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Abstract In this paper the theory qfpmbably apprvxima€ciy correct (PAC) Iearning is 
applied to Discrere-Time Cellular Neural Networks (DTCNNS). The Vapnik-Chemnenkis di- 
mension of DTCNN is to be determined. Considering hm direrent operation modes of the 
network, an upper bound of the sample size for a reliable generalization of DTCNN amhitectum 
will be given. 

1 Introduction 

An important aspect of neural networks is generalization, i.e., the ability of the networks to 
oocrectly deal with input data which were not included in their training data. One of the most 
important issues in that context of learning from examples is the sample complexjly that gives 
an upper bound of samples sizes required for reliable g e n e r a b h  of the neural network. 
In the field of Computatid learniag tbegy [ 11 there arc many types of models for ‘‘learning‘‘. A 
very usefull “aticalmodelwithinaprobabilisticframcworkof learning and generalization 
is the “probably approximately correct‘‘ (PAC) learning theory introduced by Valiant [lo]. 
Within the PAC theory the expressive power of networ4 i.e. tbe ability to realize arbitrary 
mappings on the input space plays an important role. Using metbods based cm PAC learning 
Baum and Haussler [31 analysed the &tnetalization abilities of feedforward networks of linear 
threshold elements and found upper bounds for samples sizes. Tbey show that for 0 5 5 f, 
i fasampleofsizem2 ~ = ( ~ ) l n ( ~ ) i S l o a d e d i n t O a f e e d f a w a r d n e t w a L o f l i n e a r  
threshold elements with N nodes and W weights. so that a M 0 1 1  of at most $ oftbe cxpllples 
arc not comctly classified, then with d & n c e  of at least 1 - 8e’1-SW the network will "sly 
classify all but a fraction c of future cx8mplcs. 
Standard PAC learning theay applies only to Boolean-valued fuuctions or to classi6catim tasks 
corresponding to (multilayer) feedfimard astwarts with biaary single output. A numkt of 
extensions and variations 011 the basic PAC model have been made [2]. Thae arc extensions 
for analyzing feedforward linear threshold networks having more than one output node 191 or 
artificial mural networks with a real-valued output. 
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In the next section we will give a brief deoaiption of the PAC learning theMy applied to n d  
networks. Due to the geometrical properties and constraints of D " N s  we obtain a bound 
for the expressive power of this type of Cellular Neural Networks in section 3. In section 4 
we derive the sample complexity of DTCNNs, i.e. an upper bound of the sample size that 
guarantees a certain generalization of the network. 

2 PACLearnhg 
PAC learning represents a probabilistic framework for learning from examples in the field of 
neural networks. In this framework there is a given set of inputs and a space of functions called 
hypotheses space Hncr that is within the scope of the given network. There is assumed to be 
an unknown target concept t : X -+ Y from the input space to {0,1}. The god of learning 
is to produce an appropriate adjustment of be weights of the n t d  network that realizes a 
good approximation called hypothesis h of k unknown underlying target concept t. For the 
derived hypothesis h to have a pndictivc power W e  must be a relation between the training 
and testing set of examples, i.e., in B C  lcafbg the test sample has to be drawn according to 
the same probability distribution p a8 the trdning sample. Formally spoken, the input space is 
a probability space (X, p )  and the hypotbscs space Hnd is a set of measurable functions from 
X to { 0,1}. The target umcept t is assumed to be element of H n d .  A learning algorithm is one 
that takes the examples and produces the hypothesis. For the subsequent outline of the h o r y  
we make some useful &finitions. 

Dt6nition 1: Let the training sampk s for the target concept t with sample size rn defined by 

S =  ((xl,tl),(x2,t2),...t(xm,tm)) E S(m,t) c ( X  x { O , l } ) m ,  

ti = t (x ; ) .  

Definition 2: The observed e m r  of the trained network (hypothesis) on the training sample 
with respect to rhe target concept is given by 

1 
m er , (h , t )  = -I{i E { l , - - * , m }  I h(x;) # t(xi)}l. 

Definition 3: 
respect to the target concept equals 

Consequently the e m r  of the trained network on the total input space with 

er,(h,t) = Prob,,{x E X I h(x) # t ( x ) } .  

A characteristic property of an neural network architecture is the maximum possible number of 
different claspifiations II,(m) that can be realized by the chosen network for a sample with a 
given size. 
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With the definition of the growth function we are abk to give the subsequent thu" according 
to the sample complexity afreliabc generalization. 

Theorem 1: Suppose that Hnel is the hypotheses space of all mappings that can be performed 
by the neuml network on the input space (X, p ) ,  and that t ,  p and c are arbitrary b u t h d .  
Then 

ProbF{s E S(m,t)  I forall h E Hnet , er,(h,t) = 0 * er,(h,t) 5 e} 2 1-2II~(2m)2"/' 

8 for all positive integers m 2 -, 
i.e., if no error can be observed on the training sample of size m (sample complexity) @er 
training the network the probability of an error of at most e onfutun examples tends to certainty 
under certain assumptions of the growthfwrction. 

e 

Root: in [4, 11. 

The growth function nH(m) depeds 011 tlte set of hypotheses tht  CM be rcalizod by the given 
neural network, i.e., it depends on the topology of the network and the activation function of its 
nodes and the weights of ita w"s ' batweennodes.Thereisaaurj"frmtbesgaceof 
possible weight assignments to the space d hypotheses. It is dear, that f a  my sample size m 
the growth function is bounded by 

i.e.. the number of possible binary functions on m patterns. An appropriate measure of the 
expressive power of a network architecture is the value of the sample size myc that burns out 
to be the largest one at which the network still has the power to induce a l l  2m binary functions. 
Hence the Vapnik-Chervonenkis dimension mvc [21 is d e b d  as 

Definition 5: Vapnik-Chemnenkis dimension is given by 

mVC = max m subjectto IIH(m) = 2" A n ~ ( m  + 1) < 2m+1, 

Ifthere is no finite mvc the VC dimension is called infinite. Ifa neural network has m infinitc 
vc diI" ' it is not 1"ble inthe se- ofPAClearningtheay [21. Rorfiniac VC dim" 
the fcdlming fault holds [a]: 

The defiaition ofthc VC dimension helps to introduce a more sophisticrcednowioo dtb" 
1 t11. 
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The sample complexiiy is the least value m(6,r) such that for all target concepts t and 
probability distributions p and 0 5 6, e ,  

ProbT{s E S(m,t )  I forall h E Hw , er,(h,t) = 0 =+ er,(h,t) 5 c} 2 1 - 6 
whenever m 2 ~ ( 6 , e ) .  

3 Expressive Power of DTCNNs 
The Discrete-Tie Cellular Neural Network (DTCNN) [SI is a discrete-time version of the 
CNN. Its characteristic properties are the architectural features of CNN, translationally invariant 
weights, local intcrconncctions. binary output property and a signum activation function. The 
DTC" is a nonlinear disaete-time Yirst-order dynamical system and can be viewed as a special 
case of a standard Hopfield model with a parallel updaw strategy. Let M be the number of 
cells on the cell grid ofthe D " N .  Then u(t) E [-1, +lIM and y( t )  E { -1, +l}M denote 
the v e m  of the input signals and the outppn vector of the cells. ?he vector of the cell states 
x ( t )  E RM is defined by the state quation, 

x(t  + 1) = Ay(t + 1) + Bu(t + 1) + i 
Y(t + 1) = sgn(x(t + 1)). 

A more compact notation for the operation of the network at cell level is the cell level notation 
that relates to the view of a single cell as a standard peraptron architecture. Introducing the 
vectors e, and p the cell output of a all can be written by the local transition function f, 

where ec(t )  comprises the total number of input lines for a single cell c including the input 
signals uc(t)  of the cell itself and the output sign& y( t )  of nearby cells. due to thc recurrent 
structure of the network. By analogy with ec(t) the vector p comprises the m c s p d i n g  
weights of all input signals of the cell. Each of the vectors is assumed to have N elements. 
The details arc omitted here. For more information scc 161. The glow mapping properties of 
the network refer to the mappings peddle by a DTCNN from the input signals u( t )  and 
the initial states yo of the cells to the outputs y ( T )  at a fixed time-step T. For analyzing the 
expressive power of the DTCNN the number of perforntable globst mappihgs is of part iah 
interest. An independent criteria for the expressive power is the VC dimension of the network 
architecture. 
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Theorem 2: The VC dimension of a DTCNN is given by 

V C d i m 5 N + l .  

proof: Due to the tmslational invariance of the templates and the perceptron-lilre architecture 
oftheDTCNNcells, thsnumbaofpnformablemappinpbyaDTCNNcanbeboundedbythe 
number of mappings @ d l c  ly a Sin@ N-input lincor thnshold element. Cumcqucdy, 
the growth function wc di" ) oftbe b r  tbrcshold el&ment is an upper bound for 
the growth function (VC dimensioa) of th D " N .  'Ibe VC dimension of a N-input linear 
threshddekmentisdefiaedbyN+l PI. 

Obviously, only the number of performable mappings is compared with the corresponding quan- 
tity of a lineaer threshold element. Due to the recurrence of the MC" architecture. a DTCNN 
can realize mace sophisticated mappings tben a simple perccptron archhcturc. 

4 Sample Complexity of DTCNNs 
The mapping propertics of the DTCNN critically depend on the mode of operation of the 
network. There are two interesting cases which arc suitable for the analysis of its sample com- 
plexity. In both cases the D" constitutes a mapping from one multiple space to another. 
The multiple nature of the mapping does dot affect thc resultsofthe PAC lUrning. See also 
[9]. In the Arst case we consider the global lnapping of the network from a a " t  input vector 
~ ( 0 )  and the initial StMe y(0) to ~II outgut veeta y ( T )  after T tinre-steps. 

Remark 1: The sample complexity of learning the global mapping (u(O), y(0)) + y ( T )  of a 
DTCNN does not depend on the number of time-steps of the trajectory and can be written as 

The second case deals with learning a tra@3ory of the output vector y( t )  through the time 

D T C "  the learning of a trajectory call be split into a problem of T global tramitions of the 
M cells. 'Iherefare. taking into account the t r ans l a t idy  invariant propcrtks of the D" 
the learning environment already can be idtntified at the level of local transitions of th. cells. 

axis f a  T time steps. Due to the disaete.time nature and the parallel update strategy Of the 

Runark2: Thesamplecomplexityoflearningatrajectory(u(O),u(l), .-. ,u(T-l),y(O)) 
( y (  I), y(2), . , y ( T ) )  of the output vector y(t) for a sequence of the input vector u(t) and the 
initial state y(0) of the DTCNN refers to the reliable amount of trajectories and is given by 
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5 Conclusion 
Applying the probably approximately correct learning theory to DTCNN we have derived an 
upper bound of the number of examples for reliable generalization when learning fromexamples. 
hre to the perceptron-likc architecture of the DTCNN the Vupnik-Chervonenkis dimension of 
this type of neural network has been given. Thc VC dimension ofthe DTCNN is defined by 
N + l , f a  N beingtbemunberofinpVaforsrchcellofthenetwak. Considcringaneightt&ood 
sizeofr,NcanbewrittenasN = 2 ( 2 r + 1 ) ~ .  O t w i o u s l y , t h e l ~ i n t e r c o "  'on structure 
of the DTC" results in a lower sample complexity of the learning problem. Remark, that the 
results critically depend on the assumption that the test sample &as to be drawn according to the 
same probability distribution as the training sample. This has to be taken into account when 
analyzing applications like in [71. 
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