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Abstract In this paper the theory of probably approximately correct (PAC) learning is
applied to Discrete-Time Cellular Neural Networks (DTCNNS). The Vapnik-Chervonenkis di-
mension of DTCNN is to be determined. Considering two different operation modes of the
network, an upper bound of the sample size for a reliable generalization of DTCNN architecture
will be given.

1 Introduction

An important aspect of neural networks is generalization, i.e., the ability of the networks to
correctly deal with input data which were not included in their training data. One of the most
important issues in that context of learning from examples is the sample complexity that gives
an upper bound of samples sizes required for reliable generalization of the neural network.

In the field of Computational learning theory {1] there are many types of models for “learning”. A
very usefull mathematical model within a probabilistic framework of learning and generalization
is the “probably approximately correct” (PAC) learning theory introduced by Valiant [10].
Within the PAC theory the expressive power of networks, i.e, the ability to realize arbitrary
mappings on the input space plays an important role. Using methods based on PAC learning
Baum and Haussler {3] analysed the generalization abilities of feedforward networks of linear
threshold elements and found upper bounds for samples sizes. They show that for 0 < e < 1,
if a sample of size m > mo = (2% )In(22N) js loaded into a feedforward network of linear
threshold elements with N nodes and W weights, so that a fraction of at most % of the examples
are not correctly classified, then with confidence of at least 1 — 8¢ =" the network will correctly
classify all but a fraction ¢ of future examples.

Standard PAC learning theory applies only to Boolean-valued functions or to classification tasks
corresponding to (multilayer) feedforward networks with binary single output. A number of
extensions and variations on the basic PAC model have been made [2]. There are extensions
for analyzing feedforward linear threshold networks having more than one output node [9] or
artificial neural networks with a real-valued output.
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In the next section we will give a brief description of the PAC learning theory applied to neural
networks. Due to the gecometrical properties and constraints of DTCNNs we obtain a bound
for the expressive power of this type of Cellular Neural Networks in section 3. In scction 4
we derive the sample complexity of DTCNNs, i.e. an upper bound of the sample size that
guarantees a certain generalization of the network.

2 PAC Learning

PAC learning represents a probabilistic framework for learning from examples in the field of
neural networks. In this framework there is a given set of inputs and a space of functions called
hypotheses space H,.. that is within the scope of the given network. There is assumed to be
an unknown farget concept t : X — Y from the input space to {0,1}. The goal of learning
is to produce an appropriate adjustment of the weights of the neural network that realizes a
good approximation called hypothesis h of the unknown underlying farget concept t. For the
derived hypothesis / to have a predictive power there must be a relation between the training
and testing set of examples, i.c., in PAC learning the fest sample has to be drawn according to
the same probability distribution u as the tratning sample. Formally spoken, the input space is
a probability space (X, ) and the hypotheses space H,.. is a set of measurable functions from
X to {0,1}. The target concept ¢ is assumed to be element of H.... A learning algorithm is one
that takes the examples and produces the hypothesis. For the subsequent outline of the theory
we make some useful definitions.

Definition 1: Let the training sample s for the target concept t with sample size m defined by
§= ((xl,tl)’(xh t2)7 T 7(xm,t"|)) € S(mvt) Cc (X X {Os 1})m1
ti = t(x).

Definition 2: The observed error of the trained network (hypothesis) on the training sample
with respect to the target concept is given by

ers(h ) = %1{:‘ € {1,--,m} | A(xs) % t(x)}]-

Definition 3: Consequently the error of the trained network on the total input space with
respect to the target concept equals

ery(h,t) = Prob,{x € X | h(x) # t(x)}.

A characteristic property of an neural netwark architecture is the maximum possible number of
different classifications [1y(m) that can be realized by the chosen network for a sample with a
given size.
Definition 4: The corresponding growth function is defined by
Og(m) = max |[{(h(x1),h(x32), -, h(xm)) € {0,1}" | k € Hnes}|-
x€X
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With the definition of the growth function we are able to give the subsequent theorem according
to the sample complexity of reliabe generalization.

Theorem 1: Suppose that H,., is the hypotheses space of all mappings that can be performed
by the neural network on the input space (X, u), and that t, u and e are arbitrary but fixed.
Then

Prob™{s € S(m,t) | forall h € Huet , ers(h,t) =0 = ery(h,t) < €} > 1-2Mx(2m)2~"/?

L 8
Jor all positive integers m > p

i.e., if no error can be observed on the training sample of size m (sample complexity) after
training the network the probability of an error of at most € on future examples tends to certainty
under certain assumptions of the growth function.

Proof: in[4,1].

The growth function I1z(m) depends on the set of hypotheses that can be realized by the given
neural network, i.e., it depends on the topology of the network and the activation function of its
nodes and the weights of its connections between nodes. There is a surjection from the space of
possible weight assignments to the space aof hypotheses. It is clear, that for any sample size m
the growth function is bounded by

Hg(m) <27,

ie., the number of possible binary functions on m patterns. An appropriate measure of the
expressive power of a network architecture is the value of the sample size my¢ that turns out
to be the largest one at which the network still has the power to induce all 2™ binary functions.
Hence the Vapnik-Chervonenkis dimension myc [2] is defined as

Definition §: Vapnik-Chervonenkis dimension is given by
myc = max m subjectto IIg(m)=2™ A Ilg(m+1) < 2™,
If there is no finite my ¢ the VC dimension is called infinite. If a ncural network has an infinite

VC dimension it is not learnable in the sense of PAC learning theory (2]. For finite VC dimension
the following result holds [8]:

m
forall m > mye Na(m) < ( em ) vc.

mye

The definition of the VC dimension helps to introduce a more sophisticated notation of theorem
10).
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The sample complexity is the least value mo(b,¢€) such that for all target concepts t and
probability distributions p and 0 < é,¢,

Prob}{s € S(m,t)| forall h € Huet , ery(h,t) =0 = ery(h,t) < e} 216

whenever m > mq(6,¢).

It holds mg(6,¢) < % [mvC lgleg +1g %I .

3 Expressive Power of DTCNNs

The Discrete-Time Cellular Neural Network (DTCNN) [5] is a discrete-time version of the
CNN. Its characteristic properties are the architectural features of CNN, translationally invariant
weights, local interconnections, binary output property and a signum activation function. The
DTCNN is a nonlinear discrete-time first-order dynamical system and can be viewed as a special
case of a standard Hopfield model with a parallel update strategy. Let M be the number of
cells on the cell grid of the DTCNN. Then u(t) € [~1,+1]¥ and y(t) € {-1,+1}" denote
the vector of the input signals and the output vector of the cells. The vector of the cell states
x(t) € RM is defined by the state equation,

x(t+1)
y(t+1)

Ay(t+1)+Bu(t+1) +i
sgn(x(t + 1)).

1l

A more compact notation for the operation of the network at cell level is the cell level notation
that relates to the view of a single cell as a standard perceptron architecture. Introducing the
vectors e, and p the cell output of a cell can be written by the local transition function f,

ye(t +1) = sgn(pTec(t)),

where e.(t) comprises the total number of input lines for a single cell ¢ including the input
signals u.(t) of the cell itself and the output signals y(¢) of nearby cells, due to the recurrent
structure of the network. By analogy with e.(t) the vector p comprises the corresponding
weights of all input signals of the cell. Each of the vectors is assumed to have N elements.
The details are omitted here. For more information see [6]. The global mapping properties of
the network refer to the mappings performable by 8 DTCNN from the input signals u(¢) and
the initial states yo of the cells to the outputs y(7') at a fixed time-step 7. For analyzing the
expressive power of the DTCNN the number of performable global mappings is of particalar
interest. An independent criteria for the expressive power is the VC dimension of the network
architecture.
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Theorem 2: The VC dimension of a DTCNN is given by
VCdim < N + 1.

Proof: Due to the translational invariance of the templates and the perceptron-like architecture
of the DTCNN cells, the number of performable mappings by a DTCNN can be bounded by the
number of mappings performable by a single N-input linear threshold element. Consequently,
the growth function (VC dimension) of the lineaer threshold element is an upper bound for
the growth function (VC dimension) of the DTCNN. The VC dimension of a N-input linear
threshold element is defined by NV + 1 [2].

Obviously, only the number of performable mappings is compared with the corresponding quan-
tity of a lineaer threshold element. Due to the recurrence of the DTCNN architecture, a DTCNN
can realize more sophisticated mappings then a simple perceptron architecture.

4 Sample Complexity of DTCNNs

The mapping properties of the DTCNN critically depend on the mode of operation of the
network. There are two interesting cases which are suitable for the analysis of its sample com-
plexity. In both cases the DTCNN constitutes a mapping from one multiple space to another.
The multiple nature of the mapping does riot affect the results of the PAC learning. See also
[9]. In the first case we consider the global mapping of the network from a constant input vector
u(0) and the initial state y(0) to an output vector y(T") after T' time-steps.

Remark 1: The sample complexity of learning the global mapping (u(0),y(0)) — y(T) of a
DTCNN does not depend on the number of time-steps of the trajectory and can be written as

4 12 2
<= =415,
mo(8,6) < 2 [(N +1)lg =~ +1g5]|

The second case deals with learning a trajectory of the output vector y(t) through the time
, axis for T' time steps. Due to the discrete-time nature and the parallel update strategy of the
DTCNN the learning of a trajectory cail bé split into a problem of T' global transitions of the
M cells. Therefore, taking into account the translationally invariant properties of the DTCNN
the learning environment already can be identified at the level of local transitions of the cells.

Remark 2: The sample complexity of learning a trajectory (u(0),u(1),--- ,u(T-1),y(0)) —
(¥(1),¥(2),- -+, ¥(T)) of the output vector y(t) for a sequence of the input vector u(t) and the
initial state y(0) of the DTCNN refers to the reliable amount of trajectories and is given by

i1 (o 2 )]
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5 Conclusion

Applying the probably approximately correct learning theory to DTCNN we have derived an
upper bound of the number of examples for reliable generalization when learning from examples.
Due to the perceptron-like architecture of the DTCNN the Vapnik-Chervonenkis dimension of
this type of neural network has been given. The VC dimension of the DTCNN is defined by
N+1, for N being the number of inputs for each cell of the network. Considering a neighborhood
size of r, N can be written as N = 2(2r + 1)°. Obviously, the local interconnection structure
of the DTCNN results in a lower sample complexity of the learning problem. Remark, that the
results critically depend on the assumption that the test sample has to be drawn according to the
same probability distribution as the training sample. This has to be taken into account when
analyzing applications like in [7].
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