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Zusammenfassung
Gefäÿerkrankungen, darunter Atherosklerose und Aneurysmen, zählen zu

den häu�gsten Todesursachen in den westlichen Industrienationen. Mecha-
nische Einwirkungen auf die Arterienwand spielen für die Entstehung und den
Verlauf dieser Krankheiten eine groÿe Rolle; biomechanische Fragestellungen
im Kontext der Blutgefäÿe stellen daher ein vielbeachtetes Forschungsgebiet
dar. Die Arterienwand ist jedoch äuÿerst komplex aufgebaut. Ihre mecha-
nischen Eigenschaften sind durch erhebliche Nicht-Linearität gekennzeichnet,
verursacht durch groÿe Deformationen und Dehnungen, sowie materielle Inho-
mogenität, Anisotropie und Viskoelastizität. Zudem ist die Arterienwand leben-
des Gewebe, das sich kontinuierlich an seine physiologische Umgebung anpasst;
diese Anpassungsphänomene werden als Wachstum und Remodeling bezeichnet.

Die vorliegende Arbeit beschäftigt sich mit einem Finite-Elemente Ansatz
zur Modellierung der Arterienwand mit all ihren komplexen Eigenschaften,
sowie mit der Simulation patientenspezi�scher Arterien-Geometrien. In der
neueren biomechanischen Forschung wird vermehrt an solchen patientenspezi-
�schen, durch medizinische Bildgebung erhaltenen Geometrien gearbeitet, um
weitere Erkenntnisse zum Ein�uss interindividueller Merkmale auf vaskuläre
Erkrankungen zu erlangen. Diese Simulationen sind jedoch aufgrund der Kom-
plexität der Geometrie und der Arterienwandstruktur äuÿerst anspruchsvoll.

Beim Einsatz der Finite-Elemente-Methode muss berücksichtigt werden, dass
klassische verschiebungsbasierte Elemente in Fällen mit inkompressiblem Ma-
terial und dominierender Biegedeformation unzufriedenstellende Ergebnisse lie-
fern. Um diese �Locking-Phänomene� zu beheben, existieren eine Reihe von
unterschiedlichen Ansätzen. In dieser Arbeit werden die �Assumed Natural
Strain�-Methode, die �Discrete Strain Gap�-Methode, sowie die �Enhanced As-
sumed Strain�-Methode ausgeführt und kombiniert, um einen Satz von e�zien-
ten Elementen zur Verfügung zu stellen, die eine korrekte Berechnung der dün-
nwandigen, inkompressiblen Arterienwand erlauben. Hierzu zählen 8-knotige
Hexaeder und deren spezielle dünnwandige �Solid-Shell�-Variante, sowie 6-kno-
tige dünnwandige Prismenelemente. Die Leistungsfähigkeit dieser Elemente
wird anhand einschlägiger Benchmark-Beispiele dokumentiert.

Darüber hinaus werden Materialgesetze beschrieben, die sich hinsichtlich
Inkompressibilität, Anisotropie und Viskoelastizität zur Modellierung des Ar-
teriengewebes eignen. Hierzu zählen etablierte anisotrope Modelle auf der Ba-
sis von Struktur-Tensoren, ein mikrostrukturell motiviertes anisotropes Konti-
nuums-Modell auf Basis eines Netzwerks von Molekülketten, sowie die Erwei-
terung auf Viskoelastizität.

Im Anschluss werden Remodeling-Ansätze vorgestellt, die eine Anpassung
der Mikrostruktur des Gewebes im Sinne einer veränderlichen Orientierung der
Fasern berücksichtigen. Zwei verschiedene Ansätze werden implementiert und
ihre Leistungsfähigkeit anhand mehrerer Beispiele getestet; diese Beispiele rei-
chen von einfachen idealisierten Gewebemodellen bis hin zu komplexeren Blut-
gefäÿverzweigungen.

Schlieÿlich werden diese drei methodischen Ansätze, dreidimensionale e�-
ziente Elementtechnologie, anspruchsvolle Materialgesetze und Remodeling-An-
sätze, innerhalb des institutseigenen Codes zusammengesetzt, um damit pa-
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tientenspezi�sche Geometrien zu analysieren. Die Geometrie der Arterienwand
muss hierzu jedoch zunächst über eine Extrusion der Wandober�äche erzeugt
werden, da die Wand selbst nicht durch bildgebende Verfahren erfassbar ist.
Die Extrusion wird dahingehend optimiert, dass zusätzliche Informationen aus
der sogenannten Centerline der Gefäÿe verwendet werden. Dadurch kann die
physiologisch variable Wanddicke in Abhängigkeit des jeweils lokalen Gefäÿ-
durchmessers erzeugt werden; zudem wird die Orientierung der Faseranteile
bezüglich der Centerline angesetzt, um die entlang des Gefäÿverlaufs gewun-
denen Faserstrukturen realistisch abzubilden. Zusammen mit dem vorgestellten
Remodeling-Ansatz ergibt sich ein realistisches Arterienwandmodell.

Die vorgeschlagene Modellierung wird anhand zweier komplexer patienten-
spezi�scher Beispiele demonstriert, einem Aortenbogen sowie einer iliakalen
Verzweigung. Dadurch wird ein Ansatz bereitgestellt, mit dem in zukünftigen
Studien auf e�ziente Weise eine Reihe von patientenspezi�schen Simulationen
durchgeführt werden können, anhand derer sich Korrelationen mit klinischen
und experimentellen Daten ermitteln lassen. Eine derartige Herangehensweise
erscheint vielversprechend, um das Verständnis von Gefäÿerkrankung weiter
voranzutreiben.



Summary
Cardiovascular diseases including atherosclerosis and aneurysm are the lead-

ing cause of human mortality in the western world. The interrelation of the onset
and development of such diseases with mechanical forces acting on and within
the arterial wall represents a research �eld of eminent interest. The arterial wall
is a highly complex tissue characterized by a sophisticated microstructure. Its
structural response exhibits strong nonlinearity, re�ected by large deformations
and strains, material inhomogeneity, anisotropy and viscoelasticity. Moreover,
it is a living structure which permanently adapts to its physical environment,
phenomena known as growth and remodeling.

The present thesis is concerned with a �nite element approach that is suit-
able to model the arterial wall with all its complexities. A recent advance
in biomechanical research is the mechanical simulation of patient-speci�c geo-
metric models acquired by medical image technology with the aim of studying
inter-individual di�erences to further understand vascular diseases. The simu-
lation of such patient-speci�c arterial wall structures is computationally highly
demanding. Challenges stem from the inevitably three-dimensional modeling
and the advanced material characteristics of the wall.

Standard three-dimensional elements are known to re�ect poor performance
within incompressible and bending-dominated problems. A set of e�cient and
accurate elements is proposed, including hexahedrons, 8-node solid-shells and
wedge-shaped solid-shells, which take the thin-walled shape and incompressibil-
ity of the arterial wall into account. To tackle various locking phenomena, meth-
ods like the Assumed Natural Strain method, the Discrete Strain Gap method,
and the Enhanced Assumed Strain method are reviewed and combined. Pop-
ular benchmark examples are presented to demonstrate their performance. In
addition, constitutive laws which consider characteristics like incompressibil-
ity, anisotropy and viscoelasticity for the arterial wall are examined. This in-
cludes popular anisotropic laws based on structural tensors, a microstructurally
motivated anisotropic Continuum Chain Network model, and the extension to
viscoelasticity. Next, recent remodeling approaches in terms of �ber reorienta-
tion are presented. Two di�erent approaches are implemented and evaluated in
several examples ranging from idealized arterial vessels to bifurcation examples.

Finally, these three methodologies, advanced element technology, sophisti-
cated constitutive laws, and remodeling approaches are combined within our
in-house software framework to analyze patient-speci�c wall structures. The
application to these geometries requires the generation of the wall which is not
available from medical imaging. Enhancing modeling strategies are employed
based on the vessels' centerline to generate a physiologically varying wall thick-
ness determined by the local diameter and a realistic winding of the �ber pattern
along the vasculature. Combined with subsequent remodeling, a considerably
realistic arterial wall model is obtained as demonstrated by two examples con-
taining the aortic arch and the iliac bifurcation, each with branching vessels.

The proposed approach is envisioned to enable multiple further patient-
speci�c simulations. The resulting data could then be correlated with clinical
and experimental �ndings with the aim of further deepening the understanding
of vascular diseases.
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1. Introduction to Arterial

Wall Mechanics

This thesis is concerned with the arterial wall and a computational mechan-
ics approach to assess its structural stress state with the help of nonlinear
�nite element methods. This includes advanced �nite element technology to
prevent well-known locking phenomena, state-of-the-art material modeling tak-
ing anisotropy, microstructure, and viscoelasticity into account, consideration
of remodeling in the sense of mechanically motivated �ber reorientation, and a
number of modeling strategies to generate a sophisticated, realistic and patient-
speci�c arterial wall geometry. To set the stage, we will �rst give an overview of
constitution, structural and disease characteristics of the wall, and subsequently
review the literature on computational approaches to the topic. Finally, the ob-
jectives of the present work are summarized.

1.1 Constitution of the Artery and Related Dis-

eases

The heart is the central pump of the cardiovascular system and a vast number
of arteries carry the oxygen rich blood from the heart to the peripheral regions
and the veins transport deoxygenated blood from these peripheral regions back
to the heart. The arterial vessels are organized into an arterial tree, where
the aorta as a single systemic artery emerges from the heart and successively
branches into hundreds of arteries of progressively smaller caliber. The arteries
thereby serve two functions, �rst they are conduits for blood �ow and second
they form a pressure reservoir. About three-quarters of the blood volume resides
in veins at low transmural pressure and one-quarter resides in arteries at high
transmural pressure.

To ful�ll these functions at the high pulsatile pressure regime the arteries
have to sustain considerable mechanical in�uence. Their structure is quite com-
plex consisting of several layers with di�erent functions and constituents. The
main components of the vessel wall are: endothelium, smooth muscle cells, elas-
tic tissue, collagen, and connective tissue. Associated with arterial branches
and bifurcations macro- and microstructural changes can be observed, for in-
stance a signi�cant increase in thickness at branch ostium or bifurcation apex
of arterial walls has been observed (Thubrikar [301]). Furthermore, the �brous
microstructure changes leading to additional strength of the wall at these lo-
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cations. These regions seem to play a key role in vascular mechanics, not only
from a hemodynamic point of view inducing �ow perturbations, but also from
a structural point of view bearing signi�cant stress concentrations. Important
sources of information about the biomechanics of the cardiovascular system are
the books of Humphrey [152], Fung [104, 105], Thubrikar [301], and McDonald
[210].

Collagen is the most abundant protein in mammals and also the ubiquitous
load-bearing element in soft tissue (Fratzl [95, 96]). It confers mechanical stabil-
ity, strength and toughness to a range of tissues from tendons and ligaments, to
skin, cornea, bone and dentin. Its structural characteristic varies from highly
elastic to brittle sti�. Collagen gains its versatility mostly by modifying its
hierarchical structure, where the basic building block is the collagen �bril, a
�ber with a thickness of ∼ 50− 300 nm. The other load-carrying protein in the
arterial wall is elastin which is much more �exible than collagen and can sustain
large stresses and strains. It shows an almost linear stress response over a large
strain range.

Both collagen and elastin are synthesized by smooth muscle cells. They are
the living components of the wall and control blood �ow by vasoconstriction
and vasodilatation. Furthermore, they are responsible for restoring the struc-
tural components during the remodeling process. Here, the term remodeling is
understood as reorganization of existing and/or synthesizing new constituents
such as collagen resulting in a di�erent composition of the tissue. The term
remodeling is used inconsistently in the literature and we refer to Chapter 5 for
a detailed discussion of its de�nition. In the present work we focus on the pas-
sive response of the arterial wall. Active contributions by contraction of smooth
muscle cells are thus not considered.

The arteries are arranged in three concentric layers, or tunics: the innermost
tunica intima, the middle tunica media, and the outermost tunica adventitia,
as described in the following, see also Fig. 1.1.

1.1.1 Arterial Wall Layers

Intima The intima consists of a monolayer of 0.2 to 0.5 µm thick endothelial
cells held on a 1 µm thick basal membrane mostly made of collagen. The intima
of a healthy artery has a negligible structural role because it is very thin. It is
a nonclotting interface with blood and serves as gateway for molecule transport
to and from the bloodstream. A variably thick internal elastic lamina usually
serves as a prominent boundary between the intima and the media.

Media The media begins at the internal elastic lamina that lines the intima
and extends to an external elastic lamina next to the adventitia. Both these
laminae are perforated sheets of melded elastic �bers that permit the transmural
transfer of water, nutrients, and electrolytes as well as cellular communication
between adjacent arterial tunics. The external elastic lamina is less prominent
in muscular arteries and does not exist in cerebral arteries.

The media consists of concentric patterns of elastic �bers and smooth mus-
cle cells. In an elastic artery, the pattern consists of elastic lamellar units or
muscular-elastic fascicles whose number and thickness vary along the vascular
tree (up to 60, about 15 µm thick in the thoracic aorta; up to 30, about 20 µm
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Fig. 1.1: Structural arrangement of the arterial wall, adapted from Seeley et al. [262].

thick in the abdominal aorta). Each unit can be seen as layers of smooth mus-
cle cells separated by 3 µm-thick fenestrated sheets of elastic �bers forming a
continuous �brous helix. The pitch of the helix within the media is usually
small leading to an almost circumferential and coherent orientation. Woven
in between the elastin sheets are bundles of tiny collagen �brils. Proceeding
from elastic to muscular arteries, the concentric layers become predominantly
muscular, including up to three dozen layers of smooth muscle cells, although
elastic layers also tend to be present in arteries of the arms and legs. Like elastic
layers, collagenous �bers are reduced in favor of muscle.

Adventitia The adventitia makes up about 10% of the wall thickness in an
elastic artery and considerably more in a muscular artery. It is surrounded by
loose perivascular tissue sometimes tethering the arterial wall. The adventitial
layer is essentially a dense network of collagen �bers interspersed with �brob-
lasts, elastic �bers, nerves, and vasa vasorum, tiny vessels providing the vessel's
own blood supply. The collagen �bers in the adventitia are longitudinally ori-
ented where individual collagen �bers show a large deviation from the mean
orientation. Interestingly, the adventitia is almost absent in cerebral arteries.

Altogether, the media and adventitia provide the arterial wall with enough
strength to prevent overdilatation under physiologic load. There seems to be no
signi�cant di�erence in the distribution of collagen in both media and adventitia
of normal and atherosclerotic arteries.
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1.1.2 Common Arterial Wall Diseases

Generally, homogeneous, di�use proliferation of intimal cells is observed with
age (hyperplasia). This results in an increase of extracellular matrix containing
mainly dispersed collagen �bers � thus a sti�ening of the wall (arteriosclero-
sis1).

Atherosclerosis In the common disease of atherosclerosis intimal compo-
nents thicken and sti�en locally together with deposition of fatty substances,
calcium, collagen �bers, cellular waste products, and �brin. Atherosclerosis
usually a�ects medium and large arteries and often develops near branches, bi-
furcations or curves and most prominent locations are the carotid bifurcation
and the abdominal aorta. A complex manifestation of biomechanical and bio-
chemical events leads to the development of lesions, known as atherosclerotic
plaque. Tissue overgrowth damages the endothelium and reduces or even blocks
blood �ow. If this occurs in the coronary arteries, it can cause ischemic heart
disease. The advanced plaque may induce thrombi which may become instable
leading to rupture and emboli. This is a major cause of stroke and myocardial
infarction. These diseases are considered as major cause of human mortality in
the western world.

Aneurysms An aneurysm is de�ned as focal dilatation of the arterial wall. Its
initial dilatation is nowadays regarded to be caused in part by degeneration of a
portion of the wall such as medial elastin and smooth muscle cells. Aneurysms
are often associated with atherosclerosis and hypertension, but traumatic in-
juries, chronic lung diseases, genetic disorders, gender, and smoking are risk
factors as well. The two most common types are abdominal aortic aneurysms
(AAA) occurring in the infrarenal aorta, and intracranial aneurysms (IA) oc-
curring in or near the circle of Willis, the major network supplying oxygen
and nutrients to the brain. The natural history of aneurysms consists of three
phases: pathogenesis, enlargement, and rupture which lead to spontaneous and
often lethal hemorrhage. In Fig. 1.2 two histological sections are depicted com-
paring a healthy and a diseased arterial wall.

Fatigue hypothesis for pathogenesis Both diseases are characterized by
a structural change in the arterial wall. Thubrikar [301, 304] establishes an
intriguingly simple hypothesis for the pathogenesis of atherosclerosis and aneu-
rysms as a result of failure of the artery from fatigue in the region of stress-
concentration. Some of the observed features leading to this hypothesis are

� Atherosclerotic plaques occur at branches and bifurcation where stress-
concentration occurs.

� Atherosclerosis increases with increasing mean pressure and pulse pressure
and is reduced by lowering mean pressure and heart rate (e.g. β-blocker
treatment).

1arteriosclerosis means any of a group of diseases characterized by thickening and loss of
elasticity of the arterial walls, where one prominent type is atherosclerosis (Dorland [71]).
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Adventitia Intima Inflammatory cellsFatty plaqueMedia

Fig. 1.2: Histological sections of healthy (left) and diseased (right) abdominal aorta,
obtained from C. Reeps, Chirurgische Klinik, Gefäÿchirurgie, Klinikum Rechts der
Isar, Technische Universität München.

� Atherosclerosis does not occur in arteries with pressure below a certain
threshold such as pulmonary arteries or veins.

The cellular mechanism is supposed to be related to a high cyclic tension of the
smooth muscle cells particularly at stress-concentration regions and therefore
to an injury by damaging cell-to-cell connections. This results in a stimulated
SMC proliferation, promoted by penetration lipoproteins or risk factors like
hypertension, diabetes, smoking, etc. On the other hand, injury to SMC may
result in cell death as an initial step in the development of aneurysms. Thus, the
common key factor of vascular disease is hypothesized to be the stress-induced
fatigue damage of SMC and the onset of atherosclerosis or aneurysm is di�er-
entiated by the ability of their proliferation. Several convincing observations
con�rming this hypothesis are elaborated in Thubrikar [301]. By all means
this hypothesis emphasizes the need for a comprehensive examination of in-vivo
stress-state.

1.2 Structural Characteristics of the Arterial Wall

Arterial wall tissue is characterized by a macroscopic mechanical response that
is highly nonlinear, incompressible, anisotropic, and (in)elastic. The arterial
wall is understood as a composite structure of individual tissue components, in
particular elastin and collagen, and an amorphous, gel-like, ground substance
consisting mostly of water. The overall nonlinear response has been �rst iden-
ti�ed by Roach and Burton [248] who isolated the contribution of elastin and
collagen. They found that the response of the arterial wall to low tension is
similar to that of elastin, while the response to high tension follows the charac-
teristic sti�ening of collagen. The load transfer from elastin to collagen is strain
dependent and a gradual recruitment of collagen �bers results in signi�cant
sti�ening at higher but still physiological blood pressure. The precise connec-
tion between elastin and collagen �bers is still unclear (Hayashi et al. [133]).
The contribution of the aligned collagen �bers leads to considerable anisotropy,
while the high content of water implicates incompressibility of the tissue.
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Overall, arterial walls behave in an elastic manner; however several inelas-
tic phenomena are also present. Arteries exhibit hysteresis under cyclic load-
ing and relaxation under constant load, representing viscoelastic e�ects. High
strain rates give sti�er response, but such strain rate dependency is not very
pronounced and hysteresis stays constant across several decades of strain rate.
In vitro tests of arterial tissue also show a pronounced stress softening in the
�rst few load cycles. Similar behavior occurs in rubber (`Mullins e�ect') and un-
coiling of the polymeric chains is thought to play a key role. After several load
cycles (pre-conditioning) a repeatable stress-strain relation is observed. Fur-
ther inelastic e�ects of damage and failure arise above the physiological loading
range which may occur during medical treatments like angioplasty. In a dis-
eased state of atherosclerosis, the involved plaques lead to signi�cant alterations
in the structural properties of the wall (Holzapfel et al. [143]).

A feature of paramount importance for characterizing the biomechanics of
the arteries is the prestress in the unloaded con�guration. For the de�nition
of stress, strain, sti�ness, and material symmetry, the identi�cation of the ap-
propriate reference con�guration is essential. However, as noted by Fung [101],
for soft tissue the existence of a single natural con�guration is unlikely, because
they grow and remodel and therefore undergo continuous irreversible structural
changes. The arterial wall thus contains residual stresses which vary with loca-
tion, age and disease. Two major prestress phenomena, the axial prestress and
the circumferential prestress characterize the gross residual stresses within the
artery. Most arteries are signi�cantly stretched in axial direction in the basal
in vivo state which is recognized by contraction of about 50% upon excision.
Han and Fung [120] report in situ axial stretch in porcine and canine aortas,
increasing from 1.2 near the aortic arch to 1.6 near the iliac bifurcation. Very
recently, Humphrey et al. [153] pointed out the fundamental role of axial stress
in compensatory arterial adaptations resulting for instance from increased blood
pressure.

The second circumferential prestress e�ect is associated with a `spring-open'
of a radial cut arterial ring. Fung [103] and Vaishnav and Vossoughi [313]
independently presented the �nding that excised, intact, unloaded arterial rings
open up in response to a radial cut. This implies residual stresses of bending
type where the inner wall of the unloaded ring is in compression and the outer
wall in tension. Light microscopy con�rms this observation as the internal
elastic lamina presents a certain waviness in the unloaded intact state indicating
compression. It is suggested that an opening angle can serve as single measure of
the residual strain, as a single radial cut captures most of the associated residual
strain independently of the position of the cut (Chuong and Fung [56], Han and
Fung [120]). However, as reported by Greenwald et al. [116] and Holzapfel et al.
[142] pronounced di�erences in the pre-stretch of individual wall layers exist. For
example, adventitias from aortic rings become �at, intimas open only slightly
and medias spring open by more than 180°. Liu and Fung [197, 198] report
detailed results on opening angles in arteries varying along the vascular tree.
They compare calculations of circumferential stretch with and without taking
residual strains into account resulting in signi�cant di�erences. Matsumoto and
Hayashi [209] show that the opening angle increases in hypertensive vessels of
rat thoracic aorta. It is assumed that such residual strains homogenize the stress
and/or strain within the arterial wall at in vivo loading conditions. Del�no et
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al. [64] were among the �rst who considered residual strains at a more complex
location of the carotid bifurcation by means of a �nite element analysis. We
will address the issue of residual strains and stresses at several points in the
remainder of the present work.

1.3 Review of Computational Modeling in Vas-

cular Mechanics

Computational technology provides powerful tools to investigate the biome-
chanical behavior of the vascular system (Steinmann et al. [278]). In this
section a literature overview on recent computational advances improving the
understanding of the healthy and diseased vascular system with emphasis on
atherosclerosis and aneurysm is presented. Research in this �eld is based on the
widely accepted assumption that cells sense and respond to their biomechanical
environment which is thought to play a key role in the progression and devel-
opment of arterial diseases. Furthermore, clinical intervention strategies often
depend on biomechanical factors and computational techniques can also in this
regard help to improve such treatments and device designs.

Research is abundant in this fast growing �eld of scienti�c inquiry, with pa-
pers ranging from clinical to experimental and from analytical to computational
approaches. Below, we focus on advanced computational approaches rather
than experimental and clinical studies. The reader may also consult the fol-
lowing review articles for further references: Steinmann et al. [278], Humphrey
and Taylor [156], Vorp [320], Duraiswamy et al. [77], Holzapfel et al. [144], as
well as the chapters of Taylor [293] and Holzapfel [138] in the `Encyclopedia of
Computational Mechanics'.

1.3.1 Patient-Speci�c Modeling

Progress in medical imaging technology, such as computed tomography (CT)
and magnetic resonance imaging (MRI), sophisticated image processing tech-
niques and high-performance computing allowed simulation of physiologically
pulsatile �ow patterns in anatomically realistic or even patient-speci�c geome-
tries. The importance of taking such image-based geometries into account to
determine the local environment was soon established (Steinman [279]). Today,
noninvasive in vivo methods include CT, ultrasound and echocardiography, and
MRI. CT is generally used to evaluate anatomy, while ultrasound and echocar-
diography can be used to acquire the in-plane component of velocity. MRI is
a unique imaging technology that can acquire both three-dimensional anatomy
and velocity �elds throughout the cardiac cycle. Unlike CT, which is limited
to axial slice acquisitions, planes and volumes of arbitrary orientation can be
obtained. Details on the physics of MRI can be found at Taylor and Draney
[294] and references therein.

Image processing allows segmentation of the region of interest and subse-
quently a three-dimensional geometric representation of the considered region
can be generated. If automatic segmentation fails due to lack of contrast time-
consuming manual segmentation becomes unavoidable. Tools and algorithms
for processing, editing and smoothing of the data are widespread and high-
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quality geometries are available today. However, speci�c regions such as the
lung or the arterial wall still pose high demands on image technology and a
lot of research is in progress in this �eld. Additional information such as the
microstructure of the considered tissue would provide important advancement
for vascular mechanics. For blood �ow simulations realistic in�ow boundary
conditions from MRI data would improve the quality and accuracy of the �ow
simulations.

1.3.2 Computational Hemodynamics

Hemodynamics refers to the physiology dealing with the forces involved in the
circulation of the blood. It is known to provide stimuli for many acute and
chronic biologic adaptations and local hemodynamic factors including �ow rate,
(wall) shear stress, and pressure forces triggering changes in cardiac output and
downstream vascular resistance. Changes in blood velocity and pressure �elds,
sensed at cellular level in the endothelium, initiate a cascade of biochemical
signals leading to hierarchical reorganization across molecular, cellular, tissue,
and system scales. Because it is observed that atherosclerosis is localized at
branches and bends of the arterial tree and at these locations complex �ow con-
ditions are present it is hypothesized that such complex �ow may be associated
with the onset of atherosclerosis (Caro et al. [53], Zarins et al. [338]). The
complex �ow is characterized by stagnation and recirculation which result in
extremal wall shear stresses. Similarly, the localization of aneurysmal disease is
hypothesized to be in�uenced by hemodynamic conditions like �ow stagnation
and pressure wave ampli�cation. For cerebral aneurysms there are experimen-
tal and clinical �ndings that con�rm this conjecture, see Meng et al. [211] and
Kondo et al. [174]. Additionally, since reconstructive surgeries or catheter-
based interventions alter hemodynamic conditions, methods to model blood
�ow have increasing application in clinical decision-making and surgery. Hence,
the biomechanics community has had long-standing interest in understanding
hemodynamic patterns, and computational methods have been widely applied
to the quanti�cation of such factors in relation to the genesis, progression, and
clinical consequences of vascular disease.

Since the pioneering work of Perktold and coworkers [230, 229] modeling a
carotid bifurcation in the late 1980s, computational methods have been used ex-
tensively to solve such problems. The governing equations for three-dimensional
blood �ow in large vessels under the assumption of an incompressible homoge-
nous, Newtonian �uid �ow in a �xed domain consist of the Navier-Stokes equa-
tions and suitable initial and boundary conditions. Taylor, Hughes and Zarins
[296, 297] in the late 1990s signi�cantly contributed to assess hemodynamic fea-
tures by advanced computational modeling of three-dimensional physiologically
realistic problems.

The progress in computational methods also entailed extensive work on the
optimization of surgical procedure designs. For instance, bypass surgery was
investigated by a number of researchers and design and shape of the joining
graft with the artery could be improved with respect to hemodynamical factors,
see Lei et al. [193], among others. With the construction of patient-speci�c
geometries and e�cient computational �uid dynamic (CFD) strategies it was
possible to predict changes in blood �ow resulting from therapeutic interventions
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for individual patients. The group of Taylor and colleagues [295, 254] are leading
proponents of this `predictive medicine' approach (Steinman et al. [278]) and
have recently driven this concept to an automated process.

However, more recently there emerged an increasing agreement that hemo-
dynamics alone could not fully explain the onset and development of such dis-
eases. For instance, Steinman et al. state from their CFD study [280] that it
�failed to �nd a signi�cant relationship between wall thickness and wall shear
stress variables when considering data from the whole carotid bifurcation, hint-
ing at a more complex relationship between local hemodynamic factors and
atherosclerosis that will no doubt be the subject of further scrutiny with these
novel techniques.�[278] When comparing various computed �uid dynamic vari-
ables with histological markers of atherosclerosis, Kaazempur-Mofrad et al.
[162] found only inconclusive correlations. Thubrikar [301] argues that despite
the voluminous research, basic observations such as the e�ect of hypertension
or β-blocker treatment on atherosclerosis remain unexplained by considering
only hemodynamics. With respect to enlargement or rupture of intracranial
aneurysms, also Humphrey and Taylor [156] state in one of their most recent
papers that there has been no consensus as to which hemodynamic factors are
important. Furthermore, they conclude that although the move to image-based,
patient-speci�c models has yielded more realistic �ow patterns, there has been
little progress in measuring and then assigning physiologically realistic inlet
�ow waveforms or outlet boundary conditions. Therefore, several researchers
overcame these shortcomings by abandoning the assumption of rigid walls and
taking �uid-structure-interaction (FSI) into account.

1.3.3 Fluid-Structure-Interaction Models

The assumption of a rigid wall in blood �ow simulations may give insight into
the blood velocity �eld. However for the pressure �eld, the assumption of rigid
vessel walls precludes wave propagation phenomena and thus results change
fundamentally. The di�culty of solving the coupled blood �ow-vessel deforma-
tion problem (Quarteroni et al. [237]) often prohibits these type of simulations
and pure blood �ow results are still popular, see for example Antiga et al.
[8]. But the progress in �uid-structure-interaction methods, algorithmic per-
formance and computing power enabled such simulations. A comprehensive
examination of FSI with �nite elements can be found in Wall [324].

While initially simpli�ed or reduced geometries were considered, for instance
in Perktold and Rappitsch [231], or van de Vosse et al. [315], more recently
methods for three-dimensional FSI-simulations on realistic or patient-speci�c
geometries have been presented by a few research groups, for example Le Tallec,
Gerbeau and colleagues [191, 112, 113], Leuprecht, Perktold, and colleagues
[195, 194], by Heil [134], the group of Torii, Oshima, Kobayashi, Takagi, and
Tezduyar [307, 306, 308], and the group of Taylor and colleagues [86].

An important issue in FSI simulations as well as in pure �uid simulations
is the application of correct boundary conditions. Special considerations are
necessary for inlet and outlet boundary conditions for both velocity and pres-
sure �elds in the �uid and tractions on the vessel wall. Formaggia et al. [94]
and Vignon-Clementel et al. [318] considerably contributed to this topic. An-
other issue is the �uid�solid coupling scheme, where due to the large structure
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deformation and typically similar densities between solid and �uid only strong
coupling schemes seem suitable, often applied within an monolithic approach
(see Küttler et al. [183]).

However, computational solutions of FSI problems in biomechanical appli-
cations are still challenging in many aspects of the participating solution algo-
rithms. A promising new solution approach � `isogeometric analysis' � has
been presented by Hughes et al. [148]. The potential of the involved NURBS
geometry approximation is bene�cial in complex geometries, but has its merits
also as solution approximation. We have explored the capabilities in the �eld
of structural optimization, see Frenzel et al. [100] and Wall et al. [326]. Isogeo-
metric analysis is applied for blood �ow FSI simulations by Bazilevs et al. [24]
and with emphasis on patient-speci�c models by Zhang et al. [339]. Calo et al.
[51] have extended the isogeometric blood�ow FSI framework to drug transport
in arteries, however restricted to small-strain/small-deformation. Further de-
tails on mass-transfer problems can be found at Kaazempur-Mofrad and Ethier
[161], or Comerford and David [57].

Regarding the onset and development of AAA a couple of studies have been
performed with FSI simulations. Di Martino et al. [66] were probably the �rst
who considered a realistic geometry of the aneurysm. However, their simulation
was limited to a small-strain/small-deformation structural model. Wolters et
al. [332] present large-strain/large-deformation model together with a method-
ology to generate good quality FSI meshes. A shortcoming of these simulations
are the rather simple material laws for the modeling of the wall (see below).
Another limiting factor is the widely-used assumption that the wall thickness
is constant, which signi�cantly in�uences wall stress results in FSI simulations,
see Scotti et al. [261]. With respect to surgical procedures, Li and Kleinstreuer
[196, 168] have dealt with FSI simulations in idealized stented AAA geometries
determining the in�uence of endovascular grafts.

In summary, FSI models of the vascular system deepen the insight into sig-
ni�cant local hemodynamic characteristics which in turn in�uence the structural
load impact on the wall. However, no direct correlation of such simulations with
disease has been reported yet. From a computational modeling point of view,
the applied structural wall models are still quite simpli�ed and therefore limited
in their insight into the realistic wall stress. Steinmann et al. [278] argue that
�ow dynamics resulting from an FSI simulation of an anastomosis technique
performed by Leuprecht et al. [195] plays only a minor role in bed hyperpla-
sia, whereas structural analysis of the wall revealed a much higher relation-
ship. Humphrey and Taylor conclude that �although the move to image-based,
patient-speci�c models has yielded more realistic velocity and shear stress �elds
compared with idealized models, there has been little progress in measuring
and then assigning physiologically realistic inlet �ow waveforms, outlet bound-
ary conditions, or wall properties.�[156] They stress that a sophisticated arterial
wall modeling needs to be integrated into future FSI approaches.

1.3.4 Advanced Structural Wall Models

The characteristics of the arterial wall, as described in Section 1.2, are quite
extensive and structural wall models generally account for only a subset of
them. A comprehensive constitutive model probably remains an elusive goal,



1. Introduction to Arterial Wall Mechanics 11

but signi�cant progress has been achieved in recent years and the complexity of
lately developed models is remarkable. In the following, we review some major
contributions focusing on three-dimensional continuum-based approaches suited
for implementation in computational methods, in our case the �nite element
method. Comprehensive reviews of mechanical models for arteries are presented
by Vito and Dixon [319] and Kalita and Schaefer [164].

Parallel to the research in hemodynamics, structural modeling of arteries has
been a topic of tremendous interest. Unquestionably, the prominent researcher
in the �eld of continuum based structural arterial wall modeling is Yuan Cheng
Fung, who is known as the �father of biomechanics� (Kalita and Schaefer [164]).
His classical model of 1979 is often used as basis for further developments of con-
stitutive equations, , see Fung et al. [106]. It rests upon a thorough non-linear
continuum mechanical basis de�ned in terms of a strain-energy function and
has been generalized by Chuong and Fung in 1983 [55]. The applied exponen-
tial form of the strain-energy function, suggested already 1972 by Demiray [65]
accounts for the sti�ening of soft tissue in large strains, whereas Takamizawa
and Hayashi [291] propose a logarithmic form. Speci�ed for an idealized cylin-
drical artery orthotropic response in circumferential, radial and axial direction
is modeled, however the formulation is based on the corresponding circumferen-
tial, radial and axial strains. Holzapfel et al. [146] have adopted the exponential
form of Fung and added an isotropic Neo-Hookean part and with this function
the characteristic `S-shaped' stress-strain relationship was captured better. Sub-
sequently, Holzapfel et al. [140] reformulated the Fung-type orthotropic part in
terms of structural invariants leading to a general anisotropic model. Thus, the
stability issues of the Fung-model were overcome, and the Holzapfel-model was
shown to be stable, see Ogden et al. [221]. Another bene�t is the physiological
relevance as the anisotropic part can be identi�ed with reinforcing (collagen)
�ber contributions. Such a `(micro-)structural model' is usually preferred be-
cause it facilitates parameter identi�cation and interpretation of results. This
model has gained high popularity in recent years and several extensions, for in-
stance viscoelasticity, �ber dispersion, �ber remodeling have been implemented
which is discussed in detail in the remainder of the present work.

While the previous models have considered only the passive response of the
artery, Rachev and Hayashi [239] model vascular smooth muscle contraction.
Moreover, Humphrey and Na [154] include blood-�ow-induced shear stress,
dynamic circumferential wall motion, smooth muscle activation, perivascular
tethering, wall heterogeneity, and geometric nonlinearities in a cylindrically or-
thotropic, residually stresses model, resulting in ten unknown parameters. Ac-
cording to Vito and Dixon [319], this model is the most comprehensive elastic
model, but due to limitations of current experimental methods validation is
di�cult.

However, complex three-dimensional models are also sensitive to their de�n-
ing parameters as well as to the in�uence of geometry, boundary conditions, etc.
Furthermore, the involved parameters are often di�cult to obtain experimen-
tally, especially in vivo conditions. Therefore, the typically necessary �tting of
the models to some measurement data is susceptible to mistakes. A classical
quote of Enrico Fermi by Freeman Dyson [79] re�ects this law of parsimony : �I
remember my friend Johnny von Neumann used to say, with four parameters
I can �t an elephant, and with �ve I can make him wiggle his trunk.� One
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should bear in mind that also a number of simpler models exist which are fairly
accurate and remain popular for global considerations, see Kalita and Schaefer
[164] for details.

More recently, constitutive models with phenomenologically motivated mi-
crostructural considerations based on statistical mechanics of chain molecules
such as collagen �bers became popular. Homogenization from the molecular
microscale to the macroscale of the tissue is performed via the concept of chain
network models. A chain network consists of a representative unit-cell, for ex-
ample the eight-chain cell proposed by Arruda and Boyce [10]. Bischo� et al.
[32, 33] have extended this model to orthotropy and a �rst application for pul-
monary arteries is presented by Zhang et al. [340]. The bene�t is the limited
number of parameters which have a clear physical interpretation.

With respect to vascular diseases the research in arterial wall mechanics
was intensively driven by the topic of aneurysms, especially abdominal aortic
aneurysms. The obvious premise is that AAA rupture follows the principle of
material failure, when the mural stress exceeds the strength of the wall. The
quanti�cation of a rupture risk has been based on the law of Laplace leading to
a `maximal diameter criterion'. However this seems to be an oversimpli�cation
due to the complex geometry of aneurysms. Vorp, Raghavan, Vande Geest,
Di Martino, Wang, and colleagues have signi�cantly contributed to this �eld
of research and especially the corresponding work of Fillinger et al. [88, 87]
was recognized also in the medical community. Further studies were presented,
among others, by Thubrikar [302, 303]. We refer to the comprehensive review
of Vorp [320] for details and further references. Usually, these researchers per-
formed nonlinear �nite element analyses, employing patient-speci�c geometries
and treated the aneurysmal wall as nonlinearly elastic. Also the role of the
intraluminal thrombus was studied, see for instance Vorp et al. [321], Wang et
al. [327], Dam et al. [314], Vande Geest and colleagues [316, 12]. However,
shortcomings of these simulations are assumptions of isotropic, homogeneous
and uniformly thick walls without considering prestress.

Regarding complex arterial wall constitutive laws together with atheroscle-
rosis, plaque rupture was modeled by Ohayon et al. [222] (see also Richardson
[247]), but research is mainly focused on clinical treatments of angioplasty and
stenting, instead of the onset and development of the disease itself. With respect
to angioplasty Holzapfel et al. [145] present an advanced structural model ob-
tained from MRI. With respect to stenting, computational methods have shown
to be a useful tool for the design of stents in studies of free expansion and the
interaction of stents with the balloon and the arterial wall. Among others,
Holzapfel et al. [144], the group of Migliavacca [216], De Beule, Verdonck and
colleagues [63] and Wu, Wang and colleagues [336] deal with stenting.

All the previously discussed approaches have focused to describe the arterial
wall response at a particular instant, not taking into account the development
of the tissue due to remodeling. Topics of growth, remodeling and adaptation to
perturbed loading have gained interest in recent years. Initiated by the work of
Taber [288, 289] and Rachev and colleagues [240, 238] mathematical models have
been developed and diverse manifestations of vessel growth can be predicted by
such models (Humphrey and Taylor [156]). However, these models are limited to
a uniform material ignoring structural constituents like �bers, muscle cells, etc.
If the �ber structure is accounted for in terms of anisotropy, remodeling should
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be di�erentiated into morphogenesis, growth and �ber remodeling/reorientation
(Taber [288]). The underlying hypothesis is always that the tissue adapts to
its environment seeking for a kind of optimal con�guration. In a constrained
mixture theory, Humphrey and Rajagopal [155] have taken evolving properties
and turnover rates of individual constituents like �bers and smooth muscles into
account. Very recently, Humphrey and Taylor [156] have proposed to couple this
approach with a FSI simulation of patient-speci�c vascular problems, see also
Figueroa et al. [85]. Including remodeling approaches drives complexity of
arterial wall modeling into a new stage, and research and application of such
models is still in its infancy.

1.4 Objectives of the Present Work

The present work is dedicated to the investigation of the stress �eld in patient-
speci�c arterial wall geometries by means of the �nite element method. As
detailed above, analyses of the arterial wall stress state require advanced struc-
tural methods due to the involved nonlinearities stemming from, among others,
large deformations, large strains, anisotropy, and viscoelasticity. In addition,
such analyses are inevitably three-dimensional, and the involved patient-speci�c
geometries are complex, necessitating even more sophisticated solution meth-
ods. At the same time, the computational methodology needs to perform the
analyses with an acceptable e�ort in order to enable future studies which corre-
late clinical data with simulation data to obtain further insight into pathologies
and medical treatment.

Such highly complex computational demands are far beyond the typical ca-
pabilities of commercially available software packages. Therefore, a major goal
of the present work was to develop a computational toolchain to investigate
the stress �eld in patient-speci�c arterial wall geometries by means of the �-
nite element method. The toolchain incorporates medical image acquisition,
segmentation, mesh generation, simulation, and postprocessing, where we ex-
pand upon available software, focusing on the generation of the arterial wall
model and the structural simulation methods. In addition, the toolchain is
implemented into the in-house research code baci which is capable of solving
coupled FSI- and mass-transfer simulations. Therefore this approach is par-
ticularly promising with regard to intriguing future research questions, such
as the simulation of fully coupled hemodynamic, mass-transfer, and advanced
structural simulations.

We cover three major topics with respect to �nite element modeling of the
structural arterial wall, namely (1) the three-dimensional �nite element tech-
nology, (2) constitutive laws suited for modeling of the arterial wall and (3) the
issue of �ber remodeling. After a short review of continuum mechanical prelim-
inaries in Chapter 2, we elaborate upon the �rst topic of three-dimensional
�nite element technology in Chapter 3. It is well known that low order �nite
elements su�er from so-called locking defects. To accurately model the arterial
wall with such elements, we propose speci�c advanced element technology to
overcome these problems. Since the arterial wall is usually regarded as a thin-
walled structure, special so-called solid-shell elements are bene�cial to enhance
computational e�ciency.
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In response to the shape peculiarities of patient-speci�c geometries, we derive
hexahedral and wedge-shaped solid-elements. Within these solid-shell element
formulations, the issue of incompressibility, typically present in biomechanical
applications, needs to be tackled, and several further locking defects in bending
need to be eliminated. Popular computational approaches in biomechanics seem
insu�cient in addressing these problems. For example, the widely applied mixed
Jacobian-pressure formulation proposed by Simo et al. [275] is not suited to ef-
�ciently model thin-walled structures. To the authors' knowledge, the interplay
between �nite element technology methods and biomechanical problems involv-
ing incompressibility has not been addressed in the literature so far. Finally,
the general performance of the proposed three-dimensional elements speci�cally
designed to satisfy our needs in arterial wall modeling is evaluated in popular
benchmark examples.

In Chapter 4, we address the second topic, the constitutive laws suited for
modeling of the arterial wall. As described above, the arterial wall has sev-
eral demanding characteristics which need to be captured. Within this chap-
ter a number of recent constitutive laws considering anisotropy, viscoelasticity,
and the underlying microstructure are presented. This includes rather simple
isotropic laws, popular anisotropic laws based on structural tensors, and a mi-
crostructurally motivated anisotropic continuum-chain-network model. More-
over, the extension to viscoelasticity is discussed. All models are implemented
into the in-house �nite element code and a set of numerical examples demon-
strates the di�erent model features.

Chapter 5 deals with the third topic of �ber remodeling. As mentioned
above, we refer to the term remodeling as describing the microstructural change
of the tissue in response to its � in our case purely mechanical � environment.
After a literature review and a concise problem de�nition, we focus on the
alignment of the �ber pattern. Therefore, recent approaches are discussed in
detail and two strategies are implemented. We apply these remodeling strate-
gies to geometries with increasing complexity, ranging from idealized arteries
and tendons to more complex bifurcation geometries. Strengths and weaknesses
of the two approaches are evaluated and further advancements proposed. The
presented strategies are generally capable of reproducing the histologically ob-
served, physiological �ber pattern of an idealized arterial wall section. For more
complex geometries the remodeling strategy yields insight into a mechanically
reasonable �ber pattern. To this end, we assess whether resulting �ber pat-
terns are physiologically reasonable and correlate our �ndings with histological
data reported in the literature. However, a limiting factor of these methods
for patient-speci�c simulations is the fact, that the boundary conditions of the
physiological environment remain unknown and need to be further investigated.

In order to e�ciently simulate patient-speci�c geometries, additional steps
are necessary, including the generation of detailed three-dimensional models of
the arterial wall geometry, and an adequate alignment of the �bers even in
complex geometries. These steps are described in Chapter 6. Modern med-
ical image technology provides high resolution segmentation data generating
detailed three-dimensional models of the arterial vessel lumen. However, the
arterial wall itself is in fact not accessible via segmentation. We therefore de-
velop an algorithm which generates the wall by extrusion of the meshed vessel
model. We propose to use further information provided by the computed vessel
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centerline to enhance the quality of the wall model. For instance, the wall thick-
ness can be based on a �tted lumen diameter. In addition, we suggest aligning
the �ber pattern to a local coordinate system obtained from the centerline which
enables the �bers to follow the winding vessel even in complex geometries.

Finally, in Chapter 6, we also present structural simulations of two patient-
speci�c arterial wall geometries, one of the aortic arch and one of the iliac
bifurcations, and explore the e�ect of the methodologies proposed throughout
the work on these examples. A conclusion of the presented work together with
an outlook on future research are given in Chapter 7.
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2. Some Nonlinear

Continuum Mechanics

The present chapter shortly introduces the necessary fundamentals of contin-
uum mechanics. Comprehensive elaboration of this topic can be found in the
abundant literature. Note that sometimes a detailed discussion of speci�c con-
tinuum mechanical questions is shifted to subsequent chapters where they are
in close relationship to the corresponding topic.

2.1 Kinematics

We introduce the kinematics to describe the motion and deformation of a ho-
mogenous body which is seen as a continuous compact set of material points or
particles. We de�ne B0 ⊂ R3 as the reference con�guration of the material body
at time t = t0 and Bt ⊂ R3 as its current con�guration. The body transforms
from its reference con�guration (material frame) to its current con�guration
(spatial frame) and the corresponding nonlinear map

ϕt : B0 → Bt (2.1)

is required to be unique and continuously di�erentiable. At a �xed time t ∈ R+

material points X ∈ B0 of the reference con�guration are mapped to points
x ∈ Bt of the current con�guration

ϕt : X 7→ x = ϕt(X, t) = x(X, t). (2.2)

The inverse map is thus uniquely de�ned as X = ϕ−1
t (x, t) at every time t. The

di�erence between current and reference con�guration is the deformation and
thus the deformation vector is given as

u(X, t) = x(X, t)−X. (2.3)

The temporal change of material points is de�ned as velocity �eld in the
material and spatial frame

V(X, t) =
dϕt(X, t)

dt
= ϕ̇t(X, t) = ẋ(X, t) (2.4)

v(x, t) = V(ϕ−1
t (x, t), t) (2.5)
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and furthermore material time di�erentiation yields the material acceleration
�eld as

A(X, t) =
dV(X, t)

dt
= V̇(X, t) = ẍ(X, t). (2.6)

The spatial acceleration �eld is obtained as

a(x, t) = A(ϕ−1
t (x, t), t)

=
d

dt
v(x, t) =

∂v

∂x
·
∂x

∂t
+
∂v

∂t
= grad v ·v +

∂v

∂t
(2.7)

where the �rst is the convective term and the second is the local or partial time
derivative.

The material deformation gradient

F (X) := Grad x =
∂x

∂X
(2.8)

is an essential kinematic quantity de�ned as the partial derivative of the non-
linear deformation map x = ϕt(X, t) with respect to the coordinates X. Being
a two-�eld tensor, it maps an in�nitesimal line element dX at position X of the
reference con�guration to the in�nitesimal line element dx at x of the current
con�guration.

Uniqueness of the mapping ϕt requires F not to be singular and the inverse

F−1 = grad X =
∂X

∂x
(2.9)

is well-de�ned. This is equivalent with J := detF 6= 0 where we introduce the
Jacobi determinant J . The requested smoothness of ϕt(X, t) implies

J = detF > 0. (2.10)

Furthermore, transformations of the in�nitesimal line, area and volume elements
read

dx = FdX (2.11)

da = JF−TdA = cof F dA (2.12)

dv = JdV (2.13)

and together with (2.10) the physically intuitive argument that a body must
not contain negative volume elements and must not penetrate itself is satis�ed.

Though the deformation gradient describes the deformation uniquely it still
contains rigid body motions and is thus not suitable to describe the strain of
a body. However, every deformation may be split into rigid body motion and
stretch as

F = RU = vR (2.14)

where R is an orthogonal rotation tensor with R−1 = RT and the symmetric
positive de�nite tensors U and v de�ne the material and spatial stretch tensors,
referred to as right and left stretch tensors, respectively.
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We introduce the right Cauchy-Green tensor C and the left Cauchy-Green
or Finger tensor b as important strain quantities in continuum mechanics

C := FTF = (RU)TRU = UTRTRU = UTU = U2 (2.15)

b := FFT = vR(vR)T = vRRTvT = vvT = v2. (2.16)

Another quantitative measure for strain is the di�erence between the squares
of in�nitesimal line elements in current and reference con�guration

s = dx · dx− dX · dX (2.17)

and we may de�ne the Green-Lagrangean strain tensorE and the Euler-Almansi
strain tensor e

E :=
1

2
(C −G) (2.18)

e :=
1

2
(g − b−1) (2.19)

where G and g are the second order covariant metric tensors. As we restrict
ourselves to a uniform, �xed, Cartesian coordinate frame they both reduce to
identity, G = g = I.

As the right stretch tensor U is symmetric and positive de�nite the spectral
decomposition yields three real positive eigenvalues λi and the corresponding
real eigenvectors Ni. With Ni ·Nj = δij as orthonormal basis the spectral
decomposition is given as

U =

3∑

i=1

λi Ni ⊗Ni (2.20)

and the eigenvalues λi are called principal stretches. They represent the quotient
of deformed versus undeformed length in principal directions. It yields for the
right Cauchy-Green tensor

C =

3∑

i=1

λ2
i Ni ⊗Ni. (2.21)

The left stretch tensor and the left Cauchy-Green tensor are composed of the
same corresponding eigenvalues, only the eigenvectors as orthonormal basis
change yielding

b =

3∑

i=1

λ2
i ni ⊗ ni and v =

3∑

i=1

λi ni ⊗ ni. (2.22)

Finally, we introduce some strain rate forms, such as the material velocity
gradient

L := Ḟ =
d

dt

(
∂ϕ

∂X

)
=

∂

∂X

(
dϕ

dt

)
=
∂V

∂X
= Grad V, (2.23)
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the material strain rate

Ė =
d

dt

(
1

2
(FTF − I)

)
=

1

2
(Ḟ

T
F + FTḞ ) =

1

2
Ċ, (2.24)

and the spatial velocity gradient

l := Ḟ F−1 =
∂v

∂x
= grad v (2.25)

which results from a push-forward operation of L. For the de�nition of push-
foward and pull-back of tensor quantities we refer to the literature speci�ed
above. The spatial velocity gradient can be separated into symmetric and skew
symmetric parts l = d+w with

d :=
1

2
(l+ lT) = sym l and w :=

1

2
(l− lT) = skew l (2.26)

where d is called spatial strain velocity gradient and w is referred to as spatial
spin tensor.

Derivatives of in�nitesimal line, area, and volume elements with respect to
time are obtained as

dẋ = ldx, dȧ = div v da− lTda, dv = div v dv (2.27)

and for the Jacobi-determinant we obtain

J̇ =
∂ detF

∂F
:
∂F

∂t
= JF−T : Ḟ = J tr l = J div v. (2.28)

2.2 Stress Concept

As consequence of motion and deformation of interacting bodies there exists
stress between material points within the body. We most generally introduce
the quotient

t =
dfa
da

(2.29)

as stress vector relating the force resultant dfa to the in�nitesimal area da.
The orientation of the area element is represented by its spatial normal n. The
Cauchy theorem

t = σ ·n (2.30)

results from equilibrium condition at the in�nitesimal tetrahedral element and
maps the normal vector to the to the resulting force vector. The Cauchy stresses
σ re�ect the real internal stress state within a body at its current con�guration.
Using transformation (2.12) we get

dfa = P · dA, introducing P = JσF−T (2.31)

as �rst Piola-Kirchho� stress tensor. It maps the material area element dA
onto the spatial force resultant dfa and is thus a two-�eld tensor. We apply a
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pull-back to the spatial force resultant to introduce the �ctitious force vector
dF a = F−1

· dfa and therefby de�ne

dFa = S · dA, referring to S = F−1P = JF−1σF−T (2.32)

as second Piola-Kirchho� stress tensor which is completely related to the ma-
terial frame. Another stress tensor is the Kirchho� stress de�ned as

τ := Jσ = FSFT (2.33)

We may also introduce the additive split

σ = devσ + pI, with p =
1

3
trσ and devσ = σ − pI (2.34)

of the Cauchy stress into a deviatoric stress part and a hydrostatic pressure
part. This split is automatically obtained if an isochoric-volumetric split of the
underlying strain energy function is applied, as discussed in detail in Section
4.1.3.

2.3 Balance Principles and Entropy

Conservation of mass requires that the total amount of mass of a body
keeps constant. With the density ρ = ρ(x, t) related to the spatial volume
element dv and the density ρ0 = ρ0(X) related to the material volume element
dV it holds

m =

∫

Bt
ρ dv =

∫

B0

ρ0 dV = const (2.35)

with ρ0 = Jρ. The material (total) time derivative must vanish and consider-
ation of an arbitrary portion of the body yields the local form in spatial and
material frame

ρ̇+ ρdiv ẋ = 0 and ρ̇0 = 0. (2.36)

Balance of linear momentum states that the material time derivative of
linear momentum equals the sum of all applied volume and surface forces:

d

dt

∫

Bt
ρẋ dv =

∫

Bt
ρb0 dv +

∫

∂Bt
t da (2.37)

where ∂Bt is boundary of the body at current con�guration and b0 are external
volume forces such as weight. Application of the divergence theorem and con-
sidering only a portion of the body yields the local form in spatial and material
frame

divσ + ρb0 = ρẍ and DivP + ρ0b0 = ρ0ẍ (2.38)

which is also known as Cauchy's First Equation of Motion.
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Balance of angular momentum similarly postulates that the sum of all
externally acting moments is equal to the material time derivative of the angular
momentum associated to a �xed point of origin:

d

dt

∫

Bt
ρx× ẋ dv =

∫

Bt
ρx× b0 dv +

∫

∂Bt
x× t da. (2.39)

We obtain the local form by applying the divergence theorem and considering
only a local portion

σT = σ (2.40)

which is known as Cauchy's Second Equation of Motion. We note that addi-
tionally to the Cauchy stress σ the second Piola-Kirchho� stress S and the
Kirchho� stress τ are symmetric, whereas the �rst Piola-Kirchho� stress P is
not.

Balance of energy in mechanical systems requires that the change in total
energy of a body equals the power applied to a body. We consider only me-
chanical and thermal energies and subdivide into internal and kinetic energy.
The balance equation reads

d

dt

∫

Bt
ρ(e+ 1

2 ẋ · ẋ) dv =

∫

Bt
ρ(b0 · ẋ + r) dv +

∫

∂Bt
(t · ẋ− q ·n) da (2.41)

with e = e(x, t) representing the internal energy per unit reference mass, r =
r(x, t) the external heat source per unit reference mass, and q the spatial heat
�ux. Note that n is pointing towards the outside of the body and thus −q ·n
represents heat supply to the body. The energy balance is equivalent to the �rst
law of thermodynamics.

The local spatial form

ρė = σ : d+ ρr − div q (2.42)

is obtained via the divergence theorem, consideration of a local portion and
with the local balance of linear momentum. Its local material from reads

ρ0ė = S : Ė + ρ0r −Div Q (2.43)

where Q = JF−1
·q. One may observe that there are work conjugate pairs of

stress and strain rate and each form of internal mechanical power

Pint =

∫

Bt
σ : d dv =

∫

B0

P : Ḟ dV =

∫

B0

S : Ė dV (2.44)

is equivalent.

Entropy Inequality also known as second law of thermodynamics or as
Clausius-Duhem inequality postulates that the direction of a thermodynami-
cal process is naturally determined. For instance, heat �ux is always directed
from the warmer to the colder medium. Thus the temporal change in total
entropy η(x, t) is always larger or equal than the entropy di�erence between
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supply caused by external heat production and supply caused by heat �ux over
the body surface. The integral form reads

d

dt

∫

Bt
ρη dv ≥

∫

Bt

ρr

ϑ
dv −

∫

∂Bt

q ·n

ϑ
(2.45)

with the absolute temperature ϑ = ϑ(x, t). With application of the divergence
theorem and consideration of a local portion and the energy balance one obtains
the local form in spatial frame

ρϑη̇ − ρė+ σ : d− 1

ϑ
q · gradϑ ≥ 0. (2.46)

We introduce the (Helmholtz) free energy ψ de�ned as ψ := e − ϑη and
reformulate the entropy inequality

D := −ρ(ψ̇ + ηϑ̇) + σ : d− 1

ϑ
q · gradϑ ≥ 0, (2.47)

with D as dissipation per unit reference mass. If we consider only isothermal
processes with constant temperature we obtain

D = σ : d− ρψ̇ ≥ 0 (2.48)

which may be transferred to material frame yielding

D = S : Ė − ρ0ψ̇ ≥ 0 (2.49)

The Helmholtz energy ψ is de�ned with respect to unit reference mass. The free
energy Ψ with respect to unit reference volume Ψ = ρ0ψ completely character-
izes material properties including the referential density and therefore serves as
important quantity wherefrom constitutive models will be derived in Chapter 4.

In the case of a purely elastic process dissipation vanishes and equality holds.
With Ψ̇ = ∂Ψ

∂E : Ė Equation (2.49) yields

S : Ė =
∂Ψ

∂E
: Ė (2.50)

which has to hold for arbitrary processes and we arrive at

S =
∂Ψ

∂E
= 2

∂Ψ

∂C
(2.51)

2.4 Initial Boundary Value Problem

The initial boundary value problem of continuum mechanics consists of a set of
coupled partial di�erential equations satisfying speci�ed boundary and initial
conditions. Formulated in material frame, the local equilibrium equation in
strong form follows from Equation (2.37) to

DivP + ρ0b0 = ρ0ẍ in B0 × [t0, tE ]. (2.52)
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It is essential to specify boundary conditions on the considered body (or do-
main), separated in Neumann boundary conditions (or force boundary condi-
tions)

P ·N = t̂0 on ΓN = ∂B0;N × [t0, tE ] (2.53)

and Dirichlet boundary conditions (or displacement boundary conditions)

u = û on ΓD = ∂B0;D × [t0, tE ] (2.54)

where

ΓN ∩ ΓD = ∅ and ΓN ∪ ΓD = ∂B0 (2.55)

must hold. To completely de�ne the time dependency initial conditions have to
be speci�ed

u(X, to) = û0(X) in B0 (2.56)

ẋ(X, to) = ˆ̇x0(X) in B0 (2.57)

The de�nition of a constitutive equation according to (2.51) completes the initial
boundary value problem. We will solve these problem types by means of the
�nite element method as discussed in detail in the following chapter.

Remark In the remainder of the present work the considered problems are
su�ciently slow and start from a position of rest, so that inertia forces play a
subsidiary role. They are therefore neglected and the quasi-static response is
examined. The time t becomes merely an algorithmic parameter describing the
evolution of the considered process. This is also bene�cial, as issues of numerical
time integration do not have to be considered and we refer to the literature for
further details, for instance the books of Hughes [147], Cris�eld [62], Wriggers
[333], and Belytschko et al. [28].
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3. E�cient Finite Elements

for Arterial Wall Modeling

The simulation of patient-speci�c arterial wall stresses is performed with the
�nite element method. The involved complex geometries are inevitably three-
dimensional and e�ciently modeled as thin-walled structures. It is well-known
that standard �nite elements are characterized by poor performance within the
incompressible regime and bending-dominated problems. Therefore, special el-
ement technology is usually employed to overcome these issues. Within the
present chapter, the necessary prerequisites of nonlinear �nite element analysis
are shortly reviewed. Speci�c locking phenomena are described and the limita-
tions of element design are discussed. In addition, the theoretical background
of popular methods to tackle locking is reported. Subsequently, we propose a
set of advanced �nite elements meeting the requirements of arterial wall model-
ing, including bulky 8-node hexahedrons, 8-node solid-shells, and wedge-shaped
6-node solid-shells. Popular benchmark examples are studied to investigate the
performance of the proposed elements.

3.1 Prerequisites of Finite Element Analysis

The initial boundary value problem for nonlinear continuum mechanics, derived
in Section 2.4 and in the following restricted to quasi-static problems for conve-
nience, can only in rare cases be solved analytically. Integral or so-called weak
formulations and variational principles are the basis for numerical solution tech-
niques such as the �nite element method. Approximation of the involved func-
tions by means of �nite elements can be solved via numerical solution schemes.
Unfortunately, standard linear (in terms of their shape functions) �nite element
approximations are a�ected by several locking problems.

The popular variational principle of virtual work (PvW) is in such cases
usually replaced by more general variational principles to derive advanced �nite
elements which overcome these shortcomings. Linearization of the underlying
equations becomes necessary to apply e�cient numerical solution techniques
such as the Newton-Raphson method distinguished by its quadratic rate of
convergence within regions su�ciently close to the solution. In the following,
we review two important variational principles followed by the linearization and
discretization with �nite elements.
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3.1.1 Variational Principles

As mentioned, the most common variational principle to derive �nite elements is
the principle of virtual work. It allows a rather intuitive physical interpretation,
namely that the work done by internal stresses on virtual strains balances the
work done by external forces on virtual displacements. Only one �eld, the
displacements, is involved and the so-called displacement-based �nite elements
are derived therefrom, as presented in the following.

In order to overcome the performance issues the more general three-�eld
Hu-Washizu principle is employed to formulate advanced or so-called (hybrid)
mixed elements. Note that according to Felippa [82] this principle should rather
be termed Fraeijs de Veubeke-Hu-Washizu principle (VHW). Therein, two ad-
ditional �elds, the stresses and the strains, are involved. A modi�ed form of
the VHW principle is employed for a popular element technology, the Enhanced
Assumed Strain (EAS) method, proposed by Simo and Rifai [272]. Another
well known principle is the two-�eld Hellinger-Reissner principle where besides
the displacement �eld also the stress �eld is involved.

Principle of Virtual Work

This principle is based on the physically intuitive interpretation that at a system
in equilibrium any kinematically admissible, in�nitesimal, virtual displacement
δu performs no work on that system. The PvW in material frame results from
multiplying the local equilibrium equation (2.52) together with the force bound-
ary conditions (FBC) with virtual displacements δu which satisfy the Dirichlet
boundary conditions (DBC). They can be also interpreted as vector valued test
function or weighting function within the method of weighted residuals. Inte-
gration over the corresponding domains yields

∫

B0

[Div(FS︸︷︷︸
P

) + ρ0b0] · δu dV +

∫

ΓN

[t̂0 − FS ·N] · δu dA = 0. (3.1)

We omit the index ( · )0 designating the material frame from now on for the sake
of compactness. By making use of the Gauss divergence theorem, the symmetry
of S and the variation of the Green-Lagrange strains

δE =
1

2

(
(FT Grad δu)T + FT Grad δu

)
, (3.2)

we obtain the material description of the PvW, that is, the virtual work of
internal and external forces have to balance each other, their di�erence has to
vanish

δΠPvW(u, δu) =

∫

B0

S : δE dV

︸ ︷︷ ︸
δΠint

PvW

−
∫

B0

%b · δu dV −
∫

ΓN

(
t̂− tu

)
· δu dA

︸ ︷︷ ︸
δΠext

PvW

= 0.

(3.3)

The superscript ( · )u designates here and from now on a dependency of the
displacement u. Only the displacement �eld u appears as primary �eld and the
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equilibrium and traction boundary conditions are ful�lled in a weak sense. A
clarifying illustration as so-called Tonti-diagram, after the Italian mathemati-
cian Enzo Tonti [305], is depicted for the PvW in material frame in Fig. 3.1.
For a purely elastic problem the same formulation can also be obtained by the
principle of stationary potential energy. However, the PvW does not necessi-
tate the existence of a potential and is therefore applicable also for more general
problems for instance involving inelastic materials.

DBC

u = û

on ΓD

displ.

û

Kinematic Equation (KE)

Const. Equ. (CE)

Eu = 1
2

(
∇0u+ (∇0u)

T + (∇0u)
T · (∇0u)

)Balance Equation (BE)

Div(FS) + b = 0

body loads

b

on ΓN

traction FBC

t̂

weak connection

strong connection primary (varied) variables

secondary (derived) variables
prescribed data

u

Su = C : Eu
Su

FS ·N = t̂
Eu

Fig. 3.1: Tonti-diagram of the Principle of Virtual Work in material frame.

Fraeijs de Veubeke-Hu-Washizu principle

Additionally, we introduce the VHW variational principle which serves as point
of departure for several advanced �nite element methods

ΠVHW(u,E,S) =

∫

B0

[Ψ(E) + S : (Eu −E)− %b ·u] dV

−
∫

ΓN

t̂ ·u dA+

∫

ΓD

tS · (û− u) dA → stat. (3.4)

Invoking stationary condition, Gauss divergence theorem, and symmetry of S
yields

δΠVHW(u,E,S) =

∫

B0

[
SE

︷︸︸︷
∂Ψ

∂E
: δE + δS : (Eu −E)

]
dV

−
∫

B0

[δu · Div(FS) + S : δE + %b · δu] dV

−
∫

ΓN

(
t̂− tS

)
· δu dA+

∫

ΓD

δtS · (û− u) dA = 0. (3.5)
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Herein, the displacement �eld u, the stress �eld S and the strain �eld E ap-
pear as primary variables. All related �eld equations as well as the boundary
conditions are satis�ed only in a weak sense. Note, that we have introduced
in Equation (3.4) the strain energy function Ψ(E). Nonetheless, the principle
is also valid for inelastic problems in which the potential for the constitutive
relation is unde�ned. In this case we remain with a weak satisfaction of the
weighted residual equation (SS): SE − S. Equivalently, the primary variable
E yields another weighted residual (EE): Eu −E. Fig. 3.2 depicts the Tonti-
diagram for the VHW variational principle. A di�erent point of view suggests
interpreting the primary stress and strain �elds as Lagrangean multiplier �elds
(see Bischo� [34] for details).

traction FBC
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on ΓN

SS CE

BE

S E

EE

KE

Eu

ub

SE

u = û

on ΓD

DBC

û

displ.

∫

B0

(
Eu −E

)
: δS dV = 0

t̂ = tS

Eu= 1
2

(
∇0u+(∇0u)

T+(∇0u)
T· (∇0u)

)

∫

B0

(
Div (FSu) + b

) · δu dV = 0

∫

B0

(
SE − S

)
: δE dV = 0 SE = C : E

strong connection

weak connection

primary (varied) variables

secondary (derived) variables
prescribed data

Fig. 3.2: Tonti-diagram of the VHW variational principle in material frame.

3.1.2 Linearization of the Virtual Work Principle

Several sources of nonlinearity suggest a linearization of the underlying equa-
tions to e�ciently solve the problem using a Newton-Raphson procedure with
the bene�cial property of a quadratic rate of convergence in a su�ciently small
neighborhood of the solution. Though it is also possible to discretize the nonlin-
ear equations and then linearize with respect to the nodal unknowns, we rather
linearize the previously introduced variational formulations and then discretize
the resulting equations. The linearization of the PvW (Equation (3.3)) at u = ū
is de�ned as

Lin δΠPvW(ū, δu,∆u) := δΠPvW(ū, δu) + ∆δΠPvW(ū, δu,∆u). (3.6)

The incremental virtual work ∆δΠPvW is obtained through the directional
derivative (Gâteaux derivative), given as

∆δΠPvW(ū, δu,∆u) =
d

dε
[δΠPvW(ū + ε∆u, δu)]

∣∣∣∣
ε=0

= D δΠPvW(ū, δu) · ∆u

(3.7)
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and we may split into internal and external contribution yielding

D δΠPvW(ū, δu) · ∆u = D δΠint
PvW(ū, δu) · ∆u−D δΠext

PvW(ū, δu) · ∆u. (3.8)

The external virtual work may have contributions from body forces b and
surface tractions t. Body forces rarely depend on the deformation, but there
exist a wide variety of di�erent traction forces and some do depend on the
deformation. A classical example is a closed structure under internal pressure
leading to a surface load acting always orthogonally to the surface. To achieve
a fully quadratic rate of convergence the corresponding contribution to the
external virtual work needs to be consistently linearized. We skip the derivation
and restrict ourselves here to displacement-independent forces. Details may be
found in the literature, for instance Bonet and Wood [45]. Thus, the directional
derivative of the external virtual work vanishes: D Π̃ext

PvW = 0.

The internal virtual work δΠint
PvW =

∫
B0
S : δE dV is linearized using the

product rule for the directional derivative, yielding

D δΠint
PvW(ū, δu) · ∆u =

∫

B0

D(S : δE) dV

=

∫

B0

δE : DS · ∆u︸ ︷︷ ︸
∆S

dV +

∫

B0

S : D δE · ∆u dV

=

∫

B0

δE : C : DE · ∆u︸ ︷︷ ︸
∆E

dV +

∫

B0

S : D δE · ∆u︸ ︷︷ ︸
∆δE

dV, (3.9)

where we inserted the linearization of the second Piola-Kirchho� stresses

∆S = C : DE · ∆u (3.10)

with the de�nition of the material elasticity tensor C = 2 ∂S∂C . The virtual
Green-Lagrange strain tensor, its increment and the linearized Green-Lagrange
strain are given as

δE = 1
2 ((∇0δu)TF + FT(∇0δu)) (3.11)

∆δE = 1
2

(
(∇0δu)T∇0(∆u) + (∇0(∆u))T∇0δu

)
(3.12)

∆E = 1
2 ((∇0(∆u))TF + FT(∇0(∆u))), (3.13)

with ∇0δu = Grad δu and ∇0(∆u) = Grad ∆u. Note also that the vari-
ation of the current con�guration equals the variation of the displacement
δ(x = X + u) = δu.

It is remarked that in case of linear kinematics the well-known linear strains
are recovered, since the deformation gradient F in the undeformed con�guration
is the identity tensor and the incremental displacements ∆u are identical to the
ordinary displacements u, leading to

DE(u0) ·u = 1
2 (∇u + (∇u)T) (3.14)

For the linearization of the VHW principle we refer to Section 3.4.3.
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3.1.3 Discretization of the Virtual Work Principle

The numerical solution by means of the �nite element method requires the dis-
cretization of the equations presented so far. Thereby, the continuous functions
are approximated with assumed ansatz- or shape-functions, typically low-order
polynomials, and associated discrete nodes. The problem is transferred from
�nding unknown functions u and δu to �nding discrete unknowns composed in
the vectors D, δD. A key of the �nite element concept is to combine a number
of nodes to a sub domain (element) and de�ne the shape functions only locally
within one element (local support). Hence, the involved integrals need to be
evaluated only within each element and the full domain B0 is by the union of
all element domains B(e) which are not allowed to overlap

B0 ≈ Bh0 =

nele⋃

e=1

B(e) (3.15)

The unknown �eld u is approximated by a set of suitable shape functions de�ned
within one element, composed in the vector N, and the corresponding discrete
nodal unknowns d:

u ≈ uh =

nele⋃

e=1

uh(e) with uh(e) = N d (3.16)

The so-called Bubnov-Galerkin approach suggests that the same shape functions
are used for the approximation of the virtual displacements δuh(e) = N δd as

well as for the incremental displacements ∆uh(e) = N ∆d. Introducing the local

element coordinate system (parameter space) (ξ, η, ζ) with ξ, η, ζ ∈ [−1; 1] we
may write

u(e)(ξ, η, ζ) =

nnd∑

I=1

NI(ξ, η, ζ) dI , (3.17)

where nnd is the number of nodes per element and I is the index of one particular
node. For convenience we restrict ourselves from now on to the most popular
linear shape functions. Then the nodal unknowns can be directly identi�ed with
nodal displacements at the discrete locations XI .

Following the isoparametric concept the domain is approximated using again
the same shape functions. This yields the following for every point X in reference
and current con�guration:

X ≈ Xh =

nele⋃

e=1

Xh
(e) and Xh

(e) =

nnd∑

I=1

NI(ξ, η, ζ) X̄I = N X̄ (3.18)

x ≈ xh =

nele⋃

e=1

xh(e) and xh(e) =

nnd∑

I=1

NI(ξ, η, ζ) x̄I = N x̄ (3.19)

where X̄ and x̄ represent the vectors of the nodal coordinates of each element
in reference and current con�guration, respectively. Hence, the mapping X(ξ)
between the real space and the parameter space is de�ned with the vector
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composition ξ = [ξ, η, ζ]T. The corresponding Jacobian matrix and its inverse
are given as

J =
∂X

∂ξ
and J−1 =

∂ξ

∂X
(3.20)

and thus the discretized quantities on the element level are evaluated, as for
example

Grad u(e) =

nnd∑

I=1

Grad[NI ] dI =

nnd∑

I=1

∂NI
∂ξ

∂ξ

∂X
dI =

nnd∑

I=1

J−T ∂NI
∂ξ

dI . (3.21)

The Jacobian mapping plays an essential factor in the approximation and con-
vergence quality of �nite elements. Mind that it becomes nonlinear for distorted
elements in material frame and in this case elemental quantities cannot be inte-
grated exactly by common Gauss quadrature. In Fig. 3.3 the Jacobian and the
deformation mapping are illustrated for a two-dimensional element.

x1

x2

X1

X2

F

ϕt

Bt

J

ξ
η

xI
XI

B0

η

ξ

(1, 1)

(−1,−1)

Be

X(ξ)

Fig. 3.3: Sketch of deformation and parameter space mapping of a four-noded element.

The next step in deriving the �nite element discretization is the introduction
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of the discrete Green-Lagrange strain in the so-called Voigt vector notation

δE(e) =




δE11

δE22

δE33

2δE12

2δE23

2δE13




=

nnd∑

I=1

BI δdI with

BI =




F11NI,1 F21NI,1 F31NI,1
F12NI,2 F22NI,2 F32NI,2
F13NI,3 F23NI,3 F33NI,3

F11NI,2 + F12NI,1 F21NI,2 + F22NI,1 F31NI,2 + F32NI,1
F12NI,3 + F13NI,2 F22NI,3 + F23NI,2 F32NI,3 + F33NI,2
F11NI,3 + F13NI,1 F21NI,3 + F23NI,1 F31NI,3 + F33NI,1




and

δdI =



δu1I

δu2I

δu3I


 . (3.22)

The nodal components can be arranged as vector and matrix, respectively, such
that

B = [B1 | B2 | B3 | · · · | Bnnd ] (3.23)

δd = [dT
1 | dT

2 | dT
3 | · · · | dT

nnd
]T. (3.24)

Moreover, the second Piola-Kirchho� stress on element level is de�ned in Voigt
notation as the vector

S(e) =
[
S11 S22 S33 S12 S23 S13

]T
(3.25)

Then, at the element level the discretized internal virtual work is obtained as

∫

B(e)
0

δET
(e) S(e) dV =

∫

B(e)
0

(B δd)T S(e) dV = δdT

∫

B(e)
0

BT S(e) dV. (3.26)

The integrals over the element domain B(e) have in general no analytic so-
lution and numerical integration schemes are employed. We apply the stan-
dard Gauss integration rule which replaces the integrals by a sum of integrand
functions evaluated at speci�ed Gauss points multiplied with certain weighting
factors. We refer to the literature for details, for instance the books by Hughes
[147] or Zienkiewicz et al. [342].

Integration over the full domain B0 is �nally obtained via the assembly oper-
ator governing the arrangement of elemental quantities into the global equation
system:

∫

B0

( · ) dV ≈
nele

A
e=1

∫

B(e)
0

( · ) dV. (3.27)
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The discrete version of the internal virtual work reads �nally:

δΠint
PvW =

nele

A
e=1

δdT

∫

B(e)
0

BT S(e) dV

= δDT

nele

A
e=1

∫

B(e)
0

BT S(e) dV

︸ ︷︷ ︸
f int

:= Fint(u). (3.28)

Together with the discretized form of the external virtual work δΠext
PvW :=

Fext we arrive at the system of nonlinear equations

R = Fint(D)− Fext = 0 (3.29)

To solve this e�ciently by means of an iterative Newton-Raphson scheme we
need the discrete linearized form of equation (3.29) which is at the same time
the discretization of the internal virtual work, Equation (3.9). Linearization
around a speci�c displacement state Di at iteration step i reads

Lin R = R(Di)︸ ︷︷ ︸
RHS

+
∂R(D)

∂D

∣∣∣∣
Di︸ ︷︷ ︸

tangent K

∆Di+1 = 0. (3.30)

The tangent (sti�ness) matrix K is the assembly of the element matrices k(e)

K =

nele

A
e=1

k(e) (3.31)

and one element matrix k(e) is obtained from a discretization of the linearized

internal virtual work at element level
(
D δΠint

PvW · ∆u
)

(e)
given as

∫

B(e)
0

DE · δu : C : DE · ∆u dV +

∫

B(e)
0

S :
(
(∇0(∆u))T∇0δu

)
dV =

δdT

∫

B(e)
0

BTC̄ B dV

︸ ︷︷ ︸
keu

∆d + δdT kgeo ∆d. (3.32)

The element sti�ness matrix k(e) is herein split into two parts, the elastic and
initial displacement contribution keu and the geometric contribution kgeo. For
a convenient and e�cient matrix notation of keu we introduce the 6-by-6 matrix
C̄ as reduced notation of the fourth-order tensor C. A matrix notation for kgeo
is a little cumbersome and we therefore use the index notation, yielding

δdT kgeo ∆d =

nnd∑

I=1

nnd∑

J=1

δdT
I GIJ∆dJ (3.33)
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with G = diag(ŜIK , ŜIK , ŜIJ) and

ŜIK = S11NI,1NJ,1 + S22NI,2NJ,2 + S33NI,3NJ,3

+ S12(NI,1NJ,2 +NI,2NJ,1)

+ S23(NI,2NJ,3 +NI,3NJ,2)

+ S13(NI,1NJ,3 +NI,3NJ,1) (3.34)

Finally, within a Newton-Raphson solution procedure the iterative displace-
ment increment

∆Di+1 = −K−1 R(Di) (3.35)

is evaluated at each iteration step i and the displacements are updated

Di+1 :⇐ Di + ∆Di+1 (3.36)

until the residuum (RHS) R is below a speci�ed tolerance and the solution is
converged.

3.2 Locking Phenomena of 3D Elements

In the early days of the �nite element method it was already recognized that
�nite elements based upon the PvW may lead to inaccurate results and exhibit
slow convergence. The predictions for displacements and stresses become com-
pletely useless in certain extreme cases. This phenomenon, known as locking, is
characterized by a severe underestimation of the displacements, i.e. the struc-
tural response is too sti�. Since the late seventies the term locking has been
used (see Hughes et al. [150]), re�ecting the perception that the elements lock
themselves against deformation.

A unique, rigorous de�nition of locking is nonexistent. It can be stated that

Locking means the e�ect of a reduced rate of convergence in depen-
dence of a �critical� parameter. In the in�nite limit of this parameter
the rate of convergence may be zero.

From a mathematical perspective the reason for locking is ill-conditioning,
typical for sti� di�erential equations. A more mechanically motivated explana-
tion would be the inability of a �nite element formulation to represent certain
deformation modes without unwanted, �parasitic� strains and/or stresses. There
is also a numerical point of view in which Hughes [147] draws up the balance
between the number of displacement equations and the number of deformation
constraints for the discrete problem.

In the following we summarize di�erent locking e�ects for three-dimensional
structures where we restrict ourselves to linear �nite elements in terms of their
shape functions. For higher order elements following the approach of the so-
called p-version �nite element method di�erent considerations are relevant, see
Düster [76] and references therein.

The dependence of a critical parameter allows the classi�cation of two types
of locking phenomena. The �rst type is the over-sti�ening with respect to in-
compressibility, therefore a material locking type called volumetric locking with
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the bulk modulus κ as driving parameter. For the application in biomechanical
problems this becomes very important, as the considered materials are usually
incompressible.

The second type are so-called geometric locking phenomena where the rea-
son for over-sti�ening lies in violation of a certain kinematic constraint. The
driving parameter is always a geometric measure of the considered structure
or rather the underlying element geometry, such as the aspect ratio for shear
locking. In a strict three-dimensional discretization with standard elements this
issue would lead to extremely �ne meshes for slender structures which are not
acceptable from a computational cost point of view. Therefore, already in the
beginning of the �nite element method there was a high interest in the develop-
ment of structural elements such as beam-, plate-, or shell-elements to simulate
the corresponding widely used engineering structures. Here, more speci�c lock-
ing phenomena can be identi�ed, like for example transverse shear locking, or
Poisson-thickness locking, which then depend also on the related structural pa-
rameter. But it is important to remark that the locking phenomena are not a
result of the involved dimensional reduction or special beam-, plate-, or shell-
models. Rather, they are inherent in the physical problem of analyzing for
instance thin-walled structures. For a comprehensive review of modeling thin-
walled structures see Bischo� et al. [37]. Hence, when using three-dimensional
�nite elements and reasonable meshes for modeling thin-walled structures, all
speci�c geometric locking e�ects are present. They have to be tackled with cer-
tain element techniques leading to the so-called solid-shell concepts described
in Sections 3.5.2 and 3.5.3. There is a large amount of literature on locking
phenomena and methods to overcome these problems for structural elements.
We refer the interested reader for more details and references, especially with
respect to shells, to Harnau [123], Koschnick [175], Klinkel [169], Bischo� [34],
and Andel�nger [5].

In the following, we are concentrating only on three-dimensional solid ele-
ments which, however, might become thin. Relevant locking phenomena are
volumetric locking, shear locking, trapezoidal locking, and membrane locking
which are explained in the subsequent sections.

3.2.1 Volumetric Locking

The driving parameter for volumetric locking is an increasing bulk modulus
(κ → ∞) of the material involved. It is associated with Poisson's ratio ap-
proaching incompressibility (ν → 0.5). In this case a valid deformation has to
be purely isochoric, satisfying the constraint

div(u) = 0. (3.37)

The issue for �nite elements in this regard can be illustrated with a simple
two-dimensional small deformation example. We consider an incompressible
body in pure bending deformation in the ξη-plane under plane-strain conditions,
see Fig. 3.4 on the left. The deformation may be described by the displacement
state

uX ∼ ξη and uY ∼ − 1
2 (ξ)2 − ν

2(1− ν)
(η)2. (3.38)
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Fig. 3.4: Illustration of volumetric locking.

The corresponding stress distribution of σξξ and σηη along η is also given. For
simplicity we take a St. Venant-Kirchho� material, implement the plain-strain
condition and evaluate the related strain-components

εξξ = η σξξ =
E

1− ν2
η

εηη = − ν

1− ν η σηη = 0

εξη = 0 σξη = 0. (3.39)

Their distribution along η is also plotted below in Fig. 3.4. It is observed that
due to the lateral extension the body gets thinner at the top but thicker at the
bottom, keeping the overall volume constant but shifting the material center
upwards.

Let us now consider the corresponding situation for a �nite element, as seen
in Fig. 3.4 on the right. The deformation approximation of the single element
is not capable of neither reproducing the curved shape nor shifting the material
center and the strain state εhηη is constant zero. With implemented material
law this yields

εhξξ = η σhξξ =
Eν(1− ν)

(1 + ν)(1− 2ν)
η

εhηη = 0 σhηη =
Eν

(1 + ν)(1− 2ν)
η

εhξη = ξ σhξη =
E

2(1 + ν)
ξ. (3.40)

In the limit (ν → 1
2 ) the shear stress tends to a �nite value, but the �parasitic�

stress σηη rises to in�nity.
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The de�cit here is that the element is not capable of reproducing the linear
stress ε22 in the vertical direction. This problem can be extended straightfor-
wardly to tree dimensions. A successful approach to avoid this locking phe-
nomenon is to allow such a strain state by manipulating the element. These
ideas were followed in the incompatible modes approach by Wilson [331] and
the EAS method by Simo and Rifai [272].

3.2.2 Shear Locking

The problem of shear locking is in contrast to the previous locking phenomenon
dependent on the element geometry, more precisely on the aspect ratio, and
thus a geometric locking type. It results from the inability of �nite elements to
model pure bending deformation without any shear, because both deformations
and thus also the stresses are directly coupled through the underlying ansatz,
see the illustration in Fig. 3.5.

η

ξ

F

F F

F

a

b

σh
ξη

σh
ξξ

Fig. 3.5: Illustration of shear locking.

The corresponding strain energy related to these �parasitic� shear strains and
stresses can be evaluated, exempli�ed by a two-dimensional linear Q1-element
with small deformations, plain stress and St. Venant-Kirchho� material:

Πint
Q1 = 1

2

b
2∫

− b2

a
2∫

− a2

α(σξξεξξ + σξηεξη)dξdη = α
Eb3a

24(1− ν2)

(
1 +

1− ν
2

(a
b

)2
)

(3.41)

with α scaling the deformation amount. It is clearly seen that the shear energy
is scaled with the square of the aspect ratio a

b and therefore dominates the
energy for large ratios. This excessive internal shear energy spuriously balances
the external energy underestimating the deformation. The element �locks� in
bending and the driving critical parameter is identi�ed as the aspect ratio a

b .
Again, this de�cit is extended to three dimensions in a straightforward man-

ner. There are several possibilities to remedy this locking phenomenon, such as
(selective) under-integration, the Assumed Natural Strain (ANS) method and
Discrete Strain Gap (DSG) method, the incompatible-modes approach and the
EAS-method, as discussed in the following sections. It is noted that this e�ect
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has a strong similarity to transverse shear locking in structural elements like
beam-, plate-, or shell-elements. Usually, successful techniques in two dimen-
sions can be transferred to three-dimensional elements.

3.2.3 Trapezoidal Locking

The phenomenon of trapezoidal locking is also a geometric locking type where
the driving parameter is the element aspect ratio (slenderness). It arises if
curved structures are modeled. In this case a low-order discretization automat-
ically leads to trapezoidal-shaped elements, as seen in Fig. 3.6 on the right. It
has to be distinguished from the situation on the left where the elements' trape-
zoidal shape is a result of mesh distortion. We introduce the so-called director
which points from the lower to the upper node. Then in the former case the
director is perpendicular to the continuous structure, but not to the element
reference plane (dashed line in Fig. 3.6), whereas in the latter case it is not
perpendicular to neither one.

Fig. 3.6: Two di�erent cases leading to trapezoidal shaped elements, where we dis-
tinguish element distortion (left) from a natural discretization of curved structure
(right).

The reason for the locking e�ect is illustrated in Fig. 3.7. Here, a curved
shell-like structure at a pure bending deformation state is discretized with three-
dimensional solid elements. We consider one element, depicted in Fig. 3.7
(dashed) which clearly represents the characteristic trapezoidal shape. Also the
deformed element (solid) and the discrete nodal bending forces acting in the
shell-plane are sketched. It is seen that the discrete deformed shape automat-
ically comes along with a shortening of the thickness between the nodes. The
resulting strain εζζ is plotted in Fig. 3.7 below. In contrast, the thickness strain
in the corresponding continuum problem is constantly equal to zero. This para-
sitic strain in the discrete element leads to spurious strain energy and therefore
an underestimated deformation. The situation deteriorates with larger devia-
tions of the director from the normal of the shell-plane which happens either
for a larger slenderness of the element (side length/thickness) or for a growing
curvature of the structure to be discretized.

The problem of trapezoidal shaped elements has been thoroughly exam-
ined in the late 80's by MacNeal [203, 205], though the distinction between
mesh distortion and trapezoidal locking was not yet clear. The same e�ect,
termed curvature-thickness locking, was discovered for structural shell-elements
by Ramm et al. [242], see also Betsch et al. [30]. It gained importance when the
trend went on to employing three-dimensional solid elements for shell-like struc-
tures. Trapezoidal locking can be eliminated by the ANS- and DSG-methods,
but not by the EAS-method. We refer to Section 3.3.1 for implications.
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ξ

ζ η

εζζ

Fig. 3.7: Illustration of trapezoidal locking (above) with resulting thickness strain
(below).

3.2.4 Membrane Locking

Membrane locking is a phenomenon which is again related to the modeling of
slender, shell-like structures in bending with three-dimensional solid elements.
It arises only if the elements' faces are warped, that is their nodes do not lie
within one plane. This typically happens only for doubly curved structures in
certain cases. Fig. 3.8 depicts some example discretizations in which membrane
locking does and does not occur. Also, the implications for linear elements
are relatively small. We refer to the work of Koschnick et al. [175, 176] for a
detailed treatise on membrane locking.

Fig. 3.8: Discretization examples without (left) and with (right) potential membrane
locking.
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3.3 Limits of Element Perfectibility and the Issue

of Mesh Quality

The goal of any �nite element technique must be to obtain optimal results with
reasonable e�ort for (relatively) coarse meshes, characterized by coarse mesh
accuracy. As mentioned, many locking e�ects vanish for extreme �ne meshes of
the underlying structure where the element aspect ratio tends to one. However,
this approach contradicts this goal and is not helpful in real problems.

But, there is no such thing as a perfect element for every application. There
are always limitations on the e�ect and the e�ciency of a certain element tech-
nology. As MacNeal [204] states:

�The task of developing good �nite elements never seems to be �n-
ished. Designers return, again and again, to the same basic con�g-
uration of nodes and �nd some way to eke out an improvement.�

The mesh dependence is one such limitation which will be discussed in the
following.

3.3.1 Element Perfectibility � MacNeal's Dilemma

The previous quote addresses an issue with linear elements in trapezoidal shape
which is known as MacNeal's Dilemma [203] (see also [204, 205]). We have
speci�ed the problem of trapezoidal locking in Section 3.2.3. Another goal in
�nite element technology, besides eliminating locking, is obviously convergence
to the correct result. Though neither necessary nor su�cient to prove conver-
gence, the so-called patch test, �rst introduced by Irons [158], has always been
a bene�cial tool to assess element performance. It is based on the idea that
a �nite element should always be able to reproduce a constant strain state in
every mesh con�guration.

MacNeal's Dilemma now states that satisfaction of the patch-test and elim-
ination of trapezoidal locking are mutually exclusive [203]. As soon as satisfac-
tion of the constant strain patch test is assured, the element will exhibit trape-
zoidal locking. Let us consider the highlighted element of trapezoidal shape
within the two discretizations illustrated in Fig. 3.9. In the case on the left
the element has to represent a constant stress state, whereas in the case on the
right it has to represent a higher order stress state due to bending. However,
the element has the same geometric shape in both cases and the involved ansatz
cannot distinguish the two cases. In fact, the correct results for each case are
contrary and only one result may be represented exactly by the element.

To handle this dilemma we propose the following (see also Frenzel et al.
[97]): In the case of thick bulky structures where elements rarely show a tapered
shape with high slenderness satisfaction of the patch test is given priority over
elimination of trapezoidal locking. However, in situations where shell structures
are modeled with solid elements trapezoidal locking is prominent and hence its
elimination essential. Distorted meshes are likely to appear for practical applica-
tions, but fortunately the distortion is typically within the shell-plane. However,
in the thickness direction the mesh layout is usually regular, resulting for ex-
ample from extruding the shell-plane in the thickness direction as employed in
Section Fig. 3.10. Mesh layouts which are distorted in thickness direction are
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Fig. 3.9: Illustration of MacNeal's dilemma.

very unlikely in practical applications. Therefore, a suitable three-dimensional
solid-shell element should employ a technique for elimination of trapezoidal
locking in the thickness direction, but ensure patch-test satisfaction within the
shell-plane.

Fig. 3.10: Typical solid-shell discretization with in-plane mesh distortion, but regular
out-of-plane mesh.

3.3.2 In�uence of Mesh Quality

We have seen in the previous section that locking and mesh distortion are closely
related. Although today's meshing algorithms seek to provide good quality
meshes it can never be expected for complex structures that the element shapes
are not distorted. Accuracy and convergence rate of �nite elements strongly
depend on the mesh distortion. It is worth mentioning that for a distorted
element shape the Jacobian mapping is not polynomial anymore and thus can-
not be evaluated exactly by the common Gauss quadrature. Unfortunately,
distortion sensitivity appears to be much worse for advanced element technol-
ogy, because all the ideas rely on an assumed strain or deformation state which
becomes more complex in the distorted element.

This can be illustrated by the simple linear example in Fig. 3.11. The result
of a two-element beam structure in bending is compared for a varying mesh
distortion with di�erent element technologies. Mind that the distortion is out-
of-plane with respect to the bending load. On the right of Fig. 3.11 the result
of the tip displacement, scaled by the exact value, is plotted against the varying
distortion parameter a. The result of the standard displacement-based element
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Disp is due to shear locking signi�cantly erroneous and the displacement is
underestimated to about 20% for undistorted elements and 10% for extreme
distortion. In contrast, all the other element techniques, described in detail in
the following sections, give the exact result for the undistorted mesh. However,
the performance drops for growing distortion, even below the standard element.
Note that the sensitivity of the compared element techniques would di�er sig-
ni�cantly if the distortion would be in-plane with respect to the bending load.

This issue has to be taken into account when seeking coarse mesh accuracy,
because there will always be some tradeo� with mesh quality. Obviously, it has
always been the goal of research in �nite element technology to optimize results
with respect to locking, mesh dependence, and (computational) e�ciency. How-
ever, ful�lling every demand seems to be impossible and no element technology
comes without compromises.
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Fig. 3.11: Illustration of the in�uence of mesh distortion (out of plane) on di�erent
element techniques.

3.3.3 Locking in Large Deformation Analyses

The research in locking elimination techniques has mostly concentrated on small
deformation analyses. Obviously, analytical results are easier obtained and the
lack in accuracy due to locking can readily be observed within this limitation.
Nevertheless, it is widely accepted to carry over the developed methods from
small to large deformations and various elements are employed successfully.
However, it is more di�cult to single out speci�c e�ects of di�erent locking
in�uences in this case.

A number of stability issues have been observed for large deformation ele-
ment technology. For example, an instability of EAS elements typically arises in
problems involving homogeneous large compression, as reported by Armero [9],
Wriggers and Reese [335], and Wall et al. [325]. Further stability implications
on di�erent advanced elements can be found at Harnau [123, 125] and Auricchio
et al. [13] present a more rigorous stability study (see also Auricchio et al. [14]).

3.4 Methods to Eliminate Locking Phenomena

So far, the necessity of element technology was discussed. In this section some
popular methods are elaborated, especially where they are applicable to three-
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dimensional elements. The speci�c element formulations are substantiated in
Section 3.5.

3.4.1 Assumed (Natural) Strain Method

The idea of assumed strains has been pioneered by MacNeal [202] and Hughes
and Tezduyar [151] who employed speci�c interpolations of transverse shear
strains in plate- and shell-elements. The method has been systematically elab-
orated by Bathe and co-workers which has become the famous MITC-element
family, see for instance the work of Bathe and Dvorkin [22, 23], or Bathe et al.
[21]. Park and Stanley [226] utilize the strains at natural element coordinates,
founding the name Assumed Natural Strain (ANS) method.

The principal idea of the ANS method is to choose a certain interpolation
for the strains to be modi�ed, instead of deriving them directly from the in-
terpolation of the displacements. The modi�ed interpolation is based on the
strain evaluation at speci�c discrete sampling points. The selection of sampling
points and interpolation determines the success of the method with respect to
locking elimination. In Fig. 3.5 it is observed that the spurious shear strains are
zero at the edge midpoints. If these locations are selected as sampling points,
the correct zero shear can be interpolated within the element eliminating shear
locking.

In the following presentation of the ANS method, exempli�ed for eliminating
shear locking, we �rst consider the small deformation case in the discretized vec-
tor notation from Section 3.1.3. The preliminary assumption is the separation
of the B-operator into shear- and normal-strain parts, Bs and Bn, respectively,
yielding

klin =

∫

B(e)
0

BTC̄ B dV =

∫

B(e)
0

BT
n C̄ Bn dV +

∫

B(e)
0

BT
s C̄ Bs dV. (3.42)

The special interpolation of the modi�ed strains, namely the shear strains, leads
to a modi�ed B-operator and thus to a modi�ed element sti�ness matrix

kANSlin =

∫

B(e)
0

B
TC̄ B dV =

∫

B(e)
0

BT
n C̄ Bn dV +

∫

B(e)
0

Bs
TC̄ Bs dV. (3.43)

The modi�ed B-operator Bs holds the chosen special interpolation of strains,
therefore assuming the corresponding strain state. This modi�cation of parts
of the B-operator is a widespread technique also for other element technology
methods, known as the so-called B-bar methods. For a discussion on the speci�c
strain interpolation to eliminate locking we refer to Section 3.5.2 where we
present an element formulation using the ANS method.

A variationally consistent proof of the method was presented afterwards by
Simo and Hughes [269]. Because the strong form of the kinematic equation is
violated by the modi�cation of the strain interpolation, only the VHW principle
can serve as variational basis. We repeat the VHW potential (3.4) for the small
deformation case:

ΠVHW(u, ε,σ) =

∫

B0

[Ψ(ε) + σ : (εu − ε)− %b ·u] dV + Πext. (3.44)
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The independent strain �eld ε is herein �lled by the assumed strain �eld

ε = εn + εs (3.45)

resulting from the previous modi�cation and the separated B-operators. The
independent stress �eld is eliminated by the orthogonality condition which states
that the independent stress �eld σ is chosen to be orthogonal to the strain
di�erence εu − ε, yielding

∫

B0

σ : (εu − ε) dV = 0. (3.46)

Thus, only the assumed strain �eld contributes to the internal energy and the
displacement-based strain �eld which causes the spurious locking energy to be
eliminated.

The extension of the ANS method to large deformations based on the Green-
Lagrange strains is straightforward. Accordingly, the Green-Lagrangean strains
are assumed as

E = En +Es. (3.47)

For discretization and linearization of a speci�c ANS modi�cation for large
deformation �nite elements we again refer to Section 3.5.2.

However, we want to remark that the derivation of the ANS modi�cation
is based on a modi�ed interpolation of the Green-Lagrange strains E, but not
on the more general deformation gradient F . We are not aware of any attempt
in the literature to apply the ANS method to directly modify the deformation
gradient. This is certainly a limitation of the ANS method as several material
concepts, such as a multiplicative decomposition of the deformation gradient for
plasticity, rely on this concept (see for example the work of Simo and colleagues
[264, 265, 266, 270, 271]). One option to implement hyperelastoplasticity at
�nite strains together with ANS relies on the spectral decomposition of the
Cauchy-Green tensor C (see Tan and Vu-Quoc [292] and references therein).

Another option relies on a multiplicative decomposition of the deformation
gradient F . To retain a deformation gradient Fmod which is consistent with
a modi�ed Green-Lagrange strain Emod we follow the approach proposed by
Hauptmann et al. [130], employed to the ANS modi�cation (3.47). Generally,
the deformation gradient can be decomposed into the right-stretch tensor U
and an orthogonal rotation tensor R

F = RU . (3.48)

If this is inserted into the Green-Lagrange tensor

E = 1
2 (FTF − I) = 1

2 (UT(RTR)U − I) = 1
2 (U2 − I), (3.49)

the orthogonal rotation tensor R drops out and E depends solely on U . Via a
polar decomposition of Emod the modi�ed right-stretch tensor Umod is obtained

Emod = 1
2 ((Umod)2 − I)

Polar Dec.−−−−−−→ Umod (3.50)
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The sought modi�ed deformation gradient Fmod can be evaluated as

Fmod = RUmod, (3.51)

where the unmodi�ed rotation tensor R is obtained by a polar decomposition
of equation (3.48). This procedure needs twice a polar decomposition and thus
requires considerable computational e�ort.

However, the present work considers only hyperelastic materials, typically
based on the Cauchy-Green tensor C which is readily available from Emod as

Cmod = 2Emod + I. (3.52)

The evaluated stresses and elasticity matrices (see Chapter 4) are then free
from spurious locking in�uences. The deformation gradient might be neces-
sary to map stress quantities between con�gurations, for instance to evaluate
Cauchy stresses from Second Piola-Kirchho� stresses. For such a mapping of a
consistent, locking-free stress quantity between material and current frames we
suggest for e�ciency to employ the standard displacement-based deformation
gradient. We have not observed relevant di�erences compared to employing a
consistent deformation gradient Fmod. However, this might be di�erent in some
special cases and a closer investigation is recommended.

3.4.2 The Discrete Strain Gap Method

A relatively new and less prevalent method to eliminate locking is the DSG
method. Bletzinger et al. [40] have introduced this method named �Discrete
Shear Gap method� to successfully eliminate transverse shear locking in beam-,
plate-, and shell-elements which has been extended to large deformations by
Bischo� [34]. As in other popular concepts like ANS and reduced integration,
the constraint of zero shear deformation in a pure bending mode is relaxed by
restricting the condition to discrete locations. The approach has been general-
ized, re�ected also in renaming it to Discrete Strain Gap method, to eliminate
other geometric locking phenomena such as membrane- and trapezoidal-locking
by Koschnick et al. [176]. It turned out that it is a conceptually appealing
approach to eliminate all kinds of geometric locking defects in elements inde-
pendently of their shape and polynomial order. This includes structural ele-
ments like beam- or shell-elements as well as continuum elements. It has strong
similarities to the ANS method and resulting element formulations are often
identical.

This concept has been extended to the most general case of three-dimensional
solid elements under large deformations by Frenzel et al. [99]. The formulation
is brie�y repeated below. The resulting 8-node hexahedral solid element is free
from any kind of geometric locking, as demonstrated by Frenzel et al. [97, 98].
Within the present work we employ this method for the 6-node wedge-shaped
solid-shell element, described in Section 3.5.3.

The basic idea of the DSG approach can be best explained by considering
a classical shear-deformable (Timoshenko-) beam �nite element su�ering from
transverse shear locking, which we however do not want to repeat here refering
to the original paper of Bletzinger et al. [40]. The principal idea is to introduce
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a special integration and interpolation of the kinematic equations to be modi-
�ed, for instance the transverse shear strains. The concept can be generalized,
yielding a special integration rule of all strain components.

Following Koschnick et al. [176] (see also Frenzel et al. [97, 98]), we choose
the following rule for the modi�ed strain components expressed in local element
coordinates (element parameter space):

EDSG
ξξ =

nnd∑

I=1

N I
,ξ

ξI∫

ξ1

(
u,ξ ·Gξ + 1

2 (uT
,ξ ·u,ξ)

)
dξ

EDSG
ηη =

nnd∑

I=1

N I
,η

ηI∫

η1

(
u,η ·Gη + 1

2 (uT
,η ·u,η)

)
dη

EDSG
ζζ =

nnd∑

I=1

N I
,ζ

ζI∫

ζ1

(
u,ζ ·Gζ + 1

2 (uT
,ζ ·u,ζ)

)
dζ

EDSG
ξη =

nnd∑

I=1

N I
,ξ

ξI∫

ξ1



nnd∑

J=1

NJ
,η

ηJ∫

η1

1
2

(
u,ξ ·Gη + u,η ·Gξ + uT

,ξ ·u,η
)

dη


 dξ

EDSG
ηζ =

nnd∑

I=1

N I
,η

ηI∫

η1



nnd∑

J=1

NJ
,ζ

ζJ∫

ζ1

1
2

(
u,η ·Gζ + u,ζ ·Gη + uT

,η ·u,ζ
)

dζ


 dη

EDSG
ξζ =

nnd∑

I=1

N I
,ξ

ξI∫

ξ1



nnd∑

J=1

NJ
,ζ

ζJ∫

ζ1

1
2

(
u,ξ ·Gζ + u,ζ ·Gξ + uT

,ξ ·u,ζ
)

dζ


 dξ.

(3.53)

Here we use the elemental covariant convective basis vectors Gξ, Gη and Gζ

as de�ned in Section 3.5.2. It is seen that the strain components are �rst
integrated from the reference (�rst) node to every other node. The integrals
run along one parametric coordinate and are therefore one-dimensional. Note
also that particular integrals are zero a priori. This scheme yields for every
node a so-called discrete strain gap. These strain gaps are then interpolated
within the element by the standard shape functions or more precisely by the
corresponding derivatives because they concern strains. In case of shear strains
this scheme is employed twice. The resulting modi�ed strains EDSG(ξ, η, ζ) are
transformed to global Cartesian frame via standard transformation rules (see
the following sections) yielding EDSG(x, y, z), which replace the discrete strains
E of standard displacement based elements.

The close interrelation between DSG and ANS elements becomes clear by
inspecting the above rule from a numerical point of view. The involved integrals
are usually evaluated using numerical methods such as a standard Gauss rule. In
the case of linear elements the required integrals are evaluated exactly employing
one Gauss point at the center of the domain. Hence, the scheme of (3.53) with
integration along the local coordinates to a speci�ed node yields an evaluation
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point at the mid-point of the corresponding element edge. The same locations
typically serve as sampling points in an ANS approach, for instance for a four-
noded shell element. This match might be lost for higher order elements or
other element shapes. The bene�t of the DSG method is that no a priori
de�nition of such sampling points is necessary, as these turn out naturally from
the scheme in (3.53). Similar to the ANS method, the modi�cation implies a
modi�ed B-operator identifying the DSG method as B-bar method. Thus, the
VHW principle serves as a variational basis, though to our knowledge a rigorous
mathematical analysis is still missing.

The DSG method shares another characteristic with the ANS method which
is the failure of the constant strain patch test. This is not a problem, if the
modi�cation is not in the element plane as for classical shell and plate elements,
but it is signi�cant for the presented solid element. One attempt to overcome
this issue is a formulation based on a decomposition of displacement-modes.
This is a popular approach followed by several authors for a number of element
formulations (see Section 3.4.4). Following Belytschko and Bindeman [27] we
can write the ith component of the trilinear displacement �eld of the 8-node
hexahedral element in terms of eight arbitrary constants a0i to a3i, and c1i to
c4i, the spatial coordinates (X,Y, Z) and the parametric coordinates (ξ, η, ζ) as

ui = a0i + a1iX + a2iY + a3iZ + c1ih1 + c2ih2 + c3ih3 + c4ih4, (3.54)

where

h1 = ηζ, h2 = ξζ, h3 = ξη, h4 = ξηζ. (3.55)

This yields for the discrete �nite element a set of eight equations for the nodal
displacements:

di = a0is + a1iX̄1 + a2iX̄2 + a3iX̄3 + c1ih1 + c2ih2 + c3ih3 + c4ih4, (3.56)

where X̄i are vectors consisting of the ith nodal coordinates and s and hα are
de�ned as

sT = ( 1, 1, 1, 1, 1, 1, 1, 1),

hT
1 = ( 1, 1, −1, −1, −1, −1, 1, 1),

hT
2 = ( 1, −1, −1, 1, −1, 1, 1, −1),

hT
3 = ( 1, −1, 1, −1, 1, −1, 1, −1),

hT
4 = ( −1, 1, −1, 1, 1, −1, 1, −1).

(3.57)

This de�nition represents a split of the elements displacement into one rigid
body mode s, three constant strain modes X̄1, X̄2, X̄3, and four higher order
modes h1 to h4. Fig. 3.12 sketches these modes for one coordinate direction.

It is straightforward to identify the constant strain modes as the ones as-
suring satisfaction of the constant-strain patch-test, whereas the higher-order
modes are responsible for locking defects. It is therefore a goal in �nite element
design to deal only with the higher order modes to eliminate locking, but keep
the other modes untouched to allow patch-test satisfaction. The key-component
of this idea is the correct separation of these deformation modes. For instance,
in two-dimensional 4-node elements this separation is easy to obtain, see among
others Andel�nger [5] for details. However, for three-dimensional elements this
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Fig. 3.12: Displacement modes of the 8-node hexahedral solid, illustrated for one
arbitrary chosen coordinate direction: constant modes (�rst row, blue) and higher-
order modes (second row, red).

is much more delicate. Where the constant modes are relatively simple to iden-
tify, for example via reduced integration, the higher-order modes seem to be
not exactly separable for a general distorted element shape. We are not aware
of any general solution of this issue in literature.

The idea, proposed earlier by Frenzel et al. [97, 98], that one could modify
just the higher-order modes with for example the DSG approach to eliminate
locking, fails for that reason, that the exact identi�cation of these higher-order
modes is not possible for an arbitrary distorted element shape. This is in ac-
cordance with the fact that also under-integrated elements are not perfect in
any situation, because a successful stabilization for arbitrary distorted elements
would also rely on the exact identi�cation of these modes. Another link to this
issue is the fact that the objective and variationally correct formulation of the
popular EAS method similarly relies on the introduction of a (constant) metric
de�ned at the element centre (see Section 3.5.1).

Finishing this section, we refer once more to Section 3.3 about element
perfectibility, where the limitations of �nite element design are already pointed
out. The DSG-method has its merits in the conceptual beauty, but has also
its shortcomings, most of them shared with the ANS method. We apply this
method in the presented wedge-shaped element (see Section 3.5.3), but prefer
the more popular ANS method in other element formulations, though the DSG-
method would deliver the same results.

3.4.3 The Enhanced Assumed Strain Method

This method has been pioneered by Simo and Rifai [272] and has achieved
a large impact in the �eld of element technology, re�ected in the amount of
literature about this topic. One advantage is that it is able to eliminate the
volumetric locking e�ect caused by near incompressibility. Selected important
references are the contributions of Simo and Armero [267], Simo et al. [268],
and Andel�nger and Ramm [6].

The starting point of the Enhanced Assumed Strain (EAS) method is the
VHW principle described in Section 3.1.1, however with the following repara-
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metrization of the strains

Ẽ := E −Eu (3.58)

δẼ = δE − δEu. (3.59)

This relates the additional strains Ẽ with the total strains E and the strains
Eu depending on the displacements. In this sense Ẽ could also be interpreted
as the residuum of the kinematic equation E−Eu = 0. Insertion into the VHW
principle (3.4) yields

ΠEAS(u, Ẽ,S) =

∫

B0

Ψ(u, Ẽ) dV −
∫

dV

S : Ẽ dV

−
∫

dV

%b ·u dV −
∫

ΓN

t̂ ·u dA+

∫

ΓD

tS · (û− u) dA → stat.

(3.60)

Variation with respect to the independent variables u, Ẽ,S reads

δΠEAS(u, Ẽ,S) =

∫

B0

Su

︷ ︸︸ ︷
∂Ψ

∂Eu : δEu dV +

∫

B0

(
SẼ

︷︸︸︷
∂Ψ

∂Ẽ
−S
)

: δẼ dV

−
∫

B0

δS : Ẽ dV −
∫

B0

%b · δu dV

+

∫

ΓD

(û− u) · δtS dA−
∫

ΓN

(t̂− tu) · δu dA = 0 (3.61)

Using the fundamental lemma of variational calculus yields the local Euler-
Lagrange equations:

Div(FSu) + %b = 0 in B0 (3.62)

SẼ − S = 0 in B0 (3.63)

E −Eu = 0 in B0 (3.64)

t̂− tu = 0 on ΓN (3.65)

û− u = 0 on ΓD. (3.66)

The next step is the elimination of the stresses from the functional, again
with the help of a certain orthogonality condition. If the independent stress �eld
S is taken to be orthogonal to the enhanced strain �eld Ẽ, which is equivalent
to the vanishing integral

∫

B0

δS : Ẽ dV = 0 and

∫

B0

S : δẼ dV = 0, (3.67)
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the resulting formulation is considerably simpli�ed:

δΠEAS(u, Ẽ) =

∫

B0

[
∂Ψ

∂Eu : δEu +
∂Ψ

∂Ẽ
: δẼ − %b · δu

]
dV

+

∫

ΓD

(û− u) · δtS dA−
∫

ΓN

(t̂− tu) · δu dA = 0. (3.68)

It is worth mentioning that the orthogonality condition is usually only ful-
�lled after discretization. Linearization is given as

D δΠEAS · (∆u,∆Ẽ) =

∫

B0

(δEu :
∂2Ψ

∂E2 : ∆Eu +
∂Ψ

∂E
: ∆δEu) dV

+

∫

B0

(δEu :
∂2Ψ

∂E2 : ∆Ẽ + δẼ :
∂2Ψ

∂E2 : ∆Eu) dV

+

∫

B0

δẼ :
∂2Ψ

∂E2 : ∆Ẽ dV. (3.69)

We introduce the vector α with variables αi together with a matrix M to
discretize on element level the enhanced strain Ẽ, its variation and increment

Ẽ
h

= M α, δẼ
h

= M δα, ∆Ẽ
h

= M ∆α. (3.70)

For convenience, we de�ne on element level S := ∂Ψ
∂Eu and C̄ := ∂2Ψ

∂Eu2 in vector
and matrix notation, respectively (see Section 3.1.3). Further, we derive the
discrete EAS-functional on element level yielding

δΠ
(e)
EAS = δdT

∫

B(e)
0

BT S dV

︸ ︷︷ ︸
f int

+ δαT

∫

B(e)
0

MT S dV

︸ ︷︷ ︸
fEAS

+ δdTf ext (3.71)

Linearization of this nonlinear equations yields

D(δΠ
(e)
EAS)(d,α) · (∆d,∆α) =

∂(δΠ
(e)
EAS)

∂d
· ∆d +

∂(δΠ
(e)
EAS)

∂α
· ∆α

=
[
δdTkuu + δαTkαu

]
· ∆d +

[
δdTkuα + δαTkαα

]
· ∆α

= δdT [kuu∆d + kuα∆α] + δαT [kαu∆d + kαα∆α] (3.72)
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with the de�nition of sub matrices:

kuu =

∫

B(e)
0

BTC̄ B dV + kgeo (3.73)

kαu =

∫

B(e)
0

MTC̄ B dV (3.74)

kuα =

∫

B(e)
0

BTC̄ M dV = kT
αu (3.75)

kαα =

∫

B(e)
0

MTC̄ M dV. (3.76)

The overall system of equations can be conveniently written in matrix form as

[
kuu kT

αu

kαu kαα

] [
∆d
∆α

]
=

[
f ext − f int
−fEAS

]
(3.77)

If the enhancing strain Ẽ is chosen to be discontinuous across the element
boundaries, it is possible to eliminate the EAS parameter increment ∆α at the
element level by so-called static condensation. Solving for the increment ∆α
using the second row of (3.77)

∆α = −k−1
αα (fEAS + kαu∆d) (3.78)

then substituting (3.78) into the �rst row yields the element sti�ness matrix

kEAS(e) = kuu − kT
αu k−1

αα kαu (3.79)

and the element residual force vector

rEAS(e) = f ext − f int + kT
αu k−1

αα fEAS. (3.80)

The global system is retained from the standard assembly of the element ma-
trices kEAS(e) and residual force vectors, as

K =

nele

A
e=1

kEAS(e) and R =

nele

A
e=1

rEAS(e) . (3.81)

The fact that only the element matrix kEAS(e) changes allows an easy imple-
mentation of such an element into an existing framework and is undoubtedly
a reason for its success. However, the inversion of the matrix kαα represents a
signi�cant computational e�ort at element level, especially for larger vectors α.

For implementing an EAS element the only remaining thing is to substan-
tiate the ansatz for the enhanced strains Ẽ = Mα where satisfaction of the
orthogonality condition (3.67) is worth emphasizing. We refer to Sections 3.5.1
and 3.5.2 for details.

We �nally remark that it is also possible within the EAS approach to enhance
the deformation gradient F , as presented among others in the original paper
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by Simo and Rifai [272]. This usually requires more enhancing parameters, but
on the other hand the deformation gradient allows the most general interface
to any material law. But because we will combine the EAS method with the
ANS method we stick to the formulation based on the Green-Lagrange strain,
see also the discussion in Section 3.5.2.

3.4.4 Alternative Methods

The �eld of �nite element technology o�ers a considerable number of further
methods and strategies to improve element performance. A complete coverage
seems almost impossible and goes well beyond the scope of the present work.
We only want to address some important alternative techniques in this section
where they are in our personal opinion quite popular, especially in the �eld of
biomechanical applications.

One of the �rst successfully employed techniques which is still present in
some commercial �nite element programs is the approach of �incompatible
modes�, originally proposed by Wilson et al. [331] and later improved by Taylor
et al. [299]. By enhancing the two-dimensional 4-node element with certain
incompatible displacement modes the behavior with respect to shear and vol-
umetric locking has been greatly improved. However, it was not before the
landmark paper of Simo and Rifai [272] that the variational consistency of such
a technique was provided (see also Simo and Armero [267]). Today the close
relation with the EAS method is established, among others by Bischo� and
Romero [36]. Within this group of element formulations we also want to men-
tion recent developments directly based on the VHW-functional such as the
elements proposed by Kasper and Taylor [165, 166]. For a mathematical treat-
ment on the correlation of these methods refer to the work of Wohlmuth and
colleagues (Djoko et al. [67], Chavan et al. [54] and references therein).

Another widespread technique is based on under-integration and suitable
hourglass-stabilization. As elaborated in Section 3.4.2, the element deforma-
tion state can be separated into constant modes and higher-order modes, also
known as hourglass modes. By applying a reduced integration rule the con-
stant modes can be identi�ed and represented without locking defects. How-
ever, so-called zero-energy modes (see Irons and Ahmad [157]) arise leading to
wrong results and instabilities of the solution. Therefore, certain hourglass sta-
bilization techniques were introduced to prevent element instabilities as possible
without reintroducing the unwanted locking defects. The group of Belytschko
and colleagues have signi�cantly contributed to this �eld of research, where we
just cite the papers related to hexahedral elements by Flanagan and Belytschko
[91] and Belytschko and Bindeman [27] and refer to references therein for de-
tails. Within an explicit time-integration framework, these techniques have
gained broad success. However, reduced-integration elements, especially three-
dimensional hexahedrons, are highly sensitive to mesh distortion (see Tan and
Vu-Quoc [292]), which becomes obvious as a generally successful stabilization
would necessitate the rigorous identi�cation of the higher-order modes.

Felippa and colleagues followed the idea of displacement mode decomposi-
tion as well in their so-called �free formulation� (see Bergan and Felippa [29],
Felippa and Bergan [84] and Felippa [83]). Another popular group of advanced
�nite elements are the so-called hybrid stress elements, originated by Pian and
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colleagues [232, 233, 234] which are based on the two-�eld Hellinger-Reissner
variational principle. More recently the group of Sze has contributed to this
topic (see [283] and references therein). Especially successful in biomechanical
applications when dealing with incompressibility is the mixed Jacobian-pressure
formulation of Simo et al. [275] (see also Simo and Taylor [274]). In summary,
elements based on two-�eld or three-�eld variational principles are known as
mixed �nite elements. We do not want to go into further details about this
large group of element formulations and refer to the literature, for instance the
books of Hughes [147], Zienkiewicz and Taylor [341], Zienkiewicz et al. [342],
and a recent publication of Nakshatrala et al. [217].

A �nal remark on alternative element formulations considers the develop-
ment of e�cient linear tetrahedral elements. Unfortunately, none of the above
mentioned approaches is applicable to signi�cantly improve their performance,
as explained in more detail in Section 3.5.3. The reason is their completeness
in the set of polynomial shape functions. These elements are characterized by
poor performance in bending and incompressible situations. The approach of
Taylor [298] is a mixed formulation based on a three-�eld variational principle
and is in this sense closely related to the above methods. However, the tetrahe-
dral element formulation lacks the bene�t of static condensation and therefore
introduces additional global unknowns. This also complicates coupling to other
element-types. Because there seems to be no way out of the limiting constant
stress and constant deformation gradient within one element, a promising strat-
egy is to take more than one single element into account. This road has been
followed by a number of researchers, among them Bonet and colleagues [43, 44],
Dohrmann et al. [68], de Souza Neto, Pires and colleagues [219, 235], and the
work of Thoutireddy et al. [300] and Guo et al. [119]. The idea has been
combined with a stabilization technique by Puso and Solberg [236] and has
recently been further improved for problems with Poisson's ratio other than
zero, especially in the regime of near-incompressibility, by Gee et al. [111].
The approach, termed �nodal integration�, might resolve the issue of tetrahe-
dral meshes in bending dominated problems and � even more demanded �
in (nearly) incompressible problems. Especially in biomechanical applications
the complex geometry often relies on tetrahedral meshes for e�cient meshing
strategies. However, further research on such element formulations is necessary
before a widespread application is recommended.

3.5 E�cient 3D Finite Element Formulations

In this section we describe in detail a selection of suitable �nite elements for
biomechanical simulations. They do all tackle the various locking phenomena
but do also compromise about computational e�ciency and element perfectibil-
ity. Insofar they substantiate the methods described in the previous section.

3.5.1 A Bulky Hexahedral Element

The �rst presented element is a 8-node hexahedral element which is well suited
for modeling bulky compact structures. In this respect it di�ers from the sub-
sequently described solid-shell element. Such an 8-node hexahedron represents
certainly a classical three-dimensional �nite element discretization. It is the
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natural extension of the 4-node quadrilateral element which has been one of the
�rst �nite elements ever and exhibits also a long history in element technology
investigations.

We apply the EAS-method to remedy locking tackling especially volumetric
and shear locking. The work is based on the paper by Andel�nger and Ramm
[6] where di�erent small-deformation EAS elements are compared and analyzed.
Their extension to large deformations is straight-forward (see also Klinkel and
Wagner [173]).

The standard linear 8-node isoparametric solid element employs linear shape
functions for geometry and displacement, given as

Xh8 =

8∑

I=1

NI(ξ, η, ζ)X̄I and uh8 =

8∑

I=1

NI(ξ, η, ζ)dI , (3.82)

where the trilinear shape functions are de�ned as

NI(ξ, η, ζ) =
1

8
(1 + ξIξ)(1 + ηIη)(1 + ζIζ). (3.83)

Now a speci�ed formulation for the interpolation of the enhanced strains Ẽ
is introduced. Remember the orthogonality condition

∫

B0

δS : Ẽ dV = 0 (3.84)

which has to be ful�lled to allow elimination of the stresses as primary �elds in
the VHW functional. If the enhanced strain �eld is introduced in the form

Ẽ = M α (3.85)

with α as vector of nEAS internal strain parameters and the condition holds at
least for an assumed constant stress within B0, it implies that

∫

B0

M α dV
!
= 0. (3.86)

Such a interpolation is based on the natural element coordinates and therefore
depends on the metric within the element. But because this metric changes
within the element for distorted shapes, the idea of Simo and Rifai [272] is to
relate the EAS interpolation to the element centre, thus holding it constant
within the element. Accordingly, the enhanced strain �eld is transformed be-
tween parametric and material space with an intermediate Jacobian matrix
evaluated at the element center, yielding the two-point tensor

Ẽkl :=
det J

det J0
J0 kiẼijJ0 lj . (3.87)

Here J denotes the general Jacobian matrix and J0 the Jacobian matrix evalu-
ated at the parametric center of the element:

J0 =




∂X
∂ξ

∂Y
∂ξ

∂Z
∂ξ

∂X
∂η

∂Y
∂η

∂Z
∂η

∂X
∂ζ

∂Y
∂ζ

∂Z
∂ζ




∣∣∣∣∣∣∣∣
ξ=0,η=0,ζ=0

. (3.88)
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The de�nition of (3.87) maps the enhanced strains in material space Ẽ into
the enhanced strains Ẽ in parametric space. Using vector notation the inverse
relation is given by

Ẽ =
det J0

det J
T−T

0 Ẽ (3.89)

with the 6× 6 matrix T0 de�ned as (see also Andel�nger and Ramm [6]):

T0 =
J2
11 J2

21 J2
31 2J11J21 2J21J31 2J11J31

J2
12 J2

22 J2
32 2J12J22 2J22J32 2J12J32

J2
13 J2

23 J2
33 2J13J23 2J23J33 2J13J33

J11J12 J21J22 J31J32 J11J22+J21J12 J21J32+J31J22 J11J32+J31J12
J12J13 J22J23 J32J33 J12J23+J22J13 J22J33+J32J23 J12J33+J32J13
J11J13 J21J23 J31J33 J11J23+J21J13 J21J33+J31J23 J11J33+J31J13


0

.

(3.90)

To introduce a suitable interpolation of Ẽ the orthogonality condition, now
obtained as

∫

B0

M α dV =

1∫

−1

1∫

−1

1∫

−1

det J0

det J
T−T

0 M(ξ, η, ζ)α dξ dη dζ
!
= 0, (3.91)

simpli�es the selection of appropriate polynomials for M(ξ, η, ζ), as

1∫

−1

1∫

−1

1∫

−1

M(ξ, η, ζ)dξ dη dζ
!
= 0 (3.92)

must be satis�ed.
Another consequence of condition (3.86) is that the interpolation of the en-

hanced strain �eld Ẽ is not contained in the displacement-based strain �eld Eu.
Furthermore, in case of a linear static theory it ensures stability and conver-
gence of the resulting �nite element method. In particular, satisfaction of the
patch test is ensured a priori. For the large-deformation case such an interpo-
lation also ensures frame invariance, a fundamental requirement of objectivity.
We refer to Simo and Rifai [272] for details.

For our proposed 8-node solid elements we suggest two speci�c interpola-
tions for M, given in matrix notation. The �rst consists of nine enhanced
strain parameters nEAS = 9 and is equivalent to an often employed incompat-
ible displacement element using nine extra quadratic displacement modes. Its
interpolation matrix is given as

MEAS9 =




ξ 0 0 0 0 0 0 0 0
0 η 0 0 0 0 0 0 0
0 0 ζ 0 0 0 0 0 0
0 0 0 ξ η 0 0 0 0
0 0 0 0 0 η ζ 0 0
0 0 0 0 0 0 0 ξ ζ




(3.93)
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The resulting element, termed EAS9, is not competely free of volumetric locking
in certain distorted element shapes (see Andel�nger and Ramm [6]). However,
in terms of element perfectibility it is seen as good compromise between locking
elimination and computational e�ciency.

A second element, termed EAS21, consists of 21 enhancing strain parameters
nEAS = 21 with the interpolation given as

MEAS21 =




ξ 0 0 0 0 0 0 0 0
0 η 0 0 0 0 0 0 0
0 0 ζ 0 0 0 0 0 0
0 0 0 ξ η 0 0 0 0
0 0 0 0 0 η ζ 0 0
0 0 0 0 0 0 0 ξ ζ

0 0 0 0 0 0 ξη ξζ 0 0 0 0
0 0 0 0 0 0 0 0 ξη ηζ 0 0
0 0 0 0 0 0 0 0 0 0 ξζ ηζ
ξζ ηζ 0 0 0 0 0 0 0 0 0 0
0 0 ξη ξζ 0 0 0 0 0 0 0 0
0 0 0 0 ξη ηζ 0 0 0 0 0 0



. (3.94)

Due to the overall nine introduced modes for the three normal strains, Eξξ, Eηη,
Eζζ , they all consist of the same polynomial basis and the constraint Eii = 0
can be ful�lled without an additional `spurious' constraint. Thus, the element
EAS21 is free of volumetric locking. The additional six parameters for the shear
strains eliminate shear locking in distorted element shapes. Additional nine
modes ending up with 30 enhancing strain parameters would expand the whole
strain �eld up to a complete trilinear �eld, as proposed by Klinkel and Wagner
[173]. But this is considered to be computationally to expensive and according
to Andel�nger and Ramm [6] does not seem to improve the overall performance.

Numerical examples are presented in Section 3.6 and the two proposed 8-
node solid elements EAS9 and EAS21 prove to provide excellent results in these
benchmark examples.

3.5.2 A Hexahedral Solid-Shell Element

In this section we present another 8-node hexahedral solid element. However, in
contrast to the previous section this element is specialized to model thin, shell-
like structures. These structures play a signi�cant role in all �elds of engineering
which might be best described by Ramm's well-known quote characterizing the
shell as the �primadonna of structures� [241]. For several reasons the trend in
modeling shell structures goes to a three-dimensional discretization with special
so-called solid-shell elements. Among them are the easy coupling to compact
solid parts, the possible inclusion of higher-order e�ects such as boundary lay-
ers or delamination, and the direct identi�cation of the discretized geometry,
necessary for example in contact- or multi�eld-simulations. Not least, the arte-
rial wall being a relatively thin, complex, layered structure is well suited to be
modeled with solid-shell elements.

The notion `solid-shell' is not completely clear in literature. A solid-shell typ-
ically consists of a three-dimensional discretization including a three-dimensional
material law, but without any rotational degrees-of-freedom. However, much
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work is based on extensions of the classical two-dimensional shell theory into
three dimensions, see for example Büchter et al. [26], Bischo� and Ramm [35],
Betsch et al. [30], Parisch [223], Brank et al. [47], to name a few. This led
some authors to reparametrize the shell geometry in terms of nodal displace-
ments of upper and lower surfaces, see for example Schoop [257] and Schlee-
busch [256]. Other authors have taken the approach to use standard hexa-
hedral elements and develop special techniques which allow the elements `to
become thin', for instance Legay and Combescure [192], or Key et al. [167].
The approach of Reese [243, 245] is based on a special stabilization technique
for under-integrated 8-node solid elements resulting in computationally e�cient
solid-shell elements. However, stabilized under-integration is more worthwhile
in an explicit dynamic framework and the element formulation is compromised
by an inexact integration of the element volume for elements not representing
a parallelepiped. In meshes resulting from complex patient-speci�c geometries
of highly curved structures this might play a signi�cant role.

Another widely accepted approach is represented by the work of Hauptmann
and colleagues [130, 131, 132], see also Harnau and Schweizerhof [124, 125], and
Klinkel et al. [170, 171], and Vu-Quoc and Tan [322, 323, 292]. These models
have in common that they apply a certain combination of EAS- and ANS-
techniques to overcome diverse locking defects. In contrast, Sze and colleagues
[281, 283, 286, 287] mostly apply the hybrid-stress method in combination with
ANS.

In the following we propose a 8-node solid-shell element as described by Vu-
Quoc [322] which is also similar to the element proposed by Klinkel [170], but
di�ers in the number of enhanced strain parameters. For a solid-shell element, as
for the previous bulky hexahedral, we request to eliminate volumetric and shear
locking. Within a shell geometry we may di�erentiate the latter into transverse
and in-plane shear locking. Additionally, we have discussed the importance of
elimination of trapezoidal locking in Section 3.2.3 which is preferred to patch-
test satisfaction in thickness direction. Therefore, a distinguished thickness
direction will be inherent in the present element formulation. We de�ne without
loss of generality the local ζ-direction as thickness direction.

Convective description for solid-shell elements

The classical shell theory is typically described using a convective local coordi-
nate system and co- and contravariant basis vectors. The local �nite element
coordinate system also represents a convective description. We do not want to
go into detail about these preliminaries and refer to various literature such as
the books of Ba³ar [15], Parisch [224], Itskov [159]. However, we do want to
facilitate reference to the corresponding literature and give a short review.

To describe the solid-shell element geometry we introduce a local convective
coordinate system where we can identify for every element point the gener-
ally curvilinear basis vectors. We distinguish between covariant (lower index)
and contravariant (upper index) basis vectors. The covariant convective basis
vectors are tangential to the curvilinear natural coordinates at a given point,
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yielding for the undeformed and deformed con�guration, respectively,

Gi =
∂X

∂ξi
and gi =

∂x

∂ξi
, with Gi ·G

j = δji and gi ·g
j = δji .

(3.95)

To simplify notation the convective coordinates ξi are introduced which are
equivalent to the local element parameter space coordinates ξ, η, ζ with ξ1 =
ξ, ξ2 = η, ξ3 = ζ.

The covariant basis vectors are thus nothing more than the row vectors of
the Jacobian matrix of the isoparametric map

J =




∂X
∂ξ

∂Y
∂ξ

∂Z
∂ξ

∂X
∂η

∂Y
∂η

∂Z
∂η

∂X
∂ζ

∂Y
∂ζ

∂Z
∂ζ


 =




GT
1

GT
2

GT
3


 (3.96)

and the contravariant basis vectors can be identi�ed as the column vectors of
the inverse Jacobian

[
G1 G2 G3

]
= J−1 (3.97)

The deformation gradient in global Cartesian coordinates

F =
∂xi
∂Xj

ei ⊗ ej (3.98)

is given in convective coordinates as

F = gi ⊗Gi and FT = Gi ⊗ gi. (3.99)

With the so-called metric coe�cients of the current con�guration gij = gi ·gj
and of the reference con�guration Gij = Gi ·Gj the Green�Lagrange strain
tensor reads

E = EijG
i ⊗Gj with Eij = 1

2 (gij −Gij). (3.100)

Strain modi�cation stemming from for instance the ANS method are applied to
these covariant strain components as described in the following.

ANS modi�cation for the hexahedral solid-shell element

The discretization of the covariant basis vectors is given as

Gh
i = N,i X̄ and ghi = N,i x̄ (3.101)

where N,i is the derivative of N with respect to ξi and wherefrom the metric
coe�cients are evaluated. From here on the superscript h is omitted for readabil-
ity. The Green-Lagrangean strain components (3.100) need to be transformed
to global Cartesian coordinates. Similar to (3.90) we introduce a matrix T given
as

T =


J2
11 J2

21 J2
31 2J11J21 2J21J31 2J11J31

J2
12 J2

22 J2
32 2J12J22 2J22J32 2J12J32

J2
13 J2

23 J2
33 2J13J23 2J23J33 2J13J33

J11J12 J21J22 J31J32 J11J22+J21J12 J21J32+J31J22 J11J32+J31J12
J12J13 J22J23 J32J33 J12J23+J22J13 J22J33+J32J23 J12J33+J32J13
J11J13 J21J23 J31J33 J11J23+J21J13 J21J33+J31J23 J11J33+J31J13


(3.102)



3. E�cient Finite Elements for Arterial Wall Modeling 59

where in contrast to T0 of (3.90) the evaluation point is not the element center.
The transformation of strains from local convective parameter space to global
Cartesian space is obtained by premultiplying the transpose inverse matrix T−T.

ζ

ξ

E F

G
H C

A

BD

η

Fig. 3.13: 8-node solid shell element in isoparametric coordinates with sampling points
for ANS interpolation of transverse shear strains (A,B,C,D) and transverse normal
strains (E,F,G,H).

To treat transverse shear locking we adopt the ANS method, as �rst proposed
by Dvorkin and Bathe [78] for a 4-node shell element. The compatible transverse
shear strains Eu

ξζ and E
u
ηζ are evaluated at the four sampling points A,B,C,D,

see Fig. 3.13, and the linear interpolation

EANS
ξζ = 1

2 (1− η)Eu
ξζ(ξA) + 1

2 (1 + η)Eu
ξζ(ξC) (3.103)

EANS
ηζ = 1

2 (1− ξ)Eu
ηζ(ξD) + 1

2 (1 + ξ)Eu
ηζ(ξB) (3.104)

is applied, where the coordinates of A,B,C,D are ξA = (0,−1, 0), ξB =
(1, 0, 0), ξC = (0, 1, 0), ξD = (−1, 0, 0) in convective coordinates (ξ, η, ζ).

Trapezoidal locking is also tackled by ANS, as proposed by Betsch et al.
[30]. Therefore, the compatible normal strain in the thickness direction Eu

ζζ

is evaluated at the sampling points E,F,G,H, see Fig. 3.13, and bi-linearly
interpolated within the element as

EANS
ζζ =

∑

k∈{E,F,G,H}

Nk(ξ, η)Eu
ζζ(ξk) (3.105)

with Nk = 1
4 (1 + ξkξ)(1 + ηkη). The superscript indicates the shape func-

tion being evaluated at the designated location. The coordinates of the cor-
ner points E,F,G,H in convective coordinates (ξ, η, ζ) are ξE = (−1,−1, 0),
ξF = (1,−1, 0), ξG = (1, 1, 0) and ξH = (−1, 1, 0).

Being a `B-bar'-method the ANS-modi�cation of natural strains is re�ected
in a modi�ed B-operator matrix

BI =



NI,1 ·gT
1

NI,2 ·gT
2∑

k∈{E,F,G,H}

1
4
(1 + ξkξ)(1 + ηkη) NI,3 ·gT

3

∣∣
k

NI,1 ·gT
2 +NI,2 ·gT

1

1
2
(1 − ξ)(NI,2 ·gT

3

∣∣
ξD

+NI,3 ·gT
2

∣∣
ξD

) + 1
2
(1 + ξ)(NI,2 ·gT

3

∣∣
ξB

+NI,3 ·gT
2

∣∣
ξB

)

1
2
(1 − η)(NI,1 ·gT

3

∣∣
ξA

+NI,3 ·gT
1

∣∣
ξA

) + 1
2
(1 + η)(NI,1 ·gT

3

∣∣
ξC

+NI,3 ·gT
1

∣∣
ξC

)


(3.106)
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for each nodal contribution I. The discrete virtual Green-Lagrangean strain-
vector on element level is obtained from

δE = T−TB δd with B = [B1 | B2 | B3 | · · · | B8]. (3.107)

The same interpolation is applied for the incremental Green-Lagrangean strain
∆E = B ∆d and the modi�ed element sti�ness keu then reads

keu = B
T
T−1C̄ T−TB (3.108)

The geometric matrix kgeo resulting from linearization is derived in index

notation referring to Equations (3.33) and (3.34), where the components ŜIK
are now modi�ed to

ŜIK = S11NI,1NJ,1 + S22NI,2NJ,2

+ S33

4∑

k=1

1
4 (1 + ξkξ)(1 + ηkη)Nk

I,3N
k
J,3

+ S12(NI,1NJ,2 +NI,2NJ,1)

+ S23

(
1
2 (1− ξ)(ND

I,2N
D
J,3 +ND

I,3N
D
J,2) + 1

2 (1 + ξ)(NB
I,2N

B
J,3 +NB

I,3N
B
J,2)
)

+ S13

(
1
2 (1− η)(NA

I,1N
A
J,3 +NA

I,3N
A
J,1) + 1

2 (1 + η)(NC
I,1N

C
J,3 +NC

I,3N
C
J,1)
)
.

(3.109)

EAS formulation for the hexahedral solid-shell element

In addition to the ANS modi�cation we apply also the EAS method to treat
volumetric locking, in-plane shear locking and membrane locking. The decisive
question is the number and choice of enhancing strain parameters. We repeat
Equation (3.91) here for convenience which speci�es the enhancing EAS strains
as

Ẽ =

1∫

−1

1∫

−1

1∫

−1

det J0

det J
T−T

0 M(ξ, η, ζ)α dξ dη dζ. (3.110)

It remains to de�ne the matrix M with respect to locking elimination and
computational e�ciency. Obviously, to eliminate volumetric locking the linear
enhancement of the normal strains is necessary. Further, in-plane shear lock-
ing has not yet been eliminated by the ANS-method. The reason is that we
anticipate irregular meshes within the shell plane and demand satisfaction of
the in-plane membrane patch test which assures that a constant in-plane strain
state can be reproduced exactly. This can be achieved by the EAS method
through two additional linear enhancements of the in-plane shear strain Eξη.
Finally, two bilinear polynomials for the thickness strain Eζζ are necessary to
fully eliminate volumetric locking in bending and for distorted meshes, and thus
to pass the out-of-plane bending patch test, suggested by MacNeal and Harder
[206]. Vu-Quoc and Tan [322, 323] present an elaborate discussion about this
issue.
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The resulting enhancement matrix reads

MSOSH8 =




ξ 0 0 0 0 0 0
0 η 0 0 0 0 0
0 0 ζ 0 0 ξζ ηζ
0 0 0 ξ η 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




(3.111)

with nEAS = 7 parameters α1, . . . , α7. It is remarked that the in any case
marginal e�ect of membrane-locking for linear elements is also eliminated by
the enhancement of the membrane strains Eξξ and Eηη.

The overall Green-Lagrangean strain vector for the proposed solid-shell el-
ement is then given as the sum of the ANS-modi�ed strains and the EAS-
enhanced strains:

ESOSH8 = TTB d +
det J0

det J
T−T

0 MSOSH8α. (3.112)

The resulting sti�ness matrix is obtained as

kSOSH8 = kuu︸︷︷︸
keu+kgeo

−k
T

αu k−1
αα kαu (3.113)

The ANS modi�cation a�ects only these parts of the sti�ness matrix kuu and
kαu which are coupled to the nodal displacements, and the internal force vector
f int, but not kαα and fEAS. This makes the implementation of the combined
ANS and EAS modi�cations relatively simple and e�cient.

In contrast, an EAS-enhancement of the deformation gradient F = F u + F̃ ,
as performed for example by Miehe [214], would result in a much more com-
plicated formulation. The reason is that an EAS formulation based on the
deformation gradient yields a multiplicative coupling between F u and F̃ in E.
Therefore, a ANS modi�cation would a�ect also parts of the sti�ness matrix
which are not directly dependent on the nodal displacements like for instance
kαα. Such an approach is considered to be much less e�cient (see also the
discussions of Vu-Quoc [323] and Klinkel [169]). By all means the ANS modi-
�cation cannot be applied directly to the deformation gradient and a material
interface needs to be based on other strain measures (see Tan and Vu-Quoc
[292] or Miehe [214]). Alternatively, we favor the polar decomposition approach
described in Section 3.4.1.

In summary, the proposed solid-shell formulation is locking-free in the sense
that it eliminates transverse shear locking, membrane locking, trapezoidal lock-
ing, and volumetric locking. It passes both the membrane and the out-of-plane
bending patch tests. The only limitation is that the underlying geometry has
to have a regular shell-discretization mesh-layout where the vector of the nodes
in thickness direction is normal to the mid-plane. This is usually the case,
especially if the mesh results from a kind of extrusion of a shell plane. We
refer to Section 3.6 for several benchmark examples which prove the elements
performance.
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3.5.3 A Wedge-Shaped Solid-Shell Element

Complex geometries, especially coming from segmented patient-speci�c medical
images, place high demands in terms of meshing algorithms and resulting mesh
quality. Pure hexahedral meshes are practically impossible and hexa-dominant
meshes are usually the best option. If the arterial wall is generated by extrusion
of such meshes, see Section 6.1.2, also thin wedge-shaped elements emerge. This
has motivated the development of a wedge-shaped 6-node solid-shell element,
described in this section.

The problem of wedge-shaped elements lies in their triangular surfaces. It is
well known that any linear triangular �nite element has performance problems,
whether it is a two-dimensional plane element, a triangular plate element, or
a triangular shell element. This might be best characterized by Hauÿer and
Ramm's contribution entitled, �E�cient 3-node shear deformable plate/shell
elements � An almost hopeless undertaking�[129]. In fact, the linear triangle
was one of the �rst �nite elements and an enormous research e�ort has since
been invested to improve it. Nevertheless, there still is not any fully satisfactory
solution available (see also Hauÿer [128]).

Triangular elements are based on a complete set of polynomials, as illustrated
by Pascal's triangle in Fig. 3.14 on the left. This is a key reason why triangular
elements are barely improvable. In contrast, quadrilateral elements feature a
mixed monomial and methods such as the EAS-method tackle locking problems
at exactly this point by completing the polynomial set designated by this mixed
monomial. This is not possible for triangles as they are already complete and
would not �sense� the enhancing ansatz.

1

r

rsr2
s

s2

r3 r2s rs2 s3

1

r

rsr2
s

s2

r3 r2s rs2 s3

linear

quadratic

cubic

Fig. 3.14: Shape functions for triangular elements (left) and quadrilateral elements
(right) in Pascal's triangle.

Displacement-based linear wedge-shaped solid element

Literature about wedge-shaped elements is rare. Only Sze and colleagues [282,
284] seem to have addressed these elements so far. However, when designing
a wedge-shaped solid-shell element we can partly follow the vast literature on
triangular shell elements (see for instance the early work of Hughes and Taylor
[149] and Bletzinger et al. 's paper [40]). Further references and an in-depth
elaboration are provided by Hauÿer [128] and Bischo� [34].

Prior to special treatment to improve its performance, we introduce the stan-
dard displacement-based wedge-shaped solid element. Depicted in Fig. 3.15, it
is de�ned by six nodes and the shape functions resulting from a linear extension
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Fig. 3.15: 6-node wedge-shaped solid shell element in isoparametric coordinates with
sampling points for ANS interpolation of transverse shear strains (A,B) and transverse
normal strains (C,D,E).

in the thickness direction of the linear triangle, yielding

N1(r, s, ζ) =
1

2
(1− ζ)(1− r − s) N4(r, s, ζ) =

1

2
(1 + ζ)(1− r − s)

N2(r, s, ζ) =
1

2
(1− ζ)r N5(r, s, ζ) =

1

2
(1 + ζ)r

N3(r, s, ζ) =
1

2
(1− ζ)s N6(r, s, ζ) =

1

2
(1 + ζ)s. (3.114)

Similar to the hexahedral solid-shell element described in the previous sec-
tion, we combine two di�erent methods to best overcome locking phenomena.
More speci�cally, the ANS/DSG method is applied to alleviate transverse shear
locking and curvature thickness locking and the EAS method is employed to
enhance the thickness strain.

ANS/DSG formulation for the wedge-shaped solid-shell element

As already discussed for the Sosh8-element, the ANS method is capable to elim-
inate trapezoidal locking (curvature thickness locking for shells) and is therefore
employed for the wedge-shaped solid-shell as well. Accordingly, the transverse
thickness strains Eζζ are modi�ed. Note that, in contrast to the hexahedral ele-
ment, the wedge-shaped solid-shell has already a prede�ned thickness direction,
namely perpendicular to the triangular plane. We choose the corner points of
the element C,D,E (see Fig. 3.15) as sampling points where the compatible
strain Eu

ζζ is evaluated. These strains are interpolated bi-linearly within the
triangular element plane, given as

EANS
ζζ =

∑

k∈{C,D,E}

Nk(r, s)Eu
ζζ(ξk), (3.115)

with N tri
1 (r, s) = r, N tri

2 (r, s) = s, N tri
3 (r, s) = 1− r − s and the coordinates of

the corner points C,D,E being ξC = (0, 0, 0), ξD = (1, 0, 0) and ξE = (0, 1, 0)
in convective (parameter) coordinates (r, s, ζ).
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We have already pointed out that there is a strong connection between the
ANS and the DSG method. Typically the sampling points of the ANS method
turn out to be the edge-integration points of the DSG approach, demonstrated
as follows: Applying the DSG method to eliminate trapezoidal locking, the
transverse strain Eζζ is taken as discrete strain gaps resulting from integration
along the vertical edges and subsequently interpolated within the triangular
element plane as

EDSG
ζζ =

6∑

I=1

N I
,ζ

ζI∫

ζ1

(
u,ζ ·Gζ + 1

2 (uT
,ζ ·u,ζ)

)
dζ

= N4
,ζ

ζ4∫

ζ1

(
u,ζ ·Gζ + 1

2 (uT
,ζ ·u,ζ)

) ∣∣∣
r4,s4

dζ

+N5
,ζ

ζ5∫

ζ1

(
u,ζ ·Gζ + 1

2 (uT
,ζ ·u,ζ)

) ∣∣∣
r5,s5

dζ

+N6
,ζ

ζ6∫

ζ1

(
u,ζ ·Gζ + 1

2 (uT
,ζ ·u,ζ)

) ∣∣∣
r6,s6

dζ. (3.116)

By using a linear Gauss rule for the one-dimensional integration along ζ the
evaluation points turn out to be exactly the corner points C,D,E. Obviously,
the DSG approach yields the same strain modi�cation as the ANS method
speci�ed in (3.115).

But, the situation changes for the transverse shear strains Erζ and Esζ and
both methods signi�cantly di�er. Bletzinger et al. [40] have demonstrated a
DSG approach to e�ciently eliminate transverse shear locking for triangular
shell elements. We have adopted this approach and propose the following DSG
formulation for the wedge-shaped solid-shell element for large deformations.
The modi�ed shear strains read

EDSG
rζ =

6∑

I=1

N I
,r

rI∫

r1




6∑

J=1

NJ
,ζ

ζJ∫

ζ1

1
2

(
u,ζ ·Gr + u,r ·Gζ + uT

,r ·u,ζ
)∣∣∣
rJ ,sJ

dζ



∣∣∣∣∣
rI ,sI

dr,

(3.117)

EDSG
sζ =

6∑

I=1

N I
,s

sI∫

s1




6∑

J=1

NJ
,ζ

ζJ∫

ζ1

1
2

(
u,ζ ·Gs + u,s ·Gζ + uT

,s ·u,ζ
)∣∣∣
rJ ,sJ

dζ



∣∣∣∣∣
rI ,sI

ds.

(3.118)

The integration runs along the convective coordinates (r, s). Thus, thinking in
the corresponding evaluation points (A and B in Fig. 3.15), only two edges are
involved in this formulation. It turns out that the �discrete strain gaps� are
rather an averaging along convective coordinates, than an averaging along the
edges. This results in superior behavior with respect to locking, because the
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constraining third edge naturally drops out of the strain interpolation. In con-
trast, the proposed Kirchho�-Mode(KM)-concept of Hughes and Taylor [149] for
triangular shells represents an averaging along each of the three triangle edges
and is still interfered by signi�cant locking. An analogous ANS formulation
could be easily formulated; however we are unaware of any literature reference
proposing to take only two ANS sampling points into account. A very special
ansatz proposed by Boisse [41] is mentioned, however the element is still not
completely free from transverse shear locking (see Hauÿer [128] for details).

Following the idea of Koschnick [175] the performance of the triangular DSG
shell element is optimal, if the local parameter space is oriented in such a way
that the node is choosen as origin of the coordinates (r, s), whose included angle
is closest to rectangular. This is also adopted for the proposed solid-shell wedge
element. Obviously, such an element formulation is not objective with respect
to node numbering and mesh topology. It is nevertheless shown in Section 3.6
that it shows excellent performance with respect to locking elimination.

EAS formulation for the wedge-shaped solid-shell element

For eliminating volumetric locking neither DSG nor ANS are capable and we
employed the EAS method for the elements proposed up to now. Unfortunately,
within the triangular plane of the wedge element the EAS method has no e�ect,
because the polynomial set is complete. There is no simple and e�cient method
to improve the in-plane behavior available in literature. Maybe, the nodal-
integration approach, see Section 3.4.4, could be applied, but an elaboration
goes beyond the scope of this work.

Thus, the only remaining improvement can be achieved in thickness direc-
tion. Here, we employ one EAS enhancement parameter to remedy thickness
locking. The corresponding enhancement matrix reads

MSOSH6 =




0
0
ζ
0
0
0




(3.119)

Unfortunately, this does not completely eliminate thickness locking due to cou-
pling of the in-plane and transverse normal stresses by Poisson's ratio. However,
additional parameters such as rζ and sζ for Eζζ are not e�ective, again due to
the complete polynomial set in triangular plane.

This is also the reason why the proposed wedge-shaped solid-shell element
cannot pass the bending patch-test (see also Vu-Quoc [322]). Nevertheless,
satisfaction of the membrane patch-test is ensured as only transverse strains
are modi�ed by ANS/DSG. The element is free from transverse shear-locking
for an optimal mesh layout. Similar limitations are present in the wedge-shaped
solid-shell element proposed by Sze et al. [284], which also necessitates a special
element layout for optimal performance. Convergence, accuracy and e�ciency
are convincing, as demonstrated in the benchmark examples presented in the
following section.
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3.6 Numerical Benchmark Examples

In this section selected numerical examples are considered and the performance
of di�erent elements is analyzed. In the literature a large number of exam-
ples are available where more or less speci�c element technology features are
compared. We present a small selection of popular examples to benchmark
the performance of our proposed element set. Our results are always related
to some literature results. However, a completely objective quantitative and
qualitative measure of element performance, especially in the large deformation
regime seems impossible. Rather, to speci�cally single out a certain element
feature or locking characteristic, a parameter study is usually more illustrative.
Furthermore, we want to point out that locking is present already in the small
deformation regime and large deformations sometimes `cover' the locking in�u-
ence. However, all of our applications fall into the large deformation regime.
Moreover, our proposed elements or at least the set of element technologies are
already su�ciently discussed in the literature and therefore we do not repeat
these examples here. The considered elements described in detail in the previous
sections together with their labels are summarized in Table 3.1.

Table 3.1: Summary of considered elements for the following benchmark problems.

Identi�er Shape Involved element technology Cf. Sec.
EAS9 8-node hexahedron 9 EAS parameters 3.5.1
EAS21 8-node hexahedron 21 EAS parameters 3.5.1
Sosh8 8-node solid-shell ANS, 7 EAS parameters 3.5.2
Sosh6 6-node solid-shell ANS/DSG, 1 EAS parameter 3.5.3
( · )var speci�ed variation of element ( · )

3.6.1 Slit Annular Plate

This example is concerned with a slit annular plate clamped at one end and
subject to a line load at the other end. It has been considered by several re-
searchers, among them Büchter and Ramm [25], Wriggers and Gruttmann [334],
Brank et al. [48]. Sze et al. [285] report detailed tabular load-displacement re-
sults which are taken as reference solutions. They are obtained by using 180
4-node shell elements with reduced integration and stabilization available in the
commercial software ABAQUS.

The geometry, boundary conditions and parameters are presented in Fig. 3.16
on the left. The �nal displaced structure is depicted in Fig. 3.16 on the right for
three di�erent discretizations. One is discretized with 180 hexahedral elements
according to the reference (black outline) and the other two are discretized with
wedge-shaped elements with di�erent mesh layouts (red and green outline). The
line load of 0.8 kN/m is transferred to the corresponding constant surface load
of 26.67 kN/m2 to adapt to the three-dimensional discretizations. The vertical
tip displacement at point A and B are analyzed. To relate our results from a
three-dimensional discretization to the reference speci�ed at the mid-surface the
top and bottom displacements are averaged. Poisson's ratio is taken to be zero
and the structure is �at. Therefore only transverse shear locking is involved at
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Fig. 3.16: Bending of slit annular plate with problem description (left) and three
resulting displaced structures, corresponding to a hex-mesh (black) and two di�erent
wedge-meshes (red and green).

the reference con�guration, but the elements have a non-constant metric due to
the circular structure.

In Fig. 3.17 the displacement of point A and B is plotted with respect to
the line load of the shell discretization. The curves of the Sosh8-discretization
are very close to the reference solution with only a slightly sti�er result. This
is probably related to the di�erence between a shell-discretization and a fully
three-dimensional discretization and the same results have been obtained by
Hartmann [126]. In comparison, the results for the EAS21-discretization are
considerably sti�er. This demonstrates the superior performance of ANS com-
pared to EAS for the elimination of transverse shear-locking in such meshes
where the elements have not the shape of a parallelogram.

Looking at the results of the wedge-shaped elements we consider two di�erent
mesh layouts. One is created by subdivision of every hexahedron of the reference
discretization, see the red outlined mesh in Fig. 3.16. The other variant mesh
results from a triangulation of the plate surface yielding 274 wedge elements.
The displacements of the Sosh6-elements for the former discretizations are lower
than the reference. However, taking into account the issues of triangular shell-
elements (and wedge-shaped solid-shells) the results are remarkably close to the
reference, especially at lower load levels. The DSG approach and the optimized
orientation of the local triangular parameter space almost reach the performance
of a 8-node solid-shell. In comparison, the results `Sosh6var' for the second
mesh layout without the optimized parameter space orientation are signi�cantly
worse.

3.6.2 Pullout of Open-ended Circular Cylinder

Another popular example considers an open-ended circular cylinder subject to
two pulling radial forces. The problem is presented by a number of researchers,
among them Gruttmann et al. [117], Peng et al. [228], Brank et al. [48], Park
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Fig. 3.17: Load-displacement diagram of the slit annular plate example.

et al. [225], Sansour and Kollmann [255]. As for the previous example Sze
et al. [285] report detailed tabular results using the previously described shell
element which we take as a reference solution. Geometry, material properties
and loading conditions are given in Fig. 3.18 on the left. Owing to symmetry,
one-eighth of the structure is modeled using 16 by 24 (384) hexahedral elements,
applying appropriate symmetry boundary conditions. Another mesh is also
depicted consisting of 858 wedge-shaped elements which results from the same
nodal interval along the edges of the eighth structure. The displaced structure
for the full load magnitude of 40 000 kN is depicted in Fig. 3.18 on the right.

In Fig. 3.19 several load-displacement diagrams are plotted considering three
points A, B and C. Again, due to the three-dimensional discretizations we
obtain the results by averaging nodal results from top and bottom surface. All
curves re�ect the characteristic displacement evolution owing to the buckling
of the cylinder at about half the load magnitude. At this buckling load the
displacements increase noticeable and at point C even the direction changes.

Comparing the results with the reference solution, close agreement can be ob-
served for the Sosh8- and Sosh6-discretizations. The Sosh8 results are slightly
softer compared to the reference result, which again likely results from the
three-dimensional discretization. The Sosh6 solution is slightly sti�er although
approximately twice as many elements are used. Still, the results are reason-
ably good. For comparison, we have also plotted the displacement curves for a
wedge-shaped solid-shell element without the EAS parameter in the thickness-
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Fig. 3.18: Pullout of open-ended circular cylinder. Problem description with hex- and
wedge-discretization (left) and resulting displaced structure (right).

direction, labeled Sosh6var. Clearly, the buckling load is underestimated in
this case. With a relatively small aspect ratio of the individual elements the
modeling of the correct thickness strain obviously plays a signi�cant role and
the EAS parameter successfully alleviates this de�cit of the pure displacement
formulation.

In this example, as well as in several other benchmark examples, a singular
force and thus a singularity is involved. It should be noted that such examples
do signi�cantly depend on the resolution of the singularity by the surrounding
mesh.

3.6.3 Pinched Hemisphere

Despite the fact that it poses several issues on judging �nite element results
the pinched hemisphere example has become probably the most popular shell
benchmark referenced in innumerable publications. It concerns a hollow hemi-
spherical shell which has at its pole an 18° hole, as depicted on the left of
Fig. 3.20. It is loaded by four alternating forces at the equator (compare the
displaced structure in Fig. 3.20 on the right for illustration). Due to symmetry
only a quarter of the shell is modeled and symmetry boundary conditions are
applied accordingly. The structure itself is not �xed in the Z−direction which
might pose a problem depending on the applied solver technique. We therefore
�x one node at the middle of the equator in the vertical direction to eliminate
rigid body motion. Note that two di�erent thickness values of the structure
are found in literature, namely h = 0.04 and h = 0.01. We consider the thin
shell with h = 0.01, as presented among others by Simo et al. [273], Parisch
[223], Betsch and Stein [31]. As reference we take the results from Klinkel et al.
[170, 171].

In Fig. 3.21 the inward and outward displacements at points A and B are
plotted versus the pinching load F . We compare our results when applying
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Fig. 3.19: Load-displacement diagram of open-ended circular cylinder.

Sosh8-elements at three di�erent mesh densities to the reference solution. As
can be clearly observed our results for a mesh with 16 by 16 elements are in
perfect agreement with the results presented by Klinkel and colleagues using a
similar solid-shell formulation. Our result uA = 3.2627 and uB = 5.4763 for the
�nal displacement at points A and B also agree up to numerical accuracy with

the corresponding values reported by Vu-Quoc and Tan [322], u
[322]
A = 3.26055

and u
[322]
B = 5.48331, for exactly the same element formulation.

Equally, the results for the mesh with 64 by 64 elements agree with the
reference. However, it is clearly observed by the signi�cantly larger displacement
that the problem is not converged with the coarser discretization; compare also
the results for the 24 by 24 elements. Again the reason lies in the fact that the
pinching forces impose a singularity on the problem and the results strongly
depend on resolving this singularity.

This issue becomes signi�cant when we look at the results for our proposed
Sosh6-element. In the plots of Fig. 3.22 we compare results of di�erent Sosh6-
meshes with the results of the Sosh8-discretizations. `Mesh A' and `Mesh B'
are obtained by subdividing each hexahedron of the 16 by 16 Sosh8-Mesh into
two wedges. They di�er only in the direction of the diagonal. A third `Mesh
C' results from a free triangular surface mesh with intervals of 16 elements per
side, resulting in mostly equilateral triangles and wedges, respectively. The
three meshes are depicted in Fig. 3.23 with close-ups for clari�cation.

The e�ect of the di�erent mesh cases is intriguing. The results for `Mesh
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Fig. 3.20: Pinched hemisphere example with problem description (left) and resulting
displaced structure (right).

A' with 512 Sosh6-elements are remarkebly close to the results of the Sosh8-
discretization with 64× 64 = 4096 elements. Even for `Mesh B' they are better
than 24×24 = 576 Sosh8-elements. The reason has to lie in the way, the point-
loads are carried into the structure. Apparently, for case `A' where the node
with the inwards pinching load belongs to an edge dividing two wedges is better
for the Sosh6-discretization with its optimized parameter space. At the node
with the outwards pinching load the better element con�guration is apparently
contrary with the node belonging to just one element. In `Mesh B' where just
the elements are �ipped the results are worse. In conclusion, it matters how the
pinching forces distribute into the structure and whether the one or the other
mesh con�guration captures this better or worse. In the close-ups of Fig. 3.23
the slightly di�erent displacements close to the pinching point is noticeable.

Finally, if we obtain the wedge-discretization from a free triangulation of
the surface as in `Mesh C', the optimized parameter space in the DSG formula-
tion does not make sense and is therefore omitted. The corresponding results,
Sosh6var, are signi�cantly worse and still in�uenced by transverse shear locking.
Thus, the underlying meshing strategy plays a signi�cant role for the perfor-
mance of the proposed Sosh6-elements. We foreclose that in our proposed
modeling and meshing strategy for patient-speci�c arterial walls discussed in
Chapter 6, we encounter meshes with a majority of rectangular wedges.

3.6.4 Cook's Membrane Problem

This �nal example considers a very famous benchmark for modeling incompress-
ibility where elimination of volumetric locking is essential. Simo and Armero
[267] have extended the well-known tapered beam structure, usually used for
testing bending dominated problems, to quasi-incompressible �nite elasticity.
With the applied `Neo-Hookean' material law, described in more detail in Sec-
tion 4.2.1, �nite elasticity can be modeled correctly. The problem is basically
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Fig. 3.21: Load-displacement diagram of hexahedral discretizations of the pinched
hemisphere.

two-dimensional under plain strain conditions, but can be extended into three
dimensions using for example a unit thickness. All units are dimensionless as
reported in the literature reference. See Fig. 3.24 on the left for a sketch of
the structure and the �nal displacements. As a reference solution we take the
results reported by Klinkel et al. [171] for a solid-shell element identical to our
proposed Sosh8-element. These results are reported to be almost indistinguish-
able to the original results presented by Simo and Armero for a two-dimensional
`Q1E4' element.

The convergence diagram on the right of Fig. 3.24 prove the success of the
EAS method to eliminate volumetric locking. All formulations converge to the
same result. The results for the EAS9-elements and the Sosh8-elements are
indistinguishable from the reference. The four involved in-plane EAS parame-
ters included in both element formulations resolve the quasi-incompressibility
issue. Still, additional EAS parameters included in the EAS21-elements improve
convergence.

It was not possible to obtain any results for a discretization applying wedge-
shaped elements due to convergence breakup. The problem poses the incom-
pressibility issue solely on the triangular plane of the wedge-elements. As dis-
cussed earlier these elements do not apply any element technology within the
triangular plane and thus have the same problem with this example as pure
displacement-based elements. Only if the incompressibility is lowered by re-
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Fig. 3.22: Load-displacement diagram of wedge-shaped discretizations of the pinched
hemisphere.

ducing Poisson's ratio will produce results, but these are still in�uenced by
volumetric locking.

3.6.5 Summary

The presented benchmark examples prove the successful implementation of the
proposed element techniques resulting in excellent and competitive results. We
remark that due to linearization we obtain overall a good convergence behav-
ior with quadratic convergence rates within the convergence radius. But, ad-
mittedly, the convergence radius for advanced element techniques is smaller
compared to pure displacement-based elements. Also, the matrix condition for
three-dimensional solid elements might be worse than for shell elements based
on dimensional reduction. In summary, the proposed techniques represent state
of the art three-dimensional solid elements and are well-suited to model biome-
chanical structural problems such as the arterial wall.
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Fig. 3.23: Di�erent wedge meshes for pinched hemisphere with colors representing
displacement magnitudes scaled to mesh A.
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Fig. 3.24: Cook's membrane problem (left) and tip-displacement convergence (right).
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4. Constitutive Models for

the Arterial Wall

Within this chapter we discuss a selection of constitutive laws which are suited
and widely applied for simulations of the arterial wall. The range starts from
rather simple formulations which however have a large reputation in biome-
chanical applications. Subsequently more complex material laws are elaborated
which take into account the anisotropic �ber-reinforced microstructure of the
wall. All these constitutive models count to the theory of hyperelasticity. Fur-
ther on, an extension to viscoelasticity is presented which is typically present
in biological tissue and should be considered in a sophisticated study of the
arterial wall.

4.1 Essentials of Constitutive Modeling

Prior to the discussion of speci�ed material laws we shortly review the un-
derlying premises of constitutive modeling. In this sense the following section
continues the chapter on continuum mechanical foundations (Chapter 2), how-
ever having always the application within the �nite element method in mind.
The topic is extensively elaborated in the literature. Detailed elaborations can
be found in the books of Ba³ar [15], Holzapfel [137], Parisch [224], among others.

4.1.1 Properties and Restrictions for Constitutive Laws

For a mechanically and physically consistent constitutive law in terms of an
appropriate strain energy function and also a numerically convenient treatment
several properties and restrictions have to be ful�lled. We restrict ourselves
here to a short overview and refer to the literature for detailed discussions, for
instance Truesdell and Noll [312], Marsden and Hughes [208], and Ogden [220].
We �rst recall some basic principles and then report some bene�cial properties
for material modeling.

Materials for which the constitutive behavior is only a function of the current
state of deformation are generally known as elastic. In the special case when the
work done by the stresses during a deformation process is dependent only on the
initial state at time t0 and the �nal con�guration at time t, the behavior of the
material is said to be path-independent and the material is termed hyperelastic.
Such a material postulates the existence of a Helmholtz free-energy function



76 4. Constitutive Models for the Arterial Wall

Ψ de�ned per unit reference volume, see Section 2.3. For the case in which
Ψ = Ψ(F ) is solely a function of F or some other strain tensor the Helmholtz
free-energy function is referred to as the strain-energy function or stored-energy
function or elastic potential.

The principle of determinism and local action states that the stress of a
material point X occupying x at the moment t is determined by the past history
of the motion of any arbitrarily small neighborhood of X.

The principle of material objectivity reveals that the response of a material
is the same for all observers. Since this expression is rather cumbersome to
evaluate, invariance with respect to superposed rigid body motions is usually
required. Thus the strain energy has to be independent to a rigid body rotation,
given as

Ψ(F ) = Ψ(QF ) with Q ∈ SO(3), (4.1)

where SO(3) denotes the special orthogonal group, i.e. detQ = 1 ∧QTQ = I.
The principle of material symmetry requires that no rigid body rotation

Q ∈ G applied to the reference con�guration is allowed to alter the material
response. Herein, G identi�es the symmetry group of the considered body and
characterizes the symmetry properties of the material. If the symmetry group
G is equal to the special orthogonal group SO(3) then the material is called
isotropic.

The concept of internal variables introduces additional internal material
state variables to describe aspects of the internal structure of materials as-
sociated with time-dependent behavior, for instance dissipation. The set of
internal variables are denoted collectively by I and their evolution is deter-
mined by additional equations. The strain energy then depends in addition to
the deformation gradient F on I

Ψ = Ψ(F , I). (4.2)

The properties of the strain energy in special limit cases, namely the total
compression of a continuum body to a single point and the in�nite principal
strains λi of the same body should be consistent with the physical comprehen-
sion. This means that in the �rst case with λi → +0 the strain energy function
satis�es

Ψ(λi → +0)→ +∞ (4.3)

and the principal Cauchy-stresses also tend to in�nite pressure values, σi →
−∞. The second, contrary case λi → +∞ requires

Ψ(λi → +∞)→ +∞ (4.4)

and σi → +∞. Additionally it is bene�cial, if the reference con�guration is
stress-free

σ(F ≡ I) = S(F ≡ I) = 0. (4.5)

Polyconvexity in the sense of Ball [16] seems an appropriate condition for
hyperelasticity, see also Balzani [17] and references therein. A strain energy
function

Ψ(F ) = P (F , JF−T, J), (4.6)

is de�ned to be polyconvex, if it is convex in its arguments F , JF−T, J .
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4.1.2 Constitutive Equations in Terms of Invariants

Elastic deformation is de�ned to be fully reversible. Every state of deformation
identi�ed by the deformation gradient F is related with the corresponding strain
energy Ψ(F ). The principle of objectivity (4.1) requires that this strain energy
is independent to the observer yielding the relation

Ψ = Ψ(F ) = Ψ(QF ) = Ψ(U) = Ψ(C) = Ψ(E). (4.7)

For isotropic constitutive relations

Ψ(C) = Ψ(QCQ) with Q ∈ SO(3) (4.8)

must hold. Therefore the strain energy must be independent for arbitrary or-
thogonal rotations of the right Cauchy-Green tensor. This is ensured, if Ψ
depends on the three principal invariants of C, which are given as

I1 = λ2
1 + λ2

2 + λ2
3 = trC (4.9)

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 =

1

2

[
(trC)

2 − trC2
]

(4.10)

I3 = λ2
1λ

2
2λ

2
3 = J2 = detC ⇔ J =

√
I3 (4.11)

where λi are the principle strains and λ
2
i are the eigenvalues of C. This results

in a formulation of the strain energy in dependence of the invariants

Ψ = Ψ(I1, I2, I3) (4.12)

which obeys the requirements of objectivity and allows a convenient and general
description of di�erent constitutive laws. In order to satisfy the requirement of
a vanishing strain energy in reference con�guration the function must obey
Ψ(I1 = 3, I2 = 3, I3 = 1) = 0. It should be noted that the invariants of the
left Cauchy-Green tensor are identical and a formulation Ψ = Ψ(Ib1 , I

b
2 , I

b
3 ) is

equivalent.

Stress and elasticity in terms of invariants

The concept of invariants is pursued in the derivation of stress and elasticity
tensors. The appropriate tensor derivation of a general strain energy in terms
of invariants Ψ = Ψ(I1, I2, I3) yields for the second Piola-Kirchho� stress

S = 2
∂Ψ(C)

∂C
= 2

(
∂Ψ

∂I1

∂I1
∂C

+
∂Ψ

∂I2

∂I2
∂C

+
∂Ψ

∂I3

∂I3
∂C

)

= 2

((
∂Ψ

∂I1
+ I1

∂Ψ

∂I2

)
I − ∂Ψ

∂I2
C + I3

∂Ψ

∂I3
C−1

)
(4.13)
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Accordingly, the elasticity tensor is obtained with the help of some derivatives
with respect to C as

C = 2
∂S(C)

∂C
= 4

∂2Ψ(C)

∂C∂C
= 4

∂2Ψ(I1, I2, I3)

∂C∂C

= 4

[ (
∂2Ψ

∂I1∂I1
+ 2I1

∂2Ψ

∂I1∂I2
+
∂Ψ

∂I2
+ I2

1

∂2Ψ

∂I2∂I2

)
I ⊗ I

−
(

∂2Ψ

∂I1∂I2
+ I1

∂2Ψ

∂I2∂I2

)
(I ⊗C +C ⊗ I)

+
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I3

∂2Ψ

∂I1∂I3
+ I1I3

∂2Ψ

∂I2∂I3
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∂I2I2
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∂2Ψ

I2I3
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I3
∂Ψ

∂I3
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∂2Ψ

∂I3∂I3
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− I3
∂Ψ

∂I3
C−1 �C−1 − ∂Ψ

∂I2
I � I

]
. (4.14)

Herein, the fourth order tensors −∂C−1

∂C = C−1 � C−1 and I � I are de�ned
according to the special second order tensor product

A�B =
1

2
(AACBBD +AADBBC). (4.15)

4.1.3 Incompressibility and Near Incompressibility

Incompressibility plays an important role in engineering practice. Most large
strain processes take place under incompressible or near incompressible condi-
tions. This is true in an elastoplastic context where the plastic deformation
is often truly incompressible. Also viscoelasticity is often related to incom-
pressibility. Beyond, numerous polymeric materials sustain large strain without
noticeable volume changes. Rubber elasticity was therefore a driving force for
research in this �eld. Biological materials consisting mainly of molecule chains
with a high contingent of water usually have to be treated as incompressible. In
this section the implications of incompressibility for constitutive equations are
described. The consequences for a �nite element discretization and associated
solution techniques have already been discussed in Chapter 3.

Incompressibility is characterized by the volume constraint

J = 1 (4.16)

throughout the deformation. Also hydrostatic loading causes no deformation
and strain. Therefore, the state of stress cannot be completely derived via a
constitutive relation and stress boundary conditions have to be considered. To
fully describe the state of stress one additional equation is necessary which is
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related to the volume constraint, yielding the general relation for the second
Piola-Kirchho� stress:

S = 2
∂Ψ(C)

∂C
+ pC−1. (4.17)

The scalar p serves as an indeterminate Lagrangean multiplier identi�ed as
hydrostatic pressure. It may only be determined from equilibrium equations
and boundary conditions.

Decoupling of strain energy into isochoric and volumetric parts

The issue of incompressibility does not only pose problems on �nite element
techniques as discussed in the previous chapter, but has also consequences for
an appropriate material description. A general and widely accepted approach
to handle this problem is based on a decoupled formulation of the constitutive
equations. This means that the volumetric and isochoric response are handled
separately via a multiplicative decomposition of the deformation gradient F into
volume-changing (dilatational) and volume-preserving (distortional, isochoric)
parts:

F = F volF iso = (J1/3I)F̂ . (4.18)

The bene�t is that the two contributions can now be modeled separately where
the identi�cation of the isochoric material behavior plays the decisive role in
the description of the behavior of the tissue. To model incompressibility any
dilatational deformation has to be eliminated. According to the deformation
gradient also the right Cauchy-Green strain tensor is decomposed as

C = (J2/3I)Ĉ = J2/3Ĉ. (4.19)

In the same way the strain energy can be decoupled into its volumetric
part Ψvol and its isochoric part Ψiso. The volumetric part depends only on the
dilatation J , whereas the isochoric part depends on the modi�ed invariants

Ψ = Ψiso(Ĉ) + Ψvol(J) = Ψiso(Î1, Î2) + Ψvol(J). (4.20)

The modi�ed invariants of the right Cauchy-Green tensor are given as

Î1(Ĉ) = J−2/3I1 (4.21)

Î2(Ĉ) = J−4/3I2 (4.22)

Î3(Ĉ) = J−2I3 ≡ 1. (4.23)

Decoupled stress and elasticity

For the derivation of the second Piola-Kirchho� stress the concept of decoupling
into volumetric and isochoric parts leads to an additive split

S = 2
∂Ψ(C)

∂C
= Siso + Svol = 2

∂Ψiso(Ĉ)

∂C
+ 2

∂Ψvol(J)

∂C

= J−2/3

(
I− 1

3
C−1 ⊗C

)

︸ ︷︷ ︸
P

: Ŝ + pJC−1 (4.24)
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where we introduced the fourth-order so-called projection tensor P following
Holzapfel [137, 136]. Herein the scalar p is the hydrostatic pressure, given as

p = dΨvol(J)
dJ and

Ŝ = 2
∂Ψiso(Ĉ)

∂Ĉ
(4.25)

is the so-called �ctitious second Piola-Kirchho� stress. In terms of invariants it
is obtained by replacing I1, I2 andC with their decoupled isochoric counterparts
Î1, Î2 and Ĉ, respectively, and omitting the parts depending on I3 in (4.13).

Similarly, the elasticity tensor can be formulated in a decoupled additive
manner

C = 2
∂S(C)

∂C
= Ciso + Cvol = 2

∂Siso

∂C
+ 2

∂Svol

∂C
. (4.26)

The isochoric contribution is, again via a projection proposed by Holzapfel
[137, 136], given as

Ciso = J−4/3 P : Ĉ : PT

+
2

3
J−2/3

(
Ŝ : C

)(
C−1 �C−1 − 1

3
C−1 ⊗C−1

)

− 2

3

(
C−1 ⊗ Siso + Siso ⊗C−1

)
(4.27)

with J4/3Ĉ = 2 ∂Ŝ
∂Ĉ

being obtained by replacing I1, I2 and C with Î1, Î2 and

Ĉ, respectively, and omitting the parts depending on I3 in (4.14). Ĉ may be
called �ctitious elasticity tensor in the material description. The volumetric
contribution yields

Cvol = J

(
p+ J

dp

dJ

)
C−1 ⊗C−1 − 2pJC−1 �C−1. (4.28)

Penalty approach to enforce incompressibility

Typically in �nite element simulations, a penalty approach is employed to en-
force incompressibility within a nearly incompressible constitutive law. The
dilatational deformation is penalized controlled by the penalty parameter. This
parameter can usually be identi�ed with the bulk modulus and high values in
the range of 103 − 104µ are common to ensure incompressibility. However, the
penalty approach poses numerical problems on the solution strategy which goes
along with adaptations of the penalty parameter while monitoring the dilata-
tional deformation.

In an isochore-volumetric decoupled setting the penalty approach only af-
fects the speci�cation of the volumetric strain energy function. There are several
proposed functions available in the literature and we refer to the work of Doll
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[69, 70] and the references therein. A small selection of popular functions is

Ψvol
1 (J) =

κ

2
(J − 1)2, (4.29)

Ψvol
2 (J) =

κ

2
(ln J)2, (4.30)

Ψvol
3 (J) =

κ

2

(
(J − 1)2 + (ln J)2

)
, (4.31)

Ψvol
4 (J) =

κ

4
(J2 − 1− 2 lnJ). (4.32)

Note that not all of these functions satisfy every requirement of Section 4.1.1.
For example, Ψvol

1 tends to κ/2 for J → +0 and should therefore be avoided
in applications with large compression, whereas Ψvol

2 does not result in in�nite
stresses for the case of in�nite tension.

Summarizing, the concept of decoupling the material response and its strain
energy function together with the penalty approach to enforce incompressibility
allows a convenient methodology to model biological tissue in a �nite-element
solution context. However, several issues, especially in the numerical treat-
ment remain unsolved, as the penalty term is known to yield badly scaled sys-
tem matrices. Considerations to overcome these problems represent research in
progress.

4.1.4 Extension to Anisotropy

The constituents of the arterial wall result in a highly complex material behav-
ior. Since the (wavy) collagen �bers are not active at low pressures (they do not
store strain energy) we separate the mechanical response into a non-collagenous
matrix material and the response of each collagen �ber family. The resistance
of the arterial wall to stretch at high internal pressures is almost entirely due
to collagenous �bers. The matrix material is assumed to be isotropic whereas
each collagen �ber family introduces a transverse isotropy. This is also a typical
setting in other �ber-reinforced materials. It motivates the assumption of an
additive composition of the strain energy into an isotropic part for the matrix
material and a transversely isotropic part for each �ber family. The general
structure of the energy function is then

Ψ = Ψblk + Ψ�b. (4.33)

With their speci�c spatial direction these �bers introduce certain anisotropy
of the material. This is represented by a particular symmetry group which af-
fects the dependence of the strain energy Ψ(X,C) of the material. For the case
of hyperelastic transversely isotropic materials, the directional dependence of
the strain energy function on the deformation is commonly de�ned by intro-
ducing a vector representing the material preferred direction, see Spencer [277].
In order to satisfy the requirements of the principle of material objectivity and
the principle of material symmetry the anisotropic behavior is formulated in a
coordinate invariant setting based on the concept of structural tensors. Start-
ing with one speci�c direction leading to transverse isotropy we introduce one
unit vector �eld m describing the local �ber direction of the material in the
undeformed con�guration.
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The strain energy function can then be expressed as an isotropic tensor
function of the right Cauchy-Green deformation tensor and the unit vector �eld
m as

Ψ(X,C,m) = Ψ(X,QCQT,Qm⊗mQT) (4.34)

for all proper orthogonal tensors Q. The corresponding structural tensor M is
introduced as

M = m⊗m implying trM = 1. (4.35)

According to Spencer [277] there is an irreducible integrity basis for the sym-
metric second-order tensors C andM , given by the traces of the powers of the
argument tensors up to a �nite order. We obtain the invariants

I1 = trC, I2 = 1
2

[
(trC)2 − trC2

]
, I3 = detC

Ī4 = tr[CM ], Ī5 = tr[C2M ],
(4.36)

consisting of the standard invariants I1, I2, I3 of C and the non-standard (or
pseudo-) invariants Ī4 and Ī5. Because of trM = 1, it holds

Ī(6) = tr[CM2] = Ī4 and Ī(7) = tr[C2M2] = Ī5 (4.37)

providing the construction of transversely isotropic material models with a
strain energy function of the form

Ψtriso = Ψ(I1, I2, I3, Ī4, Ī5). (4.38)

For materials with more than one preferred direction the introduction of
further vector �elds is straight forward leading to anisotropic material behavior.
The arterial wall is typically modeled by layers with helically arranged collagen
�bers crossing each other at speci�c �ber angles. Therefore a second �ber
direction is introduced, described in undeformed con�guration by the unit vector
�eld n and the corresponding structural tensor N = n⊗ n, yielding

Ψaniso = Ψblk(C) + Ψ�b,1(C,M) + Ψ�b,2(C,N) (4.39)

This also results in additional non-standard invariants

Ī6 = tr[CN ], Ī7 = tr[C2N ] (4.40)

for the second �ber direction and the mixed invariants

Ī8 = m ·Cn and Ī9 = (m ·n)2. (4.41)

It is worth mentioning that the invariant Ī4 can be reformulated as

Ī4 = m ·Cm = Fm ·Fm = λ2
m (4.42)

with λmm̃ = Fm as the map of the undeformed unit vector m into the current
con�guration m̃ and thus as the stretch of the corresponding �ber. It has there-
fore a clear physical meaning. The same holds for the invariant Ī6 representing
the stretch in the second �ber direction. However, the invariants Ī5, Ī7 and
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Ī8 lack such a physical interpretation and also a high correlation to each other
exists which makes experimental identi�cation di�cult (see Peña et al. [227]).
Further, Ī9 does not depend on the deformation but just on the geometrical lay-
out of the two �ber directions. They are therefore omitted in many constitutive
models for arterial walls and a strain energy function

Ψaniso = Ψ(I1, I2, I3, Ī4, Ī6). (4.43)

is employed.

Decoupling into isochoric and volumetric deformation

To speci�cally account for the incompressibility constraint the multiplicative
decomposition of the deformation gradient (4.18) is applied. This leads to
the decoupled representation of the strain energy function of a �ber-reinforced
anisotropic material

Ψaniso = Ψvol(J) + Ψaniso(Ĉ,M ,N)

= Ψvol(J) + Ψaniso(Î1,2(Ĉ), Î4,5(M , Ĉ), Î6,7(N , Ĉ)) (4.44)

where the modi�ed invariants Î1, Î2 are derived according to section 4.1.3 and
the remaining modi�ed non-standard invariants are expressed by

Î4 = J−2/3Ī4, Î5 = J−4/3Ī5 (4.45)

Î6 = J−2/3Ī6, Î7 = J−4/3Ī7. (4.46)

To combine both previous decoupling strategies and thus further modularize
the strain energy function for the application in arterial wall models we addi-
tively split the isochoric part into an isotropic part for describing the ground
substance and an anisotropic part describing each �ber family.

Ψaniso = Ψvol(J) + Ψblk(Ĉ) + Ψ�b,1(Ĉ,M) + Ψ�b,2(Ĉ,N) (4.47)

Stress and elasticity tensor

The general derivation of stress and elasticity for isochore-volumetric decoupled
material formulations in terms of invariants is presented earlier in this chapter.
We extend these equations here for anisotropy, still in the decoupled approach
and in terms of the decoupled non-standard invariants

Ψaniso = Ψvol(J) + Ψblk(Î1, Î2) + Ψ�b,1(Î1, Î2, Î4, Î5) + Ψ�b,2(Î1, Î2, Î6, Î7).
(4.48)

Applying the chain rule the general expression for the second Piola-Kirchho�
stress tensor is obtained

S = 2
∑

k

(
∂Ψ

∂Lk

∂Lk
∂C

)
with Lk ∈ P, (4.49)



84 4. Constitutive Models for the Arterial Wall

where P is the corresponding polynomial basis. In the modularized decoupled
representation of the strain energy both stress and elasticity tensors retain the
same additive decomposition yielding for the second Piola-Kirchho� stress

S = Svol + Sblk + S�b,1 + S�b,2

= 2

(
∂Ψvol(J)

∂C
+
∂Ψblk(Ĉ)

∂C
+
∂Ψ�b,1(Ĉ,M)

∂C
+
∂Ψ�b,2(Ĉ,N)

∂C

)
. (4.50)

We refer to (4.24) for the derivation of the isotropic parts and present here just
the anisotropic part. Therefore, we add to the �ctitious second Piola-Kirchho�

stress the anisotropic part Ŝ = Ŝ
iso

+ Ŝ
�b,1

+ Ŝ
�b,2

where

Ŝ
�b,1

= 2

[(
∂Ψ�b,1

∂Î1
+ Î1

∂Ψ�b,1

∂Î2

)
I − ∂Ψ�b,1

∂Î2
Ĉ +

∂Ψ�b,1

∂Î4
M +

∂Ψ�b,1

∂Î5
ĈM

]

(4.51)

with the second-order tensor ĈM = ĈM + MĈ and Ŝ
�b,2

to be obtained
equivalently.

Similarly, the elasticity tensor is obtained by adding the anisotropic contri-
bution to the �ctitious elasticity, replacing Ĉ in (4.27) with

Ĉ = Ĉiso + Ĉ�b,1 + Ĉ�b,2 (4.52)

where

Ĉ�b,1 =4

[ (
∂2Ψ�b,1

∂Î1∂Î4
+ I1

∂2Ψ�b,1

∂Î2∂Î4

)
(I ⊗M +M ⊗ I)

− ∂2Ψ�b,1

∂Î2∂Î4

(
Ĉ ⊗M +M ⊗ Ĉ

)
+
∂2Ψ�b,1

∂Î4∂Î4
M ⊗M

+

(
∂2Ψ�b,1

∂Î1∂Î5
+ Î1

∂2Ψ�b,1

∂Î2∂Î5

)(
I ⊗ ĈM + ĈM ⊗ I

)

− ∂2Ψ�b,1

∂Î2∂Î5

(
Ĉ ⊗ ĈM + ĈM ⊗ Ĉ

)
+
∂2Ψ�b,1

∂Î5∂Î5

(
ĈM ⊗ ĈM

)

+
∂2Ψ�b,1

∂Î4∂Î5

(
M ⊗ ĈM + ĈM ⊗M

)

+
∂Ψ�b,1

∂Î5
{I �M +M � I}

]
(4.53)

and again, Ĉ�b,2 is obtained equivalently.

4.2 Basic Isotropic Models

Two rather simple hyperelastic material laws, a Neo-Hookean-type material and
a Mooney-Rivlin-type material are introduced within this section. Both are
suited to model large strain deformations and can often be found in the �eld of
biomechanical simulations.
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4.2.1 Neo-Hookean Material

The Neo-Hookean-type material is one of the simplest hyperelastic constitutive
laws. It is suited for large deformations and strains and recovers linear elasticity
in the small deformation case. It is based on only two parameters, for instance
Young's modulus E and Poisson's ratio ν, or shear modulus µ and bulk modulus
κ. Therefore, experimental parameter identi�cation is notably simple and it is
often found in complex biomechanical problems like �uid-structure-interaction
simulations where the focus does not lie on the material description. Addition-
ally, it usually serves in complex anisotropic material laws to model the isotropic
ground substance of the tissue (see later sections).

For instance a form of a coupled Neo-Hookean-type strain energy in terms
of the Lamé parameters µ and Λ is

Ψ(C) =
µ

2
(I1 − 3)− µ ln J +

Λ

2
(ln J)2 (4.54)

where the coupling becomes obvious in the mixed term µ ln J and the depen-
dency of the invariant I1 of the complete strain tensor C.

A decoupled representation of a Neo-Hookean-type strain energy function
with the quadratic function Ψvol

1 (4.29) for the volumetric part reads

ΨNH =
µ

2
(Î1 − 3) +

κ

2
(J − 1)2 (4.55)

According to (4.24) we �nd the second Piola-Kirchho� stress tensor for the
Neo-Hookean material (4.55)

SNH = µJ−2/3

(
I − 1

3
I1C

−1

)
+ κ(J − 1)JC−1. (4.56)

The material elasticity tensor reads

CNH = 2µJ−2/3
(

1
3I1C

−1 �C−1 − 1
3I ⊗C

−1 − 1
3C
−1 ⊗ I + 1

9I1C
−1 ⊗C−1

)

+ κ(J2 − J)
(
C−1 ⊗C−1 − 2C−1 �C−1

)
+ κJ2C−1 ⊗C−1 (4.57)

4.2.2 Mooney-Rivlin Material Law

Another prevalent isotropic material law suited for large strains is the Mooney-
Rivlin material law. It is quite successful in modeling elastomeric materials such
as rubber, but is also popular in biomechanical applications. Compared to the
Neo-Hooke material the Mooney-Rivlin material is characterized by stronger
sti�ening for large strains, especially in biaxial loading conditions. Thus, the
sti�ening of elastomeric materials due to the stretch of the molecule chains can
be better approximated.

The general form of strain energy functions assuming incompressibility at-
tributable to Mooney and Rivlin is expressed as

Ψ(C) =
∑

r,s≥0

µrs(I1 − 3)r(I2 − 3)s. (4.58)
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A very frequently employed member of this family is represented by

Ψ(C) =
µ1

2
(I1 − 3) +

µ2

2
(I2 − 3)

=
µ1

2
(λ2

1 + λ2
2 + λ2

3 − 3) +
µ2

2
(λ−2

1 + λ−2
2 + λ−2

3 − 3) (4.59)

To model nearly incompressible behavior we present another member, refer-
ring to Klinkel et al. [172],

ΨMR, Klinkel =
µ1

2
(I1 − 3) +

µ2

2
(I2 − 3)− (µ1 + µ2) lnJ +

Λ

4
(J2 − 1− 2 lnJ)

(4.60)

with Λ being the Lamé constant which may be obtained from the shear modulus
µ = µ1 + µ2 and the bulk modulus κ as Λ = κ − 2/3µ. It serves here as
penalty parameter to enforce incompressibility. It should be remarked that this
formulation is not stress-free in reference con�guration. Therefore, we slightly
modi�ed this function obtaining a stress-free reference con�guration

ΨMR =
µ1

2
(I1 − 3) +

µ2

2
(I2 − 3)− (µ1 + 2µ2) lnJ + κ(J − 1)2. (4.61)

The corresponding second Piola-Kirchho� stress is given as

SMR = (µ1 + µ2I1)I − µ2C + (2κJ(J − 1)− (µ1 + 2µ2))C−1 (4.62)

and the elasticity yields

CMR = 2µ1I ⊗ I − 2µ1I � I + 2κJ(2J − 1)C−1 ⊗C−1

− (4κJ(J − 1)− 2(µ1 + 2µ2))C−1 �C−1. (4.63)

A decoupled Mooney-Rivlin-type formulation would be straightforward.

4.3 A Family of Anisotropic Models

4.3.1 Holzapfel's Model

The group of Holzapfel has contributed to the research of the structural be-
havior of arterial walls in quite a signi�cant way. They propose a constitutive
framework adopted by many researchers and the notion `Holzapfel'-model is
commonly applied in the community. The initial idea presented by Holzapfel
and Weizsäcker [146] is to extend the famous `Fung'-model proposed by Fung
et al. [106] to capture the S-shaped stress-strain behavior of arteries in circum-
ferential direction. Therefore, they add a Neo-Hookean part to the exponential
function of the Fung-model and thus allow to separately model the isotropic
response of the elastin and ground substance and the anisotropic character of
the collagen �bers, re�ected in

Ψ = Ψiso + Ψaniso. (4.64)

In Holzapfel, Gasser and Ogden [140] they present a profound constitu-
tive framework for arterial walls and also elaborate their proposed anisotropic
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model. Due to the sound continuum-mechanical basis in terms of invariants it
satis�es all major requirements for constitutive laws. It has been extended in
several ways, see the following sections. In this section the original model is
discussed and the necessary stress and elasticity tensors for the �nite-element
implementation are reviewed.

Taking into account the incompressibility of the arterial wall tissue we fol-
low the approach of decoupling into volumetric and isochoric deformation. As
mentioned the ground substance is modeled by a Neo-Hookean material (see
Section 4.2.1), yielding a contribution

Ψblk =
c

2

(
Î1 − 3

)
(4.65)

with the stress-like material parameter c.
The strong sti�ening e�ect due to recruitment of collagen observed at high

pressures motivated the use of an exponential function for the description of the
strain energy stored in the collagen �bers. Taking into account two helically
arranged �ber families characterized by the two structural tensors M and N
each with equal structural behavior they propose

Ψ�b1,2 =
k1

2k2

∑

i=4,6

(
exp

(
k2(Îi − 1)2

)
− 1
)

(4.66)

for the anisotropic part, with k1 > 0 as stress-like parameter and k2 > 0 as
dimensionless parameter and Î4,6 as non-standard invariants (see (4.45) and
(4.46) of Section 4.1.4). It is assumed that the collagen �bers contribute only

in tension, therefore the corresponding terms are omitted if Î4 ≤ 0 and Î6 ≤ 0,
respectively.

The complete strain-energy then reads

ΨHGO = Ψblk(Î1) + Ψ�b,1(Î4) + Ψ�b,2(Î6) + Ψvol(J)

=
c

2

(
Î1 − 3

)
+

k1

2k2

∑

i=4,6

(
exp

(
k2(Îi − 1)2

)
− 1
)

+
κ

2
(J − 1)

2
(4.67)

where we speci�ed the volumetric part with Ψvol
1 (4.29) as penalty function to

enforce incompressibility.
Stress and elasticity re�ect the same additive composition

SHGO = Sblk + S�b,1 + S�b,2 + Svol (4.68)

CHGO = Cblk + C�b,1 + C�b,2 + Cvol (4.69)

and we particularize Ŝ
�b,1

in (4.51) for convenience as

Ŝ
�b,1

HGO = 2k1(Î4 − 1) exp
(
k2(Î4 − 1)2

)
M for Î4 > 0, (4.70)

as well as Ĉ�b,1 in (4.53) as

Ĉ�b,1
HGO = 4

(
k1 + 2k1k2(Î4 − 1)2

)
exp

(
k2(Î4 − 1)2

)
M ⊗M . (4.71)
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4.3.2 Balzani's Model

The concept of polyconvexity, introduced by Ball [16] plays an important role in
solving the underlying boundary value problems of �nite elasticity. The group of
Schröder and colleagues has signi�cantly contributed to the research in this �eld
and a variety of polyconvex functions for transversely isotropic and orthotropic
materials is proposed in Schröder and Ne� [258, 259], see also Schröder et al.
[260]. A view to material stability and the adjustment to experimental data for
biological tissue is presented by Balzani et al. [19]. The emphasis on polycon-
vexity is also seized by Itskov et al. [160] who propose a strain-energy function
composed of a series of functions and associated parameters sets, each satisfying
the polyconvexity conditions.

A particular strain-energy function suited for arterial wall tissue and with
proven polyconvexity proposed by Balzani [17] is discussed in the following. The
isotropic matrix material is given by

Ψiso = c1

(
Î1 − 3

)
+ ε1

(
Iε23 +

1

Iε23

− 2

)
, c1 > 0, ε1 > 0, ε2 > 1, (4.72)

where the �rst part is a decoupled Neo-Hookean type function with material
parameter c1 and the second part is a penalty term to control the volumetric
deformation with the penalty parameters ε1 and ε2.

The strain energy for one �ber family is assumed as

Ψ�b,1 =

{
α1(K1 − 2)α2 for K1 > 2

0 for K1 ≤ 2,
(4.73)

with the second case excluding pressure in the �bers. For the description of the
�ber material another invariant is introduced as

K1 := tr[cof[C](I −M)] = I1Ī4 − Ī5 (4.74)

where cof[C] = det(C)C−1 and which also ensures polyconvexity of the strain-
energy. The parameter α1 > 0 de�nes the initial slope of the �ber sti�ness and
the parameters α2 > 2 controls the sti�ening of the �bers for larger strains. A
second �ber family may be introduced accordingly with K2 := I1Ī6 − Ī7 as

Ψ�b,2 =

{
α3(K2 − 2)α4 for K2 > 2

0 for K2 ≤ 2,
(4.75)

again with α3 > 0 and α4 > 2. The full strain-energy of the anisotropic �ber-
reinforced material law reads then

ΨBalz = c1

(
Î1 − 3

)
+ ε1

(
Iε23 +

1

Iε23

− 2

)
+ α1(K1 − 2)α2 + α3(K2 − 2)α4

(4.76)

The second Piola-Kirchho� stress is obtained as

SBalz =
1

I3

(
− 1

3c1Î1 + ε1ε2
(
Iε23 − I−ε23

))
I

+ α1α2(K3 − 2)(α2−1)
(
I1M −CM + Ī4I

)
(4.77)
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where we omitted the second �ber family for the sake of clarity. The second-
order tensor CM is de�ned as CM = CM+MC. The corresponding elasticity
tensor again omitting the second �ber family reads

CBalz =
(

4
9c1Î1 + ε1ε2

(
(ε2 − 1)Iε23 + (ε2 + 1)I−ε23

))
C−1 ⊗C−1

−
(

1
3c1Î1

) (
I ⊗C−1 +C−1 ⊗ I

)

−
(
c1Î1 + ε1ε2

(
Iε23 − I−ε23

)) (
C−1 ⊗C−1 +C−1 �C−1

)

+
[
Ī2
4 (α2 − 1)I ⊗ I + I2

1 (α2 − 1)M ⊗M + (α2 − 1)CM ⊗CM

+
(
I1Ī4(α2 − 1) +K3 − 2

)
(I ⊗M +M ⊗ I)

+ Ī4(1− α2)
(
CM ⊗ I + I ⊗CM

)

+ I1(1− α2)
(
CM ⊗M +M ⊗CM

)

− (K3 − 2){I �M +M � I}
]
α1α2(K3 − 2)(α2−2). (4.78)

It is remarked that for one �ber family the invariant K1 depends on the
isotropic invariant I1 and both modi�ed invariants Ī4, Ī5 which are not decou-
pled from the volumetric deformation. Also the speci�c in�uence of Ī4 and Ī5
lacks a physical interpretation. This probably complicates parameter identi�ca-
tion in experimental setups in comparison to the fully modularized framework
favored in Section 4.1.4.

4.3.3 Modi�ed Anisotropic Models

Fiber dispersion is taken into account by Gasser et al. [110] as they modify
the Holzapfel-model. Under �ber dispersion a large deviation of individual
collagen �bers from the mean orientation of the two helically arranged �ber
families is understood. Using polarized light microscopy the group of Canham,
Finlay and colleagues [52],[89] have found such a dispersed �ber arrangement
in the adventitial layers of small arteries like brain and coronary arteries.

To account of such a structural behavior Gasser incorporate one additional
scalar parameter κdisp into the strain-energy ψHGO (4.67) yielding for the �ber
part

Ψ�b,disp =
k1

2k2

∑

i=4,6

(
exp

(
k2(κdispÎ1 + (1− 3κdisp)Îi − 1)2

)
− 1
)

(4.79)

with κdisp ∈
[
0; 1

3

]
. The limit case κdisp = 0 is equivalent with the original

strain-energy function ψHGO (4.67) where all �bers of one family are perfectly
aligned with directions speci�ed in M and N .

In contrast, the other limit case κdisp = 1
3 corresponds to a completely

isotropic distribution of the �bers. A similar exponential-type isotropic strain-
energy function has been proposed earlier by Demiray [65] and Del�no et al.
[64] who by the way present one of the �rst sophisticated �nite elements analysis
of the carotid bifurcation.
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Consideration of �ber recruitment is an important question and there-
fore another model conceptually similar to the Holzapfel-model is presented by
Zulliger et al. [343]. Early histological investigation of arterial tissue has shown
that collagen �bers are crimped in the unstressed state (see for instance Roach
and Burton [248] and Lanir [190]). In their model Zulliger and colleagues incor-
porate the waviness of the collagen �bers by a statistical distribution function
(see also Wuyts et al. [337]). Therein a speci�ed `engagement strain' based on
a log-logistic distribution controls the unfolding of collagen �bers. However, the
improvement of a material parameter �t presented in their publication is small
and the numerical e�ort for such a constitutive law seems unpro�table.

In a recent publication by Rodriguez et al. [251] both issues of �ber dis-
persion and �ber crimping are considered in a modi�ed Holzapfel model. A
strain-energy function for one �ber family of

Ψ�b,1 =
k1

2k2

(
exp

(
k2((1− ρ)(Î1 − 3)2 + ρ(Î4 − Î0

4 )2
)
− 1
)

(4.80)

is applied where the weighting parameter ρ ∈ [0; 1] controls the amount of

anisotropy and thus the �ber dispersion. The parameter Î0
4 > 1 is regarded as

the initial crimping of the �bers and the corresponding anisotropic term only
contributes for Î4 > Î0

4 . However, two additional material properties only for
one �ber family contribution are introduced doubling the initial number and
experimental �tting becomes signi�cantly more di�cult.

Multiple layers of collagenous tissue are considered in a recent modi�-
cation of the Holzapfel-model, published by Kroon and Holzapfel [181]. It is
known that many biomechanical tissues consist of a layered structure of colla-
gen �bers. The arterial wall structure is described in detail in Section 1.1 but
we repeat here that even the three main layers, Intima, Media, and Adventitia
themselves consist of several (up to 70) fenestrated elastic laminae. In their
model Kroon and Holzapfel take this layered structure into account and allow
each layer of collagen �bers to correspond to a speci�c �ber direction and a
speci�c �ber sti�ness. Therefore, the �ber part of the strain energy consists
of a sum of each �ber family contribution where one family itself is modeled
as before with an exponential function but pre-multiplied by the corresponding
sti�ness parameter and evaluated with the corresponding alignment angle. The
constitutive equation based on this layered structure is then included into a
membrane model of the arterial wall and in their paper the material is �tted to
model adventitial extension-in�ation behavior using eight layers.

For our proposed arterial wall model we adopt the idea of taking several
layers into account. However, in contrast to the model proposed by Kroon and
Holzapfel we prefer to model each layer structurally with a corresponding �nite
element layer. This concept is on the one hand motivated by our remodeling
approach presented in the following chapter, but on the other hand allows for
more control in the interaction of the di�erent layers. Admittedly, a higher
numerical e�ort results and special element technology has to be implemented
to account for the large aspect ratio.
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4.4 Continuum Molecule Chain Models

The previously described material models follow the classical continuum me-
chanics approach to establish an invariant based macroscopic model governed
by a number of abstract parameters. They try to phenomenologically model
an observed material behavior within a regime of relevance. Though they rely
on a profound theory of continuum mechanics they nevertheless lack a direct
physical connection to the underlying mechanisms of deformation. Thus their
governing parameters have to be de�ned by experiments and �tting to the ob-
served material behavior. It is generally a goal for material models to reduce
the number of parameters for a speci�c model and to relate parameters to a
clear physical meaning. One step into that direction is a material model which
takes the microstructure of the material into account. This approach seems
bene�cial for the modeling of arterial walls, because the microstructure of col-
lagen and elastin �bers plays a decisive role in their structural characteristics.
Moreover, experiments to determine material parameters, especially in vivo,
are di�cult and identi�cation of further physical correlations could simplify the
correct modeling of the wall.

The development of such microstructurally motivated material models was
signi�cantly driven by describing the large strain behavior of rubber materials.
The corresponding rubber experiments of Treloar [310] for uniaxial tension,
biaxial tension and shear are known as the quintessential rubber data. The
observed S-shaped load versus stretch curve exhibited in uniaxial tension is
captured by many models, however some of them fail in describing the response
under di�erent states of deformation without changing the model parameters
(see Arruda and Boyce [10]).

Rubber, as well as typical soft biological tissue, consists of a complex three-
dimensional network of long, randomly oriented polymer chains laterally at-
tached to each other at occasional points along their lengths. Polymer chains
in general have many con�gurations of almost equal energy. Perturbing this
con�guration from equilibrium generates entropic forces counteracting the per-
turbation. This is the basis for entropy-based elasticity. Since a long chain
molecule may adopt a large number of di�erent con�gurations, the treatment
of each of them individually would require an enormous e�ort. For instance,
the vulcanization process of rubber can be modeled with molecular-dynamic
simulations together with advanced statistical methods like the Monte Carlo
method, but such simulations necessitate an extreme computational e�ort (see
Böl and Reese [39]).

Thus, so-called statistical mechanics as an alternative approach to describe
long chain molecules gained considerable attention, a concept originally de-
veloped in the context of entropic rubber elasticity (see Kuhn and colleagues
[188, 189], or Treloar [309]). In 1943 Treloar has derived the Neo-Hookean free
energy function (see Section 4.2.1) with identifying µ = Nkϑ as product of the
number of chains per reference volume N , Boltzmann's constant k, and the
absolute temperature ϑ. We refer to the book of Treloar [311] for a detailed de-
scription on rubber elasticity and the underlying statistical mechanics methods
(see also Böl [38]).

The principal idea of a microstructural constitutive model for such materials
is to consider on the one hand the main load carrying constituent, the polymer
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Freely jointed chain Wormlike Chain

Fig. 4.1: Illustration of the two speci�ed single chain models.

chain, and on the other hand the cross-linking between the chain network in
a homogenized sense. A number of di�erent chain network models have been
proposed over the past 60 years (see Treloar [311] and Flory [92]). The com-
mon feature of all these network models is a characteristic unit cell which is
assumed to provide an adequate representation of the underlying macromolecu-
lar network structure. One can distinguish two categories, a�ne and non-a�ne
models. The �rst non-a�ne model was the four chain tetrahedron by Flory
and Rehner [93]. Arruda and Boyce [10, 46] proposed a non-a�ne eight-chain
isotropic cube model. Comparison of di�erent chain network models can also
be found in Miehe et al. [215]. The eight-chain model has been adapted to or-
thotropy by Bischo� et al. [32, 33] and employed to model collagenous tissue by
Garikipati and colleagues [107, 109], Kuhl et al. [184], Zhang et al. [340], and
Rodríguez and colleagues [250, 249]. It is described in detail in the following.

4.4.1 Mechanical Response of a Single Fiber

The idea of continuum chain models is the homogenization of microstructural
constituents. The main load carrying constituents of the arterial wall are the col-
lagen �bers. The characteristic feature of collagen molecules is their long, sti�,
triple-stranded helical structure. They can be characterized as freely jointed
rigid links or by the so-called wormlike chain or Kratky-Porod model (see Kratky
and Porod [177]). Both are entropy-based constitutive models for one molecule
chain where the key kinematic variable that characterizes the conformation of
the chain is the end-to-end length r. In the following, both models and their
implications are compared (see Fig. 4.1).

Freely jointed chain model

A macromolecule can be modeled as n freely jointed bonds each of �xed length
l. The direction in space of any bond is entirely random and bears no relation
to the direction in space of any other link in the chain. Such a randomly jointed
chain automatically excludes valence angle or other restrictions on the freedom
of motion of neighboring bonds. The characteristic parameter is the contour
length L = nl. In order to de�ne the statistical properties of such a randomly
jointed chain we consider one end of the chain to be �xed at the origin and
the other end to move in a random manner throughout the available space.
However, though the motion is random, the probability for every end position
is not equal. For any particular position P (x, y, z) and its associated end-to-
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end length r there is an associated probability p(x, y, z)dv that the end shall be
located within the volume element dv in the vicinity of the point P . According
to the classical Boltzmann equation the con�gurational entropy of a single chain
is proportional to the number of ways it can occupy space with its end at point
P , given as

s = k ln(p(x, y, z)dv) (4.81)

with the Boltzmann constant k = 1.380650E−23J/K. For purely entropic chains
the free energy Ψchn of a single chain is Ψchn = −kϑ ln(p(x, y, z)dv) where ϑ is
the absolute temperature.

It is a matter of the range of extension considered which statistical treatment
is appropriate. If only moderate extensions are involved the Gaussian statistics
treatment is su�cient. But as soon as the distance between the two end points
of the chain approaches the fully extended length, Gaussian statistics becomes
inadequate and more elaborate non-Gaussian treatment has to be used. For the
classical Gaussian case the probability yields p = p0 exp(−3/2Nr2/L2) with p0

as parametric constant. The free energy of the individual chain takes the form

Ψchn
Gauss = Ψchn

0 +
3

2
kϑ

r2

nl2
. (4.82)

The internal energy of the unperturbed state Ψchn
0 can usually be neglected

(see Böl and Reese [39]). The necessary tensile force to elongate a chain in the
direction of the line joining its ends follows straightforwardly as

fGauss =
dΨchn

Gauss

dr
=

3kϑ

l

r

nl
(4.83)

being proportional to r. The linear force-extension derived from Gaussian statis-
tics is limited to a distance r between the ends less than one-third of the fully
extended length (see Treloar [311]).

For higher chain extensions a more accurate statistical distribution function
has to be employed. Following Kuhn and Grün [189], non-Gaussian statistics
of inverse Langevin type is well suited. The fractional extension of the chain r

nl
is described by the so-called Langevin function in terms of the parameter β

r

nl
= L(β) = cothβ − (1/β). (4.84)

To evaluate β the inverse Langevin function L−1 has to be evaluated. A series
expansion yields

β = 3
r

nl
+

9

5

( r
nl

)3

+
297

175

( r
nl

)5

+
1539

875

( r
nl

)7

+ . . . . (4.85)

and the free energy of one single chain is obtained as

Ψchn
Langevin = Ψchn

0 + kϑn

(
r

nl
β + ln

β

sinhβ

)
(4.86)

where the internal energy Ψchn
0 can again be neglected and β is evaluated up to

a speci�ed accuracy according to (4.85). The tensile force is derived as in the
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Gaussian case by di�erentiation and yields together with the series expansion

fLangevin =
kϑ

l
L−1 =

kϑ

l

(
3
r

nl
+

9

5

( r
nl

)3

+
297

175

( r
nl

)5

+
1539

875

( r
nl

)7

+. . .

)
.

(4.87)

One can identify that the �rst term corresponds to the force of the Gaussian
approximation (4.83).

Wormlike chain model

In contrast to the freely jointed chain models the wormlike chain model (WLC)
considers a more continuous distribution of bond angles and therefore a certain
relation between neighboring bonds. The model assumes the polymer chain
as a �exible rod and is particularly suited to model sti�er polymers. It is
characterized through a smooth curvature whose direction changes randomly
but in a continuous manner (see Kratky and Porod [177] and Flory [92]). In
addition to the contour length L = nl the behavior of one chain is controlled
by the so-called persistence length A. It is de�ned by the sum of the average
projections of all bonds onto the direction of the �rst bond. It varies between
l ≤ A ≤ L and is a measure of the initial chain sti�ness. The persistence
length of the uncorrelated freely jointed chain would be equal to the length of
the individual bond A = l whereas the persistence length of an in�nitely sti�
chain with beamlike properties is equal to the contour length A = L. Several
biologically important polymers have been modeled as wormlike chains such as
DNA (see Marko and Siggia [207] and Bustamante et al. [50]) and collagen (see
Bischo� et al. [33]).

The strain energy of the wormlike chain model is given as

Ψchn
wlc = Ψchn

0 + kϑ
L

4A

(
2
r2

L2
+

1

1− r
L

− r

L

)
. (4.88)

Herein, as before, Ψchn
0 is the energy of the chain at the undeformed state, k the

Boltzmann constant, ϑ the absolute temperature, and r the end-to-end length of
the chain. It is derived by integrating the force-stretch relation for the wormlike
chain

fwlc =
kϑ

4A

(
4
r

L
+

1
(
1− r

L

)2 − 1

)
(4.89)

proposed by Marko and Siggia [207].

Comparison of di�erent chain models

To illustrate the behavior of the two di�erent single chain models, the freely
jointed chain model with Gaussian and Langevin statistics and the wormlike
chain model (see also Fig. 4.1), some force-elongation curves are compared in
Fig. 4.2. The di�erent chain forces f are hereby scaled by 1

kϑ and plotted versus
the chain stretch r

L . The freely jointed chain curves are plotted for unit bond
length l = 1. The linear behavior of the chain with Gaussian statistics is clearly
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observed, whereas the nonlinear curve of the chain with Langevin statistics rep-
resents the same initial slope with strong sti�ening for large extensions reaching
the chain contour length. The wormlike chain model thus re�ects the highly
nonlinear behavior with the characteristic locking e�ect when approaching the
chain contour length. In addition, the second parameter, the persistence length
A, controls the curvature and thus the rate of the rising force when the locking
stretch is reached. For smaller values of A re�ecting highly curved chains the
force response is smoother, because the chain needs to be bent up.PSfrag
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Fig. 4.2: Force-elongation curves for di�erent single chain models.

4.4.2 Chain Network Model

On the macroscopic scale the network of the individual chains needs to be
modeled. The use of Gaussian and Langevin statistics in networks has been
considered by several authors (see for instance Flory and Rehner [93], Wang and
Guth [328] and Treloar [311]). Arruda and Boyce [10] propose an eight-chain
cubic unit cell as sketched in Fig. 4.3. The model is extended to orthotropic
behavior by Bischo� et al. [32, 33]. The unit cell is oriented in space such
that the principal stretches are applied along �xed cell directions. Where equal
cell dimensions insure isotropy of the initial mechanical response with respect
to the principal stretch space, initial orthotropy of a network with preferred
�ber orientation can be modeled by di�erent cell dimensions ai, i = 1, 2, 3 (see
Fig. 4.3). The orthotropy results from a �xed orientation of the unit cell in the
space speci�ed by the orthogonal principal material axes ai with respect to a
reference coordinate system Xi together with di�erent cell dimensions ai along
these axes.

The altogether eight chains within one unit cell have all the same undeformed
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Fig. 4.3: Eight-chain orthotropic unit-cell with cell dimensions ai and material axes
ai with respect to coordinate system Xi.

chain length r0 =
√
a2

1 + a2
2 + a2

3 =
√
a2
i . Note that this implicitly de�nes the

underlying chain contour length L = nl which is usually taken to be the root
mean square length. An a�ne deformation, that is the ends of the chains are
�xed in the continuum and deform with the continuum strain �eld described by
F (or C), is assumed. The end-to-end length r of the chains in the deformed
con�guration is evaluated as

r =
√
a2
i ai ·C ·ai. (4.90)

We can de�ne the non-standard invariants Īi as Īi = ai ·C ·ai following the
notation for anisotropic tensor functions in Section 4.1.4. They represent the
squared stretch in each unit cell direction i. The deformed lengths are functions
of these invariants and thus satisfy the appropriate symmetry requirements
(Bischo� et al. [32]). To employ the wormlike chain model for one single chain
within the continuum network model a chain number density N is introduced
scaling the contributions of the eight individual chains with the number of chains
per unit volume. This results in a free energy of a representative volume element
of

Ψchn = kϑ
NL

4A

(
2
r2

L2
+

1

1− r
L

− r

L

)
. (4.91)

To achieve a stress-free undeformed state an additional repulsive energy is in-
troduced

Ψrep = −kϑNL
4A

(
1

L
+

1

4r0(1− r0
L )2
− 1

4ro

)
ln(Ī

2a21
1 Ī

2a22
2 Ī

2a23
3 ). (4.92)

This term re�ects a mutual repulsion of chains from each other that will prevent
the entropic collapse of the unit cell while maintaining the orthotropic shape of
the unit cell. Considering that the invariants Īi represent the stretches along the

principal directions the term ln(Ī
2a21
1 Ī

2a22
2 Ī

2a23
3 ) is equivalent to ln(λ

2a21
a1 λ

2a22
a2 λ

2a23
a3 )

in terms of the strains λai in each cell direction ai. A similar term is employed
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within the repulsive energy proposed by Bischo� et al. [32]. Note that this
de�nition di�ers from the formulation proposed by Kuhl and Holzapfel [185],
who introduce the repulsive energy term ln(Ī1Ī2Ī3) which does not satisfy the
stress-free reference state.

To allow for control of compressibility of the material and eventually model
isotropic ground substance an additional bulk contribution is added to the en-
ergy of the volume element. It is chosen as standard Neo-Hookean type in terms
of the Lamé parameters Λ, µ

Ψblk =
1

2
Λ ln2(J) +

1

2
µ(I1 − 3)− µ ln(J). (4.93)

The �nal strain energy of the material based on the orthotropic cube network
model is the sum of the former components

ΨChainNetw = Ψblk + Ψchn + Ψrep. (4.94)

Depending of the cell dimensions, isotropic, transverse isotropic and orthotropic
material behavior can be modeled.

Stress and elasticity tensor

The second Piola-Kirchho� stress is derived from S = 2 dΨ
dC to the following

form

SChainNetw = 2
∂Ψblk

∂C
+ 2

∂Ψchn

∂C
+ 2

∂Ψrep

∂C

= Sblk + Schn + Srep, (4.95)

Sblk = (Λ ln(J)− µ)C−1 + µI, (4.96)

Schn =
kϑN

4A

(
1

L
+

1

4r(1− r
L )2
− 1

4r

)
a2
iai ⊗ ai, (4.97)

Srep = −kϑN
4A

(
1

L
+

1

4r0(1− r0
L )2
− 1

4r0

)
4a2
i

Īi
ai ⊗ ai. (4.98)

We introduce the structural tensors Ai = ai ⊗ ai with tr[Ai] = 1 for each cell
direction. The elasticity tensor follows as

CChainNetw = 2
∂Sblk

∂C
+ 2

∂Schn

∂C
+ 2

∂Srep

∂C

= Cblk + Cchn + Crep, (4.99)

Cblk = ΛC−1 ⊗C−1 + 2(µ− λ ln(J))C−1 �C−1, (4.100)

Cchn =
kϑN

4A

1

r3

(
1− 1

(1− r
L )2

+
2r

L(1− r
L )3

)
a4
iAi ⊗Ai, (4.101)

Crep =
kϑN

4A

(
1

L
+

1

4r0(1− r0
L )2
− 1

4r0

)
8a2
i

Ī2
i

Ai ⊗Ai. (4.102)

This material model is characterized by its underlying micro- and macro-
scopic behavior, namely the molecule chain behavior and the network model.
Together with the ground substance it is well suited to model biomechanical



98 4. Constitutive Models for the Arterial Wall

material, especially arterial walls with collagen chains as main load carrying
constituents. The necessary parameters are λ and µ for the ground substance,
the chain characteristics L,A and the chain number density N which are mo-
tivated micromechanically, and the three cell dimension ai where the relation
between the undeformed chain length r0 =

√
ai should be respected. Typically,

a micromechanically motivated value r0 is assumed and the cell dimensions are
adapted accordingly. This set of parameters needs to be obtained by experi-
ments and curve �tting procedures. Moreover, such a formulation is especially
appealing for material remodeling approaches. In contrast to the cumbersome
handling of vectors to describe the direction of anisotropy, the cell dimensions
are easier to manipulate numerically. Therefore, we employ the presented chain
network constitutive law within a proposed remodeling procedure, described in
Chapter 5.

4.5 Extension to Viscoelasticity

The mechanical behavior of most biological soft tissue is in general nonlinear
viscoelastic rather than hyperelastic. Although arterial walls are typically char-
acterized by a hysteresis loop these are usually considered independent on the
rate of strain, as proposed among others by Fung [102]. However, several stud-
ies have proven that a certain stage of viscoelasticity is present also in arterial
walls and we refer to the reviews of Haslach [127] and Kalita and Schaefer [164]
for detailed information. Obviously also in other cardiovascular problems vis-
coelasticity plays a signi�cant role, for instance the thrombus within aneurysms
features viscoelasticity as examined by Dam et al. [314].

A number of viscoelastic formulations have been proposed in order to extend
the well known linear rheological models to the large strain regime. Lubliner
[201] proposed a split of the free energy of a viscoelastic solid in two parts:
the �rst part describing the rate-independent material behavior and the sec-
ond incorporating time-dependent e�ects. He further assumed a multiplicative
decomposition of the deformation gradient into elastic and inelastic parts with
inelastic strain.

A set of conjugate pairs of state and control variables together with a gen-
eralized energy function relating one with the other ensure thermodynamical
consistency. More recently, a strategy to build a viscoelastic model has been to
write the Helmholtz energy as the sum of a long-term hyperelastic and a viscous
energy (see for instance Bonet [42]). Either the over-stress or the inelastic strain
can be chosen as internal variable driving the dissipation process. One of the
�rst �nite element implementations for a �nite linear viscoelasticity was given
1987 by Simo [263]. He chose the over-stress as the internal variable and this
approach was followed by Govindjee and Simo [115] and Holzapfel [136] (see
also Reese and Govindjee [244]).

An important point in developing models of this form is the choice of the
evolution equations for the internal variables. In the theory of linear viscoelas-
ticity which is only valid for small deformations and small perturbations away
from thermodynamic equilibrium, the question is of minor importance as the
relationship between stress and strain is linear. In the case of large deforma-
tions, however, the choice of internal variables and evolution equations is not so
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Fig. 4.4: Generalized Maxwell-Model.

evident and not unique. In the following we assume only small deviations away
from thermodynamic equilibrium and will speak of �nite linear viscoelasticity.
Note that �nite deformations are still valid. Evolution equations belonging to
this kind of theory are linear di�erential equations with possibly non-constant
coe�cients, for instance a deformation-dependent relaxation time.

4.5.1 Linear Generalized Maxwell-Model

To clarify the concept of viscoelasticity we present the rheological model of a
one-dimensional so-called Maxwell-body employing linear (small strain) theory
(see Fig. 4.4). It is a popular model to formulate time-dependent and frequency
dependent characteristics and is composed of an elastic spring with sti�ness k∞
in parallel with m so-called Maxwell-elements. Each element i consists of a
spring ki in series with a dashpot ci.

The total force acting on the model is composed of a long term or steady
state component f∞ plus an arbitrary number m of so-called nonequilibrium
forces fi in the sense of non-equilibrium thermodynamics

f = f∞ +

m∑

α=1

fα (4.103)

Here, and from now on ( · )∞ characterizes a quantity related to a su�ciently
slow and therefore purely elastic process. Introducing the constitutive equations
for the springs, (4.103) yields

f = k∞x+

m∑

α=1

kα(x− xα) (4.104)

where the displacements xα are unknown internal variables. They are de�ned by
the equilibrium relationship between each spring and dashpot of one Maxwell-
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element

cαẋα = fα

fα = kα(x− xα) (4.105)

where the dashpot constant cα represents its linear viscosity and can be related
to the sti�ness of the corresponding spring in terms of a retardation time, or
relaxation time parameter τα as

cα = ταkα. (4.106)

This allows to rewrite (4.105) as evolution equation for the internal variable xα

ẋα =
1

τα
(x− xα) (4.107)

relating strain and strain rate. Alternatively, time di�erentiation of (4.105)
yields

ḟα +
1

τα
fα = kαẋ (4.108)

as evolution equation in terms of force and force rate. Such a �rst-order di�er-
ential equation has a closed form solution

fα = exp(−T/τα) fα

∣∣∣
t=0

+

∫ t=T

t=0

exp

(
−T − t

τα

)
ḟα(t)dt, α = 1, . . . ,m

(4.109)

Now we introduce the energy terms of the above problem in order to gener-
alize it to the large strain three-dimensional case. The total free energy of the
system is

Ψ(x, x1, . . . , xm) = Ψ∞(x) +

m∑

α=1

Ψα(x, xα) = 1
2k∞x

2 +

m∑

α=1

1
2kα(x− xα)2.

(4.110)

The rate of work dissipated within each dashpot yields the total internal dissi-
pation

Dint =

m∑

α=1

fαẋα =

m∑

α=1

cα(ẋα)2 ≥ 0 (4.111)

which is always non-negative and disappears at equilibrium. Note that di�eren-
tiation of the total free energy Ψ(x, x1, . . . , xm) with respect to the total strain
x yields equation (4.104) and with respect to the internal variables xα yields

∂Ψ(x, x1, . . . , xm)

∂xα
= −kα(x− xα) = −fα, α = 1, . . . ,m (4.112)

and the internal dissipation can be expressed through the strain energy

Dint = −
m∑

α=1

∂Ψ(x, x1, . . . , xm)

∂xα
ẋα. (4.113)

These relationships will be used in the generalization to the three-dimensional
large strain regime described in the following section.
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4.5.2 Large Strain Fiber-Reinforced Viscoelasticity

In the section at hand we discuss an anisotropic visco-hyperelastic material
model following closely the work of Holzapfel and co-workers [136, 137, 139, 141]
(see also Kaliske [163]), which is derived from the generalization of the linear
one-dimensional visco-elastic model discussed in the previous section.

The concept of internal variables is well established for modeling viscoelas-
ticity. They are not accessible to direct observation, but are used to describe
the material behavior associated with irreversible dissipative e�ects. So far, C
representing the strain state has always been employed as driving parameter for
hyperelastic materials. Accordingly, we introduce a number of internal strain-
like control variables describing the viscous behavior, each identi�ed by a tensor
Γα, α = 1, . . . ,m. Equivalently, the viscoelastic state is assumed to depend on
internal stress-like variables, each described by a tensorQα, α = 1, . . . ,m. Each
conjugate pair of internal variables α is related to one viscoelastic process with
its relaxation time τα ∈ (0,∞). Note that the viscoelastic response of arterial
walls is characterized by a almost constant damping over a wide, continuous
frequency spectrum, which would need an in�nite number m. However, often
the complex viscoelastic behavior is adequately modeled by a �nite number of
m internal state variables.

According to the free energy of the linear Maxwell model we de�ne the
Helmholtz free energy function per unit reference volume of the viscoelastic
continuous body as

Ψvisco = Ψ(C,Γ1, . . . ,Γm). (4.114)

As we want to model viscoelasticity of anisotropic �ber-reinforced materials we
relate the elastic response to the hyperelastic Holzapfel-model, see Section 4.3.1.
Thus, a further decoupled representation reads

Ψvisc-ani = Ψvol
∞ (J) + Ψvisco(Ĉ,M ,N ,Γ1, . . . ,Γm)

= Ψvol
∞ (J) + Ψaniso

∞ (Î1, Î2, Î4, Î6) +

m∑

α=1

Υα(Ĉ,M ,N ,Γα) (4.115)

where we assume that viscous e�ects are only related to isochoric deformation.
We hereby introduce scalar-valued functions Υα, α = 1, . . . ,m as so-called
con�gurational free energies and their sum as `dissipative potential'.

Following the concept described in the previous section we de�ne

S = 2
∂Ψ(C,M ,N ,Γ1, . . . ,Γm)

∂C
= Svol∞ + Sblk∞ + S�b∞ +

m∑

α=1

Qα (4.116)

for the second Piola-Kirchho� stress. We thus obtain the conjugate non-equi-
librium stresses Qα as

Qα = 2
∂Υα(Ĉ,M ,N ,Γα)

∂C
, α = 1, . . . ,m (4.117)

and within the isochore-volumetric decoupling and the deviatoric projection,
referring to (4.24),

Qα = J−2/3P : Q̂α, Q̂α = 2
∂Υα(Ĉ,M ,N ,Γα)

∂Ĉ
, (4.118)
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we de�ne the �ctitious non-equilibrium stresses Q̂α.
According to (4.113) the non-negative internal dissipation is obtained as

Dint = −
m∑

α=1

2
∂Υα(Ĉ,M ,N ,Γα)

∂Γα
:

1

2
Γ̇α ≥ 0 (4.119)

and the conjugate pairs Qα and Γα are related via the internal constitutive
equations

Qα = −2
∂Υα(Ĉ,M ,N ,Γα)

∂Γα
, α = 1, . . . ,m. (4.120)

This relation thereby restricts the functions Υα to satisfy conditions (4.117) and
(4.120). The condition for thermodynamic equilibrium implies that the stress
reaches equilibrium for t→∞, which means that lim

t→∞
Qα = 0.

Evolution equations and their algorithmic implementation

In order to fully determine how a viscoelastic process evolves we have to pos-
tulate additional equations of evolution governing the internal variables, in our
case the non-equilibrium stresses Qα. They should provide a good approx-
imation to the observed physical behavior and be suitable for e�cient time
integration algorithms within a �nite element framework. As mentioned earlier
we model �nite linear viscoelasticity assuming linear evolution equations which
have to satisfy inequality (4.119).

Following the idea of Holzapfel and colleagues we formulate an evolution
equation separately for each isochoric stress contribution Siso a∞ and each corre-
sponding viscoelastic process α. In the case of the Holzapfel-model ΨHGO we
have Siso a∞ ∈ {Sblk∞ ,S�b,1∞ ,S�b,2∞ }. According to (4.108) a possible set of linear
di�erential equations is

Q̇
a

α +
1

τaα
Qa
α = βaαṠ

iso a

∞ , Qa
α

∣∣
t=0

= 0 (4.121)

valid for some semi-open time interval t ∈ (0, T ]. The initial conditions ensure
that the reference con�guration has no viscoelastic stress contribution. The
parameters βaα ∈ [0,∞) are non-dimensional so-called free-energy factors asso-
ciated with the relaxation times τaα ∈ (0,∞), which describe the rate of decay
of the stress and strain in a viscoelastic process.

Closed-form solutions according to (4.109) may be represented by simple
convolution integrals

Qa
α =

t=T∫

t=0+

exp

(
−T − t

τaα

)
βaαṠ

iso a

∞ (t) dt (4.122)

Within a �nite element framework a suitable numerical integration scheme is
applied where we choose a one-step-θ algorithm with θ as algorithmic param-
eter, see for instance Zienkiewicz and Taylor [341] for details. The necessary
algorithmic stress and elasticity tensors at time tn+1 are derived in the following.
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We consider a certain time sub-interval [tn, tn+1] with ∆tn = tn+1 − tn rep-
resenting the associated time increment. Assuming that all relevant kinematic
quantities are given at tn as well as at tn+1 and also the stress Sn is known
serving as history data. It then remains to specify at tn+1 the algorithmic stress
tensor

Sn+1 =

[
Svol∞ + S�b∞ +

m∑

α=1

Qα

]

n+1

. (4.123)

The �rst two contributions Svoln+1 and S�b∞n+1 are directly available from the
given strain measures at tn+1, but the third term depends on the convolution
integral (4.122). For each contribution a and α we obtain by applying the
one-step-θ algorithm

Qa
α n+1 =

1

1 + θ∆t
τaα

((
1− (1− θ)∆t

τaα

)
Qa
α n − βaαSiso a∞ n

)

︸ ︷︷ ︸
Ha
αn

+
1

1 + θ∆t
τaα

βaαS
iso a
∞ n+1

(4.124)

where Ha
αn represents a history term for each contribution a, α. Accordingly,

the algorithmic elasticity tensor at tn+1 is obtained as

Cn+1 =

[
Cvol
∞ +

∑

a

(
1 +

1

1 + θ∆t
τaα

βaα

)
Ciso a
∞

]

n+1

. (4.125)

The present constitutive law allows the modeling of viscoelastic �ber-re-
inforced materials at �nite strains. To control viscoelasticity, for every con-
tribution a and α two additional parameters τaα and βaα need to be speci�ed.
The relaxation time governs the rate of decay of the viscoelastic stress contri-
butions and the non-dimensional free-energy factors relate the sti�ness of the
viscoelastic process to the purely elastic process. These have to be determined
experimentally.

4.6 Numerical Examples

4.6.1 Stretching of a Rubber Sheet

With this simulation of a rubber sheet we demonstrate the ability to model
incompressible material behavior within large strains and deformations. The
example has been analyzed by Klinkel et al. [172] and serves here as a bench-
mark for the proposed Mooney-Rivlin-type material law (see Section 4.2.2).
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Geometry
L = 10 m

h = 0.01 m
R = 3 m

A2F 2F

R

2L

2LA

u

Material Mooney-Rivlin Loading
F = 90 kNµ1 = 50 kN/m2, µ2 = 14 kN/m2, κ = 1042 kN/m2

Fig. 4.5: Stretching of a rubber sheet. Initial and deformed structure (top) with colors
representing the thickness-stretch. The mesh of a quarter system consists of 16 by 16
Sosh8-elements. A close-up illustrates the out-of-plane deformation (bottom).

A square sheet with a hole is stretched up to twice its original length, where
we simulate a quarter of the system and apply appropriate symmetry conditions.
The rubber material is modeled with Mooney-Rivlin-type materials where we
compare the results of the speci�c strain energy functions ΨMR,Klinkel (4.60)
and ΨMR (4.61). The problem is depicted in Fig. 4.5 together with the �nal
deformation state. The displacements at both ends are �xed in vertical direction
and constraint to the same horizontal displacement. At the inner edge of the
hole a stability problem is observed. A perturbation load in direction orthogonal
to the sheet is applied at points A with F̃ = 10−7F to follow the secondary
equilibrium path characterized by an out-of-plane de�ection (see also the close-
up in Fig. 4.5).

The results are depicted in Fig. 4.6. As reference solution we refer to the
paper by Klinkel et al. [172]. The depicted thickness strain correlates well
with the reference plot as well as the load-displacement curve for the horizontal
displacement of the edge. However, the results for the out-of-plane displacement
w at the perturbation points A are worth mentioning. Where the results with
the strain-energy function ΨMR,Klinkel reported in the paper are slightly o�
the reference curve, our proposed modi�ed strain-energy ΨMR yields almost
exactly the reference curve. The di�erence is thus related to the fact that
ΨMR,Klinkel is not stress-free in reference con�guration whose signi�cance is
therefore demonstrated.
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Fig. 4.6: Results for the stretched rubber sheet. The Green-Lagrangean thickness
strain (top) recovers well the literature results. The load-de�ection diagrams for the
horizontal displacement (left) and out-of-plane displacement (right) point out the dif-
ference of a strain-energy with (ΨMR) and without (ΨMR,Klinkel) a stress-free reference
con�guration.

4.6.2 Plate with Di�ering Warp and Fill

This example is taken from Balzani et al. [18] to illustrate the e�ect of aniso-
tropic materials. A typical membrane-like engineering material is characterized
by di�erent behavior in warp- and �ll-direction. A thin quadratic plate with
such a material is subject to an orthogonal pressure load. Following the reference
paper where the plate is discretized with two-dimensional shell elements we
apply a Navier-support by �xing the lower edges of our three-dimensional Sosh8-
discretization with 20 by 20 elements. The anisotropic material law proposed
by Balzani and colleagues and described in Section 4.3.2 is applied with two
di�erent parameter sets for the warp- and �ll-direction. The problem and the
material parameters are presented in Fig. 4.7.

The result resembles nicely the ones presented in the reference. The out-
of-plane displacement depicted on the right of Fig. 4.7 is characterized by the
di�erent sti�ness in warp- and �ll-direction. Thus, instead of a fourfold sym-
metric displacement expected for an isotropic material the twofold symmetry
of the material becomes obvious from the oval displaced shape. Note that the
implementation of such a three-dimensional material law into a framework with
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Fig. 4.7: Quadratic Navier-supported plate subject to orthogonal pressure with
anisotropic material ΨBalz with di�ering warp and �ll. Out-of-plane displacement
shows twofold symmetry due to di�erent warp- and �ll-sti�ness.

advanced solid-shell-elements is straight-forward and a special handling of the
thickness-direction as discussed in Balzani et al. [18] is obsolete.

4.6.3 In�ation of a Fiber-Reinforced Rubber Tube

We consider the elastic response of a long circular tube continuously reinforced
by two families of �bers symmetrically wound in helical manner along the axial
direction (see Fig. 4.8). Structural elements of this type are frequently employed
in industrial applications, but are also often found in biomechanical problems,
like blood vessels for example. Holzapfel and Gasser [139] and Nedjar [218] have
dealt with such problems from a computational mechanics point of view and
serve here as reference basis.

We consider a 200 mm long portion of a tube with inner radius of 100 mm and
thickness of 5 mm. One quarter of the structure is discretized with 10× 20× 2
Sosh8-elements and symmetry boundary conditions are applied at the lower
and side surfaces. The tube is subject to an increasing internal pressure p
which results also in an increasing axial force F (p, ri) = pπr2

i which depends on
the current internal radius ri of the deformed structure, see also the sketch on
the right of Fig. 4.8. This force is distributed to the top surface of the structure.

The �ber-reinforced rubber material is modeled with the Holzapfel-model
ΨHGO with material parameters for the isotropic Neo-Hookean part and equal
values for both �ber families, speci�ed in Fig. 4.8. The �ber angle γ with
respect to the circumferential direction is varied in the following computations
to observe the typical stretch inversion phenomenon of such structural elements
in the low pressure domain.

In Fig. 4.9 the resulting load-stretch curves are depicted. Above, the evolu-
tion of the circumferential stretch λθ = r

R = 1 + ur
R is plotted versus the inter-

nal pressure, whereas below the evolution of the longitudinal stretch against the
pressure is plotted, each for varying �ber angles γ from 30° to 40°. Note that for
γ around 30° the tube initially stretches longitudinally but contracts circumfer-
entially due to incompressibility of the material. Conversely, for γ above about
35° it initially stretches circumferentially but contracts longitudinally. These
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Fig. 4.8: In�ation of �ber-reinforced rubber tube. The �ber reinforcement and the
discretized structure are sketched on the left and the loading condition on the right.

results agree well with the observations presented by Holzapfel and Gasser [139]
and Nedjar [218]. The intriguing e�ect of the �ber-reinforcement successfully
modeled by the anisotropic material law is clearly demonstrated.

4.6.4 Cyclic In�ation of a Viscoelastic Fiber-Reinforced
Tube

We now study viscous e�ects in the �ber-reinforced rubber tube examined in
the previous section. The structural problem, discretization and elastic material
modeling are kept the same. However, we introduce viscoelasticity as discussed
in Section 4.5, considering the behavior subject to cyclic in�ation. We apply
the internal pressure p = p(t)p0 with p0 = 100 kPa as

p(t) =

{
0.125

(
1− cos(2πt)

)
0 < t ≤ 0.5

0.125
(
1− cos(8π(t− 0.5))

)
+ 0.25 0.5 < t ≤ 2.0

(4.126)

in a simulation with 400 timesteps and ∆t = 0.005. The pressure load is plotted
with respect to time in the inset of Fig. 4.10. We take one relaxation process
into account, m = 1 and apply the parameters controlling viscoelasticity as
τblk = 1.0, βblk = 2.0 for the isotropic part and τ�b1,2 = 1.0, β�b1,2 = 2.0 for
both reinforcing �ber families with an alignment angle γ = 40°. This simulation
is taken as `base result'.

The plots in Fig. 4.10 representing the circumferential stretch versus the in-
ternal pressure demonstrate the viscoelastic e�ect characterized by the hystere-
sis during cyclic in�ation. The base result (red dash-dot) shows an increasing
stretch due to viscous damping. The same increasing damping is present for a
simulation with an alignment angle of γ = 30° (green solid), however the stretch
inversion phenomenon is still apparent in the low pressure regime. To examine
the viscoelastic in�uence of the bulk contribution and the anisotropic �ber con-
tribution we altered the corresponding parameters. The simulation with only
the anisotropic �ber-related contribution is activated, βblk = 0.0, β�b1,2 = 2.0
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Fig. 4.9: Pressure-stretch results in circumferential (top) and longitudinal direction
(bottom) for di�erent �ber angles demonstrating the stretch inversion phenomenon.

(black dashed), is hardly di�erent from the original `base result'. Only in the
initial low pressure regime the lower sti�ness due to the missing viscoelastic
contribution is noticeable. However, the simulation with a viscoelastic element
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Fig. 4.10: Cyclic in�ation of viscoelastic �ber-reinforced tube. Loading history (inset)
and circumferential pressure-stretch results.

only for the isotropic bulk contribution, βblk = 8.0, β�b1,2 = 0.0 results in a
signi�cantly di�erent curve (blue solid). Due to the missing viscoelastic �ber
contribution the stretch is generally larger. But the viscosity e�ect is reduced
and only a small hysteresis is observable.
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5. The Biomechanical

Phenomenon of Remodeling

Remodeling can be de�ned as an evolution of microstructure, in our case bi-
ological tissue, by adapting to its environment. The important role of the
mechanical environment in controlling remodeling is attested by several obser-
vations, for instance due to altered loads ranging from exercise to microgravity,
due to interventional procedures such as stenting or bypass surgery, and due to
developing diseases ranging from hypertension to atherosclerosis or the forma-
tion of aneurysms. There is a close connection with the phenomenon of growth
which warrants a clear distinction of terms and related phenomena. Generally,
there has been an increased realization that mathematical modeling plays a
central role to better understand and predict these phenomena. Within this
chapter we present an overview about mathematical and algorithmic treatment
with emphasis on application for patient-speci�c cardiovascular computations.
We start with a determination of terms and phenomena and shortly review
current literature. Subsequently, we report the governing equations, describe
three major approaches found in the literature and discuss shortcomings and
improvements. Concluding this chapter we demonstrate numerical examples of
idealized arterial sections, tendons, and bifurcation geometries.

5.1 Literature Review and De�nition of Terms

Growth and remodeling processes take place in many biomechanical structures,
ranging from bone (see the initiating work of Cowin [61, 58] for instance) to
cartilage, to tendons, to arterial tissue, to name just a few, and many of these
attracted distinct research attention. Whereas for the case of bone the high sti�-
ness allows a decription in the small deformation regime, soft tissue premises a
nonlinear, large deformation theory. Moreover, having this large range of exam-
ples in mind many more aspects of distinction emerge. Where a muscle adapting
to load is directly connected with an increase in volume, increasing bone sti�-
ness is related to a gain in density. We follow the classi�cation of Taber [288]
who de�nes the distinct processes of morphogenesis, growth and remodeling. We
want to concentrate on growth and remodeling and thereby render growth more
precisely as addition or depletion of mass, whereas remodeling is de�ned as mi-
crostructural change within the biological structure at constant mass. This is in
accordance with Garikipati et al. [107, 109], Arruda et al. [11], Hariton et al.
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[121], and Guillou and Ogden [118], among others. Our treatment of remodeling
in the following sections is con�ned to this latter de�nition. However, as growth
and remodeling occur simultaneously and in a coupled fashion in biological tis-
sues such as the artery, important contributions also in the �eld of growth or
without this precise distinction are included in the following literature review.

Continuum level mathematical models of growth and remodeling in soft tis-
sue have became an active area of research in recent years. One of the �rst
attempts was that of Skalag et al. [276] in 1992. Subsequently, a formal three-
dimensional framework for mechanically modulated volumetric growth of soft
tissue has been published 1994 by Rodriguez et al. [252]. Herein, the modeling
of overall growth deformation as a composition of deformation gradient map-
pings has been substantiated. They suggested to describe the overall growth
deformation, denoted as F eg, as

F eg = F eG, (5.1)

where G is a symmetric tensor representing the growth deformation gradient
and F e represents the elastic deformation necessary to maintain overall com-
patibility.

This multiplicative decomposition into growth and deformation has been
followed by the majority of researchers, for instance Taber [288], Rachev et al.
[240], Cowin [60], Ambrosi and Mollica [4], Lubarda and Hoger [200, 199], Ep-
stein and Maugin [80]. The latter have provided also theoretical considerations
on the underlying framework of open systems (see also Holzapfel [137], Kuhl
and Steinmann [187], and Garikipati et al. [107], among others).

However, a complete, continuum thermodynamics treatment of a system
that is open with respect to mass to allow species concentration changes due
to mass transport, such as nutrients transported within a �uid phase, is highly
complex and exceeds today's simulation capabilities. In the case of the car-
diovascular system, where normal arterial development as well as functional
adaptations, responses to injury, and many disease processes occur by a cell
mediated turnover of individual wall constituents at di�erent rates, di�erent
extents, and in di�erent biomechanical states, this is obviously true. It is be-
cause of the diverse repertoire of mechanosensitive cellular activities (such as
migration, proliferation, apoptosis, synthesis and degradation of matrix, and
production of adhesion molecules, vasoactive molecules, growth factors, matrix
metalloproteinases and cytokines) that a complete coverage of all phenomena is
not possible.

Thereby motivated, a promising approach was taken by Humphrey and col-
leagues [155] called the constrained mixture model. They suggest exploiting the
full mixture equations for mass balance, hence modeling the production and re-
moval of individual constituents, but enforce only a single momentum balance
for the mixture. This concept has been further elaborated within this group
(for instance Humphrey and Rajagopal [155], Gleason et al. [114], Alford et
al. [2]) and very recently it has been included into a coupled �uid-solid-growth
framework for cardiovascular simulations by Figueroa et al. [85].

Further selected publications on cardiovascular applications of growth mod-
els are the work of Watton and colleagues [330, 329] and Kroon and Holzapfel
[178, 179, 180, 182] on growth of aneurysms, and the papers of Ambrosi et al. [3]
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and Kuhl et al. [186] on arteries. Menzel combines both growth and remodeling
in a general anisotropic growth approach [212, 213].

Focusing on remodeling of (arterial) tissue, according to the previous de�ni-
tion, as remodeling of the microstructure, or even more speci�c as reorientation
of the collagen �ber constituents within the material, Driessen and colleagues
[72, 74, 75, 73] probably initiated research in this direction. However, Garikipati
[109] reported several shortcomings of their initial approach, discussed in detail
in Section 5.3.1. Hariton et al. [121, 122] proposed another �ber remodeling
procedure and successfully applied it to an idealized human carotid bifurcation
geometry. Their model is described in detail in Section 5.3.2. An algorithmic
improvement is contributed by Himpel et al. [135] in linearizing the reorienta-
tion algorithm of one single �ber direction. However, extension to more �ber
families as present in the arterial wall seems much more complicated. Both
the latter and the former approaches are based on a �ber reinforced anisotropic
material formulation as described in Section 4.3. In contrast, Kuhl and col-
leagues [184, 185] employ a continuum molecule chain material (cf. Section 4.4)
in their remodeling approach, which is discussed in Section 5.3.3. Prior to a de-
tailed review of each of these approaches, the governing equations of continuum
mechanical remodeling are brie�y reported.

5.2 Governing Equations

In this section we describe the mathematical description of remodeling, treated
as a motion in material space or a con�gurational change. We thereby follow
closely the work of Garikipati et al. [108, 109] and Arruda [11]. The kinematics
of remodeling are assumed as illustrated in Fig. 5.1.

F

Kc

K
F ∗

Kr

ϕt

u∗

κ

B0
Bt

B∗
0

Fig. 5.1: The kinematics of remodeling, adapted from Garikipati et al. [108].
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The overall deformation gradient F is established by a multiplicative de-
composition

F = F ∗KcKr (5.2)

withKr as the tangent map to the preferred remodeled state that a region would
attain if it were free to remodel according to a local driver. Such a driving force
could be the cellular mechanotransductive responses or, in a more phenomeno-
logical approach, the principal strain or stress �eld. A corresponding evolution
law yields Kr. This map is in general incompatible to constraints placed on
the region by surroundings and Kc represents the compatibility restoring tan-
gent map to the remodeled con�guration. Therefrom F ∗ maps to the current
con�guration.

The mechanical theory is examined by minimizing the potential energy func-
tional in the remodeled con�guration B∗0 , with ( · )∗ referring to this con�gura-
tion, given as

Πrem(u∗,κ) =

∫

B∗
0

Ψ∗(F ∗,Kc,X∗)dV ∗ −
∫

B∗
0

f∗· (u∗+ κ)dV ∗ −
∫

Γ∗
N

t̂
∗
· (u∗+ κ)dA∗

(5.3)

where κ = X∗ −X is the motion of a point in material space (con�gurational
change), u∗ is the displacement, Ψ∗(F ∗,Kc,X∗) is the stored energy function
and is assumed to depend on the compatibility restoring motionKc in addition
to F ∗, f∗ is the body force and t̂

∗
is the surface traction. Stationarity is assumed

with respect to both displacements u∗ and κ. Variational calculus yields the
Euler-Lagrange equations

Div∗P ∗ + f∗ = 0 in B∗0 (5.4)

−Div∗
(

Ψ∗I − F ∗TP ∗ +
∂Ψ∗

∂Kc (Kc)T

)
+
∂Ψ∗

∂X∗
= 0 in B∗0 (5.5)

P ∗N∗ = t̂
∗

on Γ∗N (5.6)
(

Ψ∗I − F ∗TP ∗ +
∂Ψ∗

∂Kc (Kc)T

)
N∗ = 0 on Γ∗N , (5.7)

where we refer to Garikipati et al. [109] for a detailed derivation. The term
∂Ψ∗

∂KcK
cT is a thermodynamic driving quantity arising from the change in stored

energy Ψ∗ corresponding to the change in con�guration Kc. It is identi�ed to
be stress-like and we refer to it as con�gurational stress Σ = ∂Ψ∗

∂KcK
cT.

The remodeling is subjected to restrictions placed by the dissipation inequal-
ity for the mechanical theory (cf. Equation (2.49) in Section 2.3), written in
terms of the Kirchho� stress

τ = detK
∂Ψ∗

∂F ∗
F ∗T, (5.8)

as

τ : (Ḟ F−1)− ∂

∂t
(detK Ψ∗) ≥ 0, (5.9)
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with K = KcKr.
This leads to the following reduced dissipation inequality, placing a restric-

tion on the evolution law for Kr and on the functional form of the extra con-
�gurational stress Σ as

−detK(ε+ Σ) : (K̇c(Kc)−1)− detK ε : (KcK̇rK−1)− detK
∂Ψ∗

∂t
≥ 0

(5.10)

where we introduced the Eshelby stress ε = Ψ∗I − F ∗TP ∗.

Remark This restriction due to dissipation states that in a purely mechanical
theory dissipation would be positive for sti�ening materials. This indicates that
other thermodynamic phenomena, for instance of chemo-mechanical nature,
need to be taken into account for consistency. It is widely accepted that a purely
mechanical theory is thermodynamically inadmissible for remodeling processes
sti�ening the material (see also Menzel [212], Kuhl et al. [184], Himpel et
al. [135]). Alternatively, exchange of energy and entropy among individual
constituents could be considered, for instance in a mixture theory. However,
according to Kuhl and Holzapfel [185], there is not yet a general agreement of
how evolution laws for remodeling should be formulated. The evolution laws
described in the following sections are all purely mechanically motivated, either
stress or strain driven. The relevant driving force for remodeling is currently
not clear. However, it has been shown for linear elasticity that the free energy
attains an extremum if strain and stress share the same principal directions (see
Cowin [59] or Vianello [317]).

In a nutshell, the remodeling approaches presented so far are merely an
attempt to study the evolving tissue structure and allow a thermodynamically
inconsistent analysis. These strategies cannot be related yet to the rigorous
deformation response in a purely mechanical setting. However, they serve well
to attain a more detailed and biomechanically senseful material con�guration.
Initial and boundary conditions play an important role, but are not yet well
investigated. The same holds for any purely mechanically motivated evolution
law. These limitations have to be considered when employing the approaches
described below.

5.3 Fiber Remodeling and Review of Recent Ap-

proaches

5.3.1 Driessen's Approach

Driessen and colleagues [72, 74, 75, 73] have substantially contributed to the
�eld of collagen �ber remodeling in cardiovascular tissue. In this section we
chronologically describe their models, because many of the underlying ideas
emerge in the following remodeling approaches as well. We also discuss some of
the assumptions, implications and limitations inherent to their models.

Initially, the remodeling within a closed stented aortic heart valve was the
application of the proposed remodeling approach of Driessen et al. [72, 74].
The key component is the introduction of a so-called �ber orientation tensor
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S0 by scaling the structural tensor M0 describing the anisotropic �ber in the
undeformed con�guration for every �ber family i = 1, . . . , N (see Section 4.3),
with a probability distribution %i, yielding

A0 :=

N∑

i=1

%iM0i, (5.11)

where
∑N
i=1 %i = 1.0 holds, for instance %i = 1/N . The orientation tensor

deforms in an a�ne manner such that the �ber orientation tensor S in deformed
con�guration is given as

A =
F ·A0 ·FT

Λ2
(5.12)

where Λ2 is the mean value of the square of the �ber stretch Λ2 ≡< λ2
�b >

and < · > denotes the average over the distribution space. The underlying
constitutive law is presented as

σ�b = 3k(FA0F
T −QA0Q

T) (5.13)

with Q being the rotation tensor of the deformation (Q = FU−1) and k the
modulus of the �bers as a function of Λ2.

As evolution of the orientation tensor they assume for the quasi-static case
a �rst-order rate equation

Ṡ =
1

τ1
(Ă−A) (5.14)

with τ1 being a time constant and Ă the stimulus for �ber reorientation, de�ned
as a function of the Finger tensor b:

Ă =
bν

tr[bν ]
. (5.15)

The parameter ν controls the degree of alignment with ν > 1 representing a
pronounced alignment.

Additionally, they take a �ber volume fraction φ into account which scales
linearly between contributions of the �bers and the matrix material, yielding a
Cauchy stress of the incompressible material

σ = −pI + (1− φ)σblk + φσ�b. (5.16)

This volume fraction or amount of �bres φ is assumed to additionally change
during remodeling, depending linearly on Λ2. The corresponding evolution is
again modeled by a �rst-order rate equation as

dφ

dt
=

1

τ2
[φss(Λ

2)− φ] (5.17)

with τ2 as time constant and φss as a steady-state �ber amount.
This methodology highlights the three typical ingredients of a remodeling

approach: (1) a constitutive law depending on a varying �ber structure is re-
quired, here represented by (5.16); (2) an evolution equation has to be de�ned
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to describe the time-depending process and usually �rst-order rate equations
are employed such as equations (5.14) and (5.17); (3) the remodeling driver has
to be speci�ed, in this case depending on the strain (5.15).

In their papers Driessen et al. [72, 74] have modeled the �ber distribution
of a heart valve. However, as pointed out by Garikipati et al. [109], their
strategy has two substantial shortcomings. One is related to the �ber orien-
tation tensor which fails to distinguish between the material characteristics of
cubic orthotropy and isotropy. The other is related to the evolution law which
drives any initial �ber orientation tensor to the unit tensor I without having
any deformation (b ≡ I). This does not satisfy the physiologically intuitive
observation that �ber orientations remain unchanged without any deformation.
Another complication of their model is the combination of reorientation and
volume fraction adjustment of the �bers. This contradicts with the general idea
that remodeling is only a process of changing microstructure, but separated
from growth.

In a later contribution Driessen et al. [75] resolved the limitation of their
initial proposal that resulted in �ber directions aligned with the principal strain
directions. Furthermore, they introduced a preferred �ber direction situated in
between the principal stretch directions to account for the fact that in blood
vessels the principal strain directions are in general oriented axially and cir-
cumferentially, whereas the �ber orientation shows a helical arrangement with
changing pitch. The degree of alignment of the preferred �ber direction with
the principal stretch direction is controlled by another parameter. In this con-
tribution they restricted their remodeling approach to changes only in �ber
orientation, keeping �ber type, thickness, sti�ness and especially content con-
stant. By this approach the typical helical arrangement of collagen �bers in the
arterial wall (see Rhodin [246]) has been obtained.

Recently, another adjustment of the remodeling procedure is proposed by
Driessen et al. [73]. The major change was the reintroduction of the angular dis-
tribution of collagen �bers, required to accurately describe the complex biaxial
mechanical behavior of the aortic valve. This introduces a further parameter,
the dispersity of the �bers, in addition to the preferred �ber direction. This
approach is based on the formulation of Gasser et al. [110] who introduce a
�ber dispersion into the anisotropic material formulation of Holzapfel [140] (see
Section 4.3.3). However, it has been recently shown by Federico and Herzog
[81] that at least for an analytical usage this formulation is restricted to �bers
in tension and with weak dispersion around a main direction. Although this is
the case for blood vessels it re�ects a limitation of this model.

Generally, Driessen's variant approaches can be characterized as consisting
of several interrelated features. The combination of �ber orientation, distribu-
tion and/or dispersion complicates identi�cation of in�uencing parameters and
interpretation of the resulting structure. Another major question is the driving
parameter, in most cases the strain. Although this question is not answered
yet there are indications that the stress would be more appropriate as driving
force (see Taber and Humphrey [290] and the discussion in Kuhl and Holzapfel
[185]). Although Driessen and colleagues have proven the successfull applica-
tion of their remodeling strategies for aortic valves and blood vessels we prefer
di�erent remodeling approaches, described in the following.
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5.3.2 Hariton's Approach

Hariton et al. [121, 122] present a remodeling approach which is described in
this section. Their major point is the choice of stress as driving force for �ber
remodeling. They argue that the artery remodels to restore circumferential
wall stresses due to pressurization and wall shear stress due to blood �ow to
`normal' levels (see also Taber and Humphrey [290]). Restricting their model to
a varying collagen �ber angle while keeping collagen content, type and thickness
constant, they propose that local principle tensile stress magnitude and direction
modulate the �ber alignment in arteries.

We review their model which has the popular anisotropic constitutive law
of Holzapfel [140], described in Section 4.3.1, as its basis. The Cauchy stress at
a material point is given by

σ = λσi φ
σ
i ⊗ φσi (5.18)

with the principal stresses λσi , i = 1, 2, 3 and their corresponding principal direc-
tions φσi sorted such that λσ1 ≥ λσ2 ≥ λσ3 . They assume that the collagen �bers
lie within a plane spanned by the two vectors φσ1 and φσ2 and symmetrically
align relative to φσ1 . In terms of the angle of alignment γ the unit vectors along
the two �ber families in the current con�guration are de�ned as

m = cos γ φσ1 + sin γ φσ2 , n = cos γ φσ1 − sin γ φσ2 . (5.19)

The key component with respect to their hypothesis of stress as remodeling
driver is the de�nition of the so-called modulation function which they de�ne
as

tan γ =M
(
λσ2
λσ1

)
. (5.20)

In their presented work they employ the simplifying assumption

M
(
λσ2
λσ1

)
=
λσ2
λσ1
. (5.21)

Future work could introduce additional, possibly nonmechanical factors into
this modulation function. Interpretation of Equation (5.21) reveals that the
�bers would perfectly align with the direction of uniform tension, whereas in
the case of equal biaxial principal stresses λσ1 = λσ2 the �bers align exactly in
between the two directions φσ1 and φσ2 . It is remarked that the alignment of the
�bers is de�ned in the deformed con�guration and thus the unit vectors in the
reference con�gurations are obtained by a pull-back operation:

m0 =
F−1m

|F−1m|
and n0 =

F−1n

|F−1n|
(5.22)

Hariton's proposed model rests upon the assumption that the collagen �bers
remodel into a mechanically optimal con�guration. However, the actual evo-
lution process is not explicitly speci�ed. They employ an iterative procedure
starting usually with a random initial �ber con�guration. In each step the prin-
cipal stresses and corresponding �ber directions are evaluated until the point
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where the stress �elds determined in two consecutive computations are su�-
ciently close.

Thus, they renounce to specify an evolution equation. On the one hand
this seems to be a plausible assumption, because a thermodynamically and
biomechanically correct model is not yet available. On the other hand for a
truely time-dependent simulation an evolution equation is necessary. Moreover,
an evolution law assuming a diminishing remodeling capacity would decrease
oscillations in �ber directions. Furthermore, the speci�cation of a termination
criterion would then be dispensable. We discuss such advancements of the
present remodeling approach in Section 5.4.

An important remark emphasized by Hariton et al. states that �due to the
highly nonlinear nature of the problem it is not clear whether there is an opti-
mal con�guration of the �bers or, in the case that such a con�guration exists,
if this con�guration is unique� ([121], p. 166). We con�rm their observation
that usually the proposed approach converges to almost identical results with
di�erent initial conditions. However, our performed numerical examples (see
Section 5.5) also demonstrate that the solution of such problems is computa-
tionally demanding and sometimes not very robust. Certainly, further research
is necessary in this respect.

5.3.3 Kuhl's Approach

A very recent remodeling approach is proposed by Kuhl and Holzapfel [185]. It
is based on the continuum molecule chain material model, described in detail in
Section 4.4. As discussed, one of the crucial bene�t of this material model is the
fact that the underlying parameters are physically motivated. Admittedly, the
application and experimental parameter �tting of this model for arterial walls
is not available in literature and we therefore rely on the parameters reported
in the qualitative studies of Kuhl and Holzapfel [185].

We recall that the continuum molecule chain material model is capable of
representing isotropy, transverse anisotropy and orthotropy by de�ning di�er-
ent aspect ratios to the unit-cell dimensions. This option is utilized by the
proposed remodeling approach. Whereas in a preliminary paper by Kuhl et al.
[184] the concept was to rotate a prede�ned unit-cell for remodeling of trans-
versely isotropic tissue such as tendons, the present approach directly changes
the unit-cell dimensions following a speci�ed remodeling strategy. Therefore
a smooth transition between isotropy and anisotropy is enabled. Additionally,
the parameterization of unit-cell dimensions as remodeling variables is advan-
tageous with respect to numerical handling in contrast to a parameterization
based on angles and trigonometric functions.

The underlying assumption of the remodeling process in form of a mi-
crostructural rearrangement is to allow the �ber direction to rotate in response
to the current mechanical stress response. While this is intuitively modeled in
the previous approach by allowing the �ber angle to change, it corresponds to
a change in alignment and dimensions of the �ber unit-cell in the approach at
hand. Therefore, the Cauchy-stress tensor as remodeling driving force is de-
composed into its principal values and directions as in (5.18), repeated here



120 5. The Biomechanical Phenomenon of Remodeling

as

σ = λσi φ
σ
i ⊗ φσi . (5.23)

The two fundamental hypotheses of the remodeling process are:

1. The characteristic material axes ai of the unit-cell instantaneously align
with the principal directions of the Cauchy-stress φσi .

2. The unit cell dimensions ai adapt gradually with respect to the positive
eigenvalues λσ+

i .

Concerning the �rst postulate, Kuhl and Holzapfel remark that the general
idea of network models is that the unit cell is taken to deform in principal
stretch space (see also Boyce and Arruda [46] and Bischo� et al. [32]). We
point out that changing the material axes of the unit cell is inherently related
to a change in the stress response and therefore goes along with a change in
internal energy of the underlying structure. The necessary additional driving
energy and entropy are not taken into account following a purely mechanically
motivated remodeling strategy as discussed in Section 5.2.

The second postulate resembles the idea that collagen �bers in cardiovascular
tissues are located between the two maximal principal stress directions which
is re�ected in a corresponding unit-cell with speci�c dimensions de�ned as

ai = r0
λσ+
i

‖λσ+
i ‖

. (5.24)

For some exemplary principal stress relations the resulting unit-cells are illus-
trated in Fig. 5.2. The assumption that only positive stresses, i.e. tension forces
drive the remodeling is re�ected in the de�nition of λσ+

i = λσi for λσi > 0 and
λσ+
i = 0 for λσi ≤ 0.

a2 = φσ
2

a3 = φσ
3

a1 = φσ
1

a3

a1

a2

a2

a1 = φσ
1

a2 = φσ
2

a1 = a2 > 0, a3 = 0

a1

a1 = φσ
1

a1 > 0, a2 = a3 = 0

a1

a1 > a2 > a3 > 0

Fig. 5.2: Di�erent unit-cells illustrating the remodeling cases of orthotropy (left),
transverse isotropy with two orthogonal �ber directions (middle), and transverse
isotropy with one �ber direction (right), together with the corresponding principal
stress relations.

In contrast to the merely iterative remodeling process proposed in the pre-
vious approach, Kuhl and Holzapfel explicitly specify a remodeling evolution
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law. The remodeling of the microstructural unit-cell dimensions is assumed to
obey

d

dt
ai = τrem

(
λσ+
i

‖λσ+
i ‖
− a0

i

r0

)
exp(−τremt)r0 (5.25)

with τrem as remodeling relaxation parameter and a0
i as unit-cell dimensions in

the initial undeformed con�guration. An alternative formulation is given by a
time integration yielding the explicit update for the cell dimensions

ai =

(
λσ+
i

‖λσ+
i ‖
− a0

i

r0

)
(1− exp(−τremt)) r0 + a0

i (5.26)

The remodeling approach based on the microstructural chain network unit-
cell can be summarized as

a0
i (t) ≡ φσi (t) and ai(t) r0

λσ+
i (t)

‖λσ+
i (t)‖ . (5.27)

In Section 5.5 we present numerical examples for this remodeling approach.

5.4 Suggested Advancements of Hariton's and

Kuhl's Remodeling Approaches

In this section we discuss strengths and weaknesses of the presented approaches
and propose some ideas how they might be advanced. Both approaches certainly
result in reasonable �ber patterns and are in general applicable to successfully
recover physiological �ber alignments (as demonstrated below in Section 5.5
which provides numerical examples). However, our comparisons between Kuhl's
and Hariton's approach revealed some potential points of discussion.

Regarding Hariton's approach, the apparent missing ingredient is the de�ni-
tion of an evolution law. Both Driessen and Kuhl assume a decreasing remod-
eling capacity and therefore a determined �ber state is �nally reached in their
strategies. In contrast, Hariton et al. [122] report that they apply their remod-
eling process until the stress states of two consecutive analyses are su�ciently
similar which is somewhat arbitrary. Certainly, the evolution equations of both
Driessen and Kuhl are mere methodological assumptions and seem to have no
physiological or biomechanical motivation. We nevertheless suggest taking into
account a certain time-dependence for the modulation function M represent-
ing a decreasing remodeling capacity. This would allow a true time-dependent
simulation and opens the door for temporal multiscale simulations.

Considering Kuhl's remodeling approach, a major appealing characteristic
is the underlying material law based on a continuum chain network theory. The
bene�t is the physical interpretability of the material parameters. Further, with
the unit cell dimensions as parameters for remodeling, no angular variables are
involved which are cumbersome to linearize and typically result in di�culties
with respect to objectivity in large deformations. Himpel et al. [135] presented
a consistent linearization strategy for angular remodeling of one �ber direction.
However, while this formulation already has signi�cant complexity, the exten-
sion to more than one �ber family seems to be even more delicate. In contrast,
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the scalar valued parameters of the unit-cell involved in Kuhl's approach are
much easier to handle. Interestingly, the same experience in the research of shell
�nite elements lead to the widely accepted �nding that in large deformations
the displacements (or the displacements of the shell directors) are preferred over
rotations as unknowns.

One decisive parametric connection between the unit cell and the chain is
the initial end-to-end length r0 (see Section 4.4). Kuhl and Holzapfel claim
that during remodeling driven by their evolution (Equation (5.25) or (5.26))
this initial chain length r0 =

√
a2
i stays constant. This claim is correct in a

remodeling case where just one relevant cell dimension evolves and both other
dimensions are reduced to zero. In that case, for t→∞, one cell dimension, for
instance a1, reaches r0 and both a2 and a3 tend to zero. We repeat Equation
(5.26) for this case:

a1 =

(
λσ+

1

‖λσ+
1 ‖︸ ︷︷ ︸

:=1

−a
0
1

r0

)
(1− exp(−τremt)) r0 + a0

1
t→∞−−−→ a1 = r0

(5.28)

a2,3 =

(
λσ+

2,3

‖λσ+
2,3‖︸ ︷︷ ︸

:=0

−a
0
2

r0

)
(1− exp(−τremt)) r0 + a0

2,3
t→∞−−−→ a2,3 = 0.

(5.29)

However, we would like to emphasize that this claim is incorrect in the general
case. For example, in the case where two cell dimensions emerge, for instance
a1 and a2, representing transverse isotropy with two orthogonal �ber directions,
the situation di�ers:

a1,2 =

(
λσ+

1,2

‖λσ+
1,2‖︸ ︷︷ ︸

:=1

−a
0
2

r0

)
(1− exp(−τremt)) r0 + a0

1,2
t→∞−−−→ a1,2 = r0

(5.30)

a3 =

(
λσ+

3

‖λσ+
3 ‖︸ ︷︷ ︸

:=0

−a
0
3

r0

)
(1− exp(−τremt)) r0 + a0

3
t→∞−−−→ a3 = 0.

(5.31)

The resulting initial chain length equals r0

√
2. For intermediate con�gurations,

r0 does not stay constant with this formulation, either. By implication, not only
the directed sti�ness due to the �ber alignment of the underlying material model
changes during remodeling, but also the `basis sti�ness', due to alterations in the
chain sti�ness itself. This renders an identi�cation of r0 as material parameter
impossible.

To circumvent this issue we suggest to introduce a rescaling of the cell di-
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mensions after each remodeling step, such that

ãi =

(
λσ+
i

‖λσ+
i ‖
− a0

i

r0

)
(1− exp(−τremt)) r0 + a0

i , (5.32)

or

d

dt
ãi = τrem

(
λσ+
i

‖λσ+
i ‖
− a0

i

r0

)
exp(−τremt)r0, (5.33)

and ai =
r0√
ã2
i

. (5.34)

Thus the unit-cell always emerges in a way that the initial chain length stays
constant.

Another issue with Kuhl's evolution equation can be observed, especially for
the example of the idealized artery (see Section 5.5.4). Their remodeling driver
is de�ned according to the hypothesis that for positive eigenvalues (tension),
the corresponding cell length grows, but for negative eigenvalues it decreases.
That implies that compression is needed to decrease a cell dimension.

The stress state in a tube under axial stretch and internal pressure is how-
ever typically characterized by tension in both the circumferential and axial
direction, and compression in the radial direction. Only in a very limited re-
gion the incompressibility of the material introduces compression in axial or
circumferential direction. This is illustrated in the sketch of a section through
the axial-radial plane of a thick-walled ring in Fig. 5.3. The deformed state
is depicted for an internal pressure loading with a free edge at the top. Due
to the incompressibility of the material, a bulge emerges. However, if the top
edge would be vertically �xed, the region of the bulge would sustain pressure,
whereas the rest of the ring sustains tension.

Moreover, it is evident that the magnitudes of the two tension states di�er.
This should be re�ected in the remodeling of the �bers by aligning more into
the high tension direction and less into the lower tension direction. However,
such a remodeling process is not possible with Kuhl's evolution law, as only the
sign of the eigenvalues but not the quantity control the increase or decrease of
the corresponding unit-cell dimension.

Fig. 5.3: Sketch of a axial-radial section of an incompressible ring under internal
pressure. The deformed state is depicted for a free upper edge.

We propose to advance their law by relating the evolution of one cell dimen-
sion to the quotient of the corresponding eigenvalue λσi and the maximal eigen-
value λσmax This yields the explicit update for the cell-dimensions (cf. (5.26)):

ai =

((
λσi
λσmax

)+

− a0
i

r0

)
(1− exp(−τremt)) r0 + a0

i (5.35)
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with the understanding that ( · )+ corresponds to only positive values. With
such a rule the dimension corresponding to the maximal stress eigenvalue λσmax
�nally reaches the maximum of r0, whereas the dimension corresponding to the
second largest positive eigenvalue reaches a value de�ned by the ratio λσ

λσmax
r0.

By taking the rescaling, described in the previous paragraph, into account, the
initial cell dimension r0 is always conserved.

If a rate equation according to (5.25) is preferred, the evolution is suggested
to take the form

d

dt
ai = τrem

((
λσi
λσmax

)+

− a0
i

r0

)
exp(−τremt)r0, (5.36)

preserving the same bene�ts. With this modi�cations of the remodeling evo-
lution we obtain reasonable and qualitatively physiological �ber patterns of
arteries, as demonstrated in detail in Section 5.5.4.

Regarding Hariton's approach, the apparent missing ingredient is the de�ni-
tion of an evolution law. Both Driessen and Kuhl assume a decreasing remod-
eling capacity and therefore a determined �ber state is �nally reached in their
strategies. In contrast, Hariton et al. [122] report that they apply their remod-
eling process until the stress states of two consecutive analyses are su�ciently
similar which is somewhat arbitrary. Certainly, the evolution equations of both
Driessen and Kuhl are mere methodological assumptions and seem to have no
physiological or biomechanical motivation. We nevertheless suggest taking into
account a certain time-dependence for the modulation function M represent-
ing a decreasing remodeling capacity. This would allow a true time-dependent
simulation and opens the door for temporal multiscale simulations. Finally,
another option for advancing Hariton's approach could involve including addi-
tional mechanical factors into the remodeling capacity, for instance in a type of
`inverse damage' formulation.

5.5 Numerical Examples

5.5.1 Idealized Human Carotid Artery Model

As a �rst numerical example we present an idealized section of a human artery
modelled as straight thick-walled cylinder. We chose geometric dimensions,
material properties, loading, and boundary conditions summarized in Table 5.1
following Hariton et al. [121] which represents a human common carotid artery
model, see also Del�no et al. [64].

The �nite element model of a quarter of the carotid consists of twelve el-
ements in circumferential direction, ten elements in axial directions and ten
elements along the thickness. Because of the high slenderness of every element
we apply the Sosh8 solid-shell element formulation described in Section 3.5.2.
The nonlinear problem is solved in a quasi-static solution procedure gradually
applying the loading within ten equal load steps. At every load-step a remod-
eling step is conducted following the approach of Hariton et al. described in
Section 5.3.2.

The result of this example is illustrated in Fig. 5.4. The color scale rep-
resents the �rst principal Cauchy-stress value which gradually decreases from
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Table 5.1: Parameters of idealized artery model.

Parameter Value

Geometry
Inner Radius 3.1 mm
Thickness 0.9 mm
Length 4.0 mm

Material
µ 33.74 kPa
k1 13.9 kPa
k2 13.2 [ - ]

Loading
Internal Pressure 16 kPa
Axial Stretch 10 %

Initial �ber angle γ0 39°

about 180 kPa at the inside to 30 kPa at the outside of the artery. The stress
distribution is in very good accordance to the reported distribution of Hariton
et al. [121] The �ber alignment is illustrated by line segments at every node.
Note that at some isolated nodes the line segments look cluttered due to post-
processing issues. Overall, it is evident that the �ber angle with respect to the
circumferential direction gradually rises from inside to outside. To further clar-
ify the resulting �ber pattern it is illustrated separately for the inner, middle
and outer layer in a picture series in Fig. 5.5.

Fig. 5.4: Fiber alignment with �rst principal Cauchy-stress for idealized human artery
model.

In Fig. 5.6 we plot the resulting �ber alignment angles through the thickness
with varied bulk modulus κ, evaluated at one Gauss-point of each element. All
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curves agree well with the general understanding that the transmural pitch of
the collagen �ber helix increases from the inner to the outer wall. For instance,
Holzapfel et al. [145] found a mean angle of 5°, 7° and 49° for the intima, media
and adventitia, respectively of a healthy human iliac artery, while Holzapfel et
al. [141] reported 8.4° for the media and 41.9° for the adventitia of a human
aorta.

Fig. 5.5: Fiber pattern for the inner, middle and outer layer (from left to right) of the
idealized human artery model.
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Fig. 5.6: Fiber alignment angle along the arterial wall thickness.

The resulting curve for κ = 1000 kPa agrees very well with the results
presented by Hariton et al. [121], con�rming the successful implementation of
their remodeling approach. However, the other curves for a lower bulk mod-
ulus show a relatively strong dependence on the incompressibility constraint,
enforced by the penalty method. Where the volume of the deformed artery for
κ = 1000 kPa is within an acceptable tolerance (103% of the initial volume), it
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is signi�cantly larger for κ = 400 kPa (107%) and beyond an acceptable toler-
ance for κ = 100 kPa (124%). The diamond marked curve depicts the result
for a mesh re�nement in thickness direction (20 elements) which con�rms that
already ten elements across the thickness result in a converged �ber pattern.
This also agrees with observations by Hariton et al.

5.5.2 Idealized Human Carotid Bifurcation Model

axial stretch

internal pressure p

symmetry conditions

Fig. 5.7: Idealized carotid bifurcation model with mesh and boundary conditions.

To investigate remodeling in more complex geometrical con�gurations the
second example considers remodeling of a bifurcation. We present an idealized
carotid bifurcation model consisting of three cylinders of approximately phys-
iological radii and a smoothed transition region to model the bifurcation. A
similar example is discussed by Hariton et al. [122] who apply their remodeling
approach to a geometric model of a human carotid bifurcation which has been
investigated by Del�no et al. [64]. Therein a very detailed �nite element model
is presented with speci�c thickness and radius data for the stress-free and in
vivo con�gurations.

In accordance to Hariton et al. we apply an internal pressure and an axial
stretch to simulate in vivo longitudinal residual stretches (see Fig. 5.7). The
material parameters are the same as in the previous example and we apply Sosh8
and EAS9 elements, respectively, depending on each element's slenderness.
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Fig. 5.8: Fiber alignment in idealized carotid bifurcation model as seen from inside.

Fig. 5.9: Fiber alignment in idealized carotid bifurcation model as seen from outside.

As this geometric model is just a rough estimation with respect to geometry,
residual stress and strain �eld we do not discuss the simulation results in detail
but concentrate on the remodeling procedure. The resulting �ber con�guration
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at the bifurcation (the apex) is illustrated in Fig. 5.8 from the inside and Fig. 5.9
from the outside. Focusing on the bifurcation region, the �ber morphology at
the apical ridge can be identi�ed to span tendon-like across the apex. Histo-
logical data reported by Finlay et al. [90] and Rowe et al. [253] con�rms such
a �ber structure. Moreover, these pictures are in perfect agreement with the
remodeling results of Harriton et al. [122].

Note that the �ber pattern in the cylindrical regions away from the bifur-
cation is characterized by an alignment angle gradually increasing through the
thickness from inside to outside. This resembles the previous example of a
prestretched and pressurized cylindrical artery.

This example demonstrates that the remodeling strategy is capable to re-
produce physiologically feasible �ber patterns also in more complex geometries.
For even more complex geometries stemming from patient-speci�c CT-data we
refer to Chapter 6.

5.5.3 Idealized Tendon Model

initial configuration

final displacement

maximal displacement

at maximal load

Fig. 5.10: Tendon displacement during the remodeling process.

Another example considers Kuhl's remodeling approach discussed in Section
5.3.3. This time not an arterial wall is modeled, but an idealized human ten-
don. The example is taken from Kuhl and Holzapfel [185] to con�rm a correct
implementation and illustrate their approach. Therefore, the geometry and the
applied material parameters of the continuum chain network model described
in Section 4.4 are also taken from this publication and summarized in Table 5.2.
Note that we chose mm as unit length which together with Boltzmann's con-
stant and the temperature sets the energy unit to be much higher than in the
previous examples. The applied force, pressure and stretch are scaled accord-
ingly. As no physiological parameters are available for this material law we stick
to this rather qualitative study.
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Table 5.2: Parameters of cylindrical tendon.

Parameter Value

Geometry
length 10.0 mm
area 10.0 mm2

Material

λ 27.293 GPa
µ 3.103 GPa
k 1.381× 10−23 JK−1

θ 310 K
N 7× 1021 m−3

L 1.594 [-]
A 1.365 [-]
r0 1.0 [-]
τrem 0.025 [-]

Loading F 300 kN

Initial unit-cell isotropic r0/
√

3

The tendon is modeled by 640 EAS9-elements. It is �xed in z-direction on
one side and in all directions at the middle node of this side. The loading is
applied as a single force on the middle node of the other side and constraints are
used to keep the load surface �at. The load-curve is a ramp with 12 load-steps
for the linear increase and 138 steps to arrive at the �nal remodeled state.
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Fig. 5.11: Evolution of the tendon stretch (left) and the unit-cell dimensions (right)
during remodeling.

Fig. 5.10 illustrates the displacement of the tendon during the remodeling
process. It is extended during the �rst steps to its maximal length at about
the maximal loading. Thereafter the reorientation of the �bers by changing
the unit-cell dimensions re�ects a signi�cant sti�ening of the tendon in the
load direction. At the �nal stage the displacement is reduced to about half
the maximal displacement. In Fig. 5.11 the evolution of the stretch is plotted
over time on the left hand side. Clearly evident is the sti�ening modulated
by the exponential evolution equation. On the right side the evolution of the
unit-cell dimensions scaled by r0 are plotted against the time. Starting from
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an isotropic con�guration with ai = 1/
√

3 the cube length a3 rises whereas
both other dimensions diminish. Finally, a transverse isotropic con�guration is
reached.

Fig. 5.12 illustrates the �ber con�guration for the initial isotropic stage (left)
and the �nal transverse isotropic stage (right). At the initial stage the �bers
form a regular cube whereas at the �nal stage they are all aligned in longitudinal
direction. The results of this example resemble perfectly the reported ones by
Kuhl and Holzapfel.

Fig. 5.12: Fiber con�guration within the unit cell at the initial con�guration (left)
and the �nal con�guration (right).

5.5.4 Idealized Artery Model

Fig. 5.13: Displaced artery model at �rst (left) and �nal (right) step with colors and
arrows indicating the �rst principal stress. It is evident that at the initial step the
circumferential stress dominates a large part of the artery, whereas at the �nal state
the circumferential load is carried through the inner part due to the strong remodeled
�bers.
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Table 5.3: Parameters of idealized artery.

Parameter Value

Geometry
length 8.0 mm
inner radius 1.0 mm
outer radius 3.0 mm

Material

λ 27.293 GPa
µ 3.103 GPa
k 1.381× 10−23 JK−1

θ 310 K
N 7× 1021 m−3

L 1.594 [-]
A 1.365 [-]
r0 1.0 [-]
τrem 0.25 [-]

Loading
p0 9.6 GPa
∆l 0.8 [-]

Initial unit-cell isotropic r0/
√

3

A �nal numerical example again considers an idealized tube-like artery sub-
ject to uniaxial stretch and internal pressure. This shall serve the demonstration
of shortcomings of Kuhl's original remodeling strategy and the e�ect of our pro-
posed advancements (see Section 5.4). To this end, we follow the example of
the tube-like artery presented by Kuhl and Holzapfel [185].

A similar structure is already presented in Section 5.5.1, but the underlying
material law and remodeling strategy here is quite di�erent and we do not want
to quantitatively compare these two examples. However, the qualitative �ber
pattern of an increasing angle with respect to circumferential direction across
the thickness should be recovered by this remodeling approach as well.

The applied parameters are summarized in Table 5.3 where we mostly fol-
low the reference parameters in the paper. Unfortunately, the quantitative
value of the internal pressure loading is missing in the paper and we have cho-
sen a pressure of 9.6 GPa applied together with the axial stretch incrementally
in 25 load steps and hold constant for another 25 steps. Note that we have
chosen the same unit system as in the previous example, whereas the paper
reports no units. Following the paper we have discretized the structure with
eight elements across the thickness and 12 elements in axial direction. In con-
trast to the displacement-based elements reported in the paper we employed
EAS9-elements. In circumferential direction we simulated a quarter of the tube
with four elements in circumferential direction and corresponding symmetry
boundary conditions.

The general remodeling strategy follows in principle Kuhl's approach de-
scribed in Section 5.3.3, but with the advanced remodeling evolution discussed
in Section 5.4. Thus, the unit-cell dimensions evolve following the ratio of the
positive stress eigenvalues (see Equation (5.35)) and the initial chain length r0

is maintained by rescaling according to Equation (5.34). We always start from
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Fig. 5.14: Evolution of the unit-cell dimensions (left) and resulting �ber angle (right).

an isotropic initial con�guration with the cubic network unit-cells arranged cir-
cumferentially.

In Fig. 5.13 the initial discretized structure is depicted and the displaced
structure is illustrated for the �rst and the last load step. The colors and arrows
represent the maximal principal Cauchy stress and direction. The qualitative
di�erence between the �rst and last load step is the distribution of circumferen-
tial and axial eigenvectors. In the �rst step with only a 25th of the loading and
yet an isotropic material con�guration the circumferential load dominates across
a major part of the thickness. At the �nal step with the full loading the pres-
sure load is carried through just about half the structure due to circumferential
sti�ening resulting from the remodeling.

The remodeling process is illustrated in Fig. 5.14 where on the left the de-
velopment of the cell dimensions for one Gauss-point per element is depicted.
Dimension a3 continuously grows, a1 continuously decreases and a2 has dis-
tributed values through the thickness. The rescaling to maintain r0 is observed
as a3 raises higher if both a1 and a2 diminish, whereas in the case when both
dimensions a3 and a2 stay at a reasonable value they are both bound to main-
tain r0. In Fig. 5.14 on the right the resulting �ber angle at the �nal step is
plotted versus the thickness. The S-shape already obtained in the example of
Section 5.5.1 is evident, however the angle ranges until about 60°. This depends
strongly on the ratio of internal pressure and axial stretch and the example is
restricted only to qualitative results.

The remodeling is further exempli�ed in the picture series of Fig. 5.15. Here,
just one section of the model consisting of one element row through the thickness
is depicted. The material unit-cells are illustrated with colors representing the
cell dimension. Starting from unit cubes the remodeling process drives the
dimension in thickness direction to zero (blue color). The distribution of the
other two cell dimensions gradually develops from uniaxial in circumferential
direction at the inside of the tube to orthotropic at the outside.
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Fig. 5.15: Cutout section consisting of one element row through the thickness of the
artery model with sketched material unit cells at each Gauss-point. At the initial step
(top) all cells represent cubes, where at the �fth step (middle) and at the �nal step
(bottom) the remodeling of the unit cell dimensions is apparent.
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In the following we want to comment on the results presented by Kuhl
and Holzapfel. When applying their original evolution equation, the resulting
�ber pattern also represents an alignment with an increasing angle through
the thickness with respect to the circumferential direction. However, we were
not able to reproduce such results in our implementation. As already stated,
the decisive question is the interplay between the stress resulting from the axial
stretch and the internal pressure. Admittedly, the quantitative pressure value is
not reported in the paper, but from locking at the deformed state it seems to be
relatively high. However, in our explorations, even a very high internal pressure
does not reproduce the desired �ber pattern. In contrast to their example, we
initiate remodeling typically with an isotropic �ber pattern. However, changing
to a random initial con�guration has not improved the results with respect to
their reference.

The necessary stress state within the tube which would create the desired
�ber pattern could not be recovered with their original remodeling evolution
law (see the discussion in Section 5.4 and Fig. 5.3). Here, the problem of
the remodeling evolution proposed by Kuhl and Holzapfel becomes obvious.
To decrease the cell dimensions, a pressure state is necessary which is only
present at the bulge. Everywhere else in the structure the tension stresses in
axial direction lead to growing cell dimensions. This is con�rmed by the �ber
pattern that we obtain with their proposed evolution equation. In Fig. 5.16 the
evolution of the cell dimensions is plotted over time. Most of the Gauss-points
through the thickness sustain tension in axial and circumferential direction and
therefore grow equally. Just at one Gauss-point the axial pressure reduces the
axial cell dimension.
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Fig. 5.16: Evolution of the unit-cell dimensions with the original remodeling strategy
proposed by Kuhl and Holzapfel.

This is also observed in the sketched cell dimensions of one element row
through the thickness, depicted in Fig. 5.17. Only at one single Gauss-point
emerges a magni�ed circumferential �ber direction (red color). As demonstrated
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above, this de�cit is overcome by our suggested advancement of the remodeling
evolution.

Fig. 5.17: Fiber pattern for one element row due to the original remodeling strategy
by Kuhl and Holzapfel.

5.6 Discussion of the Presented Fiber Remodel-

ing Approaches

Recapitulating the present chapter we would like to discuss the value of con-
sidering remodeling approaches in structural modeling of the arterial wall. It
is an inherent characteristic of living nature to optimize functionality and thus
continuously change and grow. The arterial wall in particular remodels to adopt
to its environment, among others in response to structural demands. As such
the phenomenon of remodeling is central when modeling the arterial wall.

We have elaborated the underlying equation framework in Section 5.2. It
revealed that a purely mechanical remodeling approach is thermodynamically
inadmissible and other aspects such as chemo-mechanical or biological phenom-
ena have to be taken into account that drive growth and remodeling. However,
the resulting complex and fully coupled system is beyond today's simulation
capabilities, the relationship between mechanical forces and biological response
is not yet understood in detail, and necessary knowledge about the boundary
conditions is still missing.

Therefore, the present approaches to capture remodeling in arterial walls are
not aimed at considering the phenomenon in its entire complexity. Rather they
shall serve to better understand the global functioning of structural adaptation
of the wall. To this end, an idealized tube-like artery is a reasonable reference
structure. As demonstrated in the previous sections, the main characteristic
of an increasing �ber angle through the wall thickness can usually be captured
by the proposed models. We have shown however, that Kuhl's model requires
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slight modi�cations. Particularly, setting the principle stresses in relation to
each other seems to be necessary to arrive at a smoothly increasing �ber angle.

Nevertheless, there still remain some challenges in trimming the remodeling
procedure to obtain such a realistic physiological situation. First of all, the
remodeling strategy strongly depends on the underlying anisotropic constitutive
model to allow �ber reorientation at all. The corresponding parameters have to
be de�ned a priori which in turn are usually obtained from tissue experiments.
This tissue - however - has undergone remodeling already prior to extraction,
resulting in a classical dilemma of parameter �tting. In this regard we favor the
continuum molecule chain model employed in Kuhl's approach over Hariton's
approach since the material parameters have a clear physical meaning.

Second, the underlying structural response needs to be modeled correctly in
order to obtain correct remodeling results. As depicted in Fig. 5.6 the result-
ing increasing alignment angle through the thickness strongly depends on the
structure's bulk modulus. Therefore, modeling incompressibility is prerequisite.
This draws attention to the involved �nite element technology as incompress-
ibility poses high demands on the solution technique. The advanced elements
presented in Chapter 3 are well suited to ful�ll this demand.

Finally, problems involving more complex geometries and boundary condi-
tions such as the presented carotid bifurcation (see Section 5.5.2) induce bend-
ing states. These raise further locking issues and a correct modeling is even
more delicate. Clearly, our proposed advanced elements are highly e�cient in
preventing locking in these circumstances.

Despite these challenges which clearly need to be further pursued in future
research, these approaches are well employable to advanced structural mod-
els of the arterial wall. Since the tissue's microstructural �ber pattern is not
yet obtainable from medical image technology, our purely mechanical approach
seems reasonable to enhance the accuracy of the arterial wall structural model.
This applies especially to large and complex patient-speci�c geometries. For
instance, prior to simulating the structural response to a speci�c blood im-
pact, an initial remodeling step is proposed to obtain a reasonable �ber pattern
within the wall. This research direction warrants the presented investigation
of today's remodeling approaches. We will present applications of remodeling
within patient-speci�c geometries in the following chapter.
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6. Simulation of

Patient-Speci�c Arterial Wall

Models

One of the key advantages of the �nite element method is that highly complex
geometries can be analyzed. The aim of biomechanical research of vascular prob-
lems is the understanding of diseases. Therefore patient-speci�c data should be
taken into consideration to study inter-individual implications. A major goal of
the present thesis is to design a toolchain to e�ciently simulate patient-speci�c
problems. This was an important factor for the selection of the methodologies
described in the previous chapters which are all well suited for this task. The
chapter at hand describes the proposed toolchain in more detail. The issue of
generating a reasonable wall geometry is adressed and the proposed approach
is further optimized to comply with the wall physiology. Two patient-speci�c
examples considering the aortic arch and the iliac bifurcations are presented
to demonstrate the performance of the proposed modeling strategy and the
implications of the single methodologies on the simulation are discussed.

6.1 Wall Model Generation

This section describes the generation of our proposed patient-speci�c arterial
wall models. Geometric as well as structural features are included based on seg-
mentation data. To create a feasible and detailed �nite-element model, a couple
of steps are necessary and several issues have to be resolved or circumvented.
The major problem is that the arterial wall itself is barely accessible by today's
medical image processing techniques. This makes determination of the arte-
rial wall geometry, especially wall thickness extremely di�cult. Therefore, in
our proposed arterial wall model we generate the wall by extruding the clearly
identi�able blood vessel lumen. The extrusion thickness can either be de�ned
based on histological literature knowledge, or in an enhanced model it can be
evaluated on a �xed radius-to-thickness ratio based on additional centerline in-
formation. The extrusion of the vessel lumen works on a �nite-element mesh
of the underlying lumen which allows subsequent analyses by �uid-structure-
interaction simulations with a matching interface. The details of the proposed
model generation are discussed in the following.
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6.1.1 Segmenting and Processing CT-Data

The underlying data basis for our models are always patients' computer tomo-
graphic scans. Diagnostic images provide 2D information based on grey-scaled
pixel data for each slice. Usually, contrast agents are used to enhance contrast
and thus simplify identi�cation of the region of interest. This is quite easy
for blood vessels, however other regions such as the soft tissue of the arterial
wall or other organs such as the lung are much more di�cult to identify. The
data is processed by the commercial software packageMimics (Materialise, Leu-
ven, Belgium). A three-dimensional representation of the region of interest is
obtained by a set of CT image slices.

Several techniques are available to segment the region of interest, such as
contrast threshold and region growing algorithms. As mentioned, the lumen of
blood vessels are easy to obtain due to the high contrast generated by contrast
agents. The resulting region masks are cut at inlet and outlets of the region
of interest and usually smoothed to create a three-dimensional representation
of the blood vessel lumen body. This pixel-based representation is transferred
into a facet-based geometry in the STL format. We refer to the literature or
the manual of the software package for details concerning the segmentation and
export into facet-based geometries.

The next step consists of the mesh generation of the lumen body, where
we apply the commercial meshing software Harpoon (Sharc Ltd, Manchester,
United Kingdom). The software is capable of handling complex geometries
such as the STL representations of blood vessels. It generates hexahedral dom-
inated mixed meshes consisting of predominantly hexahedrals but also of tetra-
hedrons and �ve noded pyramids. The bene�t of this mixed meshing technique
is that the mesh quality of the speci�c element types themselves is relatively high
whereas a pure hexahedral mesh for such complex geometries would be highly
distorted, if obtainable at all. Via local re�nement zones the overall mesh res-
olution and quality can be adopted. If subsequent �uid-structure-interaction
simulations are intended a su�ciently �ne boundary layer mesh can be gener-
ated as well. Fig. 6.1 depicts the three steps of segmentation, the corresponding
facet-based geometry and a resulting mesh for a human aortic arch.

6.1.2 Generating the Wall Geometry

The arterial wall itself, especially the limits of the outer wall in relation to the
surrounding tissue, can usually not be identi�ed via medical image techniques.
Even the determination of the in-vivo thickness is di�cult. For instance, if only
isolated segments are studied the retraction of the segment causes the arterial
wall to thicken and the same happens due to removal of the distending pressure
(McDonald [210]). For our simulation of patient-speci�c arterial wall models
we therefore generate the wall geometry by extruding the `wet' surface of the
vessel lumen.

The extrusion is performed via an in-house algorithm taking the �nite ele-
ment mesh of the lumen as basis. This has several advantages, as for example
the surface mesh quality is already regulated by the meshing tool. Another
bene�t comes into play when subsequent �uid-structure-interaction simulations
are performed, because a matching interface mesh is automatically provided.
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Fig. 6.1: Segmented blood vessel lumen of CT dataset (left), corresponding facet-
based geometry (middle) and resulting �nite element mesh (right). Here, edge colors
indicate hexahedral, tetrahedral, pyramid, and wedge shaped elements.

The extrusion algorithm takes an averaged nodal director resulting from
the mean outside normal direction of the attached surface elements and gener-
ates the structural arterial wall elements with a prede�ned thickness. The wall
can be modeled as a number of layered elements with equal thickness, or the
extrusion algorithm can be performed several times with di�erent thicknesses
whereby each time the nodal averaging results in a smoothing of the correspond-
ing surface. The generated three-dimensional structural wall model consists of
hexahedral and wedge-shaped elements. Depending on the resolution of the
original lumen surface and the wall thickness the elements become considerably
thin. The application of solid-shell elements as described in Chapter 3 is rec-
ommended to prevent underestimation of displacements resulting from locking
defects. We also refer to the remarks in Section 3.3.1 about element accuracy
in mesh layouts resulting from such extrusion methods.

Although this approach seems rather simple and e�ective there remain sev-
eral issues, especially if large complex geometries are considered. One is related
with the cut regions de�ned as inlet and outlets of the vessel body. Extrusion
of these boundaries by the described averaged director typically results in skew
surfaces. However, to apply meaningful boundary conditions such as symmetry
these surfaces often need to be �at. Therefore, we map the corresponding nodes
back onto the surface de�ned by the original cut lumen surface. Examples for
di�erent results are depicted in Fig. 6.2.

Another major problem arises in bifurcation regions. Depending on the ele-
ment size h of the surface element, the extrusion thickness t and the bifurcation
angle α a twisting of the extruded elements is inevitable, resulting in a irregu-
lar Jacobian mapping. The situation is sketched in Fig. 6.3. The physiological
in-vivo structure shows probably a considerable thickening of such regions, how-
ever, as long as the structure and geometry of such regions cannot be determined
and processed in a structural �nite-element model we decided to tackle this issue
as follows to ensure a feasible structural mesh. If such twisted elements are iden-
ti�ed during the extrusion algorithm, for example by evaluating the Jacobian
mapping at the element nodes, we separate the outer surface nodes, reevaluate
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Fig. 6.2: Problematic outlet region resulting from extrusion by an averaged nodal
director: original surface (red with white edges) and �attened surface (black edges)
mapped onto original cutting plane.

the director without taking the problematic neighbor into account and create
two physically overlapping �nite elements, as sketched in Fig. 6.3. In case of
layered extrusion the whole stack is repaired. This results in a consistent �nite
element mesh. However, a structural weakening of this particular region is evi-
dent. But as such problematic regions are quite local we assume that the global
structural response of the wall is not drastically disturbed. This certainly needs
a closer investigation in future research, especially in quantitative analyses at
these regions.

h
α

t t

Fig. 6.3: Sketch of regular extrusion case (left) and problematic case (middle). De-
pending on the parameters t, h, and α the extruded elements might become irregular
resulting in an unfeasible mesh. Resolved mesh (right) by introducing a new node and
separating the extruded surface.

6.1.3 Integrating Centerline Data to Enhance the Wall
Model

To achieve a more realistic wall model we enhance the model described so far
by introducing further information gained from the centerline of the vessels.
The centerline connects the calculated centers of each vessel. We refer to the
work of Antiga and colleagues [8, 7] and the references cited therein for further
information about methods and algorithms to calculate centerlines. Among
others Wolters et al. [332] make use of centerlines to construct their FSI-models.
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We use the centerline tools that are included in theMimics software version 12.1
which allow the calculation of the centerline itself and additional measurements
as curvature and �tted diameters. With the centerline data at hand several
improvements are obtained, as described in the following.

Boundary conditions First, the inlet and outlets of the vessels can be cut
orthogonal to the centerline. This allows a more precise application of a symme-
try condition for the arterial wall, but becomes more important when the blood
�ow is taken into account and corresponding in�ow and out�ow conditions need
to be speci�ed.

Fiber pattern Another enhancement for our proposed wall model based
on the vessels centerline is related to the anisotropic �ber-reinforced material
model. As discussed in Chapter 4 these material laws are based on the de�ni-
tion of the �ber direction in terms of corresponding unit-vector �elds. Within
our in-house preprocessing tool we relate these �ber directions to the center-
line of the vessel via a local coordinate system at each �nite element centre.
Therefore the closest centerline point to each �nite element is determined and
the local axes are related to the centerline neighbor point as axial direction,
the vector between element centre and centerline point as radial direction and
a third orthogonal direction, see Fig. 6.4.

Fig. 6.4: Local element coordinate system related to centerline, red arrows indicate
circumferential directions, green arrows axial directions and blue arrows thickness
directions.

With this approach complex geometries with several bifurcations and varying
vessel orientations can be accurately modeled with a �ber pattern relative to
the centerline. Fiber angles are either taken from histological examinations
found in the literature or a subsequent remodeling strategy is employed with a
feasible initial con�guration. Fig. 6.5 is a picture of a �ber pattern for an iliac
bifurcation where the �ber directions are illustrated as streamlines showing the
winding around the vessel lumen.
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Fig. 6.5: Illustration of �ber pattern at human iliac bifurcation.

Varying wall thickness Moreover, the model is enhanced by additional mea-
surement data o�ered by the centerline algorithm. This includes the diameter
at each centerline point obtained from a best �t circle, an inscribing circle, or
a circumscribed circle. We use this information for a better approximation of
the wall thickness. As mentioned earlier, medical image technology is not yet
capable to determine the wall thickness. The vast majority of simulations are
thus performed on models with constant thickness, even though the geometry is
patient speci�c, see among other Breeuwer et al. [49]. For large segments along
the arterial tree this obviously results in strong under- or overestimations of par-
tial segments. Scotti et al. [261] demonstrate strong in�uence of constant versus
varying thickness in FSI simulations of AAAs. Instead, we propose to relate
the wall thickness to the vessel radius with a prede�ned radius-to-thickness-
ratio R/t. The local radius is calculated from the centerline data using either
the best �t or inscribing diameter. This results in a much more realistic wall
thickness along the vascular tree. In Fig. 6.6 on the left the centerline points are
depicted for an aortic arch geometry where the color represents the computed
diameter. The di�erence between the aorta and the branching vessels is clearly
observable. The right hand side of Fig. 6.6 illustrates the di�erent wall geome-
tries resulting from a constant extrusion thickness of 0.8 mm together with an
extrusion based on the varying diameter with R/t = 6.67. The overestimated
thickness is obvious especially at the outlets of the branching vessels.

Another example considers the extrusion of a segment of the abdominal
aorta, the bifurcation into left and right common iliac and the left and right
bifurcations into external and internal iliacs. In Fig. 6.7 the di�erence between
an extrusion with constant thickness and based on centerline measurements is
demonstrated.

Concluding this section we point out that the described strategies result
in advanced and more realistic patient-speci�c arterial wall models. They �t
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Fig. 6.6: Aortic arch geometry. The color of the centerline points on the left represent
computed diameters of the inscribing circles. On the right the resulting extrusion for a
constant thickness of 0.8 mm (grey) is compared to an extrusion based on a R/t = 6.67
(red).

Fig. 6.7: Iliac bifurcation, extruded with constant thickness of 0.55 mm (red) compared
to extrusion based on R/t = 8.33 (grey).

into the toolchain from image processing to simulation and are computationally
e�cient. Together with the commercial software packages for segmentation and
meshing a fast and widely automatic process of generating patient-speci�c wall
models is provided. Thereby, statistical studies and correlation with clinical
data are rendered possible.
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6.1.4 Considering the Initial Wall Stress State

An important aspect for the assessment of the arterial wall stress is the fact that
the unloaded con�guration cannot be assumed to be stress-free. Rather, there
exists a complex prestress state consisting of axial and circumferential stresses,
as discussed in Section 1.2. One aspect of this prestress state is the so-called
spring-open e�ect, initially reported independently by Fung [103] and Vaishnav
and Vossoughi [313], which describes the e�ect that arterial rings spring open
when sliced in radial direction thereby releasing the prestress.

This prestress phenomenon has to be considered when valuating stress sim-
ulations quantitatively and qualitatively. For instance, the spring-open e�ect
introduces a bending-type prestress which signi�cantly changes a stress �eld
resulting from solely in�ating a tube. In this example of a tube-like artery the
superimposed bending and in�ation levels the stress �eld through the thickness.
Such a homogenized stress �eld is assumed to represent an optimized and thus
physiological con�guration.

In the following, we perform a small numerical example to assess the bending-
type prestress representing the physiological state of a healthy artery. Therefore,
a stress-free open circular section representing an idealized cut arterial ring is
subject to a speci�ed bending load closing the ring as depicted in the illus-
tration of Fig. 6.8. The resulting prestressed structure may subsequently be
loaded with physiological blood pressure. Due to singularities and constraints
a direct application of closing Dirichlet-conditions usually results in a wrong
stress �eld (Balzani et al. [20, 17]). We therefore apply a di�erent strategy
where we introduce a `virtual gap'-body between the open sections of the ring
whose volume is continuously decreased to zero. This additional constraint is
solved via a Lagrangean multiplier approach.

Closed unloaded state

Virtual gap

Inflation

p

Opening
angle

Stress-free sprung-open state

Fig. 6.8: Illustration of Spring-open e�ect.

The results of a typical arterial ring with an opening-angle of 115°, dimen-
sions and material parameters taken from the idealized carotid artery of Section
5.5.1 are depicted in Fig. 6.9. On the right hand side the initial open ring is
also sketched. To demonstrate the importance of advanced element technology
to correctly simulate such a bending-type deformation we perform two analy-
ses employing standard displacement-based elements and our proposed Sosh8

solid-shell element. Comparing the results of the �rst principal Cauchy-stress
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in the closed con�guration, a signi�cant di�erence is observed in the stress-�eld
between the simulation with standard displacement-based elements on the right
and Sosh8-elements on the left. In the displacement-based solution the tensile
stress is overestimated by about 200% and due to overestimated pressure stress
the overall range is even three times as high. Note that the involved load-bearing
�bers contribute only in tension. The locking defects of displacement-based el-
ements are obvious and may lead to a decisive misinterpretation of the stress
�eld within the arterial tissue.

Unfortunately, it is currently impossible to capture the complex prestress
in patient-speci�c simulations. Del�no et al. [64] take prestress into account
by generating a `sprung-open carotid bifurcation model' which is �rst closed
and then pressurized. However, this is based on experimental examinations
of excised specimen and is therefore not transferable to other patient-speci�c
geometries. Alastrué et al. [1] apply a simpli�ed initial strain �eld obtained
from an opening-angle experiment to more complex patient-speci�c geometries
of in vivo CT data. Although this seems to be a valuable approach to include
prestress in patient-speci�c geometries, it is probably limited to tube-like parts
due to convergence issues and unavailability of experimental data.

A totally di�erent approach of including prestress is based on growth and
remodeling within a temporal multiscale framework, as proposed by Humphrey
and Taylor [156] (see also Chapter 5). Including realistic prestress in arterial
wall models certainly of substantial importance and thus an interesting topic in
future research. Nevertheless, application of any such method requires a correct
assessment of the stress response even in complex bending modes. Avoiding
spurious locking e�ects is of major importance and our proposed element set
involving advanced element technology represents a highly e�cient solution to
this issue.

Fig. 6.9: Simulation of the spring-open e�ect in an arterial ring. Comparison of
resulting stress �eld between application of Sosh8-elements (left) and displacement-
based elements (right).
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6.2 Simulation of a Patient-Speci�c Aortic Arch

We consider a human aortic arch with the bifurcating brachiocephalic, left com-
mon carotid and left subclavian arteries. The acquired CT data belongs to a
46 year old male showing no obvious disease or lesion at the considered region.
Thubrikar [301] presents a �nite-element analysis of a realistic aortic arch ge-
ometry and Zhang et al. [339] present a FSI simulation of this region; however
both employ a quite simpli�ed wall model limiting the accuracy of their results.

The vessel lumen of our model are segmented and exported into a facet-
based geometry as described in the previous section. A reasonable mesh is
generated where we have put a re�nement zone at the left subclavian bifurcation
to capture the sharp corner. The aortic wall is generated by extruding the lumen
with a �xed radius-to-thickness-ratio related to centerline measurements for the
inscribing circles. We apply an internal pressure of 4 kPa which corresponds to
the di�erence between the mean systolic and diastolic pressure of 120 mm Hg
and 90 mm Hg, respectively. It is argued that the CTA images are taken at
the minimal (diastolic) blood pressure. Therefore the loading on this geometry
is at most the speci�ed pressure di�erence to the maximal (systolic) pressure.
We emphasize that this does not re�ect the realistic physiological stress state
in the artery, because the residual stresses within the arteries are not taken into
account. A further limitation might be the missing arterial tethering of the
surrounding tissue.

As no experimental data of our employed anisotropic material law was avail-
able for the considered region of the aortic arch we use the parameters from
Hariton et al. [122] which were however �tted to a human carotid. The aorta
is known to be quite sti�; therefore we scaled the parameters by a factor of
1.5. This clearly represents a restriction to the presented simulation. For future
quantitative studies experiments and parameter �tting are inevitable.

Nevertheless, with this example we want to study the in�uence of several
parameters of the proposed wall model to the structural response. We therefore
assume a speci�ed parameter set as reference and change step by step some of
these parameters to investigate their in�uence. We point out that still a large
portion of the model parameters are preliminary assumptions with respect to
the true physiological situation and therefore we do not claim that the results
are quantitatively correct. We merely aim to single out the qualitative in�uence
of several model parameters.

6.2.1 Problem Setup and Reference Parameters

First of all we present the problem setup, geometric and boundary conditions
and material parameters. This should serve as a reference problem from where
we vary several conditions in the subsequent in�uence study. We apply the
Holzapfel-material law (Section 4.3.1) with parameters summarized together
with further geometric and boundary conditions in Table 6.1. In Fig. 6.10 the
mesh and the �ber pattern are illustrated.

Several simulation results are depicted in Fig. 6.11 and Fig. 6.12. We remark
that the depicted stress scale is cut at 200 kPa to exclude stress singularities
existent at the ridge of the left subclavian bifurcation where the mesh is repaired
at 10 elements according the strategy described in Section 6.1.2.
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Table 6.1: Reference parameters of human aortic arch model.

Parameter Value
Geometry Radius-to-Thickness-Ratio 8.33 [ - ]

Material

µ 53.61 kPa
k1 41.7 kPa
k2 20.85 [ - ]
κ 600 kPa
Fiber angle w.r.t. centerline 20°

Bound. Cond.

Internal Pressure p0 = 4 kPa
Loadcurve 1− cos(tπ/2), 0 < t ≤ 1.0
Loadstep ∆t = 0.02
Dirichlet Conditions in- and out�ow �xed

Mesh
5256 8-node hex elements Sosh8-solid-shell see Sec. 3.5.2
6912 6-node wedge elements Sosh6-solid-shell see Sec. 3.5.3
Number of element layers 2

Fig. 6.10: Aortic arch reference example: mesh (left) and �ber pattern (right).

6.2.2 In�uence Study

Element Technology Instead of using the advanced solid-shell elements de-
scribed in detail in Chapter 3 another simulation has been performed with
standard displacement-based elements. The overall di�erence in displacement
magnitude is below 2 % and no locally di�ering load transfer due to overesti-
mated bending sti�ness is observable. One reason for this small di�erence and
thus a minor in�uence of locking is probably the dominating membrane stress
state. It is evident that in the displacement plots of Fig. 6.11 the wall structure
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Fig. 6.11: Aortic arch reference results: displaced structure with undisplaced mesh
(right).

is predominantly blown up and no strong bending deformation is present. Also
volumetric locking does not seem to play a signi�cant role. Nevertheless, we
would like to emphasize that there might well exist a bending-type prestress
within the arterial wall, which if taken into account necessitates the application
of locking eliminating techniques.

Material Law To estimate the in�uence of the material we simply raised all
parameters by 33%. This yields a reduction in displacement magnitude of 17 %,
but the overall deformation pattern is the same and also the stress magnitude
is close to the reference simulation. To study the in�uence of the anisotropy we
applied a simple isotropic Neo-Hookean material law with µ = 100 kPa which
is roughly the sum of the ground-substance and �ber sti�ness of the anisotropic
reference simulation. This results in a 14% magni�cation of displacements and
a slightly smoother but quantitatively equal stress distribution.

Boundary Conditions Changing the boundary conditions from �xed dis-
placements at all in- and out�ow boundaries to symmetry conditions at all
out�ow boundaries changes the global deformation, as depicted in Fig. 6.13.
However, the stress state is not signi�cantly di�erent.

Wall Thickness Varying the wall thickness by changing the radius-to-thick-
ness-ratio to R/t = 6.67 and thus increasing the thickness by 25% results in
a maximal displacement magnitude of 85%. Furthermore, when we switched
of the centerline-related extrusion and employed a constant wall thickness of
1.2 mm, the maximal displacement magnitude decreased by 10%. However more
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Fig. 6.12: Aortic arch reference results: First principal Cauchy stress.

Fig. 6.13: Aortic arch result of boundary condition study: �rst principal Cauchy
stress of simulation with symmetry conditions at all outlets compared to the displaced
structure of the reference problem (grey).

importantly, the overall displacement shape changed towards a stronger pres-
surizing of the aortic vessel, but a smaller displacement of the signi�cantly
thickened bifurcating vessels (compare Fig. 6.14).

Fiber Pattern and Remodeling To study the in�uence of the �ber pat-
tern within the anisotropic material law we �rst of all increased the number of
elements across the thickness to three. We performed a simulation with �xed
prede�ned �ber angles of 15° for the inner two elements (Media) and 45° for the
outer element (Adventitia). Furthermore, we applied the remodeling strategy of
Hariton (see Section 5.3.2) starting with an initial �ber angle of 20° across the
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Fig. 6.14: Aortic arch result of di�erent wall thicknesses. Reference result with varying
thickness and R/t = 8.33 (left), result with varying thickness and R/t = 6.67 (middle),
and result with constant thickness of 1.2 mm (right).

wall. Where the �rst variation with prede�ned �ber angles barely changes the
result, the remodeling strategy reduced the maximum displacement by 10%. As
is visible in Fig. 6.15 on the right, the resulting �ber pattern is oriented much
more circumferentially, compared to the prede�ned �ber pattern with 15° and
45° for Media and Adventitia.

Fig. 6.15: Aortic arch result of di�erent �ber patterns. Prede�ned �ber pattern (left)
with 15° for the inner two elements (Media) and 45° for the outer element (Adventi-
tia). The �ber pattern resulting from the remodeling strategy (right) is signi�cantly
di�erent.
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6.3 Simulation of a Patient-Speci�c Section at

the Iliac Bifurcations

As a second example we study the aortic section between the abdominal aorta
and the external and internal iliacs bifurcations. Again, we are not interested
in a quantitative analysis at this stage. Rather, we aim at demonstrating the
capabilities of the presented methodologies in such large-scale examples. We
stick to the reference parameters of the previous example, see Table 6.1, with
the only modi�cation of the �ber angles to 22° for the inner elements and 39°
for the outer ones. In addition, a second simulation is run including remodel-
ing. In Fig. 6.16 is the resulting displaced structure depicted. During the rising

Fig. 6.16: Aortic section at the iliac bifurcations. Displaced structure at 25% loading
(left) and full loading (right).

loadfactor the structure deforms initially orthogonally to the common iliac bi-
furcation, but then a signi�cant rigid body displacement of the left iliac artery
can be observed. This raises the question of the perivascular tethering which
would clearly in�uence such a result.

Regarding remodeling in such a complex patient-speci�c geometry we subse-
quently focus on the �ber pattern around the common iliac bifurcation which is
certainly a region of a complex mechanical load state. In the �rst simulation we
applied a �xed �ber angle with respect to the centerline of the vessels. In this
way we are able to follow the evolving vessels and the �bers wind themselves
around the vessels according to the physiologically expected pattern. However,
the centerline calculation has di�culties at the bifurcation which results in
relatively large distances between the centerline points. Thus, our proposed al-
gorithm to de�ne local coordinate systems at the elements su�ers from this lack
of accuracy yielding to a non-smooth �ber pattern at this region, see Fig. 6.17
above. In comparison, the resulting �ber pattern from the remodeling strategy,
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see Fig. 6.17 below, represents a mostly smooth pattern representing a sti�en-
ing �ber bundle running across the apex of the bifurcation. This yields also a
smoother stress distribution around that region.

Fig. 6.17: Closeup of �ber pattern around common iliac bifurcation: Constant pattern
of 22°/39° (above) and remodeling result (below).
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6.4 Discussion

Summarizing this chapter of patient-speci�c simulations we discuss our pro-
posed arterial wall modeling with its bene�ts and limitations. The toolchain
from patient-speci�c data to simulation results involves segmentation, meshing,
wall generation and simulation. For segmentation and meshing of the vessel
lumen we rely on commercial software packages which provide e�cient and
widely robust solutions. Our developed wall model generation �ts well into this
semi-automatic process. The automatic and computationally e�cient extrusion
process takes the provided centerline information into account, ensures the re-
quired �at boundary surfaces at inlet and outlets and manipulates complicated
sharp angle regions to guarantee a feasible structural wall mesh.

In the present context we have focused on the structural response of such
geometries. Two examples employing our proposed toolchain for modeling and
simulating patient-speci�c arterial wall geometries were presented, one re�ect-
ing the aortic arch and the other the iliac bifurcations. Simulations of such
large complex geometries are still rare. To the authors' knowledge, simulation
of such geometries in conjunction with the presented highly sophisticated wall
model including varying thickness, anisotropy and advanced element technology
has not been considered in the literature yet. Moreover, including remodeling
approaches within simulations of patient-speci�c geometries represents new re-
sults within this research �eld. An evident future analysis step would be to add
the impact of the blood �ow in a fully coupled FSI-simulation. The presented
toolchain is directly applicable for such simulations within the existing in-house
�nite element code.

Regarding the geometric wall generation the strength of our proposed model
lies in enabling a physiologically varying wall thickness along the vascular tree
based on a centerline related extrusion algorithm. Our proposed element repair
strategy also ensures feasible meshes, especially at bifurcation regions. One lim-
itation of this approach deserves attention though. While the physiological wall
at bifurcation regions is characterized by a considerable thickening (Thubrikar
[301]), our proposed extrusion algorithm often yields a structural weakening
at such regions due to the mesh repairing strategy. This geometry induced
dilemma could be resolved generally if a special meshing strategy was employed
at such regions. For instance, an automatic tetrahedral mesh generation could
be implemented based on the extruded nodes. However, this would introduce
another issue, namely the typically poor performance of tetrahedrons.

Given that arteries are inherently thin-walled structures an adequate simu-
lation of the structural response calls for advanced element technology. Indeed,
our analysis of the physiologically inherent bending-type prestress of a healthy
artery in the spring-open example revealed the tremendous impact of locking to
the resulting stress �eld. Only with advanced element technology to eliminate
such locking phenomena an accurate physiological response could be simulated.
Our set of proposed elements proved to solve this issue e�ciently.

In contrast, the global displacement results were not signi�cantly in�uenced
by the applied element technology within the presented patient-speci�c exam-
ples. One reason for this seems to be that the major structural response is
membrane dominated, which is why the elimination of locking due to bending
plays a comparably minor role. It should be remarked though that even in a
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globally membrane dominated displacement shape the load transfer might be
in�uenced by local bending. Consequently, a detailed analysis of such particular
regions will certainly require approaches eliminating locking phenomena. The
same applies as soon as the physiological bending-type prestress of a healthy
artery would be included into such simulations. In these cases a signi�cant
in�uence of appropriate element technology is to be expected. More generally,
there is still room for improving the accuracy of the presented simulations. This
includes mesh convergence, dependency of element shape quality and the in�u-
ence of membrane and volumetric locking which still exists in wedge-shaped
elements.

Furthermore, experimental investigation of arterial wall tissue providing pa-
rameters for the employed model is certainly of major importance regarding the
results of these simulations. In the present context no experimental data for the
considered regions was available which is why we relied on rescaled parameters
reported in literature instead of �tting the material model to experimental data.
This is an important limitation of the presented simulations and a closer rela-
tionship to experimentally approved material behavior is recommended for fu-
ture research. Whether it will be possible to determine the complex anisotropic
structure with experimental methods is questionable, especially in vivo. Ad-
ditional methods in the �eld of medical image technology could be taken into
account, for instance with respect to �ber contents and direction. Noteworthy,
the impact of anisotropy was signi�cant in our simulations.

Regarding remodeling we have successfully included one of the remodeling
approaches discussed in the previous chapter in the presented patient-speci�c
simulations. The resulting �ber alignment was physiologically plausible, espe-
cially in terms of a natural thus optimal load transfer. In addition, remodeling
proved to clearly in�uence the results of our simulations. Employing our purely
mechanical approach to determine the unknown �ber pattern in the patient-
speci�c examples yielded a signi�cantly di�erent displacement level compared
to the anisotropic law with �xed �ber directions. Further simulation exam-
ples should be conducted to substantiate these �ndings and correlations with
experimental results and medical image technology would be desirable.

Finally, we want to address the stability and robustness of the computations
and the considered methods. A considerable number of simulations was per-
formed with patient-speci�c geometries of varying complexity, several di�erent
parameter sets, and di�erent computational methods. Thereby, we experienced
a few issues of convergence and computational breakups. Each of the involved
methodology contributes to these stability issues: the involved element technol-
ogy is known to have stability limits for large strains (see Section 3.3.3), strong
anisotropy comes along with convergence problems (personal communication
with Daniel Balzani, 2008), a factor which becomes even worse within a remod-
eling simulation. Moreover, the issue of incompressibility is computationally
di�cult and the applied penalty approach is known to induce problems. Fi-
nally the complex patient-speci�c geometries in general feature a more complex
structural behavior compared to idealized cylindrical models.

None of these instability factors could be singled out as major cause of in-
stability and computational breakups. Rather the cumulation of issues seems
responsible for the observed convergence issues. With the help of computation-
ally bene�cial methods, for instance the inclusion of viscosity or other sources of
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damping, varying boundary conditions, or re�ned element meshes, these prob-
lems could be eased, despite not eliminated. Further research should therefore
be directed to improving robustness of such simulations.
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7. Conclusion and Outlook

The present contribution was concerned with modeling and simulation of patient-
speci�c arterial wall structures by means of the �nite element method. Our focus
on precise modeling of the arterial wall in particular was motivated by the hy-
pothesis that the mechanical stress within the wall plays a major role in the
onset and development of prevalent vascular diseases like atherosclerosis and
aneurysms. The interest in this biomechanical research area has grown tremen-
dously in recent years and quite some progress in understanding hemodynamics,
arterial wall characteristics and microstructure, and the correlation between me-
chanical stress and disease has already been reached. Recent developments of
medical image processing and computational analysis capabilities further pro-
moted the analysis of complex biomechanical problems within physiologically
realistic, patient-speci�c geometrical models.

However, such analyses are inevitably three-dimensional, the involved pa-
tient-speci�c geometries are complex and thus require enormous computational
e�orts, which is why established analysis methods as built into commercially
available software packages have so far been limited in their signi�cance for
patient-speci�c application.

The goal of the presented work was therefore to identify, appraise, and adopt
state-of-the-art methods within the framework of nonlinear structural �nite el-
ement analysis, implement them into the sophisticated in-house research code,
and �nally provide an e�cient toolchain for the analysis of patient-speci�c vas-
cular problems. The comprised methods cover the topics of �nite element tech-
nology for three-dimensional solids, constitutive modeling suitable for arterial
wall tissue, and the computational modeling of the biomechanical phenomenon
of �ber remodeling.

Concerning �nite element technology, locking defects in three-dimensional
solid elements are a key issue in modeling thin-walled biomechanical structures.
An important aspect of the present work was thus to employ e�cient and re-
liable methods to eliminate these locking problems with a special focus on so-
called solid-shell elements. A set of advanced elements was proposed including
a bulky hexahedron, a hexahedral solid-shell, and a wedge-shaped solid-shell.
Their performance with respect to locking elimination was evaluated in sev-
eral benchmark examples, where the newly developed wedge-shaped solid-shell
yielded particularly remarkable out-of-plane results.

The microstructure of arterial wall tissue consisting of ground substance,
elastin and collagen �bers, as well as smooth muscles exhibits a complex non-
linear material behavior in the large strain regime. To capture the major fac-
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tors in constitutive equations, demanding models have been presented in recent
years. Within this context, the present work provided an overview of the most
popular material models, including e�ects of incompressibility, anisotropy, mi-
crostructure, and viscoelasticity. In addition, the corresponding computational
algorithms were implemented into the in-house research code. Their e�ective-
ness was demonstrated by a set of numerical examples addressing the essential
features of the models.

Finally, the biomechanical phenomena of growth and remodeling were ad-
dressed. Based on an in-depth review of the literature on mechanically moti-
vated approaches and the underlying equations, strengths and weaknesses of
three popular methodologies are discussed. Focusing on the aspect of remod-
eling as a change in the microstructure via reorientation of the �ber pattern,
we selected two approaches which seemed particularly suitable for large-scale
patient-speci�c problems. Elaborating on these approaches, we proposed some
modi�cations to improve their performance. Applying these remodeling strate-
gies in examples of idealized structures like cylindrical arteries, bifurcations, or
tendon models proved successful, since results were fully in line with available
literature.

With these three methodical approaches at hand we designed a toolchain
to model patient-speci�c arterial walls to a high degree of accuracy. This in-
volved the problem of generating the geometric wall, employing appropriate
�nite element meshes, assigning sophisticated anisotropic material models, and
evaluating the in�uence of remodeling strategies. A further advancement over
existing patient-speci�c modeling e�orts was achieved by our suggestion to ad-
ditionally incorporate centerline data available from commercial imaging soft-
ware; this resulted in a reasonably correct winding of the reinforcing �bers along
the vasculature. In addition, we proposed to include evaluated diameter data
to obtain a physiologically realistic geometry featuring a varying wall thick-
ness along the vasculature. A valuable bene�t for future investigations lies in
the fact that the proposed wall model can be directly employed in fully cou-
pled �uid-structure-interaction simulations available with the in-house research
code. Future developments may also include coupling to mass transfer.

We thus provide a semi-automatic reasonably e�cient computational tool-
chain to assess arterial wall stress within patient-speci�c geometries. Neverthe-
less, there are still a number of limitations involved within this computational
model of such a highly complex structure like the vasculature. One of these lim-
itations are missing experimental validations for the proposed models. There
are a few examples in the literature where constitutive models are �tted to ex-
perimental data. However, the signi�cance of these results still seems limited
since the structural behavior is thought to vary substantially between di�er-
ent species, subjects and regions within the vasculature. Experimental setups
and protocols are still labor intensive, especially if complex characteristics such
as anisotropy are requested. Certainly, capturing material behavior in vivo
is desirable, yet this seems to be a rather long-term future goal since already
a considerable amount of experimental data is necessary to validate existing
models.

Another shortcoming of our model was that the prestress state naturally
present in the wall was not considered. Today, there seems to be no method-
ology available to include the complex prestress state within patient-speci�c
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geometries. This generally hinders a quantitative interpretation of simulation
results and future research should thus be directed to including prestress in such
analyses. For instance further experimental investigations may be incorporated
or approaches like the temporal multiscale simulation of mechanically induced
growth (as envisaged by Humphrey and Taylor [156] as `Fluid-Solid-Growth'
model) could be implemented. So far, these research e�orts still seem to be
very much in their infancy.

In addition, from a computational mechanics point of view, the proposed
methods are a�ected by a few further shortcomings. Cumulation of demand-
ing features entailed stability and convergence problems which warrant further
research in solution techniques. Large strain instabilities in the proposed ele-
ment technology together with e�ects of strong anisotropy and incompressibility
enforced via penalty methods resulted in badly scaled matrices for the solver.
The aspired coupling to the �uid �eld and mass transfer will likely yield further
computational challenges.

The proposed arterial wall model provides a powerful tool to analyze arterial
wall stress in patient-speci�c geometries since it incorporates a comprehensive
set of advanced methods. Its power and e�ciency has been demonstrated in
application to large-scale examples of a human aortic arch and a section around
the iliac bifurcation. These patient-speci�c examples go far beyond data pre-
sented in earlier research. In addition, the proposed arterial wall model is also
highly suitable for future studies that pool the data of several cases to gain
insight into the mechanical environment of the vasculature. An ultimate goal
would then be to correlate results with pathological data, to be able to better
predict the onset and development of vascular diseases.
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