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Unitary ESPRIT: How to Obtain 
Increased Estimation Accuracy with 
a Reduced Computational Burden 
Martin Haardt, Student Member, IEEE and Josef A. Nossek, Fellow, IEEE 

Abstract-ESPRIT is a high-resolution signal parameter esti- 
mation technique based on the translational invariance structure 
of a sensor array. Previous ESPRIT algorithms do not use the 
fact that the operator representing the phase delays between the 
two subarrays is unitary. Here, we present a simple and efficient 
method to constrain the estimated phase factors to the unit 
circle, if centro-symmetric array configurations are used. Unitary 
ESPRIT, the resulting closed-form algorithm, has an ESPRIT- 
like structure except for the fact that it is formulated in terms of 
real-valued computations throughout. Since the dimension of the 
matrices is not increased, this completely real-valued algorithm 
achieves a substantial reduction of the computational complexity. 
Furthermore, Unitary ESPRIT incorporates forward-backward 
averaging, leading to an improved performance compared to 
the standard ESPRIT algorithm, especially for correlated source 
signals. Like standard ESPRIT, Unitary ESPRIT offers an in- 
expensive possibility to reconstruct the impinging wavefronts 
(signal copy). These signal estimates are more accurate, since 
Unitary ESPRIT improves the underlying signal subspace esti- 
mates. Simulations confirm that, even for uncorrelated signals, 
the standard ESPRIT algorithm needs twice the number of 
snapshots to achieve a precision comparable to that of Unitary 
ESPRIT. Thus, Unitary ESPRIT provides increased estimation 
accuracy with a reduced computational burden. 

I. INTRODUCTION 
HE recovery of signal parameters from noisy observa- T tions is a fundamental problem in (real-time) array signal 

processing. Due to their simplicity and high-resolution capa- 
bility, ESPRIT-like subspace estimation schemes have been 
attracting considerable attention. Their parameter estimates are 
obtained by exploiting the rotational invariance structure of 
the signal subspace, induced by the translational invariance 
structure of the associated sensor array. This can be achieved 
without computation or search of any spectral measure [15], 
[17]. Unitary ESPRIT achieves even more accurate results 
than previous ESPRIT techniques by taking advantage of the 
unit magnitude property of the phase factors that represent the 
phase delays between the two subarrays [4]. It has been shown 
in [12] that constraining the phase factors to the unit circle 
can also give some improvement for correlated sources. For 
centro-symmetric sensor arrays with a translational invariance 
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structure, Unitary ESPRIT provides a very simple and efficient 
solution to this task. 

Although Unitary ESPRIT effectively doubles the number 
of of data samples, the computational complexity is reduced 
by transforming the required rank-revealing factorizations of 
complex matrices into decompositions of real-valued matri- 
ces of the same size. Thus, we obtain increased estimation 
accuracy with a reduced computational load. This reduction 
can be achieved by constructing invertible transformations that 
map centro-Hermitian matrices to real matrices. These trans- 
formations have been introduced in Lee’s pioneering work on 
centro-Hermitian matrices [ 101. More than a decade later, her 
results were used to transform the complex covariance matrix 
of a uniform linear array (ULA) into a real matrix of the 
same size [8] to reduce the computational load of adaptive 
beamfonning schemes [9]. In this paper, we use more general 
centro-symmetric array configurations that have been receiving 
increased attention lately [22]. We derive an efficient square 
root version of Unitary ESPRIT that only requires real-valued 
computations from start to finish, by operating directly on 
the data instead of “squaring” it to obtain sample covariance 
matrices. It is well known that benefits result from smaller 
matrix conditioning numbers [ 151. With infinite precision, both 
strategies would be the same, whether eigendecompositions 
or singular value decompositions (SVD’s) are used. Finite 
precision arithmetic, however, is employed in practical ap- 
plications. Therefore, numerical issues like round-off error 
and overflow are potential problems to be aware of when 
covariance matrices are estimated. In addition to this square 
root approach, we also describe an alternative real-valued 
covariance approach, cf. Remark 1, which turns out to be more 
efficient than the one proposed in [8] and [24]. 

In the presence of additive noise, the computation of an 
optimal signal subspace estimate requires an SVD or an 
eigenvalue decomposition (EVD), which is computationally 
expensive, since 0 ( M 3 )  operations are necessary to update 
the SVD or EVD if a new sample vector of dimension M 
arrives. Therefore, a number of alternative decompositions 
have been proposed to estimate the signal subspace in a 
computationally more efficient way. Examples include the 
rank-revealing QR decomposition [ 11, 121, the rank-revealing 
URV decomposition [ l l ] ,  [18], or a new Schur-type method 
for subspace estimation [3], [9]. These approximation tech- 
niques are computationally more efficient and well suited for 
a parallel (systolic) implementation, but they involve a certain 
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loss of accuracy that can be compensated by combining them 
with Unitary ESPRIT, yielding not only improved estimation 
accuracy, but also completely real-valued algorithms. In [5], it 
is shown how Unitary Schur ESPRIT dramatically improves 
the performance of the new Schur-type method, an adaptive 
subspace estimation scheme with a computational structure 
and complexity similar to that of a QR decomposition, except 
for the fact that plane and hyperbolic rotations are used. In this 
case, the required rank decision, i.e., an estimate of the number 
of signals, is automatic, and updating as well as downdating 
are straightforward. The fully real-valued Unitary ESPRIT 
concept can also be extended to spatially smoothed forward- 
backward estimation schemes [6], [13], [14] and is applicable 
to many other subspace estimation techniques (see [20] for 
an excellent overview). The results are comparable to the 
advantages obtained by operating in beamspace [24] without 
the necessity of converting the data from element space to 
beamspace. 

This paper is organized as follows. It starts with a review 
of the definition and basic properties of centro-Hermitian 
matrices. These properties will be used to derive the real- 
valued implementation of Unitary ESPRIT. A brief review of 
the standard ESPRIT algorithm is given in chapter 111. It can 
be seen as a generalization of the matrix pencil method [7]. 
Chapter IV introduces the Unitary ESPRIT concept for centro- 
symmetric array structures. In Section IV-B we show how all 
three required rank-revealing factorizations can be transformed 
into decompositions of real-valued matrices of the same size 
yielding a completely real algorithm. A new reliability test, 
which is a substantial improvement of current high-resolution 
array signal processing and spectral estimation techniques, 
is presented in Section IV-C. Further simplifications of the 
algorithm are derived in Section IV-D, before a summary 
of Unitary ESPRIT concludes the chapter (Section IV-E). 
Finally, computer simulations compare the performance of 
Unitary ESPRIT with that of the well-known standard ESPRIT 
algorithm (Section V). 

11. CENTRO-HERMITIAN MATRICES 

First of all, let us introduce our notation and review the 
definition and the basic properties of centro-Hermitian ma- 
trices that have been derived by Lee [lo]. Throughout this 
paper, column vectors and matrices are denoted by lower 
case and upper case boldfaced letters, respectively. 17, is the 
p x p exchange matrix with ones on its antidiagonal and zeros 
elsewhere 

17,= [l . l ]  ERPXP. 

Since IT,  is a symmetric permutation matrix, it is involutorial, 
i.e., 17; = I,. With this notation, we can define centro- 
Hermitian matrices in analogy to centro-symmetric matrices. 

Definition 1: A complex matrix M E CPxq is called 
centro-Hermitian if 

I T , ~ I T ,  = M (1) 

where the overbar denotes complex conjugation without trans- 
position. 

q- 
dimensional linear space over R [lo]. To show how centro- 
Hermitian matrices can be mapped to matrices with real 
entries, Lee defines left Ll-real matrices in the following 
fashion. 

Centro-Hermitian matrices of size p x q form a p 

Definition 2 [lo]: Matrices Q E CPxq satisfying 

nP& = Q (2) 

are leji Ll-real. 
The unitary matrices 

(3) 

for example, are left 17-real of even and odd order, re- 
spectively. More left 17-real matrices can be obtained by 
post-multiplying a left 17-real matrix Q by an arbitrary real 
matrix R, i.e., every matrix QR is left I7-real. Now, we are 
in a position to state Lee's main result, which establishes an 
automorphism between centro-Hermitian and real matrices. 

Theorem 1 [lo]: Let T p  and U ,  denote arbitrary nonsin- 
gular left 17-real matrices of size p x p and q x q ,  respectively. 
Then, the bijective mapping 

'p: M H Ti 'MU,  

maps the set of all p x q centro-Hermitian matrices onto RP x q ,  

the set of all real matrices of the same size. 
This theorem can, for instance, be used to calculate the 

singular value decomposition (SVD) of a centro-Hermitian 
matrix M E C P x q .  

Corollary 1: Let M be centro-Hermitian, and assume that 
the SVD of c p ~ ( M )  = Q,"MQ, E WX'J is given by 
c p ~ ( M )  = U,E,V$, where the matrices Q, and Q4 are 
unitary as well as left 17-real. Then, an SVD' of M is obtained 
as 

where the left and right singular vectors of M are left 17-real. 
Proofi The first part follows from the unitary nature of 

Qp and Qq,  the second from the fact that the singular vectors 
of a real matrix are real. 

For future reference, we consider an efficient computation 
of a particular transformation 'T(.). It transforms an arbitrary 
complex matrix G E C P x q  into a real p x 2q matrix, denoted 
by 'T(G). Notice that for every matrix G, the matrix 

[G 17,c17,] E C p x z q  

is centro-Hermitian. Thus, the matrix 

'T(G) ef9'p&([G LlpG17,]) 
= Q," [G ITpc17qIQzq (6) 

' Recall that the SVD of a complex matrix is unique up to a uni'tary diagonal 
scaling matrix, if all singular values are distinct. 
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is always real according to Theorem 1. Consider the case 
where the left II-real matrices Qp and Q2q are chosen ac- 
cording to (3)  or (4). Furthermore, let G be partitioned as 

G =  E] 
where the block matrices G1 and G2 should have the same 
size. Obviously, the row vector gT must be dropped if p is 
even. Then, straightforward calculations show that the desired 
real-valued matrix (6) can be expressed as 

1 Re{G1 + DG,} -Im{G1 - nG2} 
7 ( G )  = fi.Re{gT} -fi.Im{gT} . (7) [ Im{G1 + IIG2) Re(G1- n?%} 

Here, Re{.} and Im{.} denote the real and the imaginary 
part, respectively. Once again, if p is odd, the center row 
of (7) should be dropped. Then, an efficient computation of 
I(G) E RPx2q from the complex matrix G only requires 
p x 2q real additions. 

111. STANDARD ESPRIT 

A. Standard ESPRIT Scenario 
Consider the standard ESPRIT scenario [151, [17], i.e., an 

M-element sensor array composed of in pairs of pairwise 
identical, but displaced sensors (doublets). Let A denote the 
distance between the two subarrays. Incident on both subarrays 
are d narrow-band noncoherent planar wavefronts 

sk ( tn )  = u(tn)ej(wotn+v(tn)), 1 5 k 5 d 5 m 

with signal propagation velocity c and a common center 
frequency W O .  The d impinging signals are combined to a 
signal vector s(tn). Assume, for the moment, that the two 
subarrays do not share any elements, i.e., they do not overlap. 
Then, the total number of sensors equals M = 2m and the 
uncorrupted signals received at the two subarrays have the 
following form: 

AG E C M x d  and A E Cmxd are the steering matrices of the 
whole array configuration (global array steering matrix) and 
the first subarray, respectively. Notice that the lcth columns 
of both array steering matrices depend on the direction of 
arrival (DOA) O k  of the lcth source relative to the displacement 
between the two subarrays.2 Furthermore 

@ = diag{4k}f=, E C d X d  

is a diagonal matrix of the phase delays between the sensor 
doublets for the d wavefronts. Its diagonal elements, the phase 
factors &, are given by 

* Bk = 0 corresponds to the direction perpendicular to A. 

-a' A - 
A 

Fig. 1 .  
sensors (doublets). 

Planar array composed of m = 3 pairwise identical but displaced 

I + S u b a y l +  ; =; 
Subarray 2 

Subarray 1 m = 3 

5zETILT 
Subarray 2 

~ subai;aylI  ;=; 
Subarray 2 

Fig. 2. Three different subarray choices for a uniform linear m a y  (ULA) 
of M = 6 identical sensors. (a) Maximum overlap (m = 5); (b) interleaved 
( m  = 3); (c) mixed (m = 4). 

B. More Structured Array Geometries 
Recall that every row of AG corresponds to an element 

of the sensor array. In the case of overlapping subarrays, 
a particular subarray configuration is described by selection 
matrices that choose m elements of z(tn) E C', where 
m < M is the number of elements in each subarray. Let J1 
and J2 be m x M selection matrices that assign elements 
of z(tn) to the subarrays one and two, respectively. Fig. 2, 
for example, displays three different subarray choices for a 
uniform linear array (ULA) of M = 6 identical sensors. 

In general, the two selection matrices are chosen to be 
centro-symmetric with respect to one another, i.e. 

J2 = n m J 1 l I ~  (10) 

a property that plays a key role in the derivation of the fully 
real implementation of Unitary ESPRIT, cf. Section IV-B. 
Therefore, the combined selection matrix 

is centro-Hermitian, i.e. l I , ,JD,  = J .  

C. General ESPRIT Principle 

By collecting N _> d snapshots from each sensor, 1 5 n 5 
N ,  measurement matrices XI, X2,  X and a signal matrix S 
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are formed, obeying 

It is easy to see that every row in X corresponds to an element 
of the sensor array. Equation (11) implies that X1,X2 ,  and 
X are rank-deficient, namely rank XI = rank X2 = rank 
X = d.  Thus, the d columns of 

form a basis for the column space of X if 

SPcol E GL(d). (12) 

Here, GL(d) c C d x d  denotes the general linear group of all 
nonsingular matrices of dimension d x d.  Observe that the 
column space or range of J X ,  range J X  C C2m, is usually 
called signal subspace. In the same way, the d rows of 

[rl r2] = P r o w [ C 1  CZ] 
= ProwA[SPcol @SPcol] 

ProwA E GL(d). (13) 

form a basis for the row space of [Cl C,] if 

Therefore, the rank-reducing numbers of the matrix pencil 

r2 - wl = P,,,A(@ - xid)sPcoI 

are the diagonal elements of @ (phase factors) and can be 
calculated as the generalized eigenvalues of the matrix pair 

Due to these observations, the ESPRIT algorithm reduces 
to choosing the appropriate compression matrices that define 
the required bases. In the absence of noise (the case discussed 
so far), any matrices Pcol and Prow satisfying (12) and (13) 
will do the job. With noisy measurements, however, we are 
faced with the problem of estimating the signal subspace and 
its dimension. 

( r z ,  rl). 

D. SVD-Based Subspace Estimate 

compute the singular value decomposition (SVD) of 
The most robust way to estimate the required bases is to 

where X denotes the measurement matrix X corrupted by 
additive, spatially uncorrelated3 noise, .Es contains its d dom- 
inant singular values, and the unitary matrices U and V are 
partitioned accordingly. Then, the best rank d approximation of 
X in the Frobenius-norm is given by X = U,E,VF. In other 
words, our low rank estimate of X is the matrix X satisfying 

llx - min I ~ X  - Y I I F .  = rank Y <d 

'If the spatial covariance matrix of the additive noise is known up to a 
scalar factor, the SVD can be replaced by the generalized or quotient SVD 
(QSVD), as described in [17]. 

A basis for the estimated signal subspace is determined from 
the d dominant left singular vectors according to 

Then, a unitary basis for the row space of [Cl C,] can 
also be obtained by computing its SVD (total least squares 
approach). However, it is less expensive to use Prow = Cy, 
which corresponds to the standard least squares solution of 
the overdetermined set of equations 

CI!P R5 c2 (16) 

followed by an eigendecomposition of !P = FC1r2. 

IV. UNITARY ESPRIT 

A. Multiple Invariance Structure 

Unitary ESPRIT is applicable to centro-symmetric array 
configurations. A sensor array is called centro-symmetric [22] 
if its element locations are symmetric with respect to the 
centroid and the complex characteristics of paired elements 
are the same. Their global array steering matrix AG , therefore, 
satisfies 

I ;~ .~AG = AGAG (17) 

for some unitary diagonal matrix Ac E Cd d .  Notice that the 
matrix A~A;'' is left n-real. 

Uniform linear arrays, for example, the most common arrays 
used in practice, are centro-symmetric. It is well known 
that the analogy between array signal processing and time 
series analysis (harmonic retrieval) can be obtained through 
uniform linear arrays (ULA's) by interpreting them as uniform 
sampling of a time series [16]. 

The centro-symmetry of the global sensor m a y  AG and 
(10) imply that the steering matrices of both subarrays are 
also centro-symmetric, i.e. 

I I m X  = AA with A = e&. 
Without additive noise, the Unitary ESPRIT data matrix 

Z e f  [X n,q 
admits the factorization 

which is easily seen by using the centro-symmetry of the 
subarrays and the unitary nature of @. Thus, 2 is also rank- 
deficient, namely rank 2 = d ,  Equations (11) and (18) 
show that Unitary ESPRIT essentially doubles the number of 
available measurements from N to 2N. Increased estimation 
accuracy can, therefore, be achieved by replacing the measure- 
ment matrix X E C M x N  of the standard ESPRIT formulation 
(1 1) by 2 E C M  2 N ,  which corresponds to forward-backward 
averaging of the data. 
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B. Real Implementation 

Due to the special algebraic structure of the noise-corrupted 
data matrix 2 and the structure of the subsequent total 
least squares (TLS) problem, the computational complexity of 
Unitary ESPRIT can be reduced significantly. This is achieved 
by transforming the three (complex-valued) rank-revealing 
factorizations, 

the subspace estimation step 
the subsequent total least squares problem 
the final eigenvalue decomposition (EVD) 

into factorizations of real-valued matrices of the same size. 
Thus, real-valued computations can be maintained for all 
steps of the Unitary ESPRIT algorithm. The following three 
propositions derive the required transformations by taking 
advantage of the mapping between centro-Hermitian and real 
matrices, cf. Section 11. In Remark 3, we also show how the 
real-valued total least squares problem can be replaced by a 
real-valued least squares (LS) problem. 

Proposition_ 1-Signal Subspace Estimation: The principal 
subspace of 2 E C M x Z N  (and, therefore, also the principal 
subspace of J Z )  can be obtained through a rank-revealing 
factorization of the real matrix 7 ( X )  E R M x 2 N ,  where 
the transformation I(.) is defined in (6). Then, the complex 
matrices C1 and CZ, spanning the estimated signal subspace, 
obey 

Proposition 2-Total Least Squares Problem: The complex- 
valued SVD of size m x 2d that solves the total least squares 
(TLS) problem Cl@ M Cz, which is associated with Unitary 
ESPRIT, can be transformed into an SVD of the real matrix 
T(C1) E R m x P d ,  where the transformation I(.) is defined 
in (6). Moreover, the eigenvalues $k of the resulting TLS 
solution QTLS E Cdxd  will be symmetric with respect to the 
unit circle, i.e., there are indices 

1 
k,Z E { 1 , 2 , . . . , d }  such that & = =. (22) 

Proofi The multidimensional TLS problem C19 M Cz 
$1 

can be solved through an SVD of 

Then, the TLS solution is obtained from the d right singu- 
lar vectors corresponding to the d smallest singular values 
according to 

q T L s  = -vizv,-,1 (23) 

where we have assumed that V22 E GL(d), i.e., the TLS 
solution is unique. For the singular case, the reader is referred 
to [21]. 

Thus, the TLS problem associated with Unitary ESPRIT 
can be solved through an SVD of 

c, = nmcl. (19) [C, C,] (2 [C, nmC1]. 

Proofi By post-multiplying the noise-compted matrix 
2 with a unitary permutation matrix we obtain a centro- 
Hermitian matrix in the following fashion: 

Notice that this matrix has the same structure as 

2 = [x n M z ] .  

Using, therefore, the same reasoning as in (20) and (21), the 

(20) TLS problem is solved by computing an SVD of the real 
matrix 

~ c H = Z P  n N ]  = [x I ~ ~ % I ~ ] .  

According to Corollary 1, a rank-revealing factorization of 
ZCH can, thus, be obtained through an SVD of the real matrix 

which proves the first part of this proposition. Let the d 
dominant left singular vectors of (PQ(ZCH) be denoted by 
E,  E R M x d .  Then, the d dominant left singular vectors of 
ZCH as well as 2 are given by Q M E s .  Therefore, the matrix 

provides a basis for the estimated signal subspace. With (10) 
and the left Il-realness of Q M  we, finally, get the desired 
result: 

I(c1) = QE[C1 nmcl] [" nd] Q 2 d .  (24) 

Its right singular vectors will be denoted by 

Then, the right singular vectors of [Cl 
from 

C,] are determined 

W X Q $ P  = d l  (25) 

and ~ T L S  is obtained from (23). Since the matrix QZdW is 
left D-real, it can be written as 

for some matrix V1 E Cdxzd,  cf. (2). With (25) we, therefore, 
conclude V22 = 7 1 2 .  Thus, if $1 is an eigenvalue of the TLS 
solution 'DTLS E GL(d), l/& is an eigenvalue of 

QTLS = - v 1 2 ~ ~ ;  = q T L S  
-- 

which proves (22) 

Authorized licensed use limited to: T U MUENCHEN. Downloaded on March 4, 2009 at 04:43 from IEEE Xplore.  Restrictions apply.



HAARDT AND NOSSEK: UNITARY ESPRIT: HOW TO OBTAIN INCREASED ESTIMATION ACCURACY 1237 

Proposition 3-Eigenvalue Decomposition: The eigenval- 
ues of the complex matrix QTLS can be determined from 
the eigenvalues of a real matrix of size d x d via the linear 
fractional transformation 

2 - j  
f (x)  = -- 

X + j ’  

Moreover, the eigenvectors of both matrices are identical. 
Proofi a) Assume, for the moment, that the left I7-real 

matrix Q2d is the one we have defined in (3). Then, (25) yields 

After partitioning V and W as before, we therefore conclude 
from (23) 

*TLS = -(Wiz + jW22)(W12 - jWz?)-l 
= -((-W12W;3 - j&)((-W12W;.) + j t 4 - l  
= ~(TTLs)  with T T L ~  = -W12W;i. (27) 

Here, f(x) denotes the linear fractional transformation (26), 
which is analytic for x # - j .  Let 

~ T L S  = -W12W;; = Tf2T-l (28) 

be the eigenvalue decomposition (EVD) of the real matrix 
TTLS. It is a well-known result from function theory that the 
eigenvalues of ~ T L S  can be obtained through the same linear 
fractional transformation, i.e. 

3 =  f ( 0 )  With 0=diag{wr,}f=, and wk # - j  

and the corresponding eigenvectors of TTLS and QTLS are 
identical. 

b) An arbitrary left D-real matrix of dimension 2d x 2d 
can, obviously, be written as 

02, = Q2dR2d where Rad E 882d 2 d .  

After replacing the real matrix W by I$’ = RzdW, we invoke 
the same reasoning as above to prove this proposition for an 

Remark 1-Covariance Approach: Instead of the described 
square root (or direct data) approach based on a real-valued 
SVD, cf. Proposition 1, we can use a covariance approach 
based on a real-valued EVD to determine the signal sub- 
space estimate. Then, E, E RMxd denotes the d principal 
eigenvectors of 

arbitrary left D-real transformation 02, . 

7 ( X ) 7 ( X ) H  E f a M x M .  (29) 

First, forming 7(X) according to (7), followed by the compu- 
tation of (29), is more efficient than the approach altemative 
suggested in [8] and 1241. There, it is proposed to compute the 
complex-valued sample covariance matrix RXX = X X  E 
C M x M  first. Then, E, is determined from the EVD of 
Re{ Q$RxxQM}! which is computationally more expensive 
than using (29). 

- - H  

C. Reliability Test 

Proposition 2 states that the eigenvalues of ‘ ~ ( T L s ,  i.e., the 
phase factors estimated via Unitary ESPRIT, are symmetric 
with respect to the unit circle, since they satisfy (22). This 
observation gives rise to a new reliability test provided by 
Unitary ESPRIT without demanding additional computations. 
This reliability test is a substantial improvement of current 
high-resolution array signal processing and spectral estimation 
techniques since usually there is no easy way to determine 
how reliable the resulting estimates are. Unreliable estimation 
results might have been caused by a false estimate of the 
number of sources d or by the fact that there is no source 
signal at all (only noise). 

Remark 2-Eigenvalues with Unit Modulus: Notice first 
that the eigenvalues $k that lie on the unit circle form a subset 
with nonzero measure in the class of all eigenvalues fulfilling 
(22), i.e., being symmetric with respect to the unit circle. 
Owing to this and the fact that Unitary ESPRIT produces 
consistent DOA estimates, asymptotically all the estimated 
phase factors $k will be on the unit circle. 

If, however, the number of snapshots N is too small or if 
there is only noise present, the eigenvalues of QTLS might 
fail to satisfy 

which indicates that the subsequent estimates will be unreli- 
able. Hence, no further computations should be carried out. 
Condition (30) implies that all eigenvalues Wk of TTLS are 
real, cf. (26).4 n u s ,  if some of the w k  occur in complex 
conjugate pairs, the Unitary ESPRIT reliability test has failed, 
and the algorithm has to be restarted with an increased window 
length N or more reliable measurements. If, conversely, all 
eigenvalues w k  are real, i.e., the reliability test has been 
“passed,” all estimated phase factors $k are precisely on the 
unit circle. 

D. Real-valued Least Squares 

Notice that the derivation of the Unitary ESPRIT reliability 
test is based on a total least squares solution of (16). Thus, 
the computation of TTLS requires an SVD (or another rank 
revealing factorization) of T(C1) E I W m x a d .  By computing the 
less expensive least squares instead of the total least squares 
solution of (16), we would, however, lose the benefits of 
the reliability test, since (22) would no longer be satisfied. 
Moreover, the complex-valued least squares problem (1 6) 
cannot be transformed into a real-valued problem of the same 
size. The following remark, however, sets up a different, real- 
valued least squares problem, which can be solved instead. 

Remark 3-kast  Squares Estimate: After partitioning the 
real matrix of (24) according to 

7 ( C l )  !Zf [T1 T2]  with T1,T2  E W m x d  

4Recall that the eigenvalues of a real matrix can either be real or they occur 
in complex conjugate pairs. 
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it is easy to see that TTLS is a TLS solution of the real-valued 
system of equations 

TIT M T2. (31) 

To save computations, we can, therefore, solve (31) by com- 
puting its least squares solution TLS. Here, the Unitary ES- 
PRIT reliability test is still applicable, since the resulting 
matrix TLS is always real. If the reliability test has been 
"passed", the estimated phase factors are on the unit circle. 

The real-valued LS or TLS problem (31) can directly be 
obtained from E,  by observing 

where the selection matrices K1 and Kz are defined as 
follows: 

KI = Q E ( J 1  f n m J l n M ) Q ~  - - K Z  = Q E j ( J l -  D m J l n M )  Q M .  (32) 

Since the matrices in braces are centro-Hermitian, K1 and 
K 2  are always real, cf. Theorem 1. They are even sparse if 
the selection matrix J1 is sparse and the matrices Qm and 
Q M  are chosen according to (3) or (4). This is illustrated by 
the following example. For the ULA with maximum overlap 
sketched in Fig. 2(a), J1 is given by 

- 1 0 0 0 0 0  
0 1 0 0 0 0  

0 0 0 1 0 0  
~ 0 0 0 0 1 0  

Thus, straightforward calculations yield 

0 0 0 - 1 1  0 
0 0  0 0 - 1  

1 - 1 0  0 0 0 
0 1 - 1 0 0  0 

E. Summary of the Algorithm 
Before presenting a summary of Unitary ESPRIT, we note 

an interesting relationship between the eigenvalues of the real 
matrix T denoted by Wk, and the estimated phase factors 
l$k = , cf. (9). Solving e j p k  = f ( w k )  for the spatial 
frequencies p k  yields the simple expression 

(33) 

Now, we are in the position to summarize the described real 
implementation of Unitary ESPRIT, which is given in Table 
I. Here, the left 17-real matrices Q,  and Q M  are chosen 
according to (3) or (4). 

Notice that a linear estimate of the source signal matrix 
S (Step 7) can easily be obtained by applying the results of 
this section to the source signal matrix estimate derived in 
[4], where (without loss of generality) the additive noise is 
assumed to be spatially uncorrelated. 

V. COMPUTER SIMULATIONS 
In this section, we present some simulation results that com- 

pare Unitary ESPRIT with the standard ESPRIT algorithm, 
using the SVD implementation in all cases. Among others, we 
examine scenarios where the standard ESPRIT algorithm faces 
some problems, like low signal-to-noise ratios, short window 
lengths, and correlated source signals. 

A. Signal Reconstruction 

First, we examine the effect of Unitary ESPRIT on the 
resulting signal estimates. To this end, three impinging wave- 
fronts are reconstructed using a single ULA of M = 9 sensors 
with maximum overlap, cf. Fig. 2(a). The three uncorrelated 
equi-powered QPSK signals arrive from 81 = loo, 8 2  =20°, 
and 63 = 30°, respectively. Fig. 3 depicts the resulting output 
signal-to-noise-and-interference ratio (SNIR) as a function of 
the SNR and the number of snapshots N using standard 
ESPRIT (dashed lines) and Unitary ESPRIT (solid lines). The 
values of N marked on the right side of the figure correspond 
to the solid lines, i.e., Unitary ESPRIT. The output SNIR 
achieved by the standard ESPRIT algorithm for a given value 
of N (dashed lines) can be found below the corresponding 
solid lines. For small values of N, e.g., N = 5 snapshots, 
Unitary ESPRIT achieves a significantly better performance 
than the standard ESPRIT algorithm. Notice that standard 
ESPRIT with N = 10 snapshots attains the same performance 
as Unitary ESPRIT with N = 5 snapshots for SNR's that 
are greater than 15 dB, while the performance of standard 
ESPRIT with N = 20 is comparable to the performance of 
Unitary ESPRIT with N = 10 for SNR's that are greater than 
5 dB. Thus, Unitary ESPRIT essentially doubles the number 
of available snapshots N compared to the standard ESPRIT 
algorithm. 

B. DOA Estimation 

Next, we investigate the effect of Unitary ESPRIT on the 
estimated phase factors $k,  1 5 k 5 d. Consider a ULA with 
A 4  = 6 sensors and three correlated signals impinging from 
61 = -20°,& = Oo,  and 03 = 20'. Their correlation matrix 
is given by 

1 P P  
Rxx = [: p2 1 p 2  1 1  * (34) 

The phase factors 41, $2, and $3, estimated with the standard 
ESPRIT algorithm and Unitary ESPRIT, are marked by crosses 
(+) in the complex plane as depicted in Figs. 4 and 5 for 
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TABLE I 
SUMMARY OF UNITARY ESPRIT 

1.  Initialization: Form the matrix z E C M x N  from the available measurements. 

2. SignalSubspaceEstimation: Determine the real matrix 7(z) E RMXzN from (7). and compute the SVD 
of 7(z) (square root approach) or the eigendecmpsition of 7(3?)7(z)x (covariance approach). The d 

dominant left singular vectm or tigenvectors will be called ES E RMX d.  Estimate the number of sources d, 

if d is not known a priori [221. 
3. (Total) Least Squares: Solve the overdetermined system of equations 

by means of least squares (or total least squares) techniques. The selection matrices K1 and Kz are defined 
in (32). 

4 .  Eigenvalue Decomposition: Compute the eigendecomposition of the resulting solution 

y = T n  T-' E Rdxd, where n = diag{wk}i=, . 

5. Relinbiliry Test: If all eigenvalues Wk are real, the estimates will be reliable. Otherwise. start again with more 
measurements. 

6. DOA Estimation: Estimate the directions of arrival @OKs) from 

according to (9). 

7. SignalReconstruction: A linear estimate of the source signal matrix S E Cdx" is given by 

where D E Cdxd denotes an arbitrary diagonal (row) scaling matrix [4]. 

r = 2 0  
1 = 1 0  
' = 5  

180 

0 5 10 15 20 25 30 
SNR in dB 

Fig. 3. Output SNIR as a function of the SNR and the number of snapshots 
N using standard ESPRIT (dashed lines) and Unitary ESPRIT (solid lines) 
for 81 = 10°,82 = 20°, and 83 = 30°(M = 9 sensors, 1000 trial runs). 
The values of N marked on the right side of the figure correspond to the 
solid lines, i.e., Unitary ESPRIT. The output SNIR achieved by the standard 
ESPRIT algorithm for a given value of N (dashed lines) can be found below 
the corresponding solid lines. 

a correlation coefficient of p = 0.5. The results of 80 trial 
runs with N = 20 snapshots and an SNR of 0 dB are 
shown. Notice that all phase factors estimated with Unitary 
ESPRIT are precisely on the unit circle (Fig. 5). Figs. 6 
and 7 depict the estimated phase factors for a correlation 

Standard ESPRIT 

Fig. 4. Phase factors & , @ 2 ,  and 43, estimated with the standard ESPRIT 
algorithm for 81 = -20°,82 = O", 83 = 20°, and correlation coefficients 
pi2 = 0 . 5 , ~ 1 3  = 0.5, and p23 = 0.25 ( M  = 6 sensors, SNR = 0 dB, 
N = 20, 80 trial runs). 

coefficient of p = 0.8. In this example, the Unitary ESPRIT 
reliability test has failed three times. To picture these failures, 
the corresponding phase factor estimates are surrounded by 
circles (o), cf. Fig. 7. Notice that the variance of the DOA 
estimates that pass the Unitary ESPRIT reliability test is much 
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180 0 

270 

180 

Fig. 5. Phase factors $1, $ 2 ,  and $3, estimated with Unitary ESPRIT 
for 81 = -2.0°,82 = O o ,  83 = 20°, and Correlation coefficients 
pi2 = 0.5,p13 = 0.5, and p23 = 0.25 (A4 = 6 sensors, SNR = 0 
dB, N = 20, 80 trial runs). 

270 

~ i ~ ,  7. phase factors $ 2 ,  and $3, estimated with Unitary ESPRIT 
for 81 = -20°,82 = Oo,83 = 20°, and correlation coefficients 
p12 = 0.8,p13 = 0.8, and p23 = 0.64 (iM = 6 sensors, SNR = 0 
dB, N = 20, 80 trial runs). Estimates that produced a failure of the reliability 
test are surrounded by a circle (0). Standard ESPRIT 

9 - - - - - Standard ESPRIT 

Unitary ESPRIT without reliability test 

- Unitary ESPRIT with reliability test 

180 

Fig. 8. Root mean squared error (RMSE) in degrees of the estimated 
directions of arrival as a function of the correlation coefficient p and the 

Fig. 6. Phase factors $ 1 ,  &,, and $ 3 ,  estimated with the standard ESPRIT SNR for 81 = -200,82 = O o 9  and 83 = 200(M = sensors’ = 20, 
algorithm for o1 = -200, o2 = 00, o3 = 200, and coefficients 3000 runs). The matrix is given by (34). 
p iz  = 0 . 8 , ~ 1 3  = 0.8, and p23 = 0.64 ( M  = 6 sensors, SNR = 0 dB, 
N = 20, 80 trial runs). 

line . .), and Unitary ESPRIT with the new reliability test 
(solid line -). It can be seen that Unitary ESPRIT improves 
the estimation accuracy considerably. In the case of low 
SNR’s, the estimation accuracy is improved even further, by 
exploiting the information provided by the new reliability 
test. The corresponding failure rates of the Unitary ESPRIT 
reliability test are‘plotted in Fig. 9. 

Due to the forward-backward averaging effect, Unitary 
ESPRIT can separate two completely coherent wavefronts, 
which is demonstrated in the next example. Two correlated 

lower than the variance of the DOA estimates obtained by 
the standard ESPRIT approach. The advantages of Unitary 
ESPRIT become even more evident if the root mean squared 
error (RMSE) of the estimated directions of amval is plotted 
as a function of the correlation coefficient p. Fig. 8 show 
these Curves for sm’s of -3, 0, and 5 dB using 3000 trial 
r ~ n s -  The standard ESPRIT algorithm (dashed line - - -) is 
compared With Unitary ESPRIT without reliability test (dotted 
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2 

1 5  

5 

0 5  

0 
0 

"0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
correlation coefficient 

Fig. 9. Failures of the Unitary ESPRIT reliability test as a function of the 
correlation coefficients p for 81 = - 2 O O . 6 ' 2  = (1'. and 03 = 20' ( M  = 6 
sensors, N = 20, 3000 trial runs). Once again, the signal correlation matrix 
is given by (34). These curves correspond to the solid lines in Fig. 8. 

Fig. 11. RMSE (in degrees) of the estimated directions of arrival as a 
function of the magnitude and phase of the complex correlation coefficient p 
for 81 = 0' and 8 2  = 20' using standard ESPRIT (A4 = 4 sensors, iV = 
20, 100 trial runs). 

*l 

Standard ESPRIT (LS) 

Standard ESPRIT (TLS) 

Unitary ESPRIT (LS) I 

Unitary ESPRIT (TLS) I 
/ 

I 

1 2  I 0 
0 

Fig. 12. RMSE (in degrees) of the estimated directions of arrival as a 
function of the magnitude and phase of the complex correlation coefficient p 
for 6'1 = 0' and 6'2 = 20' using Unitary ESPRIT (A4 = 4 sensors, N = 
20, 100 trial runs). 

I 1 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

correlation coefficient 

Fig. 10. RMSE (in degrees) of the estimated directions of arrival as a 
function of the correlation coefficient p for 6'1 = 0' and 6'2 = 20°(M = 4 
sensors, N = 20, 100 trial runs). Notice that the curves for the LS and the 
TLS version of Unitary ESPRIT fall on top of one another. 

signals with correlation coefficient p are impinging an a ULA 
of A4 = 4 sensors from 81 = 0"and 82  = 20". Fig. 10 
shows the resulting RMS error of the estimated DOA's as 
a function of p. The performance of Unitary ESPRIT is not 
effected by the correlation, while the performance of standard 
ESPRIT deteriorates dramatically as p increases. Notice also 
that the difference between TLS and LS version of standard 
ESPRIT is negligible, while the LS and the TLS version 
of Unitary ESPRIT fall on top of one another. Thus, it is 
advisable to use the LS version of Unitary ESPRIT instead 
of the computationally more expensive TLS version. Finally, 
Figs. 11 and 12 show the RMS error of the estimated DOA's 
as a function of the magnitude and phase of a complex-valued 
correlation coefficient p,  confirming the conclusions drawn 
from Fig. 10. 

VI. CONCLUDING REMARKS 

An improved version of the ESPRIT algorithm, called 
Unitary ESPRIT, has been presented in this paper. Uni- 
tary ESPRIT represents a simple method to constrain the 
estimated phase factors to the unit circle, yielding more 
accurate signal subspace estimates. The computational com- 
plexity is reduced significantly by exploiting the one-to-one 
correspondence between centro-Hermitian and real matrices, 
allowing a transformation to real matrices, which can be 
maintained for all steps of the algorithm. Unitary ESPRIT 
also provides a new reliability test, which is particularly 
useful in extremely low SNR's. Due to the inherent forward- 
backward averaging effect, Unitary ESPRIT can separate two 
completely coherent sources and provides improved estimates 
for correlated signals. Moreover, Unitary ESPRIT offers a 
great potential to improve the performance of approximate 
signal subspace estimation techniques, which are well suited 
for an adaptive implementation, since inexpensive updating 
strategies are known [ 5 ] .  

The fact that Unitary ESPRIT is efficiently formulated in 
terms of real-valued computations from start to finish, is 
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critically important for the extension to 2-D centro-symmetric Acoust., Speech, Signal Processing, vol. ASSP-34, pp. 1340-1342, Oct. - -  
arrays with a dual invariance structure. 2-D Unitary ES- 
PRIT [23] provides automatically paired source azimuth and 
elevation angle estimates along with an efficient way to re- 
construct the impinging wavefronts. Furthermore, an efficient 
DFT beamspace implementation of Unitary ESPRIT has also 
been derived in [23], enabling reduced dimension processing 
in beamspace, if there is a priori information on the general 
angular location of the DOA’s. 
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