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A Geometric Approach to Properties of the 
Discrete-Time Cellular Neural Network 

Holger Magnussen and Josef A. Nossek, Fellow, IEEE 

Abstrucf- Using the available theory on Linear Threshold 
Logic, the Discrete-Time Cellular Neural Network (DTCNN) is 
studied from a geometrical point of view. Different modes of 
operation are specified. A bound on the number of possible 
mappings is given for the case of binary inputs. The mapping 
process in a cell of the network is interpreted in the input space 
and the parameter space. Worst-case and average-case accuracy 
conditions are given, and a sufficient worst-case bound on the 
number of bits required to store the network parameters for the 
case of binary input signals is derived. Methods for optimizing 
the robustness of DTCNN parameters for certain regions of the 
parameter space are discussed. 

I. INTRODUCTION 

HE Discrete-Time Cellular Neural Network (DTCNN) T is a spin glass like architecture with parallel, zero- 
temperature dynamics, translationally invariant weights and 
only local interconnections. The DTCNN was introduced in 
[ l ]  as a discrete-time version of the Cellular Neural Network 
(CNN) [2 ] ,  and it is related to the work by Walter Little [3].  

The mapping from input images onto output images, which 
is performed by the DTCNN, is determined by a set of real- 
valued network parameters. Finding these network parameters 
for a certain desired task is called learning. The Learning 
Problem, which is nontrivial due to the local interconnection 
structure and the recurrence of the DTCNN architecture, is 
not addressed in this paper. 

Each cell of the DTCNN is a Linear Threshold Element 
(LTE) with a moderate number of inputs. These LTEs, or 
Perceptrons [4], have been thoroughly studied, and a large 
body of theory is available about them. Efficient algorithms for 
mapping a set of input images onto desired output values with 
a single LTE are known [4]-[6]. In the case of the DTCNN, the 
issue is much more complicated, since the set of input images 
for each cell not only depends on the global input images of 
the whole network, but also, due to the recurrence, on the 
network parameters. This work is concemed with geometrical 
properties of the DTCNN, which are derived from LTE theory. 

The organization of this paper is as follows: The DTCNN 
is introduced in Section 1, and different modes of operation 
are specified. Bounds on the number of possible mappings are 
given. A geometric interpretation, which is very helpful for 
the understanding of the mapping process performed by one 
cell of the network, is given in Section 2. Issues of accuracy 
are very important for hardware realizations. Worst-case and 
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average-case scenarios are discussed in Section 3. Finally, a 
summary and conclusions are presented in Section 4. 

DTCNN Equations 

The DTCNN is a first-order, discrete-time dynamical system 
consisting of M identical cells on a (usually) one- or two- 
dimensional cell grid CG. M input ports are placed on the 
input grid IG, which has the same dimensions as the cell 
grid CG. The operation of the DTCNN is described by a state 
equation 

z c ( k )  = ad-cyd(k) f bd-cUd(k)+i (1) 
~ € N Y ( C )  &Nu (cl 

an output equation 
Yc(k) = SGN(G(k - 1)) 

1 for z , (k  - 1) 2 0 ( 2 )  = i  -1 for xc(k - 1) < 0 
and the initial state 

YC(0) = Yc,o (3) 
k is a nonnegative integer corresponding to the time-step. 
yc(k) E {-1, l} is the output of cell c at time-step k .  The 
input signals u c ( k )  E [-1,1] at time-step IC are taken from 
the input grid IG. The restriction to the interval [-1,1] is 
necessary to guarantee the boundedness of the state variables 
[I] .  For convenience, the input signals and the cell output 
signals are sometimes written in vector notation, i.e. u(IC) = 

y ( k )  E {--I, I}” b’k E Zo+. The initial state yo = y(0) 
is either fixed or derived from the input signal u(0) at time- 
step IC = 0 by simple operations. In general, we have u(k) E 

a = (a,) and b = (b,) are the weighted connections 
between the cells, i is the cell bias. The network parameters 
a, b and i are translationally invariant, i.e. they are identical 
for each cell in the network. For this reason, a and b are also 
referred to as the templates. The “*d-,”-notation is used in 
a symbolical sense, since only the relative position of the two 
cells c and d with respect to each other, not their absolute 
location on the cell grid, is important for the value of the 
template coefficient Xd-c. 

N y ( c )  and Nu(.) are the neighborhoods of cell c on 
the cell grid CG and the input grid IG, respectively. For 
an r-neighborhood, N(c) is a square region of dimensions 
(2r + 1) x (27- + 1) around the center cell c. Usually, r = 1 
or r = 2. Nonsquare or even asymmetrical neighborhoods as 
well as different neighborhoods for the a- and b-templates 
could be used as well. The use of the neighborhoods implies 
that the cells are only locally interconnected. Let N ,  and Nb 

(Ul(k), ‘ . . ,.’v(k))T and Y(k) = (Yl(IC),  . . . , Y h , r ( W T  with 

[-1,1]M Vk  E zo+. 
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Mode I1 

denote the number of cells in the neighborhoods h’$(c) and 
MU(c), respectively. If both the a- and b-template have the 
same neighborhood size T (square neighborhoods), each active 
cell of the network has N = N ,  + Nb = 2(2r + 1)’ inputs 
plus a separate bias input. If both the a- and b-template exist, 
then N will be even. Cells outside the active grids C 4  and 14 
are assigned constant values EU E [-l l  11 for the input grid 
14 and EY E {-ll I} for the cell grid C4.  

In order to simplify the notational complexity, we will 
introduce a vector notation for the DTCNN cell. Let as 
before N be the number of inputs of each cell. Let p E 

denote the parameter vector. It contains all template RN+1 

coefficients pT = ( p o l . .  . , p ~ )  = (z1(uv)]  ( b , ) )  (in this 
order). The cell input vector eT(k) collects a constant term 
for the bias, the cell output signals, and the input signals 
(in this order) for cell c of the network at time-step k ,  i.e. 
ec(k)  = ( l1  ( y ~ ~ ( ~ ) ( k ) ) ]  ( u ~ ~ , ( ~ ) ( k ) ) ) .  Note that the indices 
of e and p run from 0 to N .  The cell output of cell c at 
time-step k + 1 can be written as (cf. (1) and (2)) 

y,(k + 1) = SGN(pTec(k)) (4) 

By the definition of linear separability, this choice of outputs 
y,(k + 1) implies that the mapping is linearly separable. We 
define the cell input set EO and the positive cell input set E t :  

Definition I :  [Cell input sets] The cell input set is defined 
by 

Eo := {eC(k) : V c, k }  

It consists of all cell input vectors ec(k)  ocumng at the input 
of any active cell at any time-step during the operation of the 
DTCNN. 

Let the SGN function be defined as in (2), and let p be 
an arbitrary parameter vector. Then, the positive cell input set 
is given by 

E; := {SGN(pTec(k)) .eC(k) : ec(k) E E O }  

In the rest of this section, the cell index c and the argument k 
denoting the time-step will be omitted to simplify the notation. 

For further studies, it is necessary to distinguish between 
different operating modes of the DTCNN. With respect to 
the signal levels, we distinguish between a continuous mode 
with U ~ ( ~ ) , E ~  E [-1,1] and a binary mode with u , ( k ) , ~ ~  E 
{-1,1}. Let U = {u(k)) denote the set of input signals 
presented to the DTCNN during its operation at any time- 
step k and in any training example. Now, depending on the 
set of input signals and the parameter vector p, we define 

Mode I: No restrictions on the set of input signals, i.e. 
U = [-1, 1IM in the continuously-valued input case (“con- 
tinuous Mode I”), and U = { -1, l}M in the binary-valued 
input case (“binary Mode I”). The parameter vector p can 
take on arbitrary values. 
Mode II: In this case, the set U is a fixed subset of 
the corresponding set in Mode I. Let the net be operated 
for K time-steps. Let L be the number of different input 
sequences u(k) (training examples) with k = 0 , .  . . , K - 1. 
Therefore, the size of U can be bounded by IUI 5 LK.  
We have U c [-1, 1IM in the continuously-valued case and 

lE0l 5 2N- . K L M  5 mi11{2~- . K L M ,  2N} 

TABLE I 
BOUNDS ON I& 1 FOR DIFFERENT OPERATING MODES 

U c {-1, l}M in the binary-valued case. The parameter 
vector p can take on arbitrary values. 
Mode 111: In Mode 111, U is a fixed subset of [-ll 1IM or 
{-1, l}M as in Mode 11, but the parameter vector p is fixed 
at some point PO. This implies that the output signals y(k)  
are explicitly known for each time-step k .  
\EO/ ,  the cardinality of the cell input set, critically depends 

on the mode of operation of the DTCNN. Table I summarizes 
the different bounds on I &  for the different modes of opera- 
tion. For constant inputs u(k) = U, we can set K = 1 in the 
formulas in the table. Note that in binary Mode I, we have 
Eo = {e E {- l l l}N+l  : eo = 1). In Mode 111, the inputs 
and outputs for each cell in the network are known, hence 
the whole sequence of output pattems y ( k )  is known, and the 
DTCNN reduces to the standard perceptron case. 

Further properties of the DTCNN, like stability, bounded- 
ness of states, convergence properties etc. can be proven by 
using the existing theory for synchronously updated two-state 
Hopfield networks, see for example [7]-[9], and also [l]. 

Mapping Properties 

time-step k E Zo+ 
We can write for the output signal y(k)  of the DTCNN at 

Y(k) := G ( ~ , Y o l ~ ( 0 ) l ~ ( ~ ) l ~  . .) 
G : Zo+ x { - I l  l}M x [-1, l]MZOt .+ {-I ,  

For the special case of a DTCNN in binary Mode I with 
L = 1 constant input u(k) = U, i.e. only one training example, 
we can give an upper bound on the number of performable 
mappings. Assuming that the network is stopped after K 
time-steps, we have 

y(K) := Gb (YO 1 U) 

Gh : { -I l  X ( -1 ,  - {-I, 
Let Gb be the set of d l  possible mappings Gb from an initial 
state and a constant and binary input to the output after a 
fixed number of time-steps. Then 

Since the cells of a DTCNN are only locally interconnected 
and the network parameters are translationally invariant, the 
number of different realizable mappings is reduced consider- 
ably. This is the price which has to be paid for the advantages 
of simple hardware realizability of the DTCNN. The global 

Authorized licensed use limited to: T U MUENCHEN. Downloaded on March 4, 2009 at 04:42 from IEEE Xplore.  Restrictions apply.



MAGNUSSEN AND NOSSEK: GEOMETRIC APPROACH TO PROPERTIES OF DISCRETE-TIME CELLULAR NEURAL NETWORK 

- 

627 

mapping properties of the DTCNN are determined by the local 
mapping (4) performed by each cell of the network. Each cell 
performs a linearly separable mapping 

,yc(k + 1) = F1,(ec(k)) = SGN(pTe,(k)) 
Fls : E” - (-1. l} 

Let F15 be the set of all possible linearly separable mappings 
El,. By virtue of the Function-Counting Theorem [IO], we can 
give a bound on 1.F151, the number of homogenously linearly 
separable dichotomies of points in N + 1 space: 

k=() ‘ ’ ”  ’ 
Equality only holds when the l&ol points are in general 
position, which is generally not guaranteed in binary Mode 
I. In this case, we can use a bound due to Winder, which can 
be found in the appendix of [ l l ] .  

Hence the number of different possible mappings of the 
DTCNN in the binary input case grows with the order O( k). 
Since usually N << M ,  this is a big loss when compared to ( 5 ) .  
Still, even for simple problems like binary input DTCNNs with 
a 1-neighborhood in a- and b-template ( N  = 18), the number 
of different possible mappings is bounded by approximately 
2 . log2, and for a 2-neighborhood in a- and b-template 
( N  = SO), by approximately 3.10688. Even if the bound on the 
number of mappings performable by a DTCNN is the same 
as in the case of a perceptron with N inputs, the mappings 
performed by a DTCNN can be much more complex. 

N 2  

11. GEOMETRIC INTERPRETATION 

Since each cell of a DTCNN is based on a Linear Threshold 
Element (LTE), the existing theoretical background on thresh- 
old logic gives valuable insight [ 1 11-[ 131. This section deals 
with all those operating modes, in which IEo( can be bounded 
by a fixed number, i.e. all modes except continuous Mode I. 

Input Space and Parameter Space 

Linearly separable functions of N inputs have a very 
figurative geometric interpretation. Let 2 = IR”+l denote the 
input space. The /EO[  cell input vectors e E Eo correspond 
to /Eo1 points in 1. Let those points e, for which the desired 
output is +l, be labelled “+”, and those points, for which the 
desired output is -1, be labelled “-”. The equation pTe = 0 
defines a hyperplane through the origin of 2. It divides the set 
of vertices into two disjoint sets, one set, for which pTe 2 0, 
and a set with pTe < 0. Thus only those dichotomies are 
possible, where the “+” points can be separated from the 
“-” points by a hyperplane (linearly separable mapping). 

The space which is dual to Z with respect to the Euclidian 
norm is more useful to visualize the mapping process of a 
DTCNN cell. Let P = EtNf1 denote the parameter space. 
The parameter vector p E P corresponds to a point in P. 
Each of the I&/ equations eTp = 0 with e E EO defines 
a hyperplane through the origin of P. The binary-valued 
response of a cell to a cell input vector e depends on which side 

of the corresponding hyperplane the point p is located, either 
eTp 2 0 or eTp < 0. Each of these hyperplanes divides P 
into two half spaces (convex sets). The intersection of a finite 
number of half spaces is called a convex cone C,: 

Dejinition2: [Convex cone] Let p E P so that eTp # 
0 ‘d e E Eo. The set 

C , = { p E P  : eTp.eTp>OVeeEo}  (6) 

is called a convex cone C,. 
Note that from this definition and the definition of the 

positive cell input set &:, we have eTp > 0 for all e E &: 
and p E C,. The hyperplanes are excluded in Definition 2, 
because parameter vectors p on the hyperplanes require an 
infinite accuracy of the network parameters (see Section 3). 
This exclusion is legal, since without loss of generality, an 
infinitesimal perturbation can be added to the parameter vector, 
so that eTp > 0 and the functionality of the network remains 
unchanged [9]. Each convex cone C, corresponds to a linearly 
separable Boolean function, since the cell output values are 
identical for all p E C,. The mapping {C,} - .FhS is 
injective, but the mapping P - .Fls is not, since each linearly 
separable Boolean function can be realized by infinitely many 
parameter vectors p E C,. 

Properties of the Parameter Space Description 

It is important to note that from Definitions 1 and 2 we can 
conclude 

Lemma 1: [Identical behavior in a convex cone] Let C, 
denote a convex cone. Let V I  and 732 be two identical 
DTCNNs with different parameter vectors p1, p2 E C,. Then 
V I  and V2 will go through the same sequence of output signals 
y ( k ) ,  if both nets are operated with identical inputs u(k) and 
initial states yo. 

Proofi Trivial, by induction. Both DTCNNs start from 
the same initial state yo. From Definition 2 we have identical 
cell outputs SGN(eTp,) = SGN(eTp2) for all identical cell 
inputs e E Eo and all p1,p2 E C,. Hence the two DTCNNs 
will perform identical mappings from one time-step to the 

Obviously, only a subset of all hyperplanes eTp = 0 
actually bound a convex cone (“bounding hyperplane”), while 
others only touch the cone in the origin of P. 

Definition 3: [Bounding hyperplane] Let C, be a convex 
cone. A hyperplane e E &: is called bounding hyperplane of 
the convex cone C,, if and only if 

next, and thus the two nets behave identically. 

3p E P : pTe 5 0 and pTe, > 0 ‘de, E &:\{e} 

For each convex cone C,, the set &: can be divided up into 
two complementary subsets E: C &O and E: = &:\Er. Let 

E: := {e E &{ is a bounding hyperplane of C,} 

To explore some properties of the two subsets ,fy and €2” and 
to ease the following proofs, we introduce Motzkin’s Theorem 
[ 141. In the Theorem, the ordering relations U 2 v and U 2 v 
between two vectors U and v both imply that ui 2 vi, but 
U 2 v additionally implies U # v. 
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Theorem I :  [Motzkin’s Theorem of the Alternative] Let A, 
B ,  and C be given matrices, with A being nonvacuous. Then 
either 

( I )  3 ~ :  Ax>O B x > O  Cx=O 
or 

but never both. 
Proof: See for example [ 141. 

Corollary 1: [Linear Combination] A hyperplane e E E: 
belongs to the set E r ,  if and only if 

BA, E R’+ : e = Xvev Ve, E E,P\{e) 
V 

i.e. e cannot be written as a nontrivial positive linear combi- 
nation of vectors e, E &:\{e}. 

Proof: The proof is trivial using Theorem 1. Let A be a 
( [E : [  - 1) x ( N  + 1) matrix, where the rows of A are equal 
to the vectors e: E &\{e}. Let B = -eT be an 1 x ( N +  1) 
matrix, and let C = 0. 

“if’: If e E E:, then there is a solution for ( I )  in Theorem 
1, which implies that there is not solution for ( I I ) ,  i.e. e cannot 
be written as a nontrivial positive linear combination. 

&:, then we have eTp > 0 for all p E P 
satisfying eFp > 0 for all e,, E &:\{e}. It follows that there 
is no solution for ( I )  in Theorem 1, and hence there must 
be a solution for ( I I ) ,  i.e. there exist a nonnegative value X 
and nonnegative values A, with at least one strictly positive 
A,, so that 

“unly f”: If e 

V 

If X > 0, then we are done after dividing both sides by A. The 
fact that X > 0 will be shown by contradiction. Assume that 
X = 0. Then there is a nontrivial solution A, 2 0, so that 

0 .  eTp = XveTp = o VG E P ,  e, E EgP\{e) 
V 

This is a contradiction to the fact that for all p E C,, we have 
e;p > 0. Thus such a solution with X = 0 cannot exist and 

Lemma 2: [Reduced linear combination] If for each cell 
input vector e E &; there is a positive linear combination, i.e. 
there are nontrivial A, 2 0 so that 

X is strictly positive. This completes the proof. 

e = C A v e v  

then there are nontrivial i, 2 0 so that 

Ve,, E &o\{e} 
V 

U 

Proof: Let e E E? and e E E;. By Corollary 1 there 
are nontrivial i; 2 0 and KM 2 0 so that for any el E E; 
we can write 

Now pick a vector e, E &;\{el} with p # 1. Again, we have 

eF = Ci;ev + ikem + Aye1 = 
v m#1# ~ 

= CX;ev+ Xg&em+ 
v m#i,, 

+ iyzx;e,+xy V i&em+iy i ;e ,  

e,(1 - iyi;) = 

= (x: + ;\:xi) e, + (ik + i y q  em 

m#l+ 
Now we can write 

\-.-/ m#L,\-”-d 
=:A, 2 0  =:A,>O 

Since we know that for all p E C, and e E E: the inequalities 
pTe > 0 are satisfied, we can conclude that 

(1 - qi;) > 0 

and hence there is a positive linear combination for all e, E &; 
which does not contain e l .  By recursively executing the above 
procedure, all vectors e, E &: can be eliminated, and thus a 
positive linear combination for each e, E E; can be found, 
which only depends on the e, E If’. This completes the proof. 

Theorem 2: [Sufficiency of bounding hyperplanes] 

(e  E E;) + ( ( ~ p  E P : eTp > o Ve E E:) + eTp > 0) 

Proofi From Corollary 1 and Lemma 2 follows that 
each e E E; can be written as a nontrivial positive linear 
combination of vectors e E E:. From eTp > 0, it then follows 
by multiplying the positive linear combination with pT that 

This last theorem implies that a specification of the cell 
output 9 for all cell input vectors e E E? automatically sets 
the cell output for the cell input vectors 

In the case of binary Mode I, a statement concerning the 
tightness of the upper bound on I&:[ can be made: 

Corollary 2: [Tightness of bound] In binary Mode I, i.e. if 
EO = {e E {-171}N+1 : eo = l}, the bound 

eTp cannot be zero or negative, and thus eTp > 0. 

E E;. 

5 2N 

is tight. 
Proof: Equality will by shown by providing an example 

for which &; = 0. Examine the convex cone C, with p = 
(1 ,0, .  . . ,O)T .  In this case, all vectors e,, E E: will have 
“$1” as their first component. Assume that &; is nonempty. 
Then by Corollary 1 all vectors e E E; can be written as a 
positive linear combination of vectors e, E E:, i.e. 

e = CX,~, , A, 2 0, e, E &:\{e} 

The equation for the first component of e will be 

V 

CA, = 1 
V 

Since for any other element but the first element the summation 
will contain “+l”-entries as well as “-1”-entries, it is 
impossible to obtain a vector with binary entries as the result 
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of the summation. Thus there is no such positive linear 
combination, and hence €: must be empty and l€f’l = 2”. 

We will continue by providing an example where €; 
is nonempty. Examine the convex cone Cp with p = 
(l.019 1,. . . . l)T. Then the E r  contains all N + 1 vectors 
with N “fl” elements and one “-1” element. Adding 
these vectors and dividing the sum by N - 2 will result in a 
vector consisting of only “fl” elements, which belongs to 
f: as well. Thus the vector e = (1,. . . , l)r can be written 
as a positive linear combination of other vectors, and thus 

At the end of this section, we will provide a simple example 
for N = 3. We have €o = {( l , f l ,  fl. &l)T} with I&/ = 8. 
Now let p = (1.01,1,1, l)T. In this case, the sets E:, €f’, 
and €; are 

1€1”1 < 2”. 

e2 = ( 1, 1, -1, - I ) ~  
e3 = ( 1. -1, I ,  - I ) ~  

e 7  = ( I, 1. -1, 

Ill. ACCURACY REQUIREMENTS 
For any realization of a DTCNN, the actual network parame- 

ters will deviate from the nominal parameters. Let p denote the 
nominal parameter vector, p the actual parameter vector, and 
Ap = p - p the error. The desired operation of the network 
can only be guaranteed by Lemma 1 as long as p E C,, hence 
from Definition 2 

e T p .  eTp > 0 Ve E (7) 

is a sufficient condition for the desired operation of the 
network. Further, let : ~ : ~ ~ i ~  be the minimum absolute cell state 
given by 

Worst-Case Bound 

Assume that the network parameters p = ( p o , .  . . . p ~ ) ~  
can be realized with a guaranteed error limit ApFax, where 

Lemma 3: [Worst-case bound] Let lApv) I ApFaX = 
nllpuI for all v = 0 , .  . . N and a real-valued, positive 
accuracy al .  Let .rlrllll be defined as in (8). A sufficient 
condition for correct operation of the network, i.e. for (7) is 

ppUI 5 a p y .  

Now 

Note that in (9), ~ ~ ( 1 ,  p) is exactly the (relative) robustness 
in weight space with respect to the I-norm as defined by 
Nachbar in [15]. 

Average-Case Bound 

For this subsection, we will assume that the network pa- 
rameters are random variables with a Gaussian probability 
distribution. Let x = ( ~ 0 , .  . . , x ~ F ) ~  be a vector with N + 
1 random variables with Gaussian probability distributions 
characterized by the expected values E,_ = p ,  (the nomi- 
nal network parameters) and the (invertible and symmetric) 
covariance matrix C .  Let p ( x )  be the joint probability density 
function of the random variables, which obeys 

Now let Pok be the probability that the network is functioning 
correctly. Then 

Fig. 1 (a) shows the two-dimensional parameter space for the 
simple case N = 1. The shaded area corresponds to the chosen 
convex cone. In practice, the integral over C, is very difficult 
to evaluate, because the number of bounding hyperplanes is 
very large in general, and in binary Mode I, it can even grow 
exponentially with N (see Corollary 2). Still, it is possible to 
give a lower bound on Pok. 

Let Q be a symmetric ( N  + 1) x ( N  + 1) matrix so that 
C = QTQ. Since C is a covariance matrix, such a Q will 
exist, and it will be invertible. We introduce the norm body 
NB(P3 B)  

The elliptical norm J l A p ( l c - ~  is given by 

N B ( p ,  [ j )  is a hyper-ellipsoid, which is introduced, because 
a closed-form expression can be given for the integration of 
(10) over NB(p,[j) .  

Lemma 4: [Average-case bound] A sufficient condition for 
NB(p,[i’) c C, is 

Authorized licensed use limited to: T U MUENCHEN. Downloaded on March 4, 2009 at 04:42 from IEEE Xplore.  Restrictions apply.



630 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS- -I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 41, NO. 10, OCTOBER 1994 

(C) 

Fig. 1. Parameter space for Ai + 1 = 2: (a) convex cone; (b) inscribed 
norm body ,uB(p, (shaded ellipsoid); c )  optimal inscription of 
,” p o p t ,  ,72, ) 

Prooj? We show that from p E NB(p, p), it follows that 
p E C,. Using the Hoelder inequality for the Euclidian norm, 
we can write 

leTApl = leT(Q-lQ)TA~l I IlQellz . IIQ-l’TA~llz 
I IlQellz . P < leTpl 

Then, 
eTAp. eTp 5 leTApl . leTpl < IeTpI2 = (eTp)2 

Let the crv be the standard deviations of the random vari- 
ables. In the case of binary inputs, and when additionally 
the random variables xv are mutually uncorrelated, i.e. Q = 
diag(a0, . . . , U N ) ,  then we can further simplify (12) using 

eTp. eT(p - Ap) = eTp.  eTp > 0 

N N 

u=o v = o  

With the assumption crv = a21yvl, we get from (12) and (8) 

Fig. l(b) shows the norm body NB(p,&,,). If (12) is 
satisfied, then we get from (1 1) and the nonnegativity of p(x) 

(14) Pok > /”’/ d x )  dN+lX - 
NB(P,P,,, 1 

The integral in this last expression can be evaluated. The 
derivation is given in Appendix I. We obtain for even N 

For N = 0, expression (15) reduces to the standard Gaussian 
error integral. Fig. 2 shows P N ( / ~ )  for values of N = 0 
(standard Gaussian error integral), N = 18 (DTCNN with 
1-neighborhood), and N = 50 (2-neighborhood). From (13) 
and (15) we finally get a lower bound on Pok, the probability 
that the network is functioning correctly: 

For Om,, >_ 6 and a 1-neighborhood, the cell will work with 
a probability of more than 98.9%. In this case, we have 

Computation of x,in 

The value of xmin in (9) and (16) is still unknown. In 
continuous Mode I, its definition does not make sense, because 
l€ol is not bounded. In addition, it is easily possible, apart from 
trivial cases, to choose input values U such that xmin = 0, 
which would require an infinite precision (see (9) and (17)). 
In Modes I1 and 111, xmin can usually be computed by running 
the network and keeping track of the values of z , ( k ) .  In binary 
Mode I, this is not always possible, since (EO( = 2N grows 
exponentially with N .  Thus the rest of this subsection deals 
exclusively with binary Mode I, where [EO I = 2 N .  It turns out 
that even the apparently simple problem of determining the 
hyperplane e,, E Eo, for which le:pI is minimal, is inherently 
difficult: 

Theorem 3: [Complexity of finding a closer hyperplane] 
The problem of determining whether there is a hyperplane 
e,  E €0 for a given parameter vector p with rational elements, 
which obeys 

IPTe,l I f  
where E > 0 is a rational constant, is NP-complete. 

Note that in order to find out whether for a certain hyper- 
plane e: E &, the scalar product lpTe:l is minimal, one has 
to decide whether there is another hyperplane e, E Eo with 
IPTe,l I IPT$I. 

Prooj? see Appendix 11. 
Remark: In Appendix I1 it is actually shown that the problem 

from Theorem 3 and the Value-Independent Knapsack are 
polynomially equivalent. Thus pseudo-polynomial algorithms 
like Branch-and-Bound methods or Cutting-Plane algorithms 
(see for example [16] or [17] for an overview) can be used to 
solve instances of the above problem in practice. 
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P 

Fig. 2. Probability P\ ( j) 

Still, a lower bound on x,in depending on N can be found. 
Since we have eTp # 0 for all p E C, and all e E &, we 
have xmin > 0. Now let 

(18) PlJ p ,  := - 
~ n , , ,  

v = 0 , 1 , .  . . , N 

Then we have 

leTp( 2 I Ve E EO 

Using Muroga’s terminology, this corresponds to the normal- 
ized system of inequalities in a majority expression (Definition 
3.2.2 in [13]). For any positive linearly separable Boolean 
function of N variables, a bound on the sum of the weights 
can be given 

Theorem 4: [Bound on the weight sum] 

Proot see proof of Theorem 9.3.2.2 in [13] 
Since any linearly separable Boolean function can be con- 

verted into a positive linearly separable Boolean function by 
just flipping the sign of input variables, the above result is also 
true for the general case. Thus we can replace the sum over 
the by IIpII1. Using (9) and (18), we get a lower bound on 
the relative robustness (worst-case) in the parameter space 

Expression (19) confirms the known result that the number of 
bits required to store the weights is of the order O ( N  log N )  
[18]. For a 1-neighborhood in a- and b-template ( N  = 18), 
27 bits are needed to be able to realize any possible linearly 
separable Boolean function. The corresponding number of bits 
for a 2-neighborhood is 101 bits. 

Remark 1: Note that (19) is a worst-case bound, i.e. it 
is a sufficient condition that the network will work for any 
desired linearly separable Boolean function. The bound in 

63 I 

beta 

Theorem 4 is not tight, as has been shown experimentally 
for values N 5 7 by Muroga [ 131. On the other hand, certain 
linearly separable functions are known, which can only be 
realized by weights that grow exponentially in N (see Theorem 
9.3.1.1 in [13], where a linearly separable function requiring 
Q ( N )  bits to store the weights is constructed). Given the 
achievable accuracy of analog VLSI realizations, it seems 
doubtful whether it will be possible to build a DTCNN that 
can perform any linearly separable Boolean mapping even with 
only a 1 -neighborhood in both templates. Practical experience 
though shows that there are applications, i.e. linearly separable 
mappings, for which the required accuracy is feasible with 
an analog realization. An example is the edge detector in 
[15], where llplll = 9, llellm = 1, and thus an accuracy of 
cy1 = 11% or 4 bits is sufficient for the desired task of the 
network, although a 1-neighborhood in a- and b-template is 
used. 

Remark 2: Due LO the much smaller number of inputs of 
each cell, the DTCNN compares very favorably to a fully 
connected Hopfield network, where the required accuracy for 
the network parameters is a lot more restrictive. 

Optimization of Robustness for  a Given Convex Cone 

In practice, an optimally robust parameter vector p is 
desirable. This is necessary to obtain a high yield in a 
fabrication process, and on the other hand, it is reported that 
robust network parameters might have a positive effect on the 
generalization ability of the network [19]. In Mode 111, the 
cell input vectors e,(IC) and desired cell outputs yC(k + 1) are 
known for all cells c at any time-step IC.  Due to the trans- 
lational invariance of the DTCNN template parameters, the 
problem of finding the optimally robust template parameters 
is equivalent to the problem of finding the optimally robust 
weights for a single perceptron, which maps all inputs ec(k) 
onto the corresponding y,(k + 1) .  Therefore, it is possible to 

Authorized licensed use limited to: T U MUENCHEN. Downloaded on March 4, 2009 at 04:42 from IEEE Xplore.  Restrictions apply.



apply existing algorithms for the perceptron to optimize the 
robustness, i.e. to find the parameter vector so that the bounds 
on a1 or a2 in (9) and (17) are optimal. In this case, the convex 
cone C, and the actually occurring cell input vectors e E E: 
(or even better e E &?, see Theorem 2) are known. Due 
to the redundancies in the input data and the interconnection 
structure, l&ol is usually much smaller than suggested by the 
bound min{KLM,2N} in Table I. In [20], a DTCNN with 
1-neighborhood in a- and b-template (N = 18) is used for 
a simple classification task of L = 60 10 x 10 (A4 = 100) 
binary patterns. The longest trajectory was about K = 40. 
However, it turned out that l&ol = 7101 << 262144 = 218. 
An optimal worst-case robustness is thus achieved by solving 
(see (8) and (9)) 

This is the Perceptron of Optimal Stability problem with 
respect to the 1-norm, and it has been shown that this case 
can be reduced to a Linear Programming Problem [19] and is 
thus efficiently solvable. 

The robustness for the average case can be optimized as 
well. Since Ilell2 = d m  for all e E Eo in the binary mode, 
the corresponding optimization problem becomes with ( 17) 

This is the Perceptron of Optimal Stability problem with 
respect to the 2-norm, which can be solved efficiently by 
the AdaTron algorithm [15], [5]. Fig. l(c) shows the optimal 
norm body Nf?(popt, ,O;P') in this case. Application of the 
AdaTron algorithm to the above classification example resulted 
in an improvement of the bound on a2 from a2 = 0.005% to 
a2 = 0.072% (case with Pok 2 98.9%). 

Relevance of the Bounds 

In Mode 111, the underlying perceptron problem will have a 
solution, since a convex cone is uniquely determined. In this 
case, the optimization problems (20) and (21) can be solved, 
and the solution of (21) is unique [21], [ 5 ] .  It follows from the 
uniqueness that there is a set of N + 1 linearly independent 
vectors eo,. . . , e ~  E E: such that eFpoPt = zz: for 
v = 0 , .  . . , N .  x.",",", is the optimal zmin corresponding to a 
parameter vector p found in (20) or (21). For all other vectors 
e E &:\{eo,. . . , e ~ } ,  we have e T p o P t  2 xz;. Therefore, 
even in the extreme case where E: = {eo,. . . , e N } ,  5%: is 
still optimal, since any modification of the optimal parameter 
vector popt would result in an $,in < zz;, and thus in stricter 
accuracy requirements due to (9) and (17). 

Therefore, by picking the input signal and the initial state 
such that these N + 1 vectors {eo,. . . , e ~ }  & E:, i.e. that 
they actually appear as cell input vectors, the bounds on the 
required accuracy using (9) and (17) with zz; will be tight. 

We will end this section with an example, where a relatively 
small DTCNN has high accuracy requirements. For small 
numbers of inputs ( N  5 8), all linearly separable Boolean 
functions have been categorized in tables (see for example 

Fig. 3. 
for the example 

Input u(O), initial state y(O), and the critical cell input vectors e ,  

[ll],  which contains cases N 5 6). We will use a DTCNN 
that consists of a 1-dimensional row of M = 13 cells, an a- 
and a b-template with 1-neighborhoods, i.e. N = 6, and a 
bias. The input signals are binary, and the input set consists 
of one input pattem plus the corresponding initial state. The 
parameter vector is p = &(8, 7 , 6 , 5 , 4 , 3 ,  2)T. Application 
of optimization algorithms of the type (20) confirms that 
this parameter vector is the optimal one, i.e. there are 7 
vectors eo,.  . . , e6 E Eo, so that lpTevl = zmin = &, while 
for all other possible binary cell input vectors e, we have 
lpTel > xmin. The vectors e, are 

eo = (1, 1, -1, -1, -1, 1, -1)T 
el = (1, 1, -1, -1, -1, -1, 1)T 
e2 = (1, -1, 1, -1, 1, -1, -1)T 
e3 = (1, -1, 1, -1, -1, 1, -1)T 
e4 = (1, -1, -1, 1, 1, -1, -1)T 
e5 = (1, -1, -1, 1, -1, 1, 1)T 
e6 = (1, -1, -1, -1, 1, 1, 1)T 

Note that any permutation of the elements of p, where each 
element can be positive or negative, can be used to construct 
similar cases. Fig. 3 shows a possible input u(O), initial state 
y(O), so that the critical cell input vectors e,  actually occur. 
With (9), we get a required worst-case accuracy requirement of 
6 bit even for the small network in this example. The bound 
obtained from (19) is 7 bits. 

IV. CONCLUSIONS 

DTCNNs are examined from a geometrical point of view. 
Different modes of operation are identified. The DTCNN is 
related to a standard perceptron, when the input set and the 
network parameters are fixed. In all other cases, the set of 
all cell input vectors also depends on the parameter vector. 
The mapping properties of the DTCNN are studied. An upper 
bound on the number of possible mappings for the whole 
network is given for the case of binary inputs, and it is 
shown that the number of performable mappings is of the 
order of 0(2N2/N! ) .  This is a large loss when compared 
to the maximum number of performable mappings, and even 
compared to the number of possible mappings for a fully- 
connected Hopfield network. 

A geometric view of the mapping at cell level is given 
in the input space and the parameter space. The parameter 
space is segmented by a large number of hyperplanes through 
the origin into a large number of convex cones, each of 
which uniquely defines a linearly separable mapping. The 
hyperplanes correspond to possible cell input vectors, and they 
can be split in two sets: those hyperplanes which bound a 
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given convex cone, and those which do not. Hyperplanes from 
the latter set can be written as positive linear combinations 
of hyperplanes from the first set, and the cell output signals 
corresponding to hyperplanes from the second set cannot be 
set independently. In the case of binary inputs, a convex cone 
can be bounded by as many as 2N hyperplanes, where N is 
the number of inputs of each DTCNN cell. 

Sufficient conditions on the required accuracy of the net- 
work parameters for a worst-case and an average-case scenario 
are given, so that the network is still functioning correctly. 
These bounds still depend on x,;,, the minimum absolute 
cell state value. For the binary input case, even the problem 
of deciding whether a certain hyperplane is the closest from a 
certain point in parameter space is shown to be NP-complete. 
Still, a lower bound on zmin depending on N can be given. 
For a DTCNN with 1-neighborhoods in both templates, an 
accuracy of 27 bit (worst-case result) is sufficient to guarantee 
the performability of all linearly separable Boolean mappings 
at cell level. It is confirmed that the number of bits required 
for storing the network parameters grows with the order 
O(N log N ) .  Therefore, the DTCNN has a decisive advantage 
with respect to a hardware realization when compared to 
the fully-connected Hopfield network, since the number of 
network parameters is considerably smaller. In certain applica- 
tions, however, the required accuracy constraints can be much 
less critical compared to the worst case bound. However, it 
is shown that a set of N + 1 critical cell input vectors are 
sufficient to enforce the worst-case bounds. 

APPENDIX I 
EVALUATION OF THE ERROR INTEGRAL 

Let v := QT>-'(x - p), and thus 

d"+'x = I det QTI . dN+lv 

From (10) and (14), we then get 

I l V l l Z l P  

T N + ~  is the volume of the unit hypersphere in lRN+l.  Since 
N is even (c.f. Section l), we have 

2$+1J;;" 

1 . 3  ' . . . . ( N  + 1) "1 = 

~ 

633 

(see for example [22]). For the term depending on p we use 
the recursion 

2 dp = ( N  - 1) pN-2e-&p - pN-1 e 2  -p2 

(23) 
Since N is even, we can reduce the integration involving p 
to an expression containing the Gaussian error integral plus a 
sum of other terms. Applying (23) $ times, we finally arrive 
at the expression 

p=o 1 p=o 1 

Since the sum is finite, the expression will converge for all 
p due to the influence of the exponential function. Putting 
together (22) and (24), we get 

Pok > P N ( P )  := erf (5) - 

This is equal to (15). The "erf(*)"-function is the Gaussian 
error integral 

APPENDIX I1 
PROOF OF THEOREM 3 

In order to prove Theorem 3, we first have to introduce the 
Knapsack Problem (also called 0-1 Knapsack problem, see for 
example the appendix of [231): 

Dejnition 4: [Knapsack problem] 
INSTANCE: Finite set U ,  for each U E U a size S(U) E Z+, 

a value .(U) E Z+, and positive integers B and K .  
QUESTION: Is there a subset U' C U such that 

s ( u )  5 B and .(U) 2 K ? 
UEU' UEUf  

The Knapsack problem is NP-complete [23], even if $ ( U )  = 
.(U) for all U E U (Value-Zndependent Knapsack problem). It 
can be solved in pseudo-polynomial time. 

Proof: (Theorem 3) It is obvious that the problem in 
Theorem 3 is in NP, since if we are given a correct guess 

by an oracle machine, we can figure out in O ( N )  steps 
by just evaluating the scalar product, that IpTe?'( is indeed 
smaller or equal than E .  

Secondly, we will give a polynomial reduction from the 
Value-Independent Knapsack problem. Let N = 1 U 1. Introduce 
the binary variables e, E {-1,l) with v = O , l , .  . . , N .  Let 
eo = 1 and 

+' if E '' 
= 1 , 2 , .  . . , N -1 otherwise 

e ,  = 
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Let p ,  = ~(u,) for v = 1 , 2 , .  . . , N ,  let t = ( B  - K ) ,  and 
N 

po = CS(U,) - K - B 

This transformation is polynomial in N .  We now claim that 
the Value-Independent Knapsack problem has a solution if 
and only if the problem of finding e, E { -1,l) with v = 
1,2 ,  ..., N so that 

V=l 

kTPl = lgevp.l 5 6  

has a solution. This is our original problem from Theorem 3. 
The fact that the p ,  in the original problem are rational is not 
a restriction, since it is possible to multiply all p ,  with one 
positive integer, so that in this case all p ,  become integers. 

Using 

and thus 
2K 5 2 .(U) 1 2 B  

UFU’ 

This proves the claim, and thus we have polynomially reduced 
the Knapsack problem to the problem of Theorem 3. This 
completes the proof. 
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