external magnetic fields. Obviously, progress in this field
requires a detailed understanding of the mechanisms that allow one to control spin-
related electronic structure properties such as gyromagnetic factors (also called g
factors). In addition, there is a growing demand for environmental sensing and fiber-
optic communications, both relying on infrared lasers and infrared detectors. There
is a whole family of optoelectronic device concepts for this spectral regime that is
based on the unique properties of semiconductor tunnel junctions with the lowest
conduction band in one material layer energetically lying below the top valence band
in an adjacent layer [3]. However, the electronic structure properties of the respective
material system differ fundamentally from a conventional semiconductor and are not
yet fully understood. Next generation electronic and optical devices in these fields are
currently being developed world wide. However, experimental realization of existing
proposals for such devices is still a complicated task. Simple analytical models may
help in understanding the basic physical relations, but they are not sufficient to
support the concrete realization and optimization of nanodevices. Numerical tools
that allow a predictive quantitative analysis of realistic three-dimensional structures
are therefore strongly desirable.

In this work, we have developed a simulation tool that provides a global insight
into a wide range of electronic, optical, and transport characteristics of mesoscopic
structures with virtually any geometry and combination of semiconducting mate-
rials. It focuses on quantum mechanical properties such as the global electronic
structure, optical properties, and the effects of electric and magnetic fields. Only
recently, it has been recognized that an accurate incorporation of the magnetic field
into the Schrodinger equation requires special care to ensure gauge-invariant results.

1X



X INTRODUCTION

Therefore, a gauge-invariant discretization scheme is developed for the multiband k-p
envelope function theory. This procedure is used for a quantitative investigation of
electron and hole gyromagnetic tensors in realistic three-dimensional semiconductor
nanostructures including the detailed geometry and material composition. The goal
of this study is to propose concrete viable nanostructures that allow to efficiently
control single spins. In this point, the present work differs fundamentally from the
large number of approaches, which provide only basic device concepts using simple
physical models or idealized geometries. A second focus of this work lies on the in-
vestigation of optoelectronic properties of heterostructures that do not have a global
band gap. To this end, a novel electronic structure scheme is developed that main-
tains the efficiency of a continuum approach yet does not depend on a separation into
negatively charged electron and positively charged hole states, which would fail due
to the strong hybridization of conduction and valence bands. With this method, the
technologically important InAs/GaSb material system is studied.

This thesis is organized as follows. We start with a description of our semicon-
ductor nanodevice simulation package nextnano++ [4]. Its development has been
an important part of the present work and marks the basis for all more advanced cal-
culations. In chapter 1, we introduce the underlying physical concepts needed for the
calculation of semiconductor nanostructures. Here, the basic physical equations for
the calculation of the electronic structure, the external potentials, the elastic strain,
and the electric currents are described. For the numerical realization of such compu-
tationally demanding calculations, the development of novel numerical concepts has
been necessary. In chapter 2, we describe these highly efficient computational meth-
ods that allow one to calculate the properties of three-dimensional semiconductor
nanostructures even on a standard off-the-shelf PC. In this chapter, we also sketch
the design of nextnano++ applying modern object oriented programming techniques
on a modular code setup. After these fundamental introductory parts, we turn to the
key point of this thesis, namely the investigation of semiconductor nanostructures in
external magnetic fields. In order to perform these calculations, a novel method is de-
veloped in chapter 3 for the multiband k-p envelope function theory that includes the
coupling to the magnetic field in a manifestly gauge-invariant manner. The procedure
is applied in chapter 4 to calculate magnetic-field related electronic structure prop-
erties of a large variety of quantum dots. In chapter 5, the investigation is extended
to coupled quantum dots that provide more room for electric tuning of the Larmor
precession, which is a key requirement for fast quantum gate operations. Indeed,
we find promising electrically controllable g tensors that allow coherent single-spin
manipulations in a static magnetic field. Next, we turn to the optoelectronic prop-
erties of nanostructures with a type-II broken-gap band alignment. In chapter 6,
we present a novel charge self-consistent multiband envelope function approach for
broken-gap heterostructures and calculate optical transition energies for a series of
the most typical superlattices. Chapter 7 forms the third major application part
of this thesis, where we study electronic structure properties of shallow impurities
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in close collaboration with the experimental group of Prof. Martin Brandt. This
analysis is important to improve the understanding of spin states for silicon based
quantum computers as well as electronic doping at the nanoscale. Finally, the thesis
is summarized in chapter 8 and an outlook is given.
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Chapter 1

Calculation of semiconductor
nanostructures

1.1 Introduction

In this chapter, we address the theoretical concepts that are used in nextnano++ [4]
for realistic three-dimensional calculations of semiconductor nanostructures. Since
the software aims at providing global insight into the basic physical properties of
mesoscopic semiconductor structures, it requires the modeling of a large variety of
physical aspects. Here, a focus lies on quantum mechanical properties that require
the choice of an adequate electronic structure model. In realistic systems, there are
many connections between different physical properties. Thus, it is essential to find
suitable models for the different aspects that can be combined in a consistent way.

Common theoretical electronic structure principles can be grouped into continuum
and atomistic approaches. The latter ones are more sensitive to the underlying crystal
structure but also computationally much more demanding. Continuum approaches
have the advantage of being scalable to larger devices without excessive increase of
numerical effort. Concrete realizations of semiconductor nanostructures are usually
embedded in micrometer scale semiconductor environments such as a substrate or
electric contacts. Since there are possibly long range effects (e.g. Coulomb forces
and strain fields), it is often necessary to actually calculate an extended mesoscopic
system. In nextnano++, we therefore completely rely on continuum models for all
types of physical aspects. This has the advantage that the appropriate differential
equations can be mapped on the same inhomogenous scalable grid where they can be
combined in an unambiguous and consistent manner.

The software nextnano++ is based on concepts previously introduced in the code
nextnano® [5], but involves rigorous improvements both from a physical and a nu-
merical point of view. The new code has been developed in close collaboration with
Tobias Zibold and Alex Trellakis. Many features of nextnano++ have therefore
been described in Ref. [6]. In this chapter and the subsequent one, further details
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will be presented on parts where the author has been directly involved in the im-
plementation. Concretely, the relativistic multiband k-p envelope function method
is discussed that is employed to calculate the global quantum mechanical electronic
structure. Magnetic fields can be incorporated in this Hamiltonian, but a detailed de-
scription of the procedure will be given separately in chapter 3. To take into account
free-carrier charges, doping, and fixed charges, the Hamiltonian is augmented by the
Hartee potential that is obtained from the Poisson equation. Exchange and correla-
tion effects are included by means of the local spin density approximation. Electric
fields can be applied via boundary conditions in the Poisson equation. Strain ef-
fects are incorporated by linear band-edge deformation potentials and piezoelectric
charges. The strain field is calculated by minimizing the total elastic energy in a
continuum elasticity model. For the calculation of carrier dynamics, two models are
currently implemented that provide results for the limiting cases of highly diffusive
or purely ballistic quantum-mechanical transport. In this work, we will only discuss
the former one, namely a quantum drift-diffusion model that has been combined
with the Schrodinger- and Poisson equations in a fully self-consistent manner. Read-
ers interested in the ballistic transport model (named CBR method) are referred to

Refs. [6, 7].

1.2 Band structure

1.2.1 Multiband k-p envelope function method

Semiconductor nanostructures exhibit a manifestly quantum mechanical behavior in
terms of their electronic properties. Therefore, we have to solve the Schridinger equa-
tion for the entire nanodevices to compute their global electronic structure. We rely
on the multiband k-p method together with the envelope function approximation
(EFA) [8-19]. The basic idea of this method is to patch up the bulk k-p Hamil-
tonian of each constituent material such that the global Hamiltonian remains Her-
mitian. While this method is inferior to microscopic electronic structure methods
such as pseudopotential or empirical tight-binding schemes on an atomic scale, it
is the method of choice for structures that extend over many tens or hundreds of
nanometers and reflects accurately the extended electronic states in a mesoscopic
device.

Basic k-p theory

In general, the electronic structure of a bulk semiconductor is determined by a many-
particle Hamiltonian that includes all electrons and nuclei of the crystal. It is well
known from standard textbooks on solid-state physics [10, 20] that by assuming the
atomic cores to be stationary (adiabatic approximation) and by applying a mean
field approximation for all multi-particle interactions, the problem can effectively be
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reduced to a single-particle Schrodinger equation of an electron in a perfectly periodic

crystal
2

1 9 = | B4V (0] () = B (0. (11)

2TTLO

Here, V (x) is a mean field potential that includes all interactions and reflects the
translation invariance of the crystal

V(x+R)=V (x), (1.2)

where R is a Bravais lattice vector. The eigenfunctions 1, (x) of Eq. (1.1) obey
Bloch’s theorem, i.e., they are at the same time eigenfunctions ¢, x (x) of the trans-
lation operator Tg

Trthn (x) = exp (ik - R) ¥ (%), (1.3)

and can be written as Bloch functions
Uk (x) = exp (ik - X) up i (%), (1.4)

with the periodic Bloch factors u, x (x) and plane waves exp (ik - x). Inserting these
Bloch functions into Schrédinger’s equation [Eq. (1.1)] leads to the relation

A

(&) e (x) = | P

ome TV ()

Unx (xX) = By (k) upx (%) . (1.5)

Now, the remaining problem is the calculation of the band structure £, (k), which
is the dependence of the band eigenenergies E,, on the wave vector k in the first Bril-
louin zone. Numerous methods have been developed to perform this task. While a
straightforward way would be to find a good approximation for the mean field poten-
tial V' (x) in order to solve Eq. (1.5), the k-p method follows a different approach. It
utilizes the fact that carriers in semiconductors usually occupy only regions close to
the minima and maxima of the conduction and valence bands and a precise knowl-
edge of the remaining parts of the band structure is unnecessary. To this end, the
k-p method expands the band structure around a certain extremum k,, where the
energies E, (ko) and Bloch factors u,x, (x) are assumed to be known.

So we split the Hamiltonian H (k) [Eq. (1.5)] into a constant extremum part

~

H (ko) and the remaining k-dependent parts as follows

B (k) = i (k) + R Ko) P IO ko)

1.6
mo 2m0 ( )

The extremum part H (ko) has the solution

A~

H (ko) tn xo (%) = B (ko) tn ko (X) (1.7)
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with Bloch factors u,k, (x) that form a complete and orthonormal basis. Thus we
can expand the unknown Bloch factors u, x (x) for any value of k in terms of the
known u,, k, (x),

nge (%) = ) g (K) iy (X). (1.8)

n

Next, we insert Eq. (1.8) into the Schrodinger equation [Eq. (1.5)] with the Hamil-
tonian of Eq. (1.6). After multiplying both sides with u,, (x) and integrating over
the unit cell, we obtain an eigenvalue equation for the expansion coefficients

> Hyu (k) oy (k) = B, (k) (K) (1.9)
1%
with the Hamiltonian given by the matrix
~ n: o, 9 h
H,, (k)= |E, (ko) + ST (k — ko) dup + e (k — ko) - Pup- (1.10)

Up to now, no approximations have been made and E), (k) is exact for any band
n and wave vector k. However, the Hamiltonian H,, (k) is an infinite dimensional
matrix that couples all energy bands via the momentum matrix elements

o =[xy, (%) Pt (9. (1.11)
Q

Next, one utilizes the fact that for many purposes only a few bands and only wave
vectors in the vicinity of the extrema of these bands are physically relevant. The
number of bands is reduced by employing Léwdin’s perturbation theory [21], which
allows to decouple a finite set of bands in class A from the remaining bands in class
B. Customarily, class A only contains conduction and valence bands that lie close to
the Fermi energy, while all other bands are grouped in class B. The range of k values
that give accurate results for F,, (k) is restricted by treating the off-diagonal part of
the Hamiltonian 5

_(k_kO) *Pups (112)

mo
as a perturbation. Note that for the decoupling transformation, the energy separation
among class A bands is considered to be much smaller than the energy separation
between any class A and class B band. Altogether, the infinite dimensional Hamil-
tonian matrix H,, (k) [Eq. (1.10)] is transformed into a finite dimensional matrix

PAI;H (k) with renormalized coupling constants,

H,5 (k) Hg, (k)

il () = () + 3 g S

BeB

(1.13)

where v, ;1 now run only over the N4 bands in class A. Typically, the resulting N 4-
band k-p Hamiltonian is fully determined by only a few independent band-edge ener-
gies and momentum matrix elements that can be found by considering the symmetry
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of the underlying crystal [11]. These elements are commonly used as empirical para-
meters that are fitted to match experimental properties of the bulk band structure
[22]. In the following section, we will present in some detail those k-p models that we
have implemented within nextnano++-. We restrict the discussion to the zincblende
crystal structure, which is suitable to describe Si, Ge, and most III-V semiconductors.
The corresponding models for the less common wurtzite crystals (basically nitrides)
will be summarized in Appendix A.

Hamiltonian

Single-band models In the simplest model, which is called effective mass approx-
imation (EMA), only a single band is considered in class A. Here, the Hamiltonian
matrix of Eq. (1.13) is reduced to a scalar (v, = n)

: n? 1~ |0k — ko) - pugl’
HEMA k) = En k e k2 o k2 R 0 np
h? 1
= En (ko) + 5 (k= ko)" — (k—k), (1.14)

with an effective mass tensor m* that is a symmetric 3 x 3 matrix. For a zincblende
conduction band, there can be local minima at several high symmetry points of the
Brillouin zone, namely the zone center I'-point (ko = 0), the six X-points (kg =
{100}), and the eight L-points (ko = {111} /v/3). In silicon, there are minima lying
along the six A-lines (connections between I' and X)), rather than directly at the
X-points. Note that the individual X- and L-points all lie at the boundary of the
first Brillouin zone. Thus, each of them is shared by two adjacent Brillouin zones
and only half of them have to be considered in the charge density calculation (cf.
Sec. 1.3.1). The effective mass tensor of the I'-valley is isotropic and can be described
by a scalar effective mass m*. For the L-, X-, and A-valleys, the effective mass tensor
is characterized by a longitudinal mass m; and a transversal mass my,

m* = (m; —m}) ex ey, +my1¥. (1.15)

Here, ey, is a unit vector that points in the direction of the individual minimum
ko. The anisotropic effective mass can be best described by an ellipsoid with the
symmetry axis lying in the ey, -direction. In strained semiconductors, we add a
strain-dependent Hamiltonian H. [Eq. (1.89)] to Eq. (1.14). It shifts the band-edge
energies via deformation potentials and will be discussed in Sec. 1.4.2.

For the conduction-band minima of wide gap semiconductors, the EMA is often
sufficiently accurate. For the valence-bands and for the I'-conduction band of narrow
gap materials, however, we usually rely on more sophisticated multiband models.
This has been exemplified in Fig. 1.1 that shows a typical band structure of a narrow
gap semiconductor. In the present work, it will often be referred to InAs which is a
good example for such a material.
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Figure 1.1: Schematic band structure of a narrow direct gap semiconductor. The
conduction band has minima at the I'-; X-, and L-points. The heavy- and light hole
valence bands (hh/lh) are degenerate at the I'-point, while the split-off band (so) is
shifted in energy by the spin-orbit splitting Ag. Due to strong nonparabolicities, a
single-band model (solid gray line) only poorly describes the conduction band. For
such a material, an eight-band model (dashed black line) that includes the coupling
to the valence bands, gives a significantly more accurate approximation.

Multiband models Since the highest valence band Bloch functions are p orbitals,
they are threefold degenerate. In addition, they encounter a strong spin-orbit coupling
that has to be taken into account by adding the relativistic correction term

~ h

Hso = T 5 5
4m?2c?

(VV xp)-o, (1.16)

to the single particle Hamiltonian in Eq. (1.1). Here o denotes a vector that is built
up by the Pauli spin matrices o;. By this, the solutions of Schrodinger’s equation
become two-component spinors and the group of bands A in Eq. (1.13) needs to
comprise at least six bands. In the basis of spin-resolved zone center valence-band
Bloch functions |go) € {x1,22, 23} ® {1, ]}, the six-band k-p Hamiltonian resulting
from Eq. (1.13) can be written in the following form [8, 17, 19]

. ﬁ[3x3 k 0 N
H (k) = ( 0( ) 75 (k) ) + HEX6, (1.17)
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]:I3><3 k E,+ —— ]{32 13x3
(k) = ( +2m02 )

kiLky + S kiME;  kiNioks +ksN_ky  kyNioks + ksN_k

i=2,3
| RN ky+kaNiky koLka+ 30 kiMk;  kyNiks + ksN ks
i=1,3 ’
kiN_ks +ksNoky  koN_ks +ksN ky ksLks+ > k;ME;

i=1,2

(1.18)

with £, = E, (ko =0). Instead of the original linearly independent Dresselhaus
parameters F', G, Hy, Hy [23], we have specified this Hamiltonian in terms of the
more commonly used derived Dresselhaus parameters L, M, N, N_, that are related
to each other by

L:F+2G, M:H1+H2,
N, =F -G, N.=H, — H,. (1.19)
The latter two parameters have been introduced by Ref. [19]. Another commonly

used and tabulated set of derived Luttinger parameters is v, s, 73, k£ [12, 24, 25]. In
terms of these parameters, we can write

h2 K2
L=— (v —4v—1), M = 279 — 1
2m0 ( 71 72 )7 2 0 ( fyl _'_ 72 )
h? h?
N, = — —1), N. = — (— 1). 1.2
L= 2m0 (—3v3 — 3k ), 2 (=373 +3k+1) (1.20)

The spin-orbit Hamiltonian is given by

0 -1 O 0 0 1
i 0 0 0 0 —i
r6x6 0 O O O —1 1 O
Heg™ = 310 0 -1 0 i O}’ (1.21)
0O 0 -1 -1 0 0
1 1 0 0O 0 O

where A is the spin-orbit splitting. Here, we have neglected the small k-dependent
contribution (i/4m?c?) (VV x k)-o that results from employing the k-p approxima-
tion on Eq. (1.16). The spin-orbit Hamiltonian HS6 is diagonal in the basis of the
total angular momentum eigenstates |.J, J3). This basis can be used to classify the
valence band into heavy hole (hh), light hole (1h), and split-off hole (so) as follows

g, g> _ _% (1 1) +il22 1)),

b 1) = |33 ) = 75 1 1 = ifea 1. (1.22)

bh 1) = '
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I 1) = (3.5 ) = =7z o Db+ ke 1) = 2lea 1),
1) = |3, ) = T b ) =il 1)+ 22 1), (1.23)
o 1) = [g5) = 5 b )+ il 1)+ ax 1),
1 1 )
o 1) =[5 ) = 75 (e D —ilea ) — faa ). (1.21)

The spin-orbit splitting Ay partly removes the degeneracy of the valence bands. At
the band edge, their eigenenergies are given by

2A

B (k=0)=FEyp(k=0)=FE,+ -, Eo(k=0)=FE, _TO (1.25)
An even more accurate k-p model (especially for narrow gap semiconductors where

nonparabolicities are important) can be obtained by enlarging our basis to include

the lowest conduction-band s-orbital Bloch functions |s ) and |s |). The resulting

eight-band Hamiltonian reads

948 (1) (1?352(k) EIEVXG(k)) (1.26)

with
3
HZ? (k) = (E +) kiAck’i> ® 122, (1.27)
i=1
026 (k) = (iPky + koBks 1Pky + k3Bky iPks + kyBks) ® 122, (1.28)
and
. _1k1P+k38k2
HYX? (k) = | —ikoP + k1 Bks | © 12, (1.29)
_1k3p+l€2Bk’1

Here, A, includes the free-electron and remote band contributions to the conduction-
band mass [19]. P denotes Kane’s interband coupling matrix element. The parameter
B is non-zero for crystals without inversion symmetry. Although, only for silicon and
germanium B = 0 holds exactly, the parameter is usually neglected also for the ITI-V
compounds. The valence-band part H8*6 (k) corresponds to Eq. (1.17) with only two
modifications of parameters

2 P2

P
g g
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Due to the direct inclusion of conduction-band coupling, these modifications become
necessary in order to avoid double counting of terms. Since the s-type conduction
bands do not obtain any spin-orbit coupling, the eight-band spin-orbit Hamiltonian
H3*8 is completely determined by the six-band case

ax 0 0
Hfo = (O H6><6) : (1-31)

In strained semiconductors, we add a strain-dependent Hamiltonian H 858 which will
be detailed in Sec. 1.4.2.

We note that the Hamiltonian (1.26) contains a particular ordering of the mo-
mentum operators that one might be tempted to simplify according to

kN k; + k;N_k; = N'k;k;, with N’ = N + N_. (1.32)

However, such a simplification only holds when the operators k; and the material
parameters commute. In the present case, this precise choice of operator ordering is
required for the following reasons. First, in Refs. [15-17, 19], it has been shown that
the specific ordering of Eq. (1.26) is required to obtain correct boundary conditions
in the envelope function approximation where material parameters become position
dependent (see next subsection). Second, a key element in the present work are
magnetic fields B. They can be introduced into the Hamiltonian (1.26) by replacing
the kinetic momentum k with the canonic momentum K = k + (e/h) A so that the
following commutator relations hold

K, K] = KK; — KK, = —i%gijkBk, (1.33)
where ¢;;, denote the elements of the totally antisymmetric tensor. In Sec. 4.2.2, it
will be shown that only the specific ordering of Eq. (1.26) guarantees the correct k-p
Hamiltonian for bulk in nonzero magnetic fields [12].

Since we include the spin degree of freedom, finally we need to augment the
Hamiltonian (1.26) by the Zeeman term,

3

Fr8x SoMB i

Hyg === 5B, (1.34)
i=1

where gy = 2, and the matrix elements of the spin matrices St are given in terms of
the Pauli matrices 6°,

Si

q'o'\qo — <q/0/ o' lqo) = 5q’,q&ff’,a' (1.35)
So in total, the eight band k-p Hamiltonian is given by
B (1) = HYS (k) + B35 + A, (1.36)

with the individual contributions defined in Eqgs. (1.26), (1.34), and (1.93).
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Envelope function approximation

Up to now, we have considered only perfectly periodic bulk semiconductor crystals.
In nanostructures, this periodicity is perturbed by a mesoscopic external potential
V' (x). Such a potential can be created by local changes of band-edge energies due
to the variation of material composition, local excess charges, and external electric
fields. As a consequence, the translation invariance of the Hamiltonian is broken and
Bloch’s theorem does not hold for the wave functions. So the wave vector k is no
good quantum number anymore and it is reasonable to switch to position space. In
the envelope function approximation (EFA) [11], the wave function is written as a
superposition of the Bloch functions at the extremum kg

Z F 1/}11 ko ( ) ) (137)

where the expansion coefficients F(™ (x) are called envelope functions and are as-
sumed to be slowly varying on the scale of the lattice constant. By this, most of the
bulk k-p theory can be adopted for nanostructures. Namely, it can be shown [11] that
for a homogenous semiconductor in an external potential, it holds a Schrodinger-like
equation for the envelope functions

ZHEFA YFW (x) = EFY) (x), (1.38)

with a Hamiltonian that corresponds to the bulk k-p Hamiltonian (1.13) Fourier
transformed into real space (k — —iV) plus the external potential

ﬁijA (x) = 13155 (—iV) +0,,V (x). (1.39)

For a nanostructure, the basic idea of this method is to patch up the bulk k-p
Hamiltonian of each constituent material to obtain a global Hamiltonian for the
envelope functions. In this case, all the k-p parameters become position dependent
quantities and together with the momentum operators, a particular ordering has to be
chosen (see also Sec. 1.2.2). In all Hamiltonians of the last subsection, the employed
operator ordering (following Refs. [15-17, 19]) has been indicated; e.g. in Eq. (1.14),
we have

k1N+k2 — —%N.,. (X) ail‘z

The material parameters used in the present work have been taken from Refs. [22, 24].
We would like to note that the standard prescription of the EFA [11], is strictly
speaking only valid for a homogenous semiconductor with slowly varying band edges
E, (x) or external potentials V' (x). However, the method has been extensively ap-
plied to nanostructures and it has been shown that even in the presence of material
induced discontinuities in the band edges, the EFA still delivers physically reasonable

(1.40)
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results. In addition, this empirical observation can also be justified using Burt’s exact
envelope function theory [15, 16].

Many nanodevices are structured only in one or two of the three spatial dimen-
sions and still translation invariant in the remaining directions. For such devices, it is
possible to separate the free motion of the charge carriers in the directions of transla-
tional invariance and the simulation domain can be reduced in dimension. In general,
we call a device quasi d-dimensional if d is the number of structured directions. In
this case, the EFA Schrodinger equation [Eq. (1.38)] reads

ZHEFA (k) B (X ) = B (k) P (K (1.41)

where x = (71, ...,24) is a d-dimensional position vector and k| = (kqt1,...,k3) is a
(3 — d)-dimensional reciprocal lattice wave vector, with 1 < d < 3. The Hamiltonian
]f[fiA (x, k”) corresponds to the one from Eq. (1.39), where the kj-directions have
not been Fourier transformed into real space. Note that for d = 3, k| becomes useless
and Eq. (1.41) reduces to Eq. (1.38).

The solution of the Schrédinger equation requires the specification of its bound-
ary conditions. At the boundary 02 of the simulation domain €2, we either employ
Dirichlet-, von Neumann-, or periodic boundary conditions. In general, these condi-
tions are given by

Y (%) |xeon = f(x) (Dirichlet boundary condition), (1.42)
W (X)|eon = 9 (%) (von Neumann boundary condition),  (1.43)
1/1 (x)], conl) = Y (%)), con) (periodic boundary condition), (1.44)

where n denotes the normal to 92 and f (x), g (x) are given functions on the boundary
of Q (taken to be zero for the Schrodinger equation). In the periodic boundary
condition, the wave functions are set to be equal at the left and right boundaries in
the periodic i-direction aﬂ(g), and 89%), respectively. Here, each element in 89%)
can be obtained by translating an element in 899 by L;e;, where L; is the length of
the simulation domain in the direction of the unit vector e;. This boundary condition
is needed for periodically repeated structures such as superlattices.

In order to actually calculate the eigenstates of the EFA Hamiltonian, Eq. (1.41) is
transformed into a matrix eigenvalue problem by mapping it onto a discrete real-space
grid. This discretization will be discussed in Sec. 2.3, and the solution algorithms
for the resulting matrix eigenvalue problem are detailed in Sec. 2.5. For nonzero
magnetic fields, the discretization is surprisingly problematic and will be discussed
in chapter 3.

1.2.2 Spurious solutions

Even though the envelope function approach is well established, it is less widely known
that this method is plagued by several ambiguities and instabilities that can lead to
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unphysical ghost states [19, 26], incorrect bound states at interfaces [27], and artificial
oscillatory wave functions. We have been able to eliminate these problems by a careful
treatment of so-called remote-band contributions to the bulk k-p Hamiltonians, by
defining an operator ordering that leads to manifestly self-adjoint Hamiltonians, and
by employing an upwinding scheme for the discretization of derivatives. We will only
briefly sketch the rationale behind these techniques and refer the reader to Ref. [2§]
for a more detailed discussion.

Large wave vector solutions

In principle, spurious solutions can come with any multiband k-p Hamiltonian. For
a qualitative discussion, we use a simple one-dimensional two-band model [29] that
already includes all of the problems that may occur

. E.+ Ak iPk
HQXQU‘/'):( _iPk EU+AUI<:2)’ (1.45)

This Hamiltonian couples a single conduction band (c) with a single valence band
(v) via the interband momentum matrix element P. The parameters A. and A,
describe free-electron and remote-band contributions to the effective masses. The
secular equation det[H?*2 (k) — EI?*?] = 0 of this Hamiltonian contains a term
A A k* and therefore exhibits two solutions of k? for any value of E. Only one of
these solutions may be physical, since conduction- and valence band do not overlap
in a semiconductor. For k* < 0 (A.A, < 0), the additional solutions are evanescent
[29] and pose no actual problem [28]. For k? > 0 (4.A, > 0), however, they form
oscillatory modes [26] that can lead to spurious ghost states. This is a realistic sce-
nario for the eight-band model of Eq. (1.26), which can be reduced to the present
Hamiltonian (1.45) for k|| [001] neglecting spin and decoupled bands. Using the ma-
terial parameters from Ref. [22] for InAs, we then have A. = —4.8h?/(2my) and
A, = L'+ 1*/(2mgy) = —14.7h%/ (2my). In Fig. 1.2(a), a band structure is shown
that corresponds to this situation. The conduction band E. (k) has small energy so-
lutions also at large values of k, and even worse, the band structure does not possess
a band gap. In a bulk semiconductor, this does not pose a problem since one can
reject all large-k solutions that are beyond the validity of the k-p model, anyway. In
a superlattice or heterostructure, however, an artificial small Brillouin zone is intro-
duced. The large k values are folded back to small ones and unphysical ghost states
are created. In Fig. 1.2(b), we show calculated eigenstates obtained by augmenting
the Hamiltonian of Fig. 1.2(a) with a locally varying potential that produces a 10 nm
quantum well. The spurious states can either be strongly oscillating states energet-
ically lying within the band gap, or bound quantum well states that are modulated
by an unphysical high frequency component. Following Ref. [19], we can avoid this
problem by setting A. = 0 and using the parameter P to fit the effective mass of the
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Figure 1.2: (a) Band structure of two-band Hamiltonian (1.45) for A., A, < 0 (black
lines) and A. = 0, A, < 0 (gray line). Circles indicate eigenenergies of appropriate
quantum well eigenstates. (b) Conduction band edge of quantum well and probability
densities of eigenstates, shifted to their eigenenergies. The solution for A, = 0 has
been rescaled for better visualization.

conduction band m} according to the relation

T Bt g B esa
mg Ey(Ey+A) Ey (By+ A)

C

(1.46)

In the eight-band model, this requires to rescale certain valence band parameters
analogous to Eq. (1.30). Due to this change of parameters, the k* term is removed
from the dispersion and only the correct small wave vector solutions remain. The
resulting modification of the band structure and the position space eigenfunctions
is shown in Fig. 1.2. Alternatively setting A, = 0 is unfavorable, because in three
dimensions the valence band mass is anisotropic and can not be fitted by a single
parameter. Another approach that is often used is to set A. = h?/(2mg) which
corresponds to entirely neglecting remote-band contributions. By this, the spurious
ghost states are removed in most cases (since A, > 0 hardly occurs) and only the
uncritical evanescent modes remain.

Operator ordering

Having provided a solution for the problems related with the bulk band structure,
additional issues occur when advancing to heterostructures. Here, one must also
determine the proper arrangement of differential operators with respect to position
dependent material parameters. E.g. in Eq. (1.45), we have a term iPk with an
ordering that is not known a priori when transformed into real space

. ? %P(x)
iPk — {P(x)i' (1.47)

T
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Figure 1.3: Conduction band edge of quantum well and probability density of bound
state with interface spikes that has been calculated using the naively symmetrized
Hamitonian (1.48) with the parameters discussed in the main text.

While it is clear that any operator ordering must yield a Hermitian Hamiltonian
H,, (x) = ﬁfw (z), this requirement is not sufficient to uniquely define H,, (). The
customary technique of symmetrizing each matrix element of the Hamiltonian (i.e.
requiring H,, (z) = ﬁlu ()) has never been justified. In fact, such a Hamiltonian
can lead to inconsistent boundary conditions for the envelope functions at material
interfaces [19]. This corresponds to a Hamiltonian that is Hermitian but not self-
adjoint [27]. For a finite dimensional Hamiltonian that is obtained by discretization
of differential operators on a real-space grid, certain artifacts of this inconsistency
can remain. In Fig. 1.3, we show a bound quantum well state that has been obtained
by solving the naively symmetrized Hamiltonian

T (1) = E () 3 [P (2) + P (2) 7]
om0 = (4 (2P P 2] Bl A A d )

on a finite grid. The wave function exhibits pronounced unphysical singularities at
the material interfaces. Note that the size of these spikes actually depends on the
grid spacing and the local variation of the P-parameter. In Fig. 1.3, we have used
an extremely fine grid spacing of ¢ = 0.0125 nm to elucidate the problem, while
keeping with realistic material parameters of Py = 0.845 eVnm, Ppaier = 0.67
eVnm, A, = —671%/(2my), and E, = 0.5 eV. Alternatively using the asymmetric
ordering proposed in Ref. [19]

~ T X 4
Hcorrect (ZL‘) - (5;3((1,)) EU (:L,)Ii<dix)jli (I’) %) ) (149)

yields wave functions that do not contain such deficiencies. We use this asymmetric
ordering also for the k-linear terms in the three-dimensional eight-band Hamiltonian
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Figure 1.4: Conduction band edge of quantum well and conduction band amplitudes
of bound states obtained by forward/backward differences (black) or centered differ-
ences (gray). The same parameters as in Fig. 1.3 have been used, except for the grid
spacing that is now € = 0.2 nm. The states have been shifted to different energies for
better visualization.

(1.26). For the remaining terms, a unique operator ordering can be derived from
Burt’s exact envelope function theory [15-17]. This particular ordering has been in-
dicated in all Hamiltonians of Sec. 1.2.1. Although, the individual elements are partly
unsymmetric, the total Hamiltonians are Hermitian and self-adjoint and therefore re-
tain a conservation of the probability flux density.

Numerical instabilities

A third issue that has not been discussed so far concerns numerical instabilities. When
the envelope function Hamiltonian (1.49) is mapped onto a discrete real-space lattice,
the discretization of the first order space derivatives is not unique. For example, one
could use finite centered differences

d F(x+e)—F(x—¢)

%F (fﬂ) - 5xF (x>’cent = 25 ) (150)

where ¢ denotes the grid spacing. Unfortunately this leads to serious problems as
unphysical solutions F'(z) that rapidly oscillate between nearest neighbor grid nodes
with a relative phase of —1. In Fig. 1.4, we show the amplitude of the conduction
band component of a bound quantum well state that has been obtained with the
Hamiltonian (1.49) using centered finite differences. While the probability density
of such a state in smooth, its amplitude is unphysically oscillating. The centered
difference scheme is "blind" to these oscillations since it only compares values at
second nearest neighbor points. In this approximation the oscillating wave function
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has a well defined small first derivative, although this is obviously not correct. Besides
these incorrect states, also the correct smooth wave functions are obtained. For a
homogenous material and the Hamiltonian (1.45), it can be shown that the incorrect
conduction band states are shifted by 4A./e? with respect to the correct ones [28].
So for A, > 0 and a sufficiently small grid spacing e, they can be shifted out of
the relevant part of the spectrum. For A. = 0, however, they have to be removed
explicitly. In order to eliminate this problem, we use forward or backward differencing
to approximate first derivatives

%F(m)—w&,}F(x) :iF(a::I:g)—F(x)‘

(1.51)

|forw/backw €
This approach is not compatible with the unphysically fast oscillating envelope func-
tions since it compares values at nearest neighbor grid nodes (see Fig. 1.4). Since
plain forward or backward differencing results into a non-Hermitian Hamilton matrix,
we have employed a combination of forward and backward differencing that guaran-
tees the Hermiticity of the Hamiltonian. Here, we use forward differencing for all first
derivatives that are located in the blocks above the diagonal of the Hamiltonian and
backward differencing for those below the diagonal,

(1.52)

. forward
Hdiscrete — <b&CkW&I‘d ) .

Note that in the diagonal blocks of our Hamiltonian, we do not have any first deriv-
atives. With this discretization, a second-order derivative term is added to each
first-order derivative that vanishes in the limit of zero grid spacing ¢ — 0. This
second-order term now suppresses the high-frequency components which constitute
the spurious oscillating solutions, while the physically accurate low-frequency com-
ponents remain unchanged. This approach is analogous to upwinding schemes that
are used for hyperbolic differential equations in hydrodynamics [30]. More details on
the discretization scheme will be given in Sec. 2.3.

1.3 External potential

In nanostructures which we describe in the envelope function approximation, the
periodic semiconductor band structure is perturbed by a mesoscopic external poten-
tial V' (x). Besides abrupt jumps in band-edge energies at material interfaces that
have been stated in Sec. 1.2.1, V (x) also includes the electrostatic potential that
results from local excess charges and external electric fields. In addition, we describe
many particle effects by an exchange-correlation potential within a density functional
approach. In the following, we will present the calculation of these individual contri-
butions of the external potential.
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1.3.1 Charge densities

We consider all charges in a nanostructure that deviate from the intrinsic charges of
the semiconductor by a position dependent total charge density p (x),

p(x) =e[p(x) —n(x)+ Np (x) = Ny (x) + ppot (%) + pax (x)] - (1.53)

This density will be included in the Hamiltonian by means of an electrostatic potential
that can be obtained from the Poisson equation, as will be discussed in Sec. 1.3.2. The
density p (x) consists of free holes p (x) and electrons n (x), ionized donors N} (x)
and acceptors N, (x), polarization charges pyo (x) and fixed charges pay (x). The
polarization charges will be given in Eq. (1.104) and result from strain induced piezo-
and pyroelectric polarizations. Examples for fixed charges are surface and interface
traps that come with lattice defects. They are not calculated but need to be specified
explicitly.

For the calculation of free-carrier charges, we have employed two different models.
In those parts of the nanostructures where quantum mechanical effects play an im-
portant role, we calculate charge densities by means of the eigenstates obtained from
the multiband k-p envelope function method. In the remaining areas (typically lying
at the boundaries of the simulation domain) where quantum mechanical effects can
be neglected, we rely on the computationally less demanding classical Thomas-Fermi
approximation.

Quantum mechanical charge densities

In a quasi d-dimensional nanostructure, the general quantum mechanical multiband
charge densities of electrons and holes are given by

3—d 2 —FE; (k) + Epn (x
Mam (X) = Z#/ﬂ &) |F, (%, k)| f( ( "IZBT ( )>,

i€CB Bz
_ g 3 2, Ei (k) — Erp (x)
Pqm (X) = Z§3 W /QBZ d dkH ’Fl (X, k”H f ( ICBT ) . (154)

Here, the sums over i run over the eigenstates lying in the conduction- (CB) and
valence bands (VB). The appropriate envelope functions F; and eigenenergies F;
result from the EFA Schrodinger equation [Eq. (1.41)]. Note that the probability
density for a given subband 7 in a N4-band model is given by

Na

|7 (X)) =

v=1

2

F (%K)

7

(1.55)

The factor g accounts for possible spin and valley degeneracies and depends on the
particular k-p model. The maximum single-band degeneracies (multiband: g = 1)
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are given by g (I') =2, g(X) =6, g (L) =8, g (A) = 12 and can be reduced by strain
and magnetic fields (see also Sec. 1.2.1). All states are occupied according to the
Fermi distribution function f (E), with position dependent electron and hole quasi
Fermi levels Er,, (x) and Ef, (x), respectively. These specific Fermi levels are used
to model also non-equilibrium situations, as will be discussed in Sec. 1.5. We want to
express that in semiconductor nanostructures, a situation can occur where a separate
occupation of electron and hole states is not possible anymore. In chapter 6, we will
present a novel method for such broken-gap structures.

For d = 3, the wave vectors in Eq. (1.54) are useless and the integral over k| can
be ignored. For d < 3, the wave vectors are restricted to the (3 — d)-dimensional
Brillouin zone 257 in the reciprocal k| space. In this case, the charge densities are
obtained by integrating over k. Instead of integrating over the full square area of
the Brillouin zone gz, in fact it is sufficient to integrate over the irreducible wedge
Qw of the Brillouin zone that can be obtained by exploiting the symmetry of the
lattice [31]. After this reduction of computational effort is utilized, all densities have
to be multiplied by the ratio Qpz/Q to retain their original values. In addition,
states that deviate from the Fermi energy by more than a few kg7 hardly contribute
to the sums and integrals in Eq. (1.54), since the Fermi function drops exponentially
for energies that are larger than the Fermi energy. Therefore, it usually suffices to
integrate over {2y only for small values of the wave vector modulus (typically less
than 10% of the maximum k value in the bulk Brillouin zone). Similarly, higher energy
states that do not significantly contribute to the charge density are not calculated at
all. The remaining inner k|| space is mapped onto a square wave vector lattice, where
the Schrodinger equation is actually solved only for a discrete set of k| vectors. In
order to limit the required amount of k| values, we have implemented an efficient
k-space integration scheme similar to Refs. [32, 33] that interpolates the probability
densities and the energy dispersion between the exactly solved k; points in order
to guarantee well converged results. It turns out that for the probability density a
bilinear (linear for d = 2) interpolation is sufficient, whereas for the energy dispersion
higher order schemes are required to accurately sample energy minima with a large
density of states. In fact, we rely on a (3 — d)-dimensional cubic spline interpolation
[34] for the energy dispersion. All the details of this procedure can be found in
Ref. [6].

In the single-band models (EMA) and for d < 3, the integration over k| can
be performed analytically due to the parabolic energy dispersion. This leads to the
following simplifications for the electron and hole charge densities [Eq. (1.54)] that
require to solve the Schrodinger equation only for ky = 0

nen (%) = Y gNZ (T | (x,0) Faoay (_Ei (O)k‘;f“ (X)>,
1€CB
PEMA (x) = 7 gNE () |F; (x,0) Fa_ay (E © ;B];F’p (X>) . (1.56)

1€VB
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Here, the function F,, (E) denotes the Fermi-Dirac integral of order n

6”

1 o0
f”@:r(nﬂ)/o B 1

which is evaluated numerically [35]. The integration over kj results in the effective
density of states of a (3 — d)-dimensional free electron gas

(3—d)/2
NG (T = (M) (1.58)

(1.57)

2mh?2

with the density of state mass mP9® of the i-th subband of the Hamiltonian. Since
in a nanostructure we have a position dependent effective mass tensor m* (x), a
straight-forward determination of mP® from 7* (x) would lead to unphysical abrupt
changes in the charge densities at material interfaces. In order to obtain a position
independent density of state mass, we weight the effective mass tensor with the
probability density of the corresponding subband according to the following relation

- 1/(3—d)
mPOS = /Qddx |F; (x,0)[* [det M3y (3—ay (X)] ' (1.59)

Here, 13 g, (3_q4) (X) denotes the (3 —d) x (3 — d) submatrix of the effective mass
tensor 7" (x) [Eq. (1.14)] in the kj-space. Le. for d = 1, we have

Mpeq (X) = <m3=2 () o (X)) , (1.60)

mf;,z (x) m§73 (x)

while for d = 2, the submatrix reduces to the scalar element mj3 ; (x) and for d = 3,
the integration over kj is not needed at all. The integral in Eq. (1.59) extends over
the spatial area ) where the Schrédinger equation is solved.

It turns out that sometimes it is useful to apply different k-p models simultane-
ously. E.g. when using the eight-band model for the I' conduction- and valence bands,
the X and L conduction band valleys (which we employ in the EMA model) might
contribute to the charge densities as well. In this situation, we sum up the charge
densities that result from Eqs. (1.54) or (1.56) for the individual EFA-Hamiltonians.

Classical charge densities

In areas where quantum mechanical effects do not play a role, we calculate free-carrier
charge densities in the, classical Thomas-Fermi approximation. In this approach, the
following expressions for the charge densities of electrons and holes can be derived

na(x) = Y g N (x,T) Fijs (—EM (x) =V (x) + Erp (x)) |

kpT
neCB
pa(x) = Y g NP (x,T) Fipo (E“ &) + Vk;XT) — Bry (X)) . (16)

neEVB
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Here, the sums run over the relevant conduction- and valence band valleys (CB =
{I', L, X, A}, VB = {hh,1h,so}). E,(x) denotes the position dependent band edge,
V (x) is the external potential and N2P (x,T) is the position dependent effective
density of states of a 3-dimensional free electron gas

3/2
mPOS (x) kT
3D _
with the local density of state mass
mPOS (x) = [det?, (x)]'?, (1.63)

where 727, (x) is the 3 x 3 effective mass tensor at the band edge 1.

For the densities of ionized shallow impurities, we always apply the Thomas-Fermi
approximation. In this context, the concentrations of ionized acceptors and donors
are given by

N3 () = Al
i€Acceptors 1 + 9,(;) exp ([EU (X) +V (X) + E1(4Z) - EF,:D (X)] /kBT>
N(i)
Np (x) = p () . (1.64)

i€Donors 1 + gg) exp ([—Ec (x) =V (x) + Eg) + Ep, (x)} /kBT>

where the sums run over all included types of acceptors and donors. Each type of
impurity is characterized by its ionization energy EX} p (absolute value, relative to the
appropriate band edge F, /), its ground state level degeneracy gﬁf} p» and its spatial
concentration NX) p (x). Usually, the impurity degeneracies of acceptors and donors
are g4 = 4 and gp = 2, respectively.

1.3.2 Poisson equation

The total charge density p (x) [Eq. (1.53)] influences the global electronic structure
via the electrostatic potential ¢ (x), which obeys the Poisson equation

Vé(x) Vo (x) = —p(x). (1.65)

Here, € (x) is in general a position dependent dielectric tensor and the resulting "built-
in" electrostatic potential ¢ (x) is used to augment the envelope function Hamiltonian
by the Hartree potential

Vi(x)=Vy(x)=—ep(x). (1.66)

In zincblende, the dielectric tensor reduces to a scalar e, while in wurtzite it is given
by é = £,13%% + (e, — &,) e.el, with two independent components ¢, and &,.
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The solution of the Poisson equation requires the specification of its boundary con-
ditions. Here, we rely again on the Dirichlet-, von Neumann-, and periodic boundary
conditions of Eqgs. (1.42)-(1.44), where 1 (x) now has to be replaced by ¢ (x). Anal-
ogous to the Schrodinger equation, the Poisson equation as well as the other partial
differential equations in the following sections are mapped onto a discrete real-space
grid (cf. Sec. 2.3). By this, the Poisson equation becomes a large system of linear
equations. Since the total charge density p(x), depends itself on the electrostatic
potential ¢ (x) when the classical charge density [Eq. (1.61)] is used, the Poisson
equation [Eq. (1.65)] may in fact become a nonlinear problem. The numerical solu-
tion of linear as well as nonlinear systems of equations will be discussed in Sec. 2.4.
When quantum mechanical charge densities [Eq. (1.54)] are used, the Poisson equa-
tion is coupled with the Schrodinger equation and both equations need to be solved
in a self-consistent way. An efficient solution strategy for this problem will be shown
in Sec. 2.6.1.

External electric fields are incorporated into the calculation of nanostructures
via electric contacts. These contacts are areas of the simulation domain, where the
Poisson equation is not solved, but where the electrostatic potential is determined
based on certain assumptions. The resulting ¢ (x) in the contacts is used to specify
boundary conditions for the Poisson equation at the interfaces between the contacts
and the remaining simulation area. E.g. in order to apply a constant electric field to a
nanostructure, we can specify two contacts at opposite boundaries of the simulation
domain, with different Dirichlet values ¢; and ¢y = ¢; + U. Here, U corresponds
to the applied bias. If the nanostructure does not contain any excess charges, the
electrostatic potential resulting from Eq. (1.65) will change linearly between the two
contacts. Then, the electric field which results from the electrostatic potential via

F(x)=-V¢(x), (1.67)

is constant and directed along the connection between the two contacts. All im-
plemented contact models will be discussed in detail in the context of the current
calculation in Sec. 1.5. When no contacts are specified at all, we use von Neumann
boundary conditions [Eq. 1.43)] with zero derivatives at all boundaries of the sim-
ulation domain. This corresponds to vanishing normal electric fields and therefore
globally charge neutral devices.

1.3.3 Multi-particle effects

We describe multi-particle effects by an exchange-correlation potential within a den-
sity functional approach. The DFT method [36, 37] is based on the central assertion
that for any interacting system of particles, a local single-particle potential V;; (x)
exists, such that the exact ground state density ng () equals the ground state density
of the non-interacting problem n,; (x). This non-interacting density can be obtained
from the single-particle states of the non-interacting Hamiltonian. Therefore, with
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the exact knowledge of Vj; (x), the ground state energy and density of an interact-
ing multi-particle state can be obtained by a self-consistent solution with multiple
eigenstates from a single-particle Schrodinger equation.

In the present case, the non-interacting density n,; (z) = n (z) is obtained from the
single-particle states of the EFA Hamiltonian (1.39) according to Eq. (1.54). Here,
the potential Vi (x) = V (x) = Vi (x) + Vi (x) is composed of the Hartree term
Vi (x) = —e¢ (x) (that is determined by the Poisson equation) and an exchange-
correlation term V,.(x). The latter one is known exactly only for special cases.
For general many-particle systems, we rely on the local spin density approxima-
tion (LSDA) [38]. In this scheme, the system is assumed to locally behave as a
homogenous gas of charged carriers, for which exchange and correlation can be eval-
uated exactly as a function of the density. The LSDA is a refinement of the lo-
cal density approximation (LDA) since it also accounts for the spin polarization
((x) = [n(x) —ny(x)] / [n1(x) +n)(x)], with spin-up and spin-down carrier densi-
ties ny(x) and n|(x), respectively. This is important especially for few-particle states
and odd numbers of carriers. In this model, the exchange-correlation potential be-
comes spin dependent and whenever the single-band Schrodinger equation is used,
the solutions become two-component spinors. The parametrization of the LSDA
exchange-correlation potentials V,!!(x) and energies €,.(x) is given in Appendix B.
With this potential, the EFA Kohn-Sham-equation has to be solved self-consistently
for all particles until the individual densities n;(x) and n|(x) become stationary. The
total energy of the many-body state is finally obtained from

Egz;Ei—i—%/ﬂd?)xegb(x)n(x)—i—/

[ e () - / Bz VI (x), (1.68)

Q

where F; are the eigenenergies of the single-particle states.

1.4 Elastic strain

Lattice mismatch between different semiconductor materials that are grown on top
of each other results in displacements of the individual atoms from their positions
of rest. This produces elastic strain that can strongly affect the electronic structure
and therefore needs to be accounted for in any realistic calculation of semiconductor
nanostructures. In the following, we will describe the calculation of strain effects in
terms of linear continuum elasticity theory [39, 40].

1.4.1 Strain calculation

In a continuum model, a crystal can be described by a field of material points with
coordinates x. A distortion of the crystal shifts any point to a new position x'= x’ (x).
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+

wy,=(e4,-€,)/2

Figure 1.5: Ilustration for off-diagonal elements of the distortion tensor. A general
shear deformation (given by e;;) consists of a pure shear deformation ¢;; and a rotation
Wij-

This motivates the definition of a field of displacement vectors
u(x) =x'(x) — x. (1.69)

Since a uniform displacement of the whole crystal does not lead to any strain, we are
only interested in nonuniform displacements. Such deformations can be described by
a distortion tensor

8ui
i = ,7=1..3), 1.70
5= g (14 =1.9) (1.70)
which can be split into a symmetric part that is named strain tensor
1
gij = 5 (e +€5i) (1.71)
and an asymmetric part
1
Wij =5 (eij — €ji) - (1.72)

We assume all tensor elements to be small e;; < 1. The diagonal elements of the
distortion tensor attribute length changes dx} = (1 + ;) dx;, its trace corresponds to
a change of volume

dV’ = (1 + 511) (1 + 822) (1 + 533) dV =~ (1 +e11 + €22+ 833) dV = [1 +Tr (8)] dV,
(1.73)
and the off-diagonal elements €;;;.;) arise due to shear deformations of the crystal.
The asymmetric part w;; only describes rotations of the crystal (see Fig. 1.5) and
therefore does not contribute to the elastic energy. This energy is given by [41]

1
E = / §Cijk15ij5kldv (4,7, k. 1 =1.3), (1.74)
v

with the fourth rank elasticity tensor Cj;i;. To obtain a condition for mechanical
equilibrium, the elastic energy density is minimized. This leads to the relation

80kl
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In a generalized form that includes external volume forces f, the relation reads

6akl

Ty = i (1.76)

Here, 6 denotes the Cauchy stress tensor. In linear approximation, this stress tensor
is related to the strain tensor £ by means of Hooke’s law

okl = Chiij€ij- (1.77)

In order to solve the differential equation (1.76), we use the following boundary
conditions. At the borders of the simulation domain, we either apply von Neumann
conditions [Eq. (1.43)] that correspond to vanishing normal stress, or periodic bound-
ary conditions [Eq. (1.44)] for periodic structures. A completely unstrained substrate
area can be described by Dirichlet boundary conditions [Eq. (1.42)] that set the dis-
placement to a constant value. At material interfaces, we assume pseudomorphic
growth, i.e., we neglect any lattice defects and all epitaxially grown atoms have to
be placed on the positions of the substrate lattice in lateral direction. To guarantee
these conditions, we first displace all material points to match the substrate lattice
(see step (1) in Fig. 1.6) [41]. This substrate will from now on serve as a reference
lattice. The displacements produce a lattice mismatch strain £°,
a; — a; (x)

a; (x)

1)

Here, a; (x) denotes the local lattice constant in i-direction and a? is the corresponding
value for the substrate. Now, the strain tensor can be written as

E=2+£, (1.79)

where € only comprises the deformations relative to the reference lattice. The lattice
mismatch leads to an increase of the elastic energy and therefore implies a counter-
acting force in growth direction. Minimization of the elastic energy now corresponds
to a relaxation of the lattice constant in growth direction (see step (2) in Fig. 1.6).
The relaxation can induce shear distortions (cf. Fig. 1.5) due to off-diagonal elements
in the elasticity tensor that couple different elements of the displacement vector.
Concretely, we need to solve Eq. (1.76) only for the relative part € of the strain ten-
sor. Here, the lattice mismatch induces an additional force on the right-hand side
and thus the differential equation is modified according to

8akl 0
(9_xl = a_xlcklijgij = [k
0 0

~ 0
— 8—xlckzz‘j€z‘j = Je — a—xloklijez‘j- (1.80)



1.4. ELASTIC STRAIN 25
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Figure 1.6: Illustration of strain calculation: (1) adjustment to substrate lattice, (2)
relaxation by energy minimization.

Together with Eq. (1.71) and Eq. (1.78), this leads to

0 1 /0u; Ou; 0 a; — a?
—Chii= | — 1) = —Chyii0; —. 1.81
ox; Mijo (8xj + Gxi) it ox; ki a; ( )
Utilizing the symmetry of the elasticity tensor
Cijkl = Cjirt = Cijit = Chuij, (1.82)

and by swapping the indices i and [, we finally obtain

0 0 - 0 a; — a?
8—%01%'1]6—%% = fr+ oz, Criu @ L. (1.83)

The solution of this differential equation determines the displacement vectors relative
to the reference lattice u (x) that can be used to calculate the total strain tensor,

1 8?71 aﬂ] ai — a;
6” 2 (0513] * 89&1) + 5” i ( 8 )

In heterostructures, analytic expressions can be found for this strain tensor (cf. Ap-
pendix C). The symmetry of the elasticity tensor accounts for the symmetry of the
individual type of crystal. In order to write this fourth rank tensor as a matrix, one
conventionally introduces the Voigt notation

11—-1,22 - 2,33 — 3,23 — 4,13 — 5,12 — 6. (1.85)

In this notation, the six independent elements of the symmetric strain and stress
tensors read

€1 €11 01 011

Eo €99 02 022

€3 _ €33 03| _ | 033 1.86
=, , = (1.86)

€4 €923 04 023

€5 2e13 05 013

] 2e12 O¢ 012
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Figure 1.7: Cross sections of calculated strain tensor component ¢,, for vertically
stacked InGaAs/GaAs double dot structure. (a) 2D cross section in yz-plane taken
at the dot centers. (b) 1D cross section along the dashed white line in (a) when the
upper dot is removed from the structure.

Finally, the elasticity tensor of zincblende and wurtzite crystals are given by [40]

Cll C(12 012
C(12 Cll C(12

012 C112 Cll (187)

and [42]
Cii Ciz Cis

sz: C(13 013 C133 : (188)

with 066 = % (011 — 012).

To exemplify the importance of strain in semiconductor nanostructures, in Fig. 1.7,
we present a calculated strain profile of a vertically stacked InGaAs/GaAs double dot
structure that can form by self-assembly in epitaxial growth. The dots are assumed
to have a width of 25 nm, a height of 8 nm, an interdot distance of 10 nm, a realis-
tic trumpet-shaped alloy profile [43] and sit on 1 nm wetting layers with an indium
content of 50%. Fig. 1.7(b) shows a cross section of the lateral strain tensor element
eyy along a line in the upper wetting layer. This strain component is a measure
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for the relative change of the lattice constant in lateral direction. In contrast to
Fig. 1.7(a), now the upper dot has been left out to model the situation in the growth
process where the self-assembly of the upper dot actually starts. The graph shows a
pronounced decrease of the strain modulus in the upper wetting layer at the center
above the lower dot. This local reduction of lattice mismatch shows that it is energet-
ically favorable for the upper dot to grow exactly above the lower one, as it has been
observed experimentally [44]. Further properties of similar quantum dot molecules
will be discussed in chapter 5.

In addition to growth processes, strain can strongly affect the electronic structure
of semiconductors. First, it directly modifies the bulk band structure. Here, the
dominant change is a shift of the band-edge energies that can be considered via
deformation potentials. Second, it can produce polarization charges that modify the
electrostatic potential and therefore have to be included in the Poisson equation. In
the following, we will discuss these effects in some detail.

1.4.2 Deformation potentials

We consider strain induced shifts and splittings of band-edge energies via linear de-
formation potentials. The Hamiltonian (1.14) is augmented by an additional strain
dependent part H. to take this contribution into account. For the conduction bands
in zincblende materials, this term is given by [20]

with

B =al — %az and = = al. (1.90)
Here, a” and a” denote the absolute and the uniaxial deformation potential of the
v € {I', L, X, A} conduction band, respectively. The unit vector e; points in the
direction of the respective minimum in k-space (I': e; = 0). Note that besides
absolute energy shifts, Eq. (1.89) can also split the individual L-, X- and A-valleys.
For the p-type valence band in the basis {|z),|y),|z)}, the strain Hamiltonian is
given by [9]

. 1611 +m (822 + 833) neq12 neqs
ngs = neq1o l€22 +m(€11 +€33) neas s (191)
neE1s NEas less +m (11 + €22)
with
| =a,+2b, m=a,—b, n=13d. (1.92)

Here, a, is the absolute deformation potential and b as well as d are the shear de-
formation potentials of the valence band. In the eight-band Hamiltonian (1.36), the
strain contribution is given by

: Y @122 0
8x8 €
HEX - ( 0 I:[3><3 ®12%2 )" (193)
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Eq. (1.91) removes the degeneracy of light and heavy holes. E.g. in heterostructures
that are grown in the [001] direction, i.e., for biaxial strain (e = €11 = €92 # €1 = €33)
without any shear deformations (€15 = €13 = €93 = 0), the following energy shifts are
produced [45]

AEHH = (IUTT (8) (194)
ABry = a,Tr () + (5E Ayy+ /A2 + 27, 0F + 95E2>
~ a,Tr(e) + (5E (1.95)
AEso = a,Tr () + <5E 4 Ay — /AL T 2A,0E + 95E2)
25E2
~ a,Tr(e) — A (1.96)

with 6E = b (e, — £)). In the case of tensile strain (¢ > 0, £, < 0), the energy §F is
positive, because the parameter b is negative for all relevant materials. Thus, the light
hole is lifted above the heavy hole in this situation and vice versa for compressive
strain. For general strain tensors, an analytical treatment of Eq. (1.91) becomes
too complicated. Therefore, we calculate the band-edge shifts that are needed for the
single-band Schrodinger equations of holes and the classical charge density [Eq. (1.61)]
by diagonalizing H. at each position of the simulation domain, separately. In the
multiband Hamiltonian, H. is included directly. In this way, also changes of effective
masses can occur due to strain induced mixing of hole states. For wurtzite crystal
structures, the strain contributions to the Hamiltonian can be found in Appendix A.

1.4.3 Polarization charges

In addition, strain in III-V semiconductors displaces the centers of positive and neg-
ative charges within the unit cells and therefore produces a so called piezoelectric
polarization

PP = eonen (1,5, k = 1..3), (1.97)

with the material dependent piezoelectric tensor e;;,. In zincblende crystals, this
tensor has the following symmetry [46]

e fiFj#k
L . 1.
Cijk {O else (1.98)

Thus, only shear elements of the strain tensor contribute to the polarization

. €23
priee — 2614 €13 ] - (199)

€12
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In wurtzite materials, also the diagonal elements of the strain tensor contribute
to the piezoelectric polarization, because here we have [42]

€311 = €322 = €31, €333 = €33, €113 = €131 = €223 = €232 = €15, (1~100)

and therefore
2ei5¢13

priese — 261503 : (1.101)
€31€11 1 €31€22 + €33€33

At material interfaces where the piezoelectric constants change abruptly, or in an
inhomogenous strain field, the microscopic electric dipoles are not compensated and
produce mesoscopic dipole charges that can be calculated from the divergence of the
polarization

Ppiezo = — div Ppiezo = —8ieijk5jk. (1102)

These charges can strongly affect the electrostatic potential and therefore have to be
included in the Poisson equation [Eq. (1.65)] via the total charge density [Eq. (1.53)].
Wurtzite materials are pyroelectric, i.e., they have a strain independent spontaneous
polarization along the hexagonal c-axis

PPy — pPiog,. (1.103)

Analogous to Eq. (1.102), this leads to polarization charges at material interfaces
that need to be taken into account

Ppol = Ppiezo + Ppyro- (1104)

A typical situation, where piezoelectric charges have important consequences, are
self-assembled quantum dots. In Fig. 1.8, we show the calculated piezoelectric charge
distribution of an InAs quantum dot that is embedded in GaAs. The dot is assumed
to have a realistic truncated pyramid shape. Due to the strong lattice mismatch and
the specific geometry, we obtain large shear strains that lead to charge dipoles near
the edges of the pyramid. In Sec. 5.3.2, we will investigate concrete consequences of
these charges on the electronic structure of quantum dots.

1.5 Drift-diffusion current

When a nanostructure is subject to an external bias, the electronic system is driven
out of equilibrium and electric currents flow. In this case, the Fermi levels differ
between the individual contacts where the bias is applied. Thus, a single position
independent Fermi level is not sufficient to describe the charge distribution, which
in fact does not even follow the Fermi-Dirac statistics. Fully quantum mechanical
calculations of carrier dynamics in quasi two- or three-dimensional devices are com-
putationally still too demanding. So far, in nextnano++ only the limiting cases of
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y 1

Figure 1.8: Isosurface of calculated piezoelectric polarization charge densities near the
edges of an InAs quantum dot (light gray) that is embedded in GaAs (not shown).
Positive and negative charges are indicated in blue and red, respectively.

highly diffusive or purely ballistic quantum mechanical transport can be calculated
for such devices. While the ballistic transport model (CBR) has been detailed in
Refs. [6, 7], we present here only the quantum drift-diffusion model (QDD).

This method extends the classical drift-diffusion method with a quantum mechan-
ical calculation of the charge densities and has been introduced by Hackenbuchner
[5]. Here, expressions for the continuity equation and the current density are derived
from the lowest momenta of the Boltzman equation. Combining these expressions
leads to the following set of equations that need to be solved

Vi, (x)n(x) VEg, (x) = R (x),
Vi, (x)p(x) VER, (x) = —R(x). (1.105)

Here, p,, (x) and p, (x) denote mobilities and Ep,, (x) and Er,, (x) are locally varying
quasi Fermi levels for electrons and holes, respectively. These Fermi levels are used
to determine the charge densities n (x) and p (x) according to Eq. (1.54), assuming
that the free-carrier charges are locally close to thermodynamic equilibrium and can
be described by the Fermi statistics. The two equations are coupled in terms of
generation and recombination processes that are both included in R (x). Depending
on the sign of R, either generation (R < 0) or recombination (R > 0) is dominant.
In nextnano++, we consider radiative (photon emitting), Schockley-Read-Hall (via
deep traps), and Auger (three-particle processes) recombination models. A detailed
description of their implementation together with the mobility models can be found
in Appendix D of Ref. [6]. In fact, Eq. (1.105) is coupled with the Poisson equation
[Eq. (1.65)] and the Schrodinger equation [Eq. (1.41)]. It is required to find solutions
for the quasi Fermi levels, the electrostatic potential, and the eigenstates that fulfill all
three equations simultaneously. The numerical solution of this task will be discussed
in Sec. 2.6.2. Finally, when the quasi Fermi levels have been determined, the electron
and hole current densities can be obtained from the relations
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n (X) = =y (x) 1 (x) VER, (%),
Jp (x) = pp (x)p (x) VER, (x) . (1.106)

A unique solution of the drift-diffusion current equation [Eq. (1.105)] requires the
specification of boundary conditions. At the boundaries of the simulation domain,
we always employ zero von Neumann boundary conditions [Eq. (1.43)], which implies
vanishing current densities. Currents may only flow through the interfaces of contacts
where we employ Dirichlet boundary conditions [Eq. (1.42)] to set the quasi Fermi
levels to the applied bias

EF,n (X)|x€(90 = EF,p (X)|x€80 = _€¢bias' (1107)

Here, 0C denotes the boundary surface of the contact. We would like to note that
we have automated the integration of the current density over the contact surfaces
to determine the total current flow. Some details of this procedure can be found in
Appendix D. In nextnano++, we have employed the following contact models that
differ only in terms of the boundary condition of the Poisson equation:

e At an "Ohmic contact", we use von Neumann boundary conditions for the
electrostatic potential

On® (X)|xeoc = 0, (1.108)

which implies a vanishing electric field. This reflects the situation where the
space charge region at the contact-semiconductor interface is negligible small so
that charge carriers can tunnel unhampered. If a device contains only Ohmic
contacts, global charge neutrality is guaranteed.

e At a "Schottky contact", we employ Dirichlet boundary conditions for the elec-
trostatic potential

1
gb (X)|x680 = EEC - ¢barrier + gbbias' (1109)

By this, the energetic difference between the conduction band edge FE. and
the Fermi level is set to the Schottky barrier ¢pamier. This corresponds to the
situation of Fermi level pinning due to surface states. The charge of the occupied
surface states results in a non-vanishing electric field at the contact.

e At a "charge-neutral contact", we again employ Dirichlet boundary conditions
for the electrostatic potential

1
¢ (X)‘XEBC = EEC - ¢neutral + ¢bias- (1110)

Here, the Dirichlet value for the potential ¢peutra is determined by requiring
local charge neutrality at the contact surface. This model is used to describe
Ohmic contacts for devices that are too short or do not cover enough charges
to obtain the full voltage drop in the "Ohmic contact" model.



32 CHAPTER 1. CALCULATION OF SEMICONDUCTOR NANOSTRUCTURES

a
@ 150nm p-GaN 10 1
NE 10° | 1
(&)
5.0nm GaN spacer 2 0} ]
2.5nm InGaN QW Z 10} ]
[0001] 5.0nm GaN barrier g 10 ]
2.5nm InGaN QW 210 ]
O
5.0nm GaN spacer £ 102} ]
o 3
150nm n-GaN 0y . . . a
2.50 2.75 3.00 3.25 3.50
Bias (V)
- 1w0fF T
Ob g m m mm mygesereeeseecae e nee s e see e s e neneagen (d)
— ©? % =——electron
g A ===hole Josl
< Yemmmmem 8
> ! £ 0.6
212501 | jiota £
[}]
s \ 204}
t P s
e ‘----- - 8
3 W Qw Jtunnel 0.2
L) . R it .
: : L 0.0 bt
0 10 20 10® 107 10" 10° 10" 10> 10° 10°
Position (nm) Current density (Alcmz)

Figure 1.9: (a) Schematic cross section of Ing2GagsN / GaN double quantum well
LED. (b) Total current density jiotar as a function of the applied bias. (c) Position
dependent electron and hole current densities for a bias of 3.25 V. (d) Quantum
efficiency (Jphoto/Jtotal) as a function of jiotar-

e At a "Fermi contact", we do not apply any boundary conditions on the Poisson
equation. It is used to specify boundary conditions exclusively for the quasi
Fermi levels, e.g., in an interior area of the device.

As an example, we apply the QDD method to a double well InGaN green LED
that is sketched in Fig. 1.9(a). The device consists of two 2.5 nm Ing o Gag sN quantum
wells that are separated by 5 nm GaN barriers. The layers are assumed to be grown
on wurtzite [0001] n-GaN with a doping concentration of Np = 5-10'® cm™ and are
finished by a 150 nm p-GaN (N4 = 2 - 10! cm™3) capping layer. We apply Ohmic
contacts at the boundaries in the growth direction and calculate the current density as
a function of the applied bias [see Fig. 1.9(b)]. Radiative- as well as Schockley-Read-
Hall recombination processes have been considered in the calculation. We find the
optical transition between the lowest electron and hole states in the quantum wells
to lie at 420 nm in the green spectral range. In fact, not all of the current density
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Jtotal leads to the creation of photons (jpnoto). Besides non-radiative recombination
losses (Jnon—rad), for high bias values there is also a dark current (jgunne) of carriers
that tunnel through the device without recombining,

jtotal - jrec + jtunnel - jphoto + jnon—rad + jtunnel- (1111)

This can be deduced from Fig. 1.9(c) which shows the position dependent current
density for a bias of 3.25 V. As can be clearly seen, in each of the quantum wells a
certain amount of electrons and holes recombine. However, a finite part remains that
flows through the device and is therefore lost. This effect increases with the applied
bias and limits the performance of the device. When drawing the quantum efficiency
(Jphoto/Jtotal) Versus the total current density jiota, as is done in Fig. 1.9(d), one
can extract the current range where the device works efficient. We find the present
idealized LED to have a quantum efficiency of 99% for current densities up to 200
A/cm?. Here, the photo-current has been determined by integrating the radiative
recombination rate over the full length of the structure. Note that the inclusion of
quantum mechanical charge densities is essential in the present structure, to obtain a
finite tunnel-current through the barriers. So far, there exists no commercial software
that can simulate such a LED due to their lack of quantum mechanics. With the
original method from Ref. [5], the calculation also fails to converge. In nextnano-++,
we have improved its numerical realization that will be discussed in Sec. 2.6.2 and
now leads to rapid convergence.

1.6 Summary

In this chapter, we have presented the theoretical background for the calculation of
realistic three-dimensional semiconductor nanostructures within nextnano++. We
have given an overview of the multiband k-p envelope function method (EFA) that is
used for the calculation of the global electronic structure. The inclusion of magnetic
fields has been briefly sketched, but will be discussed in detail in chapter 3. In
addition, we have specified several inherent ambiguities and instabilities that come
along with EFA and have shown solution strategies to eliminate these problems. We
have expressed that doping-, free-carrier-, polarization- and fixed charges, result in a
nonzero spatial distribution of excess charges. These charges are the source of a "built-
in" electrostatic potential in a semiconductor nanostructure. Together with LSDA
exchange correlation potentials and external electric fields, they are included in the
Schrodinger equation via an external potential. Lattice mismatch between different
semiconductor materials results in strain fields that are calculated in a continuum
elasticity model and that modify the electronic structure in terms of deformation
potentials and piezoelectric charges. Finally, an external electric field can be included
by applying a bias between contacts. This drives the system out of thermodynamic
equilibrium and causes electric currents to flow. Such a situation is described by
position dependent quasi Fermi levels in a quantum drift-diffusion model.



34 CHAPTER 1. CALCULATION OF SEMICONDUCTOR NANOSTRUCTURES



Chapter 2

Numerical realization

2.1 Introduction

In this chapter, we present the numerical realization of the theoretical concepts
introduced in the previous chapter. We start with an overview of the design of
nextnano++ [4] which is a successor of the nextnano® code [5]. This section basi-
cally describes the organizational part of the software as well as the code structure.
Besides such logical arithmetics, a major part of the software is the numerical solution
of physical relations. To this end, all partial differential equations are mapped on a
discrete lattice by a discretization of the differential operators and therefore trans-
formed into linear algebra problems. Afterwards, we describe algorithms that are
used to solve the resulting systems of linear equations and matrix eigenvalue prob-
lems. Importantly, a reliable method for the solution of the eight-band Schrédinger
equation is required, because this k-p model is frequently used throughout this thesis.
Since in any realistic system, there are many connections between different physical
aspects, we also face self-consistent problems. We therefore provide solution strategies
for such coupled systems of equations.

2.2 Design of nextnano-+}-

The program flow of nextnano++ shown in Fig. 2.1 can be summarized as follows.
The user specifies the input using a text file that defines the geometry and the ma-
terials of the nanostructure, the contact bias, and all other information needed to
describe the physical system under consideration. This input file uses a concise hier-
archical syntax that allows even very complex device geometries to be characterized
by only a few lines. Then, in the initial phase, the program maps the geometry of
the structure to a finite grid using a database that provides bulk parameters for a
large number semiconductor materials. Next, nextnano-++ evaluates the bulk band
structures of all constituent materials, performs a global strain calculation, and de-
termines the new band edges and piezoelectric charges. Subsequently, the coupled

35
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/ Output /

Figure 2.1: Flow scheme of nextnano++.

Poisson-, current-, and multiband Schrodinger equations are solved self-consistently.
This part is indicated by the box "Solve coupled equations" in Fig. 2.1 that shows the
dependencies between the coupled systems of equations. Adequate solution strategies
for this block will be detailed in Sec. 2.6. Finally, in a post-processing step, electric
fields, drift-diffusion- as well as ballistic currents (CBR) [6], and optical matrix ele-
ments [47] can be computed. The output is generated in terms of ASCII or binary
data files. In addition, we provide steering files that ease the visualization with com-
mercial software tools such as Origin (1D and 2D data) or AVS/Express (2D and 3D
data).

Originally, nextnano was written in Fortran 90. But as the code (termed next-
nano®) grew organically instead of in a planned fashion, it eventually consisted of
250, 000 lines of very difficult to maintain code and a complete rewrite became nec-
essary. Therefore, we have developed the new version nextnano++ that is written
mostly in C++ except for core numerical libraries and that uses modern object ori-
ented programming techniques such as classes, inheritance, and generic programming
in order to avoid code duplication. By this, the total amount of code has been suc-
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Figure 2.2: Overview of nextnano++ code structure. The arrows indicate the de-
pendencies between the individual modules. The software is written mostly in C++
(light gray) with only the core numerical libraries still being in Fortran (dark gray).

cessfully reduced by about a factor of five. In Fig. 2.2, we give an overview of the code
structure used in nextnano++. A more detailed description can be found in chapter
3 of Ref. [6]. The software is built in a modular way from multiple libraries that can
be divided into control, application, and numeric ones. The base part of the software
is the class "Simulator" that controls the main data- and program flow using the
individual modules indicated by the boxes in the figure. These modules have partly
been referred to already in the previous paragraph about the program flow. The in-
put files are parsed using a Bison generated "Parser" module and validated for errors
using an approach similar to the one used for validating XML files. The application
group consists of libraries that implement the physical concepts presented in Chapter
1. All libraries that are based on partial differential equations ("Schrédinger", "Pois-
son", "Current", "Strain") access the same "Discretization" library that has been
developed in a generalized, dimension independent way. Arrays and sparse matri-
ces used within nextnano++ are provided by appropriate libraries that implement
multi-dimensional arrays and corresponding operations using a Fortran-compatible
indexing style. These libraries as well as the "Discretization" are templated libraries,
i.e., they use the same code for all possible data types such as integer, real, and com-
plex numbers. Another example for efficient code reuse is the "Schrodinger" library
that strongly relies on inheritance. Here, the data members and routines which all
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Figure 2.3: Screenshot of NextnanoWizard.

different k-p models have in common, are introduced in a single base class. Now,
each individual k-p model has a specialized Schrodinger class that inherits all gen-
eral properties from the base class so that only the specific properties need to be
implemented in the specialized class. Only the core numeric libraries such as itera-
tive solvers, BLAS (Basic Linear Algebra Subprograms [48]) and LAPACK (Linear
Algebra Package [49]) are still written in Fortran. They can be accessed within
nextnano++ via a templated C++ wrapper.

Recently, we have developed a convenient graphical user interface for nextnano+-+
that is called NextnanoWizard. It needs a previously created template input file to be
run with. This template is a generalized input file with a specified set of parameters
that are meant to be modified. NextnanoWizard organizes these parameter sets like
a conventional spreadsheet program, creates the appropriate input files and starts
nextnano++ which itself is a console application. Fig. 2.3 shows a screenshot of this
novel software tool. The leftmost column in the figure lists the adjustable parame-
ters, while the remaining columns represent concrete parameter sets that characterize
specific devices and are termed "jobs". With the help of an additional software tool
(termed VisRemote) developed by Peter Greck, the individual jobs can be executed
remotely on designated computers in a network. Already completed jobs are stored
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in the template file for later reinvestigation. The output directories can be easily
accessed via the link below the spreadsheet. In summary, NextanoWizard makes sys-
tematic sweeps over certain parameter spaces and book-keeping of previous results
much easier to operate.

2.3 Discretization of differential operators

The numerical methods used in nextnano++ are dictated by the simple fact that all
equations we need to solve are partial differential equations (PDEs) in position space.
Here, we employ box integration finite differences for the discretization [35, 50]. Com-
pared to standard finite differences, this method has the advantage that discontinu-
ities in material parameters (which often occur in semiconductor nanostructures), are
naturally taken into account, since this method is flux conservative due to the Gauss
theorem. In box discretization, the simulation domain is split into non-overlapping
rectangular boxes, each covering the area closest to one grid node as indicated in
Fig. 2.4. Any differential equation is now integrated over these box volumes to ob-
tain an integral equation that is discretized using the finite differences scheme. The
grid itself is always assumed to be a nonuniform tensor product grid that allows to
concentrate nodes in regions of special interest. Such tensor grids have the advantage
that no complicate meshing algorithm is required and the discretization can be easily
and very efficiently implemented.

Since we are dealing with a large variety of differential equations that need to be
solved for quasi one-, two-, or three-dimensional (in general d-dimensional) structures,
a universal formulation for the discretization is highly desirable. To this end, we write
any n x n differential matrix operator .4 (x) of up to second-order in the following
form,

~ -~

A(x) =0y (x) 9+ 3 |0 (0 + A (001 + Ao (). (21)

Here, we have decomposed the operator A (x) into n x n matrices ﬁij (x), A (x),
Ai (x), and Ay (x) (in general A, (x) with v € {ij,i —,i —,0}) that contain
material-dependent parameters and are of different orders in the derivatives 0; (the
indices i = 1, ..., d denote the Cartesian components). The matrices ./Zl\,y (x) uniquely
define A (x), so that we have effectively split the physical information from the topol-
ogy which is given by the derivatives 0;. Now, we can discretize the derivatives 0;
and take the matrices A, (x) as parameters. This leads to a discretization scheme
that becomes independent from the concrete form of A (x).

In order to apply the box discretization, we introduce the following concise no-
tation. We consider a nonuniform rectangular grid that is oriented parallel to the
Cartesian axes. We assume the space to be d-dimensional generally and enumerate
every grid point by a d-dimensional tuple m of integers. Now, the position in space of



40 CHAPTER 2. NUMERICAL REALIZATION

\ 4
(my-1,m,+1) (m;,m,+1) £,(M,,+1) (my+1,m,+1)
Q(m,-1/2,m,+1/2) Q(m,+1/2,m,+1/2)
D ©
€,
€4(my,-1) | e, Viox(m) g(m,,+1)
\ *— ' ¢
(m,-1,m,) m=(m,,m,) (m+1,m,)
\ /
S(m,-1/2,m,) S(m,+1/2,m,)
N €
Q(m,-172,m,-1/2) Q(m,+1/2,m,1/2)
+g,(My,-1)
(my-1,m,-1) (my,m,-1) (my+1,m,-1)

Figure 2.4: Sketch of two-dimensional inhomogenous rectangular grid. For box dis-
cretization, each grid node m is surrounded by a control box Vi (m) (gray region).
Each lattice area @) (m; 4+ 1/2, my + 1/2) that is formed by four nearest-neighbor grid
nodes is assumed to be filled by a constant material.

the point m is given by the d-dimensional vector x (m). For simplicity, we only take
into account nearest-neighbor interactions. So we need to address neighbor points
n that deviate from m in each coordinate by a maximum of one. To this end, we
introduce the notation

x(n)=x(m,s) =x(my + S1, ..., Mg + S4) , (2.2)

where the vector s consists of the elements s; € {0,£1}. In order to express that a
certain point n differs from m explicitly in one coordinate i or two coordinates 7, j, we
may write n = (m, s}) or n = (m, s}, s;), respectively. Here the "dash" means that

the zero is excluded so that s}, s; € {£1}. We further define grid spacings between
nearest-neighbor points

i (my, %) = s [z; (m, s}) — z; (m)]. (2.3)

Note that this grid spacing does not depend on the indices m;.; since the grid is
rectangular. The grid lines split the simulation domain into rectangular lattice areas
Q) (m,s’/2) that may be labeled by their center point using intermediate-indices,
as has been depicted in Fig. 2.4. We assume each of these areas to be filled by
a homogenous material so that any material parameter a (x) is constant for each
x € ) (m,s'/2). By this, our grid is placed on the simulation domain in a way that
all material interfaces coincide with grid lines.
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In the process of discretization, any differential operator 0;f (x) is replaced by
a discrete approximation d;f (m). We will now illustrate the box discretization ap-
proach by means of a second-order operator

O1a (x) 01 f (x) — d1a (m) 61 f (m), (2.4)

for the two-dimensional grid shown in Fig. 2.4. As can be seen from the figure, for
each grid node m = (my, my) we introduce a two-dimensional rectangular area

€1 (mh +1) +é&1 <m17 _1) % €2 <m27 +1) + &2 (m27 _1)
2 2 ’

Vbox (m) = (25)
which will be termed the control box (we use the term V for a general volume,
although it is in fact an area in the two-dimensional case). For the discretization, we
first integrate the expression in Eq. (2.4) over the control box

Oa(x)0f(x) — L ) /v ( )d2x Oa (x) o f (x), (2.6)

Vbox (m

for each grid node. Using Gauss’s theorem, this surface integral can be cast into two
line integrals (in three-dimensions, a volume integral is cast into surface integrals)

! Zsl/ dsa (x) 9 f (x),

— d*x O01a (x) OLf (x)
‘/box (m) /Vbox(m) : ' Vi)ox o =%1 m 51/2
(2.7)

where the lines S (m; £+ 1/2,m2) denote the boundary segments of the control box
in the positive and negative Cartesian e;-direction, respectively. We now use finite
differences to approximate the derivatives at the center of each boundary segment

f(m1 £ 1,mg) — f (m1,my)

+1/2 =+
nf(my /2,m2) e1 (mq, £1)

(2.8)

Taking into account that a (x) is constant within each of the four quadrants Q(m; +
1/2,ms 4+ 1/2) of the control box, we can easily evaluate the remaining integrals

1
/ dSa(x) = Z —&9 (Mo, s5) a(my £ 1/2,mg + 55/2). (2.9)
(ma£1/2,m3) —

Altogether, we obtain the following discretization formula

1 /
o (m)anf (m) = s S0 alms2) g2 [ )~ f ().
si=%1,s5==1
(2.10)
This expression can also be generalized for an arbitrary direction ¢ and for a d-
dimensional grid. The derivation has been performed in every detail in Ref. [28] and
results in
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om0 m) = S a2y Ll 1)
Vhox (m) 24-Tg; (my, 51

s/ 1

[f (m, 57) = f (m)],

(2.11)
with the d-dimensional box volume

Voox (m) = ]| M (2.12)

i

Here, the sum runs over all possible vectors s’, that can be constructed when for each
element s; two values 1 are allowed. By this, we add up the contributions of all
24 adjacent material areas Q (m,s’/2). Similar formulas can be derived for all other
operators in Eq. (2.1) (cf. Ref. [28]). In summary, these are given by

e (my, S
ZS ms/2 Hk;éz,g k( k k)

‘/i)OX 2d
x[f(m,sl,s]) f(m,s) + f (m,s5) = f(m)], (G #4) (2.13)

d;a (m)d, f (m

sy oy Lz €5 (5 55) ,
Vi (m) > sia(m,s'/2) 5 [f (m, &) — f (m)],

(2.14)

a (m) 6 f (m)] ey =

i () £ ()] = 3" sl (m, &/ 2) LLize E;"j’ %) (f (e, ) + £ (on)],
Vibox (m) 2

(2.15)

)3 () =y S o212 o )
x [(si £1) f (m,55) = (s; £ 1) f (m)], (2.16)

d;a (m) f (m)‘forw/backw = m Za (m,s’/2) H#i 53‘2[(177%‘, Sj)
x [(si £1) f(m,55) = (=7 £ 1) f (m)], (2.17)
a(m) f (m) = mZa(m, s’/2)Wf(m). (2.18)

S

In fact, the discretization formulas have been derived in a dimension-independent
way, where d basically reduces to a summation limit. This allows us to use the
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same discretization routines for all types of equations and spatial dimensions so that
consistency is always guaranteed. R

After discretization, all differential operators A (x) in the PDEs have now become
N x N matrices A, where N denotes the number of grid nodes, and any function f (z)
has become a N-vector f. If A (x) is in fact a n X n matrix operator, A will have
a n x n block structure with each block element being a N x N matrix. Since we
include only nearest-neighbor interactions, A becomes a sparse matrix which due
to the underlying tensor grid has a banded sparsity structure. Since we consider
operators of up to second order in the derivatives d;, the matrix elements A (m, n)
can be nonzero both for the 2d nearest as well as for the 2d(d— 1) diagonally adjacent
(next-nearest) neighbors. Now, every PDE that is a boundary value problem (such as
the Poisson, the drift-diffusion-current, and the strain equation (1.65), (1.105), and
(1.83), respectively) becomes a large system of linear (or non-linear) equations after
discretization,

Af = b, (2.19)

while the k-p Schrodinger equation [Eq. (1.41)] yields a large matrix eigenvalue prob-
lem,

Au = \u, (2.20)

with discretized wave functions u. In the following sections, we will describe the
methods that we have employed in nextnano+-+ in order to solve these problems.
Eventually, we are interested not only in the solutions f of Eq. (2.19), but also the
gradients Vf can form important observables. In Appendix D, the calculation of
these properties will be detailed. Finally, we would like to note that for nonuniform
grids, Eq. (2.20) in fact becomes a generalized eigenvalue problem

A

DA = \u, (2.21)

with A = DA, where A’ is Hermitian and D is a diagonal matrix whose elements are
determined by Viox [Eq. (2.12)]. However, applying the transformation

DY2A' DY =\, (2.22)

with w’ = D~1/2u leads one back to a Hermitian eigenvalue problem.

2.4 Solution of linear and nonlinear systems of
equations

When modeling complex three-dimensional structures, the number of required grid
nodes can easily exceed N = 100 x 100 x 100 = 10°. This makes it inevitable
to use storage schemes that fully exploit the sparsity structure of the matrices in
order to manage the large memory consumption. Storing only the nonzero elements
of a matrix excludes Gaussian elimination from being a useful solution method for



44 CHAPTER 2. NUMERICAL REALIZATION

Eq. (2.19), because this would fill up the matrix and requires O (N?) operations.
Iterative methods that determine a sufficiently accurate approximate solution by a
sequence of matrix vector multiplications (MATMULSs) and little additional work
can be applied much more effectively. Such methods obtain an additional profit
from the sparsity structure that makes a MATMUL an O (N) operation, contrary to
general dense matrices where it is an O (N?) operation. Detailed information on a
large number of iterative methods for solving systems of equations can be found in
Ref. [51]. We will concentrate only on those methods that are actually used within
nextnano--+-.

2.4.1 Linear systems of equations

For Hermitian positive definite problems, we use the well known conjugate gradient
method (CG) [52]. This method derives its name from the fact that it generates a
sequence of conjugate (or orthogonal) vectors. These vectors are the gradients VF
of a quadratic functional

1 "
F = 5fTAf — bf. (2.23)
The Algorithm minimizes this functional,
VF=Af —b=0, (2.24)

which is equivalent to solving the linear system [Eq. (2.19)]. CG is our method of
choice for the linear Poisson equation [Eq. (1.65)], the drift-diffusion current equa-
tion [Eq. (1.105)], and the strain equation [Eq. (1.83)] with non-periodic boundary
conditions. It turns out that it often also works for indefinite problems such as the
shift-invert spectral transformation that will be discussed in Sec. 2.5.2.

If CG fails, we fall back to a composite step conjugate gradient method (CSCG).
This method has been developed specifically to deal with indefinite problems as well.
It differs from CG only in its strategy to combine certain iterations to composite
steps, in order to improve the stability of the convergence process [53]. This method
is not our standard method since it is significantly slower than CG.

For non-symmetric matrices, such as the strain equation with periodic boundary
conditions, we use a biconjugate gradient method (BiCG) [54]. This method generates
two CG-like sequences of vectors, one based on a system with the original coefficient
matrix A, and one on A”. Instead of orthogonalizing each sequence separately, they
are made mutually orthogonal, or “bi-conjugate”. BiCG is much slower than CG,
because it requires a multiplication with A and AT in each iteration.

In order to improve convergence, we do not use the methods stated above in their
original form, but accelerate them by preconditioners. All of those iterative methods
converge very fast if the matrix A is close to the identity. Unfortunately, in most
applications this is not the case. Therefore we replace the original linear system
Eq. (2.19) by the modified system

M~YAf = M~ 'b, (2.25)
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where the preconditioner matrix M is chosen so that M1 A approximates the identity.
The speed of the whole algorithm is improved, when the benefit from the (easier to
solve) modified problem is larger that the extra cost for constructing and applying
the preconditioner. When designing a preconditioner, one is faced with a choice
between finding a matrix M that approximates A and for which solving a system
is easier than solving one with A, or finding a matrix M that approximates A~
that only a multiplication by M is needed. In nextnano+-+, we use precondltloners
from the first category, because approximations of A1 require storage that grows at
least with O (N 4/ 3), making them unsuitable for very large problems. In fact, we
usually employ an incomplete Cholesky factorization [55], or for Poisson operators,
the very fast fill-in-free Dupont-Kendall-Rachford method [56]. Both methods are
based on incomplete factorizations of the coefficient matrix. Such a preconditioner is
then given in factored form M = LU with a lower triangular matrix L and an upper
triangular matrix U. In the symmetric case it can be written M = LDL" with a
diagonal matrix D. The factorization is called incomplete, if during the factorization
process certain fill elements (nonzero elements in positions where the original matrix
had a zero) have been ignored.

2.4.2 Nonlinear systems of equations

If the original system [Eq. (2.19)] is nonlinear in the solution vector,

Af = b (f), (2.26)

the methods presented above are not applicable. In nextnano-++, this situation
arises for the Poisson equation [Eq. (1.65)]

VeV =—p(9), (2.27)

where the non-linearity is introduced by the dependence of the classical charge density
p = pa [Eq. (1.61)] on the electrostatic potential ¢. In order to solve Eq. (2.26), we use
the Newton-Raphson method with inexact line search. Here, we rewrite the problem
into finding the root of a function

F(f)= Af — b (f) = 0. (2.28)

Starting from an initial guess fj, the solution is approached following the iteration
sequence
forr = f — Mgy, (2.29)

where g, denotes the direction of steepest descent of F at the position f; which we
follow for a step length . By simple algebra one can derive that g is given by

g = [Je (8)] F(£). (2.30)
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with the Jacobian matrix Jg (f) = A — (Dgb) (f). Rather than actually computing
the inverse of this matrix, we solve the system of equations in each iteration

A

So effectively, this algorithm remaps the nonlinear problem into a sequence of linear
solutions that can be computed the way it has been presented in Sec. 2.4.1. The
remaining problem is to find a suitable step length A\ for Eq. (2.29). Since plain
Newton-Raphson iteration (A = 1) may fail if the initial guess is not sufficiently
close to the final solution, we stabilize the convergence by a line search [34]. In
order to limit the computation cost, we employ this line search only in an incomplete
manner. So we first try one full Newton step in the direction of g; and keep dividing
(A=1/2,1/4,...) or multiplying (A = 2,4, ...) the step size by 2 until a local minimum
in the residual ||F (fx41)|| has been found.

2.5 Solution of matrix eigenvalue problems

Solving the Schrodinger equation for realistic nanostructures requires the solution
of very large matrix eigenvalue problems [Eq. (2.20)], which is computationally very
demanding. Here, memory consumption and CPU time pose strong limitations on
the number of eigenvectors that can be calculated. Fortunately, in most situations
only a few eigenstates are physically relevant, because the occupations of electron and
hole states fall off exponentially with the energy distance from the Fermi level. This
allows us to rely on iterative eigensolvers that utilize the so called power method and
can be accelerated by spectral transformation preconditioners. A detailed description
of the most common solution algorithms can be found in Ref. [57].

There are two types of eigenvalue problems that have to be solved in nextnano++,
namely extremal and non-extremal ones. Extremal eigenvalue problems come with
the single-band and the six-band Schrodinger equations. Here, only the eigenvalues
that lie closest to one end of the energy spectrum need to be calculated. This type
of eigenvalue problem can be solved using an Arnoldi iteration method that has
proven to be fast and robust. The eight-band Schrodinger equation, however, couples
electron and hole bands and therefore leads to a non-extremal eigenvalue problem.
Since the Fermi level lies in the vicinity of the energy gap, we are usually interested
in the eigenstates close to this energy gap that itself lies somewhere in the middle
of the energy spectrum of the Hamiltonian matrix. This limits the range of possible
solution algorithms.

Since developing a fast and robust eigenvalue package is a very challenging and
time consuming task, we rely on already available software libraries and customize
these for our needs. In nextnano-++-, we use three types of eigenvalue solvers; namely
an implicitly restarted Arnoldi iteration solver from the ARPACK library [58], a
Jacobi-Davidson iteration solver [59] and a direct dense matrix solver from the LA-
PACK library [49].
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2.5.1 Extremal eigenvalue problems

For extremal eigenvalue problems, we rely on the ARPACK solver [58]. It is an
iterative method that utilizes the power method which is based on the following
principle. Since the matrix Ain Eq. (2.20) is Hermitian, it can be written in terms
of its eigenvectors u; and corresponding eigenvalues J;,

A= xuu/. (2.32)

Furthermore, any normalized trial vector vy can be expanded into the eigenvectors
of A,
Vo = Z c;u;. (233)
J

Then the multiplication Avg yields

vi = Avg = Z Ajciu;. (2.34)
J

Hereby, the component of the largest eigenvalue A\, € {A\;} is amplified most, so
that many successive multiplications k (with subsequent normalization) will convert
Vo into Upay,
v = Afvg = Z )\?cjuj ~ AP CmaxUmax- (2.35)
J

Now, the next eigenvector could be obtained by removing A, from the spectrum

A— A=A — A\ Umax U

max’

(2.36)

and subsequently restarting the algorithm. However, it is more effective to store the
individual steps in the so called Krylov subspace to find multiple eigenvalues simul-
taneously. In fact, ARPACK does this by using Arnoldi iterations in the Krylov
subspace K. Starting with the initial normalized guess vector vy, first an orthonor-
mal basis of

K, = span {V07 Avg, A%vy, ..., AHVO} : (2.37)

is calculated. Afterwards, the eigenvalues of the orthogonal projection of A onto the
basis of IC,, are computed. These so called Ritz eigenvalues converge to the extremal
eigenvalues of A. In order to limit the storage cost required for maintaining orthog-
onality of basis vectors with increasing number of iterations, the Arnoldi method is
restarted after a few iterations. Therefore, the size n of the Krylov subspace needs
to be chosen only two or three times larger than the number of desired eigenvectors
in order to achieve a sufficiently precise solution.

For the huge matrices that occur in three-dimensional calculations, however, addi-
tional speed up of ARPACK is highly desirable and can be achieved by an additional
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Figure 2.5: Sketches of spectral transformation functions f for (a) monomial (solid
line) and Chebychev polynomial (dashed line) transformation, (b) shift-invert trans-
formation.

preconditioner. Here, the aim of preconditioning is to spread the spectrum of A in the
interesting range of eigenvalues and to compress it elsewhere. Such a preconditioner
can be obtained utilizing a polynomial function f for a spectral transformation,

Au= ) u <= f (/Al) u=f(\)u. (2.38)

The basic idea behind such a spectral transformation is the fact that the eigenvectors
u of a matrix A are invariant under this transformation, whereas the eigenvalues A
do change and can be amplified at the end of the spectrum where the polynomials
are chosen to be large (see Fig. 2.5). This improves conditioning and thus accelerates
the convergence of these extremal eigenvalues. In nextnano++, we use simple mono-
mials ", Chebychev polynomials, and Legendre polynomials. In most situations, we
find the Chebychev polynomials to provide the best speed-up that can reach a factor
of ten compared to the standard Arnoldi method. The Chebychev polynomials out-
perform the simple monomials by about a factor of two, because they can amplify
the extremal part of the spectrum more effectively. However, they require to define
an energy cutoff above which no eigenvalues can be computed any more. This has
been sketched in Fig. 2.5(a). It is difficult to predict a reasonable energy cutoff in
advance, because a value that lies too close to the end of the spectrum will prevent
convergence, while a value that lies too far from the relevant part of the spectrum
annihilates the performance improvement of the method. Therefore, we use the fol-
lowing robust strategy for charge-self-consistent problems. When the Schrodinger
equation is solved for the first time, we always apply the monomial preconditioner
that does not require any knowledge of the relevant energy range of the spectrum. In
all further steps that require solving the Schrodinger equation, we use the Chebychev
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preconditioner with an energy cutoff that lies slightly above the highest calculated
eigenvalue from the last iteration (a value of 0.1 eV has proven to be sufficient in
most situations). If ARPACK fails nonetheless using this cutoff, we fall back to the
monomial preconditioner to guarantee convergence in any case.

2.5.2 Non-extremal eigenvalue problems

For non-extremal eigenvalue problems that come with the eight-band Schrodinger
equation, the method described above it not directly applicable and other solution
algorithms are needed. For small one-dimensional problems, we can rely on a di-
rect dense matrix solver from the LAPACK library [49] that has proven to be fast
and robust. However, with increasing problem size (quasi two- or three-dimensional
structures) this method quickly becomes ineffective, because its dense storage scheme
and its direct diagonalization algorithm obviously scale very poorly with the number
of grid nodes. For very large matrix eigenvalue problems, iterative methods can eas-
ily outperform direct ones by orders of magnitude. In this case, a Jacobi-Davidson
iteration method [59] can be applied successfully. We find this method to be rea-
sonably fast, but rather difficult to control. It requires an energy shift to be defined
that lies close to the relevant matrix eigenvalues and convergence speed drops down
drastically with increasing difference between this energy guess and the true eigen-
values. It is difficult to predict a good energy guess in advance, especially if the
relevant eigenvalues comprise a larger energy interval. In the latter case, the algo-
rithm has to be restarted several times with different guess energies. Together with
careful book-keeping of already converged eigenvalues, this is rather complicated to
automatize. By modifying the ARPACK solver with a shift-invert spectral transfor-
mation (ARPACK-SI), we have successfully managed to apply the Arnoldi iteration
method to non-extremal eigenvalue problems as well. We find this algorithm to be
faster and more reliable than the Jacobi-Davidson method in our applications and
will therefore detail its concept in the following. In nextnano-++-, we fall back to the
Jacobi-Davidson method only if the ARPACK-SI algorithm fails.
The shift-invert spectral transformation is given by

R . o -1
Au = \u <= (A - ,u[> u=0\—p)'u, (2.39)

where 1 denotes an energy shift. This corresponds to a spectral transformation
function that has a singularity at the position of the shift, as shown in Fig. 2.5(b).
Therefore, the inner eigenvalues A close to . become extremal eigenvalues lying either
at the lower end (eigenvalues slightly below 1 become strongly negative) or at the
upper end of the spectrum. By this transformation, ARPACK can be used to calculate
the non-extremal eigenvalues in the vicinity of u. Since inverting a large sparse
matrix would create a dense matrix that exceeds any realistically available amount
of memory, we have to avoid this operation by solving a system of linear equations,

(fl — uf) Uy = Uy, (2.40)
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Figure 2.6: Total number of matrix-vector multiplications that are required for the
calculation of the eight-band hole (solid line) and electron (dotted line) ground states
of an InAs pyramidal quantum dot, as a function of the energy shift.

in each Arnoldi iteration. This is more time consuming than the polynomial trans-
formations for extremal eigenvalue problems. Although, the matrix in Eq. (2.40) is
indefinite, it turns out that in most cases CG can be used to solve this equation. If
not, we fall back to the CSCG solver to ensure convergence.

In order to find the optimum energy shift u, we now analyze the convergence be-
havior of the ARPACK-SI algorithm for a realistic nanostructure. Here, we calculate
the lowest electron and hole states for an InAs pyramidal quantum dot using the
eight-band k-p method. The dot has a width of 15 nm, a height of 7.5 nm, and is
embedded in GaAs. The simulation domain is discretized with grid spacings of 0.5 nm
and 0.25 nm in the lateral and vertical directions, respectively. This results in a total
number of approximately 50,000 grid nodes within the area where the Schrédinger
equation is solved. In Fig. 2.6, we plot the total number of MATMULS (matrix-vector
multiplications) that are required for the electron and hole ground states to converge
(with an accuracy of 1071 eV), as a function of the relative electron and hole energy
shifts Aue and Apy, respectively. The absolute energy shifts are given by

pre = EM™ — Apie, pn = EP™ + Apy,, (2.41)

where E™" (E™a) denotes the global minimum (maximum) of the conduction (va-
lence) band edge in position space. The total number of MATMULs is a good measure
for the computational cost, because these are the most time consuming operations.
We observe a small decrease of the number of MATMULSs when the absolute shift
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Figure 2.7: Numbers of linear system of equations solutions (solid line) and matrix-
vector multiplications per linear equation solution (dashed line) that are required for
the calculation of the hole ground state, as a function of the energy shift.

p is moved from the center of the band gap (Ap ~ 0.2 eV) toward the band edges
(Ap = 0). A minimum is reached at approximately Ay = 0.05 eV, followed by a
rather sharp increase for values outside the band gap (Au < 0). This behavior is
qualitatively equal for electrons and holes and can be explained by two competing
effects. In Fig. 2.7, we show the number of linear systems of equations (LSEs) that
have to be solved (i.e. the number of Arnoldi iterations), and the average number of
MATMULs per LSE [Eq. (2.40)] for the calculation of the hole ground state, as a
function of Ap. When the relative shift Ay is decreased, the absolute shift © moves
closer to the energies of the lowest hole states and the relevant part of the spectrum
is amplified more effectively. Therefore, the number of Arnoldi iterations (LSEs) de-
creases in order to obtain a converged result for the hole ground state (see solid line
in Fig. 2.7). On the other hand, the matrix in Eq. (2.40) becomes singular for g = A.
Thus, the closer one gets to this condition, the more CG iterations (and MATMULS)
are required to solve each linear system of equations (see dashed line in Fig. 2.7).
These competing effects explain the convergence behavior in Fig. 2.6.

Taking these results into consideration, we have developed the following robust
strategy for the determination of the lowest electron and hole states of the eight-
band Schrodinger equation with the ARPACK-SI algorithm. We first set the energy
shift u to a value slightly below the upper boundary of the band gap to calculate
the electron eigenvalues and eigenstates above the band gap. Afterwards, we set
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i to a value slightly above the lower boundary of the gap to calculate the hole
eigenvalues and eigenstates. These energy shifts can be easily estimated in advance
from the band edges in position space. The method is reliable even for the calculation
of larger numbers of eigenstates. Here, the decreasing effectiveness of the spectral
transformation is stabilized by the fact that the CG method (which is used to solve
Eq. 2.40) converges faster with increasing energy difference from the singularity. By
employing this method in nextnano-++, we are able to calculate the electron and
hole ground states of the realistic test structure considered above in approximately
10 minutes on a standard off-the-shelf PC (Intel Core 2, 2.4 GHz). We would like to
note that this concept also works for nanostructures that do not have a global energy
gap as discussed in chapter 6. In this case, the Schrodinger equation is solved only
once with the energy shift set to (E™" + Emax) /2.

2.6 Solution of coupled systems of equations

After having provided solution algorithms for all individual equations, the remain-
ing task is to examine how coupled systems can be solved self-consistently. In
nextnano++, these are the coupled Schrodinger- and Poisson equations for equi-
librium situations (cf. Sec. 1.3.2) and the coupled Schridinger-, Poisson-, and current
equations for non-equilibrium situations (cf. Sec. 1.5). Since Poisson’s equation and
the drift-diffusion current equation are boundary value problems and Schrodinger’s
equation is an eigenvalue problem, there is no obvious way to solve these equations
simultaneously, and we have to rely on an iterative approach. We will call such meth-
ods "outer iteration" to avoid any confusion with iterations that are needed to solve
the individual linear systems of equations and matrix eigenvalue problems. Due to the
strong nonlinear couplings between the equations, a straightforward iteration by itself
usually does not converge and more sophisticated methods are required to stabilize
the convergence. In the following, we will present the particular solution strategies
which we use for equilibrium and non-equilibrium situations and that detail the box
"Solve coupled equations" in Fig. 2.1.

2.6.1 Coupled Schrédinger-Poisson equations

The basic problem in the system of the Schrédinger equation [Eq. (1.41)]
H[¢]¢; = Etyy (i=1,...,Ne), (2.42)
and the Poison equation [Eq. (1.65)]

Veve = —p[{yi, Ei}], (2.43)

is the strong coupling between both equations that is transmitted by the quantum
charge density p = pgm [Eq. (1.54)] and the electrostatic potential ¢. The charge
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Figure 2.8: Flow scheme of predictor-corrector algorithm for coupled Schrodinger-
Poisson equations.

density results from the eigenstates v; and eigenenergies F; of the Schrodinger equa-
tion and enters the Poisson equation, while the electrostatic potential results from
the Poisson equation and enters the Hamiltonian of the Schrodinger equation. For
this coupled system of equations, the main task is to calculate a self-consistent solu-
tion for the charge density (or equivalently for the electrostatic potential). A simple
iteration between the Schrodinger and the Poisson equation usually fails to converge
due to strong charge oscillations from one iteration step to the other. The most com-
mon approach for this problem is to underrelax in the charge density to damp the
oscillations [60]. However, the efficiency and stability of this method have remained
an issue especially for two- or three-dimensional grids. In nextnano++, we have im-
proved this situation immensely, by implementing an iteration scheme that is based
on a predictor-corrector type approach [61]. Here, the iteration is modified in a way
which partially decouples both partial differential equations to stabilize convergence.
In Fig. 2.8, we show a flow scheme of this algorithm.

The method is based on the following idea. If we knew the exact dependence of
the set of eigenpairs {¢;, E;} and therefore the quantum charge density p [{¢;, E;}]
on the electrostatic potential ¢, we could solve a nonlinear Poisson equation

VeVo = —p[{vs, Ei} (9)], (2.44)

using Newton’s method from Sec. 2.4.2. Then, the Schrédinger equation would be
completely decoupled and a single solution would suffice. Since this is not possible,
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quantum mechanical perturbation theory is used to derive an approximate expres-
sion describing the dependence of the quantum charge density on the electrostatic
potential. The approximate quantum charge density in the (k + 1)-th iteration can
be obtained by

5[{¢§k)’E§k)} (¢(k+1))] S [{¢ng)7EZ(k) e (¢(k+1) _ ¢(k))}] 7 (2.45)

i.e. all eigenenergies of electrons and holes in Eq. (1.54) are shifted according to
E® Ei(k) —e (") — ¢*)) [61]. The density p is used to move most nonlinearities

7
into the Poisson equation

vevott = -5 [{ul, P} (904))] (2.46)

to decrease the coupling in the Schrodinger-Poisson system and improve conver-
gence speed. The predicted result for p is then corrected by an exact solution of
the Schrodinger equation

H [p®D] D — gty () (2.47)

K3 (2

before proceeding with the next outer iteration step. Once the iteration has con-
verged, we have ¢*t1) = ¢(*) and therefore p = p, i.e., the predictor yields the
correct density. When the Hamiltonian is augmented by exchange correlation po-
tentials (in order to take into account many-particle effects), we use the predicted
density p to determine V,. (cf. Appendix B). As exit condition for the iteration, we
require that electron as well as hole densities become stationary

/ddx In* ) (x) — ™ (x)] < 6,
/ ax [p**) (x) — p® (x)] < 6, (2.48)

Reasonable values for the residual §, are 10° cm™2, 10° cm ™, and 10~ for one-, two-,
and three-dimensional grids (d = 1,2, 3), respectively. In an iterative algorithm, the
total number of iterations which are required for convergence always depends on how
close the starting value lies to the final result. Primarily, we initialize the potential in
a way that guarantees charge neutrality at any spatial position. Here we determine
the potential values (that shift the band edges with respect to the Fermi energy to
compensate positive and negative charges) using a bisection search [34] for every
grid node. Afterwards, we solve the nonlinear Poisson equation with the classical
charge density pa [Eq. (1.61)], only. The resulting electrostatic potential serves as
an initial guess for the coupled Schrodinger-Poisson system. Using this potential,
the Schrodinger equation is solved once, before the predictor-corrector procedure in
Fig. 2.8 is started. This method has been found to be very reliable and to converge
rapidly in a large number of applications.
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Recently, we have refined this technique further by projecting the Hamiltonian into
the subspace spanned by all already known eigenvectors, and then diagonalizing this
small subspace rather than the full Hamiltonian. The basic idea behind this approach
is that small changes in the potential ¢ often do not perturb the eigenfunctions of the
Hamiltonian H [¢] significantly, but shift their relative energies, leading to reordering
and hybridization of states. Thus, by diagonalizing the subspace Hamiltonian

D _ <¢z(k)‘ ek [¢(k+1)]

%)

), (2.49)

we can obtain a new set of approximate eigenvectors %Hl) that are formed by linear
combinations of the eigenvectors wi(k) from the last iteration, and act in place of the
exact eigenvectors ¢§’“+” of H [gzﬁ(k“)]. This effectively replaces the calculation of
N, eigenvectors of a N x N matrix by the diagonalization of a N,, x N,, matrix.
Since the number of eigenvectors N, that contribute to the charge density is rather
small (typically N, < 100), while the number of grid nodes N can be as large as
106, this reduces the computational effort drastically. At least in every second outer
iteration step, we use an approximate subspace solution of the Schrodinger equation
rather than an exact one. Further approximate solutions are inserted if the residuals
of the electron and hole charge densities are greater than the convergence criterion 9,
times a subspace residual factor fspspace that we usually choose to be 10%. Basically,
this leads to several additional subspace iteration steps at the beginning of the outer
iteration process. Since the cpu time spent within the subspace iterations is negligible
with respect to the exact iterations, their employment leads to a speed improvement
of roughly a factor of two. Note that the predictor-corrector procedure is always
terminated by an exact solution of the Schriodinger equation.

2.6.2 Coupled Schrodinger-Poisson-Current equations

Non-equilibrium situations are modeled by locally varying quasi Fermi levels Er,, (x)
and Ep, (x) for electrons and holes, respectively, rather than a single constant energy
Er. In addition to the coupled Schrodinger-Poisson equations from Sec. 2.6.1, we also
have to solve the drift-diffusion current equations (1.105)

Vi, (x)n(x) VEg, (x) = R (x),
Vi (%) p(x) VER, (x) = —R(x), (2.50)

to determine the quasi Fermi energies. These energies become additional variables
in the charge densities. So, we have in fact n[{1;, E;}, Er,], p[{¢:, Ei} , Ep,) and
p{¥i, B}, Epn, Ery] = —n + p. Therefore, the quasi Fermi levels that result from
the current equations now enter the Poisson equation via the charge density and lead
to a coupling of both equations. In addition, the current equations are coupled to the
Schrodinger equation as the densities depend on the eigenstates and eigenenergies.
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Figure 2.9: Flow scheme of combined predictor-corrector-underrelaxation algorithm
for coupled Schrodinger-Poisson-Current equations.

Since there exists no predictor-corrector procedure that includes the current equa-
tion, we have to rely on an iterative approach. In Ref. [5] it has been proposed to
solve the system of coupled equations in a block-iterative way. This approach consists
of alternating solutions of the coupled Schrédinger-Poisson system with fixed quasi
Fermi levels Ep,,, Er, and the current equations with fixed eigenpairs {v;, E;}. In
each of these two blocks, the relevant equations are solved repeatedly until the block
result becomes stationary, before proceeding with the next outer iteration step in the
other block. This method has been implemented in the previous version nextnano?®.
However, we find it to converge only slowly, mainly because it takes up too many
Schrodinger solution cycles that are computationally very costly. Calculating a fully
converged result for the Schrodinger-Poisson block in each outer iteration step is a
waste of cpu time, because in most cases the modifications of the Fermi levels in
the current equation strongly perturb the Schrédinger-Poisson solution, anyway. We
have improved this method by a novel flow scheme shown in Fig. 2.9 that combines
the predictor-corrector procedure for the Schrodinger-Poisson system with an under-
relaxation approach for the quasi Fermi levels.

The algorithm can be summarized as follows. We solve the linear current equation
for electrons
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Vi Hzpf’“), E§k)} ] VEED — R [{«p@, E}’“)} ,E}’ﬂ , (2.51)

and the analogous equation for holes, to obtain the prehmmary quasi Fermi energies

EFk:[ Y and Ey k1) Afterwards, the new energies E Fon 1 and E(lf; ) are determined
according to
RtV = aBM 4 (1 - a) BY), (2.52)
Egyt = E(k“) +(1—a)Ep), (2.53)

with the underrelaxation parameter «. Using these new Fermi energies, only one
predictor-corrector step is performed before proceeding with the next outer iteration
cycle. In this step, we use the predictor density

ﬁ[¢(k+1)] —p [{¢§k)’Ei(k) e (¢(k+1) _ ¢(k))} E}k:1)7E(k+l)} : (2.54)
and the corrector density
0 szgkﬂ)’ Ei(k+1)} ’ng:n’ ng;”} . (2.55)

This procedure turns out to work reliable and to converge reasonably fast in a wide
range of applications, when using underrelaxation parameters in the typical range
of @ = 0.1 — 0.3. The major issue that remains, is the fact that charge densities
in semiconductor devices can vary by many orders of magnitude on a nanometer
scale. Therefore, the matrix that results from discretizing Eq. (2.50) can become
very ill-conditioned. This can be even worse in intermediate results of the combined
predictor-corrector-underrelaxation algorithm, which need not be physical at all. In
order to guarantee convergence of the linear equation [Eq. (2.50)] in every single
current calculation step, we limit the spatial variation of charge densities and replace
them by a certain minimum value, if necessary. So, in fact, we use the following
densities in the current equation,

n(x) = max [n (X), Puinl , (2.56)
p (%) = max [p (x) , pmin] - (2.57)

The minimum density pnin should be chosen as large as possible, but smaller than
the minimum of the density in the final result (otherwise py, could distort this final
result). Typical values for pp;, lie in the range 108 — 10'? cm 3.

To obtain a good initial guess for the Fermi levels Ep,, and Ep,, we first solve a
linear pseudo current equation

vexp[ EE(O)]VEFO() 0, (2.58)
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where £, (x) is the local band gap and Ej is some reference energy that can be used to
control the Fermi level profile Er( (x). If Ej is chosen to be small relative to the range
of band gap energies, Ep(x) will drop in areas with large F; and remain almost
constant in areas of small £,. This is a good starting value for devices where charges
accumulate in small band gap regions that are separated by large band gap barriers.
If Ey is chosen to be large, by contrast, Ep (x) will drop continuously, almost irre-
spective on the size of the local energy gap. Typically, we use a value of Fy =1 €V.
Starting with Er, = Er, = EFr, we now solve the coupled Poisson-Current system
for the classical charge density only. Here, the solution of the Schrodinger equation is
omitted and the convergence is stabilized by the underrelaxation of the Fermi levels.
The resulting quasi Fermi levels and the electrostatic potential serve as initial guess
for the coupled Schrodinger-Poisson-Current system. Using the latest potential, the
Schrodinger equation is solved once, before the procedure in Fig. 2.9 is started.

As exit condition, we now require separate convergence of electron and hole Fermi
levels as well as densities. So in addition to Eq. (2.48), the following relations have
to be fulfilled,

HE’““ E}f“ﬁl <,

HE k+1)

Reasonable values for the residual dx lie in the range of 10~7 to 107° eV.

Analogous to the pure Schrodinger-Poisson system, the method is combined with
the subspace iteration technique to save a considerable amount of exact solution
cycles of the Schrodinger equation. In order to assess the convergence behavior of the
present method, we investigate an InGaN double quantum well LED that has been
specified in Sec. 1.5 (cf. Fig. 1.9). This test structure represents to some extend a
worst case scenario for the quantum drift-diffusion (QDD) current model, because the
large barrier between the quantum wells strongly limits the current flow and there are
pronounced spatial variations of charge densities. In Fig. 2.10, we plot the residuals
of the charge densities and the Fermi levels for electrons and holes as a function of
the number of exact Schrodinger solution steps. Since these steps are by far the
most time consuming ones, they form a good measure for the computational effort.
The graph for o = 1 shows strong oscillations, which indicate that the convergence
fails completely without underrelaxation. The oscillations can be damped with an
underrelaxation parameter of @ = 0.2 leading to reasonably fast convergence. By
using the subspace iteration technique, the algorithm exhibits a significant further
improvement. Here, we have replaced every second exact solution of the Schrodinger
equation by an approximate subspace step. The fast drop of the residual at the
beginning comes from several additional subspace iterations that have been inserted
between the first and the second exact solution of the Schrodinger equation. These
results show that our novel iteration scheme can be applied even for such numerically
unfavorable devices. Successful application of the present method to larger quasi
three-dimensional systems has been demonstrated in Ref. [62].
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Figure 2.10: Residuals of (a) Fermi levels and (b) charge densities for electrons (gray
lines) and holes (black lines) of an Ing2GagsN-GaN double quantum well LED as a
function of the number of exact Schrodinger solution steps. We compare iteration
schemes with (o = 0.2) and without (a = 1) underralaxation and investigate the
effect of subspace iterations.

2.7 Summary

In summary, we have shown how the calculation of semiconductor nanostructures
has been realized numerically within nextnano++. This software has been con-
structed in a modular way from flow control, application specific, and core numerical
libraries. Due to the intensive application of modern C++ object oriented program-
ming techniques, a high degree of code reusage became possible. Furthermore, we
have introduced the box discretization technique that has been used to transform all
partial differential equations into linear systems of equations or large sparse matrix
eigenvalue problems in a flux conserving way. This discretization has been derived in
a generalized d-dimensional form so that consistency can always be guaranteed. We
have presented iterative algorithms for the solution of the linear algebra problems.
Here, we rely on already available software libraries and customize these for our needs.
Special emphasis has been put on the non-extremal eigenvalue problem that comes
with the eight-band Schréodinger equation. For this particular problem, no satisfac-
tory solution existed so far and we have now employed a robust method based on an
ARPACK shift-invert (ARPACK-SI) algorithm. Finally, we have described two dif-
ferent approaches for the solution of coupled systems of equations. Namely, we use a
predictor-corrector method for the solution of the coupled Schrodinger-Poisson equa-
tions and an underrelaxation approach for the coupled Schrédinger-Poisson-Current
system. Both methods have been further improved by a novel subspace iteration
technique.
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Chapter 3

Gauge-invariant discretization in
multiband k-p envelope function
theory

3.1 Introduction

Solving the Schrodinger equation in a constant magnetic field within the standard
minimal coupling scheme is surprisingly problematic for a confined electronic sys-
tem. Since the vector potential increases linearly with dimension, it is largest at
the boundaries where the wave function is usually assumed to vanish and supposed
to be no longer physically relevant. This leads to a pronounced gauge dependence
of the eigenfunctions and eigenvalues that is often missed or ignored. On the other
hand, magnetic-field related properties such as gyromagnetic factors are essential for
controlling the spin degree of freedom of confined carriers in the area of spintronics
or quantum computation [1]. It is obviously crucial to develop methods that guar-
antee manifestly gauge-invariant magnetic-field related solutions of the Schrodinger
equation.

Surprisingly few theoretical nonperturbative approaches have been developed so
far that focus on mesoscopic semiconductor nanostructures in magnetic fields [63-72].
There are atomistic approaches such as the empirical tight-binding method, where
electromagnetic fields can be taken into account via a Peierls-type phase factor [73] in
the transfer matrix elements [63-67] and pseudopotential methods, where magnetic
fields can be incorporated via a magnetic pseudopotential [68, 69]. Recently, an
ab-initio method has been developed to incorporate magnetic fields rigorously [70].
Unfortunately, the latter approaches are practicable only for few-atom systems or
crystalline systems with a few dozen atoms per unit cell due to the numerical effort
involved.

The envelope function approximation (EFA) [8-19] is the method of choice for han-
dling strained semiconductor structures, including relativistic effects, which extend
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over hundreds of nanometers. However, most approaches that incorporate magnetic
fields within the framework of the EFA treat magnetic fields perturbatively [74, 75].
These approaches typically hold only for subtesla magnetic fields in nanostructures;
for a quantum dot of 50 nm diameter, for example, the magnetic length becomes
comparable to its size already at 0.3 T. Commonly, the envelope function equation is
spatially discretized for the calculation of realistic semiconductor devices. Unfortu-
nately, applying discretization schemes to the minimal coupling Hamiltonian breaks
the gauge invariance of the discretized equations [71], and the spectrum depends on
the particular gauge choice of the vector potential. Recently, a nonperturbative eight-
band EFA method has been developed that is similar to the one presented here [72].
It is also based on the gauge-invariant Wilson loop method [76]. While the details
of the method are not specified in the paper, we have been able to reproduce the
results in Fig. 2 of Ref. [72] by using an arithmetically averaged symmetrized opera-
tor ordering rather than the correct ordering of differential operators that has been
established in Refs. [15-19]. The very purpose of the present work is to provide a
general, consistent, and rigorous derivation of the method for arbitrary EFA models.
In this chapter, we develop a manifestly gauge-invariant, nonperturbative dis-
cretization scheme for the multiband EFA in arbitrary magnetic fields that includes
relativistic effects and strain and does not contain any field-dependent fitting pa-
rameters. It is based on the concept of gauge covariant derivatives that have been
developed in the context of lattice gauge theories originally [76, 77]. We present
a complete and concise derivation for the general multiband EFA that includes all
derivatives up to second order and thoroughly accounts for their correct placement.
For the case of a single band without spin-orbit interaction, the results of the present
method are identical to those of the scheme developed in Ref. [71]. For the general
multiband case, however, a proper generalization has not been developed so far.
While the present method yields phase factors that multiply the zero-field Hamil-
tonian matrix elements similar to the Peierls phase factors for the hopping matrix
elements in tight-binding theory, there are important differences. First, our method
assures that the Hamiltonian reduces to the correct continuum minimal coupling
Hamiltonian in the limit of infinitesimal grid spacing. Second, the integration path
consists of unambiguous straight-line segments. In tight-binding, on the other hand,
the integration paths directly connect two atomic sites [64, 65] of fixed distance.

3.2 (auge invariance in multiband Schrédinger equa-
tions

We start our discussion with the real-space, multiband envelope function Schrodinger
equation in a magnetic field [8-10, 12]

H(x)F (x) = EF (x), (3.1)
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where F is a column vector containing the n components of the (spin-dependent)
envelope wave function and

= S KHY (x) K, +Z () K+ KGR ()] 4+ O (). (3-2)

is the n x n-matrix of the Hamiltonian operator in the n-band EFA. We assume
a d-dimensional structure (d > 2); the indices i,j = 1,...,d denote the Cartesian
components. The momentum operators

Ki= —iD; = —i [ai + i%Ai (x)} , (3.3)

can be expressed in terms of the gauge covariant derivatives D;, and A; are the
Cartesian components of the vector potential. The Hamiltonian matrix H (x) has
been decomposed into n X n-matrices H that contain material-dependent k-p pa-
rameters and are second-order in the operators K;, whereas H and H° results from
the first- and zeroth-order terms, respectively. We will refer to these matrices by
H", where the index v € {0,7,7j}. Concrete implementations of H(x) are given in
Sec. 1.2.1. In the applications that will be presented in chapters 4 and 5, we will
always rely on the eight-band Hamiltonian (1.26). Here, the coupling of the carrier’s
spin to the magnetic field is included via a Zeeman-term [Eq. (1.34)] that contributes
to HO. The matrix H° is Hermitian by itself, whereas the individual second-order
matrices H" only obey the relation H* (H”) which suffices to guarantee H to
be Hermitian. We have used the ordering of the differential operators with respect to
the material matrices proposed in Refs. [15-19] that avoid unphysical and spurious
solutions of the EFA in heterostructures.

It can easily be shown that Eq. (3.1) is invariant under the gauge transformation

F(x) - F' (x) = e A 0F (x), (3.4)
A; (x) — Al (x) = A; (x) + A (%), (3.5)
since H contains only the covariant derivatives D; and the magnetic field components
B;. Importantly, it is possible to rewrite the derivatives D; from Eq. (3.3) into a

particular form where the vector potential only enters via a phase factor. To this
end, we form the limit [76, 77|

D,F (x) = 15%2 U(x+e,x)F(x+e¢g)—U(x,x)F (x)], (3.6)

with €; = €é; and &; denoting the unit vector pointing along the i-direction. We
define the so-called connection U,

xX+€;

U (x + £:,%) = exp i%/A(x’)dx’ , (3.7)

with the integration path being a straight line from x to x + €;. Indeed, by inserting
Eq. (3.7) into Eq. (3.6), we immediately regain Eq. (3.3). Note that U(x,x) = 1.
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3.3 (Gauge-invariant discretization

3.3.1 Prerequisites

Next, we will develop a gauge-invariant spatial discretization for the multiband
Schrodinger equation [Eq. (3.1)]. We assume, without loss of generality, the spatial
grid to be uniform,! to be rectangular, and to be oriented parallel to the Cartesian
axes. In addition, we assume the space to be d-dimensional generally and enumerate
every grid point by a d-dimensional tuple m of integers.

First, we discretize Eq. (3.1) for the unproblematic case of a vanishing vector
potential A = 0, using a finite difference or box discretization scheme that has been
discussed in Sec. 2.3. For example, we may approximate the derivatives 0; in Eq. (3.2)
by forward finite differences

O.F (x) — 0,F (m) — é F(m+e)—F(m)], (3.8)

where the vector ; = £€; points to the nearest neighbor in the positive Cartesian i-
direction and € > 0. Thus, the discretization of Eq. (3.1) will result in the eigenvalue
problem

Y Hy(m,n)F (n) = EF (m), (3.9)

where the sum over n runs over all grid points. Here, H, (m, n) are the components
of the discretized zero-field Hamiltonian operator, and F (n) denotes the discretized
envelope function. The dimension of the Hamiltonian matrix is the product of the
total number of grid points times the number of included bands n. For simplicity, we
only take into account nearest-neighbor interactions. Since the Hamiltonian includes
first and second derivatives, however, the matrix elements Hy (m, n) are nonzero both
for the 2d nearest as well as for the 2d(d—1) diagonally adjacent (next-nearest) neigh-
bors. The detailed values of H, (m, n) obviously depend on the chosen discretization
method.

We now turn to the nontrivial case of nonzero vector potential A # 0. In this
case, we must construct suitable discrete approximations 4A; of the continuous gauge
covariant derivatives D,

D;F (x) — AF (m), (3.10)

which will lead to the discrete eigenvalue problem

Y H(m,n)F (n) = EF (m), (3.11)

where H (m,n) are the Hamiltonian matrix elements in the magnetic field. Im-
portantly, a straightforward discretization of Eq. (3.3) that follows the principle of

"'We note that Eq. (3.11) becomes a generalized eigenvalue problem for nonuniform grids. How-
ever, one can apply a scale transformation that leads one back to the form of Eq. (3.11) (cf. Sec. 2.3).
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Eq. (3.8),

1 e

AF (m) Lo [F(m+e¢;) —F(m)| + iﬁAi (m)F (m), (3.12)

€
results in a Schrodinger equation that cannot be chosen to be gauge-invariant on all
grid points, particularly not simultaneously on positions m and m+e¢;. Consequently,
such a discretization would lead to a spectrum that depends markedly on the chosen
gauge for the vector potential A [71]. We will now show, how to derive a suitable
discrete approximation A; that leads to a manifestly covariant eigenvalue problem.

3.3.2 Theorem and corollaries

In the field-free case, we consider the discrete approximations ¢; and ¢;; of the first-
and second-order derivatives 0; and 0;0;, respectively, which can be written in the
following general form,

SF (m) = = 3" Ci(5) F (m + sie.),

1
5ijF (m) = ;ZOZJ (si,sj)F(m—i— S;€; +Sj€j) s (313)
Si,Sj
where ¢ # j and s;,s; € {0, £1}, so that the sums run over the grid point m and its

neighbors. The coefficients C' have to be chosen in such a way that they guarantee
the limits (¢, = 1, ..., d).

hII(l) O;F (m) = 0;F (x), (3.14)

Concretely, we have used the following values for the discretization coefficients in the
applications that we will present in chapter 4,

Ci‘ (0) = —2,0“(:‘:1> = 170ij (Si, Sj) = iSiSj. (316)

They can be obtained from Egs. (2.11), (2.13), and (2.16) assuming a homogenous
material composition as well as a uniform grid. Additionally, we may split the matrix
elements Ho (m,n) of the discretized field-free Hamiltonian in Eq. (3.9) into their
contributions corresponding to the zeroth, first and second derivatives H" in Eq. (3.2),

Hy (m,n) = ) Hy(m,n,7), (3.17)

with v € {0,4, 5}
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Definition. We define the discrete first-order approximation A; of the gauge co-
variant derivative D; and the second-order approximations A; and A;; of D? and
D,;D;, respectively, by multiplying each term in Eq. (3.13) by the discrete connection
U (m7 n7 ’y)?

1
;F (m) 5 ES. Ci(s;))U(m,m+ s;e;,i) F (m+ s;¢;),
1 .
A“F (m) = ? E O“ (81) U (m, m + S;€;, Z) F (m + Siei) )

1
Az‘jF (m) = ? Z Cz'j (Si, Sj) U (m, m + S;€; + S;€4, Z]) F (m + s;€; + Sj€j) s (318)

84,85

where the last line holds for i # j. The discrete connection U is defined by

U (m,n,v) = exp i% / A (x)dx'|, (3.19)

S(m,n,y)

where the trajectory S (m,n,y) starts at position m and ends at one of the nearest-
or next-nearest-neighbor points n. The specifier v labels the concrete straight-line
segments along the Cartesian axes i, j of a particular trajectory as follows,

v =1, Path. m - m+¢; =n,
y=ij,Pathh m -m=+eg, =1—1+e;=n, (i#})
v =ji,Pathh m —m+e; =1 —1+¢e =n. (i#}]) (3.20)

Here, each segment €; connects only nearest neighbors as indicated in Fig. 3.1. The
choice of this integration path guarantees that the canonical momenta obey the well-
known commutator relation for finite magnetic fields. As we will show below, this
requires that the trajectories associated with v = ij and ¥/ = ji, enclose an area €
that is compatible with the discretization stencil.

Theorem. The expressions of Eq. (3.18) guarantee the correct continuum limits

liH(l) AF (m) = D,F (x), (3.21)
Note that one has D;D; # D;D; for i # j.

Corollary 1. The matrix elements of the discretized Hamiltonian H for nonzero
vector potential A # 0 can be written in the form

H(m,n,~) = Hy(m,n,7) U (m,n,7), (3.23)
Um,m,v) =U(m,m) =1, (3.24)
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Figure 3.1: Alternative integration paths in the discretization of mixed second order
derivatives.

so that the discretized Schrodinger equation [Eq. (3.11)] reads

> Hy(m,n,7)U (m,n,9)F (n) = EF (m). (3.25)

Corollary 2. The discrete connection [Eq. (3.19)] obeys the following condition
U (n, m, WT) =U (m,n,7y), (3.26)

which guarantees the Hermiticity of the Hamiltonian H.
Corollary 3. The discrete connection [Eq. (3.19)] obeys the following discrete
gauge transformation,

U(m,n,y) — U’ (m,n,v) = exp {—i%[\ (m)} U(m,n,7y)exp [i%A (n)} . (3.27)

which guarantees the gauge invariance of the Hamiltonian H.
Corollary 4. The covariant derivatives fulfill the well known commutator relations
in the continuum limit

lim [A,, A,] = [D,, D] = i%Bz, (3.28)

and cyclic permutations.

3.3.3 Proofs

To prove the theorem, we first evaluate the connections U explicitly. For each path
segment €; connecting the neighbors m, n via a path specified by v,we determine the
curve integral in Eq. (3.19) by the trapezoidal rule,
1 _
A (X)dx' = 5 [A; (m) + A;(m+g;)]e = A; (m+¢g;/2)e. (3.29)
S(m,m+-e;,i)
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In the case of nearest-neighbors m and m + s;e; (s; = +1), this results in the
connection .
U(m,m+ s;g;,1) = exp [siiﬁAi (m + s;6;/2) 5] : (3.30)

For the paths connecting next-nearest-neighbors, specified by v = 45, we add up
the individual straight-line components of the curve integral. With the definition
[Eq. (3.19)], this leads to

U(m,m+ s;g; + sjej,ij) = exp [sii%f_li (m+ s;ei/2)e + Sji%f_lj (m + s;e; + sj€5/2) 5} ,
(3.31)
with s;,s; € {£1}. To show that the discretized Schrodinger equation tends to the
continuum case in the limit of ¢ — 0, we expand the connections U into powers of ¢,

U(m,m+ s;e;,i) = 1+ sii%Ai (m)e+ 0 (£%). (3.32)

For the wave functions F, we have
F (m + s;e;) = F (m) + $;,0,F (m)e + O (¢?) . (3.33)

By inserting these relations into the first derivatives [Eq. (3.18)], we obtain

AF (m) = é SCi(s:) [F (m) + 50F (m)e + s A (m) F (m) <] +0(2). (3.34)

Since for A = 0, Eq. (3.34) must reduce to the partial derivative 0;F (m), the coeffi-
cients C; have to fulfill the relations

This can be used to simplify the remaining term in Eq. (3.34) for A # 0, and leads
to the required limit

A;F(m) = &;F (m) + i%Ai (m)F (m) + O (¢). (3.36)
By following arguments along these lines for the second derivatives as well, we finally
obtain (see Appendix E for a detailed derivation)

e

AyF (m) = [9; +iS4, (m)] [aj it

> A;(m)|F(m)+ O (¢g), (3.37)

which has the correct continuum limit.

Next, we will prove corollary 1. This result follows directly from the fact that
cach zero-field Hamiltonian matrix element H, (m,n,~y) gets augmented by a corre-
sponding phase factor U (m,n,v), v € {0,4,4j}, according to Eqgs. (3.18). In order
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Figure 3.2: Illustration of the integration paths associated with (a) the connection
U(m,n,ij) and (b) its Hermitian conjugate U(n, m, ji).

to prove corollary 2, we need to show that the Hamiltonian H is Hermitian. This
implies the relation

U* (n,m,7") Af (n,m,+") = A" (n,m,+") = H (m,n,7) = Hy (m,n,7) U (m,n,7).
(3.38)

The field-free Hamiltonian is definitely Hermitian and obeys H{(m,n,~!) = Hy(m,
n,7), since H¥ = (H’")T. Thus, we are led to the condition

U* (n,m,~") = U (m,n, ). (3.39)

We now show that this equation is fulfilled indeed. For a nearest-neighbor connection,
we immediately find this relation to hold,

h

S(m+e;,m,i)

U(m,m+ €;,i) = exp _iS / AX)dx'| =U"(m+¢e;,m,i). (3.40)

For the next-nearest-neighbor connection between m and n = m + €; + €; specified
by v = ij, we obtain

U(m,n,ij) = exp [iﬁAi (m+¢€;/2)e+1i

= exp [—i%flj (n—¢g;/2)e—1i

=U" (n,m, ji), (3.41)

which is precisely the condition [Eq. (3.39)]. Note that the appropriate paths S(m, n,
ij) and S(n,m,ji) contain the same segments but are traversed in the opposite di-

rection (see Fig. 3.2). We now turn to corollary 3. Let us write the discretized
Schrodinger equation [Eq. (3.25)] in a different gauge,

> Hy(m,n,~)U' (m,n,7)F (n) = EF (m). (3.42)
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The relation between the envelope function F'(n) and its corresponding form in the
primed gauge is the same as in the continuous case and reads

F (n) — F' (n) = exp [—i%A (n)} F (n). (3.43)

Inserting Eq. (3.43) into Eq. (3.42) leads to the requirement that U (m,n,~) has to
fulfill a discretized version of the continuum gauge transformation,

U(m,n,y) — U (m,n,v) = exp [—i%A (m)] U (m,n,7)exp [i%A (n)] . (3.44)

We now show that this condition is fulfilled indeed. The discrete gauge transformation
for Eq. (3.29) reads

A (m+e:/2) = A; (m +e:/2) + é A(m+e:) — A (m)]. (3.45)

By inserting this expression into the nearest-neighbor connection [Eq. (3.30)], we
immediately obtain Eq. (3.44). For the connections to next-nearest-neighbors, we get

U/ (m,m+€¢ +€j,ij)
— exp {1% [A; (m+&;/2)z+A(m+e)— A(m)}}
X exXp {1% [zzlj (m—i—ei +€j/2)€+A(m+€i +€j) —A(m—l—sl)]} (346)

= exp [—z’i—eiA (m)} U (m,m+e; +€;,ij) exp [i%/\ (m+e; + €j)] , (3.47)

which confirms Eq. (3.44) as well. In addition, the discrete gauge transformation
[Eq. (3.45)] obviously has the correct continuum limit [Eq. (3.5)]. Together, these
results confirm that the discretized Schrodinger equation [Eq. (3.25)] is invariant
under local phase transformations. Finally, we prove corollary 4. Using Eq. (3.37),
we can see that the discretized covariant derivatives obey the commutator relation
[Eq. (3.28)] in the continuum limit,
lim [A;, A,] = lim [1% (BiA; — 9,4 + O (g)] - 1%5ijk3k —[D.Dj].  (3.48)
An issue we have not discussed so far concerns the uniqueness of the integration
trajectory S (m,n,y). For connections between nearest-neighbors, the integration
path is unique. For diagonally adjacent neighbors, however, there are two possible
paths to choose from (cf. Fig. 3.1). Gauge invariance only demands that the integra-
tion path continuously connects position m with position n. The Hermiticity of H is
guaranteed once the same path is traversed in opposite direction for H' (cf. Fig. 3.2).
In addition, however, the covariant derivatives have to fulfill the commutator rela-
tions [Eq. (3.28)]. For the second-order approximations A;; in Eq. (3.18), the only
element that depends on the order of ¢ and j is the path characterized by v = ij,
since C;; = C};. Thus, we can see that it is the precise choice of v in Eq. (3.20) that
guarantees the correct order in Eq. (3.37) which in turn guarantees the validity of
corollary 4. This additional constraint causes the integration trajectory to be unique.
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3.4 Summary of method

In summary, we have developed a general method to solve the multi-band Schrodinger
equation in an external potential plus a magnetic field in an efficient and manifestly
gauge-invariant manner. It is based on the concept of gauge covariant derivatives
[76, 77]. The phase factors comprise a discretized form of the curve integral over the
vector potential. The integration paths are compatible with the discretization grid
and are given by a chain of straight-line path segments connecting nearest neighbors.
Their choice is uniquely defined by the constraint that the momentum operators
must obey well-known commutator relations. The Hamiltonian matrix elements are
shown to be gauge-invariant for any finite grid spacing and converge to the same
correct continuum result in the limit of infinitesimal grid spacing. The coupling of
the carrier’s spin to the magnetic field is properly taken into account by a Zeeman
term within the EFA scheme.

To apply this method, one first discretizes the Hamiltonian (3.2) in the field-free
Schrodinger equation [Eq. (3.1)] using the discretization scheme of Eq. (3.13) with the
coefficients [Eq. (3.16)]. This yields the discretized Schrédinger equation (3.9) with
the Hamiltonian matrix consisting of the zeroth-, first- and second-order derivatives
[Eq. (3.17)]. Next, each matrix element of the Hamiltonian Hy(m,n,~) is to be
multiplied by the phase factor U (m,n,~), in order to take into account the vector
potential A. For nearest neighbors, this phase factor is given by Eq. (3.30). For
diagonally adjacent neighbors, Eq. (3.31) is needed. In the latter case, one must be
careful to discriminate terms of the form v = 75 from those that contain v = ji.
Finally, one needs to add a zeroth-order derivative term, the Zeeman term namely
[Eq. (1.34)], to the Hamiltonian in order to include the coupling of the carrier’s spin
to the magnetic field.
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Chapter 4

Nanostructures in high magnetic
fields and g factor engineering

4.1 Introduction

During the last few years, there has been an increasing interest in studying the prop-
erties of low-dimensional semiconductor nanostructures such as quantum dots and
quantum wires in magnetic fields. While it is well known that in bulk semiconduc-
tors that are subject to a magnetic field, the energy bands get split into Landau levels,
this situation alters significantly in nanostructures. Here, confinement modifies the
energy spectrum into quantized levels already at zero magnetic field. Understand-
ing the interplay between the effects of spatial confinement and magnetic fields is
far from trivial. In addition, the use of magnetic fields for controlling the spin de-
gree of freedom of confined carriers plays a prominent role in quantum computation
and spintronics [1]. Here, it is important to understand the mechanisms that deter-
mine magnetic-field related properties such as gyromagnetic factors. These g factors
characterize the splitting of spin states in magnetic fields and their spin precession fre-
quency. The latter aspect can be exploited for coherent spin manipulations. Effective
g factors have been investigated experimentally in quantum wells [78-81], quantum
wires [82], and quantum dots [83-87], and show a strong dependence on the spatial
extension, strain and material composition of the system. Hence, the control of this
quantity, e.g., by tayloring the size of the nanostructure, enables the fabrication of
devices with individually addressable single carrier spins such as spin-qubits.

In this chapter, we investigate the electronic structure of realistic nanostructures
in magnetic fields. Here, we rely on our novel nonperturbative method that has
been introduced in chapter 3. We start our discussion by giving an overview of the
energy spectrum of nanostructures in high magnetic fields, and the mechanisms that
determine g tensors in bulk semiconductors and low dimensional nanostructures. In
order to critically assess the accuracy of our method, we calculate effective electron
and hole g tensors of InP /InAs nanowire-based quantum dots and compare the results

73
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Figure 4.1: Calculated zone center conduction subband energies (full lines) of a 70
nm wide rectangular GaSb quantum wire, as a function of the magnetic field B
along the [001] wire axis. The graph shows a continuous transition between the
confinement dominated (small B) regime with discrete energy levels and the magnetic
field dominated (large B) regime indicated by the Landau level energy fan (dashed
lines).

with experimental data [86]. In addition, we discuss the influence of strain and high
magnetic fields on the g factors. Finally, we predict electron and hole g factors of
self-assembled InAs/GaAs quantum dots as a function of the dot dimensions and
external electric fields.

4.2 Energy spectrum and g tensors

4.2.1 Modification of energy spectrum by magnetic fields

We start with a brief discussion of magnetic-field induced changes of the energy
spectrum of confined states in semiconductor nanostructures. As an illustration, in
Fig. 4.1, we have calculated the lowest conduction subband states at kj = 0 of a 70 nm
wide rectangular GaSb quantum wire, as a function of the magnetic field B along the
[001] wire axis. The graph shows a spin resolved energy spectrum similar to the Fock-
Darwin spectrum, which can be obtained analytically for a two-dimensional parabolic
confinement potential with a perpendicular magnetic field [88]. At zero magnetic field,
the s-type ground state (eg) is twofold spin degenerate, while the first excited state
(e1) with a p-type envelope function is fourfold degenerate due to spin and angular
momentum. For nonzero magnetic field, these degeneracies are lifted by the Zeeman
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splitting. In the limit of high magnetic field values, the confinement plays a negligible
role compared to the magnetic field effect. Therefore, the eigenenergies gather into
a Landau level like energy fan F,, = (n + 1/2) hw. £ 1/2gpoB, where w. denotes the
cyclotron frequency, n is the Landau index, and g is the conduction band g factor (see
dashed lines in Fig. 4.1). This demonstrates that low dimensional nanostructures can
exhibit a transition between confinement dominated and magnetic-field dominated
regimes. We now turn to effects that can be obtained already at small values of B.
Further high magnetic field effects will be discussed in Sec. 4.3.4.

4.2.2 Mechanisms of g tensor modulation

Crucial magnetic-field related properties of nanostructures are g factors which char-
acterize the Zeeman splittings of confined eigenstates. In a semiconductor, the g
factor differs from the pure spin value of gg = 2 due to spin-orbit coupling. In a
homogenous bulk material, this can be understood as follows. When a magnetic
field is applied, the wave functions are modified into Landau levels, corresponding
to quantized orbital angular momentum along the axis of the magnetic field. The
Zeeman energy now splits each Landau level into two spin-polarized levels, one with
spin parallel to the quantization axis and one antiparallel. Although the pure gy = 2
raises the energy of the parallel spin state and lowers that of the antiparallel state, the
spin-orbit interaction may favour the opposite spin alignment relative to the orbital
angular momentum. When this effect is absorbed into the g factor, it makes g < 2.

Since the lowest conduction band has an s-type Bloch basis with zero orbital
momentum, it does not obtain any direct spin-orbit interaction. Here, any devia-
tion from 2 is induced only via the coupling to other bands. In k-p theory, these
contributions can be derived by a careful treatment of the ordering of momentum
matrix elements that do not commute in a magnetic field. Accordingly, in a bulk
semiconductor, the conduction band edge g factor is given by

- (1 35 e ) Gl ) = Gl ) Gl |uc>) o

mo e Ec — Eﬁ

where the summation runs over all bands, excluding the investigated one. For the I'
conduction band valley, it usually suffices to consider only the coupling to the highest
valence bands. This leads to the well known Roth formula [74]

2E,Aq

3B, (E,+ Ay’ (42)

gc:2

where the interband matrix element E), describes the coupling strength, the band
gap I/, gives the energetic distance to the valence bands, and the spin-orbit coupling
energy is characterized by the parameter Ay. When the interband coupling is suffi-
ciently strong and Ay > 0, the resulting g factor becomes negative. E.g. in bulk InAs
one has g. = —14.8 [24].
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The highest valence bands, on the other hand, are p-type bands that couple
directly to the spin. Their bulk band-edge g factors can be derived from the six-band
k-p Hamiltonian (1.17) as will be shown in the following. First, we replace the kinetic
momentum k with the canonic momentum K = k+ (e/h) A in the 3 x 3 submatrices
H3*3 (k) of Eq. (1.18). Then, by utilizing the commutator relation

K, K| = KK, — K;K; = —i%gijkBk, (4.3)

and by considering the k-p parameters defined in Eq. (1.20), we obtain the magnetic-
field Hamiltonian [12]

LE?+M Y K2  N{K, K} N{K;, K3}
1=2,3
A3 (K) = N{Ki, K»}  LK}+ Mzzlj?) K} N{K, K3}
N{K,, K3} N{Ky K3}  LK;+M Y K?
i=1,2
h? °
+ B, +—ZK2—,uB 3/1+1Z (4.4)

where we have used the abbreviations N = N, +N_ = —6vh?/(2myp) and {K;, K;} =
(KK, + K,K;) /2. The last term in Eq. (4.4) results from the commutator [Eq. (4.3)]
and gives the angular momentum contribution to the Zeeman splitting

HES = —%B (65 + 2) LECB, (4.5)

with [:?Xfi = ff’X?’ ® 12*% and the L = 1 angular momentum matrices ff’X?’

0 0 0

i =10 0 0], (4.6)
0 0
introduced in Ref. [12]. In addition, the coupling to the spin is given by the Pauli
term from Eq. (1.34) (reduced to the six-band basis)

A /'[’B ~

HYYW = 7gosﬁxﬁB, (4.7)
where gy = 2, and the matrix elements of the spin matrices gf X6 — 1938 © 6, are
given in terms of the Pauli matrices ;. In the basis of the total angular momentum
eigenstates |J, J3) [Eqgs. (1.22)-(1.24)], the total Zeeman term of the valence bands is
given by [89, 90]

—4rJ 6(r+1)0
FJ6%6 — Fy6x6 | fy6x6 _ KB ) B 4.8
B = s T Hon =5 g ot —nros)B Y
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Figure 4.2: Schematic illustration of angular momentum quenching in a nanostructure
(gray area) by the reduction of the dimension perpendicular to the magnetic field.
The g factor scales with this size quantization.

with the 4 x 4 angular momentum J = 3/2 matrices J; [12]. The 4 x 2 cross-
space matrices U; have been introduced in Ref. [89] and corrected in Ref. [90]. The
Hamiltonian (4.8) leads to the anisotropic bulk hole g factors [66, 75, 78]

gi" = =6k, g" =0, g = =2k, &' = —4x, (4.9)

where || and L denote the directions relative to the quantization axis. The hole g
factors are usually strongly negative, e.g., in InAs one has k = 7.68 and therefore
gﬂ‘h ~ —46 [24].

In nanostructures such as quantum dots, the determination of g factors gets signif-
icant more complicated. Here, confinement energy and strain may alter the energetic
distances between states and therefore affect the spin-orbit coupling. The states are
in fact mixtures from different bands and especially the valence band mixing strongly
depends on the concrete geometry. In addition, wave functions can penetrate material
interfaces and simultaneously occupy areas of different bulk g factors. Importantly,
the orbital angular momentum of confined eigenstates is strongly affected by the
geometry of the nanostructure. Besides possible spherical symmetry breaking, the
envelope angular momentum gets quenched by any reduction of the available space in
the plane perpendicular to the magnetic field [72]. As has been sketched in Fig. 4.2,
this quenching depends on the orientation of the magnetic field with respect to the
nanostructure, which in turn affects the g factors since the angular momentum is the
source for the deviation of the g factors from 2. For electrons, the orientation depen-
dence leads to an anisotropic g tensor rather than an isotropic g factor as it is the
case in bulk [Eq. (4.2)]. Altogether, the g factors of semiconductor nanostructures lie
somewhere between the bulk and the free-electron ones, but a quantitative analysis
requires sophisticated theoretical models.

The calculation of g factors of realistic nanostructures requires a solution of the
Schrodinger equation for a mesoscopic system. Since the g factors strongly depend on
the spin-orbit interaction and the coupling between different bands, it is inevitable
to use relativistic multiband models such as the eight-band k-p method. The spin
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splitting AF;; = ET — E! of an electron or hole state is then determined from the
eigenenergies of the spin-up and the spin-down solutions of the Schrodinger equation
[Eq. (3.11)]. Since the spin splitting may depend on the direction of the magnetic
field, we need to introduce a g tensor. So, for energies close to the electron and hole
band edges, the magnetic-field dependent part of the Hamiltonian can be written as

i, = %Ba g, B, (4.10)
where g,, (n = e, h) define the g tensors for the confined electron and hole states, re-
spectively. The eigenvalues of this tensor yield the g factors g, = (EJL — E#L) / (1pB).
We note that unless otherwise stated, we will consider only situations where the lat-
eral confinement causes the electronic states to be well separated from higher lying
states (cf. Fig. 4.1), so that this definition of g factors is unambiguous.

4.3 Nanowire quantum dots

4.3.1 Electron g tensor

In order to assess the accuracy of the present method, we calculate the g tensor of
electrons in nanowire-based quantum dots. Experimentally, effective electron g fac-
tors of InP/InAs nanowire dots have been determined recently [86]. The quantum
dots possess the wurtzite crystal structure, have a hexagonal shape, and are charac-
terized by a diameter D, the InAs quantum dot length L, and a left and right InP
barrier thickness w (see Fig. 4.3). The diameter D equals 50 nm in these experiments.
The experimental values of the g factors range from |g| = 13 which is close to the
InAs bulk value for dots with L = 270 nm to |g| = 2.3 for the thinnest dots with
L =8 nm.

In our calculations, we have simplified the geometry by assuming a quadratic or
circular cross section of the dots (see inset of Fig. 4.3), since the precise shape of
the dots does not influence our results in the range of the studied dot dimensions
and magnetic fields. The k-p parameters for InAs and InP have been taken for
the zincblende structure from Ref. [22] except for the k-parameter that has been
tabulated in Ref. [24]. The spin splitting AE;; = ET — E} of the electron ground
state in the dot has been calculated within a relativistic eight-band k-p model that
is detailed in Sec. 1.2.1. The squared g tensor elements G*, (k,1 = 1,2,3) can then
be extracted from the relation

AEH = UpB Z BkalBl, (411)
V kl

where B; are the Cartesian components of the magnetic field. The spin splitting
must be evaluated for a sufficiently small value of |B| (which we took to be equal
to 0.1 T) to exclude higher order contributions. Due to symmetry, only fields along
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the [100] and [001] directions need to be considered in the present case for solving
the linear system of equations that result from Eq. (4.11). For our geometry and
within the eight-band k-p model , we have G** = G% and G% = ( for all off-diagonal
tensor components. We have determined the signs of the g tensor eigenvalues from
the spin directions of the Zeeman split states and found that all calculated g factors
had negative sign (E! < E') as expected from the bulk values.

Figure 4.3 compares the calculated perpendicular effective electron g factor modu-
lus g, = (G**)Y/2 with the experimental results of Ref. [86] for dot lengths L between
8 and 20 nm and a barrier thickness of w = 6 nm. Furthermore, our calculations
predict the effective electron g factor for the magnetic field parallel to the wire axis,
g = (G**)'/2. The theory takes into account the strain as we will discuss in more de-
tail below; Fig. 4.3 shows both types of results where strain effects in the Hamiltonian
have been included or (artificially) set to zero to elucidate the sole strain effect on the
g factor. As one can deduce from the figure, our calculations excellently reproduce
the experimentally observed trend that shows the g factors to increase with increasing
dot length. In semiconductors, g factors of conduction band electrons are generally
dominated by the contribution from the angular motion. The more extended the
electron wave functions are, the closer the g values lie to the InAs bulk value. The
opposite limit of strongly confined electrons gives the pure spin value g = 2. This
explains the trends in both the experimental and theoretical results. Since the elec-
tron wave functions are only weakly confined for magnetic fields along the wire, one
expects the parallel g factors g to be larger than the perpendicular values g, , and
our calculations confirm this conjecture.

We note that electron g factors for such quantum dots have been calculated pre-
viously [91]. However, we found the hole g factors in Fig. 2 of the related Ref. [72]
to disagree with the present method. We can quantitatively reproduce the results
of this paper by using an incorrectly symmetrized ordering that can be obtained by
substituting Eq. (4.12) into Eq. (1.18). We have checked that the use of the correct
operator ordering in Eq. (1.18) plays a negligible role for the electron g factors in the
nanowire dots. Thus, our results are consistent with Ref. [91].

4.3.2 Hole g tensor

We now turn to the hole g factors in these nanowire based quantum dots. For
quantum wells in a magnetic field, each valence subband splits into a complicated
pattern of Landau levels that are conventionally labeled by the orbital momentum .J,
and an integer n = —2, —1,0, ... [92]. Since all those states with the same modulus |/, |
become degenerate for zero magnetic field, these states tend to cross at some magnetic
field which makes it nontrivial to uniquely define hole g factors. The situation in
quantum dots is far more transparent. Here, the lateral confinement splits the states
corresponding to different lateral momenta of the envelope function already at B = 0
(shown in Fig. 4.1 for an analogous situation). This allows one to uniquely define the
hole g tensor by the energy separation between the energetically lowest dot state and
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Figure 4.3: Comparison of calculated strained (solid lines), calculated unstrained
(dashed lines) and experimental (circles) effective electron g factors for wire dots
of length L. The g and g, components correspond to the magnetic field lying
parallel and perpendicular to the wire axis, respectively. Experimentally, only the g
components have been determined (Ref. [86]).

the lowest excited state with reversed sign of J,. For the dots considered here, this
pair of states is dominantly heavy-hole-like and originates from the pair of quantum
well Landau levels with J, = —3/2, n = —2 and J, = 3/2, n = 1 [92]. These states
remain the energetically lowest dot states up to magnetic fields of 4 T, and ensure
an unambiguous definition of the hole g factor.

In Fig. 4.4, we show our calculated results for different dot lengths, both with and
without the inclusion of strain, and for parallel and perpendicular magnetic fields.
Again, all g factors are negative, but for simplicity we only discuss their absolute
values. The size dependence of hole g factors in quantum dots is more complicated
than for electrons. The dots considered here have a large width to height ratio so
that carriers are only weakly confined laterally, i.e., perpendicular to the wire axis.
Therefore, the calculated hole g factors in Fig. 4.4 resemble the values found for wide
quantum wells, which can be obtained from the bulk Hamiltonian [12]. In the latter
case, already a six-band k-p model gives the well-known results [Eq. (4.9)] | gﬁh\ = 6k,

|gf|h| = 2k, |g"" = 0, |¢!'| = 4k, where k is a Luttinger parameter. For InAs, one has
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Figure 4.4: Comparison of calculated strained (solid lines) and unstrained (dashed
lines) effective hole g factors for wire dots of length L and magnetic fields pointing
perpendicular (g, ) and parallel (gj) to the wire axis. The dotted line illustrates the
importance of the correct operator ordering in Eq. (1.18) by showing the unstrained
g| for an Hermitian but naively and therefore incorrectly symmetrized Hamiltonian.

k = 7.68 which is much larger than this constant in InP, where one has x = 0.97 [24].
Due to the confinement, the wire dot ground state is mainly heavy-hole-like and its
g factors g, g, show an anisotropy that is somewhat smaller but still of the order of
the bulk anisotropy. For the shortest dots, the wave functions penetrate into the InP
barriers. This effect leads to a reduction in the g factors because « is smaller for InP.
Furthermore, the orbital motion is hampered in the limit . — 0 so that the hole g
factors tend toward the pure spin value in this limit. The larger the dot length L and
the more extended the hole wave functions are, on the other hand, the closer the g
factors lie to the bulk values of InAs. However, there is a competing effect that turns
out to dominate in the limit of large values of L. The reduction in axial confinement
for large L implies an increase in the light-hole (lh) contribution of the ground state.
Indeed, the light hole contribution amounts to only 1.5% for L = 8 nm but increases
to 12.0% for L = 20 nm. Since |g!"| > |g""| in bulk, g, increases also in dots in
the limit of large L. Analogously, g, decreases in this limit since |g‘l‘h| < |gﬂlh| in
bulk. Qualitatively similar trends have been predicted previously for self-assembled
Si/Ge quantum dots [66], and for InGaAs dots [67, 85]. Experimentally, heavy-hole
(hh) g factors have been determined for GaAs quantum wells [78, 79, 81], and for
self-assembled InGaAs dots [83, 84]. In both of these situations, the observed values
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are much smaller than for InAs nanowire dots, since the bulk g factors of GaAs
are much smaller (k = 1.2), and carriers are significantly more strongly confined in
self-assembled dots.

Finally, we have investigated the influence of the momentum operator ordering
in the Hamiltonian of Eq. (1.18) on hole g factors. As has been discussed previously
(cf. Sections 4.2.2 and 1.2.1), the known continuum limit of the k-p Hamiltonian [12]
imposes an unambiguous constraint on the ordering of momentum operators in the
discrete Hamiltonian [17, 19]. To investigate the effect of this operator ordering, we
have replaced the correct Hamiltonian in Eq. (1.18) by an incorrect one, namely a
naively symmetrized version. To this end we set [see Eq. (1.18)]

N, =N_=(N,+N_) /2. (4.12)

The resulting hole g| factors for quantum wire dots are included in Fig. 4.4 (dotted
line) and are seen to deviate strongly from the correctly calculated values.

4.3.3 Strain effects

The InP/InAs nanowires investigated by Bjork et al. [86] are free standing wires
with a relaxed InAs lattice structure and pseudomorphically strained InP layers. We
have calculated the spatial strain profile of the heterostructure wires by minimizing
the total elastic energy in a linear continuum elasticity model [39] (cf. Sec. 1.4).
Fig. 4.5 (a) shows the resulting strain profile along the wire axis near the dot with
a length of L = 20 nm and barrier thicknesses of w = 6 nm. We find the InAs
dot to be compressively strained (e, = €,, < 0), whereas the InP barriers show a
tensile strain. Outside of the InP barrier material, the lattice relaxes to unstrained
InAs after approximately 25 nm. Our calculations are qualitatively consistent with
previous experimental and theoretical strain results obtained for similar wires with
much smaller diameters and a single InAs/InP interface [93]. The incorporation of
this strain into the Hamiltonian via linear deformation potentials (cf. Sec. 1.4.2)
leads to changes in the electronic structure and the g factors. For the electron g
factor, these trends can already be understood in a bulk model originally derived
for electrons in homogeneously strained layers [94]. The band gap within the dot is
slightly increased due to the hydrostatic pressure component of the strain, dE, =
(@c — ay) (€zz + €yy +€22) > 0, and the heavy-hole band edge gets pushed above the
light-hole band edge due to a tetragonal distortion that is proportional to €,, — €.,
[see Fig. 4.5 (b)]. This distortion additionally induces a mixing of the light-hole and
the split-off (so) hole band. Together, these changes in the electronic structure affect
the coupling between conduction and valence bands and enhance the anisotropy of
the electron g factor [94]. Namely, the increased band gap reduces the conduction
band - valence band coupling, which is the source for the deviation of the electron g
factors from 2. For the perpendicular g factor, the lh/so mixing adds up to this effect.
Therefore g, is decreased, still reproducing the experimental results. By contrast, for
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Figure 4.5: (a) Cross section of calculated strain components along the wire axis z
for a dot with a length of L. = 20 nm and a barrier thickness of w = 6 nm. (b)
Calculated energies of conduction (cb), heavy hole (hh), and light hole (lh) valence
band edges.

g|, the Ih/so mixing has an increasing effect. Here the hh/lh splitting additionally
raises the g factor. Together, these effects exceed the general reduction due to the
increased band gap and lead to larger values of gj.

Hole g factors are far more sensitive to strain effects because the hole states are p-
states and couple directly to the spin. The main effect of the compressive strain within
the dot is to shift the heavy-hole band edge above the light-hole band edge. This
reduces the light-hole contribution to the ground state from 1.5% in the unstrained
case to 1.1% for L = 8 nm and from 12% to 3.8% for L = 20 nm. Again following the
trends in the bulk values, this implies a slight increase in g, and a decrease in g that
is much less pronounced than in the unstrained case. This explains the increasing
difference between the strained and unstrained g factors in the limit of large dot
lengths L.

4.3.4 Spin splitting for high magnetic fields

Since our approach takes into account magnetic fields nonperturbatively, we may
study the electronic structure at high magnetic fields B. In the framework of k-p
theory, however, the magnetic length must remain large compared to the lattice
constant (i.e. B < 1000 T). In the magnetic field regime above 4 T, the Zeeman
splittings can exceed the energy differences between ground and excited states of the
dot (similar to Fig. 4.1). Therefore, the energetic order of alternating spin-up and
spin-down states gets mixed up. However, the order of ground and excited states with
the same spin direction remains, and the states that account for the ground state g
factor do not alter. In addition, the strong confinement and strain induced light- and
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Figure 4.6: (a) Calculated electron (dashed lines) and hole (solid lines) Zeeman split-
tings and (b) effective g factors for electrons and holes as a function of the magnetic
field lying parallel to the wire axis for a dot of length L = 10 nm.

heavy-hole splittings guarantee that all light-hole states remain energetically well
separated from the heavy-hole ground state up to the highest B fields considered,
so that the hole g factor remains unambiguously defined. The spin splitting of the
lowest electron state increases linearly with B up to 10 T for a dot of length L = 10
nm and the magnetic field pointing along the wire axis. The spin splitting of the
hole ground state responds more sensitively to B and deviates from linearity already
at 4 T. In Fig. 4.6, we depict the electron and hole g factor up to 40 T. We see
that the effective g factors AE; /(upB) decrease with increasing field strength,
which resembles the experimentally observed trends in quantum wells [79, 80]. We
associate this effect with a magnetic-field induced band mixing. For the hole ground
state, we find the average heavy-hole component of the spin-up and spin-down states
to decrease with increasing B. This diminishes the g factor of holes as has been
pointed out previously [67]. We find an analogous but less pronounced behavior for
electrons, where the conduction-band component decreases with increasing B.

To visualize the influence of high magnetic fields, in Fig. 4.7, we show the lateral
deformation of the electron ground state wave function within an L = 20 nm dot as
a function of a magnetic field B, perpendicular to the wire axis. This wave function
deformation is controlled by the ratio between the magnetic cyclotron energy fw,. and
the lowest zero field electron excitation energy AFE in the dot. The latter quantity is a
measure of the confinement. The larger the value of AFE, the smaller the deformation
induced by the magnetic field is [72] and this can be clearly deduced from the figure.
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Figure 4.7: Cross section of the density of the electron ground state at the dot center
in units of 10'® cm™3 for different magnetic fields in Tesla. The ground state’s density
shows a noticeable deformation, if the ratio a = hw./AFE is close to one. (a) a = 0,
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4.4 Self-assembled quantum dots

4.4.1 Size variation of g tensors

In this section, we investigate self-assembled InGaAs dots that are embedded in GaAs
and are subject to external magnetic fields. Although the g factors of self-assembled
dots show less variation than the nanowire dots from the last section, they are of
particular interest since the experimental realization of these dots is much better
established. In addition, the g factors can have different signs so that we now need
to consider the full g factors, rather than only the effective moduli as in the previous
sections. The dots considered here, are characterized by the quantum dot height h,
the dot width w, and the alloy profile within the InGaAs dot [see inset in Fig. 4.8(a)]
that depends on the growth conditions. We investigate dot heights h from 3 to 7
nm, widths w from 15 to 25 nm, and use a trumped-shaped alloy profile throughout.
This alloy profile is characterized by an indium distribution that starts from 80% at
the tip and decreases to 30% toward the bottom corners [43]. We model the dots
as truncated pyramids that sit on 1 nm Ing5Gag 5As wetting layers on a (001)-GaAs
substrate. By comparison of calculated and experimental Stark shifts [7, 95], these
structural parameters have been shown to be realistic for dots with a nominal indium
content of 50%. For the present structure, we find the principal axes of all g tensors
[Eq. (4.10)] to be given by the vectors [001], [110], and [110].
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Figure 4.8: (a) Calculated electron ground state g factors of self-assembled InGaAs
quantum dots as a function of the dot height for different dot widths. The magnetic
field lies in the vertical [001] direction. The inset shows a schematic cross section of
the structure studied. (b) Same for hole ground state.

In Fig. 4.8(a), we show the g factor associated with the electron ground state in
the dot for the magnetic field lying in the [001] direction. Compared to the InAs
nanowire-based dots of Sec. 4.3.1, the electron g factor shows very similar but less
pronounced trends. The larger the dot, the more extended is the electron wave
function and the closer the g factor lies to the large negative bulk value. However,
due to the strong confinement in self-assembled dots, the overall range of g factors
lies much closer to the pure spin limit of g = 2 than for the InAs wire-dots. For the
hole ground state g factor shown in Fig. 4.8(b), we obtain a much stronger variation
with the dot width. In addition, we find the dot height to matter only for wide dots.
For the smallest dots (w = 15 nm), we associate the increasing height to width ratio
to be responsible for the almost constant g factor. Similar to the trends described
in Sec. 4.3.2, the light-hole contribution to the dominantly heavy-hole ground state
increases with the dot height. This leads to a decrease in the g factor modulus that
partly cancels the overall increase when moving toward the bulk limit.

The two remaining principal axes of the g tensor are given by the diagonals [110]
and [ﬁO] of the pyramidal base plane. Fig. 4.9(a) compares all g tensor eigenvalues
of the electron and hole ground states for a fixed dot width w = 25 nm and heights
between 3 and 5 nm. We find the g factors to differ strongly between the vertical
[001] direction and the growth plane [110] x [ITO]. Within this plane, however, the
anisotropy is almost negligible. These findings have also been observed experimentally
[84, 87]. The calculated in-plane hole g factors are close to zero similar to the heavy-
hole value in bulk [Eq. (4.9)]. For electrons, the g factor anisotropy is less pronounced.
Here, the in-plane g factors have a smaller absolute value since the confinement of
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Figure 4.9: (a) Calculated electron and hole ground state g tensor elements along the
principal axes for a dot width of w = 25 nm, as a function of the dot height. (b)
Calculated exciton g factors (solid lines), as a function of the dot size parametrized
by the transition energy between electron and hole ground state. The magnetic field
lies in the [001] direction. Experimental values (circles) are taken from Ref. [85].

the electron wave function in the vertical direction is stronger than in the lateral
directions. All g factor values are in reasonably well agreement with the experimental
results from Ref. [84]

glooy = —0-80, 10170 = —0-65, 8loor = —2.20, gﬁm] o] = —0-35. (4.13)

A more detailed comparison with experiment is complicated by the fact that struc-
tural parameters of self-assembled quantum dots are rarely known exactly and seem
to vary strongly. In addition, experimental determination of electron and hole g fac-
tors is rather difficult. Much more data exists for exciton g factors that are basically
given by the sum of electron and hole g factors g, = g. + g5, [83] (see also Sec. 5.2).
In Fig. 4.9(b), we show calculated exciton g factors for the magnetic field lying in the
[001] direction, as a function of the dot size, parametrized by the fundamental energy
transition between electron and hole ground state E (ey) — E (hg). Comparison with
experimental data from Ref. [85] shows reasonable agreement and demonstrates the
wide distribution of exciton energies for nominally equal dots.

4.4.2 Electric tuning of g factors in single dots

Since electric control of g factors would be highly desirable, we finally investigate the
influence of external electric fields on the g factors of single self-assembled quantum
dots. In Fig. 4.10(a), we show the g factors of the electron and hole ground state,
when the dot is subject to an electric field as well as a magnetic field, both lying
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Figure 4.10: (a) Calculated electron and hole g factors for a dot size of w = 25 nm
and h = 4 nm, as a function of the vertical electric field. The magnetic field lies in
the [001] direction, aswell. (b) Schematic cross section of band edges and probability
densites along the vertical direction. The figure illustrates the stronger localization
of hole states that leads to a better tunability of hole g factors.

in the vertical [001] direction. The electric field has been introduced by applying a
bias between a top and a back gate, as has been discussed in Sec. 1.3.2. For the dot
size, we assume the realistic dimensions of h = 4 nm and w = 25 nm that lead to
almost equal electron and hole g factors. The electric field shifts the positions of the
electron and hole wave functions within the dot, as has been sketched in Fig. 4.10(b).
This affects the distribution of the probability density over areas of different indium
content and the overlap with the GaAs barrier that has a different bulk g factor. For
the hole ground state, we predict an almost linear dependence of the g factor on the
electric field strength. The tunability amounts to a few percent for reasonable electric
field values. By contrast, the electric field dependence of the electron g factor is found
to be negligible. This originates from the fact that the electron wave function is more
delocalized than the hole, due to its smaller effective mass. Therefore, the electron
perceives an average over a larger area of different chemical environments and its g
factor is fairly insensitive to slight modifications of the probability distribution. In
addition, the overall range of electron g factor modulation is smaller than for holes,
as can be deduced from Fig. 4.8. In total, we have to conclude that the tunability of
g factors in single quantum dots is rather limited and more complicated structures
will be required to allow realistic applications.
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4.5 Summary

In this chapter, we have investigated the electronic structure of quantum dots in
high magnetic fields. From the magnetic energy spectrum, we have highlighted the
gyromagnetic factor as one of the most intriguing and application relevant properties
of semiconductor nanostructures in magnetic fields. Starting from an overview on
the origin of g factor variations in bulk semiconductors and nanostructures, we have
illustrated our method from chapter 3, by a quantitative analysis of g factors in
quantum dots. Concretely, we have computed the g tensor for electrons and holes in
InP/InAs nanowire-based quantum dots. For electrons, we have obtained excellent
agreement with experimental data [86]. Our results show that the changes in the
electron g factors correlate well with the spatial extent of the wave functions and
therefore with the angular motion, as has been argued before [72]. The g factors for
holes are shown to depend much more sensitively on the sample geometry and material
composition which allows significant tailoring of their values, e.g., by changing the
dot size. We predict a strong anisotropy of the g tensor components for magnetic
fields that lie parallel or perpendicular to the wire axis. We find this anisotropy to get
enhanced with strain. Additionally, we have calculated the influence of high magnetic
fields on the g factors and find markedly nonlinear Zeeman splittings. Finally, we have
extended our investigation to self-assembled InGaAs quantum dots. Here, we have
calculated electron and hole g tensors as a function of the dot size and investigated
their tunability in an electric field. In terms of the size dependence, we find similar
but less pronounced trends than for the nanowire-based dots. The limited bias control
over g factors in single quantum dots raises the question about more effective devices
that will be discussed in the next chapter.
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Chapter 5

Electrically controllable g tensors
in quantum dot molecules

5.1 Introduction

Spins of confined carriers in quantum dots are promising candidates for the logical
units in quantum computers [1, 96, 97]. In many concepts developed so far, the indi-
vidual spin-qubits are being manipulated by magnetic fields [98], which is difficult to
achieve in practice. An alternative procedure is to address individual spin-qubits by
their own electric gate [99] which allows fast changes of the spin splitting, quantum
gate operations and a tuning of the spin storage time [97]. In any case, progress in
this field requires a detailed understanding of the mechanisms that allow one to mod-
ify the spin-related electronic structure properties such as gyromagnetic factors. In
heterostructures, the possibility of electric control of g factors has been demonstrated
by shifting the wave functions between different material regions by an applied bias
[100]. Together with the anisotropy of the g tensor, such an electrically controlled
tuning of the Zeeman splittings allows spin manipulations without time-dependent
magnetic fields [101]. These experiments have been important proofs of principle
but still represent ensemble averages. In quantum dots, electron and hole g factors
have been extensively studied experimentally [85, 86] and theoretically [67, 72] (cf.
Sec. 4.3). In self-assembled dots, the g factors have been found to be almost isotropic
within the growth plane [84, 87] (cf. Sec. 4.4.1). In addition, the tunability of quantum
dot g factors, which has been investigated both theoretically in Sec. 4.4.2 and exper-
imentally [102] is rather limited, because the bound quantum dot wave functions are
fairly insensitive to applied electric fields. By contrast, distinctive electrically tuned
resonances have been discovered in recent experiments for the exciton g factors in
vertically stacked quantum dot molecules [103]. Tt is plausible that coupled quantum
dots provide more room for shifting the electron and hole wave functions between the
two quantum dots by an external electric field. Indeed, the authors have been able
to explain their results in terms of a simple phenomenological model based on the
bonding and antibonding nature of the molecular states [103].

91
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In this chapter, we significantly extend the theoretical analysis of quantum dot
molecules by showing that the piezoelectric polarization associated with stacked quan-
tum dots produces a giant electrically tunable in-plane anisotropy of hole g factors.
This g factor modulation is an order of magnitude larger than in individual quantum
dots and effectively allows g factor switching between almost zero and a constant
finite value by a single electric gate. We provide a general and quantitative theo-
retical analysis of the electric field dependent electron, hole, and exciton g tensors
of coupled quantum dots. For vertical magnetic fields, we show that our calculated
results reproduce the experimentally observed exciton g factors in Ref. [103] without
any fitting parameters.

The chapter is organized as follows. In Sec. 5.2, we discuss the method employed
for our calculations of the electron, hole, and exciton g tensors in quantum dot mole-
cules. Results for the bias driven tuning of g factors in vertical magnetic fields are
given in Sec. 5.3.1. Here, we also compare our results with experimental data [103].
In Sec. 5.3.2, we show that g tensor components can be switched on and off by an elec-
tric field and study the tunability of the g tensor anisotropy in lateral magnetic fields.
These results are used to propose a universal single spin-qubit gate in Sec. 5.3.3. Fi-
nally, in Sec. 5.3.4, resonant electron g factors in molecules with larger dot separation
are studied.

5.2 Method and structure

The realistic calculation of band-edge g factors of a self-assembled quantum dot mole-
cule requires a solution of the Schrodinger equation for a mesoscopic system. It must
include the substrate, the wetting layers, as well as the overgrown quantum dots, and
must take into account the macroscopic strain field, the piezoelectric polarization, as
well as any applied magnetic and electric fields. Only recently it has been recognized
that an accurate incorporation of the magnetic field into the Schrédinger equation
requires special care to ensure gauge-invariant results [67, 72] (cf. chapter 3). Since
a key point of this work lies in the tuning of g factors by an applied bias, both a
magnetic and an electric field will be incorporated into the Schrodinger equation. We
calculate the energies of electron and hole ground and first excited states of the en-
tire mesoscopic system using our relativistic eight-band k-p envelope function method
that has been described in detail in Sections 1.2.1, 3.3 and has been implemented into
nextnano++ [4]. The Hamiltonian can be written schematically in the form

A= 9 (x,%',B) + %SM ‘B+ex-F, (5.1)

where the first term on the right-hand side represents the eight-band effective mass
Hamiltonian of the entire structure in a discrete real-space basis (embracing N grid
nodes). This term includes the coupling to the magnetic field B in a manifestly
gauge-invariant manner with B only appearing in phase factors. Strain effects are
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incorporated into the Hamiltonian via linear band-edge deformation potentials (cf.
Sec. 1.4.2) and piezoelectric charges (cf. Sec. 1.4.3). The three-dimensional strain field
is calculated by globally minimizing the total elastic energy, employing a continuum
elasticity model [39], as has been discussed in detail in Sec. 1.4. We assume the
material interfaces to be governed by pseudomorphic growth. In addition, we assume
vanishing normal stress at the boundaries of the simulation domain. For localized
nanostructures embedded into a substrate, the size of this three-dimensional domain
is increased until the lattice has relaxed to the unstrained substrate on all boundaries.
For the dots considered here, this requires a domain size of the order of 100 nm along
each axis. The second term on the right-hand side of Eq. (5.1) couples the spin to
the field B. Here, up is the Bohr magneton, go = 2 is the free-electron g factor, and
the 8 x 8 spin matrices S; (i € {z,y,2}) [Eq. (1.35)] are completely determined by
the Pauli matrices. The homogeneous electric field F is assumed to point along the
vertical [001] growth direction and has been applied via two contacts, as discussed
in Sec. 1.3.2. The 8 N dimensional Hamiltonian does not include free-carrier charges
but is augmented by the Poisson equation [Eq. (1.65)]; in this way, the piezoelectric
polarization is fully taken into account. We will focus on bound eigenstates of this
Hamiltonian that are twofold Kramers degenerate at B = 0 and do not get split
by inversion asymmetry effects. This applies to all s-type envelope states such as
quantum dot ground states but not to some higher lying excited states, as has been
discussed in detail in Ref. [104]. For nonzero but small magnetic field, the states are
subject to a Zeeman splitting that we find to depend linearly on the B field up to
approximately 10 T for the present structures. For the g tensors g, (n = e, h) of the
confined electron (e) and hole (h) states, we use the definition of Eq. (4.10). The
g factors g, that represent the eigenvalues of these tensors can again be determined
from the Zeeman splittings g, = (E] — E},) / (ugB). For both the electron and hole
band edges, we focus on the ground (0) and first excited (1) state.

The g factor g, of a neutral magnetoexciton X is defined by the energy difference
between the configurations o+ (eihT) and o~ (eThl), where electron and hole states
have opposite spins,

E(0”) - E(o")

ppB '
We note that the other combinations of electron and hole states do not lead to opti-
cally active configurations. Since the electron-hole exchange energy is small compared
to typical Zeeman splitting energies, we define the exciton g factors g? and gl for the
lowest and first excited magnetoexciton state by [83]

g = 8 + &
8 = 8 + &, (5.3)
where g? and g are the electron and hole ground state g factor, respectively. Since

the hole states lie much denser than the electron states, the excitonic g factor g!
involves the ground electron g¥ and first excited hole g factor gj.
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Figure 5.1: Schematic cross section of vertically stacked (001)-grown InAs/GaAs
double dot structure studied in this chapter. We assume a height of h = 2.5 nm, a
width of w = 15 nm, dot distances of d = 1.5 or 2 nm, a wetting layer (WL) thickness
of 0.5 nm, and a realistic trumpet-shaped alloy profile within the dots (Ref. [107]).

For the concrete predictions presented in this chapter, we consider vertically
stacked InAs/GaAs double dot structures that have been fabricated and studied ex-
perimentally recently [105, 106]. The quantum dot molecule itself is characterized by
the dot separation d, the quantum dot height A, the dot width w, and the alloy profile
within the individual dots that we assume to have identical size and composition (see
Fig. 5.1). We take h = 2.5 nm, w = 15 nm, d = 1.5 or 2 nm, and a realistic [43, 95]
trumped-shaped alloy profile throughout. This alloy profile is described in detail in
Ref. [107] and is characterized by an indium distribution that starts from 100% at the
tip, and decreases to 80% and 40% toward the bottom center and the bottom corners
of the individual dots, respectively. We model the dots as truncated pyramids with
{011} side facets that sit on 0.5 nm InAs wetting layers on a (001)-GaAs substrate.
With these parameters, we find the lowest interband transition energy of the entire
structure to be 1.30 eV for d = 1.5 nm as well as d = 2 nm. For this structure,
we predict the principal axes of all g tensors to be given by the set [001], [110], and
[110].

5.3 Results

5.3.1 Resonant tuning of exciton g factors

We first discuss the molecular eigenstates for zero magnetic field as a function of the
vertically applied electric field in terms of the individual electron and hole ground
states. For dot distances d < 2 nm, the lowest molecular electron state ranges over
both dots and forms an extended bonding state for all electric fields considered here.
This is a consequence of the small electron mass and has been visualized in Fig. 5.2.
By contrast, the individual dot hole states are more localized and therefore respond
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Figure 5.2: Cross sections of calculated molecular electron and hole ground state
probability densities for a dot separation of d = 1.5 nm. The cross sections are taken
at the dot center and run along the vertical [001] growth direction. In addition, we
have applied a vertical electric field of 430 (solid lines) or —30 kV /cm (dashed lines),
relative to the resonance field F .

more sensitively to the electric field. The field tunes the energies of these individ-
ual dot hole states relative to each other. For negative electric field (F||[001]), the
molecular hole ground state is predominantly localized in the lower dot (cf. Fig. 5.2)
and vice versa for positive electric fields. For a particular field F,., the two ground
states are tuned into resonance and form molecular bonding and antibonding orbitals
with energies Ej, p and Ej, 4, respectively. This field strength F.. is slightly nonzero
because the strain field produces a small asymmetry between the individual dot ener-
gies [106]. For a dot separation of d = 1.5 nm, our calculations give F,os = 7 kV/cm.
For this dot separation, we find (Ej 5 — Ej ) /2 = +0.6 meV, which implies the
bonding state to be the molecular hole ground state. By increasing the separation d
between the dots to a value d = 2 nm, we find the role of bonding and antibonding
states to become reversed and we obtain (E, g — Ep 4) /2 = —1.1 meV. This is in
good agreement with a previous theoretical result [108]. Experimentally, one finds
a qualitatively similar trend but the crossover dot distance seems to lie at slightly
larger values of the dot separation [103, 108].

We now turn to the molecular electron and hole g factors in the presence of a
small vertical magnetic field BJ|[001]. In Fig. 5.3(a), we show the molecular hole g
factors associated with the ground and first excited state, respectively. The hole g
factors can be tuned by more than 100% by the electric field and show a pronounced
resonance behavior associated with the formation of bonding and antibonding hole
states. Qualitatively, this resonance formation has been explained previously in terms
of a simple model [103]. Since, however, this work assumed incorrect signs of the bulk
and single dot hole g factors, we present a brief discussion of our results. The heavy
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Figure 5.3: g factors of coupled quantum dots, for magnetic and electric fields lying
in the vertical [001] direction. All electric field values are specified relative to the
resonance field F ., as discussed in the main text. (a) Calculated hole g factors for
ground state (full lines) and excited state (dashed lines) for dot separations of d = 2
nm (black lines) and d = 1.5 nm (red lines), respectively. (b) Calculated electron g
factors for the ground state. Dot separations are taken as in (a). (c¢) Comparison of
calculated neutral exciton g factors with experimental results from Ref. [103] (circles).
The excitons are formed by an electron in the ground state and a hole either in the
ground (full line) or first excited state (dashed line). The dot separation is d = 1.5
nm. The insets indicate schematically the probability density of the hole states for
different electric field values.
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hole g factor in bulk GaAs is negative and given by g, (GaAs) = —6k = —7.2
[Eq. (4.9)] in terms of the Luttinger parameter x [24]. The present quantitative
calculations show that the hole g factors associated with the isolated quantum dots
are positive and approximately equal to +1.8. This result can be deduced from
Fig. 5.3(a) in the limit of large positive or negative field where the molecular states
are localized within the individual dots and the molecular coupling plays no role.
We would like to point out that the present theory does predict negative hole g
factors for larger quantum dots where quantum confinement is less pronounced (cf.
Secs. 4.3, 4.4). This is also in agreement with experiment [83]. For the present
coupled quantum dots, the formation of bonding (antibonding) states as a function
of the electric field increases (decreases) the overlap of the molecular states with the
GaAs barrier region in between the coupled quantum dots which leads to a decrease
(increase) of the molecular hole g factor. The effect is more pronounced for smaller
interdot distances and this is shown in Fig. 5.3(a) for the two cases of d = 1.5 and
d = 2 nm. We note that the figure exhibits a slight asymmetry between positive and
negative electric fields which is related to the different strain fields felt by the two
dots [106]. The g factor associated with the electron ground state remains almost
constant for the entire range of fields as shown in Fig. 5.3(b).

Based on these calculations of electron and hole g factors, we can now predict the
excitonic molecular g factor. In Fig. 5.3(c), we show the resulting effective exciton g
factors [Eq. (5.3)], formed by the electron ground state and the hole ground and first
excited state as a function of the electric field. The trends in the exciton g factors
entirely reflect the trends of the hole g factors, whereas the electron g factor only
shifts the absolute values slightly. To illustrate the resonant behavior of the exciton g
factor, the insets in Fig. 5.3(c), mark the localization of the hole states in the coupled
dots for the different electric field regimes. As can also be seen from the figure, our
calculations are in excellent agreement with the experimental results from Ref. [103].

5.3.2 Giant g factor switching

We now show that the hole g factors in coupled quantum dots can be electrically tuned
by as much as 800% and effectively switched between almost zero and a finite value by
applying a constant magnetic field in the growth plane rather than along the growth
axis. Importantly, we find an unusually pronounced magnetic field anisotropy of the
Zeeman splitting within the growth plane. As will be shown below, this is caused
by the piezoelectric polarization associated with quantum dot molecules. In Fig. 5.4,
the calculated molecular hole g factors for magnetic fields oriented along the planar
directions [110] and [1TO] are shown. Since the electron g factors remain constant
(ge = 0.45) over the shown electric field range, the figure applies to exciton g factors
as well. Analogous to the situation for vertically applied magnetic fields, we obtain a
resonant reduction and enhancement of the g factors for the bonding and antibonding
states, respectively. The molecular ground state [shown in Fig. 5.4(a)] is still localized
in the upper and lower dot for large positive and negative electric field, respectively.
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Figure 5.4: (a) Calculated molecular g factors of hole ground state as a function of
vertically applied electric field (relative to the resonance field F,e). The constant
lateral magnetic field lies along the [110] (full line) and [110] direction (dashed line),
respectively. (b) Same for first excited hole state. For large magnitudes of the electric
fields, the molecular hole states are localized predominantly in either the lower or the
upper dot, as indicated in the figure.

In fact, we find the character of this state to be almost independent of the modulus
and direction of the magnetic field up to 10 T. For the first excited state, the role of
the upper and lower dots is reversed.

The results indicate a highly efficient bias induced switching of the molecular g
factor between a value close to zero and a finite negative value for the extremal electric
field values. This switching behavior is a robust effect and neither sensitive to small
changes in the bias, as can be deduced from Fig. 5.4, nor to small changes in the
quantum dot widths. Importantly, the calculations predict a pronounced anisotropy
of the ground and excited state hole g factors. By orienting the magnetic field along
the [ﬁO] instead of the [110] direction, the results indicate that the role of the upper
and lower dot in the molecular states are effectively swapped. In summary, we find
the following relations to hold for the hole ground state,

RN R e E (5.4)
Analogous relations can be given for the first excited hole state. Since the g factors
associated with the magnetic field directions [110] and [1TO] cross each other at the
electric field F,., the Zeeman splitting becomes isotropic within the growth plane
for this particular field value. To the best of our knowledge, such a tunable and
pronounced anisotropy of quantum dot related g factors has not been observed or
discussed so far. In-plane anisotropies of electron g factors in single quantum dots
have been found to be quite small as expected [87]. The present effect is caused by
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Figure 5.5: (a) Isosurface of calculated piezoelectric polarization charge densities of
magnitude 1.5 x 10! cm ™2 near the overgrown quantum dots. Positive and negative
charges are indicated in blue and red, respectively. (b) Isosurface of probability
density of molecular hole ground state for an applied bias of +30 (light blue) and —30
kV/cm (dark blue), respectively. The isosurface is chosen at 25% of the maximum
density and the dot separation amounts to d = 1.5 nm. For these electric fields,
the light blue and the dark blue state is localized in the upper and the lower dot,
respectively. (c) Cross sections of the calculated electrostatic potential that results
from the piezoelectric charges for a dot separation of d = 24 nm. The cross sections
are taken at half of the dot height. (d) Same as (c) for d = 1.5 nm.

the piezoelectric charge distribution near the edges of the quantum dots that deform
the hole charge distribution differently in the two coupled quantum dots that form
the molecule. In the following, we will explain this effect in some detail.

For a truncated pyramid shaped buried quantum dot, there are piezoelectric
charge dipoles located at the pyramidal edges [109]. The presently calculated piezo-
electric charge distributions are shown in Fig. 5.5(a). These dipole charges lead to
a potential profile that elongates the hole wave functions along one diagonal and
compresses them along the perpendicular direction. For two vertically well separated
quantum dots, this potential profile is very similar for both dots. In Fig. 5.5(c), we
plot an overlay of two 2D cross sections of the electrostatic potential onto the geo-
metric dot profiles. The cross sections are taken at half of the quantum dot height in
each dot. The dot separation is d = 24 nm in this case. For a smaller dot separation,
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the multipole potential changes its character completely as shown in Fig. 5.5(d) for
d = 1.5 nm. The individual quantum dot potential profiles are now rotated with
respect to each other by 90°. In addition, the dot molecule behaves as a single ver-
tical dipole at each corner of the pyramid rather than as two consecutive dipoles as
in Fig. 5.5(c). In Fig. 5.5(b), we show a top view of the two hole wave functions
that lie in different quantum dots. They show a deformation that corresponds to the
dipolar potential. The upper and the lower hole wave function is elongated along the
[110] and the [110] direction, respectively. The in-plane g factors in Fig. 5.4 follow
this trend since they correlate with the spatial extent of the wave functions. This
explains the anisotropy and the switching behavior of the ground and excited state
hole g factor.

5.3.3 Efficient universal spin-qubit gate

In this section, we discuss an application of the strong magnetic field anisotropy
together with the strong electric field dependence of the g tensor in quantum dot
molecules. These two combined effects allow one to fully control the spin precession
axis and therefore the spin polarization of a single hole in a quantum dot molecule.
There are two prerequisites to achieve such a universal spin-qubit gate. The first
one is a static magnetic field along a direction of the dot molecule that is not equal
to a principal axis of the hole g tensor. The other condition is a selective electric
top gate that acts on the quantum dot molecule and applies a bias across the two
coupled quantum dots. For individual quantum dots and electrons, such a full Bloch
sphere control of the spin polarization has been predicted previously [110]. However,
we find the modulation of hole g factors in quantum dot molecules to be an order of
magnitude larger than in individual quantum dots. Experimentally, this effect has
only been observed in heterostructures for an ensemble of carriers so far [101]. In
addition, we find the g factors to form plateaus in their electric field dependence,
making the spin manipulation less sensitive to slight variations in the applied voltage
pulses.
We can write the Hamiltonian (4.10) in the form

Hh =0 - Qh, (55)

where Q) = 1/2ugg), - B denotes the spin precession vector and the g tensor of the
quantum dot molecule can be given explicitly in the Cartesian basis as

g0 L1110 f110]_ (170 0
[110] 2 [110] (110, [170]
gn = h__—8h g, g 0 , (5.6)
2 2
[001]
0 0 g

where gglo] etc. are the elements of the g tensor along the principal axes. If a magnetic

field is applied along the [100] direction, a single spin in this field will start to precess
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Figure 5.6: (a) Calculated effective g factors and directions of spin precession axes
(arrows) of hole ground state (solid line) and first excited state (dashed line) as a
function of the vertical electric field. The constant magnetic field lies in the horizontal
[100] direction. (b) Sketch of a puls sequence that allows to coherently manipulate a
single spin in a static magnetic field using two bias-controlled orthogonal precession
axes €y and €, as discussed in the main text. The insets (1)-(4) indicate spin
polarizations on the Bloch sphere at different times.

around the axis eq, which is given by

o M _ L (8M18™ 8 g (5.7)
Q] g 2 ’ 2 ’

The unit vector eq is normalized by the effective hole g factor gi = |g, - B|/B.
This spin precession axis can be controlled by an applied vertical electric field. In
Fig. 5.6(a), we plot the directions eq together with g; as a function of the electric
field, for the molecular hole ground state and the first excited state. For the molecular
ground state, the electric field is able to rotate the precession axis eq by 90° from [HO]
for large negative field magnitudes to the [TlO} direction for large positive values.
This pronounced tunability of eq can be deduced from Eq. (5.7) and Fig. (5.4) and
is caused by the fact that one of the g factors associated with the magnetic field
directions [110] and [110] vanishes for large magnitudes of the electric field values.
For the first excited state, the axis can be rotated even by 270°. In both cases, the
modulus of the g factor lies between those of the principal axes in Fig. 5.4 for all
electric field values.

In order to fully control the spin of a carrier that is confined to a quantum dot
molecule, two orthogonal precession axes are needed. These axes generate the two
rotation angles that define any point on the Bloch sphere. For the present structure,
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one could use, e.g., the axes in Fig. 5.6 that can be associated with large positive and
large negative electric field values, respectively. In Fig. 5.6(b), we have sketched this
idea using two orthogonal precession vectors {2;and €2, that are assumed to come with
the bias values V; and V5, respectively. We now consider a single hole in a quantum
dot molecule with its spin initially polarized along the direction indicated in inset
(1) of the figure. By subsequently applying a series of voltage pulses Vi and V3, the
spin polarization will rotate around the precession vectors €2;and €25, respectively.
The acquired angles indicated in the insets (2) and (3) depend on the time periods
Aty and Aty. In total, the spin polarization will be coherently manipulated to the
final direction in inset (4) that is uniquely determined by the chosen puls sequence.
Therefore, this concept allows universal quantum gating with a single electric gate
on top of the structure and a static magnetic field.

5.3.4 Resonant electron g factors

We have repeated the calculations in Sec. 5.3.1 for electrons, but assumed a much
larger interdot distance d = 10 nm in order be able to localize a single electron in each
dot separately for large positive and negative electric fields. For the magnetic field
lying in the [001] direction, we also obtain a resonant reduction and enhancement of
the electron g factors for the bonding and antibonding states, respectively. However,
as can be deduced from Fig. 5.7, the effect is about two orders of magnitude smaller
than for holes (cf. Fig. 5.3). For the in-plane directions [110] and [110], the resonance
effect is totally negligible. Even the addition of aluminum to the barrier material
(which has been proposed in Ref. [103]) did not increase the effect, in spite of a
larger difference between the g factors (g. (AlAs) = 1.52, while g. (GaAs) = —0.44).
The addition of indium (g. (InAs) = —14.8) to the barrier only slightly enhances
the resonance (about a factor of two for 20% In and d = 15 nm), simply because
the delocalization of the electron state (in comparison to the hole state) renders its
wave function fairly insensitive to reasonable electric fields. Thus, we conclude that
electrons are less suitable for this type of g factor engineering in materials with small
effective mass. This is in full accord with recent experimental investigations on similar
structures performed by Emily Clark from the group of Prof. Jonathan Finley.

5.4 Summary

In summary, we have theoretically investigated electron, hole, and exciton g tensors
of vertically stacked quantum dot molecules in vertical and lateral magnetic fields as
a function of an applied vertical electric field. We are able to quantitatively explain
the experimentally observed [103] resonant enhancements of the g tensor components
for vertical magnetic fields without any fitting parameters. For magnetic fields lying
in the base plane of the quantum dots, we predict a very pronounced anisotropy in
the hole g factors for [110] and [110] magnetic field directions. In addition, we predict
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Figure 5.7: Calculated molecular g factors of electron ground state (solid lines) and
first excited state (dashed lines), for magnetic and electric fields lying in the vertical
[001] direction. The graph shows results for a dot separation of d = 10 nm with a
pure GaAs barrier (black lines) and a dot separation of d = 15 nm with the barrier
between the dots consisting of Ing,GaggAs (gray lines).

a bias induced g factor switching between almost zero and a finite value for constant
magnetic field. Both effects are caused by the piezoelectric charges at the edges of
the quantum dots that deform the eigenstates. This tunable anisotropy allows a full
control of the spin polarization of a single hole in a quantum dot molecule by a gate
voltage and thus the construction of a universal spin-qubit gate.
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Chapter 6

Optoelectronic properties of
broken-gap heterostructures

6.1 Introduction

The recent fabrication of high quality and high mobility antimonide heterostructures
has revived the interest in this material class since their widely tunable electronic
structure and optical properties offer many optoelectronic and electronic applications
[111-114]. In combination with InAs, antimonides can form type-II heterostructures
with a broken gap band alignment. These types of heterostructures are particularly
relevant for the development of infrared lasers and infrared detectors [3, 115, 116].
When a material has a broken gap, the strong hybridization of conduction and valence
bands [117] prevents an unambiguous separation into electron and hole states [118].
In this situation, the standard multiband EFA fails since this method assumes that
electron and hole states can be occupied independently (cf. Sec. 1.3.1). Consequently,
only a few theoretical approaches have been developed so far to predict the electronic
structure of mesoscopic nanostructures with broken gaps [116, 118-121]. However, a
consistent solution for the ambiguity in the calculation of free-carrier charge densities
has not been developed so far. Typical models consider only narrow layer struc-
tures where one can still rely on the standard prescription of the density calculation
[116], or exclude the kinetic coupling between conduction- and valence bands in a
single-band approach and therefore miss any nonparabolicities and anisotropies of
the band structure [119]. In an earlier introduced approach, only certain components
of electronic states are occupied [118]. However, the paper does not give a rigorous
justification for this approximation. Recently, another eight-band k-p method has
been developed that is used explicitly in situations where standard multiband EFA
fails [120, 121]. While the details of the density calculation are not specified in the
paper, we are absolutely certain that this method differs fundamentally from our
approach. This can be deduced from Fig. 1 of Ref. [120], where electron and hole
charge densities are given separately, while in our method, as a matter of principle,
we can only obtain the sum of both densities.

105
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In the following, we will present a novel electronic structure scheme for broken-gap
materials that maintains the efficiency of a continuum approach yet does not depend
on an a-priori classification into electron or hole states. In fact, we rely on the en-
velope function method but turn away from the standard to separate the electrons
and holes, and remain in the electron picture throughout. With this procedure, we
calculate optical transition energies of intrinsic InAs/GaSb superlattices as a function
of the layer thickness. We compare our results with experimental data for narrow
layer superlattices where the electron-like and hole-like subbands are ordered as in
a conventional semiconductor [115, 122]. In addition, we investigate wide layer su-
perlattices with a strong hybridization between electron-like and hole-like subbands
near the Fermi energy. We obtain excellent agreement between theory and experiment
[114] and partly revise previous interpretations that lacked a consistent theoretical
model.

The chapter is organized as follows. In Sec. 6.2.1, we present our novel charge self-
consistent k-p envelope function method. The failure of the standard prescription of
the charge density calculation is expressed in Sec. 6.2.2 for the situation of broken-
gap band alignments. In Sec. 6.2.3, we discuss the individual charge contributions
in our novel scheme and consider situations with and without a significant charge
transfer between the different layers. We apply the procedure to a series of InAs/GaSh
superlattices with different layer widths in Sec. 6.3. Here, we also compare calculated
subband energies with experimental data.

6.2 Self-consistent multiband envelope function ap-
proach for broken-gap heterostructures

6.2.1 Description of novel method

Broken-gap heterostructures are characterized by the lowest conduction band in one
material layer to energetically fall below the highest valence band in an adjacent
layer. This leads to a pronounced coupling of bands that needs to be taken into
account properly if one wishes to calculate the electronic structure of such systems.
Specifically, we consider multi-quantum well systems that are structured along the
growth axis z and homogeneous laterally. We rely on the multiband k-p envelope
function method [11, 13, 16, 19] that we solve in a discrete real-space basis, embracing
N grid nodes along the z-axis. In the lateral directions, the wave vector k| remains
a good quantum number. Our method is valid for any multiband model that in-
cludes conduction as well as valence bands. The Schrédinger equation can be written
schematically in the form [Eq. (1.41)]

Z [ﬁ”“ (z,-10/0z,k)) — e (z)] Fi(“) (z,k) = E; (k) Fi(y) (2. k) . (6.1)

I
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with a Hamiltonian H that has been patched up from the bulk k-p Hamiltonians
Hy.p (k) of each constituent material, and where the growth direction z has been
Fourier transformed into real space (k, — —i0/0z), as discussed in detail in Sec. 1.2.1.
The indices v, p run over the N conduction bands and the Ny valence bands of a V-
band k-p model with Ny = No+ Ny FZ-(V) is the v-th component of the i-th subband
envelope function (v € {1,...,Na}, ¢ € {1,..., N4N}). The remaining transversal
wave vectors are restricted to the two-dimensional Brillouin zone 25 in the reciprocal
k|| space. In order to take into account the spatial charge distribution, the general
N, - N dimensional Hamiltonian is augmented by the electrostatic potential ¢ (z)

which is determined by the Poisson equation [Eq. (1.65)]

() 2o = (). (6.2)

Here, € (2) denotes a position dependent dielectric constant. Since the total charge
density p depends on the eigenstates resulting from the Schrodinger equation, both
Schrodinger- and Poisson equation have to be solved in a self-consistent manner (cf.
Sec. 2.6.1). For the concrete applications in this chapter, we use a relativistic eight-
band k-p envelope function method that has been described in detail in Sec. 1.2.1.
Here, strain effects are incorporated into the Hamiltonian via linear band-edge de-
formation potentials (cf. Sec. 1.4.2). Note that in this model, we have No = 2 and
Ny = 6.

In broken-gap heterostructures, the standard envelope function approach (EFA)
introduced in Sec. 1.3.1 fails to determine the charge density. This will be shown
explicitly in Sec. 6.2.2. We have developed a novel method for the calculation of the
free-carrier charge density in multiband k-p models that accounts for the problem of
overlapping bands and may be called full-band envelope function approach (FB-EFA).
In this method, we do not need to classify eigenstates into electron-like or hole-like.
Instead of that, we occupy all eigenstates (including the states that have energies in
the energy range of the valence bands) with electrons according to the Fermi-Dirac
statistics. Afterwards, we subtract an appropriately calculated positive background
ionic charge that guarantees charge neutrality. In this approach the free-carrier charge
density p = prp_gra (doping and fixed charges can be added straightforwardly) is
given by

pre-Era (2) = € [=np (2) + pog ()], (6.3)
where ng, (2) is the density of electrons in all included bands (conduction and valence
bands) and ppg (2) is the positive background charge density. Concretely, the full-
band density ng, is given by,

NN
1

) =Y G [ AR ) F (5 k). (6.0

i=1

Here, the sum runs over all Ny - N subbands of the Hamiltonian and f (F) is the
Fermi function.
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Figure 6.1: Subband dispersion of a narrow gap superlattice, as a function of kj
in an in-plane direction. Regions of fully and partly occupied states are marked in
dark and light gray, respectively. The shaded region indicates the required amount

max

of background charge density pig, when the k-space integration is restricted to k;”

In order to make the total device charge neutral, we subtract the background
charge density

sz
(2m)* Az’
This density corresponds to the charge of Ny - N fully occupied valence subbands,
which is assumed to be homogeneously distributed in order to represent the positively
charged ionic cores. The background charge density must be divided by the grid
spacing Az, since the norm of any subband wave function is given by ||Fi|| = 1/vAz
in a discrete z-space. The two-dimensional Brillouin zone area is given by Qp; =
872 /a?, where a is the lattice constant. This FB-EFA concept has been adapted from
charge self-consistent tight-binding theory [123].

We will now illustrate our novel density model for a superlattice that is assumed
to have the conventional ordering of electron- and hole-like subbands but a narrow
effective band gap. In Fig. 6.1, we have sketched the energy dispersion of the re-
spective subbands that lie closest to the chemical potential y, as a function of the k|
wave vector in an in-plane direction. In this structure and for finite temperatures,
only the lowest conduction subband (eg) is partly filled with electrons and the highest
valence subband (hy) is partly filled with holes due to intrinsic Fermi statistics. This
has been indicated in the figure by the light gray areas. The filling of states with

pbg (Z) = NvN (65)
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electrons and holes is performed explicitly in the traditional EFA. In FB-EFA, by
contrast, we fill all states with electrons irrespective of their energetic position in the
conduction or valence bands. According to Eq. (6.4), the states in the dark gray areas
in Fig. 6.1 are fully occupied and those in the light gray areas are partly occupied
for finite temperatures due to the characteristics of the Fermi function. Importantly,
it is not necessary to integrate the density in Eq. (6.4) over the full two-dimensional
Brillouin zone (2gy. States that exceed the chemical potential by more than a few
kgT hardly contribute to the sum in Eq. (6.4), since the Fermi function drops expo-
nentially for energies that are larger than p. Similarly, states that significantly fall
below the chemical potential are compensated by the same amount of background
charge and do not contribute either. For the antimonide based broken-gap systems
considered in this chapter, we find that the wave vectors of partially filled subband
states lie within the inner 10% of the Brillouin zone. Thus, we can reduce the maxi-
mum wave vector modulus used in Eq. (6.4) to a small value [ so that the number
of numerical matrix diagonalizations can be strongly reduced by two orders of mag-
nitude. This requires an additional adjustment of Qp; — O}, = 4(/{:ﬁna")2 in the
relation [Eq. (6.5)] for the background charge density. In FB-EFA, the occupation of
the conduction subband is equivalent to the situation in EFA. The light gray valence
area, however, is now largely filled with electrons rather than having a minor occu-
pation with holes. In order to obtain the excess charge density p, we finally subtract
a background charge density ppe [Eq. (6.5)] that corresponds to the shaded valence
band area in the figure. In Sec. 6.2.3, we will show that both approaches are in fact
equivalent for this structure.

We would like to mention an additional computational issue that has been con-
sidered in the present implementation. In fact, filling up all states with electrons
and subtracting a positive background charge is nominally equivalent to filling all
states with holes and subtracting an appropriate negative background charge. This
is due to the completeness relation of the eigenstates of a Hermitian Hamiltonian.
This relation leads to a spatially homogenous density distribution, when all eigenstate
densities are summed up. Since the eight-band model includes less conduction bands
(N¢ = 2) than valence bands (Ny = 6), the latter approach is computationally more
efficient. Although, we have actually implemented this filling with hole states, we
keep with the electron picture in the present discussion to avoid any confusion.

For the concrete predictions presented in this chapter, we consider intrinsic InAs-
GaSb (001)-superlattices that have been fabricated and studied experimentally [114].
The structures are characterized by the InAs and GaSb layer widths w; and ws,
respectively. Note that we consider only a single period and use periodic boundary
conditions in the calculations. The GaSb layers are assumed to be unstrained so
that the InAs layers exhibit a slight tensile strain of 0.5%. In Fig. 6.2, we plot the
qualitative band edges of the I' conduction band E¢ (dotted line) and the heavy hole
valence band Ey (solid line) for two different regimes of layer widths. The graphs show
a type-1I broken-gap band alignment with an overlap between E in the InAs layer
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Figure 6.2: Band structure of InAs/GaSb superlattice with InAs and GaSb layer
widths wy and w,, respectively. (a) Sketch of the broken gap (Es < 0) band edges in
position space with qualitative zone center subband energies in the situation of small
layer widths where F (ey) > E (hg). (b) Same as in (a) for larger layer widths, where
the energetic ordering gets reversed F (ey) < E (hg). Here, a charge transfer between
the different layers is expected that leads to a band bending as indicated.

and Ey in the GaSb layer (Eg < 0). For small layer widths (typically wy,wy < 10
nm), confinement can raise the lowest electron subband (eg) above the highest hole
subband (hg) leading to an ordering of subbands as in a conventional semiconductor
[115]. This situation is shown in Fig. 6.2(a). Here, the effective band gap, i.e., the
energy difference between the lowest unoccupied and the highest occupied subband
at k| = 0, is given by E&' = E (eg) — E (ho). In this situation, electron and hole
subbands are well separated in energy so that both the standard EFA, as well as our
novel FB-EFA [Eq. (6.3)] can be applied. When moving to larger layer widths, the
confinement is reduced, the energetic positions of eg and hg are switched, and the
definition of E&T alters to ES = F (hg) — E (eo) [cf. Fig. 6.2(b)]. Now, electron and
hole subbands overlap and EFA fails to determine the free-carrier charge densities.
Thus, by changing the layer widths, we can effectively tune the present structure
between the critical and uncritical situations of standard and reversed ordering of
subbands, respectively.

6.2.2 Failure of standard method

In contrast to Eq. (6.3), within the standard EFA, the charge density p = pgpa is
given by the difference of the electron and hole densities (cf. Sec. 1.3.1)
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peFa (2) = e [—ngra (2) + pera (2)], (6.6)
with the densities of electrons in the conduction bands

NaN

)= S o [ d Rk (B R). 6
and holes in the valence bands
pan (=Y Lo [ B R i) - E )] 08
- (27r)2 0, |47 L= &l i \X|))]- :

In Eq. (6.7), our prescription of electron densities [Eq. (6.4)] has been modified in the
sum over ¢ that now runs only over the N - N energetically highest subbands of the
Hamiltonian [Ny - N = (N¢ + Ny ) - N]. Note that we have assumed the subbands
to be ordered ascending in energy, so the first Ny - N subbands lie in the valence
bands and the remaining N¢o - N subbands lie in the conduction bands. However,
for multi-band k-p models that couple conduction- and valence bands (such as the
eight-band model), it is in general not possible to decide if a specific eigenstate has
to be occupied by an electron or by a hole. This somewhat unexpected situation
occurs in nanostructures that do not have a global energy gap as will be discussed in
the following.

In order to express the failure of the EFA, we now turn to the case of a reversed
ordering of subbands F (ey) < E (hg) in Fig. 6.2(b). To this end, we consider a
superlattice with an InAs layer width of w; = 16 nm and a GaSb layer width of
we = 8 nm. In Fig. 6.3, we show the subband dispersion of this structure, as a
function of the wave vector in the [010] direction. In the following, we will only
consider the third and fourth subband (in energetically ascending order) from Fig. 6.3
that we will call lower and upper subband, respectively. At some k| points, one may
assign certain states to have the character of an electron (a hole) if they are almost
completely localized in the InAs (GaSb) layer, where the band gap lies below (above)
the energies of the states. Namely, at k; = 0, the lower subband is electron-like since
it is localized in the InAs layer (see lower left inset in Fig. 6.3). By contrast, the
upper subband is localized in the GaSb layer at k| = 0 and therefore hole-like. At
‘k”! = 0.04-27/a, however, the characters of these two subbands are switched. Thus,
it is not possible to assign the character electron- or hole-like to a complete subband,
unambiguously. For intermediate wave vectors ‘k”‘ = 0.02 - 27/a the band structure
shows an anticrossing between the two subbands that leads to a strong mixing of
electron and hole states. Indeed, the probability distributions of the eigenstates of
the two subbands shown in the insets for a k| point near the anticrossing exhibit
two distinct maxima that correspond to an almost equal localization in the InAs and
GaSb layers. Obviously, these states cannot be classified as electron- or hole-like and
effectively contribute to the electron as well as to the hole charge densities. Thus, it is
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Figure 6.3: Subband dispersions as a function of k| in the lateral direction, of an
InAs/GaSb superlattice with InAs and GaSb layer widths of w; = 16 nm, and wy = 8
nm, respectively. The insets show probability densities of subband eigenstates at three
different values of k| (0, 0.2, and 0.04 in units of 27 /a, where a denotes the lattice
constant of GaSb). The character of the individual eigenstates can be assigned from
their localization in the InAs (light gray) or the GaSb (dark gray) layers. All energies
are given relative to the zone center conduction band maximum in the InAs layer.

not possible to simply occupy some subbands according to the Fermi-Dirac statistics
of electrons and others with the statistics of holes as it is done in the standard EFA

of Eq. (6.6).

6.2.3 Discussion of charge density contributions

Next, we will discuss the individual charge density contributions that are obtained
within our novel FB-EFA. In order to critically assess this method, we start with
the situation of narrow layer widths from Fig. 6.2(a). Concretely, we consider an
intrinsic superlattice characterized by the layer widths wy = we = 9 nm at T' = 0
K where EFA yields zero density throughout the structure. In Fig. 6.4(a), we plot
the total charge density for the InAs/GaSb superlattice that has been determined
within FB-EFA. Here, the coupled eight-band Schrodinger equation [Eq. (6.1)] and
the Poisson equation [Eq. (6.2)] have been solved iteratively until self-consistency is
reached.

The resulting charge density basically consists of dipoles at each of the material
layer interfaces. These dipoles are produced not only by the states close to the
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Figure 6.4: (a) Local charge density close to a material interface obtained within
FB-EFA for an intrinsic InAs/GaSb superlattice with layer widths of w; = wy = 9
nm. (b) Appropriate potential profile V' (z) = —e¢ (2) that results from solving the
Poisson equation [Eq. (6.2)] with the charge density from (a). As can be seen, the
interface dipoles effectively introduce a jump in the potential that modifies the offset
between the valence band edges.

chemical potential, but also by lower lying states, whose density is redistributed with
respect to the bulk by the insertion of a material interface. Such interface dipoles are
well known from first-principles electronic structure calculations and are in fact the
major origin for the band-edge discontinuities between different materials [124]. In
the present method, the dipole charges are quantitatively incorrect, but this problem
is a removable one. The incorrectness comes from the fact that large-k states strongly
contribute to the dipole charges. Such high energy states are beyond the validity of
k-p theory. The envelope function method yields accurate eigenstates only for small
values of k, because it is based on an expansion of the band structure around the
zone center. However, in the solution of the Poisson equation, the interface dipoles
result only in a small jump in the electrostatic potential as is shown in Fig. 6.4(b).
In the present method, this additional offset is meant to be already included in the
total offset between different semiconductor band edges. These band offsets can be
determined either from the model solid theory by Van de Walle [125], or in terms
of electronic states of the atomic cores as it has been proposed by Wei and Zunger
[126]. In our method, we rely on the energy values from the (more recent) latter work.
Since the interface dipole induced band offset should already be included in the given
offset, it has to be subtracted to avoid double counting. We find that for given k-space
restriction /{:‘Ta‘x, the size of the interface dipole only depends on the two comprised
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materials. For the present InAs/GaSb interface with k= 0.05 - 27 /a, we obtain
a dipole-induced offset of —17 meV, when moving from the InAs layer to the GaSb
layer. In all following calculations, we therefore increase the band offset between
InAs and GaSb from Ref. [126] by 17 meV. We find that the modification of band
offsets itself does not alter the interface charge dipoles significantly and therefore the
influence of these dipoles can be removed, effectively.

We would like to mention that one could criticize the present method for filling
(lower lying) large-k states that are beyond the validity of the underlying theoretical
concept. However, these states are basically needed only to fulfill a completeness
relation. For a homogenous material, the sum over all included valence states results
in a homogenous charge density that corresponds to pye in Eq. (6.3), irrespective on
how accurate the lowest states are. We fill the incorrect states just to compensate
Pog- In a heterostructure, they are slightly modified close to the interfaces and lead
to a charge redistribution. So the incorrect states effectively contribute only to the
interface dipoles, whose effect is removed anyway.

Now, we turn to the situation of wide layer widths wy; = 18 nm and wy = 9 nm.
Fig. 6.5(a) shows the subband dispersion for the same situation as in Fig. 6.3, now
calculated in terms of the FB-EFA method. In addition, in Fig. 6.5(b), we show
the calculated charge density distribution that can be explained qualitatively by
considering the character of the subbands. As has been stated before, the eigenstate
at k| = 0 of the lowest subband above the chemical potential p originates in the
valence bands. Since its energy is larger than p, its occupation lacks electrons which
in turn creates a positive charge contribution. Since the probability density of this
state is dominantly localized within the GaSb layer (dark gray area), we obtain a
positive charge distribution in this layer. Qualitative similar statements hold for all
other wave vectors with |k||| < 0.02 - 27/a in this subband, as has been indicated by
the open circles in Fig. 6.5(a). Analogously, the zone center eigenstates of the highest
subband below p (filled circles) originate from the conduction band which leads to a
negative charge distribution within the InAs layer (light gray area). Altogether, this
results in a charge transfer of the order of 10!® cm ™3 between the GaSb and the InAs
layers. Besides the interface dipoles, the charge density distribution in Fig. 6.5(b)
clearly shows a nonzero base density at the center of each layer which comes from
this charge transfer. Note that it would be difficult to accurately calculate such a
small charge transfer in an atomistic approach that includes all electronic states in
the Brillouin zone and therefore deals with charges of the order of 10?3 cm 3.

6.3 Optical transitions in InAs/GaSb superlattices

In this section, we apply our novel method to calculate optical transition energies of
type-1I superlattices with a broken gap. Here, we delve further into the properties
of the InAs/GaSb superlattices that we already used in the previous sections to
exemplify the arising difficulties and to discuss the individual charge contributions.
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Figure 6.5: (a) Charge self-consistent FB-EFA subband dispersion of intrinsic
InAs/GaSb superlattice with InAs and GaSb layer widths of w; = 18 nm, and ws = 9
nm, respectively. Occupied electron states and unoccupied hole states are indicated
by filled and open circles, respectively. (b) Calculated local charge density obtained
within FB-EFA. Besides the interface dipoles, a charge transfer between the InAs
and the GaSb layers takes place, as indicated.

6.3.1 Narrow layer structures

For optical applications, very important properties of such superlattices are transition
energies, which depend on the relative energies of electron and hole subbands. One
of these transition energies is given by the effective band gap E&', which has been
defined in Sec. 6.2.1. We have calculated E&! for superlattices with InAs and GaSb
layer widths that vary absolutely but are hold equal relative to each other (w; =
wy = w). Concretely, we have investigated layer widths between 2 and 12 nm, and
the temperature has been set to 4 K. As can be deduced from Fig. 6.6, our results show
reasonable agreement with experimental values from Refs. [115, 122]. The deviations
can be explained by the fact that the present continuum model becomes less accurate
for the smallest layer widths considered.

We now turn to a brief discussion of the observed trends in the effective band
gap. For the present structure, we are in the regime of Fig. 6.2(a), where strong
confinement raises the lowest electron-like subband (ep) above the highest hole-like
subband (hg) leading to E&T = E (eg) — E (hg). With increasing layer widths, the
electron-like subbands decrease in energy and the hole-like subbands increase in en-
ergy due to the reduction in carrier confinement. Consequently, ES' decreases as a
function of the layer widths. At w ~ 10 nm, E&! becomes zero. By further increasing
w, the subbands ey and hg swap their positions so that the definition of the effective
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Figure 6.6: Calculated effective band gaps E&T of InAs/GaSb superlattices as a func-
tion of the layer width w; = w,. For comparison, we also show experimental data
from Ref. [122] (full circles) and from Ref. [115] (open circle).

band gap alters to E&! = E (hg) — E (ep). Thus, ES now increases due to the re-
duction of confinement. We would like to point out that for w > 10 nm, a significant
charge transfer between the InAs and GaSb layers occurs (cf. Fig. 6.5) that leads to
a band bending [indicated in Fig. 6.2(b)] which shifts the lowest electron and hole
subbands upwards and downwards, respectively. In addition, a charge self-consistent
calculation is required to determine the chemical potential and therefore the highest
occupied and lowest unoccupied subbands.

6.3.2 Wide layer structures

In this section, we investigate the regime of wide layer superlattices wy,ws > 10
nm in more detail. Here, the energetic order of electron-like and hole-like subbands
is altered, the subband dispersion shows anti-crossings and electron and hole states
hybridize, making it impossible to distinguish them in general (cf. Fig. 6.3). Using
the FB-EFA, we have calculated transition energies between subbands at k; = 0 for
superlattices with InAs layer widths w; in the range of 10 to 55 nm and a fixed GaSbh
layer width of we = 10 nm at 7' = 4 K. Our results are shown in Fig. 6.7. We have
assigned the character of each subband by the shape and location of its wave function
at k| = 0. We find the lowest electron-like subband ey to fall below the chemical
potential and the higher lying subbands hyg, e, e2 to be unoccupied at k| = 0 for the
entire range of layer widths considered. With increasing wy, electron intersubband
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Figure 6.7: Calculated interband and intersubband transition energies of InAs/GaSb
superlattices with fixed GaAs layer width ws = 10 nm, as a function of the InAs
layer width wy. We compare charge self-consistent FB-EFA results (solid line) with a
flat-band approximation that does not include free carrier charges (dashed line) and
experimental results from Ref. [114] (circles).

transition energies (E (e1) — E (eg), E (e2) — E (eg)) always decrease due to reduction
of confinement. This simple trend does not hold for the interband transition energy
E (ho) — E (eg). For the smallest values of w;, the interband transition between the
electron ground state and the hole ground state increases rapidly in energy with
increasing layer width. This is again founded in the reduction of confinement which
now increases the energy difference [cf. Fig. 6.2(b)]. For larger layer widths, this
transition energy saturates as the charge transfer induced band bending compensates
the reduction of confinement. Only for very large layer widths, the charge transfer
effect slightly dominates and leads to a reduction of the transition energy.

Our results are in excellent agreement with experimental data [114]. We can con-
firm that for layer widths w; < 25 nm, the observed transition is an intersubband
transition between electron ground state and first excited state. For larger widths
wi > 25 nm, our results suggest that the observed transition is in fact an interband
transition between electron ground state and the higher lying hole ground state. This
contradicts the assumption of Poulter et al. [114] to measure only intersubband tran-
sitions. However, the slopes of the intersubband transition energies do not fit to the
experimental values at all. The measured energies show a pronounced saturation for
the largest layer widths that can be reproduced only by the calculated interband tran-
sition. Note that the results obtained in a flat-band approximation (which leaves out
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any potential corrections induced by charges) strongly deviate from the charge self-
consistent solution. This clearly demonstrates that a consistent theoretical model for
wide layer broken-gap heterostructures is inevitable to understand the experimental
results.

6.4 Summary

In Summary, we have developed a novel charge self-consistent multiband k-p envelope
function method for the calculation of the electronic structure of type-II broken-gap
superlattices. When a material has a broken gap, standard multiband k-p approaches
fail since they depend on an unambiguous separation into electron and hole states.
The key point in the presently developed full-band envelope function approach (FB-
EFA), however, is to remain in the electron framework throughout. In fact, we
occupy all included subbands with electrons according to the Fermi statistics and
subsequently subtract a positive background ionic charge that guarantees charge neu-
trality. With this procedure, we have calculated local charge densities and subband
dispersions of InAs/GaSb superlattices. We show that the FB-EFA method is equiv-
alent to the standard EFA when applied to narrow layer structures with an ordering
of subbands as in a conventional semiconductor. For wide layer superlattices, the
FB-EFA correctly yields the charge transfer between the InAs and GaSb layers. In
addition, we have calculated optical transition energies of intrinsic InAs/GaSbh su-
perlattices as a function of the layer thickness. We find excellent agreement with
experimental data [114] in a regime where the superlattices exhibit a crossover in the
energetic order of the lowest electron-like and the highest hole-like subbands.



Chapter 7

Shallow impurity states in silicon

7.1 Introduction

Besides quantum dots that have been extensively discussed in the chapters 4 and
5, there is another interesting system in semiconductors where carriers are subject
to three-dimensional confinement, namely impurities. In this chapter, quantitative
electronic structure properties of shallow impurities are presented that have been
investigated in close collaboration with André Stegner from the experimental group
of Prof. Martin Brandt.

Electron paramagnetic resonance (EPR) is known to be an important tool to
identify paramagnetic defects in semiconductors and to manipulate the respective
impurity spin states. The latter aspect is particularly relevant for silicon based quan-
tum computing. In EPR, a magnetic field is applied that splits the Kramers degen-
erate impurity spin states. Then, the individual spin transitions can be excited by
bringing the system into resonance with a strong microwave field [127]. It is known
that the EPR lines of boron in silicon exhibit a pronounced inhomogenous broaden-
ing that depends on the orientation of the magnetic field [128]. However, the origin
of the dominant Gaussian contribution of the broadening has not been understood
so far. Recently, the EPR lineshape of isotopically pure 2®Si has been investigated
[129], showing a strong reduction of the linewidth. This suggests an isotopic effect
to be responsible for the broadening in the natural silicon samples. Similarly, the
residual acceptor ground-state splitting in silicon has been successfully explained by
means of isotopically induced local fluctuations of the valence band edge [130]. In
Sec. 7.2, this approach is extended to nonzero magnetic fields, in order to investigate
the isotopic shift of boron acceptor Zeeman levels and its influence on the EPR line-
broadening. Further details on this analysis can be found in Ref. [129] together with
novel experimental results.

Recently, there has also been a growing interest in freestanding silicon nanocrys-
tals (Si-NCs), due to the novel capability of producing macroscopic amounts of these
structures [131]. When thinking of devices based on Si-NCs, the electronic properties
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can be tailored via doping, which differs significantly from the situation in bulk [132].
The underlying mechanisms such as the dopant confinement and its impact on the
ionization energy and doping efficiency are not yet fully understood. So far, available
experimental data have been explained on the basis of quantum confinement only
[133]. However, it is known that modifications of the electronic states may also re-
sult from a suppression of dielectric screening of the Coulomb interaction [134]. In
Sec. 7.3, we investigate the influence of quantum confinement as well as dielectric
effects on the localization of donor wave functions in Si-NCs of different size. The
author’s present calculations have been published in Ref. [135], where they are used
to interpret recent experimental data.

7.2 Isotopic shift of acceptor Zeeman levels

Boron acceptors in bulk silicon (Si:B) are conventionally described in the hydrogenic
impurity model, where the free charge carrier moves in the electrostatic potential of
the singly charged impurity ion. The ground-state envelope function of the acceptor
hole is the 1s state of a hydrogen-like atom, as shown schematically in Fig. 7.1.
In fact, this ground state is fourfold degenerate due to spin and Bloch basis angular
momentum. In a magnetic field, the degeneracy of spin-resolved heavy and light holes
is removed so that the eigenstates can be approximately classified in the total angular
momentum basis |j = 3/2,m; € {£1/2,£3/2}) (cf. Sec. 1.2.1). Natural silicon ("**Si)
is known to consist of the isotopes 2*Si (92.23%), 2Si (4.67%), and *°Si (3.1%) that
are randomly distributed in a bulk crystal. The influence of different isotopes on the
electronic structure can be described in terms of local fluctuations of the band-edge
energies [130] (see inset in Fig. 7.1). This leads to shifts of the individual acceptor
ground state Zeeman levels which will be investigated in the following.

Ey

ZSSi 298i SOSi

B nucleus

Figure 7.1: Schematic cross section of the boron acceptor ground state in silicon. The
hydrogen-like potential V' (1) of the acceptor impurity leads to a strong localization
of the hole wave function W (r) close to the nucleus. The inset indicates the different
valence band energies of the silicon isotopes.
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Method

In order to determine isotopically induced modifications of the magnetic energy spec-
trum, we first calculate the four Zeeman levels of the boron acceptor ground state in
a magnetic field and subsequently treat the isotope effect on the valence band edge
as a perturbation. We use the six-band k-p envelope function model introduced in
Sec. 1.2.1 that has been augmented by an external magnetic field as discussed in chap-
ter 3. Furthermore, we need to add a suitable Coulomb potential. The Hamiltonian
can be written schematically in the form

H = A8 (r,r',B) + go%sﬁxﬁ B+V(r), (7.1)

where the first term on the right-hand side represents the six-band effective mass
Hamiltonian [Eq. (1.17)] in a discrete real-space basis. This term includes the coupling
to the magnetic field B in a nonperturbative and manifestly gauge-invariant manner,
with B only appearing in phase factors. The second term on the right-hand side of
Eq. (7.1) couples the spin to the field B. Here, pp is the Bohr magneton, gy = 2 is
the free-electron g factor, and the 6 x 6 spin matrices S; = 13 ®6; (i € {z,y, z}) are
completely determined by the Pauli matrices &;. The impurity nucleus is represented
by a negative charge at the center of the simulation domain screened by the bulk
silicon dielectric constant eg; = 11.7. So, the potential energy of the acceptor hole is

given by
2

Vi(r) = +W(r). (7.2)

Esil
We have also included the so-called central cell correction W (r), which describes the

potential very close to the nucleus of dopant atoms [136] and is known to strongly
affect the impurity energy levels. Here, we rely on the parametrization from Ref. [137]

2
W(r) = 6? Aexp(—ar)+ (1 — A)exp (—pr) — M : (7.3)
Si
where the parameters o« = 0.755/ap, 8 = 0.35/ap, v = 2.45/ap, and A = 1.14 are
some fitting parameters. In order to avoid the singularity at » = 0, the potentials
are replaced by (6, for the central grid node, following Ref. [137]. The concrete
choice of the parameter () will be discussed later. In order to account for the long
range character of the Coulomb potential together with the strong confinement at
the acceptor nucleus, we use a simulation domain size of 50 nm along each axis and
an inhomogenous grid with a strong concentration of nodes close to the acceptor po-
sition. With this model, we calculate the four ground state Zeeman levels (labeled by
m; = +3/2,+1/2,—1/2,—-3/2) in external magnetic fields with different orientations
relative to the crystallographic axes.
Next, the isotopic modifications of the band edges are considered perturbatively.
To this end, we map the wave functions on an atomistic silicon crystal lattice. Here,
the envelope function values W (n) at the positions of the silicon nuclei are evaluated
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Figure 7.2: (a) Two-dimensional cross section of calculated m; = 3/2 acceptor ground
state probability density for a magnetic field of B = 0.6 T. The filled circles show the
positions of 28Si (light gray), 2°Si (black), and 3°Si (magenta) nuclei. (b) Schematic
modifications of the energy spectrum by subsequent inclusion of the magnetic field
and the isotopic perturbation potential.

by linear interpolation. As is shown in Fig. 7.2(a), we choose a random configuration
of 28Si, 29Si, and 3°Si isotopes under the constraint of their natural accumulations in
silicon. Following Ref. [130], we introduce the isotopic perturbation potential

0 for 28Si
Vio (n) = { AE? for *Si . (7.4)
AFE for 3°Si

Here, the valence band shifts AE?® = 0.74 meV and AE3® = 1.46 meV arise from a
renormalization of the energies, introduced by the electron-phonon interaction via the
mass dependence of the amplitudes of zero-point fluctuations [130]. Next, we project
the diagonal perturbation potential into the subspace spanned by the four Zeeman
states |U;), leading to a 4 x 4 perturbation Hamiltonian H;** with the elements given

iso
by

H, = (¥ ()| Vieo (1) Sem [¥; (m)) (7.5)

1s0

Finally, we diagonalize the total Hamiltonian H = H 3%—1—1@@:4 including the Zeeman
term ﬁyB = F,0;;, with E; being the energy of the i-th Zeeman level. The isotopic
contribution H2** mixes the unperturbed eigenstates |¥;) so that the eigenvalues
of H are slightly shifted with respect to the unperturbed Zeeman levels, as drawn
schematically in Fig. 7.2(b). From these eigenvalues, one can extract the respective

isotope shifts.
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Figure 7.3: (a) Statistical distribution of the Am; = 1 transition energies for a total
number of 200,000 different isotope configurations. The magnetic field of 0.6 T is
lying in the [001] direction. (b) Calculated convolution (red line) of distributions
from (a) with purely Lorentzian lines that have the linewidths of the experimental
EPR signal of isotopically pure ®Si:B (inset). A comparison with the EPR signal of
natSi:B (black line) shows excellent agreement.

Results

We have performed the calculation of the isotope shifts for 200, 000 different random
isotope configurations and a magnetic field of 0.6 T. In Fig. 7.3(a), the resulting
statistical distribution of the Am; = 1 transition energies is shown for the magnetic
field lying in the [001] direction. We find the distribution of the £ (+1/2) — F (—1/2)
transition energies to be very narrow, while the F (+3/2) — E (+1/2) and E (—1/2) —
E (—3/2) transitions vary by up to 10% due to the isotope shifts. This can be
understood by the fact that the former transition takes place between two very similar
states that are dominantly light-holes and experience very similar isotope shifts. By
contrast, the latter transitions comprise light hole like and heavy hole like states
which are more differently perturbed by the isotopes.

The statistical distribution of the transition energies can be used to explain the
experimentally observed broadening of the EPR lines. In Fig. 7.3(b), we show EPR
signals for "Si:B (black line) and isotopically pure ®Si:B (inset), recently measured
by the group of Prof. Kohei Itoh (Keio University, Japan) [129]. The microwave
source had a resonance energy of 40 peV (9.7 GHz). As one can see, the "*'Si:B
signal exhibits a pronounced broadening with respect to the ?Si:B signal. In order
to analyze the isotopic effect, we have convoluted the transition energy distribution
functions from Fig. 7.3(a) with purely Lorentzian lines that have the linewidths of the
28Si:B spectra. The resulting calculated signal (red line) shows striking agreement
with the "**Si:B signal (when neglecting the fine structure of the left transition), and
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Figure 7.4: Calculated Am; = 1 EPR linewidths as a function of the magnetic field
direction parametrized by the angle between the [001] direction (0°) and the [110]
direction (90°). (a) We compare calculated linewidths for the m; = £3/2 <= m; =
+1/2 transitions (filled circles) with new experimental data presented in Ref. [129]
(filled squares) and previously reported data from Ref. [128] (open squares). (b) Same
for the m; = +1/2 <= m; = —1/2 transition.

demonstrates that the line-broadening is in fact an isotopic effect. More details on
these calculations together with an explanation of the fine structure can be found in
Ref. [129].

We have repeated the calculation of the EPR line-broadening for different direc-
tions of the magnetic field. Fig. 7.4 shows the calculated peak-to-peak linewidths of
the individual Am; = 1 transitions as a function of the magnetic field direction, rang-
ing from [001] (0°) to [110] (90°). As can be deduced from the figure, the line broaden-
ing is strongly anisotropic. We find the linewidths of the m; = £3/2 <= m,; = +1/2
transitions to have a minimum for B || [001] and a maximum for B || [111]. For the
m; = +1/2 <= m; = —1/2 transition, the situation gets reversed. Comparison
with experimental data again shows excellent agreement. We note that the only free
parameter used in these calculations is the potential () at the central grid node that
has been chosen to obtain the correct mixing of heavy and light hole states, which is
responsible for the inhomogenous energy spacing between the Zeeman levels. Con-
cretely, we have fitted the parameter only once to reproduce the experimental splitting
of 49 mT between the transition energies E (+3/2)—E (+1/2) and E (1/2)—E (—1/2)
[shown in Fig. 7.3(b)] for the magnetic field lying in the [001] direction.

Altogether, we have been able to successfully explain the anisotropic broadening
of EPR signals for boron in natural silicon by isotopic shifts of the acceptor Zeeman
levels. In addition, we would like to note that the present analysis forms an inde-
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pendent verification of the band offsets between the different silicon isotopes given in
Ref. [130].

7.3 Donor wave functions in silicon nanocrystals

Phosphorus donors in bulk silicon can again be described in the hydrogenic impurity
model, where the donor electron moves in the electrostatic potential of the singly
charged donor ion screened by the bulk dielectric constant ey, = 11.7. The ground-
state envelope function of the donor electron is shown schematically in Fig. 7.5.
In silicon nanocrystals (Si-NCs), the electronic states are known to become more
localized [133], leading to different ionization energies and doping properties compared
to the bulk. However, it is not known which mechanisms dominate the electronic
structure modifications. Existing models can be classified into the following two
groups. In simple quantum confinement models, the donor wave function deviates
strongly from the hydrogen-like function due to the influence of the confining potential
Vo, as has been sketched in Fig. 7.5(a). On the other hand, it has been predicted
in many theoretical investigations [134, 138, 139] that the screening of the Coulomb
potential is reduced in nanocrystals. In a pure dielectric confinement model, the
donor electron localization arises from a size-dependent dielectric screening exc (R),
which enters the Coulomb potential V, (r) = —1/[enc (R) ] between the impurity
nucleus and the donor electron (R denotes the radius of the nanocrystal and r is the
distance from the nucleus). This can also lead to an increase of the electron density
at the impurity nucleus |¥ (0) |?, as shown schematically in Fig. 7.5(b).

Method

In order to clarify the relative contributions of dielectric confinement and quantum
confinement to the localization of donor states in nanocrystals, we use an approach
that considers both the surface confining potential and a size-dependent screening of
the Coulomb potential. Concretely, we rely on the single-band effective-mass model
introduced in Sec. 1.2.1 that has been augmented by a suitable potential. The Hamil-
tonian is given by

1

H(r) = §PT

1

’ﬁ’l*

p+Vi(r), (7.6)

where m* denotes the effective 3 x 3 mass tensor for a silicon delta valley with
longitudinal and transverse masses of m; = 0.92mgy and m; = 0.19my, respectively.
The impurity nucleus is represented by a positive charge at the center of a spherical
nanocrystal. So, the potential energy of the donor electron is given by
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V(T):—m—i—W(T) for 0 <r <R, (7.7)
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Figure 7.5: Schematic cross sections of the donor ground state in a semiconductor
nanocrystal. (a) In the quantum confinement model, a large boundary barrier V;
is added to the hydrogen-like potential V' (r) of a donor impurity in a bulk semi-
conductor. The solid black line sketches the deformation of the wave function with
respect to the bulk case (dashed line). (b) In the dielectric confinement model, the
bulk dielectric constant ey, is replaced by a smaller value ex¢, which depends on
the size of the nanocrystal. By this, the screening of the positive donor charge is
reduced within the nanocrystal, leading to an increase of the probability density at
the nucleus.

where we model the confining potential with a hard wall potential V; — 400 for
r > R. For the change of the dielectric screening, we take the relation

Ebulk — 1

enc (R) =1+ = (a/R)p (7.8)
which has been derived from a generalization of the Penn model to nanocrystals
[134]. Theoretical estimations of the parameters o and ! include calculations of
absorption spectra using empirical pseudopotentials [134] or ab-initio methods [138],
both predicting a similar reduction of the electronic screening with respect to the
bulk. In our calculations, we use the values @ = 0.97 nm and [ = 1.3 determined in
Ref. [138]. The use of slightly different values obtained by other authors gives nearly
the same results and does not alter our conclusions. For our Si-NCs, we assume the
same central cell correction parametrization as established previously for P in bulk
Si [139]. Le. for W(r) in Eq. (7.7) we again use Eq. (7.3), but with reversed overall
sign. Furthermore, the parameters «, (3, and v now equal 0.7572, 0.3123, and 2.044
of the reciprocal Bohr radius, respectively, and A = 1.175. In order to avoid the
singularity at r = 0, the potentials are replaced by —Q9, ¢ for the central grid node,
following Ref. [139]. Here, the parameter @) has been fitted to obtain the experimental
binding energy of a P donor in bulk Si (45.6 meV) for the case of a very large Si-
NC (R = 25 nm). This simple model has the advantage of being applicable also to
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large nanocrystals, unlike previous first principles approaches [140]. In addition, the
individual contributions of dielectric confinement and quantum confinement can be
easily switched on and off.

Using this model, we now calculate the electron ground state probability density
as a function of the nanocrystal radius. The peak probability density at the donor
nucleus |V (0) |? can be probed in EPR experiments via the Fermi contact hyperfine
splitting A oc |¥ (0) |? arising from the interaction between the electron spin and the
spin I of the impurity nucleus. For 3 P (I = 1/2) in bulk Si, the hyperfine splitting is
Apuk = 4.2 mT [141]. The size dependent hyperfine splitting A(R) is then calculated
from the relative change of the electron probability density at the donor nucleus

ACR) = Ay 22OF (7.9)

Yoo (0)[*
Here, the wave function ¢, (0) representing the limit R — oo, was approximated by
a Si-NC with a radius of 25 nm.

Results

In Fig. 7.6, we show our calculated results (solid line) that indicate a strong increase of
the hyperfine interaction with the reduction of the nanocrystal radius R. In addition,
we compare our results with experimental data (circles) and find excellent agreement.
In order to elucidate the sole contributions of quantum confinement and reduced
dielectric screening, we have considered two additional variations of the model. In the
pure quantum confinement model (dotted line), the size-dependence of the dielectric
screening is neglected by substituting exc (R) with epyy in Eq. (7.7) [cf. Fig. 7.5(a)].
In the pure dielectric confinement model (dashed line), the confining surface potential
is neglected by setting Vo = 0 [cf. Fig. 7.5(b)]. As can be deduced from Fig. 7.6, the
pure quantum confinement model leads to a significant increase of the hyperfine
splitting only for small radii below R = 5 nm. By contrast, the dielectric effect on
the confinement results in a continuous increase already at large radii, but is less
important in the limit of small R.

Experimentally, only very small nanocrystals with a radius between 2 and 3.5 nm
have been investigated so far (open circles) [133]. Here, the increase of hyperfine
splitting could be explained solely on the basis of quantum confinement due to the
potential barrier V; of the surrounding medium. Namely, the dependence of the
hyperfine coupling on the nanocrystal radius R has been described with a R~ law
[133], which corresponds to the localization of an electron in a spherical potential of
infinite height without any Coulomb potential. This interpretation can be verified also
by our more realistic quantum confinement model (dotted line). In order to clarify,
whether this general conclusion also holds for larger nanocrystals, the group of Prof.
Martin Brandt has performed measurements of hyperfine splittings associated with P
donors for Si-NCs in the range of 3 to 16 nm (full circles), using electrically-detected
magnetic resonance (EDMR) [135]. Although the two experimental sets of data agree
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Figure 7.6: Calculated probability density of the donor ground state at the nucleus
parametrized by the appropriate 3! P hyperfine splitting, as a function of the nanocrys-
tal radius. We show results obtained by a pure quantum confinement model (dotted
line), a pure dielectric confinement model (dashed line), and our full model where
both effects are considered (solid line). Comparison with recent experimental data
[135] (full circles) and previous data reported in Ref. [133] (open circles) shows ex-
cellent agreement.

reasonably, with a discrepancy at most in one single data point, the pure quantum
confinement model used to describe the previous data, clearly deviates from the more
recent results. On the other hand, the agreement with our full model (solid line) is
striking and demonstrates that the reduction of dielectric screening is dominant for
nanocrystals in the large size range, whereas for Si-NCs with radii below 6 nm both
quantum confinement and dielectric confinement contribute to donor localization. By
this, we have demonstrated that dielectric effects are very important in understanding
nanoscale phenomena such as dopant confinement.

Supplementary information

Finally, we would like to note some further details that have been considered in
the present calculations. As our model is based on a spherical Si-NC in vacuum,
a realistic treatment of the problem in principle has to take into account the effect
of self-polarization fields. They can be understood as the electric fields of image
charges that are induced by the donor ion and donor electron due to the change of
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the dielectric constant at the Si-NC/vacuum boundary. Analytic expressions for the
contributions of these effects to the Hamiltonian of the donor electron can be found in
Egs. 5 and 6 of Ref. [139]. While, in the case of the central donor position, the image
charge of the donor ion only contributes a constant term to the Hamiltonian and
cannot alter the donor wave function, the self-polarization term of the donor electron
always has to be taken into account. Although, we find this self-polarization term
to slightly increase the hyperfine splitting, it is by far not sufficient to explain the
experimentally observed enhancement of the hyperfine coupling with respect to the
pure quantum confinement model. For the sake of simplicity and due to the almost
negligible magnitude of the polarization effect, we have omitted its discussion in the
previous parts.

We should also note that the experiment does not have control over the location
of P inside the Si-NCs. In order to estimate the influence of the donor position on
the hyperfine splitting, we have also considered off-center donor positions. Here, we
observe a small increase of the hyperfine splitting when the donor is moved from the
center of the Si-NC toward the surface. A maximum is reached at approximately
3/4R, followed by a rather sharp drop of the hyperfine coupling for positions even
closer to the nanocrystal boundary. However, we believe that our model overestimates
these variations due to its continuous medium character that does not accurately
describe material interface regions. This assumption is supported by recent ab initio
pseudopotential calculations [140]. Here, the amplitude of variation of the hyperfine
splitting that is calculated when P is moved from the center toward the surface, is
shown to decreases as the size of the nanocrystal increases, being only 10% for the
smallest nanocrystals investigated experimentally (R ~ 3 nm). Thus, for a realistic
distribution of donor positions in an ensemble of Si-NCs the resulting uncertainty of
the hyperfine splitting is estimated to be far below the experimental error bars shown
in Fig. 7.6.

7.4 Summary

In this chapter, we have investigated electronic structure properties of shallow impu-
rities in silicon. Concretely, we have studied boron acceptors in bulk silicon subject
to external magnetic fields. Here, we have calculated the isotopic shift of accep-
tor Zeeman levels via isotope induced local fluctuations of the band gap. We show
that the inhomogenous broadening of EPR lines in natural silicon can be successfully
explained solely by this effect [129].

In addition, we have investigated the contributions of quantum confinement and
suppressed dielectric screening to the localization of donor wave functions in silicon
nanocrystals. We observe a strong increase of the probability density at the position
of the donor nucleus with the reduction of the nanocrystal radius. Our results are in
excellent agreement with recent measurements [135] and show that dielectric effects,
which have been neglected in the interpretation of most previous experiments, play
a critical role.
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Chapter 8

Summary and outlook

The main topic of this work has been the study of spin-related electronic structure
properties of semiconductor nanostructures in magnetic fields. Here, the goal has
been to propose a concrete application for solid state quantum information process-
ing by numerical calculations within realistic three-dimensional models that include
the detailed geometry and material composition. However, this study requires the so-
lution of the Schridinger equation for a mesoscopic semiconductor system, for which
it is known that an accurate nonperturbative incorporation of the magnetic field
requires special care to ensure gauge-invariant results.

Therefore, we have developed a novel general method to solve the multiband
Schrodinger equation including strain, relativistic effects, and an external magnetic
field in an efficient and manifestly gauge-invariant manner. It is based on the con-
cept of gauge covariant derivatives and has been adapted from lattice gauge theory.
We have successfully applied this method to investigate the quantitative electronic
structure of realistic, experimentally realizable quantum dots subject to magnetic
fields. From the magnetic energy spectrum, we have identified the gyromagnetic fac-
tors as the most application relevant properties, since these g factors characterize the
splitting of spin states in magnetic fields and their spin precession frequency. We
find them to be in fact anisotropic tensors and to strongly vary with the size, shape,
and composition of the quantum dots. The limited bias tunability of g factors in
single quantum dots has motivated us to extend the analysis to pairs of coupled dots.
Indeed, we predict a giant electrically controllable anisotropy of hole g factors in
self-assembled quantum dot molecules that allows ultrafast and coherent single-spin
manipulations in a static magnetic field. This effect is used to propose a concrete
realization of an efficient single spin-qubit gate. The accuracy of our calculations
is verified by the fact that we are able to quantitatively explain experimentally ob-
served resonant enhancements of exciton g tensor components for vertical magnetic
fields without any fitting parameters. The experimental realization of our theoretical
predictions is currently under investigation by the group of Prof. Jonathan Finley.

A second goal of this work has been the investigation of optoelectronic prop-
erties of heterostructures with a broken-gap band alignment. Here, we have faced
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the problem that standard multiband envelope function approaches fail to calculate
the correct free-carrier charge density, because the separate occupation of electron
and hole states is incompatible with a strong hybridization of conduction band and
valence band states. Therefore, we have developed a novel charge self-consistent
electronic structure scheme that remains in the electron framework throughout and
occupies all included subbands according to Fermi statistics, before subtracting a
positive background ionic charge to guarantee charge neutrality. With this proce-
dure, we have calculated optical interband and intersubband transition energies of
InAs/GaSb broken-gap superlattices. Such structures are of great interest for the fab-
rication of infrared lasers and infrared detectors. We obtain excellent agreement with
experimental data and partly revise previous interpretations that lacked a consistent
theoretical model.

With this work, we have also contributed to the field of silicon based quantum
computing, where the quantum information is stored in the spins of shallow impurity
states. In close collaboration with the experimental group of Prof. Martin Brandt,
we have analyzed the influence of the isotope ratio in natural silicon on the spin
energy levels of boron acceptors in external magnetic fields. We have successfully
explained the broadening of EPR spin transition lines by isotope induced shifts of
band gap energies. In addition, we have clarified that dielectric effects play a critical
role on dopant confinement in silicon nanocrystals. This is crucial for understanding
the process of electronic doping in nanostructures.

A final and very important benefit of the present work has been the develop-
ment of the nanodevice simulation package nextnano++. The software provides a
global insight into a wide range of electronic, optical, and transport characteristics of
mesoscopic semiconductor structures with virtually any geometry and combination
of semiconducting materials. It is freely available and has many users in the scientific
community worldwide. Due to its modular structure and the heavy usage of mod-
ern object oriented programming techniques, the software explicitly allows to easily
extend its capabilities.

For the near future, it would be interesting to investigate the influence of exchange-
correlation effects on the spin splittings of confined carriers and therefore the g fac-
tors. The magnetization of semiconductor nanostructures filled with a few charge
carriers might also be relevant. In addition, an extension of the gauge-invariant
discretization scheme to periodic structures would be useful. By this, one could
also calculate magneto-optical transition rates for the quasi one-dimensional broken-
gap heterostructures. This would allow more detailed comparison with experiments,
which mostly rely on high in-plane magnetic fields to brake the selection rules. An-
other interesting future capability would be the calculation of carrier transport in
magnetic fields. This would allow one to study, e.g., quantum Hall edge channels
and realistic spintronic devices. However, this first requires the implementation of
more sophisticated quantum transport models in nextnano++-, which are currently
in development.



Appendix A

Wurtzite k-p Hamiltonian

In Sec. 1.2.1, we have presented the k-p Hamiltonian of the zincblende crystal struc-
ture. In the following, we will provide analogous relations for the wurtzite structure
that are needed, e.g., to describe the group-III nitrides GaN, AIN, InN, and their
ternary compounds.

For wurtzite materials, only the band extrema at the I-point (kg = 0) are physi-
cally relevant, so that the single band EMA Hamiltonian (1.14) reduces to

. h? 1
HEMA (k) = E" + — k' —k Al
with a diagonal effective mass tensor m*
m* = (mf —m’)eel +mi13?, (A.2)

where m} and m} are the effective masses along the hexagonal c-axis (e, = [0001])
and the perpendicular directions, respectively. In principle, this model can be used for
electrons and holes. However, more accurate results can be obtained in the coupled
eight-band model.

In the basis of spin-resolved zone-center conduction and valence band Bloch func-
tions

lgo) € {ls )5 ls L)y lza 1) e 1) lwa 1)l L) sz 1) s f2a DD} (A3)
the eight-band Hamiltonian reads [142]

. H2X2 (k) 26 (k) .
H® (k) = | oo : waoy - +HEE (AM)
Hy% (k) HoyS, (k) + Hyd, + HYo ’
with R
HZ22. (k) = (E. + ki1Sok1 + kaSak + ks Siks) ® 172, (A.5)

A2, (k) = (iPyky + koBiks iPyky + ksBoky  iPiks + ki Bsks) ® 1%, (A.6)

WZ,CV
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76X 6 § : 2 6x6 3x3 2x2
sz,vv (k) E + 2 k ® 1 + sz ,VV (k) ® 1 ? (A8)
mo
S ax3 k1L1k1 + ko M1ko + k3 Moks k1N1+k2 + kaNy k1 k1N2+k3 + k3 Ny k1
sz,vv (k) = kiNy k2 + k2N1+k1 k1Miky + k2 L1ka + k3 Maks kQNQJrkS + k3N, ko
klNgkg + k3N2+k‘1 kzN;k‘g + ng;kz k1Msk1 + ko Msko + k3 Loks

(A.9)
Here, the parameters S; and S, characterize the conduction band effective masses, P;
and P, are the interband coupling matrix elements, and By, By, B3 are bulk inversion
asymmetry parameters. The Dresselhaus parameters Ly, Lo, My, M5, M3, N1, Ny can
be written in terms of the more widely known Rashba parameters Ay, ..., Ag [143]

h h
L, = o — (A + A+ Ay - 1), Ly 2m0 — (A - 1), (A.10)
h h
Ml 2m0 (A4+A2 A5— ].), M2 = 2—%<A1+A3— 1), (A].].)
h h h
M; = (Ay —1), Ny = —245, N, = —\/§A6. (A.12)
2my 2my 2my

The ordering of material parameters with respect to momentum operators can be
derived using Burt’s exact envelope function theory [15]. Following Ref. [144], the
parameters N;° are given in terms of tabulated ones

N =N;,— M;, N = M,. (i=1,2) (A.13)

]

The spin-orbit coupling of the valence bands is included via the term

0 —ily 0 0 0 As
(A 0 0 0 0 —iAg
cexe | 00 0 —As; iAy 0
W2,50 0 0 —Ag 0 ZAQ 0
0 0 —1As —i1Ay 0 0
As 1A 0 0 0 0

, (A.14)

with Ay = A / 3 and Az = ALY /3. Wurtzite materials are subject to an additional
crystal field splitting

Ay 0 0
S =10 A 0] ®122 (A.15)
0 0 0

that lifts the degeneracy of the heavy hole band and the light hole band for k = 0,
already in the absence of strain.

In the eight-band Hamiltonian (A.4), the strain contribution via deformation po-
tentials is given by [142]

sz,s ® 12><2 0
HSXS < 0 H3><3 ® 12><2) (A16)

WZz,e
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Here, the strain induced energy shift of the conduction bands is given by
Hy,. =%, (€11 + €92) + Eess, (A.17)

where Z; and =, are the longitudinal (with respect to the hexagonal c-axis) and the
transversal deformation potential, respectively. The valence-band part reads

lie11 + My + moess nici2 N2&13
3% 3
wz,e Ni€i12 ligaa + mugrr + maess N2€23
N2E13 N2E23 lagss + mg (€11 + €22)

(A.18)
Here, the parameters [y, ls, m1, ms, m3,n1,ny depend on the deformation potentials
di, ..., dg [143] via the relations

li =ds +dy +dy, Iy = dy,
my = ds +dy — ds, my = dy +ds, m3 = da,
ny = 2d5, Ng = \/§d6 (Alg)
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Appendix B

Local spin density approximation

(LSDA)

In this appendix, we present the parametrization of the exchange-correlation poten-

tials introduced in Sec. 1.3.3. We have implemented the local spin density method

by invoking the LSDA functional of Perdew and Zunger [38]. This method accounts
for the spin polarization ) )
7’LT X)—ni\x

((x) = T (B.1)

with n(x) = n;(x) + n|(x),where nq(x) and n|(x) denote the spin-up and spin-down

carrier densities, respectively. The LSDA exchange-correlation potential is given by

VER) = g
= V() + VI (x), (B.2)
with the exchange (x) and correlation (c) energies
Eze(X) = €,(%) + (%), (B.3)
€a/e(X) = {ehe(rs (%)) + [eae(rs (%)) — €5 e(rs (%))] F(C(x)) } H, B.4

and appropriate potentials
V() = {Vee(rs () + [Vie(re(x)) = Vie(ro(x))] £(¢(x))
+[€f/c(7“s( ))—65/0(7“3( x))] (£1 = ¢(x)) f'(C(x))} H". (B.5)

Here, energies and potentials are interpolated between the LDA expressions for a
homogenous carrier gas that is fully polarized (P: ( = 1) or completely unpolarized
(U: ¢ = 0) using the interpolation formulas

10) = sl + 0+ (1= 0¥~ (8.6
F(Q) = g 1+ O — (1] (B.7)
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Furthermore, we introduced the characteristic length scale

o= () B5)

Energies are generally measured in units of effective Hartrees H* = m*/e?H, and
lengths in units of effective Bohr radii a}; = ¢/m*ap, where ¢ is the (dimensionless)
static dielectric constant and m* is the (dimensionless) effective mass. We use the
static rather than the electronic (also referred to as "high frequency") dielectric con-
stant since we assume that, in the majority of applications, the kinetic energy of the
electrons will not exceed the optical phonon energy of typically 50 meV so that the
phonons are able to screen the free carriers. One may argue that it is more appro-
priate to use the electronic dielectric constant in the eight-band case, but we use the
same value throughout for consistency reasons. The value to be used for the effective
mass depends on the k-p band model as shown in the table below. Note that the
dominating exchange potential is actually independent of the effective mass so we
are not introducing a noticeable inconsistency between single-band versus eight-band
solutions in this way. For an ellipsoidal valley, we use the same average density of
state mass, irrespective of the actual density of states of a particular valley. The
rationale behind this is the fact that the usage of a different density functional for
each valley is in conflict with the variational Hohenberg-Kohn principle.

*

Single-band situation (spherical) m

Single-band situation (ellipsoidal) m* = ¢*3 (mym2)"/* (B.9)
Six-band situation: m* =1 '
FEight-band situation m* =1

Here, g is a valley degeneracy factor; it counts the number of valleys that remain
equivalent independent of the symmetry and strain. This factor is 2 only in Si where
a maximum of 3 (out of 6) valleys can become nonequivalent; for all other cases with
valleys at the Brillouin zone boundary it is 1.

By inserting the concrete expressions for the polarized and unpolarized cases, the
exchange energies and potentials can be simplified to

3/9\" 11 4/3 4/31 7+
)= () el CODY (L= CE) ™ (BA0)
= ()~ el B (B.11)
H(x) = e () X . .
For the correlation energies and potentials, we use the parametrization of Ref. [38]
i) — il (14 Bi/rs + Birs) re>1
eel(rs) = { (Ailnrs+ B; + Cirslnrg+ Dirg rg <17 (B.12)

Vi(r) = e (14181 /rs + 48ir) | (14 Biy/m+ Birs)  re>1 -
e (Ts Ailnrg+ (B — $4;) + 2CiryInrg + 2 (2D, — Ci) g 1 <1 :



with ¢ = U, P and the set of parameters given in the following table.

U
-0.1423
1.0529
0.3334
0.0311
-0.048
0.0020
-0.0116

P
-0.0843
1.3981
0.2611
0.01555
-0.0269
0.0007
-0.0048
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Appendix C

Analytic expressions for strain in
heterostructures

In Sec. 1.4, the strain in multi-dimensional nanostructures has been calculated by
minimizing the total elastic energy via the differential equation (1.83). In quasi
one-dimensional structures, the range of possible geometries is strongly reduced to
heterostructures only. In this situation, analytic expressions can be found for the
strain in layers that exhibit a lattice mismatch with respect to the substrate. For an
arbitrary growth direction [hkl], the following general relation can be found for the
distortion tensor in the Cartesian basis [42, 145, 146]

Ug 0 0 n%Dl n1n2D1 TLl’I’Lng
= 0 Uo 0 + D anLgDQ nng n2n3D2 s (Cl)
0 0 Vo n1n3D3 ngnng n%Dg

with the normalized vector

s 1 h
n=n|=—o— [k]. (C.2)
N NGRS
3

[\

In zincblende materials, the remaining variables are given by

Ug = Vg = s~ a, (03)

a

D, = D,D., Dy = D,D., Dy = D,D,, (C.4)

Dm = (CH — 012 - 044) n% + C44 (ng + ng) ,
Dy = (Cll —Ch2 — 044) n§ + Cyy (n% + ng) ,
Dz = (CH — 012 - 044) TL?)) + C44 (n% + ng) s (05)
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u C11 + 20
*D.D,D, 4 (C1y + Cuy) (n2Dy + n2Dy + n2D3)’
Here, a and a, denote the lattice constants of the strained layer and the substrate,

respectively, and Cj; are the elements of the fourth rank elasticity tensor in Voigt
notation. For wurtzite crystal structure, the analogous relations read

D=

(C.6)

CLS—CI,,UOZCS—C7 (07)

a C

Ug =

C33Wy — (Ci3 + Cua) W
TL3,
Cua

(n}+n3), (C.8)

D1:D2:W1 (n%+n§)+

C1uWsy — (Ci3 + Cyg) W1
Cus

D3 = Wgng +

Wi = —ug (C11 + Chr2) — v9Chs,

W2 = —U02013 — ’U0033, (Cg)
C11C55 — 2C15C — C2 -
D= |Cy (nf + n%)2 + Ca3ng + 155 c B Bnd(n+n3)| . (C.10)
44

Here, additional lattice constants ¢ and ¢, have been introduced for the hexago-
nal c-axis. The strain tensor € can be obtained straightforwardly by symmetrizing

Eq. (C.1).



Appendix D

Calculation of discrete
approximate derivatives

In order to calculate semiconductor nanostructures, we have to solve several differen-
tial equations that have been introduced in chapter 1. In chapter 2, we have already
discussed the numerical realization of this task. However, we often need to exam-
ine not only the solutions f of the differential equations but also derivatives 0, f of
these properties. Concretely, we are interested in the electric field F [Eq. (1.67)], the
distortion tensor é [Eq. (1.70)], and the current density j [Eq. (1.106)] that have to
be calculated in a post-processing step from the electrostatic potential ¢ [determined
by Eq. (1.65)], the displacement vector u [Eq. (1.83)], and the quasi Fermi level Ep
[Eq. (1.105)], respectively. Since these functions have been discretized for numerical
solution, their derivatives can as well only be evaluated via discrete approximations.

After discretization and numerical solution of a Laplacian operator d;a (x) 0, f (x)
[Egs. (1.65), (1.83), and (1.105)], we have obtained a discrete vector f that approx-
imates the continuous function f and is defined only on the N grid nodes m of the
rectangular lattice introduced in Sec. 2.3. Since we have employed box integration
discretization, the discrete approximate derivatives (0;f — 0,f) are defined on the
perpendicular boundary segments of the control boxes. We now exemplify this issue
for the two-dimensional grid shown in Fig. D.1 and consider a particular boundary
segment S (m + 1/2,my) that belongs to the control box of the grid node (my,ms).
Since a (x) is constant within each of the quadrants of the control box, while f is
defined on grid nodes only, we split the line S into two parts S (m1 +1/2, m%) (in
3D we have four surface elements), where the discrete derivative is given by

f(mi+1,mg) — f (m17m2).

(adLf) (m1 + 1/2,m§t) =a(my+1/2,my +1/2) e1 (my, +1)

(D.1)
In most situations, we are interested only in the average derivative in each lat-
tice area. For the area defined by the center point (m; + 1/2,my — 1/2) this re-
quires to sum the contributions from the surface elements S (m; + 1/2,m;) and
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(m,+1/2,m,+1/2)
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Figure D.1: Sketch of two-dimensional rectangular grid at the interface between a
contact (dark gray area) and the inner simulation domain (light gray area). The
current density is defined on the boundary segments of the control boxes (dashed
lines). In order to calculate the current that flows into the contact (gray arrows), one
has to integrate the current density over the surrounding control box surface.

S (mi +1/2, (my — 1)), leading to the formula

a(my+1/2,mqy —1/2)
2e1 (my, +1)

—|—f (m1 —+ 1,m2 — 1) — f (m17m2) — f(ml,mg — 1)] .
(D.2)

(a(51f) (m1 + 1/2,m2 — 1/2) = [f (ml -+ 1,m2)

For the d-dimensional case, we have to sum over 2¢7! (d — 1)-dimensional surface
elements, and the relation can be generalized to the form

a(m,o/2)
29-1¢; (my, 1)

(ad,f) (m,0/2) = > (205 1) f (m, o), (D.3)

a./

with 0; = 1 and o] € {0,1} for i = 1,...,d. In the particular situation of the
current density, we sometimes need to consider the individual contributions of the
control box surface elements, separately. This happens at edges of contacts, when
the current density is integrated over the contact surfaces in order to determine the
total current flowing in or out of the contacts. In Fig. D.1, we have indicated the
current contributions by gray arrows. As one can deduce from the figure, the corner
lattice area associated with the center point (m; + 1/2, my + 1/2) needs to be treated
differently from the other areas.



Appendix E

Continuum limit of gauge
covariant discretization

In Sec. 3.3.3, we have shown that the correct continuum limit holds for the approx-
imations of the first-order gauge covariant derivatives. In order to prove Eq. (3.37)
for the second-order derivatives with i = j, we expand the connection U in Eq. (3.30)
up to second order of ¢

1 2

. .€
U(m,m+ s;g;,i) = 1—|—si1ﬁA (m) e+s? ilh (0;A;) (m) &2 — 53 EEAQ (m)e®+0 (e%) .
(E.1)
For the wave functions F, we have
F (m + s;e;) = F (m) + s,0,F (m)e + s; 583 (m)e? + O (£%) . (E.2)
By inserting Egs. (El) (E.2) into Eq. (3.18), we get
2
A”F o 62 Z C” Si { ) + SlaZF ( )8 + 8 587, F ( )
+s; lf_iAi (m) ¢ [F (m) + s,0,F (m)e]
91
w1 @) @) - o | P 2 0. (9

Here the sum runs over s; € {0, +1}. The first line in Eq. (E.3) must tend to 0?F (m)
as in the field-free case, which requires the coefficients to obey

Using these relations, the entire expression Eq. (E.3) tends toward the correct con-
tinuum limit Eq. (3.37)

AGF (m) = [0+ 154, (m)]QF (m)+ 0 (c). (E.5)
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For the mixed second-order derivatives, the diagonally adjacent neighbors are needed.
For this case, we expand Eq. (3.31) analogous to Eq. (E.1)

U(m,m+ s;g; + sjej,ij) =1+ sl A; (m) + SjiEAj (m)] 5

A h
1].e e’
+ 5?5 ir (0;A;) (m) — ﬁAg (m)} e’

+ SiSj _lﬁ (&AJ) (m) - ﬁAZ (m) AJ (m)} 82

1[.e e?
+ S?ﬁ Iy (0;4;) (m) — =

A? (m)] e+0(%). (E6)
Furthermore, we need
F(m + sig; + sj¢;) = F (m) + [5,0,F (m) + 5,0,F (m)] ¢

1 1
+ [335822F (m) + 5;5;0;0,F (m) + s2=0°F (m)] e+ 0 ().

i9Yi
(E.7)
Inserting these relations into Eq. (3.18), gives (s;,s; € {0, £1})
1
AUF (m) = g Z Cij (87;, Sj) {F (m) + [sz&F (m) + stjF (m)] €
2L oew 8,0,F 2Loep 2
+ 32‘5 °F (m) + 5;5;0;0; (m)+5j§ i (m)| e
+ [sii%Ai (m) + sji%Aj (m)] [F (m) + 5;0,F (m) e + s;0;F (m)¢|e
22 [1€ 00) (m) — S 42 (on)| ¥ (an) 2
S 2 )
e e? 5
21 :- € e? 2

Again, the field free case constricts the coefficients to

Z Cij (SZ‘, Sj) = Z Cz'j (SZ‘, Sj) S; — 0, Z Cij (Si, Sj) Sj = O, (Eg)

Si,85 84,85 84385
ZC’ij (Si,Sj>SJ2» = ZC” (SZ‘,SJ') S? = 0, ZC” (Si,Sj) SiS; = 2. (E]_O)
8,85 8i,85 Si,S5

Inserting these relations into Eq. (E.8), results in Eq. (3.37)

A,F (m) = [ai +i%Ai (m)] [aj —i—i%Aj (m)} F(m) + O (), (E.11)

which has the correct limit.
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