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Abstract

System virtualization has seen largely renewed interest in recent years, primarily
due to the emerge of effective virtualization techniques for commodity platforms
in both hardware and software.

Beyond improved resource utilization and administration cost, driving past
and present adoption in the data center, virtual machines offer a fair degree
of system state encapsulation, which promotes practical advances in workload
migration, system debugging, profiling and, last but not least, an ongoing “com-
moditization” in high-availability system design.

This thesis investigates deterministic replay and semi-active replication for
system paravirtualization, a software discipline trading guest kernel binary com-
patibility for reduced dependency on costly trap-and-emulate techniques. De-
terministic replay constitutes consistent recovery of system state by reexecuting
an original computation from an event log.

The Xen hypervisor, as one major contender of the paravirtualization paradigm,
features an abstract I/O model mapped to shared memory and a small set of
inter-VM communication primitives. Demonstrably, this contributes much to a
balance between a compact machine interface, thereby low overhead, and full
application compatibility. However, Xen’s overall architecture also promotes
a shift from monolithic VMMs to elements borrowing from classic microkernel
design.

A primary contribution is evidence that trace capturing under a piecewise
deterministic execution model can be added to an abstract but inherently asyn-
chronous, split I/O model for virtual machines without compromising a typical
run-time overhead of about 5% reported with monolithic systems. Furthermore,
integration into a commodity monitor does not thwart original system design,
which suggests that the approach taken remains generally defendable under
maintenance cost considerations as well.
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1 Introduction

Around 2004 to 2005, I was working on project Balance, an academic/industrial
research cooperation on high-availability (HA) middleware designs for commod-
ity system platforms. HA middleware systems are software frameworks for high-
level application development in languages such as C/C++ and Java. The term
commodity in such systems refers to clustered computer architectures built from
comparatively inexpensive, industry-standard processors and I/O components,
most notably a shift from switched circuits to packet-switched internetworking.
The motivation behind software availability frameworks is that while building
highly available applications at any level of a layered system architecture can
hardly ever be considered trivial, application programmers willing to let their
programs conform to a standardized, component-oriented system design can at
least be relieved from dealing with low level details of distributed failure detec-
tion and control over redundant software component instances.

In hindsight, considering technical properties and perceivable market adop-
tion, there were multiple lessons to be learned. One is that while such frame-
works may reduce the overall cost of developing or porting applications, signif-
icant effort remains left in doing so. Another simple truth is that while un-
wanted system outages represent a widespread phenomenon in everyday com-
puting practice, the development process of few projects today incorporates
costly countermeasures at the software level, unless availability considerations
by users and customers explicitly require to do so.

This is one reason why transparent mechanisms, i.e. those which do not re-
quire adaption on the side of system architects, are so attractive. Transparent
mechanisms basically derive from two concepts: (a) Execution of computer sys-
tems comprises a sequence of states, and (b) fault-tolerance is generally achieved
through redundancy. Conceptually, fault-tolerance can be reduced, to some de-
gree, to the problem of replicating system state on independent machines.

Transparent checkpointing exploits this concept by replicating system state
without introspection of what distinguishes the state of a service, such as the
contents of a database, from checkpoints of overall processing state, which com-
prises an entire program context to roll back and resume from [29]. There are
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two common problems which prevent above idea from widespread application
on arbitrary (software) systems. One is bandwidth consumption: system state
can be large, and peak system memory bandwidth typically exceeds network or
storage bandwidth by orders of magnitude [22]. Active replication is one tech-
nique known to overcome the first issue to some degree. Instead of passive state
transfers, system execution is replicated, regenerating redundant state from. In
distributed, message-passing systems, information guiding execution may be re-
garded as limited to only sequences of input messages processed. Deterministic
replay carries the idea of active replication over to a more general system model
which, in theory, could be applied to any of the software execution environments
common today.

Another issue is consistent recovery of system workloads within an execution
environment matching the original one. The basic workload unit managed by
users today are operating system processes, or groups thereof. While processes
thereby appear as a viable unit of state replication, this is unfortunately not
the case. The reason is that while raw software state can always be relocated,
in practice it is never self-contained. The rich and complex variety of resource
interfaces provided by common operating systems makes this task difficult. More
importantly, it will require complex changes to any operating system hosting
these environments [29, 27].

System virtualization techniques are almost as old as time-sharing computer
systems, but saw largely renewed interest in recent years. Like operating sys-
tems, virtual machines (VMs) ultimately host application software. Different
from customary OS kernels, workload units carried by system VMs are whole
operating systems and processes, multiplexed on a single physical machine in-
stance. Sole domain of expensive mainframe architectures in the past, their
renaissance is due to the emerge of effective hardware and software virtuali-
zation techniques applicable to popular processors and system architectures.
As with the HA architectures mentioned above, another round of technological
commoditization emerges.

Until today, the driving forces behind the ongoing adoption of system virtua-
lization remain system consolidation, improved resource utilization and reduced
maintenance cost. To ease system maintenance, some server-class system vir-
tualization products soon featured VM migration, with remarkable performance
and apparent ease of implementation. In contrast, almost 20 years of prior re-
search in process migration did not yield much impact on any commodity server
operating system. The feature demonstrates an important difference to the soft-
ware environment facilitated by customary operating systems: transparent, fast
workload relocatability for host systems sharing a common network segment.
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Recovery for highly available system architectures shares similar properties.

Beyond the design of highly-available systems, replayable VM execution has
a considerable number of additional potential applications. Starting from an
initial system state, replay can recover any intermediate state a given system
traversed in a preceding run. Known applications of such facilities include:

• System debugging, such as running applications to a point where an origi-
nal computation failed. Inspection of not only failure state, but the entire
computation which produced it, provides valuable means for failure anal-
ysis [20].

• Improved system profiling. Collection of run-time information on systems
is a valuable tool in system design and research. However, specific results
are often not repeatable if the execution is inherently non-deterministic.
Furthermore, capturing detailed system information has usually a no-
table performance impact and may itself lead to distortion of original
phenomenons encountered. Capturing only non-determinism guiding an
execution alone may conserve a particular system run with comparatively
low distortion. Deterministic replay then makes the task of detailed anal-
ysis repeatable [97].

• Enhanced system security. Similar to profiling and debugging, more recent
research revealed the benefits of deterministic replay for system security
measures [28]. Future system intrusion detection and analysis tool sets
might make use of deterministic replay. Similar to debugging, returning to
an uncompromised system state, then replaying execution to a point where
compromisation took place can provide valuable insight in how attacks
were arranged and how they succeeded.

Various virtualization architectures presently exist. Anticipating that the
service relocatability achievable with system virtual machines opens a wider
spectrum of future applications, this thesis focuses on deterministic replay for
one specific virtualization class, called paravirtualization. The motivations for
this specific virtual machine families is summarized in the following section.

1.1 Motivation of the Thesis

System virtual machines allow for multiple guest operating systems to share a
common hardware platform. They are implemented by virtual machine monitors
(VMMs) mapping the execution of a guest system to underlying (real) machine
hardware. The mapping is maintained through control over a critical subset of
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the instruction set executable by guest systems. Similarly, deterministic replay
requires a monitoring facility achieving similar control over a particular ISA
subset. Demonstrably, these subsets are not necessarily equal, but in practice
overlap to a considerable degree. In order to reduce the development effort spent
on a suitable monitor, available VMMs may be extended.

Seeking practical applications, system size and respective overhead needs con-
sideration. What users or system developers on a single machine ultimately
expect is application support and compatibility. Typical applications comprise
only one or a limited number of processes. Compared to processes, whole sys-
tems as the future standard unit of repeated execution are considerably more
than originally asked for. Moreover, the raw machine interface is comparatively
complex. A native operating system is more heavyweight, and takes more cycles
to initialize than just the number of processes it carries [13].

Essentially, deterministic replay facilities log information about occurring
non-determinism, which are system state changes originating externally from the
software system executed. This log may then be replayed on alternate instances.
To achieve consistent logging and replayability, the structural complexity of the
system’s environment dictates the amount of change imposed on any existing
implementation of that environment, such as a VMM. Given that an existing
monitor is to be modified, not only technical feasibility, but maintainability, i.e.
purely economical considerations, are of practical concern.

In short, the ideal guest system running inside a virtual machine would be
small. It would be supported therein if its operating environment were simply
structured, as would be determination of environment interactions guiding guest
execution. Such properties need not sacrifice feature completeness and an ap-
plication interface compatible to those of standard operating systems. Changes
to a guest kernel, to aid the task at hand, require cooperation on the side of
system vendors, but the change appears justifiable.

Although for different reasons, such properties closely match some of the mo-
tivations behind system paravirtualization. Paravirtualization is a virtualization
technique which, different from classic virtualization, breaks with raw machine
interface compatibility at the guest system interface. Beyond performance con-
siderations, one reason to do so used to be lack of proper virtualizability of some
popular processor architectures, such as the ones based on the prevalent IA-32
and derived instruction sets [69]. In order to virtualize such systems efficiently,
paravirtual guest systems will not rely on an original system instruction sub-
set, but request VMM assistance for privileged operations instead. This yields
comparatively low overhead due to less dependency on low-level instruction em-
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ulation. Similarly, raw I/O device interfaces can be replaced with abstractions
at a significantly higher level.

Variants of system paravirtualization are presently implemented by a small
number of open and commercially available products. One is the Xen hypervisor
originally developed at the University of Cambridge [13]. This thesis evaluates
deterministic replay for the paravirtual machine environment as implemented
by Xen, recognizing differences to alternative implementations of basic machine
paravirtualization where appropriate.

1.2 Thesis and Contribution

In summary, the contributions of this work are

• Architecture and implementation of an extension to a paravirtual machine
monitor to efficiently capture non-determinism encountered by paravirtual
machine guest systems.

The system replays uniprocessor guest operating systems controlled by a
monitoring facility integrated in a fashion scalable on modern multipro-
cessor and multicore processor architectures.

It demonstrates that some specific properties of the Xen VMM, most
notably mapping of machine resources to data structures maintained in
shared memory, can greatly reduce unwanted interference of such exten-
sions to an existing VMM implementation.

• Experimental evaluation of the performance impact on workloads executed
by virtual machines, derived from above implementation.

An overall slowdown as low as 0.65% for CPU-intensive programs such as
the SPEC CINT2006 benchmark suite has been measured.

• Experimental evaluation of bandwidth of determinant log capturing for
typical I/O and CPU-intensive workloads.

• Directions on the practical use of performance monitoring facilities avail-
able on present x86 family processors for the purpose of replaying asyn-
chronous events on virtual machines (or processes).

Implementation techniques and results presented here were largely inspired by
the architecture of the Xen hypervisor, due to the paravirtualization technique it
featured. With a background in high-availability system design, the project was
called Xen/VLS (Virtual Lock-Step or Virtual Logical Synchronization). The
idea shall be summarized as follows:
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System virtual machines are the most practical solution to achieve
deterministic replay for present commodity system applications. Therein,
paravirtual machines perform best.

Retrospectively, meaning of the term performance is at least twofold. One
obvious performance implication to evaluate is relative performance downgrade
to target guest systems. Relative performance denotes time spent by the system
while capturing event logs, performing a specific task, in comparison to the same
task in an unmodified environment. Additionally, bandwidth requirements play
a significant role.

Performing “best” requires comparable numbers. Deterministic replay with
system VMs was first researched in 1996, back then in order to achieve highly-
available guest instance pairs in distributed systems, i.e. semi-active replication.
HA-applications, however, come at additional cost, due to its dependency on
replica consistency, which adds additional latencies. Full semi-active replication
of presently customary network interconnects has not been implemented as part
of this thesis. Instead, most of the results presented here have been focusing
on proper execution trace generation. The difference will be more thoroughly
explained in chapter 2. However, some applications for deterministic replay
rather depend on efficient tracing than subsequent replay, or a simultaneous
combination thereof [97]. Furthermore, overall performance downgrade in semi-
active replication is largely beyond log generation at the system core.

As outlined as part of the motivation, part of how a particular VMM ex-
tension “performs” in practice is not determined by slowdown, but rather sim-
plicity. Compared to the present overall popularity of system virtualization,
presently known applications of deterministic replay exist in niche markets. If
a respective extension is too intrusive to the VMM implementation, or hampers
development of future revisions, it is not maintainable under economic con-
siderations. Within the prototype developed here, integration into the VMM
ultimately needs not clash with original system design. Elements implement-
ing the original virtualization layer remained largely unchanged, which suggests
that the general approach taken remains defendable under above maintenance
cost considerations as well. This is not only despite the issues outlined above.
In order to achieve proper event logging, changes to the VMM are inevitable.
But shared memory as the underlying communications primitive contributed as
much to a device-independent I/O model for trace capturing and replay as it
presently does for the Xen’s core virtualization layer.

Regarding system performance, it turns out that the VMM architecture exam-
ined throughout this document has both advantages and disadvantages. Xen’s
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overall virtualization environment differs from traditional virtualization archi-
tectures. Is is based on two simple primitives: shared memory and an abstract
event notification mechanism. On the one hand, this contributed much to a
comparatively simple extension mechanism to achieve event logging. On the
other hand, virtualization of I/O devices in Xen is not performed by the VMM,
but one or a small number of privileged guest systems. The overall virtualization
environment promotes asynchronous communication with isolated subsystems
running in separate addresses spaces. Arguably, the architecture shares some
similarities with common microkernel design. Xen’s decomposed I/O architec-
ture makes thereby extensions for proper trace capturing non-obvious. Suitable
event logs need to reflect state changes at the granularity of single guest instruc-
tions in order to achieve full determinism during replay, where I/O virtualization
commits device status asynchronously and across separate address spaces.

Core of the extended VMM architecture presented here mainly consists of a
device abstraction inspired by customary physical I/O architectures. In real ma-
chines, asynchronous memory accesses originating from peripheral system com-
ponents are typically performed by DMA (Direct Memory Access) engines. The
same abstraction, as a software-implemented pseudo-device embedded into the
machine virtualization layer, can be effectively and efficiently employed to make
formerly arbitrary memory access interleaving consistently replayable. The re-
sulting memory access paradigm has been called SMA (Synchronous Memory
Access). At the source code level, some critical parts of it could be integrated
almost transparently into intercommunicating guest systems.

Traditional system VMMs are rather monolithic in design. Recently pub-
lished results derived for full virtualization on a monolithic virtualization layer
reported a performance downgrade of approximately 5% experienced when trac-
ing compute-intensive tasks. While some of the techniques employed are not
necessarily fully comparable yet, the results achieved with Xen have been en-
couraging. On Xen/VLS, run time overhead as low as 0.65% for above CPU-
intensive workloads has been measured.

1.3 Organization of the Thesis

Chapter 2 will provide a overview of systems and methods upon which the thesis
builds. This includes present trends in computer architecture. Additionally,
theory of consistent state replication in fault-tolerant system design will be
introduced, commonly referred to as the state-machine approach, or variants
thereof. Finally, the merits of contemporary virtual machine technology as the
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basis for applied state machine replication will be investigated.

The following two chapters turn to system virtual machines in more detail.
Chapter 3 introduces basic techniques to efficiently virtualize today’s commodity
systems. Present paravirtualization techniques, as well as it’s individual advan-
tages and disadvantages, is a general technique closer examined. As noted above
the specific virtualization architecture pursued throughout this document is not
only determined by the paravirtual machine paradigm, but the Xen hypervisor
as one specific representative. Xen will be discussed in chapter 4.

Chapter 5 will then describe methods to achieve determinism in monitored
paravirtual machine execution, closing with a description of the resulting log
format and an evaluation of event frequencies and bandwidth, as well as overall
performance impact measured.

A small, but nonetheless important technical detail is consistent replay of
asynchronous events. At the bare machine interface, these are typically device
interrupts. Efficient replay of those is best performed when aided by dedicated
facilities in processor hardware. Unfortunately, few processor architectures in
computing history implemented such a feature. The ubiquitous x86 platform
on which Xen, the VLS prototype and thereby this thesis build is no exception
to this problem. Many contemporary x86 family processors implement a per-
formance monitoring facility, which can be used for this purpose. This will be
described in chapter 6.

The thesis will conclude with chapter 7, summarizing on overall results and
experience gained. Finally, areas for future research will be suggested.
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2 Background

The introductory material presented throughout this chapter is structured as fol-
lows. This thesis deals with techniques for the effective replication of software
system instances as they are executed on physical machines or, simultaneously,
a number thereof. Section 2.1 will touch on past and ongoing trends in the archi-
tectures of contemporary computer systems. One are improved multiprocessing
capabilities in contemporary processor design, from which scalable architectures
for the monitoring facility should benefit. Another is the potential of commodity
components and cluster architectures in high-availability system design.

Built upon such systems, the underlying mode of replica execution requires
careful inspection of control and data flow during input processing of each such
instance. This functionality is commonly implemented as a monitoring facility
between the target system and its surrounding execution environment. Section
2.2 introduces monitoring and event logging to execute replicas consitently in
distributed architectures.

Finally, section 2.3 will turn to machine virtualization. Similar to the above
facility for monitoring replica execution, virtual machines comprise a monitor
to achieve resource sharing between a number of guest systems. The remain-
der of this document mainly considers integration of replica monitoring into
multiprocessing-capable virtual machine monitors.

2.1 Real Machines

2.1.1 Machine Architecture

A general purpose computer system comprises a number of resources, divisible
into three main types of components: (1) A processor, or a number thereof,
executing instructions located in main memory (2) main machine memory, ran-
domly accessible in a single global address space shared by all processors. (3)
A number of devices for peripheral data input and output (I/O) [86].

Depending on the number of processors they contain, computers can be clas-
sified into uniprocessor (UP) or multiprocessor (MP) systems. Multiprocessor
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systems became an option with the advent of multitasking operating systems.
Processors in such systems are tightly coupled, managing a number of program
instances simultaneously. Program instances at the machine level are processes
and threads, which perform sequences of instructions, sharing resources on a
common hardware platform.

Symmetric multiprocessing (SMP) machines are built from multiple physical
processors with identical instruction sets. Symmetry among processors implies
that all processors serve identical purposes, but execute separate threads of ma-
chine instructions in parallel. In preemptive multitasking systems, assignment
of individual processors to any given thread of execution is largely transparent
at the application level.

Microcomputer performance experienced sustained and rapid growth over the
past three decades. Moore’s law predicted exponential growth in chip complex-
ity over time, and has been confirmed since its invention 1965 [62]. Likening
complexity to processing power, performance gains used to evolve accordingly.
Continuous gains in computing power, however, come at the cost of tremendous
investments in research, engineering and component manufacturing.

With the advent of multiprocessing systems, memory access became a primary
concern. Notwithstanding its programming model as a single shared entity, if
memory is implemented as such (Uniform Memory Access, UMA), bandwidth
consumption at the memory interface becomes a major bottleneck, which in
turn accounts for limitations in the overall scalability SMP systems can achieve
[9]. NUMA (Non-Uniform Memory Access, [50]) distributes physical memory
among a number of processors, while maintaining the shared memory paradigm
at the processor ISA.

Past advances in processor manufacturing were dedicated to individual per-
formance gains in the single thread, satisfying perpetual demand for more data
bandwidth and faster speed in sequential processing. The solutions were higher
clock speeds, larger caches and implicit concurrency in the sequential execu-
tion model. Instruction-level parallelism (ILP) expands performance of sequen-
tial programs, but cannot advance beyond a point where ultimately correctness
would be at risk. Higher clock speeds come at the cost of increased power con-
sumption and heat dissipation. For years to come, only caching increases will
prevail. Single-threaded performance will not sustain its past rate of growth.
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2.1.2 Microprocessor Trends

Starting from 2001, the evolution of microprocessors saw a fundamental turn
in orientation regarding the question whether, and how, performance improve-
ment in future processor generations are to be maintained. While the question
is not whether Moore’s law continues to apply, future increases in chip complex-
ity would not map to single-threaded application performance and additional
consumer value.

The major shift of focus is an overall shift ILP to thread-level parallelism
(TLP). Chip-level multiprocessor (CMP) architectures combine two or more
processor cores of one and the same architecture on a single integrated circuit.
While the functional interface equals that of symmetric systems, physical coloca-
tion of inter-processor communication and the integration of common resources
such as the memory and caching hierarchy provide additional performance im-
provements. Different from ILP, however, thread-level parallelism in single pro-
cessors does not benefit from a larger number of cores without assistance on
the side of application programmers. Multithreaded application development
and tuning can be a time consuming and costly task, but within the foreseeable
future a necessity to utilize increases in processor bandwidth appropriately.

Shared memory multiprocessor systems represent a commodization from high-
performance computer to everyday workstation computer usage. A second ma-
jor change in is virtualization of instruction set architectures, memory and I/O
interfaces in machine hardware. While the motivations are various, one of the
major issues the software industry is presently facing is that classic program-
ming models are as sequential as the original machine architecture they derived
from. Beyond the high-performance and high-end server market segment, many
systems remain underutilized. A turn to virtualization in the industry is in
part due to the shift to chip multiprocessing. One of the major issues the
software industry is presently facing is that classic programming models are as
sequential as the original machine architecture they derived from. Beyond the
high-performance and high-end server market segment, many systems remain
underutilized. Consolidation of multiple operating system instances and, pre-
sumably single-threaded, application programs may reduce overall system and
maintenance cost [31].

2.1.3 High-Availability and Fault-Tolerance

Availability is the capability of a system to provide a given service. The concept
of a service is arbitrary. Services may be interactive ones, i.e. provided to users,
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or provided among individual system components, each being a subsystem of
an overall more complex system.

An ideal system would be available at any time during its scheduled times of
operation. Time of availability is referred to as uptime, while scheduled times of
unavailability are usually referred to as planned downtime. Unfortunately, sys-
tems are generally not ideal, but prone to failures. With general-purpose com-
puter architectures, faults in hardware or software may occur, as do externally
induced failures (such as power outages). Either case may lead to unplanned
downtime. In some environments a given level of service during failure-free op-
eration may be reduced to some degree during recovery, such as performance,
but service continuity must be maintained, with reasonably high probability.

Once failures are considered, repair must be as well. Both uptime and un-
planned downtime become transient states. Two variables are often found
across the relevant literature: mean time to failure (MTTF) and mean time
to repair/recovery (MTTR), both expectancy values of uptime and unplanned
downtime in a probabilistic model [84]. The availability A of any given system
is thereby defined as follows:

A =
MTTF
MTBF

Availability can therefore be quantified in terms of uptime per scheduled time
of operation. The value often specified as percentage; in many fields where un-
constrained availability is of major concern, such as life-critical services (e.g.
telecommunication, medical equipment) availability of 99.999% (dubbed “five-
nines”) is an often-quoted requirement. With continuous services, where even
the concept of planned downtime is not accepted, an alternative expression is
downtime per year. For five-nines availability, expected downtime would evalu-
ate to 315.36 seconds per year, about five minutes.

High-availability (HA) is an expression for a considerably large availability,
generally at a level which cannot be met by interactive repair, such as five-
nines. Under the assumption that failure of individual components in a system
cannot be ruled out with sufficient confidence, such systems need to adapt upon
failures. Fault-tolerance implies that partial failures are expected, and provided
for. Adaption to failures requires redundancy of system components, which will
be revisited in section 2.2.
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2.1.4 Cluster Architectures

The material presented throughout this document is targeting hardware and
system design customary in present cluster architectures. A distributed system
is a collection of computer nodes interconnected by a network. A cluster is
distributed system in a local or system area network, cooperating for the purpose
of serving common goals. A node is an otherwise autonomous computing device,
comprising a number of processors. Generally, cluster computing is classified
into three major branches:

Compute clusters comprise a potentially large number of interconnected pro-
cessing nodes in order to increase overall system performance for compu-
tationally intensive tasks.

Load-balancing clusters distribute client requests among a number of servers.
Unlike compute clusters, load-balancing clusters comprise at least two
different tiers: server nodes providing actual service to clients, and routing
nodes (frontends) distributing incoming client requests among servers.

High-Availability clusters comprise multiple machines to improve reliability for
a service or group of services. That is, availability clustering nodes operate
foremost redundantly, while compute clusters process jobs cooperatively.

For the purpose of this chapter, the two fundamental concepts are availabil-
ity (redundant) and compute (performance) clustering. The major difference
between compute clustering and load-balancing is due to the type of service
provided. Compute cluster nodes cooperate on a single task issued by one or
only a small number of users. Load-balancing clusters provide network services
typically designed to a client-server model, for a large number of clients. This in
turn accounts for different communication models. Performance gains achiev-
able in compute clusters largely depend on the performance of network links
carrying necessary node intercommunications. In contrast, client-server traffic
routed in and out of the cluster accounts for most of the consumed network
bandwidth in load-balancing.

Availability clustering and load-balancing are correlated in that they are some-
times combined. Since frontend nodes represent a single point of failure for a
large number of clients, redundant deployment is a fundamental requirement in
order to retain desired levels of availability. Conversely, multiple load-balanced
servers may provide the corresponding level of redundancy without further aug-
mentation. Many successful client-server protocols, such as HTTP, are stateless,
rendering servers immediately redundant. Once a faulty machine is excluded
from request forwarding by frontends, clients may regain service at any other
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machine without readjustment.

2.2 State Machines

One major motivation when replication is applied to virtual machines is to run
applications unmodified, i.e. transparency. In contrast, many fault-tolerant sys-
tem designs require applications and interfaces meeting individual constraints
of the overall system model, which then in turn makes recovery from failures
possible. Running applications unmodified, in contrast, requires the opposite
approach: an overall system model meeting the properties of commodity appli-
cation environments. This requirement lends itself to a replication technique
called semi-active replication [14], a variant of active replication in distributed
systems, with properties which make it particularly attractive when applied to
general-purpose and commodity systems.

The introductory material regarding active replication is organized as follows:
All variants of active replication originally derive from state machines as the un-
derlying processing model. This concept is introduced in section 2.2.1. Second,
replicated state machines and fault recovery must meet two important require-
ments. One is agreement, on the sequence of state transitions, subject of section
2.2.2. The other is global consistency of recoverable state, discussed in section
2.2.3. A reference architectural model integrating agreement and replicated ex-
ecution is then briefly introduced in section 2.2.4.

Section 2.2.5 turns to inherent non-determinism in general-purpose runtime
environments. The fact that few real-world applications meet the state machine
assumption inspired piecewise determinism (PWD), a reformulated execution
model. It forms the basis of deterministic replay, i.e. event (as opposed to
message) logging to save system state during execution for later recovery.

Different from the state machine approach, some sources of non-determinism
predominant in general purpose runtime environments cannot be efficiently
agreed upon. Deterministic replay imposes lesser demands on replica agreement
to achieve better efficiency. This constitutes semi-active replication, introduced
in section 2.2.6.

Deterministic replay and semi-active replication mostly differ by the concept
of fault-tolerant log dissemination in a distributed system. Section 2.2.7 will
discuss causal logging as a fault-tolerant log protocol, which combines main-
tenance of global state consistency with comparatively low latency induced by
replica synchronization.
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2.2.1 Deterministic Machines

The basic model underlying any variant of active replication are determinis-
tic, finite state machines, or simply state machines. A state machine M =
(S, s0,Σ, T,Γ, ω) comprises:

• A finite set of states S, where the machine starts from an initial state
s0 ∈ S.

• Finite sets Σ and Γ representing input and output of the machine.

• A state transition function T : (S,Σ)→ S.

• An output function ω : S → Γ

A computation (or execution) of M with length n is a sequence of states
s0s1...sn in S traversed for a series of inputs σ0σ1...σn in Σ.

The machine is deterministic because any state transition performed by the
machine is uniquely determined solely by T , that is: present state and input.
Similarly, output at any point during the computation is entirely driven by
present machine state. Hence, if input is determined, then the resulting state
sequence is determined as well, as is observable output.

In the design of fault-tolerant systems, this model is applied to processes,
which constitutes the so-called state machine approach for replication in dis-
tributed systems [73]. Different from the static model above, it is usually for-
mulated in more convenient terms of deterministic programs which operate on
state variables. Programs execute commands upon client request and generate
output accordingly. Again, both state transformations and outputs are deter-
mined solely by commands and present state.

It is well recognized that this model may applied to systems implementing re-
quests and outputs in any conceivable fashion. For subsystem decomposition in
programming environments, procedure calls may be considered. In distributed
systems, the most practical paradigm is the sending and receiving of messages.
For virtual machines, I/O instructions will be considered.

2.2.2 Coordination

For distributed, deterministic state machines to produce the same state, all
must encounter same set of requests (input). The reason why state machines
are a convenient model is that requests are processed sequentially. In contrast,
concurrent dissemination and/or physical reception of messages in distributed
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systems is often arbitrary, due to the properties of the underlying communi-
cation network. Coordination governs agreement and ordering on the request
sequence among all replicas [73]. Coordinated processing of request implies two
properties.

Atomicity Any request is either performed by all (correct) replicas, or none. In
other words, all correct replicas agree on the same set of requests.

Ordering All (correct) replicas process requests in the same (total) order.

Coordination may be performed by clients and servers or, if clients are in-
dependent of each other, by the replicated state machines themselves. Order-
ing of requests may be constrained, depending on requirements of the protocol
established1. Stateful protocols typically assume an implied order which ad-
heres to the intuitive concept of (potential) causality as observable in space and
time, constituted by Lamport’s more general happens-before (“→”) relation-
ship among events in distributed processes [56]. The happens-before relation is
defined as follows:

1. Processes execute sequentially. If event ea happens before eb at the same
process, then ea → eb.

2. Message transmission is causal. If ea is the sending of a message and eb
its reception, then ea → eb.

3. Causality is transitive. If ea → eb and eb → ec, then ea → ec.

Causality imposes a partial order on the sequence of events. Replica coordi-
nation, in contrast, demands a total order on requests. Intuitively, an arbitrary
superset of (potential2) request causality:

1. Specifically: Two requests issued by the same client shall be processed in
the order in which they were sent.

2. Generally, if clients intercommunicate: For any pair of requests r1 and r2,
if r1 → r2, then r1 shall be processed before r2. This order can only be
determined by clients.

Mutual agreement has seen intensive research, as it is probably the most el-
ementary problem in distributed system design. The most challenging assump-
tions are those considering byzantine conditions, i.e. under the assumption of

1Independent clients and stateless protocols are typically robust against server-side reordering

of independent requests. A prominent example is HTTP in the World Wide Web.
2Whether true causality actually applies is up to data flow guiding state transformation.

Causality in the happens-before relation adheres to potential causality, e.g. as derivable

from external observation.



2.2 State Machines 17

(arbitrary) process failures [73]. In order to disseminate messages to an arbi-
trary number of replicas under the conditions outline above, reliable multicast
protocols play an important role. Frameworks for reliable multicast provide for
agreed, ordered message to process groups with a sufficiently general transport
layer interface. View-synchronous group communication systems augment reli-
able multicast with support for dynamically changing replica configurations and
network partitioning [23].

2.2.3 Global State Consistency

A global state G of a distributed system is the aggregation of the individual
states of all participating nodes. The challenge with global system state is that
there is no global entity which is capable of capturing such state instantaneously.
Any single node can only capture its own state, as well as its input and output
events [21].

One may thereby characterize an execution of a distributed system as a series
of transitions in G. A consistent global state is one that may occur during
a correct, failure-free execution of the system. This is the case if causality is
maintained, which again can be expressed in terms of Lamport’s happens-before
relation: For any two events e0 and e1, if e1 → e2 and e2 happened in G, then
e1 must also have happened in G.

Consistency in distributed systems is an important factor in a number of
different fields, including of global predicates such as termination or deadlock,
commonly performed on “snapshots” of global state [21], or applications in dis-
tributed debugging and garbage collection [23].

Maintenance of local causality in a single sequential process (clause 1 in
the definition of the happens-before relation) is trivially achieved: Any syn-
chronously taken snapshot of a single node is consistent. However, the consis-
tency of inter-process dependencies (clause 2) is harder to maintain. Intuitively,
consistency across machine boundaries demands that for a collection of states
in a distributed system is to remain consistent, the following must apply: If one
process’s state is caused by reception of a message, then the respective sender’s
state must reflect its transmission [29].

In fault-tolerant system design, one method where the rules of consistency re-
quire considerable consideration is state recovery, i.e. restoration of system state
after a fault. If only part or outdated system state is recoverable, consistency
is at risk. This is commonly the case in passive replication, which spurred of
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Figure 2.1: Active replication: replicas (R) with frontends (FE) and clients (C)
[23].

past research in rollback recovery for complex systems, i.e. systems comprising
multiple distributed, intercommunicating components. In that case, a failure in
one component may cause the need to roll back respective clients [29].

With active replication, global state consistency needs special consideration
when communicating with an “outside world”, i.e. externally visible system
behavior. This includes any remote client served, as well as peripheral devices a
system is connected to. Different from an orchestrated rollback outlined above,
outside clients cannot be subject to recovery procedures, hence any interaction
with these systems is irreversibly manifested in global state. This in turn con-
stitutes demand for reliable multicast and request atomicity: if e is the sending
of a message to the outside world, then any event e′ (e′ → e) must be recoverable
by all replicas [29].

2.2.4 Active Replication

Actively replicating systems organize replicas into groups of redundant system
components, forming a single logical machine. The overall architecture is shown
in figure 2.1. Each replica acts as a state machine. System software on nodes
hosting individual replica operates as a replica manager [23], or simply monitor
[73]. Dedicated nodes act as a frontends which mediate between individual
replicas and clients. Frontends fulfill several functions in one entity:

• Client access: Clients (both client components in complex fault-tolerant
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Figure 2.2: Dual redundancy in a leader/follower scheme.

systems or clients in the outside world) may remain unaware of the group
topology masked by the FE.

• Dissemination of input messages: Frontends act as transmitters [73], for-
warding input messages received from any client to all replicas in coordina-
tion, i.e. the set of requests and a total order of delivery is agreed upon. In
message passing systems, reliable multicast implementations perform this
task. Note that if clients are communicating with each other, ordering
must reflect causality.

• Collection of output messages: Only one response is delivered to clients,
duplicates which are due to replication will be discarded. Depending on
the failure model, the FE may act as a voter by comparing responses
received from individual replicas.

If only crash-failures are to be considered, up to t failures can be survived
by deploying at least t + 1 replicas. Since any response is correct under this
assumption, the first response collected may be forwarded to the client. Up to t
byzantine failures can be tolerated by (2t+ 1)-fold replication. In this case, the
voter may accept a majority after collecting t+1 identical responses [23]. Given
one or more dedicated nodes for input coordination and voting, three replicas
are sufficient to mask up to either t = 2 crash faults or t = 1 arbitrary node
failures.

A single frontend is generally considered insufficient, since it would represent
a single point of failure between service provisioning by replicas and service
delivery to clients. However, there is no requirement to integrate all functions
described above in one single processing entity. Many systems, e.g. NSAA [16],
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comprise dedicated, redundant frontend logic.

Others, such as RAPIDS [94] or the hypervisor system by Bressoud and
Schneider [19], do not employ dedicated nodes to that purpose, which deserves
additional consideration. Indeed, simpler topologies are possible, assuming that
only crash faults matter. The role of communication with clients may be as-
signed to one or more replica nodes, e.g. via election. In that case, voting can
be omitted, since no faulty messages can occur. Hence, output operations on
the follower may be discarded by the local monitor.

Simplifying the topology further, the number of replicas may be reduced to
a pair, as depicted in figure 2.2. In this case, the multicast scheme for event
dissemination may be replaced to a simple ordered, reliable unicast protocol (i.e.
a FIFO channel). On IP networks, a respective group communication layer can
be replaced by TCP, as long as adequate failure detection is provided for.

Independent of the state replication applied, the resulting topology then re-
sembles the general primary/backup fault-tolerance scheme, where a respective
primary is exclusively assigned with the frontend role. In case of a failure of the
primary, provisioning of the service must be taken over by the backup system.
A combination takeover of both network (“IP Takeover”) and block storage I/O
interfaces was published in [17], building a highly-available file server.

2.2.5 Facing Non-Determinism

The state machine approach works best if applied to guide program design.
Any component of a fault-tolerant system subject to replication must qualify
as a state machine. This is of no concern when building systems from ground
up accordingly: anything that can be structured in terms of procedures and
procedure calls can also be structured using state machines [73].

However, it is often considered insufficient if either programs or, ultimately,
the processes executing them are inherently non-deterministic in the state se-
quence they traverse. The former case of non-deterministic programs is im-
portant when seeking to replicate arbitrary applications. The latter is case of
non-deterministic processes applies to a large fraction of customary execution
environments.

I/O Instructions The original state machine approach demands that requests
from remote processes are the only source of information affecting process state
[73]. Indeed, the implied request/response scheme of operation is commonplace
in client/server architectures, like database systems or web servers. However,
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few real-world applications obey strict determinism in processing requests. Typ-
ical examples are queries on system time, time-sensitive operations, or true ran-
domness, as e.g. employed in cryptographic functions, none of which behave
deterministically across redundant invocations.

Considering high-level languages, many synchronous I/O primitives, e.g. those
of event multiplexing (consider the UNIX select() call [42]) yield non-deterministic
results3.

Schneider recognized this fact and suggested careful redesign of all replicas
in order to externalize all such data sources [73]. Intending to run applications
unmodified, the simple assumption of processes behaving like state machines
rarely applies in practice.

Concurrency Some non-determinisms derive from the basic requirement of se-
quential execution of either requests as well as individual request processing.
Requests are not necessarily processed sequentially. In complex systems, coop-
erative threads or processes may execute requests in arbitrary order. Processing
of individual requests may essentially be multithreaded and/or operating on
shared memory.

Concurrent processes on shared memory may produce arbitrary interleavings
of state accesses, and therefore perform different transformations on overall state
under different timing conditions. Non-determinism due to thread arbitration
may be induced by the physical machine. Processors in hardware multiprocess-
ing systems are essentially behaving like distributed systems. It may as well be
as part of an essentially non-deterministic software execution environment, e.g.
thread scheduling on preemptive uniprocessors, which is essentially driven by
time and timers.

Asynchrony Asynchronous event delivery to any software system is typically
performed by an immediate control transfer to a service routine which is imple-
mented by that system. Initiation of the control transfer at runtime is performed
by the processing environment, not the system itself. The control transfer inter-
rupts the running thread, and resumes execution after termination of the service
routine.

In order to have any impact at all, service routines unilaterally need to affect
global state. Consistent with the happens-before relation, the state transition

3Note that this applies at the language level. Admittedly, when considering the machine

level, one may argue that non-determinism in I/O multiplexing is due to asynchrony. This

is discussed below.
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induced by a service routine may depend on the precise point of event delivery
within the state sequence traversed by the interrupted thread. Hence, determi-
nistic behavior among replicas can only be enforced by agreement on the precise
point of delivery.

Asynchrony in I/O processing is featured by virtually all general-purpose
execution environments, since it is fundamental to efficient communication with
external entities4. Non-determinism due to asynchronous events is propagated
across virtually any software layer in the affected system. At the ISA level,
asynchrony is induced via external interrupts. POSIX-compatible environments
empty signals as one possible mapping of asynchronous events to processes.
The select() system call, being a synchronous source of non-determinism at
the process level, is determined by asynchronous I/O events at the system level.
If service routines are not involved, constructs equivalent to select() may
be found in most high-level language environments, such as the Java Runtime
Environment5 [51].

In order to overcome these problems, a different model for the execution
of such systems needs to be applied. Generally, the concept of machine state
will prevail. But different from mere state machines, execution driving state
transitions needs to reflect the effective complexity of the systems described.

Given finite amounts of memory, any practical machine has a finite number
of states S. An execution event e ∈ E is a binary relation between states in S:
e ⊂ S × S. For any event (si, sj) ∈ e, write si

e→ sj (e produces sj from si).
An event may comprise any one of a number of different actions performable
by the underlying machine at a given state. One example is execution of a
machine instruction residing in memory. Another possible state change would
be a control transfer induced externally. In shared-memory multiprocessors,
the notion of an event includes changes to state variables performed externally
as well. A suitable model may partition the set E of all observable events
accordingly: E = I∪N∪D, where I comprises the set if instructions implemented
by the processor, N externally-induced control transfers, and D the set of all
externally-induced changes to in-memory machine state.

Deterministic Events An event e ∈ E is deterministic, if and only if for any
states si, sj and sk in S the following applies:

4One alternative is polling, i.e. frequent synchronous inquiries on the status of such entities.

Polling is not an efficient alternative for events occurring at high frequencies or when latency

is critical [82].
5Earlier versions of the JRE employed the second alternative: Threading, which trades non-

determinism due to event handlers with non-determinism due to concurrent thread schedul-

ing.
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si
e→ sj ∧ si

e→ sk ⇒ sj = sk

That is, e is a (partial) function in S, as opposed to a relation. Informally,
deterministic instructions are those which are guaranteed to produce the same
result in machine state whenever issued from the same original state.

Events due to instruction execution will be termed synchronous, i.e. occur-
rence of such an event is predetermined from present machine state, but may
be preempted by asynchronous events. The complementary set of asynchronous
events N ∪D must be monitored for the reasons outlined above.

In fault-tolerant, distributed system design, extension of the state machine
approach to include the notion of non-deterministic events lead to postulation
of the so-called piecewise deterministic execution (PWD) model, attributed to
Strom and Yemini [29, 77]. Typically described only informally, it assumes that
a suitable monitor must be enabled to intercept and control any execution event
whose effect on machine state is not determined from original state. In message
passing systems conforming to the state machine model, the PWD assumption
is trivially met by controlling message delivery to replicas. For the extended
machine model outlined above, this includes synchronous, but non-deterministic,
as well as asynchronous events.

2.2.6 Semi-active Replication

The attractiveness of the state machine approach is due to the fact that only
events determining the transformation of replica state need to be disseminated.
This constitutes active, as opposed to passive replication (e.g. checkpointing
[29, 23]), where critical application state needs to be captured and updated as a
whole. Hence, actively replicated state is not captured, but the computational
state sequence regenerated, by mutual agreement on any information guiding
that sequence.

This is practical for message-passing systems of intercommunicating processes
which satisfy the state machine assumption. The need for coordination then
only pertains to messages received from clients. Agreement between two nodes
according to the state machine approach is shown in figure 2.3, where total
ordering on messages in performed by one or several transmitters.

Contrasting message-passing systems, piecewise deterministic execution re-
quires coordination not only of application-level messaging. Instead, any non-
deterministically occurring event must be agreed upon, i.e. including those
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Figure 2.3: Agreement in message passing systems.

relating to the runtime environment executing a given application. The prob-
lem is that agreement on events originating from individual replicas, as opposed
to a central frontend device, is beyond reliable multicast, but requires a solution
to the consensus problem.

Protocols to achieve agreement on individual events are not practical if the
tolerable delay in reaching an agreement approaches or even goes below achiev-
able latency on the communication path. This is potentially the case for a large
number of the event sources outlined in section 2.2.5. A prominent example
are timers and thereby timeouts and the delivery of timer-driven asynchronous
events.

In order to reach an agreement, their exact point in an ongoing computation
must be agreed upon in order to deliver the event deterministically on all nodes.
On a single node, the event would be delivered timely, for maskable events
at the immediately next point during a computation where the event is not
masked. Reaching agreement among distributed replicas, in contrast, takes a
synchronous intercommunication sequence. Since no sufficiently synchronized
clocks are available, all replicas must exchange their prospective points of event
delivery. States reached by active replication cannot be rolled back, hence the
most advanced point in the computation needs to be agreed upon. Slower nodes
then need to catch up. The result is that while state machine synchrony demands
that slower nodes dictate the overall speed of computational progress, delivery
latency through agreement always represents the worst-case scenario.
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Figure 2.4: Semi-active replication replaces multilateral agreement with unilat-
eral decisions.

Generally, for events occurring at a comparatively high frequency, e.g. inter-
rupts delivered to a virtual machine, the cost of a consensus protocol may easily
approach the frequency of events experienced during non-replicated execution,
slowing down systems by orders of magnitude. Discussions of the number of
messages required to reach distributed consensus and the implied performance
impact are found in e.g. [12] and [94]. This excludes systems employing low-
latency interconnects in dedicated hardware, such as NSAA, which aims at
negative impacts in the range of 5-10% [16].

Semi-active replication [66], also called the leader/follower model [14], is a
variant of active replication avoiding the relative cost of distributed agreement.
For this purpose, the set of nodes is partitioned into one leader and a number of
followers. The idea is to replace consensus, formerly achieved by participation
of all nodes, with unilateral decisions about all non-determinism. In short, it
is an application of deterministic replay. In semi-active replication, logging of
determinants is solely performed by the leader instance. These log entries are
disseminated to all follower nodes, which replay the original state sequence. The
overall structure of this approach is shown in figure 2.4.

The difference to deterministic replay under the PWD model is that fault
tolerance requires events to be recoverable in case of failures, where replay for
debugging or profiling purposes has lesser requirements. Protocols maintaining
consistency across replica failures are discussed in the following section.

Semi-active replication is usually proposed to render virtual machine instances
fault-tolerant against crash failures, i.e. it is assumed that faulty host systems
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halt execution upon occurrence of such a fault. Admittedly, byzantine conditions
due to arbitrary node failures cannot be easily covered by the leader/follower
model. This is due to the fact that mutual agreement on any state change
induced by the processing environment is dictated by the leader processor alone.
In case of a defect, the leader node may therefore propagate erroneous events
to all follower nodes. Powell noted that this restriction can be relaxed to some
degree, if followers check all log entries against a given range of valid ones
[66]. Such checks were implemented as part of the Delta-4 architecture. Upon
encountering a log entry deemed invalid, all follower nodes fall back to a common
default one. Still, an erroneous valid event would cause state divergence to go
unnoticed. Delta-4 employed external voting logic in order to correctly mask
such faulty events.

2.2.7 Causal Logging

Deterministic replay on one or a number of follower instances enables state con-
sistency among failure-free replicas, but does not guarantee that all events are
recoverable if the leader fails, if processing and log transmission are performed
asynchronously. Due to the fact that a follower instance is not in synchrony with
the leader, failover always implies some (hopefully small) degree of rollback in
computational state. This is the major difference from classical lockstepping
techniques implemented in hardware (e.g. [15]). In order to recover consistent
global state beyond failures, synchronization between leader and followers needs
to take place.

Generally, synchronization is concerned with the concept of stability of events,
respectively messages: In rollback recovery, an event is stable if it is recoverable,
i.e. as soon as it is saved on stable storage [29]. With log dissemination through
messaging, stability implies multilateral agreement on a respective message [73].
For a log transmission over a reliable FIFO channel to a single follower, a simple
acknowledgment on the last event received will suffice.

Different approaches when to perform synchronization exist. One is to syn-
chronize on every event, before it affects the replica computation. This con-
stitutes pessimistic, or synchronous logging [29]. Causal logging, in contrast,
exploits the fact that replica state only needs to be recoverable once it be-
comes observable. As shown in section 2.2.3, this is only the case as soon as a
respective system component is communicating with its environment. Hence,
to maintain global state consistency, synchronization needs to take place just
before performing an output operation.
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Figure 2.5: Synchronization and duplicate output with semi-active replication.

Figure 2.5 depicts causal logging6 for only a single client and follower. Bars
denote input processing by the replica instance, dots individual events to be
logged, arrows indicate communication in space and time. Dotted arrows indi-
cate a notification that an event has stabilized on the follower side. Client C
sends a request REQ to a service. The monitor of leader node L emits a corre-
sponding log message and delivers REQ to the local replica. It then continues
processing REQ, which for the case depicted leads to execution of 3 additional
non-deterministic events. Figure 2.5 shows only log transmission for the first
and last event before RSP. RSP is only committed after the last non-deterministic
event is known stable in F .

One benefit of causal logging is that asynchronous log dissemination can be
performed parallel to replica execution. Furthermore, asynchronous transmis-
sion enables buffering and bulk transfers of events. Still, the remaining need for
synchronization imposes some amount of latency imposed on all output opera-
tions committable by the leader. As depicted in figure 2.5, every event which
happened before the sending of RSP must be waited for to become stable. The
effect is called output commit problem [29].

Different from synchronous logging, asynchronous logging implies that output
operations generated by the leader need intermediate buffering. Synchronous
logging pauses replica execution and resumes only after event stabilization.
Hence, output operations can be committed immediately. With asynchronous
logging, output operations occur before stabilization, therefore need to be held

6The notation represents a mixture of UML sequence diagrams and Lamport’s [56] space-time

notation, inspired by Wolf [94].
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back.

2.2.8 Duplicate Output

Figure 2.5 also shows the problem of duplicate output operations, which may
occur when the leader instance fails. Preventing duplicates is an instance of the
unsolvable two generals problem [8, 19]. Sending of RSP to C and a notification
to L are two separate operations. The notification must be sent after RSP,
because L may crash before the message is actually sent, potentially misleading
F . On the other hand, L may crash after sending RSP, but before the notification
is sent. If L fails and no notification is received, then whether L failed before
or after sending RSP remains indistinguishable to F 7.

Message duplicates are typically a non-issue in IP-based intra- and internet-
works. TCP/IP networking recognizes that segments not only may be lost (then
re-requested) but duplicates may occur (e.g. due to gratuitous re-requests).
Generally, Internet protocols cope well with duplicate messages, as do I/O de-
vice interfaces accessed on such networks, such as network attached storage.

2.2.9 Related Work

The presentation above discussed output commit and duplicate output opera-
tions in context of message-passing systems. However, the same concerns apply
to operations on peripheral I/O hosted by replicas. Bressoud and Schneider
found that a similar degree of tolerance applies to the SCSI protocol [19] when
leader and follower host controllers connect to the same bus. In summary, they
demonstrated that (1) native SCSI I/O devices tolerate reissues of the same
command and (2) the SCSI protocol comprises status codes which a monitor
can emulate in order to let drivers reissue outstanding commands. Property
(2) can be used upon takeover by followers in order to let drivers redirect com-
mand completion notifications to the new host interface, by reissuing the original
command, as property (1) suggests. In practice, network attached I/O would
represent a more straightforward solution.

Much of the original work pursuing the use of deterministic replay in fault-
tolerant systems focused on log-based rollback recovery [29]. Rollback recovery
performs (transparent) uncoordinated checkpointing (i.e. passive replication) of
application state to stable storage, at regular intervals. Rollback is implied by
recovering from failures by restoring saved, but potentially outdated state. The

7Note that the same problem applies to frontend nodes once they are subject to failures.
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problem is maintenance of consistent global state across distributed system com-
ponents upon recovery from a failure, leading to a so-called domino effect where
multiple components need to roll back to remain globally consistent. Log-based
rollback recovery combines checkpointing with deterministic replay in order to
recreate pre-failure state up to the point where the original computation failed.
These works lead to postulation of the piecewise deterministic execution model
[29, 77].

Semi-active replication was pioneered by the Extra-Performance Architecture
(XPA), part of the Delta-4 project [14, 66]. Delta-4 aimed at replication of
arbitrary processes on a dedicated host-system architecture interconnected by a
reliable multipoint communication system. Network interfaces are implemented
by specialized interface processors and performed agreement and voting. Delta-
4 combined both passive and active replication in a selectable fashion. It dif-
fered from the work described here in that the system required both dedicated
hardware as well as application support in the form of a software development
framework.

The HP NonStop Advanced Architecture (NSAA) [16] is the successor to the
original NonStop system [15] developed by Tandem Computers. Tandem Non-
Stop was a cluster of self-checked (i.e. fail-stop) processor modules, each of
which comprised two processors in clock-synchronous lockstep and correspond-
ing voting logic. The designers of NSAA name a number of present and future
trends why lockstepping cannot be carried on for commodity processors [16].
One is CPU frequency scaling for power saving, another are minor variances
induced from very high clock speed and multiple clock signals on a single die,
which do not affect normal operation but propagate non-determinism up to the
ISA level. It demonstrates that deterministic replay can close that gap.

NSAA is a clustered architecture partitioning Intel Itanium SMP servers
(“slices”) into logical processors. Machine memory is partitioned, each logi-
cal processor runs a separate stack of the OS kernel and applications. A logical
processor thereby combines processor cores from different slices. Similar to XPA,
consensus, voting and network interconnects are in dedicated logic. On the soft-
ware side, NSAA represents an upgrade to the traditional NonStop kernel and
support routines. It is not an adaption of a commodity system and libraries,
nor does it mimic any existing operating environments. Similar to the work
presented here, performance monitoring facilities are used for interrupt replay.
This will be revisited in section 6.1: The most distinguishing property of NSAA
is that it implements a consensus protocol on machine state in order to synchro-
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nize event delivery.

In the same way it does to virtual machines, semi-active replication lends
itself to language-specific runtime environments. One such effort was Wolf’s
RAPIDS project for distributed Ada 95 [94]. Ada programs are subdivided
into partitions, which may run in separate address spaces or, in the distributed
case, even on different systems. RAPIDS performed transparent replication of
partitions using semi-active replication. Like with all execution environments,
the difference is the level of abstraction performed. Where execution of hard-
ware and virtual machines is driven by elements of the machine interface (e.g.
instructions, interrupts or ports) replication of high-level language (HLL) pro-
gram execution rather considers respective control flow facilities at the language
level: thread scheduling, standard I/O facilities and I/O multiplexing.

2.3 Virtual Machines

Over the years, the term virtual machine has been picked up for a number of
fundamentally different purposes. The original purpose used to be time-sharing
between multiple operating system instances on the same physical machine.
Today, another widespread application of virtual machine architecture is in the
design of compilers and accompanying software run-time environments, e.g. as
the well-known Java Virtual Machine [75]. Nonetheless, the pervasiveness is not
due to dilution of an original meaning, but justified by a proper definition of the
two terms contained: Virtualization and Machines. The latter will be covered
in the following section, the former in section 2.3.2.

2.3.1 Machines

Picking up the state machine paradigm outlined in section 2.2, a machine com-
prises memory, the capability to perform input and output operations to and
from peripheral resources, and the capability to process in-memory state ac-
cording to a software system it hosts. This rather broad concept of a machine
can be applied not only to the bare hardware/software interface, but instead
recurs at different levels of system software stacks. Figure 2.6 depicts a typ-
ically layered system architecture and two interfaces of major concern. The
physical boundary between hardware and software is defined by the instruction
set architecture (ISA). The ISA is partitioned into two instruction subsets: a
privileged one and a non-privileged one. The non-privileged subset represents
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Figure 2.6: Machine decomposition and system interfaces

the user ISA available to all application processes. The privileged one incorpo-
rates access to privileged processor state as well as access to machine memory
and I/O subsystems, accessible to software running at sufficiently high privilege
levels exclusively.

Customary systems reserve access to privileged machine state to an operat-
ing system kernel. The interface exposed to application programs and libraries
constitutes the application binary interface (ABI), which executes only non-
privileged instructions on bare hardware. Privileged operations are performed
indirectly, via a surrogate system call interface. Requests to the operating sys-
tem are thereby subject to interpretation and validation by the callee. This
constitutes the understanding of the system ABI as an extended machine inter-
face [35], nonetheless thereby an instruction set architecture of its own.

2.3.2 Virtualization

A formal definition of virtual machine construction was developed by Popek and
Goldberg [65]. It states Virtualization establishes by a one-one homomorphism
(a monomorphism) from a (virtual) guest system to a (real, i.e. physical) host
system.

Homomorphisms are maps on algebraic systems of sets and operations, pre-
serving the original structure to which they are applied, as depicted in figure
2.7. Applied to computer systems, a algebraic structure suitably describing
guest systems was introduced in section 2.2.5: Call the finite set of all guest
states S. Execution of the guest systems is performed through some sequence
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Figure 2.7: The machine virtualization homomorphism [65].

of operations e = e0e1 . . . en−1 in E on guest system state. The virtual machine
map V : S → S′ maps original guest system state S to real system state S′ of a
respective host.

Note that practical virtualization of a machine interface does not necessitate
the construction of V . While V must exist in the mathematical sense, it is in
practice established by mapping guest system execution: For any e, the host
system will execute a sequence e′ = e′0e

′
1 . . . e

′
m−1 in E′ on the hosting processor.

The homomorphic nature of the virtual machine map entails equivalence of the
guest’s representation: For any two guest states and execution events si and
sj = e(si), we have

V (e(si)) = e′(V (si)).

Virtual machines are established by interface equivalence, offering a fair de-
gree of flexibility between interface and implementation. A virtual machine
(VM) is a pure logical construct, which the runtime environment establishes in
order to execute a guest system. The concrete entity in virtualization is imple-
mented as a software layer on the hosting physical system: A virtual machine
monitor (VMM) is a system software entity guiding the execution of one or a
number of virtual machines. Its implementation is also referred to as the control
program.

The large number of different applications of machine virtualization is partly
due to a multitude of candidate interfaces, the important ones of which have
been introduced in section 2.3.1: ABI virtualization constitutes process VMs,
while ISA virtualization constitutes system VMs. A typical process VMM may
be realized as a simple application program. By the same definition of vir-
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Figure 2.8: A virtualization taxonomy.

tualization given above, processes themselves qualify as virtual machines: The
surrogate interface established by the operating system establishes an abstract
virtual machine map. System virtual machines, in contrast, host entire operating
systems, including a respective set of applications as processes on top of them.
A second dimension applicable to both process and system VMs differentiates
between the correspondence of potentially differing instruction set architectures
(ISAs) above and below a given virtualization layer. A guest system may be
designed for an instruction set architecture different from that of a host system
executing it (different-ISA VMs [75]).

As a matter of principle, most contemporary virtual machine technology can
be classified within these two dimensions: Figure 2.8 depicts a taxonomy of
various virtualization techniques, originally derived from [75]. For the purpose of
this thesis, same-ISA system virtual machines are of primary interest, discussed
in the following section.

2.3.3 System Virtualization

System virtual machines host entire operating system instances, or a multitude
thereof, independent of type and version. Different from process ABIs, they
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Figure 2.9: Type I (Hypervisors) and Type II (Hosted) VMMs

typically expose an interface to guest systems identical to an original machine
interface they were written for [2]. Similar, “full” I/O virtualization emulates
device interfaces in support of native I/O drivers in guest operating systems.
Earliest same-ISA system VMs were developed by IBM in the late 1960’s [2],
back then in order to overcome some of the shortcomings of multiprogrammed
operating systems at that time. Before the emerge of affordable microcomputers
lowered the cost barrier to separate machines within one organization, virtua-
lization offered time-sharing for portability of applications written for different
operating systems and versions, sharing a single physical host [35].

The taxonomy depicted in figure 2.8 contrasts same-ISA system VMs with
whole-system emulation, as would be the case if the instruction set architec-
ture of the guest system does not comply with the hosting machine. Same-ISA
VMs features two classes, denoted as Type I and Type II VMMs [34]. Figure
2.9 depicts the difference between the two. Type I VMMs are called “classic”
virtual machine monitors [75], or hypervisors. Conceptually, they take the place
of an original operating system, as a software layer between any guest operat-
ing system and the machine hardware. Type II VMMs are not layered on bare
hardware. Instead, the underlying machine is controlled by a regular host oper-
ating system. Conceptually, the VMM is running on top of the host system. As
the system model depicted in figure 2.9 shows, practical interfacing between the
host OS and VMM is is not limited to the process ABI exclusively. While a large
fraction of system virtualization can be performed in process context, part of the
VMM’s responsibility, such as privileged operations involved in task switching,
are typically not covered by the system call interface. Instead, hosted designs
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are typically dual-mode VMMs, which comprise one or more OS processes and
a supplemental kernel space component.

2.3.4 ISA Virtualizability

System software is typically designed to run at highest processor privilege levels,
in order to access and govern original hardware resources. In order to virtualize
a system, control over machine resources must be ultimately reserved to the
VMM.

Popek and Goldberg’s virtualization model model was geared towards Type I
VMMs, but equally applies to hosted VMs. Its major contribution were formally
defined requirements for effective virtualizability of “3rd generation” computer
architectures, basically the customary processor ISAs of that time. Classic vir-
tualization does not promote refinement of existing instruction sets. Instead,
it builds upon the same protection mechanisms separating operating system
and individual application state from each other [33]. “3rd generation architec-
tures” refers to a feature set not much different from today’s processor ISAs. It
mainly requires memory virtualization and a protection mechanism separating
privileged from non-privileged operations [25].

Section 2.3.1 outlined the basic structure of processor ISAs, separated into
privileged and non-privileged classes of instructions. A basic ISA conforming to
this model distinguishes application (user) from OS kernel (supervisor) mode.
Virtualization implies deprivileging of a guest operating system kernel. A virtual
machine monitor will run in supervisor mode, relegating hosted guest kernels
to user mode. Intuitively, one may assume that only privileged instructions are
subject to interception by a VMM.

At the the level of the bare instruction set, virtualizability contrasts sensitive
with innocuous instructions. A sensitive instruction is one (potentially) either
altering privileged processor state (such as resource access or processor mode
in effect), or whose effect on (virtual) machine state depends on the present
processor mode. Their first virtualization theorem expresses requirements ISA
virtualizability, as follows:

ISA Virtualizability For any conventional third generation computer, a virtual
machine monitor may be constructed if the set of sensitive instructions for
that computer is a subset of the set of privileged instructions.

Privileged instructions issued by deprivileged guests generate traps, i.e. guest
operating systems trigger control transfers to supervisor mode due to viola-
tion of machine protection policies. Since trap handling remains under control
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of the VMM, this mechanism constitutes the very foundation for machine vir-
tualization, dubbed trap-and-emulate: Upon faulting to the monitor, sensitive
instructions are emulated by the VMM according the the virtual machine map
V . This procedure thereby maintains full transparency for the system software
whose execution has been interrupted. The map maintains original semantics
of the machine interface, translating all operations according to V .

Popek and Goldberg expressed three properties of system VMs, of which
only two are shared with different-ISA VMs. One is functional equivalence, as
discussed in the previous section. Machine behavior in real-time, however, must
be excluded from consideration. A second property is maintenance of resource
control, i.e. full isolation of all guest systems from direct, privileged access of
machine resources. There are exceptions to that scheme: some I/O resources
may be directly accessed by guest systems, unless they are to be shared by
different guests. Direct device access will be picked up in section 2.3.5.

The efficiency property distinguished same-ISA virtualization from software
emulation techniques. All innocuous instructions are executable under resource
control and equivalence assumptions without intervention by the VMM. The
relatively high degree of efficiency is maintained because sensitive instructions
account for only a small fraction of the overall stream of instructions executed
on the virtual machine. Effectively, the efficiency property can be restated as:
A “statistically dominant” instruction subset is to be executed directly.

Few, if any original instruction set architectures were designed with virtual-
izability in mind. Different from an intuitive understanding of the correlation
between sensitive and privileged instructions, violation of the virtualizability
rule stated in the theorem is, in fact, common. Non-privileged control sensi-
tive operations are highly unlikely, since privilege elevation uncontrollable by
supervisor-mode software would be in violation even of the system protection
principles affecting operating systems on the original hardware. However, issues
due to behavior sensitivity are far from uncommon. All are due to deprivileg-
ing of the operating system, thereby only affecting the OS kernel. Goldberg
introduced the concept of hybrid VMs [33] to overcome this problem without
sacrificing the efficiency property. In hybrid VMs, all instructions executed in
virtual supervisor mode are interpreted in software, which still qualifies as ef-
ficient by above definition, but largely sacrifices the emulation ratio achieved
with virtualizable systems.

Chapter 3 will discuss some of the predominant issues when virtualizing com-
modity systems, such as the popular x86 architecture, and introduce present
alternative virtualization techniques with greater efficiency than hybrid VMs.
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2.3.5 Machine Relocatability

Active replication of system VMs shares one assumption with a related feature:
virtual machine migration. Namely, the assumption of relocatability of workloads
within a distributed environment of otherwise independent machines. Migration
is presently implemented by a number of server-class virtualization products,
such as VMware ESX Server [63] and Xen [22]. Migration moves a running
virtual machine instance to a different physical node. The same concept in turn
applies at least to semi-active replication: while large parts of system operating
environment visible to a replayed guest system may be a product of emulating
I/O interaction from an event log, failover, due to loss of the leader node, must
leave the system continuable on a fully operational machine interface consistent
with original leader state.

This section investigates why system virtual machines provide a much more
convenient machine interface for this purpose than processes do. It will therefore
contrast the complexity inherent in process relocation with that in system VMs.

Process migration in distributed systems has been an active field of research
throughout the 1980’s and 1990’s. Motivations include dynamic load distribu-
tion or administrative purposes (such as service continuity, as discussed in the
previous section) [61]. For the purpose of this thesis, the idea of migration
within a local or system area network and a single administrative domain shall
be sufficient.

Despite large investments in research and development, twenty years of ongo-
ing research in process migration have not generated much asset in mainstream
computing. Publishing results of their work on process migration in the Sprite
operating system, Douglis and Ousterhout first summarized some the of crite-
ria ultimately deciding on the applicability of migratable processes in end-user
computing environments [27]. They state that all design issues ultimately result
in a trade-off between four conflicting factors [27]. Generally, the same trade-off
applies to workload migration with any process virtual machine, e.g. including
HLL VMs [61].

Transparency at the machine interface accounts for changes to system software
imposed on developers. Full transparency enables migration of arbitrary,
unmodified applications. Similarly, functional equivalence before and after
migration helps to meet user expectations. Compared to motivation in
fault-tolerant system design, a similar transparency property is attributed
to the state machine approach in section 2.2 (p. 14).

Residual Dependencies arise if the source node maintains resources on behalf
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of the running process which cannot be migrated together with it. Trans-
parency would demand that the source continues to service the migrated
process over the network. operating system will typically translate oper-
ations to message exchange with the source in order to perform this task.
This is typically called forwarding.

Performance is a non-functional property at the machine level, but central,
partly because it applies at different aspects of migration. One is run-
time application performance, another is migration speed. As an example,
the migration procedure may terminate more quickly at the expense of a
larger number of residual dependencies (such as memory remaining on the
source node) left. Residual dependencies in turn will degrade run-time
performance after migration.

Complexity refers to the implementation of process migration as part of the un-
derlying execution environment. Process migration is an auxiliary feature
typically added to existing systems. In case of operating systems, kernels
must be extended to extract, serialize and (remotely) restore process state
accordingly. Complexity does not refer to the overall challenge of appro-
priately modifying systems accordingly. Of much greater concern is the
amount of change required to the system, since state migration tends to
affect “virtually every major piece of an operating system kernel” [27].

Returning to the notion of processes as VMs, all residual dependencies are due
to parts of the source machine not within the guest system memory image, but
bound to the source execution environment. This may include specific hardware
components. A straightforward example for residual dependencies would be
specific hardware devices only the source node can provide. Even assuming
otherwise homogeneous pools of machines, interactive processes cannot take
the human interface devices with them. Limiting migration to non-interactive
applications, the same would apply to any open file hosted by the source node
to which the migrated process maintains a handle, unless the underlying file
system is networked.

I/O Resources Migratability of arbitrary machine resources depends on re-
source types, which can be various. Demonstrably, the number of resource types
again add to implementation complexity. I/O resources types can be generalized
within the machine model introduced in section 2.3.1. The resulting classifica-
tion will then be used to contrast system virtual machines with operating system
process migration.

The model which will be discussed here is depicted in figure 2.10. It distin-
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Figure 2.10: Migratability of machine resources.

guishes three types of resource states. First is VM in-memory state comprised
by the virtual machine image, such as a file descriptor maintained by a standard
library. Call this state problem state (following Goldberg [33]). All state be-
yond problem state is external to the virtual machine. One is virtual state, which
represents also in-memory state, but maintained by the host system (VMM or
operating system). Finally, part of the resource state may reside in hardware.
An example would be frame buffer content on a graphics display adapter. Simi-
larly, resources may be located on different hosts, accessible both from the source
and destination node, such as a file on a networked file system. Both variants
constitute shared and local media state. Figure 2.10 depicts an already con-
siderable number of practical resource constellations derivable from these three
layers8. Examples correspond to process virtualization:

• The resource may be solely in media state, directly accessed by the guest
system. Call those resources physical (P), e.g. device state due by an I/O
port driver implemented in user space.

• Call resources hosted in in-memory host system state virtual (V). Such a
resource may be purely virtual or backed by physical media:

– If the resource is backed by local media, call it local (L), such as a
file in locally attached disk storage.

– If the resource is backed by a shared medium, call it networked (N),
such as a file shared by a remote file server.

• Finally, shared media may be accessed directly, typically via a message
passing interface, on a transport layer insensitive to relocation within the

8Further refinement may consider additional layers, such as distinguishing between media

state (i.e. content) and control (i.e. device interface) state at the physical layer.
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surrounding node topology. Call those resources remote (R). An example
would be remote file access performed with a client protocol implemented
by a process or library.

In-memory resources are generally migratable, including those in problem and
virtual state. Figure 2.10 marks those with an (M) accordingly. Shared media
are advantageous. Assuming that the transport layer connecting it to a respec-
tive host system allows for a location-independent access (I), these resources
do not need to be migrated. In contrast, migratability of resources comprising
media state depends on an additional factors, namely exchangability (X). Ex-
changability is typically not decidable per resource class, but must be attributed
per instance: A physical display device may be migrated together with a guest
system, possibly moving frame buffer contents. For migration of interactive ap-
plications, however, users may equally expect the same resource to reside at the
source host [27].

With regard to the original (von Neumann) machine model, processor and
machine memory assigned to guest systems are virtual resources backed by lo-
cal hardware. Homogeneous nodes provided, a virtual processor is trivially mi-
grated, since the amount of CPU state is small and typically well-defined. The
memory image of a guest systems may be large and therefore time-consuming
to migrate in its entirety. Problem state, however, does not need inspection to
be migrated, provided it is restored to its original form, and is therefore triv-
ially dispensed with from the standpoint of implementation complexity. I/O
resources, in contrast, may comprise any combination of physical, purely vir-
tual, local, networked or remote ones. Again, virtual I/O resources are the most
common ones, therefore discussed in more detail in the following.

Virtual I/O State Figure 2.11 depicts a number of resource classes provided
by customary UNIX ABIs. These include regular files as well as special device
classes, such as terminal I/O. Regular files may be local or networked ones.
All these items contribute to the extended machine interface defined by the
process ABI. For migration to remain transparent, each type of resource has to
be individually extracted from the source host and restored on the destination
host. Since such a task is uncommon, the necessary extensions to the host
system must be implemented as part of the overall process migration facility
[61].

There are reasons why a large fraction of overall process state resides in the
virtual space. Different from system virtual machines, a primary purpose of
modern operating systems is not only resource sharing but resource abstrac-
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Figure 2.11: Resource complexity in OS vs. VM processing environments.

tion [82]. Formally, abstraction is a homomorphism, as is virtualization. How-
ever, abstraction is different from virtualization in that (a) the amount of in-
terface state Sif on the guest side is reduced in proportion to the real interface
(|Sif| < |S′if|) and/or (b) the number of interface operations Eif is significantly
smaller (|Eif| < |E′if|). That is, abstract interfaces are (intentionally) of lesser
complexity. State saved in problem space, however, is not eliminated from the
migratability equation. It rather contributes to virtual state maintained by the
operating system, thereby inversely affecting migratability: problem state can
be copied verbatim. It is thereby less complex to migrate than virtual resource
state.

Virtualization pursues interface properties different from those guiding ABI
design, such as resource control. A good example demonstrating the differences
in the resulting virtual vs. problem state ratio is networking. Relocation of TCP
connections endpoints for application-level failover requires complex extensions
to the host operating systems TCP/IP stack. Such a system has been described
by Koch et al. [55]. TCP (OSI layer 4) is a stateful, stream-oriented transport
protocol, rehosting a server endpoint thereby requires careful synchronization of
sequence number and other related state between leader and follower instances,
and interim knowledge of the protocol on the side of developers. Migrating the
entire system, however, would find the TCP/IP stack transparently migratable
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in problem state. Instead, the guest network interface (OSI layer 2) becomes the
virtual resource to be relocated. Layer 2 entities, however, provide a stateless,
datagram-oriented connection endpoint, thereby of considerably lesser complex-
ity.

Similar properties apply to storage interfaces. Persistent storage for processes
is typically accessed as as files. To eliminate the issues of moving media state
(i.e. file content and metadata stored on physical disk), file systems need not be
local, but may be networked, including the possibility of diskless client systems
effectively eliminating any dependency on local storage. Still, migrating virtual
client state associated with open files requires similar deep understanding of the
networked file system protocol and implementation.

Past advances in operating systems research recognized the fact that the core
resource abstraction performed by virtually any modern operating system comes
at a cost. Additional downsides are trade-offs in I/O throughput, e.g. due to
one-sided optimization applied when mapping abstract interfaces to hardware.
Another issue is functional (and vendor) lock-in due to lack of choice: The chosen
abstraction typically dictates the operating system personality to any applica-
tion deployed on a given machine, thereby to users. These motivations spurred
past research on exokernel designs [30], which separated resource multiplexing
and protection from abstraction. An typical exokernel TCP/IP stack would be
implemented as a library. While no impact on commodity system design can be
attributed to exokernel research in hindsight, this demonstrates the functional
similarity between operating systems and system virtual machines.

Process Interdependencies The discussion so far focused on the machine in-
terface presented to the guest system. There are additional issues arising with
process migration, which can be summarized with the conclusion that the pro-
cess environment is a non-transparently shared resource. That is, ABI of mul-
tiprogrammed operating systems promote some relations of processes which de-
pend on process pairs (or groups) being colocated on the same physical machine.
Demonstrably, the resulting relations are typically hard to maintain if only ei-
ther process is to me migrated across different system instances.

Figure 2.11 depicts part of the IPC mechanisms available. Similar to device
I/O, IPC primitives are typically virtual, such as sockets or pipes, which are
managed and accessed in virtual I/O space, or physical, such as shared memory.
Different from device I/O, if the respective remote process as the peer entity is
to remain on the source node, it forms a residual dependency. Depending on
the communication primitives employed the interface may not be transparently
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or efficiently networkable, shared memory being one example. Such cooperating
processes may either need to be migrated groupwise, which may counteract
migration for load balancing purposes, or remain bound to the source node.

Avoiding implementation complexity resulting from residual dependencies in
IPC relations, microkernel designs such as Mach [1] often considered to be better
suited for transparent migration [61]. Since Mach communication interfaces are
passing messages, retrofitting of network transports to such interfaces is more
straightforward than to system calls.

Present virtual machine intercommunication is typically network-oriented.
While guest systems may communicate with each other, the established commu-
nication layer forms an virtual OSI layer 2 network topology carrying ethernet
frames between them (see e.g. [75, 79, 95]). Compared to local IPC, the network
layer employed may generate relative overhead if colocation actually applies, but
gains a fair amount of location-independence within a shared LAN or SAN seg-
ment.

Control Plane An additional issue is process management across physical sys-
tem boundaries. It relates to maintenance of the process control block (PCB),
which holds metadata such as process IDs (PIDs) and parent/child relationships.
Even the simple concept of process IDs easily demonstrates where adaption of
process management does not perform well within original process manage-
ment: process IDs are unique only per host system instance, nonetheless visible
to processes, a non-determinism and prone to collision after migration. Sprite
introduced persistent home nodes, which maintained the PCB.

Solaris MC [53] employed a global process management layer distributed
across all nodes, layered above the regular local process management facili-
ties. Process management operations are then either mapped to the local OS
instance or redirected via remote invocation. Globalized process management
contributes much to full transparency of process relocations to system users.
Beyond mere migration, it represents a major building block of single-system-
image (SSI) cluster operating systems, such as the MOSIX [11], Solaris MC [53]
and the more recent OpenSSI [88] projects.

Still, while global process management and globally unique name spaces can
be effectively implemented on top of an original, single-node OS code base,
it represents a major change to the original system [53, 89]. Presently, no
commercially available operating system of notable popularity includes such
features in mainline kernel revisions distributed to end-users.

The issue is that multiprogrammed operating system ABIs comprise a con-
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Figure 2.12: A classification of system calls in the Linux 2.6 kernel.

Figure 2.13: Control interfaces in virtualization and process management.
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trol interface exposing a shared process environment beyond migratable I/O
resources, promoting tight process coupling. Figure 2.12 shows classes of cus-
tomary system calls derived from the present Linux ABI. While functional re-
quirements of processes may be limited to I/O and resource management, a
multitude of interfaces dedicated to system-level and task interaction promote
impending deeper dependencies on the process environment. Figure 2.13 con-
trasts process ABIs with control interfaces in VMMs. System virtual machines
are differently designed, due to the fact that resource sharing is to remain trans-
parent for guest systems. Control and monitoring facilities managing guest
systems are typically separate from the machine interface, and limited to ad-
ministrative purposes. In hosted VMs, it integrated into the host, as is the
VMM itself. Type I VMMs, such the Xen hypervisor subject to this thesis,
feature an interface extensions for this purpose, but it is available only to one
or a small number of guest systems with special privileges (see section 4.2).

Summary In summary, a notion of superior migratability of any virtual guest
system interface over others may therefore be based on the following criteria:

1. The ideal guest environment is limited to the bare machine interface. IPC
should be networked or at least networkable.

2. Resources are ideally remote. If virtual, then networked, thereby more
quickly migratable then those backed on local media.

3. Virtual I/O resource state is small, compared to the amount of I/O state
kept in problem space.

4. The number of virtual resource classes is small, thereby reducing imple-
mentation complexity.

Item 1 avoids residual dependencies and/or change to an original host systems
which arise if guest systems (processes) are tightly integrated with other guests
(processes). Present system VM architectures more adequate since inter-VM
dependencies need not be exploited. The host operating environment assumed
by guest systems is limited to the machine interface.

Some variants for networked I/O resources (class (N) in figure 2.10), as de-
manded by item 2, are available for both operating systems and system VMs.
Diskless OS installations in clustered systems are far from uncommon, especially
for SSI clustering (e.g. [88]). A stronger solution in terms of migratability, how-
ever, is full remoting (class (R), bypassing most, if not any virtual resource
space in host system software. I/O access in problem state is the domain of
system virtualization, e.g. the networking of storage interfaces below the file
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system layer. The protocols employed are typically based on present iSCSI [72],
Fibre Channel (FC), or the upcoming Fibre Channel over Ethernet (FCoE) [49]
standards.

Item 3 at least partly affects migration performance. It amounts to the data
volume which needs to be extracted from the virtual execution environment on
a case-by-case basis. Since virtual I/O state needs to be migrated and restored
per instance, the run-time impact is typically larger than for problem state
copied verbatim. Item 4, in contrast, accounts for the complexity of the I/O
interface. Server and network applications on system virtual machines are typ-
ically sufficiently hosted with a comparatively small number of I/O resources.
The two must fundamental classes are network and storage I/O, each typically
based on a common device type for any resource instance created. Additionally,
disk storage interfaces may be remote, further reducing the amount of resources
in virtual space. Optimizing for migratability, the peripheral I/O interface may
even be reduced to a single network link carrying both client traffic and any
block storage interfaces.

2.3.6 Piecewise Deterministic VM Execution

The major contribution of Popek and Goldberg’s virtualization theorem was a
proper formalization of the virtualization paradigm for modern computer archi-
tectures. The proof of the theorem [65] builds upon a machine model comprising
machine memory, basic memory virtualization (trivially based on segmentation)
and a trivial resource protection model comprising supervisor and user execu-
tion modes. Memory virtualization enables transparent relocation of the virtual
machine in machine memory. Privilege levels enforce traps during execution of
sensitive instructions by guest. Traps, in turn, enable emulation of a sensitive
instruction subset.

The issue of enabling deterministic replay is largely about enforcing the PWD
model introduced in 2.2.5. Obviously, the technique employed for classic ma-
chine virtualization lends itself for this purpose. The question which arises from
this observation is: Can execution model conforming to the piecewise determi-
nistic execution assumption be formalized, conveniently, as a augmentation of
instruction set virtualization? Building on the definition of deterministic events
provided in section 2.2.5, one may start with the concept of non-deterministic in-
structions. A theorem building upon the original virtualization paradigm might
be stated as follows:

Piecewise Deterministic Virtual Machine For any conventional third genera-
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tion computer, a virtual machine monitor may execute guest systems under
the piecewise deterministic execution model, if the set of non-deterministic
instructions for that computer is a subset of the set of privileged instruc-
tions.

In foresight of practical applications, this theorem already carries a general
flaw: It does not incorporate the entire set of non-deterministic events outlined
in section 2.2.5. Specifically, the above theorem does not anticipate events orig-
inating externally and asynchronously; which is unfortunate since asynchrony
will remain a major subject of this thesis. The same flaw, however, applies to
the generally accepted proof of the virtualization theorem. Popek and Goldberg
explicitly excluded both interrupts and I/O instructions from their machine
model. Their execution model builds upon a purely deterministic instruction
set, which contributed much to a sound virtualization approach.

The remainder of this section will be limited to discussion of a proof sketch,
thereby avoiding a detailed repetition of the the original machine model and the
virtualizability proof it could build upon. The sketch will remain incomplete,
as one can show that the machine execution model employed for the original
virtualization theorem is not strong enough to incorporate non-determinism
without significant (and complex) extensions. A formal proof would therefore
go beyond the scope of this thesis. Still, there’s some value to be gained: An
outline demonstrates how virtual machine monitors lend themselves to practical
event logging and replay.

Incorporation of piecewise determinism into system virtualization may be
performed in three steps:

1. Incorporation of non-deterministic instructions in the ISA. This has been
provided for in section 2.2.5, non-deterministic instructions being a a sub-
set of the complement of deterministic events.

2. Construction of an augmented control program, incorporating control over
non-deterministic instructions. This includes logging and respective replay
of state changes induced by non-determinism.

3. Demonstrate that the inclusion of piecewise determinism is not in violation
of the original properties of a suitable VMM. These properties, as outlined
in section 2.2.5, are equivalence, resource control and efficiency.

Figure 2.14 shows an instruction set diagram corresponding to the require-
ments stated above. Efficiency and resource control are trivially demonstrated.
Under virtualization requirements, non-privileged instructions are considered
statistically dominant during guest execution. Hence, efficiency is maintained
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Figure 2.14: Formal requirements for non-deterministic instructions emulation
in virtualizable ISAs.

by the same standards guiding whether the original virtualization theorem holds.
Furthermore, one can observe no sensitive instruction is to be exempted from
emulation by the augmented control program. For this reason, overall resource
control remains unconstrained as well.

A question more difficult to answer is which effect logging and replaying of
non-deterministic instructions has on construction of the augmented control
program, thereby on a provability of the equivalence property. Figure 2.14 de-
picts a generalized model, where non-deterministic instructions may coincide
with sensitive ones. It should not go unnoticed that the intersection in practice
can be expected to be considerably large. Non-determinism is typically due to
I/O resource performed by guest systems. When multiplexing programmed re-
sources among multiple guests, I/O instructions clearly coincide with the control
sensitive subset.

Limiting instructions to functional state transitions, one can resort to a trivial
existence proof. Since guest system state is countable and transitions determi-
nistic, emulated guest state transitions can then, in theory, be determined from
tables. This constitutes emulation through interpretation [65], which avoids
additional assumptions about the nature of privileged the instruction set. Non-
deterministic instructions, however, cannot be emulated through mere inter-
pretation. Practical instruction emulation is rather based on execution of the
original instruction, or a variant thereof, subjected to validation and a variable
degree of translation by the VMM. In fact, I/O virtualization requires a slightly
stronger assumption about the underlying instruction set architecture: The as-
sumption that any I/O interface programmed by guest systems can be mapped
to the original I/O resource, or some appropriate surrogate thereof. Some of the
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possible variants of I/O resource accesses by guest systems have been discussed
in section 2.3.5. Practical I/O virtualization being one of the most complex
issues in system virtualization, due to the variety of different interfaces and
techniques, no attempt is made here to provide a sufficiently generalized for-
malization.

It should be noted that inequality of sensitive and non-deterministic instruc-
tion subsets as suggested by figure 2.14 appear to be not uncommon in practice.
One example is the x86-architecture rdtsc (Read Time Stamp Counter) in-
struction, which will discussed in section 5.1.2. The time stamp counter register
[6] is not an I/O resource external to the processor, therefore not sensitive un-
less actual timing dependencies of guest system on individual counter readings
apply.

Traps and emulation of individual guest instructions affect virtualization per-
formance.

Performance downgrade due to state consistency in semi-active replication
is largely beyond log generation at the system core. Focusing on tracing, as
this thesis does, certainly remains ignorant of quantums of practical interests.
Nonetheless

The raw machine interface expected unmodified guest systems is compar-
atively complex. Classic system virtualization establishes an operating en-
vironment functionally equivalent to original machine hardware. The hard-
ware/software interface is subject to constant evolution and refinement in order
to incorporate new features and microarchitectural change. In order to meet
demands of a large software installation and user base, especially commodity
system architectures are required to maintain backward compatibility.

2.3.7 Related Work

So far, several projects have been exploring deterministic replay for different
types of system virtual machines. An early prototype of a hypervisor-based
system was developed by Bressoud and Schneider [19]. While being a hypervi-
sor, the purpose of virtualization differed to some degree from the commodity
virtualization subject to this thesis, e.g. no resource sharing between between
multiple guest systems was involved. Functionally, the system therefore differed
not much from the monitoring facility generally included by replica managers,
which will be discussed in section 2.2.4.

A second major difference was the replication protocol implemented. Synchro-
nization was based on fixed epochs (measured in instructions executed) of fixed
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lengths, where the protocol implied that interrupts were only delivered at indi-
vidual epoch boundaries. Such a protocol is comparatively simple to implement,
but has drawbacks. One is that interrupt latency is increased. Notification from
sources external to the processor are not serviced immediately but delayed by
an average of half the epoch length. The second concern that maintenance of
global state consistency requires a log protocol partially synchronous with guest
execution. This will be discussed in section 2.2.7.

ReVirt [28] was based on UMLinux (FAUmachine) [15], a port of the Linux
Kernel to the Linux ABI, similar to paravirtualization. Like UMLinux itself, Re-
Virt is mainly an extension to the host operating system, adding event logging
and replay from a previously generated log. Similar to the architecture discussed
in chapter 5, the kernel will log events to a ring buffer structure shared with a
user-level process. ReVirt aimed at logging system state for later examination
during intrusion analysis. UMLinux is a versatile and accessible virtualization
solution, but suffers from some architectural constraints, which will revisited in
section 3.3.6.

Deterministic replay has very recently been added to the VMware Workstation
VMM for Intel architectures. ReTrace [97] is an extension to a hosted virtuali-
zation product specifically targeting system profiling and debugging purposes,
based on deterministic replay. The idea is based on the fact that an event log
comprising only the information necessary to guide an original computation is
comparatively small when compared to many types of execution traces used in
the scientific and engineering communities for analytic purposes (such as mem-
ory or device I/O traces). Since replaying from the log implies that any machine
state sequence traversed can be revisited exactly as originally experienced, more
detailed and interactively refinable traces can be gained during replay (“trace
expansion”) without compromising equivalence of each subsequent run. Obvi-
ously, this assumption does not include microarchitectural state such as cache
or TLB misses. Nonetheless, it holds for any type of event above and includ-
ing architected state. One concern left is a remaining degree of distortion, i.e.
differences to execution on bare hardware, which cannot be prevented due to
the VMM intercepting access to both sensitive and non-deterministic machine
state. The authors report a mean slowdown in trace capturing of 5.09% for
CPU-bound workloads.
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3 System Virtual Machines

This chapter explores techniques for commodity platform virtualization in prac-
tice today. For the purpose of this thesis, the most important one will be
paravirtualization. However, the specific properties of paravirtual machines jus-
tify comparison with traditional system VMs and their specific strengths and
drawbacks. Furthermore, paravirtual system VMs did preceed presently ongoing
development of extensive virtualization support in general-purpose processors.
Hence, the present landscape of system virtualization techniques shall be sum-
marized.

Section 3.1 will introduce traditional (or classic) system virtualization. This
includes the fundamental trap-and-emulate implementation style underlying any
related VMM implementation, as well as a number of typical issues encountered
on commodity processors such as the x86 architecture.

Major manufacturers of x86 and compatible processors have recently begun
to augment hardware with direct virtualization support. Section 3.2 will discuss
these changes. One might argue that part of the remarkable degree of innovation
in the virtualization area during the last years is due to issues encountered on the
x86 processor. Lacking original support for traditional processor virtualizability,
advanced techniques for efficient virtualization of the original x86 ISA have
been developed. On the software side, this gave rise to two major different
branches of x86 software virtualization technologies: binary recoding techniques
and paravirtualization.

Binary recoding shall only be touched very briefly. Readers interested in the
material are referred to [75, 3, 79]. Generally, it employs run-time decoding
and adequate translation of guest object code prior to execution, in a dynamic
fashion. Code actually executed by a VM is thereby reduced to only a safe
instruction subset of the one employed by the original system1.

Paravirtualization is based around the concept of modifying system software

1Throughout the relevant literature, the technique more often called binary translation [3].

But this terminology contradicts the terminology of translation typically used with process

VMs (see section 2.3.2). The approach will be referred to as recoding throughout this

document.
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adequately to effectively support virtualization. Section 3.3 will discuss general
properties of paravirtual machine interfaces. A more detailed discussion of the
Xen hypervisor then follows in chapter 4.

Section 3.4 will summarize families of virtualization discussed here. Section
3.5 on the foreseeable future of hardare-implemented and paravirtualization.

3.1 Traditional VMs

Traditional system VMs expose an interface to guest systems identical to a ma-
chine interface they were written for [2]. This implies emulation of all sensitive
instructions, at least to a degree compatible with the feature set used by target
guest operating systems. Beyond the raw instruction set, it furthermore implies
emulation of native I/O interfaces. To retain control over processor resources,
two general techniques are most important for the following discussion:

Deprivileging executes guest system software at a lower privilege level than the
original, native modes. As already outlined in section 2.3.4, virtualization
of a sensitive instruction set is typically performed by making privileged
instructions executed by guest kernels trap to a VMM as the sole entity

Shadowing is a general technique which derives shadow structures from guest-
side primary structures residing in a respective machine’s physical host
address space. The latter is not limited to memory addressing. Dedicated
I/O address space or the name space spanned by a set of control registers
may be shadowed as well. The predominant example are shadow page
tables, but is only necessary on ISAs featuring architected page tables, as
does the x86. Its discussion will be delayed until section 3.1.2.

In summary, there are two major issues resulting from deprivileging in com-
bination with page protected virtual memory.

Privilege Compression refers to issues which arise when originally different pro-
tection domains effectively share the same privilege level, due to the un-
derlying machine being controlled by a VMM.

Deprivileging of guest operating systems is mandatory, in order to pre-
vent guest systems from controlling hardware resources. However, modern
microprocessors commonly distinguish only a very limited set of differ-
ent privilege levels. As a common example, most operating systems, e.g.
POSIX [42], are sufficiently supported with user versus supervisor modes.
Given only two privilege levels, the guest operating system will run in user
mode.
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However, executing the operating system at the same privilege level as
applications will leave the address space dedicated to the guest operating
system unprotected. Collisions of privilege levels is referred to as privilege
compression.

Address-space compression refers to issues arising from allocating part of any
guest virtual address space to the VMM.

Few modern microprocessor architectures implement address space switch-
ing in hardware. Instead, the task at hand is performed by system soft-
ware. This implies that in order to implement control transfers to a VMM,
at least part of it (individual trap handlers) need to be mapped into the
virtual address spaces of any guest system. A fundamental problem in
simulating guest virtual memory is to provide the necessary protection of
such memory regions, which should remain private to the VMM.

Protection of virtual memory dedicated to the VMM is commonly per-
formed by guest deprivileging. Since access to virtual memory areas can
be controlled based on the respective privilege levels of program code be-
ing executed, a VMM may effectively protect its part of any address space.
To prevent a VMM from being compromised by guest systems, whether
intentional or due to software defects, the respective part of virtual mem-
ory needs to be write-protected. Additionally, if guest systems are to be
prevented from possible detection (or inspection) of a VMM being present,
both read and write access require simulation.

Emulation of the respective memory regions implies redirection of guest
access to dedicated page frames by the VMM. This again poses a potential
performance problem due to excessive faulting.

Due to its prevalence, the 32-bit IA-32 architecture and its 64-bit-capable
successors (AMD64, Intel EM64T ) play an important role in both the server
and workstation market. Virtualization of x86-based systems has therefore seen
large interest in recent years [31]. However, virtualization of the processor can
present major obstacles, depending on the nature of the architected interface.

I/O virtualization apart, this justifies an investigation of the x86 memory
and instruction set architectures. For this purpose, legacy “real” and “virtual
8086” compatibility modes are not discussed, as their role in present and future
application development is negligible for the purpose of this document. Instead,
the following outline focuses solely on the 32-bit and 64-bit x86 protected mode
interfaces.
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3.1.1 Processor

As described in section 2.3.3, the fundamental paradigm underlying classic vir-
tualization as underlying the P&G theorems employs guest system deprivileging
in order to maintain full control of the processor. This section outlines the is-
sues encountered when deprivileging is applied to the x86 ISA. For this purpose,
first the protection model of the x86 is investigated. This demonstrates how,
and when, address-space compression and privilege compression apply. Last
but not least, a number of virtualization issues due to the instruction set need
consideration.

Ring Deprivileging The x86 architectures employs a comparatively complex 2-
bit protection model with 4 separate privilege levels (rings). In order to control
processor. Ring 0 provides non-faulting control over the CPU, and maintains
control over individual privileges of software running in lesser rings. Operat-
ing systems, including various UNIX-flavors and Microsoft Windows, typically
use rings 0 and 3 exclusively, where the least privileged ring 3 is assigned to
applications.

Ring deprivileging of guest systems reserves control over the processor; only
the VMM will run in ring 0. However, different from classic two-level protection
models, the guest OS may run at 1 instead. The resulting privilege model is
called the 0/1/3 model. Similarly, executing the guest operating system with
user privileges corresponds to a 0/3/3 model.

The 0/1/3 model is indeed advantageous, because it supports comparatively
simple VMM designs. Control over the processor requires ring 0 privileges, and
access control over privileged operations performed by lesser rings is maintain-
able from ring 0. Since page protection on the x86 distinguishes ring 3 from
ring 1, it avoids privilege compression in most guest systems. However, memory
protection on the x86 only takes advantage of all four rings when using segmen-
tation. Page protection is limited to a single bit (user vs. supervisor); rings
0, 1 and 2 are treated equally. This implies that while kernel memory remains
protected from applications, the VMM still remains exposed to guest system
software. Hence, some challenges remain:

Address-space compression Generally, all practical VMMs for the x86 ISA are
mapped to some degree into guest virtual memory.

As an alternative, IA-32 legacy includes hardware address-space switch-
ing via task gates, which could be used to effectively separate the VMM
and guest system address space entirely. Generally, the feature is rarely
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employed, the major reason being that there are severe performance im-
plications due to excessive TLB flushes. Furthermore, the 64-bit ISA does
not provide task gates, as part of a general, simplifying ISA redesign while
following demands of modern operating systems more closely. The issues
will be briefly revisited when turning to efficient MMU virtualization in
section 3.1.2.

Privilege compression The x86 architecture supports memory segmentation in
addition to paged address translation. In 32-bit protected mode, segment
limits can be used to protect a VMM [83, 13]. While segmentation in 32-
bit architectures cannot be turned off, few commodity operating systems
today make any use of it. Instead, most of them follow a “flat” addressing
model, where all segment selectors comprise the entire addressable address
range [5]. One positive effect is that flat memory segmentation can be
virtualized with very little effort; segment selectors are rarely altered and
additional memory models do not need consideration. Typically, a VMM
may map itself into topmost virtual memory and enforce segment limits
accordingly [95].

However, another effect from the predominance of flat segmented mem-
ory was that most of the support for memory segmentation has not been
carried over to 64-bit modes. Support for memory segmentation was re-
duced to only a small number of utility segments, in favor of an overall
flat addressing model [5]. This limits VMM implementations to the 0/3/3
protection model when hosting 64-bit capable guest systems, which would
compromise protection of a guest OS from code user mode code. Essen-
tially, a VMM needs to follow control transfers between guest applications
and system software, modifying linear-to-physical address mappings and
access privileges accordingly, via a page table switch. This issue is referred
to as ring compression [83].

Sensitive Instruction Set The x86 ISA is not virtualizable in terms the con-
ditions of the Popek and Goldberg theorems discussed in section 2.3.4. More
precisely, there are a number of instructions which are behavior sensitive but
not privileged, i.e. their effect on machine state depends on various individual
privilege states of the processor, instead of generating a trap. Results vary from
detectability of both the virtualization layer as well as the VMM itself, over
operations which simply “fail” silently, to performance or even security issues.

One example of a behavior sensitive instruction is popf (pop flags), which
loads the x86 flags register with the value saved on the stack. The flags register
contains both ALU result codes, to regular program control flow, as well as
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the interrupt (IF) flag. The latter controls delivery of external interrupt to
respective service routines. System software may use the instruction frequently
when enabling and disabling interrupts in order to perform critical sections of
code conflicting with interrupt handlers. In case of deprivileged kernel code, the
instruction will not trap, but merely leave the IF flag unmodified.

Ring aliasing Ring aliasing [83] generally applies to issues which arise due to
guest software being run at different privilege levels than it was originally written
for. The result is that deprivileging becomes observable directly or indirectly.

A common case of ring aliasing applies when the actual privilege level is
directly observable by guest systems. In case of the x86 architecture, segment
selectors in the 32-bit ISA reflect the privilege level the processor is operating at
when a selector is created. Code operating in a virtual kernel mode can therefore
determine the current privilege level (CPL) by reading the present code segment
selector from the %cs register.

Access to segment selectors is not protectable by the VMM. The instructions
involved belong to a larger set of behavior-sensitive instructions which are not
privileged.

Visible privileged state Proper shadowing of processor registers requires that
only simulated access to primaries shall be performed by guest systems. Vir-
tualization becomes observable otherwise, since the contents of shadow registers
are likely to differ from the ones expected by guest systems.

Segment and interrupt descriptor table registers on the x86 ISA are accessible
only via dedicated instructions. They can be set only by code in ring 0, attempts
from lower rings will generate a general protection fault. The respective instruc-
tions for reading (i.e. storing) them however can be used without fault, at any
privilege level.

Such issues are considered beyond those called aliasing. Aliasing issues are
due to deprivileging, while visibility of privilege (or generally, virtualization)
may be considered a more general issue with different parts of the ISA.

Hidden machine state Part of the x86 processor state is affected only indi-
rectly by certain instructions, i.e. it can be modified by system software, but
not inspected or directly restored beyond that point.

Segment registers are both readable and writable, but only reference in-
memory segment descriptors. However, processors cache segment descriptors
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into a hidden portion of the segment registers in order to speed up segmen-
tation performance. Subsequently modified segment descriptors may therefore
leave hidden state irrecoverable.

The problem mostly applies to systems which use segmentation frequently.
The processor remains virtualizable, since guest-side changes to descriptor tables
can be traced. But the task includes run-time determination of hidden register
values and restoration upon a world switch between different virtual machines.
Both can be only performed indirectly. Compared to architected processor state,
virtualization of hidden state remains significantly more complex.

Interrupt Virtualization Sensitivity of the popf instruction entails a second
issue: efficient simulation of external interrupts. To maintain processor control,
a typical secure VMM will never execute guest systems wit interrupts disabled.
The guest-side IF flag is therefore commonly a shadowed structure. Instead, it
controls the delivery of virtual (simulated) interrupts by the VMM.

Operating systems may toggle this flag frequently, typically in order to protect
critical sections of code from racing with service routines. This behavior makes
continuous interception of interrupt masking costly. On the other hand, inter-
ception is necessary for efficient virtualization of interrupt delivery. The VMM
needs to conform to a guest-side IF setting in order to maintain fidelity [83]. On
bare hardware, interrupts are held pending and triggered as soon as the mask
is cleared, which is difficult to simulate effectively by a VMM. IA-32 protected
mode operations do not allow for interception of any attempted access on the
IF flags2. Even if possible, only a selected set of combined machine state and
flag transitions (interrupt unmasking while VM interrupts are pending) should
fault to the VMM, for performance reasons.

3.1.2 Memory

Efficient MMU virtualization is complicated due to a TLB being managed in
hardware. The difference becomes clear when compared to MMU virtualiza-
tion of RISC architectures, which typically employ architected, i.e. software-
managed TLBs (e.g. UltraSPARC [80]). Architected TLBs leave determination
of an address translation, thereby the structure of page tables, to the operating
system; TLB misses are trapped by system software. MMU virtualization on
RISC architectures is therefore comparatively simple, since only the TLB needs

2In fact, the IA-32 ISA comprises “Protected Mode Virtual Interrupts” [46]. However, this

covers only part of, not the entire set of sensitive instructions. This is in contrast to

statements found in [83].
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Figure 3.1: Virtual and pseudophysical address translation through shadow
paging.

to be virtualized, lending itself to a comparatively straightforward trap-and-
simulate mechanism [75].

In order to speed up memory translations upon TLB misses, many architec-
tures implement search logic for in-memory translation tables in hardware. This
includes PowerPC [91], IA-64 [47] and, to some lesser degree, UltraSPARC [80].
On such systems, full memory virtualization necessitates memory tracing and
simulated write access to in-memory data structures to maintain original ma-
chine interface semantics. The x86 architecture being no exception, the entire
page tables structure is architected.

The common technique to virtualize architected page tables are shadow page
tables [3, 75, 87, 95], visible solely to the VMM, as the machine counterpart
of the virtual, primary tables maintained by the guest system. By protecting
guest write access to primary page tables, updates to the virtual tables by
guest systems are subjected to traps and simulation by the VMM. The general
approach of simulating access to primary memory structures via guest access
protection is known as (memory) tracing [3].

The resulting translation is depicted in figure 3.1. Generally, two different
views of what constitutes a “machine” memory address need distinction. Two
terms will be used throughout this document, consistent with the terminology
across a considerable part of the relevant literature (e.g. [3, 95]):

• The machine addresses space refers to real, hardware memory as addressed
on the system bus. It represents addresses e.g. written to a shadow page
table and visible to the real MMU.

• The pseudophysical address space constitutes page frame addresses as seen
by the guest system. These are the addresses written by guests to their
primary page tables, translated to the shadow structure by the VMM
accordingly.
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The implied overhead remains tolerable since the majority of address trans-
lations is still performed at the TLB [87]. Nonetheless, page table shadowing
remains relatively expensive due to increased memory consumption dedicated
to paging and the relative cost of tracing page tables accesses, as opposed to
trapped and simulated TLB updates. Page table updates tend to occur in
batches, while often only a subset of entries is immediately, if ever, consulted by
the MMU. Furthermore, page table entry bits written by the processor (accessed
and dirty) need to be propagated by the VMM so that guest-side paging can
continue to function correctly [13].

3.1.3 I/O

Section 3.1.1 discussed the issues of efficient virtualization of external interrupts,
which contributes to I/O at the ISA level. Beyond the processor architecture,
I/O virtualization on x86-based machines does certainly not suffer from the ISA.
However, the I/O architecture of this class of machines have some important
properties which deserve consideration as well. The most important issue is the
huge variety of different hardware configurations, which affects some architec-
tural considerations when designing a VMM. Another is the relative complexity
of the I/O interface.

Peripheral I/O on x86-based systems is typically open-ended, which con-
tributed much to the original success of the IA-32 ISA (then being one fun-
damental building block the original “PC architecture”). As a consequence,
today’s market for commodity system components hosts a whole ecosystem of
independent equipment manufacturers. Today, there exists a multitude of dif-
ferent devices and correspondingly different interfaces. At the same time, device
driver design largely depends on individual operation system interfaces3. The
result is a high entry barrier for system software not integrated with estab-
lished operating systems, since only the latter can support a relevant share of
individual machine configurations.

This in turn affects options in VMM design. One major advantage of hosted
virtual machines is that requisite software support for a given platform is largely
provided by a present host operating system. Virtual resources provided to guest
systems are then mapped to the host system by a respective VMM. Classic (Type

3During the mid-1990s, different corporate initiatives aimed at unifying I/O interfaces. One

was UDI (Uniform Driver Interface), promoting an OS-level driver interface which was

source-level compatible both across operating systems as well as different processor, I/O

bus and memory architectures. Another was I2O (Intelligent I/O), a split-driver model

comprising class- and OS-specific drivers for a uniform, standardized set of class-specific

interfaces at the I/O layer. None gained significant market share.
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I) VMMs, in contrast, would run on bare hardware. Section 4.2 will introduce
the concept of delegated I/O virtualization to an operating system within a
Type I VMM architecture.

3.2 Hardware x86 Virtualization

Presently, x86 virtualization is mainly pursued by two competing manufacturers
on the market: Intel and AMD. Despite smaller differences, both product lines
share much in common, and is supported in coexistence by most virtualization
products available on the market.

Hardware virtualization is a presently ongoing effort. It is not only affect-
ing the instruction set architecture, but future extensions to memory and I/O
subsystems as well, which constitutes an incremental process. This section only
briefly describes two components of presently available architecture extensions.
The most fundamental change is general virtualization of the bare processor
ISA. It adds two new modes of operation to the x86 architecture, which are
commonly called Root mode, dedicated to a VMM, respectively Non-Root mode,
which runs guest systems deprivileged [83, 5].

The second extension described here are Nested Page Tables (NPT). While
NPT remains only optional to x86 hardware virtualization, it is deemed impor-
tant to deterministic replay in future paravirtualization, and will be revisited in
following chapters.

Privilege compression is generally due to the fact that while processors typi-
cally distinguish only two privilege modes, user versus supervisor, a fully virtu-
alized processor needs to host three different entities: the VMM, a deprivileged
guest system kernel, and user applications. All of these entities require indi-
vidual protection. Applications need to remain isolated from each other, which
remains to be ensured by address space separation. However, a traditionally
deprivileged guest kernel will share the same privilege level as applications. As
outlined above, this is at least the case with the 0/3/3 privilege model 64-bit sys-
tem have to resort to. Therein, the VMM must equally remain protected from
the guest. Ideally, it VMM could be located in an entirely separate address
space in order to counteract address space compression.

Due to the major importance of backward compatibility in the x86 market,
mere changes to the protected mode privilege levels are insufficient for full ma-
chine virtualization. The x86 ISA consists features considerable number of dif-
ferent operating modes changing the semantics of the instruction set. Examples
are 16-bit real mode as well 32- and 64-bit protected modes, both of the lat-
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Figure 3.2: Address translation with nested paging.

ter accompanied with a number of additional compatibility modes to integrate
legacy systems on newer architectures.

Consequently, a “hyperprivileged” mode capable of virtualizing the entire pro-
cessor ISA needs to support any of the above. Guest system execution therefore
employs a privilege set which remains orthogonal to ring-based protection: In
one dimension, a virtualizable x86 processor distinguishes root mode from non-
root mode, where root mode corresponds to the hyperprivileged mode of the
VMM. Whether operating in root or non-root mode, each separately compati-
ble execution modes, e.g. x86 protected mode with customary 4-level privileges.

While root mode thereby appears not much different from a non-virtualized
processor, non-root mode implies deprivileging. Transitions between root and
non-root mode are typically entries to and from the VMM. One notable advan-
tage of such a design is that it supports hosted VMMs particularly well, since
the host system may wish to utilize the full set of available privilege levels in
root-mode.

Nested paging (NPT) has two major purposes [5]: (1) it removes the need
for the hypervisor to shadow guest page tables by intercepting individual up-
dates, and (2) it solves the overall problem of address space compression. NPT
augments the existing hardware page translation mechanism by a second level
of translation.

Figure 3.2 shows the resulting address map. Where shadow page tables would
map virtual guest addresses to machine addresses, machine memory virtualiza-
tion with nested paging leaves one guest page table (gPT) directly writable to
the guest system. These tables thereby map virtual addresses to the pseudo-
physical guest addresses. Address translation by the MMU then translates guest
physical addresses to real machine addresses by a second translation sequence,
by consulting a host page table (hPT) private to the VMM.
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Nested paging is only available when ISA virtualization is enabled as described
above. While guests running with nested paging enabled transparently receive
two levels of page table translation, all systems running in root mode, including
the VMM, are exempted from this mapping. Instead, the VMM my populate
a global virtual address range entirely separate from all non-root modes. The
issue of address space compression arising with a VMM resident in guest virtual
memory is thereby eliminated.

3.3 Paravirtual Machine Design

3.3.1 Concept

Classic system virtual machine design enforces a large degree of binary compat-
ibility, not only for applications, but also the operating system. Full virtualiza-
tion includes support for any core kernel components comprising architecture-
specific code. Additionally, a relevant set of device drivers, e.g. for storage
or network host controllers, needs to be supported. As learned from previous
sections, the degree of compatibility comes at a cost.

Paravirtualization is a variant of system virtualization which differs from clas-
sical VM design in that full binary compatibility with the target platform is
abandoned, in order to improve performance, scalability, and simplicity of the
virtualization layer [93, 13]. For this purpose, an idealized software-interface,
similar but not identical to the physical machine is defined and implemented by
the VMM. Architecture-specific portions of guest systems are rewritten (ported)
to the surrogate software interface.

Contrasting the trap-and-simulate techniques employed by traditional VMMs,
guest systems on paravirtual machines are thereby virtualization-aware to some
desired degree. System protection unconstrained, paravirtual machine guests
will typically not issue privileged or sensitive instructions. Instead, the surro-
gate machine interface evolves around the idea of a non-privileged subset of the
machine ISA, extended by service routines, which are typically referred to as
hypercalls. Service routines are called by guest operating systems to request
assistance in tasks requiring supervisor privileges. Throughout this document,
such an extended ISA will be referred to as the PVMI (Paravirtual Machine
Interface)4.

Considering the VM taxonomy introduced in section 2.3.2, the idea of ex-

4Inspired by VMI, the title of a paravirtual machine interface originally proposal by the

makers of the VMware virtualization product [10].
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tended machine interfaces for protected execution of privileged services is strik-
ingly similar to the objectives of common operating system ABIs. It should be
noted however, that the approach is not particularly new. First proposals for
cooperative approaches in virtual machine interface designs date back to the
early days of system VM applications [35]. The major difference between oper-
ating system ABIs and PVMIs is the individual degree of interface abstraction
applied.

Different from established standard ABIs, e.g. POSIX [42], paravirtual ma-
chine interfaces are still subject to research and ongoing refinement by individual
system vendors. At the time of this writing, there are at least three different,
vendor-specific PVMI specifications alone for x86 platform virtualization:

Xen (Univ. of Cambridge) as the first representative of paravirtualization for
commodity operating systems was published in 2003 [13]. Different from
the alternatives below, a core fraction of the hypercall interface is largely
independent of the processor ISA. It presently supports 32- and 64-bit
x86 but IA-64 and PowerPC architectures, as well as Linux guests and a
number of additional Unix variants.

VMI (VMware, Inc.) was specified in 2005 by VMware Inc. VMI is imple-
mented by company’s own VMware ESX Server (Type I) VMM. It was
proposed as a standard PVMI for the Linux kernel, but received only
limited adoption as one of the available alternatives.

Hyper-V (Microsoft Corp.) was published in 2008 [60]. It is presently sup-
ported by a respective suite of virtualization products developed by Mi-
crosoft, comprising a hypervisor for x86 platforms, in support of paravir-
tualized deployments of the MS Windows Server 2008 operating system.

The prevalent operating system ABIs in use today, e.g. POSIX [42], are de-
signed for portability and independence of any particular machine architecture.
Core resource management at the process ABI, most notably memory and I/O,
is thereby largely independent of a particular machine family. Paravirtualization
is different in that it performs at a much lower abstraction level. This is well
justified: contrasting portable operating system ABIs, a PVMI is not designed
to facilitate portability of guest systems to different system architectures. For
this purpose, most commodity systems in use today facilitate hardware abstrac-
tion levels of their own. Instead, even highly machine-specific calls to the VMM
provide access to relevant platform features where necessary.

The major benefits of paravirtualization compared to full virtualization are
due to the non-transparency of virtualization at the guest interface. They can
be classified as follows:
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Machine Idealization leaves details of individual subsystems at the physical
level to the VMM [13]. This facilitates some desirable degree of abstraction
at the VM interface.

A benefit derived from abstraction is more optimal behavior of the guest.
Where full virtualization needs to sacrifice performance in order to main-
tain full transparency of the virtual machine map, paravirtual interfaces
can be tuned for relatively low overhead.

Virtualization-awareness exposes physical details of the virtual subsystems to
the guest system. Once established, virtualization-awareness enables coop-
eration on the side of the guest system. Where full virtualization needs to
hide performance-critical details of the virtual machine map, paravirtual
guest systems may commit to an altered execution environment.

The following sections follow the application of these two principles among
the core machine resources, being processor, memory and I/O virtualization. A
sufficiently general discussion can remain independent of individual implemen-
tations. The Xen hypervisor as one particular representative will be discussed
in chapter 4.

3.3.2 Processor

With respect to the processor, the level of machine idealization and efficiency
through virtualization-awareness can be outlined as follows:

Sensitive Instructions The issue of potential non-virtualizability of commodity
processors can be overcome by appropriate modifications to the guest sys-
tem. Behavior sensitivity typically affects guest code operating in virtual
supervisor mode. Non-privileged application code, in contrast, need not
change.

Privilege Compression Elimination of privileged instructions is due to cooper-
ation on the side of guest systems. System protection may remain un-
constrained, i.e. guest kernels need not be trusted. Privileged operations
on behalf of guest system may remain subject to validation by a respec-
tive VMM. Hence, paravirtual machines may remain affected by privilege
compression, depending on the processor architecture.

3.3.3 Memory

Contrasting traditional system VMs, paravirtual guest systems do not neces-
sitate full transparency of physical memory address space virtualization. To
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virtualization-aware a guest memory management, physical addressing may be
revealed. In practice, guest systems still require mappings between linear and
physical addresses to function properly. But cooperation entails significant ad-
vantages:

• In case of hardware-managed TLBs, virtualization-aware guest-systems
may gain read-only access to the real page tables. Contrasting the ex-
treme of shadowed page tables, this reduces the overall amount of memory
dedicated to virtualize paging. In order to control memory reservations,
updates performed by the guest system are performed via service routines.
This removes any need for tracing and simulation.

• Beyond the virtualization layer, there are guest-side optimizations in mem-
ory management which depend on awareness of the physical memory topol-
ogy. There are various opportunities for intelligent page placement. One
is page coloring in order to reduce impending collisions in memory caches
indexed by physical addresses [52, 13], which remains ineffective if cache
indexing of a physical memory map does not correspond to that of the ma-
chine. Another example is efficient NUMA support in SMP-capable guest-
systems. To be effective, NUMA-capable systems need to take memory
topologies and a machine memory distribution among different processors
into account [24]. Hence, transparent migration of virtual processors by a
VMM is likely to counteract guest system optimization strategies.

• Physical memory management controls the actual memory allocation of
individual guest systems. Memory reclamation is best managed not by the
VMM, but from the inside of the guest systems [87]. The common tech-
nique employed is extending the guest OS with so-called balloon drivers
[87, 95]. To reclaim memory, pressure on guest system memory manage-
ment is increased by allocating memory from it. The advantage is that
guest-side page replacement can make better decisions about which pages
to reclaim than the VMM, which typically lacks intrinsic knowledge about
guest-side memory management strategies applied [87].

3.3.4 I/O

Section 3.1.3 stated how the large variety of I/O hardware constrains some
of the options in VMM architecture when applied to commodity platforms.
However, the same diversity affects the design native operating systems. One
consequence is that virtually all portable and commodity operating systems
today feature software abstraction layers for all relevant device classes. While
subsequent changes to architected processor interface support is usually not
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feasible on end-user installations, most commodity systems feature open-ended
driver architectures for peripheral I/O.

This helps to avoid I/O device emulation. For this purpose, paravirtual guest
systems feature dedicated drivers for individual guest systems, which rely on
idealized device interfaces at the ISA level. Benefits of I/O interface idealization
can be summarized as follows:

Elimination of native I/O Emulation of hardware interfaces commonly involves
emulation of port-mapped or memory-mapped I/O. In paravirtualized
guests, control transfers to a given I/O virtualization layer may employ
guest-side calls to service routines instead, essentially removing the need
for traps and device emulation by the VMM.

Extensible Control and Status Control and status interfaces for virtual devices
may be mapped to shared memory. One advantage of shared memory is
that the need for copying control information between guests and and
the VMM is reduced. But more importantly, structure and content of
such control information will typically be device- or device-class specific.
Mapping control interfaces to memory is extensible without changes to the
core VMM interface. In fact, only requisite means for the control path (i.e.
notifications between virtual I/O devices and the guest system accessing
it) and data path (i.e. shared memory) need to be provided [38].

High-level Command Interfaces Operations on idealized devices may be per-
formed at a granularity approximating that of the device driver level.
Hence, the number of individual control transfers to the virtualization
layer, when compared to emulation of native I/O, can be reduced to a rea-
sonable minimum [75]. As a side effect, idealized interfaces make device
driver design to a respective OS interface relatively straightforward, espe-
cially when considering the complexity of modern hardware device drivers
[32].

Zero-copy I/O Bulk data transfers at the virtual interface may employ DMA-
style memory accesses for transmission. For this purpose, it is advisable to
transfer I/O data separate from control information (out-of-band buffer-
ing), which can greatly reduce the need for expensive intermediate copying
of data at the guest system boundary [13]. Instead of transmitting buffer
contents, communication disseminates references to machine memory car-
rying buffers. As a special case, this facilitates optimization techniques
such as “short-circuiting” of inter-VM transfers in virtual network topolo-
gies [75], which can then move user data without copies.
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3.3.5 Applicability

Compared to the other extreme of full virtualization, paravirtualization has
both advantages and disadvantages. The major disadvantage is the necessity
of modifications to respective guest systems. In the case of proprietary system
software, its mere applicability depends on source-level accessibility of operating
system code and sufficient backing on the side of respective owners. Further-
more, sufficiently liberal licensing regarding the distribution of derivative works
needs consideration. Presently, it therefore lends itself to either vertically inte-
grated systems, i.e. hardware/software bundles maintained by a single vendor,
or open source kernels. The latter case is the predominant one in the present
commodity market, especially in absence of sufficient vendor backing.

Even taking source code accessibility issues out of consideration, not only
initial porting, but long-term maintenance of target systems needs to be taken
into consideration. To reduce the overall cost of maintenance on the side of
system vendors, guest system interface standardization is an important part of
the equation5.

Last but not least, the ability to run legacy operating systems (i.e. systems
with low attraction to both port and maintain) is lost, as well as that to run
systems which shall run unmodified by user policy.

3.3.6 Related Work

Many modern virtualization solutions pursue paravirtualization to a greater or
lesser extent. Especially the concept of paravirtual I/O as described above,
i.e. idealized software interfaces at the ISA level, has been applied to a wide
range of virtual machine solutions ([75], [32]). For this purpose, I/O emulation
is performed only as long as necessary, e.g. in order to aid operating system
installation. Original drivers are eventually replaced by those operating on
machine interface extensions. The approach requires maintenance of system
software per guest operating system, but is justified by large improvements in
performance or user experience.

The term para-virtualization was originally coined by the Denali system [93].
5The delicacy and present degree of uncertainty regarding that process is best exemplified

with the present state of paravirtualization in the Linux operating system. So far, multiple

competing vendors of paravirtual machine monitors found themselves seeking acceptance

in the mainline distribution of the Linux kernel, with different proposals. Ultimately, the

issue was solved not by commitment, but rather adding another level of indirection to the

respective kernel sub-architecture support. The interface is called paravirt-ops and part of

Linux since version 2.6.21 (April 2007)
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However, the focus of Denali was mainly on “lightweight protection domains” for
large-scale service multiplexing, meaning very large numbers of virtual machines
on a single host system. Simplicity being key to that goal, not only interface
idealization was pursued, but many core properties of existing operating systems
were taken out of consideration, including guest-side task switching and virtual
memory. Presently, the concept of paravirtualization is primarily associated to
the Xen virtual machine monitor, discussed in the following section.

Within the Linux kernel, ports to virtual environments are not new. Linux on
the IBM S/390 and zSeries mainframe architectures has been developed by IBM
since 1999. Some do consider the approach comparable to paravirtualization
[13]. However, one significant difference is that the hardware/software interface
in IBM mainframe partitions is built on CPU microcode. The philosophy is
different to the extended instruction subset of a PVMI implemented on top of
the original machine instruction set.

Both User Mode Linux (UML) [26] and FAUmachine [15] (formerly UMLinux)
are ports of the Linux kernel to the Linux ABI. Since the ABI does not meet
the paravirtual design criteria of a machine-centric interface described above,
it demonstrates that porting operating systems even to interfaces at signifi-
cantly higher levels of abstraction is feasible. However, compared to dedicated,
machine-level interfaces, a number of issues remain. A predominant one is priv-
ilege compression: the UML project comprises dedicated patches to the host
system in order to separate guest kernel address spaces (“SKAS”) from applica-
tions. While the changes are comparatively small, it demonstrates some of the
limitations of a process ABI in order to host whole-system VMs.

3.4 Taxonomy of Commodity VMs

The prior discussion of commodity hardware virtualization concludes with a
graphical representation of a present virtualization landscape for commodity
systems. Figure 3.3 displays a taxonomy of system virtual machines, as a re-
finement of the original taxonomy of figure 2.8. Note that an extended taxonomy
does not need to contradict the original sub-classing applied. All techniques pre-
sented cover same-ISA and system VMs; the applicability of a categorization
into either hosted VMs or Hypervisors remains unconstrained. Instead, present
technological advances account for two additional dimensions:

Guest ISA Compatibility One dimension is the machine interface provided to
guest systems. For traditional VMs, it is identical to the original machine
interface, which enables guest operating systems to run unmodified. One
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Figure 3.3: A present and future taxonomy of commodity system VMMs.

can summarize this category as compatible ISA VMs. This class includes
binary recoding techniques as well, since the performed ISA subsetting
remains transparent to the guest machine interface.

Paravirtual machines do not produce a superset of the original machine
interface; ISA subsetting applies here as well. However, the PVMI differen-
tiates themselves by adding new elements to the remaining non-privileged
interface. Figure 3.3 therefore classifies this as extended ISA.

Hardware Virtualizability The second dimension describes the degree of virtu-
alizability of the underlying machine interface. Traditional system VMs
are built upon a privilege and protection model matching demands for
contemporary, yet native operating systems. Virtual machine monitors
satisfied by traditional processors are referred to in figure 3.3 as privileged
mode VMMs. With architectures virtualizable in the traditional sense, this
includes “Traditional VMs”. In the case of traditionally non-virtualizable
machines, this includes binary recoding and paravirtualization as outlined
above.

Given explicit processor support for virtualizability, neither paravirtuali-
zation nor binary recoding are necessary. Instead, the concept of the tradi-
tional VMM can be readily carried over to a dedicated processor interface.



70 Chapter 3: System Virtual Machines

Presently, this is most often referred to as a Hardware VM (HVM), where
a VMM will operate in some sort of hyperprivileged mode6.

3.5 Future Evolution

Surprisingly, hardware virtualization for commodity systems presently appears
to remain non-disruptive to the market for existing software virtualization plat-
forms. Instead, it was noted that, despite largely simplified VMM design, no
fundamental performance gain can be attributed to pure hardware VMs [3].

Both Intel VT-x and AMD-V extensions may still improve as their implemen-
tations mature. Hence, present performance concerns may vanish over time.
Adams and Agesen suggest that hybrid approaches combining software virtua-
lization, foremost binary recoding, with some of the more positive effects of
hardware extensions may evolve in future [3]. Figure 3.3 lists presumable future
accordingly: dotted lines indicate assumable future adoption of hyperprivileged
operating modes for present software virtualization techniques.

Such hybrid VMMs combining hardware and prevailing software virtualization
techniques are likely to represent the future in paravirtualization. Section 3.1.1
noted that ring compression, remains a major obstacle in x86 virtualization
especially with 64-bit operating modes. Lacking segmentation, any secure VMM
needs to adjust guest page tables to protect itself from the guest kernel. An
attractive option to shadow page tables are nested page tables implemented by
the MMU. However, x86 processors implementing page table nesting are not yet
broadly available.

More importantly, use of NPT represents a partial break with the present
machine interface presented to paravirtual guests: Due to the virtualization
architecture implemented by present x86 processors from either AMD and Intel,
NPT is inseparably bound to full ISA virtualization, i.e. the guest system
needs to run in VMX Non-Root mode (AMD-V guest mode, respectively) which
significantly differs from e.g. the ring-1 deprivileging 32-bit paravirtual guests
are subjected to, and assuming to be present.

6This term is rarely found in the presently relevant literature. Its use for the purpose of

proper classification and was inspired by the documentation for hardware VM support

recently introduced to the OpenSPARC architected interface [81]
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4 The Xen Virtual Machine Monitor

Whole-system paravirtualization has seen large interest in recent years. This is
in part due to its primary representative being a robust implementation avail-
able as free software and correspondingly liberal licensing. Originally devel-
oped at the University of Cambridge, the Xen hypervisor received remarkable
backing by commercial system vendors, including Intel, AMD, IBM, Sun and
Hewlett-Packard. Xen is available for a number of different system architectures,
including x86, IA64 and PowerPC.

The Xen project originally focused on a machine interface and support for
fully paravirtualized guest systems. The mainline guest operating system is
Linux 2.6. Original research at Cambridge additionally spawned ports of the
NetBSD and Microsoft Windows XP operating systems, where the latter one
presently remains unavailable to the public. Other systems available include
OpenSolaris, FreeBSD and OpenBSD.

Beyond paravirtualized guest systems, the present version 3.0 of includes sup-
port for hardware-virtualized x86 processors as introduced in section 3.2. Due
to the large differences in machine interface, hardware virtualization support
differs much from paravirtualization, but can be integrated in the same overall
virtualization solution. This section focuses entirely on paravirtualization of x86
processors, excluding present advances in hardware virtualizability.

4.1 Architecture

Formally, Xen is a regular hypervisor, i.e. running on bare hardware, with-
out a hosting operating system in between. As pointed out in section 3.2, this
is unusual on commodity platforms, e.g. considering the issues of supporting
peripheral I/O for a virtually unmanageable number of possible machine config-
urations. In fact, the dependency on any commodity operating system featuring
the necessary platform support prevails. However, Xen layers this system on top
of the VMM, a major design element which deserves closer examination.

Figure 4.1 depicts the basic architecture. The VMM only provides for the
most elementary subsystems of the real machine:
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Figure 4.1: Xen virtual machine architecture.

• CPU virtualization, i.e. scheduling of available physical processors among
a number of virtual ones (VCPUs).

• Machine memory, including virtualization of the MMU and allocation of
available physical memory. Additionally, the VMM implements sharing of
pages among different paravirtual machines.

• External events, i.e. routing and transmission of signals which drive asyn-
chronous control transfers on a virtual processors. Xen maps machine
interrupts to a software abstraction called event channels, which will be
discussed in section 4.4.

• Timing sources, including cycle-accurate presentations of real and virtual
(i.e. VM execution) time. Additionally, the VMM provides timer-driven
events to guest systems: a periodic timer event operating at 100Hz fre-
quency and a programmable interval timer.

To ease porting of operating system software, the processor interface matches
the architected ones wherever idealized interfaces are not advantageous. Exam-
ples are include interrupt stack frames and the format of architected page tables
[95].

With the exception of time, as one of the most fundamental resources (and
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one typically implemented either directly within the processor or accompanying
chipset), the above list excludes virtualization of I/O devices. In fact, these
devices are driven not by the VMM, but dedicated class of domains which are
granted sufficient access to I/O ports and memory. This is discussed in the
following section 4.2. Virtualization of the same resources in order to achieve
resource sharing between multiple VMs will be described in section 4.5.

4.2 Domain Privileging

As shown in figure 4.1, VMM control over hardware resources excludes periph-
eral I/O, such as network or storage interfaces. Instead, Xen leaves the task
of controlling various I/O hardware to a sufficiently privileged class of guest
systems. The virtual machines hosted by Xen are referred to as domains, dis-
tinguished by numbers (Domain IDs), i.e. dom0, dom1, etc. Conceptually, Xen
differentiates between three different domain types:

Privileged domains are permitted to access the VMM control interface, i.e. per-
form administrative tasks like creating or destroying additional domains
and control their resource allocation.

Driver domains do not control the VMM but are entitled to directly access a
(potentially limited) set of hardware I/O devices. Barring control over ma-
chine memory and processors, they may therefore drive various peripheral
devices on behalf of the system as a whole.

Unprivileged Domains are “regular” domains, typically the ones employed to
host users and applications. Device access is fully virtualized. Xen was de-
signed to carry up to approximately 100 of such unprivileged, paravirtual
domains [13].

In practice, the distinction between driver and privileged domains often re-
mains only a conceptual one. After initialization, the Xen VMM boots into an
initial dom0, as the single privileged domain entitled to perform administrative
operations. Hence, control plane software is running on dom0. In fact, the life
cycle of the VMM is bound to the domain, halting it implies a system halt
subsequently performed by the VMM. The same domain may be employed as a
single driver domain.

The same initial domain operates as an driver domain. The VMM contains
just enough platform-specific code to provide user interaction during system
boot, then releases the console to domain 0. Domain 0 thereby provides con-
sole I/O to an administrator, driving video and input devices, while processor



74 Chapter 4: The Xen Virtual Machine Monitor

and memory allocation are controlled by the VMM. Domain 0 typically runs
a privileged but paravirtualized Linux kernel, an X11 windowing environment
and user applications as the administrator sees fit, including control software to
create and administer all additional virtual machines. In figure 4.1, the leftmost
virtual machine corresponds to domain 0, combination of control and hardware
privileging. Addition domains may host arbitrary operating systems. For the
remainder of this document, it shall be sufficient to refer to both driver and
control-privileged domains as dom0.

System decomposition into VMM and driver domains fulfill various purposes.
Consistent with considerations introduced in section 3.3.4, the paravirtual ma-
chine interface does not include hypercalls dedicated to peripheral I/O, but
only to basic CPU and memory subsystems described in the following section.
Hence, I/O virtualization may be performed elsewhere, provided that the neces-
sary communication primitives (shared memory and control transfers by remote
notifications) are provided.

• One reason of practical importance is to offload the task of providing device
drivers to existing systems, such as the Linux kernel. In that respect,
driver domains in Xen combine bare-hardware virtualization achieved with
hypervisors with the accessibility of hosted VMMs.

• More fine-grained system decomposition into multiple driver domains can
increase dependability through isolation, the same goal which spurred re-
search on microkernels [38]. Different from monolithic operating systems,
faults in driver domains occur in isolation and can recovered from [32].

• Another consideration is that system decomposition into separate I/O
domains may gain more traction in future for security reasons. This is
the one of the ideas behind initiatives such as Intel’s upcoming Trusted
Execution Technology (TXT) [48], formerly known as LaGrande.

4.3 Machine Interface

At the core of its guest system interface, the Xen VMM exports a set of hy-
percalls, which available exclusively to the guest operating system kernel. Call
initiation and return builds upon the same processor mechanisms for privilege
elevation employed by OS system calls. On the 32-bit x86 architecture, a dedi-
cated software interrupt vector (int 0x82) is allocated. 64-bit processor modes
share the syscall instruction with the guest system for this purpose.
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The Xen 3.0 PVMI consists of 38 hypercalls plus a number of architecture-
specific ones [95]. The non-privileged set of hypercalls derives from the parts of
the machine interface maintained by the VMM.

Processor:

• CPU scheduling, e.g. voluntary CPU yield or domain shutdown.

• VCPU control, such as initialization, activation/deactivation and sta-
tus inquiry.

• Task switching.

• Special register access, e.g. debug resources.

• Trap table setup.

• Return from interrupts.

Memory:

• Physical memory management, e.g. in support ballooning

• MMU management.

• Inter-domain memory sharing.

Events:

• Event callback setup

• Event channel operations

• Scheduler interaction (e.g. blocking to notification)

Time and Timers:

• Interval timer control

• Scheduler interaction (e.g. polling event channels)

Other calls include operations reserved to privileged domains, i.e. dom0 or I/O
operations for driver domains. Machine-specific calls on x86 include memory
segmentation and VM86 mode.

Hypercalls are not only ISA elements instructions triggering transitions to the
VMM. Xen emulates privileged instructions wherever the complexity of both in-
struction parsing and emulation is not significant enough to justify addition of a
hypercall. Examples would be x86 in/out instructions or control register access.

Both hypercalls and instruction emulation mark synchronous transition points
for control transfers from guest systems to the VMM. These are software-induced
traps driven by software execution, i.e. synchronous with regard individual
instructions causing their occurrence. A variant are synchronous events are
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Synchronous Asynchronous

VM → VMM Traps + Hypercalls External Interrupts

VMM → VM Trap Bounces Event Notifications

Table 4.1: Control transfers between the Xen VMM and paravirtual guests
systems

traps and faults triggered due to errors in software execution, exceptions in x86
architecture terminology.

Asynchronous control transfers, in contrast, typically originate from sources
external to a processor. At the machine ISA, these are external interrupts trig-
gering immediate control transfers to dedicated ISRs in system software. Inter-
rupts either originate from I/O devices or from other CPUs, as inter-processor
interrupts (IPIs).

Combinations of synchrony and the transition direction between virtual ma-
chines and the VMM are shown in table 4.1. In order to maintain control of
the processor, all processor interrupts and exceptions are serviced by the VMM.
Real hardware interrupts cannot be trusted to guest systems in a safe fashion,
since non-cooperative or corrupt interrupt handling may divest the VMM from
control over the processor [32]. In particular, Xen maintains the interrupt con-
troller and performs IRQ acknowledgment before scheduling the ISR in a driver
domain. If faults are due to machine resource management they remain up to
the VMM to handle; guest system software will continue operation afterward
without further notice. Hence, all hardware-induced control transfers return
control back to the VMM.

Like with transitions to the VMM, the virtual machine interface comprises
both synchronous and asynchronous transfers from the VMM to guest systems.
If exception handling is up to the guest system, it is forwarded to the guest.
This scheme is performed for many exception types, page faults being a com-
mon example. The simulation of guest interrupts in software is called a trap
bounce. On x86 processors, hardware exception handlers in system software
are controlled via an architected interrupt descriptor table (IDT) managed in
host memory. Xen interfaces to guest systems via a virtual IDT (a trap table
[95]), whose format is an idealization of the x86 descriptor layout. In contrast,
exception numbers and the stack frame layout remains compatible to the real
machine in order to ease porting of guest kernels.
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Contrasting the real IDT [46], a virtual IDT controls guest exception handlers
exclusively. The discussion so for did not consider interrupts at the virtual
machine. In fact, virtualization of external events follows a different model.
Event notifications are subject to a much greater degree of interface idealization.
This is described in the following section.

4.4 Event Virtualization

External interrupts to a guest system typically originate from virtual sources,
as opposed to the real machine. An example are the virtual interval timers and
timer interrupt mentioned in section 4.1, both being fully idealized resources
which multiplex the real hardware timer circuitry controlled by the VMM. The
same applies to inter-processor interrupts connecting not physical, but virtual
processors then mapped to the real machine. There are two exceptions to this
scheme, both of which are due to the paravirtual domain architecture outlined
above: servicing of hardware interrupts by driver domains [32], and inter-domain
event notifications.

Xen manages all external events via event channels. Like hypercalls, event
channels are pure software construct turned into an architected element of the
paravirtual machine interface [95]. Those rather familiar with the POSIX in-
terface [42] may consider a comparison with I/O notifications on UNIX-based
systems: I/O handles are integer variables referencing privileged state. For
asynchronous I/O, signals drive thread control transfers upon state changes of
the underlying descriptor. Alternatively, blocking operations may suspend a
calling thread until an event occurs.

Similar mechanisms are found in microkernel architectures such as Mach [1].
Different from Mach’s port-based communications and POSIX IPC however,
event channels carry no messages, only operations affecting control flow within
the receiving side [38]. Data exchanges is commonly performed in shared mem-
ory, which will be briefly discussed in section 4.7.

The guest-side handle to an event channel is an integer port number referenc-
ing control information private to the VMM. A channel may be created by guest
systems and bound to one of a number of different event sources, depending on
availability and assigned privilege level:

• Virtual interrupt lines, e.g. the periodic clock tick provided to any guest
system.

• Physical interrupt lines, i.e. those tapped by dom0 or additional driver
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domains.

• Inter-processor notifications, i.e. event signaling between two VCPUs
within a single domain.

• Inter-domain notifications, i.e. event signaling between domains sharing
the physical machine.

The latter two bindings are bi-directional, i.e. notifications may be sent and
received on either end. Event notifications are delivered via the same trap
bounce mechanism employed for exceptions, but occurring asynchronously with
regard to guest system execution.

Contrasting exception handlers, guest systems only provide one common entry
point for event notifications. Event multiplexing by guest systems is based on
in-memory control information shared with the VMM: pending notifications are
flagged by the VMM in a common bit field and subsequently cleared by the
guest upon event delivery. A second bit field allows guests to mask individual
event channels.

4.5 Split device I/O

Paravirtual, unprivileged domain (domU) kernels fully implement the concepts of
virtualization-awareness and interface idealization discussed in section 3.3.4. For
this purpose, paravirtualized guest kernels follow a “split driver” model: in ad-
dition to native I/O drivers for various components of the underlying hardware,
driver domains implement backend drivers, which cooperate with complemen-
tary frontend drivers across virtual machine boundaries.

Present paravirtualized Linux kernels implement driver pairs for network and
block (i.e. disk) I/O. For driver domains, a paravirtual PCI interface is pro-
vided. Others include a TPM (trusted platform module) and a video frame
buffer interface. For the purpose of this document, only block and network I/O
will be covered. The general architecture is shown in figure 4.2. It involves the
following interfaces:

1. Interfacing of the frontend driver with the unprivileged guest system it
serves. For this purpose, frontend drivers expose the same interface to
their surrounding guest system as native drivers would for real devices.

2. Frontend/backend cooperation across virtual machine boundaries. Xen
driver pairs commonly employ message passing in shared memory for com-
munication.
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Figure 4.2: Xen split driver model on paravirtual Linux guest OS instances.

3. Interfacing of the backend driver with the guest system of the driver do-
main. Figure 4.2 depicts the relatively straightforward case where the
backend device maps requests to a real device hardware.

There are exceptions to an immediate mapping from the backend device to
a real one. Generally, the virtual device map may involve additional degrees of
indirection. An example is network virtualization, discussed below.

Frontend/backend communication follows a simple request/response scheme.
While more flexible message formats would be possible, frontends unilaterally
generate requests, while the backend generates exactly one response for each re-
quest after processing it. The memory shared for passing messages is commonly
structured as a circular buffer comprising a single memory page. Message trans-
port on the ring then operates in a basic consumer/producer pattern. Request
and response messages both comprise a fixed message format, and both request
and response queues share a single ring.

Inspired by [13], figure 4.3 outlines a frontend and backend driver operations
on a typical I/O ring. The sample shown corresponds to a ring state after seven
requests, four of which have been served. Messages carry a unique identifier with
each request which is reproduced in the associated response. Response messages
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Figure 4.3: Message flow in Xen I/O rings.

replace request messages. Hence, message REQ5 has just been consumed by the
backend and becomes the position for a yet outstanding RSP5 message. Message
RSP1 has been consumed by the frontend instance and will at some point be
overwritten by REQ9.

Note that message ordering is up to the protocol established by driver pairs.
Most notably, requests do not necessarily have to be responded to in the order
they were issued.

The ring structure as described above is sufficiently flexible to support both
network and disk I/O device paradigms [13]. While message queuing on the
ring buffer dictates a specific reception order, request identifiers enable out-of-
order processing of requests by the backend, hence more elaborate I/O request
scheduling on hardware disk controllers remains unconstrained [13, 32].

Message arrival between frontend and backend is signaled via interdomain
event channels as introduced in section 4.4. Event notifications in turn may be
performed decoupled from request generation. Multiple entries may be batched
before performing a control transfer, which allows for trade-offs between I/O
throughput and latency on the frontend side [13, 32].

4.6 Example: Network I/O Virtualization

The split network I/O architecture in Xen is shown in figure 4.4. Unsurprisingly,
frontends implement network layer 2 devices to the guest operating system, one
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Figure 4.4: Xen network virtualization architecture.

per paravirtual network interface provided to the virtual machine. Network
virtualization is described here because it features a more complex backend
device interface than block I/O, and a larger degree of indirection regarding the
map to an eventual network interface card.

In accordance with criteria outlined in section 3.3.4, ring messages carry no
user data. Instead, requests reference dedicated out-of-band data buffers. All
memory committed to device I/O has to be allocated by a respective frontend
device, as opposed to the backend. The idea is to avoid performance interference
of different frontend domains, which may occur if they had to be served from a
common buffer set in the driver domain (“QoS Crosstalk”) [13]. Notably, this
requisite also holds for receive buffers. Instead of “delivery requests” passed by
the backend driver, frontends send RX requests passing buffer references. Zero-
copy transfers are either performed via DMA [32], or trading ownerships of
individual buffer pages between backend and frontend (page flipping, see section
4.7).

There are two logical views on the network driver split worth considering.
First, architecture of the interdomain device interface resembles idealization
of a customary hardware network interface [13]. It comprises separate packet
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queues for each transmission direction: one for packet reception1 (RX) and one
for transmission (TX). Separate I/O streams easily map to those of a modern
full-duplex LAN interconnect. With block I/O, in contrast, mechanical disk
architecture and respective I/O interfaces rather suggest a single queue and
out-of-order processing.

Second, correspondence of frontend/backend pairs behaves like a point-to-
point connection at the data link layer, i.e. a “virtual crossover cable”. For this
purpose, the backend driver registers virtual link layer devices within dom0; each
an individual counterpart for a respective frontend device instance. Consistent
with the overall system network architecture, packets are not transferred to any
real device but passed up the network stack. This adds some level of indirection
regarding the map to a real device, which in practice may not always apply,
e.g. considering purely virtual network topologies comprising multiple virtual
machines.

There are several variants regarding the virtual network beyond the unprivi-
leged guest interface. Common ones are layer 2 bridging or respective routing
or masquerading techniques performed at layer 3 [95].

4.7 Memory Sharing

In the Xen, memory sharing complements event channels in order to facilitate
IPC. It is different from application-level shared memory such as POSIX shared
memory [42] or file remapping techniques on various UNIX flavors, in that it
is asymmetric and transitory [32]. Asymmetry means that all guest memory,
whether shared or private to a VM, retains a single owner. Transitory means
that a permission to remote access on memory can later be revoked by their
owner.

Each domain carries a private grant table in guest machine memory. Entries
include the remote domain receiving the grant, the page frame in question and
read/write permission and present usage of the grant (updated by the VMM).
The primary operation of a guest system on its tables is to grant or later revoke
guest access to remote domains. The hypervisor itself maintains a cache of
active grant entries, maintained in memory private to the VMM [32], counting
the number of references maintained by grantees when referencing respective
pages within their own virtual memory maps. A grant reference is an index into

1Directions denote the perspective of the frontend device, thereby those of the physical ma-

chine, i.e. packet reception implies a traversal of a packet from the backend to the depriv-

ileged guest system.
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a domain’s (the granter’s) own grant table, which then can be communicated
to a respective remote domain (the grantee) to use.

Grants are described to some detail in [95] and [32]. For the purpose of
this document, understanding of typical operations on the side of grantees shall
suffice. All are performed via hypercalls, and take the grantee a grant reference
from the granter, validated by the VMM:

Mapping Page frames may be mapped, i.e. incorporated into pseudo-physical
and virtual address spaces of the grantee.

Transfer Memory may be traded, i.e. page frames may change (but never lose)
ownership.

Granted memory mapped by a grantee is handled via grant handles. Gener-
ally, neither handles or grant references thereby need to expose machine frame
numbers to either side. Paravirtual domains may refer to their page tables to
determine frame addresses, but never need to. Similarly, grant references and
handles provide for unique page identifiers with guests operating on shadow
page tables as well.

4.8 Supplementary Interfaces

The above discussion of paravirtual I/O discussed only the predominant inter-
face classes, presently network and block I/O. Within the overall system archi-
tecture of Xen/VLS, discussed in the following chapter, two additional interfaces
exposed to guest systems need at least brief consideration:

System Console Domain 0 provides a single virtual console interface per para-
virtual guest system. It serves a purposes similar to a serial line interface for
remote-management in customary server machines: Boot messaging, system
event reporting, and a terminal interface for administrative access.

XenStore XenStore is a service process running on dom0, which maintains
a hierarchical database of system configuration items. It plays an important
role in Xen’s overall virtualization architecture. The store incorporates data
serving administrative purposes, such as the number of created virtual machines
and information covering their individual configuration. XenStore implements
a notification mechanism. Client applications can subscribe to state changes of
arbitrary subtrees in the store hierarchy. As soon as item stored change their
value, notifications are emitted. But more importantly, this storage interface,



84 Chapter 4: The Xen Virtual Machine Monitor

Figure 4.5: The XenStore directory service.

including the event notification mechanism, is carried across paravirtual guest
system boundaries. The XenBus protocol is a pseudo-device driver interface
integrated into all guest systems ported to the paravirtual machine interface.

In combination, these storage and system-level interfaces form a basic IPC
mechanism for inter-domain communications. The use of XenBus is to some
degree comparable to the purpose ACPI serves on modern x86-based machine
architectures. Uses include connection setup between driver pairs, i.e. exchange
of respective machine memory addresses, event channel port number and state
change indications. Figure 4.5 depicts the reliance of driver pairs on XenBus for
interface control operations and connection setup.

Generally, all I/O interfaces are built upon inter-domain event channels and
and circular I/O buffers similar to the ones described in the foregoing section.
However, compared to practical data throughput and latency requirements and
the resulting amount of work spent by system designers on optimizing through-
put, interfaces beyond block storage and network I/O play a significantly lesser
role for the purpose of this thesis. Chapter 5 will touch the above components
only briefly and where appropriate.
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5 Xen/VLS Architecture

Interplay of the Xen hypervisor and accompanying driver domains resembles
common microkernel design. Deployments in server configurations typically op-
erate concurrently on a shared-memory multiprocessor system, with intercom-
municating paravirtual machines separated into different address spaces. Such
an architecture is fairly different from traditional approaches to deterministic
replay and semi-active replication. So far, deterministic replay lent itself rather
to monoloithically structured host system environments (e.g. [94, 97]).. With
Type I VMMs, classic I/O virtualization would typically be integrated into the
hypervisor.

The issue of arbitrating concurrent system components for the purpose of
controlling the interaction of target virtual machines with their processing envi-
ronment has been a predominant factor in the design of Xen/VLS, influencing
large parts of the overall architecture. The system has therefore ultimately been
split into two separate components, both of which are part of the core VMM:

SMA (Synchronous Memory Access) controls shared memory updates induced
to target guest systems by various other system components.

The SMA facility represents a fairly general solution to achieve piecewise
deterministic execution under address space separation and thread-level
parallelism. It is demonstrably capable of managing both inter-domain
communications as well as interfacing guest systems with the hypervisor.

VLS builds upon SMA to control and log the interaction of target guest systems
with their processing environment.

Conceptually, VLS mediates between the SMA facility and a central log
reception facility built into any sufficiently privileged domain (typically
dom0). The process includes generation of an appropriately formatted
stream of event log entries and control over replica execution in face of
congestion.

The remainder of this chapter is organized as follows: Sections 5.1 to 5.3 sum-
marize individual subsystems of the virtual machine interface presently provided
to paravirtual guest systems, under the criterion of effect on control and data
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flow. The first step is therefore identification of any potential sources of non-
determinism affecting guest execution.

Section 5.4 lists additional considerations to be taken into account, such as
the amount of change imposed on the overall system architecture. Section 5.5
includes some alternative designs to achieve determinable I/O. One is event
migration, a more general concept from which SMA was ultimately derived.
Section 5.6 will describe SMA Channels, which interfaces the SMA facility with
guest systems hosting I/O backends as described in section 4.5.

Section 5.7 will summarize the techniques employed within the VMM in order
to synchronize arbitrary memory accesses with guest execution. Different from
the the comparatively simple producer/consumer protocol by which split I/O
drivers communicate, some of the synchronization primitives employed by the
core VMM, such as grant table management and event channel activations, rely
on atomic read-modify-write operations to synchronize with the VMM, which
requires different

Section 5.8 turn from Xen’s SMA layer to the VLS component, starting with
the structure of the resulting log format. Furthermore, it describes the transport
mechansism built into Xen, emitting the captured stream of event log entries.
The present VLS implementation forwards this data stream for further process-
ing to dom0.

Moving from arbitrary memory accesses to reliance on above SMA channels
requires explicit support from backend drivers. Some necessary changes on the
backends must be programmed on a case-by-case basis. Section 5.9 will study
concrete effect on an exemplary implementation based on Xen’s present block
storage virtualization specifically under the aspect of maintainability.

Finally, section 5.10 will evaluate performance of the implementation. The
results were derived from customary I/O workloads, benchmark programs and
some synthetic tests. They cover overall event log bandwidth measured for
different classes of system utization, as well as the impact on execution time.

5.1 Processor

Interaction between the Xen hypervisor and paravirtual guest systems can be
summarized as follows:

• Hypercalls issued alter the processing environment of a given VM.

• Memory updates performed by Xen, on a dedicated page shared with
the guest (shared info, discussed below). The shared memory interface
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includes the abstract time sources described in section 4.3.

• Event channel activations. These comprise shared info memory updates
as describe above. Additionally, however, they immediately affect control
flow in the target system, by transferring execution to a respective event
handler.

• Emulation of privileged instructions.

No sources of non-determinism assumption are attributable to hypercalls.
This should come at no surprise, since hypercalls do not incorporate I/O re-
sources, but only validated access to static processing resources directly managed
by the VMM. The following section introduces shared info contents and its ef-
fect on computational state. Section 5.1.2 will then touch on non-deterministic
instructions.

5.1.1 Shared Information

Consistent with the general concept of idealized device interfaces mapped to
regular memory (section 3.3.4), time sources are not represented within the
hypercall interface. The initial memory allocation of any paravirtual domain in-
cludes one dedicated page of memory called shared info, named after the data
structure dictating its layout. The shared info structure is divided into one
global section, i.e. carrying information affecting the whole domain, and one or
more VCPU-specific sections (vcpu info), one per virtual processor. Presently,
Xen guest systems are limited to a theoretical maximum of 32 processors. The
page incorporates a considerable fraction of the machine interface introduced in
section 4.3:

• Per-domain wall clock time, as a virtual real-time clock measuring present
time and date. Furthermore, a presentation of system time per virtual
processor, in nanoseconds since boot.

• A bit vector of pending event channels, i.e. those on which notifications
have been sent but not yet processed. Accompanying fields include an
index to above bit vector, as well as global and per-port event masks (ide-
alized counterparts to the IF flag and a programmable interrupt controller,
see section 3.1.1). The event map involves both global domain and virtual
processor state.

• Architecture-specific information, e.g. on x86 systems a virtual represen-
tation of the %cr2 (faulting address) register.
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Clearly, control transfers through event channel activation need to be replayed
consistently across repeated execution of the system, as do respective indications
in the shared info structure. Similarly, system time updates are performed by the
VMM on a regular basis. In contrast, the x86-specific fraction of shared info

does presently not include any sources of non-determinism.

5.1.2 Non-deterministic Instructions

The last interface element listed above to connect guest systems with the VMM
is instruction emulation. With paravirtual machines, non-deterministic proces-
sor instructions will play a lesser role with regard to implementation effort when
compared to shared memory, since no direct device I/O is involved. Nonethe-
less, processor timer I/O needs consideration. While real-time applications are
not of concern for the purpose of this thesis, modern computer systems provide
(and expect) fine-grained time sources. Some POSIX elements [42], such as the
nanosleep() function, incorporate timings at nanosecond granularity. Since
a desirable degree of precision cannot be efficiently provided solely with timer
values readable from shared memory, guest systems perform time extrapolation
instead. On x86 systems, the rdtsc (Read Time Stamp Counter) [45] instruc-
tion provides a processor cycle-accurate timing source, which can be scaled
appropriately to extrapolate system time at nanosecond-precision.

The rdtsc instruction is trivially trapped by adjusting a respective control
register flag, tracing then performed by re-execution in the VMM. In the event
log format developed as part of this thesis, traps due to rdtsc are part a class
of execution events named fixed faults. It will therefore be briefly revisited in
following sections.

Within the prototype developed for evaluation (section 5.10) no instructions
beyond rdtsc are traced. It should be noted that there are more instructions
of potential impact. One field are processor capability inquiries, such as per-
formable with the cpuid instruction. Such instructions matter as soon as exe-
cution replay across heterogeneous system boundaries is considered.

5.2 Machine Memory

With paravirtualization, potential non-determinism due to the machine memory
image underlying the guest system requires thorough consideration. As pointed
out in section 3.3.3, the physical address space visible to paravirtual guests is
typically fragmented.
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Clearly, exposure of non-contiguous, arbitrarily fragmented address ranges is
in violation of the PWD assumption, as it may easily affect traversal of such
address ranges during page table alteration and machine memory management.
To exclude such effects on execution replay, a linear machine address map is
needed, such as the one provided by shadow page tables.

The Xen VMM includes a number of different memory virtualization strate-
gies. In support of full system virtualization, shadow paging is one of them.
Indeed, the available shadow paging mechanism can also be readily applied to
paravirtual guest systems.

In practice, however, shadow paging for paravirtual domains found few uses
beyond academic and research projects such as Xen/VLS. According to future
roadmaps indicated by VMM developers, the implementation is likely to vanish
in upcoming releases of ported guest systems such as the ported Linux kernel
maintained as part of the Xen source distribution.

As described in section 3.5, one long term alternative hardware assist for Xen’s
paravirtual machine interface by Xen are likely nested page tables. The approach
has additional merits, such as an effective solution for privilege and address
space compression. Seeking deterministically replayable paravirtual VMs, it
would elegantly remove the issue of a non-deterministic memory map. At the
time of this writing, nested paging is a comparatively new feature in x86-based
ISAs. The first revisions are only available to a broader public since release of
the AMD K10 architecture [7] in late 2007. Variants from Intel will follow.

Due to present unavailability and the comparatively large change required
to the hypervisor in order to combine paravirtualization with hardware as-
sisted ISA-virtualization, the performance implications of enforcing linear ad-
dress spaces have not been evaluated in section 5.10.

5.3 I/O

I/O comprises input and output. To achieve piecewise determinism, output
performed by replica guest systems is of no concern. With semi-active replica-
tion in a mere crash failure model, a minor exception is event log stabilization
during output commit as discussed in section 2.2.7. The task of logging and
replaying guest input from virtual I/O devices and the specific issues involved
when performing this task on Xen.

As learned from chapter 4, Xen’s I/O model is commonly based on circular
message buffers and event channels. A fully piecewise deterministic system
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typically comprises the following interfaces:

• Block Storage

• Network Interfacing

• Console I/O

• XenBus

Throughout this chapter, only frontend devices under the PWD model will
be considered. Given the largely symmetric shape of the communication path
taken in circular buffers, techniques equivalent to the ones pursued here could
be applied to backends. Such alternative setups are not considered here, since
customary server workloads on non-privileged machines would gain no obvious
benefit from them.

Differences to monolithic systems are due to the concept of driver domains,
contrasting I/O resource management fully and directly embedded into the hy-
pervisor. In summary, effective generation of replayable input traces on paravir-
tual Xen guest kernels thereby represents a significantly larger challenge than
with monolithic virtualization architectures. Xen’s I/O model has the following
properties:

Asynchronous State Changes State changes in device status affect replica state
directly, and asynchronously. Like with all asynchronous events (see sec-
tion 2.2.5), a monitor needs additional measures to maintain consistency
across replicas.

Context Separation Guest input may be originate from different physical pro-
cessors than requests are issued. In contrast, determination of the precise
system state (i.e. up to the granularity of individual instructions executed)
where updates occur is only available when interrupting execution.

Address Space Separation Updates originate from non-global address spaces
(those of the driver domains). Not only needs control to be moved to the
target execution context, but data as well.

With the exception of address space separation — due to the VMM always
being present in global virtual memory — the same attributes apply to the
shared info structure described in section 5.1.

5.3.1 Programmed I/O vs. DMA

System I/O comprises control and status inquiry for device functions, as it is
typically concerned with transport and management of raw raw user on behalf of
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upper system layers. Xen’s I/O control architecture is built upon shared mem-
ory and guest system notifications as the lowest-level primitives. The resulting
paravirtual machine interface thereby implicitly borrows from a communication
model well-established in modern I/O architectures: DMA transfers, originat-
ing from devices to host system memory. On the other hand, the accompanying
control interface is much different from those employed in native device I/O,
thereby from virtual I/O as would be the case with traditional Type I or II
VMMs in full system virtualization. This section will discuss the differences
before discussing alternative solutions to the problem.

I/O device architecture typically comprises two components: an I/O con-
troller, interfacing the device to the host system, and the actual device, such
as a network interface. Control of a physical processor over I/O devices is per-
formed by accessing a respective device’s I/O controller over an intermediate I/O
bus. At the bus level, a typical device driver action may be to issue commands
by writing to a control register. Conversely, status information is inquired by
reading the same or a companion status register.

An I/O controller interface may be memory-mapped, i.e. colocated in the
machine physical memory address space), or port-mapped, i.e. accessible via a
dedicated I/O address space [64, 75]. The latter is commonly the case with x86
processors, deriving from early personal computer systems.

When issued for control operations as well as user data transfers, either vari-
ant constitutes programmed I/O (PIO), i.e. data exchange initiated by the host
processor. With programmed I/O, state changes to system software interacting
with the system occur synchronously, by execution of load/store or in/out oper-
ations. State changes induced by I/O are performed in context of the executing
replica.

In/out operations are privileged and therefore trap to the VMM. Tracing pro-
grammed I/O could therefore be performed with trap-and-emulate techniques.
Similarly, I/O memory can be emulated transparently via shadow paging [75].
However, different from many existing machine interfaces, guest I/O in Xen is
not programmed. The driver domain model implies input operations performed
through externally induced changes in machine memory.

Similarly, customary hardware I/O controllers may transfer data via DMA
(Direct Memory Access) [64], in order to relieve host processors from the task
of executing large amounts of input or output data. The difference to physical
I/O is that DMA transfers are usually only performed for user data, such as
network frames or blocks of disk storage, while Xen’s asynchronous I/O ring
model rather follows the DMA paradigm.
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Figure 5.1: Data flow between split device drivers in Xen.

The split device driver architecture employed by Xen comprises control and
status interface in shared memory. Different from native device I/O, control
and status information is carried on circular buffers in shared memory: control
operations are requests issued by frontend driver instances, status is returned
via response messages (see figure 4.3). Compared to native systems, guest state
changes due to status input rather resemble DMA transfers, since messages are
generally issued without synchronization.

5.3.2 Generalized I/O Ring Protocol

Network and block device drivers included with the Xen hypervisor share a
common framework for the implementation of I/O ring buffers. Both backend
and frontend drivers access the ring structure via a set of C preprocessor macros.
Request and response message types are variable.

While usage of this framework is not strictly necessary, it represents the stan-
dard facility for the purpose given. Most operation on the shared I/O ring page
require careful attention to memory access ordering for individual loads and
stores on shared ring indices as well as message contents. Care has to be taken
both within the code emitted by the compiler as well as regarding potential
reordering performed by an underlying machine architecture. The header files
include the necessary memory fencing, thereby taking care for correctness and
portability in face of all platforms presently supported.

Figure 5.1 shows the data flow through shared and private machine state im-
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plemented by the framework. As explained in section 4.5, request and response
queues share a common ring. Message consumer indices ({req|rsp} cons) are
held private by each side, only respective remote producer indices ({req|rsp} prod
are written to shared memory, to be read by consumers. Each field has exactly
one reader and one writer. Data consistency is trivially maintained without
locks, as long as a common memory access ordering is maintained.

Two additional indices deserve closer examination. Upon notification via an
associated event channel, drivers will typically consume all pending messages.
The general ring model employed by both network and block I/O interfaces
allows a message producer to detect that consumption of queued messages on the
remote end remains in progress. For this purpose, each consumer side maintains
an additional event mark index ({req|rsp} event). Producers omit notification
of the remote connection end until the producer index passes the the notification
mark indicated by the consumer, thereby avoiding gratuitous notifications and
calls to the VMM. This feature is called notification hold-off.

The individual state where an update is performed by a driver domain has
large potential impact on the execution path taken on a frontend side:

• Like all guest kernel operations, ring processing is preemptible by the
VMM, leading to arbitrary, thereby non-deterministic interleavings be-
tween memory accesses performed by a respective frontend and backend.

• On multiprocessors, backend and frontend perform ring updates concur-
rently. This contributes much to the maximum device throughput which
can be accomplished on such systems, especially given address space sep-
aration: “World” switches between domains carrying front- and backends
imply larger latencies than they would in monolithic systems, due to ex-
cessive TLB flushing.

• There is no one-one correspondence between issued messages and noti-
fications, e.g. a consumer may find more messages pending than were
available when the producer sent the notification.

There is a multitude of different candidate techniques to achieve synchro-
nization, as well as additional considerations to be taken into account, such as
the amount of change imposed on existing code. Additional considerations are
discussed throughout the following sections. In summary, there are multiple
alternatives to determine memory accesses within the given I/O interface
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5.4 Design Considerations

Considerations regarding the design of deterministic I/O replay based on the
Xen architecture can be dealt with in terms of two separate issues:

Replay Consistency Ring access must be executed consistently on both the
leader and any follower machine instance. If the split driver architecture
shall be maintained as is, accesses to shared memory must be be synchro-
nized with frontend execution in all replicas. In order to control replica
execution accordingly, memory accesses need to be coordinated between
the backend and either the frontend driver, or (transparent to frontends)
with the monitor, or both. Due to the degree of context separation and
deprivileging, the desired level of control cannot be performed by guest
systems alone.

Impending negative impacts on on frontend/backend performance should
be avoided, or at least minimized. Most notably, this includes maintenance
of the presently degree of concurrency achieved among individual driver
pairs.

Event Log Transport Guest input needs to be logged, thereby aggregated into a
single (ordered) sequence of log entries. This implies not only generation
of events, but log transport to a sufficiently privileged entity, such as a
process running on dom0. This is complicated if guest input is initiated
from entities residing in multiple, separate address spaces, as is the case
with Xen driver domains. The path taken for transport of events may have
impact on the amount of change imposed on existing backend drivers, as
well as on performance.

Generally, data channels established between individual backend instances
and dom0 would represent a larger change to drivers than e.g. a common
interface fully integrated into the VMM.

As with all systems, the protocol architecture for various device classes is
subject to incremental evolution and refinement over time. An example of this
process are recent performance enhancements achieved by a fundamental re-
design of the memory sharing facility employed for bulk data transfers on the
network interface [71]. Furthermore, new interface classes beyond presently em-
ployed abstractions of network and block storage I/O evolve over time1. Both
evolution and reformation demand for two important properties of both leader
and follower modes:

1One such example presently under development is an SCSI-conformant I/O driver protocol

for unprivileged guest systems [41].
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Maintainability demands that changes to present software should be small, both
on the side of the VMM as individual backend or frontend drivers. This
requires that neither consistency nor log transport should be unlikely to in-
terfere with future enhancements. Similarly, the effort it takes to augment
new I/O interfaces should remain small.

Generalization demands that changes to the VMM in support of determinis-
tic replay should not be device or device-class specific, in support of an
arbitrary, potentially growing number of interface types without further
extensions. In other words, a workable solution should separate mecha-
nism from policy [82].

Maintainability consideration rule out fundamental redesigns of Xen’s I/O
virtualization. Such architectures may indeed receive consideration, as they
are found in classic system VMM design. I/O virtualization integrated into
the VMM provides for simpler log generation and transport, since all driver
code then shares a single, global address space. An integrated architecture
would typically include not only backends but colocated device drivers, which
is commonly the case with many present Type I (e.g. VMware ESX [85]) and
any Type II VMMs in monolithic operating systems (e.g. VMware Workstation
[74], KVM [54]). In contrast, section 4.2 identified reasons why the decomposed
architecture is beneficial and hardly subject to general reconsideration in the
future.

Traps and emulation of programmed I/O instructions issued by replicas are
traced and replayed more straightforwardly than shared memory accesses. Pro-
grammed I/O would typically apply in full virtualization. However, returning
to a port-level programmed model would counteract the motivations behind
present paravirtual I/O interfaces discussed in section 3.3.4, such as high-level
command and status interfaces and zero-copy I/O by memory sharing. But
consistent with paravirtual guest design, dedicated hypercalls may be issued in
order to access device state consistently, as long as a sufficiently generalized
interface can be formulated.

To some degree, extensions to the frontend driver architecture, to be described
in section 5.6.3, will promote the programmed I/O paradigm, but only in a
fashion compatible with original architecture.

Under the criterion of interface generalization, replica input cannot be logged
in terms of request and response packets issued to a respective ring structure,
as all elements involved are specific to the class of a respective device. However,
replica input at a next lower level of shared memory updates to a small number
of candidate pages is sufficiently general to support all existing driver pairs in
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both trace and replay mode.

5.5 Design Alternatives

5.5.1 Virtual I/O Memory and Protection

Seeking coverage of all possible alternatives for maintainable replay consistency,
this section considers the feasibility to enforce replica-driven synchronous I/O
transparently. Page protection could be used to synchronize executing replicas
with externally induced memory updates. Without taking intimate knowledge
of the frontend driver operation into account, shared memory input to replicas
may then be performed as follows:

1. The backend requests protection of the shared memory region from all
frontend accesses, i.e. protect all replica pages mapping a respective page
frame in the replica’s shadow page tables.

2. The backend performs all updates to the ring. If the VCPU executing
the frontend faults on the ring during this step, the VMM will suspend
execution until completion of step 3.

3. The backends unprotects the ring from replica guest access. The frontend
may resume if it was suspended during step 2.

What this technique effectively pursues are traps of I/O memory accesses,
as would be performed in full virtualization. It enables consistent replay; the
logical point during execution at which a memory update becomes visible to the
frontend is upon completion of step 3. If the replica is not blocked, it can be
determined within the monitor, by interruption of replica execution in order to
remove the page protection in guest context.

Utilizing memory protection would require only small changes to backend
drivers, and none to frontends, which accommodates good maintainability. Fur-
thermore, only a subset of ring accesses issued by the frontend would need to be
trapped. However, a performance-critical one, considering access interleavings
during concurrent execution of front- and backend.

Futhermore, the above algorithm will likely not scale when frontends and
backends operate concurrently, as will be the case for applications with high
bandwidth demands and corresponding access frequency, such as network I/O
rings. This is due to several facts:

• Changes to page tables of the target system require a TLB flush on any
processor executing the target system. This operation cannot be entirely
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performed by the initiator, hence costly inter-processor synchronization
needs to take place.

• Unselective TLB flushes are costly, since all virtual-to-physical address
translations in the processor working set are to be discarded.

• Updated page regions are small, while the protected memory range poten-
tiates collisions with unrelated (deterministic) ring accesses on the fron-
tend side.

• Changes to the protection bits set on present pages cannot be implemented
efficiently unless a reverse mapping from page frames to page table entries
is maintained. The Xen hypervisor presently does not provide reverse
mappings.

Other issues remain. As an example, mere memory protection lacks a solution
to efficient log generation and transport yet.

Transparent memory access consistency via page protection may be a vi-
able alternative, e.g. if trap-and-emulate represents the normal mode of oper-
ation, or access patterns are unlikely to suffer from excess collisions. For fine-
grained, frequent and concurrent access patterns, such as those performed on
Xen’s I/O rings, controlling memory update on the initiator side represents the
more promising approach. This concept will be pursued across the remainder
of this chapter.

5.5.2 Deferred Processing

Early experimental versions of Xen/VLS were limited to tracing and replaying
interaction between guest systems and the hypervisor only. The initial de-
sign is introduced here because it explains the relative importance of the later-
developed SMA mode in order to keep changes to existing monitoring facilities
small.

Compared to inter-domain I/O, most updates to shared information are rela-
tively easy to trace. First, no address space separation applies. The hypervisor
is mapped to the top 64MB global virtual memory shared by all address spaces.
Second, the number of distinct items kept in shared information which are criti-
cal to the PWD assumption is well-defined and comparatively small, as listed in
section 5.1. An early experimental tracing facility comprised only control over
system time abstractions and event vector updates, as well as rdtsc emulation.

Updates to system time in Xen [13] are relatively frequent, performed e.g.
upon each new time slice dedicated to a respective VCPU. Wall clock time, in
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Figure 5.2: Inter-processor event migration. VLS signals constitute software
event processing. Hardware IPIs migrate events across different
CPUs.

contrast, is typically kept in synchrony across all virtual machines. Changes to
wall clock time will only occur when dom0 readjusts its virtual real time clock.
However, such updates may originate asynchronously from arbitrary processors.

In order to control and log updates to an interrupted guest system at the
granularity of individual guest instructions, the VMM timer subsystem was
altered accordingly. For this purpose, an early prototype of the VLS extension
augmented the VMM with a simple event processing mechanisms, called signals.
Within target system execution, a signal is nothing more than a particular work
item marked pending within the VMM, such as a necessary update to system
time. Processing of pending signals is made a common element on the return
path from any control transfer between a guest system and the VMM.

VMM code executing on arbitrary processors may emit such signals to a given
VCPU. Figure 5.2 depicts the event processing scheme accordingly. All accesses
to guest system state are thereby carried into the processing context of the
target system, independent of they originate. Ultimately, it is the state change
performed during signal processing what is traced and replayed by the VMM.

Conceptually, signals derived from a class of deferrable functions called softirqs,
originally developed for the Linux 2.6 kernel [18] and equally present in the Xen
VMM2. Similar to softirqs, signals are processed just before transferring control
from the VMM back to the guest system. Softirq processing includes tasks such

2Arguably, a large fraction of architecture-specific code as well as some fundamental kernel

facilities present in the Xen VMM were originally derived from the Linux kernel.
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as world switches performed by VCPU scheduler. The main difference between
the concept of signals and softirqs is that work items carried through signals are
bound to a virtual processor rather than a physical one. If a virtual processor
is migrated to a different CPU, pending signals migrate as well.

Events migrate across different physical processors through inter-processor
interrupts (IPIs). Event processing on the receiver side is always performed when
running on behalf of the VCPU signaled, in case of IPIs on the return path taken
from the IPI handler. Event processing allows control over any interaction with
the from arbitrarily interrupted guest context. Examples are synchronous events
such as hypercalls or exception handling, as are inter-processor events. Truly
asynchronous events can thereby be determined and tagged with instruction
counter readings. Synchronous versus asynchronous events will be revisited in
section 5.8.5.

VLS signals already constitute much of the concept an event within the PWD
model when carried forward to virtual machines: arbitrary changes in state of
guest systems and their runtime environment. Synchronization then establishes
the necessary binding between event execution and execution of the target sys-
tem.

The downside with signals is that they migrate state changes by migrating
their execution. For the remainder of this document, the overall technique to
carry work items to a specific processing context will be referred to as deferred
processing. As an example, a function performing guest system time updates
would typically execute one of three different versions:

1. The original function, for regular guest systems not subjected to trace and
replay, executes unconstrained.

2. In VLS Trace mode, the update will not be performed immediately, but
signaled to the target VCPU. Deferred signal processing will execute the
original update and generate an event log entry accordingly.

3. In VLS Replay mode, events are solely replayed from the event log. A
typical implementation may generate signals, but discard them3.

The result represents a workable solution, but one comparatively hard to
maintain. Changes due to different modes of execution largely affect the original
monitor. To achieve piecewise deterministic execution, indirections either via
function pointers or conditional expressions need to be added. Keeping the VLS
component separate from core VMM code makes control flow additionally hard

3Deterministic replay in semi-active replication will typically require signaling to be per-

formed, in order to avoid event loss during failover.
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(a) (b)

Figure 5.3: Original (a) memory accesses in Xen vs deferred, double-buffered
(b) SMA updates.

to follow.

5.5.3 Deferred Memory Updates

SMA builds upon a processing scheme derived from the event model covered
by signals, but does not migrate system execution into guest system context.
Instead, state changes will remain to be performed largely unconstrained on
the originating processor. In order to avoid inducing non-deterministic memory
access interleavings with concurrently running guest VCPUs, they are not com-
mitted to guest state immediately, however. Instead, a large fraction of updates
performed will buffered in memory private to the VMM. The state change is
transferred in memory. Hence, the technique is said to replace deferred process-
ing with deferred updates. The refinement follows a number of observations:

1. Shared memory is the predominant interface both within the VMM and
external I/O. The same concept can be applied to both worlds, overcoming
the issues with shared info updates outlined in the previous section.

2. Data flow in shared items is typically unidirectional, i.e. most fields kept
in shared memory have only one reader and one writer (see figure 5.1).
Guest system input is written externally and not modified by the executing
target VM.



5.6 SMA Channels 101

Figure 5.3 shows external events as updates to page frames in guest system
memory, where Xen (X) and driver domains (D) access memory of a guest system
(U). A simple idea, but of considerable simplicity is double buffering of target
page frames. Conceptually, shared memory is “unshared” by splitting individual
pages into two separate instances. One instance, the back-buffer, is the one
external input is redirected to. The primary instance is referred to by the guest
system. Moving altered guest state from the back-buffer to the primary will
only be performed under the constraints of the piecewise deterministic execution
model, i.e. on a determinable instruction boundary.

Inter-processor event migration operates similar to deferred processing above.
But in contrast to the original concept of signals, a work item migrated to a
particular VCPU does not migrate execution of the original event. Instead,
the result of executing it may be represented as a a tuple (m, o, l, d), where m
identifies a page frame in the replica’s pseudo-physical memory to be modified
and d a byte sequence of length l, subsequently written to offset o in m. This
level of abstraction constitutes the one chosen for the SMA layer: Instead of
tracing state changes in terms of initiator activity (e.g. Timer update to a given
value), the event log comprises a sequence of anonymous updates in shared
memory limited to the presentation above. The tuple (m, o, l) will further on
be referred to as an I/O vector.

Execution of original code can thereby remain largely unaltered. A syn-
chronous memory access, as shown in figure 5.3 performs a number of oper-
ations in guest machine memory, such as copying data between two pages. The
amount of change imposed to original VMM code is thereby reduced to condi-
tional redirection to the back-buffer. Work items migrated to a virtual processor
generate SMA commands, which are then to be executed by an SMA compo-
nent integrated with the hypervisor. The SMA component integrated with the
Xen hypervisor is not limited to copies in double buffering. The set of available
operations in guest memory will be discussed in the following section.

It should be noted that this concept can not be applied to the entire machine
interface. One exception to rule 2 are event channel activations and their rep-
resentation in shared memory, as outlined in section 5.1.1. Another are grant
table accesses. Both will therefore be revisited in section 5.7.3. Still, the effect
on the monitor has been found to be much smaller than with event signaling
alone. Most importantly, buffered memory updates committable to target mem-
ory in a deferred fashion are sufficient for all paravirtual device I/O performed
by driver domains.
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5.6 SMA Channels

In Xen/VLS, deferred updates are the primary mechanism employed by driver
domains in support of deterministically replayable memory accesses. This sec-
tion describes its integration into the paravirtual machine interface. The archi-
tecture features a small extension to the PVMI, following the assumption that
while replica input remains to be initiated and controlled by guest systems, both
update consistency and event logging are best performed by a single, central fa-
cility integrated the hypervisor. For this purpose, the Xen VMM is extended
with a pseudo-device, called SMAC, performing updates to shared domain mem-
ory on behalf of arbitrary driver domains.

The device functions performing memory accesses functionally resemble a
hardware DMA controller (DMAC). A DMA controller comprises a number of
individual DMA channels, performing memory transfers between host memory
and I/O device memory on behalf of a host processor [24]. This image refers to
DMA in non-mastered bus architectures, as would be the case with some legacy-
derived components found in IA-32 and derived system architectures [44]. This
thesis is rather concerned with memory transfers are rather host-initiated. Host-
integrated DMA engines recently spawned interest in system research, as an
alternative to TCP offloading in 10-Gigabit networking. Similar opportunities
for future research in scope of deterministic VM replay will be discussed in
chapter 7.

For the purpose given, DMA-like memory transfers are to be performed con-
sistently at a determinable instruction boundary during target guest execution.
The abstraction chosen has therefore been dubbed SMA Channel.

5.6.1 Programming Interface

An SMA Channel exposes a programmable pseudo-device interface to driver
domains. Each channel is controlled with request messages on a separate I/O
ring associated with it. Different from customary driver architecture, the ring is
shared with the VMM. Response messages are generated to indicate command
completion and indicate transfer success or failure4. The present SMA channel
implementation provides a sufficiently flexible interface comprising only four
different commands5.

4Failures are typically fatal and indicate program errors. Correctly initiated SMA transfers

are not meant to fail, since no hardware beyond the host memory interface is involved.
5Note that while the notation shows command mnemonics and parameter names in function

syntax, actual encoding and calling conventions are left out for brevity.
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SMA CMD target(dst) Set destination page dst. The channel destination refers
to a target page shared with a remote virtual machine. It is the only per-
sistent element of channel state, an implicit parameter to all subsequently
issued commands until the destination is reset to a different page, or the
channel closed.

Like all shared memory in Xen, the destination is subject to validation and
security enforcement by the hypervisor. Consistent with memory sharing
concepts underlying Xen, different types of destinations result:

• Machine frame numbers referring to a page frame in (physical) ma-
chine memory. The ability to target machine frames directly is only
available to sufficiently privileged domains (presently only dom0), but
a necessity in support of some fundamental services, such as paravir-
tual console I/O and the XenStore interface, which do not use page
grants.
• Grant handles and references, as introduced in section 4.7. Whether

handles or references are to be used depends on the driver architecture
and is largely a matter of convenience. Practice has shown that
both variants can be of practical use. When used as SMA targets,
both variants are additionally tested by the VMM according to their
original semantics [32].

The majority of subsystems, such as block and network I/O drivers, utilize
grant handles and references exclusively. Ultimately, all variants resolve
to a single frame of machine memory owned by respective remote target
domain.

SMA CMD copy(src, offset, len) Copy memory region, where parameter src
refers to a page frame owned by the transfer initiator.

Memory copies facilitate back-buffering of up to page-sized amounts of
data at the initiator. Since memory sharing is always performed at page
granularity, the copy operation always assumes source and target machine
memory to be congruent, i.e. the channel copies len bytes of data from
offset offset in page src to the same offset in the present channel destina-
tion.

SMA CMD write(offset, len, data) Write datum to memory, where param-
eters len and offset have the same meaning as with the copy command.
Presently, the parameter data may carry up to 4 bytes, as indicated by
len.

In practice, writes facilitate updates to producer and consumer ring indices
in shared memory, which explains why 4 bytes (a 32-bit integer) have
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Figure 5.4: SMA Channels

proved to be sufficient.

Note that, different from memory copying and sampling, write transfer
data provided as an immediate value encoded within the command. For
some usage patterns discussed below, it is an important alternative to
copying, since immediate values are not in danger of being overwritten
before command completion if initiators and the SMAC proceed concur-
rently.

SMA cmd sample(offset, len) Sample information from the channel destina-
tion, where parameters offset and len have the same meaning as above.

Memory sampling is different from the above commands, as it does not
modify destination memory, but only instructs the SMA channel to read
the fragment in question.

Conceptually, sampling enables drivers to perform continued direct mem-
ory accesses to target domain memory, if the access is deemed safe to not
affect control flow under the piecewise deterministic execution assumption.

Figure 5.4 shows the resulting communication pattern, comprising a piece-
wise deterministically executed guest system (domU) and and a driver domain
(domU+). All changes to domU state are performed through one or a number of
channels allocated from the SMA controller. This includes not only the mem-
ory shared between the backend and frontend devices, but control over event
channel activations and the port map embedded into the shared info structure
as well. SMA Channels are not standalone resources, but implemented as an
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extension to the event channel interface part of the Xen PVMI. More precisely,
SMA channels are exclusively bound to inter-domain event channels (see section
4.4).

Conceptually, SMA channels aggregate the notion of shared memory access
with the event channel interface. SMA channels thereby break with one design
element of the PVMI: while both elements are typically used in combination,
especially in the split driver model, they are usually maintained as separate,
unrelated entities. However, implementing SMA channels as a functional ex-
tension to event channels contributed much to keeping changes to the existing
driver implementations small:

• Port numbers (see section 4.4) not only refer to event channels, but the
attached SMA channel as well. This avoids the overhead of implementing
dedicated resource management for SMA channels in the VMM, as it does
in both backend and frontend drivers.

• Operations on event channel and SMA channels are logically related.
Specifically, frontend notification and a flush of the SMA command queue
can be performed as part of the same operation. This avoids introducing
additional hypercalls to backends.

Interplay between event channels and SMA channel will be revisited in more
detail within the following two sections, which cover usage of SMA channels for
event logging in common backend and frontend drivers.

5.6.2 Split I/O Rings

VLS-capable backend drivers operate in a dedicated mode of operation when
tracing virtual machine execution. All input to frontend devices is routed
through SMA channels, thereby through the hypervisor.

One way to facilitate synchronous updates to the control and status interface
is to carry the concept of double buffering, as employed for the shared info

structure, over to the circular buffer shared with the frontend device. Figure 5.5
depicts the the resulting split I/O ring6 architecture. The driver pair shares one
I/O ring and one inter-domain event channel used to notify a respective remote
end of queued messages. An SMA channel has been attached to control and log
messages issued by the backend.

The ring split creates a second ring structure in driver domain memory, of size

6Not to be confused with the concept of split drivers introduced in section 4.5, which refers

to the overall split into frontends and backends.



106 Chapter 5: Xen/VLS Architecture

Figure 5.5: Split I/O rings, decoupling backends (dom0) from frontends (domU)
entirely.
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and layout identical to the primary structure, which remains shared with the
frontend. While the shared I/O ring remains accessible to the backend driver,
only reads are performed on it by the backend. It remains private to the backend
and transparent to the respective frontend driver. Unless trace mode is enabled,
the backend will revert to the original model of section 4.5.

Modifications to the ring are first stored to the back buffer. Source-level
changes to the driver conditionally replace pointers to the shared memory with
pointers to the back buffer. These changes have been fully integrated with
the ring access framework introduced in section 5.3.2. Figure 5.5 exemplarily
shows annotations for individual steps taken by a backend driver during request
processing, thereby issuing two response messages (RSP3 and RSP4 to a shared
ring structure. The backend driver therein proceeds as follows:

1. Request consumption operates equivalent to non-traced mode, in that mes-
sages queued by the frontend remain to be read from the primary.

2. Response generation issues RSP3 and RSP4, not to shared memory but to
the same relative position in the back buffer.

3. To actually perform updates to the I/O ring, commands are issued to the
SMA channel: Let B refer to the back buffer page frame, and S to the
shared buffer, offsetof(f, p) denote the byte offset of field f in (page) p,
and sizeof(f) denote the byte size of field f . For the example depicted,
a program to issue both responses might comprise the following command
sequence:

a) SMA CMD target(S)

b) SMA CMD copy(B, offsetof(RSP3, B), sizeof(RSP3)+sizeof(RSP4))7

c) SMA CMD write(B, offsetof(rsp prod, B), sizeof(rsp prod), <5>)

4. If the frontend is to be notified, the backend will activate the shared event
channel. Forwarding of the notification will implicitly perform execution
(flushing) of the channel program, i.e. all commands queued on the SMA
channel are performed before the target domain is notified.

If instead the frontend remains in progress, as determined from rsp event,
a deferred flush will be executed by the frontend, which performs a poll()

operation on the SMA channel.

5. The SMA channel program is executed. Beyond committing memory ac-
cesses to the primary ring instance, this step interfaces with the VLS
component for event log generation. This will be discussed in more detail
in section 5.8.3.

7Or two copy commands, if the index of RSP4 wraps around on the ring boundary.
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6. If the SMA channel was flushed via a notification on the underlying event
channel, the notification is forwarded to the frontend.

Updates to ring indices using the write command in step 3 are in support
of asynchronous command execution by the SMA controller. Different from
messages, indices may be frequently refined by backend drivers, possibly be-
fore pending commands have completed. Messages, by the producer/consumer
protocol, are never overwritten before being committed to frontend-accessible
memory for further processing.

5.6.3 Cooperating Frontends

Step 4 in the previous section, at which SMA program execution is executed
by an explicit (thereby synchronous) operation needs additional explanation.
As outlined in section 5.3.2, the ring protocol does not necessitate any message
produced to be accompanied by a notification on the remote end. As long
as the remote consumer remains in progress, gratuitous notifications can be
avoided. This concept can be carried forward to SMA flushes triggered by
cooperative frontends. Upon the last remote message consumed, drivers built
upon ring access framework perform a “final check” for additional messages
queued by a remote producer, which includes setting the rsp event field to
request notifications, unless additional messages are present.

When incorporating SMA transfers, the I/O ring protocol incorporates a two-
way SMA interface, where flushes can be initiated both from the sender as well
as the receiver side:

Asynchronous (push, backend-initiated) notifications trigger a flush of an at-
tached SMA channel. Like any asynchronous event, memory accesses will
be performed as part of interrupt delivery to the target guest OS. While an
SMA channel and the entity programming it may execute asynchronously,
all accesses are committed to memory before the notification is delivered
to the remote end.

Synchronous (Pull, frontend-initiated) flushes are triggered via a dedicated
event channel operation (EVTCHNOP sma poll(port)). Any pending SMA
command queued on an attached SMA channel is executed upon return
from the respective hypercall.

Both operations enforce the frontend’s view on memory subject to SMA up-
dates to become consistent with the backend’s accesses. Ultimately, a cooper-
ating frontend will poll the SMA channel at two different conditions during its
execution:
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• As a request producer, before deciding whether to notify to backend. The
SMA flush produces a view on the consumer-written req event mark to
become consistent with backend state.

• As a response consumer, before performing the “final check” for incoming
response messages, or requesting later notification by themselves. Again,
this enforces memory consistency, this time with the rsp prod index writ-
ten by the backend.

5.6.4 Memory Sampling

The proposed SMA channel usage based split I/O rings as described in section
5.6.2, represents a workable solution, but can be significantly optimized. Split
I/O rings, like back-buffering of the shared info page shared with the hypervi-
sor, represent the strongest level of separation between externally induced state
changes to guest systems and their potential effect on control and data flow
within them.

However, only a small fraction of the individual items written affects the guest
system immediately. Split shared info structures have been established as a
construct which helps to keep the amount of change on respective parts of the
VMM modifying shared information small. This however, is not the case with
I/O ring accesses.

Instead, the process of transferring message bodies through back-buffers pri-
vate to the backend device is not strictly necessary. A message written by a
producer does not affect processing by a respective consumer before the corre-
sponding producer index (rsp prod within the I/O framework) has been ad-
justed accordingly8. Consequently, backends may equally well continue to store
messages directly. Even with concurrently running frontends under a piecewise
deterministic execution model, as long as the producer index is updated in a
strictly controlled fashion, the PWD assumption. The same constraints persist
on updates to the event marks, which determine whether or not notification
hold-off is performed by the frontend.

Still, all changes to shared memory ultimately need to be carried through the
SMA interface in order to accomplish a complete event log. For this purpose, the
SMA sample command, as described in 5.6, was added to the SMAC interface.
Memory sampling traces blocks of memory from a given channel destination, as
opposed to a source buffer property of the respective channel owner. Porting

8This is the reason why, within the original ring access framework, much effort is spent on

proper memory fencing on architectures which may perform reordering of store operations.
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SMA channel usage for I/O ring accesses to the sampling technique has no-
table impact on the backend. The revised SMA command (3b) is the only SMA
operation performing a copy from private memory. All other operations are
implemented as writes, carrying ring indices as immediate values. Hence, no
need for double buffering of the ring structure persists. Present revisions of the
Xen/VLS prototype subject to this thesis include support for double-buffered
I/O rings as well as memory sampling, mostly for experimental purposes. The
performance evaluation (section 5.10) was derived from memory sampling.

Way more important than the comparatively small amounts of data account-
ing for ring messages are bulk data transfers on granted frames. Back-buffering
of user data would largely degrade performance compared to regular operation
of driver pairs. This is not only due to a larger volume: as pointed out in section
3.3.4, the paravirtual interfaces promote the use of hardware DMA and memory
transfers to avoid copying data wherever possible.

Similar to messages, user data is not processed by the frontend before receiv-
ing the accompanying response message from the backend, hence such transfers
performed asynchronously in hardware do not violate the PWD model. It is up
to the backend driver to program SMA channels accordingly. Section 5.9 de-
scribes an exemplary implementation for the paravirtual block storage interface
included with the XenLinux kernel.

Figure 5.6 shows the final SMA channel usage per memory region on the I/O
ring, including data transfers to granted frames. Apart from the eliminated
buffer split, all other elements of figure 5.5 remain as described.

5.7 Inter-Processor Synchronization

Memory writes and sampling via SMA channels is sufficient for device I/O.
Inside the VMM, back-buffering works well to guest state accesses for part of
the memory shared. However, whether double buffering and deferred committal
is applicable, depends on the type of memory access performed.

Many updates are simple store operations, executable without further syn-
chronization. Deferred updates then do not adversely affect the correctness
of algorithms dictating control and data flow between Xen or driver domains
on the one side, and the receiving domain on the other side. Unfortunately,
this applies not to any piece information shared between guest systems and the
VMM. A general indication is the presence of atomic read-modify-write (RMW)
instructions [24] to synchronize
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Figure 5.6: SMA access in shared I/O rings. (S) indicates memory sampling on
message bodies and bulk data transferred, (w) 32-bit writes to ring
indices.

Xen/VLS presently covers two cases where RMW operations require addi-
tional attention. One is the representation of event channel activations in shared
memory, which rely on atomic bit operations (set-bit, test-and-set-bit),
rendering deferred updates insufficient. The SMA layer features an alternative
implementation of the original algorithms performed by the hypervisor dur-
ing event channel activation. In summary, event channel activation resorts to
deferred processing, to remain consistent with the original machine interface
presented to guests.

The other exception are grant table processing performed by the VMM on
behalf of remote domains. Different from event channel activations above, those
require mutual exclusion of memory accesses of the target domain. That is,
the traced domain has to be interrupted to be able to trace memory accesses
in a fashion consistently replayable. Both types are discussed throughout this
section.

5.7.1 Shared Info SMA

Section 5.1.1 outlined the fields allocated to the virtual event map. Figure 5.7
shows a graphical representation of the original algorithm. Without SMA, all
fields depicted reside in shared memory. Between guests and the hypervisor,
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Figure 5.7: Event channel activations in Xen.
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notification implies atomic bit operations on multiple fields in the shared info

page, to be read and written in a particular, strict order. The paths taken
through Xen represent multiple threads executing a EVTCHNOP send() hypercall.
As shown, the state of the event map (pending), the event index (pending sel)
and notification flag (upcall pending) thereby arbitrates between concurrent
senders, which synchronize through RMW operations (test-and-set-bit). A
bit already set when accessed will let the sender consider it’s task already being
finished elsewhere. While multiple channels may be activated within the same
instant, only one thread will ultimately trigger a notification on the receiver
side.

Event processing by the target system consults the same fields to identify
pending events. It may interleave on a different physical processor, clearing the
fields in opposite order during event processing.

Committing event channel activations to guest-visible state cannot be per-
formed by overwriting respective fields within the primary structure. The op-
eration to be performed is an atomic set-bit operation concurrent with the
target. Instead, event state carried on the primary and back-buffer structure
is merged into the primary. In summary, event channel activations are thereby
split into two phases:

1. A preparation phase operating on the back buffer. This phase performs a
variant of state migration, but cannot commit changes to target memory
without further processing.

This phase is performed by event senders, which can proceed without
waiting for phase 2 to terminate.

2. A deferred processing phase performed by event senders. Different from
deferred updates, additional processing is necessary in order to remain
consistent with original machine interface semantics.

The present SMA implementation includes a custom variant of the original
event activation algorithm. It is part of the SMA layer, but not performed
by the SMAC. Instead, it rather represents an auxiliary component of a fully
piecewise deterministic processing environment. As with regular double-buffered
shared info updates, the SMA layer has to decouple guest (domU) event pro-
cessing from sender activity. The resulting change to the VMM can be outlined
as follows:

• Event channel activation by senders operates on the shared info back-
buffer. The alternate implementation thereby maintains arbitration be-
tween concurrent senders as shown in figure 5.7.
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• References to guest-written fields by the VMM are based on the primary
structure. This includes the mask variables shown in figure 5.7.

• References to items read and written by both Xen and the guest system
combine state from both the primary structure and back-buffer. For ex-
ample, a test whether a given port is set would perform a logical OR on
both versions of the pending field.

Note that the need for phase 2 only applies when performing an original
domain execution conforming to the PWD model. As soon as all changes have
been committed, changed state can again be sampled and replayed at the more
coarse-grained level word-sized updates to shared memory. The custom event
channel activation thereby only affects the guest during piecewise deterministic
execution, not VLS as the logging facility, nor replay of resulting event streams.

Consequently, the SMA command set described so far can be readily applied
to capture hypervisor accesses to the shared info structure. Updates to the
back-buffer page are marked and signaled as pending work items to a respective
target VCPU. Event processing generates and issues commands to the SMAC
instance allocated for the respective virtual processor. Note that no SMA chan-
nels are involved here, which only serve as device interface presented to driver
domains. Updates to write-only data updated by the hypervisor, such as the
virtual event system and wall-clock time representations, are copied and thereby
traced according to section 5.8.

5.7.2 Grant Table Updates

The second exception to state migration are grant table accesses. Granted guest
frames can only be released after a respective grantee dropped all of its mappings
in virtual memory to them. Xen therefore indicates the state of in-use grant
entries to their respective owner. This constitutes a potential race between
granters and grantees. As an example, a granting domain may revoke a grant
entry at the same point during system execution at which it is accessed by Xen
on behalf of the grantee. Grant entry updates must therefore be performed
atomically in memory.

Access to respective table column from either end is performed through a
compare-and-swap (CAS) operation (cmpxchg on x86 hardware [45]). CAS is a
read-modify-write instruction comparing the contents of the respective memory
location with a supposedly up-to-date value and, if equal, replacing it with the
new one [24]. If the value does not match the expected one, system software
may recheck the datum and, if applicable, restart the operation. With grant
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entries, an attempt to adjust frame state would either be reiterated by the VMM
or ultimately signal a failure to the calling domain.

The update, like all memory store operations when executed asynchronously
within the processing context of a remote domain, clearly induces a non-determinism
in its effect in the system state of the frame owner. Different from the opera-
tions described so far, it cannot be managed by deferral: Since the result of the
CAS instruction immediately determines success or failure to a grantee, it must
be performed (i) by the initiator and (ii) on original target memory, to remain
consistent with guest system state.

The general solution is to temporarily pause the target domain. The initiator
will enter a critical section, blocking the domain from resuming execution until
the operation is completed. In multiprocessor configurations, this is performed
in a sequence depicted at the bottom of figure 5.8 (Mutual Exclusion):

1. The initiator enters the critical section, notifying – via IPIs – all processors
running the target domain. It then spins (i.e. actively waits in a loop)
until completion of step 2 on all notified CPUs.

2. Notified processors enter an ISRs, indicate termination of step 1 to the
initiator, then proceed to step 4.

3. The initiator executes a shared memory update, marking one or a number
of SMA trace operations in the target domain as pending. It then leaves
the critical section, allowing completion of step 4 to the target domain.

4. The target spins until completion of step 3. Before returning to the guest
system, subsequent sampling and logging of all memory updates is per-
formed by the initiator.

The sequence induces wait phases on both initiator and target threads. First,
the initiator needs to wait for the target domain to interrupt execution before
performing any update operation. Second, the guest system cannot proceed
until all updates have completed. Both make the technique relatively slow when
compared to memory access deferral. As shown in figure 5.8, at least part of
the SMA processing may interleave with critical section, as long as ultimately
all updates performed are processed before resuming target system execution.

5.7.3 Summary

This section will complete the overview over the SMA layer. In summary, SMA
comprises three different techniques, depending on individual needs of the type
of update performed. To demonstrate the differences, the impact on control



116 Chapter 5: Xen/VLS Architecture

Figure 5.8: Summary of flow control during SMA updates.

flow within the initiator side of any update and the reception performed after
migrating processing of state changes to the virtual processor of a target domain
can be visualized by UML sequence diagrams, as shown in figure 5.8. Table 5.1
summarizes the resulting impact in overhead and complexity.

Deferred Updates are performed directly by the initiator unmodified (the ac-
tivity labeled EXEC in figure 5.8). While sensitive to target control flow,
such updates need not be performed in target memory but back-buffered
in private memory. In shared-memory multiprocessors, updates are then
signaled via IPIs.

EXEC does not need to be performed synchronous with execution of the
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Type Overhead Compl. Xen: Fields of use Access Type

Deferred Updates Small Simple Time, Device I/O store

Deferred Processing Small Complex Event Channels set-bit

Mutual Exclusion Notable Simple Grant Tables compare-and-swap

Table 5.1: Comparison of memory access types in SMA mode and their usage
in Xen.

target domain, thereby experiencing low performance impact. Except for
additional statements to program the SMA controller on the receiver side,
few changes to the original operation as performed on unconstrained re-
ceivers are required, yielding comparatively small impact on the existing
VMM code base. Original algorithms are just provided with pointers to
back-buffer space.

In Xen/VLS, deferred updates are by far the most common variant. The
technique can be applied to timer updates in memory shared with the
VMM as well as any remote memory access performed through SMA
channels, thereby covering all paravirtual device I/O exercised by driver
domains.

Precondition is that memory accesses are no RMW (read-modify-write)
operations but only stores to memory, i.e. the initiator is not concerned
with an original value subsequently overwritten. In practice, memory will
typically have only one reader (the target system) and one writer (either
the VMM or a remote domain).

Deferred/Split Processing may be performed on operations requiring read-
modify-write access atomicity on fields shared with the target system
(multiple writers) but have weaker constraints than those served with fully
synchronous updates.

Different from deferred updates, operations requiring memory access atom-
icity racing with the guest system are migrated into target domain con-
text. Figure 5.8 depicts the general case of “split” processing: part of the
original operation may be performed by the initiator (labeled PREP) the
part requiring access atomicity to target memory is executed by the target
domain (POST).

Precondition is that any result of the operation on the initiator side can
safely be determined prior to actual termination of the the memory access
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on the target side. Hence, the initiator may finish PREP concurrently
with the target system. Similarly, the target may proceed during initiator
activity, again yielding relatively low overhead. Like deferred updates,
state changes are back-buffered in private memory and their commitment
to target memory migrated into the execution context of the receiving
domain.

The downside compared to deferred updates is larger implementation com-
plexity. Splitting execution into PREP and POST phases separated in
time typically requires an alternate implementation of the original oper-
ation. It is therefore worthwhile for operations occurring performed at
relatively high frequency. Rare operations not justifying the amount of
change imposed to the VMM may turn to synchronous updates instead.

Mutual Exclusive Access is executed on target memory on the initiator side.
For this purpose, the target is blocked from execution while the initiator
performs all required updates.

No preconditions exist. Due to the mutual exclusion of initiator and target
execution during critical sections, the approach would be general enough
to replace any of the above techniques. However, synchronization between
processors induces higher latency due to the additional wait phases when
synchronizing execution across different processor cores.

Source-level changes to the VMM in order to access memory safely and
replayable remain small. Additions comprise added function calls to enter
and leave respective critical sections, and marking items written in target
memory pending within, as outlined in section 5.7.2.

5.8 Event Log

As introduced at the beginning of this chapter, VLS is the event logging and
replay facility built on top of the SMA layer.

To facilitate tracing of memory updates, the present SMA controller imple-
mentation provides a simple callback mechanism to which other parts of the
VMM can register themselves. VLS thereby interacts with the SMA facility to
essentially track all updates to guest memory, independent of the originator or
type of data involved. Essentially, those of the SMA commands described in
section 5.6 accessing target domain memory trigger an invocation of the trac-
ing facility. Essentially, a callback to the VLS component carries the following
pieces of information:
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• A virtual machine frame number corresponding the the page frame in the
target guest system’s pseudo-physical address space.

• An I/O vector, comprising page offset and length of the update performed.

• A pointer to the data comprising the update, either in source buffer space
for the copy and write operations, or target domain memory if sampling
is used.

SMA transfers constitute one of two parts of what is considered an external
event under the PWD model. The other part is the information necessary to
replay the event accordingly. Section 5.3.1 described why I/O in Xen differs
much from programmed I/O and the regular device model one would face with
full virtualization. Due to the generally asynchronous I/O model established
by the driver split and separation of platform I/O into domains of their own,
one may suspect a comparatively large fraction of the resulting event sequence
to retire in arbitrary processing context. Section 5.8.1 therefore examines the
actual correlation between interrupt and potentially synchronous event context
on a paravirtual machine interface in more detail.

Remaining events are truly asynchronous. In order to replay such events con-
sistently, the original instruction at which they ocurred during capturing needs
to generate a trap to the VMM, although remains innocuous to the virtuali-
zation layer. Both tracing and replaying such events require special treatment
in software or hardware. Xen/VLS includes an instruction counter based upon
x86 performance monitoring facilities. Due to the relative complexity of the
PMU-based IC, description and evaluation if its design has been separated into
chapter 6.

The remainder of this section is organized as follows: Section 5.8.3 discusses
transmission of the resulting event log to a sufficiently privileged domain, typi-
cally dom0. Section 5.8.4 describes how congestion of the log transport is han-
dled. Section 5.8.5 will summarize the elements defining the log format.

5.8.1 Context-Sensitive Logging

Not any non-synchronously induced change to guest system state, whether
shared memory updates or control transfers by event channel activations, needs
to be replayed asynchronously using an instruction counter. While all events
subject to event tracing in VLS are ultimately externally induced, various sys-
tem states may coincide with delivery. Different from event synchrony and
asynchrony, virtual processor context, at which events retire in guest system
state, can thereby be classified:
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Figure 5.9: Events and synchronous control transfers.

Asynchronous External events which retire upon interrupts on arbitrary guest
instruction boundaries. Those again can be partitioned into interrupts in
user versus interrupts while operating in kernel space. The actual distri-
bution depends on the amount of system interaction. I/O-bound appli-
cations have a higher probability being interrupted in guest kernel space
than CPU-bound ones.

Synchronous External events which retire on synchronous entries into the VMM.
If an otherwise non-deterministically occurring state change coincides with
a synchronous one, the event becomes determinable by the synchronous
one. The advantage of synchronous events is that they can be counted by
themselves.

Discussion of asynchronous processing contexts in user versus kernel space
will be delayed until the following section. The following discussion will study
the practical relevance of coinciding synchronous context.

Synchronous context includes truly synchronous events (such as rdtsc emula-
tion), but is not equivalent. The rdtsc instruction is a truly synchronous event,
because the instruction itself induces non-determinism. However, like any other
control transfer to the VMM, additional I/O events may coincide with privi-
leged instruction emulation. The class of synchronous VMM entries comprises
a number of different guest activities, which are depicted in figure 5.9:

Hypercalls mark voluntary entries into the hypervisor. Formally, they rather
belong into a more general class of entries triggered by trap instructions (or
software interrupts in x86 glossary). In principle, any instruction deter-
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ministically transferring control to the hypervisor during execution belongs
into this class.

System calls to the operating system may also belong into the same class
of instructions9.

Fixed Faults are processor exceptions which reliably reoccur under a piecewise
deterministic mode of execution. Different from trap instructions, they
mark involuntary entries into the VMM.

This class has been dubbed fixed faults because, different from forwarded
(bounced) exceptions, they remain transparent to the guest. After the
condition causing a fault has been cleared by the VMM, guest execution
will resume without further notice.

One major subclass of fixed faults are privileged instructions emulated.
The rdtsc instruction belongs into this class.

Trap Bounces Different from fixed faults, a large number of exceptions are not
due to virtual machine map under control of the VMM, but forwarded
to the guest system. Again, different from trap instructions, these are
involuntary control transfers to a monitor and, subsequently, guest kernel.

Trap bounces will, under a piecewise deterministic execution model, reoc-
cur reliably during repeated execution of the event log.

A large number of exceptions in Xen are bounced unconditionally. Examples
are math coprocessor errors or a number of memory faults. Generally, trap
bounces can be directly tracked by extending generation of the guest exception
frame accordingly. The residual set of exceptions may be partly deterministic
and qualifies as fixed faults. Table 5.2 lists the results for 32-bit and 64-bit x86
exceptions under Xen.

Trap bounces and fixed faults in combination represent a deterministic, proper
subset of the sequence of all exceptions observable during guest execution. Con-
trasting trap bounces, identification of fixed faults can be comparatively time-
consuming. Decision whether a fixed faulting condition occurs deterministically
has to be performed on a case-by-case basis and careful analysis of the monitor.
There is however obligation for correctness, but none for completeness. The

9On 64-bit x86 processors, the same instruction (syscall) may be used for both hypercalls

and regular system calls issued from user space. Both transfer control to the VMM and

therefore qualify as synchronous entries. System calls are trivially distinguishable by caller

privilege levels and forwarded to the guest system. On 32-bit mode systems, in contrast,

separate dedicated software interrupts are allocated to the VMM and the guest kernel. The

system call gate allocated by Linux (vector 0x80) would – unless altered – typically bypass

the hypervisor.
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prototype evaluated as part of this thesis presently identifies conditions for a
number of general protection and page fault conditions (see table 5.2). Any
event carried by an exception reoccurring deterministically but unnoticed will
be (spuriously) identified as asynchronous and replayed accordingly.

The relative importance of context-sensitive replay becomes visible when
studying their correlation with hypercalls. Asynchronous events coinciding with
fixed faults and trap bounces may be considered truly incidental. The entire
set of synchronous, piecewise deterministic entries into a VMM facilitate oppor-
tunistic techniques for synchronous event delivery.

Hypercalls, however, play a demonstrably more important role in practical
event replay. The paravirtual VMI includes a number of calls which deal with
event delivery from external I/O sources:

Scheduling in Xen offers a dedicated hypercall (HYPERVISOR sched op()) to
yield a virtual processor cooperatively. They are equivalent in spirit to
some POSIX functions for cooperative scheduling (sched yield) or I/O
multiplexing (poll) in operating system ABIs. As of Xen 3.0, a guest may
perform a number of operations which synchronize with event delivery:

block() Block execution until event reception.

poll() Block execution until reception of one within a given set of events
(ports).

Compared to native ISAs, blocking effectively signals virtual processor
under-utilization to the VMM. In full virtualization, CPU sleep states
would indicate the same condition. Especially under I/O-bound work-
loads, blocking is far from uncommon.

SMA Polling Section 5.6.3 described the role of the SMA poll operation on
event channels as a method for enforcing memory consistency in face of
deferred SMA processing. The state consistency gained in turn enables
driver pairs to perform notification hold-off.

Hence, polling SMA channels on the receiver side entails additional ad-
vantage even beyond required memory consistency: It increases the num-
ber of asynchronously terminating I/O operations effectively retiring syn-
chronous with guest system execution. This will be the case as long as
event processing within a respective frontend device remains in flight.
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Nr. Mnem. Name/Condition Trap Bounce Fixed Fault

0 #DE Division by Zero •

1 #DB Debug Exception ◦ •3

2 #NM Non-Maskable Interrupt –1 –

3 #BP Breakpoint Exception •

4 #OF Overflow Exception •

5 #BR Bound-Range Exception •

6 #UD Invalid Opcode ◦ •

7 #NM Math Coprocessor Exception ◦ ×

8 #DF Double Fault •2

9 Coprocessor Segment Overrun •

10 #TS Invalid TSS •

11 #NP Segment not Present •

12 #SS Stack Exception •

13 #GP General Protection Fault ◦ ◦

14 #PF Page Fault ◦ ◦

16 #MF x87 FP Exception •

17 #AC Alignment Check Exception •

18 #MC Machine Check Exception –2 –

19 #XF SIMD FP Exception •

Software Interrupts •

External Interrupts ◦
• Always

◦ Partly

× Never

– Not applicable

Table 5.2: Guest exception determinism on Xen/x86 under the PWD assump-
tion.

aNMI handling does occur on dom0, but not on non-privileged domains.
bNote that VM double-faults are always software-generated, and deterministic under a piece-

wise deterministic machine model. They have however no correlation to machine double-

faults, which are always transparent to guests. Machine check exceptions are fatal.
cDebug exceptions which are not due to the guest system are exclusively due to the VLS

instruction counter implementation.
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5.8.2 Cooperative Synchrony

Synchronous VMM entries during guest system execution implicitly cooperate in
the process of external event delivery. That means, it builds upon synchronous
entries performed by guest systems unmodified. The question arises whether a
larger degree of active (guest-driven) synchrony can (and should) be enforced
explicitly, by altering guest systems accordingly.

There is a considerable number of practical high-availability platforms which
pursue synchronous event delivery explicitly, by active cooperation, to a larger
or lesser degree. One example is Delta-4 [14, 66], the first representative of
semi-active replication. While the leader/follower model introduced efficient
deterministic replay of asynchronous events, Delta-4 pursued the concept of
predefined preemption points as part of the system architecture. Preemption
points are executed recurrently as part of regular process execution. According
to [14], they were installed within the application framework delivered with the
hardware.

Hewlett-Packard’s NSAA architecture [16] uses a technique called Volun-
tary Rendezvous Opportunity (VRO) to achieve synchronous interrupt delivery.
VROs are embedded at various points in the operating system, at least tran-
sition points between different privilege levels. A hardware-aided rendezvous
protocol is performed in order to agree on a common VRO embedded into the
instruction stream. Once reached, the VROs schedule delivery of pending ex-
ternal interrupts.

As described in section 3.3.1, paravirtualization is based on the concept of
virtualization-awareness and a general acceptance to adapt the OS to a surro-
gate interface different from the original machine. The system ABI, however,
represents an important limit imposed by user demand. Applications and most
system libraries remain unaltered or backward compatibility to the existing code
base and thereby versatility is lost. The Xen hypervisor targets commodity op-
erating systems and applications. Present examples include Linux, Windows
or various UNIX-based operating systems. All these systems build upon a pre-
emptive model for event processing and task switching. The VLS component,
like Xen, ultimately has to conform to this model. Cooperation down to the
application-level would therefore be out of place.

Kernel-level cooperation, in contrast, is particularly attractive. Privilege tran-
sitions as proposed by NSAA, either entries into guest kernels or the subsequent
point of subsequent return, are especially simple to track from within a present
system virtualization layer. As already pointed out in section 5.8.1, system calls
typically enter the VMM before being forwarded to the guest kernel, partly
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because the virtual privilege map has to be maintained by the hypervisor. Simi-
larly, thread deprivileging upon return from the guest kernel may be intercepted
by a VMM, unless performed in hardware. Xen’s paravirtual VMI features a
dedicated hypercall (HYPERVISOR iret()) in place of the original iret instruc-
tion. The virtual iret can be used as a synchronous point of event delivery to
substitute any event otherwise interrupting kernel space asynchronously. This
is shown in figure 5.9: Upon event emergence, the privilege level of the cur-
rent processing context is determined. If the present thread is running with
kernel privileges, delivery may be delayed to the upcoming iret. No dedicated
compile- or run-time instrumentation of the kernel needs to be performed.

Generally, cooperative synchronization represents a trade-off between two con-
flicting goals: VMM entries at high frequencies require careful instrumentation
of the target system and, if induced in source code, may be considered a dis-
traction. If the frequency is too low, interrupt latencies will adversely affect
overall I/O throughput and system responsiveness. This may not be the case
for delayed delivery in kernel space. Virtually all operating systems employ de-
ferred processing of asynchronous I/O completion extensively. In Linux, softirqs
(see section 5.5.2 or [18]) perform this task: Interrupt context only performs
immediate acknowledgment of notifications, actual processing is deferred to a
comparatively late point on the return path to a respective interrupted thread
of execution. The difference between deferred or immediately delivered notifi-
cation may therefore be small. Task prioritization performed in software may
suffer, however.

Apart from diagnosing an apparently good match with customary virtuali-
zation infrastructure, measurable impact of kernel-level cooperation at regular
intervals has not been extensively studied as part of this thesis.

5.8.3 Transport

To facilitate arbitrary postprocessing of the event log, transport to user space
represents the most flexible solution. Possible uses include forwarding over a
network interface, as would be the case with semi-active replication. Seeking
deterministic replay at a later point in time one might rather save the stream to
an attached storage system. Another potential use is performance monitoring
and evaluation, as for the results presented in section 5.10.

Event log transport implies memory sharing directly with the hypervisor. This
is different from most other components part of the Xen architecture, and there-
fore not covered by an existing VM management infrastructure present in the
dom0 kernel: Essentially, VLS log transport establishes an I/O interface directly
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with the hypervisor. Memory management and interplay with the VMM can-
not be safely performed by user applications alone: part of the process includes
a translation back and forth between virtual addresses of the calling process
and the underlying machine memory address space. Furthermore, buffer space
exposed to the hypervisor needs to be locked from host memory management,
such as demand paging. As a result, dom0 support for VLS comprises two parts:

• A kernel space component managing machine memory dedicated to event
log transport (vlsfront in figure 5.10). The module implements requisite
control over the VLS layer and all data exchange with the VMM, including
allocation of appropriate machine memory. The allocated buffer space
is then mapped into the address space of the calling process for further
processing, eliminating the need for repeated copying of the contained
trace data.

• The architecture presented in figure 5.10 proposes a daemon program
dubbed vlsd, as would be the case for semi-active replication, stream-
ing the event log over an attached network interface. For the purpose
of system evaluation as presented in section 5.10, a small command-line
utility performed log analysis in a similar fashion.

Log transport builds upon the same generic framework for circular I/O buffers
utilized by driver pairs10. For this purpose, one page frame is allocated as the
shared I/O ring exposed to the VLS layer. Consistent with the design philosophy
underlying split domain I/O, dom0 is required to allocate all memory pages
holding execution trace data from its own memory allocation. The message
format is designed accordingly: each request message carries the MFN of a single
page frame allocated by dom0. After being filled by VLS with log information,
each page is returned to the calling domain with a single response message.
Response messages do not necessarily follow the original order in which requests
where issued. The message format of the present implementation leaves room
for a maximum of 64 pages of memory queued simultaneously.

5.8.4 Flow Control

Apart from just forwarding the respective data to dom0, one major responsi-
bility left to the VLS subsystem is flow control. Especially when the event log
is ultimately to be forwarded over comparatively slow external links, such as
storage or network interfaces (i.e. slow in comparison to the memory interface

10Without SMA extensions, obviously.
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Figure 5.10: Log transport in Xen/VLS.

of the host systems), log transport is likely to suffer from congestion. Similarly,
the log receiver may stay idle as long as no trace data is available.

Flow control in Xen/VLS could be built on top of a derivative of inter-domain
event channels, which was originally introduced as part of the VMM support for
full virtualization. Starting traced execution of a domain includes establishment
of an event channel connecting the tracing domain on one end and Xen – on
behalf of the target domain – on the other end. Both transmission ends signal
message delivery via event notifications. Flow control then performs as follows:

• If event log generation cannot proceed due to lack of buffer space provided
by the tracing domain, the replica domain is blocked from execution.

• Request submission by the tracing domain is accompanied with a notifi-
cation, unblocking the traced domain if necessary.

• Similarly, log processing by VLS is controlled via event notifications re-
ceived by the kernel space facility. Calls to the device interface may block
the calling process interface until buffer space becomes available.

Flow control entails a bi-directional interface between the VLS component
and the SMA subsystem. As long as a respective event cannot be logged, SMA
cannot proceed. As soon as as the requisite event buffer space becomes available,
a pending SMA update will be retried. Only unless events are pending, domain
execution may return to the guest system.
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5.8.5 Trace Data Format

The format of the execution trace emitted by the hypervisor closely follows the
operation of the SMA subsystem as well as the transport facility discussed in
the previous section.

Updates are grouped into events. Regarding their effect on target machine
state, events resemble transactions: All changes to the traced guest system
within a single event are performed atomically. A single event comprises all
externally induced state changes at a single instruction boundary during the
execution of the guest system11:

• A flush a flush of all pending SMA channels

• Updates to the target machine’s shared info frame.

• Any effect on machine state induced by the execution of non-deterministic
instructions.

Given the relative size of bulk SMA transfers, a single event may thereby
span multiple pages, which is incrementally forwarded to the logging facility.
Like the transport protocol, the log format has therefore been organized into
frames. Each frame comprises a response message in the event log and a memory
page released to the logging facility.

In the present implementation, only two types of frames are differentiated:

Breakpoint control (BRK) frames include updates to the shared info frame,
plus control information required to replay the transaction.

I/O memory updates (SMA) frames include all remaining updates, exactly those
induced by SMA channels allocated to driver domains.

The sequence of frames submitted to form one event invariantly adheres to
the following regular structure.

1. Zero or more SMA frames.

2. Exactly one BRK frame. Presently, a single frame is sufficient to carry all
shared info updates and VCPU context information.

Consistent with the criterion of a sufficiently general interface postulated in
section 5.4, the format of SMA frames is unspecific to the VLS component. The

11Note that future revisions of the SMA layer may relax the atomicity guarantee. As learned

from section 5.6.4, only a subset of all SMA operations immediately affect control flow and

therefore need to qualify as events to the VLS layer. Ultimately, only original access order

needs to be maintained.
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frame carries data as structured through the program generated by a respec-
tive SMA channel owner. I/O vectors are gathered into the response message.
Section 5.9 will briefly discuss the implementation of SMA for the virtual block
I/O backend.

The format of BRK frames is more strictly structured by the VMM than that
of SMA frames. Like double-buffered memory transfers programmable on the
SMA channel interface, frames are congruent to the target domain memory.
Present versions of the Xen hypervisor leave space available at the end of the
shared info structure, which is reused in trace frames to store information
about the computational state of the interrupted virtual processor. The result-
ing frame layout is thereby structured as follows:

• A shared info structure, carrying updates the the shared information
frame. Like SMA frames, individual regions updated are indicated by I/O
vectors encoded in the response message.

• A data structure dubbed vls instant, storing the VCPU context at which
the event is to be replayed. Instants are organized hierarchically according
to event context described in section 5.8.1:

TRAP, i.e. a synchronous, under the piecewise deterministic execution
assumption deterministically (re-)occurring processor state. This in-
cludes trap bounces, fixed faults, system- or hypercalls, or emulation
of a non-deterministic instruction such as time stamp counter ac-
cesses.

INTR, i.e. an asynchronous event interrupting an arbitrary guest instruc-
tions.

Both types of instants comprise all information necessary to replay the event
precisely at the original instruction. Type TRAP is augmented with a software
counter reading identifying the specific instant within the overall trap sequence
executed under the PWD assumption. Type INTR is accompanied with an in-
struction counter value. Replay of asynchronous events and PMU-based instruc-
tion counters for x86 systems will be discussed in more detail within chapter 6.

5.9 Example: SMA-Channeled Block I/O

Present revisions Xen/VLS include full support for SMA in the paravirtual
block (i.e. storage) I/O back- and frontends. The implementation contributed
much to the present understanding on how the interface to synchronous shared
memory access needs to be structured, and the cost of porting existing drivers
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to revisions capable of replaying paravirtual guest systems. Both is provided
here as an exemplary study on what is required from driver domains.

5.9.1 Implementation

Matching customary disk geometry, the virtual block I/O layer operates on
individual sectors read or written from/to disk, where a sector always carries
512 bytes of user data. The paravirtual block I/O protocol carried out between
driver pairs is structured as follows: A read request issued by the frontend may
carry multiple (presently up to 11) segments, where each segment includes a
reference to a target page frame, and start and end sector numbers to a range of
up to 8 blocks (i.e. up to 4096 bytes). Indicated blocks are then to be buffered
in the provided frame.

Frontend requests are be translated and forwarded according to the interface
of the block I/O sublayer of the driver domain which carries the backend driver.
Upon completion of the request, data has been readily written to the target
frame12

In the SMA-capable backend driver, partial completion of a read request is-
sued by a frontend generates one SMA channel program per segment, instruct-
ing the channel to sample the target frame, where the originally grant reference
mapped by the driver domain serves as the channel destination. On Linux, tar-
get page fragments which need sampling may be identified not from the original
frontend request, but the I/O request returned by the kernel block I/O layer for
that purpose. The fact that the kernel merges aggregatable sector ranges into
single I/O requests serves an additional convenience to keep the resulting SMA
channel programs small.

There is a large degree of flexibility in tracking block I/O, the implications
of which have not yet been fully explored. In theory, one could incrementally
utilize up to 8 (i.e. the maximum number of sectors per page) I/O vectors, each
upon read completion of any individual sector, which may still be saved to a
single single event frame. The present implementation rather delays channel
activation to the point where all individual sectors per segment (i.e. per page)
have been gathered, which results in only a single I/O vector traced, which then
covers the entire segment.

The trade-off here are larger updates, thereby larger latencies induced by

12If the storage is backed by a physical disk and storage controller, the process will typically

employ DMA transfers in hardware. As pointed out in section 5.6.4, this is not in violation

of the piecewise deterministic execution assumption.
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channel program execution, versus larger, but incrementally executable channel
programs. A full evaluation would require the need for a more advanced log
generation infrastructure in the hypervisor than presently available. Future
revisions of the Xen SMA layer may move to more fine-grained traces.

5.9.2 Maintenance Cost

Actual maintenance cost is hard to predict without foreseeing the future devel-
opment roadmap of the original driver implementation. Focusing on block I/O,
the design is proven, but alternatives to the presently Xen-proprietary protocol
are in development. One example is paravirtual SCSI [41], promising better
integration with enterprise hosting environments.

A more easily answerable question is how intrusive the present extensions in
support of SMA-channel use are to the original code. A typical rule of thumb
among system developers is “patch size”, referring to the output presentation
obtained by running the well-established UNIX diff utility (or a variant thereof)
over the original and modified driver source. The following two sections pursue
this approach for both the frontend and backend ends of the paravirtual block
I/O pair introduced in the previous section.

Changes to the surrounding operating system kernel are not covered in detail
here. Wherever possible, part of the needed functionality for both front- and
backend support, e.g. details of SMA channel allocation, were not incorporated
into individual drivers but rather into support libraries integrated with the host
and guest system kernels. But different from drivers, core infrastructure is
less critical because it may be maintained by a single party. Hence, driver
maintenance requires more attention. Drivers (i.e. device classes) are generally
various, even in the paravirtual case. Maintenance is up to different parties, and
source code is subject to continuous change and improvement.

Backend VLS-capable driver builds are optional at compile time. The backend
driver has been carefully crafted to avoid changes to the existing code, e.g. by
resorting to C-language preprocessor macros nullifying SMA-specific statements
if disabled. Unless activated at compile time, a driver identical in size and
behavior to the original version will be built. If enabled, no functional changes
to the original version are induced, i.e. as long as the frontend execution is
not entering SMA mode, the driver will only be affected by a small number of
conditional operations testing for its activation.

Including a retrospective code analysis without presenting sources, the results
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Changes Xen Code base

Number of files 4 of 4 files

Host I/O (blkback.c) 7 chunks +84 lines -0 of 579 lines

Headers (common.h) 2 chunks +13 lines -0 of 139 lines

Initialization (interface.c) 3 chunks +96 lines -0 of 171 lines

XenBus Interface (xenbus.c) 6 chunks +47 lines -0 of 414 lines

Total 18 chunks +250 lines -0 of 1303 lines

Table 5.3: Change induced to a VLS-capable block I/O backend driver.

for the backend driver can be summarized as shown in table 5.3. A chunk is
one consecutive range of lines subject to change, an estimate for the number of
individual locations altered. Aggregate numbers of source lines (+ for additions,
- for removals, e.g. due to replacements) demonstrate the amount change in
relation to the original source.

The most important result is that in order to enable a full trace of guest I/O,
no real interference with the the original code base was implied13. While all
parts of the driver were subject to extensions, changes were mostly orthogonal
to the existing code.

Host I/O includes both the driver pair protocol implementation as well as
interfacing with the host storage interfaces. The comparatively large number
changes was only due to a necessity to save grant references (as opposed to
handles) in heap storage for later referral, in account for asynchronous channel
operation on the receiver side. The rest was dedicated to issuing SMA operations
the the hypervisor.

Like with so many pieces of software, more effort was spent on the surrounding
infrastructure than core issues of SMA mode. Code incorporated into driver
initialization includes memory and channel allocation and release. Backend
drivers support entering and leaving SMA mode on the fly, i.e. independent of
present connectivity of the backend interface with the frontend instance. For this
purpose, the backend listens to a dedicated per-domain variable in the XenStore
directory (/local/domain/<domain id>/vls/sma) which is set to 1 (on) or 0

(off) by the tracing facility. If the value of this variable changes, a notification is
received, which triggers channel allocation and usage, or a release, respectively.
13Even to the surprise of the author when the results shown were assembled.



5.10 Evaluation 133

Changes Xen Code base

Number of files 1 of 2 files

Headers (block.h) 1 chunks +2 lines -0 of 155 lines

Total 1 chunks +2 lines -0 of 964 lines

Table 5.4: Change induced to a VLS-capable block I/O frontend driver.

This mechanism accounts for extensions to the XenBus interface.

Frontend Table 5.4 contrasts the numbers derived from the backend port
with those resulting from the frontend instance subject to repeated execution.
The only mandatory change to driver operation at run-time is incorporation of
polling event channels from the receiver (i.e. response consumer), in order to
trigger channel flushes to shared memory from the receiver side at critical points
during memory accesses potentially interleaving with the backend.

The necessary changes to response consumers on I/O rings could be integrated
into the C-language ring access framework presently shared by all present para-
virtual device classes. Changes thereby remained almost entirely backwards-
compatible with the present code base. The only change necessary accounts for
a mapping from SMA channels to the corresponding event channel number, for
which definition of a single C preprocessor macro proved sufficient.

5.10 Evaluation

For the purpose of this thesis, there are a number of different properties to
evaluate. One is performance impact. Since traced machine execution from un-
constrained guest state access in multiprocessors, the resulting slowdown should
be measurable. Another important question is overall log size and bandwidth
consumption, i.e. log size per timer interval during execution, which varies with
different workloads assigned. Tests performed include a number of synthetic and
application-level benchmarks. Since a large fraction of execution traces is due to
I/O operations, I/O-bound workloads are of major concern. Compute-intensive
tasks should be lesser affected, but remain valuable in order to demonstrate
some of the differences.

Measurements can be either relative to unconstrained execution on the same
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virtualization layer, i.e. contrasting Xen/VLS with Xen, or relative to native
performance. The Xen/VLS implementation on which experiments including a
hypervisor were performed was based on Xen 3.0.2, running respective privileged
and unprivileged builds of paravirtualized dom0 and domU Linux kernels (version
2.6.16). The native Linux kernel run for comparisons carried version 2.6.20.
Generally however, the relative performance impact imposed on paravirtual Xen
guests due to virtualization has seen considerable research in the past and is
known to be comparatively small [22].

5.10.1 System Configuration

All tests presented here were based on a two-socket SMP system carrying two
Intel Xeon 5100 (Core2 Architecture) processors at 2.66 MHz, each with two
processing cores. The machine had 5 GB of physical memory installed. Unless
otherwise noted, the traced guest system received a physical memory reservation
of 512 MB. Processors implement shared 4MB of level 2 cache.

Experiments in multiprocessor configurations target the common case of a
two-CPU configuration, where one processor core is dedicated to the overall
virtualization and monitoring facility, and the other the respective target system
to trace. The virtualization layer therefore comprises two non-SMP domains
with one respective virtual processor each. The dom0 configuration carrying
both virtual device backends as well as the monitoring facility in user space.
Generally, dom0 and domU ran on separate cores.

The Xen hypervisor allows pinning of virtual processors to physical proces-
sor cores. The given configuration therefore allows setups to experiment with
different core assignments: By default, Xen would assign VCPUs to processor
cores 0 and 4, i.e. to separate sockets communicating via the system bus. The
remaining cores remain unutilized. This setup will further on be referred to as
the SMP configuration.

Anticipating widespread adoption of multi- and manycore architectures, the
alternative setup is to exploit CMP, i.e. pin domU to an immediate neighbor of
dom0, which would be number 1 in above layout. The idea is that such a setup
may gain additional benefit from physical colocation of the tracing and traced
entity. Shared L2 caches potentiate a notable increase in log throughput. IPI
latency should decrease, promising to lower the impact of thread synchroniza-
tion, especially for mutually exclusive memory accesses such as during grant
table updates. The downside are impending cache collisions of memory working
sets which remain unshared.
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Third, uniprocessor configurations (UP) let both the monitoring facility, de-
vice virtualization, and the traced guest share a common physical processor core.
The increased demand for world switches between dom0 and domU, in order to
serve I/O requests from the paravirtual guest, has a measurable cost in guest
system throughput and latency. The same detrimental effect may be expected
from pinning trace consumption and replica execution to the same core.

5.10.2 Linux Kernel Build

Extensive compiler runs during build procedures for large software systems are
usually accepted to represent a good combination of both disk I/O and CPU
utilization. These tests therefore measure time and bandwidth taken to build the
default kernel configuration of a Linux 2.6.23 source tree on a locally managed
ext3 file system with GCC 4.1. The experimental system shared one ATA disk
among all guests. Virtual disk images assigned to the traced guest instance were
loopback devices, i.e. backed by sparse files carried on dom0’s file system. The
same configuration was used to all all later tests performed.

Analysis of trace log bandwidth progressions over the runtime can teach a
lot about the inner workings of respective applications studied. Beyond a raw
summary of trace packet sizes and frequency, investigation reveals information
about software, the surrounding operating system and, last but not least the
interworking between the two.

The chosen log format divided into SMA and BRK frames allows for a con-
venient arrangement to separate bandwidth dedicated to peripheral device I/O
from control information solely affecting the virtual processor. As outlined in
previous sections, SMA frames comprise device control interface data, user data
as well as grant table accesses performed by peer driver domains. BRK frames
include event channel activations, updates to the time abstractions as well as
the information necessary for later replay events precisely as experienced during
VCPU execution. Data presented across the remainder of this section will show
CPU and I/O bandwidth as separate contingents.

The top graph in figure 5.11 shows a stacked bandwidth diagram for the
Linux kernel build across the overall build period of about 5 minutes taken to
complete the run of the make utility from a clean source tree. The numbers
sampled report a total size of 60.8 MB, consisting of 54.1 MB SMA log and
6.7 MB in BRK frames. The default kernel configuration comprises 1091 object
files built: 22 MB are C source and 8 MB of header files. More than half of the
data volume loaded from disk thereby accounts for source code; the rest may be
attributed to file system metadata and data sources external to the build tree.
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Figure 5.11: Trace bandwidth for a Linux 2.6 kernel build (256 MB RAM).
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The figure demonstrates the importance of in-memory disk buffering for over-
all system performance. About one third (16.5 MB) of all data read from disk
is loaded within the first 15 seconds of execution, presumably including a large
fraction of the overall working set of header files involved. Linux, like any
modern operating system, caches block storage contents aggressively to system
memory. The traced guest system as of figure 5.11 received a physical memory
reservation 512 MB. Since the processed input data volume is well below the
memory allocation dedicated to the VM, files on disk are read at most once
and served from buffer caches on subsequent compiler runs. The initial I/O
bandwidth consumption of up to 6.8 MB/s is never achieved at a later point in
time.

The middle of figure 5.11 shows the same graph limited to a lower range of
up to 500 KB/s. The average compound bandwidth measured was 205.6 KB/s,
of which 182.9 KB/s were SMA frames. Maximum CPU bandwidth was 79.5
KB/s, coinciding with a local I/O bandwidth of the execution trace, which is
due to the larger number of interrupts received around that period. The bottom
graph in figure 5.11 shows CPU bandwidth separately, which averaged at 22.7
KB/s.

In order to get a better estimate of trace impact, more I/O intensive appli-
cations are needed. Based on the same test, a simple way to achieve more disk
usage is to significantly reduce guest memory. For this purpose, the same kernel
build configuration was executed on a guest memory allocation of only 32MB,
compensated with a sufficiently large swap partition. The vastly increased pres-
sure on memory management leads to frequent flushing of kernel buffers and a
fair amount of swap usage within individual compiler runs, deliberately reducing
overall performance to only a fraction of available processor bandwidth.

Figure 5.12 shows the impact on total and CPU trace log bandwidth. Total
execution time increased to 3844 seconds. The total log volume was 76.6 GB,
an average of 19.7 MB/s. CPU bandwidth increases as the interrupt frequency
rises, averaging 88.0 KB/s in BRK frame volume, at a total of 338 MB.

The left graph in figure 5.13 shows relative performance numbers derived from
build execution time with 512 MB RAM, comparing native Linux with Xen
traced and untraced execution times. The three groups of columns correspond
to process time, i.e. user and sys as time spent in process and kernel space
respectively, and real time elapsed, as output with the customary UNIX time
utility.

As shown, the overall build process spends around 15% of its time in the
kernel. Execution tracing in the SMP configuration results in a 12.2% slowdown
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Figure 5.12: Trace bandwidth for a Linux 2.6 kernel build (32 MB RAM).

in raw kernel time, contrasted by user space performance affected only by 1.4%.
The difference confirms intuitive expectations that tracing measurable would
affect kernel space much more that application execution. A significant fraction
of additional time spent in the system may be attributed to frequent polling
of SMA channels. Slowdown measurable in user time is rather due to deferred
interrupt delivery.

The overall slowdown due to execution tracing measurable is 4.1% in real time,
compared to Xen without trace capturing. Comparing replayable with native
application performance, the same benchmark with Linux on bare hardware
reports an overall performance impact of 7.5% attributable to paravirtualization,
or a total of 11.1%.

The right side of figure 5.13 depicts relative performance for the same exper-
iment with VMs only assigned 32 MB RAM, as described above. The system
spent about 90% of execution time swapping. Due to the higher I/O load,
system time increased considerably, e.g. by 43.6% in the SMP configuration.
However, system time only accounted for only 4% of total execution time. Com-
pared to fully buffered I/O above, relative slowdown increased only slightly, to
5.7% with SMP.
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Figure 5.13: Relative Performance: Linux 2.6 kernel build.

5.10.3 SPEC CPU 2006

The large impact of device input in trace capturing can be contrasted with CPU-
bound workloads, which are considerably more simple to trace. The SPEC CPU
2006 [78] suite is a “component-level” benchmark targeting solely processor and
compiler performance. For the purpose of this thesis, only an integer test sub-
set of the full benchmark suite has been evaluated. Since neither integer nor
floating-point arithmetic induce instruction-level non-determinism, FPU appli-
cations do not promise any additional insight.

Figure 5.14 shows a sample bandwidth graph derived from an execution trace
of the 401.bzip2 program executing under the runspec utility. 401.bzip2 is
based on an implementation of the bzip2 compression algorithm and processes
a reference workload consisting of six separate components in sequence (binary
image data, program code and a combination thereof) [78]. Stressing processor
and compiler performance, SPEC programs perform I/O only for initialization.
SMA frames shown are due to loading of benchmark applications and their
respective data inputs.

Tracing CPU-bound applications generates largely homogeneously composed
event streams. The paravirtual Linux guest hosting the benchmark suite oper-
ates at an interval timer frequency of 100Hz. The experiment thereby demon-
strates a special case where the log almost exclusively reflects interval timer
ticks interrupting user space. Such periods typically comprise only BRK frames
of two event types:

• INTR instances (100/s), carrying information about event channel activa-
tions and, since truly asynchronous events are encountered, the necessary
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Figure 5.14: Sample CINT2006 execution trace for 401.bzip2



5.10 Evaluation 141

Figure 5.15: Relative Performance: SPEC CINT2006
.

instruction counter readings to enable consistent replay. These packets
include regular updates to per-processor system time.

• For each INTR instance, a number of subsequent instruction emulations
(i.e. type TRAP) determining RDTSC instructions (typically 4-5 per clock
tick). Such time inquiries are typically due to processor time accounting
by the guest scheduler.

Tracing periods of exclusive CPU utilization thereby generates a homogeneous
event stream at a rate of 9.42kB/s. Performance impact is low, due to lesser
event frequencies (averaging 518 Hz). Figure 5.15 shows normalized relative
performance for the individual CINT2006 components run on the SMP config-
uration. In total, the performance impact due to trace capturing of 0.65% was
measured.

5.10.4 Anticipated Bandwidth Limitation

The prototype subject to this thesis only provides fully deterministic block I/O
to paravirtual guests. Network I/O, while potentially yielding a larger amount
of interesting benchmarks, suffered from a defect limiting maximum throughput
achievable. Compared to modern network interface over 1– and upcoming 10–
Gigabit links, physical disks are comparatively limited in throughput. With
the disk subsystem maintained by dom0 in the experiments above, a maximum
device read performance of ≈58.2 MB (Xen dom0 was reported.

The constrained bandwidth at the physical layer, however, need not necessar-
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ily apply to virtual device interfaces. To experiment with larger I/O bandwidth,
virtual devices backed by machine memory instead of peripheral disks can be
used. To this purpose, 3 GB of memory were allocated to a RAM-disk image
(leaving 1 GB of memory to dom0 and unprivileged guest systems), which backed
an additional device exposed to the unprivileged domain.

The Linux hdparm utility [58] includes a simple benchmark program measuring
raw device bandwidth by reading through the kernel buffer cache. It works by
flushing in-memory caches, then performing sequential reads (each of size 2MB)
on the device over a period of 3 seconds. Measurements were taken by calculating
the arithmetic mean of 32 subsequent hdparm runs on the in-memory disk image.

Figure 5.5 shows the results, again comparing SMP, CMP and UP configura-
tions with and without trace capturing. SMA mode apart, there is a notably
disturbing effect when considering non-capturing operation alone: CMP peak
throughput measured is reproducibly 13% less than on the SMP configuration.
It remains unclear at this point why this is the case. L2 cache collisions may
be the reason, but have not been encountered with the paravirtual network
interface as shown in table 5.6, where CMP appears beneficial.

Of all configurations, tracing under SMP configurations reports the a relative
performance loss of 47%. This is justified, since an overall peak loss of 50%
or more must occur as bandwidth consumption on circular buffers approaches
host system limits. Since tracing captures the same volume as transmitted from
the SMA layer, the numbers should be rather understood as approaching an
overall system limit of about 411.89 MB/s in the SMP case, or 439.88 MB/s for
CMP setups. These numbers, however, should be assumed to be distorted by
computational overhead within the block I/O layer.

Due to the functional similarity of paravirtual block and network I/O, SMA
may be expected to affect intra-host communications over a replayable network
interconnect. Table 5.6 shows TCP and UDP user data throughput measured
for network RX and TX transmission paths (from domU’s perspective, i.e. RX
corresponding to a recv() operation). The largest receive throughput mea-
sured with non-captured transmissions on the same system was 3446.64 Mbit/s
on CMP configurations. While it is unlikely that original throughput can be
maintained in SMA mode, it remains below practical limits experienced so far14.

14Performance implications of circular buffers and memory sharing in Xen are obvious, but

presently well understood. The problems is that the while the present protocol is suf-

ficiently fast to saturate commodity gigabit network interfaces, CPU utilization exceeds

those achieved with monolithic driver architectures such as native Linux installations by

orders of magnitude [70]. Future I/O architectures are expected to partially remove this

barrier [71].
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Xen Xen/VLS Loss

SMP 759.37 MB/s 411.89 MB/s 46%

CMP 661.99 MB/s 439.88 MB/s 34%

UP 490.76 MB/s 357.23 MB/s 27%
SMP CMP UP

0.00 MB/s

100.00 MB/s

200.00 MB/s

300.00 MB/s
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Table 5.5: Relative Performance: Circular buffer throughput on in-memory disk
images.

TX RX

TCP STREAM UDP STREAM TCP STREAM UDP STREAM

SMP 1711.92 2346.74 887.31 2344.54

CMP 2741.44 3811.54 1293.00 3446.64

Table 5.6: Uncaptured intra-host (dom0/domU) TCP bandwidth [Mbit/s].
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6 Hardware Instruction Counting on

x86 Machines

As described in section 2.2.5, ungoverned asynchronous event handling may
produce arbitrary interleavings of state accesses between the preempted thread
and the service routine. Chapter 5 recognized the need for an instruction counter
within the augmented hypervisor, but did not discuss its realization.

The original idea of an instruction counter register implemented in proces-
sor hardware was originally described by Cargill and Locanthi [20], envisioning
debugging and profiling purposes. The proposed programming model is sim-
ple: The feature comprises single, dedicated register per hardware thread, both
readable and writable, which

• decrements by one on each instruction executed.

• triggers an interrupt, once the counter drops to zero.

In order to facilitate proper monitoring without counter interference by privi-
leged system software, counting may be assumed to be scopable to user privilege
levels.

Section 5.8 noted that the need for asynchronous event delivery can be sig-
nificantly lowered with a combination of opportunistic synchronization and a
modest degree of cooperation on the side of guest operating systems. Generally,
however, preemptively driven event processing in guest systems and a typically
non-cooperative process ABI makes consistent replay of arbitrary preemption
points in commodity systems indispensable.

Unfortunately, few architectures ever featured a true instruction counter.
Lacking a proper IC, an experimental counter implemented as part of the
Xen/VLS project was based on x86 performance monitoring resources. A perfor-
mance monitoring unit (PMU) built into a large number of available processors
from different vendors. It has properties similar to a true instructions counter.

The remainder of this section is organized as follows. First, section 6.1 dis-
cusses additinal related work. Section 6.2 then introduces x86 performance
monitoring features for a number of different processor models. While the fea-
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ture set for the given purpose is similar across different vendors, there are some
common, but non-obvious issues to be encountered when using these facilties
when to implementing a suitable IC. These are either due to the microarchitec-
ture or some properties of the instruction set, and discussed in 6.3.

Section 6.4 presents a suitable driver architecture integrating support for dif-
ferent processor types, as well as the individual solutions to above implementa-
tion issues. Section 6.5 will turn to an evaluation of the results, starting with
a measurable performance impact when running monitored machine code at
various interrupt frequencies. Section 6.6 describes improvements in counter
precision archievable with different variants of event counting.

6.1 Related Work

A multitude of different techniques to determine and recover processing state
at instruction granularity have been researched and developed in the past, in
both hardware and software. Techniques implemented in hardware, such as
instruction counter (IC) registers are generally the most convenient and ones,
with insignificant effect on runtime performance. Solutions in software are feasi-
ble, but of lesser accessibility especially dealing with general-purpose processors
featuring an instruction set which is complex by design, such as the x86 archi-
tecture.

The hypervisor-based system for active replication developed by Bressoud and
Schneider was built upon HP’s PA-RISC architecture Hewlett-Packard [19]. PA-
RISC [39] comprised a recovery register, suitable for the purpose of replaying
events deterministically. It operates functionally identical to the register inter-
face described above.

There is a number of recent systems which utilize performance monitoring
on Intel-architecture CPU families. The HP NonStop Advanced Architecture
(NSAA) utilizes the PMU of Intel Itanium processors to consistently replay in-
terrupts across different processor cores. Section 5.8.2 noted that NSAA exploits
cooperation by applications. However, it supports non-cooperative processes as
well, despite the kernel and run time support libraries rather targeting applica-
tions developed specifically to the given platform [16].

The ReVirt project was the first to combine deterministic replay with sys-
tem paravirtualization. The implementation is based on FAUmachine (former
UMLinux, see section 2.2.9). It includes drivers for AMD Athlon (K7), In-
tel NetBurst (Pentium4) and a partial implementation in support of Intel P6
and derived processors, such as the Intel Pentium M. Similar to the drivers
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presented here, the instruction counter utilized debugging facilities such as exe-
cution breakpoints and single-stepping to work around some of the PMU event
counts and favor branch counts over retired instructions where appropriate. In
summary, the implementation provides insights comparable to the material pre-
sented here, but does not support a number of later processor models.

Lacking solutions in hardware, early work was done in the area of alternative
control methods operating in software. Mellor-Crummey and LeBlanc showed
that implementation of an efficient software instruction counter (SIC) by code
instrumentation can be built [59]. There are alternative measures for program
execution state, even at the granularity of single instructions. The definition
of the original instruction counter as defined above is more strict than actually
necessary for the purpose given. In fact, the exact number of instructions ex-
ecuted is of no particular purpose during event replay. It only represents the
most straightforward enumeration of individual execution steps taken during a
program state sequence.

The software instruction counter developed by Mellor-Crummey and LeBlanc
exploits this fact by counting branches instead. Consider sampling the program
counter (PC) during an arbitrary state sequence. It increments by the size of
each instruction executed. The sequence of PC readings certainly cannot qualify
as an IC, since the same code position may be revisited multiple times. However,
the number of times this happens is bounded by the number of control transfers
performed by the machine. Control transfers include jumps and branches. At
a minimum, backward control transfers must be counted, since only those allow
for individual code positions to be executed multiple times [59]. Subroutine
entries must be counted for the same reasons. We idea of branch counting taken
branches instead of individual instructions will picked up in section 6.2.

Given that the definition of what consistutes a precise instruction counter may
vary, the discussion will be simplified by defining a number of simple properties
any facility suitable to instruction have.

Let E be the set of all possible executions e0e1 . . . en−1, n ∈ N of a system.

Uniqueness An instruction counter count(e) is unique if

(∀e0e1 . . . en−1 ∈ E)(∀i < n)(∀j < n)(count(ei) = count(ej) ⇒ i = j)

Informally, for any execution sequence, count(ei) produces a different
counter reading for any event ei within that sequence.

Monotonicity An instruction counter is monotonically increasing (decreasing) if

(∀e0ei . . . en−1 ∈ E)(∀i)(∀j)(count(ei) <(>) count(ej) ⇒ i < j)
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Monotonicity implies uniqueness, but is a stronger property.

Determinism For any two independent executions a and b of the same instruc-
tion sequence iie1 . . . in−1 ∈ I

(∀i)(count(ai) = count(bi))

Informally, if this property states all counter readings produced across
multiple executions of one and the same instruction sequence are equal.

6.2 Performance Monitoring on x86 Processors

Many modern x86-family processors support a number of event counter registers.
Designed to monitor machine events and aid code optimization, x86 performance
monitoring extensions [76, 46, 5] provide a flexible means for counting both
architectural and microarchitectural events during regular process execution.
The major application is system and application profiling, e.g. as implemented
by the Intel VTune performance analysis tool [76].

Unless auxiliary features are enabled, e.g. for event-based state inspection,
hardware event counting is generally non-invasive, i.e. it does not affect regular
program execution. Different from code instrumentation or statistical sampling
employed by many classical profiling applications, e.g. the UNIX prof or gprof
utilities [36], low runtime performance interference is implied.

Hardware performance monitoring facilities were originally introduced by Intel
with the P6 microarchitecture, the foundation of the Pentium and PentiumPro
processors [37]. They have been subject to redesign and enhancement with
almost any later microarchitecture [46]. Generally, the interface comprises a
number of model-specific registers (MSRs) for control and measurement. Per-
formance monitoring implies event counting. For profiling purposes, events are
typically microarchitectural, as opposed to architectural ones. With the excep-
tion of the Intel NetBurst microarchitecture (discussed below), the programming
interface event comprises one selector register and one counter register.

Implementations commonly provide at least two independent counters. Figure
6.1 shows a custom architectural model of common x86 processor performance
monitoring resources. Performance monitoring features at least two pairs of
MSRs. Each pair comprises one selector register encoding events to be counted,
and one counter register (PMC), accumulating sampled event occurrence.

A selector setting comprises an event identifier to count, plus additional con-
trol fields. Until 2006, performance monitoring extensions on x86 processors
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Figure 6.1: High-level microarchitectural model
of x86 performance monitoring.

were non-architected, i.e. the implementation not only differed between ven-
dors, but was subject to refinement with different revisions of the microarchi-
tecture. More recent processor models released by Intel indicate that this is
partly changing, with architected MSR and identifier assignments for a portable
subset of countable events stabilizing in present future microarchitectures.

Consequently, each variant requires a different driver. The implementation
subject to this thesis comprises the following model-specific drivers, unified un-
der a common software interface:

PPro (Intel PentiumPro, Pentium II/III, Pentium M) The original P6 processor
architecture dates back to 1995 [37]. From 2003 on, Intel revived the P6
architecture with the Pentium M product line of microprocessors.

P4 (Intel NetBurst) P4 is a colloquial term for a large range of processors based
on the P68 (NetBurst) microarchitecture [40]. Performance monitoring in
the NetBurst microarchitecture [46] largely differed from the P6, regarding
both features and the programming interface.

K7 (AMD K7/K8) The interface of the performance monitoring interface on
AMD Athlon and Opteron processors is similar to the one introduced
with the Intel P6, although with up to four PMCs [5] and different MSR
assignments.

Core2 (Intel Core 2 Architecture) Intel Architected Performance Monitoring
was ultimately derived from the the P6 interface, but represents a shift
towards a fixed programming interface maintained with future revisions
of the architecture. This process started with the release of the Intel Core
microarchitecture.
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There are two major event types which qualify instruction counting. An ob-
vious choice is counting instruction retirements, i.e. instruction effect being
finally committed to architected state1. The second option, as discussed above,
is counting (taken) branch instructions retired, as a subset of the general in-
struction count. With a minimum of two counters available on any platform
considered, both variants can be pursued simultaneously. In fact, section 3 will
demonstrate that this approach can be beneficial on some systems.

Independent of the event class counted, monitoring execution is only practical
if counter progression can be narrowed to the operating mode of the software
monitored. Otherwise, execution of the runtime environment implementing the
monitor will interfere with tracking the target instruction stream. Since the
same requirements apply to application profiling, all performance monitoring
implementations may be tuned to count user mode (privilege level 1-3) instruc-
tions exclusively.

Performance counters, in contrast to instruction counters, do not decrement
but increment on each selected event encountered. A performance monitoring
interrupt (PMI), if enabled, is generated on counter overflow, i.e. wrap to zero.
Event replay may therefore set the counter to a negative value when initiating a
state interval. As depicted in figure 6.1, counter overflow is signaled back to the
same processor core through the local interrupt controller (LAPIC)2. The default
setup typically generates a non-maskable interrupt (NMI) at the processor. For
the purpose given, reprogramming the APIC to an unused interrupt vector is
desirable.

Depending on the target application, available counter ranges need consider-
ation. Typical counter register readings are 48 or 40 bits wide. However, on
32-bit architectures like the P6 family, writes are limited to the lower 32 bits,
but sign-extended to the full counter width, i.e. initialization with negative val-
ues remains feasible. A portable driver may limit itself to a maximum interval
length of 231 instructions. Alternatively, larger intervals may be achieved by
concatenation.

Many applications target event simulation at dimensions matching average
interrupt frequencies found on commodity operating system platforms. This is

1With pipelined, out-of-order and speculative execution in modern superscalar microproces-

sor designs [37], the intuitive concept of instruction execution certainly does match its

counterpart at the microarchitecural level.
2Microarchitectural details of the hardware implementation are solely vendor affairs. Hence,

the concept of a separate PMU fully external from core execution units may not be accurate.

However, the depicted reference scheme proved to sufficiently match the counter behavior

experienced.
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due to the fact that basic sources of asynchrony even at the application level,
namely I/O and process scheduling, are ultimately driven by external interrupts.
The maximum interval duration on such systems is therefore bounded by the
timer interrupt. Typical timer frequencies are 100 Hz and above. On a hypo-
thetical processor running at 1 GHz clock speed with one instruction retiring
per cycle state sequences terminate after at most 107 (< 224) instructions.

6.3 Implementation Details

Regarding function properties as described above, x86 PMCs qualify well as
instruction counters. However, this is not entirely the case in terms of counter
reliability and precision. Section 6.3.1 addresses issues which are due to the fact
that PMI generation is not driven synchronously by instruction execution. Sec-
tion 6.3.2 discusses where performance monitoring counters are vulnerable to an
observable form of non-determinism themselves. Section 6.3.3 discusses specific
properties of the x86 instruction set which demand for additional attention.

6.3.1 Interrupt Latency

A fundamental difference between a PMC-based driver and a true instruction
counter is the fact that PMIs do not generate traps, but interrupts. This can
easily be derived from counter readings. Upon PMI reception, both instruc-
tion and branch counts will not equal zero, but a positive number, indicating
execution beyond the state originally targeted.

The reason can easily be derived from the conceptual model shown in fig-
ure 6.1. Interrupt delivery through a local APIC is independent from thread
execution. Architecturally, PMIs are delivered like external interrupts. In con-
trast, true ICs, like the one integrated into PA-RISC [39], would be architectural
elements integrated with the control logic, generating traps at instruction gran-
ularity.

In the following the number of instructions executed beyond the programmed
interval length will be referred to as lag. Practice reveals that the exact amount
of lag is neither constant nor precisely predictable, even across repeated execu-
tion of the same state sequence. However, it is fair to assume that PMI lag must
be bounded by some upper limit. Table 6.1 lists results for a number of different
processors tested3. The values were derived from experiments and apply to the

3The ID column shows Family/Model/Stepping triples identifying the CPU revision.



152 Chapter 6: Hardware Instruction Counting on x86 Machines

ID max lag

Intel P4 15/2/4 173

Intel P6 9/6/5 84

AMD K7 6/4/2 98

Intel Core 2 6/15/4 161

Table 6.1: PMI lag latencies for some x86 processors.

processor models as shown, but may easily be subject to small individual refine-
ment for different processors. Drivers implementations add a small percentage
for additional safety.

On the follower side, execution beyond the state dictated by the leader is not
recoverable and must be reliably avoided. This works by adjusting the interval
length in accordance with a given maximum lag. Construction of the interval
length is shown in figure 6.2. Let il be the number of instructions given by
the determinant of an asynchronous event. Then if = il − max lag is a save
number of instructions to adjust on the PMC register in order to follow. Upon
PMI reception, the actual lag l experienced will in the range 0 ≤ l ≤ max lag,
hence if + l ≤ il. As shown figure 6.2, this approach provokes a gap between an
intermediate preemption point and the targeted point of event delivery.

Since the target IP is part of the determinant, a considerably simple method
to recover from this state, and the one commonly employed on a processor
models, is to terminate the remaining instruction sequence to execute with an
instruction breakpoints. This approach causes slight additional overhead due to
the exceptions generated. While the number of exceptions necessary depends on
the control flow surrounding the target IP, the worst case of a tight loop involving
two instructions will not exceed max lag/2 exceptions before termination.

6.3.2 Interrupt Interference

Generally, instruction and – depending on the processor – branch retirement
counts increment upon arbitrary control transfers. This includes exceptions and
external interrupts, despite the fact that these events are typically transparent
to application software, and intuitively would not be considered as separate
instructions even when the event mask includes events at the operating system
level.
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Figure 6.2: Construction of an instruction interval in follower mode

External interrupts are due to externally induced conditions and thereby
non-deterministic. As outlined in section 5.8, the same applies to fair num-
ber of exceptions. To ensure consistent reading across repeated execution, non-
deterministic increments must be compensated. Since the effect cannot be tuned
in hardware, continuous readjustment in software is necessary. There are two
methods to determine the number interrupts which occurred within a given time
frame:

1. Utilizing the PMU to separately count interrupts. Most processors imple-
ment a separate performance event for control transfers due to interrupts
and exceptions.

2. Counting control transfers from within the ISRs. This requires careful
instrumentation for any possible vector.

Some drivers, such as P6, pursue method 2. The computational overhead to
individual ISRs is negligible. Implementation complexity depends on the design
of the surrounding system software. Most systems (including Xen and Linux)
share common execution paths for exception and interrupt handlers, which then
can be modified for that purpose.

There is some risk in counting external interrupts in software. The Intel ar-
chitecture defines a dedicated system management mode (SMM)[5, 46], entered
from reception of a dedicated interrupt (SMI)4. SMM mode is typically con-
figured by firmware extensions, thereby difficult to alter without compromising
the platform. Depending on the individual system configuration, SMIs occur on
a regular basis. The impact of control transfer to SMM appears to be gener-
ally undocumented. Practice shows that control transfers to SMM mode do not
always affect event counting. A more detailed investigation on a per-processor

4SMM has been designed to remain fully transparent to system software, much in contrast

to modern ACPI-based systems. Typical actions performed by SMM include power man-

agement or emulation of platform facilities speed.
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Instructions Branches

IRQ Trap Fault IRQ Trap Fault

Intel P6 1 1

Intel Pentium 4 0 1

Intel Core2 1 1

AMD K7/K8 1 1

Table 6.2: Counter increment upon hardware interrupts and exceptions. With
the exception of the Pentium 4, branch and instruction counters are
equally affected.

has not been performed as part of the research presented here.

All recent revisions of both AMD and Intel processor manuals [4, 46] document
that retirement counts are affected by interrupts, but do not quantify them.
Table 6.2 shows the actual effect of interrupts experienced. Generally, counter
increments vary with both different vendors and individual processor models. As
shown, the interference may differ between instruction and branch retirements.

6.3.3 String Instructions

The x86 CISC instruction format comprises a variable number of prefix bytes [6].
Prefixes, if present, override some of the default properties of an instruction, e.g.
address size, operand size or atomicity of complex read-modify-write instruc-
tions. An additional prefix variant are repeat prefixes (REP/REPx/REPNx), which
turn certain load, store or I/O instructions into loop constructs. A REP-prefixed
instruction will be executed in an implicitly loop, until some loop-terminating
condition is reached. REP prefix bytes have a large number of different appli-
cations, including large I/O data transfers or yielding compact expressions for
string processing procedures.

In contrast to “ordinary” retirement, REP-prefixed instructions generate not
a single transition at the architected interface, but a whole state sequence tra-
versed in multiple execution steps. This presents a major issue due to their
specific effect on retirement event counts when combined with external inter-
rupts.

• The state sequence neither counts as multiple instructions retired, nor
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does it qualify as a number of branches performed (atomicity). This is
uniformly the case with all processor models evaluated.

• However, repetition is non-atomic with regard to exceptions and external
interrupts. All REP-induced loops solely operate on architected processor
state individually committable, i.e. intermediate states are resumable after
return from an ISR.

Since the single counter reading for all iterations fails to identify a precise
point within the state sequence traversed, asynchronous events interrupting REP-
prefixed instructions break the monotonicity property discussed in section 6.1.

Again, there exist different potential workarounds. All repeat-prefixed in-
structions decrement the rCX register during iteration [6]. One option is to
reconstitute monotonicity by augmenting the IC with the value of rCX for any
given state interval, then let followers resort to single-stepping individual loop
iterations during replay. The downside is that the number of iterations is po-
tentially large, which may lead to unacceptable numbers of individual iterations
to be trapped. This implies opportunities for malicious workloads exploiting
sensitivity to very long REP-sequences.

Another alternative, and the strategy performed by the VLS driver, is an
additional rule to the event log, which disallows partially completed repeat-
prefixed instructions to terminate an epoch on the leader side. The idea has
been dubbed REP-atomicity. Leader mode therefore operates as follows:

1. Upon encountering an asynchronous event to be delivered, decode the
prefix bytes of the instruction presently terminating the epoch at hand.

2. If a REP prefix is encountered, install an execution breakpoint at the in-
struction immediately following the present one, then resume execution.
From the breakpoint trap, continue at 3.

3. Log and deliver the event.

Since the original IC semantics remain unaffected from this change, so does
the follower side during event replay. Furthermore, an immediately following
REP does not require additional treatment. The computational state preceding
the first iteration is a valid target to the follower side facility, as described in
section 6.3.2.

While REP-atomicity avoids excess single-stepping of loop iterations, it should
be noted that it adds additional latency to external interrupt delivery. Partial
decoding of any potential epoch boundary preceding an event is an O(1) opera-
tion and does not need consideration. However, considering malicious workloads
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as described above, atomic execution of very long REP-iterations may provoke
notable impact on overall I/O performance.

6.4 Driver Architecture

Foregoing incorporation into the Xen hypervisor, a prototype IC driver was de-
veloped as a kernel extension on the Linux operating system. The prototype
comprises a patch to a recent version 2.6 kernel release and a set of runtime-
loadable modules. Sampled instruction streams are user space processes forked
from a small utility mediating between user and kernel space. Necessary modifi-
cations to original kernel code include save and restore of PMC state upon task
switches. The system implements two modes of monitored task execution to
simulate leaders and followers: Trace mode generates a log of process interrup-
tions at arbitrary regular intervals, replay mode reproduces the logged sequence
on a respawned instance of the same program.

An experimental implementation on a modular commodity operating sys-
tem proved highly recommendable, especially when considering integration into
even lower-level monitoring facilities such as a Type I VMM. One reason are
practical consideration during development: The module loading facility [18]
implemented by the Linux kernel allows for replacement of custom subsystems
at runtime. More importantly, operating system ABIs allow for arbitrary exper-
imental programs (e.g. such involving string instructions) to be written as small
user programs in a simple process execution environment. Performance evalu-
ation could thereby be based on customary benchmark programs with various
instruction mixes, isolating the potential contribution of the operating system
kernel from elapsed benchmark times.

The resulting overall driver architecture is shown in figure 6.3. The driver
could be carried from Linux to the Xen VMM without significant modifications.
However, as discussed throughout previous sections, integration with the sur-
rounding privileged software stack proved to be significantly more complex than
a pure hardware counter would be. This is mainly due to the comparatively
complex interaction with the trap and interrupt handling facilities. In order to
facilitate compensation of interrupt accumulation, any control transfer to ring
0 is sampled in software. Similarly, execution breakpoints need to be managed
separately from those on behalf of regular system tools.

At the lowest level are drivers for individual CPU models according to section
6.2. The IC incorporates a programming interface comprising two different
modes of operation, corresponding to the two modes of a replay engine as would
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Figure 6.3: PMU-based instruction counter architecture for x86 systems.

be implemented as part of any overall monitoring facility: Trace mode treats an
original program execution as a number of instruction sequences on a respective
leader instance. Counter readings can be saved and reset at arbitrary points
during execution. Replay mode controls follower execution from saved counter
readings. A simple test module would interrupt any program after a selectable
number of instructions.

6.5 Performance Impact

Solely focusing on the subject of asynchronous event replay, no attempt to trace
and replay process I/O was made. Replayability of the event log therefore
depends on user space code carefully crafted for full determinism. Fortunately,
this is the case for a considerably large fraction of CPU benchmark programs
available.

The customary mechanism for the delivery of asynchronous events on UNIX-
like systems would be signals [42]. It should be noted that, for the purpose
given, signal delivery was not performed. The purpose of the IC is to potentiate
delivery of such signals. Since replay on a PMC-based IC on x86 is non-trivial,
the following evaluation investigates the overall performance impact induced by
the IC driver itself, in isolation from any in-process control transfers. To this
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Figure 6.4: Performance downgrade by interval length

purpose, execution of fixed instruction sequences at various frequencies were
investigated.

The performance evaluation testbed consisted of a selected subset of the SPEC
CPU2000 suite of benchmark programs: gzip, vpr, mesa and eon. Each pro-
gram was first run in leader mode, then replayed in follower mode. This process
is iterated with interval lengths from 231 to 218 instructions decreasing by powers
of two.

In order to avoid interference with system I/O, logging was performed to in-
memory buffers. Execution runtime of the selected programs was intentionally
shortened due to limitations in buffer space. Figure 6.4 shows CPU time for a
test run of approximately 128 seconds, accumulating executions of all 4 programs
by interval length. For each pair of bars, the left one shows time spent in leader
mode and the right one shows follower mode.

Replay mode is considerable more costly than follower mode. This is due to
the overall number of debug exceptions generated when compensating for PMI
lag as described in section 6.3.1. Expressing exceptions in numbers would not be
practical: The number of iterations trapped by execution breakpoints depends
much on the length of iterated basic blocks, thereby individual code interrupted.
In practice, followers would therefore dictate overall execution speed.

6.6 Counter Quality

Performance monitoring is not subject to the same overall requirements on pre-
cision and transparency to which core functional units must conform. After
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eliminating the major, but fortunately observable sources of non-deterministic
counter behavior, as outlined above, smaller inconsistencies, whose causes ap-
pear non-observable at the architectural level, may persist. However, one can
observe that branch and instruction counts expose different precision, which is
the major reason why the driver developed ultimately remains in support for
both variants, even simultaneously, if necessary.

In order to analyze precision for different processor models, errors experienced
when running programs in either leader and follower mode were analyzed. Af-
ter each instruction interval performed on the follower, errors typically lead to
measurable offsets between the counter value derived the leader execution and
the counter reading after replay.

On Core 2 architecture machines, retired branch counts reveals no remain-
ing imprecision, but counting individual instructions does. Figure 6.5 shows a
bubble diagram which depicts an example distribution to demonstrate the dif-
ference. It shows counter precision for a run of 174.gzip at a relatively short
interval length of 218 instructions per interval, on an Intel Xeon 5100 2.66GHz
processor (Core2 in table 6.1).

Similar patterns were obtained on the Pentium4 and K7 processors listed in
table 6.1. Generally, success varies with with the given processor model. With
the Pentium4 processor, stability of the branch counters was rarely sustained
over periods of more than a few minutes. A more detailed analysis of reasons
for failure than the experiences provided here cannot be obtained obtained from
software-based analysis. As noted in section 6.3.2, one potentially interfering
event source may be system management interrupts. These are however carefully
shielded from system software by machine firmware.

Finally, inconsistencies can be made to compensate for each other, which is
where counting both branch and instruction retirement is beneficial. Figure 6.6
shows counter precision for the same CPU2000 program and interval configu-
ration as above, but on an Intel Pentium M 1700 MHz (P6 in table 6.1). As
shown, offsets of up to an increment or decrement by 2 were observed on both
the branch and instruction counts.

This case can be exploited in order to gain confidence in the counters, by
applying the following rationale: There is no reasonable control flow construct
which retires the same number of instructions and branches at the same time,
then restoring the IP to the same original position. Any condition where the
branch offset equals the instruction offset may therefore be considered a state
match. A possible attack against this approach would be either a branch or
jump instruction spinning in an endless loop or, similarly, a ring sequence of
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Figure 6.5: Branch and instruction counter precision on a Core2 processor.

an arbitrary number of branches and jumps. No such constructs, however, can
produce any program state changes. In that case, event delivery would remain
unaffected, even if the driver misinterprets the number of actual loop iterations
performed. The driver can safely exploit this effect by deciding on a state match
by a simple condition: An original state is reached during replay, if and only if
an apparent branch offset equals the negative instruction offset.

6.7 Future Work

As an alternative to mechanisms implemented in hardware, binary recoding
techniques might be applied in order to let code executed by the guest system
maintain a software branch counter. The code generated would be similar in
structure to the one created by compile-time instrumentation, as suggested by
Mellor-Crummey and LeBlanc [59].

One of the original goal of the PMC-based instruction counter has been been
to mimic overall performance properties of a true hardware instruction counter
as closely as possible. This excluded binary recoding, in favor of executing
original code unmodified.

Obviously, PMI lag and the resulting frequent need for breakpoint instrumen-
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Figure 6.6: Branch and instruction counter precision on a Pentium M processor.

tation ultimately counteracted that goal. Furthermore, allocation of standard
debugging facilities for the purpose of transparently replicated execution may
potentially conflict with applications. One may argue that binary recoding could
potentially eliminate overhead implied by repeating control transfers to exter-
nal monitoring software. For this purpose, the original instruction marking the
point of event delivery might be replaced by an instruction sequence performing
both an interpretation of the original sequence as well as the comparison between
PMC readings and the original point of delivery. Both can be performed from
within user mode. Note however, that generating such an instruction sequence
is not entirely trivial: executing instrumented code at the same privilege level
will generate additional retirement events. Generally, any routine instrumenting
leader or follower instance would need to account for its own instructions.

Additionally, binary recoding might eliminate the need to enforce atomicity
of REP-prefixed instructions. As discussed in section 6.3.3, the approach taken
is sufficient for evaluation purposes but potentiates large interrupt latencies,
e.g. induced by malicious application code. Simulation of REP-prefixes, i.e.
replacement with an explicit loop construct around the original instruction,
can reconstitute interruptible execution. Navigation on the state sequence may
match a logged rCX register value, as originally suggested.
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7 Conclusion

7.1 Summary

Chapter 5 closed with an evaluation of performance impact and event log band-
width experienced when capturing non-deterministic events in Xen’s paravir-
tual machine interface. Especially regarding the runtime performance impact
of generating determinant logs, the results appear very encouraging. For CPU-
intensive applications, a performance downgrade of 0.65% appears almost neg-
ligible. Given the task at hand, 5.7% in SMP configurations for I/O-intensive
workloads measured so far remains defensible.

Nonetheless, the task of tracing any input to guest systems generates data
streams of considerable volume. More than performance implications, band-
width requirements are of interest. Whether applied for debugging, profiling
or high-availability purposes, the limits of determining non-determinism at run-
time will significantly impact usability as soon as a captured determinant log
volume per time approaches the limits of storage facilities or network intercon-
nects to which it will be forwarded. As one would intuitively expect, the volumes
reported in section 5.10 are largely dominated by guest I/O, and therein by user
data. One may argue that many of the server system in use today are suffi-
ciently equipped with fully networked I/O resources, such as network-attached
storage. In such setups, guest system input bandwidth experienced and band-
width available for event log transport may remain in balance.

Beyond quantitative measures, chapter 5 described general technique to in-
tegrate trace generation into the VMM and surrounding I/O virtualization in-
frastructure. Clearly, the architectural design principles presented throughout
chapter 5 have mostly been influenced by the specific architecture of the Xen
hypervisor, most notably the need for controlling shared state accesses across
address space boundaries. SMA channels, which export DMA-like controllable
data transfers to the guest system interface, clearly belong into this category.

On the other hand, some of the ideas developed appear applicable to a broader
range of virtualization solutions. Most notably the concept of back-buffering
state changes for deferred delivery inside the bare hypervisor, while actually a
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simple idea, contributed much to a desirable degree of simplicity and compara-
tive non-intrusiveness when integrated within the overall VMM architecture. Its
applicability does not depend on I/O virtualization delegated to guest systems.
This means that it could be equally applied to monolithic systems.

However, these techniques clearly depend on a paravirtual machine interface
building upon data exchange in shared memory. This design is not an obvi-
ous one. The far more intuitive choice is an interface design rather inspired
by OS ABIs, i.e. depending on hypercalls. Interestingly, both the competing
VMware VMI and Microsoft’s Hyper-V specifications [10, 60] belong into the
latter class. Many resources which Xen mapped to shared memory are imple-
mented as hypercalls in VMI and Hyper-V, including e.g. timer inquiries or
interrupt control. A function-based interface to I/O facilities has to resort to
bypassing original VMM functionality to achieve consistent replay among replica
instances, thereby would add more unwanted changes to the core VMM than
the architecture presented here.

Chapter 6 proposed to use customary x86 performance monitoring facilities
as a compensatory instruction counter. Since this usage remains beyond specifi-
cations from processor manufacturers, the results could hardly be guaranteed to
be sufficient for highly-available applications in a mission-critical environment.
This does not mean that such usage is not possible, nor that the implemen-
tation described is insufficient. However, it should be noted that real-world
scenarios would require long-term testing and quality assurance, far beyond the
degree of stability required for experimental purposes, such as the ones pursued
throughout this thesis. However, the implementation is based on insights largely
beyond available processor documentation and reflects a time-consuming engi-
neering effort even for prototypical system development. It therefore remains as
a reference for future research in the same or similar areas.

Last but not least, one contribution of this thesis is a demonstration that
a more reliable and versatile true hardware instruction counter in commodity
processor architectures would pave the way for a considerable number of useful
applications, effectively and efficiently. With virtual machines, the time for
software-level deterministic replay has finally come.

7.2 Future Research

The overall tracing facility implemented and studied in 5 presently covers a
major subset of the entire paravirtual machine interface defined by Xen’s para-
virtual machine layer.
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Smaller “leaks” remain, but should not compromise on the overall reliability
of basic performance and bandwidth measurements presented in section 5.10.
One example of an I/O facility not included in above measurements is the Xen-
Store configuration service described in section 4.8. However, the data volume
typically transferred is used only for system and device initialization. It would
only account for a few kilobytes of additional input data to the target system.

Processor models in support of concurrent guest instantiations were assumed
to be entirely homogeneous, which need not strictly be the case in practice.
Xen’s binary guest interface includes emulated access to various control inter-
faces, exposing detailed information about real processor features and configura-
tion items. One example is the cpuid instruction, which can be used to inquire
about various ISA extensions available. In less experimental implementations,
heterogeneous setups announcing strictly equal feature sets would be needed. A
negotiation phase between leader and follower hosts may limit the interface to
a least common denominator.

Some questions remain. Most notably, tracing network I/O in future revisions
should provide additional insights. While chapter 5 showed that overall band-
width limitations of device I/O capturable can also be derived for the storage
interface, maximum bandwidth achievable cannot substitute the more flexible
message-passing interface paravirtual network I/O implements. Most notably,
the effect of SMA on communication latency remains to be evaluated in more
detail. Request/response latencies for user datagrams of various sizes sent over
a network link would fall into this category.

Beyond completeness, there are some new advancements in hardware and
system software design which promise exciting opportunities to further improve
the performance of the solution described here. This is discussed in the following
two sections.

7.2.1 Time-Travelling Storage Systems

One recent field of research is storage system architecture in support of a virtual
machine’s capability to roll back and resume from past execution state. These
typically target checkpoint/restore facilities, as well as the capability to resume
(“fork”) multiple instances of virtual machines [92]. In Xen/VLS, the present
strategy of unilaterally capturing and logging all user data accounts for much
of the log volume generated. Input from storage systems, however, outlives an
execution unless data read is subsequently overwritten by the executing guest
system, and then is recoverable at the original source.
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Recoverability of past system state (“time-traveling”) for storage systems has
been subject of Parallax, a distributed storage system which allows creation
of forks and snapshots on block device images [90]. Snapshots are indepen-
dently accessible disk images sharing a common ancestor. Starting from a given
snapshot, every subsequent write operation leaves original snapshot state recov-
erable. To remain efficient, the system employs copy-on-write techniques within
its underlying block allocator.

When used for deterministic replay, initialization of a leader instance would
create a snapshot of all associated disk images before resuming execution. Re-
play at a later point in time can then restart an original computation from the
original device state. Especially for applications reading large volumes of data,
but with low write performance, e.g. web servers, storage cached on both leader
and follower nodes may enable a considerable fraction of guest input be omit-
ted from the replay event log stream. Data could then be served from cached
snapshots instead.

7.2.2 DMA Engines

Another potential field of research are hardware DMA engines. A considerable
fraction of the downgrade in peak guest system performance and I/O through-
put is likely due to sampling input from guest memory. Resorting to transfer
mechanisms implemented in hardware may therefore save precious processor cy-
cles and additionally reduce some of the overall cache footprint of the present
solution, which is in software.

Some recent x86 chipset integrate a host DMA engine, envisioning to offload
packet transfers between host and device memory in upcoming 10GB networks
(“TCP onload” engines) [68]. The same DMA controller architecture could be
used for memory-to-memory transfers during event capturing.

Similarly, network interfaces controllers (RNICs) capable of remote direct
memory access (RDMA) [67], such as InfiniBand [43], can aid both in event
capturing and network transport. RDMA is an industry standard whose main
motivation is to permit zero-copy data transfers between applications on remote
memory subsystems, bypassing not only a host processor for copying data, but
the entire operating system when initiating such transfers.

To achieve true zero-copy event logging, data should be read from target
guest memory. In theory, this is possible. However, the differences in how
a suitable SMA controller implementation has to handle transfers on behalf
of driver domains should not be underestimated. Any DMA variant, whether
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host-bound or network-oriented, proceeds asynchronously from host processor
execution. While the CPU cycles thereby saved are the sole reward to be gained,
resuming guest execution before transfer completion risks correctness, if sampled
input may concurrently be overwritten. Section 5.5.1 outlined page protection
to synchronize guest access to shared memory region with concurrent update
initiators. Similar mechanisms could be used to transparently write-protect
guest input, synchronizing guest write accesses with transfer completion. But
as already discussed in above section, this approach comes again at its own cost.

A tradeoff would be synchronous copies of the event log to avoid guest in-
terference, as performed in the present version, then utilizing DMA for further
processing of data becomes available to dom0.

7.2.3 Deterministic Multiprocessor Replay

While scalability on multiprocessor systems has been a major concern during
development of the techniques proposed here, deterministic replay of multipro-
cessor guest systems on Xen has not been investigated yet.

Arguably, controlling non-determinism in multiprocessor VMs entails signif-
icant additional complexity. Section 2.2.5 identified arbitrary interleavings of
memory accesses by concurring hardware threads as a major source of non-
determinism on multi-processors. Hence, strict memory access ordering must
be performed when tracing execution, then maintained during replay in order
to guarantee consistent. Mechanisms in either software or, to speed up the de-
termination of a particular ordering, processor hardware may be employed in
order to perform such a task. The Flight Data Recorder was one research project
which investigated an efficient mechanism implemented in hardware. FDR took
advantage of present cache coherence hardware to generate and log replayable
data about thread ordering [96].

Lacking similar facilities in contemporary commodity hardware, implementa-
tion and optimization of existing software mechanisms represents the foreseeable
future. As noted above, shadow paging is a powerful basis in order to let the
VMM take control over guest memory accesses in a transparent fashion. Memory
access protection then may be used to determine and later enforce a thread or-
der. A sufficiently general approach has first been described by Mellor-Crummey
and LeBlanc [57]. The protection protocol they proposed is called CREW, short
for concurrent read, exclusive write. It is defined similarly to a reader-writer lock
in concurrent programming, but denotes a state assigned to entire page frames.

• Concurrent read: Arbitrary numbers of processors may read the same
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page, but no other processor write to it.

• Exclusive write: Only one processor may gain read/write permission at
any time.

Largely dealing with I/O, the SMA mechanism developed in chapter 5 will
not interfere with this model. Part of the update types summarized in section
5.7.3, such as mutual exclusion, could be straightforwardly carried over to mul-
tiple target processors. In fact, what mutual exclusive SMA operations do –
temporarily excluding any potential target processor from guest state access
– essentially promotes same the single-writer policy demanded by the CREW
protocol.

However, mutual exclusion remains the strongest and most costly technique
available. Many data items, such as a relevant subset of the shared info struc-
ture, are globally accessible but essentially belong to only a single virtual pro-
cessor. Similar in spirit to the sampling technique employed for I/O memory
updates, relaxation of memory access atomicity in favor of exploiting intrinsic
knowledge and cooperation on the side of guest kernel software may remain key
to a multiprocessor-capable SMA mode.
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