
Subspace Estimation Using Unitary Schur-Type Methods 

Jiirgen GGtze, Martiti Haurdt, atid Josef A. Nossek 

Institute of Network Theory and Circuit Design 
Dept. of Electrical Engineering, Technical University of Munich 

D-80290 Munich, Germany 

Abstract- This paper preseiitsefficieiit Schur-type algorithnis for esti- 
mating the colonin space (signal subspace) of a low rank data niatrix 
corrupted by additive noise. Its couiputational structure and coniple- 
xity aresiniiliar to that ofanLe-decomposition,except for the fact that 
plianeand hyperbolic rotationsareused. Therefore, they arewell suited 
for a parallel (systolic) inipleiiientation. The required rank decision, 
i.e., an estimate of the number ofsignals, is automatic, and updating as 
well as downdating are straightforward. The new scheme computes a 
iiiatrixofiiliniiiial rankwhich isy-close to thedata matrixin thematrix 
2-nori11, where y is a threshold that can be deterniined from the noise 
level. Since the resulting approxiniation error is not minimized, criti- 
cal sceiiarios lead to a certain loss of accuracy conipared to SVD-based 
methods. This loss of accuracy is compensated by using Unitary ES-  
PRIT in conjunction with the Schur-type subspace estimation scheme. 
Unitary ESPRIT represents a simple way to constrain the estimated 
phase factors to the unit circle and provides a new reliability test. Due 
to the special algebraicstructure of the problem, all required factoriza- 
tions can be transformed into deconipositions of real-valued matrices 
of the same size. The advantages of Unitary ESPRIT dramatically im- 
prove the resulting subspace estimates, such that the performance of 
Unitary Schur ESPRIT is comparable to that of SVD-based methods, at 
a fraction of the computatioiral cost. Compared to the original Schur 
method, Unitary Schur ESPRZT yields improved subspace estimates 
with a reduced coniputational load, since it is formulated in terms of 
real-valued coniputations throughout. 

1. introduction 

The estimation of unknown parameters from a given data matrix 
X E C M  X n  is encounteredin many signalprocessingapplications. 
Modem high resolution parameter estimation techniques usually 
consist of two major steps. The first step is the computation of the 
signal and the noise subspace from a given data matrix. Then, the 
unknown parameters are extracted from one of the subspacesusing 
algorithms like ESPRIT or MUSIC. The subspacescan be determi- 
ned via a singular value decomposition (SVD) of the data matrix, 
since the SVD is known to be the most reliable tool for the subspace 
separation task. It is, however, computationally expensive and 
yields more information than necessary to separate the signal from 
the noise subspace. Therefore, different computationally more ef- 

level. A simple formula for 7 is given in this paper. 
Recently, there have been efforts to improve the subspace ba- 

sed ESPRIT method using the SVD as the basic tool for the sub- 
space separation task (e.g., total least squares ESPRIT or Unitary 
ESPRIT [5 ] ) .  Unitary ESPRIT yields improved parameter esti- 
mates at a lower computational cost by taking the unitarity of the 
phase factors into account. Constraining the phase factors to the 
unit circle improves the performance significantly, especially if the 
sources are correlated, cf. section 4. Unitary ESPRIT provides a 
very simple solution to this task and retains an ESPRIT-like stn~c- 
ture, except for the fact that it is formulated in terms of real-valued 
computations throughout. Since the 1D version of Unitary ESPRIT 
is a completely real-valued algorithm, Unitary ESPRIT can easily 
be extended to the two-dimensional (2D) case, yielding efficient 
closed-form algorithms in element space [6] and reduced dimen- 
sion DFT beamspace [12] to provide automatically paired source 
azimuth and elevation angle estimates. 

In this paper, Unitary ESPRITis combined with the Schur-type 
subspace estimation method to compensate a certain loss of accu- 
racy inherent in the computationally efficient Schur-type method. 
Compared to the Schur-type methods presented in [lo, 4, 111, 
Unitary Schur ESPRIT yields improved results at a lower com- 
putational cost. Its performance even attains the performance of 
SVD-based methods. Moreover, Unitary Schur ESPRIT outper- 
forms the SVD-based standard ESPRIT algorithm in the case of 
correlated sources, cf. section 4. Furthermore, Unitary Schiir ES- 
PRIT requires only real arithmetic and can easily be implemented 
in a parallel fashion. 

2. Schur-vpe Methods for Subspace Estimation 

If the SVD of the datamatrixX E cM x n  is given by X = U C V H ,  
an eigenvalue decomposition (EVD) of its Gramian G = XXH 
equals G = UE2 U*, where the eigenvalues of G are the square of 
the singularvaluesofX, i.e., Xi  (G) = U: ( X )  > 0. Now, suppose 
the noise level and, therefore, the threshold 7 are known. A method 
for finding a good estimate for 7 is proposed in section 3.3. It is 
easy to show that a spectral shift of the Gramian G by 7 ’ 1 ~  yields 

(1) y 2 z M  - G = U (y2zA4 - E:”) UH 

[ lj,. the URV-decomposition [9], SVD-updating algorithms [8], 
and a recently proposed Schur-type method [4, 111. The Schur- 
type method is the cheapest approach in terms of its computational 

~ ~~ 

expense and can easily be implemented in a parallel fashion. It 
is similar to an LQ-decomposition, except for the fact that plane 
and hyperbolic rotations are used. Moreover, updating and down- 
dating are straightfommd. It requires, however, the howledge of 

Computing the matrix sign function of 7 ’ 1 ~  - G is sufficient to 
separate the subspaces, since the column space corresponding to 
the negative eigenvalues of r2Zx - G represents an estimate of 

a threshold 7. -This threshold can be estimated from the noise 
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the signal subspace. Using the signature matrix 3. Unitary Schur ESPRIT 

J =  [ IM - I n ] .  

the “shifted Gramian” can be expressed as 

- y 2 Z ~ - G = [  Y Z M  X ] J [  ~ Z M  X I H .  

In the sequel, assume that 0 is J-unitary, i.e., J = @/OH. There- 
fore, 

[ y h  x ] J [ r z ~  XI” 
= [ yzM x ] O J Q ~  [ 7zM x lH 

= C C ~ - D D ~ ,  

= [ C D ] J [ C  D I H  

where [ C X ] 8. 
A well known method for obtaining efficient algorithms from 

covariance based algorithms is the use of square root techniques, 
i.e., working with the Cholesky factor (square root) of the Gramian 
instead of the Gramian itself. A square root version of (3) can be 
derived by taking the signature of the columns into account, 

D ] = [ ~ Z M  

+ -  +I- +/- + -  
[YZM x ] 6 =  [ L 0 ] = [c DIP, (3) 

M - d  d d n - d  
where C =  A4 [ C‘ 01, D = M  [D‘ 0 1 ,  

6 = O P ,  and L is a lower lriangular M x M matrix. Pis a per- 
mutation matrix sorting the columns according to their signature, 
such that C and D contain the columns of [ L 0 ] with positive 
and negative signature, respectively. The J-unitary matrix 6 is 
composed of circular and hyperbolic plane rotations, where the 
type of rotation as well as the signature of the resulting columns 
depends on the signature of the rotated columns [4,11]. Equation 
(3) represents a hyperbolic LO-decomposition [ll]. It can also 
be interpreted as a generalized Schur method, i.e., the extension 
of the algebraic version of Schur’s algorithm for positive definite 
matrices to the indefinite case [2]. 

Thus, a very simple estimate of the signal subspace is given 
by the range of Us1 = D‘ E cM ’ d .  For non-cr i t id  scenarios 
(high SNR, well separated signals) the range of Us1 is a reliable 
estimate of the signal subspace. It has been shown [lo, 1 I], that 

Us2 = D‘ - C‘ (OG’O12) 11 (4) 

represents an improved estimate, which should be used in more 
critical situations and can be computed via a Schur complement 
formula [4]. Here, (0;; 0 1 2 )  I l  denotes the leading (A4 - d )  x d 
block of 0 , ’012,  where 0 1 1  and 0 1 2  are the respective blocks 
of 0, having dimension A4 x M and A4 x n, respectively. The 
2-norm approximants corresponding to Us1 and USZ do not ne- 
cessarily minimize the norm difference [l 11. This leads to some 
performance degradation compared to the “optimal” SVD-based 
scheme. Unitary ESPRIT provides a way to compensate for this 
loss of accuracy by exploiting additional information inherent in 
the rotational invariance structure of the signal subspace. 

Since Unitary ESPRIT [5] includes forward-backward averaging, 
all required decomposition, i.e., the hyperbolic LO-decomposition 
as well as the subsequent least squares problem and the final ei- 
gendecomposition, can be transformed into real-valued decompo- 
sitions of the same size. This is achieved by constructing inver- 
tible transformations that map centro-Hermitian matrices to real 
matrices [7]. Unitary ESPRIT also provides additional reliability 
information and yields improved subspace estimates (especially 
for correlated sources). 

3.1. Standard ESPRIT Scenario 

Consider the standard ESPRIT scenario, i.e., an M-element sensor 
array composed of m pairs of painvise identical, but displaced 
sensors (doublets). Let A denote the distance between the two 
subarrays. Incident on both subarrays are d narrow-band nonco- 
herent planar wavefronts s k ( t n ) ,  1 5 k 5 d 5 m, with common 
wavelength A. The d impinging signals are combined to a signal 
vector s( tn) .  In the noiseless case, the array measurements are 
given by x(tn) = A s( t , )  E cM,  where every row of the array 
steering matrix A corresponds to an element of the sensor array. 
With additive noise, we get :(tn) = x(tn) + n(tn), where the 
noise vector n(tn)  is assumed to be spatially white and uncorrela- 
ted with the signals. If, however, the spatial covariance matrix of 
the additive noise Rnn is known up to a scalar factor, the identity 
matrix ZM in (3) should be replaced by a lower triangular matrix 
L,, such that Rnn = L n L z .  Notice that this “generalized” Schur 
method corresponds the Generalized or Quotient SVD (QSVD), 
which is often used in the case of correlated noise. 

A particular subarray configuration can be described by se- 
lection matrices, that choose m elements of x(&) E c”, where 
m < A4 is the number of elements in each subarray. Let JP1 and 
Jpz be m x M selection matrices that assign elements of x( tn )  to 
the subarrays 1 and 2, respectively. The two selection matrices are 
chosen to be centxo-symmetric with respect to one another, i.e., 

Jp2  = nmJpin~, ( 5 )  

where H p  is the p x p exchangematrix with ones on its antidiagonal 
and zeros elsewhere. By collecting N 2 d snapshots from each 
sensor, 1 5 n 5 N ,  a measurement matrix Xis  formed, obeying 

[ JP2 JP1] ,= [ JP2 J P 1 ] A S =  [ AI 9 I S ,  (6) 

where S E C d x N  is the signal matrix. A I  E cmxd denotes the 
steering matrix of the first subarray, while 9 = diag { dk)i= is 
a diagonal matrix of the phase delays between the sensor doublets 
for the d wavefronts. Its diagonal elements, the phase factors d k ,  

are given by 4k = eJqAs‘n Ok - - #“k , 1 5 k 5 d ,  where 
8~ = 0 corresponds to the direction perpendicular to the direction 
of the displacement A. Equation (6) implies that the measurement 
matrix X IS rank-deficient, namely rank X = d. 

Thus, if 5 E c M x d  spans the column space of a rank d 
approximant of the noisecorrupted measurement matrix X, 9 can 
be estimated by solving the overdetermined set of equations 

- 

A 

JPlfi\k M JP2U (7) 

and subsequently computing an eigendecomposition of the (total) 
least squares solution \E = T+ T-’.  
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3.2. Unitary ESPRIT 

To derive the completely real-valued implementation of Unitary 
ESPRIT, let us define left I’I-real matices [7, 51, i.e., matices 
Q E C p x q  satisfying n,Q = Q. Throughout this paper, an 
overbar denotes complex conjugation without transposition. The 
unitary matrix 

Qzn+i = -.!- [ 2 -F:n], (8) 

for example, is left II-real of odd order. A unitary left II-real 
matrix of size 2n x 2n is obtained from (8) by dropping its center 
row and center column. Unitary ESPRIT starts by forming the real 
matrix 

f i  I’In 

- 
7(% ’ Qz [ X I ’ IMXIIN ] Qznr. (9) 

If Q denotes the left I1-real matrix defined in (8), an efficient 
computation of 7 ( X )  E R M x Z N  from the data matrix 2 only 
requires M x 3N real additions [5] .  Let US E R M x d  denote the 
resulting signal sub_space estimate obtained from a rank-revealing 
factorization of 7 ( X ) ,  cf. section 2. 

It was shown in [5] that the overdetermined complex-valued 
set of equations (7) can be replaced by the following real-valued 
set of equations 

where the real-valued selection matrices 
Kp1Us % K ~ z U S ,  (10) 

Kpi = Q: ( J p i  + J , 2 )  QM 

~~2 = Q: j ( J , ~  - J , ~ )  eM 
are sparse. Furthermore, the total least squares (TLS) solution of 
the complex-valued system (7) J!(=’) and the TLS solution of the 
real-valued system (10) Yens) are related via the linear fractional 
transformation 

x - j  
f ( z )  = -~ 

z + j ’  

which is analytic for z # -j, namely *,ens) = f (Yens)) . To 
achieve additional computational savings, the TLS solution of (10) 
Yens) might be replaced by its least squares (LS) so1ution;which 
is a simplification of the algorithm that does not affect the accuracy 
of the resulting estimates [5]. 

Let Y = T OPT-’ be an eigendecomposition of the real ma- 
trix Y, i.e., the LS or TLS solution of (10). Then, the eigenvalues 
of J! can be obtained through the same linear fractional transfor- 
mation, that is 

9 = f (a,,) with 0, = d i g  { w p i  (12) 

and w p i  # -j. The associated eigenvectors of Y and \k are the 
same. Notice also that solving (12) for wCLi yields 

1 - 1 

J eJpi + 1 
w p i  = T7------ = tan (F) , 

which provides an easy way to determine the DOAs from the 
eigenvalues of the real mahix Y. 

The fact that the eigenvalues of a real matrix can either be real 
or occur in complex conjugate pairs gives rise to a new reliability 
test, provided by Unitary ESPRIT without the need for additional 
computations [5]. If the eigenvalues of Y are real, all the f ( w p i )  

have unit magnitude. Therefore, they provide a reliable estimate 
of the phase factors eJpL’, cf. (12). Otherwise, i.e., if the upr occur 
in complex conjugate pairs, the Unitary ESPRIT reliahiliy test has 
“failed”, and the algorithm has to be restarted with more or more 
reliable measurements. 

3.3. Choosing the Threshold y 

To illustrate the proper selection of the parameter y, consider the 
Unitary ESPRIT scenario and assume ergodicity. Let, further- 
more, the SVD of the extended data matrix Z = [ X I I M ~  ] 
be equal to Z = U C V H ,  where C = diag{o,}fil, and ot 
0 ,  V d + 1 5 a 5 M ,  since Z represents the noiseless data mamix. 
Without loss of generality, assume also that the additive noise is 
uncorrelated with variance U’. _Ten, the covariance matrix of the 
noise-cormpted measurements Z takes the form 

1 --H 1 lim -ZZ = lim - z z ~ + ~ ’ z M  
N - W  2N N - W  2 N  

1 
= N-m lim -U 2N (E’ + ~ N ~ ’ Z , V )  uH 

Therefore, for large values of N ,  the SVD of Z approximately 
equals z % U (E’ + ~ N ~ z M )  + vH for some unitary matrix V. 
n u s ,  the M - d smallest singular values of 5 are approximately 
given by crm. Since the left singular vectors of Z remain 
unchanged, the corresponding signal subspace can be determined 
from the first d columns of U. In this case, an appropriate value 
for the threshold y of the e subspaceestimation method 
is chosen according to y 

4. Simulations 

Assume that three equi-powered signals are impinging on a uniform 
linear array (ULA). Their DOAs are B1 = IO’. B2 = 20°, and 
83  = 30’. The presented results are averaged over 500 trials, 
while a given trial run involves N = 20 snapshots. 

In the first experiment, a ULA with M = 9 element is used, 
the three sources are uncorrelated, and the SNR is varied from 0 dB 
to 30 dE? in steps of 5 dB. Fig. 1 shows the largest principle angle 
between the estimated and the “true” signal subspace as a function 
of the SNR. All results are plotted for the two signal subspace 
estimates that are based on the Schur method, i.e., Us1 (dotted line 
f .  .) as well as Usz  (dashed line - - -). They are compared to the 
more expensive SVD-based signal subspace estimate (solid line 
-). Notice that the both Schur methods estimate the number of 
signals d automatically, while d is assumed to be known for the 
SVD implementation. For each of the three methods, Unitary ES- 
PRIT (“U”) is compared to the standard ESPRIT algorithm (3”). 
Recall that Unitary ESPRIT reduces the computational load of the 
standard ESPRIT algorithm, since it is formulated in terms of real 
computations throughout. Furthermore, Unitary ESPRIT provi- 
des additional reliability information. Its superior performance is 
demonstrated by the fact that, throughout all experiments, the top 
curves correspondto the standard ESPRIT algorithm while the bot- 
tom curves correspond to Unitary ESPRIT. The RMS error of the 
estimated angles, which corresponds to the largest principle angles 
in Fig. 1, is depicted in Fig. 2. Notice that Unitary Schur ESPRIT 
basedon the “improved” estimate Us2 performs as well as Unitary 
SVD ESPRIT for moderate and high signal to noise ratios. 

Then, sources 1 and 2 are correlated and the correlation co- 
efficient p12 is varied from 0.0 to 1.0. Fig. 3 shows the largest 
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Fig. 1: Largest principle angle 8 ,  between the fslimated and the -hue” si@ 
subspace(0’ < 6, < 90’)asafunctionoftheSMforel = 10°,62 = ZOO, 

U: Unitary version. 
and 63 = 30’ ( M  = 9  sensor^, N = 20. 500 trial NILS). S: Standard V&W 
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Fig. 2: RMS m o r  of the estimated angles as a function of the SNR for 6‘1 = 10’. 
62 = 20’. and O 3  = 30’ ( M  = 9 sensors, N = 20.500 hialruns), S :  Standard 
version. U: Unitary version. 

principle angle between the estimated and the ‘‘true” signal sub- 
space as a function of p 1 2 ,  while Fig. 4 depicts the RMS error of 
the estimated angles as a function of ,012. It can be seen that the 
performance of Unitary ESPRIT is independent of the correlation 
between signals 1 and 2, whereas the performance of the standard 
ESPRIT methods deteriorates dramatically with increasing p 1 2 .  

Notice also that the improved (second) version of Unitary Schur 
ESPRIT yields better results than the much more expensive SVD- 
based standard ESPRIT algorithm. It has the same performance as 
the SVD-based Unitary ESPRIT scheme. 

5. Concluding Remarks 

A new ESPRIT-like parameter estimation scheme, Unitary Schur 
ESPRIT, was presented in the paper. It uses an efficient Schur- 
type algorithm, namely a hyperbolic LO-decomposition, for the 
computation of a signal subspace estimate. Moreover, the num- 
ber of signals d is estimated automatically. The performance of 
the origjnal Schur-type method can be improved significantly by 
combining it with Unirury ESPRIT, yielding not only improved 
estimation accuracy, but also a completely real-valued algorithm. 
Furthermore, Unitary Schur ESPRIT can easily be implemented 
in a sequential or a parallel fashion, since only real-valued plane 
or hyperbolic rotations are required. Simulations have shown that 
Unitary Schur ESPRIT achieves a performance that is compara- 
ble to SVD-based methods with a remendous reduction of the 
computational complexity. 

- 1  ......... 
- 2  ---- 

o’, 02 0 4  06 0 8  J 
DMe” EDBnlCIBR 

~ig .  3: ~argest principle angle 8 ,  between the estimated and the “hue” signal 
subspace (o0  5 e ,  5 90’) as a function of the cordation coefiicient p12 for 
el = ioo,  e2 = zoo. and e3 = 30’ ( M  = 8 sensors, S N R  = 1OdB. N = 20. 

500 triai runs). 

I 1  

0 2  0 4  0 6  0 8  
m e l a r a n  menrsm 

Fig. 4: RMs m of the estimated angles as a function of the comelabon coefficient 
pIz for e ,  = ioo. e2 = 20’. and e3 = 30’ (M = 8 sensors. S N R  = 10 dB. 
N = 20.500 trial“). 
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