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Abstract

This thesis is concerned with embedding problems for large graphs under various types of
degree conditions in the host graph.

A conjecture by Bollobás and Komlós states that every graph with sufficiently high minimum
degree contains all spanning bounded-degree graphs with sublinear bandwidth.

We prove this conjecture, consider several variants as well as a bipartite analogue for sparse
host graphs. In addition, we characterise graph classes embraced by these results and confirm
a conjecture of Schelp on a Ramsey-type problem for trees. Our proofs are based on the
regularity method.

Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Einbettung großer Graphen unter verschiedenen
Bedingungen an die Knotengrade eines Trägergraphen.

Eine Vermutung von Bollobás und Komlós besagt, dass jeder Graph mit hinreichend hohem
Minimalgrad alle aufspannenden Graphen mit beschränktem Maximalgrad und sublinearer
Bandweite enthält.

Die Arbeit liefert einen Beweis dieser Vermutung, betrachtet verschiedene Variationen der
Fragestellung sowie ein Analogon für bipartite Graphen in dünnen Trägergraphen. Darüber
hinaus wird eine Charakterisierung der von diesen Resultaten umfassten Graphenfamilien
erstellt und eine Vermutung von Schelp bezüglich eines Ramsey-Problems für Bäume bestätigt.
Die Beweise basieren auf der Regularitätsmethode.
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Chapter 1

Introduction

How do different parameters of combinatorial structures influence each other? And what
are the local or global properties they enforce? These are questions common to extremal
combinatorics, Ramsey theory, and the theory of random structures. They form also the
starting point of this thesis.

The problems we consider concern characteristics that ensure the existence of certain
substructures. Such problems are called embedding problems because they can alternatively
be seen as the task to embed a given structure into an object with these characteristics. Their
study has led to a variety of results that are not only influential in many areas of mathematics
and computer science, but often beautiful as well. On many occasions they formulate simple
conditions for the embedding and connect seemingly unrelated parameters, thus exposing
charming and unexpected mathematical structure.

In graph theory the classical Erdős–Stone theorem is an eminent result of this type. It
considers the question how many edges are needed in a host graph 𝐺 to ensure that a given
graph 𝐻 can be embedded into 𝐺. The surprising answer is that neither (directly) the number
of vertices of 𝐻 nor the number of its edges is crucial here, but its chromatic number.

The Erdős–Stone theorem applies to graphs 𝐻 that are much smaller than the host graphs 𝐺
into which they are embedded. A series of other classical results in extremal combinatorics
(some of which we shall discuss in Section 1.1.1) concern the existence of so-called spanning
graphs 𝐻, i.e., graphs that have as many vertices as 𝐺. An interesting aspect of this kind
of results is that they assert a particular global structure (the spanning graph 𝐻) by way of
certain local properties of the host graph 𝐺, for example its minimum degree. A conjecture of
Bollobás and Komlós claims that the chromatic number is of similar importance for this type
of embedding problems as for the Erdős–Stone theorem. More precisely, this conjecture states
that the minimum degree needed to embed a very general class of spanning graphs 𝐻, again,
solely depends on the chromatic number of 𝐻.

In this thesis we will prove the conjecture of Bollobás and Komlós, consider several variations
of this result, and discuss a number of implications.

In nature the term regularity usually signifies that a structure or arrangement constitutes a
particularly symmetrical or harmonious, often aesthetically pleasing pattern obeying certain
rules.

The regularity lemma of Szemerédi [91] is a remarkable result on the asymptotic structure of
graphs, which lies at the heart of the methodology used throughout this thesis, and describes
a phenomenon of a similar character. Roughly speaking, this lemma states that every graph
is built from relatively few pieces with a very regular structure and some negligible additional
“noise”. More precisely, the vertex set of a graph 𝐺 can be partitioned into a constant number
of equally sized classes such that the following holds for most pairs (𝐴,𝐵) of such classes: The
edges running between the classes 𝐴 and 𝐵 form a bipartite graph with uniform, random-like
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Chapter 1 Introduction

edge distribution. Such a partition is also called a regular partition and the random-like
bipartite graphs are the regular pairs of this partition. As we will see, a regular pair is an
object well-suited for detecting certain structural features of the graph 𝐺 that contains this
regular pair.

At first sight this might seem somewhat contradictory: we want to guarantee certain
structural properties but deal with “random-like” objects that, one might be tempted to think,
could be anything. However, one important characteristic of random graphs is that they are
rich in substructure: they usually contain many copies of all graphs 𝐻 of constant size. And
in some sense this property carries over to the regular pairs (𝐴,𝐵) provided by the regularity
lemma. This motivates why partitions into regular pairs are extremely useful for verifying
that some host graph 𝐺 contains a given graph 𝐻 as a subgraph, which means that 𝐻 embeds
into 𝐺.

Before stating our results in Section 1.2 we will give a short account of the relevant previous
work in the area in Section 1.1. In Section 1.3 we will then sketch and explain some techniques
that are used in many parts of this thesis and that pivot around the application of the regularity
lemma.

1.1 History

In this section we provide some of the most important background material concerning extremal
graph theory (see Section 1.1.1) and Ramsey theory1 (see Section 1.1.2). This will enable us
to put our results in context later. We distinguish between questions and results for dense
graphs (Sections 1.1.1 and 1.1.2) and such for sparser graphs (Section 1.1.3) as the latter ones
are of a slightly different flavour.

1.1.1 Extremal graph theory

A well-known result in computer science states that it is computationally difficult to decide
whether a graph has a Hamilton cycle. This problem is NP-complete. Similar results can be
formulated for the appearance of substructures other than cycles. It is therefore valuable to
determine particularly simple conditions that are at least sufficient for the appearance of such
substructures. Establishing such conditions is a central topic in extremal graph theory.

A number of results in this area concern the existence of subgraphs of different kinds under
various vertex degree conditions. In other words, one is interested in embedding a given graph
into a so-called host graph fulfilling some specified properties, e.g., having high average degree
or high minimum degree.

Many early results in extremal graph theory study the appearance of a subgraph 𝐻 in
an 𝑛-vertex graph 𝐺𝑛 where 𝐻 is typically much smaller than 𝐺𝑛. We will briefly explain
the most important of them in the following paragraph. Then we shift our attention to the
analogous problem for growing subgraphs 𝐻𝑛, i.e., the case when the graph 𝐻𝑛 that we want
to embed into 𝐺𝑛 depends on 𝑛.

1These areas are certainly not disjoint. In addition, it seems to the author, there is no obvious consensus on
where their respective boundaries are nor whether any of the two is a (proper) subset of the other. But for
the results discussed here the distinction seems rather natural.
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1.1 History

The subgraph containment problem

The birth of extremal graph theory was marked by a result which is by now a classic: Turán’s
theorem [93] investigates how many edges a graph may have without containing a clique on 𝑟
vertices. The contra-positive of this question asks what average degree in a graph enforces a
complete graph 𝐾𝑟 on 𝑟 vertices as subgraph. This formulation shows that Turán’s theorem
can also be seen as a primal example for the type of embedding problems we described above.
It states that 𝐾𝑟 can be embedded into each 𝑛-vertex graph 𝐺 with average degree strictly
greater than 𝑟−2

𝑟−1𝑛.

Theorem 1.1 (Turán [93]). Every graph 𝐺 on 𝑛 vertices with average degree 𝑑(𝐺) > 𝑟−2
𝑟−1𝑛

contains a complete graph 𝐾𝑟 on 𝑟 vertices as a subgraph.

The question what happens if 𝐾𝑟 is replaced by some different fixed graph 𝐻 was considered
by Erdős, Stone, and Simonovits [31, 33] and led to one of the many generalisations of this
theorem. Their result, sometimes also called the fundamental theorem of extremal graph
theory, roughly states the following. The average degree of a host graph needed to guarantee
an embedding of a fixed graph 𝐻 depends only on the chromatic number of 𝐻, i.e., the minimal
number of colours needed to colour the vertices of 𝐻 in such a way that no two neighbouring
vertices receive the same colour (we will review all essential terminology in Chapter 2 or,
alternatively, in the chapter where we need it).

Theorem 1.2 (Erdős, Stone [31]). For every constant 𝛾 > 0 and every fixed graph 𝐻 with
chromatic number 𝑟 ≥ 2 there is a constant 𝑛0 ∈ N such that every graph 𝐺 with 𝑛 ≥ 𝑛0

vertices and average degree 𝑑(𝐺) ≥
(︀

𝑟−2
𝑟−1 + 𝛾

)︀
𝑛 contains a copy of 𝐻 as a subgraph.

Spanning subgraphs

When trying to translate Theorem 1.2 into a setting where the graphs 𝐻 and 𝐺 have the same
number of vertices, two changes are obviously necessary.

First of all, the average degree condition must be replaced by one involving the minimum
degree 𝛿(𝐺) of 𝐺, since we need to be able to control every single vertex of 𝐺. Also, for some
graphs 𝐻 it is clear that the lower bound has to be raised at least to 𝛿(𝐺) ≥ 𝑟−1

𝑟 𝑛: simply
consider the example where 𝐺 is the complete 𝑟-partite graph with partition classes almost,
but not exactly, of the same size (thus 𝐺 has minimum degree almost 𝑟−1

𝑟 𝑛) and let 𝐻 be the
union of ⌊𝑛/𝑟⌋ vertex disjoint 𝑟-cliques (see Figure 1.1).

G

6⊆
K4K4

K4K4

K4

n

n

n + 1

n− 1

1

Figure 1.1: The complete 4-partite graph 𝐺 on 4𝑛 vertices with partition classes of size 𝑛− 1,
𝑛, 𝑛, 𝑛+ 1 cannot contain 𝑛 vertex disjoint copies of 𝐾4.
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Chapter 1 Introduction

There are a number of results where a minimum degree of 𝑟−1
𝑟 𝑛 is indeed sufficient to

guarantee the existence of a certain spanning subgraph 𝐻. A well-known example is Dirac’s
theorem [29]. It asserts that any graph 𝐺 on 𝑛 vertices with minimum degree 𝛿(𝐺) ≥ 𝑛/2
contains a Hamilton cycle, i.e., a cycle on 𝑛 vertices.

Another early result on large 𝑟-chromatic subgraphs of graphs with minimum degree 𝑟−1
𝑟 𝑛

follows from a theorem of Corrádi and Hajnal [26] that every graph 𝐺 with 𝑛 vertices and
𝛿(𝐺) ≥ 2𝑛/3 contains ⌊𝑛/3⌋ vertex disjoint triangles, a so-called (almost) spanning triangle
factor.

Theorem 1.3 (Corrádi, Hajnal [26]). Let 𝐺 be a graph on 𝑛 vertices with minimum degree
𝛿(𝐺) ≥ 2

3𝑛. Then 𝐺 contains a triangle factor on 3⌊𝑛/3⌋ vertices.

This was generalised by Hajnal and Szemerédi [48], who proved that every graph 𝐺 with
𝛿(𝐺) ≥ 𝑟−1

𝑟 𝑛 must contain a family of ⌊𝑛/𝑟⌋ vertex disjoint cliques, each of order 𝑟.

Theorem 1.4 (Hajnal, Szemerédi [48]). Let 𝐺 be a graph on 𝑛 vertices with minimum degree
𝑟−1

𝑟 𝑛. Then 𝐺 contains a 𝐾𝑟 factor on 𝑟⌊𝑛/𝑟⌋ vertices.

A further extension of Theorem 1.3 was suggested by Pósa (see, e.g., [32]), who indicated
how Dirac’s Theorem concerning the existence of a Hamilton cycle and the spanning union of
many disjoint triangles could actually fit into a common framework. He conjectured that at
the same degree threshold 𝛿(𝐺) ≥ 2

3𝑛 where the theorem of Corrádi and Hajnal (Theorem 1.3)
promises the existence of a spanning triangle factor, a graph 𝐺 must indeed contain a much
more rigid substructure – the square of a Hamilton cycle (where the 𝑟-th power of a graph
is obtained by inserting an edge between every two vertices with distance at most 𝑟 in the
original graph, and the square of a graph is its second power, see Figure 1.2). Observe that
the square of a cycle on 3𝑡 vertices contains 𝑡 vertex disjoint triangles.

Conjecture 1.5 (Pósa). An 𝑛-vertex graph 𝐺 with minimum degree 𝛿(𝐺) ≥ 2𝑛/3 contains
the square of a Hamilton cycle.

Figure 1.2: The square of a Hamilton cycle.

The following approximate version of this conjecture for the case 𝑟 = 3 was proved by Fan
and Kierstead [34]: For every constant 𝛾 > 0 there is a constant 𝑛0 such that every graph 𝐺
on 𝑛 ≥ 𝑛0 vertices with 𝛿(𝐺) ≥ (2/3 + 𝛾)𝑛 contains the square of a Hamilton cycle. Fan and
Kierstead [35] later also gave a proof for the exact statement (i.e., with 𝛾 = 0 and 𝑛0 = 1) for
the square of a Hamilton path. In fact, they showed that for the existence of a square of a
Hamilton path, the minimum degree condition 𝛿(𝐺) ≥ (2𝑛− 1)/3 is sufficient and sharp.

Theorem 1.6 (Fan, Kierstead [35]). Every graph 𝐺 on 𝑛 ≥ 𝑛0 vertices with minimum degree
𝛿(𝐺) ≥ (2𝑛− 1)/3 contains the square of a Hamilton path.

4



1.1 History

Finally, Komlós, Sarközy, and Szemerédi [64] proved Pósa’s conjecture (Conjecture 1.5) for
large values of 𝑛.

A higher-chromatic analogue of Pósa’s Conjecture was proposed by Seymour [90] who
conjectured that the same statement remains true when “square” is replaced by “𝑟-th power”
and 𝛿(𝐺) ≥ 2𝑛/3 by 𝛿(𝐺) ≥ (𝑟− 1)𝑛/𝑟 (this is also often called the Pósa–Seymour conjecture).
Notice that this is, again, exactly the degree threshold where Theorem 1.4 asserts a spanning
𝐾𝑟-factor. Komlós, Sárközy, and Szemerédi [67] first proved an approximate version of this
result. Later the same authors [64, 68] gave a proof of the Seymour conjecture for fixed 𝑟 and
sufficiently large graphs 𝐺.

Theorem 1.7 (Komlós, Sarközy, Szemerédi [64]). For every integer 𝑟 ≥ 1 there is an integer
𝑛0 such that every graph 𝐺 on 𝑛 > 𝑛0 vertices with minimum degree 𝛿(𝐺) ≥ (𝑟 − 1)𝑛/𝑟
contains the (𝑟 − 1)-st power of a Hamilton cycle.

Recently, several other results of a similar flavour have been obtained which deal with a
variety of spanning subgraphs 𝐻, such as, e.g., trees, 𝐹 -factors, and planar graphs (see the
excellent survey [71] and the references therein). As an example we give the following theorem
due to Kühn and Osthus [72] about spanning planar subgraphs.

Theorem 1.8 (Kühn, Osthus [72]). There is 𝑛0 such that every graph 𝐺 with 𝑛 ≥ 𝑛0 vertices
and minimum degree at least 2

3𝑛 contains a spanning triangulation.

1.1.2 Ramsey theory

Most results in this thesis are density type results that, such as the theorems stated above,
guarantee a certain substructure by way of conditions on the vertex degrees in a host graph.
In Chapter 8 however we obtain a Ramsey-type theorem. Such results consider partitions of
objects and usually guarantee that in an arbitrary partition one can find a given structure
which is entirely in one of the partition classes.

As an example, the famous theorem of Ramsey [82] states that for any fixed integer 𝑟
there is an integer 𝑚 such that in any edge-colouring of 𝐾𝑚 with red and green there is a
monochromatic copy of 𝐾𝑟, that is, a copy entirely in red or in green. We write 𝑅(𝑟) for the
smallest number 𝑚 such that this is true.

Theorem 1.9 (Ramsey [82]). For every integer 𝑟 there is an 𝑚 such that any colouring of
the edges of 𝐾𝑚 with two colours contains a monochromatic copy of 𝐾𝑟.

This concept (and result) naturally generalises to graphs 𝐹 different from 𝐾𝑟 and, more
generally, to finite families of graphs ℱ : Let 𝑅(ℱ) denote the smallest integer 𝑚 such that in
any edge-colouring of 𝐾𝑚 with red and green either there are copies of all members of ℱ in
red or, or copies of all of them in green. In this case we also write 𝐾𝑚 → ℱ , say that 𝐾𝑚 is
Ramsey for ℱ , and call 𝑅(ℱ) the Ramsey number of ℱ .

The investigation of Ramsey numbers has received much attention, and the structural theory
around extensions and generalisations of Theorem 1.9 and its analogues for different structures
has grown into a field on its own. For surveys on the topic we refer the reader to [44, 80].

Here we will concentrate on the case when ℱ is a family of trees. Let 𝒯𝑡 denote the class
of trees on 𝑡 vertices, and let 𝒯 Δ

𝑡 be its restriction to trees of maximum degree at most Δ.
Haxell,  Luczak, and Tingley [51] determined the asymptotically correct Ramsey number for
trees with small maximum degree.
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Theorem 1.10 (Haxell,  Luczak, Tingley [51]). For all 𝛾 > 0 there is an integer 𝑡0 and a
positive 𝜂 such that each tree 𝑇 ∈ 𝒯 Δ

𝑡 with bipartition classes of sizes 𝑡1 ≤ 𝑡2 such that 𝑡2 ≥ 𝑡0
and 𝜂𝑡2 ≥ Δ satisfies 𝑅(𝑇 ) ≤ (1 + 𝛾)𝑡, where 𝑡 := max{2𝑡2, 2𝑡1 + 𝑡2}.

For general trees, Ajtai, Komlós, Simonovits, and Szemerédi [3] announced a proof of a
long-standing conjecture by Erdős and Sós, which implies that 𝐾2𝑡−2 → 𝒯𝑡 for large even 𝑡
and 𝐾2𝑡−3 → 𝒯𝑡 for large odd 𝑡. This is best possible. For the case of odd 𝑡 this is also a
consequence of a theorem by Zhao [94] concerning a conjecture of Loebl (see also [52]).

Theorem 1.11. For 𝑡 sufficiently large, 𝐾2𝑡−2 → 𝒯𝑡.

Let us now move on to a modification of the original Ramsey problem. The graph 𝐾𝑅(ℱ) is
obviously a Ramsey graph for ℱ with as few vertices as possible. However, one may still ask
whether there exist graphs with fewer edges which are Ramsey for ℱ . The minimal number of
such edges is also called size Ramsey number and denoted by 𝑅𝑠(ℱ). Trivially 𝑅𝑠(ℱ) ≤

(︀
𝑅(ℱ)

2

)︀
,

but it turns out that this inequality is often far from tight. For the class of bounded-degree
trees 𝒯 Δ

𝑡 , for example, a result of Friedman and Pippenger [36] implies a linear size Ramsey
number of order 𝑅𝑠(𝒯 Δ

𝑡 ) = 𝒪(Δ4𝑡). Haxell and Kohayakawa [50] improved on this bound and
replaced it with 𝒪(Δ𝑡).

More generally, Beck [14] asked whether the size Ramsey number of bounded-degree graphs
is always linear. Rödl and Szemerédi [88] showed that this is not true. They constructed
𝑛-vertex graphs 𝐻 with maximum degree 3 and with size Ramsey number at least 𝑛 log𝑐 𝑛 for
some positive constant 𝑐. A non-trivial upper bound, on the other hand, was established by
Kohayakawa, Rödl, Schacht, and Szemerédi [61]. Their result shows that the class of 𝑛-vertex
graphs with maximum degree Δ has size Ramsey number at most 𝑂(𝑛2−1/Δ log1/Δ 𝑛).

1.1.3 Sparse universal graphs

The graph embedding problems we discussed so far all fit into a common framework. Given a
class of graphs ℋ, we are interested in identifying host graphs 𝐺 which have the property that
they contain all graphs from ℋ as subgraphs. Such graphs 𝐺 are called universal for ℋ.

In this language, most results presented in Section 1.1.1 guarantee universality via different
degree conditions. However, they require the host graph to be dense and in fact often even
everywhere dense, inasmuch as every vertex of 𝐺 has at least a well-specified positive fraction
of all other vertices as neighbours. This raises the question which sparser structures can serve
as host graphs.

Sparse random graphs have proven to provide a suitable setting for constructing universal
graphs 𝐺 with few edges (although for several concrete families the best known constructions
of universal graphs can be obtained without randomness, we will see below). Indeed, Alon,
Capalbo, Kohayakawa, Rödl and Ruciński [8] showed that a sparse random balanced bipartite
graph 𝒢𝑛,𝑛,𝑝 (on 2𝑛 vertices where every edge running between the two partition classes, which
are of size 𝑛 each, exists independently with probability 𝑝) is universal for the class of spanning
balanced bipartite bounded-degree graphs on 2𝑛 vertices if 𝑝 = 𝑝(𝑛) = 𝑜(1) is sufficiently large.
For the exact formulation, let ℋ(𝑛, 𝑛,Δ) denote the class of all balanced bipartite graphs on
2𝑛 vertices with maximum degree Δ.

Theorem 1.12 (Alon, Capalbo, Kohayakawa, Rödl, Ruciński, Szemerédi [8]). There is
a positive 𝑐 such that for all Δ ≥ 2 the random balanced bipartite graph 𝒢𝑛,𝑛,𝑝 with 𝑝 ≥
𝑐(log 𝑛/𝑛)1/2Δ is asymptotically almost surely universal for ℋ(𝑛, 𝑛,Δ).
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In addition the same authors demonstrated that even more can be said when one considers
copies of smaller bipartite graphs. Assume that ℋ(𝑛, 𝑛,Δ) in the theorem above is replaced by
the class ℋ(⌈𝜂𝑛⌉, ⌈𝜂𝑛⌉,Δ) of all balanced bipartite graphs on 2⌈𝜂𝑛⌉ vertices with maximum
degree Δ for a small constant 𝜂. Then the same random graph 𝒢𝑛,𝑛,𝑝 with 𝑝 as in Theorem 1.12
is fault-tolerant in the sense that even the deletion of a substantial proportion of its edges does
not destroy universality for ℋ(⌈𝜂𝑛⌉, ⌈𝜂𝑛⌉,Δ). In other words, 𝒢𝑛,𝑛,𝑝 contains many copies of
all graphs from ℋ(⌈𝜂𝑛⌉, ⌈𝜂𝑛⌉,Δ) everywhere.

Theorem 1.13 (Alon, Capalbo, Kohayakawa, Rödl, Ruciński, Szemerédi [8]). For every
𝛾 ∈ (0, 1] and every integer Δ ≥ 2 there are constants 𝜂 > 0 and 𝑐 > 0 such that for
𝑝 ≥ 𝑐(log 𝑛/𝑛)1/2Δ the random balanced bipartite graph Γ = 𝒢𝑛,𝑛,𝑝 asymptotically almost surely
has the following property. Let 𝐺 be any subgraph of Γ such that |𝐸(𝐺)| ≥ 𝛾|𝐸(Γ)|. Then 𝐺
is universal for ℋ(⌈𝜂𝑛⌉, ⌈𝜂𝑛⌉,Δ).

This result can also be interpreted in the context of Ramsey-type questions. It states that
any colouring of the edges of 𝒢𝑛,𝑛,𝑝 with ⌊1/𝛾⌋ colours has a colour class that is universal for
ℋ(⌈𝜂𝑛⌉, ⌈𝜂𝑛⌉,Δ).

Turning to non-bipartite graphs Alon and Capalbo [6, 7] gave explicit constructions of
graphs that are universal for the class ℋ(𝑛,Δ) of all graphs with 𝑛 vertices and maximum
degree Δ. They improved on several other constructions of ℋ(𝑛,Δ)-universal graphs (see [8, 9]).
Universality of sparse random graphs for ℋ(𝑛,Δ) was studied in [8, 27].

Theorem 1.14 (Alon, Capalbo [7]). For every Δ ≥ 3 and every integer 𝑛 there is a constant 𝑐
and a graph 𝐺 with at most 𝑐𝑛2−2/Δ edges that is universal for ℋ(𝑛,Δ).

With regard to Ramsey-type questions Kohayakawa, Rödl, Schacht, and Szemerédi [61]
recently obtained a result of similar flavour as Theorem 1.13 for 𝒢𝑛,𝑝 (on vertex set {1, . . . , 𝑛}
where every edge exists independently with some sufficiently high probability 𝑝). Their theorem
states that in every 2-colouring of the edges of 𝒢𝑛,𝑝 there is a colour class that is universal
for ℋ(⌈𝜂𝑛⌉,Δ).

Theorem 1.15 (Kohayakawa, Rödl, Schacht, Szemerédi [61]). For every Δ ≥ 2 there exist
constants 𝜂 > 0 and 𝑐 > 0 such that for 𝑝 ≥ 𝑐(log 𝑛/𝑛)1/Δ the random graph 𝒢𝑛,𝑝 asymptotically
almost surely is Ramsey for ℋ(⌈𝜂𝑛⌉,Δ).

This theorem implies the bound on the size Ramsey number of bounded-degree graphs
mentioned in the previous section. Observe that the bound on 𝑝 in this theorem is better than
the one in Theorems 1.12 and 1.13.

1.2 Results

In this section we present the main results contained in this thesis and fit them into the picture
drawn in the previous section. We will describe various embedding results concerning large
subgraphs in dense graphs (Section 1.2.1) as well as in sparse random graphs (Section 1.2.4).
In addition we will discuss a characterisation of the graph classes covered by these results
(Section 1.2.2) and prove a Ramsey-type result for trees (Section 1.2.3). All results will be
repeated in the respective chapters that cover their proofs.
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1.2.1 Spanning subgraphs of sublinear bandwidth

In the beginning of Section 1.1.1 we considered the question what minimum degree 𝛿(𝐺) of an
𝑛-vertex graph 𝐺 forces a particular graph 𝐻 to be a spanning subgraph of 𝐺. We explained
that we certainly need to have 𝛿(𝐺) ≥ 𝑟−1

𝑟 𝑛 and saw different concrete examples where this is
already sufficient.

In an attempt to move away from results that concern only graphs 𝐻 with a special, rigid
structure (such as powers of Hamilton cycles), a näıve conjecture could be that 𝛿(𝐺) ≥
( 𝑟−1

𝑟 + 𝛾)𝑛 suffices to guarantee that 𝐺 contains a spanning copy of any 𝑟-chromatic graph 𝐻
of bounded maximum degree. However, the following simple example shows that this fails in
general. Let 𝐻 be a random bipartite graph with bounded maximum degree and partition
classes of size 𝑛/2 each, and let 𝐺 be the graph formed by two cliques of size (1/2 + 𝛾)𝑛 each,
which share exactly 2𝛾𝑛 vertices. It is then easy to see that 𝐺 cannot contain a copy of 𝐻,
since in 𝐻 every vertex set 𝑋 of size (1/2− 𝛾)𝑛 has more than 2𝛾𝑛 neighbours outside 𝑋. In
short, the obstruction here is that 𝐻 has good expansion properties.

The conjecture of Bollobás and Komlós

One way to rule out such expansion properties for 𝐻 is to restrict the bandwidth of 𝐻 (as
we will explain more in detail in Section 1.2.2 and Chapter 4). A graph 𝐺 has bandwidth
at most 𝑏, if there exists a labelling of the vertices by numbers 1, . . . , 𝑛, such that for every
edge 𝑖𝑗 of the graph we have |𝑖− 𝑗| ≤ 𝑏. Bollobás and Komlós [62, Conjecture 16] conjectured
that every 𝑟-chromatic graph on 𝑛 vertices of bounded degree and bandwidth limited by 𝑜(𝑛),
can be embedded into any graph 𝐺 on 𝑛 vertices with 𝛿(𝐺) ≥ ( 𝑟−1

𝑟 + 𝛾)𝑛. In Chapter 5 we
provide a proof of this conjecture.

Theorem (Theorem 5.1). For all 𝑟,Δ ∈ N and 𝛾 > 0, there exist constants 𝛽 > 0 and 𝑛0 ∈ N
such that for every 𝑛 ≥ 𝑛0, if 𝐻 is an 𝑟-chromatic graph on 𝑛 vertices with Δ(𝐻) ≤ Δ, and
bandwidth at most 𝛽𝑛 and if 𝐺 is a graph on 𝑛 vertices with minimum degree 𝛿(𝐺) ≥ ( 𝑟−1

𝑟 +𝛾)𝑛,
then 𝐺 contains a copy of 𝐻.

Note that for some results mentioned in the last section, the additional term 𝛾𝑛 in the
minimum degree condition is not needed (or can be replaced by a smaller term). In the general
setting, however, this is not possible: Abbasi [2] showed that if 𝛾 → 0 and Δ →∞, then 𝛽
must tend to 0 in Theorem 5.1.

Building on the techniques developed for obtaining this result, we will consider different
ways to weaken the minimum degree assumption in Theorem 5.1, which we describe in the
following paragraphs.

Bipartite host graphs

Theorem 5.1 implies in particular that for any 𝛾 > 0, every balanced bipartite graph 𝐻 on 2𝑛
vertices with bounded degree and sublinear bandwidth appears as a subgraph of any 2𝑛-vertex
graph 𝐺 with minimum degree (1 + 𝛾)𝑛, provided that 𝑛 is sufficiently large.

For Hamilton cycles 𝐻 it is known that this minimum degree condition can be replaced by
a much weaker condition if we have additional structural information about the host graph 𝐺:
If 𝐺 is a balanced bipartite graph then 𝛿(𝐺) ≥ 𝑛/2 suffices to find a Hamilton cycle in 𝐺
(see [78]). In Chapter 6 we show that a slightly bigger minimum degree threshold already
forces all balanced bipartite graphs 𝐻 with bounded degree and sublinear bandwidth.
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Theorem (Theorem 6.2). For every 𝛾 and Δ there is a positive constant 𝛽 and an integer 𝑛0

such that for all 𝑛 ≥ 𝑛0 the following holds. Let 𝐺 and 𝐻 be balanced bipartite graphs on 2𝑛
vertices such that 𝐺 has minimum degree 𝛿(𝐺) ≥ (1

2 + 𝛾)𝑛 and 𝐻 has maximum degree Δ and
bandwidth at most 𝛽𝑛. Then 𝐺 contains a copy of 𝐻.

Results of a similar nature have recently been established by Zhao [95], and by Hladký and
Schacht [53] who considered the special case of coverings of 𝐺 with disjoint copies of complete
bipartite graphs.

Ore conditions

Recall that Dirac’s theorem asserts the existence of a Hamilton cycle in 𝑛-vertex graphs of
minimum degree at least 𝑛/2. Ore [81] realised that this conclusion remains true even under a
weaker condition. He showed that it is not necessary to control the degree of every vertex
independently but that it suffices to guarantee a high degree sum for pairs of non-adjacent
vertices.

Theorem 1.16 (Ore [81]). Every 𝑛-vertex graph 𝐺 = (𝑉,𝐸) with deg(𝑢) + deg(𝑣) ≥ 𝑛 for all
𝑥𝑦 ̸∈ 𝐸 contains a Hamilton cycle.

Similarly one might ask whether it is possible to replace the minimum degree condition in
Theorem 5.1 by an Ore-type condition. In Chapter 7 we show that this is indeed the case for
3-colourable graphs 𝐺. We obtain the following theorem.

Theorem (Theorem 7.2). For all Δ, 𝛾 > 0 there are 𝛽, 𝑛0 > 0 such that for all 𝑛 ≥ 𝑛0 the
following holds. Let 𝐺 = (𝑉,𝐸) and 𝐻 be 𝑛-vertex graphs such that 𝐻 is 3-colourable, has
maximum degree Δ(𝐻) ≤ Δ and bandwidth at most 𝛽𝑛, and 𝐺 satisfies deg(𝑢) + deg(𝑣) ≥
(4
3 + 𝛾)𝑛 for all 𝑥𝑦 ̸∈ 𝐸. Then 𝐺 contains a copy of 𝐻.

The proof of this theorem uses a recent result due to Kierstead and Kostochka [56] that
establishes an Ore-type version of the Hajnal–Szemerédi theorem (Theorem 1.4).

1.2.2 Characterising sublinear bandwidth

In the preceding paragraphs we discussed a number of results concerning the embedding of
graphs 𝐻 with sublinear (or small linear) bandwidth. By definition such graphs 𝐻 admit
a vertex ordering in which the neighbourhood of every vertex 𝑣 is restricted to some few
vertices which immediately precede or follow 𝑣. This is beneficial in (and heavily used by)
the proofs of the aforementioned embedding results, insofar as they construct the required
embedding sequentially, following such an ordering. In this sense the bandwidth constraint
helps to “localise” the dependencies one needs to take into account during the embedding.

Recall also that the bandwidth constraint was introduced because results such as Theorem 5.1
do not hold without this extra condition. However, one may wonder whether it cannot be
replaced by other constraints. In addition, in view of our embedding results, it is natural to
ask which graph classes actually have sublinear bandwidth.

We will pursue these questions in Chapter 4 and show, for example, that planar graphs of
bounded maximum degree have sublinear bandwidth.

Theorem (Theorem 4.1). Suppose Δ ≥ 4. Let 𝐺 be a planar graph on 𝑛 vertices with
maximum degree at most Δ. Then the bandwidth of 𝐺 is bounded from above by 15𝑛/logΔ(𝑛).
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Similar results can be formulated for graphs of any fixed genus (i.e., graphs that can be
drawn without crossings on other surfaces than the plane) and, more generally, for any graph
class defined by a fixed set of forbidden minors (see Section 4.2.1).

The following example, that also showed that Theorem 5.1 becomes false if not restricted
to graphs 𝐻 of sublinear bandwidth, demonstrates that not all graphs with small maximum
degree have sublinear bandwidth: with high probability a random bipartite graph 𝐺 on 𝑛
vertices with bounded maximum degree cannot have small bandwidth since in any linear
ordering of its vertices there will be an edge between the first 𝑛/4 and the last 𝑛/4 vertices in
this ordering. The reason for this obstacle is that 𝐺 has good expansion properties.

This implies that graphs with sublinear bandwidth cannot exhibit good expansion properties.
One may ask whether the converse is also true, i.e., whether the absence of large expanding
subgraphs in bounded-degree graphs must lead to small bandwidth.

In fact, Theorem 4.1 is a consequence of the proof of the following result that characterises
sublinear bandwidth in various ways, among them expansion properties. This result relates
different graph parameters (whose definition we defer to Chapter 2) and proves that the concepts
of sublinear bandwidth bw(𝐻), sublinear treewidth (denoted by tw(𝐻)), bad expansion
properties (which are measured by the so-called non-expansion b𝜀(𝐻)), and sublinear separators
(whose size is quantified by s(𝐻)) are equivalent for graphs of bounded maximum degree. A
class of graphs is hereditary if it is closed under taking induced subgraphs.

Theorem (Theorem 4.6). Let Δ be an arbitrary but fixed positive integer and consider a
hereditary class 𝒞 of graphs such that all graphs in 𝒞 have maximum degree at most Δ. Let 𝒞𝑛

be the set of those graphs in 𝒞 with 𝑛 vertices. Then the following four properties are equivalent:

(1 ) For all 𝛽1 > 0 there is 𝑛1 such that tw(𝐻) ≤ 𝛽1𝑛 for all 𝐻 ∈ 𝒞𝑛 with 𝑛 ≥ 𝑛1.
(2 ) For all 𝛽2 > 0 there is 𝑛2 such that bw(𝐻) ≤ 𝛽2𝑛 for all 𝐻 ∈ 𝒞𝑛 with 𝑛 ≥ 𝑛2.
(3 ) For all 𝛽3, 𝜀 > 0 there is 𝑛3 such that b𝜀(𝐻) ≤ 𝛽3𝑛 for all 𝐻 ∈ 𝒞𝑛 with 𝑛 ≥ 𝑛3.
(4 ) For all 𝛽4 > 0 there is 𝑛4 such that s(𝐻) ≤ 𝛽4𝑛 for all 𝐻 ∈ 𝒞𝑛 with 𝑛 ≥ 𝑛4.

Consequently the bandwidth constraint in our embedding results is in some sense precisely
the “right” constraint: The embedding results become false if this constraint is omitted
because we cannot hope to embed graphs with good expansion properties, and restricting the
bandwidth rules out exactly these graphs.

1.2.3 Trees in tripartite graphs

The size Ramsey number of a class ℱ of graphs asks for the minimal number of edges in
a graph that is Ramsey for ℱ . A question of similar flavour is what happens when we do
not only want to find Ramsey graphs for ℱ with few edges, but require in addition that the
number 𝑚 of vertices is very close to 𝑅(ℱ). This question has two aspects: a quantitative
one (i.e., how many edges can be deleted from the complete graph 𝐾𝑚 so that the remaining
graph is still Ramsey) and a structural one (i.e., what is the structure of edges which may be
deleted). Questions of a similar nature were explored by Gyárfás, Sárközy, and Schelp [47]
when ℱ consists of an odd cycle and by Gyárfás, Ruszinkó, Sárközy, and Szemerédi [46]
when ℱ consists of a path. Our focus here is on the case when ℱ is a class of trees.

Schelp [89] posed the following Ramsey-type conjecture about trees in tripartite graphs:
For 𝑛 sufficiently large the tripartite graph 𝐾𝑛,𝑛,𝑛 is Ramsey for the class 𝒯 Δ

𝑡 of trees on
𝑡 ≤ (3− 𝜀)𝑛/2 vertices with maximum degree at most Δ for constant Δ. The conjecture thus
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asserts that we can delete three cliques of size 𝑚/3 from the graph 𝐾𝑚 with 𝑚 only slightly
larger than 𝑅(𝒯 Δ

𝑡 ) while maintaining the Ramsey property. In addition Schelp asked whether
the same remains true when the constant maximum degree bound in the conjecture above is
replaced by Δ ≤ 2

3 𝑡 (which is easily seen to be best possible). In Chapter 8 we prove a result
that is situated in-between these two cases, solving the problem for trees of maximum degree
𝑛𝛼 for some small 𝛼 and hence, in particular, answering the first conjecture above.

Theorem (Theorem 8.1). For all 𝜀 > 0 there are 𝛼 > 0 and 𝑛0 ∈ N such that for all 𝑛 ≥ 𝑛0

𝐾𝑛,𝑛,𝑛 → 𝒯 Δ
𝑡 ,

with Δ ≤ 𝑛𝛼 and 𝑡 ≤ (3− 𝜀)𝑛/2.

As for most embedding results in this thesis, we use the regularity lemma to establish this
theorem. Due to the nature of the methods related to this lemma it follows that Theorem 8.1
remains true when 𝐾𝑛,𝑛,𝑛 is replaced by a much sparser graph: For any fixed 𝜇 ∈ (0, 1] a
random subgraph of 𝐾𝑛,𝑛,𝑛 with edge probability 𝜇 allows for the same conclusion, as long
as 𝑛 is sufficiently large (see Section 8.7).

1.2.4 Sparse random graphs

Another way to formulate Theorem 5.1 (see page 8) is to say that the complete graph 𝐾𝑛 is
robust with respect to the containment of spanning bounded-degree subgraphs with sublinear
bandwidth in the following sense: An adversary may arbitrarily delete edges of the graph 𝐾𝑛

such that each vertex looses at most an 1
𝑟 − 𝛾 fraction of its incident edges. Then the resulting

graph still contains every 𝑟-chromatic graph with bounded maximum degree and sublinear
bandwidth as a subgraph. This raises the question whether the same remains true when 𝐾𝑛

is replaced by a much sparser (but in some sense regular) graph Γ, i.e. by an 𝑛-vertex graph
with 𝑒 edges such that 𝑒/𝑛2 tends to 0 as 𝑛 goes to infinity. Clearly, 𝐾𝑛 cannot be replaced
by just any sparse graph Γ and hence it seems natural to ask whether a random graph 𝐺𝑛,𝑝

can play its rôle.
In Chapter 9 we will prove that this is true when we are interested in the embedding of

almost spanning bipartite graphs 𝐻.

Theorem (Theorem 9.1). For every 𝜂, 𝛾 > 0, Δ > 1 there exist positive constants 𝛽 and 𝑐
such that the following holds asymptotically almost surely for Γ = 𝒢𝑛,𝑝 with 𝑝 ≥ 𝑐(log 𝑛/𝑛)1/Δ.
Every spanning subgraph 𝐺 = (𝑉,𝐸) of Γ with deg𝐺(𝑣) ≥ (1

2 + 𝛾) degΓ(𝑣) for all 𝑣 ∈ 𝑉
contains a copy of every graph 𝐻 on 𝑚 = (1− 𝜂)𝑛 vertices with maximum degree Δ(𝐻) ≤ Δ
and bandwidth bw(𝐻) ≤ 𝛽𝑛.

Observe that this result uses the same bound on 𝑝 as Theorem 1.15. In fact we utilise
methods developed in [61] for proving this theorem and combine them with suitably adapted
methods for the proof of Theorem 1.13 in [8]. Note that in contrast to both of these theorems
we embed graphs 𝐻 that are almost as big as the host graph. The price we have to pay,
however, is that we need to restrict the number of deleted edges at each vertex separately.

1.3 Techniques

In this section we will briefly describe some of the central ideas underlying our methods for
proving the embedding results given in the previous section. We have already indicated that
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many of our proofs are based on the regularity lemma and that a regular partition is suitable
for the embedding of graphs. In these proofs we will often also use the so-called blow-up
lemma, a tool for embedding graphs into regular pairs (which we explain more in detail in
Section 1.3.1). In order to successfully apply the regularity lemma and the blow-up lemma
a sequence of preparatory and intermediate steps is necessary which usually require a fair
amount of work. Our goal in this section is to discuss some of the necessary steps while
omitting most technical details. We start with a more detailed account of regular partitions.

1.3.1 Regular partitions and the blow-up lemma

As explained earlier, the regularity lemma guarantees the existence of 𝜀-regular partitions of
graphs. Let us shed some more light on this concept and provide a few definitions that will be
necessary for the following considerations.

The density 𝑑(𝐴,𝐵) of a bipartite graph (𝐴,𝐵) with partition classes 𝐴 and 𝐵 is the
number of its edges divided by the number of all possible edges |𝐴||𝐵|. The pair (𝐴,𝐵) is
called 𝜀-regular if all subsets 𝐴′ of 𝐴 and all subsets 𝐵′ of 𝐵 have the property that their
density 𝑑(𝐴′, 𝐵′) differs from the density 𝑑(𝐴,𝐵) by at most 𝜀. An 𝜀-regular partition of a
graph 𝐺 = (𝑉,𝐸) is a partition of 𝑉 ∖ 𝑉0 with |𝑉0| ≤ 𝜀|𝑉 | into vertex sets 𝑉1, . . . , 𝑉𝑘, so-called
clusters, such that (𝑉𝑖, 𝑉𝑗) forms an 𝜀-regular pair for all but at most an 𝜀-fraction of all
possible index pairs 𝑖, 𝑗. The regularity lemma then guarantees the existence of an 𝜀-regular
partition of 𝐺 into 𝑘 clusters where 𝑘 only depends on 𝜀 but not on the size of 𝐺.

While an empty bipartite graph is 𝜀-regular for all 𝜀, it will of course not be useful in
applications concerning the embedding of a graph. For these applications we need regular
pairs that have many edges (dense pairs). The information which pairs in a regular partition
are dense is captured in the so-called reduced graph 𝑅 of the partition, which contains a vertex
for each cluster and an edge for every 𝜀-regular pair with density at least 𝑑 for some small
constant 𝑑 (much bigger than 𝜀).

At the very beginning of this chapter we indicated that regular pairs are “random-like” in the
sense that they contain any (bipartite) graph of fixed size. What is more surprising is that we
can even guarantee much bigger structures in dense regular pairs (𝐴,𝐵). The so-called blow-up
lemma [65]—the other crucial ingredient to many proofs in this thesis besides the regularity
lemma—implies that (𝐴,𝐵) is almost as rich in spanning bounded-degree subgraphs as the
corresponding complete bipartite graph if (𝐴,𝐵) satisfies the additional property that every
vertex has a 𝑑-fraction of all possible neighbours. Such pairs are called (𝜀, 𝑑)-super-regular.
This additional condition is no severe restriction as any regular pair can easily be transformed
into a super-regular pair by omitting a few vertices (see Proposition 3.6).

More generally, the blow-up lemma allows for the embedding of spanning graphs into systems
of super-regular pairs. To make this more precise, assume that we find, say, a triangle in
the reduced graph. This corresponds to a triple of clusters in 𝐺 such that each cluster pair
is a dense regular pair. As explained we can remove a small number of vertices to obtain
super-regular pairs. Assume further that we are given a 3-colourable graph 𝐻 whose colour
classes smaller than the clusters. If, in addition, the maximum degree of 𝐻 is bounded by a
constant Δ, then the blow-up lemma guarantees a copy of 𝐻 in the subgraph of 𝐺 induced by
the three clusters in the triangle (if 𝜀 is sufficiently small). This method naturally generalises
to graphs 𝐻 with higher chromatic number: If we want to embed an 𝑟-colourable graph 𝐻
into 𝐺, then we can use a complete graph 𝐾𝑟 on 𝑟 vertices in the reduced graph.
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1.3.2 Connected factors and bandwidth

With the strategy described in the previous section we can embed small but linear-sized
graphs 𝐻 into a host graph 𝐺 = (𝑉,𝐸) by finding a single dense super-regular “spot” in a
regular partition of 𝐺. If we find many such spots, then we can use the blow-up lemma for each
of them separately. Assume, for example, that the reduced graph has a perfect matching 𝑀
and that the graph 𝐻 consists of small vertex-disjoint bipartite graphs, say, copies of 𝐾23,23.
Then we could map the first copies of 𝐾23,23 to the first edge of 𝑀 , the next few copies to the
next edge of 𝑀 , and so on, and in this way embed an almost spanning graph 𝐻 on as many
as (1− 𝜀)|𝑉 | vertices (we might not be able to use the vertices in the exceptional set 𝑉0).

If we want to embed (almost) spanning connected graphs 𝐻, then using disconnected
matching edges in the reduced graph obviously no longer suffices. But if we manage to
decompose 𝐻 into small segments by removing some vertices (this is for example possible if 𝐻
has small bandwidth), then we can still use a similar strategy. Consider again the example
of a bipartite graph 𝐻 and a matching 𝑀 with 𝑚 edges in the reduced graph. We cut 𝐻
into 𝑚 segments and assign each segment to an edge of 𝑀 . Then we need to show that the
segments can be connected to form a copy of 𝐻. This, however, is possible if 𝑀 is a connected
matching, that is, if each pair of 𝑀 -edges is connected by a path 𝑃 in 𝑅. Roughly speaking,
for two segments 𝐻1 and 𝐻2 assigned to edges 𝑒1 and 𝑒2 of 𝑀 that need to be connected we
can simply do the following. We use a few vertices of the segments 𝐻1 and 𝐻2, which we
call connecting vertices and assign them to the clusters of the path 𝑃 (but do not yet embed
them). In doing so, we make sure that neighbouring vertices of 𝐻 are assigned to neighbouring
clusters on 𝑃 (this is again possible if 𝐻 has small bandwidth).

In order to obtain the embedding of 𝐻 into 𝐺 we will then, in a first step, embed the few
connecting vertices, using a greedy strategy. Then, in a second step, we embed the remaining
vertices of each segment with the help of the blow-up lemma.

The possibility of using connected matchings in this way was pointed out by  Luczak [76].
If 𝐻 is not bipartite but 3-colourable, then the concept of a connected matching has to be
replaced by a connected triangle factor. A connected triangle factor is a covering of the
reduced graph 𝑅 with triangles that are connected by sequences of triangles where each pair
of consecutive triangles in such a sequence shares an edge. This was used by Komlós, Sarközy,
and Szemerédi [64] to prove Pósa’s conjecture for large graphs and can easily be generalised
to higher-chromatic 𝐻.

In our proofs we usually apply the blow-up lemma in the way just explained (this method is
captured in Lemma 3.12). The blow-up lemma only treats graphs 𝐻 with constant maximum
degree. This entails the constant maximum degree bounds in most of our results. An exception
is Theorem 8.1 where we embed trees, which are graphs of a structure simple enough so that
we can develop an alternative embedding lemma (Lemma 8.12) dealing with growing maximum
degrees.

1.3.3 Regularity and inheritance of graph properties

The question now is how we guarantee the existence of the substructures exploited in the
previous section, such as connected matchings or connected triangle factors, in the reduced
graph. One of the important observations is that the reduced graph 𝑅 = (𝑉𝑅, 𝐸𝑅) “inherits”
certain properties from the host graph 𝐺. For example, it is well known that minimum
degree conditions translate from 𝐺 to 𝑅 in this way: if 𝐺 has minimum degree 𝛼|𝑉 | then 𝑅
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has minimum degree at least 𝛼′|𝑉𝑅| with 𝛼′ only slightly smaller than 𝛼 (see Lemma 3.4).
Accordingly, if we were interested in showing that a particular, say, 2-colourable graph 𝐻 is
contained in every graph 𝐺 with minimum degree 𝛼|𝑉 |, then we could alternatively prove
that every graph 𝑅 = (𝑉𝑅, 𝐸𝑅) with minimum degree 𝛼′|𝑉𝑅| contains some large connected
matching. Applying this result to the reduced graph 𝑅 of 𝐺 would then help to show the
former result.

In this way, we reduced the original embedding problem to a simpler one. This can indeed
be considered as one of the main strengths of the regularity method for embedding problems:
Instead of looking for a particular substructure in a host graph 𝐺 we search for a member of a
more general class of substructures in the reduced graph corresponding to 𝐺.

1.3.4 Balancing

There is a problem we have been ignoring so far. When assigning the vertices of one segment 𝐻𝑖

of 𝐻 to an edge (or a triangle) in the reduced graph 𝑅, it might happen that the clusters in this
edge receive very different amounts of vertices because 𝐻𝑖 has colour classes of very different
sizes (i.e., it is a very unbalanced graph). If we want to embed spanning or almost spanning
graphs, however, this is fatal: As all clusters have the same size, we will over- or under-fill
them. To solve this problem, we will refine the partition of 𝐻 into segments that we used so
far and cut 𝐻 into much smaller pieces. We will then distribute these small pieces among
the super-regular spots in the reduced graph, guaranteeing a more balanced assignment of
vertices to clusters. For approaching this last step we use one of the following methods, which
we explain for the example of a bipartite graph 𝐻 where we have a connected matching 𝑀 in
the reduced graph.

P1

P2
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Figure 1.3: Balancing by mapping some vertices between two neighbouring pieces 𝑃1 and 𝑃2

of 𝐻 to the vertices of a 5-cycle 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 in the reduced graph 𝑅 while still
mapping most vertices of 𝑃1 and 𝑃2 to the edge 𝑒 = 𝑣0𝑣1.

One idea is to still assign all pieces of one segment to the same edge 𝑒 of 𝑀 but to change
the “orientation” of the colour classes in the pieces from time to time. It turns out that this
can be done with the help of an odd cycle in the reduced graph by assigning some vertices
of 𝐻 to the clusters of this odd cycle, as is illustrated in Figure 1.3 for the case when 𝐻 is a
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tree. (If 𝐻 is not bipartite but 𝑟-chromatic, then we can use a copy of 𝐾𝑟+1 instead of an odd
cycle, as is shown in Chapter 5.)

The application of this procedure, however, requires additional structure (an odd cycle in
the reduced graph), which we cannot always guarantee (as in Chapter 6, where we consider
bipartite graphs and thus get bipartite reduced graphs). But if the graph 𝐻 is itself balanced
(which does not prevent the segments from being unbalanced), then we can still use the
following observation. A random assignment of the small pieces to the edges 𝑒 of 𝑀 will
ensure that for each 𝑒 the pieces assigned to 𝑒 form roughly a balanced subgraph of 𝐻. So,
using the connecting strategy described above, we are done.

Yet another possibility is to replace the (balanced bipartite) matching 𝑀 by a structure
that represents the ratio of the colour classes of 𝐻 in a better way. This is performed in
the proof of Theorem 8.1 in Chapter 8, where we substitute the edges of 𝑀 by unbalanced
bipartite graphs 𝐾1,𝑟.

1.3.5 Adjusting regular partitions

The balancing method described above provided us with a homomorphism from 𝐻 to the
reduced graph that maps roughly the same number of vertices to each cluster—but not quite.
While this is no problem if the graph 𝐻 is slightly smaller than 𝐺 (recall that all clusters have
the same size), we might get into trouble if 𝐻 and 𝐺 are of the same size because, obviously,
the number of vertices we can embed into a cluster is limited by its size.

For this reason we might have to modify the partition of 𝐺 slightly and shift some vertices
to different clusters until the cluster sizes match the number of assigned 𝐻-vertices exactly.
(In addition we will have to integrate the vertices in the extra set 𝑉0 into the clusters, but
this we ignore here.) This shifting, however, needs to be done rather carefully: While dense
regularity is robust towards such small alterations, super-regularity is not. Suppose that we
want to find a vertex 𝑢 that we can shift from a cluster 𝑉𝑖′ to a cluster 𝑉𝑖, and let (𝑉𝑖, 𝑉𝑗) form
a super-regular pair. To preserve the super-regularity of (𝑉𝑖, 𝑉𝑗) we need to ensure that 𝑢 has
sufficiently many neighbours in 𝑉𝑗 . For this it would help if (𝑉𝑖′ , 𝑉𝑗) forms a dense regular pair,
since then most vertices in 𝑉𝑖′ have many neighbours in 𝑉𝑗 and could thus serve as candidates
for 𝑢.
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Figure 1.4: Moving a vertex from 𝑉7 to 𝑉4 and then one from 𝑉4 to 𝑉1 thus decreasing the
size of 𝑉7 and increasing the size of 𝑉1. All continuous lines represent regular pairs
in the reduced graph, super-regular pairs are denoted by thicker lines.

Hence, besides the super-regular spots needed for the application of the blow-up lemma, we
would like our reduced graph to have some rich and well-connected structure of regular pairs.
As an example, consider the reduced graph 𝑅 depicted in Figure 1.4 where the thicker lines
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represent super-regular pairs. If we wanted to reduce the size of cluster 𝑉7 and increase the
size of cluster 𝑉1 in 𝑅 then we could use the strategy outlined above: We find a vertex in 𝑉7

with many neighbours in 𝑉5 and 𝑉6 (which exists because (𝑉7, 𝑉5) and (𝑉7, 𝑉6) are regular
pairs) and move it to 𝑉4, thus maintaining super-regularity of (𝑉4, 𝑉5) and (𝑉4, 𝑉6). Then, we
find a (presumably different) vertex in 𝑉4 with many neighbours in 𝑉2 and 𝑉3 and move it
to 𝑉1.

1.3.6 A lemma for 𝐻 and a lemma for 𝐺

In our proofs we will often use a pair of lemmas that ‘prepare’ the graphs 𝐻 and 𝐺 for the
embedding, which we will call lemma for 𝐻 and lemma for 𝐺, respectively. The lemma for 𝐺
will typically construct a regular partition of the graph 𝐺 (using the regularity lemma as
described in Section 1.3.1), guarantee the necessary structural properties of this partition
(as explained in Sections 1.3.2 and 1.3.3), and adjust the partition to the needs of 𝐻 (see
Section 1.3.5). The lemma for𝐻, on the other hand, provides a partition of𝐻 that is compatible
to this partition of 𝐺 in view of the embedding task (using the bandwidth constraint and the
balancing method outlined in Section 1.3.4).

After these preparations we can then apply regularity-based embedding lemmas (such as
the blow-up lemma) to embed 𝐻 into 𝐺.

1.3.7 Regularity in sparse graphs

For sparse graphs (such as the graph 𝐺 in Theorem 9.1) the conclusion of the regularity lemma
becomes trivial—any pair with density at most 𝜀 is 𝜀-regular. This suggests a modification of
this concept for sparse graphs. The idea is to consider a “scaled” version of regularity and
measure all densities (and hence regularity) relatively to the overall density of the graph under
study (see Section 3.4). A regularity lemma for this sparse version of regularity was observed
independently by Kohayakawa and Rödl (see [57, 59]).

Moreover, the development of a corresponding regularity method suitable for dealing with
embedding problems in sparse graphs recently gained much attention (see, e.g., the survey by
Gerke and Steger [41]). Even so, much less is known compared to dense graphs. In particular
embedding lemmas (such as the blow-up lemma) are not available in full generality. When the
host graph 𝐺 is a subgraph of a sparse random graph, however, a variety of embedding-type
results were obtained. In Chapter 9 we illustrate that in this case the approach described
above can partly be transferred to the sparse setting.
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1.4 Organisation

This thesis is structured as follows.

– We split the explanation of the notation and concepts that we use into two parts. Basic
definitions are provided in Chapter 2. Most notions concerning regularity are treated
together with the regularity method in Chapter 3.

– Next we discuss structural properties of graphs with sublinear bandwidth and give the proof
of Theorems 4.1 and 4.6 in Chapter 4. This is based on joint work with Andreas Würfl,
Klaas Pruessmann, and Anusch Taraz [19].

– Then we turn to embedding results. In Chapter 5 we prove the conjecture of Bollobás and
Komlós and obtain Theorem 5.1. This is based on joint work with Mathias Schacht and
Anusch Taraz [20, 21].

– In Chapter 6 we consider a bipartite version of this theorem in the form of Theorem 6.2
which is based on joint work with Peter Heinig and Anusch Taraz.

– Ore conditions and the proof of Theorem 7.2 are covered in Chapter 7. This result is based
on joint work with Sybille Müller [18].

– The Ramsey-type result on trees, Theorem 8.1, is established in Chapter 8. It is based on
joint work with Jan Hladký and Diana Piguet [17].

– In Chapter 9 we move to sparse graphs and present the proof of Theorem 9.1 which was
obtained in joint work with Yoshiharu Kohayakawa and Anusch Taraz.

– In Chapter 10 we close with some remarks on recent related work.

The illustrations at the beginning of each chapter of this thesis are by Heike Böttcher and are
printed here with her kind permission.
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Chapter 2

Definitions

In this chapter we provide the definitions of most concepts that we shall use throughout the
thesis. For all elementary graph theoretic concepts not defined in this chapter we refer the
reader to, e.g., [28, 92]. In addition, we defer most definitions that are not used in many
chapters to later and only introduce them once we need them. In particular, all terminology
concerning the regularity method is introduced in Chapter 3.

2.1 Basic notions

Graphs. All graphs in this thesis are finite, simple and undirected, unless noted otherwise.
Let 𝐺 = (𝑉,𝐸) be a graph. We also denote the vertices of 𝐺 by 𝑉 (𝐺) := 𝑉 and their number,
which is also called the order of 𝐺, by 𝑣(𝐺) := |𝑉 |. Similarly, 𝐸(𝐺) := 𝐸 are the edges of
𝐺, and their number is 𝑒(𝐺) := |𝐸|. Edges {𝑢, 𝑣} of 𝐺 are frequently simply denoted by 𝑢𝑣.
Let 𝐴,𝐵,𝐶 ⊆ 𝑉 be pairwise disjoint vertex sets in 𝐺. We define 𝐸(𝐴) := 𝐸 ∩

(︀
𝐴
2

)︀
and write

𝐸(𝐴,𝐵) for the set of edges with one end in 𝐴 and one end in 𝐵 and 𝑒(𝐴,𝐵) for the number
of such edges. Moreover, 𝐺[𝐴] is the graph with vertex set 𝐴 and edge set 𝐸(𝐴). Analogously,
𝐺[𝐴,𝐵] is the bipartite graph with vertex set 𝐴∪̇𝐵 and edge set 𝐸(𝐴,𝐵) and 𝐺[𝐴,𝐵,𝐶] is
the tripartite graph with vertex set 𝐴∪̇𝐵∪̇𝐶 and edge set 𝐸(𝐴,𝐵)∪̇𝐸(𝐵,𝐶)∪̇𝐸(𝐶,𝐴). For
convenience we frequently identify graphs 𝐺 with their edge set 𝐸(𝐺) and vice versa. For an
edge set 𝐹 we denote by 𝐴 ∩ 𝐹 the set of vertices from 𝐴 that appear in some edge of 𝐹 . For
a vertex 𝑣 ∈ 𝑉 we write 𝑁𝐺(𝑣) or simply 𝑁(𝑣) for the neighbourhood of 𝑣 in 𝐺 and 𝑁𝐵(𝑣)
denotes the set of neighbours of 𝑣 in 𝐵. The union of all neighbourhoods of vertices in 𝐴 is
also denoted by 𝑁𝐺(𝐴) or simply 𝑁(𝐴), and 𝑁𝐵(𝐴) := 𝑁𝐺(𝐴) ∩ 𝐵. The common or joint
neighbourhood of two vertices 𝑢 and 𝑣, i.e., the set of all vertices that are neighbours of both
𝑢 and 𝑣, is denoted by 𝑁∩

𝐺({𝑢, 𝑣}) or simply 𝑁∩
𝐺(𝑢, 𝑣) or 𝑁∩(𝑢, 𝑣). More generally, 𝑁∩

𝐺(𝐴)
is the joint neighbourhood of all vertices in 𝐴 and 𝑁∩

𝐵(𝐴) := 𝑁∩
𝐺(𝐴) ∩ 𝐵. For 𝑣 ∈ 𝑉 we let

𝑑𝐺(𝑣) := |𝑁𝐺(𝑣)| be the degree of 𝑣 in 𝐺 and, similarly, 𝑑𝐵(𝑣) := |𝑁𝐵(𝑣)|.
For basic graph parameters we use standard notation. In particular, 𝛿(𝐺) is the minimum

degree and Δ(𝐺) the maximum degree of a graph. The maximum size of a clique in 𝐺 is the
clique number 𝜔(𝐺). By 𝛼(𝐺) we denote the independence number of a graph, i.e., the size of
a largest stable (or independent) set in 𝐺. The diameter diam(𝐺) is the maximal distance
between two vertices in 𝐺.

A partition of a graph 𝐺 is a partition of its vertex set 𝑉 (𝐺) into disjoint sets. A (proper)
vertex colouring or simply colouring 𝜎 of a graph is a colouring of 𝑉 such that all pairs of
vertices 𝑢 and 𝑣 with 𝑢𝑣 ∈ 𝐸 receive different colours. The colour classes of 𝜎, i.e., the sets
formed by vertices of the same colour, are also called partition classes of this colouring. A
colouring of 𝐺 can equivalently be regarded as a partition of 𝐺 into independent sets. The

19



Chapter 2 Definitions

chromatic number 𝜒(𝐺) is the minimal number of colours needed for a proper vertex colouring
of 𝐺. And an equitable colouring of 𝐺 is a colouring, such that for any two colour classes 𝑋,
𝑌 ⊆ 𝑉 we have |𝑋| − |𝑌 | ≤ 1. Notice that in the Chapter 8, where we consider problems
from Ramsey theory, we typically consider colourings of the edges of 𝐺 and do not impose
any (general) restriction on these colourings.

A graph 𝐻 is a subgraph of 𝐺 if there is an edge-preserving injective mapping 𝑓 from 𝑉 (𝐻)
to 𝑉 (𝐺), i.e., an injective function 𝑓 : 𝑉 (𝐻) → 𝑉 (𝐺) such that for every edge {𝑢, 𝑣} ∈ 𝐸(𝐻)
we have {𝑓(𝑢), 𝑓(𝑣)} ∈ 𝐸(𝐺). In this case we also say that 𝐺 contains a copy of 𝐻 and that 𝑓
is an embedding of 𝐻 into 𝐺, and write 𝐻 ⊆ 𝐺. The subgraph or copy is induced if non-edges
of 𝐻 are mapped to non-edges of 𝐺 and spanning if 𝐻 and 𝐺 have the same number of
vertices. We say that a subgraph 𝐻 of 𝐺 covers a vertex 𝑣 of 𝐺 if 𝑣 is contained in some edge
of 𝐻. A graph 𝐺 is called universal for a class of graphs ℋ if 𝐺 contains all graphs from ℋ
as subgraphs. A packing of two graphs 𝐻 and 𝐺 is an embedding of 𝐻 into the complement
of 𝐺. A graph homomorphism or simply homomorphism from 𝐻 to 𝐺 is an edge-preserving
(not necessarily injective) mapping ℎ : 𝑉 (𝐻) → 𝑉 (𝐺). All these notions naturally generalise
to hypergraphs.

Among others, we shall use the following special graphs. A path on 𝑛 vertices is denoted
by 𝑃𝑛, a cycle on 𝑛 vertices by 𝐶𝑛. The graph 𝐾𝑛 is the complete graph on 𝑛 vertices. The
graph 𝐾3 is also called triangle. 𝐾𝑛,𝑚 is the complete bipartite graph with partition classes of
size 𝑛 and 𝑚, and similarly 𝐾𝑛,𝑚,𝑘 is the complete tripartite graph on 𝑛+𝑚+ 𝑘 vertices. A
Hamilton cycle is a cycle on 𝑛 vertices and a Hamilton path a path on 𝑛 vertices.

The 𝑟-th power 𝐺𝑟 of a graph 𝐺 = (𝑉,𝐸) is the graph on vertex set 𝑉 and with edges 𝑢𝑣
for all vertices 𝑢 and 𝑣 of distance at most 𝑟 in 𝐺. The second power 𝐺2 is also called the
square of 𝐺. A square-path on 𝑛 vertices is the square of 𝑃𝑛, and a square-cycle on 𝑛 vertices
the square of 𝐶𝑛. A vertex set 𝑆 ⊆ 𝑉 (𝐺) is called 𝑠-independent in 𝐺 if 𝑆 is independent in
the 𝑠-th power 𝐺𝑠 of 𝐺.

Let 𝐻 be a fixed graph. An 𝐻-factor in a graph 𝐺 is a subgraph of 𝐺 consisting of vertex
disjoint 𝐻-copies. A perfect 𝐻-factor is an spanning 𝐻-factor. A 𝐾𝑟-factor is also called
𝑟-factor. A matching is a 2-factor. We shall frequently identify a matching 𝑀 with its edges
(but say so in this case). The size |𝑀 | of the matching 𝑀 is the number of its edges.

Numbers. For positive integers 𝑎 and 𝑏 with 𝑎 ≤ 𝑏 we let [𝑎] denote the set {1, . . . , 𝑎} and
[𝑎, 𝑏] := {𝑎, . . . , 𝑏}. Further, (𝑎, 𝑏] = {𝑎 + 1, . . . , 𝑏} and the sets [𝑎, 𝑏) and (𝑎, 𝑏) are defined
accordingly. For numbers 𝑥, 𝑦, and 𝑧 we write 𝑥 = 𝑦 ± 𝑧 if |𝑥− 𝑦| ≤ 𝑧.

Let 𝑛, 𝑘, 𝑟 ∈ N. An integer partition of 𝑛 is a sequence of natural numbers that add up
to 𝑛. We call an integer partition (𝑛𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] of 𝑛 (with 𝑛𝑖,𝑗 ∈ N for all 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑟])
𝑟-equitable, if |𝑛𝑖,𝑗 − 𝑛𝑖,𝑗′ | ≤ 1 for all 𝑖 ∈ [𝑘] and 𝑗, 𝑗′ ∈ [𝑟].

To simplify the presentation, addition and subtraction in the index of an integer parti-
tion (𝑛𝑖)𝑖∈[𝑘] is modulo 𝑘, unless stated otherwise. This means, for example, that 𝑛𝑘+1 denotes
𝑛1, 𝑛𝑘+2 denotes 𝑛2, 𝑛0 denotes 𝑛𝑘, and 𝑛−1 denotes 𝑛𝑘−1. The same rule applies to other
partitions and sequences indexed by [𝑘] or by [𝑘]× [𝑟].

In addition, we shall frequently omit floor and ceiling signs ⌊⌋ and ⌈⌉ when they are not
relevant in a particular calculation or argument.

Sets. An ℓ-set is a set with exactly ℓ elements. Let 𝐼 be an index set. A family of indexed
sets or an indexed set system is a sequence 𝒳 =

(︀
𝑋𝑖 : 𝑖 ∈ 𝐼

)︀
of (not necessarily distinct) sets.
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2.2 Graph parameters

For finite 𝐼 we define |𝒳 | = |𝐼| and write 𝒳 ′ ⊆ 𝒳 if 𝒳 ′ is a subfamily of 𝒳 . A system of
distinct representatives for the family 𝒳 is a sequence of distinct elements (𝑥𝑖 : 𝑖 ∈ 𝐼) such
that 𝑥𝑖 ∈ 𝑋𝑖 for all 𝑖 ∈ 𝐼.

Hall’s theorem states that a bipartite graph 𝐺 = (𝐴∪̇𝐵,𝐸) contains a perfect matching
covering 𝐴 if and only if for all subsets 𝐴′ ⊆ 𝐴 we have that |𝑁𝐺(𝐴′)| ≥ |𝐴′|. This inequality
is also called Hall’s condition and can alternatively be formulated for finite set systems: the
indexed set system 𝒳 =

(︀
𝑋𝑖 : 𝑖 ∈ 𝐼

)︀
has a system of distinct representatives if and only if for

every subfamily 𝒳 ′ of 𝒳 we have |⋃︀𝒳 ′| ≥ |𝒳 ′|.
Asymptotics. For asymptotic notation we use the Landau symbols 𝒪(𝑛), 𝑜(𝑛), Ω(𝑛). The
symbol ≪, however, is reserved for relations between small constants. For example, when we
write 𝜀≪ 𝜀′ for two positive real numbers 𝜀 and 𝜀′ then we mean that 𝜀 ≤ 𝜀′ and that we can
make 𝜀′ arbitrarily small by choosing 𝜀 sufficiently small.

2.2 Graph parameters

In this section we define a series of graph parameters that describe different aspects of the
global structure of a graph. We start with the bandwidth of a graph, a concept central to this
thesis. Roughly speaking, this parameter measures how well a graph resembles a path.

Definition 2.1 (bandwidth). Let 𝐺 = (𝑉,𝐸) be a graph on 𝑛 vertices. The bandwidth of 𝐺
is denoted by bw(𝐺) and defined to be the minimum positive integer 𝑏, such that there exists a
labelling of the vertices in 𝑉 by numbers 1, . . . , 𝑛 so that the labels of every pair of adjacent
vertices differ by at most 𝑏.

Another way to say this is that 𝐺 is a subgraph of the bw(𝐺)-th power of a path (and not a
subgraph for any lesser power). To give an example, a cycle 𝐶𝑛 = 𝑣1, 𝑣2, . . . , 𝑣𝑛 has bandwidth
2 as the following labelling shows: simply assign the numbers [𝑛] to the vertices of 𝐶𝑛 in the
order 𝑣1, 𝑣𝑛, 𝑣2, 𝑣𝑛−1, 𝑣3, 𝑣𝑛−2, 𝑣4,. . . , 𝑣⌈(𝑛+1)/2⌉.

Next, we will introduce the notions of tree decomposition and treewidth. A tree decomposition
tries to arrange the vertices of a graph in a tree-like manner and the treewidth measures how
well this can be done.

Definition 2.2 (treewidth). Let 𝐺 = (𝑉,𝐸) be a graph. A tree decomposition of 𝐺 is a pair
({𝑋𝑖 : 𝑖 ∈ 𝐼}, 𝑇 = (𝐼, 𝐹 )) where {𝑋𝑖 : 𝑖 ∈ 𝐼} is a family of subsets 𝑋𝑖 ⊆ 𝑉 and 𝑇 = (𝐼, 𝐹 ) is
a tree such that the following holds:

(a )
⋃︀

𝑖∈𝐼 𝑋𝑖 = 𝑉 ,
(b ) for every edge {𝑣, 𝑤} ∈ 𝐸 there exists 𝑖 ∈ 𝐼 with {𝑣, 𝑤} ⊆ 𝑋𝑖,
(c ) for every 𝑖, 𝑗, 𝑘 ∈ 𝐼: if 𝑗 lies on the path from 𝑖 to 𝑘 in 𝑇 , then 𝑋𝑖 ∩𝑋𝑘 ⊆ 𝑋𝑗.

The width of ({𝑋𝑖 : 𝑖 ∈ 𝐼}, 𝑇 = (𝐼, 𝐹 )) is defined as max𝑖∈𝐼 |𝑋𝑖| − 1. The treewidth tw(𝐺) of
𝐺 is the minimum width of a tree decomposition of 𝐺.

It follows directly from the definition that tw(𝐺) ≤ bw(𝐺) for any graph 𝐺: if the vertices
of 𝐺 are labelled by numbers 1, . . . , 𝑛 such that the labels of adjacent vertices differ by at
most 𝑏, then 𝐼 := [𝑛− 𝑏], 𝑋𝑖 := {𝑖, . . . , 𝑖+ 𝑏} for 𝑖 ∈ 𝐼 and 𝑇 := (𝐼, 𝐹 ) with 𝐹 := {{𝑖− 1, 𝑖} :
2 ≤ 𝑖 ≤ 𝑛− 𝑏} define a tree decomposition of 𝐺 with width 𝑏.

A separator in a graph is a small cut set that splits the graph into components of limited
size.
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Chapter 2 Definitions

Definition 2.3 (separator, separation number). Let 0 < 𝛼 < 1 be a real number, 𝑠 ∈ N and
𝐺 = (𝑉,𝐸) a graph. A subset 𝑆 ⊆ 𝑉 is said to be an (𝑠, 𝛼)-separator of 𝐺, if there exist
subsets 𝐴,𝐵 ⊆ 𝑉 such that

(a ) 𝑉 = 𝐴∪̇𝐵∪̇𝑆,
(b ) |𝑆| ≤ 𝑠, |𝐴|, |𝐵| ≤ 𝛼|𝑉 |, and
(c ) 𝐸(𝐴,𝐵) = ∅.

We also say that 𝑆 separates 𝐺 into 𝐴 and 𝐵. The separation number s(𝐺) of 𝐺 is the
smallest 𝑠 such that all subgraphs 𝐺′ of 𝐺 have an (𝑠, 2/3)-separator.

A vertex set is said to be expanding if it has many external neighbours. We call a graph
non-expanding, if every sufficiently large subgraph contains a subset which is not expanding.

Definition 2.4 (expander, non-expanding). Let 𝜀 > 0 be a real number, 𝑏 ∈ N and consider
graphs 𝐺 = (𝑉,𝐸) and 𝐺′ = (𝑉 ′, 𝐸′). We say that 𝐺′ is an 𝜀-expander if all subsets 𝑈 ⊆ 𝑉 ′

with |𝑈 | ≤ |𝑉 ′|/2 fulfil |𝑁(𝑈)| ≥ 𝜀|𝑈 |. (Here 𝑁(𝑈) is the set of neighbours of vertices in 𝑈
that lie outside of 𝑈 .) The graph 𝐺 is called (𝑏, 𝜀)-non-expanding, if no subgraph 𝐺′ ⊆ 𝐺 with
|𝑉 ′| ≥ 𝑏 vertices is an 𝜀-expander. Finally, we define the 𝜀-non-expansion b𝜀(𝐺) of 𝐺 to be
the minimum 𝑏 for which 𝐺 is (𝑏+ 1, 𝜀)-non-expanding.

There is a wealth of literature on this class of graphs (see e.g. [54]). In particular, it is
known that for example (bipartite) random graphs with bounded maximum degree form a
family of 𝜀-expanders. We also loosely say that such graphs have good expansion properties.

Finally, a graph is planar if it can be drawn in the plane without edge crossings and the
genus of a graph 𝐺 counts the minimum number of handles that must be added to the plane
to embed the graph without edge crossings.

2.3 Random variables and random graphs

The notation and terminology we use for probabilities, random variables, and related concepts
is standard (in the theory of random graphs) and follows [55].

By Bi(𝑛, 𝑝) we denote the binomial distribution with parameters 𝑛 and 𝑝. The term
Chernoff’s inequality (or Chernoff bound) collects different exponentially decreasing bounds
on tail distributions of sums of independent random variables. In this thesis we shall use the
following versions for a binomially distributed random variable 𝑌 and real numbers 𝑡 ≥ 0 and
𝑠 ≥ 6 E𝑌 (see [55, Chapter 2]):

P[𝑌 ≥ 7 E𝑌 ] ≤ exp(−7 E𝑌 ) , (2.1)

P[|𝑌 | ≥ E𝑌 + 𝑡] ≤ 2 exp(−2𝑡2/𝑛) , (2.2)
P[|𝑌 | ≥ E𝑌 + 𝑠] ≤ exp(−𝑠) . (2.3)

We further use the following formulation of a concentration bound sometimes attributed to
Hoeffding.

Theorem 2.5 (Hoeffding bound [13, Theorem A.1.16]). Let 𝑋1, . . . , 𝑋𝑠 be independent random
variables with E𝑋𝑖 = 0 and |𝑋𝑖| ≤ 1 for all 𝑖 ∈ [𝑠] and let 𝑋 be their sum. Then P[|𝑋| ≥ 𝑎] ≤
2 exp(−𝑎2/(2𝑠)).
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2.3 Random variables and random graphs

The study of random graphs is a lively area with many surprising results, far-reaching
applications and elegant techniques. We will just introduce (and need) some of the more basic
definitions here. For more information see [55, 13].

Let 𝑝 : N → [0, 1] be a function. The random graph 𝒢𝑛,𝑝 is generated by including each
of the

(︀
𝑛
2

)︀
possible edges on 𝑛 vertices with probability 𝑝 = 𝑝(𝑛) independently at random.

By linearity of expectation, the expected number of edges incident to a vertex of 𝒢𝑛,𝑝 equals
(𝑛− 1)𝑝. Therefore, the parameter 𝑝 governs the average degree, or what we call the density
of the graph.

A class of graphs that is closed under isomorphism is called a graph property. A hereditary
graph property is closed under taking induced subgraphs.

For a fixed function 𝑝 we say that the random graph 𝒢𝑛,𝑝 has a graph property 𝒫 asymptot-
ically almost surely (abbreviated a.a.s.) if the probability that 𝒢𝑛,𝑝 ∈ 𝒫 tends to 1 as 𝑛 goes
to infinity.

We close with the following Lemma which collects some well known facts about the edge
distribution in random graphs 𝒢𝑛,𝑝. This lemma follows directly from the Chernoff bound for
binomially distributed random variables.

Lemma 2.6. If log4 𝑛/(𝑝𝑛) = 𝑜(1) then a.a.s. the random graph Γ = 𝒢𝑛,𝑝 has the following
properties. For all vertex sets 𝑋, 𝑌 , 𝑍 ⊆ 𝑉 (Γ) with 𝑋 ∩ 𝑌 = ∅ and |𝑋|, |𝑌 |, |𝑍| ≥ 𝑛

log 𝑛 ,
|𝑍| ≤ 𝑛− 𝑛

log 𝑛 we have

(i ) 𝑒Γ(𝑋) = (1± 1
log 𝑛)𝑝

(︀|𝑋|
2

)︀
,

(ii ) 𝑒Γ(𝑋,𝑌 ) = (1± 1
log 𝑛)𝑝|𝑋||𝑌 |,

(iii )
∑︀

𝑧∈𝑍 degΓ(𝑧) = (1± 1
log 𝑛)𝑝|𝑍|𝑛.
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Chapter 3

The regularity method

As explained in the introduction many proofs in the following chapters rely on the celebrated
regularity lemma of Szemerédi [91]. This lemma was originally (in the late 1970s) motivated
by a famous question concerning the existence of arithmetic progressions in sets with positive
density, but has since then turned out to be useful for a variety of important questions. In
particular it has been the key instrument for the solution of a number of long-standing open
problems (such as, e.g, Theorem 1.7) in extremal graph theory (see the surveys [70, 71] for a
more detailed account on this topic).

In this chapter we will state the regularity lemma (Section 3.1), formulate some relevant con-
sequences (in Sections 3.1 and 3.2 where we treat regularity and super-regularity, respectively),
and introduce some related tools, such as the blow-up lemma (Section 3.3). We conclude the
chapter by discussing a sparse analogue of regularity and a sparse version of the regularity
lemma (Section 3.4).

3.1 Regular partitions of graphs

The regularity lemma relies on the concept of an 𝜀-regular pair. To define this, let 𝐺 = (𝑉,𝐸) be
a graph. For disjoint nonempty vertex sets 𝐴,𝐵 ⊆ 𝑉 the density 𝑑(𝐴,𝐵) := 𝑒(𝐴,𝐵)/(|𝐴||𝐵|)
of the pair (𝐴,𝐵) is the number of edges that run between 𝐴 and 𝐵 divided by the number of
possible edges between 𝐴 and 𝐵. In the following let 𝜀, 𝑑 ∈ [0, 1].

Definition 3.1 (𝜀-regular). The pair (𝐴,𝐵) is 𝜀-regular, if for all 𝐴′ ⊆ 𝐴 and 𝐵′ ⊆ 𝐵 with
|𝐴′| ≥ 𝜀|𝐴| and |𝐵′| ≥ 𝜀|𝐵| it is true that |𝑑(𝐴,𝐵)− 𝑑(𝐴′, 𝐵′)| ≤ 𝜀. An 𝜀-regular pair (𝐴,𝐵)
is called (𝜀, 𝑑)-regular, if it has density at least 𝑑.

Next, we will state a version of Szemeredi’s regularity lemma that is useful for our purposes,
the so-called degree form (see, e.g., [70, Theorem 1.10]). As explained earlier, the regularity
lemma asserts that graphs have regular partitions. The following definition makes this concept
(which we shall only use in a later version of the regularity lemma, Lemma 3.4, however)
precise.

Definition 3.2 (regular partition, reduced graph). An (𝜀, 𝑑)-regular partition of 𝐺 with
reduced graph 𝑅 = (𝑉𝑅, 𝐸𝑅) is a partition 𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉𝑘 of 𝑉 with |𝑉0| ≤ 𝜀|𝑉 |, 𝑉𝑅 = [𝑘],
such that (𝑉𝑖, 𝑉𝑗) is an (𝜀, 𝑑)-regular pair in 𝐺 whenever 𝑖𝑗 ∈ 𝐸𝑅. If such a partition exists,
we also say that 𝑅 is an (𝜀, 𝑑)-reduced graph of 𝐺 or that 𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉𝑘 is regular on 𝑅.
Moreover, 𝑅 is the maximal (𝜀, 𝑑)-reduced graph of the partition 𝑉0∪̇𝑉1∪̇ · · · ∪̇𝑉𝑘 if there is no
𝑖𝑗 ̸∈ 𝐸𝑅 with 𝑖, 𝑗 ∈ [𝑘] such that (𝑉𝑖, 𝑉𝑗) is (𝜀, 𝑑)-regular. The partition classes 𝑉𝑖 with 𝑖 ∈ [𝑘]
are called clusters of 𝐺 and 𝑉0 is the exceptional set.
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Chapter 3 The regularity method

We sometimes also call a vertex 𝑖 of the reduced graph a cluster and occasionally identify it
with its corresponding set 𝑉𝑖. When the exceptional set 𝑉0 is empty (or we want to ignore
it as well as its size) then we frequently omit it and say that 𝑉1∪̇ . . . ∪̇𝑉𝑘 forms an (𝜀, 𝑑)-
regular partition or 𝑉1∪̇ . . . ∪̇𝑉𝑘 is regular on 𝑅. Finally, a partition 𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉𝑘 of 𝑉 is
an equipartition if |𝑉𝑖| = |𝑉𝑗 | for all 𝑖, 𝑗 ∈ [𝑘].

The degree form of the regularity lemma now takes any sufficiently large graph 𝐺 and
generates a “blueprint” 𝐺′ of 𝐺 that differs only slightly from 𝐺. The graph 𝐺′ consists of
constantly many regular pairs all of which are either dense or do not contain any edges at
all. In our formulation of the lemma the graph 𝐺′ does not appear explicitly; it is the graph
obtained by taking out all edges of 𝐺 that are not part of some dense regular pair.

Lemma 3.3 (regularity lemma, degree form). For all 𝜀 > 0 and 𝑘0 there is 𝑘1 such that
for every 𝑑 ∈ [0, 1] every graph 𝐺 = (𝑉,𝐸) on 𝑛 ≥ 𝑘1 vertices has an equipartition 𝑉 =
𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉𝑘 with 𝑘0 ≤ 𝑘 ≤ 𝑘1 and |𝑉0| ≤ 𝜀𝑛 such that for each 𝑣 ∈ 𝑉𝑖 with 𝑖 ∈ [𝑘] there
are at most (𝑑+ 𝜀)𝑛 edges 𝑒 ∈ 𝐸 with 𝑣 ∈ 𝑒 that are not in some (𝜀, 𝑑)-regular pair (𝑉𝑖, 𝑉𝑗)
with 𝑗 ∈ [𝑘].

In other words, every graph 𝐺 has an (𝜀, 𝑑)-regular partition with reduced graph 𝑅 on
𝑘 ≤ 𝑘1 vertices such that most edges of 𝐺 lie on edges of 𝑅. The crucial point here is that the
upper bound 𝑘1 on the number of clusters does not depend on the order 𝑛 of 𝐺 but only on 𝜀.
However, this dependence is rather unfortunate: Proofs of the regularity lemma bound 𝑘1 by a
tower of 2s with height proportional to 𝜀−5 (where 𝜀−5 cannot be replaced by anything better
than log(1/𝜀) as was shown by Gowers [43]). As a consequence, results obtained with the
help of this lemma typically talk about huge graphs only. This is also true for the embedding
results in this thesis. A good description for the order of magnitude is “larger than the number
of atoms in the universe”. The more the merrier.

In the introduction we explained that the reduced graph inherits certain properties from
the graph 𝐺 and that this is useful in applications of the regularity lemma. The next lemma
illustrates this inheritance for minimum degree conditions. This is a simple corollary of the
degree form of the regularity lemma (see, e.g., [74, Proposition 9]).

Lemma 3.4 (regularity lemma, minimum degree version). For every 𝛾 > 0 there exist 𝑑 > 0
and 𝜀0 > 0 such that for every 0 < 𝜀 ≤ 𝜀0 and every integer 𝑘0 there exists 𝑘1 so that the
following holds. For every 𝜈 ≥ 0 every graph 𝐺 on 𝑛 ≥ 𝑘1 vertices with 𝛿(𝐺) ≥ (𝜈 + 𝛾)𝑛 has
an (𝜀, 𝑑)-regular equipartition 𝑉 = 𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉𝑘 with reduced graph 𝑅 such that 𝑘0 ≤ 𝑘 ≤ 𝑘1

and 𝛿(𝑅) ≥ (𝜈 + 𝛾/2)𝑘.

In Chapter 7 we will see another example of this inheritance principle (see Lemma 7.4).
In general, we shall use different versions and corollaries of the regularity lemma in different
chapters, that we only introduce as we need them (see, e.g., Lemma 8.6).

3.2 Super-regularity

For the blow-up lemma (Lemma 3.9), which we will describe below, we need the concept of
a super-regular pair. Roughly speaking, a regular pair is super-regular if every vertex has a
sufficiently large degree.

Definition 3.5 (super-regular pair). An (𝜀, 𝑑)-regular pair (𝐴,𝐵) in a graph 𝐺 = (𝑉,𝐸) is
(𝜀, 𝑑)-super-regular if every vertex 𝑣 ∈ 𝐴 has degree deg𝐵(𝑏) ≥ 𝑑|𝐵| in 𝐵 and every 𝑣 ∈ 𝐵
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3.2 Super-regularity

has deg𝐴(𝑣) ≥ 𝑑|𝐴| in 𝐴. A partition 𝑉 = 𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉𝑘 is (𝜀, 𝑑)-super-regular on a graph
𝑅 = ([𝑘], 𝐸𝑅), if all pairs (𝑉𝑖, 𝑉𝑗) with 𝑖𝑗 ∈ 𝐸𝑅 are (𝜀, 𝑑)-super-regular.

Similarly as for (𝜀, 𝑑)-regular partitions we may also omit the set 𝑉0 here and say that the
partition 𝑉1∪̇ . . . ∪̇𝑉𝑘 is super-regular on 𝑅.

Lemma 3.3 asserts that graphs have regular partitions. However, for embedding spanning
graphs we need to construct a partition that is also super-regular for certain cluster pairs (cf.
Section 1.3.2). The following two propositions indicate how to connect these two worlds and
find such super-regular pairs in a regular partition. The first proposition implies that every
(𝜀, 𝑑)-regular pair (𝐴,𝐵) contains a “large” super-regular sub-pair (𝐴′, 𝐵′).

Proposition 3.6. Let (𝐴,𝐵) be an (𝜀, 𝑑)-regular pair and 𝐵′ be a subset of 𝐵 of size at least
𝜀|𝐵|. Then there are at most 𝜀|𝐴| vertices 𝑣 in 𝐴 with |𝑁(𝑣) ∩𝐵′| < (𝑑− 𝜀)|𝐵′|.

Proof. Let 𝐴′ = {𝑣 ∈ 𝐴 : |𝑁(𝑣)∩𝐵′| < (𝑑−𝜀)|𝐵′|} and assume to the contrary that |𝐴′| > 𝜀|𝐴|.
But then 𝑑(𝐴′, 𝐵′) < ((𝑑− 𝜀)|𝐴′||𝐵′|)/(|𝐴′||𝐵′|) = 𝑑− 𝜀 which is a contradiction since (𝐴,𝐵)
is (𝜀, 𝑑)-regular.

We will say that all other vertices in 𝐴 are (𝜀, 𝑑)-typical with respect to 𝐵′ (or simply
typical, when 𝜀 and 𝑑 are clear from the context). Repeating Proposition 3.6 a fixed number
of times, we obtain the following proposition (see, e.g., [74, Proposition 8]).

Proposition 3.7. Given 𝜀, 𝑑 > 0 and Δ ∈ N set 𝜀′ := 2𝜀Δ/(1− 𝜀Δ) and 𝑑′ := 𝑑− 2𝜀Δ. Let
𝐺 be a graph with an (𝜀, 𝑑)-regular equipartition with reduced graph 𝑅 and let 𝑅′ be a subgraph
of 𝑅 with Δ(𝑅′) ≤ Δ. Then 𝐺 has an (𝜀′, 𝑑′)-regular equipartition with reduced graph 𝑅 which
is super-regular on 𝑅′.

We close this section with the following useful observation. It states that the notion of
regularity is “robust” in view of small alterations of the respective vertex sets.

Proposition 3.8. Let (𝐴,𝐵) be an (𝜀, 𝑑)-regular pair and let (𝐴, 𝐵̂) be a pair such that
|𝐴△𝐴| ≤ 𝛼|𝐴| and |𝐵̂△𝐵| ≤ 𝛽|𝐵̂| for some 0 ≤ 𝛼, 𝛽 ≤ 1. Then, (𝐴, 𝐵̂) is an (𝜀, 𝑑)-regular
pair with

𝜀 := 𝜀+ 3
(︀√
𝛼+

√︀
𝛽
)︀

and 𝑑 := 𝑑− 2(𝛼+ 𝛽) .

If, moreover, (𝐴,𝐵) is (𝜀, 𝑑)-super-regular and each vertex 𝑣 in 𝐴 has at least 𝑑|𝐵̂| neighbours
in 𝐵̂ and each vertex 𝑣 in 𝐵̂ has at least 𝑑|𝐴| neighbours in 𝐴, then (𝐴, 𝐵̂) is (𝜀, 𝑑)-super-regular
with 𝜀 and 𝑑 as above.

Proof. Let 𝐴, 𝐵, 𝐴 and 𝐵̂ be as above. First we estimate the density of (𝐴, 𝐵̂). Let
𝑑′ := 𝑑(𝐴,𝐵) ≥ 𝑑 be the density of (𝐴,𝐵). If (𝐴, 𝐵̂) had the same density as (𝐴,𝐵), we would
have 𝑒(𝐴, 𝐵̂) = 𝑑′|𝐴||𝐵̂|. The actual value of 𝑒(𝐴, 𝐵̂) can deviate by at most

|𝐴△𝐴| · |𝐵̂ ∪𝐵|+ |𝐵̂△𝐵| · |𝐴 ∪𝐴| ≤ 𝛼|𝐴| · (1 + 𝛽)|𝐵̂|+ 𝛽|𝐵̂| · (1 + 𝛼)|𝐴|
≤ 2(𝛼+ 𝛽)|𝐴||𝐵̂|

from this value. So, clearly

𝑑 = 𝑑− 2(𝛼+ 𝛽) ≤ 𝑑′ − 2(𝛼+ 𝛽) ≤ 𝑑(𝐴, 𝐵̂) ≤ 𝑑′ + 2(𝛼+ 𝛽) .

27



Chapter 3 The regularity method

Now let 𝐴′ ⊆ 𝐴 and 𝐵̂′ ⊆ 𝐵̂ be sets of sizes |𝐴′| ≥ 𝜀|𝐴| and |𝐵̂′| ≥ 𝜀|𝐵̂|. Denote 𝐴′ ∩𝐴 by 𝐴′

and 𝐵̂′ ∩𝐵 by 𝐵′ and observe that

|𝐴′| ≥ |𝐴′| − 𝛼|𝐴| ≥ (𝜀− 𝛼)|𝐴| ≥ (𝜀+
√
𝛼̂)|𝐴| ≥ 𝜀(1 + 𝛼)|𝐴| ≥ 𝜀|𝐴|.

Similarly, |𝐵′| ≥ 𝜀|𝐵|. It follows that 𝑑′ − 𝜀 ≤ 𝑑(𝐴′, 𝐵′) ≤ 𝑑′ + 𝜀. Moreover, |𝐴′| ≤ |𝐴′| and

|𝐴′| ≥ |𝐴′| − 𝛼|𝐴| ≥ |𝐴′| − 𝛼
|𝐴′|
𝜀
≥ (1−√𝛼)|𝐴′| ,

where the last inequality follows from the definition of 𝜀. The same calculations yield

(1−
√︀
𝛽)|𝐵′| ≤ |𝐵′| ≤ |𝐵̂′| .

For the number of edges between 𝐴′ and 𝐵′ we therefore get

𝑒(𝐴′, 𝐵̂′) ≥ 𝑒(𝐴′, 𝐵′) ≥ (𝑑′ − 𝜀)|𝐴′||𝐵′| ≥ (𝑑′ − 𝜀)(1−√𝛼)(1−
√︀
𝛽)|𝐴′||𝐵̂′|

≥ (𝑑′ − 𝜀−√𝛼−
√︀
𝛽)|𝐴′||𝐵̂′|

since 𝛼, 𝛽 ≤ 1. Similarly,

𝑒(𝐴′, 𝐵̂′) ≤ 𝑒(𝐴′, 𝐵′) + (|𝐴′| − |𝐴′|)|𝐵̂′|+ (|𝐵̂′| − |𝐵′|)|𝐴′|
≤ (𝑑′ + 𝜀)|𝐴′||𝐵′|+√

𝛼|𝐴′||𝐵̂′|+
√︀
𝛽|𝐴′||𝐵̂′|

≤ (𝑑′ + 𝜀+
√
𝛼+

√︀
𝛽)|𝐴′||𝐵̂′| .

With this we can now compare the densities of (𝐴′, 𝐵̂′) and (𝐴, 𝐵̂):

𝑑(𝐴, 𝐵̂)− 𝑑(𝐴′, 𝐵̂′) ≤ (𝑑′ + 2(𝛼+ 𝛽))− (𝑑′ − 𝜀−√𝛼−
√︀
𝛽) ≤ 𝜀,

𝑑(𝐴′, 𝐵̂′)− 𝑑(𝐴, 𝐵̂) ≤ (𝑑′ + 𝜀+
√
𝛼+

√︀
𝛽)− (𝑑′ − 2(𝛼+ 𝛽)) ≤ 𝜀,

This implies that (𝐴, 𝐵̂) is (𝜀, 𝑑)-regular. The second part of the proposition follows immediately
from Definition 3.5, since 𝑑|𝐴| ≤ 𝑑|𝐴| and 𝑑|𝐵̂| ≤ 𝑑|𝐵̂|.

3.3 Embedding lemmas

Now we turn to the regularity-related embedding results that we will apply. We first introduce
the blow-up lemma (Section 3.3.1). Then we complement this lemma with another embedding
result, which we call partial embedding lemma (Section 3.3.2). In the last part of this section
we combine these two embedding lemmas to obtain a “general” embedding lemma which
captures how we will use the blow-up lemma and the partial embedding lemma later in our
proofs (Section 3.3.3).

3.3.1 The blow-up lemma

One important feature of super-regular pairs is that a powerful lemma, the blow-up lemma
proven by Komlós, Sárközy and Szemerédi [65] (see also [85] for an alternative proof),
guarantees that bipartite spanning graphs of bounded degree can be embedded into sufficiently
super-regular pairs. In fact, the statement is more general and allows the embedding of graphs
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𝐻 into partitions that are super-regular on some graph 𝑅 if there is a homomorphism from 𝐻
to 𝑅 that does not send too many vertices of 𝐻 to each cluster of 𝑅.

For specifying the homomorphism from 𝐻 to 𝑅 in the language of partitions we use the
following definition. Let 𝑅 = ([𝑘], 𝐸𝑅) and 𝐻 = (𝑊,𝐹 ) be graphs. A partition 𝑊 =
𝑊1∪̇ . . . ∪̇𝑊𝑘 of 𝐻 is an 𝑅-partition if 𝑥𝑦 ∈ 𝐹 for 𝑥 ∈𝑊𝑖 and 𝑦 ∈𝑊𝑗 implies 𝑖𝑗 ∈ 𝐸(𝑅).

Lemma 3.9 (Blow-up lemma [65]). For every 𝑑, Δ, 𝑐 > 0 and 𝑟 ∈ N there exist constants
𝜀 = 𝜀(𝑑,Δ, 𝑐, 𝑟) and 𝛼 = 𝛼(𝑑,Δ, 𝑐, 𝑟) such that the following holds for all 𝑟′ ≤ 𝑟. Let
𝑅 = ([𝑟′], 𝐸𝑅), 𝐺 = (𝑉,𝐸), and 𝐻 = (𝑊,𝐹 ) be graphs with Δ(𝐻) ≤ Δ such that 𝐺 has
a partition 𝑉 = 𝑉1∪̇ . . . ∪̇𝑉𝑟′ which is (𝜀, 𝑑)-super-regular on 𝑅 and 𝐻 has an 𝑅-partition
𝑊 = 𝑊1∪̇ . . . ∪̇𝑊𝑟′ where |𝑊𝑖| ≤ |𝑉𝑖| = 𝑛𝑖 for every 𝑖 ∈ [𝑟′]. Moreover, suppose that in each
class 𝑊𝑖 there is a set of at most 𝛼 ·min𝑗∈[𝑟′] 𝑛𝑗 special vertices 𝑦, each of which is equipped
with a candidate set 𝐶𝑦 ⊆ 𝑉𝑖 with |𝐶𝑦| ≥ 𝑐|𝑉𝑖|. Then there is an embedding of 𝐻 into 𝐺 such
that each special vertex is mapped to a vertex in its candidate set.

We also say that the special vertices 𝑦 in Theorem 3.9 are image restricted to 𝐶𝑦.

3.3.2 The partial embedding lemma

In the introduction (see page 13) we described that our embedding strategy will usually
be to apply the blow-up lemma on local super-regular spots in the reduced graph for some
large segments of the graph 𝐻 separately. In order to connect these segments to form a
copy of the whole graph 𝐻 we will use the following weaker embedding lemma (concerning
only linear sized, but not spanning embeddings) which is formulated in the less restrictive
environment of (𝜀, 𝑑)-regular pairs. This lemma takes a small subgraph 𝐵 of 𝐻 on vertex set
𝑋∪̇𝑌 and produces a partial embedding of this graph: it embeds the vertices in 𝑋 and creates
(sufficiently large) sets 𝐶𝑦 for the vertices 𝑦 ∈ 𝑌 suitable for the future embedding of these 𝑦.
In the next section we will explain how this is used in conjunction with the blow-up lemma.

A lemma similar to Lemma 3.10, in a slightly different context, was first obtained by Chvátal,
Rödl, Szemerédi, and Trotter [25] (see also [28, Lemma 7.5.2]). The only difference between
Lemma 3.10 and their embedding lemma is that we only embed some of the vertices of the
graph 𝐵 into 𝐺.

Lemma 3.10 (Partial embedding lemma). For every integer Δ > 0 and every 𝑑 ∈ (0, 1]
there exist positive constants 𝑐 = 𝑐(Δ, 𝑑) and 𝜀 = 𝜀(Δ, 𝑑) such that the following is true. Let
𝐺 = (𝑉,𝐸) be an 𝑛-vertex graph that has an (𝜀, 𝑑)-regular partition 𝑉 = 𝑉1∪̇ . . . ∪̇𝑉𝑘 with
reduced graph 𝑅 on 𝑘 vertices. Let, furthermore, 𝐵 = (𝑉𝐵, 𝐸𝐵) be a graph with Δ(𝐵) ≤ Δ
that admits a homomorphism ℎ : 𝑉𝐵 → 𝑉𝑅 into 𝑅 satisfying |ℎ−1(𝑖)| ≤ 2𝜀|𝑉𝑖| for all 𝑖 ∈ [𝑘]
and let 𝑉𝐵 = 𝑋∪̇𝑌 be an arbitrary partition of its vertex set. Then there exist an embedding
𝑓 : 𝑋 → 𝑉 of 𝐵[𝑋] into 𝐺 and sets 𝐶𝑦 ⊆ 𝑉ℎ(𝑦) ∖ 𝑓(𝑋) for all 𝑦 ∈ 𝑌 such that for all 𝑦 ∈ 𝑌
we have

(i ) 𝑓(𝑥) ∈ 𝑉ℎ(𝑥) for all 𝑥 ∈ 𝑋,
(ii ) 𝐶𝑦 ⊆ 𝑁𝐺(𝑓(𝑥)) for all 𝑥 ∈ 𝑁𝐵(𝑦) ∩𝑋, and

(iii ) |𝐶𝑦| ≥ 𝑐|𝑉ℎ(𝑦)|.

In other words, Lemma 3.10 provides a mapping 𝑓 for those vertices 𝑥 ∈ 𝑋 of 𝐵 into the
cluster 𝑉ℎ(𝑥) required by ℎ, respecting the edges between such vertices. Moreover, for the other
vertices 𝑦 ∈ 𝑌 of 𝐵, it prepares sufficiently large sets 𝐶𝑦 ⊆ 𝑉ℎ(𝑦) ∖ 𝑓(𝑋) such that, no matter
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where 𝑦 will later be embedded in 𝐶𝑦, it will be adjacent to any of its already embedded
neighbours 𝑥 ∈ 𝑁𝐵(𝑦) ∩𝑋. We will also call these sets 𝐶𝑦 candidate sets for the vertices in 𝑌
(they will be used as candidate sets for the blow-up lemma in the following section).

The proof of Lemma 3.10 follows very much along the lines of the embedding lemma
from [25]. We also proceed iteratively, embedding the vertices in 𝑋 into 𝐺 one by one.

Proof. Given Δ and 𝑑, choose 𝑐 := (𝑑/2)Δ/2 and 𝜀 := 𝑐/Δ. Note, that this implies 𝜀 ≤
(𝑑/2)Δ/4 ≤ 𝑑/2. Let 𝐺, 𝑅 and 𝐵 with 𝑉 (𝐵) = 𝑋∪̇𝑌 be graphs as required. For the size
of 𝑋 we have |𝑋| ≤ 2𝜀|𝑉𝑖| for all 𝑖 ∈ [𝑘] by assumption. We now construct the embedding
𝑓 : 𝑋 → 𝑉 (𝐺). For this, we will create sets 𝐶𝑏 not only for the vertices in 𝑌 , but for all
vertices 𝑏 ∈ 𝑉 (𝐵). First, set 𝐶𝑏 := 𝑉ℎ(𝑏) for all 𝑏 ∈ 𝑉 (𝐵). Then, repeat the following steps for
each 𝑥 ∈ 𝑋:

(a ) For all 𝑏 ∈ 𝑁𝐵(𝑥), delete all vertices 𝑣 ∈ 𝐶𝑥 with |𝑁𝐺(𝑣) ∩ 𝐶𝑏| < (𝑑− 𝜀)|𝐶𝑏|.
(b ) Then, choose one of the vertices remaining in 𝐶𝑥 as 𝑓(𝑥).
(c ) For all 𝑏 ∈ 𝑁𝐵(𝑥), delete all vertices 𝑣 ∈ 𝐶𝑏 with 𝑣 ̸∈ 𝑁𝐺(𝑓(𝑥)).
(d ) For all 𝑏 ∈ 𝑉 (𝐵), delete 𝑓(𝑥) from 𝐶𝑏.

We claim, that at the end of this procedure, 𝑓 and the 𝐶𝑦 with 𝑦 ∈ 𝑌 are as desired. Indeed,
𝑓 is an embedding of 𝐵[𝑋] into 𝐺 and conditions (i ) and (ii ) are satisfied by construction.
It remains to prove that condition (iii ) is satisfied and that 𝑓(𝑥) can be chosen in step (a )
throughout the entire procedure.

We start by showing, that we always have |𝐶𝑏| ≥ 𝑐|𝑉ℎ(𝑏)| for all 𝑏 ∈ 𝑉 (𝐵). This implies
condition (iii ). In total, step (d ) removes at most |𝑋 ∩ 𝑉ℎ(𝑏)| vertices from each 𝐶𝑏. By the
choice of 𝑓(𝑥) in step (a ) and (b ), an application of step (c ) to a vertex 𝑏 ∈ 𝑁𝐵(𝑥), reduces
the size of 𝐶𝑏 at most by a factor of 𝑑−𝜀. Since each vertex in 𝑏 ∈ 𝐵 has at most Δ neighbours,
we always have

|𝐶𝑏| ≥ (𝑑− 𝜀)Δ|𝑉ℎ(𝑏)| − |𝑋 ∩ 𝑉ℎ(𝑏)| ≥ ((𝑑/2)Δ − 2𝜀)|𝑉ℎ(𝑏)| ≥ 1
2(𝑑/2)Δ|𝑉ℎ(𝑏)| = 𝑐|𝑉ℎ(𝑏)|.

Finally we consider step (a ). The last inequality shows that we always have |𝐶𝑏| ≥ 𝑐|𝑉ℎ(𝑏)| ≥
𝜀|𝑉ℎ(𝑏)| for every vertex 𝑏 ∈ 𝑉 (𝐵). Consequently, by Proposition 3.6, at most Δ𝜀|𝑉ℎ(𝑥)| vertices
are deleted from 𝐶𝑥 in step (a ). Since Δ𝜀|𝑉ℎ(𝑥)| ≤ (𝑐/2)|𝑉ℎ(𝑥)| < |𝐶𝑥|, the set 𝐶𝑥 does not
become empty and thus 𝑓(𝑥) can be chosen in step (b ).

3.3.3 A general embedding lemma

When embedding a spanning graph 𝐻 into a host graph 𝐺 a possible strategy is as follows:
Assume we are given a regular partition of 𝐺 with cluster graph 𝑅 and a subgraph 𝑅′ ⊆ 𝑅
which consists of many small components such that the partition of 𝐺 is super-regular on
each of these components. Assume further that we have a partition of 𝐻 that is “compatible”
with the partition of 𝐺 (exact definitions follow below). Then we will first use the fact that
𝐺 is regular on 𝑅 and apply the partial embedding lemma (Lemma 3.10) to embed some
few special vertices of 𝐻 and define candidate sets for their neighbours. In a second step we
will use the blow-up lemma (Lemma 3.9) separately on each component of 𝑅′ to embed all
remaining vertices of 𝐻 into clusters of 𝐺 and the edges between them on super-regular pairs
corresponding to edges of 𝑅′.

This joint application of partial embedding lemma and blow-up lemma is encapsulated in the
next lemma, the general embedding lemma. Before stating it we need to make the notion of
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“compatible” partitions precise. This is addressed in the following definition where we require
the partition of 𝐻 to have smaller partition classes than the partition of 𝐺 (condition (i ))
and to be an 𝑅-partition. This means that edges of 𝐻 run only between partition classes that
correspond to a dense regular pair in 𝐺 (condition (ii )). Further, in each partition class 𝑊𝑖 of
𝐻 we identify two subsets 𝑋𝑖 and 𝑌𝑖 that are both supposed to be small (condition (iii )). The
set 𝑋𝑖 contains those vertices that send edges over pairs that do not belong to the super-regular
pairs specified by 𝑅′ and 𝑌𝑖 contains neighbours of such vertices.

Definition 3.11 (𝜀-compatible). Let 𝐻 = (𝑊,𝐸𝐻) and 𝑅 = ([𝑘], 𝐸𝑅) be graphs and let
𝑅′ = ([𝑘], 𝐸𝑅′) be a subgraph of 𝑅. We say that a vertex partition 𝑊 = (𝑊𝑖)𝑖∈[𝑘] of 𝐻 is
𝜀-compatible with an integer partition (𝑛𝑖)𝑖∈[𝑘] of 𝑛 and with 𝑅′ ⊆ 𝑅 if the following holds.
For 𝑖 ∈ [𝑘] let 𝑋𝑖 be the set of vertices in 𝑊𝑖 with neighbours in some 𝑊𝑗 with 𝑖𝑗 ̸∈ 𝐸𝑅′, set
𝑋 :=

⋃︀
𝑋𝑖 and 𝑌𝑖 := 𝑁𝐻(𝑋) ∩𝑊𝑖 ∖𝑋. Then for all 𝑖, 𝑗 ∈ [𝑘] we have that

(i ) |𝑊𝑖| ≤ 𝑛𝑖,
(ii ) 𝑥𝑦 ∈ 𝐸𝐻 for 𝑥 ∈𝑊𝑖 and 𝑦 ∈𝑊𝑗 implies 𝑖𝑗 ∈ 𝐸𝑅,

(iii ) |𝑋𝑖| ≤ 𝜀𝑛𝑖 and |𝑌𝑖| ≤ 𝜀 ·min{𝑛𝑗 : 𝑖 and 𝑗 are in the same component of 𝑅′}.
The partition 𝑊 = (𝑊𝑖)𝑖∈[𝑘] of 𝐻 is 𝜀-compatible with a partition 𝑉 = (𝑉𝑖)𝑖∈[𝑘] of a graph 𝐺
and with 𝑅′ ⊆ 𝑅 if 𝑊 = (𝑊𝑖)𝑖∈[𝑘] is 𝜀-compatible with (|𝑉𝑖|)𝑖∈[𝑘] and with 𝑅′ ⊆ 𝑅.

The general embedding lemma asserts that a bounded-degree graph 𝐻 can be embedded
into a graph 𝐺 if 𝐻 and 𝐺 have compatible partitions in the sense explained above.

Lemma 3.12 (general embedding lemma). For all 𝑑,Δ, 𝑟 > 0 there is 𝜀 = 𝜀(𝑑,Δ, 𝑟) > 0
such that the following holds. Let 𝐺 = (𝑉,𝐸) be an 𝑛-vertex graph that has an (𝜀, 𝑑)-regular
partition 𝑉 = (𝑉𝑖)𝑖∈[𝑘] with reduced graph 𝑅 on [𝑘] which is (𝜀, 𝑑)-super regular on a graph
𝑅′ ⊆ 𝑅 connected components having at most 𝑟 vertices each. Further, let 𝐻 = (𝑊,𝐸𝐻) be
an 𝑛-vertex graph with maximum degree Δ(𝐻) ≤ Δ that has a vertex partition 𝑊 = (𝑊𝑖)𝑖∈[𝑘]

which is 𝜀-compatible with 𝑉 = (𝑉𝑖)𝑖∈[𝑘] and 𝑅′ ⊆ 𝑅. Then 𝐻 ⊆ 𝐺.

Proof. Given 𝑑, Δ, and 𝑟 we request constants 𝜀pel and 𝑐pel from Lemma 3.10 with input
𝑑 and Δ. Further, Lemma 3.9 with input 𝑑, Δ, 𝑐pel, and 𝑟 provides constants 𝜀bl and 𝛼bl.
We set 𝜀 := min{𝜀pel, 𝜀bl,

1
2𝛼bl}. Now, let the graphs 𝐺 = (𝑉,𝐸) and 𝐻 = (𝑊,𝐸𝐻), the

partitions 𝑉 = 𝑉1∪̇ · · · ∪̇𝑉𝑘 and 𝑊 = 𝑊1∪̇ · · · ∪̇𝑊𝑘, the reduced graph 𝑅 = (𝑉𝑅, 𝐸𝑅) and its
subgraph 𝑅′ be such that the conditions of the lemma are satisfied.

Our first goal is to apply the partial embedding lemma (Lemma 3.10). To this end, for
all 𝑖 ∈ [𝑘], let 𝑋𝑖 and 𝑌𝑖 be the sets in Definition 3.11, set 𝑋 :=

⋃︀
𝑋𝑖, 𝑌 :=

⋃︀
𝑌𝑖, and

𝐵 := 𝐻[𝑋∪̇𝑌 ]. Let ℎ : 𝑉 (𝐵) → 𝑉𝑅 be the mapping that maps each vertex 𝑣 ∈ 𝑉 (𝐵) = 𝑋∪̇𝑌
to the unique cluster 𝑖 in 𝑅 with 𝑣 ∈ 𝑊𝑖. This is a homomorphism because 𝑊1∪̇ · · · ∪̇𝑊𝑘

is 𝜀-compatible with 𝑅′ ⊆ 𝑅. Moreover, for all 𝑖 ∈ [𝑘] we have |ℎ−1(𝑖)| ≤ 2𝜀|𝑉𝑖| since
ℎ−1(𝑖) ⊆ 𝑋𝑖∪̇𝑌𝑖 by definition of ℎ and, again by 𝜀-compatibility, |𝑋𝑖 ∪ 𝑌𝑖| ≤ 2𝜀|𝑉𝑖|. Since
additionally Δ(𝐵) ≤ Δ(𝐻) ≤ Δ, the graph 𝐵, and the homomorphism ℎ satisfy the conditions
of Lemma 3.10. As 𝜀 ≤ 𝜀pel, we can apply this lemma to the graph 𝐺, its partition 𝑉1∪̇ · · · ∪̇𝑉𝑘

with reduced graph 𝑅, and to 𝐵 and ℎ, and obtain an embedding 𝑓 : 𝑋 → 𝑉 of 𝐵[𝑋] = 𝐻[𝑋]
into 𝐺 with 𝑓(𝑥) ∈ 𝑉ℎ(𝑥) for all 𝑥 ∈ 𝑋 and candidate sets 𝐶𝑦 ⊆ 𝑉ℎ(𝑦) ∖ 𝑓(𝑋) for all 𝑦 ∈ 𝑌 . We
have now already embedded all the vertices in 𝑋 but not yet those in 𝑌 .

We will embed the remaining vertices of 𝐻 by using the blow-up lemma separately on
each component of 𝑅′. For this purpose let 𝑅′1, . . . , 𝑅

′
𝑠 be the components of 𝑅′. Now,
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fix 𝑗 ∈ [𝑠], let 𝑟′𝑗 := |𝑅′𝑗 |, let 𝑖(1), . . . , 𝑖(𝑟′𝑗) be the vertices of 𝑅′𝑗 , and observe that for
each vertex 𝑖 of 𝑅′𝑗 the partial embedding lemma generated candidate sets 𝐶𝑦 for at most
|𝑌𝑖| ≤ 𝜀 ·min𝑖′∈𝑉 (𝑅′𝑗)

|𝑉𝑖′ | ≤ 𝛼bl ·min𝑖′∈𝑉 (𝑅′𝑗)
|𝑉𝑖′ ∖𝑋𝑖′ | vertices 𝑦 ∈ 𝑊𝑖 with |𝐶𝑦| ≥ 𝑐pel|𝑉𝑖| ≥

𝑐pel|𝑉𝑖 ∖𝑋𝑖|. Since 𝜀 ≤ 𝛼bl, 𝜀bl and 𝑅′𝑗 has at most 𝑟 vertices we can provide the blow-up
lemma with these candidate sets together with the graphs 𝑅′𝑗 , 𝐺𝑗 := 𝐺[𝑉𝑖(1) ∪ · · · ∪ 𝑉𝑖(𝑟′) ∖𝑋]
and 𝐻𝑗 := 𝐻[𝑊𝑖(1) ∪ · · · ∪𝑊𝑖(𝑟′) ∖ 𝑓(𝑋)] and obtain an embedding 𝑓𝑗 of 𝐻𝑗 into 𝐺𝑗 .

We claim that the united embedding 𝑔 : 𝑊 → 𝑉 defined by

𝑔(𝑥) =

{︃
𝑓(𝑥) if 𝑥 ∈ 𝑋
𝑓𝑗(𝑥) if 𝑥 ∈ 𝑉 (𝐻𝑗)

is an embedding of 𝐻 into 𝐺. Indeed, let 𝑥𝑦 be an edge of 𝐻. If both 𝑥, 𝑦 ∈ 𝑋 then
𝑔(𝑥)𝑔(𝑦) = 𝑓(𝑥)𝑓(𝑦), which is an edge of 𝐺 because 𝑓 is an embedding. Similarly, if 𝑥 and
𝑦 are both in the same graph 𝐻𝑗 , then 𝑔(𝑥)𝑔(𝑦) = 𝑓𝑗(𝑥)𝑓𝑗(𝑦) is an edge of 𝐺 as 𝑓𝑗 is an
embedding. By the definition of 𝑋 it remains to consider the case 𝑥 ∈ 𝑋, 𝑦 ̸∈ 𝑋 which implies
that 𝑦 lies in some graph 𝐻𝑗 and 𝑦 ∈ 𝑌 by the definition of 𝑌 . Accordingly, the partial
embedding lemma (Lemma 3.10) defined a candidate set 𝐶𝑦 for 𝑦 with 𝐶𝑦 ⊆ 𝑁𝐺(𝑔(𝑥)) and
the blow-up lemma (Lemma 3.9) guaranteed 𝑓𝑗(𝑦) ∈ 𝐶𝑦. It follows that 𝑔(𝑥)𝑔(𝑦) = 𝑓(𝑥)𝑓𝑗(𝑦)
is also an edge of 𝐺 in this case.

3.4 Sparse graphs

In this section we will consider a sparse version of the regularity lemma, developed by
Kohayakawa and Rödl (see [57, 59]). Before stating this lemma we introduce the necessary
definitions.

In Section 1.3.7 we explained that the key to a meaningful regularity concept for sparse
graphs 𝐺 is to scale all densities (that we determine or compare) by dividing them by a scaling
factor 𝑝. This scaling factor 𝑝 can be thought of as the density of the graph 𝐺 (or some
super-graph Γ of 𝐺) or, more abstractly, as a parameter measuring how sparse the graphs
are that we are interested in, which will usually depend on the number 𝑛 of vertices in 𝐺.
The following definitions provide scaled versions (and hence sparse analogues) of density and
regularity.

Let 𝐺 = (𝑉,𝐸) be a graph, 𝑝 ∈ (0, 1], and 𝜀, 𝑑 > 0 be reals. For disjoint nonempty 𝑈,𝑊 ⊆ 𝑉
the 𝑝-density of the pair (𝑈,𝑊 ) is defined by 𝑑𝐺,𝑝(𝑈,𝑊 ) := 𝑒𝐺(𝑈,𝑊 )/(𝑝|𝑈 ||𝑊 |).
Definition 3.13 ((𝜀, 𝑑, 𝑝)-dense). The pair (𝑈,𝑊 ) is (𝜀, 𝑑, 𝑝)-dense if 𝑑𝐺,𝑝(𝑈 ′,𝑊 ′) ≥ 𝑑 − 𝜀
for all 𝑈 ′ ⊆ 𝑈 and 𝑊 ′ ⊆𝑊 with |𝑈 ′| ≥ 𝜀|𝑈 | and |𝑈 ′| ≥ 𝜀|𝑈 |. Omitting the parameters 𝑑, or
𝜀 and 𝑑, we may also speak of (𝜀, 𝑝)-dense pairs, or 𝑝-dense pairs.

Let us remark that the two-sided error bound we saw in the definition of (dense) regularity
is replaced by a one-sided error bound in this definition. More precisely, instead of requiring
|𝑑𝐺,𝑝(𝑈,𝑊 )− 𝑑𝐺,𝑝(𝑈 ′,𝑊 ′)| ≤ 𝜀 (which were a “true” sparse analogue of regularity, cf. Defini-
tion 3.1) we demand only 𝑑𝐺,𝑝(𝑈 ′,𝑊 ′) ≥ 𝑑− 𝜀. But for our embedding applications it is only
this lower bound that is of interest (we do not mind if there are “too many” edges).

We now turn to the definition of a 𝑝-dense partition.

Definition 3.14 (𝑝-dense partition). An (𝜀, 𝑝)-dense partition of 𝐺 = (𝑉,𝐸) is a partition
𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉𝑟 of 𝑉 with |𝑉0| ≤ 𝜀|𝑉 | such that (𝑉𝑖, 𝑉𝑗) is an (𝜀, 𝑝)-dense pair in 𝐺 for all but
at most 𝜀

(︀
𝑟
2

)︀
pairs 𝑖𝑗 ∈

(︀
[𝑟]
2

)︀
.
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As before, the partition classes 𝑉𝑖 with 𝑖 ∈ [𝑟] are called the clusters of the partition and 𝑉0

is the exceptional set. Moreover, an (𝜀, 𝑝)-dense partition 𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉𝑟 is an (𝜀, 𝑑, 𝑝)-dense
partition of 𝐺 with reduced graph 𝑅 = ([𝑟], 𝐸(𝑅)) if the pair (𝑉𝑖, 𝑉𝑗) is (𝜀, 𝑑, 𝑝)-dense in 𝐺
whenever 𝑖𝑗 ∈ 𝐸(𝑅).

The sparse regularity lemma asserts 𝑝-dense partitions for sparse graphs 𝐺 without dense
spots. To quantify this latter property we need the following notion. Let 𝜂 > 0 be a real
number and 𝐾 > 1 an integer. We say that 𝐺 = (𝑉,𝐸) is (𝜂,𝐾)-bounded with respect to 𝑝 if
for all disjoint sets 𝑋,𝑌 ⊆ 𝑉 with |𝑋|, |𝑌 | ≥ 𝜂|𝑉 | we have 𝑒𝐺(𝑋,𝑌 ) ≤ 𝐾𝑝|𝑋||𝑌 |.

Lemma 3.15 (sparse regularity lemma). For each 𝜀 > 0, each 𝐾 > 1, and each 𝑟0 ≥ 1
there are constants 𝑟1, 𝜈, and 𝑛0 such that for any 𝑝 ∈ (0, 1] the following holds. Any graph
𝐺 = (𝑉,𝐸) with |𝑉 | ≥ 𝑛0, and which is (𝜈,𝐾)-bounded with respect to 𝑝 admits an (𝜀, 𝑝)-dense
equipartition with 𝑟 clusters for some 𝑟0 ≤ 𝑟 ≤ 𝑟1.

In analogy to the (dense) regularity lemma this lemma produces a partition of a sparse
graph into a constant number of 𝑝-dense pairs (with the restriction that we consider only
bounded graphs). Moreover, as is true for dense regular pairs, it follows directly from the
definition that sub-pairs of 𝑝-dense pairs again form 𝑝-dense pairs (Proposition 3.8 discusses a
similar property of dense regular pairs but is much more general).

Proposition 3.16. Let (𝑋,𝑌 ) be (𝜀, 𝑑, 𝑝)-dense, 𝑋 ′ ⊆ 𝑋 with |𝑋 ′| = 𝜇|𝑋|. Then (𝑋 ′, 𝑌 ) is
( 𝜀

𝜇 , 𝑑, 𝑝)-dense.

Also Proposition 3.6 has a sparse counterpart: Neighbourhoods of most vertices in a 𝑝-dense
pair are not much smaller than expected. Again, this is a direct consequence of the definition
of 𝑝-dense pairs.

Proposition 3.17. Let (𝑋,𝑌 ) be (𝜀, 𝑑, 𝑝)-dense. Then less than 𝜀|𝑋| vertices 𝑥 ∈ 𝑋 have
|𝑁𝑌 (𝑥)| < (𝑑− 𝜀)𝑝|𝑌 |.

But in contrast to the non-sparse case the size of such neighbourhoods may be tiny (if
𝑝 = 𝑜(1)). Recall, for example, that the iterative embedding procedure in the proof of the
partial embedding lemma presented above (Lemma 3.10) was based on the fact that typical
vertices in a regular pair have neighbourhoods of linear size. Therefore it is not surprising
that establishing embedding results for 𝑝-dense pairs (or partitions) is often more difficult.
As we shall discuss in Chapter 9, however, such results do exist if we consider 𝑝-dense pairs
inside a random graph. This is also the setting of the following and last lemma that we shall
formulate in this chapter.

Similarly as for dense graphs some properties of the graph 𝐺 translate to certain properties
of the reduced graph 𝑅 of the partition constructed by the sparse regularity lemma. An
example of this phenomenon is given in the following lemma, Lemma 3.18, which is a minimum
degree version of the sparse regularity lemma. The minimum degree version of the dense
regularity lemma (Lemma 3.4) can be formulated in the following way. If an 𝑛-vertex graph 𝐺
is such that that each of its vertices has an 𝛼-proportion of all the 𝑛− 1 neighbours it has in
the complete graph 𝐾𝑛 as neighbours in 𝐺 then the reduced graph 𝑅 of a regular partition
of this graph has minimum degree only slightly smaller than 𝛼|𝑉 (𝑅)|. The sparse analogue,
Lemma 3.18, now replaces the complete graph 𝐾𝑛 in this formulation by a random graph
Γ = 𝒢𝑛,𝑝. Consequently, the graph 𝐺 is a subgraph of Γ such that each vertex 𝑣 of 𝐺 satisfies
the following condition. The neighbourhood of 𝑣 in the graph 𝐺 is at least an 𝛼-proportion
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of the neighbourhood of 𝑣 in the random graph Γ. Then, as the lemma asserts, 𝐺 has an
(𝜀, 𝑑, 𝑝)-dense partition with reduced graph 𝑅 on 𝑟 vertices and minimum degree almost 𝛼𝑟.

Lemma 3.18 (sparse regularity lemma, minimum degree version for 𝒢𝑛,𝑝). For all 𝛼 ∈ [0, 1],
𝜀 > 0, and every integer 𝑟0, there is an integer 𝑟1 ≥ 1 such that for all 𝑑 ∈ [0, 1] the following
holds a.a.s. for Γ = 𝒢𝑛,𝑝 if log4 𝑛/(𝑝𝑛) = 𝑜(1). Let 𝐺 = (𝑉,𝐸) be a spanning subgraph of Γ
with deg𝐺(𝑣) ≥ 𝛼 degΓ(𝑣) for all 𝑣 ∈ 𝑉 . Then there is an (𝜀, 𝑑, 𝑝)-dense partition of 𝐺 with
reduced graph 𝑅 of minimum degree 𝛿(𝑅) ≥ (𝛼− 𝑑− 𝜀)|𝑉 (𝑅)| with 𝑟0 ≤ |𝑉 (𝑅)| ≤ 𝑟1.

Notice that, in contrast to the dense minimum degree version of the regularity lemma
(Lemma 3.4), we do observe “more” than a mere inheritance of properties here: the graph 𝐺
we started with is sparse, but the reduced graph 𝑅 we obtain is dense. This will enables us,
as we shall illustrate in Chapter 9, to apply results obtained for dense graphs to the reduced
graph 𝑅, and hence use such dense results to draw conclusions about sparse graphs.

Proof. For the proof we shall use the sparse regularity lemma (Lemma 3.15) and the facts
about the edge distribution in random graphs provided by Lemma 2.6.

Given 𝛼, 𝜀, and 𝑟0 let 𝑟1, 𝜈, and 𝑛0 be as provided by Lemma 3.15 for input

𝜀′ := 𝜀2/100 , 𝐾 := 1 + 𝜀′ , and 𝑟′0 := min{2𝑟0, ⌈1/𝜀′⌉} .
Let further 𝑑 be given and assume that 𝑛 is such that 𝑛 ≥ 𝑛0, log 𝑛 ≥ 1/𝜀′, and log 𝑛 ≥ 1/𝜈.
Let Γ be a typical graph from 𝒢𝑛,𝑝 with log4 𝑛/(𝑝𝑛) = 𝑜(1), i.e., a graph satisfying properties
(i )–(iii ) of Lemma 2.6. We will show that then Γ also satisfies the conclusion of Lemma 3.18.

To this end we consider an arbitrary subgraph 𝐺 = (𝑉,𝐸) of Γ that satisfies the assumptions
of this lemma. By property (ii ) of Lemma 2.6 the graph 𝐺 ⊆ Γ is (1/ log 𝑛, 1 + 1/ log 𝑛)-
bounded with respect to 𝑝. Because 1 + 1/ log 𝑛 ≤ 1 + 𝜀′ = 𝐾 the sparse regularity lemma
(Lemma 3.15) with input 𝜀′, 𝐾, and 𝑟′0 asserts that 𝐺 has an (𝜀′, 𝑝)-dense equipartition
𝑉 = 𝑉 ′0∪̇𝑉 ′1∪̇ . . . ∪̇𝑉 ′𝑟′ for some 𝑟′0 ≤ 𝑟′ ≤ 𝑟1. Observe that there are at most 𝑟′

√
𝜀′ clusters in

this partition which are contained in more than 𝑟′
√
𝜀′ pairs that are not (𝜀′, 𝑝)-dense. We add

all these clusters to 𝑉 ′0 , denote the resulting set by 𝑉0 and the remaining clusters by 𝑉1, . . . , 𝑉𝑟.
Then 𝑟0 ≤ 𝑟′/2 ≤ 𝑟 ≤ 𝑟1 and we claim that the partition 𝑉 = 𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉𝑟 has the desired
properties.

Indeed, |𝑉0| ≤ 𝜀′𝑛+ 𝑟′
√
𝜀′(𝑛/𝑟′) ≤ 𝜀𝑛 and the number of pairs in 𝑉1∪̇ . . . ∪̇𝑉𝑟 which are not

(𝜀, 𝑝)-dense is at most 𝑟 · 𝑟′
√
𝜀′ ≤ 2𝑟2

√
𝜀′ ≤ 𝜀

(︀
𝑟
2

)︀
. It follows that 𝑉1∪̇ . . . ∪̇𝑉𝑟 is an (𝜀, 𝑝)-dense

partition and hence an (𝜀, 𝑑, 𝑝)-dense partition. Let 𝑅 be the (maximal) corresponding reduced
graph, i.e., 𝑅 has vertex set [𝑟] and edges 𝑖𝑗 for exactly all (𝜀, 𝑑, 𝑝)-dense pairs (𝑉𝑖, 𝑉𝑗) with 𝑖,
𝑗 ∈ [𝑟]. It remains to show that we have 𝛿(𝑅) ≥ (𝛼− 𝑑− 𝜀)|𝑅|.

To see this, define 𝐿 := |𝑉𝑖| for all 𝑖 ∈ [𝑟] and consider arbitrary disjoint sets 𝑋,𝑌 ⊆ 𝑉 (𝐺).
Then

∑︀
𝑥∈𝑋 deg𝐺(𝑥) = 2𝑒𝐺(𝑋) + 𝑒𝐺(𝑋,𝑌 ) + 𝑒𝐺(𝑋,𝑉 ∖ (𝑋 ∪ 𝑌 )) and therefore

𝑒𝐺(𝑋,𝑌 ) ≥
(︁
𝛼
∑︁
𝑥∈𝑋

degΓ(𝑥)
)︁
− 2𝑒Γ(𝑋)− 𝑒Γ

(︀
𝑋,𝑉 ∖ (𝑋 ∪ 𝑌 )

)︀
.

By properties (i )–(iii ) of Lemma 2.6 this implies

𝑒𝐺(𝑋,𝑌 ) ≥ 𝛼
(︁

1− 1
log 𝑛

)︁
𝑝|𝑋|𝑛− 2

(︁
1 +

1
log 𝑛

)︁
𝑝

(︂|𝑋|
2

)︂
−
(︀
1 +

1
log 𝑛

)︁
𝑝|𝑋|

(︁
𝑛− |𝑋| − |𝑌 |

)︀
≥
(︀
𝛼(1− 𝜀′)𝑛− (1 + 𝜀′)(𝑛− |𝑌 |)

)︀
𝑝|𝑋| ,

(3.1)
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as long as |𝑋| ≥ 𝑛/ log 𝑛 and |𝑋 ∪𝑌 | ≤ 𝑛−𝑛/ log 𝑛. Now fix 𝑖 ∈ [𝑟] and let 𝑉𝑖 := 𝑉 ∖ (𝑉0∪𝑉𝑖).
Then

𝑒𝐺(𝑉𝑖, 𝑉𝑖) ≤
(︀

deg𝑅(𝑖) + 2𝑟
√
𝜀′
)︀ (︀

1 + 𝜀′
)︀
𝑝𝐿2 +

(︀
𝑟 − deg𝑅(𝑖)

)︀
𝑑𝑝𝐿2

since each cluster is in at most 𝑟′
√
𝜀′ ≤ 2𝑟

√
𝜀′ irregular pairs, since 𝑅 is an (𝜀′, 𝑑, 𝑝)-reduced

graph and 𝐺 ⊆ Γ is (1/ log 𝑛, 1 + 𝜀′)-bounded with respect to 𝑝. On the other hand (3.1)
implies

𝑒𝐺(𝑉𝑖, 𝑉𝑖) ≥
(︁
𝛼(1− 𝜀′)𝑛− (1 + 𝜀′)

(︀
|𝑉0|+ |𝑉𝑖|

)︀)︁
𝑝|𝑉𝑖|

≥
(︁
𝛼(1− 𝜀′)− (1 + 𝜀′)3

√
𝜀′
)︁
𝑝𝐿𝑛

where we use |𝑉0| ≤ (𝜀′ +
√
𝜀′)𝑛 and |𝑉𝑖| ≤ 𝑛/𝑟′0 ≤ 𝜀′𝑛. We conclude that(︁

deg𝑅(𝑖)(1 + 𝜀′ − 𝑑) + 2𝑟
√
𝜀′(1 + 𝜀′) + 𝑟𝑑

)︁
𝑝𝐿2 ≥

(︁
𝛼(1− 𝜀′)− (1 + 𝜀′)3

√
𝜀′
)︁
𝑝𝑟𝐿2

since 𝑛/𝐿 ≥ 𝑟. This gives

deg𝑅(𝑖) ≥ deg𝑅(𝑖)(1 + 𝜀′ − 𝑑) ≥
(︁
𝛼(1− 𝜀′)− (1 + 𝜀′)3

√
𝜀′ − 2

√
𝜀′(1 + 𝜀′)− 𝑑

)︁
𝑟

≥
(︁
𝛼− 𝛼𝜀′ − 9

√
𝜀′ − 𝑑

)︁
𝑟 ≥ (𝛼− 𝑑− 𝜀)|𝑅| .

Hence the (𝜀, 𝑑, 𝑝)-dense partition 𝑉 = 𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉𝑟 has a reduced graph 𝑅 with 𝛿(𝑅) ≥
(𝛼− 𝑑− 𝜀)|𝑅|.
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Chapter 4

Bandwidth, expansion, treewidth,
and universality

The purpose of this chapter is to establish relations between the bandwidth and the treewidth
of bounded-degree graphs 𝐻, and to connect these parameters to the size of a separator of
𝐻 as well as the size of an expanding subgraph of 𝐻. Our results imply that if one of these
values is sublinear in the number of vertices of 𝐻 then so are all the others (see Theorem 4.6
in Section 4.1). This implies for example that graphs of fixed genus have sublinear bandwidth
or, more generally, a corresponding result for graphs with any fixed forbidden minor (see
Corollary 4.9 in Section 4.2).

4.1 Relations

There are a number of different parameters in graph theory which measure how well a graph
can be organized in a particular way, where the type of desired arrangement is often motivated
by geometrical properties, algorithmic considerations or specific applications. Well-known
examples of such parameters are the genus, the bandwidth, or the treewidth of a graph. While
the the genus characterizes the surfaces on which a particular graph can be drawn without
crossings, the other two parameters describe how well a graph can be laid out in a path-like,
respectively tree-like, manner. The central topic of this chapter is to discuss the relations
between such parameters. We would like to determine how they influence each other and what
causes them to be large. To this end we will mostly be interested in distinguishing between
the case where these parameters are linear in 𝑛, where 𝑛 is the number of vertices in the graph
under investigation, and the case where they are sublinear in 𝑛.

Clearly one reason for a graph to have high bandwidth are vertices of high degree. Thus the
star 𝐾1,𝑛−1 illustrates that in general even trees may have a bandwidth of order Ω(𝑛). In [24]
Chung proved however that any 𝑛-vertex tree 𝑇 with maximum degree Δ has bandwidth at
most 5𝑛/ logΔ(𝑛). The following theorem extends Chung’s result to planar graphs.

Theorem 4.1. Suppose Δ ≥ 4. Let 𝐻 be a planar graph on 𝑛 vertices with maximum degree
at most Δ. Then the bandwidth of 𝐻 satisfies

bw(𝐻) ≤ 15𝑛
logΔ(𝑛)

.

It is easy to see that the bound in Theorem 4.1 is sharp up to the multiplicative constant—
since the bandwidth of any graph 𝐻 is bounded from below by (𝑛− 1)/diam(𝐻), it suffices
to consider for example the complete binary tree on 𝑛 vertices. (We remark in passing that
Theorem 4.1 implies that graphs with maximum degree 1 ≤ Δ ≤ 3 must satisfy an upper
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bound of bw(𝐻) ≤ 20𝑛/ logΔ(𝑛).) Theorem 4.1 is used in [23] to infer a result about the
geometric realizability of planar graphs 𝐻 = (𝑉,𝐸) with |𝑉 | = 𝑛 and Δ(𝐻) ≤ Δ.

As explained in the introduction we will show a more general theorem (Theorem 4.6) which
proves that the concepts of sublinear bandwidth, sublinear treewidth, bad expansion properties,
and sublinear separators are equivalent for graphs of bounded maximum degree. In order
to establish this theorem, we will now discuss quantitative relations between the parameters
involved. Since planar graphs are known to have small separators [75], we will get Theorem 4.1
as a byproduct of these results in Section 4.2.1.

Let us start with the following well known theorem due to Robertson and Seymour [83] that
relates the treewidth and the separation number of a graph.1

Theorem 4.2 (treewidth→separator, [83]). All graphs 𝐻 have separation number

s(𝐻) ≤ tw(𝐻) + 1 .

This theorem states that graphs with small treewidth have small separators. By repeatedly
extracting separators, one can show that (a qualitatively different version of) the converse also
holds: tw(𝐻) ≤ 𝒪(s(𝐻) log 𝑛) for a graph 𝐻 on 𝑛 vertices (see e.g. [16], Theorem 20). We
shall use a similar but more involved argument to show that one can establish the following
relation linking the separation number with the bandwidth of graphs with bounded maximum
degree.

Theorem 4.3 (separator→bandwidth). For each Δ ≥ 4 every graph 𝐻 on 𝑛 vertices with
maximum degree Δ(𝐻) ≤ Δ has bandwidth

bw(𝐻) ≤ 6𝑛
logΔ(𝑛/ s(𝐻))

.

The proof of this theorem is provided in Section 4.3.1. Observe that Theorems 4.2 and 4.3
together with the obvious inequality tw(𝐻) ≤ bw(𝐻) tie the concepts of treewidth, bandwidth,
and separation number well together. Apart from the somewhat negative statement of not
having a small separator, what can we say about a graph with large tree- or bandwidth? The
next theorem states that such a graph must contain a big expander.

Theorem 4.4 (non-expansion→treewidth). Let 𝜀 > 0 be constant. All graphs 𝐻 on 𝑛 vertices
have treewidth tw(𝐻) ≤ 2 b𝜀(𝐻) + 2𝜀𝑛.

A result with similar implications was recently proved by Grohe and Marx in [45]. It
shows that 𝑏𝜀(𝐻) < 𝜀𝑛 implies tw(𝐻) ≤ 2𝜀𝑛. For the sake of being self contained we present
our (short) proof of Theorem 4.4 in Section 4.3.2. In addition, it is not difficult to see that
conversely the non-expansion of a graph can be estimated via its bandwidth—which we prove
in Section 4.3.2, too.

Proposition 4.5 (bandwidth→non-expansion). Let 𝜀 > 0 be constant. All graphs 𝐻 on 𝑛
vertices have b𝜀(𝐻) ≤ 2 bw(𝐻)/𝜀.

A qualitative consequence summarizing the four results above is given in the following
theorem. It states that if one of the parameters bandwidth, treewidth, separation number, or
non-expansion is sublinear for a family of graphs, then so are the others.

1In fact, their result states that any graph 𝐻 has a (tw(𝐻)+1, 1/2)-separator, and doesn’t talk about subgraphs
of 𝐻. But since every subgraph of 𝐻 has treewidth at most tw(𝐻), it thus also has a (tw(𝐻) + 1, 1/2)-
separator and the result, as stated here, follows.
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Theorem 4.6 (sublinear equivalence theorem). Let Δ be an arbitrary but fixed positive integer
and consider a hereditary class of graphs 𝒞 such that all graphs in 𝒞 have maximum degree at
most Δ. Denote by 𝒞𝑛 the set of those graphs in 𝒞 with 𝑛 vertices. Then the following four
properties are equivalent:

(1 ) For all 𝛽1 > 0 there is 𝑛1 such that tw(𝐻) ≤ 𝛽1𝑛 for all 𝐻 ∈ 𝒞𝑛 with 𝑛 ≥ 𝑛1.
(2 ) For all 𝛽2 > 0 there is 𝑛2 such that bw(𝐻) ≤ 𝛽2𝑛 for all 𝐻 ∈ 𝒞𝑛 with 𝑛 ≥ 𝑛2.
(3 ) For all 𝛽3, 𝜀 > 0 there is 𝑛3 such that b𝜀(𝐻) ≤ 𝛽3𝑛 for all 𝐻 ∈ 𝒞𝑛 with 𝑛 ≥ 𝑛3.
(4 ) For all 𝛽4 > 0 there is 𝑛4 such that s(𝐻) ≤ 𝛽4𝑛 for all 𝐻 ∈ 𝒞𝑛 with 𝑛 ≥ 𝑛4.

Proof. (1 )⇒(4 ): Given 𝛽4 > 0 set 𝛽1 := 𝛽4/2, let 𝑛1 be the constant from (1 ) for this 𝛽1,
and set 𝑛4 := max{𝑛1, 2/𝛽4}. Now consider 𝐻 ∈ 𝒞𝑛 with 𝑛 ≥ 𝑛4. By assumption we have
tw(𝐻) ≤ 𝛽1𝑛 and thus we can apply Theorem 4.2 to conclude that s(𝐻) ≤ tw(𝐻) + 1 ≤
𝛽1𝑛+ 1 ≤ (𝛽4/2 + 1/𝑛)𝑛 ≤ 𝛽4𝑛.

(4 )⇒(2 ): Given 𝛽2 > 0 let 𝑑 := min{4,Δ}, set 𝛽4 := 𝑑−6/𝛽2 , get 𝑛4 from (4 ) for this 𝛽4,
and set 𝑛2 := 𝑛4. Let 𝐻 ∈ 𝒞𝑛 with 𝑛 ≥ 𝑛2. We conclude from (4 ) and Theorem 4.2 that

bw(𝐻) ≤ 6𝑛
log𝑑 𝑛− log𝑑 s(𝐻)

≤ 6𝑛
log𝑑 𝑛− log𝑑(𝑑−6/𝛽2𝑛)

= 𝛽2𝑛.

(2 )⇒(3 ): Given 𝛽3, 𝜀 > 0 set 𝛽2 := 𝜀𝛽3, get 𝑛2 from (2 ) for this 𝛽2 and set 𝑛3 := 𝑛2. By (2 )
and Proposition 4.5 we get for 𝐻 ∈ 𝒞𝑛 with 𝑛 ≥ 𝑛3 that b𝜀(𝐻) ≤ 2 bw(𝐻)/𝜀 ≤ 2𝛽2𝑛/𝜀 ≤ 𝛽3𝑛.

(3 )⇒(1 ): Given 𝛽1 > 0, set 𝛽3 := 𝛽1/4, 𝜀 := 𝛽1/4 and get 𝑛3 from (3 ) for this 𝛽3

and 𝜀, and set 𝑛1 := 𝑛3. Let 𝐻 ∈ 𝒞𝑛 with 𝑛 ≥ 𝑛4. Then (3 ) and Theorem 4.4 imply
tw(𝐻) ≤ 2 b𝜀(𝐻) + 2𝜀𝑛 ≤ 2𝛽3𝑛+ 2(𝛽1/4)𝑛 = 𝛽1𝑛.

4.2 Applications

For many interesting bounded-degree graph classes (non-trivial) upper bounds on the band-
width are not at hand. A wealth of results however has been obtained about the existence of
sublinear separators. This illustrates the importance of Theorem 4.6. In this section we will
give examples of such separator theorems and provide applications of them in conjunction
with Theorem 4.6.

4.2.1 Separator theorems

A classical result in the theory of planar graphs concerns the existence of separators of
size 2

√
2𝑛 in any planar graph on 𝑛 vertices proven by Lipton and Tarjan [75] in 1977. Clearly,

together with Theorem 4.3 this result implies Theorem 4.1 from the introduction. This
motivates why we want to consider some generalizations of the planar separator theorem in
this section. The first such result is due to Gilbert, Hutchinson, and Tarjan [42] and deals
with graphs of arbitrary genus. 2

Theorem 4.7 (Gilbert, Hutchinson, Tarjan [42]). An 𝑛-vertex graph 𝐻 with genus 𝑔 ≥ 0 has
separation number s(𝐻) ≤ 6

√
𝑔𝑛+ 2

√
2𝑛.

2Again, the separator theorems we refer to bound the size of a separator in 𝐻. Since the class of graphs with
genus less than 𝑔 (or, respectively, of 𝐹 -minor free graphs) is closed under taking subgraphs however, this
theorem can also be applied to such subgraphs and thus the bound on s(𝐻) follows.
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For fixed 𝑔 the class of all graphs with genus at most 𝑔 is closed under taking minors. Here 𝐹
is a minor of 𝐻 if it can be obtained from 𝐻 by a sequence of edge deletions and contractions.
A graph 𝐻 is called 𝐹 -minor free if 𝐹 is no minor of 𝐻. The famous graph minor theorem by
Robertson and Seymour [84] states that any minor closed class of graphs can be characterized
by a finite set of forbidden minors (such as 𝐾3,3 and 𝐾5 in the case of planar graphs). The
next separator theorem by Alon, Seymour, and Thomas [12] shows that already forbidding
one minor enforces a small separator.

Theorem 4.8 (Alon, Seymour, Thomas [12]). Let 𝐹 be an arbitrary graph. Then any 𝑛-vertex
graph 𝐻 that is 𝐹 -minor free has separation number s(𝐻) ≤ |𝐹 |3/2√𝑛.

We can apply these theorems to draw the following conclusion concerning the bandwidth of
bounded-degree graphs with fixed genus or some fixed forbidden minor from Theorem 4.3.

Corollary 4.9. Let 𝑔 be a positive integer, Δ ≥ 4 and 𝐹 be an ℎ-vertex graph and 𝐻 an
𝑛-vertex graph with maximum degree Δ(𝐻) ≤ Δ.

(a ) If 𝐻 has genus 𝑔 then bw(𝐻) ≤ 15𝑛/ logΔ(𝑛/𝑔).
(b ) If 𝐻 is 𝐹 -minor free then bw(𝐻) ≤ 12𝑛/ logΔ(𝑛/ℎ3).

4.2.2 Universality

In the previous section we argued that certain interesting graph classes have sublinear band-
width. Clearly, this knowledge has different consequences in conjunction with the embedding
results for graphs of sublinear bandwidth established in the later chapters of this thesis. In this
section we will briefly outline the nature of such implications. We concentrate on corollaries
of Theorem 5.1 here. Similar corollaries can of course be formulated concerning the other
embedding results.

Recall that a graph 𝐺 that contains copies of all graphs 𝐻 ∈ ℋ for some class of graphs
ℋ is also called universal for ℋ. Theorem 4.6 states that in bounded-degree graphs, the
existence of a big expanding subgraph is in fact the only obstacle which can prevent sublinear
bandwidth and thus the only possible obstruction for a universality result as in Theorem 5.1.
More precisely we immediately get the following corollary from Theorem 4.6.

Corollary 4.10. If the class 𝒞 meets one (and thus all) of the conditions in Theorem 4.6,
then the following is also true. For every 𝛾 > 0 and 𝑟 ∈ N there exists 𝑛0 such that for all
𝑛 ≥ 𝑛0 and for every graph 𝐻 ∈ 𝒞𝑛 with chromatic number 𝑟 and for every graph 𝐺 on 𝑛
vertices with minimum degree at least ( 𝑟−1

𝑟 + 𝛾)𝑛, the graph 𝐺 contains a copy of 𝐻.

By Theorem 4.1 we infer as a special case that all sufficiently large graphs with minimum
degree (3

4 + 𝛾)𝑛 are universal for the class of bounded-degree planar graphs. Universal graphs
for bounded-degree planar graphs have also been studied in [15, 22].

Corollary 4.11. For all Δ ∈ N and 𝛾 > 0, there exists 𝑛0 ∈ N such that for every 𝑛 ≥ 𝑛0

the following holds:

(a ) Every 3-chromatic planar graph on 𝑛 vertices with maximum degree at most Δ can be
embedded into every graph on 𝑛 vertices with minimum degree at least (2

3 + 𝛾)𝑛.
(b ) Every planar graph on 𝑛 vertices with maximum degree at most Δ can be embedded

into every graph on 𝑛 vertices with minimum degree at least (3
4 + 𝛾)𝑛.
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This extends Theorem 1.8 due to Kühn, Osthus & Taraz, which states that for every graph
𝐺 with minimum degree at least (2

3 + 𝛾)𝑛 there exists a particular spanning triangulation
𝐻 that can be embedded into 𝐺. Using Corollary 4.9 it is moreover possible to formulate
corresponding generalizations for graphs of fixed genus and for 𝐹 -minor free graphs for any
fixed 𝐹 .

4.3 Proofs

4.3.1 Separation and bandwidth

For the proof of Theorem 4.3 we will use a decomposition result which roughly states the
following. If the removal of a small separator 𝑆 decomposes the vertex set of a graph 𝐻 into
relatively small components 𝑅𝑖∪̇𝑃𝑖 such that the vertices in 𝑃𝑖 form a “buffer” between the
vertices in the separator 𝑆 and the set of remaining vertices 𝑅𝑖 in the sense that dist𝐻(𝑆,𝑅𝑖)
is sufficiently big, then the bandwidth of 𝐻 is small.

Lemma 4.12 (decomposition lemma). Let 𝐻 = (𝑉,𝐸) be a graph and 𝑆, 𝑃 , and 𝑅 be
vertex sets such that 𝑉 = 𝑆∪̇𝑃 ∪̇𝑅. For 𝑏, 𝑟 ∈ N with 𝑏 ≥ 3 assume further that there are
decompositions 𝑃 = 𝑃1∪̇ . . . ∪̇𝑃𝑏 and 𝑅 = 𝑅1∪̇ . . . ∪̇𝑅𝑏 of 𝑃 and 𝑅, respectively, such that the
following properties are satisfied:

(i ) |𝑅𝑖| ≤ 𝑟,
(ii ) 𝑒(𝑅𝑖∪̇𝑃𝑖, 𝑅𝑗∪̇𝑃𝑗) = 0 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑏,

(iii ) dist𝐻(𝑢, 𝑣) ≥ 𝑏/2 for all 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑅𝑖 with 𝑖 ∈ [𝑏].

Then bw(𝐻) ≤ 2(|𝑆|+ |𝑃 |+ 𝑟).

Proof. Assume we have 𝐻 = (𝑉,𝐸), 𝑉 = 𝑆∪̇𝑃 ∪̇𝑅 and 𝑏, 𝑟 ∈ N with the properties stated
above. Our first goal is to partition 𝑉 into pairwise disjoint sets 𝐵1, . . . , 𝐵𝑏, which we call
buckets, and that satisfy the following property:

If {𝑢, 𝑣} ∈ 𝐸 for 𝑢 ∈ 𝐵𝑖 and 𝑣 ∈ 𝐵𝑗 then |𝑖− 𝑗| ≤ 1. (4.1)

To this end all vertices of 𝑅𝑖 are placed into bucket 𝐵𝑖 for each 𝑖 ∈ [𝑏] and the vertices of 𝑆
are placed into bucket 𝐵⌈𝑏/2⌉. The remaining vertices from the sets 𝑃𝑖 are distributed over the
buckets according to their distance from 𝑆: vertex 𝑣 ∈ 𝑃𝑖 is assigned to bucket 𝐵𝑗(𝑣) where
𝑗(𝑣) ∈ [𝑏] is defined by

𝑗(𝑣) :=

⎧⎪⎨⎪⎩
𝑖 if dist(𝑆, 𝑣) ≥ |𝑏/2− 𝑖|,
⌈𝑏/2⌉ − dist(𝑆, 𝑣) if dist(𝑆, 𝑣) < 𝑏/2− 𝑖

⌈𝑏/2⌉+ dist(𝑆, 𝑣) if dist(𝑆, 𝑣) < 𝑖− 𝑏/2.

(4.2)

This placement obviously satisfies

|𝐵𝑗 | ≤ |𝑆|+ |𝑃 |+ |𝑅𝑖| ≤ |𝑆|+ |𝑃 |+ 𝑟 (4.3)

by construction and condition (i ). Moreover, we claim that it guarantees condition (4.1).
Indeed, let {𝑢, 𝑣} ∈ 𝐸 be an edge. If 𝑢 and 𝑣 are both in 𝑆 then clearly (4.1) is satisfied.
Thus it remains to consider the case where, without loss of generality, 𝑢 ∈ 𝑅𝑖∪̇𝑃𝑖 for some
𝑖 ∈ [𝑏]. By condition (ii ) this implies 𝑣 ∈ 𝑆∪̇𝑅𝑖∪̇𝑃𝑖. First assume that 𝑣 ∈ 𝑆. Thus
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dist(𝑢, 𝑆) = 1 and from condition (iii ) we infer that 𝑢 ∈ 𝑃𝑖. Accordingly 𝑢 is placed into
bucket 𝐵𝑗(𝑢) ∈ {𝐵⌈𝑏/2⌉−1, 𝐵⌈𝑏/2⌉, 𝐵⌈𝑏/2⌉+1} by (4.2) and 𝑣 is placed into bucket 𝐵⌈𝑏/2⌉ and so
we also get (4.1) in this case. If both 𝑢, 𝑣 ∈ 𝑅𝑖∪̇𝑃𝑖, on the other hand, we are clearly done
if 𝑢, 𝑣 ∈ 𝑅𝑖. So assume without loss of generality, that 𝑢 ∈ 𝑃𝑖. If 𝑣 ∈ 𝑃𝑖 then we conclude
from |dist(𝑆, 𝑢)− dist(𝑆, 𝑣)| ≤ 1 and (4.2) that 𝑢 is placed into bucket 𝐵𝑗(𝑢) and 𝑣 into 𝐵𝑗(𝑣)

with |𝑗(𝑢) − 𝑗(𝑣)| ≤ 1. If 𝑣 ∈ 𝑅𝑖, finally, observe that | dist(𝑆, 𝑢) − dist(𝑆, 𝑣)| ≤ 1 together
with condition (iii ) implies that dist(𝑆, 𝑢) ≥ 𝑏/2− 1 and so 𝑢 is placed into bucket 𝐵𝑗(𝑢) with
𝑗(𝑢) ∈ {𝑖(𝑣), 𝑖(𝑣)− 1} by (4.2) and 𝑣 is assigned to 𝐵𝑖 with 𝑖 = 𝑖(𝑣). Thus we also get (4.1) in
this last case.

Now we are ready to construct an ordering of 𝑉 respecting the desired bandwidth bound.
We start with the vertices in bucket 𝐵1, order them arbitrarily, proceed to the vertices in
bucket 𝐵2, order them arbitrarily, and so on, up to bucket 𝐵𝑏. By condition (4.1) this gives
an ordering with bandwidth at most twice as large as the largest bucket and thus we conclude
from (4.3) that bw(𝐻) ≤ 2(|𝑆|+ |𝑃 |+ 𝑟).

A decomposition of the vertices of 𝐻 into buckets as in the proof of Lemma 4.12 is also
called a path partition of 𝐻 and appears e.g. in [30].

Before we get to the proof of Theorem 4.3, we will establish the following technical observation
about labelled trees.

Proposition 4.13. Let 𝑏 be a positive real, 𝑇 = (𝑉,𝐸) be a tree with |𝑉 | ≥ 3, and ℓ : 𝑉 → [0, 1]
be a real valued labelling of its vertices such that

∑︀
𝑣∈𝑉 ℓ(𝑣) ≤ 1. Denote further for all 𝑣 ∈ 𝑉

by 𝐿(𝑣) the set of leaves that are adjacent to 𝑣 and suppose that ℓ(𝑣)+
∑︀

𝑢∈𝐿(𝑣) ℓ(𝑢) ≥ |𝐿(𝑣)|/𝑏.
Then 𝑇 has at most 𝑏 leaves in total.

Proof. Let 𝐿 ⊆ 𝑉 be the set of leaves of 𝑇 and 𝐼 := 𝑉 ∖ 𝐿 be the set of internal vertices.
Clearly

1 ≥
∑︁
𝑣∈𝑉

ℓ(𝑣) =
∑︁
𝑣∈𝐼

⎛⎝ℓ(𝑣) +
∑︁

𝑢∈𝐿(𝑣)

ℓ(𝑢)

⎞⎠ ≥
∑︁
𝑣∈𝐼

|𝐿(𝑣)|
𝑏

=
|𝐿|
𝑏

which implies the assertion.

The idea of the proof of Theorem 4.3 is to repeatedly extract separators from 𝐻 and the
pieces that result from the removal of such separators. We denote the union of these separators
by 𝑆, put all remaining vertices with small distance from 𝑆 into sets 𝑃𝑖, and all other vertices
into sets 𝑅𝑖. Then we can apply the decomposition lemma (Lemma 4.12) to these sets 𝑆,
𝑃𝑖, and 𝑅𝑖. This, together with some technical calculations, will give the desired bandwidth
bound for 𝐻.

Proof of Theorem 4.3. Let 𝐻 = (𝑉,𝐸) be a graph on 𝑛 vertices with maximum degree at
most Δ ≥ 4. Observe that the desired bandwidth bound is trivial if logΔ 𝑛− logΔ s(𝐻) ≤ 6,
so assume in the following that logΔ 𝑛− logΔ s(𝐻) > 6. Define

𝛽 := logΔ 𝑛− logΔ s(𝐻) and 𝑏 := ⌈𝛽⌉ ≥ 7 (4.4)

and observe that with this choice of 𝛽 our aim is to show that bw(𝐻) ≤ 6𝑛/𝛽.
The goal is to construct 𝑉 = 𝑆∪̇𝑃 ∪̇𝑅 with the properties required by Lemma 4.12. For

this purpose we will recursively use the fact that 𝐻 and its subgraphs have separators of size
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at most s(𝐻). In the 𝑖-th round we will identify separators 𝑆𝑖,𝑘 in 𝐻 whose removal splits 𝐻
into parts 𝑉𝑖,1, . . . , 𝑉𝑖,𝑏𝑖

. The details are as follows.
In the first round let 𝑆1,1 be an arbitrary (s(𝐻), 2/3)-separator in 𝐻 that separates 𝐻 into

𝑉1,1 and 𝑉1,2 and set 𝑏1 := 2. In the 𝑖-th round, 𝑖 > 1, consider each of the sets 𝑉𝑖−1,𝑗 with
𝑗 ∈ [𝑏𝑖−1]. If |𝑉𝑖−1,𝑗 | ≤ 2𝑛/𝑏 then let 𝑉𝑖,𝑗′ := 𝑉𝑖−1,𝑗 , otherwise choose an (s(𝐻), 2/3)-separator
𝑆𝑖,𝑘 that separates 𝐻[𝑉𝑖−1,𝑗 ] into sets 𝑉𝑖,𝑗′ and 𝑉𝑖,𝑗′+1 (where 𝑘 and 𝑗′ are appropriate indices,
for simplicity we do not specify them further). Let 𝑆𝑖 denote the union of all separators
constructed in this way (and in this round). This finishes the 𝑖-th round. We stop this
procedure as soon as all sets 𝑉𝑖,𝑗′ have size at most 2𝑛/𝑏 and denote the corresponding 𝑖 by 𝑖*.
Then 𝑏𝑖* is the number of sets 𝑉𝑖*,𝑗′ we end up with in the last iteration. Let further 𝑥𝑆 be
the number of separators 𝑆𝑖,𝑘 extracted from 𝐻 during this process in total.

Claim 4.14. We have 𝑏𝑖* ≤ 𝑏 and 𝑥𝑆 ≤ 𝑏− 1.

We will postpone the proof of this fact and first show how it implies the theorem. Set
𝑆 :=

⋃︀
𝑖∈[𝑖*] 𝑆𝑖, for 𝑗 ∈ [𝑏𝑖* ] define

𝑃𝑗 := {𝑣 ∈ 𝑉𝑖*,𝑗 : dist(𝑣, 𝑆) < 𝛽/2} and 𝑅𝑗 = 𝑉𝑖*,𝑗 ∖ 𝑃𝑗 ,

set 𝑃𝑗 = 𝑅𝑗 = ∅ for 𝑏𝑖* < 𝑗 ≤ 𝑏 and finally define 𝑃 :=
⋃︀

𝑗∈[𝑏] 𝑃𝑗 and 𝑅 :=
⋃︀

𝑗∈[𝑏]𝑅𝑗 .
We claim that 𝑉 = 𝑆∪̇𝑃 ∪̇𝑅 is a partition that satisfies the requirements of the decomposition

lemma (Lemma 4.12) with parameter 𝑏 and 𝑟 = 2𝑛/𝑏. To check this, observe first that for
all 𝑖 ∈ [𝑖*] and 𝑗, 𝑗′ ∈ [𝑏𝑖] we have 𝑒(𝑉𝑖,𝑗 , 𝑉𝑖,𝑗′) = 0 since 𝑉𝑖,𝑗 and 𝑉𝑖,𝑗′ were separated by
some 𝑆𝑖′,𝑘. It follows that 𝑒(𝑅𝑗∪̇𝑃𝑗 , 𝑅𝑗′∪̇𝑃𝑗′) = 𝑒(𝑉𝑖*,𝑗 , 𝑉𝑖*,𝑗′) = 0 for all 𝑗, 𝑗′ ∈ [𝑏𝑖* ]. Trivially
𝑒(𝑅𝑗∪̇𝑃𝑗 , 𝑅𝑗′∪̇𝑃𝑗′) = 0 for all 𝑗 ∈ [𝑏] and 𝑏𝑖* < 𝑗′ ≤ 𝑏 and therefore we get condition (ii ) of
Lemma 4.12. Moreover, condition (iii ) is satisfied by the definition of the sets 𝑃𝑗 and 𝑅𝑗

above. To verify condition (i ) note that |𝑅𝑗 | ≤ |𝑉𝑖*,𝑗 | ≤ 2𝑛/𝑏 = 𝑟 for all 𝑗 ∈ [𝑏𝑖* ] by the choice
of 𝑖* and |𝑅𝑗 | = 0 for all 𝑏𝑖* < 𝑗 ≤ 𝑏. Accordingly we can apply Lemma 4.12 and infer that

bw(𝐻) ≤ 2
(︂
|𝑆|+ |𝑃 |+ 2𝑛

𝑏

)︂
. (4.5)

In order to establish the desired bound on the bandwidth, we thus need to show that
|𝑆|+ |𝑃 | ≤ 𝑛/𝛽. We first bound the size of 𝑆. By Claim 4.14 at most 𝑥𝑆 ≤ 𝑏− 1 separators
have been extracted in total, which implies

|𝑆| ≤ 𝑥𝑆 · s(𝐻) ≤ (𝑏− 1) s(𝐻). (4.6)

Furthermore all vertices 𝑣 ∈ 𝑃 satisfy dist𝐻(𝑣, 𝑆) < 𝛽/2 by definition. As 𝐻 has maximum
degree Δ there are at most |𝑆|(Δ𝛽/2 − 1)/(Δ− 1) vertices 𝑣 ∈ 𝑉 ∖ 𝑆 with this property and
hence

|𝑆|+ |𝑃 | ≤ |𝑆|(1 +
Δ𝛽/2 − 1

Δ− 1
) ≤ |𝑆| Δ𝛽/2

Δ− 2
≤ (𝑏− 1) s(𝐻)

(Δ− 2)

√︂
𝑛

s(𝐻)

=
(𝑏− 1)𝑛
(Δ− 2)

√︂
s(𝐻)
𝑛

where the third inequality follows from (4.4) and (4.6). It is easy to verify that for any 𝑥 ≥ 1
and Δ ≥ 4 we have (Δ−2)

√
𝑥 ≥ log2

Δ 𝑥. This together with (4.4) gives (Δ−2)
√︀
𝑛/ s(𝐻) ≥ 𝛽2
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and hence we get

|𝑆|+ |𝑃 | ≤ (𝑏− 1)𝑛
𝛽2

≤ 𝑛

𝛽
.

Together with (4.5) this yields the assertion of the theorem.
It remains to prove Claim 4.14. Notice that the process of repeatedly separating 𝐻 and

its subgraphs can be seen as a binary tree 𝑇 on vertex set 𝑊 whose internal nodes represent
the extraction of a separator 𝑆𝑖,𝑘 for some 𝑖 (and thus the separation of a subgraph of 𝐻 into
two sets 𝑉𝑖,𝑗 and 𝑉𝑖,𝑗′) and whose leaves represent the sets 𝑉𝑖,𝑗 that are of size at most 2𝑛/𝑏.
Clearly the number of leaves of 𝑇 is 𝑏𝑖* and the number of internal nodes 𝑥𝑆 . As 𝑇 is a binary
tree we conclude 𝑥𝑆 = 𝑏𝑖* − 1 and thus it suffices to show that 𝑇 has at most 𝑏 leaves in order
to establish the claim. To this end we would like to apply Proposition 4.13. Label an internal
node of 𝑇 that represents a separator 𝑆𝑖,𝑘 with |𝑆𝑖,𝑘|/𝑛, a leaf representing 𝑉𝑖,𝑗 with |𝑉𝑖,𝑗 |/𝑛
and denote the resulting labelling by ℓ. Clearly we have

∑︀
𝑤∈𝑊 ℓ(𝑤) = 1. Moreover we claim

that
ℓ(𝑤) +

∑︁
𝑢∈𝐿(𝑤)

ℓ(𝑤) ≥ |𝐿(𝑤)|/𝑏 for all 𝑤 ∈𝑊 (4.7)

where 𝐿(𝑤) denotes the set of leaves that are children of 𝑤. Indeed, let 𝑤 ∈𝑊 , notice that
|𝐿(𝑤)| ≤ 2 as 𝑇 is a binary tree, and let 𝑢 and 𝑢′ be the two children of 𝑤. If |𝐿(𝑤)| = 0 we are
done. If |𝐿(𝑤)| > 0 then 𝑤 represents a (2/3, 𝑠(𝐻))-separator 𝑆(𝑤) := 𝑆𝑖−1,𝑘 that separated a
graph 𝐻[𝑉 (𝑤)] with 𝑉 (𝑤) := 𝑉𝑖−1,𝑗 ≥ 2𝑛/𝑏 into two sets 𝑈(𝑤) := 𝑉𝑖,𝑗′ and 𝑈 ′(𝑤) := 𝑉𝑖,𝑗′+1

such that |𝑈(𝑤)|+ |𝑈 ′(𝑤)|+ |𝑆(𝑤)| = |𝑉 (𝑤)|. In the case that |𝐿(𝑤)| = 2 this implies

ℓ(𝑤) + ℓ(𝑢) + ℓ(𝑢′) =
|𝑆(𝑤)|+ |𝑈(𝑤)|+ |𝑈 ′(𝑤)|

𝑛
=
|𝑉 (𝑤)|
𝑛

≥ 2/𝑏

and thus we get (4.7). If |𝐿(𝑤)| = 1 on the other hand then, without loss of generality, 𝑢 is a
leaf of 𝑇 and |𝑈 ′(𝑤)| > 2𝑛/𝑏. Since 𝑆(𝑤) is a (2/3, 𝑠(𝐻))-separator however we know that
|𝑉 (𝑤)| ≥ 3

2 |𝑈 ′(𝑤)| and hence

ℓ(𝑤) + ℓ(𝑢) =
|𝑆(𝑤)|+ |𝑈(𝑤)|

𝑛
=
|𝑆(𝑤)|+ |𝑉 (𝑤)| − |𝑈 ′(𝑤)| − |𝑆(𝑤)|

𝑛

≥
3
2 |𝑈 ′(𝑤)| − |𝑈 ′(𝑤)|

𝑛
≥

1
2(2𝑛/𝑏)
𝑛

which also gives (4.7) in this case. Therefore we can apply Proposition 4.13 and infer that 𝑇
has at most 𝑏 leaves as claimed.

4.3.2 Non-expansion

In this section we study the relation between non-expansion, bandwidth and treewidth. We
first give a proof of Proposition 4.5.

Proof of Proposition 4.5. We have to show that for every graph 𝐻 and every 𝜀 > 0 the
inequality 𝑏𝜀(𝐻) ≤ 2 bw(𝐻)/𝜀 holds. Suppose that 𝐻 has 𝑛 vertices and let 𝜎 : 𝑉 → [𝑛] be
an arbitrary labelling of 𝐻. Furthermore assume that 𝑉 ′ ⊆ 𝑉 with |𝑉 ′| = 𝑏𝜀(𝐻) induces an
𝜀-expander in 𝐻. Define 𝑉 * ⊆ 𝑉 ′ to be the first 𝑏𝜀(𝐻)/2 = |𝑉 ′|/2 vertices of 𝑉 ′ with respect to
the ordering 𝜎. Since 𝑉 ′ induces an 𝜀-expander in 𝐻 there must be at least 𝜀𝑏𝜀(𝐻)/2 vertices

44



4.3 Proofs

in 𝑁* := 𝑁(𝑉 *) ∩ 𝑉 ′. Let 𝑢 be the vertex in 𝑁* with maximal 𝜎(𝑢) and 𝑣 ∈ 𝑉 * ∩ 𝑁(𝑢).
As 𝑢 ̸∈ 𝑉 * and 𝜎(𝑢′) > 𝜎(𝑣′) for all 𝑢′ ∈ 𝑁* and 𝑣′ ∈ 𝑉 * by the choice of 𝑉 * we have
|𝜎(𝑢)− 𝜎(𝑣)| ≥ |𝑁*| ≥ 𝜀𝑏𝜀(𝐻)/2. Since this is true for every labelling 𝜎 we can deduce that
𝑏𝜀(𝐻) ≤ 2 bw(𝐻)/𝜀.

The remainder of this section is devoted to the proof of Theorem 4.4. We will use the
following lemma which establishes a relation between non-expansion and certain separators.

Lemma 4.15 (non-expansion→separator). Let 𝐻 be a graph on 𝑛 vertices and let 𝜀 > 0. If
𝐻 is (𝑛/2, 𝜀)-non-expanding then 𝐻 has a (2𝜀𝑛/3, 2/3)-separator.

Proof of Lemma 4.15. Let 𝐻 = (𝑉,𝐸) with |𝑉 | = 𝑛 be (𝑛/2, 𝜀)-non-expanding for 𝜀 > 0.
It follows that every subset 𝑉 ′ ⊆ 𝑉 with |𝑉 ′| ≥ 𝑛/2 induces a subgraph 𝐻 ′ ⊆ 𝐻 with the
following property: there is 𝑊 ⊆ 𝑉 ′ such that |𝑊 | ≤ |𝑉 ′|/2 and |𝑁𝐻′(𝑊 )| ≤ 𝜀|𝑊 |. We use
this fact to construct a (2𝜀𝑛/3, 2/3)-separator in the following way:

1. Define 𝑉1 := 𝑉 and 𝑖 := 1.
2. Let 𝐻𝑖 := 𝐻[𝑉𝑖].
3. Find a subset 𝑊𝑖 ⊆ 𝑉𝑖 with |𝑊𝑖| ≤ |𝑉𝑖|/2 and |𝑁𝐻𝑖(𝑊𝑖)| ≤ 𝜀|𝑊𝑖|.
4. Set 𝑆𝑖 := 𝑁𝐻𝑖(𝑊𝑖), 𝑉𝑖+1 := 𝑉𝑖 ∖ (𝑊𝑖 ∪ 𝑆𝑖).
5. If |𝑉𝑖+1| ≥ 2

3𝑛 then set 𝑖 := 𝑖+ 1 and go to step (2).
6. Set 𝑖* := 𝑖 and return

𝐴 :=
𝑖*⋃︁

𝑖=1

𝑊𝑖, 𝐵 := 𝑉𝑖*+1, 𝑆 :=
𝑖*⋃︁

𝑖=1

𝑆𝑖.

This construction obviously returns a partition 𝑉 = 𝐴∪̇𝐵∪̇𝑆 with |𝐵| < 2
3𝑛. Moreover,

|𝑉𝑖* | ≥ 2
3𝑛 and |𝑊𝑖* | ≤ |𝑉𝑖* |/2 and hence

|𝐴| = 𝑛− |𝐵| − |𝑆| = 𝑛− |𝑉𝑖*+1| − |𝑆| = 𝑛− (|𝑉𝑖* | − |𝑊𝑖* | − |𝑆𝑖* |)− |𝑆| ≤ 𝑛− |𝑉𝑖* |
2

≤ 2
3
𝑛.

The upper bound on |𝑆| follows easily since

|𝑆| =
𝑖*∑︁

𝑖=1

|𝑁𝐻𝑖(𝑊𝑖)| ≤
𝑖*∑︁

𝑖=1

𝜀|𝑊𝑖| = 𝜀|𝐴| ≤ 2
3
𝜀𝑛.

It remains to show that 𝑆 separates 𝐻. This is indeed the case as 𝑁𝐻(𝐴) ⊆ 𝑆 by construction
and thus 𝐸(𝐴,𝐵) = ∅.

Now we can prove Theorem 4.4. As remarked earlier, Grohe and Marx [45] independently
gave a proof of an equivalent result which employs similar ideas but doesn’t use separators
explicitly.

Proof of Theorem 4.4. Let 𝐻 = (𝑉,𝐸) be a graph on 𝑛 vertices, 𝜀 > 0, and let 𝑏 ≥ 𝑏𝜀(𝐻). It
follows immediately from the definition of non-expansion that every subgraph 𝐻 ′ ⊆ 𝐻 with
𝐻 ′ = (𝑉 ′, 𝐸′) and |𝑉 ′| ≥ 2𝑏 also has 𝑏𝜀(𝐻 ′) ≤ 𝑏.

We now prove Theorem 4.4 by induction on the size of 𝐻. tw(𝐻) ≤ 2𝜀𝑛+ 2𝑏 trivially holds
if 𝑛 ≤ 2𝑏. So let 𝐻 have 𝑛 > 2𝑏 vertices and assume that the theorem holds for all graphs with
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less than 𝑛 vertices. Then 𝐻 is (𝑏, 𝜀)-non-expanding and thus has a (2𝜀𝑛/3, 2/3)-separator
𝑆 by Lemma 4.15. Assume that 𝑆 separates 𝐻 into the two subgraphs 𝐻1 = (𝑉1, 𝐸1) and
𝐻2 = (𝑉2, 𝐸2). Let (𝒳1, 𝑇1) and (𝒳2, 𝑇2) be tree decompositions of 𝐻1 and 𝐻2, respectively,
and assume that 𝒳1 ∩ 𝒳2 = ∅. We use them to construct a tree decomposition (𝒳 , 𝑇 ) of 𝐻 as
follows. Let 𝒳 = {𝑋𝑖 ∪𝑆 : 𝑋𝑖 ∈ 𝒳1}∪{𝑋𝑖 ∪𝑆 : 𝑋𝑖 ∈ 𝒳2} and 𝑇 = (𝐼1 ∪ 𝐼2, 𝐹 = 𝐹1 ∪𝐹2 ∪{𝑒})
where 𝑒 is an arbitrary edge between the two trees. This is indeed a tree decomposition of 𝐻:
Every vertex 𝑣 ∈ 𝑉 belongs to at least one 𝑋𝑖 ∈ 𝒳 and for every edge {𝑣, 𝑤} ∈ 𝐸 there exists
𝑖 ∈ 𝐼 (where 𝐼 is the index set of 𝒳 ) with {𝑣, 𝑤} ⊆ 𝑋𝑖. This is trivial for {𝑣, 𝑤} ⊆ 𝑉𝑖 and
follows from the definition of 𝒳 for 𝑣 ∈ 𝑆 and 𝑤 ∈ 𝑉𝑖. Since 𝑆 separates 𝐻 there are no edges
{𝑣, 𝑤} with 𝑣 ∈ 𝑉1 and 𝑤 ∈ 𝑉2. For the same reason the third property of a tree decomposition
holds: if 𝑗 lies on the path from 𝑖 to 𝑘 in 𝑇 , then 𝑋𝑖 ∩𝑋𝑘 ⊆ 𝑋𝑗 as the intersection is 𝑆 if
𝑋𝑖, 𝑋𝑘 are subsets of 𝑉1 and 𝑉2 respectively.

We have seen that (𝒳 , 𝑇 ) is a tree decomposition of 𝐻 and can estimate its width. This
gives tw(𝐻) ≤ max{tw(𝐻1), tw(𝐻2)}+ |𝑆|. With the induction hypothesis we have

tw(𝐻) ≤ max{2𝜀 · |𝑉1|+ 2𝑏, 2𝜀 · |𝑉2|+ 2𝑏}+ |𝑆|
≤ 2𝜀𝑛+ 2𝑏.

where the second inequality is due to the fact that |𝑉𝑖| ≤ (2/3)𝑛 and |𝑆| ≤ (2𝜀𝑛)/3.
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Chapter 5

The bandwidth conjecture
of Bollobás and Komlós

Minimum degree conditions that enforce the appearance of certain large subgraphs 𝐻 in a
host graph 𝐺 are the theme of several prominent results in extremal combinatorics. As we
saw in the introduction (Section 1.1.1) several theorems of this type assert the existence of
specific graphs 𝐻 (such as Hamilton cycles in Dirac’s theorem or spanning 𝐾𝑟-factors in the
Hajnal-Szemerédi theorem) if 𝐺 has minimum degree at least 𝛿(𝐺) = 𝑛 · (𝜒(𝐻) − 1)/𝜒(𝐻)
where 𝑛 is the number of vertices in 𝐺. The Bollobás-Komlós conjecture (already discussed
in Section 1.2.1) formulates a similar criterion for the existence of a more general class of
subgraphs. In the present chapter we will prove this conjecture. We establish the following
theorem.

Theorem 5.1. For all 𝑟,Δ ∈ N and 𝛾 > 0, there exist constants 𝛽 > 0 and 𝑛0 ∈ N such
that for every 𝑛 ≥ 𝑛0 the following holds. If 𝐻 is an 𝑟-chromatic graph on 𝑛 vertices with
Δ(𝐻) ≤ Δ, and bandwidth at most 𝛽𝑛 and if 𝐺 is a graph on 𝑛 vertices with minimum degree
𝛿(𝐺) ≥ ( 𝑟−1

𝑟 + 𝛾)𝑛, then 𝐺 contains a copy of 𝐻.

Obviously, Hamilton cycles and their powers have constant bandwidth and are thus embraced
by this theorem. In addition, we saw in the last chapter that, for example, bounded-degree
𝐹 -minor-free graphs for any 𝐹 have sublinear bandwidth (Corollary 4.9) and, more generally,
that a hereditary class of bounded-degree graphs has sublinear bandwidth if and only if it
does not contain expanders of linear order (Theorem 4.6). In the introduction we furthermore
explained that expanders 𝐻 in fact show that the claim of Theorem 5.1 no longer holds when
the bandwidth restriction on 𝐻 is omitted.

This indicates that Theorem 5.1 can be regarded as a common generalisation of some of
the results concerning Hamilton cycles, their powers, or spanning 𝐾𝑟-factors mentioned above
(and others, see also Section 1.1.1). Observe, however, that for (𝑟 − 1)-st powers of Hamilton
cycles 𝐻 this is true only if 𝑟 divides 𝑛, since otherwise 𝜒(𝐻) = 𝑟 + 1. We will return to this
topic in Section 5.1 where we discuss a more general result than Theorem 5.1 (which we shall
subsequently prove, see Theorem 5.2) that actually also includes those cases. In Section 5.2
we shall then describe the ideas and main lemmas used in the proof, which is presented in
Section 5.3. The remaining sections of this chapter cover the proofs of these lemmas. Some
technical results (as well as several ideas) obtained along the way will also be reused in later
chapters and hence prepare us for the proofs of other embedding results such as Theorem 7.2
in Chapter 7.

Before starting let us note that the analogue of Theorem 5.1 for bipartite 𝐻 was announced
by Abbasi [1] in 1998, and a short proof based on our methods can be found in [49]. Moreover,
as mentioned already in the introduction, Abbasi [2] showed that the additional term 𝛾𝑛 in
the minimum degree condition in Theorem 5.1 cannot be omitted.
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5.1 The rôle of the chromatic number

The Pósa-Seymour conjecture (see Section 1.1.1) implies that the (𝑟−1)-st power of a Hamilton
cycle on an odd number of vertices is forced as a spanning subgraph in any graph of minimum
degree 𝑟−1

𝑟 𝑛 (although it is (𝑟 + 1)- and not 𝑟-chromatic). In the same way other (𝑟 + 1)-
chromatic graphs are also forced already for this minimum degree. It seems that one important
question here is whether all 𝑟 + 1 colours are needed by many vertices. For instance, the
critical chromatic number 𝜒𝑐𝑟(𝐻) of a graph 𝐻 is defined as

𝜒𝑐𝑟(𝐻) :=
(𝜒(𝐻)− 1)|𝑉 (𝐻)|

|𝑉 (𝐻)| − 𝜎
,

where 𝜎 is the minimum size of the smallest colour class in a colouring of 𝐻 with 𝜒(𝐻) colours.
Obviously, 𝜒(𝐻) − 1 < 𝜒𝑐𝑟(𝐻) ≤ 𝜒(𝐻), with (approximate) equality for 𝜎 tending to 0 or
|𝑉 (𝐻)|/𝜒(𝐻), respectively. This concept was introduced by Komlós [63], who proved that a
minimum degree condition of 𝛿(𝐺) ≥ (𝜒𝑐𝑟(𝐻)− 1)𝑛/𝜒𝑐𝑟(𝐻) suffices to find a family of disjoint
copies of 𝐻 covering all but 𝜀𝑛 vertices of 𝐺. Kühn and Osthus [73] further investigated this
question and managed to determine the corresponding minimum degree condition (up to an
additive constant) for the containment of a spanning 𝐻-factor for every 𝐻.

The following example shows however, that we cannot replace 𝜒(𝐻) in Theorem 5.1 by
𝜒𝑐𝑟(𝐻). Let 𝑏, 𝑟, 𝑚, and 𝑛 be positive integers such that 𝑟 divides 𝑛 and (𝑏(𝑟− 1) + 1)𝑚 = 𝑛.
Consider the graph 𝐻 that is obtained from 𝑚 vertex disjoint copies of the complete 𝑟-partite
graph 𝐾 with one colour class of size one and 𝑟− 1 colour classes of size 𝑏 by adding all edges
between different colour classes of the 𝑖-th and (𝑖+ 1)-st such copy for all 𝑖 ∈ [𝑚− 1] (this
graph is similar to the graph 𝐶𝑟

𝑚 defined below, see page 49). Furthermore, let 𝐾−
𝑟 be the

graph 𝐾𝑟 minus an edge and let 𝐺 be the graph obtained from 𝐾−
𝑟 by replacing the two

non-adjacent vertices by cliques 𝑍1 and 𝑍2 of size 𝑛/𝑟 each, all other vertices by independent
sets of size 𝑛/𝑟, and all edges of 𝐾−

𝑟 by complete bipartite graphs. Then 𝐻 and 𝐺 are graphs
on 𝑛 vertices with 𝛿(𝐺) = 𝑟−1

𝑟 𝑛−1, Δ(𝐻) ≤ 3𝑏𝑟, bw(𝐻) ≤ 3𝑏𝑟, 𝜒(𝐻) = 𝑟, and 𝜒𝑐𝑟 = 𝑟−1+ 1
𝑏 .

It is not difficult to check that 𝐻 is not a subgraph of 𝐺 because 𝐻 is so “well connected”
that any potential copy of 𝐻 in 𝐺 could use only vertices in one of the two cliques 𝑍1 and 𝑍2.

Nevertheless our methods allow an extension of Theorem 5.1 that goes into a somewhat
similar direction. Assume that the vertices of 𝐻 are labelled 1, . . . , 𝑛. For two positive integers
𝑥, 𝑦, an (𝑟+ 1)-colouring 𝜎 : 𝑉 (𝐻) → {0, . . . , 𝑟} of 𝐻 is said to be (𝑥, 𝑦)-zero free with respect
to such a labelling, if for each 𝑡 ∈ [𝑛] there exists a 𝑡′ with 𝑡 ≤ 𝑡′ ≤ 𝑡+ 𝑥 such that 𝜎(𝑢) ̸= 0
for all 𝑢 ∈ [𝑡′, 𝑡′ + 𝑦]. We also say that the interval [𝑡′, 𝑡′ + 𝑦] is zero free.

The following theorem states that the assertion of Theorem 5.1 remains true for (𝑟 + 1)-
colourable graphs 𝐻 if the (𝑟+ 1)-st colour is used by few vertices and does only appear rarely,
at well separated places in the bandwidth ordering of 𝐻.

Theorem 5.2. For all 𝑟,Δ ∈ N and 𝛾 > 0, there exist constants 𝛽 > 0 and 𝑛0 ∈ N such
that for every 𝑛 ≥ 𝑛0 the following holds. Let 𝐻 be a graph with Δ(𝐻) ≤ Δ whose vertices
are labelled 1, . . . , 𝑛 such that, with respect to this labelling, 𝐻 has bandwidth at most 𝛽𝑛, an
(𝑟 + 1)-colouring that is (8𝑟𝛽𝑛, 4𝑟𝛽𝑛)-zero free, and uses colour 0 for at most 𝛽𝑛 vertices in
total. If 𝐺 is a graph on 𝑛 vertices with minimum degree 𝛿(𝐺) ≥ ( 𝑟−1

𝑟 + 𝛾)𝑛, then 𝐺 contains
a copy of 𝐻.

Obviously Theorem 5.2 implies Theorem 5.1, and the remaining part of this chapter is
devoted to the proof of Theorem 5.2.
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5.2 The main lemmas and an outline of the proof

In this section we introduce the central lemmas that are needed for the proof of our main
theorem. Our emphasis is to explain how they work together to give the proof of Theorem 5.2,
which itself is then presented in full detail in the subsequent section, Section 5.3. We will use
the strategy outlined in Sections 1.3 and 1.4, and apply the general embedding lemma together
with two structural lemmas that provide partitions, suitable for the general embedding lemma,
of the graph 𝐻 and 𝐺, respectively. For these lemmas we need a few more definitions.

Suppose that 𝑚 and 𝑟 are integers. Let 𝐶𝑟
𝑚 be the 𝑚𝑟-vertex graph obtained from a path

on 𝑚 vertices by replacing every vertex by a clique of size 𝑟 and replacing every edge by a
complete bipartite graph minus a perfect matching (see Figure 5.1). More precisely,

𝑉 (𝐶𝑟
𝑚) = [𝑚]× [𝑟] (5.1)

and
{(𝑖, 𝑗), (𝑖′, 𝑗′)} ∈ 𝐸(𝐶𝑟

𝑚) iff 𝑖 = 𝑖′ or |𝑖− 𝑖′| = 1 ∧ 𝑗 ̸= 𝑗′. (5.2)

Let 𝐾𝑟
𝑚 be the graph on vertex set [𝑚] × [𝑟] that is formed by the disjoint union of 𝑚

complete graphs on 𝑟 vertices. Then 𝐾𝑟
𝑚 ⊆ 𝐶𝑟

𝑚 and we call the complete graph on vertices
(𝑖, 1), . . . , (𝑖, 𝑟) the 𝑖-th component of 𝐾𝑟

𝑚 for 𝑖 ∈ [𝑚]. Note moreover, that 𝜎 : [𝑚]× [𝑟] → [𝑟]
with 𝜎(𝑖, 𝑗) := 𝑗 for 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑟] is a valid 𝑟-colouring of 𝐶𝑟

𝑚. We will later consider
vertex partitions (𝑉𝑖,𝑗)𝑖∈[𝑚],𝑗∈[𝑟] that are (𝜀, 𝑑)-regular on 𝐶𝑟

𝑚 for some 𝜀 and 𝑑. Then we will
also say, that 𝑉𝑖,𝑗 has colour 𝑗.

C3
m

1

Figure 5.1: The graph 𝐶3
𝑚. The encircled triples of vertices form cliques of size 3 in 𝐶3

𝑚.

Remark. In what follows we shall frequently consider graphs 𝑅𝑟
𝑚 on vertex set [𝑚]× [𝑟] and

say that 𝐾𝑟
𝑚 ⊆ 𝐶𝑟

𝑚 ⊆ 𝑅𝑟
𝑚. Then we implicitly assume that the vertices of 𝑅𝑟

𝑚 are labelled such
that this is consistent with these copies of 𝐾𝑟

𝑚 and 𝐶𝑟
𝑚, i.e., the vertex set {𝑖} × [𝑟] forms the

𝑖-th component of 𝐾𝑟
𝑚 for each 𝑖 ∈ [𝑚] and [𝑚] × {𝑗} forms colour class 𝑗 of 𝐶𝑟

𝑚 for each
𝑗 ∈ [𝑟].

We can now state (and then explain) our first main lemma which asserts a regular partition
of the graph 𝐺 with structural properties that will be suitable for embedding 𝐻 into 𝐺.

Lemma 5.3 (Lemma for 𝐺). For all 𝑟 ∈ N and 𝛾 > 0 there exist 𝑑 > 0 and 𝜀0 > 0 such that
for every positive 𝜀 ≤ 𝜀0 there exist 𝑘1 and 𝜉0 > 0 such that for all 𝑛 ≥ 𝑘1 and for every graph
𝐺 on vertex set [𝑛] with 𝛿(𝐺) ≥ ((𝑟 − 1)/𝑟 + 𝛾)𝑛 there exist 𝑘 ∈ N ∖ {0} and a graph 𝑅𝑟

𝑘 on
vertex set [𝑘]× [𝑟] with

(R1) 𝑘 ≤ 𝑘1,
(R2) 𝛿(𝑅𝑟

𝑘) ≥ ((𝑟 − 1)/𝑟 + 𝛾/4)𝑘𝑟,
(R3) 𝐾𝑟

𝑘 ⊆ 𝐶𝑟
𝑘 ⊆ 𝑅𝑟

𝑘, and
(R4) there is an 𝑟-equitable integer partition (𝑚𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] of 𝑛 with 𝑚𝑖,𝑗 ≥ (1− 𝜀)𝑛/(𝑘𝑟)

such that the following holds.
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For every partition (𝑛𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] of 𝑛 with 𝑚𝑖,𝑗 − 𝜉0𝑛 ≤ 𝑛𝑖,𝑗 ≤ 𝑚𝑖,𝑗 + 𝜉0𝑛 there exists a
partition (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] of 𝑉 with

(V1) |𝑉𝑖,𝑗 | = 𝑛𝑖,𝑗,
(V2) (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] is (𝜀, 𝑑)-regular on 𝑅𝑟

𝑘, and
(V3) (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] is (𝜀, 𝑑)-super-regular on 𝐾𝑟

𝑘.

We give the proof of Lemma 5.3, which borrows ideas from [69], in Section 5.5. To illustrate
what this lemma says let us first assume for simplicity that 𝑛𝑖,𝑗 = 𝑚𝑖,𝑗 . In this case, Lemma 5.3
would guarantee a partition of the vertex set of 𝐺 in such a way that the partition classes
form many (super-)regular pairs, and that these pairs are organised in a sort of backbone,
namely in the form of a 𝐶𝑟

𝑘 for the regular pairs, and, contained therein, a spanning family
𝐾𝑟

𝑘 of disjoint complete graphs for the super-regular pairs.
However, the lemma says more. When we come to the point (R4), the lemma ‘has in mind’

the partition we just described, but does not exhibit it. Instead, it only discloses the sizes
𝑚𝑖,𝑗 and allows us to wish for small amendments: for every 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑟], we can now
look at the value 𝑚𝑖,𝑗 and ask for the size of the corresponding partition class to be adjusted
to a new value 𝑛𝑖,𝑗 , differing from 𝑚𝑖,𝑗 by at most 𝜉0𝑛.

When proving Lemma 5.3, one thus needs to alter the partition by shifting a few vertices.
This is where the main difficulty lies. The strategy to solve this problem was outlined already
in Section 1.3.5. We will see that the existence of an almost spanning copy of 𝐶𝑟

𝑚 in the
reduced graph allows us to perform the alteration just described. In order to guarantee such a
structure in the reduced graph we will first solve the following special case of Theorem 5.1,
which asserts the copy of 𝐶𝑟

𝑚 in a graph of high minimum degree.

Lemma 5.4 (backbone lemma). For all integers 𝑟 ≥ 1 and positive constants 𝛾 and 𝜀 there
exists 𝑛0 = 𝑛0(𝑟, 𝛾, 𝜀) such that for every 𝑛 ≥ 𝑛0 the following holds. If 𝐺 is an 𝑛-vertex
graph with minimum degree 𝛿(𝐺) ≥ ((𝑟 − 1)/𝑟 + 𝛾)𝑛, then 𝐺 contains a copy of 𝐶𝑟

𝑚 with
𝑟𝑚 ≥ (1− 𝜀)𝑛.

Now we come to the second main lemma. It prepares the graph 𝐻 so that it can be
embedded into 𝐺. This is exactly the place where, given the values 𝑚𝑖,𝑗 , the new values 𝑛𝑖,𝑗

in the setting described above are specified.

Lemma 5.5 (Lemma for 𝐻). Let 𝑟, 𝑘 ≥ 1 be integers and let 𝛽, 𝜉 > 0 satisfy 𝛽 ≤ 𝜉2/(3026𝑟3).
Let 𝐻 be a graph on 𝑛 vertices with Δ(𝐻) ≤ Δ, and assume that 𝐻 has a labelling of

bandwidth at most 𝛽𝑛 and an (𝑟 + 1)-colouring that is (8𝑟𝛽𝑛, 4𝑟𝛽𝑛)-zero free with respect
to this labelling, and uses colour 0 for at most 𝛽𝑛 vertices in total. Let 𝑅𝑟

𝑘 be a graph with
𝑉 (𝑅𝑟

𝑘) = [𝑘] × [𝑟] such that 𝛿(𝑅𝑟
𝑘) > (𝑟 − 1)𝑘 and 𝐾𝑟

𝑘 ⊆ 𝐶𝑟
𝑘 ⊆ 𝑅𝑟

𝑘. Furthermore, suppose
(𝑚𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] is an 𝑟-equitable integer partition of 𝑛 with 𝑚𝑖,𝑗 ≥ 35𝛽𝑛 for every 𝑖 ∈ [𝑘] and
𝑗 ∈ [𝑟].

Then there exists a mapping 𝑓 : 𝑉 (𝐻) → [𝑘]× [𝑟] and a set of special vertices 𝑋 ⊆ 𝑉 (𝐻)
with the following properties

(a ) |𝑋| ≤ 𝑘𝑟𝜉𝑛,
(b ) 𝑚𝑖,𝑗 − 𝜉𝑛 ≤ |𝑊𝑖,𝑗 | := |𝑓−1(𝑖, 𝑗)| ≤ 𝑚𝑖,𝑗 + 𝜉𝑛 for every 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑟],
(c ) for every edge {𝑢, 𝑣} ∈ 𝐸(𝐻) we have {𝑓(𝑢), 𝑓(𝑣)} ∈ 𝐸(𝑅𝑟

𝑘), and
(d ) if {𝑢, 𝑣} ∈ 𝐸(𝐻) and, moreover, 𝑢 and 𝑣 are both in 𝑉 (𝐻) ∖𝑋, then {𝑓(𝑢), 𝑓(𝑣)} ∈

𝐸(𝐾𝑟
𝑘).
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In other words, Lemma 5.5 receives a graph 𝐻 as input and, from Lemma 5.3, a reduced
graph 𝑅𝑟

𝑘 (with 𝐾𝑟
𝑘 ⊆ 𝐶𝑟

𝑘 ⊆ 𝑅𝑟
𝑘), an 𝑟-equitable partition (𝑚𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] of 𝑛, and a parameter

𝜉. Again we emphasise that this is all what Lemma 5.5 needs to know about 𝐺. It then
provides us with a function 𝑓 which maps the vertices of 𝐻 onto the vertex set [𝑘] × [𝑟] of
𝑅𝑟

𝑘 in such a way that (𝑖, 𝑗) with 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑟] receives 𝑛𝑖,𝑗 := |𝑊𝑖,𝑗 | vertices from 𝐻, with
|𝑛𝑖,𝑗 −𝑚𝑖,𝑗 | ≤ 𝜉𝑛. Although the vertex partition of 𝐺 is not known exactly at this point, we
already have its reduced graph 𝑅𝑟

𝑘. Lemma 5.5 guarantees that the endpoints of an edge {𝑢, 𝑣}
of 𝐻 get mapped into vertices 𝑓(𝑢) and 𝑓(𝑣) of 𝑅𝑟

𝑘, representing future partition classes 𝑉𝑓(𝑢)

and 𝑉𝑓(𝑣) in 𝐺 which will form a super-regular pair (see (d )) – except for those few edges
with one or both endpoints in some small special set 𝑋. But even these edges will be mapped
into pairs of classes in 𝐺 that will form at least regular pairs (see (c )). Lemma 5.5 will then
return the values 𝑛𝑖,𝑗 to Lemma 5.3, which will finally produce a corresponding partition of
the vertices of 𝐺.

In the next section we give the precise details how Theorem 5.2 can be deduced from
Lemma 5.3 and Lemma 5.5 following the outline discussed above.

5.3 Proof of Theorem 5.2

In this section we give the proof of Theorem 5.2 based on the general embedding lemma
(Lemma 3.12), the lemma for 𝐺 (Lemma 5.3), and the lemma for 𝐻 (Lemma 5.5). In particular,
we will use Lemma 5.3 for partitioning 𝐺, and Lemma 5.5 for assigning the vertices of 𝐻 to
the parts of 𝐺. For this, it will be necessary to split the application of Lemma 5.3 into two
phases. The first phase is used to set up the parameters for Lemma 5.5. With this input,
Lemma 5.5 then defines the sizes of the parts of 𝐺 that are constructed during the execution of
the second phase of Lemma 5.3. We shall see that the two partitions we obtain are compatible
partitions (see Definition 3.11). This will enable us to apply the general embedding lemma,
Lemma 3.12 to embed 𝐻 into 𝐺.

Proof of Theorem 5.2. Given 𝑟, Δ, and 𝛾, let 𝑑 and 𝜀0 be as asserted by Lemma 5.3 for input
𝑟 and 𝛾. Let 𝜀gel = 𝜀gel(𝑑,Δ, 𝑟) be as given by Lemma 3.12 and set

𝜀 := min{𝜀0, 𝜀gel, 1/4} . (5.3)

Then, Lemma 5.3 provides constants 𝑘1 and 𝜉0 for this 𝜀. We define

𝜉 := min{𝜉0, 𝜀gel/(4𝑘2
1𝑟

2(Δ + 1)2)} (5.4)

as well as 𝛽 := min{𝜉2/(3026𝑟3), (1− 𝜀)/(35𝑘1𝑟)} and 𝑛0 := 𝑘1, and consider arbitrary graphs
𝐻 and 𝐺 on 𝑛 ≥ 𝑛0 vertices that meet the conditions of Theorem 5.2.

Applying Lemma 5.3 to 𝐺 we get an integer 𝑘 with 0 < 𝑘 ≤ 𝑘1, graphs 𝐾𝑟
𝑘 ⊆ 𝐶𝑟

𝑘 ⊆ 𝑅𝑟
𝑘 on

vertex set [𝑘]× [𝑟], and an 𝑟-equitable partition (𝑚𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] of 𝑛 such that (R1)–(R4) are
satisfied. Now all constants that appear in the proof are fixed. To summarise, this is how they
are related:

1
Δ
, 𝛾 ≫ 𝑑≫ 𝜀≫ 1

𝑘1
≫ 𝜉 ≫ 𝛽 .

Before continuing with Lemma 5.3, we would like to apply the Lemma 5.5. Note that owing
to (R4) and the choice of 𝛽 above, we have 𝑚𝑖,𝑗 ≥ (1−𝜀)𝑛/(𝑘𝑟) ≥ 35𝛽𝑛 for every 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑟].
Consequently, for constants 𝑘, 𝛽, and 𝜉, graphs 𝐻 and 𝐾𝑟

𝑘 ⊆ 𝐶𝑟
𝑘 ⊆ 𝑅𝑟

𝑘, and the partition
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(𝑚𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] of 𝑛 we can indeed apply Lemma 5.5. This yields a mapping 𝑓 : 𝑉 (𝐻) → [𝑘]×[𝑟]
and a set of special vertices 𝑋𝐻 ⊆ 𝑉 (𝐻). These will be needed later. For the moment we are
only interested in the sizes 𝑛𝑖,𝑗 := |𝑊𝑖,𝑗 | = |𝑓−1(𝑖, 𝑗)| for 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑟]. Condition (b ) of
Lemma 5.5 and the choice of 𝜉 ≤ 𝜉0 in (5.4) imply that

𝑚𝑖,𝑗 − 𝜉0𝑛 ≤ 𝑚𝑖,𝑗 − 𝜉𝑛 ≤ 𝑛𝑖,𝑗 ≤ 𝑚𝑖,𝑗 + 𝜉𝑛 ≤ 𝑚𝑖,𝑗 + 𝜉0𝑛

for every 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑟]. Accordingly, we can continue with Lemma 5.3 to obtain a partition
𝑉 = (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] with |𝑉𝑖,𝑗 | = 𝑛𝑖,𝑗 that satisfies conditions (V1)–(V3) of Lemma 5.3. Note
that

|𝑉𝑖,𝑗 | = 𝑛𝑖,𝑗 ≥ 𝑚𝑖,𝑗 − 𝜉𝑛
(R4)

≥ (1− 𝜀)
𝑛

𝑘𝑟
− 𝜉𝑛 = (1− (𝜀+ 𝜉𝑘𝑟))

𝑛

𝑘𝑟

(5.3),(5.4)

≥ 1
2
𝑛

𝑘𝑟
. (5.5)

Now, we have partitions 𝑉 (𝐻) = (𝑊𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] of 𝐻 and 𝑉 (𝐺) = (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] of 𝐺 with
|𝑊𝑖,𝑗 | = |𝑉𝑖,𝑗 | = 𝑛𝑖,𝑗 for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑟]. Furthermore, by (V2) and (V3) the partition
𝑉 (𝐺) = (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] is an (𝜀, 𝑑)-regular partition with reduced graph 𝑅𝑟

𝑘 that is (𝜀, 𝑑)-super-
regular on 𝐾𝑟

𝑘 with 𝜀 ≤ 𝜀gel by (5.3).
To finish the proof we will use the general embedding lemma, Lemma 3.12, on the graphs

𝐻 and 𝐺 with their respective partitions and the reduced graph 𝑅 = 𝑅𝑟
𝑘 and its subgraph

𝑅′ = 𝐾𝑟
𝑘 (with components of size 𝑟). For applying this lemma it remains to verify that

(𝑊𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] is 𝜀gel-compatible with (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] and 𝐾𝑟
𝑘 ⊆ 𝑅𝑟

𝑘, i.e., we need to check
conditions (i )–(iii ) of Definition 3.11. We just saw that (i ) is satisfied, and (ii ) holds by (c )
of Lemma 5.5. To see (iii ) we define 𝑋 ′ := 𝑋𝐻 ∪ 𝑁𝐻(𝑋𝐻) where 𝑋𝐻 is the set of special
vertices generated by Lemma 5.5. Observe that this implies |𝑋 ′| ≤ (Δ + 1)𝑘𝑟𝜉𝑛 by (a )
of Lemma 5.5. Now let the set 𝑋 be as in Definition 3.11 and set 𝑋𝑖,𝑗 := 𝑋 ∩𝑊𝑖,𝑗 and
𝑌𝑖,𝑗 := 𝑁𝐻(𝑋) ∩𝑊𝑖,𝑗 ∖𝑋 for all 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑟]. Owing to (d ) of Lemma 5.5, we have
𝑋𝑖,𝑗 ⊆ 𝑋 ⊆ 𝑋 ′ and hence

|𝑋𝑖,𝑗 | ≤ |𝑋 ′| ≤ (Δ + 1)𝑘𝑟𝜉𝑛
(5.4)

≤ 1
Δ
𝜀gel

1
2
𝑛

𝑘𝑟

(5.5)

≤ 1
Δ
𝜀gel|𝑉𝑖,𝑗 |

which implies the first part of (iii ) in Definition 3.11. For the second part, we use that
|𝑌𝑖,𝑗 | ≤ Δ|𝑋| ≤ Δ|𝑋 ′| and so the same calculation implies |𝑌𝑖,𝑗 | ≤ 𝜀gel|𝑉𝑖′,𝑗′ | for all 𝑖, 𝑖′ ∈ [𝑘]
and 𝑗, 𝑗′ ∈ [𝑟]. Accordingly all requirements of the general embedding lemma, Lemma 3.12,
are satisfied and we get that 𝐻 is a subgraph of 𝐺.

Algorithmic embeddings

We note that the proof of Theorem 5.1 presented above yields an algorithm, which finds an
embedding of 𝐻 into 𝐺, if 𝐻 is given along with a valid 𝑟-colouring and a labelling of the vertices
respecting the bandwidth bound 𝛽𝑛. This follows from the observation that the proof above is
constructive, and all the lemmas used in the proof (Lemma 5.3, Lemma 5.5, and the general
embedding lemma, Lemma 3.12, which in turn combines the blow-up lemma, Lemma 3.9, and
the partial embedding lemma, Lemma 3.10) have algorithmic proofs. Algorithmic versions of
the blow-up lemma were obtained in [66, 87]. In [66] a running time of order 𝒪(𝑛3.376) was
proved. The key ingredient of Lemma 5.3 is Szemerédi’s regularity lemma for which an 𝒪(𝑛2)
algorithm exists [60] (for an 𝒪(𝑛2.376) algorithm see [10]). All other arguments in the proof
of Lemma 5.3 can be done algorithmically in 𝒪(𝑛2) (see Section 5.5). Similarly, the proof of
Lemma 5.5 is constructive if an 𝑟-colouring of 𝐻 and an ordering respecting the bandwidth
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bound is given (see Section 5.6). Finally, we note that the proof of the partial embedding
lemma (following along the lines of [25]) gives rise to an 𝒪(𝑛3) algorithm. Thus there is an
𝒪(𝑘 × ((1/𝑘 + 𝜉0)𝑛)3.376 + 𝑛2 + 𝑛3) = 𝒪(𝑛3.376) embedding algorithm, where the implicit
constant depends on 𝛾 and Δ only.

5.4 The backbone lemma

In this section we prove Lemma 5.4. The proof is a simple consequence of the following result
concerning the Pósa–Seymour conjecture [68] that we already mentioned in the introduction
and state (and need) here in a weaker form only (cf. Section 1.1.1). In what follows we denote
by 𝑃 𝑟−1

𝑘 the (𝑟 − 1)-st power of a path on 𝑘𝑟 vertices, where

𝑉 (𝑃 𝑟−1
𝑘 ) = [𝑘]× [𝑟] (5.6)

and
{(𝑠, 𝑡), (𝑠′, 𝑡′)} ∈ 𝐸(𝑃 𝑟−1

𝑘 ) iff 𝑠 = 𝑠′ or 𝑠′ = 𝑠+ 1 ∧ 𝑡′ < 𝑡. (5.7)

Observe that this notation is slightly non-standard: 𝑃 𝑟−1
𝑘 is (𝑟 − 1)-st power of a path 𝑃𝑘𝑟

(and not of a path on 𝑘 vertices). Similarly, recall that 𝐶𝑟
𝑚 is the graph on 𝑚𝑟 vertices defined

in (5.1) and (5.2) (and not the 𝑟-th power of a cycle 𝐶𝑚).

Theorem 5.6 (Komlós, Sárközy, and Szemerédi). For every 𝑟 ≥ 2 there exists 𝑘0 such that
every graph 𝑅 on 𝑘𝑟 ≥ 𝑘0 vertices with minimum degree 𝛿(𝑅) ≥ (𝑟−1)

𝑟 𝑘𝑟 = (𝑟− 1)𝑘 contains a
copy of 𝑃 𝑟−1

𝑘 .

P 2
m

1

Figure 5.2: The graph 𝑃 2
𝑚. The encircled triples of vertices form cliques of size 3 in 𝑃 2

𝑚.
Vertices (𝑠, 1) are at the botom, vertices (𝑠, 2) in the middle, and vertices (𝑠, 3) at
the top, 𝑠 ∈ [𝑚].

Notice that 𝑃 𝑟−1
𝑚 is a subgraph of the graph 𝐶𝑟

𝑚 (see Figure 5.2). On the other hand, there
is an “equipartite” homomorphism from 𝐶𝑟

𝑚 to the (𝑟 − 1)-st power of a Hamilton path.

Proposition 5.7. Let 𝑘 ≥ 1 and ℓ ≥ 𝑟 ≥ 1. Let 𝐶𝑟
𝑘ℓ be the graph defined in (5.1) and (5.2)

and let 𝑃 𝑟−1
𝑘 be the graph defined in (5.6) and (5.7). Then there exists a graph homomorphism

𝜙 : 𝑉 (𝐶𝑟
𝑘ℓ) → 𝑉 (𝑃 𝑟−1

𝑘 ) such that

ℓ− 𝑟 <
⃒⃒⃒
𝜙−1

(︀
(𝑠, 𝑡)

)︀⃒⃒⃒
< ℓ+ 𝑟

for all (𝑠, 𝑡) ∈ [𝑘]× [𝑟] = 𝑉 (𝑃 𝑟−1
𝑘 ).

Proof. It is straight-forward to check that the following map

𝜙
(︀
(𝑖, 𝑗)

)︀
=
(︂⌈︂

max{𝑖− 𝑗, 0}+ 1
ℓ

⌉︂
, 𝑗

)︂
is a graph homomorphism from 𝐶𝑟

𝑘ℓ to 𝑃 𝑟−1
𝑘 with the desired property.
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Now Lemma 5.4 follows from a joint application of the regularity lemma (in form of
Lemma 3.4), Theorem 5.6, Proposition 3.7, Proposition 5.7, and the general embedding
lemma (Lemma 3.12). More precisely, we first apply Lemma 3.4 to the graph 𝐺 with
𝛿(𝐺) ≥ ((𝑟 − 1)/𝑟 + 𝛾)𝑛 and infer that the corresponding reduced graph 𝑅 satisfies 𝛿(𝑅) ≥
((𝑟−1)/𝑟)|𝑉 (𝑅)|. Consequently, Theorem 5.6 implies that 𝑅 ⊇ 𝑃 𝑟−1

𝑘 . Since Δ(𝑃 𝑟−1
𝑘 ) ≤ 3(𝑟−1)

we can, owing to Proposition 3.7 applied with 𝑅′ = 𝑃 𝑟−1
𝑘 , remove about 𝜀|𝑉 (𝐺)| vertices from

𝐺 such that edges of 𝑃 𝑟−1
𝑘 correspond to super-regular pairs in the adjusted partition. Finally,

thanks to Proposition 5.7 we find a partition of 𝑃 𝑟−1
𝑘 that is compatible with the partition of

𝐺. Thus we can apply Lemma 3.12 and conclude that 𝐺 contains an almost spanning copy of
𝐶𝑟

𝑚. Below we give the technical details of this proof.

Proof of Lemma 5.4. For 𝑟 = 1 the lemma is trivial, as 𝐶1
𝑚 is simply an independent set.

Hence, let 𝑟 ≥ 2 and 𝛾, 𝜀 > 0 be given. We apply Lemma 3.4 with 𝛾 and obtain constants 𝑑,
𝜀0 > 0. We set 𝑑gel = 𝑑/2, Δgel = 3(𝑟 − 1), and 𝑟gel = 𝑟 and get 𝜀gel = 𝜀gel(𝑑,Δ, 𝑟) from
Lemma 3.12. We then set

𝜀rl :=
min{𝜀, 𝜀0, 𝜀gel, 𝑑}

100𝑟
.

Moreover, let 𝑘0 be given by Theorem 5.6 for 𝑟 and set

𝑘′0 := max{𝑟𝑘0 + 𝑟, 4𝑟/𝛾, 10𝑟/𝜀rl} .

Next, we continue the application of Lemma 3.4 with 1
2𝜀rl and 𝑘′0 and obtain 𝑘1. Finally,

we let 𝑛0 = ⌈10𝑘2
1𝑟

3/𝜀rl⌉. After we fixed all constants, we consider the input graph 𝐺 on
𝑛 ≥ 𝑛0 vertices from Lemma 5.4. We have 𝛿(𝐺) ≥ ((𝑟− 1)/𝑟+ 𝛾)𝑛. Consequently, Lemma 3.4,
applied with 𝛾, 1

2𝜀rl and 𝑘′0 fixed above, yields an integer 𝑘′, 𝑘′0 ≤ 𝑘′ ≤ 𝑘1, an (1
2𝜀rl, 𝑑)-regular

equipartition 𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉𝑘′ = 𝑉 (𝐺) with reduced graph 𝑅𝐺 on vertex set [𝑘′]. Without loss
of generality, we may assume that 𝑘′ = 𝑘𝑟 for some integer 𝑘 ≥ 𝑘0, since otherwise, we simply
unite 𝑉0 with up to at most 𝑟 − 1 vertex classes 𝑉𝑖 (𝑖 > 0) and obtain an exceptional set 𝑉 ′0 ,
which obeys

|𝑉 ′0 | ≤ |𝑉0|+ (𝑟 − 1) 𝑛
𝑘′ ≤

(︀
1
2𝜀rl + 𝑟−1

𝑘′0

)︀
𝑛 ≤ 𝜀rl𝑛 .

Note that, since 𝑘′ ≥ 𝑘′0 ≥ 4𝑟/𝛾, the resulting reduced graph 𝑅𝐺 still satisfies

𝛿(𝑅𝐺) ≥
(︀
(𝑟 − 1)/𝑟 + 𝛾/2

)︀
𝑘′ − (𝑟 − 1) ≥

(︀
(𝑟 − 1)/𝑟 + 𝛾/4

)︀
𝑘𝑟 .

Moreover, as 𝑘 = ⌊𝑘′/𝑟⌋ ≥ ⌊𝑘′0/𝑟⌋ ≥ 𝑘0 (where 𝑘0 came from Theorem 5.6), we infer by
Theorem 5.6 that 𝑃 𝑟−1

𝑘 ⊆ 𝑅𝐺. Observe further that 𝐾𝑟
𝑘 ⊆ 𝑃 𝑟−1

𝑘 .
We now apply Proposition 3.7 with 𝜀rl, with 𝑑, and 𝑅′ = 𝐾𝑟

𝑘 ⊆ 𝑅𝐺. This way we get an
(𝜀′, 𝑑′)-regular partition 𝑉 ′0∪̇𝑉 ′1∪̇ . . . ∪̇𝑉 ′𝑘𝑟 with clusters of size at least 𝐿 := (1− 𝜀′)𝑛/𝑘𝑟 and
reduced graph 𝑅𝐺 that is (𝜀′, 𝑑′)-super-regular on 𝐾𝑟

𝑘 with

𝜀′ = 2𝜀rl𝑟/(1− 𝜀rl𝑟) ≤ 𝜀gel and 𝑑′ = 𝑑− 2𝜀rl𝑟 > 𝑑/2.

Hence, in view of Proposition 5.7 we can apply the general embedding lemma, Lemma 3.12, to
𝐺[𝑉 ∖ 𝑉 ′0 ] with (𝜀gel, 𝑑/2)-regular partition 𝑉 ′1∪̇ . . . ∪̇𝑉 ′𝑘𝑟 with reduced graph 𝑅 = 𝑃 𝑟−1

𝑘 ⊆ 𝑅𝐺,
and to 𝐻 = 𝐶𝑟

𝑘ℓ for ℓ = 𝐿 − 𝑟 where 𝐻 is partitioned as dictated by the homomorphism
𝜙 from Proposition 5.7. It is easy to check that these partitions and reduced graphs are
𝜀gel-compatible (the set 𝑋 contains only the 2(𝑟 + 1)𝑟(𝑘 − 1) vertices with neighbours in two
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𝐾𝑟’s of the 𝑃 𝑟−1
𝑘 under the homomorphism 𝜙). Consequently, 𝐺 contains a copy of 𝐶𝑟

𝑚 (with
𝑚 = 𝑘ℓ) on 𝑟𝑚 = 𝑟𝑘ℓ vertices. Moreover, we have

𝑟𝑚 = 𝑟𝑘ℓ = 𝑟𝑘(𝐿− 𝑟) = 𝑟𝑘
(︁

(1− 𝜀′)
𝑛

𝑘𝑟
− 𝑟
)︁
≥ (1− 𝜀gel)𝑛− 𝑟2𝑘 ≥ (1− 𝜀)𝑛,

because 𝑟2𝑘 ≤ 1
2𝜀𝑛 by our choice of 𝑛0.

In this proof we used the fact that the reduced graph 𝑅 of our host graph 𝐺 contains the
(𝑟 − 1)-st power of a spanning path. It is not difficult to verify (by repeating almost the same
proof) that this spanning path power in 𝑅 could easily be replaced by an almost spanning path
power in 𝑅, and that this is indeed all we need for proving the existence of an almost spanning
copy of 𝐶𝑟

𝑚 in 𝐺. This yields the following lemma which we will use only in chapter 7.

Lemma 5.8. For all integers 𝑟 ≥ 1 and positive reals 𝜇 and 𝑑 there exists a positive 𝜀0
such that for all 𝜀 ≤ 𝜀0 and integers 𝑘1 there is an integer 𝑛0 > 𝑘1 such that the following
holds. Let 𝐺 = (𝑉,𝐸) be a graph on 𝑛 ≥ 𝑛0 vertices that has an (𝜀, 𝑑)-regular equipartition
𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉𝑘 with reduced graph 𝑅 and 𝑟 ≤ 𝑘 ≤ 𝑘1. If 𝑅 contains the (𝑟 − 1)-st power
𝑃 𝑟−1

ℓ of a path on 𝑟ℓ ≥ (1 − 𝜀)𝑘 vertices then 𝐺 contains a copy of 𝐶𝑟
𝑚 for some 𝑚 with

𝑟𝑚 ≥ (1− 𝜇)𝑛.

5.5 The lemma for 𝐺

The main ingredients for the proof of Lemma 5.3 are Szemerédi’s regularity lemma, which
provides a reduced graph 𝑅 for 𝐺, and the backbone lemma which guarantees the copy of a
𝐶𝑟

𝑘 in 𝑅. This subgraph is sparse enough, so that we can transform the corresponding regular
pairs into super-regular pairs. On the other hand, its structure is rich enough so that we can
use it to develop a strategy for moving vertices between the clusters of 𝑅 in order to adjust
the sizes of these clusters (as outlined in Section 1.3.5). We will first consider the special
case of Lemma 5.3 that 𝑛𝑖,𝑗 = 𝑚𝑖,𝑗 for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑟]. This is captured by the following
proposition.

Proposition 5.9. For all 𝑟 ∈ N and 𝛾 > 0 there exist 𝑑 > 0 and 𝜀0 > 0 such that for all
0 < 𝜀 ≤ 𝜀0 there exists 𝑘1 such that for all 𝑛 ≥ 𝑘1𝑟 and for every graph 𝐺 on vertex set [𝑛]
with 𝛿(𝐺) ≥ ((𝑟 − 1)/𝑟 + 𝛾)𝑛 there exists 𝑘 ∈ N ∖ {0}, and a graph 𝑅𝑟

𝑘 on vertex set [𝑘]× [𝑟]
with

(R1) 𝑘 ≤ 𝑘1,
(R2) 𝛿(𝑅𝑟

𝑘) ≥ ((𝑟 − 1)/𝑟 + 𝛾/4)𝑘𝑟,
(R3) 𝐾𝑟

𝑘 ⊆ 𝐶𝑟
𝑘 ⊆ 𝑅𝑟

𝑘, and
(R4) there is an 𝑟-equitable partition (𝑚𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] of 𝑛 with 𝑚𝑖,𝑗 ≥ (1 − 𝜀)𝑛/(𝑘𝑟) such

that the following holds.

There is a partition (𝑈𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] of 𝑉 with

(U1) |𝑈𝑖,𝑗 | = 𝑚𝑖,𝑗,
(U2) (𝑈𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] is (𝜀, 𝑑)-regular on 𝑅𝑟

𝑘, and
(U3) (𝑈𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] is (𝜀, 𝑑)-super-regular on 𝐾𝑟

𝑘.
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Notice that once we have Proposition 5.9, the only thing that is left to be done when proving
Lemma 5.3 is to show that the sizes of the classes 𝑈𝑖,𝑗 can be slightly changed from 𝑚𝑖,𝑗 to
𝑛𝑖,𝑗 without “destroying” properties (U2) and (U3).

For the proof of Proposition 5.9 we proceed in three steps. From the regularity lemma we
first obtain a partition 𝑈 ′0∪̇𝑈 ′1∪̇ · · · ∪̇𝑈 ′𝑘′ of 𝑉 (𝐺) with reduced graph 𝑅 such that 𝐾𝑟

𝑘 ⊆ 𝐶𝑟
𝑘 ⊆ 𝑅.

According to this occurrence, we will then rename the vertices of 𝑅 from [𝑘′] to [𝑘]× [𝑟] and
thus obtain 𝑅𝑟

𝑘. In a similar manner we rename the clusters in the partition. We then use
Proposition 3.7 to get a new partition 𝑈 ′′0 ∪̇(𝑈 ′′𝑖,𝑗)𝑖∈[𝑟],𝑗∈[𝑘] that is super-regular on 𝐾𝑟

𝑘 (and
still regular on 𝑅𝑟

𝑘). In a last step we distribute the vertices in 𝑈 ′′0 to the clusters 𝑈 ′′𝑖,𝑗 with
𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑟], while maintaining the super-regularity. The partition obtained in this way
will be the desired 𝑟-equitable partition (𝑈𝑖,𝑗)𝑖∈[𝑟],𝑗∈[𝑘].

Proof of Proposition 5.9. We first fix all constants necessary for the proof. For 𝑟 = 1 the
Proposition holds trivially. Let 𝑟 ≥ 2 and 𝛾 > 0 be given. The regularity lemma in form
of Lemma 3.4 applied with 𝛾′ = 𝛾 yields positive constants 𝑑′ and 𝜀′0. We fix the promised
constants 𝑑 and 𝜀0 for Proposition 5.9 by setting

𝑑 := min
{︀
𝑑′/3, 𝛾/4

}︀
and 𝜀0 := 𝜀′0 . (5.8)

Now let some positive 𝜀 ≤ 𝜀0 be given, for which Proposition 5.9 asks us to define 𝑘1. For
that first define

𝜀′ := min
{︀
𝜀4, (𝑑′)2, 𝛾2

}︀
· 10−3𝑟−4 (5.9)

and let 𝑘0 be sufficiently large so that we can apply the backbone lemma, Lemma 5.4, with 𝑟, 𝛾/2
and 𝜀′ to graphs𝑅′ on 𝑘′ ≥ 𝑟𝑘0/(1−𝜀′) vertices with minimum degree 𝛿(𝑅′) ≥ ((𝑟−1)/𝑟+𝛾/2)𝑘′.
We then define an auxiliary constant 𝑘′0 by

𝑘′0 := max
{︀
𝑟𝑘0/(1− 𝜀′), 10𝑟/𝛾

}︀
+ 𝑟/(1− 𝜀′) (5.10)

and let 𝑘′1 be given by Lemma 3.4 applied with 𝛾′, 𝜀′, and 𝑘′0. We finally set 𝑘1 := ⌈𝑘′1/𝑟⌉ for
Proposition 5.9. After we have defined 𝑘1, let 𝐺 = (𝑉,𝐸) be a graph satisfying the assumptions
of Proposition 5.9.

Since 𝜀′ ≤ 𝜀 ≤ 𝜀0 = 𝜀′0, and by the choice of 𝜀′0 and 𝑑′, Lemma 3.4 applied with input 𝛾′ = 𝛾,
𝜀′, 𝑘′0 and 𝜈 ′ := (𝑟 − 1)/𝑟 yields an (𝜀′, 𝑑′)-regular equipartition 𝑈 ′0∪̇𝑈 ′1∪̇ · · · ∪̇𝑈 ′𝑘′ = 𝑉 of 𝐺
with reduced graph 𝑅′ on vertex set [𝑘′] such that 𝛿(𝑅′) ≥ ((𝑟−1)/𝑟+𝛾/2)𝑘′ and 𝑘′0 ≤ 𝑘′ ≤ 𝑘′1.
By the choice of 𝑘0, Lemma 5.4 implies that 𝐶𝑟

𝑘 ⊆ 𝑅′ with 𝑘 ≥ ⌊(1− 𝜀′)𝑘′/𝑟⌋. Let 𝑅𝑟
𝑘 be the

graph induced by the 𝑘𝑟 vertices corresponding to this occurrence of 𝐶𝑟
𝑘 in 𝑅′ and rename the

vertex set of 𝑅𝑟
𝑘 to [𝑘]× [𝑟] accordingly. We clearly have 𝐾𝑟

𝑘 ⊆ 𝐶𝑟
𝑘 ⊆ 𝑅𝑟

𝑘 and thus we get (R3).
In addition, we will also rename the clusters of 𝐺′ accordingly in order to obtain a vertex
partition (𝑈 ′𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟]. Observe, that 𝑘𝑟 ≤ 𝑘′ ≤ 𝑘′1 ≤ 𝑘1𝑟. Therefore 𝑅𝑟

𝑘 satisfies property
(R1) of Proposition 5.9. Moreover, 𝑅𝑟

𝑘 is an (𝜀′, 𝑑′)-reduced graph for 𝐺[𝑈 ′1∪̇ · · · ∪̇𝑈 ′𝑘𝑟] with

|𝑉 (𝑅𝑟
𝑘)| = 𝑘𝑟 ≥ (1− 𝜀′)𝑘′ − 𝑟 ≥ (1− 𝜀′)𝑘′0 − 𝑟

(5.10)

≥ 𝑟𝑘0 (5.11)

and

𝛿(𝑅𝑟
𝑘) ≥ 𝛿(𝑅′)− 𝜀′𝑘′ − 𝑟 ≥ ((𝑟 − 1)/𝑟 + 𝛾/2− 𝜀′)𝑘′ − 𝑟

(5.9),(5.10)

≥ ((𝑟 − 1)/𝑟 + 𝛾/4)𝑘𝑟.

Thus, we also have property (R2). Proposition 3.7 applied with 𝑅3.7 := 𝑅′, with 𝑅′3.7 := 𝐾𝑟
𝑘 and

accordingly Δ(𝑅′3.7) ≤ 𝑟 implies that there is an (𝜀′′, 𝑑′′)-regular partition 𝑈 ′′0 ∪(𝑈 ′′𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] of
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𝐺 with reduced graph 𝑅′ that is (𝜀′′, 𝑑′′)-super-regular on 𝐾𝑟
𝑘 where 𝜀′′ = 2𝜀′𝑟/(1−𝜀′𝑟) ≤ 10𝜀′𝑟

and 𝑑′′ = 𝑑′ − 2𝜀′𝑟 ≥ 𝑑′/2 by (5.9). Let 𝐿′′ denote the size of the clusters in this partition.
Then

𝑛

𝑘𝑟
≥ 𝐿′′ ≥ (1− 10𝜀′𝑟)

𝑛

𝑘𝑟
and |𝑈 ′′0 | ≤ 10𝜀′𝑟𝑛 . (5.12)

In order to obtain the required partition of 𝑉 with clusters 𝑈𝑖,𝑗 for 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑟] we will
distribute the vertices in 𝑈 ′′0 to the clusters 𝑈 ′′𝑖,𝑗 so that the resulting partition is 𝑟-equitable
and still (𝜀, 𝑑)-regular on 𝑅𝑟

𝑘 and (𝜀, 𝑑)-super-regular on 𝐾𝑟
𝑘 .

For this purpose, let 𝑢 be a vertex in 𝑈 ′′0 . The 𝑖-th component of 𝐾𝑟
𝑘 is called 𝑢-friendly, if

𝑢 has at least 𝑑𝑛/(𝑘𝑟) neighbours in each of the clusters 𝑈 ′′𝑖,𝑗 with 𝑗 ∈ [𝑟]. We claim that each
𝑢 ∈ 𝑈 ′′0 has at least 𝛾𝑘 components that are 𝑢-friendly. Indeed, assume for a contradiction
that there were only 𝑥 < 𝛾𝑘 such 𝑢-friendly components for some 𝑢. Then, since 𝑢 has less
than (𝑟− 1)𝐿′′ + 𝑑𝑛/(𝑘𝑟) neighbours in clusters of components that are not 𝑢-friendly, we can
argue that

|𝑁𝐺(𝑢)| < 𝑥𝑟𝐿′′ + (𝑘 − 𝑥)
(︂

(𝑟 − 1)𝐿′′ +
𝑑𝑛

𝑘𝑟

)︂
+ |𝑈 ′′0 |

= 𝑘(𝑟 − 1)𝐿′′ + 𝑥𝐿′′ + (𝑘 − 𝑥)
𝑑

𝑘𝑟
𝑛+ |𝑈 ′′0 |

(5.12)

< 𝑘(𝑟 − 1)
𝑛

𝑘𝑟
+ 𝛾

𝑛

𝑟
+
𝑑

𝑟
𝑛+ 10𝜀′𝑟𝑛

(5.8),(5.9)

≤ 𝑟 − 1
𝑟

𝑛+
𝛾

𝑟
𝑛+

𝛾

4𝑟
𝑛+

𝛾

4
𝑛

𝑟 ≥ 2

≤
(︂
𝑟 − 1
𝑟

+ 𝛾

)︂
𝑛,

which is a contradiction.
In a first step we now assign the vertices 𝑢 ∈ 𝑈 ′′0 as evenly as possible to 𝑢-friendly

components of 𝐾𝑟
𝑘 . Since each vertex 𝑢 ∈ 𝑈 ′′0 has at least 𝛾𝑘 such 𝑢-friendly components, each

component of 𝐾𝑟
𝑘 gets assigned at most |𝑈 ′′0 |/(𝛾𝑘) vertices.

Then, in a second step, in each component we distribute the vertices that have been assigned
to this component as evenly as possible among the 𝑟 clusters of this component. It follows
immediately that the resulting partition is 𝑟-equitable. Moreover, every cluster 𝑈 ′′𝑖,𝑗 with
𝑖 ∈ [𝑘], 𝑗 ∈ [𝑟] gains at most

|𝑈 ′′0 |
𝛾𝑘

(5.12)

≤ 10𝜀′𝑟𝑛
𝛾𝑘

(5.12)

≤ 10𝜀′𝑟2

𝛾(1− 10𝜀′𝑟)
𝐿′′

(5.9)

≤ 20𝜀′𝑟2

𝛾
|𝑈 ′′𝑖,𝑗 |

(5.9)

≤
√
𝜀′|𝑈 ′′𝑖,𝑗 | (5.13)

vertices from 𝑈 ′′0 during this process. The resulting partition (𝑈𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] of 𝑉 satisfies
properties (U1)–(U3). Indeed, define

𝑚𝑖,𝑗 := |𝑈𝑖,𝑗 | ≥ |𝑈 ′′𝑖,𝑗 | = 𝐿′′
(5.12)

≥ (1− 10𝜀′𝑟)𝑛/(𝑘𝑟)
(5.9)

≥ (1− 𝜀)𝑛/(𝑘𝑟),

and note that for this choice (R4) and (U1) of Proposition 5.9 hold. Moreover, recall that
(𝑈 ′′𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] is (10𝜀′𝑟, 𝑑′/2)-regular on 𝑅𝑟

𝑘 and (10𝜀′𝑟, 𝑑′/2)-super-regular on 𝐾𝑟
𝑘 . By (5.13),

Proposition 3.8 with 𝛼 = 𝛽 =
√
𝜀′ assures that (𝑈𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] is (𝜀, 𝑑)-regular on 𝑅𝑟

𝑘 and
(𝜀, 𝑑)-super-regular on 𝐾𝑟

𝑘 , where

𝜀 := 10𝜀′𝑟 + 6 4
√
𝜀′ and 𝑑 :=

𝑑′

2
− 4

√
𝜀′ .

Since 10𝜀′𝑟 + 6 4
√
𝜀′ ≤ 𝜀 and 𝑑′/2− 4

√
𝜀′ ≥ 𝑑′/3 ≥ 𝑑 by (5.8) and (5.9), this implies (U2) and

(U3) and concludes the proof of Proposition 5.9.
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It remains to show how to deduce the lemma for 𝐺 (Lemma 5.3) from Proposition 5.9. As
mentioned earlier, we need to show that the sizes of the clusters can be slightly changed. In
order to achieve this, we will develop a technique for adapting the cluster sizes step by step by
moving one vertex at a time from one cluster to another cluster until each cluster has exactly
the right number of vertices.

As explained already in Section 1.3.5 the problem is that every vertex that is moved to a
new cluster which is part of a super-regular component of 𝐾𝑟

𝑘 must make sure that it has
sufficiently many neighbours inside the neighbouring clusters within the component. For this,
we will exploit the high minimum degree of 𝑅𝑟

𝑘 as well as the structure of 𝐶𝑟
𝑘 . The following

two facts will allow us to move vertices between different clusters. The first observation will
be useful to address imbalances within clusters of one colour class of 𝐶𝑟

𝑘 .

Fact 5.10. Suppose that (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] is a vertex partition that is (𝜀, 1
2𝑑)-regular on 𝐶𝑟

𝑘 and
satisfies |𝑉𝑖,𝑗 | ≥ 𝑛/(2𝑘𝑟) for all 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑟]. Now, fix 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑟]. Then,
there are at least (1− 2𝑟𝜀)𝑛/(2𝑘𝑟) “good” vertices 𝑣 ∈ 𝑉𝑖,𝑗 that have at least (1

2𝑑− 𝜀)𝑛/(2𝑘𝑟)
neighbours in each set 𝑉𝑖′,𝑗′ with 𝑖′ ∈ {𝑖− 1, 𝑖+ 1} and 𝑗′ ∈ [𝑟] ∖ {𝑗}.

Proof. Note that (𝑖, 𝑗) is connected to each of the (𝑖′, 𝑗′) in 𝐶𝑟
𝑘 . Since (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] is (𝜀, 1

2𝑑)-
regular on 𝐶𝑟

𝑘 we can apply Proposition 3.6 with input 𝜀, 1
2𝑑, 𝐴 = 𝑉𝑖,𝑗 , and 𝐵 = 𝐵′ = 𝑉𝑖′,𝑗′ for

each 𝑖′ ∈ {𝑖− 1, 𝑖+ 1} and 𝑗′ ∈ [𝑟] ∖ {𝑗}. It follows that at least |𝑉𝑖,𝑗 | − 2(𝑟 − 1)𝜀|𝑉𝑖,𝑗 | vertices
of 𝑉𝑖,𝑗 have more than (1

2𝑑− 𝜀)|𝑉𝑖′,𝑗′ | neighbours in each 𝑉𝑖′,𝑗′ . This implies the assertion of
Fact 5.10, because

|𝑉𝑖,𝑗 | − 2(𝑟 − 1)𝜀|𝑉𝑖,𝑗 | ≥ (1− 2(𝑟 − 1)𝜀)
𝑛

2𝑘𝑟
≥ (1− 2𝑟𝜀)

𝑛

2𝑘𝑟
(5.14)

and
(1
2𝑑− 𝜀)|𝑉𝑖′,𝑗′ | ≥ (1

2𝑑− 𝜀)
𝑛

2𝑘𝑟
.

Before we move on, let us quickly illustrate how Fact 5.10 is used in the proof of Lemma 5.3.
For this purpose assume further that (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] is also super-regular on 𝐾𝑟

𝑘 . Now suppose
that for some 𝑖 < 𝑖′ ∈ [𝑘] and 𝑗 ∈ [𝑟] we would like to decrease the size of 𝑉𝑖,𝑗 and increase the
size of 𝑉𝑖′,𝑗 . Then by Fact 5.10 there is some vertex 𝑣 (in fact many vertices) in 𝑉𝑖,𝑗 which has
“many” neighbours in each 𝑉𝑖+1,𝑗′ with 𝑗′ ∈ [𝑟] ∖ {𝑗}. Hence, we can move 𝑣 from 𝑉𝑖,𝑗 to 𝑉𝑖+1,𝑗

without loosing the super-regularity on 𝐾𝑟
𝑘 . Repeating this process by moving a vertex from

𝑉𝑖+1,𝑗 to 𝑉𝑖+2,𝑗 and so on, we will eventually reach 𝑉𝑖′,𝑗 (see Figure 5.3). Observe that it is of
course not necessarily the vertex 𝑣 ∈ 𝑉𝑖,𝑗 we started with, which is really moved all the way to
𝑉𝑖′,𝑗 during this process, but rather a sequence of vertices each moving one cluster further.
After such a sequence of applications of Fact 5.10, we end up with a new partition with the
following properties. The cardinality of 𝑉𝑖,𝑗 decreased by one and |𝑉𝑖′,𝑗 | increased by one. All
other clusters do not change their size. Therefore such a sequence of moves, decreases the
imbalances within clusters of colour 𝑗 in 𝐶𝑟

𝑘 and we say that we moved a vertex along colour
class 𝑗 of 𝐶𝑟

𝑘 from 𝑉𝑖,𝑗 to 𝑉𝑖′,𝑗 .
The next simple fact allows to address imbalances across different colours. More precisely,

it will be used for moving a vertex 𝑣 from cluster 𝑉𝑖,𝑗 to a cluster 𝑉𝑖*,𝑗′ with 𝑗 ̸= 𝑗′.

Fact 5.11. Let 𝑅𝑟
𝑘 be a graph on vertex set [𝑘]× [𝑟] and suppose that (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] is a vertex

partition that is (𝜀, 1
2𝑑)-regular on 𝑅𝑟

𝑘 and satisfies |𝑉𝑖,𝑗 | ≥ 𝑛/(2𝑘𝑟) for all 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑟].
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Figure 5.3: Moving a vertex from 𝑉1,1 to 𝑉3,1 along colour class 1 of 𝐶4
𝑘 and thus decreasing

the size of 𝑉1,1 and increasing the size of 𝑉3,1.

Now, fix 𝑖, 𝑖* ∈ [𝑘] and 𝑗+, 𝑗− ∈ [𝑟]. If for each 𝑗′ ∈ [𝑟] with 𝑗′ ̸= 𝑗− the vertex (𝑖*, 𝑗′) is a
neighbour of (𝑖, 𝑗+) in 𝑅𝑟

𝑘 then there are at least (1− 2𝑟𝜀)𝑛/(2𝑘𝑟) “good” vertices 𝑣 ∈ 𝑉𝑖,𝑗+

that have at least (1
2𝑑− 𝜀)𝑛/(2𝑘𝑟) neighbours in each 𝑉𝑖*,𝑗′ with 𝑗′ ∈ [𝑟], 𝑗′ ̸= 𝑗−.

Proof of Fact 5.11. The existence of the vertices 𝑣 follows similarly as in the proof of Fact 5.10.
Indeed, by Proposition 3.6, there are at least

|𝑉𝑖,𝑗+ | − (𝑟 − 1)𝜀|𝑉𝑖,𝑗+ | ≥ (1− 𝑟𝜀)𝑛/(2𝑘𝑟) ≥ (1− 2𝑟𝜀)𝑛/(2𝑘𝑟)

such vertices (cf. (5.14)).

The idea of the technique for adapting the cluster sizes now is as follows. We pick one
cluster 𝐶+ that has too many vertices compared to the desired partition and one cluster 𝐶−

that has too few vertices at a time. If 𝐶+ and 𝐶− have the same colour then we can move
a vertex along 𝐶𝑟

𝑘 from 𝐶+ to 𝐶− by repeatedly applying Fact 5.10. If 𝐶+ and 𝐶− are of
different colours 𝑗+ and 𝑗− on the other hand we first find a cluster 𝐷+ that has the same
colour as 𝐶+ and a component 𝑖* of 𝐾𝑟

𝑘 such that the vertex (𝑖, 𝑗+) corresponding to 𝐷+ in
𝑅𝑟

𝑘 has edges to all vertices (𝑖*, 𝑗′) in 𝑅𝑟
𝑘 with 𝑗′ ∈ [𝑟], 𝑗′ ≠ 𝑗−. Next, we use Fact 5.11 in order

to move a vertex from 𝐷+ to the cluster 𝐷− corresponding to the vertex (𝑖*, 𝑗−) of 𝑅𝑟
𝑘. Then

we can proceed as before and move one vertex along 𝐶𝑟
𝑘 from 𝐶+ to 𝐷+ and one from 𝐷− to

𝐶− (see Figure 5.4). We repeat this process until every cluster has exactly the right size.
This is only possible, however, if we can guarantee the existence of the cluster 𝐷+ in 𝑅𝑟

𝑘 in
each step. If this is the case then we say that 𝑅𝑟

𝑘 is colour adjustable.

Definition 5.12 (colour adjustable). Let 𝑅𝑟
𝑘 be a graph on vertex set [𝑘]× [𝑟] with 𝐶𝑟

𝑘 ⊆ 𝑅𝑟
𝑘.

We say that 𝐶𝑟
𝑘 is colour adjustable in 𝑅𝑟

𝑘 if for all 𝑗+, 𝑗− ∈ [𝑟] with 𝑗+ ̸= 𝑗− there are
𝑖, 𝑖* ∈ [𝑘] such that (𝑖, 𝑗+) has edges to all (𝑖*, 𝑗′) in 𝑅𝑟

𝑘 with 𝑗′ ̸= 𝑗− and 𝑗′ ∈ [𝑟].

In our setting the copy of 𝐶𝑟
𝑘 in the reduced graph 𝑅𝑟

𝑘 is colour adjustable thanks to its
high minimum degree as we will show in the proof of Lemma 5.3 below. Never the less, we
shall formulate the adjustment technique just described for general colour adjustable graphs
in the following lemma. This lemma will be reused in Chapter 7 where we do not deal with
reduced graphs 𝑅𝑟

𝑘 of sufficiently high minimum degree anymore.

Lemma 5.13 (adjusting lemma). For all integers 𝑟 and constants 𝑑, 𝜀 > 0 there is 𝜀′ > 0
such that for all integers 𝑘 there is a 𝜉 > 0 such that for all integers 𝑛 the following holds. Let
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Figure 5.4: Moving a vertex from 𝐶+ to 𝐷+, then from 𝐷+ to 𝐷−, then from 𝐷− to 𝐶− and
thus decreasing the size of 𝐶+ and increasing the size of 𝐶−.

𝐺 = (𝑉,𝐸) be an 𝑛-vertex graph that has an (𝜀′, 𝑑)-regular partition 𝑉 = (𝑈𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] with
reduced graph 𝑅𝑟

𝑘 on vertex set [𝑘]×[𝑟] such that |𝑈𝑖,𝑗 | ≥ 𝑛/(2𝑟𝑘) for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑟]. Assume
further that 𝐾𝑟

𝑘 ⊆ 𝐶𝑟
𝑘 ⊆ 𝑅𝑟

𝑘, the copy of 𝐶𝑟
𝑘 is colour adjustable in 𝑅𝑟

𝑘, and (𝑈𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] is
(𝜀′, 𝑑)-super regular on 𝐾𝑟

𝑘. Let (𝑛𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] be an integer partition of 𝑛 with 𝑛𝑖,𝑗 = |𝑈𝑖,𝑗 |±𝜉𝑛.
Then there is an (𝜀, 1

2𝑑)-regular partition 𝑉 = (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] with reduced graph 𝑅𝑟
𝑘 that is

(𝜀, 1
2𝑑)-super-regular on 𝐾𝑟

𝑘 and satisfies |𝑉𝑖,𝑗 | = 𝑛𝑖,𝑗 for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑟].

Proof. Given 𝑟, 𝑑, and 𝜀 we assume without loss of generality that 𝜀 ≤ 1/(3𝑟) and first choose
an auxilliary constant 𝜉′ and then 𝜀′ such that the following inequalities are satisfied

12𝜉′ ≤ 1
2𝑑 , 6

√︀
3𝜉′ ≤ 1

2𝜀 , 𝜉′ ≤ 1
2(1− 2𝑟𝜀) , and 𝜀′ ≤ 1

2𝜀 . (5.15)

Then we receive the constant 𝑘 as input and fix 𝜉 with

2𝑘𝑟𝜉 ≤ 𝜉′/(𝑘𝑟) . (5.16)

Let 𝐺, its partition 𝑉 = (𝑈𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] and the integer partition (𝑛𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] be given,
assume that all assumptions of the lemma are satisfied, and let (𝑚𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] be the integer
partition defined by 𝑚𝑖,𝑗 := |𝑈𝑖,𝑗 | for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑟]. Our goal is to modify the partition
𝑉 = (𝑈𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] gradually until we get a partition 𝑉 = (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] with the desired
properties.

We initially set 𝑉𝑖,𝑗 := 𝑈𝑖,𝑗 for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑟]. In the following, we shall perform several
steps to move vertices out of some clusters and into some other clusters. For this purpose we
will use Facts 5.10 and 5.11. During this so-called balancing process we will call a cluster 𝑉𝑖,𝑗

deficient, if |𝑉𝑖,𝑗 | < 𝑛𝑖,𝑗 , and excessive, if |𝑉𝑖,𝑗 | > 𝑛𝑖,𝑗 . In the end we will neither have deficient
clusters nor excessive clusters and thus obtain the desired partition.

As indicated earlier, one iteration of the balancing process is as follows. Choose an arbitrary
excessive cluster 𝑉𝑖+,𝑗+ and a deficient cluster 𝑉𝑖–,𝑗– . Note that there are deficient clusters as
long as there are excessive clusters by definition, and vice versa. We distinguish two cases. If
𝑗+ = 𝑗− we use Fact 5.10 for moving a vertex along colour class 𝑗+ of 𝐶𝑟

𝑘 from cluster 𝑉𝑖+,𝑗+

to cluster 𝑉𝑖–,𝑗– . (We will argue below why the hypothesis of Fact 5.10 is satisfied.)
Otherwise, we first use that 𝑅𝑟

𝑘 is colour adjustable and conclude that there are indices
𝑖, 𝑖* ∈ [𝑘] such that (𝑖, 𝑗+) has edges to all (𝑖*, 𝑗′) with 𝑗′ ̸= 𝑗− and 𝑗′ ∈ [𝑟]. Hence we can
apply Fact 5.11 to cluster 𝑉𝑖,𝑗+ and move one of the vertices 𝑣 ∈ 𝑉𝑖,𝑗+ with many neighbours in
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all 𝑉𝑖*,𝑗′ with 𝑗′ ̸= 𝑗− and 𝑗′ ∈ [𝑟] from cluster 𝑉𝑖,𝑗+ to 𝑉𝑖*,𝑗– . Then, we can proceed similarly
as in the previous case and move one vertex along colour class 𝑗+ of 𝐶𝑟

𝑘 from cluster 𝑉𝑖+,𝑗+ to
cluster 𝑉𝑖,𝑗+ and one vertex along colour class 𝑗− of 𝐶𝑟

𝑘 from 𝑉𝑖*,𝑗– to 𝑉𝑖–,𝑗– with Fact 5.10.
In total at most

𝑘∑︁
𝑖=1

𝑟∑︁
𝑗=1

|𝑛𝑖,𝑗 −𝑚𝑖,𝑗 | ≤ 𝑘𝑟𝜉𝑛

iterations have to be performed in order to guarantee that |𝑉𝑖,𝑗 | = 𝑛𝑖,𝑗 for all 𝑖 ∈ [𝑘] and
𝑗 ∈ [𝑟]. Moreover, in each iteration not more than one vertex gets moved out of each 𝑉𝑖,𝑗 with
𝑖 ∈ [𝑘], 𝑗 ∈ [𝑟], and at most one vertex gets moved into each 𝑉𝑖,𝑗 . So, throughout the process
we have

|𝑈𝑖,𝑗△𝑉𝑖,𝑗 | ≤ 2 · 𝑘𝑟𝜉𝑛
(5.16)

≤ 𝜉′
𝑛

𝑘𝑟
, (5.17)

for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑟].
Note that, since by (5.15) we have (1− 2𝑟𝜀)𝑛/(2𝑘𝑟) ≥ 𝜉′𝑛/(𝑘𝑟), in every step the “moving”

vertex 𝑣 can be chosen from the set of (1−2𝑟𝜀)𝑛/(2𝑘𝑟) “good” vertices guaranteed by Facts 5.10
and 5.11. In addition it follows that

|𝑉𝑖,𝑗 | ≥ |𝑈𝑖,𝑗 | − |𝑈𝑖,𝑗△𝑉𝑖,𝑗 |
(5.17)

≥
(︀

1
2 − 𝜉′

)︀ 𝑛
𝑘𝑟

(5.15)

≥ 𝑛

3𝑘𝑟
(5.18)

after (and throughout) the balancing process for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑟]. Recall that (𝑈𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] is
(𝜀′, 𝑑)-regular on 𝑅𝑟

𝑘 and (𝜀′, 𝑑)-super-regular on 𝐾𝑟
𝑘 . Therefore, we can apply Proposition 3.8

with input 𝜀′, 𝑑, 𝐴 := 𝑈𝑖,𝑗 , 𝐴 := 𝑉𝑖,𝑗 , and 𝐵 := 𝑈𝑖′,𝑗′ , 𝐵̂ := 𝑉𝑖′,𝑗′ for any neighbouring vertices
(𝑖, 𝑗) and (𝑖′, 𝑗′) in 𝑅𝑟

𝑘. For this, we set

𝛼 := 𝛽 := 3𝜉′ ≥ |𝑈𝑝,𝑞△𝑉𝑝,𝑞|
|𝑉𝑝,𝑞|

for all 𝑝 ∈ [𝑘] and 𝑞 ∈ [𝑟] , (5.19)

where the inequality follows from (5.17) and (5.18). With

𝜀 := 𝜀′ + 3
(︀√
𝛼+

√︀
𝛽
)︀ (5.19)

= 𝜀′ + 6
√︀

3𝜉′
(5.15)

≤ 𝜀

and
𝑑 := 𝑑− 2(𝛼+ 𝛽)

(5.19)
= 𝑑− 12𝜉′

(5.15)

≥ 1
2𝑑.

we deduce from Proposition 3.8 that (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] remains (𝜀, 1
2𝑑)-regular on 𝑅𝑟

𝑘 and, since we
only moved “good” vertices, (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] remains (𝜀, 1

2𝑑)-super-regular on 𝐾𝑟
𝑘 throughout the

entire process. This also justifies that the hypotheses of Facts 5.10 and 5.11 are satisfied and
we could therefore indeed apply these facts throughout the entire balancing process. Observe
that (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] has all required properties.

Now Lemma 𝐺 is a straightforward consequence of Proposition 5.9 and Lemma 5.13.

Proof of Lemma 5.3. We first fix the constants involved in the proof. Let 𝑟 and 𝛾 > 0 be
given by Lemma 5.3. For 𝑟 and 𝛾, Proposition 5.9 yields constants 𝑑′ > 0 and 𝜀′0 > 0. For
Lemma 5.3 we set 𝜀0 := min{𝜀′0, 1/2} and 𝑑 := 𝑑′/2. For given 𝜀 ≤ 𝜀0, we let 𝜀′5.13 be the
constant given by Lemma 5.13 for input 𝑟, 𝑑 replaced by 𝑑′ = 2𝑑, and 𝜀. Then we fix

𝜀′ := min
{︀
𝜀′5.13, 𝜀

′
0, 𝜀
}︀
. (5.20)
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As 𝜀′ ≤ 𝜀0 ≤ 𝜀′0 we can apply Proposition 5.9 with 𝑟, 𝛾, and 𝜀′ to obtain 𝑘1. Next, for all
𝑘′ ∈ [𝑘1] we let 𝜉𝑘′ be the constant provided by Lemma 5.13 for input 𝑟 and 𝑑′, 𝜀, and 𝑘′.
Finally, we define the constant 𝜉0 promised by Lemma 5.3 to be the minimum of these 𝜉𝑘′ ,
𝑘′ ∈ [𝑘1].

Having fixed all the constants, let 𝐺 = (𝑉,𝐸) be a graph on 𝑛 ≥ 𝑘1 vertices with 𝛿(𝐺) ≥
((𝑟− 1)/𝑟+ 𝛾)𝑛. We now apply Proposition 5.9 with 𝑟, 𝛾, and 𝜀′ to the input graph 𝐺 and get
a positive integer 𝑘 ≤ 𝑘1, a graph 𝑅𝑟

𝑘, and a partition (𝑈𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] of 𝑉 so that (R1)–(R4)
and (U1)–(U3) of Proposition 5.9 hold with 𝜀 replaced by 𝜀′ and 𝑑 replaced by 𝑑′ = 2𝑑. Since
𝜀 ≥ 𝜀′, this shows that 𝑘, 𝑅𝑟

𝑘, and 𝑚𝑖,𝑗 = |𝑈𝑖,𝑗 | for all 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑟] also satisfy properties
(R1)–(R4) of Lemma 5.3.

It remains to prove the ‘second part’ of Lemma 5.3. For that let (𝑛𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] be an integer
partition of 𝑛 = |𝑉 | satisfying 𝑛𝑖,𝑗 = 𝑚𝑖,𝑗±𝜉0𝑛 for every 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑟]. We would like to apply
Lemma 5.13 with parameters 𝑑′ = 2𝑑, 𝜀, and 𝑘 in order to modify the partition (𝑈𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟]

of 𝐺 with reduced graph 𝑅𝑟
𝑘 and obtain a new partition (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] with cluster sizes as

prescribed by (𝑛𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟]. We first need to check that all preconditions of this lemma are
satisfied.

By (R3) we have 𝐾𝑟
𝑘 ⊆ 𝐶𝑟

𝑘 ⊆ 𝑅𝑟
𝑘, by (U2) and (U3) the partition (𝑈𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] is (𝜀′, 2𝑑)-

regular on 𝑅 and (𝜀′, 2𝑑)-regular on 𝐾𝑟
𝑘 , and from (R4) we get that |𝑈𝑖,𝑗 | ≥ 𝑛/(2𝑘𝑟). Further-

more, by (R2), the minimum degree 𝛿(𝑅𝑟
𝑘) of the reduced graph is at least ((𝑟− 1)/𝑟+ 𝛾/4)𝑘𝑟

which implies that the copy of 𝐶𝑟
𝑘 in 𝑅𝑟

𝑘 is colour adjustable. Indeed, let 𝑗+ ∈ [𝑟] be arbitrary.
Then, for any 𝑖 ∈ [𝑘] there is a component 𝑖* of 𝐾𝑟

𝑘 such that (𝑖, 𝑗+) has edges to all vertices
(𝑖*, 𝑗′) in this component (𝑗′ ∈ [𝑟]) because 𝛿(𝑅𝑟

𝑘) > (𝑟 − 1)𝑘. (This condition is stronger than
the one we need to be colour adjustable.)

Accordingly we can use Lemma 5.13 with parameters 𝑑′ = 2𝑑, 𝜀, and 𝑘 as planned. By our
choice of 𝜀′ in (5.20) we obtain a partition (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] of 𝑉 with |𝑉𝑖,𝑗 | = 𝑛𝑖,𝑗 for all 𝑖 ∈ [𝑘],
𝑗 ∈ [𝑟] that is (𝜀, 𝑑)-regular on 𝑅𝑟

𝑘 and (𝜀, 𝑑)-super-regular on 𝐾𝑟
𝑘. Therefore (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟]

satisfies (V1)–(V3) and this concludes the proof of Lemma 5.3.

5.6 The lemma for 𝐻

In order to prove the lemma for 𝐻 (Lemma 5.5), we need to exhibit a mapping 𝑓 : 𝑉 (𝐻) →
[𝑘] × [𝑟] with properties (a )–(d ). Basically, we would like to use the fact that 𝐻 is almost
𝑟-colourable, visit the vertices of 𝐻 in the order of the bandwidth labelling and arrange that
𝑓 maps the first vertices of colour 1 to (1, 1), the first vertices of colour 2 to (1, 2), the first
vertices of colour 3 to (1, 3), and so on. Ignoring the vertices of colour 0, it would be ideal
if in this way, at more or less the same moment, we would have dealt with 𝑚1,1 vertices of
colour 1, 𝑚1,2 vertices of colour 2 and so on, since we could then move on and let 𝑓 assign
vertices to the next component of 𝐾𝑟

𝑘 ⊆ 𝐶𝑟
𝑘 .

However, the problem is that although the 𝑚𝑖,𝑗 are 𝑟-equitable, i.e., almost identical, the
colour classes of 𝐻 may vary a lot in size. Therefore, the basic idea of our proof of Lemma 5.5
will be to find a recolouring of 𝐻 with more or less balanced colour classes (besides colour 0).

We emphasise that everything in this section is completely elementary (i.e. it does not
use any advanced machinery from the regularity method) but at times a bit technically
cumbersome. Therefore we split it into a series of simple propositions.

Proposition 5.14. Let 𝑐1, . . . , 𝑐𝑟 ∈ R be such that 𝑐1 ≤ 𝑐2 ≤ · · · ≤ 𝑐𝑟 ≤ 𝑐1 + 𝑥 and
𝑐′1, . . . , 𝑐

′
𝑟 ∈ R such that 𝑐′𝑟 ≤ 𝑐′𝑟−1 ≤ · · · ≤ 𝑐′1 ≤ 𝑐′𝑟 + 𝑥. If we set 𝑐′′𝑖 := 𝑐𝑖 + 𝑐′𝑖 for all 𝑖 ∈ [𝑟]
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then
max

𝑖
{𝑐′′𝑖 } ≤ min

𝑖
{𝑐′′𝑖 }+ 𝑥.

Proof. It clearly suffices to show that 𝑐𝑖 +𝑐′𝑖 ≤ 𝑐𝑗 +𝑐′𝑗 +𝑥 for all 𝑖, 𝑗 ∈ [𝑟]. For 𝑖 ≤ 𝑗 this follows
from 𝑐𝑖 ≤ 𝑐𝑗 and 𝑐′𝑖 ≤ 𝑐′𝑟 + 𝑥 ≤ 𝑐′𝑗 + 𝑥. Similarly, for 𝑖 > 𝑗 we have that 𝑐𝑖 ≤ 𝑐1 + 𝑥 ≤ 𝑐𝑗 + 𝑥
and 𝑐′𝑖 ≤ 𝑐′𝑗 .

Now assume that the vertices of 𝐻 are labelled 1, . . . , 𝑛. Recall that for an (𝑟+ 1)-colouring
𝜎 : 𝑉 (𝐻) → {0, . . . , 𝑟} of 𝐻 an interval [𝑠, 𝑡] ⊆ [𝑛] is called zero free, if 𝜎(𝑢) ̸= 0 for all
𝑢 ∈ [𝑠, 𝑡]. Moreover, the colouring 𝜎 is called (𝑥, 𝑦)-zero free on the interval [𝑎, 𝑏] ⊆ [𝑛], if for
each 𝑡 ∈ [𝑛] there exists an interval [𝑡′, 𝑡′ + 𝑦] ⊆ [𝑡, 𝑡+ 𝑥+ 𝑦] such that [𝑡′, 𝑡′ + 𝑦] ∩ [𝑎, 𝑏] is zero
free.

The following proposition investigates under what conditions a colouring remains (𝑥, 𝑦)-zero
free when a few more vertices receive colour 0.

Proposition 5.15. Assume that the vertices of 𝐻 are labelled 1, . . . , 𝑛. Let 𝑦 be a positive
integer, 𝑎 ∈ [𝑛] and suppose that 𝜎 : 𝑉 (𝐻) → {0, . . . , 𝑟} is an (𝑟 + 1)-colouring that is
(8𝑦, 𝑦)-zero free on [𝑛] as well as (2𝑦, 𝑦)-zero free on [𝑎, 𝑛] with respect to this labelling.

Let 𝑎+ 3𝑦 ≤ 𝑏 ≤ 𝑎+ 5𝑦 and suppose that 𝜎′ is another (𝑟 + 1)-colouring that differs from
𝜎 in that some of the vertices in the interval (𝑏, 𝑏+ 𝑦) now have colour 0, i.e., (𝜎′)−1(0) ⊆
𝜎−1(0) ∪ (𝑏, 𝑏+ 𝑦).

Then 𝜎′ must still be (8𝑦, 𝑦)-zero free on [𝑛] and (2𝑦, 𝑦)-zero free on [𝑎+ 6𝑦, 𝑛].

Proof. By definition [𝑏, 𝑏+ 𝑦] ⊆ [𝑎+ 3𝑦, 𝑎+ 6𝑦] and thus

(i) 𝜎′
⃒⃒
[1,𝑎+3𝑦] ≡ 𝜎

⃒⃒
[1,𝑎+3𝑦] and (ii) 𝜎′

⃒⃒
[𝑏+𝑦,𝑛] ≡ 𝜎

⃒⃒
[𝑏+𝑦,𝑛] . (5.21)

First note that the second claim of the proposition is trivial, because 𝑏+ 𝑦 ≤ 𝑎+ 6𝑦 and
part (ii) of (5.21) show that the fact that 𝜎 is (2𝑦, 𝑦)-zero free on [𝑎, 𝑛] implies that 𝜎′ is
(2𝑦, 𝑦)-zero free on [𝑎+ 6𝑦, 𝑛].

As for the first claim, we need to show that for every 𝑡 ∈ [𝑛] there exists an interval
[𝑡′, 𝑡′ + 𝑦] ⊆ [𝑡, 𝑡+ 9𝑦] which is zero-free under 𝜎′. Here we need to distinguish several cases.

𝑡 < 𝑎− 6𝑦: By part (i) of (5.21) the assertion follows from the fact that 𝜎 is (8𝑦, 𝑦)-zero
free on [𝑛].

𝑎− 6𝑦 ≤ 𝑡 < 𝑎: The fact that 𝜎 is (2𝑦, 𝑦)-zero free on [𝑎, 𝑛] implies (when applied to the
vertex 𝑎) that there is a zero free interval [𝑡′, 𝑡′ + 𝑦] ⊆ [𝑎, 𝑎+ 3𝑦] ⊆ [𝑡, 𝑡+ 9𝑦]
under 𝜎. By part (i) of (5.21), [𝑡′, 𝑡′ + 𝑦] is also zero free under 𝜎′.

𝑎 ≤ 𝑡 < 𝑏+ 𝑦: The fact that 𝜎 is (2𝑦, 𝑦)-zero free on [𝑎, 𝑛] implies (when applied to the
vertex 𝑏+ 𝑦) that there is a zero free interval [𝑡′, 𝑡′ + 𝑦] ⊆ [𝑏+ 𝑦, 𝑏+ 4𝑦] ⊆
[𝑡, 𝑎+ 9𝑦] ⊆ [𝑡, 𝑡+ 9𝑦] under 𝜎. By part (ii) of (5.21), [𝑡′, 𝑡′ + 𝑦] is also zero
free under 𝜎′.

𝑏+ 𝑦 ≤ 𝑡: Here the assertion follows because part (ii) of (5.21) shows that the fact that
𝜎 is (8𝑦, 𝑦)-zero free on [𝑛] implies that 𝜎′ is (8𝑦, 𝑦)-zero free on [𝑏+ 𝑦, 𝑛].

Now we introduce the notion of switching two colours 𝑙, 𝑙′ ∈ [𝑟] at some given vertex 𝑠, which
will be essential to transform the given colouring of 𝐻 into one that uses the colours 1, . . . , 𝑟
in a more or less balanced manner. Basically, all vertices of colour 𝑙 after 𝑠 are coloured by 𝑙′
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and vice versa. In order to avoid adjacent vertices of the same colour, we use the bandwidth
condition and colour vertices in the interval 𝑠− 𝛽𝑛, 𝑠+ 𝛽𝑛 that previously had colour 𝑙 with
colour 0.

Proposition 5.16. Assume that the vertices of 𝐻 are labelled 1, . . . , 𝑛 with bandwidth at most
𝛽𝑛 with respect to this labelling. Let 𝑠 ∈ [𝑛] and suppose further that 𝜎 : [𝑛] → {0, . . . , 𝑟} is a
proper (𝑟 + 1)-colouring of 𝑉 (𝐻) such that [𝑠− 2𝛽𝑛, 𝑠+ 2𝛽𝑛] is zero free.

Then for any two colours 𝑙, 𝑙′ ∈ [𝑟] the mapping 𝜎′ : [𝑛] → {0, . . . , 𝑟} defined by

𝜎′(𝑣) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑙 if 𝜎(𝑣) = 𝑙′, 𝑠 < 𝑣

𝑙′ if 𝜎(𝑣) = 𝑙, 𝑠+ 𝛽𝑛 < 𝑣

0 if 𝜎(𝑣) = 𝑙, 𝑠− 𝛽𝑛 ≤ 𝑣 ≤ 𝑠+ 𝛽𝑛

𝜎(𝑣) otherwise

is a proper (𝑟+1)-colouring of 𝐻. (We will say that 𝜎′ is obtained from 𝜎 by an (𝑙, 𝑙′, 𝛽𝑛)-switch
at vertex 𝑠.)

Note that we only introduced new vertices of colour 0 in the interval [𝑠− 𝛽𝑛, 𝑠+ 𝛽𝑛] and
that all these vertices are non-adjacent since they have colour 𝑙 in 𝜎.

Proof. Indeed, as 𝜎′ is derived from the proper colouring 𝜎 by interchanging the colours 𝑙 and
𝑙′ after the vertex 𝑠 and introducing some new vertices of colour 0 in [𝑠 − 𝛽𝑛, 𝑠 + 𝛽𝑛], the
only monochromatic edges that 𝜎′ could possibly yield are edges {𝑢, 𝑣} with either 𝑢 ≤ 𝑠 and
𝑠 < 𝑣 and {𝜎(𝑢), 𝜎(𝑣)} = {𝑙, 𝑙′} or with 𝜎′(𝑢) = 𝜎′(𝑣) = 0. The second case is clearly ruled
out by the facts that 𝐻 has bandwidth at most 𝛽𝑛, that [𝑠− 2𝛽𝑛, 𝑠+ 2𝛽𝑛] is zero free under
𝜎 and that there are no edges between new vertices of colour 0. For the first case, since 𝐻
has bandwidth at most 𝛽𝑛, we must have that 𝑢 ∈ [𝑠− 𝛽𝑛, 𝑠] and 𝑣 ∈ [𝑠+ 1, 𝑠+ 𝛽𝑛]. But if
𝜎(𝑢) = 𝑙 and 𝜎(𝑣) = 𝑙′, then 𝜎′(𝑢) = 0 and 𝜎′(𝑣) = 𝑙. If 𝜎(𝑢) = 𝑙′ and 𝜎(𝑣) = 𝑙 on the other
hand, then 𝜎′(𝑢) = 𝑙′ and 𝜎′(𝑣) = 0. Hence, 𝜎′ is a proper (𝑟 + 1)-colouring.

The next and final proposition is based on repeated applications of the three preceding ones
and sums up what we have achieved so far. For that we need one more definition: For 𝑥 ∈ N,
a colouring 𝜎 : [𝑛] → {0, . . . , 𝑟} is called 𝑥-balanced, if for each interval [𝑎, 𝑏] ⊆ [𝑛] and each
𝑙 ∈ [𝑟], we have

𝑏− 𝑎

𝑟
− 𝑥 ≤

⃒⃒
𝜎−1(𝑙) ∩ [𝑎, 𝑏]

⃒⃒
≤ 𝑏− 𝑎

𝑟
+ 𝑥.

Proposition 5.17. Assume that the vertices of 𝐻 are labelled 1, . . . , 𝑛 with bandwidth at
most 𝛽𝑛 and that 𝐻 has an (𝑟 + 1)-colouring that is (8𝑟𝛽𝑛, 4𝑟𝛽𝑛)-zero free with respect to
this labelling, which uses at most 𝛽𝑛 vertices of colour 0 in total. Let 𝜉 be a constant with
𝛽 < 𝜉2/(48𝑟) and assume that 1/𝜉 is an integer. Then there exists a proper (𝑟 + 1)-colouring
𝜎 : 𝑉 (𝐻) → {0, . . . , 𝑟} that is (32𝑟𝛽𝑛, 4𝑟𝛽𝑛)-zero free and 5𝜉𝑛-balanced.

The idea of the proof is as follows. We cut 𝐻 into pieces of length 𝜉𝑛 and proceed by
induction. Suppose that we have found a colouring that is zero free and balanced on the first
𝑝 pieces. Then permute the colours on the remaining pieces such that the largest colour class
of the union of pieces 1 to 𝑝 has the same colour as the smallest colour class of the (𝑝+ 1)-st
piece, and vice versa (again, ignoring colour 0). Now glueing the colourings together (as in
Proposition 5.16), the new colouring will be roughly as balanced on the first 𝑝+ 1 pieces (see
Proposition 5.14) and as zero free (see Proposition 5.15) as the old one.
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Proof. Suppose that 𝐻, 𝛽 and 𝜉 are given with the required properties. In the first part of the
proof, we will prove the following statement by induction (on 𝑝): for all integers 𝑝 ∈ [1/𝜉] there
exists a proper (𝑟 + 1)-colouring 𝜎𝑝 : [𝑛] → {0, . . . , 𝑟} of the vertices of 𝐻 with the following
properties:

𝜎𝑝 is (32𝑟𝛽𝑛, 4𝑟𝛽𝑛)-zero free on [𝑛], (5.22)

𝜎𝑝 is (8𝑟𝛽𝑛, 4𝑟𝛽𝑛)-zero free on [𝑝𝜉𝑛, 𝑛], (5.23)

and for all 𝑗 ∈ [𝑝]

max
𝑙∈[𝑟]

{︀
|𝜎−1

𝑝 (𝑙) ∩ [𝑗𝜉𝑛]|
}︀
≤ min

𝑙∈[𝑟]

{︀
|𝜎−1

𝑝 (𝑙) ∩ [𝑗𝜉𝑛]|
}︀

+ 𝜉𝑛+ 24𝑟𝑗𝛽𝑛. (5.24)

For 𝑝 = 1, we let 𝜎1 be the original (8𝑟𝛽𝑛, 4𝑟𝛽𝑛)-zero free (𝑟 + 1)-colouring of 𝐻. Hence
(5.22), (5.23), and (5.24) hold trivially.

Next suppose that 𝜎𝑝 is given. For 𝑖 ∈ [𝑟 − 1], we will fix colours 𝑙𝑖, 𝑙′𝑖 and positions 𝑠𝑖 and
then obtain 𝜎𝑝+1 from 𝜎𝑝 by a series of 𝑟 − 1 appropriate (𝑙𝑖, 𝑙′𝑖, 𝛽𝑛)-switches at positions 𝑠𝑖.
For this purpose recall that by induction (5.23) guarantees that 𝜎𝑝 is (8𝑟𝛽𝑛, 4𝑟𝛽𝑛)-zero free
on the interval [𝑝𝜉𝑛, 𝑛]. When applied to the vertex 𝑡 := 𝑝𝜉𝑛+ 12𝑟𝛽𝑛, there exists a vertex
𝑡′ ∈ [𝑝𝜉𝑛 + 12𝑟𝛽𝑛, 𝑝𝜉𝑛 + 20𝑟𝛽𝑛] such that [𝑡′, 𝑡′ + 4𝑟𝛽𝑛] is zero free. Now choose positions
𝑠1, . . . , 𝑠𝑟−1 by letting 𝑠1 := 𝑡′ + 4𝛽𝑛 and 𝑠𝑖 := 𝑠𝑖−1 + 4𝛽𝑛 for all 2 ≤ 𝑖 ≤ 𝑟 − 1. Thus

𝑝𝜉𝑛+ 12𝑟𝛽𝑛 ≤ 𝑡′ < 𝑠1 − 2𝛽𝑛 ≤ 𝑠1 ≤ · · · ≤ 𝑠𝑟−1 ≤ 𝑠𝑟−1 + 2𝛽𝑛
= 𝑡′ + 4(𝑟 − 1)𝛽𝑛+ 2𝛽𝑛 < 𝑡′ + 4𝑟𝛽𝑛. (5.25)

Now let 𝑐𝑖 be the number of vertices in [𝑝𝜉𝑛] with colour 𝑖 under 𝜎𝑝 for 𝑖 ∈ [𝑟] and suppose
w.l.o.g. that 𝑐1 ≤ · · · ≤ 𝑐𝑟. For some (not yet specified) colours 𝑙𝑖, 𝑙′𝑖 we will obtain 𝜎𝑝+1 from
𝜎𝑝 by consecutive (𝑙𝑖, 𝑙′𝑖, 𝛽𝑛)-switches at 𝑠𝑖 for all 𝑖 ∈ [𝑟 − 1] and denote by 𝑐′𝑖 the number of
vertices in the interval

𝐼 := [𝑡′ + 4𝑟𝛽𝑛, (𝑝+ 1)𝜉𝑛].

which have colour 𝑖 under 𝜎𝑝+1 for 𝑖 ∈ [𝑟]. Observe that by (5.25), all switches occur before
the interval 𝐼, so since every permutation of the set [𝑟] can be written as the composition of at
most 𝑟 − 1 transpositions, it is clear that we can choose the colours 𝑙1, 𝑙′1, . . . , 𝑙𝑟−1, 𝑙

′
𝑟−1 ∈ [𝑟]

such that 𝑐′𝑟 ≤ · · · ≤ 𝑐′1.
Again by (5.25) we have [𝑠1 − 2𝛽𝑛, 𝑠𝑟−1 + 2𝛽𝑛] ⊆ [𝑡′, 𝑡′ + 4𝑟𝛽𝑛], which, by the choice of 𝑡′,

is zero free under 𝜎𝑝 at the beginning of the switches. Moreover, the switch at 𝑠𝑖−1 introduces
new vertices of colour 0 only in the interval [𝑠𝑖−1 − 𝛽𝑛, 𝑠𝑖−1 + 𝛽𝑛] which (by definition of the
𝑠𝑖) is disjoint from [𝑠𝑖 − 2𝛽𝑛, 𝑠𝑟−1 + 2𝛽𝑛].

Thus we can be sure that before we apply the switch at 𝑠𝑖, the interval [𝑠𝑖 − 2𝛽𝑛, 𝑠𝑖 + 2𝛽𝑛]
is zero free. Hence we can apply Proposition 5.16 for each of the 𝑟 − 1 switches and obtain
that 𝜎𝑝+1 is again a proper (𝑟 + 1)-colouring of 𝐻.

It is now easy to check that 𝜎𝑝+1 satisfies the requirements (5.22), (5.23), and (5.24), with 𝑝
replaced by 𝑝+ 1. Indeed, properties (5.22) and (5.23) follow by evoking Proposition 5.15 with
𝑦 := 4𝑟𝛽𝑛, 𝑎 := 𝑝𝜉𝑛, and 𝑏 := 𝑡′ ∈ [𝑝𝜉𝑛+ 12𝑟𝛽𝑛, 𝑝𝜉𝑛+ 20𝑟𝛽𝑛]. To prove (5.24), observe that
as 𝜎𝑝+1(𝑣) = 𝜎𝑝(𝑣) for all 𝑣 ≤ 𝑝𝜉𝑛, we know by induction that (5.24) with 𝜎𝑝+1 in the place of
𝜎𝑝 still holds for all 𝑗 ≤ 𝑝. Moreover, we have |𝜎−1

𝑝+1(𝑖) ∩ [𝑝𝜉𝑛]| = 𝑐𝑖. Using that 𝑐1 ≤ · · · ≤ 𝑐𝑟
together with, again, (5.24) from the induction for 𝑗 = 𝑝, we now have

|𝜎−1
𝑝+1(1) ∩ [𝑝𝜉𝑛]| ≤ |𝜎−1

𝑝+1(2) ∩ [𝑝𝜉𝑛]| ≤ · · · ≤ |𝜎−1
𝑝+1(𝑟) ∩ [𝑝𝜉𝑛]|

≤ |𝜎−1
𝑝+1(1) ∩ [𝑝𝜉𝑛]|+ 𝜉𝑛+ 24𝑟𝑝𝛽𝑛.

65



Chapter 5 The bandwidth conjecture of Bollobás and Komlós

On the other hand, we have |𝜎−1
𝑝+1(𝑖) ∩ 𝐼| = 𝑐′𝑖. Using that 𝑐′𝑟 ≤ · · · ≤ 𝑐′1 and |𝐼| ≤ 𝜉𝑛 ≤

𝜉𝑛+ 24𝑟𝑝𝛽𝑛, we obtain

|𝜎−1
𝑝+1(𝑟) ∩ 𝐼| ≤ |𝜎−1

𝑝+1(𝑟 − 1) ∩ 𝐼| ≤ · · · ≤ |𝜎−1
𝑝+1(1) ∩ 𝐼|

≤ |𝜎−1
𝑝+1(𝑟) ∩ 𝐼|+ 𝜉𝑛+ 24𝑟𝑝𝛽𝑛.

we can now apply Proposition 5.14 with 𝑥 := 𝜉𝑛+ 24𝑟𝑝𝛽𝑛 to see that

max
𝑙∈[𝑟]

{︀
|𝜎−1

𝑝+1(𝑙) ∩ [(𝑝+ 1)𝜉𝑛]|
}︀

≤ min
𝑙∈[𝑟]

{︀
|𝜎−1

𝑝+1(𝑙) ∩ [(𝑝+ 1)𝜉𝑛]|
}︀

+ 𝜉𝑛+ 24𝑟𝑝𝛽𝑛+
⃒⃒
[𝑝𝜉𝑛, (𝑝+ 1)𝜉𝑛] ∖ 𝐼

⃒⃒⏟  ⏞  
≤𝑡′+4𝑟𝛽𝑛−𝑝𝜉𝑛≤24𝑟𝛽𝑛

,

≤ min
𝑙∈[𝑟]

{︀
|𝜎−1

𝑝+1(𝑙) ∩ [(𝑝+ 1)𝜉𝑛]|
}︀

+ 𝜉𝑛+ 24𝑟(𝑝+ 1)𝛽𝑛

which implies equation (5.24) for 𝑗 = 𝑝 + 1 as well. This completes the inductive proof of
statements (5.22), (5.23), and (5.24). Recall moreover that the switch at 𝑠𝑖 introduces new
vertices of colour 0 only in the interval [𝑠𝑖 − 𝛽𝑛, 𝑠𝑖 + 𝛽𝑛] for all 𝑖 ∈ [𝑟 − 1]. Therefore each
of these switches introduces at most 2𝛽𝑛 new vertices of colour 0. Since 𝜎1 has at most 𝛽𝑛
vertices of colour 0 it follows that 𝜎𝑗 colours at most 𝑗(𝑟 − 1)2𝛽𝑛+ 𝛽𝑛 ≤ 2𝑟𝑗𝛽𝑛 vertices with
0.

For the second part of the proof, set 𝑝 := 1/𝜉 and consider the (𝑟 + 1)-colouring 𝜎 := 𝜎𝑝

whose existence we have proven in the first part. Recall that by (5.22) and (5.24) we know
that

𝜎 is (32𝑟𝛽𝑛, 4𝑟𝛽𝑛)-zero free on [𝑛] (5.26)

and for all integers 1 ≤ 𝑗 ≤ 1/𝜉

max
𝑙∈[𝑟]

{︀
|𝜎−1(𝑙) ∩ [𝑗𝜉𝑛]|

}︀
≤ min

𝑙∈[𝑟]

{︀
|𝜎−1(𝑙) ∩ [𝑗𝜉𝑛]|

}︀
+ 𝜉𝑛+ 24𝑟𝑗𝛽𝑛. (5.27)

It remains to prove that 𝜎 is 5𝜉𝑛-balanced. Let 𝑖+ and 𝑖− be the colours in [𝑟] that are
used most and least often in the interval [𝑗𝜉𝑛] by 𝜎, respectively; and denote by 𝑐𝑖+ and 𝑐𝑖−
the number of vertices of colour 𝑖+ and 𝑖− in [𝑗𝜉𝑛], respectively. Set Λ := 𝜉𝑛+ 24𝑟𝑗𝛽𝑛 and
rewrite property (5.27) as 𝑐𝑖+ ≤ 𝑐𝑖− + Λ. Thus, since 𝜎 uses at most 2𝑟𝑝𝛽𝑛 vertices of colour
0 on [𝑗𝜉𝑛], we obtain that for all 𝑙 ∈ [𝑟]

𝑗𝜉𝑛− 2𝑟𝑝𝛽𝑛
𝑟

− Λ ≤ 𝑐𝑖+ − Λ ≤ 𝑐𝑖− ≤ |𝜎−1(𝑙) ∩ [𝑗𝜉𝑛]| ≤ 𝑐𝑖+ ≤ 𝑐𝑖− + Λ ≤ 𝑗𝜉𝑛

𝑟
+ Λ.

Since 𝛽 < 𝜉2/(48𝑟), we infer that for every 𝑗 ∈ [1/𝜉]

𝑗𝜉𝑛

𝑟
− 2𝜉𝑛 < |𝜎−1(𝑙) ∩ [𝑗𝜉𝑛]| < 𝑗𝜉𝑛

𝑟
+ 2𝜉𝑛 . (5.28)

Now for an arbitrary interval [𝑎, 𝑏] ⊆ [𝑛], we choose 𝑗, 𝑗′ ∈ [𝑝] such that

𝑎− 𝜉𝑛 ≤ 𝑗𝜉𝑛 ≤ 𝑎 ≤ 𝑏 ≤ 𝑗′𝜉𝑛 ≤ 𝑏+ 𝜉𝑛 .

This yields that

|𝜎−1(𝑙) ∩ [(𝑗 + 1)𝜉𝑛, (𝑗′ − 1)𝜉𝑛]| ≤
⃒⃒
𝜎−1(𝑙) ∩ [𝑎, 𝑏]

⃒⃒
≤ |𝜎−1(𝑙) ∩ [𝑗𝜉𝑛, 𝑗′𝜉𝑛]|.
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The lower bound is equal to

|𝜎−1(𝑙) ∩ [(𝑗′ − 1)𝜉𝑛]| − |𝜎−1(𝑙) ∩ [(𝑗 + 1)𝜉𝑛]|
(5.28)

≥
(︂

(𝑗′ − 1)𝜉𝑛
𝑟

− 2𝜉𝑛
)︂
−
(︂

(𝑗 + 1)𝜉𝑛
𝑟

+ 2𝜉𝑛+ 1
)︂

≥
(︂
𝑏− 𝜉𝑛

𝑟
− 2𝜉𝑛

)︂
−
(︂
𝑎+ 𝜉𝑛

𝑟
+ 2𝜉𝑛

)︂
− 1 ≥ 𝑏− 𝑎

𝑟
− 5𝜉𝑛.

Similarly, the upper bound equals

|𝜎−1(𝑙) ∩ [𝑗′𝜉𝑛]| − |𝜎−1(𝑙) ∩ [𝑗𝜉𝑛)|
(5.28)

≤
(︂
𝑗′𝜉𝑛

𝑟
+ 2𝜉𝑛

)︂
−
(︂
𝑗𝜉𝑛

𝑟
− 2𝜉𝑛− 1

)︂
≤
(︂
𝑏+ 𝜉𝑛

𝑟
+ 2𝜉𝑛

)︂
−
(︂
𝑎− 𝜉𝑛

𝑟
− 2𝜉𝑛

)︂
+ 1 ≤ 𝑏− 𝑎

𝑟
+ 5𝜉𝑛.

Thus, 𝜎 is 5𝜉𝑛-balanced, which completes the proof of Proposition 5.17.

After these preparations, the proof of the lemma for 𝐻 (Lemma 5.5) will be straightforward
and the basic idea can be described as follows. We will take the (𝑟+ 1)-colouring 𝜎 of 𝐻 which
is guaranteed by Proposition 5.17. Next we partition 𝑉 (𝐻) = [𝑛] into 𝑘 intervals, where the
𝑖-th interval will have length roughly 𝑚𝑖,1 + · · ·+𝑚𝑖,𝑟. In order to prove the lemma, define
𝑓 : 𝑉 (𝐻) → 𝑉 (𝑅𝑟

𝑘) = [𝑘] × [𝑟] in such a way that it maps all vertices in the 𝑖-th interval
with colour 𝑗 ̸= 0 to (𝑖, 𝑗), i.e., the 𝑗-th vertex of the 𝑖-th component of 𝐾𝑟

𝑘. Obviously the
bandwidth condition implies that two adjacent vertices 𝑢, 𝑣 will either lie in the same or in
neighbouring intervals. If, for example, two adjacent vertices 𝑢, 𝑣 both lie in the 𝑖-th interval,
then 𝑓(𝑢) and 𝑓(𝑣) are connected by an edge in 𝐸(𝐾𝑟

𝑘), as required by (d ) in the lemma.
If, on the other hand, 𝑢 and 𝑣 lie in neighbouring intervals, then 𝑓(𝑢) and 𝑓(𝑣) are vertices
of different colours in neighbouring components of 𝐾𝑟

𝑘 , and as such connected by an edge of
𝐸(𝐶𝑟

𝑘) ⊆ 𝐸(𝑅𝑟
𝑘) as needed by (c ); and for this case we will need to define the set 𝑋 to make

sure that (d ) will not be required here. Finally, a little more care is needed for the vertices
that receive colour 0 by 𝜎.

Proof of Lemma 5.5. Given 𝑟, 𝑘 and 𝛽, let 𝜉, 𝑅𝑟
𝑘 and 𝐻 be as required. Assume w.l.o.g.

that the vertices of 𝐻 are labelled 1, . . . , 𝑛 with bandwidth at most 𝛽𝑛 and that 𝐻 has an
(8𝑟𝛽𝑛, 4𝑟𝛽𝑛)-zero free (𝑟 + 1)-colouring with respect to this labelling. Set 𝜉′ = 𝜉/(11𝑟), and
note that 𝛽 ≤ 𝜉2/(3026𝑟3) < (𝜉′)2/(48𝑟). Therefore, by Proposition 5.17 with input 𝛽, 𝜉′, and
𝐻, there is a (32𝑟𝛽𝑛, 4𝑟𝛽𝑛)-zero free and 5𝜉′𝑛-balanced colouring 𝜎 : 𝑉 (𝐻) → {0, . . . , 𝑟} of
𝐻.

Observe that for each set of 𝑟 vertices in 𝑅𝑟
𝑘, the common neighbourhood of these vertices

is nonempty, because 𝛿(𝑅𝑟
𝑘) > (𝑟 − 1)𝑘. It follows that for each 𝑖 ∈ [𝑘] there exists a vertex

𝑟𝑖 ∈ 𝑉 (𝑅𝑟
𝑘) = [𝑘]× [𝑟] that is adjacent in 𝑅𝑟

𝑘 to each vertex of the 𝑖-th component of 𝐾𝑟
𝑘 :

{𝑟𝑖, (𝑖, 𝑗)} ∈ 𝐸(𝑅𝑟
𝑘) ∀𝑗 ∈ [𝑟]. (5.29)

The vertices 𝑟𝑖 will be needed to construct the mapping 𝑓 .
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Given an 𝑟-equitable partition (𝑚𝑖,𝑗)𝑖∈[𝑘],𝑗∈[𝑟] of 𝑛, set

𝑀𝑖 :=
∑︁
𝑗∈[𝑟]

𝑚𝑖,𝑗

for 𝑖 ∈ [𝑘]. Now let 𝑡0 := 0 and 𝑡𝑘 := 𝑛, and for every 𝑖 = 1, . . . , 𝑘 − 1 choose a vertex

𝑡𝑖 ∈
[︃

𝑖∑︁
𝑖′=1

𝑀𝑖′ ,

𝑖∑︁
𝑖′=1

𝑀𝑖′ + 33𝑟𝛽𝑛

]︃

such that 𝜎 is zero free on [𝑡𝑖−𝛽𝑛, 𝑡𝑖+𝛽𝑛]. Indeed, such a 𝑡𝑖 exists since 𝜎 is (32𝑟𝛽𝑛, 4𝑟𝛽𝑛)-zero
free. We say that (𝑡𝑖−1, 𝑡𝑖] is the 𝑖-th interval of 𝐻. Vertices 𝑣 ∈ 𝑉 (𝐻) with 𝑣 ∈ [𝑡𝑖−𝛽𝑛, 𝑡𝑖+𝛽𝑛]
for some 𝑖 ∈ [𝑘] are called boundary vertices of 𝐻. Observe that the choice of the 𝑡𝑖 implies
that boundary vertices are never assigned colour 0 by 𝜎.

Using 𝜎, we will now construct 𝑓 : 𝑉 (𝐻) → [𝑘]× [𝑟] and 𝑋 ⊆ 𝑉 (𝐻). For each 𝑖 ∈ [𝑘], and
each 𝑣 ∈ (𝑡𝑖−1, 𝑡𝑖] in the 𝑖-th interval of 𝐻 we set

𝑓(𝑣) :=

{︃
𝑟𝑖 if 𝜎(𝑣) = 0,
(𝑖, 𝜎(𝑣)) otherwise,

and
𝑋 :=

{︀
𝑣 ∈ 𝑉 (𝐻) : 𝜎(𝑣) = 0

}︀
∪
{︀
𝑣 ∈ 𝑉 (𝐻) : 𝑣 is a boundary vertex

}︀
.

It remains to show that 𝑓 and 𝑋 satisfy properties (a )–(d ) of Lemma 5.5.
Since 𝜎 is 5𝜉′𝑛-balanced, (𝑛/𝑟)− 5𝜉′𝑛 ≤ |𝜎−1(𝑙)| for all 𝑙 ∈ [𝑟]. Consequently

|{𝑣 ∈ [𝑛] : 𝜎(𝑣) = 0}| ≤ 𝑟 · 5𝜉′𝑛. (5.30)

Moreover, there are exactly 𝑘 · 2𝛽𝑛 boundary vertices and so we can bound

|𝑋| ≤ 5𝑟𝜉′𝑛+ 2𝑘𝛽𝑛 ≤ 6𝑘𝑟𝜉′𝑛 ≤ 𝑘𝑟𝜉𝑛,

which yields (a ).
For (b ), we need to estimate |𝑊𝑖,𝑗 |, the number of vertices in 𝐻 that are mapped by 𝑓 to

(𝑖, 𝑗) for each 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑟]. First, the number of vertices of colour 0 that are mapped to
(𝑖, 𝑗) can obviously be bounded from above by the bound in (5.30). Furthermore, the mapping
𝑓 sends all vertices 𝑣 in the 𝑖-th interval of 𝐻 with 𝜎(𝑣) = 𝑗 ̸= 0 to (𝑖, 𝑗), which are at most
(𝑡𝑖− 𝑡𝑖−1)/𝑟+ 5𝜉′𝑛 vertices, because 𝜎 is 5𝜉′𝑛-balanced. Thus, by the choice of 𝑡𝑖−1 and 𝑡𝑖, and
making use of the fact that |𝑚𝑖,𝑗 −𝑀𝑖/𝑟| ≤ 1 (because the 𝑚𝑖,𝑗 are known to be 𝑟-equitable),
we can bound

|𝑊𝑖,𝑗 | ≤
𝑡𝑖 − 𝑡𝑖−1

𝑟
+ 5𝜉′𝑛+ 5𝑟𝜉′𝑛 ≤ 𝑀𝑖 + 33𝑟𝛽𝑛

𝑟
+ 10𝑟𝜉′𝑛 ≤ 𝑚𝑖,𝑗 + 11𝑟𝜉′𝑛 = 𝑚𝑖,𝑗 + 𝜉𝑛.

Similarly, |𝑊𝑖,𝑗 | ≥ 𝑚𝑖,𝑗 − 𝜉𝑛 and this shows (b ).
Now, we turn to (c ) and (d ). For a vertex 𝑢 ∈ 𝑉 (𝐻), let 𝑖(𝑢) be the index in [𝑘] for which

𝑢 ∈ (𝑡𝑖(𝑢)−1, 𝑡𝑖(𝑢)]. Let {𝑢, 𝑣} be an edge of 𝐻. Since 𝜎 is a proper colouring, this implies that
𝜎(𝑢) ̸= 𝜎(𝑣).

We will first consider the case that 𝑢 and 𝑣 are in the same interval of 𝐻 and not of colour
0, i.e., 𝑖 := 𝑖(𝑢) = 𝑖(𝑣) and 𝜎(𝑢) ̸= 0 ̸= 𝜎(𝑣). By the definition of 𝑓 , we have 𝑓(𝑢) = (𝑖, 𝜎(𝑢))
and 𝑓(𝑣) = (𝑖, 𝜎(𝑣)) and hence {𝑓(𝑢), 𝑓(𝑣)} ∈ 𝐸(𝐾𝑟

𝑘), which proves (c ) and (d ) for this case.
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5.6 The lemma for 𝐻

Next we consider the case where 𝑢 and 𝑣 are in the same interval 𝑖 = 𝑖(𝑢) = 𝑖(𝑣) of 𝐻 and
one of them, say 𝑢, has colour 0. Here, by definition of 𝑋, we do not need to worry about
(d ) and only need to verify (c ). Indeed, 𝑓(𝑢) = 𝑟𝑖 and 𝑓(𝑣) = (𝑖, 𝜎(𝑣)). Hence, by (5.29),
{𝑓(𝑢), 𝑓(𝑣)} ∈ 𝐸(𝑅𝑟

𝑘).
It remains to consider the case where 𝑢 and 𝑣 are in different intervals of 𝐻. Then both of

them are boundary vertices, because the bandwidth of 𝐻 is at most 𝛽𝑛, so again by definition
of 𝑋, we only need to verify (c ). Moreover, 𝜎(𝑢) ̸= 0 ̸= 𝜎(𝑣) because by the choice of the
𝑡𝑖 boundary vertices are never coloured with 0. Assume w.l.o.g. that 𝑢 < 𝑣. It follows that
𝑖(𝑣) = 𝑖(𝑢) + 1 and so 𝑓(𝑢) = (𝑖(𝑢), 𝜎(𝑢)) and 𝑓(𝑣) = (𝑖(𝑢) + 1, 𝜎(𝑣)). This implies that
{𝑓(𝑢), 𝑓(𝑣)} ∈ 𝐸(𝐶𝑟

𝑘) ⊆ 𝐸(𝑅𝑟
𝑘), which yields (c ).
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Chapter 6

Variation 1: Bipartite graphs

With the proof of the Bollobás–Komlós conjecture in the previous chapter we obtained
a minimum degree bound for the containment of 𝑟-chromatic spanning subgraphs 𝐻 (cf.
Theorem 5.1). This bound is essentially best possible for an almost trivial reason: There
are graphs 𝐺 with minimum degree just slightly smaller that are (𝑟 − 1)-colourable (see also
Section 1.2.1). Such 𝐺 clearly do not contain 𝐻 as a subgraph. These graphs are simply too
different in structure from 𝐻 (the graph 𝐺 can be partitioned into 𝑟 − 1 independent sets, 𝐻
cannot).

One may ask, however, whether it is possible to lower the minimum degree threshold in
Theorem 5.1 for graphs 𝐺 and 𝐻 that are structurally more similar and, in particular, have the
same chromatic number. In this chapter we will pursue this question for the case of balanced
bipartite graphs, i.e., bipartite graphs on 2𝑛 vertices with 𝑛 vertices in each colour class.

Recall that Dirac’s theorem implies that a 2𝑛-vertex graph 𝐺 with minimum degree at
least 𝑛 contains a Hamilton cycle. It follows from a result of Moon and Mooser [78] that this
threshold can be cut (almost) in half if 𝐺 is balanced bipartite.

Theorem 6.1 (Moon & Moser [78]). Let 𝐺 be a balanced bipartite graph on 2𝑛 vertices. If
𝛿(𝐺) ≥ 𝑛

2 + 1, then 𝐺 contains a Hamilton cycle.

We prove that slightly increasing this minimum degree bound suffices already to obtain
all balanced bipartite graphs with bounded maximum degree and sublinear bandwidth as
subgraphs. We establish the following bipartite analogue of Theorem 5.1, halving the minimum
degree threshold in that result.

Theorem 6.2. For all 𝛾 and Δ there is a positive constant 𝛽 and an integer 𝑛0 such that for
all 𝑛 ≥ 𝑛0 the following holds. Let 𝐺 and 𝐻 be balanced bipartite graphs on 2𝑛 vertices such
that 𝐺 has minimum degree 𝛿(𝐺) ≥ (1

2 + 𝛾)𝑛 and 𝐻 has maximum degree Δ and bandwidth at
most 𝛽𝑛. Then 𝐻 ⊆ 𝐺.

The proof of this theorem is given in Section 6.2. It follows the proof scheme that we saw in
the last section, but the arguments need to be adapted to the bipartite setting. In particular we
have to use a different strategy for “balancing” the graph 𝐻 here (see Section 6.4; the concept
of “balancing” is explained in Section 1.3.4). Before providing the proof of Theorem 6.2 we
introduce in the next section a version of the regularity lemma designed for use with bipartite
graphs.

6.1 Bipartite regular partitions

In this chapter we deal with bipartite graphs and with regular partitions of such graphs. In our
proofs it will be essential that these regular partitions respect the bipartition of the graph that
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Chapter 6 Variation 1: Bipartite graphs

we start with, i.e., they should refine this bipartition. Since proofs of the regularity lemma
(see, e.g., [28]) iteratively construct refining partitions until a regular partition is obtained,
however, this is no problem. We can simply pass our bipartition to the regularity lemma as
initial partition. Accordingly we obtain “bipartite analogues” of the minimum degree version
of the regularity lemma (Lemma 3.4) or of Proposition 3.7 which, we recall, provides a regular
partition that is moreover super-regular on some subgraph of the reduced graph. This is
summarized in Lemma 6.3 below (whose proof is standard and will just be sketched here).
Before stating this lemma we will adapt the notation concerning regular partitions to this
bipartite setting.

The concepts of regular partitions and reduced graphs essentially remain as introduced in
Chapter 3, but all regular partitions that we consider in this chapter refine some bipartition
and all reduced graphs are bipartite. More precisely, for a bipartite graph 𝐺 = (𝐴∪̇𝐵,𝐸) we
will obtain an 𝜀-regular partition (𝐴0∪̇𝐵0)∪̇𝐴1∪̇𝐵1∪̇ . . . ∪̇𝐴𝑘∪̇𝐵𝑘 such that 𝐴 = 𝐴0∪̇ . . . ∪̇𝐴𝑘

and 𝐵 = 𝐵0∪̇ . . . ∪̇𝐴𝑘. In particular we have two different exceptional sets now, one in 𝐴 called
𝐴0 and one in 𝐵 called 𝐵0, each of size 𝜀𝑛 at most. Hence, such a partition is an equipartition
if |𝐴1| = |𝐵1| = |𝐴2| = · · · = |𝐴𝑘| = |𝐵𝑘|.

In addition, we consider only regular pairs running between the bipartition classes, i.e.,
pairs of the form (𝐴𝑖, 𝐵𝑗). Consequently, all reduced graphs (also the maximal reduced graph
of a partition) in this chapter are bipartite.

We now state the version of the regularity lemma that we will use in this chapter.

Lemma 6.3 (regular partitions of bipartite graphs). For every 𝜀′ > 0 and for every Δ, 𝑘0 ∈ N
there exists 𝑘1 = 𝑘1(𝜀′, 𝑘0) ∈ N such that for every 0 ≤ 𝑑′ ≤ 1, for

𝜀′′ :=
2Δ𝜀′

1− 𝜀′Δ
and 𝑑′′ := 𝑑′ − 2𝜀′Δ ,

and for every bipartite graph 𝐺 = (𝐴∪̇𝐵,𝐸) with |𝐴| = |𝐵| ≥ 𝑘1 and 𝛿(𝐺) ≥ 𝜈|𝐺| for some
0 < 𝜈 < 1 there exists a graph 𝑅 and an integer 𝑘 with 𝑘0 ≤ 𝑘 ≤ 𝑘1 with the following
properties:

(a ) 𝑅 is a reduced graph of an (𝜀′, 𝑑′)-regular equipartition of 𝐺 with |𝑉 (𝑅)| = 2𝑘.
(b ) 𝛿(𝑅) ≥ (𝜈 − 𝑑′ − 𝜀′′)|𝑅|.
(c ) For every subgraph 𝑅* ⊆ 𝑅 with Δ(𝑅*) ≤ Δ there is an (𝜀′′, 𝑑′′)-regular equipartition

𝐴∪̇𝐵 = 𝐴′′0∪̇𝐵′′0 ∪̇𝐴′′1∪̇𝐵′′1 ∪̇ . . . ∪̇𝐴′′𝑘∪̇𝐵′′𝑘

with 𝐴′′𝑖 ⊆ 𝐴 and 𝐵′′𝑖 ⊆ 𝐵 for all 0 ≤ 𝑖 ≤ 𝑘 and (𝜀′′, 𝑑′′)-reduced graph 𝑅, which in
addition is (𝜀′′, 𝑑′′)-super-regular on 𝑅*.

Proof (sketch). As a first step we simulate the proof of the degree-form of the regularity
lemma (Lemma 3.4) starting with 𝐴∪̇𝐵 as the initial partition (see also [28, Chapter 7.4],
or the survey [70]). This yields a partition into clusters 𝐴0, . . . , 𝐵𝑘 such that for all vertices
𝑣 ̸∈ 𝐴0 ∪ 𝐵0 there are at most (𝑑 + 𝜀)𝑛 edges 𝑒 ∈ 𝐸 with 𝑣 ∈ 𝑒 such that 𝑒 is not in some
(𝜀′, 𝑑′)-regular pair (𝐴𝑖, 𝐵𝑗). Hence we get (a ). Let 𝑅 be the maximal (bipartite) (𝜀′, 𝑑′)-
reduced graph of this partition. Then, analogously as in Lemma 3.4 the graph 𝑅 inherits the
minimum degree condition of 𝐺 (except for a small loss). This yields (b ). Finally, we use
Proposition 3.7 with 𝑅′ replaced by 𝑅* to obtain (c ).
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6.2 Proof of Theorem 6.2

We remark that in the following 𝐴∪̇𝐵 will denote the vertex set of the host graph 𝐺 while
𝐴∪̇𝐵̃ is the vertex set of the bipartite graph 𝐻 we would like to embed. The letters 𝐴𝑖 and
𝐵𝑖 with 𝑖 ∈ [𝑘] for some integer 𝑘 will be used for the clusters of a regular partition of 𝐺 as
well as for the vertices of a corresponding reduced graph.

6.2 Proof of Theorem 6.2

The proof of Theorem 6.2 is structured similarly as the proof of Theorem 5.2. We will use
the general embedding lemma (Lemma 3.12). For applying this lemma we need compatible
partitions of the graphs 𝐺 and 𝐻 which are provided by the next two lemmas. These lemmas
are bipartite version of Lemmas 5.3 and 5.5 (see also the explanations for these lemmas on
page 49 in Section 5.2). We start with the lemma for 𝐺 which constructs a regular partition
of 𝐺 whose reduced graph 𝑅 contains a perfect matching within a Hamilton cycle of 𝑅.
The lemma guarantees, moreover, that the regular partition is super-regular on this perfect
matching (see Figure 6.1) and that the cluster sizes in the partition can be slightly changed.

Lemma 6.4 (Lemma for 𝐺). For every 𝛾 > 0 there exists 𝑑lg > 0 such that for every 𝜀 > 0
and every 𝑘0 ∈ N there exist 𝑘1 ∈ N and 𝜉lg > 0 with the following properties: For every 𝑛 ≥ 𝑘1

and for every balanced bipartite graph 𝐺 = (𝐴∪̇𝐵,𝐸) on 2𝑛 vertices with 𝛿(𝐺) ≥
(︀
1/2 + 𝛾

)︀
𝑛

there exists 𝑘0 ≤ 𝑘 ≤ 𝑘1 and a partition (𝑛𝑖)𝑖∈[𝑘] of 𝑛 with 𝑛𝑖 ≥ 𝑛/(2𝑘) such that for every
partition (𝑎𝑖)𝑖∈[𝑘] of 𝑛 and (𝑏𝑖)𝑖∈[𝑘] of 𝑛 satisfying 𝑎𝑖 ≤ 𝑛𝑖 + 𝜉lg𝑛 and 𝑏𝑖 ≤ 𝑛𝑖 + 𝜉lg𝑛, for all
𝑖 ∈ [𝑘], there exist partitions

𝐴 = 𝐴1∪̇ · · · ∪̇𝐴𝑘 and 𝐵 = 𝐵1∪̇ · · · ∪̇𝐵𝑘

such that

(G1) |𝐴𝑖| = 𝑎𝑖 and |𝐵𝑖| = 𝑏𝑖 for all 𝑖 ∈ [𝑘],
(G2) (𝐴𝑖, 𝐵𝑖) is (𝜀, 𝑑lg)-super-regular for every 𝑖 ∈ [𝑘].
(G3) (𝐴𝑖, 𝐵𝑖+1) is (𝜀, 𝑑lg)-regular for every 𝑖 ∈ [𝑘].

The proof of this Lemma is presented in Section 6.3. The following lemma, which we will
prove in Section 6.4, constructs the corresponding partition of 𝐻.

Lemma 6.5 (Lemma for 𝐻). For every 𝑘 ∈ N and every 𝜉 > 0 there exists 𝛽 > 0 and 𝑛0 ∈ N
such that for every 𝑛 ≥ 𝑛0 and for every balanced bipartite graph 𝐻 = (𝐴∪̇𝐵̃, 𝐹 ) on 2𝑛 vertices
having bw(𝐻) ≤ 𝛽𝑛 and for every integer partition 𝑛 = 𝑛1 + · · · + 𝑛𝑘 with 𝑛𝑖 ≤ 𝑛/8 there
exists a set 𝑋 ⊆ 𝑉 (𝐻) and a graph homomorphism 𝑓 : 𝑉 (𝐻) → 𝑉 (𝐶), where 𝐶 the cycle on
vertices 𝐴1, 𝐵2, 𝐴2, . . . , 𝐵𝑘, 𝐴𝑘, 𝐵1, 𝐴1, such that

(H1) |𝑋| ≤ 𝜉 · 2𝑘 · 𝑛,
(H2) for every {𝑥, 𝑦} ∈ 𝐹 with 𝑥 ∈ 𝐴∖𝑋 and 𝑦 ∈ 𝐵̃∖𝑋 there is 𝑖 ∈ [𝑘] such that 𝑓(𝑥) ∈ 𝐴𝑖

and 𝑓(𝑦) ∈ 𝐵𝑖,
(H3) |𝑓−1(𝐴𝑖)| < 𝑛𝑖 + 𝜉𝑛 and |𝑓−1(𝐵𝑖)| < 𝑛𝑖 + 𝜉𝑛 for every 𝑖 ∈ [𝑘],

With these lemmas at our disposal, we are ready to give the proof of the main theorem.

Proof of Theorem 6.2. Given 𝛾 and Δ let 𝑑 = 𝑑lg be the constant provided by Lemma 6.4 for
input 𝛾. Let 𝜀 be the constant Lemma 3.12 returns for input 𝑑, Δ, and 𝑟 = 2. We continue
the application of Lemma 6.4 with input 𝜀 and 𝑘0 := 2 and get constants 𝑘1 and 𝜉lg and
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PSfrag

Aℓ−1 Aℓ Aℓ+1 Aℓ+2

Bℓ−1 Bℓ Bℓ+1 Bℓ+2

1

Figure 6.1: The regular partition constructed by Lemma 6.4 with super-regular pairs (𝐴𝑖, 𝐵𝑖)
and regular pairs (𝐴𝑖, 𝐵𝑖+1).

set 𝜉lh := 𝜉lg𝜀/(100Δ𝑘2
1). Let further 𝛽 be the minimum of all the values 𝛽𝑘 and 𝑛′0 be the

maximum of all the values 𝑛𝑘 that Lemma 6.5 returns for input 𝑘 and 𝜉, where 𝑘 runs from
𝑘0 to 𝑘1. Finally we set 𝑛0 := max{𝑛′0, 𝑘1}.

Let 𝐺 = (𝐴∪̇𝐵,𝐸) and 𝐻 = (𝐴∪̇𝐵̃, 𝐹 ) be balanced bipartite graphs on 2𝑛 vertices each
with 𝑛 ≥ 𝑛0, 𝛿(𝐺) ≥ (1

2 + 𝛾)𝑛, Δ(𝐻) ≤ Δ, and bw(𝐻) ≤ 𝛽𝑛. We apply Lemma 6.4 to the
graph 𝐺 in order to obtain an integer 𝑘 and an integer partition (𝑛𝑖)𝑖∈[𝑘] with 𝑛𝑖 ≥ 1

2𝑛/𝑘
for all 𝑖 ∈ [𝑘]. Next, we apply Lemma 6.5 to the graph 𝐻 and the integer partition (𝑛𝑖)𝑖∈[𝑘]

and get a vertex set 𝑋 ⊆ 𝐴 ∪ 𝐵̃ and a homomorphism 𝑓 from 𝐻 to the cycle 𝐶 on vertices
𝐴1, 𝐵1, 𝐴2, . . . 𝐵𝑘, 𝐴𝑘, 𝐵1, 𝐴1 such that (H1)–(H3) are satisfied. With this we can define
the integer partitions (𝑎𝑖)𝑖∈[𝑘] and (𝑏𝑖)𝑖∈[𝑘] required for the continuation of Lemma 6.4: Set
𝑎𝑖 := |𝑓−1(𝐴𝑖)| and 𝑏𝑖 := |𝑓−1(𝐵𝑖)| for all 𝑖 ∈ [𝑘]. By (H3) we have 𝑎𝑖 ≤ 𝑛𝑖 + 𝜉lh𝑛 ≤ 𝑛𝑖 + 𝜉lg𝑛
and 𝑏𝑖 ≤ 𝑛𝑖 + 𝜉lg𝑛 for all 𝑖 ∈ [𝑘]. It follows that Lemma 6.4 now gives us vertex partitions
𝐴 = (𝐴𝑖)𝑖∈[𝑘] and 𝐵 = (𝐵𝑖)𝑖∈[𝑘] for 𝐺 such that (G1)–(G3) hold. We complement this
with vertex partitions 𝐴 = (𝐴𝑖)𝑖∈[𝑘] and 𝐵̃ = (𝐵̃𝑖)𝑖∈[𝑘] for 𝐻 defined by 𝐴𝑖 := 𝑓−1(𝐴𝑖) and
𝐵̃𝑖 := 𝑓−1(𝐵𝑖) and claim that we can use the general embedding lemma (Lemma 3.12) for
these vertex partitions of 𝐺 and 𝐻.

Indeed, observe first that (G2) and (G3) imply that the partition 𝑉 (𝐺) = (𝐴𝑖)𝑖∈[𝑘]∪̇(𝐵𝑖)𝑖∈[𝑘]

is (𝜀, 𝑑)-regular with reduced graph 𝐶 because 𝑑 = 𝑑lg. Further, by (G3) this partition is
(𝜀, 𝑑)-super regular on the graph 𝑅′ on the same vertices as 𝐶 and with edges 𝐴𝑖𝐵𝑖 for all
𝑖 ∈ [𝑘] (i.e., 𝑅′ is a perfect matching in 𝐶). The components of 𝑅′ have size 𝑟 = 2. It
follows that we can apply Lemma 3.12 if the vertex partition 𝑉 (𝐻) = (𝐴𝑖)𝑖∈[𝑘]∪̇(𝐵̃𝑖)𝑖∈[𝑘] is
𝜀-compatible with the partition 𝑉 (𝐺) = (𝐴𝑖)𝑖∈[𝑘]∪̇(𝐵𝑖)𝑖∈[𝑘] and with 𝑅′ ⊆ 𝐶. To check this
note first that by (G1) we have |𝐴𝑖| = 𝑎𝑖 = |𝐴𝑖| and |𝐵𝑖| = 𝑏𝑖 = |𝐵̃𝑖| for all 𝑖 ∈ [𝑘] and
thus Property (i ) of an 𝜀-compatible partition is satisfied. Since 𝑓 is a homomorphism from
𝐻 to 𝐶 we also immediately get Property (ii ) for (𝐴𝑖)𝑖∈[𝑘]∪̇(𝐵̃𝑖)𝑖∈[𝑘]. In addition, because
|𝐴𝑖| = 𝑎𝑖 ≤ 𝑛𝑖+𝜉lh𝑛 for all 𝑖 ∈ [𝑘], we also have |𝐴𝑖| ≥ 𝑛𝑖−𝑘𝜉lh𝑛 ≥ 1

2𝑛/𝑘−𝑘𝜉lh𝑛 ≥ Δ𝜉lh2𝑘𝑛/𝜀
by the choice of 𝜉lh. This together with (H1) implies that |𝑋 ∩ 𝐴𝑖| ≤ 𝜉lh2𝑘𝑛 ≤ 𝜀|𝐴𝑖| and
|𝑁𝐻(𝑋) ∩𝐴𝑖| ≤ Δ|𝑋| ≤ Δ𝜉lh2𝑘𝑛 ≤ 𝜀|𝐴𝑗 | for all 𝑖, 𝑗 ∈ [𝑘]. Similarly we get |𝑋 ∩𝐵𝑖| ≤ 𝜀|𝐵𝑖|
and |𝑁𝐻(𝑋)∩𝐵𝑖| ≤ 𝜀|𝐵𝑗 | for all 𝑖, 𝑗 ∈ [𝑘]. This clearly implies Property (iii ) of an 𝜀-compatible
partition.

Accordingly we can apply Lemma 3.12 to the graphs 𝐺 and 𝐻 with their partitions
𝑉 (𝐺) = (𝐴𝑖)𝑖∈[𝑘]∪̇(𝐵𝑖)𝑖∈[𝑘] and 𝑉 (𝐻) = (𝐴𝑖)𝑖∈[𝑘]∪̇(𝐵̃𝑖)𝑖∈[𝑘], respectively, which implies that 𝐻
is a subgraph of 𝐺.
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6.3 A regular partition with spanning cycle

In this section we will prove the Lemma for 𝐺. This lemma is a consequence of the regularity
lemma (Lemma 6.3), Theorem 6.1, and the following lemma which states that, under certain
circumstances, we can adjust a (super)-regular partition in order to meet a request for slightly
differing cluster sizes. This is a bipartite version of Lemma 5.13.

Lemma 6.6. Let 𝑘 ≥ 1 be an integer, 0 < 𝜉 ≤ 1/(20𝑘2) and let 𝐺 = (𝐴∪̇𝐵,𝐸) be a balanced
bipartite graph on 2𝑛 vertices with partitions 𝐴 = 𝐴′1∪̇ · · · ∪̇𝐴′𝑘 and 𝐵 = 𝐵′1∪̇ · · · ∪̇𝐵′𝑘 such
that |𝐴′𝑖|, |𝐵′𝑖| ≥ 𝑛/(2𝑘) and (𝐴′𝑖, 𝐵

′
𝑖) is (𝜀′, 𝑑′)-super-regular and (𝐴′𝑖, 𝐵

′
𝑖+1) is (𝜀′, 𝑑′)-regular

for all 𝑖 ∈ [𝑘]. Let (𝑎′𝑖)𝑖∈[𝑘] and (𝑏′𝑖)𝑖∈[𝑘] be integers such that 𝑎′𝑖, 𝑏
′
𝑖 ≤ 𝜉𝑛 for all 𝑖 ∈ [𝑘] and∑︀

𝑖∈[𝑘] 𝑎
′
𝑖 =

∑︀
𝑖∈[𝑘] 𝑏

′
𝑖 = 0. Then there are partitions 𝐴 = 𝐴1∪̇ · · · ∪̇𝐴𝑘 and 𝐵 = 𝐵1∪̇ · · · ∪̇𝐵𝑘

with |𝐴𝑖| = |𝐴′𝑖| + 𝑎′𝑖 and |𝐵𝑖| = |𝐵′𝑖| + 𝑏′𝑖 and such that (𝐴𝑖, 𝐵𝑖) is (𝜀, 𝑑)-super-regular and
(𝐴𝑖, 𝐵𝑖+1) is (𝜀, 𝑑)-regular for all 𝑖 ∈ [𝑘] where 𝜀 := 𝜀′ + 100𝑘

√
𝜉 and 𝑑 := 𝑑′ − 100𝑘2

√
𝜉 − 𝜀′.

The proof of this lemma is deferred to the end of the section. First we will use it to prove
Lemma 6.4. To this end we will apply Lemma 6.3 to the input graph 𝐺. By (a ) and (b ) of
this lemma we obtain a regular partition with a bipartite reduced graph 𝑅 of high minimum
degree. Theorem 6.1 then guarantees the existence of a Hamilton cycle in 𝑅 which will imply
property (G3). This Hamilton cycle serves as 𝑅* in Lemma 6.3(c ), which promises a regular
partition of 𝐺 that is super-regular on 𝑅*. For finishing the proof we will use a greedy strategy
for distributing the vertices in the exceptional sets over the clusters of this partition (without
destroying the super-regularity required for (G2)) and then apply Lemma 6.6 to adjust the
cluster sizes as needed for (G1).

Proof of Lemma 6.4. Let 0 < 𝛾 < 1/2 be given and set 𝑑lg := 𝛾2/100. Now let 𝜀 > 0 and
𝑘0 ∈ N be given. We assume that 𝜀 ≤ 𝛾2/1000, since otherwise we can set 𝜀 := 𝛾2/1000, prove
the lemma, and all statements will still hold for a larger 𝜀.

Our next task is to choose 𝜀′ and 𝑑′. For this, consider the following functions in 𝜀′ and 𝑑′:

𝜀′′ :=
𝜀′

1− 2𝜀′
, 𝜀 := 𝜀′′ + 6

√︀
𝜀′′/𝛾(1− 𝜀′′) ,

𝑑′′ := 𝑑′ − 4𝜀′ , 𝑑 := 𝑑′′ − 4𝜀′′/𝛾(1− 𝜀′′) .
(6.1)

Observe that
𝜀′ ≪ 𝜀′′ ≪ 𝜀 and 𝑑≪ 𝑑′′ ≪ 𝑑′ .

It is not difficult to see that 𝜀′ > 0 and 𝑑′ > 0 can be chosen so that the following inequalities
are all satisfied:

𝜀 ≤ 1
10𝜀 , 𝑑− 𝜀 ≥ 2𝑑lg , 𝛾 − 𝑑′ − 𝜀′′ > 0 (6.2)

(1
2 + 𝛾 − 𝜀′′)(1− 𝑑′′)−1 ≥ 1

2 + 2
3𝛾 , 𝑑′′(1− 𝑑′′)−1 ≤ 1

6𝛾 . (6.3)

Next, using (6.2), we can choose an integer 𝑘′0 with 𝑘0 ≤ 𝑘′0 such that for all integers 𝑘 with
𝑘′0 ≤ 𝑘 we have

(𝛾 − 𝑑′ − 𝜀′′)𝑘 ≥ 1 . (6.4)

Apply Lemma 6.3 with 𝜀′, Δ := 2, and with 𝑘0 replaced by 𝑘′0, to obtain 𝑘1. Choose 𝜉lg > 0
such that

100𝑘1

√︀
𝜉lg ≤ 1

10𝜀, 100(𝑘1)2
√︀
𝜉lg ≤ 𝑑lg. (6.5)
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Now let 𝐺 be given. Feed 𝑑′ and 𝐺 into Lemma 6.3 and obtain 𝑘 ∈ N with 𝑘0 ≤ 𝑘′0 ≤ 𝑘 ≤ 𝑘1

together with an (𝜀′, 𝑑′)-regular equipartition of 𝐺 into 2𝑘 + 2 classes and an (𝜀′, 𝑑′)-reduced
graph 𝑅 on 2𝑘 vertices by (a ) of Lemma 6.3. By assumption 𝛿(𝐺) ≥ (1

2 + 𝛾)𝑛, so setting
𝜈 := 1/2 + 𝛾 and making use of part (b ) of Lemma 6.3, we get

𝛿(𝑅) ≥ (1
2 + 𝛾 − 𝑑′ − 𝜀′′)|𝑉 (𝑅)| = 1

2 |𝑉 (𝑅)|+ (𝛾 − 𝑑′ − 𝜀′′)𝑘
(6.4)

≥ 1
2 |𝑉 (𝑅)|+ 1.

We infer from Lemma 6.1 that 𝑅 contains a Hamilton cycle 𝑅*. Now apply part (c ) of
Lemma 6.3 and obtain an (𝜀′′, 𝑑′′)-regular equipartition of 𝐺 with classes

𝐴 = 𝐴′′0∪̇ . . . ∪̇𝐴′′𝑘 and 𝐵 = 𝐵′′0 ∪̇ . . . ∪̇𝐵′′𝑘 .

Obviously, 𝑅 and thus 𝑅* are bipartite and so, without loss of generality (renumbering the
clusters if necessary), we can assume that 𝑅* consists of the vertices representing the classes

𝐴′′1, 𝐵
′′
2 , 𝐴

′′
2, 𝐵

′′
3 , . . . , 𝐵

′′
𝑘 , 𝐴

′′
𝑘, 𝐵

′′
1 , 𝐴

′′
1

with edges in this order. Therefore, we know that the pairs (𝐴′′𝑖 , 𝐵
′′
𝑖 ) and (𝐴′′𝑖 , 𝐵

′′
𝑖+1) are

(𝜀′′, 𝑑′′)-super-regular for all 𝑖 ∈ [𝑘]. Let 𝐿 := |𝐴′′𝑖 | = |𝐵′′𝑖 | and observe that

(1− 𝜀′′)
𝑛

𝑘
≤ 𝐿 ≤ 𝑛

𝑘
.

Our next aim is to get rid of the classes 𝐴′′0 and 𝐵′′0 by moving their vertices to other
classes. We will do this, roughly speaking, as follows. When moving a vertex 𝑥 ∈ 𝐴′′0 to some
class 𝐴′′𝑖 , say, we will move an arbitrary vertex 𝑦 ∈ 𝐵′′0 to the corresponding class 𝐵′′𝑖 at the
same time. We will also make sure that 𝑥 has at least 𝑑′′|𝐵′′𝑖 | neighbours in 𝐵′′𝑖 and 𝑦 has at
least 𝑑′′|𝐴′′𝑖 | neighbours in 𝐴′′𝑖 . Here are the details for this operation. For an arbitrary pair
(𝑥, 𝑦) ∈ 𝐴′′0 ×𝐵′′0 we define

𝐼(𝑥, 𝑦) :=
{︁
𝑖 ∈ [𝑘] : |𝑁𝐺(𝑥) ∩𝐵′′𝑖 | ≥ 𝑑′′ |𝐵′′𝑖 | and |𝑁𝐺(𝑦) ∩𝐴′′𝑖 | ≥ 𝑑′′ |𝐴′′𝑖 |

}︁
.

We claim that for every (𝑎, 𝑏) ∈ 𝐴′′0 × 𝐵′′0 we have |𝐼(𝑥, 𝑦)| ≥ 𝛾𝑘. To prove this claim, first
recall that 𝐿 = |𝐴′′𝑖 | = |𝐵′′𝑖 | for all 𝑖 ∈ [𝑘]. Define

𝐼(𝑥) :=
{︀
𝑖 ∈ [𝑘] : |𝑁𝐺(𝑥) ∩𝐵′′𝑖 | ≥ 𝑑′′|𝐵′′𝑖 |

}︀
, 𝐼(𝑦) :=

{︀
𝑖 ∈ [𝑘] : |𝑁𝐺(𝑦) ∩𝐴′′𝑖 | ≥ 𝑑′′|𝐴′′𝑖 |

}︀
.

As |𝐴′′0| = |𝐵′′0 | ≤ 𝜀′′𝑛 we have

(1
2 + 𝛾)𝑛 ≤ deg𝐺(𝑥) ≤ |𝐼(𝑥)|𝐿+ (𝑘 − |𝐼(𝑥)|) 𝑑′′𝐿+ 𝜀′′𝑛

= |𝐼(𝑥)|(1− 𝑑′′)𝐿+ 𝑘𝑑′′𝐿+ 𝜀′′𝑛 .

and hence

|𝐼(𝑥)| ≥ (1
2 + 𝛾)𝑛− 𝑘𝑑′′𝐿− 𝜀′′𝑛

(1− 𝑑′′)𝐿
=

(1
2 + 𝛾 − 𝜀′′)

1− 𝑑′′
𝑛

𝐿
− 𝑑′′

1− 𝑑′′
𝑘

(6.3)

≥ (1
2 + 2

3𝛾)𝑘 − 1
6𝛾𝑘 = (1

2 + 1
2𝛾)𝑘 .

Similarly, |𝐼(𝑦)| ≥ (1
2 + 1

2𝛾)𝑘. Since 𝐼(𝑥) and 𝐼(𝑦) are both subsets of [𝑘], this implies that
|𝐼(𝑥, 𝑦)| = |𝐼(𝑥) ∩ 𝐼(𝑦)| ≥ 𝛾𝑘, which proves the claim.
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We group the vertices in 𝐴′′0 ∪𝐵′′0 into (at most 𝜀′′𝑛) pairs (𝑥, 𝑦) ∈ 𝐴′′0 ×𝐵′′0 and choose an
index 𝑖 ∈ 𝐼(𝑥, 𝑦) which has the property that (𝐴′′𝑖 , 𝐵

′′
𝑖 ) has so far received a minimal number of

additional vertices. Then we move 𝑥 into 𝐴′′𝑖 and 𝑦 into 𝐵′′𝑖 . Hence, at the end, every cluster
𝐴′′𝑖 , or 𝐵′′𝑖 gains at most 𝜀′′𝑛/(𝛾𝑘) additional vertices. Denote the final partition obtained in
this way by

𝐴∪̇𝐵 = 𝐴1∪̇𝐵̂1∪̇ . . . ∪̇𝐴𝑘∪̇𝐵̂𝑘 .

Set 𝛼 := 𝛽 := 𝜀′′/𝛾(1− 𝜀′′) and observe that

𝜀′′𝑛

𝛾𝑘
= 𝛼(1− 𝜀′′)

𝑛

𝑘
≤ 𝛼𝐿 .

So Proposition 3.8 tells us that for all 𝑖 ∈ [𝑘] the pairs (𝐴𝑖, 𝐵̂𝑖) are still (𝜀, 𝑑)-super-regular
and the pairs (𝐴𝑖, 𝐵̂𝑖+1) are still (𝜀, 𝑑)-regular, because

𝜀
(6.1)
= 𝜀′′ + 6

√︀
𝜀′′/𝛾(1− 𝜀′′) = 𝜀′′ + 3(

√
𝛼+

√︀
𝛽) and

𝑑
(6.1)
= 𝑑′′ − 4𝜀′′/𝛾(1− 𝜀′′) = 𝑑′′ − 4𝛼 = 𝑑′′ − 2(𝛼+ 𝛽) .

Now return to the statement of Lemma 6.4. We set 𝑛𝑖 := |𝐴𝑖| = |𝐵𝑖| for all 𝑖 ∈ [𝑘]. Let
(𝑎𝑖)𝑖∈[𝑘] and (𝑏𝑖)𝑖∈[𝑘] be given and set 𝑎′′𝑖 := 𝑎𝑖 − 𝑛𝑖 and 𝑏′′𝑖 := 𝑏𝑖 − 𝑛𝑖. Then

𝑎′′𝑖 ≤ 𝜉lg𝑛, 𝑏′′𝑖 ≤ 𝜉lg𝑛,
∑︁

𝑖

𝑎′′𝑖 =
∑︁

𝑖

𝑎𝑖 −
∑︁

𝑖

𝑛𝑖 = 𝑛− 𝑛 = 0 =
∑︁

𝑖

𝑏′′𝑖 .

Therefore we can apply Lemma 6.6 with parameter 𝜉lg to the graph 𝐺 with partitions
𝐴1∪̇ . . . ∪̇𝐴𝑘 and 𝐵̂1∪̇ . . . ∪̇𝐵̂𝑘. Since

𝜀+ 100𝑘
√︀
𝜉lg

(6.2),(6.5)

≤ 1
10𝜀+ 1

10𝜀 ≤ 𝜀 and

𝑑− 100𝑘2
√︀
𝜉lg − 𝜀

(6.2),(6.5)

≥ 2𝑑lg − 𝑑lg = 𝑑lg ,

we obtain sets 𝐴𝑖 and 𝐵𝑖 for each 𝑖 ∈ [𝑘] such that |𝐴𝑖| = |𝐴𝑖|+𝑎′′𝑖 = 𝑛𝑖 +𝑎′′𝑖 = 𝑎𝑖 and |𝐵𝑖| = 𝑏𝑖,
and with the property that (𝐴𝑖, 𝐵𝑖) is (𝜀, 𝑑)-super-regular and (𝐴𝑖, 𝐵𝑖+1) is (𝜀, 𝑑)-regular. This
completes the proof of Lemma 6.4.

It remains to prove Lemma 6.6.

Proof of Lemma 6.6. The lemma will be proved by performing a simple redistribution al-
gorithm that will iteratively adjust the cluster sizes. Throughout the process, we denote by
𝐴𝑖 and 𝐵𝑖 the changing clusters, beginning with 𝐴𝑖 := 𝐴′𝑖 and 𝐵𝑖 := 𝐵′𝑖, and we call 𝐴𝑖 a
sink when |𝐴𝑖| < |𝐴′𝑖|+ 𝑎′𝑖 and a source when |𝐴𝑖| > |𝐴′𝑖|+ 𝑎′𝑖 and analogously for 𝐵′𝑖. Each
iteration of the algorithm will have the effect that the number of vertices in a single source
decreases by one, the number of vertices in a single sink increases by one, and all other cluster
cardinalities stay the same.

We start by describing one iteration of the algorithm. Obviously, as long as not every
cluster in 𝐴 has exactly the desired size, there is at least one source. We choose an arbitrary
source 𝐴𝑖, and, as will be further explained below, the regularity of the pair (𝐴𝑖, 𝐵𝑖+1) implies
that within 𝐴𝑖 there is a large set of vertices each of which can be added to the neighbouring
cluster 𝐴𝑖+1 while preserving the super-regularity of the pair (𝐴𝑖+1, 𝐵𝑖+1). We do this with
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one arbitrary vertex from this set. Thereafter, within 𝐴𝑖+1 there is again a large set of vertices
(the newly arrived vertex may or may not be one of them) suitable for being moved into 𝐴𝑖+2

while preserving the super-regularity of the pair (𝐴𝑖+2, 𝐵𝑖+2), and we again do this with one
arbitrary vertex from this set. We then continue in this way until for the first time we move a
vertex into a sink. (Typically it is not the vertex we initially took out of 𝐴𝑖 that arrives in the
sink.) This is the end of the iteration.

We repeat such iterations as long as there are sources, i.e. we choose an arbitrary source
(which may or may not be the one we have just removed a vertex from) and repeat what
we have just described. Since each iteration ends with adding a vertex to a sink while not
changing the cardinality of the clusters visited along the way, we do not increase the number
of vertices in any source, let alone create a new source, and hence after a finite number of
iterations (which we will estimate below) the algorithm ends with no sources remaining and
therefore all clusters within 𝐴 having exactly the desired size.

We then repeat what we have just described for the clusters within 𝐵, the only difference
being that vertices get moved from 𝐵𝑖 into 𝐵𝑖−1, not 𝐵𝑖+1, since only in this direction a
regular pair can be used ((𝐴𝑖−1, 𝐵𝑖) is regular, (𝐴𝑖+1, 𝐵𝑖) need not be regular).

We now analyse the algorithm quantitatively. Clearly, the total number of iterations (we
call it 𝑡) is at most the sum of all positive 𝑎′𝑖 and all positive 𝑏′𝑖. Obviously, both the sum of
all positive 𝑎′𝑖 and the sum of all positive 𝑏′𝑖 can be each at most 1

2𝑘𝜉𝑛 hence

𝑡 ≤ 1
2
𝑘𝜉𝑛+

1
2
𝑘𝜉𝑛 = 𝑘𝜉𝑛. (6.6)

We will now use this bound together with Proposition 3.8 to estimate the effect of the
redistribution on the regularity and density parameters. Since in each iteration each cluster
receives at most one vertex and loses at most one vertex, for every 𝑖 ∈ [𝑘] and after any step
of the algorithm, we have

|𝐴𝑖Δ𝐴′𝑖| ≤ 2𝑡 ≤ 2𝑘𝜉𝑛,

and analogously |𝐵𝑖Δ𝐵′𝑖| ≤ 2𝑘𝜉𝑛. We now invoke Proposition 3.8 on the pairs (𝐴𝑖, 𝐵𝑖) and
(𝐴𝑖, 𝐵𝑖+1), once with 𝐴 := 𝐴𝑖, 𝐵̂ := 𝐵𝑖 then with 𝐴 := 𝐴𝑖, 𝐵̂ := 𝐵𝑖+1 and we claim that we
may use 𝛼 := 𝛽 := 16𝑘2𝜉. This is so because |𝐴𝑖| ≥ |𝐴′𝑖| − 𝑡 ≥ 𝑛/(2𝑘) − 2𝑘𝜉𝑛 and because
𝜉 ≤ 1/(20𝑘2) implies 2𝑘𝜉𝑛 ≤ 5𝑘𝜉𝑛 − 20𝑘3𝜉2𝑛, hence |𝐴𝑖Δ𝐴′𝑖| ≤ 2𝑘𝜉𝑛 ≤ (5𝑘𝜉 − 20𝑘3𝜉2)𝑛 =
10𝑘2𝜉(𝑛/(2𝑘)− 2𝑘𝜉𝑛) ≤ 𝛼|𝐴′𝑖|, and analogously |𝐵𝑖Δ𝐵′𝑖| ≤ 𝛽|𝐵′𝑖|. By Proposition 3.8, every
pair (𝐴𝑖, 𝐵𝑖) and (𝐴𝑖, 𝐵𝑖+1) is

(︀
𝜀, 𝑑
)︀
-regular with 𝜀 := 𝜀+ 24𝑘

√
𝜉 and 𝑑 := 𝑑′ − 64𝑘2𝜉, hence

𝜀 ≤ 𝜀 and 𝑑 ≥ 𝑑, proving the parameters claimed in the lemma, as far as mere regularity goes.
As for the claimed super-regularity of the vertical pairs, let 𝐴𝑖, 𝐵𝑖 and 𝐵𝑖+1 be clusters at an

arbitrary step of the algorithm. Using Proposition 3.6 and (6.6) we know that the pairs (𝐴𝑖, 𝐵𝑖)
and (𝐴𝑖, 𝐵𝑖+1) being (𝜀, 𝑑)-regular implies that there are at least (1−𝜀)|𝐴𝑖| vertices in 𝐴𝑖 having
at least (𝑑−𝜀)|𝐵𝑖+1|−𝑡 ≥ (𝑑−𝜀)|𝐵𝑖+1|−2𝑘𝜉𝑛 neighbours in 𝐵𝑖+1, and it remains to prove that
(𝑑− 𝜀)|𝐵𝑖+1| − 2𝑘𝜉𝑛 ≥ 𝑑|𝐵𝑖+1| which is equivalent to 2𝑘𝜉𝑛/|𝐵𝑖+1| ≤ 100𝑘2

√
𝜉 − 64𝑘2𝜉 − 24𝑘𝜉.

Because of 2𝑘𝜉𝑛/|𝐵𝑖+1| ≤ 2𝑘𝜉𝑛/(|𝐵′𝑖+1| − 𝑡) ≤ 2𝑘𝜉𝑛/(𝑛/2𝑘 − 2𝑘𝜉𝑛) = 4𝑘2𝜉/(1 − 4𝑘2𝜉) it is
therefore sufficient that 4𝑘2𝜉/(1− 4𝑘2𝜉) ≤ 100𝑘2

√
𝜉 − 64𝑘2𝜉 − 24𝑘

√
𝜉 and it is easy to check

that this is true by the hypothesis on 𝜉.

6.4 Distributing 𝐻 among the edges of a cycle

In this section we will provide the proof of the Lemma for 𝐻 (Lemma 6.5). The idea is to
cut 𝐻 into small pieces along its bandwidth order. These pieces are then distributed to the
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edges 𝐴𝑖𝐵𝑖 of the cycle 𝐶 in such a way that the following holds. Let 𝐴𝑖 be all the vertices
from 𝐴 and 𝐵̃𝑖 all the vertices from 𝐵̃ that were assigned to the edge 𝐴𝑖𝐵𝑖. Then we require
that 𝐴𝑖 and 𝐵̃𝑖 are roughly of size 𝑛𝑖. Observe that this goal would be easy to achieve if 𝐻
was locally balanced, i.e., if each of the small pieces had colour classes of equal size. While this
need not be the case, we know that 𝐻 itself is a balanced bipartite graph. Therefore we use a
probabilistic argument to show that the pieces of 𝐻 can be grouped in such a way that the
resulting packages form balanced bipartite subgraphs of 𝐻 (which we can then distribute to
the edges 𝐴𝑖𝐵𝑖, meeting the above requirement). The details of this argument are given below
(see Lemma 6.7).

After the distribution of the pieces to the edges 𝐴𝑖𝐵𝑖 we will construct the desired homo-
morphism 𝑓 in the following way. We will map most vertices of 𝐴𝑖 to 𝐴𝑖 and most vertices
of 𝐵̃𝑖 to 𝐵𝑖. The remaining vertices will be mapped to other cycle vertices in 𝐶. This is
necessary because there might be edges between a piece assigned to 𝐴𝑖𝐵𝑖 and a piece assigned
to 𝐴𝑖′𝐵𝑖′ with 𝑖 ̸= 𝑖′ that we need to take care of. In the proof of Lemma 6.5 on page 80 we
will explain how this is done.

Balancing 𝐻 locally

We explained above that our goal is to group small pieces 𝑊1, . . . ,𝑊ℓ of the balanced bipartite
graph 𝐻 on 2𝑛 vertices into packages 𝑃1, . . . , 𝑃𝑘 that form balanced bipartite subgraphs of 𝐻.
This is equivalent to the following problem. Given the sizes 𝑎𝑗 and 𝑏𝑗 of the colour classes of
each piece 𝑊𝑗 (i.e., 𝑎𝑗 counts the vertices of 𝑊𝑗 that are in 𝐴 and 𝑏𝑗 those that are in 𝐵̃) we
know that the 𝑎𝑗 sum up to 𝑛 and the 𝑏𝑗 sum up to 𝑛. Then we would like to have a mapping
𝜙 : [ℓ] → [𝑘] such that for all 𝑖 ∈ [𝑘] the 𝑎𝑗 with 𝑗 ∈ 𝜙−1(𝑖) sum up approximately to the same
value as the 𝑏𝑗 with 𝑗 ∈ 𝜙−1(𝑖). The following lemma asserts that such a mapping 𝜙 exists.
The package 𝑃𝑖 will then (in the proof of Lemma 6.5) consist of all pieces 𝑊𝑗 with 𝑗 ∈ 𝜙−1(𝑖).

Lemma 6.7. For all 0 < 𝜉 ≤ 1/4 and all positive integers 𝑘 there exists ℓ ∈ N such that for
all integers 𝑛 ≥ ℓ the following holds. Let (𝑛𝑖)𝑖∈[𝑘], (𝑎𝑗)𝑗∈[ℓ], and (𝑏𝑗)𝑗∈[ℓ] be integer partitions
of 𝑛 such that 𝑛𝑖 ≤ 1

8𝑛 and 𝑎𝑗 + 𝑏𝑗 ≤ (1 + 𝜉)2𝑛
ℓ for all 𝑖 ∈ [𝑘], 𝑗 ∈ [ℓ]. Then there is a map

𝜙 : [ℓ] → [𝑘] such that for all 𝑖 ∈ [𝑘] and 𝑎̄𝑖 :=
∑︀

𝑗∈𝜙−1(𝑖) 𝑎𝑗 and 𝑏̄𝑖 :=
∑︀

𝑗∈𝜙−1(𝑖) 𝑏𝑗 we have

𝑎̄𝑖 < 𝑛𝑖 + 𝜉𝑛 and 𝑏̄𝑖 < 𝑛𝑖 + 𝜉𝑛 . (6.7)

In the proof of lemma 6.7 we will use the Hoeffding-bound for sums of independent random
variables given in Theorem 2.5.

Proof. For the proof of this lemma we use a probabilistic argument and show that under a
suitable probability distribution a random map satisfies the desired properties with positive
probability. For this purpose set ℓ :=

⌈︀
𝑘5/𝜉2

⌉︀
and construct a random map 𝜙 : [ℓ] → [𝑘] by

choosing 𝜙(𝑗) = 𝑖 with probability 𝑛𝑖/𝑛 for 𝑖 ∈ [𝑘], independently for each 𝑗 ∈ [ℓ]. For showing
that this map satisfies (6.7) with positive probability we first estimate the sum of all 𝑎𝑗 ’s and
𝑏𝑗 ’s assigned to a fixed 𝑖 ∈ [𝑘]. To this end, let 1𝑗 be the indicator variable for the event
𝜙(𝑗) = 𝑖 and define a random variable 𝑆𝑖 :=

∑︀
𝑗∈[ℓ] 1𝑗 . Clearly 𝑆𝑖 is binomially distributed,

we have E𝑆𝑖 = ℓ𝑛𝑖
𝑛 , and by the Chernoff bound P[|𝑆𝑖| ≥ E𝑆𝑖 + 𝑡] ≤ 2 exp(−2𝑡2/ℓ) (see (2.2))

we get

P
[︁⃒⃒
𝑆𝑖 − ℓ

𝑛𝑖

𝑛

⃒⃒
≥ 1

2𝜉ℓ
]︁
≤ 2 exp(−1

2𝜉
2ℓ).
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Next, we examine the difference between the sum of the 𝑎𝑗 ’s assigned to 𝑖 and the sum
of the 𝑏𝑗 ’s assigned to 𝑖. We define random variables 𝐷𝑖,𝑗 := ℓ

3𝑛(𝑎𝑗 − 𝑏𝑗)(1𝑗 − 𝑛𝑖
𝑛 ) and set

𝐷𝑖 :=
∑︀

𝑗∈[ℓ]𝐷𝑖,𝑗 . Then E𝐷𝑖,𝑗 = 0 and as 𝑎𝑗 + 𝑏𝑗 ≤ 3𝑛
ℓ we have |𝐷𝑖,𝑗 | ≤ 1. Thus Theorem 2.5

implies
P
[︀
|𝐷𝑖| ≥ 1

6𝜉ℓ
]︀
≤ 2 exp(− 1

72𝜉
2ℓ).

By the union bound, the probability that we have

|𝑆𝑖 − ℓ𝑛𝑖
𝑛 | < 1

2𝜉ℓ and |𝐷𝑖| < 1
6𝜉ℓ for all 𝑖 ∈ [𝑘] (6.8)

is therefore at least 1− 𝑘 · 2 exp(−1
2𝜉

2ℓ)− 𝑘 · 2 exp(− 1
72𝜉

2ℓ) which is strictly greater than 0 by
our choice of ℓ. Therefore there exists a map 𝜙 with property (6.8). We claim that this map
satisfies (6.7). To see this, observe first that 3𝑛

ℓ 𝐷𝑖 =
∑︀

𝑗∈𝜙−1(𝑖)(𝑎𝑗 − 𝑏𝑗) = 𝑎̄𝑖 − 𝑏̄𝑖 by definition
of 𝐷𝑖. Together with (6.8) this implies 𝑎̄𝑖 − 𝑏̄𝑖 < 𝜉𝑛. Moreover, we have 𝑆𝑖 = |𝜙−1(𝑖)| and

𝑎̄𝑖 = 1
2(𝑎̄𝑖 + 𝑏̄𝑖) + 1

2(𝑎̄𝑖 − 𝑏̄𝑖) ≤ 1
2(1 + 𝜉)2𝑛

ℓ |𝜙−1(𝑖)|+ 1
2 · 1

2𝜉𝑛

(6.8)

<
1
2

(1 + 𝜉)
2𝑛
ℓ

(︁
ℓ
𝑛𝑖

𝑛
+

1
2
𝜉ℓ
)︁

+
1
4
𝜉𝑛 ≤ 𝑛𝑖 + 𝜉𝑛

where the last inequality follows from 𝜉 ≤ 1
4 and 𝑛𝑖 ≤ 1

8𝑛. Since an entirely analogous
calculation shows that 𝑏̄𝑖 < 𝑛𝑖 + 𝜉𝑛, this completes the proof of (6.7).

The Lemma for 𝐻

For the proof of Lemma 𝐻 we will now use Lemma 6.7 as outlined above its statement. In this
way we obtain an assignment of pieces 𝑊1, . . . 𝑊ℓ of 𝐻 to edges 𝐴𝑖𝐵𝑖 of 𝐶. This assignment,
however, does not readily give a homomorphism from 𝐻 to 𝐶 as there might be edges between
pieces 𝑊𝑗 and 𝑊𝑗+1 that end up on edges 𝐴𝑖𝐵𝑖 and 𝐴𝑖′𝐵𝑖′ which are not neighbouring on 𝐶.
Never the less (owing to the small bandwidth of 𝐻) we will be able to transform it into a
homomorphism by assigning some few vertices of 𝑊𝑗+1 to other vertices of 𝐶 along the path
between 𝐴𝑖𝐵𝑖 and 𝐴𝑖′𝐵𝑖′ on 𝐶.

Proof of Lemma 6.5. Let 𝑘 and 𝜉 be given. Give 𝜉′ := 𝜉/4 and 𝑘 to Lemma 6.7, get ℓ, set
𝛽 := 𝜉′/(4ℓ𝑘) and 𝑛0 := ⌈ℓ/(2𝜉)⌉, and let 𝐻 and (𝑛𝑖)𝑖∈[𝑘] be given as in the statement of the
present lemma.

We assume that the vertices of 𝐻 are given a bandwidth labelling, partition 𝑉 (𝐻) along
this labelling into ℓ sets 𝑊1, . . . ,𝑊ℓ of as equal sizes as possible and define 𝑥𝑖 := |𝑊𝑖 ∩𝐴| and
𝑦𝑖 := |𝑊𝑖 ∩ 𝐵̃|. Then 𝑥𝑖 + 𝑦𝑖 = |𝑊𝑖| ≤ ⌈2𝑛/ℓ⌉ ≤ 2𝑛/ℓ+ 1 ≤ (1 + 𝜉)2𝑛/ℓ and since 𝑛𝑖 ≤ 𝑛/8
by hypothesis we can give (𝑛𝑖)𝑖∈[𝑘], (𝑥𝑖)𝑖∈[ℓ] and (𝑦𝑖)𝑖∈[ℓ] to Lemma 6.7 and get a 𝜙 : [ℓ] → [𝑘]
with (6.7).

Let us discuss the main difficulty in our proof. Since the map 𝜙 is obtained via the prob-
abilistic method, there is no control over how far apart in the Hamilton cycle 𝐶 two sets
𝑊𝜙(𝑖) and 𝑊𝜙(𝑖+1) will be assigned by 𝜙. Hence these sets might end up in non-contiguous
vertices of the cycle 𝐶. If there are edges between 𝑊𝜙(𝑖) and 𝑊𝜙(𝑖+1) we need to guarantee,
however, that these edges are mapped to edges of 𝐶 in order to obtain the desired homo-
morphism 𝑓 . Therefore, we resort to a greedy linking process which constructs 𝑓 and (thanks
to the bandwidth condition) needs to alter the assignment proposed by 𝜙 only slightly.

Let 𝑤𝑖 be the first vertex in 𝑊𝑖 and define sets of linking vertices by

𝐿𝑖
𝑗 := [𝑤𝑖 + (𝑗 − 1)𝛽𝑛,𝑤𝑖 + 𝑗𝛽𝑛)

80



6.4 Distributing 𝐻 among the edges of a cycle

for every 𝑗 ∈ [2𝑘] , and set 𝐿𝑖 :=
⋃︀

𝑗∈[2𝑘] 𝐿
𝑖
𝑗 . Then all 𝐿𝑖

𝑗 have the common cardinality 𝛽𝑛 and
|𝐿𝑖| = 2𝑘𝛽𝑛. Since 𝛽 ≤ 1/(4𝑘ℓ) implies that 2𝑘𝛽𝑛+ 𝛽𝑛 ≤ ⌊2𝑛/ℓ⌋ ≤ |𝑊𝑖| for every 𝑖 ∈ [ℓ], we
have 𝐿𝑖

𝑗 ( 𝑊𝑖 for every 𝑖 ∈ [ℓ] where |𝑊𝑖∖𝐿𝑖| ≥ 𝛽𝑛, i.e. to the right of every set 𝑊𝑖 there are
at least 𝛽𝑛 non-linking vertices.

We now construct a map 𝑓 by defining, for every 𝑖 ∈ [ℓ],

𝑓(𝑥) :=

{︃
𝐴𝜙(𝑖−1)+⌊𝑗/2⌋ if 𝑥 ∈ 𝐿𝑖

𝑗 with 𝑗 ∈
[︀
2 ·
(︀
(𝜙(𝑖)− 𝜙(𝑖− 1)) mod 𝑘

)︀]︀
,

𝐴𝜙(𝑖) else,
(6.9)

for every 𝑥 ∈𝑊𝑖 ∩𝐴, and

𝑓(𝑦) :=

{︃
𝐵𝜙(𝑖−1)+⌈𝑗/2⌉ if 𝑦 ∈ 𝐿𝑖

𝑗 with 𝑗 ∈
[︀
2 ·
(︀
(𝜙(𝑖)− 𝜙(𝑖− 1)) mod 𝑘

)︀]︀
,

𝐵𝜙(𝑖) else,
(6.10)

for every 𝑦 ∈𝑊𝑖∩𝐵̃, and show that this is indeed a homomorphism. To do this it is convenient
to note that a set {𝐴𝑖, 𝐵𝑖′} is an edge of 𝐶 if and only if 0 ≤ 𝑖′ − 𝑖 ≤ 1.

Let arbitrary vertices 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵̃ with {𝑥, 𝑦} ∈ 𝐹 be given. Since the sets 𝑊𝑖 are
defined along the bandwidth labelling, either 𝑥 and 𝑦 are both within the same 𝑊𝑖 or 𝑥 and 𝑦
lie in consecutive sets 𝑊𝑖 and 𝑊𝑖+1. We will now distinguish several cases. For brevity let
𝐼𝑖 :=

[︀
2 ·
(︀
(𝜙(𝑖)− 𝜙(𝑖− 1)) mod 𝑘

)︀]︀
.

Case 1. Both 𝑥 and 𝑦 lie within the same set 𝑊𝑖.
Case 1.1. There is 𝑗 ∈ 𝐼𝑖 with 𝑥 ∈ 𝐿𝑖

𝑗 , hence 𝑓(𝑥) = 𝐴𝜙(𝑖−1)+⌊𝑗/2⌋. Due to the bandwidth
condition together with |𝐿𝑖

𝑗 | = 𝛽𝑛, if 𝑦 /∈ 𝐿𝑖
𝑗 and 𝑗 + 1 ∈ 𝐼𝑖, then necessarily 𝑦 ∈ 𝐿𝑖

𝑗+1, which
explains the following three sub-cases.
Case 1.1.1. We have 𝑦 ∈ 𝐿𝑖

𝑗 , hence 𝑓(𝑦) = 𝐵𝜙(𝑖−1)+⌈𝑗/2⌉, hence the difference of the indices of
𝑓(𝑥) and 𝑓(𝑦) is ⌈𝑗/2⌉ − ⌊𝑗/2⌋, which is either 0 or 1 according to whether 𝑗 is even or odd,
hence {𝑓(𝑥), 𝑓(𝑦)} ∈ 𝐸(𝐶).
Case 1.1.2. We have 𝑦 /∈ 𝐿𝑖

𝑗 and 𝑗+ 1 ∈ 𝐼𝑖, hence 𝑦 ∈ 𝐿𝑖
𝑗+1, hence 𝑓(𝑦) = 𝜙(𝑖−1) + ⌈(𝑗+ 1)/2⌉,

hence the difference of indices of 𝑓(𝑦) and 𝑓(𝑥) is ⌈(𝑗 + 1)/2⌉ − ⌊𝑗/2⌋, and this is always 1,
whether 𝑗 is even or odd, so {𝑓(𝑥), 𝑓(𝑦)} ∈ 𝐸(𝐶).
Case 1.1.3. We have 𝑦 /∈ 𝐿𝑖

𝑗 and 𝑗 + 1 /∈ 𝐼𝑖, hence 𝑓(𝑦) = 𝐵𝜙(𝑖). Here, 𝑗 + 1 /∈ 𝐿𝑖
𝑗

implies that 𝑗 ≥ 2 ·
(︀
(𝜙(𝑖) − 𝜙(𝑖 − 1)) mod 𝑘

)︀
while being within Case 1.1 implies 𝑗 ∈ 𝐼𝑖,

hence 𝑗 ≤ 2 ·
(︀
(𝜙(𝑖) − 𝜙(𝑖 − 1)) mod 𝑘

)︀
, so we have 𝑗 = 2 ·

(︀
(𝜙(𝑖) − 𝜙(𝑖 − 1)) mod 𝑘

)︀
,

thus 𝑓(𝑥) = 𝐴𝜙(𝑖−1)+⌊𝑗/2⌋ = 𝐴𝜙(𝑖), the index difference between 𝑓(𝑦) and 𝑓(𝑥) is 0 and
{𝑓(𝑥), 𝑓(𝑦)} ∈ 𝐸(𝐶).
Case 1.2. There is no 𝑗 ∈ 𝐼𝑖 with 𝑥 ∈ 𝐿𝑖

𝑗 , hence 𝑓(𝑥) = 𝐴𝜙(𝑖). Being within Case 1, i.e. 𝑦 ∈𝑊𝑖,
it follows that there are exactly two cases.
Case 1.2.1. If 𝑦 precedes 𝑥 in the bandwidth labelling, then 𝑦 ∈ 𝐿𝑖

2·((𝜙(𝑖)−𝜙(𝑖−1)) mod 𝑘), hence
𝑓(𝑦) = 𝐵𝜙(𝑖), so the index difference between 𝑓(𝑦) and 𝑓(𝑥) is 0 and {𝑓(𝑥), 𝑓(𝑦)} ∈ 𝐸(𝐶).
Case 1.2.2. If 𝑦 succeeds 𝑥 in the bandwidth labelling, then, since 𝑦 ∈𝑊𝑖 by being within Case
1, there is no 𝑗 ∈ 𝐼𝑖 with 𝑦 ∈ 𝐼𝑖, hence 𝑓(𝑦) = 𝐵𝜙(𝑖), so again the index difference between
𝑓(𝑦) and 𝑓(𝑥) is 0 and {𝑓(𝑥), 𝑓(𝑦)} ∈ 𝐸(𝐶).

Case 2. We have 𝑥 ∈𝑊𝑖 and 𝑦 ∈𝑊𝑖+1. Then, by the bandwidth condition and size of the
sets of linking vertices, we must have 𝑦 ∈ 𝐿𝑖+1

1 , hence 𝑓(𝑦) = 𝐵𝜙((𝑖+1)−1)+⌈1/2⌉ = 𝐵𝜙(𝑖)+1, and
since there are at least 𝛽𝑛 non-linking vertices to the right of 𝑊𝑖, the vertex 𝑥 cannot lie in a
𝐿𝑖

𝑗 , hence 𝑓(𝑥) = 𝐴𝜙(𝑖), so the index difference of 𝑓(𝑦) and 𝑓(𝑥) is 1 and {𝑓(𝑥), 𝑓(𝑦)} ∈ 𝐸(𝐶).
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Case 3. We have 𝑦 ∈𝑊𝑖 and 𝑥 ∈𝑊𝑖+1. Then, by the bandwidth condition and size of the
sets of linking vertices, we must have 𝑥 ∈ 𝐿𝑖+1

1 , hence 𝑓(𝑥) = 𝐴𝜙((𝑖+1)−1)+⌊1/2⌋ = 𝐴𝜙(𝑖), and
since there are at least 𝛽𝑛 non-linking vertices to the right of 𝑊𝑖, the vertex 𝑦 cannot lie in a
𝐿𝑖

𝑗 , hence 𝑓(𝑦) = 𝐵𝜙(𝑖), so the index difference of 𝑓(𝑦) and 𝑓(𝑥) is 0 and {𝑓(𝑥), 𝑓(𝑦)} ∈ 𝐸(𝐶).
This completes the proof that 𝑓 is a homomorphism.

We now prove (H1) and (H2). Define 𝑋 :=
⋃︀

𝑖∈[ℓ] 𝐿
𝑖. Then |𝑋| ≤ ℓ · 2𝑘 · 𝛽𝑛 ≤ ℓ · 2𝑘 ·

(𝜉′/(2ℓ𝑘)) · 𝑛 = 𝜉′𝑛 ≤ 𝜉𝑛, which shows (H1), and (H2) is obvious from the definitions of 𝑋
and the map 𝑓 above.

We now prove (H3). For this it suffices to note, rather crudely, that for every 𝑗 ∈ [𝑘], no
preimage 𝑓−1(𝐴𝑗) can become larger than the sum of the sizes of all sets 𝑊𝑖 assigned to 𝐴𝑗

by 𝜙 (which by the definition of 𝑓 equals the sum of all 𝑥𝑖 = |𝐴 ∩𝑊𝑖| with 𝜙(𝑖) = 𝑗) plus the
total number of linking vertices, i.e. for every 𝑗 ∈ [𝑘], using the choice of 𝛽 and using that 𝜙
has the property promised by Lemma 6.7, we have |𝑓−1(𝐴𝑗)| ≤

(︀∑︀
𝑖∈𝜙−1(𝑗) 𝑥𝑖

)︀
+ |⋃︀𝑖∈[ℓ] 𝐿

𝑖| ≤
𝑛𝑗 + 𝜉′𝑛+ ℓ · |𝐿𝑖| = 𝑛𝑗 + 𝜉′𝑛+ 2𝑘ℓ𝛽𝑛 ≤ 𝑛𝑗 + 2𝜉′𝑛 = 𝑛𝑗 + 𝜉𝑛, completing the proof of (H3).
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Chapter 7

Variation 2: Ore conditions

Ore’s theorem (Theorem 1.16) formulates a criterion for the existence of a Hamilton cycle
that is different from the minimum degree conditions we saw in the last two chapters. In
this theorem only degree sums of non-adjacent vertices in a host graph 𝐺 are considered and
required to be large. In the following we will call degree conditions of this type Ore conditions.
We define the Ore degree 𝛿Ø(𝐺) as the biggest number 𝑞 such that all pairs of non-adjacent
vertices 𝑢, 𝑣 of 𝐺 satisfy deg(𝑢) + deg(𝑣) ≥ 𝑞.

In this chapter we determine an Ore condition that allows for the embedding of 3-colourable
bounded-degree graphs of sublinear bandwidth. We will prove an analogue of Theorem 5.1
under this weaker Ore condition for the case of 3-chromatic graphs (Theorem 7.2). The proof
applies a recent result of Kierstead and Kostochka [56] (Theorem 7.1) about the existence of
spanning triangle factors under Ore conditions as well as a version of the regularity lemma
adapted to this setting (Lemma 7.4).

After introducing these two results in Section 7.1 we will investigate some structural
properties of graphs with high Ore degree in Section 7.2. Then, in Section 7.3, we turn to a
lemma concerning the existence of square-paths in graphs with high Ore degree (Lemma 7.3).
This lemma will be used in our proof of Theorem 7.2, which is provided in the remaining
sections.

7.1 Embedding under Ore conditions

The question whether the minimum degree condition in the theorem of Hajnal and Sze-
merédi (Theorem 1.4) can be replaced by an Ore condition, was considered by Kierstead and
Kostochka [56]. Recall that this theorem states that any 𝑛-vertex graph 𝐺 with minimum
degree 𝛿(𝐺) ≥ 𝑟−1

𝑟 𝑛 contains a so-called spanning 𝐾𝑟-factor, that is, a family of ⌊𝑛/𝑟⌋ vertex
disjoint 𝑟-cliques.

Theorem 7.1 (Kierstead, Kostochka [56]). For all 𝑟, every 𝑛-vertex graph 𝐺 with 𝛿Ø(𝐺) ≥
2 𝑟−1

𝑟 𝑛− 1 contains a spanning 𝐾𝑟-factor.

Here we are interested in replacing the minimum degree condition in the 3-chromatic version
of the Bollobás-Komlós conjecture (see Theorem 5.1) by an Ore condition. We establish the
following theorem.

Theorem 7.2. For all Δ, 𝛾 > 0 there are 𝛽, 𝑛0 > 0 such that for all 𝑛 ≥ 𝑛0 the following
holds. Let 𝐺 and 𝐻 be 𝑛-vertex graphs such that 𝐻 is 3-colourable, has maximum degree
Δ(𝐻) ≤ Δ and bandwidth bw(𝐻) ≤ 𝛽𝑛, and 𝐺 satisfies 𝛿Ø(𝐺) ≥ (4

3 + 𝛾)𝑛. Then 𝐺 contains
a copy of 𝐻.

83



Chapter 7 Variation 2: Ore conditions

In contrast to the Ore-type results mentioned above we use the regularity lemma for proving
this theorem. The proof method is similar to the one presented in Chapter 5 but we need to
cope with the weaker Ore condition now and hence new ideas are necessary.

On the way to the proof of Theorem 7.2 we first show the following lemma, which asserts
the existence of the square of an almost spanning path in a graph with sufficiently high Ore
degree. This may be regarded as a special case of Theorem 7.2. As we will, see this special
case helps us to deduce the general case.

Lemma 7.3. For all 𝛾, 𝜇 > 0 there is an 𝑛0 such that for all 𝑛 ≥ 𝑛0 every 𝑛-vertex graph
𝐺 = (𝑉,𝐸) satisfying 𝛿Ø(𝐺) ≥ (4

3 + 𝛾)𝑛 contains a square-path on at least (1− 𝜇)𝑛 vertices.

As discussed in the introduction (Section 1.1.1), the question which minimum degree
condition enforces a spanning square of a cycle (and hence also the square of a path) is
the subject of Pósa’s conjecture that was resolved for large 𝑛 by Komlós, Sárközy, and
Szemerédi [64] with the help of the regularity lemma. In order to prove Lemma 7.3 we use
a strategy similar to the one in [64]. Again, we need to refine this method to deal with the
weaker Ore condition (see Section 7.3).

One crucial observation for both the proof of Theorem 7.2 and the proof of Lemma 7.3
is an inheritance principle for Ore degrees. Recall that the minimum degree version of the
regularity lemma (Lemma 3.4) states that graphs with high minimum degree have reduced
graphs with high minimum degree. The following corollary of the regularity lemma states that
also Ore conditions are passed on in this way: Graphs with high Ore degree have reduced
graph with high Ore degree.

Lemma 7.4 (regularity lemma, Ore version). For every 𝜀 > 0 and every integer 𝑘0 there is
𝑘1 such that every graph 𝐺 = (𝑉,𝐸) on 𝑛 > 𝑘1 vertices with 𝛿Ø(𝐺) ≥ 𝜂𝑛 has an (𝜀, 𝑑)-regular
equipartition 𝑉 = 𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉𝑘 with reduced graph 𝑅 and 𝑘0 ≤ 𝑘 ≤ 𝑘1 with the following
property. For each 𝑣 ∈ 𝑉𝑖 with 𝑖 ∈ [𝑘] there are at most (𝜀+ 𝑑)𝑛 edges in 𝐸 incident to 𝑣 that
are not in some (𝜀, 𝑑)-regular pair (𝑉𝑖, 𝑉𝑗) with 𝑗 ∈ [𝑘] and 𝛿Ø(𝑅) ≥ (𝜂 − 2(𝜀+ 𝑑))𝑘.

Proof. For 𝜀 and 𝑘0 let 𝑘1 be given by Lemma 3.3. Consider an arbitrary graph 𝐺 on 𝑛 > 𝑘1

vertices with 𝛿Ø(𝐺) ≥ 𝜂𝑛. By Lemma 3.3 the graph 𝐺 has an (𝜀, 𝑑)-regular equipartition
𝑉 = 𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉𝑘 with 𝑘0 ≤ 𝑘 ≤ 𝑘1 such that for each 𝑣 ∈ 𝑉𝑖 with 𝑖 ∈ [𝑘] there are at most
(𝜀+ 𝑑)𝑛 edges in 𝐸 incident to 𝑣 that are not in some (𝜀, 𝑑)-regular pair (𝑉𝑖, 𝑉𝑗) with 𝑗 ∈ [𝑘].
Let 𝑅 be a maximal reduced graph of this (𝜀, 𝑑)-regular partition, i.e., each pair 𝑖, 𝑗 ∈ [𝑘] with
𝑖𝑗 ̸∈ 𝐸(𝑅) corresponds to a pair (𝑉𝑖, 𝑉𝑗) that is not (𝜀, 𝑑)-regular.

Assume for a contradiction that 𝛿Ø(𝑅) < (𝜂 − 2(𝜀+ 𝑑))𝑘. Then there are clusters 𝑖, 𝑗 ∈ [𝑘]
with 𝑖𝑗 ̸∈ 𝐸(𝑅) and deg𝑅(𝑖) + deg𝑅(𝑗) < (𝜂 − 2(𝜀 + 𝑑))𝑘. By the maximality of 𝑅 the pair
(𝑉𝑖, 𝑉𝑗) is not (𝜀, 𝑑)-regular and hence there are vertices 𝑣𝑖 ∈ 𝑉𝑖 and 𝑣𝑗 ∈ 𝑉𝑗 with 𝑣𝑖𝑣𝑗 ̸∈ 𝐸. It
follows from 𝐿 := |𝑉1| = . . . = |𝑉𝑘| that deg𝐺(𝑣) ≤ deg𝑅(ℓ)𝐿+ (𝜀+ 𝑑)𝑛 for all 𝑣 ∈ 𝑉ℓ, ℓ ∈ [𝑘].
Therefore

deg𝐺(𝑣𝑖) + deg𝐺(𝑣𝑗) ≤ (deg𝑅(𝑖) + deg𝑅(𝑗))𝐿+ 2(𝜀+ 𝑑)𝑛 <
< (𝜂 − 2(𝜀+ 𝑑))𝑘𝐿+ 2(𝜀+ 𝑑)𝑛 ≤ 𝜂𝑛,

which is a contradiction.
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7.2 Graphs with high Ore degree

For warming up (and for later use) we collect some structural observations about graphs
with certain Ore conditions in this section. The first simple proposition shows that an Ore
condition induces a (much weaker) minimum degree condition.

Proposition 7.5. Any 𝑛-vertex graph 𝐺 has minimum degree 𝛿(𝐺) ≥ 𝛿Ø(𝐺)− 𝑛.

Proof. Let 𝑣 be a vertex of 𝐺 = (𝑉,𝐸). Either deg(𝑣) = 𝑛 − 1 ≥ 𝛿Ø(𝐺) − 𝑛 (since trivially
𝛿Ø(𝐺) ≤ 2(𝑛 − 1) ≤ 2𝑛 − 1) or there is a vertex 𝑢 such that 𝑢𝑣 ̸∈ 𝐸. But then deg(𝑣) ≥
𝛿Ø(𝐺)− deg(𝑢) ≥ 𝛿Ø(𝐺)− 𝑛.

The next proposition states that we can say even more: If we delete all vertices with degree
somewhat higher than promised by Proposition 7.5 from a graph the remaining vertices form
a clique. For making this precise we will use the following definitions. The big vertices of
a graph 𝐺 are those that have degree at least 𝛿Ø(𝐺)/2, all other vertices are called small
vertices.

Proposition 7.6. The small vertices of a graph form a clique.

Proof. Let 𝐺 = (𝑉,𝐸) be a graph and 𝑢, 𝑣 ∈ 𝑉 with 𝑢𝑣 ̸∈ 𝐸. By definition deg(𝑢) + deg(𝑣) ≥
𝛿Ø(𝐺) and so at least one of these vertices is big.

The following proposition is of technical nature (but will prove useful later). Recall that an
equipartition of a set 𝑉 is a partition of 𝑉 into sets of equal size. The proposition asserts that
for every equipartition of a graph 𝐺 with high Ore degree into three parts the following holds.
Whenever we pick two of the parts then there is a vertex in 𝐺 with many neighbours in the
union of these two parts.

Proposition 7.7. Let 𝐺 = (𝑉,𝐸) be a graph on 3𝑛 vertices with 𝛿Ø(𝐺) > 4𝑛 and let
𝑉 = 𝑉1∪̇𝑉2∪̇𝑉3 be an equipartition of 𝑉 . Then, for all ℓ, ℓ′ ∈ [3] there is a vertex in 𝑉ℓ with
more than 𝑛 neighbours in 𝑉ℓ ∪ 𝑉ℓ′.

Proof. If there is a big vertex in 𝑣 ∈ 𝑉ℓ then deg𝐺(𝑣) > 2𝑛 trivially implies the claim. Hence
assume, all vertices in 𝑉ℓ are small and thus form a clique by Proposition 7.6. We claim
that then each vertex 𝑣′ ∈ 𝑉ℓ′ has at least two neighbours in 𝑉ℓ: if 𝑣′ is big this follows from
deg𝐺(𝑣′) > 2𝑛 and if 𝑣′ is small from Proposition 7.6. But this implies that there is a vertex
𝑣 ∈ 𝑉ℓ that has at least two neighbours in 𝑉ℓ′ and hence satisfies the claim.

For stating the next (and last) two structural observations, which address the distribution
of triangles inside a graph with high Ore degree, we need some more definitions.

Definition 7.8 (triangle path, triangle connected). Let 𝐺 = (𝑉,𝐸) be a graph. A triangle
walk in 𝐺 is a sequence of edges 𝑒1, . . . , 𝑒𝑝 in 𝐺 such that 𝑒𝑖 and 𝑒𝑖+1 share a triangle of 𝐺
for all 𝑖 ∈ [𝑝− 1]. We say that 𝑒1 and 𝑒𝑝 are triangle connected in 𝐺 and the length of the
triangle walk 𝑒1, . . . , 𝑒𝑝 is 𝑝− 1.

For each triangle walk 𝑒1, . . . , 𝑒𝑝 there is a sequence of vertices 𝑤1, . . . , 𝑤𝑝+1 that naturally
corresponds to this triangle walk, that is, this sequence results from “walking” along 𝑒1, . . . , 𝑒𝑝:
Set 𝑤1 := 𝑣1, 𝑤2 := 𝑣2, and let 𝑤3 := 𝑒2 ∖ 𝑒1, 𝑤4 := 𝑒3 ∖ 𝑒2, and so on. Similarly we can
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associate a sequence of triangles 𝑡1, . . . , 𝑡𝑝−1 with the triangle walk, where 𝑡𝑖 is the triangle
that contains the edges 𝑒𝑖 and 𝑒𝑖+1 for each 𝑖 ∈ [𝑝− 1].

A connected triangle component or simply triangle component in 𝐺 is a set of edges 𝐶 ⊆ 𝐸
such that each pair of edges in 𝐶 is triangle connected. Finally, we say that 𝐺 has triangle
diameter at most 𝑑 if there is a pair of vertex disjoint triangles in 𝐺 and each pair of vertex
disjoint triangles 𝑡, 𝑡′ in 𝐺 is connected by a triangle walk of length at most 𝑑, i.e., there are
edges 𝑒 ∈ 𝑡 and 𝑒′ ∈ 𝑡′ with a triangle walk of this length between them. If there is no 𝑑 such
that 𝐺 has triangle diameter at most 𝑑 then 𝐺 has infinite triangle diameter.

The first of our two observations concerning triangle walks and triangle components in
graphs 𝐺 with high Ore degree guarantees that in every (non-trivial) triangle component of 𝐺
we find a copy of 𝐾4.

Proposition 7.9. Let 𝐺 be a graph on 3𝑛 vertices with 𝛿Ø(𝐺) ≥ 4𝑛+ 3 and 𝑡 be a triangle
in 𝐺. Then 𝐺 contains a 𝐾4 which is in the same triangle component as 𝑡.

Proof. We consider three cases. Case 1 : If all three vertices of 𝑡 are big and hence have degree
more than 2𝑛, then the common neighbourhood of these three vertices is non-empty and so
we are done.

Case 2 : If there is one small vertex 𝑢 and two big vertices 𝑣 and 𝑤 in 𝑡 then clearly the
common neighbourhood of 𝑣 and 𝑤 is non-empty and thus contains some vertex 𝑢′. If 𝑢′ is
small then Proposition 7.6 implies that 𝑢 and 𝑢′ are joined by an edge and we are done. If 𝑢′

is big, on the other hand, the triangle 𝑡′ on 𝑢′, 𝑣, 𝑤 contains only big vertices and hence Case 1
implies that 𝑢′, 𝑣, 𝑤 lies in a 𝐾4.

Case 3 : If 𝑡 contains at least two small vertices 𝑢 and 𝑣 then, if there are at least two other
small vertices in 𝐺 then we are done by Proposition 7.6. Accordingly we can assume that at
most 1 other vertex is small. Let 𝑤 be the third vertex in 𝑡. By Proposition 7.5 the vertices 𝑢,
𝑣, and 𝑤 have degree at least 𝑛+ 3 each and thus at least 𝑛 neighbours in 𝑉 (𝐺) ∖ {𝑢, 𝑣, 𝑤}.
We conclude that there are 𝑥, 𝑥′ ∈ 𝑉 (𝐺) ∖ {𝑢, 𝑣, 𝑤} such that 𝑥 is a neighbour of at least two
vertices in {𝑢, 𝑣, 𝑤} and the same holds for 𝑥′. By our assumption one of 𝑥 and 𝑥′ is big. This
means that there is a triangle 𝑡′ on vertices 𝑢′, 𝑣′, and 𝑤′ that shares two vertices with 𝑡 and
has at least one big vertex, say 𝑤′. If either 𝑢′ or 𝑣′ are big we are done by Cases 1 and 2,
hence we assume that 𝑢′ and 𝑣′ are small. Then however, 𝑢′ and 𝑤′ have degree at least 2𝑛− 2
and 𝑛− 1, respectively, in 𝑉 (𝐺) ∖ (𝑡 ∪ 𝑡′). Since |𝑉 (𝐺) ∖ (𝑡 ∪ 𝑡′)| = 3𝑛− 4 it follows that 𝑢′

and 𝑤′ have a common neighbour 𝑣′′ in 𝑉 (𝐺) ∖ (𝑡 ∪ 𝑡′) which is big by our assumption. Thus,
we are again done by Case 1 and 2 as 𝑢′, 𝑣′′, 𝑤′ form a triangle with at least two big vertices
in the same triangle component as 𝑡.

The last result we present in this section states that a sufficiently high Ore degree forces
the triangle diameter to be finite. For the proof of this lemma we will use two auxiliary
propositions that we provide and explain below.

Lemma 7.10. An 𝑛-vertex graph 𝐺 with 𝛿Ø(𝐺) > 4
3𝑛 has triangle diameter at most 7.

Observe that the following example shows that already for 𝛿Ø(𝐺) = 4
3(𝑛− 1) the triangle

diameter may be infinite: Let 𝐺 be a graph on 3𝑚+ 1 vertices whose vertex set is partitioned
into two cliques of size 𝑚 and an independent set 𝑚 + 1, and that contains in addition all
edges running between the independent set and the cliques.

Lemma 7.10 claims that each pair of vertex disjoint triangles 𝑡 and 𝑡′ in an 𝑛-vertex graph 𝐺
with 𝛿Ø(𝐺) > 4

3𝑛 is connected by a triangle walk of length at most 7. For proving this lemma
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we will construct two growing triangle walks with associated triangle sequences 𝑇 = 𝑡0, 𝑡1, ..., 𝑡𝑚
and 𝑇 ′ = 𝑡′0, 𝑡

′
1, ..., 𝑡

′
𝑚′ where 𝑡0 = 𝑡 and 𝑡′0 = 𝑡′. When constructing these triangle walks we

will guarantee that the number of edges between the last triangles 𝑡𝑚 and 𝑡′𝑚′ increases with 𝑚
and 𝑚′ until we force a direct triangle connection between 𝑡𝑚 and 𝑡′𝑚 (i.e., a triangle walk
only using vertices from 𝑡𝑚 and 𝑡′𝑚′). In this process, a triangle 𝑡𝑚+1 such that there are more
edges between 𝑡𝑚+1 and 𝑡′𝑚′ than between 𝑡𝑚 and 𝑡′𝑚′ is called better than 𝑡𝑚 for 𝑡′𝑚′ .

In the next two propositions we will develop a strategy for finding suitable better triangles
𝑡𝑚+1 or 𝑡′𝑚′+1. We start with the following simple observation.

Proposition 7.11. For a bipartite graph 𝐹 = (𝐴∪̇𝐵,𝐸)with |𝐴| = |𝐵| = 3 at least one of the
following holds.

(a ) There is a path of length 3 in 𝐹 .
(b ) There is a perfect matching in 𝐹 [𝐴,𝐵] where 𝐹 is the complement of 𝐹 .
(c ) 𝐹 has exactly three edges, all sharing one vertex 𝑣 ∈ 𝐴∪̇𝐵.

Proof. If there is a vertex 𝑣 ∈ 𝐴∪̇𝐵 with deg(𝑣) = 3 then either (c ) holds, or there is an edge
𝑒 ∈ 𝐸 with 𝑣 ̸∈ 𝑒, which implies that (a ) is true. If deg(𝑣) ≤ 2 for all 𝑣 ∈ 𝐴∪̇𝐵 and (a ) is
false, on the other hand, we immediately get a perfect matching in 𝐹 [𝐴,𝐵] and hence (b ).

This motivates the following case distinction in the construction of our two triangle se-
quences 𝑇 and 𝑇 ′. If the bipartite graph 𝐹 formed by the edges between the last two triangles 𝑡𝑚
and 𝑡′𝑚′ in these sequences satisfies property (a ) of Lemma 7.11, then 𝑡𝑚 and 𝑡′𝑚′ are (directly)
triangle connected and we are done. Otherwise 𝐹 satisfies (b ) or (c ) of Lemma 7.11. We will
show that in both cases we can find a triangle 𝑡𝑏 that is either better than 𝑡𝑚 for 𝑡′𝑚′ and
shares an edge with 𝑡𝑚 or vice versa. This argument (which is presented below in the proof of
Lemma 7.10) is prepared by the following proposition.

Proposition 7.12. Let 𝐺 = (𝑉,𝐸) be an 𝑛-vertex graph with 𝛿Ø(𝐺) > 4
3𝑛 and 𝐴, 𝐵 be vertex

disjoint subsets of 𝑉 with |𝐴| = |𝐵| = 3.

(i ) If (b ) of Lemma 7.11 is true for 𝐺[𝐴,𝐵] then there is a vertex 𝑐 ∈ 𝑉 ∖(𝐴∪̇𝐵) with at
least five neighbours in 𝐴∪̇𝐵.

(ii ) If (c ) of Lemma 7.11 is true for 𝐺[𝐴,𝐵] and a vertex 𝑣 ∈ 𝐴 then for any 𝑣′ ∈ 𝐵
there is 𝑐 ∈ 𝑉 ∖(𝐴∪̇𝐵) with at least four neighbours in 𝐴∪̇𝐵 ∖ {𝑣′}.

Proof. Let 𝐴 = {𝑎1, 𝑎2, 𝑎3} and 𝐵 = {𝑏1, 𝑏2, 𝑏3}. We start with (i ). Assume without loss of
generality that 𝑎1𝑏1, 𝑎2𝑏2, 𝑎3𝑏3 ̸∈ 𝐸. Let 𝑉 ′ be the set of vertices in 𝑉 ∖(𝐴∪̇𝐵) with at least
five neighbours in 𝐴∪̇𝐵, let 𝑉 ′′ the set of vertices in 𝑉 ∖(𝐴∪̇𝐵) without this property, and set
𝑛′ := |𝑉 ′|. With 𝑒(𝐴,𝐵) ≤ 6 it follows that

4𝑛 <
(︀

deg(𝑎1) + deg(𝑏1)
)︀

+
(︀

deg(𝑎2) + deg(𝑏2)
)︀

+
(︀

deg(𝑎3) + deg(𝑏3)
)︀

= 2𝑒(𝐴∪̇𝐵) +
∑︁
𝑣∈𝑉 ′

|𝑁𝐴∪̇𝐵(𝑣)|+
∑︁

𝑣∈𝑉 ′′

|𝑁𝐴∪̇𝐵(𝑣)|

≤ 24 + 6𝑛′ + 4(𝑛− 6− 𝑛′) = 2𝑛′ + 4𝑛,

which implies 𝑛′ > 0.
For (ii ) we argue similarly. Assume without loss of generality that 𝑣 = 𝑎1 and 𝑣′ = 𝑏1 and

set 𝐵′ := {𝑏2, 𝑏3}. Let 𝑉 ′ be the set of vertices in 𝑉 ∖(𝐴∪̇𝐵′) with at least four neighbours
in 𝐴∪̇𝐵′ and 𝑉 ′′ the set of vertices in 𝑉 ∖(𝐴∪̇𝐵′) without this property and set 𝑛′ := |𝑉 ′|.
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Observe that 𝑏1 ̸∈ 𝑉 ′ because 𝑏1 neither forms an edge with 𝑎2 nor with 𝑎3. By Proposition 7.5
we have deg(𝑎1) > 1

3𝑛. As 𝑒(𝐴,𝐵′) = 2 it follows that

3𝑛 < deg(𝑎1) +
(︀

deg(𝑎2) + deg(𝑏2)
)︀

+
(︀

deg(𝑎3) + deg(𝑏3)
)︀

≤ 12 + 5𝑛′ + 3(𝑛− 5− 𝑛′) ≤ 2𝑛′ + 3𝑛.

which, again, implies that 𝑛′ > 0.

For constructing the triangle 𝑡𝑏 that is better (as promised above) than 𝑡𝑚 for 𝑡′𝑚′ , or vice
versa, we will use the vertex 𝑐 asserted by Proposition 7.12. With this we are ready to give
the proof of Lemma 7.10.

Proof of Lemma 7.10. Let 𝑡 and 𝑡′ be two arbitrary vertex disjoint triangles in 𝐺. (Clearly,
the Ore-condition forces the existence of two such triangles.) We need to show that there
is a triangle walk of length at most 7 between 𝑡 and 𝑡′. For this purpose we will construct
two sequences of triangles 𝑇 = 𝑡0, 𝑡1, ..., 𝑡𝑚 and 𝑇 ′ = 𝑡′0, 𝑡

′
1, ..., 𝑡

′
𝑚′ associated with two triangle

walks as follows. First set 𝑚 = 𝑚′ := 0, 𝑡0 := 𝑡, and 𝑡′0 := 𝑡′. Then, in each step, if
Proposition 7.11(a ) holds for the bipartite graph between 𝑡𝑚 and 𝑡′𝑚′ , then we stop. Otherwise
we claim that we find a vertex 𝑥 ∈ 𝑉 ∖ (𝑡𝑚∪̇𝑡′𝑚′) such that either 𝑥 and an edge of 𝑡𝑚 form a
triangle 𝑡𝑚+1 that is better than 𝑡𝑚 for 𝑡′𝑚′ , or 𝑥 and an edge of 𝑡′𝑚′ form a triangle 𝑡′𝑚′+1 that
is better than 𝑡′𝑚′ for 𝑡𝑚. This claim is verified below. If the first (respectively second) case
occurs then we add the triangle 𝑡𝑚+1 (or 𝑡′𝑚′+1) to 𝑇 (or 𝑇 ′) and increase 𝑚 (or 𝑚′) by 1.

Clearly, this procedure terminates after at most 5 steps since Proposition 7.11(a ) holds as
soon as we have 5 edges between 𝑡𝑚 and 𝑡′𝑚′ . This however implies that there is a sequence
𝑇* = 𝑡0, . . . , 𝑡𝑚, 𝑡*, 𝑡

′
*, 𝑡

′
𝑚′ , . . . , 𝑡

′
0 of at most 9 triangles such that two consecutive triangles in

this sequence share an edge, where 𝑡* and 𝑡′* are obtained from the path of length 3 asserted
by Proposition 7.11(a ). By omitting 𝑡0 = 𝑡 and 𝑡′0 = 𝑡′ from 𝑇* we obtain a sequence of at
most 7 triangles that corresponds to a triangle-walk of length at most 7 between 𝑡 and 𝑡′.

It remains to show that the vertex 𝑥 in the procedure above can always be chosen. Let
𝐴 = {𝑎1, 𝑎2, 𝑎3} be the vertices of 𝑡𝑚 and 𝐵 = {𝑏1, 𝑏2, 𝑏3} be those of 𝑡′𝑚′ in some step of the
procedure and assume that Proposition 7.11(a ) does not hold for 𝐺[𝐴,𝐵]. This implies that
(*) there is at most one vertex in each of the triangles 𝑡𝑚 and 𝑡′𝑚′ that has more than one
neighbour in the (respectively) other triangle.

Now, assume first, that Proposition 7.11(b ) holds for 𝐺[𝐴,𝐵]. Then Proposition 7.12(i )
asserts the existence of a vertex 𝑐 outside 𝑡𝑚 and 𝑡′𝑚′ with at least 5 neighbours in 𝐴∪̇𝐵.
Without loss of generality, only 𝑏1 is possibly not connected to 𝑐. By (*) either 𝑎1 or 𝑎2,
say 𝑎1, has at most one neighbour in 𝑡′𝑚′ . But then the triangle 𝑡𝑚+1 on vertices 𝑎2, 𝑎3, and 𝑐
is better for 𝑡′𝑚′ than 𝑡𝑚 (𝑎1 has at most one neighbour in 𝑡′𝑚′ while 𝑐 has at least two) and
thus we can choose 𝑥 = 𝑐.

If, on the other hand, Proposition 7.11(c ) holds for 𝐺[𝐴,𝐵] and, say, 𝑣 = 𝑎1 then we can
argue similarly. Indeed, for 𝑣′ := 𝑏1 Proposition 7.12(ii ) asserts a vertex 𝑐 outside 𝑡𝑚 and 𝑡′𝑚′
with at least 4 neighbours in 𝐴∪̇𝐵 ∖ {𝑣′}. If 𝑐 has an edge to 𝑎1 and at least one other vertex
of 𝐴, say 𝑎2, then the triangle 𝑡𝑚+1 on vertices 𝑎1, 𝑎2, and 𝑐 is better for 𝑡′𝑚′ than 𝑡𝑚 (𝑎3 has
no neighbour in 𝑡′𝑚′ while 𝑐 has at least one). Otherwise 𝑐 has both, 𝑏2 and 𝑏3, as neighbours
and the triangle 𝑡′𝑚′+1 on vertices 𝑏2, 𝑏3, and 𝑐 is better for 𝑡𝑚 than 𝑡′𝑚′ . Hence, again, we can
choose 𝑥 = 𝑐.
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7.3 Square-paths

In this section we will explain the proof of Lemma 7.3. As indicated earlier the idea is to
follow the strategy of [64]. Accordingly our plan is not to repeat all the (technical) details
(they can be found in [79]) but rather to outline the method, indicate the differences to our
setting, capture those parts we will reuse in the form of a lemma (see Lemma 7.13 below),
and fill the remaining gaps.

In the proof of Theorem 1.7 that is provided in [64] the existence of the square of a Hamilton
cycle is verified via a joint application of the regularity lemma and the blow-up lemma. More
precisely, for an 𝑛-vertex graph 𝐺 with minimum degree (2

3 + 𝛾)𝑛 for 𝛾 > 0 and when one
is only interested in finding a square-path on (1 − 𝜇)𝑛 vertices (which is clearly contained
in the square of a Hamilton cycle) this method can be roughly described as follows. Firstly,
an application of the degree version of the regularity lemma (Lemma 3.3) to the graph 𝐺
(with 𝜀≪ 𝑑≪ 𝛾, 𝜇) yields an (𝜀, 𝑑)-regular partition of 𝐺 with reduced graph 𝑅 = (𝑉𝑅, 𝐸𝑅)
on 𝑘 vertices such that 𝛿(𝑅) ≥ (2

3 + 𝛾
2 )𝑛. Secondly, with the help of a classical theorem, the

Theorem of Corrádi and Hajnal [26], it is then possible to infer that 𝑅 can be covered by
𝑡 := ⌊𝑘/3⌋ triangles which we number from 1 to 𝑡 and whose union we denote by 𝑇 . Thirdly,
each pair of these triangles can be connected by a short triangle walk within 𝑅. Fourthly, this
implies that for all 𝑖 ∈ [𝑡− 1] there is a constant length square-path, a so-called connecting
path, starting in 𝐺-vertices of the triangle number 𝑖 and ending in 𝐺-vertices in the triangle
number 𝑖 + 1 of 𝑇 ; all vertices of such a connecting path are subsequently moved to the
exceptional set of the regular partition. Fifthly, one can obtain an (𝜀′, 𝑑′)-regular partition
𝑉 = 𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉𝑘 of 𝐺 (with 𝜀′ ≪ 𝑑′ ≪ 𝜇) with reduced graph 𝑅 that is super-regular on
all triangles in 𝑇 by using Proposition 3.7. And finally sixthly, for each triangle 𝑖𝑗ℓ of 𝑅 the
blow-up lemma asserts that one can find a square-path 𝑃 (𝑖, 𝑗, ℓ) in 𝐺 covering 𝑉𝑖∪̇𝑉𝑗∪̇𝑉ℓ such
that these square-paths 𝑃 (𝑖, 𝑗, ℓ) together with the connecting paths form a square-path in 𝐺
covering at least |𝑉1∪̇ . . . ∪̇𝑉𝑘| ≥ (1− 𝜀′)𝑛 ≥ (1− 𝜇)𝑛 vertices.

To sum up, the following lemma crystallises steps 4 to 6 out of this method. In the statement
of this lemma we use the following definition which is based on concept of triangle components
introduced in Section 7.2. A spanning connected triangle factor in a graph 𝐺 is a spanning
triangle factor with all edges in the same triangle component of 𝐺.

Lemma 7.13 (Komlós, Sárközy, Szemerédi [64]). For all positive reals 𝜇 and 𝑑 there exists
a positive 𝜀0 such that for all 𝜀 ≤ 𝜀0 and integers 𝑘1 there is an integer 𝑛0 > 𝑘1 such that
the following holds. Let 𝐺 = (𝑉,𝐸) be a graph on 𝑛 ≥ 𝑛0 vertices that has an (𝜀, 𝑑)-regular
equipartition 𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉𝑘 with reduced graph 𝑅 and 3 ≤ 𝑘 ≤ 𝑘1. If 𝑅 contains a spanning
connected triangle factor. Then 𝐺 contains a square-path on (1− 𝜇)𝑛 vertices.

In [64] the correctness of steps 1 to 3 of the agenda described above relies on the minimum
degree condition in the problem treated there. Here we need to adjust these steps to our
setting with Ore condition. For steps 1 and 2 we will use the Ore version of the regularity
lemma (Lemma 7.4) and Theorem 7.1, respectively (the details are presented directly in the
proof of Lemma 7.3 below). For adapting step 3 we use the fact that also in a graph with
sufficiently high Ore degree each pair of triangles can be connected by a short sequence of
triangles which follows from Lemma 7.10.

Proof of Lemma 7.3. Given 𝛾 and 𝜇 we set 𝑑 := 𝛾/10 and let 𝜀0 be the constant provided by
Lemma 7.13 for input 𝜇 and 𝑑. Then we choose 𝜀 := min{𝜀0, 𝛾/10} and ask Lemma 7.4 about
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its 𝑘1 of choice for 𝜀 and 𝑘0 := 3. With 𝜀 and 𝑘1 at hand we can continue the application of
Lemma 7.13 and obtain an 𝑛0.

Now, let 𝐺 = (𝑉,𝐸) be a graph on 𝑛 ≥ 𝑛0 vertices with Ore degree 𝛿Ø(𝐺) ≥ (4
3 + 𝛾)𝑛.

From the regularity lemma, Lemma 7.4, we obtain an (𝜀, 𝑑)-regular equipartition of 𝑉 with
reduced graph 𝑅 on 𝑘 vertices where 3 ≤ 𝑘 ≤ 𝑘1 and

𝛿Ø(𝑅) ≥
(︀

4
3 + 𝛾 − 2(𝑑+ 𝜀)

)︀
𝑘 ≥ (4

3 + 1
2𝛾)𝑘 > 4

3𝑘 .

It follows that we can apply Theorem 7.1 to 𝑅 and conclude that 𝑅 contains a spanning
triangle factor which is connected by Lemma 7.10. Hence 𝐺 contains a square-path of length
(1− 𝜇)𝑛 by Lemma 7.13 as claimed.

For the proof of Theorem 7.2 we will not apply Lemma 7.3 directly but we will use the
following corollary. The reason is that the square of a path is not “connected well enough” for
our application and we instead need to be able to guarantee (under the same conditions as
those in Lemma 7.3) a graph with a more robust structure – the graph 𝐶3

𝑚 defined (and used)
in Chapter 5 (see page 49). The following corollary of Lemma 7.3 asserts the existence of such
a 𝐶3

𝑚-copy in a graph with high Ore degree.

Corollary 7.14. For all 𝛾, 𝜇 > 0 there is an 𝑛0 such that for all 𝑛 ≥ 𝑛0 every 𝑛-vertex graph
𝐺 = (𝑉,𝐸) satisfying 𝛿Ø(𝐺) ≥ (4

3 +𝛾)𝑛 contains a copy of 𝐶3
𝑚 for some 𝑚 with 3𝑚 ≥ (1−𝜇)𝑛.

For reducing this corollary from Lemma 7.3 we will use Lemma 5.8 from Chapter 5. With
this lemma we obtain Corollary 7.14 by another application of the regularity lemma and as an
easy consequence of Lemma 7.3.

Proof of Corollary 7.14. For arbitrary constants 𝛾 > 0, 𝜇 > 0 and 0 < 𝑑 ≤ 𝛾
8 let 𝜀0 be as

given by Lemma 5.8 applied with 𝑟 := 3, 𝜇, and 𝑑. Choose 𝜀 > 0 small enough such that

2(𝜀+ 𝑑) ≤ 𝛾

2
. (7.1)

From Lemma 7.3 applied with 𝛾
2 and 𝜇 replaced by 𝜀 we get an integer 𝑘′0. For input 𝜀 and

𝑘0 := max{𝑘0, 3} Lemma 7.4 supplies us with a 𝑘1 for which Lemma 5.8 provides an integer
𝑛0 > 𝑘1.

Let 𝐺 = (𝑉,𝐸) be a graph on 𝑛 ≥ 𝑛0 vertices satisfying 𝛿Ø(𝐺) ≥ (4
3 + 𝛾)𝑛. It follows from

Lemma 7.4 applied to the graph 𝐺 and 𝜂 = 4
3 + 𝛾 that 𝐺 has an (𝜀, 𝑑)-regular equipartition

with reduced graph 𝑅 on 𝑘 vertices such that 𝑘0 ≤ 𝑘 ≤ 𝑘1 and

𝛿Ø(𝑅) ≥
(︂

4
3

+ 𝛾 − 2(𝜀+ 𝑑)
)︂
𝑘

(7.1)

≥
(︂

4
3

+
𝛾

2

)︂
𝑘 .

Hence an application of Lemma 7.3 to the graph 𝑅 finds a square-path on at least (1− 𝜀)𝑘
vertices in 𝑅, i.e., a copy of 𝑃 2

ℓ on 3ℓ ≥ (1− 𝜀)𝑘 vertices. By Lemma 5.8 this implies that 𝐺
contains a copy of 𝐶3

𝑚 for some 𝑚 with 3𝑚 ≥ (1− 𝜇)𝑛

7.4 Proof of Theorem 7.2

The proof of Theorem 7.2 relies on the general embedding lemma (Lemma 3.12) and is
similar in structure (and philosophy) to the proof of Theorem 5.1 in Chapter 5. For applying
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the general embedding lemma, we again use two complementary lemmas, the lemma for 𝐺
(Lemma 7.15) which, given a graph 𝐺 with the necessary Ore condition, provides us with an
adequate system of regular pairs, and the lemma for 𝐻 (Lemma 7.16) which produces the
corresponding compatible partition of bounded-degree graphs 𝐻 with small bandwidth.

For the formulation of these lemmas, recall the definition of a colour adjustable copy of the
graph 𝐶3

𝑘 (see Definition 5.12 on page 59). Recall, furthermore, that the graph 𝐾3
𝑘 on vertex

set [𝑘]× [3] is the union of 𝑘 vertex disjoint triangles on vertices {𝑖}× [3], 𝑖 ∈ [𝑘] (see page 49),
and the 𝑖-th triangle in 𝐾3

𝑘 is 𝐾3
𝑘 [(𝑖, 1), (𝑖, 2), (𝑖, 3)].

The lemma for 𝐺 now states that a graph 𝐺 with sufficiently high Ore degree has an (𝜀, 𝑑)-
regular partition with reduced graph 𝑅 that contains a colour adjustable copy of 𝐶3

𝑘 ⊇ 𝐾3
𝑘 as

well as a 𝐾4 that is triangle connected to this 𝐶3
𝑘 . The colour adjustability of 𝐶3

𝑘 will be used
by Lemma 5.13 which adjusts this partition to the partition of 𝐻 later. The copy of 𝐾4 is
needed by the lemma for 𝐻 as we will explain below.

We say that a vertex partition (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] is equitable if |𝑉𝑖,𝑗 | and |𝑉𝑖,𝑗′ | differ by at most
1 for all 𝑖 ∈ [𝑘] and 𝑗, 𝑗′ ∈ [3].

Lemma 7.15 (Lemma for 𝐺). For all 𝛾 > 0 there is 𝑑 > 0 such that for all 𝜀 > 0 there
is 𝑘1 ∈ N such that for all 𝑛 ≥ 𝑘1 the following holds. Let 𝐺 = (𝑉,𝐸) be an 𝑛-vertex with
𝛿Ø(𝐺) ≥ (4

3 + 𝛾)𝑛. Then 𝐺 has an equitable (𝜀, 𝑑)-regular partition 𝑉 = (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] with
reduced graph 𝑅 on 3𝑘 ≤ 𝑘1 vertices such that

(G1 ) 𝐾4 ⊆ 𝑅 and 𝐾3
𝑘 ⊆ 𝐶3

𝑘 ⊆ 𝑅 such that 𝐾4 and 𝐾3
𝑘 are in the same triangle component

of 𝐺 and 𝐶3
𝑘 is colour-adjustable in 𝑅,

(G2 ) (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] is (𝜀, 𝑑)-super regular on 𝐾3
𝑘 ,

(G3 ) |𝑉𝑖,𝑗 | ≥ (1− 𝜀)𝑛/(3𝑘) for all 𝑖 ∈ [𝑘], 𝑗 ∈ [3].

This Lemma is almost a standard consequence of the Ore version of the regularity lemma
(Lemma 7.4) and Lemma 7.3. For distributing the vertices in the exceptional set however we
need some more work. The proof is given in Section 7.6.

We next state the lemma for 𝐻. This lemma receives an integer partition (𝑛𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] as
input, which will encode the sizes of the partition classes of 𝐺 later, and tries to set up the
sizes of the partition classes it constructs for 𝐻 according to (𝑛𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3]. However, it does
not succeed completely but can only get close to this goal (by an error of 𝜉𝑛). In the proof
of Theorem 7.2 we will make use of the adjusting lemma, Lemma 5.13 from Chapter 5, to
compensate this difference.

Lemma 7.16 (Lemma for 𝐻). For all 𝜉 > 0 and 𝑘 ∈ N there is 𝛽0 > 0 such that for all 𝛽 ≤ 𝛽0

the following holds. Let 𝐻 = (𝑉 , 𝐸̃) be a 3-colourable 𝑛-vertex graph which has maximum
degree Δ(𝐻) ≤ Δ and bandwidth bw(𝐻) ≤ 𝛽𝑛. Further, let 𝑅 be a graph on 3𝑘 vertices that
contains a spanning connected triangle factor 𝐾3

𝑘 as well as a copy of 𝐾4 in the same triangle
component. Let (𝑛𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] be an equitable integer partition of 𝑛 with 𝑛𝑖,𝑗 ≥ 𝑛/(6𝑘) and set
𝑛′𝑖,𝑗 := 𝑛𝑖,𝑗 + 𝜉𝑛. Then 𝐻 has a vertex partition 𝑉 = (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] that is 𝜉-compatible with
(𝑛′𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] and 𝐾3

𝑘 ⊆ 𝑅.

The proof of this lemma is given in section 7.5. The idea is to follow the strategy outlined
in Section 1.3.4 of the introduction, cut 𝐻 into small pieces along its bandwidth order, assign
these pieces to the triangles of 𝐾3

𝑘 ⊆ 𝑅 in the reduced graph, and balance this assignment, if
necessary, with the help of the 𝐾4-copy in 𝑅.
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Using the lemma for 𝐺, the lemma for 𝐻, the general embedding lemma, and the adjusting
lemma we can now give the proof of Theorem 7.2.

Proof of Theorem 7.2. Given Δ and 𝛾 let 𝑑 be the constant provided by Lemma 7.15 for this
𝛾 and assume without loss of generality that 𝑑 ≤ 1

4 . With 𝑑 and Δ at hand we request a
constant 𝜀gel from Lemma 3.12 with input 𝑑gel := 𝑑/2, Δ, and 𝑟 := 3. We feed = 3, 𝑑 and
𝜀gel into Lemma 5.13 to get an 𝜀′5.13 and fix

𝜀G := min{𝜀′5.13, 𝜀gel, 1/10} . (7.2)

Then we pass 𝜀G to Lemma 7.15 to get 𝑘1. Next, we continue the application of Lemma 5.13.
For each 0 < 𝑘′ ≤ 𝑘1 this lemma provides a constant 𝜉𝑘′ and we choose the smallest of these 𝜉𝑘′
as 𝜉5.13. Similarly, for

𝜉H := min{𝜀gel, 𝜉5.13/𝑘1}
and each 0 < 𝑘′ ≤ 𝑘1 Lemma 7.16 replies with a 𝛽𝑘′ and we choose the smallest of these 𝛽𝑘′

as 𝛽. We set 𝑛0 := 𝑘1 and have now fixed all constants.
Next, we receive input graphs 𝐺 = (𝑉,𝐸) and 𝐻 = (𝑉 , 𝐸̃) on 𝑛 ≥ 𝑛0 vertices with

Δ(𝐻) ≤ Δ, bw(𝐻) ≤ 𝛽𝑛, and 𝛿Ø(𝐺) ≥ (4
3 + 𝛾)𝑛. We hand 𝐺 on to Lemma 7.15 to obtain

an (𝜀G, 𝑑)-regular partition 𝑉 = (𝑈𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] with reduced graph 𝑅 on 3𝑘 ≤ 𝑘1 vertices
fulfilling (G1 )–(G3 ). Let (𝑛𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] be the integer partition of 𝑛 given by 𝑛𝑖,𝑗 := |𝑈𝑖,𝑗 |
and observe that, by (G2 ) this partition is equitable and by (G1 ) the graph 𝑅 contains 𝐾4

as well as a spanning connected triangle factor 𝐾3
𝑘 . Moreover, by (G3 ) and (7.2) we have

𝑛𝑖,𝑗 ≥ (1− 𝜀G)𝑛/(3𝑘) ≥ 𝑛/(6𝑘) for all 𝑖 ∈ [𝑘], 𝑗 ∈ [3]. Hence we can appeal to Lemma 7.16
with input 𝜉H and 𝑘, the graphs 𝐻 and 𝑅 and the partition (𝑛𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3]. We obtain a
vertex partition (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] of 𝐻 which is 𝜉H-compatible (and thus 𝜀gel-compatible) with
the integer partition (𝑛′𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] defined by 𝑛′𝑖,𝑗 := 𝑛𝑖,𝑗 + 𝜉H𝑛 and with 𝐾3

𝑘 ⊆ 𝑅.
By (G1 ) the reduced graph 𝑅 fulfils 𝐾3

𝑘 ⊆ 𝐶3
𝑘 ⊆ 𝑅 and 𝐶3

𝑘 is colour-adjustable in 𝑅.
By (G2 ) the graph 𝐺 is (𝜀G, 𝑑)-super-regular on 𝐾3

𝑘 and by Lemma 7.16 the partition of 𝐻
is 𝜉H-compatible with (𝑛′𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] and 𝐾3

𝑘 ⊆ 𝑅. This implies |𝑉𝑖,𝑗 | ≤ 𝑛′𝑖,𝑗 = 𝑛𝑖,𝑗 + 𝜉H

and hence |𝑉𝑖,𝑗 | = 𝑛𝑖,𝑗 ± 𝑘𝜉H𝑛 = |𝑈𝑖,𝑗 | ± 𝜉5.13𝑛 for all 𝑖 ∈ [𝑘], 𝑗 ∈ [3]. It follows that
the conditions of Lemma 5.13 are satisfied for the graph 𝐺, its (𝜀G, 𝑑)-regular partition
(𝑈𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] with reduced graph 𝑅 and 𝜀G ≤ 𝜀′5.13, and for the integer partition (𝑛̃𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3]

defined by 𝑛̃𝑖,𝑗 := |𝑉𝑖,𝑗 |. Since 𝑑gel = 1
2𝑑 this lemma gives us an (𝜀gel, 𝑑gel)-regular partition

𝑉 = (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] with reduced graph 𝑅 that is (𝜀gel, 𝑑gel)-super-regular on 𝐾3
𝑘 and satisfies

|𝑉𝑖,𝑗 | = 𝑛̃𝑖,𝑗 = |𝑉𝑖,𝑗 | for all 𝑖 ∈ [𝑘], 𝑗 ∈ [3].
This in turn prepares us for the finish. Observe that the partitions (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] and

(𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] of 𝐺 and 𝐻, respectively, satisfy the properties required by the general embedding
lemma (Lemma 3.12) due to the choice of 𝜀gel. Hence we can apply this lemma to the
graphs 𝐺 and 𝐻 with their partitions (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] and (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3], respectively, and to 𝑅
and 𝑅′ := 𝐾3

𝑘 . Therefore 𝐻 is a subgraph of 𝐺.

7.5 Partitions of 3-colourable graphs with small bandwidth

In this section we prove of the Lemma for 𝐻 (Lemma 7.16). In this proof we will perform the
following steps. Let 𝐻 be given together with a graph 𝑅 that contains a connected spanning
triangle factor 𝐾3

𝑘 as well as a 𝐾4 in the same triangle component and an integer partition
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(𝑛𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3]. We first cut 𝐻 into 𝑘 segments with sizes as dictated by the integer partition
(𝑛𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] and assign each segment to a triangle of 𝐾3

𝑘 . Afterwards we further cut each
segment into much smaller pieces and use the 3-colouring of 𝐻 to construct homomorphisms
from each of these pieces to the clusters of the triangle a piece was assigned to. The most
difficult step of the proof will then be to “connect” the homomorphisms of the pieces and
obtain a homomorphism from 𝐻 to 𝑅. For convenience this step is taken care of by the
following proposition, which we will prove first. Its proof relies on the fact that 𝐾4 and 𝐾3

𝑘

are in the same triangle component of 𝑅.

Proposition 7.17. Let 𝑅 = (𝑉𝑅, 𝐸𝑅) be a graph on 3𝑘 vertices, let 𝑡 and 𝑡′ be two triangles
that are in the same triangle component of 𝑅 which also contains a 𝐾4. Let 𝐻 be a 3-colourable
graph on vertex set [𝑛] with bandwidth at most 𝛽𝑛 whose vertices are given in bandwidth order
and let 𝜙 : [𝑛] → 𝑡 ∪ 𝑡′ be a mapping from the vertices of 𝐻 to the vertices of the triangles 𝑡
and 𝑡′. Assume further that there is a vertex 𝑥 ∈ [𝑛] such that for 𝑉 := [𝑥] and 𝑉 ′ := (𝑥, 𝑛]
the restriction of 𝜙 to 𝑉 is a homomorphism from 𝐻[𝑉 ] to 𝑡 and the restriction of 𝜙 to 𝑉 ′ is
a homomorphism from 𝐻[𝑉 ′] to 𝑡′.

Then there is a homomorphism ℎ : [𝑛] → 𝑉𝑅 from 𝐻 to 𝑅 such that if ℎ(𝑢̃) ̸= 𝜙(𝑢̃) then
𝑢̃ ∈ [𝑥, 𝑥+ 100𝑘2𝛽𝑛].

Proof. Assume the graphs 𝐻 and 𝑅 satisfy the requirements of the proposition. Let 𝑣*1, 𝑣*2,
𝑣*3, 𝑣*4 ∈ 𝑉𝑅 be the vertices of the 𝐾4 that is in the same triangle component as 𝑡 and 𝑡′. Let
𝑓 be the restriction of 𝜙 to 𝑉 and 𝑓 ′ be the restriction of 𝜙 to 𝑉 ′.

Let 𝜎 be a 3-colouring of 𝐻 that is “compatible” with the homomorphisms 𝑓 and 𝑓 ′ in the
following sense: If 𝑓(𝑢̃) = 𝑓(𝑣) for 𝑢̃, 𝑣 ∈ 𝑉 or 𝑓 ′(𝑢̃) = 𝑓 ′(𝑣) for 𝑢̃, 𝑣 ∈ 𝑉 ′ then 𝜎(𝑢̃) = 𝜎(𝑣).
This colouring 𝜎 exists because 𝑓 is a homomorphism from 𝐻[𝑉 ] to the triangle 𝑡 and 𝑓 ′ is a
homomorphism from 𝐻[𝑉 ] to the triangle 𝑡′. Accordingly we can denote the vertices of 𝑡 by
𝑣1, 𝑣2, and 𝑣3 in such a way that all vertices in 𝑥 ∈ 𝑓−1(𝑢𝑗) have colour 𝜎(𝑥) = 𝑗 for 𝑗 ∈ [3].
Similarly we can denote the vertices of 𝑡′ by 𝑣′1, 𝑣′2, and 𝑣′3 such that 𝑓 ′(𝑥) = 𝑣′𝑗 iff 𝜎(𝑥) = 𝑗.
We also say that 𝜎 induces colour 𝑗 on the vertices 𝑣𝑗 and 𝑣′𝑗 of 𝑅 for 𝑗 ∈ [3].

Next we will define how, for an arbitrary triangle walk 𝑤 = 𝑒1, . . . 𝑒𝑝 starting in 𝑒1 = 𝑣1𝑣2
these induced colours “propagate” along this triangle walk. We remark that the propagated
colours will later describe how a vertex 𝑢̃ of 𝐻 is assigned to a vertex in such a triangle walk
depending on the colour 𝜎(𝑢̃). Let 𝑤1, . . . , 𝑤𝑝+1 with 𝑤1 = 𝑣1 and 𝑤2 = 𝑣2 be the vertex
sequence corresponding to the triangle walk 𝑤 (see Definition 7.8). Consistently with the
definition of induced colours, we say that colour 𝑐1 := 1 is propagated by 𝑤 to 𝑣1 = 𝑤1 and
colour 𝑐2 := 2 to 𝑣2 = 𝑤2. Inductively, for a vertex 𝑤𝑖 with 𝑤 ∈ [𝑝 + 1] we say that colour
𝑐𝑖 ∈ [3] is propagated to 𝑤𝑖 if the following holds: Recall that 𝑤𝑖 := 𝑒𝑖−1 ∖𝑒𝑖−2 and let 𝑡𝑖 be the
triangle containing 𝑒𝑖−1 and 𝑒𝑖−2 (which exists by the definition of a triangle walk). We will
set up 𝑐𝑖 such that on the triangle 𝑡𝑖 all three colours appear. For this purpose let 𝑤𝑖, 𝑤𝑖′ , 𝑤𝑖′′

be the vertices of 𝑡𝑖. Then 𝑖′, 𝑖′′ ≤ 𝑖 and so the colours 𝑐𝑖′ and 𝑐𝑖′′ propagated to 𝑤𝑖′ and 𝑤𝑖′′ ,
respectively, were previously defined (and are distinct). Then let 𝑐𝑖 be the colour such that
{𝑐𝑖, 𝑐𝑖′ , 𝑐𝑖′′} = [3]. Observe that by this definition, different colours may be propagated to
a vertex 𝑣 of 𝑅; but in the following we will usually talk about colours propagated to the
final vertices 𝑤𝑝 and 𝑤𝑝+1 of a triangle walk 𝑤, by which we mean the colours 𝑐𝑝 and 𝑐𝑝+1,
respectively. Moreover, we analogously define colours propagated on triangle paths starting in
𝑣′1𝑣

′
2.

Claim 7.18. There is a triangle walk 𝑤* = 𝑒*1, . . . , 𝑒
*
𝑝* starting in 𝑒*1 = 𝑣1𝑣2 and ending in
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𝑒*𝑝* = 𝑣′1𝑣
′
2 such that the colours propagated by 𝑤 to 𝑣′1 and 𝑣′2 coincide with the colours induced

on 𝑣′1 and 𝑣′2 by 𝜎 and such that 𝑝* ≤ 2𝑘2 + 20.

Proof. For proving this claim we will choose triangle walks 𝑤 and 𝑤′ starting in 𝑣1𝑣2 and 𝑣′1𝑣
′
2,

respectively, and ending in the edge 𝑣*1𝑣
*
2 of 𝐾4. Then, potentially “walking” around the 𝐾4 a

couple of times, we will connect these two triangle walks such that the resulting triangle walk
propagates colours that are consistent with the induced colours.

Let 𝑒 = 𝑣1𝑣2, 𝑒′ = 𝑣′1𝑣
′
2, 𝑒* = 𝑣*1𝑣

*
2 be edges of 𝑡, 𝑡′, and 𝐾4, respectively. Since 𝑡, 𝑡′, and

𝐾4 are in the same triangle component of 𝑅 there are triangle walks 𝑤 = 𝑒1, . . . , 𝑒𝑝 and
𝑤′ = 𝑒′1, . . . , 𝑒

′
𝑝′ in 𝑅 with 𝑒1 = 𝑒, 𝑒′1 = 𝑒′, and 𝑒𝑝 = 𝑒′𝑝′ = 𝑒*. Since 𝑅 has less than 𝑘2

edges we can further assume that 𝑝, 𝑝′ ≤ 𝑘2. Let 𝑤1, . . . , 𝑤𝑝+1 and 𝑤′1, . . . , 𝑤
′
𝑝′+1 be the vertex

sequences corresponding to the triangle walks 𝑤 and 𝑤′, respectively, and note that we have
𝑤𝑝𝑤𝑝+1 = 𝑒𝑝 = 𝑤′𝑝𝑤

′
𝑝+1 = 𝑒′𝑝′ = 𝑒*. Now 𝑤 propagates colours 𝑐(𝑣*1) and 𝑐(𝑣*2) to 𝑣*1 and 𝑣*2,

respectively, and 𝑤′ propagates colours 𝑐′(𝑣*1) and 𝑐′(𝑣*2) to these vertices. It is not difficult
to check that, using the edges of 𝐾4 the triangle walk 𝑤 can be extended to a triangle walk
𝑤̂ starting in 𝑒 and ending in 𝑒* such that 𝑤̂ propagates colours 𝑐′(𝑣*1) and 𝑐′(𝑣*2) to its final
vertices 𝑣*1 and 𝑣*2. Indeed, if we denote by 𝑤+ the triangle walk in 𝐾4 with corresponding
vertex sequence 𝑣*3, 𝑣

*
4, 𝑣

*
1, 𝑣

*
2 and by 𝑤− the triangle walk in 𝐾4 with corresponding vertex

sequence 𝑣*4, 𝑣
*
3, 𝑣

*
2, 𝑣

*
1 then 𝑤̂ can be obtained by appending at most 3 times a copy of either

𝑤+ or 𝑤− to 𝑤 (mixtures of 𝑤+ and 𝑤− are allowed). It follows that the triangle path 𝑤*

resulting from the concatenation of 𝑤̂ and 𝑤′ satisfies the claim because the length of 𝑤′ is at
most 𝑘2 − 1 and that of 𝑤̂ is at most 𝑘2 − 1 + 16.

We will use this triangle walk 𝑤* = 𝑒*1, . . . , 𝑒
*
𝑝* for constructing the desired homomorphism

ℎ : [𝑛] → 𝑉𝑅. Let 𝑐*1, . . . , 𝑐
*
𝑝*+1 be the sequence of colours propagated along 𝑤* and 𝑡*1, . . . , 𝑡

*
𝑝*−1

be the sequence of triangles defined by 𝑤*, i.e., 𝑡*𝑖 is the triangle of 𝑅 that contains 𝑒*𝑖 and
𝑒*𝑖+1. Further, for all 𝑖 ∈ [𝑝*− 1], 𝑗 ∈ [3] let 𝑢𝑖,𝑗 be the vertex 𝑤*𝑖′ in triangle 𝑡*𝑖 such that colour
𝑐*𝑖′ = 𝑗 was propagated to 𝑤*𝑖′ by 𝑤*. Observe that by the definition of the colour propagation
and the choice of 𝑤* we have

𝑢1,1 = 𝑣1, 𝑢1,2 = 𝑣2 and 𝑢𝑝*−1,1 = 𝑣′1, 𝑢𝑝*−1,2 = 𝑣′2. (7.3)

Now we have to change the images of some vertices of 𝐻 in order to transform the mapping
𝜙 into a homomorphism ℎ. For this reason we define linking sets 𝐿1, . . . , 𝐿𝑝*−1 ⊆ [𝑛] in 𝐻
with 𝐿𝑖 := (𝑥 + (𝑖 − 1)2𝛽𝑛, 𝑥 + 𝑖 · 2𝛽𝑛]. The idea then is to let ℎ map all vertices of 𝐿𝑖 to
triangle 𝑡*𝑖 in 𝑤* in such a way that vertices with colour 𝑗 are mapped to the vertex 𝑢𝑖,𝑗 in
triangle 𝑡*𝑖 to which colour 𝑗 was propagated. Accordingly we define

ℎ(𝑢̃) :=

{︃
𝑢𝑖,𝑗 if 𝑢̃ ∈ 𝐿𝑖 and 𝜎(𝑢̃) = 𝑗

𝜙(𝑢̃) if 𝑢̃ ̸∈ ⋃︀𝐿𝑖

and claim that this is a homomorphism satisfying the assertions of the Proposition. It is
easy to see from the definition of ℎ that ℎ(𝑢̃) ̸= 𝜙(𝑢̃) implies 𝑢̃ ∈ (𝑥, 𝑥 + 100𝑘2𝛽𝑛] because
𝑝* · 2𝛽𝑛 ≤ (2𝑘2 + 20)2𝛽𝑛 ≤ 100𝑘2𝛽𝑛. Hence it remains to show that ℎ is a homomorphism.
To see this let 𝑢̃𝑣 be an arbitrary edge of 𝐻. We consider several cases. If neither 𝑢̃ nor 𝑣
is in a linking set then ℎ(𝑢̃) = 𝜙(𝑢̃) and ℎ(𝑣) = 𝜙(𝑣). Moreover bw(𝐻) ≤ 𝛽𝑛 implies that
either both 𝑢̃, 𝑣 ∈ 𝑉 or both 𝑢̃, 𝑣 ∈ 𝑉 ′ and so ℎ(𝑢̃)ℎ(𝑣) is an edge of one of the triangles 𝑡 and
𝑡′. As second case assume that 𝑢̃ is in a linking set 𝐿𝑖 with 𝑖 ∈ [𝑝* − 1]. Now, if 𝑣 is in the
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same linking set 𝐿𝑖 then 𝑢̃ and 𝑣 are both mapped to vertices of the triangle 𝑡*𝑖 by ℎ. As 𝑢̃
and 𝑣 have different colours in 𝜎 they are mapped to distinct vertices of 𝑡𝑖. Hence assume
that 𝑣 ̸∈ 𝐿𝑖. Then either 𝑣 ≤ 𝑥 and 𝑖 = 1, or 𝑣 ∈ 𝐿𝑖−1∪̇𝐿𝑖+1, or 𝑣 > 𝑥 + (𝑝* − 1)2𝛽𝑛 and
𝑖 = 𝑝* − 1. We will only consider the last of these three cases here, which is the most difficult
one. The other two cases follow similarly. In this last case we have

ℎ(𝑢̃) = 𝑢𝑝*−1,𝑗 with 𝑗 = 𝜎(𝑢̃) and ℎ(𝑣) = 𝜙(𝑣) = 𝑣′𝑗′ with 𝑗′ = 𝜎(𝑣),

where we recall that 𝑣′𝑗′ is the vertex of the triangle 𝑡′ on which 𝜎 induces colour 𝑗′. Since 𝑢̃
and 𝑣 have different colours in 𝜎 we have 𝑗 ̸= 𝑗′. Moreover, 𝑤* is a triangle walk ending in
𝑣′1𝑣

′
2 and so its last triangle 𝑡*𝑝*−1 and the triangle 𝑡′ share the edge 𝑣′1𝑣

′
2. By the definition of

the colour propagation and the resulting definition of ℎ we thus have the following situation: If
ℎ(𝑢̃) = 𝑢𝑝*−1,𝑗 is a vertex of 𝑡′ we have 𝑗 ∈ {1, 2} and ℎ(𝑢̃) = 𝑢𝑝*−1,𝑗 = 𝑣′𝑗 by (7.3). Therefore
ℎ(𝑢̃)ℎ(𝑣) is an edge of 𝑡′. Otherwise, by (7.3), we have 𝑗 = 3 and so 𝑗′ ∈ {1, 2}. It follows that
ℎ(𝑣) = 𝑣′𝑗′ also is a vertex of the triangle 𝑡*𝑝*−1, more precisely by (7.3) it is the vertex 𝑢𝑝*−1,𝑗′ .
Consequently ℎ(𝑢̃)ℎ(𝑣) is an edge of 𝑡*𝑝*−1 and we are done.

Now we can give the proof of Lemma 7.16. In this proof we make use of the simple
Proposition 5.14 (see page 62) from Chapter 5.

Proof of Lemma 7.16. Given 𝜉 and 𝑘 choose 𝛽0 := 10−4𝜉2/𝑘3, let 𝛽 ≤ 𝛽0 be given, and set
𝜉′ := 103𝑘2𝛽. Let 𝐻 = ([𝑛], 𝐸̃) be a 3-colourable graph with Δ(𝐻) ≤ Δ and bw(𝐻) ≤ 𝛽𝑛 such
that 𝛽 ≤ 𝛽0, and let 𝜎 be a 3-colouring of 𝐻. Let 𝑅 = ([𝑘]× [3], 𝐸𝑅) be a graph on 3𝑘 vertices
that contains a 𝐾4 and a spanning connected triangle factor 𝐾3

𝑘 (assume the vertices of 𝑅
are named according to this 𝐾3

𝑘). Let further (𝑛𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] be an equitable integer partition
satisfying 𝑛𝑖,𝑗 ≥ 𝑛/(6𝑘) for all 𝑖 ∈ [𝑘], 𝑗 ∈ [3] and set 𝑛′𝑖,𝑗 := 𝑛𝑖,𝑗 + 𝜉𝑛.

As explained in the introduction of this section we will first cut 𝐻 into segments (which are
assigned to different triangles of 𝐾3

𝑘) and then these segments into much smaller pieces of size
roughly 𝜉′𝑛. Then we will construct homomorphisms for each of these pieces to one of the
triangles in 𝐾3

𝑘 . These homomorphisms and the segments above are set up in such a way that,
altogether each cluster 𝑉𝑖,𝑗 receives roughly 𝑛𝑖,𝑗 vertices. Finally we will use Proposition 7.17
to modify these homomorphisms slightly in order to get a homomorphism from 𝐻 to 𝑅 which
will in turn give the desired vertex partition of 𝐻.

Assume that 𝐻 is given in bandwidth order. Cut the vertices [𝑛] of 𝐻 along this bandwidth
order into segments 𝑆𝑖 ⊆ [𝑛] with 𝑖 ∈ [𝑘] where 𝑆𝑖 has size 𝑠𝑖 := 𝑛𝑖,1 + 𝑛𝑖,2 + 𝑛𝑖,3 and let 𝑠*𝑖 be
the first vertex of 𝑆𝑖. Then assign segment 𝑆𝑖 to the 𝑖-th triangle of 𝐾3

𝑘 .
Next we do the following for each triangle 𝑡 of 𝐾3

𝑘 . Let 𝑆𝑖 be the segment assigned to 𝑡 and
(𝑖, 1), (𝑖, 2), and (𝑖, 3) be the clusters of 𝑡. We assume for simplicity that 𝜉′𝑛 is integer, set
𝑝(𝑖) := ⌊𝑠𝑖/(𝜉′𝑛)⌋ define pieces 𝑃𝑖,ℓ := [ 𝑠*𝑖 + (ℓ− 1)𝜉′𝑛 , 𝑠*𝑖 + ℓ𝜉′𝑛 ) for all ℓ ∈ [𝑝(𝑖)], and add all
(at most 𝜉′𝑛) vertices 𝑢 ≥ 𝑝𝑖𝜉

′𝑛 of 𝑆𝑖 to 𝑃𝑖,𝑝(𝑖). We will use these pieces to assign the vertices
of 𝑆𝑖 to the clusters of 𝑡. We start with the first piece 𝑃𝑖,1 and assign the vertices 𝑢 ∈ 𝑃𝑖,1

with colour 𝜎(𝑢) = 𝑗 to cluster (𝑖, 𝑗) for 𝑗 ∈ [3]. We continue with the piece 𝑃𝑖,2 and then 𝑃𝑖,3

and so on as follows. Assume we are about to assign the vertices of piece 𝑃𝑖,ℓ in this process
and so far 𝑠𝑖,𝑗 vertices 𝑢 were assigned to cluster (𝑖, 𝑗) for 𝑗 ∈ [3]. The idea now is to choose
the smallest colour class 𝑗 ∈ [3] of piece 𝑃𝑖,ℓ , i.e., the vertex set 𝜎−1(𝑗) ∩ 𝑃𝑖,ℓ, and assign all
these vertices to the cluster (𝑖, 𝑗′) of 𝑡 that received most vertices so far, i.e., the cluster with
biggest 𝑠𝑖,𝑗′ . We further assign the next smallest colour class of 𝑃𝑖,ℓ to the cluster of 𝑡 that
received the next biggest number of vertices so far and so on. To make this precise assume
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for simplicity of the presentation that 𝑠𝑖,1 ≤ 𝑠𝑖,2 ≤ 𝑠𝑖,3. Now let 𝑠′𝑗 := |𝜎−1(𝑗) ∩ 𝑃𝑖,ℓ| be the
vertices of colour 𝑗 in 𝑃𝑖,ℓ and let 𝜋 : [3] → [3] be a permutation such that 𝑠′𝜋(1) ≥ 𝑠′𝜋(2) ≥ 𝑠′𝜋(3).
Then we assign all vertices 𝑢 ∈ 𝑃𝑖,ℓ of colour 𝜎(𝑢) = 𝜋(𝑗) to cluster (𝑖, 𝑗) for 𝑗 ∈ [3]. Observe
that Proposition 5.14 applied with 𝑟 := 3 as well as 𝑐𝑗 = 𝑠𝑖,𝑗 and 𝑐′𝑗 = 𝑠′𝜋(𝑗) for 𝑗 ∈ [3] and for
𝑥 = 𝜉′𝑛 asserts that throughout this procedure we have that the number of vertices assigned
to two different clusters of 𝑡 differs by 2𝜉′𝑛 at most.

After assigning the vertices of all pieces 𝑃𝑖,ℓ with 𝑖 ∈ [𝑘] and ℓ ∈ [𝑝(𝑖)] to clusters of 𝐾3
𝑘 in

this way denote the resulting (united) assignment by 𝜙 : [𝑛] → [𝑘]× [3]. Note that

|𝜙−1((𝑖, 𝑗))| ≤ 𝑛𝑖,𝑗 ± 2𝜉′𝑛 (7.4)

for all vertices (𝑖, 𝑗) of 𝑅 because (𝑛𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] is an equipartition, we assigned a segment of
size 𝑛𝑖,1 + 𝑛𝑖,2 + 𝑛𝑖,3 to the triangle 𝑡 in 𝑅 consisting of vertices (𝑖, 1), (𝑖, 2), (𝑖, 3) and then
asserted that the number of vertices assigned to two different clusters of 𝑡 differ by 2𝜉′𝑛 at
most. Moreover 𝜙 is a homomorphism to 𝑅 (in fact to a single triangle of 𝐾3

𝑘) when restricted
to 𝑃𝑖,ℓ for all 𝑖 ∈ [𝑘] and ℓ ∈ [𝑝(𝑖)].

In the remaining part of the proof we will transform the assignment 𝜙 into a homomorphism
from the whole graph 𝐻 to 𝑅. To this end we will use Proposition 7.17. Let 𝑡𝑖 be the 𝑖-th
triangle of 𝐾3

𝑘 for 𝑖 ∈ [𝑘]. For each consecutive pair of pieces 𝑃𝑖,ℓ and 𝑃𝑖,ℓ+1 with ℓ ∈ [𝑝(𝑖)− 1]
we apply Proposition 7.17 on 𝑅, the triangles 𝑡 := 𝑡′ := 𝑡𝑖, the graph 𝐻𝑖,ℓ+1 := 𝐻[𝑃𝑖,ℓ ∪𝑃𝑖,ℓ+1],
the mapping 𝜙 restricted to the vertices of 𝐻𝑖,ℓ+1 and to the last vertex (in the bandwidth
ordering) 𝑥 of 𝑃𝑖,ℓ. Then Proposition 7.17 produces a homomorphism ℎ𝑖,ℓ+1 from 𝐻𝑖,ℓ+1

to 𝑅 that coincides with 𝜙 on 𝑃𝑖,ℓ and all but the first 100𝑘2𝛽𝑛 vertices of 𝑃𝑖,ℓ+1. Similarly,
for the last and the first piece, respectively, of each two consecutive segments 𝑆𝑖 and 𝑆𝑖+1,
𝑖 ∈ [𝑘 − 1] we apply Proposition 7.17 on 𝑅, the triangles 𝑡 = 𝑡𝑖 and 𝑡′ = 𝑡𝑖+1, the graph
𝐻𝑖+1,1 := 𝐻[𝑃𝑖,𝑝(𝑖) ∪ 𝑃𝑖+1,1], the mapping 𝜙 restricted to the vertices of 𝐻𝑖+1,1 and to the last
vertex (in the bandwidth ordering) of 𝑃𝑖,𝑝(𝑖). Then Proposition 7.17 produces a homomorphism
ℎ𝑖+1,1 from 𝐻𝑖+1,1 to 𝑅 that coincides with 𝜙 on 𝑃𝑖,𝑝(𝑖) and all but the first 100𝑘2𝛽𝑛 vertices of
𝑃𝑖+1,1. Then we define the mapping ℎ : 𝑉 → 𝑉𝑅 by setting ℎ(𝑢̃) := ℎ𝑖,ℓ(𝑢̃) for all vertices 𝑢̃ in
piece 𝑃𝑖,ℓ for all 𝑖 ∈ [𝑘], ℓ ∈ [𝑝(𝑖)]. Observe that ℎ coincides with 𝜙 on all but the first 100𝑘2𝛽𝑛
vertices of each piece 𝑃𝑖,ℓ which we denote by 𝑃 *𝑖,ℓ. Moreover, as 100𝑘2𝛽𝑛 + 100𝛽𝑛 ≤ 𝜉′𝑛
these non-coinciding intervals 𝑃 *𝑖,ℓ do not overlap but have distance more than 𝛽𝑛, hence there
are no edges between them. Thus, because each ℎ𝑖,ℓ is a homomorphism from 𝐻𝑖,ℓ to 𝑅, the
united mapping ℎ also is a homomorphism from 𝐻 to 𝑅 which coincides with 𝜙 on all but at
most 𝑘 · 100𝑘2𝛽𝑛 vertices.

For defining the vertex partition (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] we now set 𝑉𝑖,𝑗 := ℎ−1((𝑖, 𝑗)). Since ℎ is
a homomorphism to 𝑅 the partition (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] clearly is an 𝑅-partition of 𝐻. Addition-
ally (7.4) implies

⃒⃒
|𝑉𝑖,𝑗 | − 𝑛𝑖,𝑗

⃒⃒
≤ 2𝜉′𝑛 + 100𝑘3𝛽𝑛 ≤ 𝜉𝑛 and hence |𝑉𝑖,𝑗 | ≤ 𝑛′𝑖,𝑗 because ℎ

coincides with 𝜙 on all but at most 100𝑘3𝛽𝑛 many vertices. For 𝑖 ∈ [𝑘], 𝑗 ∈ [3] let 𝑍𝑖,𝑗

be the set of vertices in 𝑉𝑖,𝑗 that have neighbours in clusters that do not belong to the
𝑖-th triangle of 𝐾3

𝑘 or that have common neighbours with such neighbours . To show that
(𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] is 𝜉-compatible it remains to show that for all 𝑖 ∈ [𝑘], 𝑗 ∈ [3] the set 𝑍𝑖,𝑗 satisfies
|𝑍𝑖,𝑗 | ≤ 1

2𝜉𝑛𝑖,𝑗 ≤ 1
2𝜉𝑛

′
𝑖,𝑗 . This is true because 𝑍𝑖,𝑗 can only contain vertices of the intervals

𝑃 *𝑖′,ℓ with 𝑖′ ∈ [𝑘], ℓ ∈ [𝑝(𝑖)], their neighbourhood and their second neighbourhood. There are
at most 1/𝜉′ sets 𝑃 *𝑖′,ℓ and they are intervals in the bandwidth order of 𝐻 of size 100𝑘2𝛽𝑛

each. It follows that |𝑍𝑖,𝑗 | ≤ (100𝑘2𝛽𝑛 + 4𝛽𝑛)/𝜉′ ≤ 1
2𝜉𝑛/(10𝑘) ≤ 1

2𝜉𝑛𝑖,𝑗 where we use that
𝛽 ≤ 𝛽0 = 10−4𝜉2/𝑘3. Thus (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] satisfies all required properties.
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7.6 Colour-adjustable partitions

In this section we prove the lemma for 𝐺. We will first apply the Ore version of the regularity
lemma, Lemma 7.4 to obtain a regular partition of 𝐺 and a reduced graph 𝑅 with high Ore
degree. This enables us then to use Corollary 7.14 and infer that the reduced graph 𝑅 contains
a copy of 𝐶3

𝑘 , which will be shown to be colour adjustable by using Proposition 7.7. Moreover,
the existence of a 𝐾4 in the same triangle component follows from Proposition 7.9. We will
then apply Proposition 3.7 from Chapter 3 to modify the regular partition of 𝐺 into a regular
equipartition (with the same reduced graph 𝑅) that is additionally super-regular on 𝐾3

𝑘 ⊆ 𝐶3
𝑘 .

It remains, and this is the most laborious step, to distribute the vertices in the exceptional
set of the regular partition to the other partition classes such that neither the super-regularity
nor the equipartition gets destroyed. For this we will distinguish between small and big vertices
(cf. the definition on page 85) in the exceptional set. The reason for this distinction is that,
as it turns out, the big vertices can easily be distributed to triangles 𝑇 of 𝐾3

𝑘 where they
have many neighbours in every cluster of 𝑇 (this was in fact already demonstrated in the
distribution of the exceptional set in Section 5.5 of Chapter 5). Hence we can distribute these
big vertices “equally” over the clusters of such triangles while maintaining super-regularity as
well as an equipartition.

For the small vertices applying the same procedure is unfortunately not possible. As we will
show, however, for each small vertex 𝑣 we can find triangles 𝑇 in 𝐾3

𝑘 such that 𝑣 has many
neighbours in two of the three clusters of 𝑇 . Thus moving 𝑣 to the third cluster 𝐶 of 𝑇 will
not destroy super-regularity. For maintaining an equipartition we will, in exchange, pick a big
vertex in 𝐶 and move it to the exceptional set.

Proof of Lemma 7.15. We first set up the necessary constants. Given 𝛾 let 𝑑 := 𝛾/104. Given
𝜀 we next fix auxiliary constants 𝜀′ and 𝑑′ by setting 𝑑′ := 2𝑑 and choosing 𝜀′ small enough
such that

𝜀′ + 103
√︀
𝜀′/𝛾 ≤ 𝜀 and 103

√︀
𝜀′/𝛾 ≤ 𝑑 . (7.5)

Next we define constants 𝜀rl and 𝑑rl for the application of the regularity lemma such that

𝜀′ ≥ 8𝜀rl

1− 4𝜀rl
, 𝑑′ ≤ 𝑑rl − 8𝜀rl , and 2(𝜀rl + 𝑑rl) ≤ 1

10𝛾 . (7.6)

This is possible because 𝑑′ = 2𝑑 = 2𝛾/104. Now we apply Corollary 7.14 with parameters 1
2𝛾

and 𝜇 := 𝜀rl to obtain 𝑘0 and Lemma 7.4 with input 𝜀rl and this 𝑘0 and get 𝑘1. This finishes
the definitions of the constants.

For constructing the desired partition of an input graph 𝐺 satisfying the requirements of
the lemma we commence by applying the regularity lemma in the form of Lemma 7.4 with
parameters 𝜀rl, 𝑘0, 𝜂 := 4

3 + 𝛾, and 𝑑rl. We obtain an (𝜀rl, 𝑑rl)-regular equipartition with
reduced graph 𝑅rl on 𝑘0 ≤ 𝑘rl ≤ 𝑘1 vertices with 𝛿Ø(𝑅rl) ≥ (𝜂−2(𝜀rl+𝑑rl))𝑘rl ≥ (4

3 + 1
2𝛾)𝑘rl.

Next we apply Corollary 7.14 with 1
2𝛾 and 𝜇 := 𝜀rl to the graph 𝑅rl and conclude that 𝐶3

𝑘 is
a subgraph of 𝑅rl with 3𝑘 ≥ (1− 𝜀rl)𝑘rl. We claim that the graph 𝑅 = (𝑉𝑅, 𝐸𝑅) induced in
𝑅rl on the 3𝑘 vertices spanned by 𝐶3

𝑘 is still a (2𝜀rl, 𝑑rl)-reduced graph for an equipartition
of 𝐺 and satisfies 𝛿Ø(𝑅) ≥ (4 + 𝛾)𝑘. Indeed, 𝛿Ø(𝑅) ≥ 𝛿Ø(𝑅rl) − 2𝜀rl𝑘rl ≥ (4

3 + 1
3𝛾)3𝑘.

Moreover, assume we move those clusters (of the (𝜀rl, 𝑑rl)-regular equipartition corresponding
to 𝑅rl) that are not covered by 𝐶3

𝑘 to the exceptional set. Then we obtain an (2𝜀rl, 𝑑rl)-
regular partition of 𝐺 since the exceptional set of this new partition is of size at most
𝜀rl𝑛+ 𝜀rl𝑘rl(𝑛/𝑘rl) = 2𝜀rl𝑛.
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We now rename the clusters of 𝑅 according to the (spanning) copy of 𝐶3
𝑘 to [𝑘]× [3] and

claim that 𝐶3
𝑘 is colour-adjustable in 𝑅. To see this let {𝑗+, 𝑗−, 𝑗} = [3] be arbitrary and apply

Proposition 7.7 to 𝑅 and the equipartition 𝑉𝑅 = ([𝑘] × {1})∪̇([𝑘] × {2})∪̇([𝑘] × {3}). This
implies that there is an 𝑖 ∈ [𝑘] such that (𝑖, 𝑗+) has more than 𝑘 neighbours in [𝑘]× {𝑗+, 𝑗}
and consequently there is 𝑖* ∈ [𝑘] such that (𝑖, 𝑗+) has an edge to the two vertices (𝑖*, 𝑗′) with
𝑗′ ̸= 𝑗− in 𝑅. This means that 𝐶3

𝑘 is colour-adjustable in 𝑅. Observe further that 𝐾3
𝑘 ⊆ 𝐶3

𝑘

and so all triangles of this 𝐾3
𝑘 lie in one triangle component of 𝑅 and we get a 𝐾4 in the same

triangle component by Proposition 7.9. Consequently we have (G1 ).
We continue by applying Proposition 3.7 with parameters 2𝜀rl, 𝑑rl, and Δ = 2 to the

graph 𝐺 and its (2𝜀rl, 𝑑rl)-reduced graph 𝑅 and to 𝑅′ := 𝐾3
𝑘 . We obtain an (𝜀′, 𝑑′)-partition

𝑉 ′0∪̇(𝑉 ′𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] with reduced graph 𝑅 that is (𝜀′, 𝑑′)-super-regular on 𝐾3
𝑘 because

𝜀′
(7.6)

≥ 8𝜀rl/(1− 4𝜀rl) and 𝑑′
(7.6)

≤ 𝑑rl − 8𝜀rl .

It remains to distribute the vertices in the exceptional set of this partition to the other
partition classes without destroying regularity or super-regularity. Let us first describe how we
perform this distribution and then determine its effects on the regularity. Roughly speaking,
the strategy is as follows: We will first exchange some small vertices in 𝑉 ′0 with big vertices
from other clusters (hence maintaining an equipartition). Then, in a second step, we will
redistribute all remaining vertices in 𝑉 ′0 as well as the new big vertices (that we just exchanged
against small vertices) to the clusters of (𝑉 ′𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3]. We will see that the first step is
necessary in order to guarantee that the second step can be carried out in such a way that the
resulting partition is still an equipartition.

For giving the details it is convenient to first introduce some definitions. Let 𝐿′ be the sizes
of the clusters in (𝑉 ′𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3]. We say that a triangle 𝑡 in 𝐾3

𝑘 is 𝑢-friendly if 𝑢 has at least
2𝑑′𝐿′ neighbours in each cluster of 𝑡 and 𝑢-half-friendly if 𝑡 is not 𝑢-friendly but there are two
clusters of 𝑡 such that 𝑢 has at least 2𝑑′𝐿′ neighbours in these clusters.

Claim 7.19. If the number of 𝑢-friendly triangles is less than 1
10𝛾𝑘 then 𝑢 is small and there

are at least 1
10𝛾𝑘 triangles that are 𝑢-half-friendly.

Proof. If there are less than 1
10𝛾𝑘 triangles that are 𝑢-friendly, then 𝑢 has degree

deg(𝑢) < (2𝑘𝐿′ + 2𝑑′𝐿′) + 1
10𝛾𝑘𝐿

′ + 𝜀′𝑛 ≤ (2
3 + 𝑑′)𝑛+ 1

10𝛾
1
3𝑛+ 𝜀′𝑛 ≤ (2

3 + 1
2𝛾)𝑛

and thus 𝑢 is small. Therefore Proposition 7.5 implies deg(𝑢) ≥ (1
3 + 𝛾)𝑛 and hence, if 𝑋 is

the number of 𝑢-half-friendly triangles, we get

(1
3 + 𝛾)𝑛 ≤ deg(𝑢)

< 1
10𝛾𝑘 · 3𝐿′ +𝑋 · (2𝐿′ + 2𝑑′𝐿′) + (𝑘 − 1

10𝛾𝑘 −𝑋)(𝐿′ + 2 · 2𝑑′𝐿′) + 𝜀′𝑛

= 𝑋(𝐿′ − 2𝑑′𝐿′) + 𝑘𝐿′
(︀

3
10𝛾 + (1− 1

10𝛾)(1 + 4𝑑′)
)︀

+ 𝜀′𝑛

≤ 𝑋(𝑛/3𝑘) + ( 1
10𝛾 + 1

3 + 2𝑑′)𝑛+ 𝜀′𝑛,

We conclude that 𝑋 ≥ (1
3 + 𝛾 − 1

10𝛾 − 1
3 − 2𝑑′ − 𝜀′)3𝑘 ≥ 1

10𝛾𝑘.

Our first aim now is to exchange all vertices 𝑢 of 𝑉 ′0 that do not have many 𝑢-friendly
triangles with big vertices from clusters in triangles that are 𝑢-half-friendly. While the
preceding claim guarantees that there are many 𝑢-half-friendly triangles for these vertices, the
following claim implies that we can find many big vertices in such triangles.
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Claim 7.20. If 𝑢 is small and 𝐶 is a cluster such that 𝑢 has less than 2𝑑′𝐿′ neighbours in 𝐶
then there are at least 100𝜀′𝑛/(𝛾𝑘) big vertices in 𝐶.

Proof. By Proposition 7.6 the small vertices of 𝐺 form a clique. Hence all non-neighbours
of 𝑢 in 𝐶 are big. The number of these non-neighbours is at least (1− 2𝑑′)𝐿′ ≥ 1

2(𝑛/3𝑘) ≥
100𝜀′𝑛/(𝛾𝑘).

Accordingly we can now perform the following exchange procedure: Let 𝑈 ⊆ 𝑉 ′0 be the
set of vertices 𝑢 in 𝑉 ′0 with less than 1

10𝛾𝑘 triangles that are 𝑢-friendly. By Claim 7.19 all
these vertices are small and have at least 1

10𝛾𝑘 half-friendly triangles. It follows that we can
assign the vertices of 𝑈 to the triangles of 𝐾3

𝑘 in such a way that each 𝑢 ∈ 𝑈 is assigned
to a 𝑢-half-friendly triangle and no triangle receives more than |𝑈 |/( 1

10𝛾𝑘) ≤ 10𝜀′𝑛/(𝛾𝑘)
vertices. For each vertex 𝑢 ∈ 𝑈 we then do the following: Let 𝑡 be the triangle such that 𝑢 is
assigned to 𝑡. Since 𝑡 is 𝑢-half-friendly, there is a cluster 𝐶 in 𝑡 such that 𝑢 has less than 2𝑑′𝐿′

neighbours in 𝐶. In the two other clusters of 𝑡 the vertex 𝑢 has at least 2𝑑′𝐿′ neighbours. We
remove 𝑢 from 𝑉 ′0 , add it to 𝐶 and instead move a big vertex of 𝐶 to 𝑉 ′0 . This is possible
since at most 10𝜀′𝑛/(𝛾𝑘) vertices of 𝑈 were assigned to 𝐶, and by Claim 7.20 the cluster 𝐶
contains at least 100𝜀′𝑛/(𝛾𝑘) big vertices.

Let 𝑉 ′′0 ∪ (𝑉 ′′𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] be the partition we obtain after this exchange procedure. Observe
that |𝑉 ′′0 | ≤ 𝜀′𝑛 and 𝑉 ′′0 only contains vertices 𝑢 with at least 1

10𝛾𝑘 triangles that are 𝑢-friendly.
Hence we can assign each of these vertices 𝑢 ∈ 𝑉 ′′0 to a 𝑢-friendly triangle of 𝐾3

𝑘 in such a way
that at most 𝜀′𝑛/( 1

10𝛾𝑘) vertices are assigned to each triangle. This implies that each 𝑢 ∈ 𝑉 ′′0
is assigned to a triangle 𝑡 such that 𝑢 has at least 2𝑑′𝐿′ neighbours in each cluster of 𝑡. Finally,
for each triangle 𝑡 of 𝐾3

𝑘 we distribute all vertices of 𝑉 ′′0 that were assigned to 𝑡 among the
three clusters in 𝑡 such that the sizes of the resulting clusters are as equal as possible.

We call the resulting partition (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] and claim that this partition has the required
properties. Verifying this claim will finish the proof of the lemma. Observe first that
|𝑉𝑖,𝑗 | ≥ |𝑉 ′𝑖,𝑗 | ≥ (1 − 𝜀′)𝑛/(3𝑘) ≥ (1 − 𝜀)𝑛/(3𝑘) for all 𝑖 ∈ [𝑘], 𝑗 ∈ [3] and so we get (G3 ).
To see (G2 ) notice further that this partition is equitable: The regularity lemma produced
the equipartition (𝑉 ′𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3], and the exchange procedure modified this partition to get
(𝑉 ′′𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] and guaranteed that |𝑉 ′𝑖,𝑗 | = |𝑉 ′′𝑖,𝑗 | for all 𝑖 ∈ [𝑘], 𝑗 ∈ [3]. Then, in the final
distribution of 𝑉 ′′0 we distributed vertices assigned to a triangle of 𝐾3

𝑘 as equally as possible
and so (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] is indeed equitable. It remains to show that (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] is (𝜀, 𝑑)-regular
on 𝑅 and (𝜀, 𝑑)-super-regular on 𝐾3

𝑘 . To see this, recall that at most 10𝜀′𝑛/(𝛾𝑘) vertices
were moved out of any cluster and into any cluster throughout the exchange and distribution
procedure. For 𝛼 := 100𝜀′/𝛾 we thus have

|𝑉 ′𝑖,𝑗△𝑉𝑖,𝑗 | ≤ 2 · 10
𝜀′𝑛

𝛾𝑘
≤ 𝛼(1− 𝜀)

𝑛

3𝑘
≤ 𝛼|𝑉𝑖,𝑗 |

for all 𝑖 ∈ [𝑘], 𝑗 ∈ [3]. Hence Proposition 3.8 applied with 𝜀′, 𝑑′ and 𝛼 =: 𝛽 to all (𝜀′, 𝑑′)-regular
pairs of the partition (𝑉 ′𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] implies that the partition (𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] is (𝜀, 𝑑)-regular
on 𝑅 by (7.5). In addition all vertices 𝑣 ∈ 𝑉𝑖,𝑗 ∩ 𝑉 ′′𝑖,𝑗 have at least

𝑑′|𝑉 ′′𝑖,𝑗′ | − 𝛼|𝑉𝑖,𝑗′ | ≥ (𝑑′(1− 2𝛼)− 𝛼)|𝑉𝑖,𝑗′ |
(7.5)

≥ 𝑑|𝑉𝑖,𝑗′ |
neighbours in all clusters 𝑉𝑖,𝑗′ with 𝑗 ̸= 𝑗′. The exchange and distribution procedure asserted
the same for all vertices 𝑣 ∈ 𝑉𝑖,𝑗 ∖ 𝑉 ′′𝑖,𝑗 . Accordingly, Proposition 3.8 implies additionally that
(𝑉𝑖,𝑗)𝑖∈[𝑘],𝑗∈[3] is (𝜀, 𝑑)-super-regular and thus we get (G2 ).
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Chapter 8

The tripartite Ramsey number
for trees

In this chapter we consider a Ramsey-type embedding problem for trees. Recall that, for a
family ℱ of graphs and a graph 𝐾, we say that 𝐾 is Ramsey for ℱ and write 𝐾 → ℱ if in
any edge-colouring of 𝐾 with green and red one of the colour classes contains a copy of each
member of ℱ .

Many classical Ramsey problems consider the question for which 𝑛 the complete graph
𝐾𝑛 is Ramsey for a particular family of graphs ℱ (see Section 1.1.2). Here we are instead
interested in the case that 𝐾 is a complete tripartite graph 𝐾𝑛,𝑛,𝑛. We prove the following
theorem about trees, confirming a conjecture of Schelp [89] (see also Section 1.2.3). Let 𝒯𝑡

denote the family of trees of order 𝑡 and 𝒯 Δ
𝑡 be its restriction to trees of maximum degree at

most Δ.

Theorem 8.1. For every 𝜇 > 0 there are 𝛼 > 0 and 𝑛0 ∈ N such that for all 𝑛 ≥ 𝑛0

𝐾𝑛,𝑛,𝑛 → 𝒯 Δ
𝑡 ,

if Δ ≤ 𝑛𝛼 and 𝑡 ≤ (3− 𝜇)𝑛/2.

By Theorem 1.11 the graph 𝐾3𝑛 is Ramsey for 𝒯𝑠 with 𝑠 = 3
2𝑛+ 1. Theorem 8.1 asserts

that if we replace 𝒯𝑠 by the class 𝒯 Δ
𝑡 of bounded-degree trees of site 𝑡 with 𝑡 only slightly

smaller than 𝑠, then we can remove three 𝑛-vertex cliques from this 𝐾3𝑛 and the resulting
graph 𝐾𝑛,𝑛,𝑛 is still Ramsey for 𝒯 Δ

𝑡 .
Notice that, in contrast to all other embedding results in this thesis, the bound on the

maximum degree of 𝑇 in Theorem 8.1 is not constant, but grows with 𝑛. Consequently we
do not apply the blow-up lemma (Lemma 3.9) when proving this result, but replace it by a
greedy embedding strategy for trees that can cope with such growing maximum degrees.

The proof of Theorem 8.1 splits into a combinatorial part and a regularity-based embedding
part. The lemmas we need for the combinatorial part are stated in Section 8.2 and proved in
Section 8.6. As explained in the introduction (see Section 1.3.2),  Luczak [76] noted that a
large connected matching in a cluster graph is a suitable structure for embedding paths. Here
we extend  Luczak’s idea and use what we call “odd connected matchings” and “connected
fork systems” in the cluster graph to embed trees (as explained in Section 1.3.4).

For the embedding part we formulate an embedding lemma (Lemma 8.12, see Section 8.3)
that provides rather general conditions for the embedding of trees with growing maximum
degree. The proof of this lemma is presented in Section 8.5. First, however, we shall introduce
all definitions necessary for this chapter.
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Chapter 8 The tripartite Ramsey number for trees

8.1 Coloured graphs: definitions and tools

For convenience let us first recall some definitions. A matching 𝑀 in a graph 𝐺 = (𝑉,𝐸) is a
set of vertex-disjoint edges in 𝐸 and its size is the number of edges in 𝑀 . For a vertex set 𝐷
and an edge set 𝑀 , let 𝐷 ∩𝑀 be the set of vertices from 𝐷 that appear in some edge of 𝑀 .
For a vertex 𝑣 and a vertex set 𝑈 covered by 𝑀 we also write, abusing notation, 𝑣 ∈𝑀 and
𝑈 ⊆𝑀 . In this chapter we sometimes also consider a matching as a bijection 𝑀 : 𝑉𝑀 → 𝑉𝑀

where 𝑉𝑀 ⊆ 𝑉 is the set of vertices covered by 𝑀 . For 𝑈 ⊆ 𝑉𝑀 we then denote by 𝑀(𝑈) the
set of vertices 𝑣 ∈ 𝑉𝑀 such that 𝑢𝑣 ∈𝑀 for some 𝑢 ∈ 𝑈 .

In addition we shall use the following convention in this chapter. To make our notation
compact we sometimes use subscripts in a non-standard way as illustrated by the following
example. Let 𝐴1, 𝐴2 ⊆ 𝐴 and 𝐵1, 𝐵2 ⊆ 𝐵 be sets and suppose that 𝐷 ∈ {𝐴,𝐵} and 𝑖 ∈ [2].
The symbol 𝐷𝑖 then denotes the set 𝐴𝑖 if 𝐷 = 𝐴 and the set 𝐵𝑖 if 𝐷 = 𝐵.

Coloured graphs

A coloured graph 𝐺 is a graph (𝑉,𝐸) together with a 2-colouring of its edges by red and
green. We denote by 𝐺(𝑐) the subgraph of 𝐺 formed by the edges with colour 𝑐. Two vertices
are connected in 𝐺 if they lie in the same connected component of 𝐺 and are 𝑐-connected
in 𝐺 if they are connected in 𝐺(𝑐). Let 𝐺 be a coloured graph and 𝑣 be a vertex of 𝐺 and
𝑐 ∈ {red, green}. Then a vertex 𝑢 is a 𝑐-neighbour of 𝑣 if 𝑢𝑣 is an edge of colour 𝑐 in 𝐺. The
𝑐-neighbourhood of 𝑣 is the set of all 𝑐-neighbours of 𝑣.

Definition 8.2 (connected, odd, even). Let 𝐺′ be either a subgraph of an uncoloured graph
𝐺, or a 𝑐-monochromatic subgraph of a coloured graph 𝐺. Then we say that 𝐺′ is connected
if any two vertices covered by 𝐺′ are connected, respectively 𝑐-connected, in 𝐺. Further, the
component of 𝐺, respectively of 𝐺(𝑐), containing 𝐺′ is called the component of 𝐺′ and is
denoted by 𝐺[𝐺′]. Further, 𝐺′ is odd if there is an odd cycle in 𝐺[𝐺′], otherwise 𝐺′ is even.

Notice that this notion of connected subgraphs differs from the standard one. A red-
connected matching is a good example to illustrate this concept: it is a matching with all
edges coloured in red and with a path (in the original graph) of red colour between any two
vertices covered by the matching. For subgraphs containing edges of different colours the
notion of connectedness is not defined.

Definition 8.3 (fork, fork system). An 𝑟-fork (or simply fork) is the complete bipartite graph
𝐾1,𝑟. We also say that an 𝑟-fork has 𝑟 prongs and one centre by which we refer to the vertices
in the two partition classes of 𝐾1,𝑟. A fork system 𝐹 in a graph 𝐺 is a set of pairwise vertex
disjoint forks in 𝐺 (not necessarily having the same number of prongs). We say that 𝐹 has
ratio 𝑟 if all its forks have at most 𝑟 prongs. Then we also call 𝐹 an 𝑟-fork system.

Suppose that 𝐹 is a connected fork system in 𝐺. If 𝐹 is even, then the size 𝑓 of 𝐹 is the
order of the bigger bipartition class of 𝐺[𝐹 ]. If 𝐹 is odd, then 𝐹 has size at least 𝑓 if there is
a connected bipartite subgraph 𝐺′ of 𝐺 such that 𝐹 has size 𝑓 in 𝐺′. For a vertex set 𝐷 in 𝐺
we say that 𝐹 is centered in 𝐷 if the centres of the forks in 𝐹 all lie in 𝐷.

Next, we define two properties of coloured graphs that characterise structures (in a reduced
graph) suitable for the embedding of trees as we shall see later (Section 8.3). Roughly speaking,
these properties guarantee the existence of large monochromatic connected matchings and
fork-systems.
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Definition 8.4 (𝑚-odd, (𝑚, 𝑓, 𝑟)-good). Let 𝐺 be a coloured graph on 𝑛 vertices. Then 𝐺 is
called 𝑚-odd if 𝐺 contains a monochromatic odd connected matching of size at least 𝑚. We
say that 𝐺 is (𝑚, 𝑓, 𝑟)-good (in colour 𝑐) if 𝐺 contains a 𝑐-coloured connected matching 𝑀 of
size at least 𝑚 as well as a 𝑐-coloured connected fork system 𝐹 of size at least 𝑓 , and ratio at
most 𝑟.

Now we define a set of special, so-called extremal, configurations of coloured graphs that
will need special treatment in our proofs. To prepare their definition, let 𝐾 be a graph on 𝑛
vertices and 𝐷,𝐷′ be disjoint vertex sets in 𝐾. We say that the bipartite graph 𝐾[𝐷,𝐷′] is
𝜂-complete if each vertex of 𝐾[𝐷,𝐷′] is incident to all but at most 𝜂𝑛 vertices of the other
bipartition class. If 𝐾 is a coloured graph then 𝐾[𝐷,𝐷′] is (𝜂, 𝑐)-complete for some colour
𝑐 if it is 𝜂-complete and all edges in 𝐾[𝐷,𝐷′] are of colour 𝑐. We call a set 𝐴 negligible if
|𝐴| < 2𝜂𝑛. Otherwise, 𝐴 is non-negligible.

Definition 8.5 (extremal). Let 𝐾 = (𝑉,𝐸) be a coloured graph of order 3𝑛. Suppose that
𝜂 > 0 is given. We say that 𝐾 is a pyramid configuration with parameter 𝜂 if it satisfies (E1)
below and a spider configuration if it satisfies (E2). In both cases we call 𝐾 extremal with
parameter 𝜂 or 𝜂-extremal. Otherwise we say that 𝐾 is not 𝜂-extremal.

(E1) pyramid configurations: There are (not necessarily distinct) colours 𝑐, 𝑐′ and pairwise
disjoint subsets 𝐷1, 𝐷2, 𝐷′1, 𝐷

′
2 ⊆ 𝑉 of size at most 𝑛, with |𝐷1|, |𝐷2| ≥ (1 − 𝜂)𝑛

and |𝐷′1| + |𝐷′2| ≥ (1 − 𝜂)𝑛 where 𝐷′1 and 𝐷′2 are either empty or non-negligible.
Further, 𝐾[𝐷1, 𝐷

′
1] and 𝐾[𝐷2, 𝐷

′
2] are (𝜂, 𝑐)-complete and 𝐾[𝐷1, 𝐷

′
2], 𝐾[𝐷2, 𝐷

′
1], and

𝐾[𝐷1, 𝐷2] are 𝜂-complete.
In addition, either 𝐾[𝐷1, 𝐷2] is (𝜂, 𝑐′)-complete or both 𝐾[𝐷1, 𝐷

′
2] and 𝐾[𝐷′1, 𝐷2] are

(𝜂, 𝑐′)-complete. In the first case we say the pyramid configuration has a 𝑐′-tunnel, and
in the second case that it has a crossing. The pairs (𝐷1, 𝐷

′
1) and (𝐷2, 𝐷

′
2) are also

called the pyramids of this configuration.
(E2) spider configuration: There is a colour 𝑐 and pairwise disjoint subsets 𝐴1, 𝐴2, 𝐵1,

𝐵2, 𝐶1, 𝐶2 ⊆ 𝑉 such that |𝐷1 ∪𝐷2| ≥ (1− 𝜂)𝑛 and 𝐾[𝐷1, 𝐷
′
2] is (𝜂, 𝑐)-complete for

all 𝐷,𝐷′ ∈ {𝐴,𝐵,𝐶} with 𝐷 ̸= 𝐷′, the edges in all these bipartite graphs together
form a connected bipartite subgraph 𝐾𝑐 of 𝐾 with (bi)partition classes 𝐴1∪̇𝐵1∪̇𝐶1 and
𝐴2∪̇𝐵2∪̇𝐶2. Further there are sets 𝐴𝐵∪̇𝐴𝐶 = 𝐴2, 𝐵𝐴∪̇𝐵𝐶 = 𝐵2, and 𝐶𝐴∪̇𝐶𝐵∪̇𝐶𝐶 =
𝐶2, each of which is either empty or non-negligible, such that the following conditions
are satisfied for all {𝐷,𝐷′, 𝐷′′} = {𝐴,𝐵,𝐶}:
1. |𝐴1| ≥ |𝐵1| ≥ |𝐶1 ∪ 𝐶𝐶 | and |𝐷𝐷′ | = |𝐷′𝐷| ≤ 𝑛− |𝐷′′2 |,
2. either 𝐶𝐶 = ∅ or 𝐴𝐵 = ∅,
3. either 𝐴2 = ∅ or |𝐴2 ∪𝐵2 ∪ 𝐶𝐴 ∪ 𝐶𝐵| ≤ (1− 𝜂)3

2𝑛,
4. either 𝐶1 = ∅ or |𝐴1 ∪𝐵1 ∪ 𝐶1| < (1− 𝜂)3

2𝑛 or |𝐵1 ∪ 𝐶1| ≤ (1− 𝜂)3
4𝑛.

By 𝒦𝜂
𝑛, finally, we denote the class of all spanning subgraphs 𝐾 of 𝐾𝑛,𝑛,𝑛 with minimum

degree 𝛿(𝐾) > (2− 𝜂)𝑛. We also call the graphs in this class 𝜂-complete tripartite graphs.

Regularity

The version of the regularity lemma that we will use in this chapter takes, similarly as the
version that we saw in Chapter 6 (see Lemma 6.3), a preliminary partition as input and
produces a regular partition which refines this partition. As explained in Section 6.1 standard
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proofs of the regularity lemma allow for this extension. We will use the following definition.
Suppose that 𝑃 is a partition of the vertex set 𝑉 of a graph. Then we say that a partition
𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉𝑠 of 𝑉 refines 𝑃 if for every 𝑖 ∈ [𝑠] there exists a member 𝐴 ∈ 𝑃 such that
𝑉𝑖 ⊆ 𝐴. Observe that, in contrast to standard notation, we do not require that the “extra”
set 𝑉0 (which will be the exceptional set of a regular partition for our purposes) is contained
in one partition class of 𝑃 only.

Lemma 8.6 (Regularity lemma). For all 𝜀 > 0 and integers 𝑘0 and 𝑘* there is an integer 𝑘1

such that for all graphs 𝐺 = (𝑉,𝐸) on 𝑛 ≥ 𝑘1 vertices the following holds. Let 𝐺 be given
together with a partition 𝑉 = 𝑉 *1 ∪̇ . . . ∪̇𝑉 *𝑘* of its vertices. Then there is 𝑘0 ≤ 𝑘 ≤ 𝑘1 such that
𝐺 has an 𝜀-regular equipartition 𝑉 = 𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉𝑘 refining 𝑉 *1 ∪̇ . . . ∪̇𝑉 *𝑘*

We also say that 𝑉 = 𝑉 *1 ∪̇ . . . ∪̇𝑉 *𝑘* is a prepartition of 𝐺.
Remark. Throughout this chapter use blackboard symbols such as G or M for reduced graphs
and their subgraphs.

8.2 Connected matchings and fork systems

In order to prove Theorem 8.1 we will use the following structural result about coloured
graphs from 𝒦𝜂

𝑛. It asserts that such graphs either contain large monochromatic odd connected
matchings or appropriate connected fork systems. With the help of the regularity method we
will then, in Section 8.3, use this result (on the reduced graph of a regular partition) to find
monochromatic trees. The reason why odd connected matchings and connected fork systems
are useful for this task is explained in Section 8.3.1.

Lemma 8.7. For all 𝜂′ > 0 there are 𝜂 > 0 and 𝑛0 ∈ N such that for all 𝑛 ≥ 𝑛0 the following
holds. Every coloured graph 𝐾 ∈ 𝒦𝜂

𝑛 is either (1− 𝜂′)3
4𝑛-odd or

(︀
(1− 𝜂′)𝑛, (1− 𝜂′)3

2𝑛, 3
)︀
-good.

We remark that the dependence of the constant 𝑛0 and 𝜂′ is only linear, and in fact we can
choose 𝑛0 = 𝜂′/200. As we will see below, Lemma 8.7 is a consequence of the following two
lemmas. The first lemma analyses non-extremal members of 𝒦𝜂

𝑛.

Lemma 8.8 (non-extremal configurations). For all 𝜂′ > 0 there are 𝜂 ∈ (0, 𝜂′) and 𝑛0 ∈ N
such that for all 𝑛 ≥ 𝑛0 the following holds. Let 𝐾 be a coloured graph from 𝒦𝜂

𝑛 that is not
𝜂′-extremal. Then 𝐾 is (1− 𝜂′)3

4𝑛-odd.

The second lemma handles the extremal configurations.

Lemma 8.9 (extremal configurations). For all 𝜂′ > 0 there is 𝜂 ∈ (0, 𝜂′) such that the following
holds. Let 𝐾 be a coloured graph from 𝒦𝜂

𝑛 that is 𝜂-extremal. Then 𝐾 is ((1−𝜂′)𝑛, (1−𝜂′)3
2𝑛, 3)-

good.

Proofs of Lemma 8.8 and 8.9 are provided in Sections 8.6.1 and 8.6.2, respectively. We get
Lemma 8.7 as an easy corollary.

Proof of Lemma 8.7. Given 𝜂′ let 𝜂8.9 < 𝜂′ be the constant provided by Lemma 8.9 for
input 𝜂′ and let 𝜂8.8 be the constant produced by Lemma 8.8 for input 𝜂′8.8 := 𝜂8.9. Set
𝜂 := min{𝜂8.9, 𝜂8.8} and let 𝐾 ∈ 𝒦𝜂

𝑛 be a given coloured graph. Then 𝐾 ∈ 𝒦𝜂8.8
𝑛 and by

Lemma 8.8 the graph 𝐾 is either (1− 𝜂′8.8)3𝑛/4-odd (and thus (1− 𝜂′)3𝑛/4-odd as oddness is
monotone) or 𝜂8.9-extremal. In the first case we are done and in the second case Lemma 8.9
implies that 𝐾 is

(︀
(1− 𝜂′)𝑛, (1− 𝜂′)3

2𝑛, 3
)︀
-good (goodness is also monotone) and we are also

done.
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8.3 Proof of Theorem 8.1

8.3 Proof of Theorem 8.1

In this section we will first briefly outline the main ideas for the proof of Theorem 8.1. Then
we will state the remaining necessary lemmas, most notably our main embedding result
(Lemma 8.12). These lemmas will be proved in the subsequent sections. At the end of this
section we finally provide a proof of Theorem 8.1.

8.3.1 The idea of the proof

We apply the regularity lemma on the coloured graph 𝐾𝑛,𝑛,𝑛 with prepartition as given by
the partition classes of 𝐾𝑛,𝑛,𝑛. As a result we obtain a coloured reduced graph K ∈ 𝒦𝜂

𝑘

where the colour of an edge in K corresponds to the majority colour in the underlying regular
pair. Such a regular pair is well-known to possess almost as good embedding properties as a
complete bipartite graph. We apply our structural result (Lemma 8.7) and infer that K is
either (1−𝜂′)3

4𝑘-odd or ((1−𝜂′)𝑘, (1−𝜂′)3
2𝑘, 3)-good. Accordingly, there is a colour, say green,

such that K contains either an odd connected green matching M𝑜 of size at least (1− 𝜂′)3
4𝑘,

or it contains a connected greed matching M of size at least (1− 𝜂′)𝑘 and a 3-fork system F of
size at least (1− 𝜂′)3

2𝑘. We shall show that using either of these structures we can embed any
tree 𝑇 ∈ 𝒯 Δ

𝑡 into the green subgraph of 𝐾𝑛,𝑛,𝑛. As a preparatory step, we cut 𝑇 into small
subtrees (see Lemma 8.14), called shrubs.

Now let us first consider the case when we have an odd matching M𝑜. Our aim is to embed
each shrub 𝑆 into a regular pair (𝐴,𝐵) corresponding to an edge 𝑒 ∈ M𝑜. Shrubs are bipartite
graphs. Therefore there are two ways of assigning the colour classes of 𝑆 to the clusters of 𝑒.
This corresponds to two different orientations of 𝑆 for the embedding in (𝐴,𝐵). Our strategy
is to choose orientations for all shrubs (and hence assignments of their colour classes to clusters
of edges in M𝑜) in such a way that every cluster of 𝑉 (M𝑜) receives roughly the same number
of vertices of 𝑇 . We will show that this is possible without “over-filling” any cluster. It follows
that we can embed all shrubs into regular pairs corresponding to edges of M𝑜. The fact that
M𝑜 is connected and odd then implies that between any pair of edges in M𝑜 there are walks of
both even and odd length in the reduced graph. We will show that this allows us to connect
the shrubs and to obtain a copy of 𝑇 in the green subgraph of 𝐾𝑛,𝑛,𝑛.

If, on the other hand, we have a matching M as well as a 3-fork system F, the basic strategy
remains the same. We assign shrubs to edges of M or F. As opposed to the previous case,
however, these substructures of the reduced graph are not odd. This means that we cannot
choose the orientations of the shrubs as before. Rather, these orientations are determined by
the connections between the shrubs. Therefore, we distinguish the following two situations
when embedding the tree 𝑇 . If the partition classes of 𝑇 are reasonably balanced, then we use
the matching M for the embedding. If 𝑇 is unbalanced, on the other hand, we employ the
fork system F and use the prongs of the forks in F to accommodate the bigger partition class
of 𝑇 and the centres for the smaller.

8.3.2 The main embedding lemma

As indicated, in the proof of the main theorem we will use the regularity lemma in conjunction
with an embedding lemma (Lemma 8.12). This lemma states that a tree 𝑇 can be embedded
into a graph given together with a regular partition if there is a homomorphism from 𝑇 to
the reduced graph of the partition with suitable properties. In the following definition of
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a valid assignment we specify these properties. Roughly speaking, a valid assignment is a
homomorphism ℎ from a tree 𝑇 to a (reduced) graph G such that no vertex of G receives too
many vertices of 𝑇 and that does not “spread” in the tree too quickly in the following sense:
for each vertex 𝑥 ∈ 𝑉 (𝑇 ) we require that the neighbours of 𝑥 occupy at most two vertices of
G.

Definition 8.10 (valid assignment). Let G be a graph on vertex set [𝑘], let 𝑇 be a tree,
𝜚 ∈ [0, 1] and 𝐿 ∈ N. A mapping ℎ : 𝑉 (𝑇 ) → [𝑘] is a (𝜚, 𝐿)-valid assignment of 𝑇 to G if

1. ℎ is a homomorphism from 𝑇 to G,
2. |ℎ(𝑁𝑇 (𝑥))| ≤ 2, for every 𝑥 ∈ 𝑉 (𝑇 ),
3. |ℎ−1(𝑖)| < (1− 𝜚)𝐿, for every 𝑖 ∈ [𝑘].

In addition we need the concept of a cut of a tree, which is a set of vertices that cuts the
tree into small components which we call shrubs.

Definition 8.11 (cut, shrubs). Let 𝑆 ∈ N and 𝑇 be a tree with vertex set 𝑉 (𝑇 ). A set
𝐶 ⊆ 𝑉 (𝑇 ) is an 𝑆-cut (or simply cut) of 𝑇 if all components of 𝑇 − 𝐶 are of size at most 𝑆.
The components of 𝑇 − 𝐶 are called the shrubs of 𝑇 corresponding to 𝐶.

Now we can state the main embedding lemma.

Lemma 8.12 (main embedding lemma). Let 𝐺 be an 𝑛-vertex graph with an (𝜀, 𝑑)-reduced
graph G = ([𝑘], 𝐸(G)) and let 𝑇 be a tree with Δ(𝑇 ) ≤ Δ and an 𝑆-cut 𝐶. If 𝑇 has a(︀
𝜚, (1− 𝜀)𝑛

𝑘

)︀
-valid assignment to G and ( 1

10𝑑𝜚− 10𝜀)𝑛
𝑘 ≥ |𝐶|+ 𝑆 + Δ then 𝑇 ⊆ 𝐺.

The proof of this lemma is deferred to Section 8.5. Before we can apply it for embedding a
tree 𝑇 in the proof of Theorem 8.1 we need to construct a valid assignment for 𝑇 . This is
taken care of by the following lemma which states that this is possible if the reduced graph of
some regular partition contains an odd connected matching or a suitable fork system. The
proof of this lemma is given in Section 8.4.

Lemma 8.13 (assignment lemma). For all 𝜀, 𝜇 > 0 with 𝜀 < 𝜇/10 and for all 𝑘 ∈ N there
is 𝛼 = 𝛼(𝑘) > 0 and 𝑛0 = 𝑛0(𝜇, 𝜀, 𝑘) ∈ N such that for all 𝑛 ≥ 𝑛0, all 𝑟 ∈ N, all graphs G of
order 𝑘, and all trees 𝑇 with Δ(𝑇 ) ≤ 𝑛𝛼 the following holds. Assume that either

(M) G contains an odd connected matching of size at least 𝑚 and that 𝑡 := |𝑉 (𝑇 )| ≤
(1− 𝜇)2𝑚𝑛

𝑘 , or
(F) G contains a connected fork system with ratio 𝑟 and size at least 𝑓 , and 𝑇 has colour

class sizes 𝑡1 and 𝑡2 with 𝑡2 ≤ 𝑡1 ≤ 𝑡′ and 𝑡2 ≤ 𝑡′/𝑟, where 𝑡′ = (1− 𝜇)𝑓 𝑛
𝑘 .

Then there is an (𝜀𝑛
𝑘 )-cut 𝐶 of 𝑇 with |𝐶| ≤ 𝜀𝑛

𝑘 and a
(︀

1
2𝜇, (1− 𝜀)𝑛

𝑘

)︀
-valid assignment of 𝑇

to G.

8.3.3 The proof

Now we have all tools we need to prove the main theorem.

Proof of Theorem 8.1. We start by defining the necessary constants. Given 𝜇 > 0, set 𝜇′ := 𝜂′

in such a way that
1− 𝜇

3 ≤ (1− 𝜂′)2(1− 𝜇′). (8.1)
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8.3 Proof of Theorem 8.1

Lemma 8.7 with input 𝜂′ > 0 provides us with 𝜂 > 0 and 𝑘0 ∈ N. The regularity lemma,
Lemma 8.6, with input

𝜀 := min{ 1
100𝜂

2, 1
10𝜂

′2, 10−3𝜇′} (8.2)

and 𝑘0 and 𝑘* := 3 returns a constant 𝑘1. Next we apply Lemma 8.13 with input 𝜀
10 and 𝜇′

separately for each value 3𝑘 with 𝑘0 ≤ 3𝑘 ≤ 𝑘1 and get constants 𝛼(3𝑘) and 𝑛′0(3𝑘) for each
of these applications. Set 𝛼 := min{𝛼(3𝑘) : 𝑘0 ≤ 3𝑘 ≤ 𝑘1} and 𝑛′0 := max{𝑛′0(3𝑘) : 𝑘0 ≤ 3𝑘 ≤
𝑘1}. Finally, choose

𝑛0 := max{𝑛′0, 𝑘1, (𝑘1
𝜀 )1/(1−𝛼)} . (8.3)

We are given a complete tripartite graph 𝐾𝑛,𝑛,𝑛 with 𝑛 ≥ 𝑛0 as input whose edges are
coloured with green and red. Our goal is to select a colour and show that in this colour we
can embed every member of 𝒯 Δ

𝑡 with Δ ≤ 𝑛𝛼 and 𝑡 ≤ (3− 𝜇)𝑛/2.
We first select the colour. To this end let 𝐺 and 𝑅 be the subgraphs of 𝐾𝑛,𝑛,𝑛 formed by the

green and red edges, respectively. We apply the regularity lemma, Lemma 8.6, with input 𝜀
10

on the graph 𝐺 with prepartition 𝑉 *1 ∪̇𝑉 *2 ∪̇𝑉 *3 as given by the three partition classes of 𝐾𝑛,𝑛,𝑛.
We obtain an 𝜀

10 -regular equipartition 𝑉 = 𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉3𝑘 refining this prepartition such
that 𝑘0 ≤ 3𝑘 ≤ 𝑘1. Each cluster of this partition lies entirely in one of the partition classes of
𝐾𝑛,𝑛,𝑛. Let K = ([3𝑘], 𝐸K) be the graph that contains edges for all 𝜀-regular cluster pairs that
do not lie in the same partition class of 𝐾𝑛,𝑛,𝑛. Clearly, K is a tripartite graph. Furthermore,
there are less than 𝜀𝑘2 pairs (𝑉𝑖, 𝑉𝑗) in our regular partition that are not 𝜀

10 -regular in 𝐺. It
follows that at most 2

√
𝜀𝑘 clusters 𝑉𝑖 are contained in more than

√
𝜀𝑘 irregular pairs. We

move all these clusters and possibly up to 6
√
𝜀𝑘 additional clusters to the exceptional set

𝑉0. The additional clusters are chosen in such a way that we obtain in each partition class
of K the same number of clusters. We call the resulting exceptional set 𝑉 ′0 and denote the
remaining clusters by 𝑉 ′1∪̇ . . . ∪̇𝑉 ′3𝑘′ and the corresponding subgraph of K by K′. Observe
that 𝑘′ ≥ (1− 3

√
𝜀)𝑘. Because each remaining cluster forms an irregular pair with at most√

𝜀𝑘 ≤ 2
√
𝜀𝑘′ ≤ 𝜂′𝑘′ of the remaining clusters we conclude that K′ is a graph from 𝒦𝜂

𝑘′ . In
addition, it easily follows from the definition of 𝜀-regularity that each pair (𝑉𝑖, 𝑉𝑗) with 𝑖,
𝑗 ∈ [𝑘′] which is 𝜀-regular in 𝐺 is also 𝜀-regular in 𝑅. This motivates the following “majority”
colouring of K′: We colour the edges 𝑖𝑗 of K′ by green if the 𝜀-regular pair (𝑉𝑖, 𝑉𝑗) has density
at least 1

2 and by red otherwise. In this way we obtain a coloured graph K′
𝑐 ∈ 𝒦𝜂

𝑘′ .
Now we are in a position to apply Lemma 8.7 to K′

𝑐. This lemma asserts that K′
𝑐 is either

(1− 𝜂′)3
4𝑘
′-odd or

(︀
(1− 𝜂′)𝑘′, (1− 𝜂′)3

2𝑘
′, 3
)︀
-good. By definition this means that in one of the

colours of K′
𝑐, say in green, we either have

(O) an odd connected matching M𝑜 of size 𝑚1 ≥ (1− 𝜂′)3
4𝑘
′ ≥ (1− 𝜂′)(1− 3

√
𝜀)3

4𝑘,

(G) or a connected matching M of size 𝑚2 ≥ (1− 𝜂′)𝑘′ ≥ (1− 𝜂′)(1− 3
√
𝜀)𝑘 together with

a connected fork system F of size 𝑓 ≥ (1− 𝜂′)3
2𝑘
′ ≥ (1− 𝜂′)(1− 3

√
𝜀)3

2𝑘 and ratio 3.

In the following we use the matchings and fork systems we just obtained to show that we can
embed all trees of 𝒯 Δ

𝑡 in the corresponding system of regular pairs. For this purpose let G be
the graph on vertex set [3𝑘] that contains precisely all green edges of K′

𝑐. Observe that G is
an (𝜀, 1/2)-reduced graph for 𝐺.

Let 𝑇 ∈ 𝒯 Δ
𝑡 be a tree of order 𝑡 ≤ (3−𝜇)𝑛/2 and with maximal degree Δ(𝑇 ) ≤ 𝑛𝛼. Now we

distinguish two cases, depending on whether we obtained configuration (O) or configuration (G)
from Lemma 8.7. In both cases we plan to appeal to Lemma 8.13 to show that 𝑇 has

an (𝜀𝑛
𝑘 )-cut 𝐶 with |𝐶| ≤ 𝜀𝑛

𝑘 and a (1
2𝜇
′, (1− 𝜀)3𝑛

3𝑘 )-valid assignment to G. (8.4)
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Recall that we fed constants 𝜀, 𝜇′ > 0 and 3𝑘 into this lemma. Assume first that we are in
configuration (O). Because 𝑚1 ≥ (1− 𝜂′)(1− 2

√
𝜀)3

4𝑘 we have

𝑡 ≤ (3− 𝜇)
𝑛

2
≤ 3(1− 𝜇

3 )
𝑛

2
𝑚1

(1− 𝜂′)(1− 3
√
𝜀)3

4𝑘

(8.1),(8.2)

≤ (1− 𝜇′)2𝑚1 ·
3𝑛
3𝑘

.

Hence by (M) of Lemma 8.13 applied with the matching M𝑜 (with 𝑛 replaced by 𝑛̃ := 3𝑛
and 𝑘 replaced by 𝑘 := 3𝑘) we get (8.4) for 𝑇 in this case, as Δ(𝑇 ) ≤ 𝑛𝛼 ≤ 𝑛̃𝛼.

If we are in configuration (G), on the other hand, then let 𝑡1 ≥ 𝑡2 be the sizes of the two
colour classes of 𝑇 . We distinguish two cases, using the two different structures provided
in (G). Assume first that 𝑡2 ≤ 𝑡

3 . Then, we calculate similarly as above that

𝑡2 ≤ 1
3 𝑡 ≤ (1− 1

3𝜇)𝑛
2 ≤ 1

3(1− 𝜇′)𝑓 3𝑛
3𝑘 , and 𝑡1 ≤ 𝑡 ≤ (1− 𝜇′)𝑓 3𝑛

3𝑘 .

Otherwise, if 𝑡2 ≥ 𝑡
3 then, similarly,

𝑡2 ≤ 𝑡1 ≤ 2
3 𝑡 ≤ (1− 𝜇

3 )𝑛 ≤ (1− 𝜇′)𝑚2 · 3𝑛
3𝑘 .

Consequently, in both cases we can appeal to (F) of Lemma 8.13, in the first case applied to F
and in the second to M. We obtain (8.4) for 𝑇 as desired.

We finish our proof with an application of the main embedding lemma, Lemma 8.12. As
remarked earlier G is an (𝜀, 1/2)-reduced graph for 𝐺. We further have (8.4). For applying
Lemma 8.12 it thus remains to check that (1

2 · 1
10𝜚−10𝜀)𝑛

𝑘 ≥ 𝑆+ |𝐶|+Δ with 𝜚 = 1
2𝜇
′, 𝑆 = 𝜀𝑛

𝑘 ,
|𝐶| ≤ 𝜀𝑛

𝑘 , and Δ ≤ 𝑛𝛼. Indeed,

(︀
1
20𝜚− 10𝜀

)︀
𝑛
𝑘 =

(︀
1
20 · 1

2𝜇
′ − 10𝜀

)︀
𝑛
𝑘

(8.2)

≥ 3𝜀𝑛
𝑘

(8.3)

≥ 𝜀𝑛
𝑘 + 𝜀𝑛

𝑘 + 𝑛𝛼 .

So Lemma 8.12 ensures that 𝑇 ⊆ 𝐺, i. e., there is an embedding of 𝑇 in the subgraph induced
by the green edges in 𝐾𝑛,𝑛,𝑛.

8.4 Valid Assignments

In this section we will provide a proof for Lemma 8.13. The idea is as follows. Given a tree 𝑇
and a graph 𝐺 with reduced graph G we first construct a cut of 𝑇 that provides us with a
collection of small shrubs (see Lemma 8.14). Then we distribute these shrubs to edges of the
given matching or fork-system in G (see Lemmas 8.15 and 8.16). Finally, we slightly modify
this assignment in order to obtain a homomorphism from 𝑇 to G that satisfies the conditions
required for a valid assignment (see Lemma 8.18).

Lemma 8.14. For every 𝑆 ∈ N and for any tree 𝑇 there is an 𝑆-cut of 𝑇 that has size at
most |𝑉 (𝑇 )|

𝑆 .

Proof. To prove Lemma 8.14 we need the following fact.

Fact 1. For any 𝑆 ∈ N and any tree 𝑇 with |𝑉 (𝑇 )| > 𝑆, there is a vertex 𝑥 ∈ 𝑉 (𝑇 ) such that
the following holds. If 𝐹𝑥 is the forest consisting of all components of 𝑇 − 𝑥 with size at most
𝑆, then |𝑉 (𝐹𝑥)|+ 1 > 𝑆.
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To see this, root the tree 𝑇 at an arbitrary vertex 𝑥0. If 𝑥0 does not have the required
property, it follows from |𝑉 (𝑇 )| > 𝑆 that there exists a component 𝑇1 in 𝑇 − 𝑥0 with
|𝑉 (𝑇1)| > 𝑆. Set 𝑥1 := 𝑁(𝑥0) ∩ 𝑉 (𝑇1). Let 𝐹 (𝑇1 − 𝑥1) be the forest consisting of the
components of 𝑇1 − 𝑥1 that have size at most 𝑆. Observe that 𝐹 (𝑇1 − 𝑥1) is a subgraph of
𝐹𝑥1 . So if |𝐹 (𝑇1 − 𝑥1)|+ 1 > 𝑆, then 𝑥1 has the property required by Fact 1. Otherwise there
exists a component 𝑇2 in 𝑇1 − 𝑥1 of size larger than 𝑆. Observe that 𝑇2 is also a component
of 𝑇 − 𝑥1. Now repeat the procedure just described by setting 𝑥2 = 𝑁(𝑥1) ∩ 𝑉 (𝑇2) and so on,
i.e., more generally we obtain trees 𝑇𝑖 and vertices 𝑥𝑖 = 𝑁(𝑥𝑖−1) ∩ 𝑉 (𝑇𝑖) . As the size of 𝑇𝑖

decreases as 𝑖 increases, there must be an 𝑥𝑖 with the property required by Fact 1.
Now we prove Lemma 8.14. Set 𝐶 = ∅. Repeat the following process until it stops. Choose

a component 𝑇 ′ of 𝑇 − 𝐶 with size larger than 𝑆. Apply Fact 1 to 𝑇 ′ and obtain a cut vertex
𝑥 of 𝑇 ′ together with a forest 𝐹𝑥 consisting of components of 𝑇 ′ − 𝑥 that have size at most 𝑆
and is such that |𝑉 (𝐹𝑥) ∪ {𝑥}| > 𝑆. Add 𝑥 to 𝐶 and repeat unless there is no component of
size larger than 𝑆 in 𝑇 −𝐶. As |𝑉 (𝑇 −𝐶)| decreases this process stops. Observe that then 𝐶
is an 𝑆-cut. By the choice of 𝐶 we obtain

|𝑉 (𝑇 )| =
∑︁
𝑥∈𝐶

|𝑉 (𝐹𝑥) ∪ {𝑥}| > |𝐶| · 𝑆,

which implies the required bound on the size of 𝐶.

After Lemma 8.14 provided us with a cut and some corresponding shrubs we will distribute
each of these shrubs 𝑇𝑖 to an edge 𝑒 of the odd matching or the fork system in the reduced
graph by assigning one colour class of 𝑇𝑖 to one end of 𝑒 and the other colour class to the
other end. Here our goal is to distribute the shrubs and their vertices in such a way that no
cluster receives too many vertices. The next two lemmas guarantee that this can be done.
Lemma 8.15 takes care of the distribution of the shrubs to the clusters of a matching 𝑀 and
Lemma 8.16 to those of a fork system 𝐹 . We provide Lemmas 8.15 and 8.16 with numbers 𝑎𝑖,1

and 𝑎𝑖,2 as input. These numbers represent the sizes of the colour classes 𝐴𝑖,1 and 𝐴𝑖,2 of the
shrub 𝑇𝑖. Since we do not need any other information about the shrubs in these lemmas the
shrubs 𝑇𝑖 do not explicitly appear in their statement. Both lemmas then produces a mapping
𝜙 representing the assignment of the colour classes 𝐴𝑖,1 and 𝐴𝑖,2 to the clusters of 𝑀 or 𝐹 .

Lemma 8.15. Let {𝑎𝑖,𝑗}𝑖∈[𝑠], 𝑗∈[2] be natural numbers with sum at most 𝑡 and 𝑎𝑖,1 + 𝑎𝑖,2 ≤ 𝑆
for all 𝑖 ∈ [𝑠], and let 𝑀 be a matching on vertices 𝑉 (𝑀). Then there is a mapping
𝜙 : [𝑠]× [2] → 𝑉 (𝑀) such that 𝜙(𝑖, 1)𝜙(𝑖, 2) ∈𝑀 for all 𝑖 ∈ [𝑠] and∑︁

(𝑖,𝑗)∈𝜙−1(𝑣)

𝑎𝑖,𝑗 ≤
𝑡

2|𝑀 | + 2𝑆 for all 𝑣 ∈ 𝑉 (𝑀). (8.5)

Proof. A simple greedy construction gives the mapping 𝜙: We consider the numbers 𝑎𝑖,𝑗 as
weights that are distributed, first among the edges, and then among the vertices of 𝑀 . For
this purpose greedily assign pairs (𝑎𝑖,1, 𝑎𝑖,2) to the edges of 𝑀 , in each step choosing an edge
with minimum total weight. Then, clearly, no edge receives weight more than 𝑆 + 𝑡/|𝑀 |. In
a second round, do the following for each edge 𝑣𝑤 of 𝑀 . For the pairs (𝑎𝑖,1, 𝑎𝑖,2) that were
assigned to 𝑒, greedily assign one of the weights of this pair to 𝑣 and the other one to 𝑤, such
that the total weight on 𝑣 and on 𝑤 are as equal as possible. Hence each of these vertices
receives weight at most 1

2(𝑆 + 𝑡/|𝑀 |) + 𝑆 and so the mapping 𝜙 corresponding to this weight
distribution satisfies the desired properties.
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Lemma 8.16. Let {𝑎𝑖,1}𝑖∈[𝑠] and {𝑎𝑖,2}𝑖∈[𝑠] be natural numbers with sum at most 𝑡1 and 𝑡2,
respectively. Let 𝑆 ≤ 𝑡1 + 𝑡2 =: 𝑡 and assume that 𝑎𝑖,1 + 𝑎𝑖,2 ≤ 𝑆 for all 𝑖 ∈ [𝑠]. Let 𝐹 be a fork
system with ratio at most 𝑟 and partition classes 𝑉1(𝐹 ) and 𝑉2(𝐹 ) where |𝑉1(𝐹 )| ≥ |𝑉2(𝐹 )|.
Then there is a mapping 𝜙 : [𝑠] × [2] → 𝑉1(𝐹 ) ∪ 𝑉2(𝐹 ) such that 𝜙(𝑖, 1)𝜙(𝑖, 2) ∈ 𝐹 and
𝜙(𝑖, 𝑗) ∈ 𝑉𝑗(𝐹 ) for all 𝑖 ∈ [𝑠], 𝑗 ∈ [2] satisfying that for all 𝑣1 ∈ 𝑉1(𝐹 ), 𝑣2 ∈ 𝑉2(𝐹 ) we have∑︁

(𝑖,1)∈𝜙−1(𝑣1)

𝑎𝑖,1 ≤
𝑡1
|𝐹 | +

√︀
12𝑡𝑆|𝐹 | and

∑︁
(𝑖,2)∈𝜙−1(𝑣2)

𝑎𝑖,2 ≤
𝑟𝑡2
|𝐹 | +

√︀
12𝑡𝑆|𝐹 | . (8.6)

In the proof of this lemma we will make use the so-called Hoeffding bound for sums of
independent random variables provided by Theorem 2.5.

Proof of Lemma 8.16. For showing this lemma we use a probabilistic argument and again
consider the 𝑎𝑖,𝑗 as weights which are distributed among the vertices of 𝐹 .

Observe first that we can assume without loss of generality that for all but at most one
𝑖 ∈ [𝑠] we have 1

2𝑆 ≤ 𝑎𝑖,1 + 𝑎𝑖,2 since otherwise we can group weights 𝑎𝑖,1 together, and also
group the corresponding 𝑎𝑖,2 together, such that this condition is satisfied and continue with
these grouped weights. This in turn implies, that 𝑠 ≤ (2𝑡/𝑆) + 1 ≤ 3𝑡/𝑆.

We start by assigning weights 𝑎𝑖,1 to vertices of 𝑉1(𝐹 ) by (randomly) constructing a mapping
𝜙1 : [𝑠]× [1] → 𝑉1(𝐹 ). To this end, independently and uniformly at random choose for each
𝑖 ∈ [𝑠] an image 𝜙1(𝑖, 1) in 𝑉1(𝐹 ). Clearly, there is a unique way of extending such a mapping
𝜙1 to a mapping 𝜙 : [𝑠]× [2] → 𝑉1(𝐹 ) ∪ 𝑉2(𝐹 ) satisfying 𝜙(𝑖, 1)𝜙(𝑖, 2) ∈ 𝐹 . We claim that the
probability that 𝜙1 gives rise to a mapping 𝜙 which satisfies the assertions of the lemma is
positive.

Indeed, for any fixed vertex 𝑣 = 𝑣1 ∈ 𝑉1(𝐹 ) or 𝑣 = 𝑣2 ∈ 𝑉2(𝐹 ) let 𝜎(𝑣) be the event that
the mapping 𝜙 does not satisfy (8.6) for 𝑣. We will show that 𝜎(𝑣) occurs with probability
strictly less than 1/(2|𝐹 |), which clearly implies the claim above. We first consider the case
𝑣 = 𝑣1 ∈ 𝑉1(𝐹 ). For each 𝑖 ∈ [𝑠] let 1𝑖 be the indicator variable for the event 𝜙(𝑖, 1) = 𝑣1 and
define a random variable 𝑋𝑖 by setting

𝑋𝑖 =
(︁
1𝑖 − 1

|𝐹 |

)︁
𝑎𝑖,1

𝑆 .

Observe that these variables are independent, and satisfy E𝑋𝑖 = 0 and |𝑋𝑖| ≤ 1 and so
Theorem 2.5 applied with 𝑎 =

√︀
12𝑡|𝐹 |/𝑆 asserts that

P
[︁∑︁

𝑖∈[𝑠]

𝑋𝑖 >
√︀

12𝑡|𝐹 |/𝑆
]︁
≤ exp

(︂
−12𝑡|𝐹 |
𝑆 · 2𝑠

)︂
≤ exp (−2|𝐹 |) < 1

2|𝐹 | (8.7)

where we used 𝑠 ≤ 3𝑡/𝑆. Now, by definition we have

𝑋 :=
∑︁
𝑖∈[𝑠]

𝑋𝑖 =
1
𝑆

∑︁
(𝑖,1)∈𝜙−1(𝑣1)

𝑎𝑖,1 −
𝑡1
|𝐹 |𝑆 ,

and so, if (8.6) did not hold for 𝑣1, then we had 𝑋 >
√︀

12𝑡|𝐹 |/𝑆, which by (8.7) occurs with
probability less than 1/(2|𝐹 |).

For the case 𝑣 = 𝑣2 ∈ 𝑉2(𝐹 ) we proceed similarly. Let 𝑟′ ≤ 𝑟 be the number of prongs of the
fork that contains 𝑣2. We define indicator variables 1′𝑖 for the events 𝜙(𝑖, 2) = 𝑣2 for 𝑖 ∈ [𝑠]
and random variables

𝑌𝑖 =
(︁
1
′
𝑖 − 𝑟′

|𝐹 |

)︁
𝑎𝑖,2

𝑆 .
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with E𝑌𝑖 = 0 and |𝑌𝑖| ≤ 1. The rest of the argument showing that 𝜎(𝑣2) occurs with probability
strictly less than 1/(2|𝐹 |) is completely analogous to the case 𝑣 = 𝑣1 above. With this we are
done.

As explained earlier these two previous lemmas will allow us to assign the shrubs of a tree
𝑇 to edges of a reduced graph G. By applying them we will obtain a mapping 𝜓 from the
vertices of 𝑇 to those of G that is a homomorphism when restricted to the shrubs of 𝑇 . The
following lemma transforms such a 𝜓 to a homomorphism ℎ from the whole tree 𝑇 to G that
“almost” coincides with 𝜓 provided the structures of 𝑇 and G are “compatible” with respect to
𝜓 in the sense of the following definition.

Definition 8.17 (walk condition). Let 𝑇 be a tree and 𝐶 ⊆ 𝑉 (𝑇 ). A mapping 𝜓 : 𝑉 (𝑇 )∖𝐶 →
G satisfies the walk condition if for any 𝑥, 𝑦 ∈ 𝑉 (𝑇 ) ∖ 𝐶 such that there is a path 𝑃𝑥,𝑦 from 𝑥
to 𝑦 whose internal vertices are all in 𝐶 there is a walk P𝑥,𝑦 between 𝜓(𝑥) and 𝜓(𝑦) in G such
that the length of 𝑃𝑥,𝑦 and the length of P𝑥,𝑦 have the same parity.

Lemma 8.18. Let 𝑇 be a tree with maximal degree Δ, let 𝐶 be a cut of 𝑇 , and let G be a
graph on 𝑘 vertices. Let 𝜓 : 𝑉 (𝑇 ) ∖𝐶 → 𝑉 (G) be a homomorphism that maps each shrub of
𝑇 corresponding to 𝐶 to an edge of G and that satisfies the walk condition. Then there is a
homomorphism ℎ : 𝑉 (𝑇 ) → 𝑉 (G) satisfying

(h1) |ℎ(𝑁𝑇 (𝑥))| ≤ 2 for all vertices 𝑥 ∈ 𝑉 (𝑇 ) and
(h2) |{𝑥 ∈ 𝑉 (𝑇 ) : ℎ(𝑥) ̸= 𝜓(𝑥)}| ≤ 3|𝐶|Δ2𝑘+1.

Observe that Property (h1) in this lemma asserts that images of neighbours of any vertex
in 𝑇 occupy at most two vertices in G. By assumption, this is clearly true for 𝜓 but we need
to make sure that ℎ inherits this feature. Property (h2) on the other hand states that ℎ and
𝜓 do not differ much. The assumption that 𝜓 satisfies the walk condition is essential for the
construction of the homomorphism ℎ.

Proof of Lemma 8.18. We start with some definitions. Choose a non-empty shrub correspond-
ing to 𝐶 in 𝑇 and call it shrub 1. Then choose a cut-vertex 𝑥*0 ∈ 𝐶 adjacent to this shrub. We
consider 𝑥*0 as the root of the tree 𝑇 . This naturally induces the following partial order ≺ on
the vertices 𝑉 (𝑇 ) of 𝑇 : For vertices 𝑥, 𝑦 ∈ 𝑉 (𝑇 ) we have 𝑥 ≺ 𝑦 iff 𝑦 is a descendant of 𝑥 in the
tree 𝑇 with root 𝑥*0. Note that 𝑥*0 is the unique minimal element of ≺ and the leaves of 𝑇 are
its maximal elements. Further, for 𝑥 ∈ 𝐶 set 𝑊𝑥 := {𝑧 ∈ 𝑉 (𝑇 ) : dist𝑇 (𝑥, 𝑧) ≤ 2𝑘+1 & 𝑥 ≺ 𝑧}
and let 𝑊 = 𝐶 ∪⋃︀𝑥∈𝐶 𝑊𝑥. Observe that the bound on the maximal degree of 𝑇 implies that
|𝑊 | ≤ 2Δ2𝑘+1|𝐶|+ |𝐶| ≤ 3Δ2𝑘+1|𝐶|. For 𝑥 ∈ 𝑉 (𝑇 ) ∖𝑊 , we set ℎ(𝑥) := 𝜙(𝑥). This ensures
that Condition (h2) is fulfilled. In addition the following fact holds because 𝜓 maps each
shrub to an edge of G.
Fact 1. The mapping ℎ restricted to 𝑉 (𝑇 ) ∖𝑊 is a homomorphism. For all vertices 𝑥 ∈
𝑉 (𝑇 ) ∖𝑊 all children 𝑦 of 𝑥 that are not cut-vertices have the same ℎ(𝑦).

We shall extend ℎ to the set 𝑊 . Our strategy is roughly as follows: We start by defining
ℎ(𝑥*0) for the root cut-vertex 𝑥*0 in a suitable way. Recall that all children of 𝑥*0 are contained
in 𝑊 . Then, we let ℎ map all non-cut-vertex children 𝑦 ∈ 𝑁𝑇 (𝑥*0) ∖ 𝐶 of 𝑥*0 to a suitable
neighbour of ℎ(𝑥*0) in G and do the following for each of these 𝑦. Observe that 𝑦 is the root
of some shrub, which we will call the shrub of 𝑦. Now, ℎ(𝑦) and 𝜓(𝑦) might be different.
However, we will argue that there is a walk of even length 𝑚 ≤ 2𝑘 between ℎ(𝑦) and 𝜓(𝑦).
Then we will define ℎ for all vertices 𝑦′ ∈𝑊𝑥*0

contained in the shrub of 𝑦 and with distance
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at most 𝑚 from 𝑦. More precisely we will use the walk of length 𝑚 between ℎ(𝑦) and 𝜓(𝑦)
and let ℎ map all 𝑦′ with distance 𝑖 to 𝑦 to the 𝑖-th vertex of this walk. All vertices 𝑧 in the
shrub of 𝑦 for which ℎ is still undefined after these steps are then mapped to ℎ(𝑧) := 𝜓(𝑧).
Once this has been done for all 𝑦 ∈ 𝑁𝑇 (𝑥*0) ∖ 𝐶 we proceed in the same way with the next
cut-vertex: We choose a cut-vertex 𝑥* with parent 𝑥 for which ℎ(𝑥) is already defined and
proceed similarly for 𝑥* as we did for 𝑥*0.

We now make the procedure for the extension of ℎ on 𝑊 precise. Throughout this procedure
we will assert the following property for all non-cut vertices 𝑦 of 𝑇 such that ℎ(𝑦) is defined.

There is a path of even length in G between ℎ(𝑦) and 𝜓(𝑦). (8.8)

Observe that (8.8) trivially holds for all 𝑦 ∈ 𝑉 (𝑇 ) ∖𝑊 .
As explained, we start our procedure with the root 𝑥*0 of the tree 𝑇 . Let 𝑥1 be the root of

shrub 1. By definition 𝑥1 is adjacent to 𝑥*0. Note that, while 𝜓 is not defined on 𝑥*0 it is defined
on 𝑥1. Hence we can legitimately set ℎ(𝑦) = 𝜓(𝑥1) for all neighbours 𝑦 /∈ 𝐶 of 𝑥*0 in 𝑇 and
choose ℎ(𝑥*0) arbitrarily in 𝑁G(𝜓(𝑥1)). Observe that this is consistent with (8.8) because for
any neighbour 𝑦 /∈ 𝐶 of 𝑥*0 we have ℎ(𝑦) = 𝜓(𝑥1) and dist𝑇 (𝑦, 𝑥1) ∈ {0, 2}. By assumption 𝜓
satisfies the walk condition. Hence there is a walk in G with even length between ℎ(𝑦) = 𝜓(𝑥1)
and 𝜓(𝑦). Let P𝑦 = 𝑣0, 𝑣1, . . . , 𝑣𝑚 be a walk in G of minimal but even length with 𝑣0 = ℎ(𝑦)
and 𝑣𝑚 = 𝜓(𝑦). As G has 𝑘 vertices we have that 𝑚 ≤ 2𝑘. For all vertices 𝑧 ∈𝑊 that are in
the shrub of 𝑦 and satisfy dist𝑇 (𝑦, 𝑧) = 𝑗 for some 𝑗 ≤ 𝑚, we then define ℎ(𝑧) := 𝑣𝑗 . For the
remaining vertices 𝑧 ∈ 𝑊 in the shrub of 𝑦 we set ℎ(𝑧) := 𝜓(𝑧). Observe that this is again
consistent with (8.8) and in conjunction with Fact 1 implies the following condition (which we
will also guarantee throughout the whole process of defining ℎ).

Fact 2. Let 𝑥* ∈ 𝐶 and 𝑦 /∈ 𝐶 such that ℎ(𝑥*) and ℎ(𝑦) are defined. Then the following holds:

(i) All children 𝑦′ /∈ 𝐶 of 𝑥* have the same ℎ(𝑦′) and ℎ(𝑥*)ℎ(𝑦′) ∈ 𝐸(G).
(ii) All children 𝑦′ /∈ 𝐶 of 𝑦 have the same ℎ(𝑦′) and ℎ(𝑦)ℎ(𝑦′) ∈ 𝐸(G).

In this way we have defined ℎ for all shrubs adjacent to the root 𝑥*0.
Next we consider any vertex 𝑥* ∈ 𝐶 ∩𝑁𝑇 (𝑥*0) and set ℎ(𝑥*) := ℎ(𝑥1), where 𝑥1 is as defined

above. We let 𝑧* be the parent of 𝑥*, i.e., 𝑧* = 𝑥*0. Then set ℎ(𝑦) := ℎ(𝑧*) for all children
𝑦 /∈ 𝐶 of 𝑥*. This is consistent with Fact 2. Afterwards we have the following situation: 𝑥*

and 𝑧* = 𝑥*0 are neighbouring cut-vertices and the vertex 𝑥1 is a non-cut-vertex neighbour of
𝑥*0. Let 𝑦 ∈ 𝑁𝑇 (𝑥*) ∖ 𝐶. Then we have dist𝑇 (𝑥1, 𝑦) = 3. Because 𝑦 and 𝑥1 are both non-cut
vertices the properties of 𝜓 imply as before that there is a walk in G of odd length between
𝜓(𝑥1) and 𝜓(𝑦). By the walk condition and the facts that ℎ(𝑥1) = 𝜓(𝑥1) and ℎ(𝑥*0) = ℎ(𝑦),
we know that in G there is a walk P𝑦 of even length 𝑚 ≤ 2𝑘 between ℎ(𝑦) and 𝜓(𝑦). This
verifies (8.8) for 𝑦. We thus can define ℎ for the vertices 𝑧 contained in the shrub of 𝑦 as above:
if dist𝑇 (𝑦, 𝑧) ≤ 𝑚 then we use this path and set ℎ(𝑧) according to dist𝑇 (𝑦, 𝑧) and otherwise
we set ℎ(𝑧) := 𝜓(𝑧). With this we stay consistent with (8.8) and Fact 2. We then repeat the
above procedure for all 𝑥* ∈ 𝐶 ∩𝑁𝑇 (𝑥*0) which implies that the next fact holds true.

Fact 3. All vertices 𝑥 ∈ 𝑁𝑇 (𝑥*0) have the same ℎ(𝑥).

Now we are in the following situation.

Fact 4. The mapping ℎ is defined on all shrubs adjacent to cut vertices 𝑥* with ℎ(𝑥*) defined.
Moreover, for each cut vertex 𝑥* with ℎ(𝑥*) undefined that has a parent 𝑧 for which ℎ(𝑧) is
defined, then 𝑧 has a parent 𝑧′ with ℎ(𝑧′) defined and ℎ(𝑧)ℎ(𝑧′) is an edge of G.
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As long as ℎ is not defined for all 𝑧 ∈ 𝑉 (𝑇 ) we then repeat the following. We choose a cut
vertex 𝑥* with ℎ(𝑥*) undefined that is minimal with respect to this property in ≺. Denote the
parent of 𝑥* by 𝑧 and let 𝑧′ be the parent of 𝑧. Then, by Fact 4, the mapping ℎ has already
been defined for 𝑧′ and 𝑧. Set ℎ(𝑥*) := ℎ(𝑧′) and for all children 𝑦 /∈ 𝐶 of 𝑥* set ℎ(𝑦) := ℎ(𝑧).
Because ℎ(𝑧′)ℎ(𝑧) is an edge of G by Fact 4 this gives the following property for 𝑥* (which we,
again, guarantee throughout the definition of ℎ).

Fact 5. For all cut vertices 𝑥* ∈ 𝐶 with ℎ(𝑥*) defined we have that ℎ(𝑥*)ℎ(𝑧) is an edge of G,
where 𝑧 is the parent of 𝑥*. Moreover if 𝑥* /∈ {𝑥0}∪ (𝐶 ∩𝑁𝑇 (𝑥*0)), we have that ℎ(𝑥*) = ℎ(𝑧′),
where 𝑧′ is the parent of 𝑧.

Moreover, the definition of ℎ(𝑦) is consistent with (8.8), i.e. there is a path of even length
in G between ℎ(𝑦) and 𝜓(𝑦) for all children 𝑦 /∈ 𝐶 of 𝑥*. Accordingly we can again define ℎ
for the vertices in the shrub of 𝑦 as before, using this path.

This finishes the description of the definition of ℎ. It remains to verify that ℎ is a homo-
morphism and satisfies Condition (h1). For the first part it suffices to check that for any
𝑦 ∈ 𝑉 (𝑇 ) ∖ {𝑥*0} with parent 𝑥 we have ℎ(𝑦) ∈ 𝑁G(ℎ(𝑥)). If 𝑦 is a vertex in some shrub then
Facts 2(i) and 2(ii) imply that ℎ(𝑥)ℎ(𝑦) is an edge of G. If 𝑦 is a cut-vertex, on the other
hand, Fact 5 implies that ℎ(𝑥)ℎ(𝑦) is an edge of G. So ℎ is a homomorphism.

Further, by Fact 2(i) and (ii) we get for all vertices 𝑥 of 𝑇 that all children 𝑥′ /∈ 𝐶 of 𝑥 have
the same ℎ(𝑥′). By Fact 5, if 𝑥 ̸= 𝑥*0 then all children 𝑥′ ∈ 𝐶 of 𝑥 and the parent 𝑧 of 𝑥 have
the same ℎ(𝑥′) = ℎ(𝑧′). Together wit Fact 3, this implies Property (h1).

Now we are ready to prove Lemma 8.13.

Proof of Lemma 8.13. Given 𝜀, 𝜇 > 0 with 𝜀 ≤ 𝜇/10 and 𝑘 ∈ N we set 𝛼, 𝑛0 and an auxiliary
constant 𝛽 > 0 such that

𝛼 · (2𝑘 + 1) = 1
2 , 𝛽 = 𝜀𝜇/(500𝑘3), and 𝑛0 = (1500𝑘/(𝜀𝜇))4. (8.9)

Let G be a graph of order 𝑘 that has an odd connected matching M of size at least 𝑚 or
a fork system F of size at least 𝑓 and ratio 𝑟. Let 𝑇 be a tree satisfying the respective
conditions of Case (M) or (F) and let 𝑉1 and 𝑉2 denote the two partition classes of 𝑇 with
𝑡1 = |𝑉1| ≥ |𝑉2| = 𝑡2. We first construct an 𝑆-cut 𝐶 for 𝑇 with 𝑆 := 𝛽𝑛 ≤ 𝜀𝑛

𝑘 . Lemma 8.14
asserts that there is such a cut 𝐶 with

|𝐶| ≤ |𝑉 (𝑇 )|
𝑆

≤ (1− 𝜇)2𝑘𝑛
𝑘

𝛽𝑛

(8.9)

≤ 1000𝑘3

𝜀𝜇

(8.9)

≤ 𝜀
𝑛

𝑘
. (8.10)

Let 𝑇1, . . . , 𝑇𝑠 be the shrubs of 𝑇 corresponding to the cut 𝐶. We now distinguish whether we
are in Case (M) or (F) of the lemma. In both cases we will construct a mapping 𝜓 that is a
homomorphism from 𝑇 − 𝐶 to either M or F and satisfies the walk condition. After this case
distinction the mapping 𝜓 will serve as input for Lemma 8.18 which we then use to finish this
proof.

Case (M) : In this case we apply Lemma 8.15 in order to obtain an assignment of the shrubs
to matching edges of M as follows. Set 𝑎𝑖,𝑗 := |𝑉 (𝑇𝑖) ∩ 𝑉𝑗 | for all 𝑖 ∈ [𝑠], 𝑗 ∈ [2]. This implies
that

∑︀
𝑖,𝑗 𝑎𝑖,𝑗 ≤ |𝑉 (𝑇 )| ≤ 𝑡 = (1 − 𝜇)2𝑚𝑛

𝑘 and, because 𝐶 is an 𝑆-cut, that 𝑎𝑖,1 + 𝑎𝑖,2 ≤ 𝑆
for all 𝑖 ∈ [𝑠]. Accordingly Lemma 8.15 produces a mapping 𝜙 : [𝑠]× [2] → 𝑉 (M) satisfying
𝜙(𝑖, 1)𝜙(𝑖, 2) ∈ M and (8.5).
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We now use 𝜙 to construct a mapping 𝜓 : 𝑇 ∖ 𝐶 → 𝑉 (M). Set 𝜓(𝑣) := 𝜙(𝑎𝑖,𝑗) for all
𝑣 ∈ 𝑉 (𝑇𝑖) ∩ 𝑉𝑗 . Note that this definition together with (8.5) gives

|𝜓−1(ℓ)| ≤ 𝑡

2𝑚
+ 2𝑆 ≤ (1− 𝜇)

𝑛

𝑘
+ 2𝛽𝑛 (8.11)

for all vertices ℓ of M. Each edge of 𝑇 −𝐶 lies in some shrub 𝑇𝑖, 𝑖 ∈ [𝑠] and as the mapping 𝜙
sends each shrub 𝑇𝑖 to an edge of M, the mapping 𝜓 is a homomorphism from 𝑇 − 𝐶 to M.
Moreover, as M is an odd connected matching, for any pairs of vertices ℓ, ℓ′ ∈ 𝑉 (M) there is as
well an even as also an odd walk in G between ℓ and ℓ′. Thus 𝜓 satisfies the walk condition.

Case (F) : In this case we apply Lemma 8.16 in order to obtain an assignment of the shrubs
corresponding to 𝐶 to edges of F. For this application we use parameters 𝑡1 = |𝑉1|, 𝑡2 = |𝑉2|
and 𝑎𝑖,𝑗 := |𝑉 (𝑇𝑖) ∩ 𝑉𝑗 | for all 𝑖 ∈ [𝑠], 𝑗 ∈ [2]. It follows that

∑︀
𝑖 𝑎𝑖,1 = 𝑡1 and

∑︀
𝑖 𝑎𝑖,2 = 𝑡2.

Because 𝐶 is an 𝑆-cut, we further have 𝑎𝑖,1 + 𝑎𝑖,2 ≤ 𝑆 for all 𝑖 ∈ [𝑠]. Accordingly Lemma 8.16
produces a mapping 𝜙 : [𝑠]× [2] → 𝑉 (F) satisfying 𝜙(𝑖, 1)𝜙(𝑖, 2) ∈ F and (8.6).

Again, we use 𝜙 to construct the mapping 𝜓 : 𝑇 ∖ 𝐶 → 𝑉 (F) by setting 𝜓(𝑣) := 𝜙(𝑎𝑖,𝑗) for
all 𝑣 ∈ 𝑉 (𝑇𝑖) ∩ 𝑉𝑗 . By assumption we have 𝑡1 ≤ 𝑡′ = (1− 𝜇)𝑓 𝑛

𝑘 and 𝑡2 ≤ 𝑡′

𝑟 = (1− 𝜇)𝑓 𝑛
𝑟𝑘 and

hence 𝑡1 + 𝑡2 ≤ (1− 𝜇)𝑓 𝑛
𝑘 (1 + 1

𝑟 ). Together with (8.6) this implies for all vertices ℓ1 ∈ 𝑉1(F)
and ℓ2 ∈ 𝑉2(F) that

|𝜓−1(ℓ1)| ≤ (1− 𝜇)𝑓 𝑛
𝑘

𝑓
+
√︁

12(1− 𝜇)𝑓 𝑛
𝑘 (1 + 1

𝑟 )𝑆𝑓

≤ (1− 𝜇)𝑛
𝑘 + 2𝑓𝑛

√︀
6𝛽/𝑘 ,

(8.12)

and similarly

|𝜓−1(ℓ2)| ≤ 𝑟(1− 𝜇)𝑓 𝑛
𝑟𝑘

𝑓
+ 2𝑓𝑛

√︀
6𝛽/𝑘 ≤ (1− 𝜇)

𝑛

𝑘
+ 2𝑓𝑛

√︀
6𝛽/𝑘 . (8.13)

Putting (8.12) and (8.13) together, we conclude for any ℓ ∈ 𝑉 (F) that

|𝜓−1(ℓ)| ≤ (1− 𝜇)𝑛
𝑘 + 2𝑓𝑛

√︀
6𝛽/𝑘 ≤ (1− 𝜇)𝑛

𝑘 + 2𝑛
√︀

6𝛽𝑘 . (8.14)

As before it is easy to see that the mapping 𝜓 is a homomorphism from 𝑇−𝐶 to F. Moreover,
as F is a fork system, there is an even walk between any two vertices ℓ, ℓ′ ∈ 𝑉1(F) and between
any two vertices ℓ, ℓ′ ∈ 𝑉2(F). Because 𝜓 maps vertices of 𝑉1(𝑇 ) to 𝑉1(F) and vertices of 𝑉2(𝑇 )
to vertices of 𝑉2(F), the mapping 𝜓 also satisfies the walk condition in this case.

Applying Lemma 8.18 : In both Cases (M) and (F) we now apply Lemma 8.18 in order to
transform 𝜓 into a homomorphism from the whole tree 𝑇 to G. With input 𝑇 , Δ := 𝑛𝛼, 𝐶,
G, and 𝜓 this lemma produces a homomorphism ℎ : 𝑉 (𝑇 ) → 𝑉 (G) satisfying (h1) and (h2).
We claim that ℎ is the desired (𝜇/2, (1− 𝜀)𝑛

𝑘 )-valid assignment.
Indeed, ℎ is a homomorphism and so we have Condition 1 of Definition 8.10. Condition 2

follows from (h1). To check Condition 3 let ℓ be any vertex of G. We need to verify that
|ℎ−1(ℓ)| ≤ (1 − 1

2𝜇)(1 − 𝜀)𝑛
𝑘 . By (h2) we have |ℎ−1(ℓ)| ≤ |𝜓−1(ℓ)| + 3|𝐶|Δ2𝑘+1. Because

|𝐶| ≤ 1000𝑘/(𝜀𝜇) by (8.10) and Δ2𝑘+1 = 𝑛𝛼·(2𝑘+1) =
√
𝑛 by (8.9) we infer that

|ℎ−1(ℓ)| ≤ |𝜓−1(ℓ)|+ 3000𝑘
𝜀𝜇

√
𝑛

(8.9)

≤ |𝜓−1(ℓ)|+ 𝛽𝑛

(8.11),(8.14)

≤ (1− 𝜇)𝑛
𝑘 + max

{︁
2𝛽𝑛, 2𝑛

√︀
6𝛽𝑘

}︁
+ 𝛽𝑛

(8.9)

≤ (1− 1
2𝜇)(1− 𝜀)𝑛

𝑘 ,

where in the last inequality we use that 𝜀 ≤ 𝜇/10.
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8.5 Proof of the main embedding lemma

Our proof of Lemma 8.12 uses a greedy strategy for embedding the vertices of a tree with
valid assignment into the given host graph.

Proof of Lemma 8.12. Let 𝑉0∪̇𝑉1∪̇ . . . ∪̇𝑉𝑘 be an (𝜀, 𝑑)-regular partition of 𝐺 with reduced
graph G and let 𝑇 be a tree with Δ(𝑇 ) ≤ Δ and with a (𝜚, (1− 𝜀)𝑛

𝑘 )-valid assignment ℎ to G.
Further, let 𝐶 be an 𝑆-cut of 𝑇 , let 𝑇1, . . . , 𝑇𝑠 be the shrubs of 𝑇 corresponding to 𝐶, and
assume that

( 1
10𝑑𝜚− 10𝜀)𝑛

𝑘 ≥ |𝐶|+ 𝑆 + Δ . (8.15)

As last preparation we arbitrarily divide each cluster 𝑉𝑖 = 𝑉 ′𝑖 ∪̇𝑉 *𝑖 into a set 𝑉 ′𝑖 of size
(1 − 1

2𝜚)|𝑉𝑖|, which we will call embedding space, and the set of remaining vertices 𝑉 *𝑖 , the
so-called connecting space. Next we will first specify the order in which we embed the vertices
of 𝑇 into 𝐺, then describe the actual embedding procedure, and finally justify the correctness
of this procedure.

Pick an arbitrary vertex 𝑥*1 ∈ 𝐶 as root of 𝑇 and order the cut vertices 𝐶 = {𝑥*1, . . . , 𝑥*𝑐},
𝑐 = |𝐶| in such a way that on each 𝑥*1 − 𝑥*𝑖 -path in 𝑇 there are no 𝑥*𝑗 with 𝑗 > 𝑖. Similarly,
for each 𝑖 ∈ [𝑠] let 𝑡(𝑖) denote the number of vertices in the shrub 𝑇𝑖 and order the vertices
𝑦1, . . . , 𝑦𝑡(𝑖) of 𝑇𝑖 such that all paths in 𝑇𝑖 starting at the root of 𝑇𝑖 have solely ascending labels.
For embedding 𝑇 into 𝐺 we process the cut vertices and shrubs according to these orderings,
more precisely we first embed 𝑥*1, then all shrubs 𝑇𝑖 that have 𝑥*1 as parent, one after the
other. For embedding 𝑇𝑖 we embed its vertices in the order 𝑦1, . . . , 𝑦𝑡(𝑖) defined above. Then
we embed the next cut vertex 𝑥*2 (which is a child of one of the shrubs embedded already or of
𝑥*1), then all child shrubs of 𝑥*2, and so on. Let 𝑥1, . . . , 𝑥|𝑉 (𝑇 )| be the corresponding ordering
of 𝑉 (𝑇 ).

Before turning to the embedding procedure itself, observe that Property 2 of Definition 8.10
asserts the following fact. For a vertex 𝑥𝑗 of 𝑇 and for 𝑖 ∈ [𝑘] let 𝑁𝑖(𝑥𝑗) be the set of
neighbours 𝑥𝑗′ of 𝑥𝑗 in 𝑇 with 𝑗′ > 𝑗 and ℎ(𝑥𝑗′) = 𝑖.

Fact 1. For all vertices 𝑥𝑗 of 𝑇 at most two sets 𝑁𝑖(𝑥𝑗) are non-empty.

The idea for embedding 𝑇 into 𝐺 is as follows. We equip each vertex 𝑥 ∈ 𝑉 (𝑇 ) with a
candidate set 𝑉 (𝑥) ⊆ 𝑉ℎ(𝑥) and from which 𝑥 will choose its image in 𝐺. To start with, we
set 𝑉 (𝑥*) := 𝑉 *ℎ(𝑥*) for all vertices 𝑥* ∈ 𝐶 and 𝑉 (𝑥) := 𝑉 ′ℎ(𝑥) for all other vertices 𝑥. Cut
vertices will be embedded to vertices in a connecting space and non-cut vertices to vertices
in an embedding space. Then we will process the vertices of 𝑇 in the order 𝑥1, . . . , 𝑥|𝑉 (𝑇 )|
defined above and embed them one by one. Whenever we embed a cut vertex 𝑥* to a vertex 𝑣
in this procedure we will set up so-called reservoir sets 𝑅𝑖 ⊆ 𝑉𝑖 ∩𝑁𝐺(𝑣) for all (at most two)
clusters 𝑉𝑖 such that some child 𝑥 of 𝑥* is assigned to 𝑉𝑖, i.e., ℎ(𝑥) = 𝑖. Reservoir sets will be
used for embedding the children of cut vertices. We (temporarily) remove the vertices in these
reservoir sets from all other candidate sets but put them back after processing all child shrubs
of 𝑥*. This will ensure that we have enough space for embedding children of 𝑥*, even after
possibly embedding Δ− 1 child shrubs of 𝑥*.

Now let us provide the details of the embedding procedure. Throughout, 𝑥* will denote the
cut vertex whose child-shrubs are currently processed. The set 𝑈 will denote the vertices in 𝐺
used so far; thus initialize this set to 𝑈 := ∅. As indicated above, initialize 𝑉 (𝑥*) := 𝑉 *ℎ(𝑥*) for
all vertices 𝑥* ∈ 𝐶 and 𝑉 (𝑥) := 𝑉 ′ℎ(𝑥) for 𝑥 ∈ 𝑉 (𝑇 ) ∖ 𝐶, and set 𝑅𝑖 := ∅ for all 𝑖 ∈ [𝑘]. For
constructing an embedding 𝑓 : 𝑉 (𝑇 ) → 𝑉 (𝐺) of 𝑇 into 𝐺, repeat the following steps:

115



Chapter 8 The tripartite Ramsey number for trees

1. Pick the next vertex 𝑥 from 𝑥1, . . . , 𝑥|𝑉 (𝑇 )|.
2. Choose a vertex 𝑣 ∈ 𝑉 (𝑥) ∖𝑈 that is typical with respect to 𝑉 (𝑦) ∖𝑈 for all unembedded
𝑦 ∈ 𝑁𝑇 (𝑥), set 𝑓(𝑥) = 𝑣, and 𝑈 := 𝑈 ∪ {𝑣}.

3. For all unembedded 𝑦 ∈ 𝑁𝑇 (𝑥) set 𝑉 (𝑦) := (𝑉 (𝑦) ∖ 𝑈) ∩𝑁𝐺(𝑣).
4. If 𝑥 ∈ 𝐶 then set 𝑥* := 𝑥. Further, for all 𝑖 with 𝑁𝑖(𝑥) ∖ 𝐶 ≠ ∅ arbitrarily choose a

reservoir set 𝑅𝑖 ⊆ (𝑉 ′𝑖 ∖𝑈)∩𝑁𝐺(𝑣) of size 5𝜀𝑛
𝑘 +Δ, set 𝑉 (𝑦) := 𝑅𝑖 for all 𝑦 ∈ 𝑁𝑖(𝑥)∖𝐶, and

(temporarily) remove 𝑅𝑖 from all other candidate sets in 𝑉 ′𝑖 , i.e., set 𝑉 (𝑦′) := 𝑉 (𝑦′) ∖𝑅𝑖

for all 𝑦′ ∈ 𝑉 (𝑇 ) ∖𝑁𝑖(𝑥).
5. After the vertices of all child shrubs of 𝑥* are embedded put the vertices in 𝑅𝑖 back to

all candidate sets in 𝑉 ′𝑖 for all 𝑖 ∈ [𝑘], i.e., 𝑉 (𝑦) := 𝑉 (𝑦) ∪𝑅𝑖 for all 𝑦 ∈ 𝑉 (𝑇 ) ∖ 𝐶 with
ℎ(𝑦) = 𝑖, and set 𝑅𝑖 := ∅.

Steps 3 and 4 of this procedure guarantee for each vertex 𝑦 with embedded parent 𝑥 that
the candidate set 𝑉 (𝑦) is contained in 𝑁𝐺(𝑓(𝑥)). Accordingly, if we can argue that in Step 2
we can always choose an image 𝑣 of 𝑥 in 𝑉 (𝑥) (and that we can choose the reservoir sets in
Step 4) we indeed obtain an embedding 𝑓 of 𝑇 into 𝐺. To show this we first collect some
observations that will be useful in the following analysis. The order of 𝑉 (𝑇 ) guarantees that
all child shrubs of a cut vertex are embedded before the next cut vertex. Notice that this
implies the following fact (cf. Step 4 and Step 5).

Fact 2. For all 𝑖 ∈ [𝑘], at any point in the procedure, the reservoir set 𝑅𝑖 satisfies |𝑅𝑖| = 5𝜀𝑛
𝑘 +Δ

if there is a neighbour 𝑥 of the current cut-vertex 𝑥* such that ℎ(𝑥) = 𝑖 and |𝑅𝑖| = 0 otherwise.
In addition no reservoir set gets changed before all child shrubs of 𝑥* are embedded.

Further, since ℎ is a (𝜚, (1− 𝜀)𝑛
𝑘 )-valid assignment and only cut-vertices are embedded into

connecting spaces 𝑉 *𝑖 , we always have

|𝑉 ′𝑖 ∩ 𝑈 | ≤ (1− 1
2𝜚)𝑛

𝑘 and |𝑉 *𝑖 ∩ 𝑈 | ≤ |𝐶| for all 𝑖 ∈ [𝑘] . (8.16)

Now we check that Steps 2 and 4 can always be performed. To this end consider any iteration
of the embedding procedure and suppose we are processing vertex 𝑥. We distinguish three
cases.

Case 1: Assume that 𝑥 is a cut-vertex. Then we had 𝑉 (𝑥) = 𝑉 *ℎ(𝑥) until the parent 𝑥′ of 𝑥
got embedded. In the iteration when 𝑥′ got embedded then the set 𝑉 (𝑥) shrunk to a set of
size at least (𝑑− 𝜀)|𝑉 *ℎ(𝑥) ∖ 𝑈 | in Step 3 because 𝑓(𝑥′) is typical with respect to 𝑉 *ℎ(𝑥) ∖ 𝑈 . No
vertices embedded between 𝑥′ and 𝑥 (except for possible vertices in 𝐶) alter 𝑉 (𝑥), and so
by (8.16) we have

|𝑉 (𝑥) ∖ 𝑈 | ≥ (𝑑− 𝜀)|𝑉 *ℎ(𝑥)| − |𝐶| ≥ (𝑑− 𝜀)1
2𝜚

𝑛
𝑘 − |𝐶|

(8.15)

> 4𝜀𝑛
𝑘

when we are about to choose 𝑓(𝑥). By Fact 1 at most two of the sets 𝑁𝑖(𝑥) are non-empty
and each of these two sets can contain cut vertices 𝑦* and non-cut vertices 𝑦′. We clearly
have 𝑉 (𝑦*) = 𝑉 *𝑖 and 𝑉 (𝑦′) = 𝑉 ′𝑖 and so there are at most 4 different sets 𝑉 (𝑦) ∖ 𝑈 , each of
size at least 1

2𝜚
𝑛
𝑘 − |𝐶| > 𝜀𝑛

𝑘 by (8.16) and (8.15), with respect to which we need to choose
a typical 𝑓(𝑥). By Proposition 3.6 there are less than 4𝜀𝑛

𝑘 vertices in 𝑉 (𝑥) ∖ 𝑈 (which is a
subset of 𝑉𝑖) that do not fulfil this requirement. Hence we can choose 𝑓(𝑥) whenever 𝑥 ∈ 𝐶.
In addition, we can choose the reservoir sets in Step 4 of this iteration: Indeed, let 𝑖 be such
that 𝑁𝑖(𝑥) ∖ 𝐶 ̸= ∅ and let 𝑦 ∈ 𝑁𝑖(𝑥) ∖ 𝐶 be a neighbour of 𝑥 we wish to embed to 𝑉𝑖. In
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Step 2, when we choose 𝑓(𝑥), then 𝑉 (𝑦) = 𝑉 ′𝑖 and so 𝑓(𝑥) is typical with respect to 𝑉 ′𝑖 ∖ 𝑈 .
By Proposition 3.6 and (8.16) we thus have in Step 3 of this iteration that

|(𝑉 ′𝑖 ∖ 𝑈) ∩𝑁𝐺(𝑣)| ≥ (𝑑− 𝜀)|𝑉 ′𝑖 ∖ 𝑈 | ≥ (𝑑− 𝜀)1
2𝜚

𝑛
𝑘

(8.15)

≥ 5𝜀𝑛
𝑘 + Δ.

Therefore we can choose 𝑅𝑖 in Step 4.
Case 2: Assume that 𝑥 is not in 𝐶 but the child of a cut vertex 𝑥*. Then 𝑉 (𝑥) = 𝑅ℎ(𝑥)

before 𝑥 gets embedded. Moreover, due to Step 4, 𝑅𝑖 has been removed from all candidate
sets besides those of the at most Δ neighbours of 𝑥*. By Fact 2 we have |𝑅ℎ(𝑥)| = 5𝜀𝑛

𝑘 + Δ
and so we conclude that |𝑉 (𝑥) ∖ 𝑈 | ≥ 5𝜀𝑛

𝑘 > 4𝜀𝑛
𝑘 . As in the previous case, there are at

most four different sets 𝑉 (𝑦) ∖ 𝑈 for unembedded neighbours 𝑦 of 𝑥, each of size at least
1
2𝜚

𝑛
𝑘 − |𝑅ℎ(𝑦)| = 1

2𝜚
𝑛
𝑘 − 5𝜀𝑛

𝑘 −Δ ≥ 𝜀𝑛
𝑘 by (8.15) and (8.16). Thus Proposition 3.6 guarantees

that there is 𝑣 ∈ 𝑉 (𝑥) ∖ 𝑈 which is typical with respect to all these sets 𝑉 (𝑦) ∖ 𝑈 and hence
we can choose 𝑓(𝑥) in this case.

Case 3: As third and last case, let 𝑥 be a vertex of some shrub 𝑇𝑗 which is the child
of a (non-cut) vertex 𝑥′ of 𝑇𝑗 . Until 𝑥′ got embedded we had 𝑉 (𝑥) = 𝑉 ′ℎ(𝑥) ∖ 𝑅ℎ(𝑥) and so,
𝑣′ = 𝑓(𝑥′) was chosen typical with respect to 𝑉 ′ℎ(𝑥) ∖ (𝑅ℎ(𝑥) ∪ 𝑈) where 𝑈 is the set of used
vertices in 𝐺 at the time when 𝑥′ got embedded. In the corresponding iteration 𝑉 (𝑥) shrunk
to (𝑉 ′ℎ(𝑥) ∖ (𝑅ℎ(𝑥) ∪ 𝑈)) ∩𝑁𝐺(𝑣′). This together with (8.16) implies that immediately after
this shrinking we had

|𝑉 (𝑥) ∖ 𝑈 | ≥ (𝑑− 𝜀)(1
2𝜚

𝑛
𝑘 − |𝑅ℎ(𝑥)|) ≥ (𝑑− 𝜀)(1

2𝜚
𝑛
𝑘 − 5𝜀𝑛

𝑘 −Δ)
(8.15)

> 4𝜀𝑛
𝑘 + |𝑇𝑗 |.

By construction only vertices from 𝑇𝑗 come between 𝑥′ and 𝑥 in the order of 𝑉 (𝑇 ) and so when
we want to embed 𝑥 in the procedure above we still have |𝑉 (𝑥) ∖ 𝑈 | > 4𝜀𝑛

𝑘 where 𝑈 now is
the set of vertices used until the embedding of 𝑥. Similarly as in the other two cases there are
at most four different types of candidate sets for non-embedded neighbours of 𝑥, all of these
have more than 𝜀𝑛

𝑘 vertices and so Proposition 3.6 allows us to choose an 𝑓(𝑥) ∈ 𝑉 (𝑥) ∖ 𝑈
typical with respect to these sets. This concludes the case distinction and hence the proof of
correctness of our embedding procedure.

8.6 Coloured tripartite graphs are either good or odd

In this section we provide the proofs of Lemma 8.8 and Lemma 8.9. We start with a collection
of simple propositions that will turn out useful in these proofs.

Our first two observations are about matchings in 𝜂-complete graphs. The following
proposition states that a bipartite 𝜂-complete coloured graph contains a reasonably big
matching in one of the two colours.

Proposition 8.19. Let 𝐾 be a coloured graph on 𝑛 vertices and let 𝐷 and 𝐷′ be vertex sets of
size at least 𝑚 in 𝐾. If 𝐾[𝐷,𝐷′] is 𝜂-complete then 𝐾[𝐷,𝐷′] contains a matching 𝑀 either
in red or in green of size at least 𝑚

2 − 𝜂𝑛.

Proof. Assume without loss of generality that |𝐷| ≤ |𝐷′|. Colour a vertex 𝑣 ∈ 𝐷 with red
if it has more red-neighbours than green-neighbours in 𝐾[𝐷,𝐷′] and with green otherwise.
By the pigeon-hole principle there is a set 𝑋 ⊆ 𝐷 of size 1

2 |𝐷| such that all vertices in 𝑋
have the same colour, say red. But then each vertex in 𝑋 has at least 1

2 |𝐷′| − 𝜂𝑛 ≥ |𝑋| − 𝜂𝑛

117



Chapter 8 The tripartite Ramsey number for trees

red-neighbours in 𝐷′. Accordingly we can greedily construct a red matching of size at least
|𝑋| − 𝜂𝑛 ≥ 𝑚

2 − 𝜂𝑛 between 𝑋 and 𝐷′.

The next proposition gives a sufficient condition for the existence of an almost perfect
matching in a subgraph of 𝐾 ∈ 𝒦𝜂

𝑛.

Proposition 8.20. Let 𝐾 ∈ 𝒦𝜂
𝑛 have partition classes 𝐴, 𝐵, and 𝐶 and let 𝐴′ ⊆ 𝐴, 𝐵′ ⊆ 𝐵,

𝐶 ′ ⊆ 𝐶 with |𝐴′| ≥ |𝐵′| ≥ |𝐶 ′|. If |𝐴′| ≤ |𝐵′ ∪ 𝐶 ′| then there is a matching in 𝐾[𝐴′, 𝐵′, 𝐶 ′]
covering at least |𝐴′ ∪𝐵′ ∪ 𝐶 ′| − 4𝜂𝑛− 1 vertices.

Proof. Let 𝑥 := |𝐵′| − |𝐶 ′| and 𝑦 := ⌊1
2(|𝐴′| − 𝑥)⌋. Observe that 𝑥 ≤ |𝐵′| ≤ |𝐴′|. Hence 𝑦 ≥ 0,

𝑥+ 𝑦 ≤ 1
2(|𝐴′|+ 𝑥) ≤ 1

2(|𝐵′ ∪ 𝐶 ′|+ 𝑥) = |𝐵′|, and 𝑦 ≤ 1
2(|𝐴′| − 𝑥) ≤ 1

2(|𝐵′ ∪ 𝐶 ′| − 𝑥) = |𝐶 ′|.
Choose arbitrary subsets 𝑈𝐵 ⊆ 𝐵′ of size 𝑥 + 𝑦, 𝑈𝐶 ⊆ 𝐶 ′ of size 𝑦, set 𝑈 := 𝑈𝐵 ∪ 𝑈𝐶 ,
𝑊 := 𝐵′ ∖ 𝑈𝐵 and 𝑊 ′ := 𝐶 ′ ∖ 𝑈𝐶 . Clearly |𝑊 ′| = |𝐶 ′| − 𝑦 = |𝐵′| − (𝑥 + 𝑦) = |𝑊 | and
|𝐴′| − 1 ≤ 𝑥+ 2𝑦 = |𝑈 | ≤ |𝐴′|. Thus we can choose a subset 𝑈 ′ of 𝐴′ of size |𝑈 | that covers
all but at most 1 vertex of 𝐴′ and so that 𝐾[𝑈,𝑈 ′] and 𝐾[𝑊,𝑊 ′] are 𝜂-complete balanced
bipartite subgraphs. A simple greedy algorithm allows us then to find matchings of size at least
|𝑈 |−𝜂𝑛 and |𝑊 |−𝜂𝑛 in 𝐾[𝑈,𝑈 ′] and 𝐾[𝑊,𝑊 ′], respectively. These matchings together form
a matching in 𝐾[𝐴′, 𝐵′, 𝐶 ′] covering at least |𝑈 ∪𝑈 ′∪𝑊 ∪𝑊 ′|−4𝜂𝑛 ≥ |𝐴′∪𝐵′∪𝐶 ′|−4𝜂𝑛−1
vertices.

The following proposition shows that induced subgraphs of 𝜂-complete tripartite graphs
are connected provided that they are not too small. Moreover, subgraphs that substantially
intersect all three partition classes contain a triangle.

Proposition 8.21. Let 𝐾 ∈ 𝒦𝜂
𝑛 be a graph with partition classes 𝐴, 𝐵, 𝐶, and let 𝐴′ ⊆ 𝐴,

𝐵′ ⊆ 𝐵, 𝐶 ′ ⊆ 𝐶.

(a) If |𝐴′| > 2𝜂𝑛 then every pair of vertices in 𝐵′ ∪ 𝐶 ′ has a common neighbour in 𝐴′.
(b) If |𝐴′|, |𝐵′| > 2𝜂𝑛 then 𝐾[𝐴′, 𝐵′] is connected.
(c) If |𝐴′|, |𝐵′|, |𝐶 ′| > 2𝜂𝑛 then 𝐾[𝐴′, 𝐵′, 𝐶 ′] contains a triangle.

Proof. As 𝐾 ∈ 𝒦𝜂
𝑛, each vertex in 𝐵′ ∪𝐶 ′ is adjacent to at least |𝐴′| − 𝜂𝑛 > |𝐴′|/2 vertices in

𝐴′. Thus every pair of vertices in 𝐵′ has a common neighbour in 𝐴′ which gives (a). For the
proof of (b) observe that by (a) every pair of vertices in 𝐵′ has a common neighbour in 𝐴′.
Since the same holds for pairs of vertices in 𝐴′ the graph 𝐾[𝐴′, 𝐵′] is connected. To see (c) we
use (a) again and infer that every pair of vertices in 𝐴′×𝐵′ has a common neighbour in 𝐶 ′. As
|𝐴′|, |𝐵′| > 2𝜂𝑛 there is some edge in 𝐴′ ×𝐵′ and thus there is a triangle in 𝐾[𝐴′, 𝐵′, 𝐶 ′].

Similar in spirit to (c) of Proposition 8.21 we can enforce a copy of a cycle of length 5 in a
system of 𝜂-complete graphs as we show in the next proposition.

Proposition 8.22. Let 𝐾 be a coloured graph on 𝑛 vertices, let 𝑐 be a colour, 𝑣𝑤 be a
𝑐-coloured edge of 𝐾, and let 𝐷1, 𝐷2, 𝐷3 ⊆ 𝑉 (𝐾) such that all graphs 𝐾[𝑣,𝐷1], 𝐾[𝐷1, 𝐷2],
𝐾[𝐷2, 𝐷3], and 𝐾[𝐷3, 𝑤] are (𝜂, 𝑐)-complete bipartite graphs. Set 𝐷 :=

⋃︀
𝑖∈[3]𝐷𝑖 ∪ {𝑣, 𝑤}. If

|𝐷𝑖| > 2𝜂𝑛+ 2 for all 𝑖 ∈ [3] then 𝐾[𝐷] contains a 𝑐-coloured copy of 𝐶5.

Proof. By Proposition 8.21(a) every pair of vertices in 𝐷1 ∪ 𝐷3 is connected by a path of
colour 𝑐 and length 2 with centre in 𝐷2 ∖ {𝑣, 𝑤}. Moreover, 𝑣 has at least |𝐷1| − 𝜂𝑛 ≥ 1
neighbours in 𝐷1 and similarly 𝑤 has a neighbour in 𝐷3. Hence there is a 𝑐-coloured 𝐶5 in
𝐾[𝐷].

118



8.6 Coloured tripartite graphs are either good or odd

8.6.1 Non-extremal configurations

In the proof of Lemma 8.8 we will use that coloured graphs 𝐾 from 𝒦𝜂
𝑛 have the following

property 𝑃 . Either one colour of 𝐾 has a big odd connected matching or both colours have big
connected matchings whose components are bipartite. Analysing these bipartite configurations
will then lead to a proof of Lemma 8.8. Property 𝑃 is a consequence of the next lemma,
Lemma 8.23, which states that if all connected matchings in a colour of 𝐾 are small then the
other colour has bigger odd connected matchings.

Lemma 8.23 (improving lemma). For every 𝜂′ > 0 there are 𝜂 > 0 and 𝑛0 ∈ N such
that for all 𝑛 ≥ 𝑛0 the following holds. Suppose that a coloured graph 𝐾 ∈ 𝒦𝜂

𝑛 is neither
𝜂′-extremal nor 3

4(1 − 𝜂′)𝑛-odd. Let 𝑀 be a maximum connected matching in 𝐾 of colour
𝑐. If 𝜂′𝑛 < |𝑀 | < (1 − 𝜂′)𝑛 then 𝐾 has an odd connected matching 𝑀 ′ in the other colour
satisfying |𝑀 ′| > |𝑀 |.

Proof. Given 𝜂′ define 𝜂 := 𝜂′/3 and let 𝜂 be small enough and 𝑛0 large enough such that
( 1
100𝜂

′ − 5𝜂)𝑛0 > 1 (and hence 𝜂 < 1
500𝜂

′). For 𝑛 ≥ 𝑛0 let 𝐾 = (𝐴∪̇𝐵∪̇𝐶,𝐸) be a coloured
graph from 𝒦𝜂

𝑛 with partition classes 𝐴, 𝐵, and 𝐶 that is neither 𝜂′-extremal nor (1− 𝜂′)3𝑛/4-
odd. Suppose 𝑐 = green and hence that 𝐾 has a maximum green connected matching 𝑀 with
𝜂′𝑛 < |𝑀 | < (1− 𝜂′)𝑛. For 𝐷,𝐷′ ∈ {𝐴,𝐵,𝐶} with 𝐷 ̸= 𝐷′ let 𝑀𝐷𝐷′ := 𝑀 ∩ (𝐷 ×𝐷′). We
call the 𝑀𝐷𝐷′ the blocks of 𝑀 and say that a block 𝑀𝐷𝐷′ is substantial if |𝑀𝐷𝐷′ | ≥ 𝜂𝑛. Let
𝑅 be the set of vertices in 𝐾 not covered by 𝑀 . For 𝐷 ∈ {𝐴,𝐵,𝐶} let 𝑅𝐷 := 𝑅 ∩𝐷.

Fact 1. We have |𝑅𝐴| − |𝑀𝐵𝐶 | = |𝑅𝐵| − |𝑀𝐶𝐴| = |𝑅𝐶 | − |𝑀𝐴𝐵| > 𝜂′𝑛.

Indeed, |𝑅𝐴| + |𝑀𝐴𝐵| + |𝑀𝐴𝐶 | = |𝑅𝐵| + |𝑀𝐴𝐵| + |𝑀𝐵𝐶 | and hence |𝑅𝐴| − |𝑀𝐵𝐶 | =
|𝑅𝐵| − |𝑀𝐴𝐶 | = |𝑅𝐵| − |𝑀𝐶𝐴| which proves the first part of this fact. For the second part
observe that |𝑅𝐴|+ 2|𝑀𝐴𝐵|+ |𝑅𝐵|+ 2|𝑀𝐵𝐶 |+ |𝑅𝐶 |+ 2|𝑀𝐶𝐴| = 3𝑛. Hence we conclude from
|𝑀 | = |𝑀𝐴𝐵|+ |𝑀𝐵𝐶 |+ |𝑀𝐶𝐴| < (1− 𝜂′)𝑛 that

3(|𝑅𝐴| − |𝑀𝐵𝐶 |) = (|𝑅𝐴| − |𝑀𝐵𝐶 |) + (|𝑅𝐵| − |𝑀𝐶𝐴|) + (|𝑅𝐶 | − |𝑀𝐴𝐵|)
= 3(𝑛− |𝑀𝐴𝐵| − |𝑀𝐵𝐶 | − |𝑀𝐶𝐴|) > 3𝜂′𝑛.

This finished the proof of Fact 1.
In the remainder we assume without loss of generality that |𝑅𝐴| ≥ |𝑅𝐵| ≥ |𝑅𝐶 |. By Fact 1

this implies that |𝑀𝐵𝐶 | ≥ 1
3𝜂
′𝑛 since |𝑀 | > 𝜂′𝑛 and hence 𝑀𝐵𝐶 is substantial. Our next main

goal is to find a connected matching in red that is bigger than 𝑀 . For achieving this goal the
following fact about red connections between vertices of 𝑅 will turn out useful.

Fact 2. There is a vertex 𝑢* ∈ 𝑅𝐴 such that 𝑅− 𝑢* is red connected.

To see this, assume first that there is a vertex 𝑢* ∈ 𝑅𝐴 that has more than 4𝜂𝑛 green-
neighbours in 𝑀𝐵𝐶 . Then more than 2𝜂𝑛 of these neighbours are in, say, 𝑀𝐵𝐶 ∩𝐵. Call this
set of vertices 𝐵*. Now let 𝑢 ̸= 𝑢* be any vertex in 𝑅∖𝐶. By the maximality of 𝑀 the vertex 𝑢
has no green-neighbours in 𝑀(𝐵*). This implies that 𝑢 has at least |𝑀(𝐵*)|−𝜂𝑛 > |𝑀(𝐵*)|/2
red-neighbours in 𝑀(𝐵*). Thus any two vertices in 𝑅 ∖ 𝐶 have a common red-neighbour in
𝑀(𝐵*). A vertex 𝑢 ∈ 𝑅𝐶 on the other hand has at least |𝑅𝐴|−𝜂𝑛 ≥ |𝑀𝐵𝐶 |+𝜂′𝑛−𝜂𝑛 > 2𝜂𝑛+1
neighbours in 𝑅𝐴 where the first inequality follows from Fact 1. If at least 2 of these neighbours
are red then 𝑢 is red connected to 𝑅𝐴 − 𝑢*. Otherwise 𝑢 has a set 𝑈 of more than 2𝜂𝑛 green-
neighbours in 𝑅𝐴 − 𝑢*. But then, by the maximality of 𝑀 , the graph 𝐾[𝑈,𝑀𝐵𝐶 ∩ 𝐵] is
red. Since |𝑀𝐵𝐶 | ≥ 𝜂′𝑛 > 𝜂𝑛 the vertex 𝑢 has a neighbour 𝑣 in 𝑀𝐵𝐶 ∩ 𝐵. Since 𝑢 has a
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green-neighbour in 𝑅𝐴 it follows from the maximality of 𝑀 that 𝑢𝑣 is red. Thus 𝑢 is red
connected to 𝑈 and therefore to all vertices of (𝑅 ∖ 𝐶)− 𝑢*.

If there is no vertex in 𝑅𝐴 with more than 4𝜂𝑛 green-neighbours in 𝑀𝐵𝐶 on the other hand,
then any two vertices in 𝑅𝐴 obviously have at least |𝑀𝐵𝐶 | − 4𝜂𝑛 − 2𝜂𝑛 ≥ 1

3𝜂
′𝑛 − 6𝜂𝑛 > 0

common red-neighbours in 𝐵 ∩ 𝑀𝐵𝐶 . Moreover, by the maximality of 𝑀 , each vertex
𝑣 ∈ 𝑅𝐶 ∪𝑅𝐵 is either red connected to 𝑅𝐴 or it has only red-neighbours in 𝑀𝐵𝐶 . Thus 𝑣 has
a common red-neighbour with any vertex in 𝑅𝐴 which proves Fact 2 also in this case.

Fact 3. 𝐾 has a red connected matching 𝑀 ′ with |𝑀 ′| ≥ |𝑀 |+ 1
4𝜂
′𝑛.

Let 𝑢𝑣 be an arbitrary edge in 𝑀𝐵𝐶 . Then, by the maximality of 𝑀 , one vertex of this edge,
say 𝑢, has at most one green-neighbour in 𝑅𝐴. By Fact 1 we have |𝑅𝐴| ≥ |𝑀𝐵𝐶 |+ 𝜂′𝑛 and
since 𝑢 has at most 𝜂𝑛 < 𝜂′𝑛 non-neighbours in 𝑅𝐴 it follows that 𝑢 has at least |𝑀𝐵𝐶 |+ 1
red-neighbours in 𝑅𝐴. Thus, a simple greedy method allows us to construct a red matching
𝑀 ′

𝐵𝐶 of size |𝑀𝐵𝐶 | between 𝑅𝐴 − 𝑢* and such vertices 𝑢 of matching edges in 𝑀𝐵𝐶 . Let 𝑅′𝐴
be the set of vertices in 𝑅𝐴 not covered by 𝑀 ′

𝐵𝐶 . We repeat this process with 𝑀𝐴𝐶 and 𝑀𝐴𝐵 ,
respectively, to obtain red matchings 𝑀 ′

𝐴𝐶 and 𝑀 ′
𝐴𝐵 and sets 𝑅′𝐵 and 𝑅′𝐶 .

By maximality of 𝑀 , for each vertex 𝑤 ∈ 𝑅′𝐴 the following is true: either 𝑤 has no
green-neighbour in 𝑀𝐵𝐶 , or 𝑤 has no green-neighbour in 𝑅′𝐵. Moreover 𝑤 has at most 𝜂𝑛
non-neighbours. Observe that |𝑅′𝐵|, |𝑅′𝐴| > 𝜂′𝑛 by Fact 1 and the set 𝑋 of vertices in 𝑀𝐵𝐶

that are not covered by 𝑀 ′
𝐵𝐶 has size at least 1

3𝜂
′𝑛 since |𝑀𝐵𝐶 | = |𝑀 ′

𝐵𝐶 | ≥ 1
3𝜂
′𝑛 and each

edge of 𝑀 ′
𝐵𝐶 uses exactly one vertex from 𝑀𝐵𝐶 . This implies that we can again use a greedy

method to construct a red matching 𝑀 ′
𝑅 with edges from (𝑅′𝐴 − 𝑢*) × (𝑅′𝐵 ∪𝑋) of size at

least 1
3𝜂
′𝑛− 𝜂𝑛− 1 ≥ 1

4𝜂
′𝑛. Hence we obtain a red matching 𝑀 ′ := 𝑀 ′

𝐵𝐶∪̇𝑀 ′
𝐶𝐴∪̇𝑀 ′

𝐴𝐵∪̇𝑀 ′
𝑅 of

size at least |𝑀 |+ 1
4𝜂
′𝑛. For establishing Fact 3 it remains to show that 𝑀 ′ is red connected.

This follows from Fact 2 since each edge of 𝑀 ′ intersects 𝑅− 𝑢*.
If the matching 𝑀 ′ is odd then the proof of Lemma 8.23 is complete. Hence assume in the

remainder that 𝑀 ′ is even. Since 𝑀 ′ intersects 𝑅− 𝑢* this together with Fact 2 immediately
implies the next fact. For simplifying the statement as well as the following arguments we will
first delete the vertex 𝑢* from 𝐾 (and let 𝐾 denote the resulting graph from now on).

Fact 4. No odd red cycle in 𝐾 contains a vertex of 𝑅.

Fact 8 below uses this observation to conclude that 𝐾 is extremal, contradicting the
hypothesis of Lemma 8.23. To prepare the proof of this fact we first need some auxiliary
observations.

Fact 5. For {𝐷,𝐷′, 𝐷′′} = {𝐴,𝐵,𝐶}, if 𝑀𝐷𝐷′ is a substantial block then there is a vertex
𝑣* ∈ 𝑅𝐷′′ such that 𝐾[𝑀𝐷𝐷′ , 𝑅𝐷′′ − 𝑣*] is red and 𝐾[𝑀𝐷𝐷′ ] is green.

We first establish the first part of the statement. We may assume that there are vertices
𝑣* ∈ 𝑅𝐷′′ and 𝑣 ∈ 𝑀𝐷𝐷′ such that 𝑣*𝑣 is green (otherwise we are done). Without loss of
generality 𝑣 ∈ 𝐷. Let 𝑋 = 𝑁(𝑣*). Then, by the maximality of 𝑀 , all edges between 𝑣* and
𝑋 ∩𝑅 are red. By Fact 4 this implies that all edges between 𝑋 ∩𝑅𝐷 and 𝑋 ∩𝑅𝐷′ are green.
Since min{|𝑋 ∩𝑅𝐷|, |𝑋 ∩𝑅𝐷′ |} > 𝜂𝑛, this set of edges is not empty. We use the maximality
of 𝑀 to infer that all edges between 𝑀𝐷𝐷′ and 𝑋 ∩ (𝑅𝐷 ∪ 𝑅𝐷′) are red. Using Fact 4 this
in turn implies that edges between 𝑌 := 𝑀𝐷𝐷′ ∩ 𝑋 and 𝑣* are green. By the maximality
of 𝑀 all edges between 𝑀(𝑌 ) and 𝑅𝐷′′ − 𝑣* are consequently red. We claim that therefore
𝐾[𝑅𝐷′∩𝑋,𝑅𝐷′′−𝑣*] is green. Indeed, assume there was a red edge 𝑤𝑤′ ∈ 𝑅𝐷′∩𝑋×(𝑅𝐷′′−𝑣*).
Then 𝑤 and 𝑤′ have at least |𝑀(𝑌 ) ∩𝐷| − 2𝜂𝑛 ≥ |𝑀𝐷𝐷′ | − 3𝜂𝑛 ≥ 𝜂𝑛 − 3𝜂𝑛 > 0 common
neighbours 𝑤′′ in 𝑀(𝑌 ) ∩𝐷. Since edges between 𝑀(𝑌 ) and 𝑅𝐷′′ − 𝑣* and edges between
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𝑀𝐷𝐷′ and 𝑋 ∩𝑅𝐷′ are red, so are the edges 𝑤𝑤′′ and 𝑤′𝑤′′ and thus we have a red triangle
𝑤𝑤′𝑤′′ contradicting Fact 4. By Fact 1 we have |𝑅𝐷′ ∩𝑋| ≥ 𝜂′𝑛− 𝜂𝑛 > 𝜂𝑛 and so each vertex
in 𝑅𝐷′′ − 𝑣* is connected by a green edge to some vertex in 𝑅𝐷′ ∩𝑋. The maximality of 𝑀
implies that 𝐾[𝑀𝐷𝐷′ , 𝑅𝐷′′ − 𝑣*] is red as required. For the second part of Fact 5 observe
that the fact that 𝐾[𝑀𝐷𝐷′ , 𝑅𝐷′′ − 𝑣*] is red and |𝑅𝐷′′ | ≥ 𝜂′𝑛 > 2𝜂𝑛+ 1 imply that each pair
of vertices in 𝑀𝐷𝐷′ has a common red neighbour in 𝑅𝐷′′ − 𝑣* and so by Fact 4 the graph
𝐾[𝑀𝐷𝐷′ ] is green. This establishes Fact 5.

Now we also delete all (at most 3) vertices from 𝑅 that play the rôle of 𝑣* in Fact 5 (and
again keep the names for the resulting sets).

Fact 6. Suppose that {𝐷,𝐷′, 𝐷′′} = {𝐴,𝐵,𝐶} and that 𝑀𝐷𝐷′ is a substantial block. Then
for one of the sets 𝐷 and 𝐷′, say for 𝐷, the graph 𝐾[𝑀𝐷𝐷′ , 𝑅𝐷] is red and 𝐾[𝑅𝐷′′ , 𝑅𝐷] is
green. For the other set 𝐷′ the following is true. If 𝑣 ∈ 𝑅𝐷′ then 𝐾[𝑣,𝑀𝐷𝐷′ ] and 𝐾[𝑣,𝑅] are
monochromatic, with distinct colours.

We start with the first part of this fact and distinguish two cases. First, assume that there
is a red edge 𝑤𝑤′ with 𝑤 ∈ 𝑅𝐷′′ and 𝑤′ ∈ 𝑅𝐷′ . We will show that in this case 𝐾[𝑀𝐷𝐷′ , 𝑅𝐷] is
red and 𝐾[𝑅𝐷′′ , 𝑅𝐷] is green. Since 𝑀𝐷𝐷′ is substantial, edges between 𝑤 and 𝑀𝐷𝐷′ are red
by Fact 5 and hence, owing to Fact 4, edges between 𝑀𝐷𝐷′ ∩𝑁(𝑤) and 𝑤′ are green. Since
𝐾[𝑀𝐷𝐷′ ] is green by Fact 5, since 𝑀 is maximal, and since each vertex in 𝑀𝐷𝐷′ ∩𝐷′ has
some neighbour in 𝑀𝐷𝐷′ ∩𝑁(𝑤′) this implies that all edges between 𝑀𝐷𝐷′ and 𝑅𝐷 are red.
Moreover, edges between 𝑀𝐷𝐷′ ∩𝐷′ and 𝑅𝐷′′ are red by Fact 5 and hence we conclude from
Fact 4 that 𝐾[𝑅𝐷′′ , 𝑅𝐷] is green If, on the other hand, there is no red edge between 𝑅𝐷′′ and
𝑅𝐷′ then the first part of the fact is true with 𝐷 and 𝐷′ interchanged: Clearly 𝐾[𝑅𝐷′′ , 𝑅𝐷′ ]
is green and by maximality of 𝑀 we infer that 𝐾[𝑀𝐷𝐷′ , 𝑅𝐷′ ] is red.

For the second part of the fact suppose that 𝐾[𝑀𝐷𝐷′ , 𝑅𝐷] is red and 𝐾[𝑅𝐷′′ , 𝑅𝐷] is green.
Let 𝑣 ∈ 𝑅𝐷′ and assume first that 𝑣 has a green neighbour in 𝑀𝐷𝐷′ . The maximality of 𝑀
then implies that 𝐾[𝑣,𝑅] is red and since 𝐾[𝑅𝐷′′ ,𝑀𝐷𝐷′ ] is also red (by Fact 5) we get that
𝐾[𝑣,𝑀𝐷𝐷′ ] is green. Hence it remains to consider the case that 𝐾[𝑣,𝑀𝐷𝐷′ ] is red. By Fact 5
the graph 𝐾[𝑅𝐷′′ ,𝑀𝐷𝐷′ ] is red and so Fact 4 forces the graph 𝐾[𝑣,𝑅𝐷′′ ] to be green. To show
that also 𝐾[𝑣,𝑅𝐷] is green assume to the contrary that there is a red edge 𝑣𝑤 with 𝑤 ∈ 𝑅𝐷.
Recall that 𝐾[𝑣,𝑀𝐷𝐷′ ∩𝐷], 𝐾[𝑀𝐷𝐷′ ∩𝐷,𝑅𝐷′′ ], 𝐾[𝑅𝐷′′ ,𝑀𝐷𝐷′ ∩𝐷′], and 𝐾[𝑀𝐷𝐷′ ∩𝐷′, 𝑤]
are red (and clearly 𝜂-complete). Since |𝑀𝐷𝐷′ ∩𝐷|, |𝑅𝐷′′ |, |𝑀𝐷𝐷′ ∩𝐷′| ≥ 𝜂𝑛− 1 ≥ 2𝜂𝑛+ 2
we can apply Proposition 8.22 to infer that there is a red 𝐶5 touching 𝑅 which contradicts
Fact 4.

Fact 7. If 𝑀𝐷𝐷′ and 𝑀𝐷′𝐷′′ are substantial, then 𝐾[𝑀𝐷𝐷′ ,𝑀𝐷′𝐷′′ ] and 𝐾[𝑅𝐷′′ , 𝑅𝐷] are green
and 𝐾[𝑀𝐷𝐷′ ∪𝑀𝐷′𝐷′′ , 𝑅𝐷′′ ∪ 𝑅𝐷] is red. Moreover, if 𝑣 ∈ 𝑅𝐷′ then 𝐾[𝑣,𝑀𝐷𝐷′ ∪𝑀𝐷′𝐷′′ ]
and 𝐾[𝑣,𝑅] are monochromatic, with distinct colours.

By Fact 6 every vertex in 𝑅𝐷′′ ∪𝑅𝐷 sends some green edges to 𝑅 and hence the maximality
of 𝑀 implies that 𝐾[𝑀𝐷𝐷′∪𝑀𝐷′′𝐷′ , 𝑅𝐷′′∪𝑅𝐷] is red. Since there is no red triangle touching 𝑅,
the graphs 𝐾[𝑀𝐷𝐷′ ∩𝐷,𝑀𝐷′′𝐷′ ∩𝐷′], 𝐾[𝑀𝐷𝐷′ ∩𝐷′,𝑀𝐷′′𝐷′ ∩𝐷′′], and 𝐾[𝑅𝐷′′ , 𝑅𝐷] are green.
Using Proposition 8.22 we get similarly as before that also edges in 𝐾[𝑀𝐷𝐷′ ∩𝐷,𝑀𝐷′𝐷′′ ∩𝐷′′]
are green, since otherwise there was a red 𝐶5 touching 𝑅. It remains to show the second
part of Fact 7. By Fact 6 the graph 𝐾[𝑣,𝑅] is monochromatic. Moreover, applying Fact 6
once to 𝑀𝐷𝐷′ and once to 𝑀𝐷′′𝐷′ , we obtain that 𝐾[𝑣,𝑅] and 𝐾[𝑣,𝑀𝐷𝐷′ ∪ 𝑀𝐷′′𝐷′ ] are
monochromatic graphs of distinct colours.

Now we have gathered enough structural information to show that 𝐾 is extremal.
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Fact 8. 𝐾 is in spider configuration with parameter 𝜂.

We first argue that we can assume without loss of generality that

𝐶 always plays the rôle of 𝐷′ in Fact 6. (*)

Indeed, by Fact 7 this is the case if, besides 𝑀𝐵𝐶 , the block 𝑀𝐴𝐶 is substantial. If 𝑀𝐴𝐶

(and hence also 𝑀𝐴𝐵) is not substantial on the other hand then it might be the case that 𝐵
plays the rôle of 𝐷′ in Fact 6. Then however we may delete at most 𝜂𝑛 vertices from 𝑅𝐵 in
order to guarantee |𝑅𝐵| ≤ |𝑅𝐶 | and then the following argument still works with 𝐵 and 𝐶
interchanged.

To obtain the spider configuration set 𝐴1 := 𝑅𝐴, 𝐵1 := 𝑅𝐵, let 𝐶1 be the set of those
vertices 𝑣 ∈ 𝑅𝐶 such that 𝐾[𝑣,𝑀𝐵𝐶 ] is red, let 𝐶𝐶 := 𝑅𝐶 ∖ 𝐶1, and define 𝐷𝐷′ := 𝑀𝐷𝐷′ ∩𝐷
for all 𝐷,𝐷′ ∈ {𝐴,𝐵,𝐶} with 𝐷 ≠ 𝐷′. If any of the sets we just defined has less than 𝜂𝑛
vertices delete all vertices in this set. Finally, define 𝐴2, 𝐵2, 𝐶2 as in the definition of the
spider configuration (Definition 8.5). Observe that this together with Fact 6 implies that
𝐾[𝐶𝐶 ,𝑀𝐵𝐶 ] is green and 𝐾[𝐶𝐶 , 𝑅] is red.

Now let {𝑋,𝑌, 𝑍} = {𝐴,𝐵,𝐶} arbitrarily. Clearly we have |𝑋1∪𝑋2| ≥ (1−3𝜂)𝑛 ≥ (1−𝜂′)𝑛.
Moreover 𝐾[𝑋1, 𝑌2] is 𝜂-complete. We next verify that this graph is also red. We distinguish
two cases. First assume that 𝑌 ̸= 𝐶. In this case 𝑋1 ⊆ 𝑅𝑋 and 𝑌2 = 𝑌𝑋 ∪ 𝑌𝑍 ⊆ (𝑀𝑋𝑌 ∩
𝑌 ) ∪ (𝑀𝑌 𝑍 ∩ 𝑌 ). We have 𝑌𝑍 ̸= ∅ only if 𝑀𝑌 𝑍 is substantial and then Fact 5 implies that
𝐾[𝑅𝑋 ,𝑀𝑌 𝑍 ] is red. Similarly 𝑌𝑋 ≠ ∅ only if 𝑀𝑋𝑌 is substantial. By (*) Fact 6 implies that
then 𝐾[𝑅𝑋 ,𝑀𝑋𝑌 ] is red if 𝑋 ̸= 𝐶. By the definition of 𝐶1 we also get that 𝐾[𝑋1,𝑀𝑋𝑌 ] is
red if 𝑋 = 𝐶. Thus all edges between 𝑋1 and 𝑌2 are red as desired. If 𝑌 = 𝐶 on the other
hand then 𝑋1 ⊆ 𝑅𝑋 and 𝑌2 = 𝑌𝑋 ∪ 𝑌𝑍 ∪ 𝐶𝐶 ⊆ (𝑀𝑋𝑌 ∩ 𝑌 ) ∪ (𝑀𝑋𝑍 ∩ 𝑌 ) ∪ 𝐶𝐶 . Analogous
to the argument in the first case the graphs 𝐾[𝑅𝑋 ,𝑀𝑌 𝑍 ] and 𝐾[𝑅𝑋 ,𝑀𝑋𝑌 ] are red (since
𝑋 ̸= 𝐶). As noted above in addition all edges between 𝑅 and 𝐶𝐶 are red and so 𝐾[𝑋1, 𝑌2] is
also red in this case.

We finish the proof of Fact 8 (and hence Lemma 8.23) by checking that we have a spider
configuration with colour 𝑐 = red. Observe that the graph 𝐾[𝐴1 ∪ 𝐵1 ∪ 𝐶1, 𝐴2 ∪ 𝐵2 ∪ 𝐶2]
is connected and bipartite. We now verify Conditions 1–4 of the spider configuration. For
Condition 2 assume that 𝐶𝐶 ̸= ∅. Fact 7 and the definition of 𝐶2 imply then that 𝑀𝐴𝐵 is
not substantial and hence |𝐴𝐵| = 0. Moreover, since |𝑅𝐴| ≥ |𝑅𝐵| ≥ |𝑅𝐶 | we get the first
part of Condition 1, and |𝐷′𝐷| = |𝐷𝐷′ | is clearly true by definition. By Fact 1 we have
𝑛 − |𝑀𝐷′′𝐷 ∪𝑀𝐷′′𝐷′ | = |𝑅𝐷′′ | > |𝑀𝐷𝐷′ | which implies 𝑛 − |𝐷′′2 | > |𝐷𝐷′ | unless 𝐷′′ = 𝐶
and 𝐶𝐶 ̸= ∅ (if 𝐷′′ ≠ 𝐶 or 𝐶𝐶 = ∅ then |𝑀𝐷𝐷′ | = |𝐷𝐷′ |). And if 𝐶𝐶 ̸= ∅ Condition 2
implies |𝐷𝐷′ | = |𝐴𝐵| = 0 and thus we also get 𝑛− |𝐷′′2 | > |𝐷𝐷′ | in this case. This establishes
Condition 1. To see Condition 3, note that if 𝐴2 is non-empty then either 𝑀𝐴𝐵 or 𝑀𝐴𝐶 are
substantial. Since in addition 𝑀𝐵𝐶 is substantial by assumption we conclude from Fact 7 that
there is a green triangle connected to 𝑀𝐵𝐶 and hence to the green matching 𝑀 . As 𝐾 is not
3
4(1− 𝜂′)𝑛-odd this implies 1

2 |𝐴𝐵 ∪𝐴𝐶 ∪𝐵𝐴 ∪𝐵𝐶 ∪𝐶𝐴 ∪𝐶𝐵| ≤ |𝑀 | < 3
4(1− 𝜂′)𝑛. It remains

to verify Condition 4. Assume, for a contradiction, that 𝐶1 ̸= ∅ and |𝐴1∪𝐵1∪𝐶1| ≥ (1−𝜂)3
2𝑛

and |𝐵1∪𝐶1| > (1−𝜂)3
4𝑛. As |𝑅𝐴| ≥ |𝑅𝐵| ≥ |𝑅𝐶 | ≥ |𝐶1| and 𝐶1 ̸= ∅ all these sets have size at

least 𝜂𝑛 and so 𝐴1 = 𝑅𝐴, 𝐵1 = 𝑅𝐵 and 𝐶1 ⊆ 𝑅𝐶 . By Fact 6 and the definition of 𝐶1 the graph
𝐾[𝐴1, 𝐵1, 𝐶1] is (𝜂, green)-complete and thus contains a green triangle by Proposition 8.21(c)
and is connected by (b) of the same proposition. Observe that this implies that any matching in
𝐾[𝐴1, 𝐵1, 𝐶1] is connected and odd. We will show that 𝐾[𝐴1, 𝐵1, 𝐶1] contains a green matching
of size at least 3

4(1− 𝜂′)𝑛 contradicting the fact that 𝐾 is not 3
4(1− 𝜂′)𝑛-odd. We distinguish
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two cases. If |𝐴1| ≥ |𝐵1 ∪ 𝐶1| an easy greedy algorithm guarantees a green matching of size
|𝐵1∪𝐶1|−𝜂𝑛 > (1−3𝜂)3

4𝑛 ≥ 3
4(1−𝜂′)𝑛 in 𝐾[𝐴1, 𝐵1∪𝐶1]. If |𝐴1| ≤ |𝐵1∪𝐶1| on the other hand

there is a green matching covering at least |𝐴1∪𝐵1∪𝐶1|−4𝜂𝑛−1 > (1−4𝜂)3
2𝑛−1 ≥ 3

2(1−𝜂′)𝑛
vertices in 𝐾[𝐴1, 𝐵1, 𝐶1] by Proposition 8.20.

We will now use Lemma 8.23 to prove Lemma 8.8.

Proof of Lemma 8.8. Let 𝜂′ be given and set 𝜂 := 𝜂′/15. Let 𝜂8.23 and 𝑛0 be provided by
Lemma 8.23 for input 𝜂′8.23 = 𝜂 and set 𝜂 := min{𝜂8.23, 𝜂/5}. Let 𝐾 = (𝐴∪̇𝐵∪̇𝐶,𝐸) be a
non-extremal coloured member of 𝒦𝜂

𝑛 with partition classes and assume for a contradiction
that 𝐾 is not (1− 𝜂′)3𝑛/4-odd.

Our first step is to show that 𝐾 has big green and red connected matchings.
Fact 1. 𝐾 has even connected matchings 𝑀𝑟 and 𝑀𝑔 in red and green, respectively, with
|𝑀𝑟|, |𝑀𝑏| ≥ (1− 𝜂)𝑛.

Assume for a contradiction that a maximum matching 𝑀 in red has size less than (1− 𝜂)𝑛.
By Lemma 8.23 applied with 𝜂 we conclude that there is an odd connected matching 𝑀 ′ with
|𝑀 ′| > |𝑀 |. On the other hand 𝐾 is not

(︀
(1 − 𝜂′)3𝑛/4

)︀
-good, hence |𝑀 ′| < (1 − 𝜂′)3𝑛/4.

Another application of Lemma 8.23 with 𝜂 ≤ 𝜂′ thus provides us with a red connected matching
of size bigger than |𝑀 ′| which contradicts the maximality of 𝑀 . We conclude that there is a
red connected matching 𝑀𝑟, and by symmetry also a green connected matching 𝑀𝑔, of size at
least (1− 𝜂)𝑛. Clearly, 𝑀𝑟 and 𝑀𝑔 are even since 𝐾 is not

(︀
(1− 𝜂′)3𝑛/4

)︀
-good.

Let 𝑅 be the component of 𝑀𝑟 and 𝐺 be the component of 𝑀𝑔 in 𝐾. Fact 1 states, that 𝑅
and 𝐺 are bipartite. We observe in the following fact that both 𝑅 and 𝐺 substantially intersect
all three partition classes. For this purpose define 𝐷𝑟 := 𝐷 ∩ 𝑉 (𝑅) and 𝐷𝑔 := 𝐷 ∩ 𝑉 (𝐺), and
further 𝐷̄𝑟 := 𝐷 ∖𝐷𝑟 and 𝐷̄𝑔 := 𝐷 ∖𝐷𝑔 for all 𝐷 ∈ {𝐴,𝐵,𝐶}.
Fact 2. For all 𝐷 ∈ {𝐴,𝐵,𝐶} and 𝑐 ∈ {𝑟, 𝑔} we have |𝐷𝑐| ≥ 2𝜂𝑛.

Indeed, assume without loss of generality, that |𝐴𝑟| < 2𝜂𝑛 which implies |𝐴𝑟| > (1− 2𝜂)𝑛.
As |𝑀𝑟| ≥ (1 − 𝜂)𝑛 it follows that |𝐵𝑟| > (1 − 3𝜂)𝑛 and |𝐶𝑟| > (1 − 3𝜂)𝑛. By definition all
edges between 𝐴𝑟 and 𝐵𝑟 ∪ 𝐶𝑟 are green and thus 𝐾 is in pyramid configuration with tunnel,
pyramids (𝐵𝑟, 𝐴𝑟) and (𝐶𝑟, ∅), and parameter 3𝜂 < 𝜂′, which is a contradiction.

Next we strengthen the last fact by showing that at most one of the sets 𝐷̄𝑐 with 𝐷 ∈
{𝐴,𝐵,𝐶} and 𝑐 ∈ {𝑟, 𝑔} is significant.
Fact 3. There is at most one set 𝐷 ∈ {𝐴,𝐵,𝐶} and colour 𝑐 ∈ {𝑟, 𝑔} such that |𝐷̄𝑐| ≥ 𝜂𝑛.

If such a 𝐷 and 𝑐 exist we assume, without loss of generality, 𝐷 = 𝐴 and 𝑐 = 𝑟. Hence, for
the proof of Fact 3, assume that |𝐴𝑟| ≥ 𝜂𝑛. First we show that

|𝐵̄𝑟|, |𝐶𝑟| < 𝜂
2𝑛. (8.17)

Assume for a contradiction and without loss of generality that |𝐵̄𝑟| ≥ 𝜂
2𝑛. By definition,

all edges in 𝐸(𝐴𝑟, 𝐶𝑟∪̇𝐵𝑟) and 𝐸(𝐵̄𝑟, 𝐶𝑟∪̇𝐴𝑟) are green. Since |𝐴𝑟|, |𝐵̄𝑟| ≥ 𝜂𝑛 > 2𝜂𝑛 by
assumption and |𝐴𝑟|, |𝐵𝑟| ≥ 2𝜂𝑛/2 > 2𝜂𝑛 (by Fact 2) we can apply Proposition 8.21(b)
to infer that the graph with edges 𝐸(𝐴𝑟, 𝐶𝑟∪̇𝐵𝑟) and 𝐸(𝐵̄𝑟, 𝐶𝑟∪̇𝐴𝑟) is connected. As 𝑀𝑟

is even we conclude that all edges in 𝐸(𝐴𝑟, 𝐶𝑟), 𝐸(𝐵𝑟, 𝐶𝑟), and 𝐸(𝐴𝑟, 𝐵𝑟) are red. Since
|𝐴𝑟|, |𝐵𝑟|, |𝐶𝑟| ≥ 𝜂𝑛 > 2𝜂𝑛 by Fact 2 we infer from Proposition 8.21(c) that the graph
𝐾[𝐴𝑟, 𝐵𝑟, 𝐶𝑟] ⊆ 𝑅 contains a red triangle which contradicts the fact that 𝑀𝑟 is even.

Thus it remains to show that |𝐷̄𝑔| < 𝜂𝑛 for all 𝐷 ∈ {𝐴,𝐵,𝐶}. By (8.17) and Fact 2 we have
|𝐵𝑟 ∩𝐵𝑔|, |𝐶𝑟 ∩𝐶𝑔| > 𝜂

2𝑛 > 𝜂𝑛 which implies that there is an edge in 𝐸(𝐵𝑟 ∩𝐵𝑔, 𝐶𝑟 ∩𝐶𝑔). By
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assumption we also have |𝐴𝑟| ≥ 𝜂𝑛 > 2𝜂𝑛 and thus each pair of vertices in 𝐵𝑟∪̇𝐶𝑟 has a common
neighbour in 𝐴𝑟 by (a) of Proposition 8.21. By definition of 𝐴𝑟 all edges in 𝐸(𝐴𝑟, 𝐵𝑟∪̇𝐶𝑟)
are green, and therefore we conclude that all edges in 𝐸(𝐵𝑟 ∩ 𝐵𝑔, 𝐶𝑟 ∩ 𝐶𝑔) are red since
otherwise there would be a green triangle connected to 𝑀𝑔. Accordingly |𝐴𝑔| ≤ 2𝜂𝑛 < 𝜂𝑛/2
since otherwise we could equally argue that all edges in 𝐸(𝐵𝑟 ∩ 𝐵𝑔, 𝐶𝑟 ∩ 𝐶𝑔) are green, a
contradiction. Therefore |𝐴𝑔| ≥ (1− 𝜂/2)𝑛. As |𝐴𝑟| ≥ 𝜂𝑛 this implies |𝐴𝑔 ∩𝐴𝑟| ≥ 𝜂/2𝑛 > 𝜂𝑛
and from (8.17) we also get |𝐵𝑟∩𝐵̄𝑔| ≥ 𝜂/2𝑛 > 𝜂𝑛. Thus there is an edge in 𝐸(𝐴𝑔∩𝐴𝑟, 𝐵𝑟∩𝐵̄𝑔).
However, this edge can neither be red since it connects 𝐴𝑟 and 𝐵𝑟, nor green since it connects
𝐵̄𝑔 and 𝐴𝑔, a contradiction. Therefore |𝐵̄𝑔| < 𝜂𝑛 and by symmetry also |𝐶𝑔| < 𝜂𝑛 which
finishes the proof of Fact 3.

We label the vertices in each of the bipartite graphs 𝑅 and 𝐺 according to their bipartition
class by 1 and 2. In the remaining part of the proof we examine the distribution of these
bipartition classes over the partition classes of 𝐾. Let 𝐹𝑖𝑗 denote the set of vertices in
𝑉 (𝑅) ∩ 𝑉 (𝐺) with label 𝑖 in 𝑅 and label 𝑗 in 𝐺 for 𝑖, 𝑗 ∈ [2]. Let further 𝐹0𝑗 be the set of
vertices in 𝐴𝑟 ∩ 𝑉 (𝐺) that have label 𝑗 in 𝐺 for 𝑗 ∈ [2]. Next we observe that each of the sets
𝐹𝑖𝑗 with 𝑖, 𝑗 ∈ [2] is essentially contained in one partition class of 𝐾.

Fact 4. For all 𝑖, 𝑗 ∈ [2] there is at most one partition class 𝐷 ∈ {𝐴,𝐵,𝐶} of 𝐾 with
|𝐹𝑖𝑗 ∩𝐷| ≥ 𝜂𝑛. Moreover 𝐸(𝐹0𝑗 , 𝐹𝑖𝑗) = ∅.

To prove the first part of Fact 4 assume for a contradiction that |𝐹𝑖𝑗 ∩𝐴|, |𝐹𝑖𝑗 ∩𝐵| ≥ 𝜂𝑛.
Then there would be an edge in 𝐾[𝐴∩𝐹𝑖𝑗 , 𝐵 ∩𝐹𝑖𝑗 ] since 𝜂 > 𝜂. This contradicts the fact that
𝐹𝑖𝑗 is independent by definition. For the second part observe that an edge in 𝐸(𝐹0𝑗 , 𝐹𝑖𝑗) can
neither be red as such an edge would connect vertices from 𝐴𝑟 to 𝑅 nor green since 𝐹0𝑗 ∪ 𝐹𝑖𝑗

lies in one bipartition class 𝑗 of 𝐺.

Fact 5. There are 𝑋,𝑌 ∈ {𝐴,𝐵,𝐶} with 𝑋 ≠ 𝑌 and indices 𝑏, 𝑏′, 𝑐, 𝑐′ ∈ [2] with 𝑏𝑏′ ̸= 𝑐𝑐′ such
that |𝐹𝑏𝑏′ ∩𝑋|, |𝐹𝑐𝑐′ ∩ 𝑌 | ≥ (1− 5𝜂)𝑛 and |𝐹0𝑏′ |, |𝐹0𝑐′ | ≤ 𝜂𝑛.

We divide the proof of this fact into three cases: The first case deals with 𝐴𝑟 ≠ ∅, the
second one with 𝐴𝑟 = ∅ and the additional assumption that there are 𝐷 ∈ {𝐴,𝐵,𝐶} and
𝑖𝑗 ̸= 𝑖′𝑗′ ∈ [2] such that |𝐷 ∩ 𝐹𝑖𝑗 |, |𝐷 ∩ 𝐹𝑖′𝑗′ | ≥ 𝜂𝑛. The third and remaining case treats the
situation when 𝐴𝑟 = ∅ and for each 𝐷 ∈ {𝐴,𝐵,𝐶} there is at most one index pair (𝑖, 𝑗) with
|𝐷 ∩ 𝐹𝑖𝑗 | ≥ 𝜂𝑛.

For the first case, let 𝑗 ∈ [2] be such that 𝐹0𝑗 ̸= ∅. Observe that then the second part of Fact 4
implies that |𝐹1𝑗 ∩ (𝐵 ∪𝐶)|, |𝐹2𝑗 ∩ (𝐵 ∪𝐶)| < 𝜂𝑛. Let 𝑐′ = 𝑏′ ∈ [2] with 𝑐′ ≠ 𝑗. Then, because
Fact 3 implies that |𝐵̄𝑟|, |𝐵̄𝑔|, |𝐶𝑟|, |𝐶𝑔| < 𝜂𝑛, we have that |𝐵 ∩ (𝐹1𝑏′ ∪ 𝐹2𝑏′)| ≥ (1 − 4𝜂)𝑛
and |𝐶 ∩ (𝐹1𝑐′ ∪ 𝐹2𝑐′)| ≥ (1 − 4𝜂)𝑛. Thus there is a 𝑏 ∈ [2] such that |𝐵 ∩ 𝐹𝑏𝑏′ | ≥ 𝜂𝑛.
Let 𝑐′ ∈ [2] with 𝑐′ ̸= 𝑏′. The first part of Fact 4 implies that |𝐶 ∩ 𝐹𝑏𝑐′ | < 𝜂𝑛, thus
|𝐶 ∩ 𝐹𝑐𝑐′ | ≥ (1− 5𝜂)𝑛 ≥ 𝜂𝑛. By symmetry we also get |𝐵 ∩ 𝐹𝑏𝑏′ | ≥ (1− 5𝜂)𝑛. This proves the
first part of the statement for the first case. To see the second part, observe that if 𝐹0𝑏′ ̸= ∅,
then |𝐹1𝑏′ ∩ (𝐵 ∪ 𝐶)|, |𝐹2𝑏′ ∩ (𝐵 ∪ 𝐶)| < 𝜂𝑛 by Fact 4, a contradiction.

The second part of the second and third cases is straightforward as 𝐹0,1, 𝐹0,2 ⊆ 𝐴𝑟 = ∅. To
see the first part of the second case let 𝐷 be as specified above and {𝑋,𝑌 } = {𝐴,𝐵,𝐶} ∖ {𝐷}.
The first part of Fact 4 implies that |𝐹𝑖𝑗 ∩ 𝑋|, |𝐹𝑖′𝑗′ ∩ 𝑋|, |𝐹𝑖𝑗 ∩ 𝑌 |, |𝐹𝑖′𝑗′ ∩ 𝑌 | < 𝜂𝑛. Thus
|(𝐹𝑖𝑗′ ∪ 𝐹𝑖′𝑗) ∩𝑋| ≥ (1− 2𝜂)𝑛− 2𝜂𝑛, as |𝑋̄𝑟|, |𝑋̄𝑔| < 𝜂𝑛. Without loss of generality, let 𝑖𝑗′ be
such that |𝑋 ∩ 𝐹𝑖𝑗′ | ≥ 𝜂𝑛. We set 𝑏 := 𝑖, 𝑏′ := 𝑗′, 𝑐 = 𝑖′ and 𝑐′ := 𝑗. The rest of the proof
is similar to the first case, proving that then |𝑌 ∩ 𝐹𝑐𝑐′ | ≥ (1 − 5𝜂)𝑛 and by symmetry that
|𝑋 ∩ 𝐹𝑏𝑏′ | ≥ (1− 5𝜂)𝑛.

It remains to prove the first part of the third case. For this observe that for all 𝐷 ∈ {𝐴,𝐵,𝐶}
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we have that |𝐷∩⋃︀(𝑖′𝑗′ )̸=(𝑖,𝑗) 𝐹𝑖′,𝑗′ | < 3𝜂𝑛, where 𝑖, 𝑗 are as specified in the definition of the third
case. Observe also that |𝐷̄𝑟|, |𝐷̄𝑔| < 𝜂𝑛. This implies |𝐷∩𝐹𝑖,𝑗 | ≥ (1− 5𝜂)𝑛, as desired. Hence,
for 𝑋 = 𝐵 and 𝑌 = 𝐶 we obtain indices 𝑏, 𝑏′, 𝑐, 𝑐′ such that |𝑋 ∩ 𝐹𝑏𝑏′ |, |𝑌 ∩ 𝐹𝑖′𝑗′ | ≥ (1− 5𝜂)𝑛,
with 𝑏𝑏′ ̸= 𝑐𝑐′ by Fact 5.

This brings us to the last step which shows that 𝐾 is extremal, a contradiction.
Fact 6. 𝐾 is in pyramid configuration with parameter 𝜂′.

Let𝑋,𝑌 ∈ {𝐴,𝐵,𝐶} and 𝑏, 𝑏′, 𝑐, 𝑐′ ∈ [2] be as in Fact 5. Let 𝑍 ∈ {𝐴,𝐵,𝐶}∖{𝑋,𝑌 }. Assume
without loss of generality that 𝑏 = 𝑏′ = 1. Thus Fact 5 states that |𝐹11 ∩𝑋| ≥ (1− 5𝜂)𝑛 and
|𝐹01| ≤ 𝜂𝑛. We distinguish two cases. First, assume that 𝑐′ = 2 and set 𝑐 := 3− 𝑐. By Fact 5
this implies |𝐹𝑐2 ∩ 𝑌 | ≥ (1− 5𝜂)𝑛 and |𝐹02| ≤ 𝜂𝑛 and thus |(𝐹𝑐2 ∪ 𝐹21) ∩ 𝑍| ≥ (1− 5𝜂)𝑛 by
Fact 4. Moreover 𝐸(𝐹11 ∩𝑋,𝐹21 ∩𝑍) forms an 𝜂-complete red bipartite graph since 𝐹11 ∪𝐹21

is an independent set in 𝐺. Similarly 𝐸(𝐹𝑐2 ∩ 𝑌, 𝐹𝑐2 ∩ 𝑍) forms an 𝜂-complete red bipartite
graph. Further, if 𝑐 = 2 then 𝐸(𝐹𝑐2 ∩ 𝑌, 𝐹21 ∩ 𝑍) and 𝐸(𝐹11 ∩𝑋,𝐹𝑐2 ∩ 𝑍) form 𝜂-complete
green bipartite graphs (leading to crossings) and if 𝑐 = 1 then 𝐸(𝐹11 ∩ 𝑋,𝐹𝑐2 ∩ 𝑌 ) forms
an 𝜂-complete green bipartite graph (leading to a tunnel). Therefore, in both sub-cases, 𝐾
is in pyramid configuration with parameter 5𝜂 ≤ 𝜂′ and pyramids (𝐹11 ∩ 𝑋,𝐹21 ∩ 𝑍) and
(𝐹𝑐2 ∩ 𝑌, 𝐹𝑐2 ∩ 𝑍), unless one of the sets 𝐹21 ∩ 𝑍 and 𝐹𝑐2 ∩ 𝑍 has size at most 10𝜂𝑛. In this
case, however, we can simply replace this set by the empty set and still obtain a pyramid
configuration with parameter at most 15𝜂 ≤ 𝜂′.

In the case 𝑐′ = 1 we have 𝑐 = 2. Fact 5 guarantees that |𝐹21 ∩ 𝑌 | ≥ (1 − 5𝜂)𝑛. Since
|𝐹01| ≤ 𝜂𝑛 we conclude from Fact 4 that |(𝐹12 ∪ 𝐹22 ∪ 𝐹02) ∩ 𝑍| ≥ (1 − 5𝜂)𝑛. Similarly as
before 𝐸(𝐹11 ∩𝑋, (𝐹12 ∪ 𝐹02) ∩ 𝑍) and 𝐸(𝐹21 ∩ 𝑌, 𝐹22 ∩ 𝑍) form 𝜂-complete green bipartite
graphs and 𝐸(𝐹11 ∩𝑋,𝐹21 ∩ 𝑌 ) forms an 𝜂-complete red bipartite graph. Accordingly we
also get a pyramid configuration with parameter 5𝜂 ≤ 𝜂′ in this case, where the pyramids are
(𝐹11 ∩𝑋, (𝐹12 ∪ 𝐹02) ∩ 𝑍) and (𝐹21 ∩ 𝑌, 𝐹22 ∩ 𝑍) unless, again, (𝐹12 ∪ 𝐹02) ∩ 𝑍 or 𝐹22 ∩ 𝑍 are
too small in which case we proceed as above.

8.6.2 Extremal configurations

Our aim in this section is to provide a proof of Lemma 8.9. This proof naturally splits into
two cases concerning pyramid and spider configurations, respectively. The former is covered
by Proposition 8.24, the latter by Proposition 8.25.

Proposition 8.24. Lemma 8.9 is true for pyramid configurations.

Proof. Given 𝜂′ set 𝜂 = 𝜂′/3. Let 𝐾 be a coloured graph from 𝒦𝜂
𝑛 that is in pyramid

configuration with parameter 𝜂 and pyramids (𝐷1, 𝐷
′
1) and (𝐷2, 𝐷

′
2) such that the requirements

of (E1) in Definition 8.5 are met for colours 𝑐 and 𝑐′.
Fact 1. If the pyramid configuration has crossings then 𝐾 is

(︀
(1− 𝜂′)𝑛, (1− 𝜂′)3

2𝑛, 2
)︀
-good.

Indeed, by Proposition 8.19 there is a matching 𝑀 of colour either 𝑐 or 𝑐′ and size at
least (1− 2𝜂)1

2𝑛 in 𝐾[𝐷1, 𝐷2]. Note further, that the pyramid configuration with crossings is
symmetric with respect to the colours 𝑐 and 𝑐′ and hence we may suppose, without loss of
generality, that 𝑀 is of colour 𝑐 and that |𝐷′1| ≥ (1− 𝜂)1

2𝑛. As 𝐾[𝐷1, 𝐷
′
1] and 𝐾[𝐷2, 𝐷

′
2] are

(𝜂, 𝑐)-complete, there are 𝑐-coloured matchings 𝑀1 and 𝑀2 in 𝐾[𝐷1, 𝐷
′
1] and 𝐾[𝐷2 ∖𝑀,𝐷′2],

respectively, of size at least min{|𝐷′1|, |𝐷1|} − 𝜂𝑛 and min{|𝐷′2|, |𝐷2 ∖𝑀 |} − 𝜂𝑛, respectively.
This implies

|𝑀 |+ |𝑀1|+ |𝑀2| ≥ (1− 3𝜂)
3
2
𝑛 = (1− 𝜂′)

3
2
𝑛.
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Observe that, depending on the size of 𝑀 , either 𝑀 ∪𝑀2 or 𝑀1 ∪𝑀2 is a matching of size at
least (1− 3𝜂)𝑛 = (1− 𝜂′)𝑛. Now, the union of 𝑀 , 𝑀1, and 𝑀2 forms a 2-fork system 𝐹 and
since 𝐾[𝐷1, 𝐷

′
1] and 𝐾[𝐷2, 𝐷

′
2] are (𝜂, 𝑐)-complete the bipartite graph formed by these two

graphs and 𝑀 is connected and has partition classes 𝐷1 ∪𝐷′2 and 𝐷2 ∪𝐷′1. It follows that 𝐹
has size |𝑀 |+ |𝑀1|+ |𝑀2| ≥ (1− 𝜂′)3

2𝑛.
Fact 2. If the pyramid configuration has a 𝑐′-tunnel and if there is a matching 𝑀 of colour 𝑐′ and
size at least (1−𝜂′)1

2𝑛 in 𝐾[𝐷1, 𝐷
′
1∪𝐷′2] or in 𝐾[𝐷2, 𝐷

′
1∪𝐷′2] then 𝐾 is

(︀
(1−𝜂′)𝑛, (1−𝜂′)3

2𝑛, 2
)︀
-

good in colour 𝑐′.
As 𝐾 has a 𝑐′-tunnel, there is a connected matching 𝑀 ′ of colour 𝑐′ and size at least

|𝐷1|−𝜂𝑛 ≥ (1−𝜂′)𝑛 in 𝐾[𝐷1, 𝐷2]. We will extend the matching 𝑀 ′ (which is a 1-fork-system)
to a 2-fork system. Without loss of generality assume that the matching 𝑀 promised by Fact 2
is in 𝐾[𝐷1, 𝐷

′
1∪𝐷′2]. As 𝑀 ∩𝐷1 and 𝐷2 are non-negligible the bipartite graph 𝐾[𝑀 ∩𝐷1, 𝐷2]

is connected by Proposition 8.21(b) and thus 𝑀 is connected. Hence 𝑀∪𝑀 ′ forms a connected
2-fork system centered in 𝐷1 and of size |𝑀 ′|+ |𝑀 | ≥ (1− 𝜂′)3

2𝑛.
Fact 3. If the pyramid configuration has a 𝑐′-tunnel but no crossings and there is no matching
of colour 𝑐′ and size at least (1 − 𝜂′)1

2𝑛 in 𝐾[𝐷1, 𝐷
′
1 ∪𝐷′2] or in 𝐾[𝐷2, 𝐷

′
1 ∪𝐷′2] then 𝐾 is

((1− 𝜂′)𝑛, (1− 𝜂′)3
2𝑛, 3)-good in colour 𝑐.

To obtain the 3-fork system note that Proposition 8.19 implies that there are matchings
𝑀1 and 𝑀2 of colour 𝑐 and sizes at least (1− 𝜂′)1

2𝑛 in 𝐾[𝐷1, 𝐷
′
1 ∪𝐷′2] and 𝐾[𝐷2, 𝐷

′
1 ∪𝐷′2],

respectively. The union of 𝑀1 and 𝑀2 forms a 2-fork system 𝐹 centered in 𝐷′1 ∪𝐷′2 covering
at least (1 − 𝜂′)1

2𝑛 vertices in 𝐷1 and at least (1 − 𝜂′)1
2𝑛 vertices in 𝐷2. We can assume

without loss of generality that |𝐷′1| ≥ (1− 𝜂)1
2𝑛 ≥ (1− 𝜂′)1

2𝑛. As 𝐾[𝐷1, 𝐷
′
1] is (𝜂, 𝑐)-complete

and |𝐷1 ∖ 𝐹 | ≤ (1− 𝜂′)𝑛− (1− 𝜂′)1
2𝑛 = (1− 𝜂′)1

2𝑛 we can greedily find a matching between
𝐷′1 and 𝐷1 ∖𝐹 covering all but at most 𝜂𝑛 vertices of 𝐷1 ∖𝐹 . Its union with 𝐹 forms a 3-fork
system 𝐹 ′ centered in 𝐷′1∪𝐷′2 covering at least (1− 𝜂′)𝑛 vertices in 𝐷1 and at least (1− 𝜂′)1

2𝑛
vertices in 𝐷2, implying that 𝐹 ′ has size at least (1−𝜂′)3

2𝑛. The graph 𝐾[𝐷1, 𝐷
′
1]∪𝐾[𝐷2, 𝐷

′
2]

clearly contains a matching 𝑀 of size at least |𝐷′1 ∪𝐷′2| − 𝜂𝑛 ≥ (1− 𝜂′)𝑛 in colour 𝑐.
Since the pyramid configuration has no crossings there are edges of colour 𝑐 in 𝐾[𝐷1, 𝐷

′
2] ∪

𝐾[𝐷2, 𝐷
′
1]. Together with the fact that 𝐷1, 𝐷2, 𝐷′1, and 𝐷′2 are non-negligible, we obtain that

the bipartite graphs𝐾[𝐷1, 𝐷
′
1∪𝐷′2] and𝐾[𝐷2, 𝐷

′
1∪𝐷′2] are connected by (b) of Proposition 8.21.

Thus the matching 𝑀 and the fork system 𝐹 ′ are both connected.

Proposition 8.25. Lemma 8.9 is true for spider configurations.

Proof. Given 𝜂′ set 𝜂 = 𝜂′/5 and let 𝐾 be a coloured graph from 𝒦𝜂
𝑛 that is in spider

configuration with parameter 𝜂, i. e., it satisfies (E2) of Definition 8.5. In this proof we
construct only matchings and fork systems of colour 𝑐. Observe that these are connected by
definition. We distinguish two cases.

Case 1: First assume that |𝐴1 ∪𝐵1 ∪ 𝐶1| < (1− 𝜂)3
2𝑛. We will show that in this case our

configuration contains both a connected matching of size at least (1− 𝜂′)𝑛 and a connected
3-fork system of size at least (1− 𝜂′)3

2𝑛. We need the following auxiliary observation.
Fact 1. If |𝐴1 ∪𝐵1 ∪𝐶1| < (1− 𝜂)3

2𝑛 then 𝐴𝐵 = 𝐵𝐴 = ∅. Moreover |𝐴1|+ 𝜂𝑛 ≥ |𝐵𝐶 | = |𝐶𝐵|
and |𝐵1|+ 𝜂𝑛 ≥ |𝐴𝐶 | = |𝐶𝐴|.

Indeed, by Condition 3 of (E2) either 𝐴2 = ∅ and hence 𝐴𝐵 ⊆ 𝐴2 is empty or |𝐴2 ∪𝐵2 ∪
(𝐶2 ∖𝐶𝐶)| ≤ (1− 𝜂)3

2𝑛. In the second case we conclude from |𝐴1 ∪𝐵1 ∪𝐶1| < (1− 𝜂)3
2𝑛 that

|𝐴1 ∪𝐴2|+ |𝐵1 ∪𝐵2|+ |𝐶1 ∪ (𝐶2 ∖ 𝐶𝐶)| < (1− 𝜂)3𝑛.
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As |𝐴1 ∪ 𝐴2|, |𝐵1 ∪ 𝐵2|, |𝐶1 ∪ 𝐶2| ≥ (1 − 𝜂)𝑛 it follows that |𝐶1 ∪ (𝐶2 ∖ 𝐶𝐶)| < (1 − 𝜂)𝑛
and thus 𝐶𝐶 ̸= ∅. By Condition 2 of (E2) we get 𝐴𝐵 = ∅. For the second part of the fact
observe that Condition 1 of (E2) states that 𝑛 − |𝐴2| ≥ |𝐵𝐶 | = |𝐶𝐵| and thus we conclude
|𝐴1| ≥ (1−𝜂)𝑛−|𝐴2| ≥ |𝐵𝐶 |−𝜂𝑛 = |𝐶𝐵|−𝜂𝑛. The inequality |𝐵1| ≥ |𝐴𝐶 |−𝜂𝑛 is established
in the same way.
Fact 2. If |𝐴1 ∪𝐵1 ∪ 𝐶1| < (1− 𝜂)3

2𝑛 then 𝐾 is
(︀
(1− 𝜂′)𝑛, (1− 𝜂′)3

2𝑛), 3
)︀
-good.

From Condition 1 of (E2) we infer that |𝐴𝐶 | < 𝑛 − |𝐵2| ≤ |𝐵1| + 𝜂𝑛 and Fact 1 implies
that |𝐴1|+ |𝐴𝐶 | = |𝐴1|+ |𝐴2| ≥ (1− 𝜂)𝑛 and |𝐶1|+ |𝐶2| ≥ (1− 𝜂)𝑛. We thus conclude from
|𝐴1 ∪𝐵1 ∪ 𝐶1| < (1− 𝜂)3

2𝑛 that

|𝐴𝐶 | − 𝜂𝑛 < |𝐵1| < (1− 𝜂)3
2𝑛− |𝐴1 ∪ 𝐶1| < |𝐴𝐶 |+ |𝐶2| − 𝜂𝑛.

This (together with the fact that 𝐾[𝐵1, 𝐴𝐶 ] and 𝐾[𝐵1, 𝐶2] are (𝜂, 𝑐)-complete) justifies that
there is a 𝑐-coloured matching 𝑀1 in 𝐾[𝐵1, 𝐴𝐶 ∪𝐶2] covering all vertices of 𝐵1 and all but at
most 𝜂𝑛 vertices of 𝐴𝐶 . Further, by Fact 1 we know that |𝐵𝐶 | ≤ |𝐴1|+ 𝜂𝑛 and hence we can
find a matching 𝑀2 of colour 𝑐 in (the (𝜂, 𝑐)-complete graph) 𝐾[𝐵𝐶 , 𝐴1] covering all but at
most 𝜂𝑛 vertices of 𝐵𝐶 . The matching 𝑀 := 𝑀1 ∪𝑀2 satisfies

|𝑀 | ≥ |𝐵1|+ |𝐵𝐶 | − 𝜂𝑛 = |𝐵1|+ |𝐵2| − 𝜂𝑛 ≥ (1− 𝜂)𝑛− 𝜂𝑛 ≥ (1− 𝜂′)𝑛,

where the equality follows from Fact 1. Next, we extend the matching 𝑀 to a connected 3-fork
system of colour 𝑐 and size at least (1−𝜂′)3

2𝑛 in the following way. Consider maximal matchings
𝑀3, 𝑀4, and 𝑀5 in 𝐾[𝐵1, 𝐶𝐴 ∖𝑀1], 𝐾[𝐴1, 𝐶𝐵 ∖𝑀1] and 𝐾[𝐴1, 𝐶𝐶 ∖𝑀1], respectively. By
Fact 1 we infer that 𝑀3 and 𝑀4 each cover all but at most 𝜂𝑛 vertices of 𝐶𝐴 ∖𝑀1 and 𝐶𝐵 ∖𝑀1,
respectively. As |𝐶𝐶 | ≤ |𝐶𝐶 ∪ 𝐶1| ≤ |𝐴1| by Condition 1 of (E2) the matching 𝑀5 covers all
but at most 𝜂𝑛 vertices of 𝐶𝐶 .

Then the union 𝑀 ∪𝑀3 ∪𝑀4 ∪𝑀5 is a 3-fork-system 𝐹 centered in 𝐴1 ∪𝐵1 and covering
all but at most 5𝜂𝑛 vertices of 𝐴𝐶 ∪𝐵𝐶 ∪𝐶𝐴 ∪𝐶𝐵 ∪𝐶𝐶 = 𝐴2 ∪𝐵2 ∪𝐶2. Thus 𝐹 has size at
least (1− 𝜂)3𝑛− |𝐴1 ∪𝐵1 ∪ 𝐶1| − 5𝜂𝑛 ≥ (1− 𝜂′)3

2𝑛.
Case 2: Now we turn to the case |𝐴1 ∪𝐵1 ∪ 𝐶1| ≥ (1− 𝜂)3

2𝑛. We further divide this case
into two sub-cases, treating 𝐶1 = ∅ and 𝐶1 ̸= ∅, respectively.
Fact 3. If |𝐴1 ∪𝐵1 ∪ 𝐶1| ≥ (1− 𝜂)3

2𝑛 and 𝐶1 = ∅ then 𝐾 is
(︀
(1− 𝜂′)𝑛, (1− 𝜂′)3

2𝑛, 2
)︀
-good.

By definition |𝐶2| ≥ (1− 𝜂)𝑛− |𝐶1| = (1− 𝜂)𝑛 in this case. Therefore, using the fact that
𝐾[𝐴1, 𝐶2] and 𝐾[𝐵1, 𝐶2] are (𝜂, 𝑐)-complete, we can greedily construct a maximal matching
𝑀𝐴 in 𝐾[𝐴1, 𝐶2] and a maximal matching 𝑀 ′

𝐵 in 𝐾[𝐵1, 𝐶2 ∖𝑀𝐴] such that the matching
𝑀 := 𝑀𝐴 ∪𝑀 ′

𝐵 covers 𝐶2 (as |𝐴1 ∪ 𝐵1| = |𝐴1 ∪ 𝐵1 ∪ 𝐶1| > |𝐶2|+ 𝜂𝑛) and thus has size at
least (1− 𝜂)𝑛. Then we extend 𝑀 ′

𝐵 to a maximal matching 𝑀𝐵 in 𝐾[𝐵1, 𝐶2]. Observe that
𝑀𝐴 and 𝑀𝐵 cover all but at most 𝜂𝑛 vertices of 𝐴1 and 𝐵1, respectively. Thus the 2-fork
system 𝐹 := 𝑀𝐴 ∪𝑀𝐵 has size at least |𝐴1 ∪𝐵1| − 2𝜂𝑛 = |𝐴1 ∪𝐵1 ∪𝐶1| − 2𝜂𝑛 ≥ (1− 𝜂′)3

2𝑛.
Now consider the sub-case when 𝐶1 ̸= ∅.

Fact 4. If |𝐴1 ∪ 𝐵1 ∪ 𝐶1| ≥ (1 − 𝜂)3
2𝑛 and 𝐶1 ̸= ∅ then |𝐵1 ∪ 𝐶1| ≤ (1 − 𝜂)3

4𝑛 and we have
|𝐶2| ≥ (1− 𝜂)1

4𝑛 and |𝐶1| ≤ |𝐵2| − 𝜂𝑛.
The first inequality follows from Condition 4 of (E2). Accordingly |𝐶2| ≥ (1− 𝜂)𝑛− |𝐶1| ≥

(1 − 𝜂)1
4𝑛 which establishes the second inequality. For the third inequality we use that

|𝐵1 ∪𝐵2| ≥ (1− 𝜂)𝑛 by definition and so

|𝐶1| ≤ (1− 𝜂)3
4𝑛− |𝐵1| ≤ (1− 𝜂)3

4𝑛− (1− 𝜂)𝑛+ |𝐵2| ≤ |𝐵2| − 𝜂𝑛.
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Fact 5. If |𝐴1 ∪𝐵1 ∪ 𝐶1| ≥ (1− 𝜂)3
2𝑛 and 𝐶1 ̸= ∅ then there is a matching 𝑀 of size at least

(1− 𝜂)𝑛 and colour 𝑐 covering 𝐶1.
Let 𝑀1 be a maximal matching in 𝐾[𝐶1, 𝐵2]. We conclude from Fact 4 that 𝑀1 covers

𝐶1. Let 𝑀2 be a maximal matching in 𝐾[𝐶2, 𝐴1 ∪𝐵1]. As |𝐶2| ≤ 𝑛− |𝐶1| ≤ |𝐴1 ∪𝐵1| − 𝜂𝑛
the matching 𝑀2 covers 𝐶2. Setting 𝑀 := 𝑀1 ∪𝑀2, we obtain a matching of size |𝑀 | =
|𝐶1|+ |𝐶2| ≥ (1− 𝜂)𝑛 as required.
Fact 6. If |𝐴1 ∪𝐵1 ∪ 𝐶1| ≥ (1− 𝜂)3

2𝑛 and 𝐶1 ̸= ∅, then there is a 3-fork system of colour 𝑐
and of size at least (1− 𝜂′)3

2𝑛.
Let 𝑀 be the matching from Fact 5. Clearly, we can greedily construct a 2-fork system 𝐹 ′

in the (𝜂, 𝑐)-complete graph 𝐾[𝐶2, (𝐴1 ∪ 𝐵1) ∖𝑀 ] which either is of size 2|𝐶2| or covers all
but at most 𝜂𝑛 vertices of |(𝐴1 ∪𝐵1) ∖𝑀 |. Then 𝐹 := 𝑀 ∪ 𝐹 ′ forms a 3-fork system. If the
former case occurs we infer from Fact 4 that 𝐹 is of size at least (1− 𝜂)𝑛+ 2|𝐶2| ≥ (1− 𝜂)3

2𝑛.
In the latter case 𝐹 covers all but at most 𝜂𝑛 vertices of 𝐴1 ∪𝐵1 ∪ 𝐶1 and thus has size at
least (1− 𝜂)3

2𝑛− 𝜂𝑛 ≥ (1− 2𝜂)3
2𝑛. We conclude that 𝐾 is ((1− 𝜂′)𝑛, (1− 𝜂′)3

2𝑛, 3)-good also
in the sub-case |𝐴1 ∪𝐵1 ∪ 𝐶1| ≥ (1− 𝜂)3

2𝑛 and 𝐶1 ̸= ∅.

8.7 Sparser tripartite graphs

As noted earlier our proof of Theorem 8.1 applies to suitably chosen (sparser) subgraphs
of 𝐾𝑛,𝑛,𝑛 as well. More precisely, for any fixed 𝑝 ∈ (0, 1) the same method can be used to show
that asymptotically almost surely 𝒢𝑝(𝑛, 𝑛, 𝑛) → 𝒯 Δ

𝑡 , where 𝒢𝑝(𝑛, 𝑛, 𝑛) is a random tripartite
graph with edge probability 𝑝 and partition classes of size 𝑛, and where 𝑡 ≤ (1− 𝜇)𝑛/2 and
Δ ≤ 𝑛𝛼 for a small positive 𝛼 = 𝛼(𝜇, 𝑝). Indeed, standard methods can be used to show that
the following holds asymptotically almost surely for 𝐺 = 𝒢𝑝(𝑛, 𝑛, 𝑛) with partition classes
𝑉1∪̇𝑉2∪̇𝑉3 and for any 𝜁 > 0:

∙ 𝐺 has at most 4𝑝𝑛2 edges.
∙ 𝑒(𝑈,𝑊 ) ≥ 𝑝|𝑈 ||𝑊 |/2 for all 𝑈 ⊆ 𝑉𝑖 and 𝑊 ⊆ 𝑉𝑗 , 𝑖 ̸= 𝑗, with min{|𝑈 |, |𝑊 |} > 𝜁𝑛.

The first property guarantees that we obtain a graph with few edges. We claim further that
these two properties imply that 𝐺→ 𝒯 Δ

𝑘 . To see this we proceed as in the proof of Theorem 8.1
and apply the regularity lemma on the coloured graph 𝐺. We then colour an edge in the
reduced graph G by green or red, respectively, if the corresponding cluster pair is regular and
has density at least 𝑝/4 in green or red. Using the two properties from above it is not difficult
to verify that G is a coloured tripartite graph that is 𝜂-complete. Hence, from this point on,
we can use the strategy described in the proof of Theorem 8.1, apply our structural lemma,
Lemma 8.7, the assignment lemma, Lemma 8.13, and the embedding lemma, Lemma 8.12.

One may ask whether this approach can be pushed even further and consider random
tripartite graphs 𝒢𝑝(𝑛, 𝑛, 𝑛) with edge probabilities 𝑝(𝑛) that tend to zero as 𝑛 goes to infinity.
It is likely that similar methods can be used in this case in conjunction with the regularity
method for sparse graphs (see, e.g., [41, 57]).
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Chapter 9

Embedding into sparse graphs

All embedding problems we considered so far in this thesis were concerned with dense host
graphs and applied the dense regularity method. In this section we turn to sparse graphs and
sparse regularity.

The sparse regularity method, which is based on the sparse regularity lemma (Lemma 3.15),
recently received a considerable amount of attention. A series of results about the nature and
the properties of sparse regular pairs were established with important applications in the theory
of random graphs (see [41, 59]). However, proving sparse counterparts of the embedding tools
that worked well in the dense regularity method seems to be difficult already for constant-size
subgraphs. Embedding problems in systems of sparse regular pairs for graphs of constant
size are considered in [58, 39, 38, 40, 77]. Here we use techniques developed in [8, 61] for the
embedding of graphs that are linear in the size of the host graph. We combine them with the
methods from Chapter 5 in order to obtain a result that can be considered a sparse analogue
of Theorem 5.1 for bipartite graphs.

We consider subgraphs 𝐺 = (𝑉,𝐸) of the random graph Γ = 𝒢𝑛,𝑝 and show that 𝐺
contains all almost spanning bipartite bounded-degree graphs 𝐻 with sublinear bandwidth if
𝑝 = 𝑝(𝑛) = 𝑜(1) is sufficiently large and 𝐺 has the following property: Each vertex 𝑣 ∈ 𝑉 has
more than half of its neighbours in Γ as neighbours in 𝐺.

Theorem 9.1. For each 𝜂, 𝛾 > 0 and Δ > 1 there exist positive constants 𝛽 and 𝑐 such
that the following holds a.a.s. for Γ = 𝒢𝑛,𝑝 with 𝑝 ≥ 𝑐(log 𝑛/𝑛)1/Δ. Every spanning subgraph
𝐺 = (𝑉,𝐸) of Γ with deg𝐺(𝑣) ≥ (1

2 +𝛾) degΓ(𝑣) for all 𝑣 ∈ 𝑉 contains a copy of every graph 𝐻
on 𝑚 = (1− 𝜂)𝑛 vertices with maximum degree Δ(𝐻) ≤ Δ and bandwidth bw(𝐻) ≤ 𝛽𝑛.

In the proof of this theorem we will, again, use two structural lemmas that provide partitions
of 𝐺 and 𝐻, respectively. In addition we will apply two embedding lemmas, the constraint
blow-up lemma and the connection lemma. The constraint blow-up lemma is a sparse bipartite
analogue of the blow-up lemma (Lemma 3.9) in the sense that it embeds (almost) spanning
bipartite graphs into (sparse) 𝑝-dense pairs. The connection lemma embeds graphs that are
much smaller (similar as the partial embedding lemma, Lemma 3.10) but can cope with the
following situation: Each vertex 𝑥 that will be embedded by this lemma is equipped with a
(possibly very small) candidate set from which its image in the embedding will be chosen. In
the proof of Theorem 9.1 we will first apply the constrained blow-up lemma to embed most
vertices of 𝐻 into 𝐺 and then the connecting lemma for finishing the embedding.

Observe that this strategy is different from the one we employed for dense problems using
the general embedding lemma (Lemma 3.12): In the proof of Lemma 3.12 (see Section 3.12) we
first applied the partial embedding lemma and then the blow-up lemma. The reason for this
change is as follows. In the dense case the application of the partial embedding lemma created
image restrictions for the application of the blow-up lemma. These image restrictions are
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Figure 9.1: The ladder 𝑅*𝑟 and the spin graph 𝑅𝑟,𝑡 for the special case 𝑡 = 2.

neighbourhoods of vertices (hosting previously embedded vertices of 𝐻) in the host graph 𝐺.
Because 𝐺 is a dense graph we can guarantee that these neighbourhoods are of linear size, that
is, big enough to be used as image restriction in the blow-up lemma. In the sparse case such
neighbourhoods may be tiny and cannot be handled by Lemma 9.4. To solve this problem
we apply this lemma first, without any image restrictions. This creates restrictions for the
connecting lemma, which we will take care of with the help of the candidate sets mentioned
above.

The four main lemmas and the idea for the proof of Theorem 9.1 are given in the following
section, and the details of this proof in Section 9.4. To prepare this proof we will first examine
some relevant properties of random graphs in Section 9.2 and consider neighbourhood and
inheritance properties in 𝑝-dense pairs in Section 9.3.

9.1 Main Lemmas

In this section we will formulate the main lemmas for the proof of Theorem 9.1. In order to
state them we first need to define two (families of) special graphs.

For 𝑟, 𝑡 ∈ N, 𝑡 even, let 𝑈 = {𝑢1, . . . , 𝑢𝑟}, 𝑉 = {𝑣1, . . . , 𝑣𝑟}, 𝐶 = {𝑐𝑖,𝑗 , 𝑐′𝑖,𝑗 : 𝑖 ∈ [𝑟], 𝑗 ∈ [2𝑡]},
and 𝐵 = {𝑏𝑖,𝑗 , 𝑏′𝑖,𝑗 : 𝑖 ∈ [𝑟], 𝑗 ∈ [2𝑡]}. Let the ladder 𝑅*𝑟 = (𝑈 ∪̇𝑉,𝐸(𝑅*𝑟)) have edges 𝐸(𝑅*𝑟) :=
{𝑢𝑖𝑣𝑗 : 𝑖, 𝑗 ∈ [𝑟], |𝑖− 𝑗| ≤ 1} and let the spin graph 𝑅𝑟,𝑡 = (𝑈 ∪̇𝑉 ∪̇𝐶∪̇𝐵,𝐸(𝑅𝑟,𝑡)) be the graph
with the following edge set (see Figure 9.1):

𝐸(𝑅𝑟,𝑡) :=
⋃︁

𝑖,𝑖′∈[𝑟],𝑖′ ̸=1
𝑗,𝑗′∈[2𝑡]
𝑘,𝑘′∈[𝑡]

ℓ,ℓ′∈[𝑡+1,2𝑡]

(︃{︁
𝑢𝑖𝑣𝑖, 𝑏𝑖,𝑘𝑏

′
𝑖,𝑘′ , 𝑏𝑖,ℓ𝑏

′
𝑖,ℓ′ , 𝑐𝑖,𝑘𝑐

′
𝑖,𝑘′ , 𝑐𝑖,ℓ𝑐

′
𝑖,ℓ′

}︁
∪
{︁
𝑏𝑖,𝑗𝑣𝑖, 𝑐𝑖,𝑗𝑣𝑖

}︁
∪
{︁
𝑏′𝑖,𝑘𝑏

′
𝑖,ℓ, 𝑐𝑖′−1,ℓ𝑐

′
𝑖′,𝑘, 𝑐𝑖′−1,ℓ𝑐

′
𝑖′,𝑘

}︁)︃
.

Now we can state our four main lemmas, two partition lemmas and two embedding lemmas.
We start with the lemma for 𝐺, which constructs a partition of the host graph 𝐺. This lemma
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is a consequence of the sparse regularity lemma (Lemma 3.18) and asserts a 𝑝-dense partition
of 𝐺 such that its reduced graph contains a spin graph. We will indicate below why this is
useful for the embedding of 𝐻. The lemma for 𝐺 produces clusters of very different sizes: A
set of larger clusters 𝑈𝑖 and 𝑉𝑖 which we call big clusters and which will accommodate most of
the vertices of 𝐻 later, and a set of smaller clusters 𝐵𝑖,𝑗 ,𝐵′𝑖,𝑗 , 𝐶𝑖,𝑗 , and 𝐶 ′𝑖,𝑗 . The 𝐵𝑖,𝑗 and 𝐵′𝑖,𝑗
are called balancing clusters and the 𝐶𝑖,𝑗 and 𝐶 ′𝑖,𝑗 connecting clusters. They will be used to
host a small number of vertices of 𝐻. These vertices balance and connect the pieces of 𝐻 that
are embedded into the big clusters (see also the explanations in Sections 1.3.2 and 1.3.4). The
proof of Lemma 9.2 is given in Section 9.5.

In the formulation of this lemma (and also in the lemma for 𝐻 below) we abuse the notation
in the following sense. For two sets 𝐴 and 𝐵 and a number 𝑥 we write |𝐴| := |𝐵| ≥ 𝑥 by
which we simultaneously mean that 𝐴 is defined to be the set 𝐵 and that the size |𝐴| = |𝐵| of
this set is at least 𝑥.

Lemma 9.2 (Lemma for 𝐺). For all integers 𝑡, 𝑟0 > 0 and reals 𝜂, 𝛾 > 0 there are positive reals
𝜂′ and 𝑑 such that for all 𝜀 > 0 there is 𝑟1 such that the following holds a.a.s. for Γ = 𝒢𝑛,𝑝 with
log4 𝑛/(𝑝𝑛) = 𝑜(1). Let 𝐺 = (𝑉,𝐸) be a spanning subgraph of Γ with deg𝐺(𝑣) ≥ (1

2 +𝛾) degΓ(𝑣)
for all 𝑣 ∈ 𝑉 . Then there is 𝑟0 ≤ 𝑟 ≤ 𝑟1, a subset 𝑉0 of 𝑉 with |𝑉0| ≤ 𝜀𝑛, and a mapping 𝑔
from 𝑉 ∖ 𝑉0 to the spin graph 𝑅𝑟,𝑡 such that for every 𝑖 ∈ [𝑟], 𝑗 ∈ [2𝑡] we have

(G1) |𝑈𝑖| := |𝑔−1(𝑢𝑖)| ≥ (1− 𝜂) 𝑛
2𝑟 and |𝑉𝑖| := |𝑔−1(𝑣𝑖)| ≥ (1− 𝜂) 𝑛

2𝑟 ,
(G2) |𝐶𝑖,𝑗 | := |𝑔−1(𝑐𝑖,𝑗)| ≥ 𝜂′ 𝑛

2𝑟 and |𝐶 ′𝑖,𝑗 | := |𝑔−1(𝑐′𝑖,𝑗)| ≥ 𝜂′ 𝑛
2𝑟 ,

|𝐵𝑖,𝑗 | := |𝑔−1(𝑏𝑖,𝑗)| ≥ 𝜂′ 𝑛
2𝑟 and |𝐵′𝑖,𝑗 | := |𝑔−1(𝑏′𝑖,𝑗)| ≥ 𝜂′ 𝑛

2𝑟 ,

(G3) the pair (𝑔−1(𝑥), 𝑔−1(𝑦)) is (𝜀, 𝑑, 𝑝)-dense for all 𝑥𝑦 ∈ 𝐸(𝑅𝑟,𝑡).

Our second lemma provides a partition of 𝐻 that fits to the structure of the partition of
𝐺 generated by Lemma 9.2. We will first state this lemma and then explain the different
properties it guarantees.

Lemma 9.3 (Lemma for 𝐻). For all integers Δ there is an integer 𝑡 > 0 such that for any
𝜂 > 0 and any integer 𝑟 ≥ 1 there is 𝛽 > 0 such that the following holds for all integers
𝑚 and all bipartite graphs 𝐻 on 𝑚 vertices with Δ(𝐻) ≤ Δ and bw(𝐻) ≤ 𝛽𝑚. There is a
homomorphism ℎ from 𝐻 to the spin graph 𝑅𝑟,𝑡 such that for every 𝑖 ∈ [𝑟], 𝑗 ∈ [2𝑡]

(H1) |𝑈̃𝑖| := |ℎ−1(𝑢𝑖)| ≤ (1 + 𝜂) 𝑚
2𝑟 and |𝑉𝑖| := |ℎ−1(𝑣𝑖)| ≤ (1 + 𝜂) 𝑚

2𝑟 ,

(H2) |𝐶𝑖,𝑗 | := |ℎ−1(𝑐𝑖,𝑗)| ≤ 𝜂𝑚
2𝑟 and |𝐶 ′𝑖,𝑗 | := |ℎ−1(𝑐′𝑖,𝑗)| ≤ 𝜂𝑚

2𝑟 ,
|𝐵̃𝑖,𝑗 | := |ℎ−1(𝑏𝑖,𝑘)| ≤ 𝜂𝑚

2𝑟 and |𝐵̃′𝑖,𝑗 | := |ℎ−1(𝑏′𝑖,𝑘)| ≤ 𝜂𝑚
2𝑟 ,

(H3) 𝐶𝑖,𝑗, 𝐶 ′𝑖,𝑗, 𝐵̃𝑖,𝑗, and 𝐵̃′𝑖,𝑗 are 3-independent in 𝐻,

(H4) deg𝑉𝑖
(𝑦) = deg𝑉𝑖

(𝑦′) ≤ Δ− 1 for all 𝑦𝑦′ ∈
(︀𝐶𝑖,𝑗

2

)︀
∪
(︀𝐵̃𝑖,𝑗

2

)︀
,

deg𝐶𝑖
(𝑦) = deg𝐶𝑖

(𝑦′) for all 𝑦, 𝑦′ ∈ 𝐶 ′𝑖,𝑗,
deg𝐿(𝑖,𝑗)(𝑦) = deg𝐿(𝑖,𝑗)(𝑦′) for all 𝑦, 𝑦′ ∈ 𝐵̃′𝑖,𝑗,

where 𝐶𝑖 :=
⋃︀

𝑘∈[2𝑡]𝐶𝑖,𝑘 and 𝐿(𝑖, 𝑗) :=
⋃︀

𝑘∈[2𝑡] 𝐵̃𝑖,𝑘 ∪
⋃︀

𝑘<𝑗 𝐵̃
′
𝑖,𝑘. Further, let 𝑋̃𝑖 with 𝑖 ∈ [𝑟] be

the set of vertices in 𝑉𝑖 with neighbours outside 𝑈̃𝑖. Then

(H5) |𝑋̃𝑖| ≤ 𝜂|𝑉𝑖|.

This lemma asserts a homomorphism ℎ from 𝐻 to a spin graph 𝑅𝑟,𝑡. Recall that 𝑅𝑟,𝑡

is contained in the reduced graph of the 𝑝-dense partition provided by Lemma 9.2. As we
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will see we can fix the parameters in this lemma such that, when we apply it together with
Lemma 9.2, the homomorphism ℎ further has the following property. The number 𝐿̃ of vertices
that it maps to a vertex 𝑎 of the spin graph is less than the number 𝐿 contained in the
corresponding cluster 𝐴 provided by Lemma 9.2 (compare (G1) and (G2) with (H1) and (H2)).
If 𝐴 is a big cluster, then the numbers 𝐿 and 𝐿̃ differ only slightly (these vertices will be
embedded using the constrained blow-up lemma), but for balancing and connecting clusters 𝐴
the number 𝐿̃ is much smaller than 𝐿 (this is necessary for the embedding of these vertices
using the connection lemma). With property (H5) Lemma 9.3 further guarantees that only
few edges of 𝐻 are not assigned either to two connecting or balancing clusters, or to two big
clusters. This is helpful because it implies that we do not have to take care of “too many
dependencies” between the applications of the blow-up lemma and the connection lemma. The
remaining properties (H3)–(H4) of Lemma 9.3 are technical but required for the application
of the connection lemma (see conditions (B) and (C) of Lemma 9.5).

The vertices in 𝐶𝑖,𝑗 and 𝐶 ′𝑖,𝑗 are also called connecting vertices of 𝐻, the vertices in 𝐵̃𝑖,𝑗

and 𝐵̃′𝑖,𝑗 balancing vertices.
We next describe the two embedding lemmas, the constrained blow-up lemma (Lemma 9.4)

and the connection lemma (Lemma 9.5), which we would like to use on the partitions of 𝐺
and 𝐻 provided by Lemmas 9.2 and 9.3. The connecting lemma will be used to embed the
connecting and balancing vertices to the connecting and balancing clusters after all the other
vertices were embedded to the big clusters with the help of the constrained blow-up lemma.

The constrained blow-up lemma states that bipartite graphs 𝐻 with bounded maximum
degree can be embedded into a 𝑝-dense pair 𝐺 = (𝑈, 𝑉 ) whose cluster sizes are just slightly
bigger than the partition classes of 𝐻. This lemma further guarantees the following. If we
specify in one of the partition classes of 𝐻 a small family of small special sets and in the
corresponding cluster of 𝐺 a small family of small forbidden sets, then no special set is mapped
to a forbidden set. This property will be crucial in the application of this lemma together
with the connection lemma in the proof of Theorem 9.1 in order to handle the “dependencies”
between these applications. The proof of this Lemma is given in Section 9.7 and relies on
techniques developed in [8].

Lemma 9.4 (Constrained blow-up lemma). For every integer Δ > 1 and for all positive reals 𝑑
and 𝜂 there exist positive constants 𝜀 and 𝜇 such that for all positive integers 𝑟1 there is 𝑐 such
that for all integers 1 ≤ 𝑟 ≤ 𝑟1 the following holds a.a.s. for Γ = 𝒢𝑛,𝑝 with 𝑝 ≥ 𝑐(log 𝑛/𝑛)1/Δ.
Let 𝐺 = (𝑈, 𝑉 ) ⊆ Γ be an (𝜀, 𝑑, 𝑝)-dense pair with |𝑈 |, |𝑉 | ≥ 𝑛/𝑟 and let 𝐻 be a bipartite graph
on vertex classes 𝑈̃ ∪̇𝑉 of sizes |𝑈̃ |, |𝑉 | ≤ (1− 𝜂)𝑛/𝑟 and with Δ(𝐻) ≤ Δ. Moreover, suppose
that there is a family ℋ ⊆

(︀
𝑉
Δ

)︀
of special Δ-sets in 𝑉 such that each 𝑣 ∈ 𝑉 is contained in at

most Δ special sets and a family ℬ ⊆
(︀
𝑉
Δ

)︀
of forbidden Δ-sets in 𝑉 with |ℬ| ≤ 𝜇|𝑉 |Δ. Then

there is an embedding of 𝐻 into 𝐺 such that no special set is mapped to a forbidden set.

Our last main lemma, the connection lemma (Lemma 9.5), embeds (partitioned) graphs 𝐻
into graphs 𝐺 forming a system of 𝑝-dense pairs. In contrast to the blow-up lemma, however,
the graph 𝐻 has to be much smaller than the graph 𝐺 now (see condition (A)). In addition,
each vertex 𝑦 of 𝐻 is equipped with a candidate set 𝐶(𝑦) in 𝐺 from which the connection
lemma will choose the image of 𝑦 in the embedding. Lemma 9.5 requires that these candidate
sets are big (condition (D)) and that pairs of candidate sets that correspond to an edge of 𝐻
form 𝑝-dense pairs (condition (E)). The remaining conditions ((B) and (C)) are conditions
on the neighbourhoods and degrees of the vertices in 𝐻 (with respect to the given partition
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of 𝐻). For their statement we need the following additional definition.
For a graph 𝐻 on vertex set 𝑉 = 𝑉1∪̇ . . . ∪̇𝑉𝑡 and 𝑦 ∈ 𝑉𝑖 with 𝑖 ∈ [𝑡] define the left degree

of 𝑣 with respect to the partition 𝑉1∪̇ . . . ∪̇𝑉𝑡 to be ldeg(𝑦;𝑉1, . . . , 𝑉𝑡) :=
∑︀𝑖−1

𝑗=1 deg𝑉𝑗
(𝑦). When

clear from the context we may also omit the partition and simply write ldeg(𝑦).

Lemma 9.5 (Connection lemma). For all integers Δ > 1, 𝑡 > 0 and reals 𝑑 > 0 there are 𝜀,
𝜉 > 0 such that for all positive integers 𝑟1 there is 𝑐 > 1 such that for all integers 1 ≤ 𝑟 ≤ 𝑟1
the following holds a.a.s. for Γ = 𝒢𝑛,𝑝 with 𝑝 ≥ 𝑐(log 𝑛/𝑛)1/Δ. Let 𝐺 ⊆ Γ be any graph
on vertex set 𝑊 = 𝑊1∪̇ . . . ∪̇𝑊𝑡 and let 𝐻 be any graph on vertex set 𝑊̃ = 𝑊̃1∪̇ . . . ∪̇𝑊̃𝑡.
Suppose further that for each 𝑖 ∈ [𝑡] each vertex 𝑤̃ ∈ 𝑊̃𝑖 is equipped with an arbitrary set
𝑋𝑤̃ ⊆ 𝑉 (Γ) ∖𝑊 with the property that the indexed set system

(︀
𝑋𝑤̃ : 𝑤̃ ∈ 𝑊̃𝑖

)︀
consists of

pairwise disjoint sets and such that the following holds. We define the external degree of 𝑤̃ to
be edeg(𝑤̃) := |𝑋𝑤̃|, its candidate set 𝐶(𝑤̃) ⊆𝑊𝑖 to be 𝐶(𝑤̃) := 𝑁∩

𝑊𝑖
(𝑋𝑤̃), and require that

(A) |𝑊𝑖| ≥ 𝑛/𝑟 and |𝑊̃𝑖| ≤ 𝜉𝑛/𝑟,
(B) 𝑊̃𝑖 is a 3-independent set in 𝐻,
(C) edeg(𝑤̃) + ldeg(𝑤̃) = edeg(𝑣) + ldeg(𝑣) and deg𝐻(𝑤̃) + edeg(𝑤̃) ≤ Δ for all 𝑤̃, 𝑣 ∈ 𝑊̃𝑖,
(D) |𝐶(𝑤̃)| ≥ ((𝑑− 𝜀)𝑝)edeg(𝑤̃)|𝑊𝑖| for all 𝑤̃ ∈ 𝑊̃𝑖, and
(E) (𝐶(𝑤̃), 𝐶(𝑣)) forms an (𝜀, 𝑑, 𝑝)-dense pair for all 𝑤̃𝑣 ∈ 𝐸(𝐻).

Then there is an embedding of 𝐻 into 𝐺 such that every vertex 𝑤̃ ∈ 𝑊̃ is mapped to a vertex
in its candidate set 𝐶(𝑤̃).

The proof of this lemma is inherent in [61]. We adapt it to our setting in Section 9.8.

9.2 Stars in random graphs

In this section we formulate two lemmas concerning properties of random graphs that will
be useful when analysing neighbourhood properties of 𝑝-dense pairs in the following section.
More precisely, we consider the following question here. Given a vertex set 𝑋 in a random
graph Γ = 𝒢𝑛,𝑝 together with a family ℱ of pairwise disjoint ℓ-sets in 𝑉 (Γ). Then we would
like to determine how many pairs (𝑥, 𝐹 ) with 𝑥 ∈ 𝑋 and 𝐹 ∈ ℱ have the property that 𝑥 lies
in the common neighbourhood of the vertices in 𝐹 .

Definition 9.6 (stars). Let 𝐺 = (𝑉,𝐸) be a graph, 𝑋 be a subset of 𝑉 and ℱ be a family of
pairwise disjoint ℓ-sets in 𝑉 ∖𝑋 for some ℓ. Then the number of stars in 𝐺 between 𝑋 and ℱ
is

# stars𝐺(𝑋,ℱ) :=
⃒⃒⃒ {︀

(𝑥, 𝐹 ) : 𝑥 ∈ 𝑋, 𝐹 ⊆ 𝑁𝐺(𝑥)
}︀ ⃒⃒⃒
. (9.1)

Observe that in a random graph Γ = 𝒢𝑛,𝑝 and for fixed sets 𝑋 and ℱ the random variable
# starsΓ(𝑋,ℱ) has binomial distribution Bi(|𝑋||ℱ|, 𝑝ℓ). This will be used in the proofs of the
following lemmas. The first of these lemmas states that in 𝒢𝑛,𝑝 the number of stars between
𝑋 and ℱ does not exceed its expectation by more than seven times as long as 𝑋 and ℱ are
not too small. This is a straight-forward consequence of Chernoff’s inequality.

Lemma 9.7 (star lemma for big sets). For all positive integers Δ, and positive reals 𝜈 there
is 𝑐 such that if 𝑝 ≥ 𝑐(log 𝑛/𝑛)1/Δ the following holds a.a.s. for Γ = 𝒢𝑛,𝑝 on vertex set 𝑉 .
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Let 𝑋 be any subset of 𝑉 and ℱ be any family of pairwise disjoint Δ-sets in 𝑉 ∖ 𝑋. If
𝜈𝑛 ≤ |𝑋| ≤ |ℱ| ≤ 𝑛, then

# starsΓ(𝑋,ℱ) ≤ 7𝑝Δ|𝑋||ℱ|
Proof. Given Δ and 𝜈 let 𝑐 be such that 7𝑐Δ𝜈2 ≥ 3Δ. From Chernoff’s inequality (2.1) we
know that P[𝑌 ≥ 7 E𝑌 ] ≤ exp(−7 E𝑌 ) for a binomially distributed random variable 𝑌 . We
conclude that for fixed 𝑋 and ℱ

P
[︀
# starsΓ(𝑋,ℱ) > 7𝑝Δ|𝑋||ℱ|

]︀
≤ exp(−7𝑝Δ|𝑋||ℱ|)
≤ exp(−7𝑐Δ(log 𝑛/𝑛)𝜈2𝑛2) ≤ exp(−3Δ𝑛 log 𝑛)

by the choice of 𝑐. Thus the probability that there are sets 𝑋 and ℱ violating the assertion of
the lemma is at most

2𝑛𝑛Δ𝑛 exp(−3Δ𝑛 log 𝑛) ≤ exp(2Δ𝑛 log 𝑛− 3Δ𝑛 log 𝑛)

which tends to 0 as 𝑛 tends to infinity.

We will also need a variant of this lemma for smaller sets 𝑋 and families ℱ which is provided
in the next lemma. As a trade-off the bound on the number of stars provided by this lemma
will be somewhat worse. This lemma almost appears in this form in [61]. The only (slight)
modification that we need here is that 𝑋 is allowed to be bigger than ℱ . However, the same
proof as presented in [61] still works for this modified version. We delay it to Section 9.9.

Lemma 9.8 (star lemma for small sets). For all positive integers Δ and positive reals 𝜉 there
are positive constants 𝜈 and 𝑐 such that if 𝑝 ≥ 𝑐(log 𝑛/𝑛)1/Δ, then the following holds a.a.s.
for Γ = 𝒢𝑛,𝑝 on vertex set 𝑉 . Let 𝑋 be any subset of 𝑉 and ℱ be any family of pairwise
disjoint Δ-sets in 𝑉 ∖𝑋. If |𝑋| ≤ 𝜈𝑛𝑝Δ|ℱ| and |𝑋|, |ℱ| ≤ 𝜉𝑛, then

# starsΓ(𝑋,ℱ) ≤ 𝑝Δ|𝑋||ℱ|+ 6𝜉𝑛𝑝Δ|ℱ|. (9.2)

9.3 Joint neighbourhoods in 𝑝-dense pairs

As discussed in Section 3.4 of Chapter 3 it follows directly from the definition of 𝑝-denseness
that sub-pairs of dense pairs form again dense pairs. For applying Lemma 9.4 and Lemma 9.5
together, we will need corresponding results on joint neighbourhoods in systems of dense pairs
(see Lemmas 9.10 and 9.13). In order to state them it is necessary to first introduce some
notation.

Let 𝐺 = (𝑉,𝐸) be a graph, ℓ, 𝑇 > 0 be integers, 𝑝, 𝜀, 𝑑 be positive reals, and 𝑋, 𝑌 , 𝑍 ⊆ 𝑉
be disjoint vertex sets. Recall that for a set 𝐵 of vertices from 𝑉 and a vertex set 𝑌 ⊆ 𝑉 we
call the set 𝑁∩

𝑌 (𝐵) =
⋂︀

𝑏∈𝐵 𝑁𝑌 (𝑏) the joint neighbourhood of (the vertices in) 𝐵 in 𝑌 .

Definition 9.9 (Bad and good vertex sets). Let 𝐺, ℓ, 𝑇 , 𝑝, 𝜀, 𝑑, 𝑋, 𝑌 , and 𝑍 be as above.
We define the following family of ℓ-sets in 𝑌 with small joint neighbourhood in 𝑍:

bad𝐺,ℓ
𝜀,𝑑,𝑝(𝑌,𝑍) :=

{︁
𝐵 ∈

(︂
𝑌

ℓ

)︂
: |𝑁∩

𝑍 (𝐵)| < (𝑑− 𝜀)ℓ𝑝ℓ|𝑍|
}︁
. (9.3)

If (𝑌, 𝑍) has 𝑝-density 𝑑𝐺,𝑝(𝑌,𝑍) ≥ 𝑑− 𝜀, then all ℓ-sets 𝑇 ∈
(︀
𝑌
ℓ

)︀
that are not in bad𝐺,ℓ

𝜀,𝑑,𝑝(𝑌, 𝑍)
are called 𝑝-good in (𝑌, 𝑍). Let further

Bad𝐺,ℓ
𝜀,𝑑,𝑝(𝑋,𝑌, 𝑍)
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be the family of ℓ-sets 𝐵 ∈
(︀
𝑋
ℓ

)︀
that contain an ℓ′-set 𝐵′ ⊆ 𝐵 with ℓ′ > 0 such that either

|𝑁∩
𝑌 (𝐵′)| < (𝑑− 𝜀)ℓ′𝑝ℓ′ |𝑌 | or (𝑁∩

𝑌 (𝐵′), 𝑍) is not (𝜀, 𝑑, 𝑝)-dense in 𝐺.

The following Lemma states that 𝑝-dense pairs in random graphs have the property that
most ℓ-sets have big common neighbourhoods. Results of this type (with a slightly smaller
exponent in the edge probability 𝑝) were established in [58]. The proof of Lemma 9.10 is given
in Section 9.9.

Lemma 9.10 (joint neighbourhood lemma). For all integers Δ, ℓ ≥ 1 and positive reals 𝑑, 𝜀′

and 𝜇, there is 𝜀 > 0 such that for all 𝜉 > 0 there is 𝑐 > 1 such that if 𝑝 ≥ 𝑐(log 𝑛/𝑛)1/Δ, then
the following holds a.a.s. for Γ = 𝒢𝑛,𝑝. For 𝑛1 ≥ 𝜉𝑝Δ−1𝑛, 𝑛2 ≥ 𝜉𝑝Δ−ℓ𝑛 let 𝐺 = (𝑋∪̇𝑌,𝐸) be
any bipartite subgraph of Γ with |𝑋| = 𝑛1 and |𝑌 | = 𝑛2. If (𝑋,𝑌 ) is an (𝜀, 𝑑, 𝑝)-dense pair,
then | bad𝐺,ℓ

𝜀′,𝑑,𝑝(𝑋,𝑌 )| ≤ 𝜇𝑛ℓ
1.

Thus we know that typical vertex sets in dense pairs inside random graphs are 𝑝-good. In
the next lemma we observe that families of such 𝑝-good vertex sets exhibit strong expansion
properties.

Given ℓ and 𝑝 we say that a bipartite graph 𝐺 = (𝑋∪̇𝑌,𝐸) is (𝐴, 𝑓)-expanding if, for
any family ℱ ⊆

(︀
𝑋
ℓ

)︀
of pairwise disjoint 𝑝-good ℓ-sets in (𝑋,𝑌 ) with |ℱ| ≤ 𝐴, we have

|𝑁∩
𝑌 (ℱ)| ≥ 𝑓 |ℱ|.

Lemma 9.11 (expansion lemma). For all positive integers Δ and positive reals 𝑑 and 𝜀, there
are positive 𝜈 and 𝑐 such that if 𝑝 ≥ 𝑐(log 𝑛/𝑛)1/Δ, then the following holds a.a.s. for Γ = 𝒢𝑛,𝑝.
Let 𝐺 = (𝑋∪̇𝑌,𝐸) be a bipartite subgraph of Γ. If (𝑋,𝑌 ) is an (𝜀, 𝑑, 𝑝)-dense pair, then (𝑋,𝑌 )
is (1/𝑝Δ, 𝜈𝑛𝑝Δ)-expanding.

Proof. Given ℓ, 𝑑, 𝜀, set 𝛿 := 𝑑 − 𝜀, 𝜉 := 𝛿Δ/7 and let 𝜈 ′ and 𝑐 be the constants from
Lemma 9.8 for this Δ and 𝜉. Further, choose 𝜈 such that 𝜈 ≤ 𝜉 and 𝜈 ≤ 𝜈 ′. Let ℱ ⊆

(︀
𝑋
Δ

)︀
be

a family of pairwise disjoint 𝑝-good Δ-sets with |ℱ| ≤ 1/𝑝Δ. Let 𝑈 = 𝑁∩
𝑌 (ℱ) be the joint

neighbourhood of ℱ in 𝑌 . We wish to show that |𝑈 | ≥ (𝜈𝑛𝑝Δ)|ℱ|. Suppose the contrary.
Then |𝑈 | < 𝜈 ′𝑛𝑝Δ|ℱ|, |𝑈 | < 𝜈𝑛𝑝Δ|ℱ| ≤ 𝜈𝑛 ≤ 𝜉𝑛 and |ℱ| ≤ 1/𝑝Δ ≤ 𝑐Δ𝑛/ log 𝑛 ≤ 𝜉𝑛 for 𝑛
sufficiently large and so we can apply Lemma 9.8 with parameters Δ and 𝜉 to 𝑈 and ℱ . Since
every member of ℱ is 𝑝-good in (𝑋,𝑌 ), we thus have

𝛿Δ𝑝Δ𝑛|ℱ| ≤ # stars𝐺(𝑈,ℱ) ≤ # starsΓ(𝑈,ℱ)
(9.2)

≤ 𝑝Δ|𝑈 ||ℱ|+ 6𝜉𝑛𝑝Δ|ℱ|
< 𝑝Δ(𝜈𝑛𝑝Δ)|ℱ||ℱ|+ 6𝜉𝑛𝑝Δ|ℱ| ≤ 𝜈𝑛𝑝Δ|ℱ|+ 6𝜉𝑛𝑝Δ|ℱ| ≤ 7𝜉𝑛𝑝Δ|ℱ|,

which tells that 𝛿Δ < 7𝜉, a contradiction.

In the remainder of this section we are interested in the inheritance of 𝑝-denseness to
sub-pairs (𝑋 ′, 𝑌 ′) of 𝑝-dense pairs (𝑋,𝑌 ) in a graph 𝐺 = (𝑉,𝐸). It comes as a surprise
that even for sets 𝑋 ′ and 𝑌 ′ that are much smaller than the sets considered in the definition
of 𝑝-denseness, such sub-pairs are typically dense. Phenomena of this type were observed
in [58, 37].

Here, we will consider sub-pairs induced by neighbourhoods of vertices 𝑣 ∈ 𝑉 (which may or
may not be in 𝑋∪̇𝑌 ), i.e., sub-pairs (𝑋 ′, 𝑌 ′) where 𝑋 ′ (or 𝑌 ′ or both) is the neighbourhood
of 𝑣 in 𝑌 (or in 𝑋). Further, we only consider the case when 𝐺 is a subgraph of a random
graph 𝒢𝑛,𝑝.
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In [61] an inheritance result of this form was obtained for triples of dense pairs. More
precisely, the following holds for subgraphs 𝐺 of 𝒢𝑛,𝑝. For sufficiently large vertex set 𝑋, 𝑌 ,
and 𝑍 in 𝐺 such that (𝑋,𝑌 ) and (𝑌, 𝑍) form 𝑝-dense pairs we have that most vertices 𝑥 ∈ 𝑋
are such that (𝑁𝑌 (𝑥), 𝑌 ) forms again a 𝑝-dense pair (with slightly changed parameters). If,
moreover, also (𝑌, 𝑍) forms a 𝑝-dense pair, then also (𝑁𝑌 (𝑥), 𝑁𝑍(𝑥)) is typically a 𝑝-dense
pair.

Lemma 9.12 (inheritance lemma for vertices [61]). For all integers Δ > 0 and positive reals
𝑑0, 𝜀′ and 𝜇 there is 𝜀 such that for all 𝜉 > 0 there is 𝑐 > 1 such that if 𝑝 > 𝑐(log 𝑛/𝑛)1/Δ,
then the following holds a.a.s. for Γ = 𝒢𝑛,𝑝. For 𝑛1, 𝑛3 ≥ 𝜉𝑝Δ−1𝑛 and 𝑛2 ≥ 𝜉𝑝Δ−2𝑛 let
𝐺 = (𝑋∪̇𝑌 ∪̇𝑍,𝐸) be any tripartite subgraph of Γ with |𝑋| = 𝑛1, |𝑌 | = 𝑛2, and |𝑍| = 𝑛3.
If (𝑋,𝑌 ) and (𝑌, 𝑍) are (𝜀, 𝑑, 𝑝)-dense pairs in 𝐺 with 𝑑 ≥ 𝑑0, then there are at most 𝜇𝑛1

vertices 𝑥 ∈ 𝑋 such that (𝑁(𝑥) ∩ 𝑌, 𝑍) is not an (𝜀′, 𝑑, 𝑝)-dense pair in 𝐺.
If, additionally, (𝑋,𝑍) is (𝜀, 𝑑, 𝑝)-dense and 𝑛1, 𝑛2, 𝑛3 ≥ 𝜉𝑝Δ−2𝑛, then there are at most

𝜇𝑛1 vertices 𝑥 ∈ 𝑋 such that (𝑁(𝑥) ∩ 𝑌,𝑁(𝑥) ∩ 𝑍) is not an (𝜀′, 𝑑, 𝑝)-dense pair in 𝐺.

In order to combine the restricted blow-up lemma (Lemma 9.4) and the connection lemma
(Lemma 9.5) in the proof of Theorem 9.1 we will need a version of this result for ℓ-sets. Such
a lemma, stating that joint neighbourhoods of certain ℓ-sets form again 𝑝-dense pairs, can be
obtained by an inductive argument from the first part of Lemma 9.12. We defer its proof to
Section 9.9.

Lemma 9.13 (inheritance lemma for ℓ-sets). For all integers Δ, ℓ > 0 and positive reals
𝑑0, 𝜀

′, and 𝜇 there is 𝜀 such that for all 𝜉 > 0 there is 𝑐 > 1 such that if 𝑝 > 𝑐( log 𝑛
𝑛 )1/Δ,

then the following holds a.a.s. for Γ = 𝒢𝑛,𝑝. For 𝑛1, 𝑛3 ≥ 𝜉𝑝Δ−1𝑛 and 𝑛2 ≥ 𝜉𝑝Δ−ℓ−1𝑛 let
𝐺 = (𝑋∪̇𝑌 ∪̇𝑍,𝐸) be any tripartite subgraph of Γ with |𝑋| = 𝑛1, |𝑌 | = 𝑛2, and |𝑍| = 𝑛3.
Assume further that (𝑋,𝑌 ) and (𝑌, 𝑍) are (𝜀, 𝑑, 𝑝)-dense pairs with 𝑑 ≥ 𝑑0. Then⃒⃒

Bad𝐺,ℓ
𝜀′,𝑑,𝑝(𝑋,𝑌, 𝑍)

⃒⃒
≤ 𝜇𝑛ℓ

1.

9.4 Proof of Theorem 9.1

In this section we present a proof of Theorem 9.1 that combines our four main lemmas, the
lemma for 𝐺 (Lemma 9.2), the lemma for 𝐻 (Lemma 9.3), the restricted blow-up lemma
(Lemma 9.4), and the connection lemma (Lemma 9.5). This proof follows the outline given in
Section 9.1. In addition we will apply the inheritance lemma for ℓ-sets (Lemma 9.13), which
supplies an appropriate interface between the restricted blow-up lemma and the connection
lemma.

Proof of Theorem 9.1. We first set up the constants. Given 𝜂, 𝛾, and Δ let 𝑡 be the constant
promised by the lemma for 𝐻 (Lemma 9.3) for input Δ. Set

𝜂G := 𝜂/10, and 𝑟0 = 1 , (9.4)

and apply the lemma for 𝐺 (Lemma 9.2) with input 𝑡, 𝑟0, 𝜂G, and 𝛾 in order to obtain 𝜂′G and
𝑑. Next, the connection lemma (Lemma 9.5) with input Δ, 2𝑡, and 𝑑 provides us with 𝜀cl,
and 𝜉cl. We apply the constrained blow-up lemma (Lemma 9.4) with Δ, 𝑑, and 𝜂/2 in order
to obtain 𝜀bl and 𝜇bl. With this we set

𝜂H := min{𝜂/10, 𝜉cl𝜂
′
G, 1/(Δ + 1)}. (9.5)
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Choose 𝜇 > 0 such that
100𝑡2𝜇 ≤ 𝜂bl, (9.6)

and apply Lemma 9.13 with Δ and ℓ = Δ− 1, 𝑑0 = 𝑑, 𝜀′ = 𝜀cl, and 𝜇 to obtain 𝜀9.13. Let

𝜉9.13 := 𝜂′G/2𝑟 (9.7)

and continue the application of Lemma 9.13 with 𝜉9.13 to obtain 𝑐9.13. Now we can fix

𝜀 := min{𝜀cl, 𝜀bl, 𝜀9.13} (9.8)

and continue the application of Lemma 9.2 with input 𝜀 to get 𝑟1. Let 𝑟bl and 𝑟cl be such
that

2𝑟1
1− 𝜂G

≤ 𝑟bl and
2𝑟1
𝜂G

≤ 𝑟cl (9.9)

and let 𝑐cl and 𝑐bl be the constants obtained from the continued application of Lemma 9.5
with 𝑟1 replaced by 𝑟cl and Lemma 9.4 with 𝑟1 replaced by 𝑟bl, respectively.

We continue the application of Lemma 9.3 with input 𝜂H. For each 𝑟 ∈ [𝑟1] Lemma 9.3
provides a value 𝛽𝑟 , among all of which we choose the smallest one and set 𝛽 to this value.
Finally, we set 𝑐 := max{𝑐bl, 𝑐cl, 𝑐9.13}.

Consider a graph Γ = 𝒢𝑛,𝑝 with 𝑝 ≥ 𝑐(log 𝑛/𝑛)1/Δ. Then Γ a.a.s. satisfies the properties
stated in Lemma 9.2, Lemma 9.4, Lemma 9.5, and Lemma 9.13, with the parameters previously
specified. We assume in the following that this is the case and show that then also the following
holds. For all subgraphs 𝐺 ⊆ Γ and all graphs 𝐻 such that 𝐺 and 𝐻 have the properties
required by Theorem 9.1 we have 𝐻 ⊆ 𝐺. To summarise the definition of the constants above,
we assume, more precisely, that Γ satisfies the conclusion of the following lemmas:

(L9.2) Lemma 9.2 for parameters 𝑡, 𝑟0 = 1, 𝜂G, 𝛾, 𝜂′G, 𝑑, 𝜀, and 𝑟1, i.e., if 𝐺 is any spanning
subgraph of Γ satisfying the requirements of Lemma 9.2, then we obtain a partition
of 𝐺 as specified in the lemma and with these parameters,

(L9.4) Lemma 9.4 for parameters Δ, 𝑑, 𝜂/2, 𝜀bl, 𝜇bl, and 𝑟bl,
(L9.5) Lemma 9.5 for parameters Δ, 2𝑡, 𝑑, 𝜀cl, 𝜉cl, and 𝑟cl,

(L9.13) Lemma 9.13 for parameters Δ, ℓ = Δ− 1, 𝑑0 = 𝑑, 𝜀′ = 𝜀cl, 𝜇, 𝜀9.13, and 𝜉9.13.

Now suppose we are given a graph 𝐺 = (𝑉,𝐸) ⊆ Γ with deg𝐺(𝑣) ≥ (1
2 + 𝛾) degΓ(𝑣) for all

𝑣 ∈ 𝑉 and |𝑉 | = 𝑛, and a graph 𝐻 = (𝑉 , 𝐸̃) with |𝑉 | = (1 − 𝜂)𝑛. Before we show that 𝐻
can be embedded into 𝐺 we will use the lemma for 𝐺 (Lemma 9.2) and the lemma for 𝐻
(Lemma 9.3) to prepare 𝐺 and 𝐻 for this embedding.

First we use the fact that Γ has property (L9.2). Hence, for the graph 𝐺 we obtain an 𝑟
with 1 ≤ 𝑟 ≤ 𝑟1 from Lemma 9.2, together with a set 𝑉0 ⊆ 𝑉 with |𝑉0| ≤ 𝜀𝑛, and a mapping
𝑔 : 𝑉 ∖ 𝑉0 → 𝑅𝑟,𝑡 such that (G1)–(G3) of Lemma 9.2 are fulfilled. For all 𝑖 ∈ [𝑟], 𝑗 ∈ [2𝑡] let
𝑈𝑖, 𝑉𝑖, 𝐶𝑖,𝑗 , 𝐶 ′𝑖,𝑗 , 𝐵𝑖,𝑗 , and 𝐵′𝑖,𝑗 be the sets defined in Lemma 9.2. Recall that these sets were
called big clusters, connecting clusters, and balancing clusters. With this the graph 𝐺 is
prepared for the embedding. We now turn to the graph 𝐻.

We assume for simplicity that 2𝑟/(1− 𝜂G) and 𝑟/(𝑡𝜂′G) are integers and define

𝑟bl := 2𝑟/(1− 𝜂G) and 𝑟cl := 2𝑟/𝜂′G . (9.10)

We apply Lemma 9.3 which we already provided with Δ and 𝜂H. For input 𝐻 this lemma
provides a homomorphism ℎ from 𝐻 to 𝑅𝑟,𝑡 such that (H1)–(H5) of Lemma 9.3 are fulfilled.
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For all 𝑖 ∈ [𝑟], 𝑗 ∈ [2𝑡] let 𝑈̃𝑖, 𝑉𝑖, 𝐶𝑖,𝑗 , 𝐶 ′𝑖,𝑗 , 𝐵̃𝑖,𝑗 , 𝐵̃′𝑖,𝑗 , and 𝑋̃𝑖 be the sets asserted by Lemma 9.3.
Further, set 𝐶𝑖 := 𝐶𝑖,1∪̇ . . . ∪̇𝐶𝑖,2𝑡, 𝐶𝑖 := 𝐶𝑖,1∪̇ . . . ∪̇𝐶𝑖,2𝑡, that is, 𝐶𝑖 consists of connecting
clusters and 𝐶𝑖 of connecting vertices. Define 𝐶 ′𝑖, 𝐶

′
𝑖, 𝐵𝑖, 𝐵̃𝑖, 𝐵′𝑖, and 𝐵̃′𝑖 analogously (𝐵𝑖

consists of balancing clusters and 𝐵̃𝑖 of balancing vertices).
Our next goal will be to appeal to property (L9.4) which asserts that we can apply the

constrained blow-up lemma (Lemma 9.4) for each 𝑝-dense pair (𝑈𝑖, 𝑉𝑖) with 𝑖 ∈ [𝑟] individually
and embed 𝐻[𝑈̃𝑖∪̇𝑉𝑖] into this pair. For this we fix 𝑖 ∈ [𝑟]. We will first set up special
Δ-sets ℋ𝑖 and forbidden Δ-sets ℬ𝑖 for the application of Lemma 9.4. The idea is as follows.
With the help of Lemma 9.4 we will embed all vertices in 𝑈̃𝑖∪̇𝑉𝑖. But all connecting and
balancing vertices of 𝐻 remain unembedded. They will be handled by the connection lemma,
Lemma 9.5, later on. However, these two lemmas cannot operate independently. If, for
example, a connecting vertex 𝑦 has three neighbours in 𝑉𝑖, then these neighbours will be
embedded already to vertices 𝑣1, 𝑣2, 𝑣3 in 𝑉𝑖 (by the blow-up lemma) when we want to embed
𝑦. Accordingly the image of 𝑦 in the embedding is confined to the joint neighbourhood of
the vertices 𝑣1, 𝑣2, 𝑣3 in 𝐺. In other words, this joint neighbourhood will be the candidate set
𝐶(𝑦) in the application of Lemma 9.5. This lemma requires, however, that candidate sets are
not too small (condition (D) of Lemma 9.5) and, in addition, that candidate sets of vertices
joined by an edge induce 𝑝-dense pairs (condition (E)). Hence we need to prepare for these
requirements. This will be done via the special and forbidden sets. The family of special sets
ℋ𝑖 will contain neighbourhoods in 𝑉𝑖 of connecting or balancing vertices 𝑦 of 𝐻 (observe that
such vertices do not have neighbours in 𝑈̃𝑖 , see Figure 9.1). The family of forbidden sets ℬ𝑖

will consist of sets in 𝑉𝑖 which are “bad” for the embedding of these neighbourhoods in view
of (D) and (E) of Lemma 9.5 (recall that Lemma 9.4 does not map special sets to forbidden
sets). Accordingly, ℬ𝑖 contains Δ-sets that have small common neighbourhoods or do not
induce 𝑝-dense pairs in one of the relevant balancing or connecting clusters. We will next give
the details of this construction of ℋ𝑖 and ℬ𝑖.

We start with the special Δ-sets ℋ𝑖. As explained, we would like to include in the family ℋ𝑖

all neighbourhoods of vertices 𝑤̃ of vertices outside 𝑈̃𝑖∪̇𝑉𝑖. Such neighbourhoods clearly lie
entirely in the set 𝑋̃𝑖 provided by Lemma 9.3. However, they need not necessarily be Δ-sets
(in fact, by (H4) of Lemma 9.3, they are of size at most Δ− 1). Therefore we have to “pad”
these neighbourhoods in order to obtain Δ-sets. This is done as follows. We start by picking
an arbitrary set of Δ|𝑋̃𝑖| vertices (which will be used for the “padding”) in 𝑉𝑖 ∖ 𝑋̃𝑖. We add
these vertices to 𝑋̃𝑖 and call the resulting set 𝑋̃ ′

𝑖. This is possible because (H5) of Lemma 9.3
and (9.5) imply that |𝑋̃ ′

𝑖| ≤ (Δ + 1)|𝑋̃𝑖| ≤ (Δ + 1)𝜂H|𝑉𝑖| ≤ |𝑉𝑖|.
Now let 𝑌𝑖 be the set of vertices in 𝐵̃𝑖∪̇𝐶𝑖 with neighbours in 𝑉𝑖. These are the vertices for

whose neighbourhoods we will include Δ-sets in ℋ𝑖. It follows from the definition of 𝑋̃𝑖 that
|𝑌𝑖| ≤ Δ|𝑋̃𝑖|. Let 𝑦 ∈ 𝑌𝑖 ⊆ 𝐵̃𝑖 ∪𝐶𝑖. By the definition of 𝑋̃𝑖 we have 𝑁𝐻(𝑦) ⊆ 𝑋̃𝑖. Next, we let

𝑋̃𝑦 be the set of neighbours of 𝑦 in 𝑉𝑖 (9.11)

As explained, 𝑦 has strictly less than Δ neighbours in 𝑉𝑖 and hence we choose additional
vertices from 𝑋̃ ′

𝑖 ∖ 𝑋̃𝑖. In this way we obtain for each 𝑦 ∈ 𝑌𝑖 a Δ-set 𝑁𝑦 ∈ 𝑋̃ ′
𝑖 with

𝑁𝑋̃𝑖
(𝑦) = 𝑁𝑉𝑖

(𝑦) = 𝑋̃𝑦 ⊆ 𝑁𝑦 . (9.12)

We make sure, in this process, that for any two different 𝑦 and 𝑦′ we never include the same
additional vertex from 𝑋̃ ′

𝑖 ∖ 𝑋̃𝑖. This is possible because |𝑋̃ ′
𝑖 ∖ 𝑋̃𝑖| ≥ Δ|𝑋̃𝑖| ≥ |𝑌𝑖|. We can
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thus guarantee that

each vertex in 𝑋̃ ′
𝑖 is contained in at most Δ sets 𝑁𝑦. (9.13)

The family of special Δ-sets for the application of Lemma 9.4 on (𝑈𝑖, 𝑉𝑖) is then

ℋ𝑖 := {𝑁𝑦 : 𝑦 ∈ 𝑌𝑖} . (9.14)

Note that this is indeed a family of Δ-sets encoding all neighbourhoods in 𝑈̃𝑖∪̇𝑉𝑖 of vertices
outside this set.

Now we turn to the family ℬ𝑖 of forbidden Δ-sets. Recall that this family should contain sets
that are forbidden for the embedding of the special Δ-sets because their joint neighbourhood
in a (relevant) balancing or connecting cluster is small or does not induce a 𝑝-dense pair. More
precisely, we are interested into Δ-sets 𝑆 that have one of the following properties. Either 𝑆
has a small common neighbourhood in some cluster from 𝐵𝑖 or from 𝐶𝑖 (observe that only
balancing vertices from 𝐵̃𝑖 and connecting vertices from 𝐶𝑖 have neighbours in 𝑉𝑖). Or the
neighbourhood 𝑁∩

𝐷(𝑆) of 𝑆 in a cluster 𝐷 from 𝐵𝑖 or 𝐶𝑖, respectively, is such that (𝑁∩
𝐷(𝑆), 𝐷′)

is not 𝑝-dense for some cluster 𝐷′ from 𝐵′𝑖 ∪𝐵′𝑖+1 or 𝐶 ′𝑖 ∪ 𝐶 ′𝑖+1 (observe that edges between
balancing vertices run only between 𝐵̃𝑖 and 𝐵̃′𝑖 ∪ 𝐵̃′𝑖+1 and edges between connecting vertices
only between 𝐶𝑖 and 𝐶 ′𝑖 ∪ 𝐶 ′𝑖+1).

For technical reasons, however, we need to digress from this strategy slightly: We want to
bound the number of Δ-sets in ℬ𝑖 with the help of the inheritance lemma for ℓ-sets, Lemma 9.13,
later. Notice that, thanks to the lower bound on 𝑛2 in Lemma 9.13, this lemma cannot be
applied (in a meaningful way) for Δ-sets. But it can be applied for (Δ− 1)-sets. Therefore,
we will not consider Δ-sets directly but first construct an auxiliary family of (Δ− 1)-sets and
then, again, “pad” these sets to obtain a family of Δ-sets. Observe that the strategy outlined
while setting up the special sets ℋ𝑖 still works with these (Δ − 1)-sets: neighbourhoods of
connecting or balancing vertices in 𝑉𝑖 are of size at most Δ− 1 by (H4) of Lemma 9.3.

But now let us finally give the details. We first define the auxiliary family of (Δ− 1)-sets as
follows:

ℬ′𝑖 :=
⋃︁

𝑖′∈{𝑖,𝑖+1},𝑗,𝑗′∈[2𝑡]
(𝑐𝑖,𝑗 ,𝑐′

𝑖′,𝑗′ )∈𝑅𝑟,𝑡

Bad𝐺,Δ−1
𝜀cl,𝑑,𝑝 (𝑉𝑖, 𝐶𝑖,𝑗 , 𝐶

′
𝑖′,𝑗′) ∪

⋃︁
𝑗,𝑗′∈[2𝑡]

(𝑏𝑖,𝑗 ,𝑏′
𝑖,𝑗′ )∈𝑅𝑟,𝑡

Bad𝐺,Δ−1
𝜀cl,𝑑,𝑝 (𝑉𝑖, 𝐵𝑖,𝑗 , 𝐵𝑖,𝑗′).

(9.15)

We will next bound the size of this family by appealing to property (L9.13), and hence
Lemma 9.13, with the tripartite graphs 𝐺[𝑉𝑖, 𝐶𝑖,𝑗 , 𝐶

′
𝑖′,𝑗′ ] and 𝐺[𝑉𝑖, 𝐵𝑖,𝑗 , 𝐵

′
𝑖,𝑗′ ] with indices as in

the definition of ℬ′𝑖. For this we need to check the conditions appearing in this lemma. By the
definition of 𝑅𝑟,𝑡 and (G3) of Lemma 9.2 all pairs (𝐶𝑖,𝑗 , 𝐶

′
𝑖′,𝑗′) and (𝐵𝑖,𝑗 , 𝐵

′
𝑖,𝑗′) appearing in

the definition of ℬ′𝑖 as well as the pairs (𝑉𝑖, 𝐶𝑖,𝑗) and (𝑉𝑖, 𝐵𝑖,𝑗) with 𝑗 ∈ [2𝑡] are (𝜀, 𝑑, 𝑝)-dense.
For the vertex sets of these dense pairs we know |𝑉𝑖|, |𝐶 ′𝑖′,𝑗′ |, |𝐵′𝑖,𝑗′ | ≥ 𝜂′G𝑛/2𝑟 ≥ 𝜉9.13𝑝

Δ−1𝑛
and |𝐶𝑖,𝑗 |, |𝐵𝑖,𝑗 | ≥ 𝜂′G𝑛/2𝑟 = 𝜉9.13𝑛 by (G1) and (G2) of Lemma 9.2 and (9.7). Thus, since
𝜀 ≤ 𝜀9.13, property (L9.13) implies that the family

Bad𝐺,Δ−1
𝜀cl,𝑑,𝑝 (𝑉𝑖, 𝐶𝑖,𝑗 , 𝐶

′
𝑖′,𝑗′), and Bad𝐺,Δ−1

𝜀cl,𝑑,𝑝 (𝑉𝑖, 𝐵𝑖,𝑗 , 𝐵
′
𝑖,𝑗′)
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is of size 𝜇|𝑉𝑖|Δ−1 at most. It follows from (9.15) that |ℬ′𝑖| ≤ 8𝑡2𝜇|𝑉𝑖|Δ−1 which is at most
𝜇BL|𝑉𝑖|Δ−1 by (9.6). The family of forbidden Δ-sets is then defined by

ℬ𝑖 := ℬ′𝑖 × 𝑉𝑖 and we have |ℬ𝑖| ≤ 𝜇bl|𝑉𝑖|Δ . (9.16)

Having defined the special and forbidden Δ-sets we are now ready to appeal to (L9.4) and
use the constrained blow-up Lemma (Lemma 9.4) with parameters Δ, 𝑑, 𝜂/2, 𝜀bl, 𝜇bl, 𝑟bl,
and 𝑟bl separately for each pair 𝐺𝑖 := (𝑈𝑖, 𝑉𝑖) and for 𝐻𝑖 := 𝐻[𝑈𝑖∪̇𝑉𝑖]. Let us quickly check
that the constant 𝑟bl and the graphs 𝐺𝑖 and 𝐻𝑖 satisfy the required conditions. Observe first,
that 1 ≤ 𝑟bl = 2𝑟/(1− 𝜂G) ≤ 2𝑟1/(1− 𝜂G) ≤ 𝑟bl by (9.10) and (9.9). Moreover (𝑈𝑖, 𝑉𝑖) is an
(𝜀bl, 𝑑, 𝑝)-dense pair by (G3) of Lemma 9.2 and (9.8). (G1) implies

|𝑈𝑖| ≥ (1− 𝜂G)
𝑛

2𝑟
(9.10)
=

𝑛

𝑟bl

and similarly |𝑉𝑖| ≥ 𝑛/𝑟bl. By (H1) of Lemma 9.3 we have

|𝑈̃𝑖| ≤ (1 + 𝜂H)
𝑚

2𝑟
≤ (1 + 𝜂H)(1− 𝜂)

𝑛

2𝑟
≤ (1 + 𝜂H − 𝜂)

𝑛

2𝑟

(9.4),(9.5)

≤ (1− 1
2𝜂 − 𝜂G)

𝑛

2𝑟
≤ (1− 1

2𝜂)(1− 𝜂G)
𝑛

2𝑟
(9.10)
= (1− 1

2𝜂)
𝑛

𝑟bl

and similarly |𝑉𝑖| ≤ (1 − 𝜂
2 )𝑛/𝑟bl. For the application of Lemma 9.4, let the families of

special and forbidden Δ-sets be defined in (9.14) and (9.16), respectively. Observe that (9.13)
and (9.16) guarantee that the required conditions (of Lemma 9.4) are satisfied. Consequently
there is an embedding of 𝐻𝑖 into 𝐺𝑖 for each 𝑖 ∈ [𝑟] such that no special Δ-set is mapped to
a forbidden Δ-set. Denote the united embedding resulting from these 𝑟 applications of the
constrained blow-up lemma by 𝑓bl :

⋃︀
𝑖∈[𝑟] 𝑈̃𝑖 ∪ 𝑉𝑖 →

⋃︀
𝑖∈[𝑟] 𝑈𝑖 ∪ 𝑉𝑖.

It remains to verify that 𝑓bl can be extended to an embedding of all vertices of 𝐻 into
𝐺. We still need to take care of the balancing and connecting vertices. For this purpose
we will, again, fix 𝑖 ∈ [𝑟] and use property (L9.5) which states that the conclusion of the
connection lemma (Lemma 9.5) holds for parameters Δ, 2𝑡, 𝑑, 𝜀cl, 𝜉cl, and 𝑟cl. We will apply
this lemma with input 𝑟cl to the graphs 𝐺′𝑖 := 𝐺[𝑊𝑖] and 𝐻 ′

𝑖 := 𝐻[𝑊̃𝑖] where 𝑊𝑖 and 𝑊̃𝑖 and
their partitions for the application of the connection lemma are as follows (see Figure 9.2).
Let 𝑊𝑖 := 𝑊𝑖,1∪̇ . . . ∪̇𝑊𝑖,8𝑡 where for all 𝑗 ∈ [𝑡], 𝑘 ∈ [2𝑡] we set

𝑊𝑖,𝑗 := 𝐶𝑖,𝑡+𝑗 , 𝑊𝑖,𝑡+𝑗 := 𝐶𝑖+1,𝑗 , 𝑊𝑖,2𝑡+𝑗 := 𝐶 ′𝑖,𝑡+𝑗 ,

𝑊𝑖,3𝑡+𝑗 := 𝐶 ′𝑖+1,𝑗 , 𝑊𝑖,4𝑡+𝑘 := 𝐵𝑖,𝑘 , 𝑊𝑖,6𝑡+𝑘 := 𝐵′𝑖,𝑘 .

(This means that we propose the clusters in the following order to the connection lemma. The
connecting clusters without primes come first, then the connecting clusters with primes, then
the balancing clusters without primes, and finally the balancing clusters with primes. )

The partition 𝑊̃𝑖 := 𝑊̃𝑖,1∪̇ . . . ∪̇𝑊̃𝑖,8𝑡 of the vertex set 𝑊̃𝑖 of 𝐻 ′
𝑖 is defined accordingly, i.e.,

for all 𝑗 ∈ [𝑡], 𝑘 ∈ [2𝑡] we set

𝑊̃𝑖,𝑗 := 𝐶𝑖,𝑡+𝑗 , 𝑊̃𝑖,𝑡+𝑗 := 𝐶𝑖+1,𝑗 , 𝑊̃𝑖,2𝑡+𝑗 := 𝐶 ′𝑖,𝑡+𝑗 ,

𝑊̃𝑖,3𝑡+𝑗 := 𝐶 ′𝑖+1,𝑗 , 𝑊̃𝑖,4𝑡+𝑘 := 𝐵̃𝑖,𝑘 , 𝑊̃𝑖,6𝑡+𝑘 := 𝐵̃′𝑖,𝑘 .

To check whether we can apply the connecting lemma observe first that
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Figure 9.2: The partition 𝑊𝑖 = 𝑊𝑖,1∪̇ . . . ∪̇𝑊𝑖,8𝑡 of 𝐺′𝑖 = 𝐺[𝑊𝑖] for the special case 𝑡 = 2.

1 ≤ 2𝑟/𝜂G ≤ 2𝑟1/𝜂G ≤ 𝑟cl

by (9.9). For 𝑦 ∈ 𝑊̃𝑖,𝑗 with 𝑗 ∈ [8𝑡] recall from (9.11) (using that each vertex in 𝐻 has
neighbours in at most one set 𝑉𝑖′ , see Figure 9.1) that

𝑋̃𝑦 is the set of neighbours of 𝑦 in 𝑉𝑖 ∪ 𝑉𝑖+1 and set 𝑋𝑦 := 𝑓bl(𝑋̃𝑦). (9.17)

Then the indexed set system
(︀
𝑋̃𝑦 : 𝑦 ∈ 𝑊̃𝑖,𝑗

)︀
consists of pairwise disjoint sets because 𝑊̃𝑖,𝑗

is 3-independent in 𝐻 by (H3) of Lemma 9.3. Thus also
(︀
𝑋𝑦 : 𝑦 ∈ 𝑊̃𝑖,𝑗

)︀
consists of pairwise

disjoint sets, as required by Lemma 9.5. Now let the external degree and the candidate set of
𝑦 ∈ 𝑊̃𝑖,𝑗 be defined as in Lemma 9.5, i.e.,

edeg(𝑦) := |𝑋𝑦| and 𝐶(𝑦) := 𝑁∩
𝑊𝑖,𝑗

(𝑋𝑦) . (9.18)

Observe that this implies 𝐶(𝑦) = 𝑊𝑖,𝑗 if 𝑋̃𝑦 = ∅ and hence 𝑋𝑦 = ∅. Now we will check
that conditions (A)–(E) of Lemma 9.5 are satisfied. From (G2) of Lemma 9.2 and (H2) of
Lemma 9.3 it follows that

|𝑊𝑖,𝑗 |
(G2)

≥ 𝜂′G
𝑛

2𝑟
(9.10)
=

𝑛

𝑟cl
and

|𝑊̃𝑖,𝑗 |
(H2)

≤ 𝜂H

𝑚

2𝑟
≤ 𝜂H

𝑛

2𝑟
(9.10)
=

𝜂H

𝜂′G

𝑛

𝑟cl

(9.5)

≤ 𝜉cl
𝑛

𝑟cl

and thus we have condition (A). By (H3) of Lemma 9.3 we also get condition (B) of Lemma 9.5.
Further, it follows from (H4) of Lemma 9.3 that edeg(𝑦) = edeg(𝑦′) and ldeg(𝑦) = ldeg(𝑦′) for
all 𝑦, 𝑦′ ∈ 𝑊̃𝑖,𝑗 with 𝑗 ∈ [8𝑡]. In addition Δ(𝐻) ≤ Δ and hence

deg𝐻′𝑖
(𝑦) + edeg(𝑦)

(9.18)
= |𝑁𝑊̃𝑖

(𝑦)|+ |𝑋𝑦|
(9.17)
= |𝑁𝑊̃𝑖

(𝑦)|+ |𝑁𝑉𝑖∪𝑉𝑖+1
(𝑦)| ≤ deg𝐻(𝑦) ≤ Δ
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and thus condition (C) of Lemma 9.5 is satisfied. To check conditions (D) and (E) of Lemma 9.5
observe that for all 𝑦 ∈ 𝐶 ′𝑖′,𝑗 with 𝑖′ ∈ {𝑖, 𝑖+ 1} and 𝑗 ∈ [2𝑡] we have 𝐶(𝑦) = 𝐶 ′𝑖′,𝑗 as 𝑦 has no
neighbours in 𝑉𝑖 or 𝑉𝑖+1 and hence the external edeg(𝑦) = 0 (see (9.17) and (9.18)). Thus (D)
is satisfied for 𝑦 ∈ 𝐶 ′𝑖′,𝑗 , and similarly for 𝑦 ∈ 𝐵′𝑖′,𝑗 . For all 𝑦 ∈ 𝐶𝑖,𝑗 with 𝑡 < 𝑗 ≤ 2𝑡 on the other

hand we have 𝑋̃𝑦 ⊆ 𝑁𝑦 ∈
(︀
𝑉𝑖
Δ

)︀
by (9.11). Recall that 𝑁𝑦 was a special Δ-set in the application

of the restricted blow-up lemma on 𝐺𝑖 = (𝑈𝑖, 𝑉𝑖) and 𝐻𝑖 = 𝐻[𝑈𝑖∪̇𝑉𝑖] owing to (9.14). Therefore
𝑁𝑦 is not mapped to a forbidden Δ-set in ℬ𝑖 ⊆

(︀
𝑉𝑖
Δ

)︀
by 𝑓bl and thus, by (9.15), to no Δ-set

in Bad𝐺,Δ−1
𝜀cl,𝑑,𝑝 (𝑉𝑖, 𝐶𝑖,𝑗 , 𝐶

′
𝑖′,𝑗′)× 𝑉𝑖 with 𝑖′ ∈ {𝑖, 𝑖+ 1}, 𝑗, 𝑗′ ∈ [2𝑡] and (𝑐𝑖,𝑗 , 𝑐′𝑖′,𝑗′) ∈ 𝑅𝑟,𝑡. We infer

that the set 𝑓bl(𝑋̃𝑦) = 𝑋𝑦 ∈
(︀ 𝑉𝑖(𝑦)

edeg(𝑦)

)︀
satisfies |𝑁∩

𝐶𝑖,𝑗
(𝑋𝑦)| ≥ (𝑑− 𝜀CL)edeg(𝑦)𝑝edeg(𝑦)|𝐶𝑖,𝑗 | and

is such that

(𝑁∩
𝐶𝑖,𝑗

(𝑋𝑦), 𝐶 ′𝑖′,𝑗′) is (𝜀cl, 𝑑, 𝑝)-dense

for all 𝑖′ ∈ {𝑖, 𝑖+ 1}, 𝑗, 𝑗′ ∈ [2𝑡] with (𝑐𝑖,𝑗 , 𝑐′𝑖′,𝑗′) ∈ 𝑅𝑟,𝑡. (9.19)

Since we chose 𝐶(𝑦) = 𝑁∩(𝑋𝑦) ∩ 𝐶𝑖,𝑗 in (9.18) we get condition (D) of Lemma 9.5 also
for 𝑦 ∈ 𝐶𝑖,𝑗 with 𝑡 < 𝑗 ≤ 2𝑡. For 𝑦 ∈ 𝐶𝑖+1,𝑗 with 𝑗 ∈ [𝑡] the same argument applies
with 𝑋̃𝑦 ⊆ 𝑁𝑦 ∈

(︀𝑉𝑖+1

Δ

)︀
, and for 𝑦 ∈ 𝐵̃𝑖,𝑗 with 𝑗 ∈ [2𝑡] the same argument applies with

𝑋̃𝑦 ⊆ 𝑁𝑦 ∈
(︀
𝑉𝑖
Δ

)︀
.

Now it will be easy to see that we get (E) of Lemma 9.5. Indeed, recall again that
𝐶(𝑦) = 𝐶 ′𝑖′,𝑗′ for all 𝑦 ∈ 𝐶 ′𝑖′,𝑗′ and 𝐶(𝑦) = 𝐵′𝑖′,𝑗′ for all 𝑦 ∈ 𝐵̃′𝑖′,𝑗′ with 𝑖′ ∈ {𝑖, 𝑖 + 1} and
𝑗 ∈ [2𝑡]. In addition, the mapping ℎ constructed by Lemma 9.3 is a homomorphism from 𝐻
to 𝑅𝑟,𝑡. Hence (9.19) and property (G3) of Lemma 9.2 assert that condition (E) of Lemma 9.5
is satisfied for all edges 𝑦𝑦′ of 𝐻 ′

𝑖 = 𝐻[𝑊̃𝑖] with at least one end, say 𝑦, in a cluster 𝐶 ′𝑖′,𝑗′
or 𝐵̃′𝑖′,𝑗′ . This is true because then 𝐶(𝑦) = 𝑊𝑖,𝑘 where 𝑊̃𝑖,𝑘 is the cluster containing 𝑦, and
𝐶(𝑦′) = 𝑁∩(𝑋𝑦′) ∩𝑊𝑖,𝑘′ where 𝑊̃𝑖,𝑘′ is the cluster containing 𝑦′. Moreover, since ℎ is a
homomorphism all edges 𝑦𝑦′ in 𝐻 ′

𝑖 = 𝐻[𝑊̃𝑖] have at least one end in a cluster 𝐶 ′𝑖′,𝑗′ or 𝐵̃′𝑖′,𝑗′ .
So conditions (A)–(E) are satisfied and we can apply Lemma 9.5 to get embeddings of

𝐻 ′
𝑖 = 𝐻[𝑊̃𝑖] into 𝐺′𝑖 = 𝐺[𝑊𝑖] for all 𝑖 ∈ [𝑟] that map vertices 𝑦 ∈ 𝑊̃𝑖 (i.e. connecting and

balancing vertices) to vertices 𝑦 ∈ 𝑊𝑖 in their candidate sets 𝐶(𝑦). Let 𝑓cl be the united
embedding resulting from these 𝑟 applications of the connection lemma and denote the
embedding that unites 𝑓bl and 𝑓cl by 𝑓 .

To finish the proof we verify that 𝑓 is an embedding of 𝐻 into 𝐺. Let 𝑥̃𝑦 be an edge of 𝐻.
By definition of the spin graph 𝑅𝑟,𝑡 and since the mapping ℎ constructed by Lemma 9.3 is a
homomorphism from 𝐻 to 𝑅𝑟,𝑡 we only need to distinguish the following cases for 𝑖 ∈ [𝑟] and
𝑗, 𝑗′ ∈ [2𝑡] (see also Figure 9.1):

case 1: If 𝑥̃ ∈ 𝑉𝑖 and 𝑦 ∈ 𝑈̃𝑖, then 𝑓(𝑥̃) = 𝑓bl(𝑥̃) and 𝑓(𝑦) = 𝑓bl(𝑦) and thus the constrained
blow-up lemma guarantees that 𝑓(𝑥̃)𝑓(𝑦) is an edge of 𝐺𝑖.

case 2: If 𝑥̃ ∈ 𝑊̃𝑖 and 𝑦 ∈ 𝑊̃𝑖, then 𝑓(𝑥̃) = 𝑓cl(𝑥̃) and 𝑓(𝑦) = 𝑓cl(𝑦) and thus the connection
lemma guarantees that 𝑓(𝑥̃)𝑓(𝑦) is an edge of 𝐺′𝑖.

case 3: If 𝑥̃ ∈ 𝑉𝑖 and 𝑦 ∈ 𝑊̃𝑖, then either 𝑦 ∈ 𝐶𝑖,𝑗 or 𝑦 ∈ 𝐵̃𝑖,𝑗 for some 𝑗. Moreover,
𝑓(𝑥̃) = 𝑓bl(𝑥̃) and therefore by (9.18) the candidate set 𝐶(𝑦) of 𝑦 satisfies 𝐶(𝑦) ⊆
𝑁𝐶𝑖,𝑗 (𝑓(𝑥̃)) or 𝐶(𝑦) ⊆ 𝑁𝐵𝑖,𝑗 (𝑓(𝑥̃)), respectively. As 𝑓(𝑦) = 𝑓cl(𝑦) ∈ 𝐶(𝑦) we also
get that 𝑓(𝑥̃)𝑓(𝑦) is an edge of 𝐺 in this case.

It follows that 𝑓 maps all edges of 𝐻 to edges of 𝐺, which finishes the proof of the theorem.

142



9.5 A 𝑝-dense partition of 𝐺

9.5 A 𝑝-dense partition of 𝐺

For the proof of the Lemma for 𝐺 we shall apply the minimum degree version of the sparse
regularity lemma (Lemma 3.18). Observe that this lemma guarantees that the reduced graph
of the regular partition we obtain is dense. Thus we can apply Theorem 5.1 to this reduced
graph. In the proof of Lemma 9.2 we use this theorem to find a copy of the ladder 𝑅*𝑟 in
the reduced graph (the graphs 𝑅*𝑟 and 𝑅𝑟,𝑡 are defined in Section 9.1 on page 130, see also
Figure 9.1). Then we further partition the clusters in this ladder to obtain a regular partition
whose reduced graph contains a spin graph 𝑅𝑟,𝑡. Recall that this partition will consist of a
series of so-called big cluster which we denote by 𝑈𝑖 and 𝑉𝑖, and a series of smaller clusters
called balancing clusters 𝐵𝑖,𝑗 , 𝐵′𝑖,𝑗 and connecting clusters 𝐶𝑖,𝑗 , 𝐶 ′𝑖,𝑗 with 𝑖 ∈ [𝑟], 𝑗 ∈ [2𝑡]. We
will now give the details.

Proof of Lemma 9.2. Given 𝑡, 𝑟0, 𝜂, and 𝛾 choose 𝜂′ such that

𝜂

5
+
(︂

4
𝛾

+ 2
)︂
𝑡 · 𝜂′ ≤ 𝜂

2
(9.20)

and set 𝑑 := 𝛾/4. Let 𝛽 and 𝑘bk be the constants provided by Theorem 5.1 for input 𝑟bk := 2,
Δ = 3 and 𝛾/2. For input 𝜀 set

𝑟′0 := max{2𝑟0 + 1, 𝑘bk, 3/𝛽, 6/𝛾, 2/𝜀, 10/𝜂} (9.21)

and choose 𝜀′ such that

𝜀′/𝜂′ ≤ 𝜀/2, and 𝜀′ ≤ min{𝛾/4, 𝜂/10}. (9.22)

Lemma 3.18 applied with 𝛼 := 1
2 + 𝛾, 𝜀′, 𝑟′0 then gives us the missing constant 𝑟1.

Assume that Γ is a typical graph from 𝒢𝑛,𝑝 with log4 𝑛/(𝑝𝑛) = 𝑜(1), in the sense that it
satisfies the conclusion of Lemma 3.18, and let 𝐺 = (𝑉,𝐸) ⊆ Γ satisfy deg𝐺(𝑣) ≥ (1

2 +𝛾) degΓ(𝑣)
for all 𝑣 ∈ 𝑉 . Lemma 3.18 applied with 𝛼 = 1

2 + 𝛾, 𝜀′, 𝑟′0, and 𝑑 to 𝐺 gives us an (𝜀′, 𝑑, 𝑝)-
dense partition 𝑉 = 𝑉 ′0∪̇𝑉 ′1∪̇ . . . ∪̇𝑉 ′𝑟′ of 𝐺 with reduced graph 𝑅′ with |𝑉 (𝑅′)| = 𝑟′ such that
2𝑟0 +1 ≤ 𝑟′0 ≤ 𝑟′ ≤ 𝑟1 and with minimum degree at least (1

2 +𝛾−𝑑−𝜀′)𝑟′ ≥ (1
2 + 𝛾

2 )𝑟′ by (9.22).
If 𝑟′ is odd, then set 𝑉0 := 𝑉 ′0∪̇𝑉 ′𝑟′ and 𝑟 := (𝑟′ − 1)/2, otherwise set 𝑉0 := 𝑉 ′0 and 𝑟 := 𝑟′/2.
Clearly 𝑟0 ≤ 𝑟 ≤ 𝑟1, the graph 𝑅 := 𝑅′[2𝑟] still has minimum degree at least (1

2 + 𝛾
3 )2𝑟 and

|𝑉0| ≤ 𝜀′𝑛+ (𝑛/𝑟′0) ≤ (𝜂/5)𝑛 by the choice of 𝑟′0 and 𝜀′. It follows from Theorem 5.1 applied
with Δ = 3 and 𝛾/2 that 𝑅 contains a copy of the ladder 𝑅*𝑟 on 2𝑟 vertices (𝑅*𝑟 has bandwidth
2 ≤ 𝛽 · 2𝑟 by the choice of 𝑟′0in (9.21)). This naturally defines an equipartite mapping 𝑓 from
𝑉 ∖ 𝑉0 to the ladder 𝑅*𝑟 : 𝑓 maps each vertex of 𝐺 in cluster 𝑉𝑖 to vertex 𝑖 of 𝑅*𝑟 . We will show
that subdividing the clusters 𝑓−1(𝑖) for all 𝑖 ∈ 𝑉 (𝑅*𝑟) will give the desired mapping 𝑔.

To this end let us first rename the vertices of the graph 𝑅′[2𝑟] to {𝑢1, 𝑣1, . . . , 𝑢𝑟, 𝑣𝑟} according
to the spanning copy 𝑅*𝑟 . We will now construct the balancing clusters 𝐵𝑗,𝑗 and 𝐵′𝑖,𝑗 with
𝑖 ∈ [𝑟], 𝑗 ∈ [2𝑡] and afterwards turn to the connecting clusters 𝐶𝑗,𝑗 and 𝐶 ′𝑖,𝑗 and big clusters
𝑈𝑗 and 𝑉𝑖 with 𝑖 ∈ [𝑟], 𝑗 ∈ [2𝑡].

Notice that 𝛿(𝑅) ≥ (1
2 + 𝛾

3 )2𝑟 implies that every edge 𝑢𝑖𝑣𝑖 of 𝑅*𝑟 ⊆ 𝑅 is contained in more
than 𝛾𝑟 triangles in 𝑅. Therefore, we can choose vertices 𝑤𝑖 of 𝑅 for all 𝑖 ∈ [𝑟] such that
𝑢𝑖𝑣𝑖𝑤𝑖 forms a triangle in 𝑅 and no vertex of 𝑅 serves as 𝑤𝑖 more than 2/𝛾 times. We continue
by choosing in cluster 𝑓−1(𝑢𝑖) arbitrary disjoint vertex sets 𝐵𝑖,𝑗 , . . . , 𝐵𝑖,𝑡, 𝐵′𝑖,𝑡+1, . . . , 𝐵′𝑖,2𝑡 ,
of size 𝜂′𝑛/(2𝑟) each, for all 𝑖 ∈ [𝑟]. We will show below that 𝑓−1(𝑢𝑖) is large enough so that
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Figure 9.3: Cutting off a set of balancing clusters from 𝑓−1(𝑢𝑖) and 𝑓−1(𝑤𝑖). These clusters
build 𝑝-dense pairs (thanks to the triangle 𝑢𝑖𝑣𝑖𝑤𝑖 in 𝑅) in the form of a 𝐶5.

these sets can be chosen. We then remove all vertices in these sets from 𝑓−1(𝑢𝑖). Similarly,
we choose in cluster 𝑓−1(𝑤𝑖) arbitrary disjoint vertex sets 𝐵𝑖,𝑡+1, . . . ,𝐵𝑖,2𝑡, 𝐵′𝑖,1, . . . ,𝐵′𝑖,𝑡 , of
size 𝜂′𝑛/(2𝑟) each, for all 𝑖 ∈ [𝑟]. We also remove these sets from 𝑓−1(𝑤𝑖). Observe that
this construction asserts the following property. For all 𝑖 ∈ [𝑟] and 𝑗, 𝑗′, 𝑗′′, 𝑗′′′ ∈ [𝑡] each of
the pairs (𝑓−1(𝑣𝑖), 𝐵𝑖,𝑗), (𝐵𝑖,𝑗 , 𝐵

′
𝑖,𝑗′), (𝐵′𝑖,𝑗′ , 𝐵

′
𝑖,𝑡+𝑗′′), (𝐵′𝑖,𝑡+𝑗′′ , 𝐵𝑖,𝑡+𝑗′′′), and (𝐵𝑖,𝑡+𝑗′′′ , 𝑓

−1(𝑣𝑖))
is a sub-pair of a 𝑝-dense pair corresponding to an edge of 𝑅[{𝑢𝑖, 𝑣𝑖, 𝑤𝑖}] (see Figure 9.3).
Accordingly this is a sequence of 𝑝-dense pairs in the form of a 𝐶5, as needed for the balancing
clusters in view of condition (G3) (see also Figure 9.1). Hence we call the sets 𝐵𝑖,𝑗 and 𝐵′𝑖,𝑗
with 𝑖 ∈ [𝑟], 𝑗 ∈ [𝑡] balancing clusters from now on and claim that they have the required
properties. This claim will be verified below.

We now turn to the construction of the connecting clusters and big clusters. Recall that
we already removed balancing clusters from all clusters 𝑓−1(𝑢𝑖) and possibly from some
clusters 𝑓−1(𝑣𝑖) (because 𝑣𝑖 might have served as 𝑤𝑖′) with 𝑖 ∈ [𝑟]. For each 𝑖 ∈ [𝑟] we
arbitrarily partition the remaining vertices of cluster 𝑓−1(𝑢𝑖) into sets 𝐶𝑖,1∪̇ . . . ∪̇𝐶𝑖,2𝑡∪̇𝑈𝑖 and
the remaining vertices of cluster 𝑓−1(𝑣𝑖) into sets 𝐶 ′𝑖,1∪̇ . . . ∪̇𝐶 ′𝑖,2𝑡∪̇𝑉𝑖 such that |𝐶𝑖,𝑗 |, |𝐶 ′𝑖,𝑗 | =
𝜂′𝑛/(2𝑟) for all 𝑖 ∈ [𝑟], 𝑗 ∈ [2𝑡]. This gives us the connecting and the big clusters and we
claim that also these clusters have the required properties. Observe, again, that for all 𝑖 ∈ [𝑟],
𝑖′ ∈ {𝑖− 1, 𝑖, 𝑖+ 1} ∖ {0}, 𝑗, 𝑗′ ∈ [2𝑡] each of the pairs (𝑈𝑖, 𝑉𝑖), (𝐶𝑖′,𝑗 , 𝑉𝑖), and (𝐶𝑖,𝑗 , 𝐶

′
𝑖,𝑗′) is a

sub-pair of a 𝑝-dense pair corresponding to an edge of 𝑅*𝑟 (see Figure 9.4).

Ui−1

Vi−1

Ui

Vi

Ui+1

Vi+1

f−1(ui−1) f−1(ui+1)

f−1(vi−1) f−1(vi+1)

Ci−1,2 Ci,1

C′
i−1,2 C′

i,1

Ci,2 Ci+1,1

C′
i,2 C′

i+1,1

1

Figure 9.4: Partitioning the remaining vertices of cluster 𝑓−1(𝑢𝑖) and 𝑓−1(𝑣𝑖) into sets
𝐶𝑖,1∪̇𝐶𝑖,2∪̇𝑈𝑖 and 𝐶 ′𝑖,1∪̇𝐶 ′𝑖,2∪̇𝑉𝑖 (for the special case 𝑡 = 1). These clusters form
𝑝-dense pairs (thanks to the ladder 𝑅*𝑟 in 𝑅) as indicated by the edges.

We will now show that the balancing clusters, connecting clusters and big clusters satisfy
conditions (G1)–(G3). Note that condition (G2) concerning the sizes of the connecting and
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balancing clusters is satisfied by construction. To determine the sizes of the big clusters
observe that from each cluster 𝑉 ′𝑗 with 𝑗 ∈ [2𝑟] vertices for at most 2𝑡 · 2/𝛾 balancing clusters
were removed. In addition, at most 2𝑡 connecting clusters were split off from 𝑉 ′𝑗 . Therefore we
get

|𝑉𝑖|, |𝑈𝑖| ≥
(︁

1− 𝜂

5

)︁ 𝑛

2𝑟
−
(︂

4
𝛾

+ 2
)︂
𝑡 · 𝜂′ 𝑛

2𝑟
≥ (1− 𝜂)

𝑛

2𝑟

by (9.20) and (9.22). This is condition (G1). It remains to verify condition (G3). It can
easily be checked that for all 𝑥𝑦 ∈ 𝐸(𝑅𝑟,𝑡) the corresponding pair (𝑔−1(𝑥), 𝑔−1(𝑦)) is a sub-
pair of some cluster pair (𝑓−1(𝑥′), 𝑓−1(𝑦′)) with 𝑥′𝑦′ ∈ 𝐸(𝑅) by construction. In addition
all big, connecting, and balancing clusters are of size at least 𝜂′𝑛/(2𝑟). Hence we have
|𝑔−1(𝑥)| ≥ 𝜂′|𝑓−1(𝑥′)| and |𝑔−1(𝑦)| ≥ 𝜂′|𝑓−1(𝑦′)|. We conclude from Proposition 3.16 that
(𝑔−1(𝑥), 𝑔−1(𝑦)) is (𝜀, 𝑑, 𝑝)-dense since 𝜀′/𝜂′ ≤ 𝜀 by (9.22). This finishes the verification
of (G3).

9.6 A partition of 𝐻

The theorem of Hajnal and Szemerédi (Theorem 1.4) states that every graph 𝐺 with 𝛿(𝐺) ≥
𝑟−1

𝑟 𝑛 contains a family of ⌊𝑛/𝑟⌋ vertex disjoint cliques, each of size 𝑟. In fact Hajnal and
Szemerédi obtained a more general result and determined the minimum degree that forces a
certain number of vertex disjoint 𝐾𝑟 copies in 𝐺. In addition their result guarantees that the
remaining vertices can be covered by copies of 𝐾𝑟−1.

Another way to express this, which actually resembles the original formulation, is obtained
by considering the complement 𝐺̄ of 𝐺 and its maximum degree. Then, so the theorem asserts,
the graph 𝐺̄ contains a certain number of vertex disjoint independent sets of almost equal
sizes. In other words, 𝐺̄ admits a vertex colouring such that the sizes of the colour classes
differ by at most 1. Such a colouring is also called equitable colouring.

Theorem 9.14 (Hajnal & Szemerédi [48]). Let 𝐺̄ be a graph on 𝑛 vertices with maximum
degree Δ(𝐺̄) ≤ Δ. Then there is an equitable vertex colouring of 𝐺 with Δ + 1 colours.

In the proof of Lemma 9.3 that we shall present in this section we will use this theorem in
order to guarantee property (H3). This will be the very last step in the proof, however. First,
we need to take care of the remaining properties.

Before we start, let us agree on some terminology that will turn out to be useful in the
proof of Lemma 9.3. When defining a homomorphism ℎ from a graph 𝐻 to a graph 𝑅, we
write ℎ(𝑆) := 𝑧 for a set 𝑆 of vertices in 𝐻 and a vertex 𝑧 in 𝑅 to say that all vertices from 𝑆
are mapped to 𝑧. Recall that we have a bandwidth hypothesis on 𝐻. Consider an ordering of
the vertices of 𝐻 achieving its bandwidth. Then we can deal with the vertices of 𝐻 in this
order. In particular, we can refer to vertices as the first or last vertices in some set, meaning
that they are the vertices with the smallest or largest label from this set.

We start with the following proposition.

Proposition 9.15. Let 𝑅̄ be the following graph with six vertices and six edges:

𝑅̄ :=
(︀
{𝑧0, 𝑧1, . . . , 𝑧5}, {𝑧0𝑧1, 𝑧1𝑧2, 𝑧2𝑧3, 𝑧3𝑧4, 𝑧4𝑧5, 𝑧5𝑧1}

)︀
.

For every real 𝜂 > 0 there exists a real 𝛽 > 0 such that the following holds: Consider an
arbitrary bipartite graph 𝐻̄ with 𝑚̄ vertices, colour classes 𝑍0 and 𝑍1, and bw(𝐻̄) ≤ 𝛽𝑚̄ and
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Figure 9.5: The graph 𝑅̄ in Proposition 9.15.

denote by 𝑇 the union of the first 𝛽𝑚̄ vertices and the last 𝛽𝑚̄ vertices of 𝐻. Then there exists
a homomorphism ℎ̄ : 𝑉 (𝐻̄) → 𝑉 (𝑅̄) from 𝐻̄ to 𝑅̄ such that for all 𝑗 ∈ {0, 1} and all 𝑘 ∈ [2, 5]

𝑚̄

2
− 5𝜂𝑚̄ ≤ |ℎ̄−1(𝑧𝑗)| ≤ 𝑚̄

2
+ 𝜂𝑚̄ , (9.23)

|ℎ̄−1(𝑧𝑘)| ≤ 𝜂𝑚̄ , (9.24)

ℎ(𝑇 ∩ 𝑍𝑗) = 𝑧𝑗 . (9.25)

Roughly speaking, Proposition 9.15 shows that we can find a homomorphism from a bipartite
graph 𝐻̄ to a graph 𝑅̄ which consists an edge 𝑧0𝑧1 which has an attached 5-cycle (see Figure 9.5
for a picture of 𝑅̄) in such a way that most of the vertices of 𝐻̄ are mapped about evenly to
the vertices 𝑧0 and 𝑧1. If we knew that the colour classes of 𝐻̄ were of almost equal size, then
this would be a trivial task, but since this is not guaranteed, we will have to make use of the
additional vertices 𝑧2, . . . , 𝑧5.

Proof of Proposition 9.15. Given 𝜂, choose an integer ℓ ≥ 6 and a real 𝛽 > 0 such that

5
ℓ
< 𝜂 and 𝛽 :=

1
ℓ2
. (9.26)

For the sake of a simpler exposition we assume that 𝑚̄/ℓ and 𝛽𝑚̄ are integers. Now consider
a graph 𝐻̄ as given in the statement of the proposition. Partition 𝑉 (𝐻̄) along the ordering
induced by the bandwidth labelling into sets 𝑊̄1, . . . , 𝑊̄ℓ of sizes |𝑊̄𝑖| = 𝑚̄/ℓ for 𝑖 ∈ [ℓ]. For
each 𝑊̄𝑖, consider its last 5𝛽𝑚̄ vertices and partition them into sets 𝑋𝑖,1, . . . , 𝑋𝑖,5 of size
|𝑋𝑖,𝑘| = 𝛽𝑚̄. For 𝑖 ∈ [ℓ] let

𝑊𝑖 := 𝑊̄𝑖 ∖ (𝑋𝑖,1 ∪ · · · ∪𝑋𝑖,5), 𝑊 :=
ℓ⋃︁

𝑖=1

𝑊𝑖,

and note that

𝐿 := |𝑊𝑖| =
𝑚̄

ℓ
− 5𝛽𝑚̄

(9.26)
=
(︂

1
ℓ
− 5
ℓ2

)︂
𝑚̄ ≥ 1

ℓ2
𝑚̄

(9.26)
= 𝛽𝑚̄.

For 𝑖 ∈ [ℓ], 𝑗 ∈ {0, 1}, and 1 ≤ 𝑘 ≤ 5 let

𝑊 𝑗
𝑖 := 𝑊𝑖 ∩ 𝑍𝑗 , 𝑋𝑗

𝑖,𝑘 := 𝑋𝑖,𝑘 ∩ 𝑍𝑗 .
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Thanks to the fact that bw(𝐻̄) ≤ 𝛽𝑚̄, we know that there are no edges between 𝑊𝑖 and 𝑊𝑖′

for 𝑖 ̸= 𝑖′ ∈ [ℓ]. In a first round, for each 𝑖 ∈ [ℓ] we will either map all vertices from 𝑊 𝑗
𝑖 to 𝑧𝑗

for both 𝑗 ∈ {0, 1} (call such a mapping a normal embedding of 𝑊𝑖) or we map all vertices
from 𝑊 𝑗

𝑖 to 𝑧1−𝑗 for both 𝑗 ∈ {0, 1} (call this an inverted embedding). We will do this in such
a way that the difference between the number of vertices that get sent to 𝑧0 and the number
of those that get sent to 𝑧1 is as small as possible. Since |𝑊𝑖| ≤ 𝐿 the difference is therefore at
most 𝐿. If, in addition, we guarantee that both 𝑊1 and 𝑊ℓ receive a normal embedding, it is
at most 2𝐿. So, to summarize and to describe the mapping more precisely: there exist integers
𝜙𝑖 ∈ {0, 1} for all 𝑖 ∈ [ℓ] such that 𝜙1 = 0 = 𝜙ℓ and the function ℎ : 𝑊 → {𝑧0, 𝑧1} defined by

ℎ(𝑊 𝑗
𝑖 ) :=

{︃
𝑧𝑗 if 𝜙𝑖 = 0,
𝑧1−𝑗 if 𝜙𝑖 = 1,

is a homomorphism from 𝐻̄[𝑊 ] to 𝑅̄[{𝑧0, 𝑧1}], satisfying that for both 𝑗 ∈ {0, 1}

|ℎ−1(𝑧𝑗)| ≤ ℓ𝐿

2
+ 2𝐿 =

(︂
ℓ

2
+ 2
)︂
𝑚̄

ℓ
−
(︂
ℓ

2
+ 2
)︂

5𝛽𝑚̄

(9.26)
=

𝑚̄

2
+ 𝑚̄

(︂
2
ℓ
− 5

2
1
ℓ
− 10
ℓ2

)︂
≤ 𝑚̄

2
.

(9.27)

In the second round we extend this homomorphism to the vertices in the classes 𝑋𝑖,𝑘. Recall
that these vertices are by definition situated after those in 𝑊𝑖 and before those in 𝑊𝑖+1. The
idea for the extension is simple. If 𝑊𝑖 and 𝑊𝑖+1 have been embedded in the same way by ℎ
(either both normal or both inverted), then we map all the vertices from all 𝑋𝑖,𝑘 to 𝑧0 and
𝑧1 accordingly. If they have been embedded in different ways (one normal and one inverted),
then we walk around the 5-cycle 𝑧1, . . . , 𝑧5, 𝑧1 to switch colour classes.

Here is the precise definition. Consider an arbitrary 𝑖 ∈ [ℓ]. Since ℎ(𝑊 0
𝑖 ) and ℎ(𝑊 1

𝑖 ) are
already defined, choose (and fix) 𝑗 ∈ {0, 1} in such a way that ℎ(𝑊 𝑗

𝑖 ) = 𝑧1. Note that this
implies that ℎ(𝑊 1−𝑗

𝑖 ) = 𝑧0. Now define ℎ𝑖 :
⋃︀5

𝑘=0𝑋𝑖,𝑘 →
⋃︀5

𝑘=1{𝑧𝑘} as follows:
Suppose first that 𝜙𝑖 = 𝜙𝑖+1. Observe that in this case we must also have ℎ(𝑊 𝑗

𝑖+1) = 𝑧1

and ℎ(𝑊 1−𝑗
𝑖+1 ) = 𝑧0. So we can happily define for all 𝑘 ∈ [5]

ℎ𝑖(𝑋
𝑗
𝑖,𝑘) = 𝑧1 and ℎ𝑖(𝑋

1−𝑗
𝑖,𝑘 ) = 𝑧0.

Now suppose that 𝜙𝑖 ̸= 𝜙𝑖+1. Since we are still assuming that 𝑗 is such that ℎ(𝑊 𝑗
𝑖 ) = 𝑧1

and thus ℎ(𝑊 1−𝑗
𝑖 ) = 𝑧0, the fact that 𝜙𝑖 ̸= 𝜙𝑖+1 implies that ℎ(𝑊 𝑗

𝑖+1) = 𝑧0 and ℎ(𝑊 1−𝑗
𝑖+1 ) = 𝑧1.

In this case we define ℎ𝑖 as follows:

ℎ(𝑊 1−𝑗
𝑖 ) ℎ𝑖(𝑋

1−𝑗
𝑖,1 ) ℎ𝑖(𝑋

1−𝑗
𝑖,2 ) ℎ𝑖(𝑋

1−𝑗
𝑖,3 ) ℎ𝑖(𝑋

1−𝑗
𝑖,4 ) ℎ𝑖(𝑋

1−𝑗
𝑖,5 ) ℎ(𝑊 1−𝑗

𝑖+1 )
= 𝑧0 := 𝑧2 := 𝑧2 := 𝑧4 := 𝑧4 := 𝑧1 = 𝑧1

ℎ(𝑊 𝑗
𝑖 ) ℎ𝑖(𝑋

𝑗
𝑖,1) ℎ𝑖(𝑋

𝑗
𝑖,2) ℎ𝑖(𝑋

𝑗
𝑖,3) ℎ𝑖(𝑋

𝑗
𝑖,4) ℎ𝑖(𝑋

𝑗
𝑖,5) ℎ(𝑊 𝑗

𝑖+1)
= 𝑧1 := 𝑧1 := 𝑧3 := 𝑧3 := 𝑧5 := 𝑧5 = 𝑧0

Finally, we set ℎ̄ : 𝑉 (𝐻̄) → 𝑉 (𝑅̄) by letting ℎ̄(𝑥) := ℎ(𝑥) if 𝑥 ∈ 𝑊𝑖 for some 𝑖 ∈ [ℓ] and
ℎ̄(𝑥) := ℎ𝑖(𝑥) if 𝑥 ∈ 𝑋𝑖,𝑘 for some 𝑖 ∈ [ℓ] and 𝑘 ∈ [5].

In order to verify that this is a homomorphism from 𝐻̄ to the sets 𝑅̄, we first let

𝑋0
𝑖,0 := 𝑊 0

𝑖 , 𝑋
1
𝑖,0 := 𝑊 1

𝑖 , 𝑋
0
𝑖,6 := 𝑊 0

𝑖+1, 𝑋
1
𝑖,6 := 𝑊 1

𝑖+1.
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Using this notation, it is clear that any edge 𝑥𝑥′ in 𝐻̄[𝑊𝑖 ∪
⋃︀5

𝑘=1𝑋𝑖,𝑘 ∪𝑊𝑖+1] with 𝑥 ∈ 𝑍𝑗

and 𝑥′ ∈ 𝑍1−𝑗 is of the form

𝑥𝑥′ ∈ (𝑋𝑗
𝑖,𝑘 ×𝑋1−𝑗

𝑖,𝑘 ) ∪ (𝑋𝑗
𝑖,𝑘 ×𝑋1−𝑗

𝑖,𝑘+1) ∪ (𝑋𝑗
𝑖,𝑘+1 ×𝑋1−𝑗

𝑖,𝑘 )

for some 𝑘 ∈ [0, 6]. It is therefore easy to check in the above table that ℎ̄ maps 𝑥𝑥′ to an edge
of 𝑅.

We conclude the proof by showing that the cardinalities of the preimages of the vertices in
𝑅 match the required sizes. In the second round we mapped a total of

ℓ · 5𝛽𝑚̄ (9.26)
=

5
ℓ
𝑚̄

(9.26)

≤ 𝜂𝑚̄

additional vertices from 𝐻̄ to the vertices of 𝑅̄, which guarantees that

|ℎ̄−1(𝑧𝑗)|
(9.27)

≤ 𝑚̄

2
+ 𝜂𝑚̄ for all 𝑗 ∈ {0, 1}, |ℎ̄−1(𝑧𝑘)| ≤ 𝜂𝑚̄ for all 𝑘 ∈ [2, 5].

Finally, the lower bound in (9.23) immediately follows from the upper bounds:

|ℎ̄−1(𝑧𝑗)| ≥ 𝑚̄− |ℎ̄−1(𝑧1−𝑗)| −
5∑︁

𝑘=2

|ℎ̄−1(𝑧𝑘)| ≥ 𝑚̄

2
− 5𝜂𝑚̄.

We remark that Proposition 9.15 (and thus Lemma 9.3) would remain true if we replaced
the 5-cycle in 𝑅̄ by a 3-cycle. However, we need the properties of the 5-cycle in the proof of
the main theorem. Now we will prove Lemma 9.3.

Proof of Lemma 9.3. Given the integer Δ, set 𝑡 := (Δ + 1)3(Δ3 + 1). Given a real 0 < 𝜂 < 1
and integers 𝑚 and 𝑟, set 𝜂 := 𝜂/20 < 1/20 and apply Proposition 9.15 to obtain a real 𝛽 > 0.
Choose 𝛽 > 0 sufficiently small so that all the inequalities

1
𝑟
− 4𝛽 ≥ 𝛽/𝛽, 4𝛽𝑟 ≤ 𝜂

20𝑟
, 16Δ𝛽𝑟 ≤ 𝜂

(︂
1
𝑟
− 4𝛽

)︂(︂
1
2
− 5𝜂

)︂
(9.28)

hold. Again, we assume that 𝑚/𝑟 and 𝛽𝑚 are integers.
Next we consider the spin graph 𝑅𝑟,𝑡 with 𝑡 = 1, i.e., let 𝑅 := 𝑅𝑟,1. For the sake of simpler

reference, we will change the names of its vertices as follows: For all 𝑖 ∈ [𝑟] we set (see
Figure 9.6)

𝑧0
𝑖 := 𝑢𝑖, 𝑧

1
𝑖 := 𝑣𝑖, 𝑧

2
𝑖 := 𝑏𝑖,1, 𝑧

3
𝑖 := 𝑏′𝑖,1, 𝑧

4
𝑖 := 𝑏′𝑖,2, 𝑧

5
𝑖 := 𝑏𝑖,2,

𝑞2𝑖 := 𝑐𝑖,1, 𝑞
3
𝑖 := 𝑐′𝑖,1, 𝑞

4
𝑖 := 𝑐𝑖,2, 𝑞

5
𝑖 := 𝑐′𝑖,2.

Note that for every 𝑖 ∈ [𝑟] the graph 𝑅[{𝑧0
𝑖 , . . . , 𝑧

5
𝑖 }] is isomorphic to the graph 𝑅̄ defined in

Proposition 9.15.
Partition 𝑉 (𝐻) along the ordering (induced by the bandwidth labelling) into sets 𝑆1, . . . , 𝑆𝑟

of sizes |𝑆𝑖| = 𝑚/𝑟 for 𝑖 ∈ [𝑟].
Define sets 𝑇𝑖,𝑘 for 𝑖 ∈ [𝑟] and 𝑘 ∈ [0, 5] with |𝑇𝑖,𝑘| = 𝛽𝑚 such that 𝑇𝑖,0 ∪ · · · ∪ 𝑇𝑖,4 contain

the last 5𝛽𝑚 vertices of 𝑆𝑖 and 𝑇𝑖,5 the first 𝛽𝑚 vertices of 𝑆𝑖+1 (according to the ordering).
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Figure 9.6: The subgraph 𝑅[{𝑧0
𝑖 , . . . , 𝑧

5
𝑖 , 𝑞

4
𝑖 , 𝑞

5
𝑖 , 𝑞

2
𝑖+1, 𝑞

3
𝑖+1, 𝑧

0
𝑖+1, . . . , 𝑧

5
𝑖+1}] of 𝑅𝑟,1 in the proof

of Lemma 9.3.

Set 𝑆𝑖 := 𝑆𝑖 ∖ (𝑇𝑖,1 ∪ · · · ∪ 𝑇𝑖,4) and observe that this implies that 𝑇𝑖,0 is the set of the last 𝛽𝑚
vertices of 𝑆𝑖 and 𝑇𝑖,5 is the set of the first 𝛽𝑚 vertices in 𝑆𝑖+1. Set

𝑚̄ := |𝑆𝑖| = (𝑚/𝑟)− 4𝛽𝑚 =
(︂

1
𝑟
− 4𝛽

)︂
𝑚

(9.28)

≥ 𝛽𝑚/𝛽, thus 𝛽𝑚̄ ≥ 𝛽𝑚. (9.29)

Denote by 𝑍0 and 𝑍1 the two colour classes of the bipartite graph 𝐻. For 𝑖 ∈ [ℓ], 𝑘 ∈ [0, 5]
and 𝑗 ∈ [0, 1] let

𝑆𝑗
𝑖 := 𝑆𝑖 ∩ 𝑍𝑗 , 𝑇 𝑗

𝑖,𝑘 := 𝑇𝑖,𝑘 ∩ 𝑍𝑗 .

Now for each 𝑖 ∈ [𝑟] apply Proposition 9.15 to 𝐻̄𝑖 := 𝐻[𝑆𝑖] and 𝑅̄𝑖 := 𝑅[{𝑧0
𝑖 , . . . , 𝑧

5
𝑖 }].

Observe that
bw(𝐻̄𝑖) ≤ bw(𝐻) ≤ 𝛽𝑚

(9.29)

≤ 𝛽𝑚̄,

so we obtain a homomorphism ℎ̄𝑖 : 𝑆𝑖 → {𝑧0
𝑖 , . . . , 𝑧

5
𝑖 } of 𝐻̄𝑖 to 𝑅̄𝑖. Combining these yields a

homomorphism

ℎ̄ :
𝑟⋃︁

𝑖=1

𝑆𝑖 →
𝑟⋃︁

𝑖=1

{𝑧0
𝑖 , . . . , 𝑧

5
𝑖 },

from 𝐻[
𝑟⋃︁

𝑖=1

𝑆𝑖] to 𝑅[
𝑟⋃︁

𝑖=1

{𝑧0
𝑖 , . . . , 𝑧

5
𝑖 }]

with the property that for every 𝑖 ∈ [𝑟], 𝑗 ∈ [0, 1] and 𝑘 ∈ [2, 5]

𝑚̄

2
− 5𝜂𝑚̄

(9.23)

≤ |ℎ̄−1(𝑧𝑗
𝑖 )|

(9.23)

≤ 𝑚̄

2
+ 𝜂𝑚̄ ≤

(︁
1 +

𝜂

10

)︁ 𝑚
2𝑟

and

|ℎ̄−1(𝑧𝑘
𝑖 )|

(9.24)

≤ 𝜂𝑚̄ ≤ 𝜂

10
𝑚

2𝑟
.

Thanks to (9.29), we know that 𝛽𝑚̄ ≥ 𝛽𝑚, and therefore applying the information from (9.25)
in Proposition 9.15 yields that for all 𝑖 ∈ [𝑟] and 𝑗 ∈ [0, 1]

ℎ̄(𝑇 𝑗
𝑖,0) = 𝑧𝑗

𝑖 and ℎ̄(𝑇 𝑗
𝑖,5) = 𝑧𝑗

𝑖+1.

149



Chapter 9 Embedding into sparse graphs

In the second round, our task is to extend this homomorphism to the vertices in 𝑆𝑖 ∖ 𝑆𝑖 by
defining a function

ℎ𝑖 : 𝑇𝑖,1 ∪ · · · ∪ 𝑇𝑖,4 → {𝑧1
𝑖 , 𝑞

4
𝑖 , 𝑞

5
𝑖 , 𝑞

2
𝑖+1, 𝑞

3
𝑖+1, 𝑧

1
𝑖+1}

for each 𝑖 ∈ [𝑟] as follows:

ℎ̄(𝑇 0
𝑖,0) = 𝑧0

𝑖 ℎ𝑖(𝑇
0
𝑖,1) := 𝑞4

𝑖 ℎ𝑖(𝑇
0
𝑖,2) := 𝑞4

𝑖 ℎ𝑖(𝑇
0
𝑖,3) := 𝑞2

𝑖+1 ℎ𝑖(𝑇
0
𝑖,4) := 𝑞2

𝑖+1 ℎ̄(𝑇 0
𝑖,5) = 𝑧0

𝑖+1

ℎ̄(𝑇 1
𝑖,0) = 𝑧1

𝑖 ℎ𝑖(𝑇
1
𝑖,1) := 𝑧1

𝑖 ℎ𝑖(𝑇
1
𝑖,2) := 𝑞5

𝑖 ℎ𝑖(𝑇
1
𝑖,3) := 𝑞3

𝑖+1 ℎ𝑖(𝑇
1
𝑖,4) := 𝑧1

𝑖+1 ℎ̄(𝑇 1
𝑖,5) = 𝑧1

𝑖+1

Now set ℎ(𝑥) := ℎ̄(𝑥) if 𝑥 ∈ 𝑆𝑖 for some 𝑖 ∈ [𝑟] and ℎ(𝑥) := ℎ𝑖(𝑥) if 𝑥 ∈ 𝑇𝑖,𝑘 for some 𝑖 ∈ [𝑟]
and 𝑘 ∈ [4].

Let us verify that ℎ is a homomorphism from 𝐻 to 𝑅. For edges 𝑥𝑥′ with both endpoints
inside a set 𝑆𝑖 we do not need to check anything because here ℎ(𝑥) = ℎ̄(𝑥) and ℎ(𝑥′) = ℎ̄(𝑥′)
and we know from Proposition 9.15 that ℎ̄ is a homomorphism. Due to the bandwidth
condition bw(𝐻) ≤ 𝛽𝑚, any other edge 𝑥𝑥′ with 𝑥 ∈ 𝑍0 and 𝑥′ ∈ 𝑍1 is of the form

𝑥𝑥′ ∈ (𝑇 0
𝑖,𝑘 × 𝑇 1

𝑖,𝑘) ∪ (𝑇 0
𝑖,𝑘 × 𝑇 1

𝑖,𝑘+1) ∪ (𝑇 0
𝑖,𝑘+1 × 𝑇 1

𝑖,𝑘)

for some 𝑖 ∈ [ℓ] and 0 ≤ 𝑘, 𝑘 + 1 ≤ 5. It is therefore easy to check in the above table that ℎ
maps 𝑥𝑥′ to an edge of 𝑅.

What can we say about the cardinalities of the preimages? In the second round we have
mapped 4𝛽𝑚𝑟 additional vertices from 𝐻 to vertices in 𝑅, hence for any vertex 𝑧 in 𝑅 with
𝑧 ̸∈ {𝑧0

𝑖 , 𝑧
1
𝑖 }, 𝑖 ∈ [ℓ] we have

|ℎ−1
𝑖 (𝑧)| ≤ 4𝛽𝑚𝑟

(9.28)

≤ 𝜂

10
𝑚

2𝑟
, (9.30)

and therefore the required upper bounds immediately follow from (9.6).
At this point we have found a homomorphism ℎ from 𝐻 to 𝑅 = 𝑅𝑟,1 of which we know that

it satisfies properties (H1) and (H2).
So far we have been working with the graph 𝑅 = 𝑅𝑟,1, and therefore we know which vertices

have been mapped to 𝑢𝑖 = 𝑧0
𝑖 and 𝑣𝑖 = 𝑧1

𝑖 :

𝑈𝑖 := ℎ−1(𝑢𝑖) = ℎ−1(𝑧0
𝑖 ) and 𝑉𝑖 := ℎ−1(𝑣𝑖) = ℎ−1(𝑧1

𝑖 ).

Moreover for 𝑖 ∈ [𝑟] and 𝑘 ∈ [2, 5] set

𝑍𝑘
𝑖 := ℎ−1(𝑧𝑘

𝑖 ) and 𝑄𝑘
𝑖 := ℎ−1(𝑞𝑘

𝑖 )

Let us deal with property (H5) next. By definition, a vertex in 𝑋̃𝑖 ⊆ 𝑉𝑖 must have at least
one neighbour in 𝑄2

𝑖 or 𝑄4
𝑖 or 𝑍2

𝑖 or 𝑍5
𝑖 . We know from (9.30) that the two latter sets contain

at most 4𝛽𝑚𝑟 vertices each, and each of their vertices has at most Δ neighbours. Thus

|𝑋̃𝑖| ≤ Δ · 16𝛽𝑚𝑟
(9.28)

≤ 𝜂

(︂
1
𝑟
− 4𝛽

)︂(︂
1
2
− 5𝜂

)︂
𝑚

(9.29)
= 𝜂𝑚̄

(︂
1
2
− 5𝜂

)︂
(9.6)

≤ 𝜂|ℎ̄−1(𝑧1
𝑖 )| ≤ 𝜂|ℎ−1(𝑧1

𝑖 )| = 𝜂|𝑉𝑖|,

which shows that (H5) is also satisfied.
Next we would like to split up the sets 𝑍𝑘

𝑖 and 𝑄𝑘
𝑖 for 𝑖 ∈ [𝑟] and 𝑘 ∈ [2, 5] into smaller sets

in order to meet the additional requirements (H3) and (H4). This means that we need to
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9.6 A partition of 𝐻

partition them further into sets of vertices which have no path of length 1, 2, or 3 between
them and which have the same degree into certain sets.

To achieve this, first denote by 𝐻3 the 3rd power of 𝐻. Then an upper bound on the
maximum degree of 𝐻3 is obviously given by

Δ + Δ(Δ− 1) + Δ(Δ− 1)(Δ− 1) ≤ Δ3.

Hence 𝐻3 has a vertex colouring 𝑐 : 𝑉 (𝐻) → N with at most Δ3 + 1 colours. Notice that a set
of vertices that receives the same colour by 𝑐 forms a 3-independent set in 𝐻. To formalize
this argument, we define a ‘fingerprint’ function

𝑓 :
𝑟⋃︁

𝑖=1

5⋃︁
𝑘=2

(𝑍𝑘
𝑖 ∪𝑄𝑘

𝑖 ) → [0,Δ]× [0,Δ]× [0,Δ]× [Δ3 + 1]

as follows:

𝑓(𝑦) :=

⎧⎨⎩
(︁

deg𝑉𝑖
(𝑦),deg𝑄2

𝑖∪𝑄4
𝑖
(𝑦),deg𝑍2

𝑖
(𝑦), 𝑐(𝑦)

)︁
if 𝑦 ∈

(︁⋃︀5
𝑘=2(𝑄𝑘

𝑖 ∪ 𝑍𝑘
𝑖 )
)︁
∖ 𝑍4

𝑖 ,(︁
deg𝑉𝑖

(𝑦),deg𝑄2
𝑖∪𝑄4

𝑖
(𝑦), deg𝑍3

𝑖 ∪𝑍5
𝑖
(𝑦), 𝑐(𝑦)

)︁
if 𝑦 ∈ 𝑍4

𝑖 ,

for some 𝑖 ∈ [𝑟].
Recall that we defined 𝑡 := (Δ + 1)3(Δ3 + 1), so let us identify the codomain of 𝑓 with the

set [𝑡]. Now for 𝑖 ∈ [𝑟] and 𝑗 ∈ [𝑡] we set

𝐵̃𝑖,𝑗 := 𝑍2
𝑖 ∩ 𝑓−1(𝑗), 𝐵̃𝑖,𝑡+𝑗 := 𝑍5

𝑖 ∩ 𝑓−1(𝑗)

𝐵̃′𝑖,𝑗 := 𝑍3
𝑖 ∩ 𝑓−1(𝑗), 𝐵̃′𝑖,𝑡+𝑗 := 𝑍4

𝑖 ∩ 𝑓−1(𝑗)

𝐶𝑖,𝑗 := 𝑄2
𝑖 ∩ 𝑓−1(𝑗), 𝐶𝑖,𝑡+𝑗 := 𝑄4

𝑖 ∩ 𝑓−1(𝑗)

𝐶 ′𝑖,𝑗 := 𝑄3
𝑖 ∩ 𝑓−1(𝑗), 𝐶 ′𝑖,𝑡+𝑗 := 𝑄5

𝑖 ∩ 𝑓−1(𝑗).

Observe, for example, that for 𝑦 ∈ 𝐵̃𝑖,𝑗 the third component of 𝑓(𝑦) is exactly equal to
deg𝐿(𝑖,𝑗)(𝑦). Now, for any

𝑦𝑦′ ∈
(︂
𝐶𝑖,𝑗

2

)︂
∪
(︂
𝐵̃𝑖,𝑗

2

)︂
∪
(︂
𝐶 ′𝑖,𝑗
2

)︂
∪
(︂
𝐵̃′𝑖,𝑗

2

)︂
,

we have 𝑓(𝑦) = 𝑗 = 𝑓(𝑦′) and hence any of the parameters required in (H3) and (H4) have
the same value for 𝑦 and 𝑦′.

The only thing missing before the proof of Lemma 9.3 is complete is that we need to
guarantee that every 𝑦 ∈ 𝑍2

𝑖 ∪ 𝑍5
𝑖 ∪𝑄2

𝑖 ∪𝑄4
𝑖 has at most Δ− 1 neighbours in 𝑉𝑖, as required

in the first line of (H4). If a vertex 𝑦 does not satisfy this, it must have all its Δ neighbours
in 𝑉𝑖. Since by definition of 𝑉𝑖 these neighbours have been mapped to 𝑧1

𝑖 , we can map 𝑦 to 𝑧0
𝑖

(instead of mapping it to 𝑧2
𝑖 , 𝑧5

𝑖 , 𝑞2𝑖 or 𝑞4𝑖 ).
Even if, in this way, all of the vertices in 𝑍2

𝑖 ∪ 𝑍5
𝑖 ∪𝑄2

𝑖 ∪𝑄4
𝑖 would have to be mapped to

𝑧0
𝑖 , (9.30) assures us that these are at most 4 𝜂

10
𝑚
2𝑟 vertices. Since by (9.6) at most (1 + 𝜂

10) 𝑚
2𝑟

have already been mapped to 𝑧0
𝑖 in the first round and by (9.30) at most 𝜂

10
𝑚
2𝑟 in the second

round, this does not violate the upper bound in (H1).
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Chapter 9 Embedding into sparse graphs

9.7 The constrained blow-up lemma

As explained earlier the proof of the constrained blow-up lemma uses techniques developed
in [8, 86] adapted to our setting. In fact, the proof we present here follows the embedding
strategy used in the proof of [8, Theorem 1.5]. This strategy is roughly as follows. Assume
we want to embed the bipartite graph 𝐻 on vertex set 𝑈̃ ∪̇𝑉 into the host graph 𝐺 on vertex
set 𝑈 ∪̇𝑉 . Then we consider injective mappings 𝑓 : 𝑉 → 𝑉 , and try to find one that can be
extended to 𝑈̃ such that the resulting mapping is an embedding of 𝐻 into 𝐺. For determining
whether a particular mapping 𝑓 can be extended in this way we shall construct an auxiliary
bipartite graph 𝐵𝑓 , a so-called candidate graph (see Definition 9.16), which contains a matching
covering one of its partition classes if and only if 𝑓 can be extended. Accordingly, our goal
will be to check whether 𝐵𝑓 contains such a matching 𝑀 which we will do by appealing to
Hall’s condition. On page 154 we will explain the details of this part of the proof, determine
necessary conditions for the application of Hall’s theorem, and collect them in form of a
matching lemma (Lemma 9.23). It will then remain to show that there is a mapping 𝑓 such
that 𝐵𝑓 satisfies the conditions of this matching lemma. This will require most of the work.
The idea here is as follows.

We will show that mappings 𝑓 usually have the necessary properties as long as they do
not map neighbourhoods 𝑁𝐻(𝑢̃) ⊆ 𝑉 of vertices in 𝑢̃ ∈ 𝑈̃ to certain “bad” spots in 𝑉 . The
existence of (many) mappings that avoid these “bad” spots is verified with the help of a
hypergraph packing lemma (Lemma 9.21). This lemma states that half of all possible mappings
𝑓 avoid almost all “bad” spots and can easily be turned into mappings 𝑓 ′ avoiding all “bad”
spots with the help of so-called switchings.

Candidate graphs

If we have injective mappings 𝑓 : 𝑉 → 𝑉 as described in the previous paragraph we would like
to decide whether 𝑓 can be extended to an embedding of 𝐻 into 𝐺. Observe that in such an
embedding each vertex 𝑢̃ ∈ 𝑈̃ has to be embedded to a vertex 𝑢 ∈ 𝑈 such that the following
holds. The neighbourhood 𝑁𝐻(𝑢̃) has its image 𝑓(𝑁𝐻(𝑢̃)) in the set 𝑁𝐺(𝑢). Determining
which vertices 𝑢 are “candidates” for the embedding of 𝑢̃ in this sense gives rise to the following
bipartite graph.

Definition 9.16 (candidate graph). Let 𝐻 and 𝐺 be bipartite graphs on vertex sets 𝑈̃ ∪̇𝑉
and 𝑈 ∪̇𝑉 , respectively. For an injective function 𝑓 : 𝑉 → 𝑉 we say that a vertex 𝑢 ∈ 𝑈 is an
𝑓 -candidate for 𝑢̃ ∈ 𝑈̃ if and only if 𝑓(𝑁𝐻(𝑢̃)) ⊆ 𝑁𝐺(𝑢).

The candidate graph 𝐵𝑓 (𝐻,𝐺) := (𝑈̃ ∪̇𝑈,𝐸𝑓 ) for 𝑓 is the bipartite graph with edge set

𝐸𝑓 :=
{︁
𝑢̃𝑢 ∈ 𝑈̃ × 𝑈 : 𝑢 is an 𝑓 -candidate for 𝑢̃

}︁
.

Now it is easy to see that the mapping 𝑓 described above can be extended to an embedding
of 𝐻 into 𝐺 if and only if the corresponding candidate graph has a matching covering 𝑈̃ .
Clearly, if the candidate graph 𝐵𝑓 (𝐻,𝐺) of 𝑓 has vertices 𝑢̃ ∈ 𝑈̃ of degree 0, then 𝐵𝑓 (𝐻,𝐺)
has no such matching and hence 𝑓 cannot be extended. More generally we would like to avoid
that deg𝐵𝑓 (𝐻,𝐺)(𝑢̃) is too small. Notice that this means precisely that 𝑁𝐻(𝑢̃) should not be
mapped to a set 𝐵 ⊆ 𝑉 by 𝑓 , that has a small common neighbourhood in 𝐺. These sets 𝐵
are the “bad” spots (see the beginning of this section) that should be avoided by 𝑓 .

We explained above that, in order to avoid “bad” spots, we will have to change certain
mappings 𝑓 slightly. The exact definition this operation is as follows.
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9.7 The constrained blow-up lemma

Definition 9.17 (switching). Let 𝑓, 𝑓 ′ : 𝑋 → 𝑌 be injective functions. We say that 𝑓 ′ is
obtained from 𝑓 by a switching if there are 𝑢, 𝑣 ∈ 𝑋 with 𝑓 ′(𝑢) = 𝑓(𝑣) and 𝑓 ′(𝑣) = 𝑓(𝑢) and
𝑓(𝑤) = 𝑓 ′(𝑤) for all 𝑤 ̸∈ {𝑢, 𝑣}. The switching distance dsw(𝑓, 𝑓 ′) of 𝑓 and 𝑓 ′ is at most 𝑠 if
the mapping 𝑓 ′ can be obtained from 𝑓 by a sequence of at most 𝑠 switchings.

These switchings will alter the candidate graph corresponding to the injective function
slightly (but not much, see Lemma 9.19). In order to quantify this we further define the
neighbourhood distance between two bipartite graphs 𝐵 and 𝐵′ which determines the number
of vertices (in one partition class) whose neighbourhoods differ in 𝐵 and 𝐵′.

Definition 9.18 (neighbourhood distance). Let 𝐵 = (𝑈 ∪̇𝑈̃ , 𝐸), 𝐵′ = (𝑈 ∪̇𝑈̃ , 𝐸′) be bipartite
graphs. We define the neighbourhood distance of 𝐵 and 𝐵′ with respect to 𝑈̃ as

d𝑁(𝑈̃)(𝐵,𝐵
′) :=

⃒⃒
{𝑢̃ ∈ 𝑈̃ : 𝑁𝐵(𝑢̃) ̸= 𝑁𝐵′(𝑢̃)}

⃒⃒
.

The next simple lemma now examines the effect of switchings on the neighbourhood distance
of candidate graphs and shows that functions with small switching distance correspond to
candidate graphs with small neighbourhood distance.

Lemma 9.19 (switching lemma). Let 𝐻 and 𝐺 be bipartite graphs on vertex sets 𝑈̃ ∪̇𝑉 and
𝑈 ∪̇𝑉 , respectively, such that deg𝐻(𝑣) ≤ Δ for all 𝑣 ∈ 𝑉 and let 𝑓, 𝑓 ′ : 𝑉 → 𝑉 be injective
functions with switching distance dsw(𝑓, 𝑓 ′) ≤ 𝑠. Then the neighbourhood distance of the
candidate graphs 𝐵𝑓 (𝐻,𝐺) and 𝐵𝑓 ′(𝐻,𝐺) satisfies

d𝑁(𝑈̃)

(︁
𝐵𝑓 (𝐻,𝐺), 𝐵𝑓 ′(𝐻,𝐺)

)︁
≤ 2𝑠Δ .

Proof. We proceed by induction on 𝑠. For 𝑠 = 0 the lemma is trivially true. Thus, consider
𝑠 > 0 and let 𝑔 be a function with dsw(𝑓, 𝑔) ≤ 𝑠− 1 and dsw(𝑔, 𝑓 ′) = 1. Define

𝑁(𝑓, 𝑓 ′) :=
{︁
𝑢̃ ∈ 𝑈̃ : 𝑁𝐵𝑓 (𝐻,𝐺)(𝑢̃) ̸= 𝑁𝐵𝑓 ′ (𝐻,𝐺)(𝑢̃)

}︁
.

Clearly, |𝑁(𝑓, 𝑓 ′)| = d𝑁(𝑈̃)(𝐵𝑓 (𝐻,𝐺), 𝐵𝑓 ′(𝐻,𝐺)) and 𝑁(𝑓, 𝑓 ′) ⊆ 𝑁(𝑓, 𝑔) ∪ 𝑁(𝑔, 𝑓 ′). By
induction hypothesis we have |𝑁(𝑓, 𝑔)| ≤ 2(𝑠− 1)Δ. The remaining switching from 𝑔 to 𝑓 ′

interchanges only the images of two vertices from 𝑉 , say 𝑣1 and 𝑣2. It follows that

𝑁(𝑔, 𝑓 ′) =
{︁
𝑢̃ ∈ 𝑁𝐻(𝑣1) ∪𝑁𝐻(𝑣2) : 𝑁𝐵𝑔(𝐻,𝐺)(𝑢̃) ̸= 𝑁𝐵𝑓 ′ (𝐻,𝐺)(𝑢̃)

}︁
,

which implies |𝑁(𝑔, 𝑓 ′)| ≤ 2Δ and therefore we get |𝑁(𝑓, 𝑓 ′)| ≤ 2𝑠Δ.

A hypergraph packing lemma

The main ingredient to the proof of the constrained blow-up lemma is the following hypergraph
packing result (Lemma 9.21). To understand what this lemma says and how we will apply
it, recall that we would like to embed the vertex set 𝑈̃ of 𝐻 into the vertex set 𝑈 of 𝐺 such
that subsets of 𝑈̃ that form neighbourhoods in the graph 𝐻 avoiding certain “bad” spots
in 𝑈 . If 𝐻 is a Δ-regular graph, then these neighbourhoods form Δ-sets. In this case, as
we will see, also the “bad” spots form Δ-sets. Accordingly, we have to solve the problem of
packing the neighbourhood Δ-sets 𝒩 and the “bad” Δ-sets ℬ, which is a hypergraph packing
problem. Lemma 9.21 below states that this is possible under certain conditions. One of these
conditions is that the “bad” sets should not “cluster” too much (although there might be
many of them). The following definition makes this precise.

153



Chapter 9 Embedding into sparse graphs

Definition 9.20 (corrupted sets). For Δ ∈ N and a set 𝑉 let ℬ ⊆
(︀
𝑉
Δ

)︀
be a collection of Δ-sets

in 𝑉 and let 𝑥 be a positive real. We say that all 𝐵 ∈ ℬ are 𝑥-corrupted by ℬ. Recursively,
for 𝑖 ∈ [Δ− 1] an 𝑖-set 𝐵 ∈

(︀
𝑉
𝑖

)︀
in 𝑉 is called 𝑥-corrupted by ℬ if it is contained in more than

𝑥 of the (𝑖+ 1)-sets that are 𝑥-corrupted by ℬ.
Observe that, if a vertex 𝑣 ∈ 𝑉 is not 𝑥-corrupted by ℬ, then it is also not 𝑥′-corrupted by

ℬ for any 𝑥′ > 𝑥.

The hypergraph packing lemma now implies that 𝒩 and ℬ can be packed if ℬ contains no
corrupted sets. In fact this lemma states that half of all possible ways to map the vertices of
𝒩 to ℬ can be turned into such a packing by performing a sequence of few switchings.

Lemma 9.21 (hypergraph packing lemma [86]). For all integers Δ ≥ 2 and ℓ ≥ 1 there
are positive constants 𝜂9.21, and 𝑛9.21 such that the following holds. Let ℬ be a Δ-uniform
hypergraph on 𝑛′ ≥ 𝑛9.21 vertices such that no vertex of ℬ is 𝜂9.21𝑛

′-corrupted by ℬ. Let 𝒩 be a
Δ-uniform hypergraph on 𝑛 ≤ 𝑛′ vertices such that no vertex of 𝒩 is contained in more than ℓ
edges of 𝒩 .

Then for at least half of all injective functions 𝑓 : 𝑉 (𝒩 ) → 𝑉 (ℬ) there are packings 𝑓 ′ of 𝒩
and ℬ with switching distance dsw(𝑓, 𝑓 ′) ≤ 𝜎𝑛.

When applying this lemma we further make use of following lemma which helps us to bound
corruption.

Lemma 9.22 (corruption lemma). Let 𝑛,Δ > 0 be integers and 𝜇 and 𝜂 be positive reals. Let
𝑉 be a set of size 𝑛 and ℬ ⊆

(︀
𝑉
Δ

)︀
be a family of Δ-sets of size at most 𝜇𝑛Δ. Then at most

(Δ!/𝜂Δ−1)𝜇𝑛 vertices are 𝜂𝑛-corrupted by ℬ.

Proof. For 𝑖 ∈ [Δ] let ℬ𝑖 be the family of all those 𝑖-sets 𝐵′ ∈
(︀
𝑉
𝑖

)︀
that are 𝜂𝑛-corrupted by ℬ.

We will prove by induction on 𝑖 (starting at 𝑖 = Δ) that

|ℬ𝑖| ≤
Δ!/𝑖!
𝜂Δ−𝑖

𝜇𝑛𝑖. (9.31)

For 𝑖 = 1 this establishes the lemma. For 𝑖 = Δ the assertion is true by assumption. Now
assume that (9.31) is true for 𝑖 > 1. By definition every 𝐵′ ∈ ℬ𝑖−1 is contained in more than
𝜂𝑛 sets 𝐵 ∈ ℬ𝑖. On the other hand, clearly every 𝐵 ∈ ℬ𝑖 contains at most 𝑖 sets from ℬ𝑖−1.
Double counting thus gives

𝜂𝑛 |ℬ𝑖−1| ≤
⃒⃒{︀

(𝐵′, 𝐵) : 𝐵′ ∈ ℬ𝑖−1, 𝐵 ∈ ℬ𝑖, 𝐵
′ ⊆ 𝐵

}︀⃒⃒
≤ 𝑖 |ℬ𝑖|

(9.31)

≤ 𝑖
Δ!/𝑖!
𝜂Δ−𝑖

𝜇𝑛𝑖,

which implies (9.31) for 𝑖 replaced by 𝑖− 1.

A matching lemma

We indicated earlier that we are interested into determining whether a candidate graph has
a matching covering one of its partition classes. In order to do so we will make use of the
following matching lemma which is an easy consequence of Hall’s theorem. This lemma takes
two graphs 𝐵 and 𝐵′ as input that have small neighbourhood distance. In our application these
two graphs will be candidate graphs that correspond to two injective mappings 𝑓 and 𝑓 ′ with
small switching distance (such as promised by the hypergraph packing lemma, Lemma 9.21).
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Recall that Lemma 9.19 guarantees that mappings with small switching distance correspond
to candidate graphs with small neighbourhood distance.

The matching lemma asserts that 𝐵′ has the desired matching if certain vertex degree and
neighbourhood conditions are satisfied. These conditions are somewhat technical. They are
tailored exactly to match the conditions that we establish for candidate graphs in the proof of
the constrained blow-up lemma (see Claims 9.26–9.28).

Lemma 9.23 (matching lemma). Let 𝐵 = (𝑈̃ ∪̇𝑈,𝐸) and 𝐵′ = (𝑈̃ ∪̇𝑈,𝐸′) be bipartite graphs
with |𝑈 | ≥ |𝑈̃ | and d𝑁(𝑈̃)(𝐵,𝐵

′) ≤ 𝑠. If there are positive integers 𝑥 and 𝑛1, 𝑛2, 𝑛3 such that

(i) deg𝐵′(𝑢̃) ≥ 𝑛1 for all 𝑢̃ ∈ 𝑈̃ ,
(ii) |𝑁𝐵′(𝑆)| ≥ 𝑥|𝑆| for all 𝑆 ⊆ 𝑈̃ with |𝑆| ≤ 𝑛2

(iii) 𝑒𝐵′(𝑆, 𝑆) ≤ 𝑛1
𝑛3
|𝑆||𝑆| for all 𝑆 ⊆ 𝑈̃ , 𝑆 ⊆ 𝑈 with 𝑥𝑛2 ≤ |𝑆| < |𝑆| < 𝑛3,

(iv) |𝑁𝐵(𝑆) ∩ 𝑆| > 𝑠 for all 𝑆 ⊆ 𝑈̃ , 𝑆 ⊆ 𝑈 with |𝑆| ≥ 𝑛3 and |𝑆| > |𝑈 | − |𝑆|,
then 𝐵′ has a matching covering 𝑈̃ .

Proof. We will check Hall’s condition in 𝐵′ for all sets 𝑆 ⊆ 𝑈̃ . We clearly have |𝑁𝐵′(𝑆)| ≥ |𝑆|
for |𝑆| ≤ 𝑥𝑛2 by (ii) (if |𝑆| > 𝑛2, then consider a subset of 𝑆 of size 𝑛2).

Next, consider the case 𝑥𝑛2 < |𝑆| < 𝑛3. Set 𝑆 := 𝑁𝐵′(𝑆) and assume, for a contradiction,
that |𝑆| < |𝑆|. Since |𝑆| < |𝑆| < 𝑛3 we have |𝑆|/𝑛3 < 1. Therefore, applying (i), we can
conclude that

𝑒𝐵′(𝑆, 𝑆) =
∑︁
𝑢̃∈𝑆

|𝑁𝐵′(𝑢̃)| ≥ 𝑛1|𝑆| >
𝑛1

𝑛3
|𝑆||𝑆|,

which is a contradiction to (ii). Thus |𝑁𝐵′(𝑆)| ≥ |𝑆|.
Finally, for sets 𝑆 of size at least 𝑛3 set 𝑆 := 𝑈 ∖𝑁𝐵′(𝑆) and assume, again for a contradiction,

that |𝑁𝐵′(𝑆)| < |𝑆|. This implies |𝑆| > |𝑈 | − |𝑆|. Accordingly we can apply (iv) to 𝑆 and
𝑆 and infer that |𝑁𝐵(𝑆) ∩ 𝑆| > 𝑠. Since d𝑁(𝑈̃)(𝐵,𝐵

′) ≤ 𝑠, at most 𝑠 vertices from 𝑈̃ have
different neighbourhoods in 𝐵 and 𝐵′ and so⃒⃒⃒

𝑁𝐵′(𝑆) ∩ 𝑆
⃒⃒⃒

=
⃒⃒⃒⃒ {︁
𝑢̃ ∈ 𝑆 : 𝑁𝐵′(𝑢̃) ∩ 𝑆 ̸= ∅

}︁ ⃒⃒⃒⃒
≥
⃒⃒⃒⃒ {︁
𝑢̃ ∈ 𝑆 : 𝑁𝐵(𝑢̃) ∩ 𝑆 ̸= ∅

}︁ ⃒⃒⃒⃒
− 𝑠 =

⃒⃒⃒
𝑁𝐵(𝑆) ∩ 𝑆

⃒⃒⃒
− 𝑠 > 0,

which is a contradiction as 𝑆 = 𝑈 ∖𝑁𝐵′(𝑆).

Proof of Lemma 9.4

Now we are almost ready to present the proof of the constrained blow-up lemma (Lemma 9.4).
We just need one further technical lemma as preparation. This lemma considers a family of
pairwise disjoint Δ-sets 𝒮 in a set 𝑆 and states that a random injective function from 𝑆 to a
set 𝑇 usually has the following property. The images 𝑓(𝒮) of sets in 𝒮 “almost” avoid a small
family of “bad” sets 𝒯 in 𝑇 .

Lemma 9.24. For all positive integers Δ and positive reals 𝛽 and 𝜇S there is 𝜇T > 0 such
that the following holds. Let 𝑆 and 𝑇 be disjoint sets, 𝒮 ⊆

(︀
𝑆
Δ

)︀
be a family of pairwise

disjoint Δ-sets in 𝑆 with |𝒮| ≤ 1
Δ(1− 𝜇S)|𝑇 |, and 𝒯 ⊆

(︀
𝑇
Δ

)︀
be a family of Δ-sets in 𝑇 with

|𝒯 | ≤ 𝜇T|𝑇 |Δ.
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Then a random injective function 𝑓 : 𝑆 → 𝑇 satisfies |𝑓(𝒮) ∖ 𝒯 | > (1−𝛽)|𝒮| with probability
at least 1− 𝛽|𝒮|.

Proof. Given Δ, 𝛽, and 𝜇S choose

𝜇T := 𝛽
√︀
𝛽

(︃
𝑒

𝛽

(︂
Δ
𝜇S

)︂Δ
)︃−1

. (9.32)

Let 𝑆, 𝑇 , 𝒮, and 𝒯 be as required and let 𝑓 be a random injective function from 𝑆 to 𝑇 . We
consider 𝑓 as a consecutive random selection (without replacement) of images for the elements
of 𝑆 where the images of the elements of the (disjoint) sets in 𝒮 are chosen first. Let 𝑆𝑖 be
the 𝑖-th such set in 𝒮. Then the probability that 𝑓 maps 𝑆𝑖 to a set in 𝒯 , which we denote by
𝑝𝑖, is at most

𝑝𝑖 ≤
|𝒯 |(︀|𝑇 |−(𝑖−1)Δ
Δ

)︀ ≤ 𝜇T|𝑇 |Δ(︀𝜇S|𝑇 |
Δ

)︀ ≤ 𝜇T

|𝑇 |Δ(︁
𝜇S|𝑇 |

Δ

)︁Δ
= 𝜇T

(︂
Δ
𝜇S

)︂Δ

=: 𝑝 ,

where the second inequality follows from (𝑖− 1)Δ ≤ |⋃︀𝒮| ≤ (1− 𝜇S)|𝑇 |. Let 𝑍 be a random
variable with distribution Bi(|𝒮|, 𝑝). It follows that P[|𝑓(𝒮) ∩ 𝒯 | ≥ 𝑧] ≤ P[𝑍 ≥ 𝑧]. Since

P[𝑍 ≥ 𝑧] ≤
(︂|𝒮|
𝑧

)︂
𝑝𝑧 <

(︂
𝑒|𝒮|𝑝
𝑧

)︂𝑧

,

we infer that

P
[︁
|𝑓(𝒮) ∩ 𝒯 | ≥ 𝛽|𝒮|

]︁
<

(︂
𝑒𝑝

𝛽

)︂𝛽|𝒮|
=

(︃
𝑒𝜇T

𝛽

(︂
Δ
𝜇S

)︂Δ
)︃𝛽|𝒮|

(9.32)
= 𝛽|𝒮|,

which proves the lemma since |𝑓(𝒮) ∩ 𝒯 | ≥ 𝛽|𝒮| holds iff |𝑓(𝒮) ∖ 𝒯 | ≤ (1− 𝛽)|𝒮|.

Now we can finally give the proof of Lemma 9.4.

Proof of Lemma 9.4. We first define a sequence of constants. Given Δ, 𝑑, and 𝜂 fix Δ′ := Δ2+1.
Choose 𝛽 and 𝜎 such that

𝛽
1
7
( 𝑑
2
)Δ ≤ 1

5
and

(1− 𝛽)𝑑Δ

100Δ
≥ 2𝜎 (9.33)

Apply the hypergraph packing lemma, Lemma 9.21, with input Δ, ℓ = 2Δ + 1, and 𝜎 to
obtain constants 𝜂9.21, and 𝑛9.21. Next, choose 𝜂′9.21, 𝜇bl, and 𝜇S such that

𝜂′9.21
1− 𝜂

≤ 𝜂9.21 ,
Δ! · 2𝜇bl

(𝜂′9.21)Δ−1
≤ 𝜂 ,

1
Δ′ ≤

1
Δ

(1− 𝜇S) . (9.34)

Lemma 9.24 with input Δ, 𝛽, 𝜇S provides us with a constant 𝜇T. We apply Lemma 9.10
two times, once with input Δ = ℓ, 𝑑, 𝜀′ := 1

2𝑑, and 𝜇 = 𝜇bl/Δ′ and once with input Δ = ℓ,
𝑑, 𝜀′ := 1

2𝑑, and 𝜇 = 𝜇T and get constants 𝜀9.10 and 𝜀9.10, respectively. Now we can fix the
promised constant 𝜀 such that

𝜀 ≤ min
{︂
𝜀9.10

Δ′ ,
𝑑

2Δ

}︂
, and

𝜀Δ′

𝜂(1− 𝜂)
< min{𝑑, 𝜀9.10}. (9.35)
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As last input let 𝑟1 be given and set

𝜉9.10 := 𝜂(1− 𝜂)/(𝑟1Δ′). (9.36)

Next let 𝑐9.10 be the maximum of the two constants obtained from the two applications of
Lemma 9.10, that we started above, with the additional parameter 𝜉9.10. Further, let 𝜈 and
𝑐9.11 be the constants from Lemma 9.11 for input Δ, 𝑑, and 𝜀, and let 𝑐9.7 be the constant
from Lemma 9.7 for input Δ and 𝜈. Finally, we choose 𝑐 = max{𝑐9.10, 𝑐9.11, 𝑐9.7}. With this we
defined all necessary constants.

Now assume we are given any 1 ≤ 𝑟 ≤ 𝑟1, and a random graph Γ = 𝒢𝑛,𝑝 with 𝑝 ≥
𝑐(log 𝑛/𝑛)1/Δ, where, without loss of generality, 𝑛 is such that

(1− 𝜂′)𝑛
𝑟 ≥ 𝑛9.21. (9.37)

Then, with high probability, the graph Γ satisfies the assertion of the different lemmas
concerning random graphs, that we started to apply in the definition of the constants. More
precisely, by the choice of the constants above,

(P1) Γ satisfies the assertion of Lemma 9.7 for parameters Δ and 𝜈, i.e., for any set 𝑋 and
any family ℱ with the conditions required in this lemma, the conclusion of the lemma
holds.

(P2) Similarly Γ satisfies the assertion of Lemma 9.10 for parameters Δ = ℓ, 𝑑, 𝜀′ = 1
2𝑑,

𝜇 = 𝜇BL/Δ′, 𝜀9.10, and 𝜉9.10. The same holds for parameters Δ = ℓ, 𝑑, 𝜀′ = 1
2𝑑, 𝜇 = 𝜇T,

𝜀9.10, and 𝜉9.10.
(P3) Γ satisfies the assertion of Lemma 9.11 for parameters Δ, 𝑑, 𝜀, and 𝜈.

In the following we will assume that Γ has these properties and show that it then also satisfies
the conclusion of the constrained blow-up lemma, Lemma 9.4.

Let 𝐺 ⊆ Γ and 𝐻 be two bipartite graphs on vertex sets 𝑈 ∪̇𝑉 and 𝑈̃ ∪̇𝑉 , respectively, that
fulfil the requirements of Lemma 9.4. Moreover, let ℋ ⊆

(︀
𝑉
Δ

)︀
be the family of special Δ-sets,

and ℬ ⊆
(︀
𝑉
Δ

)︀
be the family of forbidden Δ-sets. It is not difficult to see that, by possibly

adding some edges to 𝐻, we can assume that the following holds.

(Ũ) All vertices in 𝑈̃ have degree exactly Δ.
(Ṽ) All vertices in 𝑉 have degree maximal Δ + 1.

Our next step will be to split the partition class 𝑈 of 𝐺 and the corresponding partition
class 𝑈̃ of 𝐻 into Δ′ parts of equal size. From the partition of 𝐻 we require that no two
vertices in one part have a common neighbour. This will guarantee that the neighbourhoods
of two different vertices from one part form disjoint vertex sets (which we need because we
would like to apply Lemma 9.11 later, in the proof of Claim 9.26, and Lemma 9.11 asserts
certain properties for families of disjoint vertex sets).

Let us now explain precisely how we split 𝑈 and 𝑈̃ . We assume for simplicity that |𝑈̃ | and
|𝑈 | are divisible by Δ′ and partition the sets 𝑈 arbitrarily into Δ′ parts 𝑈 = 𝑈1∪̇ . . . 𝑈Δ′ of
equal size, i.e., sets of size at least 𝑛/(𝑟Δ′). Similarly let 𝑈̃ = 𝑈̃1∪̇ . . . ∪̇𝑈̃Δ′ be a partition of 𝑈̃
into sets of equal size such that each 𝑈̃𝑗 is 2-independent in 𝐻. Such a partition exists by the
Theorem of Hajnal and Szemerédi (Theorem 9.14) applied to 𝐻2[𝑈̃ ] because the maximum
degree of 𝐻2 is less than Δ′ = Δ2 + 1.

In Claim 9.25 below we will assert that there is an embedding 𝑓 ′ of 𝑉 into 𝑉 that can be
extended to each of the 𝑈̃𝑗 separately such that we obtain an embedding of 𝐻 into 𝐺. To
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this end we will consider the candidate graphs 𝐵𝑓 ′(𝐻𝑗 , 𝐺𝑗) defined by 𝑓 ′ (see Definition 9.16)
and show, that there is an 𝑓 ′ such that each 𝐵𝑓 ′(𝐻𝑗 , 𝐺𝑗) has a matching covering 𝑈̃𝑗 . This,
as discussed earlier, will ensure the existence of the desired embedding. For preparing this
argument, we first need to exclude some vertices of 𝑉 which are not suitable for such an
embedding. For identifying these vertices, we define the following family of Δ-sets which
contains ℬ and all sets in 𝑉 that have a small common neighbourhood in some 𝑈̃𝑗 .

Define ℬ′ := ℬ ∪⋃︀𝑗∈Δ′ ℬ𝑗 where

ℬ𝑗 :=
{︂
𝐵 ∈

(︂
𝑉

Δ

)︂
:
⃒⃒
𝑁∩

𝐺(𝐵) ∩ 𝑈𝑗

⃒⃒
< (1

2𝑑)Δ𝑝Δ|𝑈𝑗 |
}︂

(9.3)
= bad𝐺,Δ

𝑑/2,𝑑,𝑝(𝑉,𝑈𝑗). (9.38)

We claim that we obtain a set ℬ′ that is not much larger than ℬ. Indeed, by Proposition 3.16
the pair

(𝑉,𝑈𝑗) is (𝜀Δ′, 𝑑, 𝑝)-dense for all 𝑗 ∈ [Δ′], (9.39)

and 𝜀Δ′ ≤ 𝜀9.10 by (9.35). Moreover we have |𝑈𝑗 | ≥ 𝑛/(𝑟Δ′) ≥ 𝑛/(𝑟1Δ′) ≥ 𝜉9.10𝑛 by (9.36).
We can thus use the fact that our random graph Γ satisfies property (P2) (with 𝜇 = 𝜇bl/Δ′) on
the bipartite subgraph 𝐺[𝑉 ∪̇𝑈𝑗 ] and conclude that |ℬ𝑗 | ≤ 𝜇bl|𝑉 |Δ/Δ′. Since |ℬ| ≤ 𝜇bl|𝑉 |Δ
by assumption we infer

|ℬ′| ≤ 𝜇bl|𝑉 |Δ + Δ′ · 𝜇bl|𝑉 |Δ/Δ′ = 2𝜇bl|𝑉 |Δ.

Set
𝑉 ′ := 𝑉 ∖ 𝑉 ′′ with 𝑉 ′′ :=

{︁
𝑣 ∈ 𝑉 : 𝑣 is 𝜂′9.21|𝑉 |-corrupted by ℬ′

}︁
(9.40)

and delete all sets from ℬ′ that contain vertices from 𝑉 ′′. This determines the set 𝑉 ′′ of
vertices that we exclude from 𝑉 for the embedding. We will next show that we did not exclude
too many vertices in this process. For this we use the corruption lemma, Lemma 9.22. Indeed,
Lemma 9.22 applied with 𝑛 replaced by |𝑉 |, with Δ, 𝜇 = 2𝜇bl, and 𝜂′9.21 to 𝑉 and ℬ′ implies
that

|𝑉 ′′| ≤ Δ!
(𝜂′9.21)Δ−1

2𝜇bl|𝑉 |
(9.34)

≤ 𝜂|𝑉 | and thus 𝑛′ := |𝑉 ′| ≥ (1− 𝜂)|𝑉 |. (9.41)

Let
𝐻𝑗 := 𝐻

[︀
𝑈̃𝑗∪̇𝑉

]︀
and 𝐺𝑗 := 𝐺

[︀
𝑈𝑗∪̇𝑉 ′

]︀
.

Now we are ready to state the claim announced above, which asserts that there is an embedding
𝑓 ′ of the vertices in 𝑉 to the vertices in 𝑉 ′ such that the corresponding candidate graphs
𝐵𝑓 ′(𝐻𝑗 , 𝐺𝑗) have matchings covering 𝑈̃𝑗 . As we will shall show, this claim implies the assertion
of the constrained blow-up lemma. Its proof, which we will provide thereafter, requires the
matching lemma (Lemma 9.23), and the hypergraph packing lemma (Lemma 9.21).

Claim 9.25. There is an injection 𝑓 ′ : 𝑉 → 𝑉 ′ with 𝑓 ′(𝑇 ) ̸∈ ℬ for all 𝑇 ∈ ℋ such that for
all 𝑗 ∈ [Δ′] the candidate graph 𝐵𝑓 ′(𝐻𝑗 , 𝐺𝑗) has a matching covering 𝑈̃𝑗.

Let us show that proving this claim suffices to establish the constrained blow-up lemma.
Indeed, let 𝑓 ′ : 𝑉 → 𝑉 ′ be such an injection and denote by 𝑀𝑗 : 𝑈̃𝑗 → 𝑈𝑗 the corresponding
matching in 𝐵𝑓 ′(𝐻𝑗 , 𝐺𝑗) for 𝑗 ∈ [Δ]. We claim that the function 𝑔 : 𝑈̃ ∪̇𝑉 → 𝑈 ∪̇𝑉 , defined by

𝑔(𝑤̃) =

{︃
𝑀𝑗(𝑤̃) 𝑤̃ ∈ 𝑈̃𝑗 ,

𝑓 ′(𝑤̃) 𝑤̃ ∈ 𝑉 ,
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is an embedding of 𝐻 into 𝐺. To see this, notice first that 𝑔 is injective since 𝑓 ′ is an injection
and all 𝑀𝑗 are matchings. Furthermore, consider an edge 𝑢̃𝑣 of 𝐻 with 𝑢̃ ∈ 𝑈̃𝑗 for some
𝑗 ∈ [Δ′] and 𝑣 ∈ 𝑉 and let

𝑢 := 𝑔(𝑢̃) = 𝑀𝑗(𝑢̃) and 𝑣 := 𝑔(𝑣) = 𝑓 ′(𝑣).

It follows from the definition of 𝑀𝑗 that 𝑢̃𝑢 is an edge of the candidate graph 𝐵𝑓 ′(𝐻𝑗 , 𝐺𝑗).
Hence, by the definition of 𝐵𝑓 ′(𝐻𝑗 , 𝐺𝑗), 𝑢 is an 𝑓 ′-candidate for 𝑢̃, i.e.,

𝑓 ′
(︀
𝑁𝐻𝑗 (𝑢̃)

)︀
⊆ 𝑁𝐺𝑗 (𝑢).

Since 𝑣 = 𝑓 ′(𝑣) ∈ 𝑓 ′
(︀
𝑁𝐻𝑗 (𝑢̃)

)︀
this implies that 𝑢𝑣 is an edge of 𝐺. Because 𝑓 ′ also satisfies

𝑓 ′(𝑇 ) ̸∈ ℬ for all 𝑇 ∈ ℋ the embedding 𝑔 also meets the remaining requirement of the
constrained blow-up lemma that no special Δ-set is mapped to a forbidden Δ-set.

For completing the proof of Lemma 9.4, we still need to prove Claim 9.25 which we shall be
occupied with for the remainder of this section. We will assume throughout that we have the
same setup as in the preceding proof. In particular all constants, sets, and graphs are defined
as there.

For proving Claim 9.25 we will use the matching lemma (Lemma 9.23) on candidate graphs
𝐵 = 𝐵𝑓 (𝐻𝑗 , 𝐺𝑗) and 𝐵′ = 𝐵𝑓 ′(𝐻𝑗 , 𝐺𝑗) for injections 𝑓, 𝑓 ′ : 𝑉 → 𝑉 ′. As we will see, the
following three claims imply that there are suitable 𝑓 and 𝑓 ′ such that the conditions of this
lemma are satisfied. More precisely, Claim 9.26 will take care of conditions (i) and (ii) in this
lemma, Claim 9.27 of condition (iii), and Claim 9.28 of condition (iv). Before proving these
claims we will show that they imply Claim 9.25.

The first claim states that many injective mappings 𝑓 : 𝑉 → 𝑉 ′ can be turned into injective
mappings 𝑓 ′ (with the help of a few switchings) such that the candidate graphs 𝐵𝑓 ′(𝐻𝑗 , 𝐺𝑗)
for 𝑓 ′ satisfy certain degree and expansion properties.

Claim 9.26. For at least half of all injections 𝑓 : 𝑉 → 𝑉 ′ there is an injection 𝑓 ′ : 𝑉 → 𝑉 ′

with dsw(𝑓, 𝑓 ′) ≤ 𝜎𝑛/𝑟 such that the following is satisfied for all 𝑗 ∈ [Δ′]. For all 𝑢̃ ∈ 𝑈̃𝑗 and
all 𝑆 ⊆ 𝑈̃𝑗 with |𝑆| ≤ 𝑝−Δ we have

deg𝐵𝑓 ′ (𝐻𝑗 ,𝐺𝑗)(𝑢̃) ≥ (𝑑
2)Δ𝑝Δ|𝑈𝑗 | and |𝑁𝐵𝑓 ′ (𝐻𝑗 ,𝐺𝑗)(𝑆)| ≥ 𝜈𝑛𝑝Δ|𝑆|. (9.42)

Further, no special Δ-set from ℋ is mapped to a forbidden Δ-set from ℬ by 𝑓 ′.

The second claim asserts that all injective mappings 𝑓 ′ are such that the candidate graphs
𝐵𝑓 ′(𝐻𝑗 , 𝐺𝑗) do not contain sets of certain sizes with too many edges between them.

Claim 9.27. All injections 𝑓 ′ : 𝑉 → 𝑉 ′ satisfy the following for all 𝑗 ∈ [Δ′] and all 𝑆 ⊆ 𝑈𝑗,
𝑆 ⊆ 𝑈̃𝑗. If 𝜈𝑛 ≤ |𝑆| < |𝑆| < 1

7(𝑑
2)Δ|𝑈𝑗 |, then

𝑒𝐵𝑓 ′ (𝐻𝑗 ,𝐺𝑗)(𝑆, 𝑆) ≤ 7𝑝Δ|𝑆||𝑆|.

The last of the three claims states that for random injective mappings 𝑓 the graphs
𝐵𝑓 ′(𝐻𝑗 , 𝐺𝑗) have edges between any pair of large enough sets 𝑆 ⊆ 𝑈𝑗 and 𝑆 ⊆ 𝑈̃𝑗 .

Claim 9.28. A random injection 𝑓 : 𝑉 → 𝑉 ′ a.a.s. satisfies the following. For all 𝑗 ∈ [Δ′]
and all 𝑆 ⊆ 𝑈𝑗, 𝑆 ⊆ 𝑈̃𝑗 with |𝑆| ≥ 1

7(𝑑
2)Δ|𝑈𝑗 | and |𝑆| > |𝑈𝑗 | − |𝑆| we have⃒⃒⃒

𝑁𝐵𝑓 (𝐻𝑗 ,𝐺𝑗)(𝑆) ∩ 𝑆
⃒⃒⃒
> 2𝜎𝑛/𝑟.
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Proof of Claim 9.25. Our aim is to apply the matching lemma (Lemma 9.23) to the candidate
graphs 𝐵𝑓 (𝐻𝑗 , 𝐺𝑗) and 𝐵𝑓 ′(𝐻𝑗 , 𝐺𝑗) for all 𝑗 ∈ [Δ′] with carefully chosen injections 𝑓 and 𝑓 ′.

Let 𝑓 : 𝑉 → 𝑉 ′ be an injection satisfying the assertions of Claim 9.26 and Claim 9.28 and
let 𝑓 ′ be the injection promised by Claim 9.26 for this 𝑓 . Such an 𝑓 exists as at least half of all
injections from 𝑉 to 𝑉 ′ satisfy the assertion of Claim 9.26 and almost all of those satisfy the
assertion of Claim 9.28. We will now show that for all 𝑗 ∈ [Δ′] the conditions of Lemma 9.23
are satisfied for input

𝐵 = 𝐵𝑓 (𝐻𝑗 , 𝐺𝑗), 𝐵′ = 𝐵𝑓 ′(𝐻𝑗 , 𝐺𝑗), 𝑠 = 2𝜎𝑛/𝑟 ,

𝑥 = 𝜈𝑛𝑝Δ, 𝑛1 = (𝑑
2)Δ𝑝Δ|𝑈𝑗 |, 𝑛2 = 𝑝−Δ, 𝑛3 = 1

7(𝑑
2)Δ|𝑈𝑗 |,

Claim 9.26 asserts that dsw(𝑓, 𝑓 ′) ≤ 𝜎𝑛/𝑟. Since 𝑈̃𝑗 is 2-independent in 𝐻 we have deg𝐻𝑗
(𝑣) ≤ 1

for all 𝑣 ∈ 𝑉 . Thus the switching lemma, Lemma 9.19, applied to 𝐻𝑗 and 𝐺𝑗 and with 𝑠
replaced by 𝜎𝑛/𝑟 implies

d𝑁(𝑈̃𝑗)
(𝐵,𝐵′) = d𝑁(𝑈̃𝑗)

(︁
𝐵𝑓 (𝐻𝑗 , 𝐺𝑗), 𝐵𝑓 ′(𝐻𝑗 , 𝐺𝑗)

)︁
≤ 2𝜎𝑛/𝑟 = 𝑠

Moreover, by Claim 9.26, for all 𝑢̃ ∈ 𝑈̃𝑗 we have

deg𝐵′(𝑢̃) = deg𝐵𝑓 ′ (𝐻𝑗 ,𝐺𝑗)(𝑢̃) ≥ (𝑑
2)Δ𝑝Δ|𝑈𝑗 | = 𝑛1

and thus condition (i) of Lemma 9.23 holds true. Further, we conclude from Claim 9.26 that
|𝑁𝐵′(𝑆)| ≥ 𝑥|𝑆| for all 𝑆 ⊆ 𝑈̃𝑗 with |𝑆| < 𝑝−Δ = 𝑛2. This gives condition (ii) of Lemma 9.23.
In addition, Claim 9.27 states that for all 𝑆 ⊆ 𝑈𝑗 , 𝑆 ⊆ 𝑈̃𝑗 with 𝑥𝑛2 = 𝜈𝑛 ≤ |𝑆| < |𝑆| <
1
7(𝑑

2)Δ|𝑈𝑗 | = 𝑛3 we have

𝑒𝐵′(𝑆, 𝑆) = 𝑒𝐵𝑓 ′ (𝐻𝑗 ,𝐺𝑗)(𝑆, 𝑆) ≤ 7𝑝Δ|𝑆||𝑆| =
𝑛1

𝑛3
|𝑆||𝑆|

and accordingly also condition (iii) of Lemma 9.23 is satisfied. To see (iv), observe that the
choice of 𝑓 and Claim 9.28 assert⃒⃒⃒

𝑁𝐵(𝑆) ∩ 𝑆
⃒⃒⃒

=
⃒⃒⃒
𝑁𝐵𝑓 (𝐻𝑗 ,𝐺𝑗)(𝑆) ∩ 𝑆

⃒⃒⃒
> 2𝜎𝑛/𝑟 = 𝑠

for all 𝑆 ⊆ 𝑈𝑗 , 𝑆 ⊆ 𝑈̃𝑗 with |𝑆| ≥ 1
7(𝑑

2 )Δ|𝑈𝑗 | = 𝑛3 and |𝑆| > |𝑈 |−|𝑆|. Therefore, all conditions
of Lemma 9.23 are satisfied and we infer that for all 𝑗 ∈ [Δ′] the candidate graph 𝐵𝑓 ′(𝐻𝑗 , 𝐺𝑗)
with 𝑓 ′ as chosen above has a matching covering 𝑈̃ . Moreover, by Claim 9.26, 𝑓 ′ maps no
special Δ-set to a forbidden Δ-set. This establishes Claim 9.25.

It remains to show Claims 9.26–9.28. We start with Claim 9.26. For the proof of this claim
we apply the hypergraph packing lemma (Lemma 9.21).

Proof of Claim 9.26. Notice that (Ũ) on page 157 implies that 𝑁𝐻(𝑢̃) contains exactly Δ
elements for each 𝑢̃ ∈ 𝑈̃ . Hence we may define the following family of Δ-sets. Let

𝒩 :=
{︁
𝑁𝐻(𝑢̃) : 𝑢̃ ∈ 𝑈̃

}︁
∪ℋ ⊆

(︂
𝑉

Δ

)︂
.

We want to apply the hypergraph packing lemma (Lemma 9.21) with Δ, with ℓ replaced by
2Δ + 1, and with 𝜎 to the hypergraphs with vertex sets 𝑉 and 𝑉 ′ and edge sets 𝒩 and ℬ′,
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respectively (see (9.38) on page 158). We will first check that the necessary conditions are
satisfied.

Observe that

|𝑉 ′|
(9.41)

≥ (1− 𝜂′)|𝑉 | ≥ (1− 𝜂′)𝑛/𝑟
(9.37)

≥ 𝑛9.21, and |𝑉 | ≤ |𝑉 ′| .

Furthermore, a vertex 𝑣 ∈ 𝑉 is neither contained in more than Δ sets from ℋ nor is 𝑣 in
𝑁𝐻(𝑢̃) for more than Δ + 1 vertices 𝑢̃ ∈ 𝑈̃ (by (Ṽ) on page 157). Therefore the condition
Lemma 9.21 imposes on 𝒩 is satisfied with ℓ replaced by 2Δ+1. Moreover, according to (9.40)
no vertex in 𝑉 ′ is 𝜂′9.21|𝑉 |-corrupted by ℬ′. Since

𝜂′9.21|𝑉 |
(9.41)

≤ 𝜂′9.21(1− 𝜂)−1𝑛′
(9.34)

≤ 𝜂9.21𝑛
′,

this (together with the observation in Definition 9.20) implies that no vertex in 𝑉 ′ is 𝜂9.21𝑛
′-

corrupted by ℬ′ and therefore all prerequisites of Lemma 9.21 are satisfied.
It follows that the conclusion of Lemma 9.21 holds for at least half of all injective functions

𝑓 : 𝑉 → 𝑉 ′, namely that there are packings 𝑓 ′ of (the hypergraphs with edges) 𝒩 and ℬ with
switching distance dsw(𝑓, 𝑓 ′) ≤ 𝜎|𝑉 | ≤ 𝜎𝑛/𝑟. Clearly, such a packing 𝑓 ′ does not send any
special Δ-set from ℋ to any forbidden Δ-set from ℬ. Our next goal is to show that 𝑓 ′ satisfies
the first part of (9.42) for all 𝑗 ∈ [Δ′] and 𝑢̃ ∈ 𝑈̃𝑗 . For this purpose, fix 𝑗 and 𝑢̃. The definition
of the candidate graph 𝐵𝑓 ′(𝐻𝑗 , 𝐺𝑗), Definition 9.16, implies

deg𝐵𝑓 ′ (𝐻𝑗 ,𝐺𝑗)(𝑢̃) =
⃒⃒⃒{︁
𝑢 ∈ 𝑈𝑗 : 𝑓 ′

(︀
𝑁𝐻𝑗 (𝑢̃)

)︀
⊆ 𝑁𝐺𝑗 (𝑢)

}︁⃒⃒⃒
=
⃒⃒⃒⃒{︂
𝑢 ∈ 𝑈𝑗 : 𝑢 ∈ 𝑁∩

𝐺𝑗

(︁
𝑓 ′
(︀
𝑁𝐻𝑗 (𝑢̃)

)︀)︁}︂⃒⃒⃒⃒
=
⃒⃒⃒
𝑁∩

𝐺𝑗

(︁
𝑓 ′
(︀
𝑁𝐻𝑗 (𝑢̃)

)︀)︁⃒⃒⃒
≥ (1

2𝑑)Δ𝑝Δ|𝑈𝑗 | .

where the first inequality follows from the fact that 𝑁𝐻𝑗 (𝑢̃) ∈ 𝒩 and thus, as 𝑓 ′ is a packing
of 𝒩 and ℬ′, we have 𝑓 ′(𝑁𝐻𝑗 (𝑢̃)) ̸∈ bad𝐺,Δ

𝑑/2,𝑑,𝑝(𝑉,𝑈𝑗) ⊆ ℬ′ (see the definition of ℬ′ in (9.38)).

This in turn means that all Δ-sets 𝑓 ′(𝑁𝐻𝑗 (𝑢̃)) with 𝑢̃ ∈ 𝑈̃𝑗 are 𝑝-good (see Definition 9.9) in
(𝑉,𝑈𝑗), because (𝑉,𝑈𝑗) has 𝑝-density at least 𝑑 − 𝜀Δ′ ≥ 𝑑

2 by (9.39) and (9.35). With this
information at hand we can proceed to prove the second part of (9.42). Let 𝑆 ⊆ 𝑈̃𝑗 with
𝑆 < 1/𝑝Δ and consider the family ℱ ⊆

(︀
𝑉
Δ

)︀
with

ℱ := {𝑓 ′(𝑁𝐻(𝑢̃)) : 𝑢̃ ∈ 𝑆}.

Because 𝑈𝑗 is 2-independent in 𝐻 the sets 𝑁𝐻(𝑢̃) with 𝑢̃ ∈ 𝑆 form a family of disjoint Δ-sets
in 𝑉 . It follows that also the sets 𝑓 ′(𝑁𝐻(𝑢̃)) with 𝑢̃ ∈ 𝑆 form a family of disjoint Δ-sets
in 𝑉 . By (P3) on page 157 the conclusion of Lemma 9.11 holds for Γ. We conclude that
the pair (𝑉,𝑈𝑗) is (1/𝑝Δ, 𝜈𝑛𝑝Δ)-expanding. Since |ℱ| = |𝑆| < 1/𝑝Δ by assumption and all
members of ℱ are 𝑝-good in (𝑉,𝑈𝑗) this implies that |𝑁∩

𝑈𝑗
(ℱ)| ≥ 𝜈𝑛𝑝Δ|ℱ|. On the other hand

𝑁∩
𝑈𝑗

(ℱ) = 𝑁𝐵𝑓 ′ (𝐻𝑗 ,𝐺𝑗)(𝑆) by the definition of 𝐵𝑓 ′(𝐻𝑗 , 𝐺𝑗) and ℱ and thus we get the second
part of (9.42).

Recall that property (P1) states that Γ satisfies the conclusion of Lemma 9.7 for certain
parameters. We will use this fact to prove Claim 9.27.
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Proof of Claim 9.27. Fix 𝑓 ′ : 𝑉 → 𝑉 ′, 𝑗 ∈ [Δ′], 𝑆 ⊆ 𝑈𝑗 , and 𝑆 ⊆ 𝑈̃𝑗 with 𝜈𝑛 ≤ |𝑆| < |𝑆| <
1
7(𝑑

2)Δ|𝑈𝑗 |. For the candidate graphs 𝐵𝑓 ′(𝐻𝑗 , 𝐺𝑗) of 𝑓 ′ we have

𝑒𝐵𝑓 ′ (𝐻𝑗 ,𝐺𝑗)(𝑆, 𝑆) =
⃒⃒⃒⃒{︂
𝑢̃𝑢 ∈ 𝑆 × 𝑆 : 𝑓 ′

(︀
𝑁𝐻(𝑢̃)

)︀
⊆ 𝑁𝐺(𝑢)

}︂⃒⃒⃒⃒
(9.1)
= # stars𝐺

(︂
𝑆,
{︁
𝑓 ′
(︀
𝑁𝐻(𝑢̃)

)︀
: 𝑢̃ ∈ 𝑆

}︁)︂
≤ # starsΓ

(︂
𝑆,
{︁
𝑓 ′
(︀
𝑁𝐻(𝑢̃)

)︀
: 𝑢̃ ∈ 𝑆

}︁)︂
= # starsΓ(𝑆,ℱ ′),

where ℱ ′ := {𝑓 ′
(︀
𝑁𝐻(𝑢̃)

)︀
: 𝑢̃ ∈ 𝑆}. As before the sets 𝑓 ′(𝑁𝐻(𝑢̃)) with 𝑢̃ ∈ 𝑆 form a family of

|𝑆| disjoint Δ-sets in 𝑉 ′. Since 𝜈𝑛 ≤ |𝑆| < |𝑆| = |ℱ ′| ≤ 𝑛 we can appeal to property (P1)
(and hence Lemma 9.7) with the set 𝑋 := 𝑆 and the family ℱ ′ and infer that

𝑒𝐵𝑓 ′ (𝐻𝑗 ,𝐺𝑗)(𝑆, 𝑆) ≤ # starsΓ(𝑆,ℱ ′) ≤ 7𝑝Δ|ℱ ′||𝑆| = 7𝑝Δ|𝑆||𝑆|

as required.

Finally, we prove Claim 9.28. For this proof we will use the fact that Δ-sets in 𝑝-dense graphs
have big common neighbourhoods (the conclusion of Lemma 9.10 holds by property (P2))
together with Lemma 9.24.

Proof of Claim 9.28. Let 𝑓 be an injective function from 𝑉 to 𝑉 ′. First, consider a fixed
𝑗 ∈ [Δ′] and fixed sets 𝑆 ⊆ 𝑈𝑗 , 𝑆 ⊆ 𝑈̃𝑗 with |𝑆| ≥ 1

7(𝑑
2)Δ|𝑈𝑗 | and |𝑆| > |𝑈𝑗 | − |𝑆|. Define

𝒮 := {𝑁𝐻𝑗 (𝑢̃) : 𝑢̃ ∈ 𝑆} and 𝒯 := bad𝐺,Δ
𝑑/2,𝑑,𝑝(𝑉 ′, 𝑆).

and observe that⃒⃒⃒
𝑁𝐵𝑓 (𝐻𝑗 ,𝐺𝑗)(𝑆) ∩ 𝑆

⃒⃒⃒
=
⃒⃒⃒{︁
𝑢̃ ∈ 𝑆 : ∃𝑢 ∈ 𝑆 with 𝑓

(︀
𝑁𝐻𝑗 (𝑢̃)

)︀
⊆ 𝑁𝐺𝑗 (𝑢)

}︁⃒⃒⃒
=
⃒⃒⃒⃒{︂
𝑢̃ ∈ 𝑆 : 𝑁∩

𝐺𝑗

(︁
𝑓
(︀
𝑁𝐻𝑗 (𝑢̃)

)︀)︁
∩ 𝑆 ̸= ∅

}︂⃒⃒⃒⃒
≥
⃒⃒⃒{︁
𝑢̃ ∈ 𝑆 : 𝑓

(︀
𝑁𝐻𝑗 (𝑢̃)

)︀
̸∈ bad𝐺,Δ

𝑑/2,𝑑,𝑝(𝑉 ′, 𝑆)
}︁⃒⃒⃒

= |𝑓(𝒮) ∖ 𝒯 |

since all Δ-sets 𝐵 ̸∈ bad𝐺,Δ
𝑑/2,𝑑,𝑝(𝑉 ′, 𝑆) satisfy |𝑁∩

𝐺𝑗
(𝐵)∩𝑆| ≥ (𝑑

2 )Δ𝑝Δ|𝑆| > 0. Thus, for proving

the claim, it suffices to show that a random injection 𝑓 : 𝑉 → 𝑉 ′ violates |𝑓(𝒮) ∖ 𝒯 | > 2𝜎𝑛/𝑟
with probability at most 5−|𝑈𝑗 | because this implies that 𝑓 violates the conclusion of Claim 9.28
for some 𝑗 ∈ [Δ′], and some 𝑆 ⊆ 𝑈𝑗 , 𝑆 ⊆ 𝑈̃𝑗 with probability at most𝒪(2|𝑈𝑗 |2|𝑈̃𝑗 |·5−|𝑈𝑗 |) = 𝑜(1).
For this purpose, we will use the fact that the pair (𝑉 ′, 𝑆) is 𝑝-dense. Indeed, observe that

|𝑆| > |𝑈𝑗 | − |𝑆| > |𝑈𝑗 | − |𝑈̃𝑗 | =
|𝑈 | − |𝑈̃ |

Δ′ ≥ 𝜂|𝑈 |
Δ′

by the assumptions of the constrained blow-up lemma, Lemma 9.4. As |𝑉 ′| ≥ (1 − 𝜂)|𝑉 |
by (9.41) we can apply Proposition 3.16 twice to infer from the (𝜀, 𝑑, 𝑝)-density of (𝑉,𝑈) that
(𝑉 ′, 𝑆) is (𝜀, 𝑑, 𝑝)-dense with 𝜀 := 𝜀Δ′/(𝜂(1− 𝜂)). Furthermore 𝜀 ≤ 𝜀9.10 by (9.35) and

|𝑉 ′|
(9.41)

≥ (1− 𝜂)
𝑛

𝑟

(9.36)

≥ 𝜉9.10𝑛, and |𝑆| > 𝜂|𝑈 |
Δ′ ≥ 𝜂𝑛

𝑟Δ′

(9.36)

≥ 𝜉9.10𝑛.
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Hence we conclude from (P2) on page 157 (with 𝜇 = 𝜇T) that |𝒯 | = |bad𝐺,Δ
𝑑/2,𝑑,𝑝(𝑉 ′, 𝑆)| ≤

𝜇T|𝑉 ′|Δ. In addition

1
7

(︀
𝑑
2

)︀Δ |𝑈𝑗 | ≤ |𝑆| = |𝒮| ≤ |𝑈̃𝑗 | ≤ (1− 𝜂)
𝑛

Δ′

(9.41)

≤ |𝑉 ′|
Δ′

(9.34)

≤ 1
Δ

(1− 𝜇S)|𝑉 ′|. (9.43)

Thus, we can apply Lemma 9.24 with Δ, 𝛽, and 𝜇S to 𝑆 = 𝑉 , 𝑇 = 𝑉 ′, and to 𝒮 and 𝒯 and
conclude that 𝑓 violates

|𝑓(𝒮) ∖ 𝒯 | > (1− 𝛽)|𝒮|
(9.43)

≥ (1− 𝛽)1
7

(︀
𝑑
2

)︀Δ |𝑈𝑗 | ≥
(1− 𝛽)𝑑Δ𝑛

7 · 2Δ𝑟Δ′ ≥ (1− 𝛽)𝑑Δ𝑛

100Δ𝑟

(9.33)

≥ 2𝜎
𝑛

𝑟

with probability at most
𝛽|𝒮| ≤ 𝛽

1
7
( 𝑑
2
)Δ|𝑈𝑗 | ≤ 5−|𝑈𝑗 |

where the first inequality follows from (9.43) and the second from (9.33).

9.8 The connection lemma

The proof of Lemma 9.5 which we present in this section is inherent in the proof of [61,
Lemma 18]. The only difference is that we have a somewhat more special set-up here (given
by the pre-defined partitions and candidate sets). This set-up however is chosen exactly in
such a way that this proof continues to work if we adapt the involved parameters accordingly.

Proof of Lemma 9.5. For the proof of Lemma 9.5 we use an inductive argument and embed a
partition class of 𝐻 into the corresponding partition class of 𝐺 one at a time. Before describing
this strategy we will define two graph properties D𝑝(𝑑0, 𝜀

′, 𝜇, 𝜀, 𝜉) and STAR𝑝(𝑘, 𝜉, 𝜈), which a
random graph Γ = 𝒢𝑛,𝑝 enjoys a.a.s. for suitable sets of parameters. Then we will set up these
parameters accordingly and define all other constants involved in the proof.

For a fixed 𝑛-vertex graph Γ, fixed positive reals 𝑑0, 𝜀′, 𝜇, 𝜀, 𝜉, and 𝜈, a fixed integer 𝑘, and
a function 𝑝 = 𝑝(𝑛) we define the following properties of Γ.

D𝑝(𝑑0, 𝜀
′, 𝜇, 𝜀, 𝜉) We say that Γ has property D𝑝(𝑑0, 𝜀

′, 𝜇, 𝜀, 𝜉) if it satisfies the property stated
in Lemma 9.12 with these parameters and with Δ, i.e., whenever 𝐺 = (𝑋∪̇𝑌 ∪̇𝑍,𝐸) is a
tripartite subgraph of Γ with the required properties, then it satisfies the conclusion of this
lemma.

STAR𝑝(𝑘, 𝜉, 𝜈) Similarly Γ has property STAR𝑝(𝑘, 𝜉, 𝜈) if Γ has the property stated in
Lemma 9.8 with Δ replaced by 𝑘, with parameters 𝜉, 𝜈, and for 𝑝 = 𝑝(𝑛).

Now we set up the constants. Let Δ, 𝑡 and 𝑑 be given and assume without loss of generality
that 𝑑 ≤ 1

4 . First we set

𝜇 =
1

4Δ2
(9.44)

and we fix 𝜀𝑖 for 𝑖 = 𝑡, 𝑡− 1, . . . , 0 by setting

𝜀𝑡 =
𝑑

12Δ𝑡
, 𝑑0 := 𝑑 , and

𝜀𝑖−1 = min
{︀
𝜀(Δ, 𝑑0, 𝜀

′ = 𝜀𝑖, 𝜇), 𝜀𝑖
}︀

for 𝑖 = 𝑡, . . . , 1 ,
(9.45)

where 𝜀(Δ− 1, 𝑑0, 𝜀
′ = 𝜀𝑖, 𝜇) is given by Lemma 9.12. We choose 𝜀 := 𝜀0 and 𝜉 := (𝑑/100)Δ

and receive 𝑟1 as input. For each 𝑘 ∈ [Δ] and each 𝑟′ ∈ [𝑟1] Lemma 9.8 with Δ replaced by
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𝑘 and with 𝜉 replaced by 𝜉/𝑟′ provides positive constants 𝜈(𝑘, 𝑟′) and 𝑐(𝑘, 𝑟′). Let 𝜈 be the
minimum among the 𝜈(𝑘, 𝑟′) and let 𝑐9.8 be the maximum among the 𝑐(𝑘, 𝑟′) as we let both 𝑘
and 𝑟′ vary. Similarly Lemma 9.12 with input Δ− 1, 𝑑0, 𝜀′ = 𝜀𝑖, 𝜇, and 𝜉 replaced by 𝜉/𝑟′

provides constants 𝑐′(𝑖, 𝑟′) for 𝑖 ∈ [0, 𝑡] and 𝑟′ ∈ [𝑟1]. We let 𝑐9.12 be the maximum among
these 𝑐′(𝑖, 𝑟′). Then we fix 𝑐 := max{𝑐9.8, 𝑐9.12}, and receive 𝑟 ∈ [𝑟1] as input. Finally, we set

𝜉9.8 := 𝜉9.12 := 𝜉/𝑟 = (𝑑/100)Δ(1/𝑟) . (9.46)

This finishes the definition of the constants.
Let 𝑝 = 𝑝(𝑛) ≥ 𝑐(log 𝑛/𝑛)1/Δ and let Γ be a graph from 𝒢𝑛,𝑝. By Lemma 9.8, Lemma 9.12,

and the choice of constants the graph Γ a.a.s. satisfies properties D𝑝(𝑑, 𝜀𝑖, 𝜇, 𝜀𝑖−1, 𝜉9.12) for
all 𝑖 ∈ [𝑡], and properties STAR𝑝(𝑘, 𝜉9.8, 𝜈) for all 𝑘 ∈ [Δ]. In the remainder of this proof
we assume that Γ has these properties and show that then Γ also satisfies the conclusion of
Lemma 9.5.

Let 𝐺 ⊆ Γ and 𝐻 be arbitrary graphs satisfying the requirements stated in the lemma on
vertex sets 𝑊 = 𝑊1∪̇ . . . ∪̇𝑊𝑡 and 𝑊̃ = 𝑊̃1∪̇ . . . ∪̇𝑊̃𝑡, respectively. Let ℎ : 𝑊̃ → [𝑡] be the
“partition function” for the vertex partition of 𝐻, i.e.,

ℎ(𝑤̃) = 𝑗 if and only if 𝑤̃ ∈ 𝑊̃𝑗 .

For an integer 𝑖 ≤ ℎ(𝑤̃) we denote by

ldeg𝑖(𝑤̃) :=
⃒⃒
𝑁𝐻(𝑤̃) ∩ {𝑥̃ ∈ 𝑊̃ : ℎ(𝑥̃) ≤ 𝑖}

⃒⃒
the left degree of 𝑤̃ with respect to 𝑊̃1∪̇ . . . ∪̇𝑊̃𝑖. Clearly ldegℎ(𝑤̃)(𝑤̃) = ldeg(𝑤̃). Before we
continue, recall that each vertex 𝑤̃ ∈ 𝑊̃𝑖 is equipped with a set 𝑋𝑤̃ ⊆ 𝑉 (Γ) ∖𝑊 and that we
defined an external degree edeg(𝑤̃) = |𝑋𝑤̃| of 𝑤̃ as well as a candidate set 𝐶(𝑤̃) = 𝑁∩

𝑊𝑖
(𝑋𝑤̃) ⊆

𝑊𝑖. In the course of our embedding procedure, that we will describe below, we shall shrink
this candidate set but keep certain invariants as we explain next.

We proceed inductively and embed the vertex class 𝑊̃𝑖 into 𝑊𝑖 one at a time, for 𝑖 = 1, . . . , 𝑡.
To this end, we verify the following statement (𝒮𝑖) for 𝑖 = 0, . . . , 𝑡.

(𝒮𝑖) There exists a partial embedding 𝜙𝑖 of 𝐻[
⋃︀𝑖

𝑗=1 𝑊̃𝑗 ] into 𝐺[
⋃︀𝑖

𝑗=1𝑊𝑗 ] such that for every
𝑧 ∈ ⋃︀𝑡

𝑗=𝑖+1 𝑊̃𝑗 there exists a candidate set 𝐶𝑖(𝑧) ⊆ 𝐶(𝑧) given by

(a) 𝐶𝑖(𝑧) =
⋂︀{𝑁𝐺(𝜙𝑖(𝑥̃)) : 𝑥̃ ∈ 𝑁𝐻(𝑧) and ℎ(𝑥̃) ≤ 𝑖} ∩ 𝐶(𝑧),

and satisfying

(b) |𝐶𝑖(𝑧)| ≥ (𝑑𝑝/2)ldeg𝑖(𝑧)|𝐶(𝑧)|, and
(c) for every edge {𝑧, 𝑧′} ∈ 𝐸(𝐻) with ℎ(𝑧), ℎ(𝑧′) > 𝑖 the pair

(︀
𝐶𝑖(𝑧), 𝐶𝑖(𝑧′)

)︀
is

(𝜀𝑖, 𝑑, 𝑝)-dense in 𝐺.

Statement (𝒮𝑖) ensures the existence of a partial embedding of the first 𝑖 classes 𝑊̃1, . . . , 𝑊̃𝑖

of 𝐻 into 𝐺 such that for every unembedded vertex 𝑧 there exists a candidate set 𝐶𝑖(𝑧) ⊆ 𝐶(𝑧)
that is not too small (see part (b)). Moreover, if we embed 𝑧 into its candidate set, then its
image will be adjacent to all vertices 𝜙𝑖(𝑥̃) with 𝑥̃ ∈ (𝑊̃1 ∪ · · · ∪ 𝑊̃𝑖) ∩𝑁𝐻(𝑧) (see part (a)).
The last property, part (c), says that for edges of 𝐻 such that none of the endvertices are
embedded already the respective candidate sets induce (𝜀, 𝑑′, 𝑝)-dense pairs for some positive
𝑑′. This property will be crucial for the inductive proof.
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Remark. In what follows we shall use the following convention. Since the embedding of 𝐻 into
𝐺 will be divided into 𝑡 rounds, we shall find it convenient to distinguish among the vertices of
𝐻. We shall use 𝑥̃ for vertices that have already been embedded, 𝑦 for vertices that will be
embedded in the current round, while 𝑧 will denote vertices that we shall embed at a later step.

Before we verify (𝒮𝑖) for 𝑖 = 0, . . . , 𝑡 by induction on 𝑖 we note that (𝒮𝑡) implies that 𝐻
can be embedded into 𝐺 in such a way that every vertex 𝑤̃ ∈ 𝑊̃ is mapped to a vertex in its
candidate set 𝐶(𝑤̃). Consequently, verifying (𝒮𝑡) concludes the proof of Lemma 9.5.

Basis of the induction: 𝑖 = 0. We first verify (𝒮0). In this case 𝜙0 is the empty mapping
and for every 𝑧 ∈ 𝑊̃ we have, according to (a), 𝐶0(𝑧) = 𝐶(𝑧), as there is no vertex 𝑥̃ ∈ 𝑁𝐻(𝑧)
with ℎ(𝑥̃) ≤ 0. Property (b) holds because 𝐶0(𝑧) = 𝐶(𝑧) and ldeg0(𝑧) = 0 for every 𝑧 ∈ 𝑊̃ .
Finally, property (c) follows from the property that (𝐶(𝑧), 𝐶(𝑧′)) is (𝜀0, 𝑑, 𝑝)-dense by (E) of
Lemma 9.5.

Induction step: 𝑖→ 𝑖+ 1. For the inductive step, we suppose that 𝑖 < 𝑡 and assume that
statement (𝒮𝑖) holds; we have to construct 𝜙𝑖+1 with the required properties. Our strategy is
as follows. In the first step, we find for every 𝑦 ∈ 𝑊̃𝑖+1 an appropriate subset 𝐶 ′(𝑦) ⊆ 𝐶𝑖(𝑦)
of its candidate set such that if 𝜙𝑖+1(𝑦) is chosen from 𝐶 ′(𝑦), then the new candidate set
𝐶𝑖+1(𝑧) := 𝐶𝑖(𝑧) ∩𝑁𝐺(𝜙𝑖+1(𝑦)) of every “right-neighbour” 𝑧 of 𝑦 will not shrink too much
and property (c) will continue to hold.

Note, however, that in general |𝐶 ′(𝑦)| ≤ |𝐶𝑖(𝑦)| = 𝑜(𝑛) ≪ |𝑊̃𝑖+1| (if ldeg𝑖(𝑦) ≥ 1) and,
hence, we cannot “blindly” select 𝜙𝑖+1(𝑦) from 𝐶 ′(𝑦). Instead, in the second step, we shall
verify Hall’s condition to find a system of distinct representatives for the indexed set system(︀
𝐶 ′(𝑦) : 𝑦 ∈ 𝑊̃𝑖+1

)︀
and we let 𝜙𝑖+1(𝑦) be the representative of 𝐶 ′(𝑦). (A similar idea was

used in [11, 85].) We now give the details of those two steps.

First step: For the first step, fix 𝑦 ∈ 𝑊̃𝑖+1 and set

𝑁 𝑖+1
𝐻 (𝑦) := {𝑧 ∈ 𝑁𝐻(𝑦) : ℎ(𝑧) > 𝑖+ 1} .

A vertex 𝑣 ∈ 𝐶𝑖(𝑦) will be “bad” (i.e., we shall not select 𝑣 for 𝐶 ′(𝑦)) if there exists a vertex
𝑧 ∈ 𝑁 𝑖+1

𝐻 (𝑦) for which 𝑁𝐺(𝑣) ∩ 𝐶𝑖(𝑧), in view of (b) and (c) of (𝒮𝑖+1), cannot play the rôle of
𝐶𝑖+1(𝑧).

We first prepare for (b) of (𝒮𝑖+1). Fix a vertex 𝑧 ∈ 𝑁 𝑖+1
𝐻 (𝑦). Since (𝐶𝑖(𝑦), 𝐶𝑖(𝑧)) is

an (𝜀𝑖, 𝑑, 𝑝)-dense pair by (c) of (𝒮𝑖), Proposition 3.17 implies that there exist at most
𝜀𝑖|𝐶𝑖(𝑦)| ≤ 𝜀𝑡|𝐶𝑖(𝑦)| vertices 𝑣 in 𝐶𝑖(𝑦) such that

|𝑁𝐺(𝑣) ∩ 𝐶𝑖(𝑧)| <
(︀
𝑑− 𝜀𝑡

)︀
𝑝|𝐶𝑖(𝑧)| .

Repeating the above for all 𝑧 ∈ 𝑁 𝑖+1
𝐻 (𝑦), we infer from (a) and (b) of (𝒮𝑖), that there are at

most Δ𝜀𝑡|𝐶𝑖(𝑦)| vertices 𝑣 ∈ 𝐶𝑖(𝑦) such that the following fails to be true for some 𝑧 ∈ 𝑁 𝑖+1
𝐻 (𝑦):

|𝑁𝐺(𝑣) ∩ 𝐶𝑖(𝑧)| ≥
(︀
𝑑− 𝜀𝑡

)︀
𝑝|𝐶𝑖(𝑧)|

(a),(b)

≥ (𝑑− 𝜀𝑡) 𝑝
(︂
𝑑𝑝

2

)︂ldeg𝑖(𝑧)

|𝐶(𝑧)|
(9.45)

≥
(︂
𝑑𝑝

2

)︂ldeg𝑖+1(𝑧)

|𝐶(𝑧)| . (9.47)

165



Chapter 9 Embedding into sparse graphs

For property (c) of (𝒮𝑖+1), we fix an edge 𝑒 = {𝑧, 𝑧′} with ℎ(𝑧), ℎ(𝑧′) > 𝑖+ 1 and with at
least one end vertex in 𝑁 𝑖+1

𝐻 (𝑦). There are at most Δ(Δ− 1) < Δ2 such edges. Note that if
both vertices 𝑧 and 𝑧′ are neighbours of 𝑦, i.e., 𝑧, 𝑧′ ∈ 𝑁 𝑖+1

𝐻 (𝑦), then

max
{︀

ldeg𝑖(𝑦) + edeg(𝑦), ldeg𝑖(𝑧) + edeg(𝑧), ldeg𝑖(𝑧′) + edeg(𝑧′)
}︀
≤ Δ− 2 ,

by (C) of Lemma 9.5 and because all three vertices 𝑦, 𝑧, and 𝑧′ have at least two neighbours
in 𝑊̃𝑖+1 ∪ · · · ∪ 𝑊̃𝑡. From property (b) of (𝒮𝑖), and (A) and (D) of Lemma 9.5 we infer for all
𝑤̃ ∈ {𝑦, 𝑧, 𝑧′} that

|𝐶𝑖(𝑤̃)|
(b)

≥
(︂
𝑑𝑝

2

)︂ldeg𝑖(𝑤̃)

|𝐶(𝑤̃)|
(A),(D)

≥
(︂
𝑑𝑝

2

)︂ldeg𝑖(𝑤̃)+edeg(𝑤̃) 𝑛

𝑟

(9.46)

≥ 𝜉9.12𝑝
Δ−2𝑛.

Furthermore, Γ has property D𝑝(𝑑, 𝜀𝑖+1, 𝜇, 𝜀𝑖, 𝜉9.12) by assumption. This implies that there are
at most 𝜇|𝐶𝑖(𝑦)| vertices 𝑣 ∈ 𝐶𝑖(𝑦) such that the pair (𝑁𝐺(𝑣) ∩ 𝐶𝑖(𝑧), 𝑁𝐺(𝑣) ∩ 𝐶𝑖(𝑧′)) fails to
be (𝜀𝑖+1, 𝑑, 𝑝)-dense.

If, on the other hand, say, only 𝑧 ∈ 𝑁 𝑖+1
𝐻 (𝑦) and 𝑧′ ̸∈ 𝑁 𝑖+1

𝐻 (𝑦), then

max
{︀

ldeg𝑖(𝑦) + edeg(𝑦), ldeg𝑖(𝑧′) + edeg(𝑧′)
}︀
≤ Δ− 1

and ldeg𝑖(𝑧) + edeg(𝑧) ≤ Δ− 2.

Consequently, similarly as above,

min
{︁
|𝐶𝑖(𝑦)| , |𝐶𝑖(𝑧′)|

}︁
≥ 𝜉9.12𝑝

Δ−1𝑛 and |𝐶𝑖(𝑧)| ≥ 𝜉9.12𝑝
Δ−2𝑛

and we can appeal to the fact that Γ has property D𝑝(𝑑, 𝜀𝑖+1, 𝜇, 𝜀𝑖, 𝜉9.12) to infer that there
are at most 𝜇|𝐶𝑖(𝑦)| vertices 𝑣 ∈ 𝐶𝑖(𝑦) such that (𝑁𝐺(𝑣)∩𝐶𝑖(𝑧), 𝐶𝑖(𝑧′)) fails to be (𝜀𝑖+1, 𝑑, 𝑝)-
dense. For a given 𝑣 ∈ 𝐶𝑖(𝑦), let 𝐶𝑖(𝑧) = 𝐶𝑖(𝑧) ∩𝑁𝐺(𝑣) if 𝑧 ∈ 𝑁 𝑖+1

𝐻 (𝑦) and 𝐶𝑖(𝑧) = 𝐶𝑖(𝑧) if
𝑧 ̸∈ 𝑁 𝑖+1

𝐻 (𝑦), and define 𝐶𝑖(𝑧′) analogously.
Summarizing the above we infer that there are at least

(1−Δ𝜀𝑡 −Δ2𝜇)|𝐶𝑖(𝑦)| (9.48)

vertices 𝑣 ∈ 𝐶𝑖(𝑦) such that

(b’) |𝑁𝐺(𝑣) ∩ 𝐶𝑖(𝑧)| ≥ (𝑑𝑝/2)ldeg𝑖+1(𝑧)|𝐶(𝑧)| for every 𝑧 ∈ 𝑁 𝑖+1
𝐻 (𝑦) (see (9.47)) and

(c’) (𝐶𝑖(𝑧), 𝐶𝑖(𝑧′)) is (𝜀𝑖+1, 𝑑, 𝑝)-dense for all edges {𝑧, 𝑧′} of 𝐻 with ℎ(𝑧), ℎ(𝑧′) > 𝑖 + 1
and {𝑧, 𝑧′} ∩𝑁 𝑖+1

𝐻 (𝑦) ̸= ∅.
Let 𝐶 ′(𝑦) be the set of those vertices 𝑣 from 𝐶𝑖(𝑦) satisfying properties (b’) and (c’) above.
Recall that ldeg𝑖(𝑦) + edeg(𝑦) = ldeg𝑖(𝑦′) + edeg(𝑦′) for all 𝑦, 𝑦′ ∈ 𝑊̃𝑖+1 and set

𝑘 := ldeg𝑖(𝑦) + edeg(𝑦) for some 𝑦 ∈ 𝑊̃𝑖+1. (9.49)

Since 𝑦 ∈ 𝑊̃𝑖+1 was arbitrary, we infer from property (b) of (𝒮𝑖), properties (A) and (D) of
Lemma 9.5, and the choices of 𝜇 and 𝜀𝑡 that

|𝐶 ′(𝑦)|
(9.48)

≥ (1−Δ𝜀𝑡 −Δ2𝜇)|𝐶𝑖(𝑦)|
(b)

≥ (1−Δ𝜀𝑡 −Δ2𝜇)
(︂
𝑑𝑝

2

)︂ldeg𝑖(𝑦)

|𝐶(𝑧)|

(A),(D)

≥ (1−Δ𝜀𝑡 −Δ2𝜇)
(︂
𝑑𝑝

2

)︂𝑘 𝑛

𝑟

(9.44),(9.45)

≥
(︂
𝑑𝑝

10

)︂𝑘 𝑛

𝑟
. (9.50)
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9.8 The connection lemma

Second step: We now turn to the aforementioned second part of the inductive step. Here we
ensure the existence of a system of distinct representatives for the indexed set system

𝒞𝑖+1 :=
(︁
𝐶 ′(𝑦) : 𝑦 ∈ 𝑊̃𝑖+1

)︁
.

We shall appeal to Hall’s condition and show that for every subfamily 𝒞′ ⊆ 𝒞𝑖+1 we have

|𝒞′| ≤
⃒⃒⃒⃒ ⋃︁

𝐶′∈𝒞′
𝐶 ′
⃒⃒⃒⃒
. (9.51)

Because of (9.50), assertion (9.51) holds for all families 𝒞′ with 1 ≤ |𝒞′| ≤ (𝑑𝑝/10)𝑘𝑛/𝑟.
Thus, consider a family 𝒞′ ⊆ 𝒞𝑖 with |𝒞′| > (𝑑𝑝/10)𝑘𝑛/𝑟. For every 𝑦 ∈ 𝑊̃𝑖+1 we have a

set 𝐾̃(𝑦) of ldeg𝑖(𝑦) already embedded vertices of 𝐻 such that 𝐾̃(𝑦) = 𝑁𝐻(𝑦) ∖𝑁 𝑖+1
𝐻 (𝑦). Let

𝐾 ′(𝑦) := 𝜙𝑖(𝐾̃(𝑦)) be the image of 𝐾̃(𝑦) in 𝐺 under 𝜙𝑖. Recall that 𝑦 is equipped with a
set 𝑋𝑦 ⊆ 𝑉 (Γ) ∖𝑊 of size edeg(𝑦) in Lemma 9.5. We have ldeg𝑖(𝑦) + edeg(𝑦) = 𝑘 by (9.49).
Hence, when we add the vertices of 𝑋𝑦 to 𝐾 ′(𝑦) we obtain a set 𝐾(𝑦) = {𝑢1(𝑦), . . . , 𝑢𝑘(𝑦)}
of 𝑘 vertices in Γ. Note that for two distinct vertices 𝑦, 𝑦′ ∈ 𝑊̃𝑖+1 the sets 𝐾̃(𝑦) and 𝐾̃(𝑦′)
are disjoint. This follows from the fact that the distance in 𝐻 between 𝑦 and 𝑦′ is at least
four by the 3-independence of 𝑊̃𝑖+1 (cf. (B) of Lemma 9.5) and if 𝐾̃(𝑦)∩ 𝐾̃(𝑦′) ̸= ∅, then this
distance would be at most two. In addition

(︀
𝑋𝑦 : 𝑦 ∈ 𝑊̃𝑖+1

)︀
consists of pairwise disjoint sets

by hypothesis. Consequently, the sets 𝐾(𝑦) and 𝐾(𝑦′) are disjoint as well and, therefore,

ℱ := {𝐾(𝑦) : 𝐶 ′(𝑦) ∈ 𝒞′} ⊆ {𝐾(𝑦) : 𝑦 ∈ 𝑊̃𝑖+1} ⊆
(︂
𝑉 (Γ)
𝑘

)︂
is a family of |𝒞′| pairwise disjoint 𝑘-sets in 𝑉 (Γ). Moreover, 𝐶(𝑦) = 𝑁∩

𝑊𝑖
(𝑋𝑦) by definition

and so (a) of (𝒮𝑖) implies

𝐶 ′(𝑦) ⊆ 𝐶(𝑦) ∩
⋂︁

𝑣∈𝐾′(𝑦)

𝑁Γ(𝑣) =
⋂︁

𝑣∈𝐾(𝑦)

𝑁Γ(𝑣) .

Let
𝑈 =

⋃︁
𝐶′(𝑦)∈𝒞′

𝐶 ′(𝑦) ⊆𝑊𝑖+1 ,

and suppose for a contradiction that

|𝑈 | < |𝒞′| = |ℱ|. (9.52)

We now use the fact that Γ has property STAR𝑝(𝑘, 𝜉9.8, 𝜈) and apply it to 𝑈 and ℱ (see
Lemma 9.8). By assumption |𝑈 | < |ℱ| ≤ 𝜈𝑛𝑝𝑘|ℱ|. We deduce that

# starsΓ(𝑈,ℱ) ≤ 𝑝𝑘|𝑈 ||ℱ|+ 6𝜉9.8𝑛𝑝𝑘|ℱ| .

On the other hand, because of (9.50), we have

# starsΓ(𝑈,ℱ) ≥
(︂
𝑑𝑝

10

)︂𝑘 𝑛

𝑟
|ℱ| .
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Chapter 9 Embedding into sparse graphs

Combining the last two inequalities we infer from property (A) of Lemma 9.5 that

|𝑈 | ≥
(︃(︂

𝑑

10

)︂𝑘 1
𝑟
− 6𝜉9.8

)︃
𝑛

(9.46)

≥ 𝜉9.8𝑛
(9.46)
= 𝜉

𝑛

𝑟

(A)

≥ |𝑊̃𝑖+1| ≥ |𝒞′|,

which contradicts (9.52). This contradiction shows that (9.52) does not hold, that is, Hall’s
condition (9.51) does hold. Hence, there exists a system of representatives for 𝒞𝑖+1, i.e., an
injective mapping 𝜓 : 𝑊̃𝑖+1 →

⋃︀
𝑦∈𝑊̃𝑖+1

𝐶 ′(𝑦) such that 𝜓(𝑦) ∈ 𝐶 ′(𝑦) for every 𝑦 ∈ 𝑊̃𝑖+1.
Finally, we extend 𝜙𝑖. For that we set

𝜙𝑖+1(𝑤̃) =

{︃
𝜙𝑖(𝑤̃) , if 𝑤̃ ∈ ⋃︀𝑖

𝑗=1 𝑊̃𝑗 ,

𝜓(𝑤̃) , if 𝑤̃ ∈ 𝑊̃𝑖+1 .

Note that every 𝑧 ∈ ⋃︀𝑡
𝑗=𝑖+2 𝑊̃𝑗 has at most one neighbour in 𝑊̃𝑖+1, as otherwise there would

be two vertices 𝑦 and 𝑦′ ∈ 𝑊̃𝑖+1 with distance at most 2 in 𝐻, which contradicts property (B)
of Lemma 9.5. Consequently, for every 𝑧 ∈ ⋃︀𝑡

𝑗=𝑖+2 𝑊̃𝑗 we have

𝐶𝑖+1(𝑧) =

{︃
𝐶𝑖(𝑧) , if 𝑁𝐻(𝑧) ∩ 𝑊̃𝑖+1 = ∅,
𝐶𝑖(𝑧) ∩𝑁𝐺(𝜙𝑖+1(𝑦)) , if 𝑁𝐻(𝑧) ∩ 𝑊̃𝑖+1 = {𝑦}.

by (a) of (𝒮𝑖+1). In what follows we show that 𝜙𝑖+1 and 𝐶𝑖+1(𝑧) for every 𝑧 ∈ ⋃︀𝑡
𝑗=𝑖+2 𝑊̃𝑗 have

the desired properties and validate (𝒮𝑖+1).
First of all, from (a) of (𝒮𝑖), combined with 𝜙𝑖+1(𝑦) ∈ 𝐶 ′(𝑦) ⊆ 𝐶𝑖(𝑦) for every 𝑦 ∈ 𝑊̃𝑖+1

and the property that
(︀
𝜙𝑖+1(𝑦) : 𝑦 ∈ 𝑊̃𝑖+1

)︀
is a system of distinct representatives, we infer

that 𝜙𝑖+1 is indeed a partial embedding of 𝐻[
⋃︀𝑖+1

𝑗=1𝑊𝑗 ].
Next we shall verify property (b) of (𝒮𝑖+1). So let 𝑧 ∈ ⋃︀𝑡

𝑗=𝑖+2 𝑊̃𝑗 be fixed. If 𝑁𝐻(𝑧)∩𝑊̃𝑖+1 =
∅, then 𝐶𝑖+1(𝑧) = 𝐶𝑖(𝑧), ldeg𝑖+1(𝑧) = ldeg𝑖(𝑧), which yields (b) of (𝒮𝑖+1) for that case. If,
on the other hand, 𝑁𝐻(𝑧) ∩ 𝑊̃𝑖+1 ̸= ∅, then there exists a unique neighbour 𝑦 ∈ 𝑊̃𝑖+1 of 𝐻
(owing to the 3-independence of 𝑊𝑖+1 by property (B) of Lemma 9.5). As discussed above
we have 𝐶𝑖+1(𝑧) = 𝐶𝑖(𝑧) ∩𝑁𝐺(𝜙𝑖+1(𝑦)) in this case. Since 𝜙𝑖+1(𝑦) ∈ 𝐶 ′(𝑦), we infer directly
from (b’) that (b) of (𝒮𝑖+1) is satisfied.

Finally, we verify property (c) of (𝒮𝑖+1). Let {𝑧, 𝑧′} be an edge of 𝐻 with 𝑧, 𝑧′ ∈ ⋃︀𝑡
𝑗=𝑖+2 𝑊̃𝑗 .

We consider three cases, depending on the size of 𝑁𝐻(𝑧) ∩ 𝑊̃𝑖+1 and of 𝑁𝐻(𝑧′) ∩ 𝑊̃𝑖+1. If
𝑁𝐻(𝑧) ∩ 𝑊̃𝑖+1 = ∅ and 𝑁𝐻(𝑧′) ∩ 𝑊̃𝑖+1 = ∅, then part (c) of (𝒮𝑖+1) follows directly from
part (c) of (𝒮𝑖) and 𝜀𝑖+1 ≥ 𝜀𝑖, combined with 𝐶𝑖+1(𝑧) = 𝐶𝑖(𝑧), 𝐶𝑖+1(𝑧′) = 𝐶𝑖(𝑧′). If
𝑁𝐻(𝑧) ∩ 𝑊̃𝑖+1 = {𝑦} and 𝑁𝐻(𝑧′) ∩ 𝑊̃𝑖+1 = ∅, then (c) of (𝒮𝑖+1) follows from (c’) and the
definition of 𝐶𝑖+1(𝑧) and 𝐶𝑖+1(𝑧′). If 𝑁𝐻(𝑧) ∩ 𝑊̃𝑖+1 = {𝑦} and 𝑁𝐻(𝑧′) ∩ 𝑊̃𝑖+1 = {𝑦′}, then
𝑦 = 𝑦′, as otherwise there would be a 𝑦-𝑦′-path in 𝐻 with three edges, contradicting the
3-independence of 𝑊̃𝑖+1. Consequently, (c) of (𝒮𝑖+1) follows from (c’) and the definition of
𝐶𝑖+1(𝑧) and 𝐶𝑖+1(𝑧′).

We have therefore verified (a)–(c) of (𝒮𝑖), thus concluding the induction step. The proof of
Lemma 9.5 follows by induction.

9.9 Proofs of auxiliary lemmas

In this section we provide all proofs that were postponed earlier, namely those of Lemma 9.8,
Lemma 9.10, and Lemma 9.13.
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9.9 Proofs of auxiliary lemmas

Proof of Lemma 9.8

This proof makes use of a Chernoff bound for the binomially distributed random variable
# starsΓ(𝑋,ℱ) appearing in this lemma (cf. Definition 9.6 and the discussion below this
definition).

Proof of Lemma 9.8. Given Δ and 𝜉 let 𝜈 and 𝑐 be constants satisfying

−6𝜉 log(2𝜉) ≤ −(6𝜉 − 2
√
𝜈) log 𝜉, 2𝜈 ≤ (

√
𝜈 − 2𝜈),

Δ + 1− 6𝜉𝑐Δ ≤ −1, and Δ ≤ 𝜈𝑐Δ.
(9.53)

First we estimate the probability that there are 𝑋 and ℱ with |ℱ| ≥ 𝑛/ log 𝑛 fulfilling the
requirements of the lemma but violating (9.2). Chernoff’s inequality P[𝑌 ≥ E𝑌 + 𝑡] ≤ exp(−𝑡)
for a binomially distributed random variable 𝑌 and 𝑡 ≥ 6 E𝑌 (see (2.3)) implies

P
[︁
# starsΓ(𝑋,ℱ) ≥ 𝑝Δ|𝑋||ℱ|+ 6𝜉𝑛𝑝Δ|ℱ|

]︁
≤ exp(−6𝜉𝑛𝑝Δ|ℱ|) ≤ exp(−6𝜉𝑐Δ|ℱ| log 𝑛)

for fixed 𝑋 and ℱ since 6𝜉𝑛𝑝Δ|ℱ| ≥ 6𝑝Δ|𝑋||ℱ|. As the number of choices for ℱ and 𝑋 can
be bounded by

∑︀𝜉𝑛
𝑓=𝑛/ log 𝑛 𝑛

Δ𝑓 and 2𝑛 ≤ exp(𝑛), respectively, the probability we want to
estimate is at most

𝜉𝑛∑︁
𝑓= 𝑛

log 𝑛

exp
(︁

Δ𝑓 log 𝑛+ 𝑛− 6𝜉𝑐Δ𝑓 log 𝑛
)︁
≤

𝜉𝑛∑︁
𝑓= 𝑛

log 𝑛

exp
(︀
𝑓 log 𝑛(Δ + 1− 6𝜉𝑐Δ)

)︀
,

which does not exceed 𝜉𝑛 exp(−𝑛) by (9.53) and thus tends to 0 as 𝑛 tends to infinity.
It remains to establish a similar bound on the probability that there are 𝑋 and ℱ with

|ℱ| < 𝑛/ log 𝑛 fulfilling the requirements of the lemma but violating (9.2). For this purpose
we use that

P[𝑌 ≥ 𝑡] ≤ 𝑞𝑡

(︂
𝑚

𝑡

)︂
≤ exp

(︁
− 𝑡 log

𝑡

3𝑞𝑚

)︁
for a random variable 𝑌 with distribution Bi(𝑚, 𝑞) and infer for fixed 𝑋 and ℱ

P
[︁
# starsΓ(𝑋,ℱ) ≥ 𝑝Δ|𝑋||ℱ|+ 6𝜉𝑛𝑝Δ|ℱ|

]︁
≤ P

[︁
# starsΓ(𝑋,ℱ) ≥ 6𝜉𝑛𝑝Δ|ℱ|

]︁
≤ exp

(︂
−6𝜉𝑛𝑝Δ|ℱ| log

2𝜉𝑛
|𝑋|

)︂
≤ exp

(︂
−2
√
𝜈𝑛𝑝Δ|ℱ| log

𝑛

|𝑋|

)︂
.

because −6𝜉 log(2𝜉) ≤ −(6𝜉 − 2
√
𝜈) log 𝜉 ≤ (6𝜉 − 2

√
𝜈) log(𝑛/|𝑋|) by (9.53). The number of

choices for ℱ and 𝑋 in total can be bounded by

𝑛
log 𝑛∑︁
𝑓=1

𝜈𝑛𝑝Δ𝑓∑︁
𝑥=1

𝑛Δ𝑓

(︂
𝑛

𝑥

)︂
≤

𝑛
log 𝑛∑︁
𝑓=1

𝜈𝑛𝑝Δ𝑓∑︁
𝑥=1

exp
(︁

Δ𝑓 log 𝑛+ 𝜈𝑛𝑝Δ𝑓 log
𝑒𝑛

𝑥

)︁

≤
𝑛

log 𝑛∑︁
𝑓=1

𝜈𝑛𝑝Δ𝑓∑︁
𝑥=1

exp
(︁

2𝜈𝑛𝑝Δ𝑓 log
𝑒𝑛

𝑥

)︁
≤

𝑛
log 𝑛∑︁
𝑓=1

𝜈𝑛𝑝Δ𝑓∑︁
𝑥=1

exp
(︁√

𝜈𝑛𝑝Δ𝑓 log
𝑛

𝑥

)︁
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Chapter 9 Embedding into sparse graphs

where the second inequality follows from Δ log 𝑛 ≤ 𝜈𝑐Δ log 𝑛 ≤ 𝜈𝑛𝑝Δ and the last from
2𝜈 log 𝑒 ≤ (

√
𝜈 − 2𝜈) log(𝑛/𝑥) by (9.53). Therefore the probability under consideration is at

most
𝑛

log 𝑛∑︁
𝑓=1

𝜈𝑝Δ𝑛𝑓∑︁
𝑥=1

exp
(︁√

𝜈𝑛𝑝Δ𝑓 log
𝑛

𝑥
− 2

√
𝜈𝑛𝑝Δ𝑓 log

𝑛

𝑥

)︁
≤ 𝑛2 exp

(︂
−√𝜈 log 𝑛

𝑛

log 𝑛

)︂
.

Proof of Lemma 9.10

We will use the following simple proposition about cuts in hypergraphs. This proposition
generalises the well known fact that any graph 𝐺 admits a vertex partition into sets of roughly
equal size such that the resulting cut contains at least half the edges of 𝐺.

Proposition 9.29. Let 𝒢 = (𝑉, ℰ) be an ℓ-uniform hypergraph with 𝑚 edges and 𝑛 vertices
such that 𝑛 ≥ 3ℓ. Then there is a partition 𝑉 = 𝑉1∪̇𝑉2 with |𝑉1| = ⌊2𝑛/3⌋ and |𝑉2| = ⌈𝑛/3⌉
such that at least 𝑚 · ℓ/2ℓ+2 edges in ℰ are 1-crossing, i.e., they have exactly one vertex in 𝑉2.

Proof. Let 𝑋 be the number of 1
3 -cuts of 𝑉 , i.e., cuts 𝑉 = 𝑉1∪̇𝑉2 with |𝑉1| = ⌊2𝑛/3⌋ and

|𝑉2| = ⌈𝑛/3⌉. For a fixed edge 𝐵 there are precisely 2ℓ ways to distribute its vertices over
𝑉1∪̇𝑉2 out of which exactly ℓ are such that 𝐵 is 1-crossing. Further, for 𝑟 fixed vertices of 𝐵
exactly

(︀
𝑛−ℓ

⌈𝑛/3⌉−𝑟

)︀
of all 1

3 -cuts have exactly these vertices in 𝑉2. It is easy to check that(︂
𝑛− ℓ

⌈𝑛/3⌉ − 𝑟

)︂
≤ 4
(︂

𝑛− ℓ

⌈𝑛/3⌉ − 1

)︂
for all 0 ≤ 𝑟 ≤ ℓ .

It follows that 𝐵 is 1-crossing for at least an 1
4ℓ/(2

ℓ) fraction of all 1
3 -cuts. Now assume that

all 1
3 -cuts have less than 𝑚 · ℓ/2ℓ+2 edges that are 1-crossing. Then double counting gives

𝑚 · ℓ

2ℓ+2
·𝑋 >

∑︁
𝐵∈ℰ

#
{︀

1
3 -cuts s.t. 𝐵 is 1-crossing

}︀
≥ 𝑚 · 1

4
ℓ

2ℓ
·𝑋

which is a contradiction.

In the proof of Lemma 9.10 we need to estimate the number of “bad” ℓ-sets in a vertex
set 𝑋. For this purpose we will use Proposition 9.29 to obtain a partition of 𝑋 into sets
𝑋 = 𝑋1∪̇𝑋2 such that a substantial proportion of all these bad ℓ-sets will be 1-crossing and
𝑋1 is not too small. In this way we obtain many (ℓ− 1)-sets in 𝑋1 most of which will, as we
show, be similarly bad as the ℓ-sets we started with. This will allow us to prove Lemma 9.10
by induction.

Proof of Lemma 9.10. Let Δ and 𝑑 be given. Let Γ be an 𝑛-vertex graph, let ℓ be an integer,
let 𝜀′, 𝜇, 𝜀, 𝜉 be positive real numbers, and let 𝑝 = 𝑝(𝑛) be a function. We say that Γ has
property 𝑃ℓ(𝜀′, 𝜇, 𝜀, 𝜉, 𝑝(𝑛)) if Γ has the property stated in Lemma 9.10 with parameters 𝜀′, 𝜇,
𝜀, 𝜉, 𝑝(𝑛) and with parameters and Δ and 𝑑. Similarly, Γ has property 𝐷(𝜀′, 𝜇, 𝜀, 𝜉, 𝑝(𝑛)) if it
satisfies the conclusion of Lemma 9.12 with these parameters and with Δ and 𝑑0 := 𝑑. For
any fixed ℓ > 0, we denote by (𝒫ℓ) the following statement.
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(𝒫ℓ) For all 𝜀′, 𝜇 > 0 there is 𝜀 such that for all 𝜉 > 0 there is 𝑐 > 1 such that a random
graph Γ = 𝒢𝑛,𝑝 with 𝑝 > 𝑐( log 𝑛

𝑛 )1/Δ has property 𝑃ℓ(𝜀′, 𝜇, 𝜀, 𝜉, 𝑝(𝑛)) with probability
1− 𝑜(1).

We prove that (𝒫ℓ) holds for every fixed ℓ > 0 by induction on ℓ. The case ℓ = 1 is an easy
consequence of Proposition 3.17 which states that in all (𝜀, 𝑑, 𝑝)-dense pairs most vertices have
a large neighbourhood.

For the inductive step assume that (𝒫ℓ−1) holds. We will show that this implies (𝒫ℓ). We
start by specifying the constants appearing in statement (𝒫ℓ). Let 𝜀′ and 𝜇 be arbitrary
positive constants. Set 𝜀′ℓ−1 := 𝜀′ and 𝜇ℓ−1 := 1

100𝜇
ℓ

2ℓ+2 . Let 𝜀ℓ−1 be given by (𝒫ℓ−1) for input
parameters 𝜀′ℓ−1 and 𝜇ℓ−1. Set 𝜀′9.12 := 𝜀ℓ−1 and let 𝜀9.12 be as promised by Lemma 9.12 with
parameters 𝜀′9.12 and 𝜇9.12 := 1

2 . Define 𝜀 := 𝜇ℓ−1𝜀9.12𝜀
′
ℓ−1. Next, let 𝜉 be an arbitrary parameter

provided by the adversary in Lemma 9.10 and choose 𝜉ℓ−1 := 𝜉(𝑑 − 𝜀) and 𝜉9.12 := 𝜇ℓ−1𝜉.
Finally, let 𝑐ℓ−1 and 𝑐9.12 be given by (𝒫ℓ−1) and by Lemma 9.12, respectively, for the previously
specified parameters together with 𝜉ℓ−1 and 𝜉9.12. Set 𝑐 := max{𝑐ℓ−1, 𝑐9.12}. We will prove that
with this choice of 𝜀 and 𝑐 the statement in (𝒫ℓ) holds for the input parameters 𝜀′, 𝜇, and 𝜉.

Let Γ = 𝒢𝑛,𝑝 be a random graph. By (𝒫ℓ−1) and Lemma 9.12, and by the choice of the
parameters the graph Γ has properties

𝑃ℓ−1(𝜀′ℓ−1, 𝜇ℓ−1, 𝜀ℓ−1, 𝜉ℓ−1, 𝑝(𝑛)) and 𝐷(𝜀′9.12, 𝜇9.12, 𝜀9.12, 𝜉9.12, 𝑝(𝑛))

with probability 1−𝑜(1) if 𝑛 is large enough. We will show that a graph Γ with these properties
also satisfies 𝑃ℓ(𝜀′, 𝜇, 𝜀, 𝜉, 𝑝(𝑛)). Let 𝐺 = (𝑋∪̇𝑌,𝐸) be an arbitrary subgraph of such a Γ
where |𝑋| = 𝑛1 and |𝑌 | = 𝑛2 with 𝑛1 ≥ 𝜉𝑝Δ−1𝑛, 𝑛2 ≥ 𝜉𝑝Δ−ℓ𝑛, and (𝑋,𝑌 ) is an (𝜀, 𝑑, 𝑝)-dense
pair.

We would like to show that for ℬℓ := bad𝐺,ℓ
𝜀′,𝑑,𝑝(𝑋,𝑌 ) we have |ℬℓ| ≤ 𝜇𝑛ℓ

1. Assume for
a contradiction that this is not the case. By Proposition 9.29 there is a cut 𝑋 = 𝑋1∪̇𝑋2

with |𝑋1| = ⌊2𝑛1/3⌋ and |𝑋2| = ⌈𝑛2/3⌉ such that at least |ℬℓ| · ℓ/2ℓ+2 of the ℓ-sets in ℬℓ are
1-crossing, i.e., have exactly one vertex in 𝑋2. By Proposition 3.17 there are less than 𝜀|𝑋|
vertices 𝑥 ∈ 𝑋2 such that |𝑁𝑌 (𝑥)| < (𝑑− 𝜀)𝑝𝑛2. We delete all ℓ-sets from ℬℓ that contain such
a vertex or are not 1-crossing for 𝑋 = 𝑋1∪̇𝑋2 and call the resulting set ℬ′ℓ. It follows that

|ℬ′ℓ| ≥ |ℬℓ| ℓ
2ℓ+2 − 𝜀|𝑋|𝑛ℓ−1

1 > 𝜇𝑛ℓ
1

ℓ
2ℓ+2 − 𝜀𝑛ℓ

1 ≥ 20𝜇ℓ−1𝑛
ℓ
1. (9.54)

Now, for each 𝑣 ∈ 𝑋2 we count the number of ℓ-sets 𝐵 ∈ ℬ′ℓ containing 𝑣. We delete all
vertices 𝑣 from 𝑋2 for which this number is less than |ℬ′ℓ|/(10𝑛1) and call the resulting set 𝑋 ′.
Observe that the definition of ℬ′ℓ implies that all vertices 𝑥 in 𝑋 ′ satisfy |𝑁𝑌 (𝑥)| ≥ (𝑑− 𝜀)𝑝𝑛2.
Because ℬ′ℓ contains only 1-crossing ℓ-sets we get

|ℬ′ℓ| ≤ |𝑋2 ∖𝑋 ′| |ℬ
′
ℓ|

10𝑛1
+ |𝑋 ′|𝑛ℓ−1

1 ≤ |ℬ′ℓ|
10

+ |𝑋 ′|𝑛ℓ−1
1

and thus
|𝑋 ′| ≥ 9

10𝑛ℓ−1
1

|ℬ′ℓ|
(9.54)

≥ 10𝜇ℓ−1𝑛1.

This together with Proposition 3.16 implies that the pairs (𝑋 ′, 𝑌 ) and (𝑌,𝑋1) are (𝜀9.12, 𝑑, 𝑝)-
dense. In addition we have |𝑋 ′|, |𝑋1| ≥ 𝜇ℓ−1𝑛1 ≥ 𝜇ℓ−1𝜉𝑝

Δ−1𝑛 = 𝜉9.12𝑝
Δ−1𝑛 and |𝑌 | ≥

𝜉𝑝Δ−ℓ𝑛 ≥ 𝜉9.12𝑝
Δ−2𝑛. Because Γ has property 𝐷(𝜀′9.12, 𝜇9.12, 𝜀9.12, 𝜉9.12, 𝑝(𝑛)) we conclude for

the tripartite graph 𝐺[𝑋 ′∪̇𝑌 ∪̇𝑋1] that there are at least |𝑋 ′| − 𝜇9.12|𝑋 ′| ≥ 1 vertices 𝑥 in
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𝑋 ′ such that (𝑁𝑌 (𝑥), 𝑋1) is (𝜀′9.12, 𝑑, 𝑝)-dense. Let 𝑥* ∈ 𝑋 ′ be one of these vertices and set
𝑌 ′ := 𝑁𝑌 (𝑥*). Thus (𝑌 ′, 𝑋1) is (𝜀′9.12, 𝑑, 𝑝)-dense and since 𝑋 ′ only contains vertices with a
large neighbourhood in 𝑌 we have |𝑌 ′| ≥ (𝑑− 𝜀)𝑝𝑛2. Furthermore, let ℬ′ℓ(𝑥*) be the family of
ℓ-sets in ℬ′ℓ that contain 𝑥*. Then ℬ′ℓ(𝑥*) contains ℓ-sets with ℓ− 1 vertices in 𝑋1 and with
one vertex, the vertex 𝑥*, in 𝑋2 because ℬ′ℓ contains only 1-crossing ℓ-sets. By definition of
𝑋 ′ and because 𝑥* ∈ 𝑋 ′ we have

|ℬ′ℓ(𝑥*)| ≥ |ℬ′ℓ|/(10𝑛1)
(9.54)

≥ 2𝜇ℓ−1𝑛
ℓ−1
1 . (9.55)

For 𝐵 ∈ ℬ′ℓ(𝑥*) let Πℓ−1(𝐵) be the projection of 𝐵 to 𝑋1. This implies that Πℓ−1(𝐵) is an
(ℓ− 1)-set in 𝑋1. In addition 𝑁𝑌 ′(Πℓ−1(𝐵)) = 𝑁𝑌 (𝐵) by definition of 𝑌 ′ and hence Πℓ−1(𝐵)
has less than (𝑑 − 𝜀′)ℓ𝑝ℓ𝑛2 joint neighbours in 𝑌 ′ because 𝐵 ∈ ℬ′ℓ(𝑥*) ⊆ ℬℓ. Accordingly
the family ℬℓ−1 of all projections Πℓ−1(𝐵) with 𝐵 ∈ ℬ′ℓ(𝑥*) is a family of size |ℬ′ℓ(𝑥*)| and
contains only (ℓ− 1)-sets 𝐵′ with

|𝑁𝑌 ′(𝐵′)| ≤ (𝑑− 𝜀′)ℓ𝑝ℓ𝑛2 ≤ (𝑑− 𝜀′)ℓ−1𝑝ℓ−1|𝑌 ′| = (𝑑− 𝜀′ℓ−1)ℓ−1𝑝ℓ−1|𝑌 ′|.

This means ℬℓ−1 ⊆ bad𝐺,ℓ−1
𝜀′ℓ−1,𝑑,𝑝

(𝑋1, 𝑌
′). Recall that (𝑋1, 𝑌

′) is (𝜀′9.12, 𝑑, 𝑝)-dense by the choice

of 𝑥*. Because |𝑋| = 𝑛1 ≥ 𝜉𝑝Δ−1𝑛 and

|𝑌 ′| ≥ (𝑑− 𝜀)𝑝𝑛2 ≥ (𝑑− 𝜀)𝑝 · 𝜉𝑝Δ−ℓ𝑛 = 𝜉ℓ−1𝑝
Δ−(ℓ−1)𝑛

we can appeal to 𝑃ℓ−1(𝜀′ℓ−1, 𝜇ℓ−1, 𝜀ℓ−1, 𝜉ℓ−1, 𝑝(𝑛)) and conclude that

|ℬ′ℓ(𝑥*)| = |ℬℓ−1| ≤ |bad𝐺,ℓ−1
𝜀′ℓ−1,𝑑,𝑝

(𝑋,𝑌 ′)| ≤ 𝜇ℓ−1𝑛
ℓ−1
1 ,

contradicting (9.55).
Because 𝐺 was arbitrary this shows that Γ has property 𝑃ℓ(𝜀′, 𝜇, 𝜀, 𝜉, 𝑝(𝑛)). Thus (𝒫ℓ) holds,

which finishes the proof of the inductive step.

Proof of Lemma 9.13

In this section we provide the proof of Lemma 9.13 which examines the inheritance of 𝑝-density
to neighbourhoods of Δ-sets. For this purpose we will first establish a version of this lemma,
Lemma 9.30 below, which only considers Δ-sets that are crossing in a given vertex partition.

We need some definitions. Let 𝐺 = (𝑉,𝐸) be a graph, 𝑋 be a subset of its vertices, and
𝑋 = 𝑋1∪̇ . . . ∪̇𝑋𝑇 be a partition of 𝑋. Then, for integers ℓ, 𝑇 > 0, we say that an ℓ-set 𝐵 ⊆ 𝑋
is crossing in 𝑋1∪̇ . . . ∪̇𝑋𝑇 if there are indices 0 < 𝑖1 < · · · < 𝑖ℓ < 𝑇 such that 𝐵 contains
exactly one element in 𝑋𝑖𝑗 for each 𝑗 ∈ [ℓ]. In this case we also write 𝐵 ∈ 𝑋𝑖1 × · · · ×𝑋𝑖ℓ

(hence identifying crossing ℓ-sets with ℓ-tuples).
Now let 𝑝, 𝜀, 𝑑 be positive reals, and 𝑌 , 𝑍 ⊆ 𝑉 be vertex sets such that 𝑋, 𝑌 , and 𝑍 are

mutually disjoint. Define
bad𝐺,ℓ

𝜀,𝑑,𝑝(𝑋1, . . . , 𝑋𝑇 ;𝑌, 𝑍)

to be the family of all those crossing ℓ-sets 𝐵 in 𝑋1∪̇ . . . ∪̇𝑋𝑇 that either satisfy |𝑁∩
𝑌 (𝐵)| <

(𝑑− 𝜀)ℓ𝑝ℓ|𝑌 | or have the property that (𝑁∩
𝑌 (𝐵), 𝑍) is not (𝜀, 𝑑, 𝑝)-dense in 𝐺. Further, let

Bad𝐺,ℓ
𝜀,𝑑,𝑝(𝑋1, . . . , 𝑋𝑇 ;𝑌,𝑍)

be the family of crossing ℓ-sets 𝐵 in 𝑋1∪̇ . . . ∪̇𝑋𝑇 that contain an ℓ′-set 𝐵′ ⊆ 𝐵 with ℓ′ > 0
such that 𝐵′ ∈ bad𝐺,ℓ′

𝜀,𝑑,𝑝(𝑋1, . . . , 𝑋𝑇 ;𝑌, 𝑍).
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Lemma 9.30. For all integers ℓ,Δ > 0 and positive reals 𝑑0, 𝜀′, and 𝜇 there is 𝜀 such that
for all 𝜉 > 0 there is 𝑐 > 1 such that if 𝑝 > 𝑐( log 𝑛

𝑛 )1/Δ, then the following holds a.a.s. for
Γ = 𝒢𝑛,𝑝. For 𝑛1, 𝑛3 ≥ 𝜉𝑝Δ−1𝑛 and 𝑛2 ≥ 𝜉𝑝Δ−ℓ−1𝑛 let 𝐺 = (𝑋∪̇𝑌 ∪̇𝑍,𝐸) be any tripartite
subgraph of Γ with |𝑋| = 𝑛1, |𝑌 | = 𝑛2, and |𝑍| = 𝑛3. Assume further that 𝑋 = 𝑋1∪̇ . . . ∪̇𝑋ℓ

with |𝑋𝑖| ≥ ⌊𝑛1
ℓ ⌋ and that (𝑋,𝑌 ) and (𝑌, 𝑍) are (𝜀, 𝑑, 𝑝)-dense pairs with 𝑑 ≥ 𝑑0. Then⃒⃒

bad𝐺,ℓ
𝜀′,𝑑,𝑝(𝑋1, . . . , 𝑋ℓ;𝑌, 𝑍)

⃒⃒
≤ 𝜇𝑛ℓ

1.

Proof. Let Δ and 𝑑0 be given. For a fixed 𝑛-vertex graph Γ, a fixed integer ℓ and fixed positive
reals 𝜀′, 𝜇, 𝜀, 𝜉, and a function 𝑝 = 𝑝(𝑛) we say that we say that a graph Γ on 𝑛 vertices has
property 𝑃ℓ(𝜀′, 𝜇, 𝜀, 𝜉, 𝑝(𝑛)) if Γ has the property stated in the lemma for these parameters
and for Δ and 𝑑0, that is, whenever 𝐺 = (𝑋∪̇𝑌 ∪̇𝑍,𝐸) is a tripartite subgraph of Γ with the
required properties, then 𝐺 satisfies the conclusion of the lemma. For any fixed ℓ > 0, we
denote by (𝒫ℓ) the following statement.

(𝒫ℓ) For all 𝜀′, 𝜇 > 0 there is 𝜀 such that for all 𝜉 > 0 there is 𝑐 > 1 such that a random
graph Γ = 𝒢𝑛,𝑝 with 𝑝 > 𝑐( log 𝑛

𝑛 )1/Δ has property 𝑃ℓ(𝜀′, 𝜇, 𝜀, 𝜉, 𝑝(𝑛)) with probability
1− 𝑜(1).

We prove that (𝒫ℓ) holds for every fixed ℓ > 0 by induction on ℓ.
The case ℓ = 1 is an easy consequence of Lemma 9.12 and Proposition 3.17. Indeed, let

𝜀′ and 𝜇 be arbitrary, let 𝜀9.12 be as asserted by Lemma 9.12 for Δ, 𝑑0, 𝜀′, and 𝜇/2 and fix
𝜀 := min{𝜀9.12, 𝜀

′, 𝜇/2}. Let 𝜉 be arbitrary and pass it on to Lemma 9.12 for obtaining 𝑐. Now,
let Γ = 𝒢𝑛,𝑝 be a random graph. Then, by the choice of parameters, Lemma 9.12 asserts that
the graph Γ has the following property with probability 1− 𝑜(1). Let 𝐺 = (𝑋∪̇𝑌 ∪̇𝑍,𝐸) be
any subgraph with 𝑋 = 𝑋1 and |𝑋| = 𝑛1, |𝑌 | = 𝑛2, and |𝑍| = 𝑛3, where 𝑛1, 𝑛3 ≥ 𝜉𝑝Δ−1𝑛
and 𝑛2 ≥ 𝜉𝑝Δ−2𝑛, and (𝑋,𝑌 ) and (𝑌,𝑍) are (𝜀, 𝑑, 𝑝)-dense pairs. Then there are at most 𝜇

2𝑛1

vertices 𝑥 ∈ 𝑋 such that (𝑁(𝑥) ∩ 𝑌, 𝑍) is not an (𝜀′, 𝑑, 𝑝)-dense pair in 𝐺. Because 𝜀 ≤ 𝜇/2,
Proposition 3.17 asserts that in every such 𝐺 there are at most 𝜇

2𝑛1 vertices 𝑥 ∈ 𝑋 with
|𝑁𝑌 (𝑥)| < (𝑑− 𝜀′)𝑝|𝑌 |. This implies that⃒⃒

bad𝐺,1
𝜀′,𝑑,𝑝(𝑋1;𝑌,𝑍)

⃒⃒
≤ 𝜇𝑛1

holds with probability 1− 𝑜(1) for all such subgraphs 𝐺 of the random graph Γ. Accordingly
we get (𝒫1).

For the inductive step assume that (𝒫ℓ−1) and (𝒫1) hold. We will show that this implies (𝒫ℓ).
Again, let 𝜀′ and 𝜇 be arbitrary positive constants. Let 𝜀1 be as promised in the statement
(𝒫1) for parameters 𝜀′1 := 𝜀′ and 𝜇1 := 𝜇/2. Set 𝜀′ℓ−1 := min{𝜀1, 𝜀′, 𝜇

4}, and let 𝜀ℓ−1 be given
by (𝒫ℓ−1) for parameters 𝜀′ℓ−1 and 𝜇ℓ−1 := 𝜇

4 . We define 𝜀 := 𝜀ℓ−1/(ℓ+ 1). Next, let 𝜉 be an
arbitrary parameter and choose

𝜉1 := min{𝜉/(ℓ+ 1), (𝑑0 − 𝜀′ℓ−1)ℓ−1𝜉} and 𝜉ℓ−1 := 𝜉/(ℓ+ 1). (9.56)

Finally, let 𝑐1 and 𝑐ℓ−1 be given by (𝒫1) and (𝒫ℓ−1), respectively, for the previously specified
parameters together with 𝜉1 and 𝜉ℓ−1. Set 𝑐 := max{𝑐1, 𝑐ℓ−1}. We will prove that with this
choice of 𝜀 and 𝑐 the statement in (𝒫ℓ) holds for the input parameters 𝜀′, 𝜇, and 𝜉. For this
purpose let Γ = 𝒢𝑛,𝑝 be a random graph. By (𝒫1) and (𝒫ℓ−1) and the choice of the parameters
the graph Γ has properties 𝑃1(𝜀′1, 𝜇1, 𝜀1, 𝜉1, 𝑝(𝑛)) and 𝑃ℓ−1(𝜀′ℓ−1, 𝜇ℓ−1, 𝜀ℓ−1, 𝜉ℓ−1, 𝑝(𝑛)) with
probability 1 − 𝑜(1). We will show that a graph Γ with these properties also satisfies
𝑃ℓ(𝜀′, 𝜇, 𝜀, 𝜉, 𝑝(𝑛)). Let 𝐺 = (𝑋∪̇𝑌 ∪̇𝑍,𝐸) be an arbitrary subgraph of such a Γ where
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𝑋 = 𝑋1∪̇ . . . ∪̇𝑋ℓ, |𝑋| = 𝑛1, |𝑌 | = 𝑛2, |𝑍| = 𝑛3, with 𝑛1, 𝑛3 ≥ 𝜉𝑝Δ−1𝑛, 𝑛2 ≥ 𝜉𝑝Δ−ℓ−1𝑛, and
|𝑋𝑖| ≥ ⌊𝑛1

ℓ ⌋, and assume that (𝑋,𝑌 ) and (𝑌,𝑍) are (𝜀, 𝑑, 𝑝)-dense pairs for 𝑑 ≥ 𝑑0.
We would like to bound ℬℓ := bad𝐺,ℓ

𝜀′,𝑑,𝑝(𝑋1, . . . , 𝑋ℓ;𝑌, 𝑍). For this purpose let 𝐵′ be a fixed
(ℓ− 1)-set and define

ℬℓ−1 := bad𝐺,ℓ−1
𝜀′ℓ−1,𝑑,𝑝

(𝑋1, . . . , 𝑋ℓ−1;𝑌, 𝑍) ∪ bad𝐺,ℓ−1
𝜀′ℓ−1,𝑑,𝑝

(𝑋1, . . . , 𝑋ℓ−1;𝑌,𝑋ℓ) (9.57a)

ℬ1(𝐵′) := bad𝐺,1
𝜀′,𝑑,𝑝(𝑋ℓ;𝑁∩

𝑌 (𝐵′), 𝑍). (9.57b)

For an ℓ-set 𝐵 ∈ 𝑋1×· · ·×𝑋ℓ let further Πℓ−1(𝐵) denote the (ℓ− 1)-set that is the projection
of 𝐵 to 𝑋1 × · · · ×𝑋ℓ−1 and let Πℓ(𝐵) be the vertex that is the projection of 𝐵 to 𝑋ℓ. Now,
consider an ℓ-set 𝐵 that is contained in 𝐵 ∈ ℬℓ but is such that 𝐵′ := Πℓ−1(𝐵) ̸∈ ℬℓ−1.
Let 𝑣 = Πℓ(𝐵) ∈ 𝑋ℓ and 𝑌 ′ := 𝑁∩

𝑌 (𝐵′). We will show that then 𝑣 ∈ ℬ1(𝐵′). Indeed, since
𝐵′ ̸∈ ℬℓ−1 it follows from (9.57a) that

𝐵′ ̸∈ bad𝐺,ℓ−1
𝜀′ℓ−1,𝑑,𝑝

(𝑋1, . . . , 𝑋ℓ−1;𝑌,𝑍)

and thus |𝑌 ′| ≥ (𝑑− 𝜀′ℓ−1)ℓ−1𝑝ℓ−1𝑛2. As 𝑁∩
𝑌 (𝐵) = 𝑁∩

𝑌 ′(𝑣) we conclude that

𝑣 ∈ bad𝐺,1
𝜀′,𝑑,𝑝(𝑋ℓ;𝑌 ′, 𝑍) = ℬ1(𝐵′)

by (9.57b) because otherwise (𝑁∩
𝑌 (𝐵), 𝑍) was (𝜀′, 𝑑, 𝑝)-dense and we had

|𝑁∩
𝑌 (𝐵)| ≥ (𝑑− 𝜀′)𝑝|𝑌 ′| ≥ (𝑑− 𝜀′)𝑝 · (𝑑− 𝜀′ℓ−1)ℓ−1𝑝ℓ−1𝑛2 ≥ (𝑑− 𝜀′)ℓ𝑝ℓ𝑛2,

which contradicts 𝐵 ∈ ℬℓ. Summarizing, we have

ℬℓ = {𝐵 ∈ ℬℓ : Πℓ−1(𝐵) ∈ ℬℓ−1} ∪ {𝐵 ∈ ℬℓ : Πℓ−1(𝐵) ̸∈ ℬℓ−1}
⊆ (ℬℓ−1 ×𝑋ℓ) ∪

⋃︁
𝐵′ ̸∈ℬℓ−1

{𝐵′} × ℬ1(𝐵′). (9.58)

For bounding ℬℓ we will thus estimate the sizes of ℬℓ−1 and ℬ1(𝐵′) for 𝐵′ ̸∈ ℬℓ−1. Let
𝑋 ′ := 𝑋1∪̇ . . . ∪̇𝑋ℓ−1. Since (𝑋,𝑌 ) is (𝜀, 𝑑, 𝑝)-dense we conclude from Proposition 3.16 that
(𝑋 ′, 𝑌 ) and (𝑋ℓ, 𝑌 ) are (𝜀ℓ−1, 𝑑, 𝑝)-dense pairs since 𝜀(ℓ+ 1) ≤ 𝜀ℓ−1. Further, by the choice of
𝜉ℓ−1 we get |𝑋 ′|, |𝑋ℓ| ≥ 𝑛1/(ℓ+ 1) ≥ 𝜉ℓ−1𝑝

Δ−1𝑛 since 𝑛1 ≥ 𝜉𝑝Δ−1𝑛 by assumption. Thus we
can use the fact that Γ has property 𝑃ℓ−1(𝜀′ℓ−1, 𝜇ℓ−1, 𝜀ℓ−1, 𝜉ℓ−1, 𝑝(𝑛)) once on the tripartite
subgraph induced on 𝑋 ′∪̇𝑌 ∪̇𝑍 in 𝐺 and once on the tripartite subgraph induced on 𝑋 ′∪̇𝑌 ∪̇𝑋ℓ

in 𝐺 and infer that
|ℬℓ−1| ≤ 2 · 𝜇ℓ−1𝑛

ℓ−2
1 =

𝜇

2
𝑛ℓ−2

1 . (9.59)

For estimating |ℬ1(𝐵′)| for 𝐵′ ̸∈ ℬℓ−1 let 𝑌 ′ := 𝑁∩
𝑌 (𝐵′). Observe that this implies that (𝑌 ′, 𝑍)

and (𝑋ℓ, 𝑌
′) are (𝜀1, 𝑑, 𝑝)-dense pairs because 𝜀′ℓ−1 ≤ 𝜀1, and that

|𝑌 ′| ≥ (𝑑− 𝜀′ℓ−1)ℓ−1𝑝ℓ−1𝑛2 ≥ (𝑑− 𝜀′ℓ−1)ℓ−1𝑝ℓ−1 · 𝜉𝑝Δ−ℓ−1𝑛
(9.56)

≥ 𝜉1𝑝
Δ−1𝑛.

By (9.56) |𝑋ℓ|, |𝑍| ≥ 𝜉𝑝Δ−1𝑛/(ℓ + 1) ≥ 𝜉1𝑝
Δ−1𝑛. As Γ satisfies 𝑃1(𝜀′1, 𝜇1, 𝜀1, 𝜉1, 𝑝(𝑛)) we

conclude that ⃒⃒
ℬ1(𝐵′)

⃒⃒ (9.57b)
= | bad𝐺,1

𝜀′,𝑑,𝑝(𝑋ℓ;𝑌 ′, 𝑍)| ≤ 𝜇1𝑛1 ≤
𝜇

2
𝑛1. (9.60)
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9.9 Proofs of auxiliary lemmas

In view of (9.58), combining (9.59) and (9.60) gives⃒⃒⃒
bad𝐺,ℓ

𝜀′,𝑑,𝑝(𝑋1, . . . , 𝑋ℓ;𝑌, 𝑍)
⃒⃒⃒

= |ℬℓ| ≤
𝜇

2
𝑛ℓ−1

1 · 𝑛1 + 𝑛ℓ−1
1 · 𝜇

2
𝑛1 = 𝜇𝑛ℓ

1.

Because 𝐺 was arbitrary this shows that Γ has property 𝑃ℓ(𝜀′, 𝜇, 𝜀, 𝜉, 𝑝(𝑛)). Thus (𝒫ℓ) holds
which finishes the proof of the inductive step.

In the proof of Lemma 9.13 we now first partition the vertex set 𝑋, in which we count bad
ℓ-sets, arbitrarily into 𝑇 vertex sets of equal size. Lemma 9.30 then implies that for all ℓ′ ∈ [ℓ]
there are not many bad ℓ′-sets that are crossing in this partition. It follows that only few ℓ-sets
in 𝑋 contain a bad ℓ′-set for some ℓ′ ∈ [ℓ] (recall that in Definition 9.9 for Bad𝐺,ℓ

𝜀,𝑑,𝑝(𝑋,𝑌, 𝑍)
such ℓ′-sets are considered). Moreover, if 𝑇 is sufficiently large then the number of non-crossing
ℓ-sets is negligible. Hence we obtain that there are few bad sets in total.

Proof of Lemma 9.13. Given Δ, ℓ, 𝑑0, 𝜀
′ and 𝜇 let 𝑇 be such that 𝜇𝑇 ≥ 2, fix 𝜇9.30 := 1

2𝜇/(ℓ𝑇
ℓ).

For 𝑗 ∈ [ℓ] let 𝜀𝑗 be given by Lemma 9.30 with ℓ replaced by 𝑗 and for Δ, 𝑑0, 𝜀′, and 𝜇9.30 and
set 𝜀9.30 := min𝑗∈[ℓ] 𝜀𝑗 . Define 𝜀 := 𝜀9.30/(𝑇 + 1). Now, in Lemma 9.13 let 𝜉 be given by the
adversary for this 𝜀. Set 𝜉9.30 := 𝜉/(𝑇 + 1), and let 𝑐 be given by Lemma 9.30 for this 𝜉9.30.

Let Γ = 𝒢𝑛,𝑝 with 𝑝 ≥ 𝑐( log 𝑛
𝑛 )1/Δ. Then a.a.s. the graph Γ satisfies the statement in

Lemma 9.30 for parameters 𝑗 ∈ [ℓ], Δ, 𝑑0, 𝜀′, 𝜇9.30, and 𝜉9.30. Assume that Γ has this property
for all 𝑗 ∈ [ℓ]. We will show that it then also satisfies the statement in Lemma 9.13.

Indeed, let 𝐺 and 𝑋, 𝑌 , 𝑍 be arbitrary with the properties as required in Lemma 9.13. Let
𝑋 = 𝑋1∪̇ . . . ∪̇𝑋𝑇 be an arbitrary partition of 𝑋 with |𝑋𝑖| ≥ ⌊𝑛1

𝑇 ⌋. We will first show that
there are not many bad crossing ℓ-sets with respect to this partition, i.e., we will bound the
size of Bad𝐺,ℓ

𝜀′,𝑑,𝑝(𝑋1, . . . , 𝑋𝑇 ;𝑌, 𝑍). By definition⃒⃒
Bad𝐺,ℓ

𝜀′,𝑑,𝑝(𝑋1, . . . , 𝑋𝑇 ;𝑌,𝑍)
⃒⃒
≤
∑︁
𝑗∈[ℓ]

⃒⃒
bad𝐺,𝑗

𝜀′,𝑑,𝑝(𝑋1, . . . , 𝑋𝑇 ;𝑌,𝑍)
⃒⃒
· 𝑛ℓ−𝑗

1 .

Now, fix 𝑗 ∈ [ℓ] and an index set {𝑖1, . . . , 𝑖𝑗} ∈
(︀
[𝑇 ]
𝑗

)︀
and consider the induced tripartite

subgraph 𝐺′ = (𝑋 ′∪̇𝑌 ∪̇𝑍,𝐸′) of 𝐺 with 𝑋 ′ = 𝑋𝑖1∪̇ . . . ∪̇𝑋𝑖𝑗 . Observe that |𝑌 | ≥ 𝜉9.30𝑝
Δ−𝑗−1𝑛,

|𝑍| ≥ 𝜉9.30𝑝
Δ−1𝑛, and 𝑛′1 := |𝑋 ′| ≥ 𝑗⌊𝑛1/𝑇 ⌋ ≥ 𝜉9.30𝑝

Δ−1𝑛. By definition 𝜀(𝑇+1)/𝑗 ≤ 𝜀9.30 ≤ 𝜀𝑗
and so by Proposition 3.16 the pair (𝑋 ′, 𝑌 ) is (𝜀𝑗 , 𝑑, 𝑝)-dense. Thus, because Γ satisfies the
statement in Lemma 9.30 for parameters 𝑗, Δ, 𝑑, 𝜀′, 𝜇9.30, and 𝜉9.30 we have that 𝐺′ satisfies⃒⃒

bad𝐺′,𝑗
𝜀′,𝑑,𝑝(𝑋𝑖1 , . . . , 𝑋𝑖𝑗 ;𝑌, 𝑍)

⃒⃒
≤ 𝜇9.30(𝑛′1)𝑗 .

As there are
(︀
𝑇
𝑗

)︀
choices for the index set {𝑖1, . . . , 𝑖𝑗} this implies

⃒⃒
bad𝐺,𝑗

𝜀′,𝑑,𝑝(𝑋1, . . . , 𝑋𝑇 ;𝑌, 𝑍)
⃒⃒
≤
(︂
𝑇

𝑗

)︂
𝜇9.30(𝑛′1)𝑗 ≤ 𝑇 𝑗𝜇9.30𝑛

𝑗
1,

and thus ⃒⃒
Bad𝐺,ℓ

𝜀′,𝑑,𝑝(𝑋1, . . . , 𝑋𝑇 ;𝑌,𝑍)
⃒⃒
≤
∑︁
𝑗∈[ℓ]

𝑇 𝑗𝜇9.30𝑛
𝑗
1 · 𝑛ℓ−𝑗

1 ≤ 1
2
𝜇𝑛ℓ

1.

The number of ℓ-sets in 𝑋 that are not crossing with respect to the partition 𝑋 = 𝑋1∪̇ . . . ∪̇𝑋𝑇

is at most 𝑇
(︀
𝑛1/𝑇

2

)︀(︀
𝑛1

ℓ−2

)︀
≤ 1

𝑇 𝑛
ℓ
1 ≤ 1

2𝜇𝑛
ℓ
1 and so we get |Bad𝐺,ℓ

𝜀′,𝑑,𝑝(𝑋,𝑌, 𝑍)| ≤ 𝜇𝑛ℓ
1.
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Chapter 10

Concluding remarks

In this thesis we established a variety of results concerning spanning or almost spanning
subgraphs (Chapter 8 is an exception) that are forced by different degree conditions.

In the introductory paragraphs on extremal graph theory in the introduction (Section 1.1.1),
we also discussed classical results on the appearance of constant size subgraph in dense graphs.
This raises the question, what happens in between. For example, one may ask which minimum
degree ensures a copy of a graph 𝐻 in 𝐺 where 𝐻 covers, say, 42% of 𝐺.

The Theorem of Corrádi and Hajnal (in a more general form than Theorem 1.3) answers
this question for triangle factors. This result asserts that every graph 𝐺 with minimum
degree 𝛿(𝐺) ≥ 2𝑘 contains 𝑘 vertex disjoint cycles. In particular this implies that a triangle
factor on 3(2𝛿 − 𝑛) vertices is forced if 𝐺 has minimum degree 𝛿.

Theorem 10.1 (Corrádi, Hajnal [26]). Let 𝐺 be a graph on 𝑛 vertices with minimum degree
𝛿(𝐺) = 𝛿 ∈ [12𝑛,

2
3𝑛]. Then 𝐺 contains 2𝛿 − 𝑛 vertex disjoint triangles.

At the other end of the spectrum we know from Theorem 1.6 that a spanning triangle factor
appears at (roughly) the same minimum degree threshold as a spanning square of a path.

While the theorem of Corrádi and Hajnal determines the number 𝑡 of disjoint triangles
that are forced in a graph with minimum degree 𝛿𝑛 we (in joint work with Allen and
Hladký [5]) recently established a corresponding result mediating between Turán’s theorem
and Theorem 1.6 (or Pósa’s conjecture). More precisely, we determine the relationship between
𝛿(𝐺) = 𝛿𝑛 and the length 𝑝 of a square-path 𝑃 2

𝑝 (and a square-cycle 𝐶2
𝑝) that is forced in 𝐺.

In contrast to Theorem 10.1 which states that 𝑡 grows linearly with 𝛿 (when 𝑛 is fixed) our
main result implies that 𝑝 as a function of 𝛿 behaves very differently: it is piece-wise linear
but jumps at certain points (see Figure 10.1).

In order to quantify this precisely we need some (rather technical appearing) definitions.
Given two positive integers 𝑛 and 𝛿 with 𝛿 ∈ (1

2𝑛, 𝑛− 1], we define rp(𝑛, 𝛿) to be the largest
integer 𝑟 such that 2𝛿 − 𝑛 < ⌊𝛿/𝑟⌋. We let rc(𝑛, 𝛿) be the smallest integer 𝑟 such that
2𝛿 − 𝑛 ≥ 𝛿/(𝑟 + 1). We then define the number sp(𝑛, 𝛿) by

sp(𝑛, 𝛿) := min
{︂⌈︂

3
2

⌈︂
𝛿

rp(𝑛, 𝛿)

⌉︂
+

1
2

⌉︂
, 𝑛

}︂
,

and the number sc(𝑛, 𝛿) ≤ sp(𝑛, 𝛿) by

sc(𝑛, 𝛿) := min
{︂⌊︂

3
2

⌈︂
𝛿

rc(𝑛, 𝛿)

⌉︂⌋︂
, 𝑛

}︂
.

To understand where these numbers come from, consider the graph 𝐺 on 𝑛 vertices consisting
of an independent set of size 𝑛− 𝛿 and 𝑟 cliques that share the remaining vertices as equally
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Figure 10.1: The behaviour of sp(𝑛, 𝛿).

as possible, and that has all edges running between the independent set and any clique. Then
it is not difficult to see that rp(𝑛, 𝛿) is the biggest integer 𝑟 such that the graph 𝐺 constructed
in this way has minimum degree 𝛿 and sp(𝑛, 𝛿) is the length of a longest square-path in 𝐺 for
this 𝑟. In fact, our theorem states that this class of graphs provides (up to minor modifications)
precisely the extremal graphs for the containment of square-paths at a particular minimum
degree. Similar examples show that sc(𝑛, 𝛿) is the maximum length of a square-cycle in a
graph on 𝑛 vertices that is forced at minimum degree 𝛿.

Komlós, Sarközy, and Szemerédi [64] proved the Pósa conjecture (Conjecture 1.5) for large
values of 𝑛 (see Section 1.1.1, page 4). Their proof actually asserts the following stronger
result.

Theorem 10.2 (Komlós, Sarközy, Szemerédi [64]). There exists an integer 𝑛0 such that for
all integers 𝑛 > 𝑛0 the following holds. Suppose 𝐺 is a graph of order 𝑛 and minimum degree
at least 2𝑛/3. Then 𝐺 contains the square 𝐶2

3ℓ of a cycle of length 3ℓ for any 3 ≤ 3ℓ ≤ 𝑛.
Furthermore, if 𝛿(𝐺) ≥ (2𝑛+ 1)/3 then 𝐺 contains 𝐶2

ℓ for any ℓ ∈ [𝑛] ∖ {1, 2, 5}.
This theorem guarantees square-cycles of all lengths between 6 and 𝑛 (curiously, the case

ℓ = 5 has to be excluded, because 𝐶5
ℓ = 𝐾5, a graph with chromatic number 5). Similarly,

our result guarantees square-cycles of length 3ℓ for all ℓ ≤ sc(𝑛, 𝛿). Furthermore, if any
square-cycle with length not divisible by 3 is excluded from 𝐺, then we are even guaranteed
much longer square-cycles in 𝐺.

Theorem 10.3 (Allen, Böttcher, Hladky [5]). For any 𝜈 > 0 there exists an integer 𝑛0 such
that for all integers 𝑛 and 𝛿 with 𝑛 > 𝑛0, 𝛿 ∈ (𝑛/2 + 𝜈𝑛, 𝑛− 1] the following holds. Suppose 𝐺
is a graph of order 𝑛 and with minimum degree 𝛿(𝐺) ≥ 𝛿. Then 𝑃 2

sp(𝑛,𝛿) ⊆ 𝐺 and for any ℓ ∈ N
with ℓ ≤ sc(𝑛, 𝛿)/3, 𝐶2

3ℓ ⊆ 𝐺. Furthermore, either 𝐶2
ℓ ⊆ 𝐺 for every ℓ ∈ {3, 4} ∪ [6, sc(𝑛, 𝛿)]

or 𝐶2
3ℓ ⊆ 𝐺 for every integer ℓ ≤ 2𝛿 − 𝑛− 𝜈𝑛.
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Similar phenomena were observed for simple cycles in [4]. Obtaining higher-chromatic
analogues appears to be more difficult. We believe that this theorem (and such higher
chromatic analogues) may turn out useful when proving corresponding results for bounded-
degree graphs with sublinear bandwidth, in the same spirit as the minimum degree threshold
for spanning path powers provided by Theorem 5.6 was essential in the proof of Theorem 5.1.
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lemma. Random Structures Algorithms, 12(3):297–312, 1998.
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[73] D. Kühn and D. Osthus. The minimum degree threshold for perfect graph packings.
Combinatorica, 29:65–107, 2009.
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[85] V. Rödl and A. Ruciński. Perfect matchings in 𝜖-regular graphs and the blow-up lemma.
Combinatorica, 19(3):437–452, 1999.
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