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1 Introduction

Since men invented the wheel, rotating shafts have been part of our day to day
life. Rotors play an import role in many technical applications. Among other
applications, they are used for power generation and transmission, in drive systems,
electrical machines and in the processing industry. Efficiency is a major objective in
power generation and drive systems, so rotors have to cope with high requirements.
Numerous and extensive studies have been made to improve the effectiveness and to
reduce the probability of failure. By reducing unwanted vibrations, higher rotating
speeds can be reached. At the same time constructions have become lighter. Those
are only some reasons why the demands have been growing rapidly for the last
decades.

On the one hand, the current concern in modern turbomachinery is reliability and
safety. On the other hand, efficiency is a main matter of current research and
development, especially concerning fuel efficiency. In rotating machinery, increased
efficiency is often achieved by tightening operation clearances. This fact increases the
risk of a contact between rotating parts and stationary parts of the machine, which is
called rubbing. According to a report of the Allianz insurance company [2], rotor
rubbing is the primary failure mode at steam turbines - 22 percent of the damages
are caused by rubbing.

1.1 Problem Formulation

If a rotor system is not operating under normal conditions and the rotor deflection
increases, the stationary and rotating elements are in danger of coming into contact.
There are many reasons for the occurrence of rotor-to-stator rubbing:

• Remaining unbalance

• Arising unbalance

• Thermal influences

• Misalignment

• Stator/Casing motion

• External excitation

• Approaching a critical frequency during “speeding-up” or “coast-down”
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Rubbing may occur under abnormal operation, but it also may arise under normal
conditions, such as during speeding-up or coast-down, in the vicinity of a critical
frequency. Conventional auxiliary bearings (also called backup bearings or retainer
bearings) limit large response amplitudes and prevent direct rotor-to-stator contact,
but do not stabilize the rotor system. Using this type of support leads to various
states of rubbing between rotor and auxiliary bearing in case of a failure. Destruc-
tive states and very high impact forces are possible. Auxiliary bearings are used
in many systems, like various types of turbines (e.g. at the aircraft engine BR710,
Rolls-Royce, see Figure 1.1), centrifuges or fail-safe systems at magnetic bearings.
A contact between rotor and stator is a highly nonlinear event. One and the same

(a) 3D drawing (Rolls-Royce)

Fan

Centerline

Auxiliary bearing

Low pressure rotor

(b) Sectional drawing [39], [69]

Figure 1.1: Aircraft engine: Rolls-Royce, BR710

excitation may cause a completely different response of such a nonlinear system. Af-
ter a contact, various motion patterns with different degrees of destructiveness may
arise at a rotor system. In the present work, three patterns of them are surveyed:

• Synchronous Full Annular Rub: A motion pattern, which is least dangerous.
Every point of the rotor runs at a circle with the same angular velocity as the
drive system. The bending stress of the shaft is constant. Consequently, the
material of the shaft has a static load. There is a permanent contact between
rotor and auxiliary bearing. At many rotor systems, this kind of rubbing can
be tolerated for a short time without damage.

• Partial Rub: In this dangerous state, the rotor has multiple impacts in the
auxiliary bearing. There are high impact forces.

• Backward Whirl: This motion pattern is one of the most dangerous ones and
has to be absolutely avoided. The center of the shaft rotates with another
frequency as the drive system. The direction of rotation of this motion is
opposite to the one of the drive system. The frequency is often very high.
The bending stress changes periodically. In many cases a severe damage is
inevitable, if this rubbing state occurs.
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The main goal of this work is to develop and verify a control system to reduce the
severity of rubbing in auxiliary bearings. For this reason a rubbing state of Syn-
chronous Full Annular Rub should be assured with very low contact forces and hardly
any impacts. All other rubbing states - including the most destructive Backward
Whirl - have to be avoided.

The control force is applied indirectly using the auxiliary bearing, only in case of
rotor rubbing. During the normal operation state, the feedback control does not
interfere with the rotor system at all. The control system should be activated
shortly before the occurrence of the first impact, if a contact between rotor and the
auxiliary bearing is inevitable. As soon as the load has disappeared, the auxiliary
bearing should separate from the rotor again and the normal operation mode should
be continued. In case of a permanent error/excitation, the control concept should
allow a safe shut-down. Furthermore, the controller has to assure at all times that
the rotor deflection does not exceed the initial air gap of the auxiliary bearing, to
keep its general purpose in mind - the limitation of the deflection.

1.2 Literature Survey

Numerous and extensive research work has been done in the various fields of rotor-
dynamics over the last decades. In literature, multiple books give a good survey of
rotordynamics, e.g. [15], [18], [24] and [59]. The present project is related to various
fields of mechanical engineering. Two important fields are treated in the literature
survey, the dynamics of rubbing rotors and the active vibration control of rotor sys-
tems.

Many publications regard the dynamics of rubbing rotors. But, no mainstream could
be determined. Mostly, the research projects and the related publications have been
dedicated to particular applications and cases. A selection in chronological order is
given here.

One of the first papers regarding this topic has been written by Black [5]. In this
study synchronous whirling interaction between rotor and stator has been analyzed.
Rotor and stator have been regarded as linear multi-degree-of-freedom systems in-
cluding damping and dry friction. The analysis offers an approach to fairly quickly
predict the kind and the range of interaction to be expected in any particular case.

Childs [14] presented a mathematical examination of the hypotheses, that circum-
ferential stiffness variations induced by rubbing over a portion of a rotor’s orbit can
lead to parametric excitation of half-speed whirl at a rotor’s natural frequency. The
results indicate that potential rubbing surfaces should be lubricated and the local
casing stiffness should be substantially lower than the rotor at potential rubbing
locations.

Szczygielski [58] investigated the rubbing phenomena, which occur between fast
rotating rotors and rigid boundaries. A mechanical model has been developed, which
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comprises the movement in several phases: free motion, impact and gliding or rolling
contact phases. The results have been validated experimentally.

Muszynska [40] gave a general survey on the physical phenomena occurring during
rotor-to-stator rubs and a literature survey on the subject of rub.

Isaksson [30] developed a basic model of the rotor-to-stator contact. The objective
was to simulate the dynamical behavior of a rotor interacting with non-rotating
parts, such as stator housing and seals. The results have not been verified using
experimental data.

Bartha [4] presented a valuable insight into how to avoid dry friction backward
whirl. The considerable factors are given and recommendations for protecting the
rotor are proposed. In this study, a theoretical and experimental investigation into
dry friction backward whirl is also presented. The simulation results are compared
and verified with experiments. The simulation gives a close approximation of the
excitation needed to trigger dry friction backward whirl and helps to identify relevant
influencing variables.

Ecker [16] investigated the steady-state behavior of an active magnetic bearing
supported single mass rotor contacting an auxiliary bearing with offset center posi-
tion.

Markert [37] showed that a variety of simple contact models can be used for
the computation of the transient dynamics of rotors in retainer bearings without
resulting in any differences except for considerations in a very small time-scale.

Sawicki [47] presented an analytical and numerical simulation of an unbalanced
multi-disk rotor with rubbing. By employing nonlinear vibration theory, many of the
phenomena evolving out of rub-impact in rotating systems have been addressed.

Lawen [32] investigated the application of synchronous interaction dynamics meth-
odology proposed by Black [5] to the problem of auxiliary bearing design. A
series of experimental parameter variation studies have been performed, focusing on
the overall effects of various auxiliary bearing clearance and stiffness values, which
show the effectiveness of the analysis technique. Provided that the assumption of
purely synchronous vibration is reasonably satisfied, Black’s method for identifying
regions of synchronous interaction is shown to be a versatile tool for the analysis of
rotor systems with auxiliary clearance bearings.

Wegener [69] presented a comprehensive investigation on the possible use of flex-
ible retainer bearings to limit the amplitude of an unbalanced rotor during the
run-up and run-down through the entire frequency range. Many parameter analyses
have been performed and practically utilizable design recommendations have been
obtained.

Jiang [31] investigated the possibilities to model the friction force between the
rotating and stationary components during rubbing and provided an overall picture
on the dynamics and stability of rubbing rotor systems.
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Feng [19] discussed rubbing phenomena in rotor-stator contact caused by initial
perturbation, which is obtained by an instantaneous change of the radial velocity
of the rotor. Friction is taken into account. It was found, that rubbing does not
occur at subcritical speed if the clearance is larger than the steady-state excursion
of the rotor. At supercritical speed, the minimum clearance to avoid full rubbing
may exceed the steady-state rotor excursion at the rotor resonance.

von Groll [67] analyzed the occurrence of subharmonic vibration frequencies in
cases of a rotor/stator contact. Under normal operating conditions the shaft speed
is the dominant frequency in rotating machinery. Contrary to that are the dominant
subharmonics in the measured cases of abnormal conditions. A possible geometric
eccentricity of the rotor and the stator is an important part of the model for these
frequency components to appear. The ratio of the resonance frequency of the ro-
tor/stator system to the shaft speed has been found to be substantial to determine
the frequency pattern. Accordingly, a possible mechanism for the occurrence of sub-
harmonics could be the correlation with a low-frequency mode of the supporting
structure.

Watanabe [68] presented a theoretical and experimental study of the rotor vibra-
tion due to the rubbing against casing, for high-speed regimes and different config-
urations of the casing. The casing dynamics have been taken into account.

Ehehalt [17] validated the motion patterns of an elastic rotor rubbing against
the stator. This comprehensive experimental study gives a survey of effects and
phenomena of rotor rubbing.

Legrand [33] gave a new full 3D strategy for direct contacts between bladed disks
and surrounding casing to provide a framework for simulation. It involves reduced
computational costs and a robust contact methodology to account for high relative
displacements at the contact interface.

Younan [72] presented a work dedicated to the design of auxiliary bearings for the
primary magnetic system in a fluid film bearing test rig. A three mass model for
the rig is used to conduct the transient analysis of the rotor drop. The contact is
described using the theory of Hertz. The analysis included different sets of auxiliary
bearing and different levels of damping.

Various approaches have been developed for the active vibration control of flexible
rotors. Ulbrich [66] gave a comprehensive outlook of various possibilities of active
vibration control.

Many works have investigated concepts with control forces acting directly on the
rotor without contact using magnetic bearings, e.g. Schweitzer [50], [51] and
Ulbrich [64]. The so-called active magnetic bearing systems have been proven in
many applications over the last 30 years. Nevertheless, the main disadvantage of
this concept is the required space for the magnetic bearings.

Therefore, concepts have been developed to use actuators acting via bearing hous-
ings and thereby indirectly on the rotor in opposition to magnet bearings, e.g.
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Fuerst [23], Moore [38], Stanway [56] and Ulbrich [61], [63]. This method
yields the advantage that the actuators do not have to be installed at sometimes
hardly accessible places.

Only few publications deal with control structures especially for the problem of
controlling rubbing rotors. Chavez [12], [13] presented theoretical investigations
on an approach to control a rubbing rotor using an active auxiliary bearing. The
simulations of a sliding mode control and cross coupled feedback of the presented
rotor system with an active auxiliary bearing show the possibilities of reducing the
impact forces and decreasing the lateral and torsional vibrations.

Ginzinger [25] presented the first experimental verification of an active auxiliary
bearing controlling a rubbing rotor.

Abulrub [1] and Sahinkaya [46] investigated the problem of controlling a rub-
bing rotor in magnetic bearings. In this study, the so-called Recursive Open Loop
Adaptive Controller (ROLAC) is introduced. ROLAC uses the magnetic bearings
to apply the control force. The control system should prevent contact or it should
recover the rotor position quickly with minimum impact damage if contact occurs.
For the proposed control system, it is required that the magnetic bearings are fully
operational at any time.

Cade [11] gave an introduction into a recent research project regarding an appli-
caton for an active auxiliary bearing especially for magnetic bearing systems. The
auxiliary bearing is piezo actuated using a closed hydraulic coupling.

The literature provides many contributions dedicated to the dynamics of rubbing
rotors. Nevertheless there is no well-defined interpretation and the results are not
consistent in general. But the effects of the three rubbing states - Backward Whirling,
Partial Rub and Synchronous Full Annular Rub, which are of interest in this work,
are well investigated.

There is no general approach for the design of an auxiliary bearing. Only recom-
mendations for particular cases can be found.

Active vibration control of rotors has been an ongoing research topic during the last
decades. But, there has been hardly any research activity in the field of actively
controlling a rubbing rotor. To our best knowledge, the concept of an active auxiliary
bearing, which is presented in this work, was the first approach of this type.

1.3 Outline

At first the development of the feedback control system for an active auxiliary bear-
ing is discussed in general in Chapter 2. Our concept to control a rubbing rotor
is presented. The control force is applied using the active auxiliary bearing. Two
unidirectional actuators enhance the capability of the auxiliary bearing. The target
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of the control system and the desired rubbing state is defined. The particular phases
of the control concept are discussed.

The modeling of the rotor and the active auxiliary bearing, which is necessary for
the controller development, is performed. The equations of motion are derived
separately for rotor and the active auxiliary bearing. Then the modeling of the
active elements of the rotor system is introduced: actuators and drive system. At
last, the contact model, which is used to couple the rotor and the auxiliary bearing,
is presented.

A cascade control is developed, which consists of two parts, the feedback controller
of the actuators and the computation of the target trajectory. Three control con-
cepts for the actuators have been designed: PID, sliding mode control and feedback
linearization. Using the derived equations of motion, an efficient to calculate simu-
lation has been developed to investigate the control concept and to ensure stability.
The simulation results suggest using the feedback linearization for the experimental
verification.

The concept of an active auxiliary bearing is verified and analyzed experimentally.
The design of the test rig is presented in Chapter 3. Two assemblies have been
analyzed - one with a very slender shaft and one with a thick shaft. For both
configurations, the main parameters are investigated and discussed. Details on the
electromagnetic actuators and on the real-time hardware are given.

In Chapter 4, a comprehensive experimental investigation of the proposed control
system is presented. Various experiments with both assemblies show the success of
the control strategy. “Speeding-up”, “arising unbalance” as well as “impact load”
are investigated. For every experiment the contact force which arises between rotor
and stator is used as a main indicator of the success.

Finally Chapter 5 introduces an advanced simulation environment, which allows con-
figuring the proposed active auxiliary bearing for future applications. The simula-
tion library MBSim is used for the simulation. A comparison between experimental
result and simulation closes this chapter.





2 Development of the Feedback Controller

Given a physical system to be controlled, one typically goes, according to Slotine

[53], through a standard procedure to design the feedback control system, possibly
with a few iterations:

1. Specify the desired behavior, and select actuators and sensors;

2. Model the physical plant by a set of differential equations;

3. Design a control law for the system;

4. Analyze and simulate the resulting control system;

5. Implement the control system in hardware.

This procedure is performed in the following. In Section 2.1 the desired behavior
is defined. Section 2.2 is dedicated to the mechanical model of a rotor system with
an active auxiliary bearing. In the following the control concept is designed and
analyzed. The implementation of the control concept on a developed test rig is
discussed in Chapter 3.

2.1 Concept

A basic rotor system has been taken as an example to show the possibilities how to
control the dynamics of a rubbing rotor using an active auxiliary bearing , Figure 2.1.
The system consists of an elastic rotor with one disc, which is mounted with two
isotropic ball bearings. The auxiliary bearing is attached to the foundation via two
unidirectional magnetic actuators.

Two types of auxiliary bearings (also called backup bearings or retainer bearings)
may be used to prevent rotor systems from failure: rolling element bearings and
bushing type bearings. Problems may arise with both concepts and are caused by
high impacts and contact forces as well as high rotational frequencies. The presented
rotor system uses a bushing type bearing. Dry friction experiments also have been
performed, which is of interest for systems in no-oil environments.

The control force is applied indirectly by the auxiliary bearing. The advantages
of this concept are the following: If the rotor system runs in its common way, the
active auxiliary bearing does not take effect, so the original design of the rotor
system can be kept unchanged. Additionally, the auxiliary bearing does not only
limit an extreme response amplitude of the rotor and prevents the rotor/blades and
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Active auxiliary bearing Rotor
Auxiliary bearing

Actuators

Figure 2.1: Rotor system with an active auxiliary bearing

the casing/seals from direct contact, but also effectively reduces the rubbing sever-
ity. Especially the occurrence of destructive rubbing instabilities is avoided. The
capability of existing auxiliary bearings, i.e. as safety bearings in active magnetic
bearing systems or as run-through resonance support, can be well extended from
this concept by introducing active control.

A three-phase control strategy has been developed, which guarantees a smooth tran-
sition from free rotor motion to the state of full annular rub. The controller is
activated if the rotor deflection exceeds the normal operating condition. In the first
phase, the movement of the auxiliary bearing is synchronized with the rotor orbit
followed by a smooth transition to a contact. In the second phase the feedback
control assures a permanent contact and a minimal contact force. In case of a short-
time additional load, the contact is separated in the third phase if the rotor goes to
normal operation condition again.
There are three main effects of the proposed control concept, which improve the
dynamics of a rubbing rotor system:

1. The avoidance of destructive rubbing states and multiple impacts reduces the
load on the system significantly.

2. The control concept introduces additional external damping into the rotor
system.

3. The permanent contact between the rotor and the auxiliary bearing leads to
a sudden change in the stiffness of the whole system. There is a shift of the
resonant frequencies of a rubbing rotor running at a critical speed.

There are several possibilities of supporting a rotor system using an active auxiliary
bearing. In case of a suddenly arising unbalance, the controller is activated auto-
matically if the rotor response exceeds a certain level. The active control stabilizes
the rotor and keeps the load on the whole system low, so that a safe coast-down
is possible. On the other hand, it is also possible to use the control system to run
safely through a resonance frequency.

To reduce the contact force in the auxiliary bearing the following conditions should
be satisfied:
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• A smooth transition from the free rotor motion to a permanent contact state.

• Reduction of the first impact.

• The pattern of the rubbing movement is “synchronous full annular rub”.

• Prevention of multiple impacts (which means a state of a permanent contact).

To keep the principal purpose in mind, the control scheme also has to limit the rotor
amplitude, just as a passive auxiliary bearing does.

The possibilities to control a rubbing rotor with the help of an auxiliary bearing
have been investigated theoretically during the last years, see [62]. After a prelim-
inary investigation, a force control turned out to be inappropriate. Usually, force
measurement systems have a latency being too long for the present application. In
addition to this, a very high sampling rate is needed to gather the high frequency
impacts correctly. For these reasons a position control is the better approach for
this controller.

2.2 Modeling

In this section, the modeling of the rotor and the active auxiliary bearing is presented.
This mathematical model of the system is used for the development of the feedback
controller, which requires the equations of motion. At first a mechanical model of
the elastic rotor is derived, followed by the modeling of the active auxiliary bearing.
The chosen electromagnetic actuators are modeled. Then, a contact model to couple
the active auxiliary bearing and the rotor is discussed.

2.2.1 Elastic Rotor

For the development of the mechanical model a well-proven method has been used.
Many books deal with the modeling of hybrid multibody systems [8, 9, 60]. Some
publications examine especially the modeling and dynamics of elastic rotor systems
[3,13,65,71]. Because of the high relevance, the derivation of the equations of motion
will be discussed in the following.

Real elastic structures have infinite degrees of freedom. Using a modal transfor-
mation, it is possible to reduce the complexity of the equations of motion of such
systems to the relevant degrees of freedom, because most of the modal degrees of
freedom are outside the investigated frequency range.
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Assumptions and Requirements

Taking into account the following assumptions and requirements, the modeling of
the regarded rotor system is simplified:

• The rotor is modeled as an elastic, continuous and rotation-symmetric Euler-
Bernoulli beam.

• There is no coupling between bending and torsion.

• The deformations are small (of 1st order).

• The Kelvin-Voigt model is used for the material of the rotor shaft.

• The unbalance is small (of 1st order).

• Only constant angular acceleration is considered.

The modeling of the elastic rotor structure includes the inertia for translation and
rotation, gyroscopic effects and internal damping. The formulation of the equations
representing the dynamics takes two compulsory steps: kinematics and kinetics, see
for example [52].

Kinematics

The task of kinematics is to provide a unitary description of the positions, the
velocities and the accelerations for all points of the body. This geometric aspect of
the motion is developed in several steps: various coordinate systems are introduced
and the relative kinematics of the coordinate systems is derived. The elastic rotor
shaft is modeled using infinitesimal elements.

Coordinate Systems Four coordinate systems are introduced to describe the kine-
matics of an infinitesimal elements of the rotor shaft, see Figure 2.2.

• I: The inertial coordinate system, the Iz axis coincides with the undeformed
rotor shaft.

• B: A coordinate system which rotates about the Iz axis with the angular
velocity ΩB. The Bz axis coincides with the Iz axis.

• R: A coordinate system which rotates about the Iz axis with the angular
velocity of the rotor shaft Ω. The Rz axis coincides with the Iz axis.

• K: A body-fixed coordinate system which is fixed to an element of the elastic
rotor shaft. The origin of the coordinate system is fixed in the shear center of
the element.
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Ω

Iz = Bz = Rz

IxBx

Rx

Iy

By

Ry
Ky

Kx

Kz

dz

Neutral line of beam
rx

ryRrz ρx ρy

γ̂

Figure 2.2: Element of the elastic rotor shaft

The introduction of the coordinate system B is done for a more general description,
which might be useful for multi-shaft systems [3]. To describe such systems, it is
possible to choose ΩB in a way that the line of action of tangential forces is constant.
In the present work, the rotor system is coupled to a fixed environment, so ΩB = 0.

The angular velocity of the coordinate system R is ω0, which is given by

ω0 =





0
0
Ω





. (2.1)

The rotation of a shaft element relative to the reference system R is described using
cardan angles. Assuming only small rotations and neglecting terms of higher order,
the transformation matrix ARK (transformation from K to R) can be written as

ARK = Rϕ̃+E3 =




1 −ϑ β
ϑ 1 −α
−β α 1


 with Rϕ =





α
β
ϑ





. (2.2)

E3 is the identity matrix of the dimension IR3×3. The tilde symbol (̃ ) represents
the cross product:

a × b = ã b. a =





a1
a2
a3





, which leads to ã =




0 −a3 a2
a3 0 −a1
−a2 a1 0


 .
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Position and Velocity The position vector to the center of gravity of an element
of the elastic rotor shaft can be written down as

Rr = Rrz + Rr̄ + (ϕ̃+E3) K̺ (2.3)

with (see also 2.2)

Rrz =
{
0 0 z

}T
∈ IR3: vector to element of undeformed shaft,

Rr̄ =
{
rx ry 0

}T
∈ IR3: vector of deformation,

K̺ =
{
ρx ρy 0

}T
∈ IR3: vector from neutral line to center of gravity.

The vectors rz and ̺ are constant in time. The vectors r̄ and ϕ describe the
deformation of the elastic shaft and therefore are time- and position-dependent.

The velocity vector of an element of the shaft is obtained by the time derivation of
(2.3) and is given in the coordinate system R as

Rv = Rṙ =
d

dt
Rr + ω0 × Rr

= ˙̄r + ˙̃ϕ̺+ ω̃0 r̄ + ω̃0 ϕ̃ ̺+ ω̃0 ̺

= ˙̄r + ˜̺
T ϕ̇+ ω̃0 r̄ + ω̃0 ˜̺

T ϕ︸ ︷︷ ︸
Rv̄

+ω̃0 ̺,
(2.4)

where Rv̄ is the time varying part and ω̃0 ̺, which is constant.

The angular velocity vector of a shaft-element in reference to the coordinate sys-
tem R can be written as

Kω = ω0 + ϕ̇− ϕ̃ ω0 − ϕ̃ ϕ̇

= ω0 + ϕ̇+ ω̃0ϕ− ϕ̃ ϕ̇︸ ︷︷ ︸
Kω̄

. (2.5)

Also the angular velocity can be split in a constant and varying part. ω0 is the
reference (frame) motion and Kω̄ the superposed oscillation.

Minimal Coordinates and Minimal Velocities The full state of a system can be
described by the position and the velocity of each body. Because of constraints these
coordinates of the system are usually not independent. Minimal velocities are used
instead, which are a combination of independent position and velocity information.
The minimal velocities need not to be the time derivation of the minimal coordinates,
because of the mentioned independence.

The superposed parts of the translational and the angular velocities can always be
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expressed as a linear combination of the minimal velocities (see [8]):

{
Rv̄

Kω̄

}
= F ṡ, F ∈ IR6×nel , ṡ ∈ IRnel . (2.6)

The matrix F in (2.6) is called the derivative matrix. F as well as the minimal
velocities ṡ have to be determined in the following. nel ∈ N is the number of degrees
of freedom of the elastic rotor, which is defined by the modeling of the elastic rotor.

In the next step the general decomposition of the velocities in a product of the
derivative matrix and the minimal velocities (2.6) has to be carried out for the
presented rotor system. Summarizing Rv̄ and Kω̄ from the equations (2.4) and (2.5)
one can write down

{
Rv̄

Kω̄

}
=

[
E ˜̺

T

0 E − ϕ̃

] {
˙̄r

ϕ̇

}
+

[
ω̃0 ω̃0 ˜̺

T

0 ω̃0

] {
r̄

ϕ

}
, (2.7)

where ϕ̃ ϕ̇ and ̺ have been neglected due to higher order. r̄ and ϕ are time-
dependent, which leads to a partial differential equation. Such equations cannot
be solved analytically in general. For this reason the Ritz-method is used for
approximation.

The symmetry of the rotation of the shaft allows using the same ansatz function for
rx (z, t) and ry (z, t) for the deformation of the rotor:

rx (z, t) = uT (z) qx (t) , (2.8)

ry (z, t) = uT (z) qy (t) , (2.9)

with u, qx, qy ∈ IRnB .

The number of ansatz functions in x- and y-direction is nB. For the approximation
of the torsion we can write down

ϑ (z, t) = wT (z) qϑ (t) with w, qϑ ∈ IRnT . (2.10)

nT is the number of chosen ansatz functions. The overall number of elastic degrees
of freedom is composed of

nel = 2nB + nT .

A short introduction to the ansatz functions is presented later.

Using the small-angle approximation the components of ϕ are

α = −
∂ry
∂z

= −r′y and β =
∂rx
∂z

= r′x. (2.11)

Summarizing the time-variant functions qx, qy and qϑ from the equations (2.8) and
(2.10) to the vector of generalized coordinates qe and considering (2.11), one can
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write down
{
r̄

ϕ

}
=

[
JT
JR

]
qe (2.12)

with

qe =





qx
qy
qϑ




∈ IRnel , JT =



uT 0 0
0 uT 0
0 0 0


 , JR =




0 −u′T 0
u′T 0 0
0 0 wT


 ∈ IR3×nel .

(2.13)

JT and JR are the Jacobian-matrices of Translation (index T ) and rotation (index
R). Using this equation together with (2.7) and neglecting ϕ̃ ϕ̇ yields to

{
Rv̄

Kω̄

}
=

[
JT
JR

]
q̇e +

[
ω̃0 0
0 ω̃0

] [
JT
JR

]
qe

!
= F ṡ. (2.14)

By using

ω̃0 JT,R = JT,R




0 −ΩEnB 0
ΩEnB 0 0

0 0 0


 = JT,RW , W ∈ IRnel×nel

one can finally write down the equation (2.6) in a very compact form:

F =

[
JT
JR

]
∈ IR6×nel (2.15)

ṡ = q̇e +W qe ∈ IRnel . (2.16)

Kinetics

Based on the Lagrangian principle, Bremer [8] gives the equations of motion for
a multibody system in the following form:

n∑

i=1

{[
∂ v
∂ ṡ

]T
{ṗ + ω̃ p− f e}+

[
∂ ω
∂ ṡ

]T {
L̇ + ω̃ L− le

}}

i
= 0. (2.17)

f e are the external forces and le are the external moments. This formulation is valid
for a reference system, which has an angular velocity of ω and hence is applicable
for the present multibody system. The partial derivatives of v and ω with respect
to the vector of the minimal velocities ṡ constitute the Jacobian-matrices.

To adopt the equation (2.17) to be applicable for an elastic rotor system, we have
to add the elastic deformation potential V and the Rayleigh-function R, which
includes the inner structural damping. As discussed at the beginning, we split up
the elastic shaft in infinitesimal thin elements, which have the shape of a disk. For
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that reason, the sigma sign is replaced by the integral. By neglecting terms of higher
order the equations of motion can be written as

n∑

i=1

∫

Ki





[
∂ v
∂ ṡ
∂ ω
∂ ṡ

]T



R

(
m∗ v̇ + m∗ ω̃0 v − df e

)

K

[
I∗ ˙̄ω +

(
ω̃0 I

∗ − Ĩ∗ω0

)
ω̄ + gR − dle

]




+

+

{
∂ V

∂ qe

}T
+

{
∂ R

∂ q̇e

}T

i

= 0. (2.18)

gR is called the gyroscopic vector and comprises of the magnitudes which result
from the reference motion.

gR = I∗ω̇0 + ω̃0 I
∗ω0. (2.19)

df e and dle are the active forces and moments, which act on the specific element,
e.g. weight and centrifugal forces.

In the rotating coordinate system R the length-specific mass m∗ is constant and the
length-specific mass moment of inertia is constant in the body-fixed system K:

m∗ =
∂ m

∂ z
dz = ρA dz, (2.20)

I∗ =
∂ I

∂ z
dz = ρ



Ix 0 0
0 Iy 0
0 0 Ip


 dz, (2.21)

where ρ is the density, A the cross-sectional area, Ix and Iy are the axial moment of
inertia and Ip the polar moment of inertia.

Regarding ∂ v
∂ ṡ

and ∂ ω
∂ ṡ

under consideration of (2.14) it turns out, that only the small
superposed velocities v̄ and ω̄ have influence on the minimal velocity ṡ. All other
terms of (2.4) and (2.5) are regarded as time-constant. Therefore we can write



∂ v
∂ ṡ

∂ ω
∂ ṡ


 =



∂ v̄
∂ ṡ

∂ ω̄
∂ ṡ


 = F , (2.22)

Summarizing (2.18) yields

M i s̈i +Gi ṡi = hi (2.23)

with

M =
∫

K

F T
[
E3m

∗ 0
0 I∗

]
F

G =
∫

K

F T
[
ω̃0m

∗ 0

0 ω̃0 I
∗ − Ĩ∗ω0

]
F
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h =
∫

K

F T
{

df e −
(

˙̃ω0 + ω̃0 ω̃0

)
m∗ ̺

dle − gR

}
−

{
∂V

∂qe

}T
−

{
∂R

∂q̇e

}T
.

Using the equations (2.13) and (2.15) we can write down the mass matrix M and
the gyroscopic matrix G:

M = ρ

l∫

0

A (z)



uuT 0 0

0 uuT 0
0 0 0


 dz + ρ

l∫

0

Ix (z)



u′ u′T 0 0

0 u′ u′T 0
0 0 0


 dz+

+ ρ

l∫

0

Ip (z)



0 0 0
0 0 0
0 0 w wT


 dz, (2.24)

G = ρΩ

l∫

0

A (z)




0 −uuT 0
uuT 0 0

0 0 0


 dz+

+ ρΩ

l∫

0

(
Ix (z)− Ip (z)

)



0 −u′ u′T 0
u′ u′T 0 0

0 0 0


 dz. (2.25)

Forces resulting from Elastic Deformation Under the assumption of a linear
stress-strain relation the bending potential V and inner damping R (Rayleigh-
damping) can be given as

V =
1

2
ϕ′T HV ϕ

′,

R =
1

2
diϕ

′T HV ϕ
′, HV = diag

{
E Ix E Iy GIp

}
,

(2.26)

where E is the modulus of elasticity, G the shear modulus and di the inner damping.
Shear deformation is not considered.

Using

ϕ′ =





α′

β′

ϑ′





=




0 −u′′T 0
u′′T 0 0

0 0 w′T


 qe

one can derive the vector of the elastic bending potential as follows:

∫

K

{
∂V

∂qe

}T
=


E

l∫

0

Ix (z)



u′′ u′′T 0 0

0 u′′ u′′T 0
0 0 0


 dz +
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+G

l∫

0

Ip (z)



0 0 0
0 0 0
0 0 w′w′T


 dz


 qe = KV qe (2.27)

where KV is the stiffness matrix. The damping matrix DR can be derived from

∫

K

{
∂R

∂q̇e

}T
= diKV q̇e =DR q̇e. (2.28)

External Forces Finally, we have to consider the external forces f e and moments le,
which act on the discrete locations zFi . In the following we use the Dirac-function
δ, which is defined as

δ (x) =





+∞ if x = 0

0 else
and

+∞∫

−∞

δ (x) dx = 1.

These forces and moments can be given as

f e =
∑

i

l∫

0

∂ f i
∂ z
δ (r − rFi) dz and le =

∑

i

l∫

0

∂ li
∂ z
δ (r − rMi) dz. (2.29)

Using this the particular parts of the vector h, it can be simplified to

∫

K

F T
{

df e

dle

}
=
nF∑

i=1

F TFi

{
f i
li

}
with F Fi =

[
JTFi
JRFi

]
, (2.30)

where nF is the number of the acting forces and moments, F Fi the derivative matrix,
JTFi the Jacobian matrix of translation and JRFi the Jacobian matrix of rotation
- each at the location i.

For a given mounting, the deflection rLi of the rotor besides the bearing and the
according deflection rKi of the bearing can be used to determine the forces, which
are acting on the rotor:

f eLi = −



cxx cxy 0
cyx cyy 0
0 0 0




︸ ︷︷ ︸
Celi

(rLi − rKi)−



dxx dxy 0
dyx dyy 0
0 0 0




︸ ︷︷ ︸
Deli

(ṙLi − ṙKi) , (2.31)

where Celi and Deli are the stiffness and damping matrices of the bearing i. In
the same way we can derive the discrete moments using the vector of rotation ϕ
instead of the vector of translation r. By neglecting the terms of higher order, the
stiffness and damping matrices for the bearing i can be given using (2.31) together
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with (2.12) and (2.18):

KLi = JTTLi Celi JTLi and DLi = JTTLi Deli JTLi , (2.32)

where JTLi is the Jacobian matrix. For a detailed description of the derivation of
the stiffness and damping matrices refer to [54], [55].

Transformation of the Moment Equation in the Reference System The terms
of the linear momentum are given in the rotating R-system, whereas the terms
of the angular momentum are given in the body-fixed K-system. To derive the
complete set of equations of motion we have to transform all parts of it into one
single coordinate system. Here, the R-system has been chosen.

ϕ̃ (2.2) only consists of terms of 1st order. As a consequence, the left part of
the differential equation (2.23) remains unchanged because we neglect terms of 2nd
order. The only term which is added, is derived of gR of the vector h. Using

∫

K

F T
[

0
−ARK gR

]
= −

∫

K

F T
[

0
gR + g̃Rϕ

]
dz (2.33)

and the equations (2.12) and (2.19) the non-conservative matrix NB - which is
caused by the angular acceleration Ω̇ - is derived:

NB = Ω̇ ρ
∫

K

Ip (z)




0 u′ u′T 0
−u′ u′T 0 0

0 0 0


 dz. (2.34)

Concluding we can write down the full set of equations of motion of the elastic rotor
as

R



M s̈+

(
G+DR +DL

)

︸ ︷︷ ︸
P

ṡ+
[
KL +KV +NB −

(
DR +DL

)
W

]

︸ ︷︷ ︸
Q

qe = h



.

(2.35)

Parts of the damping (2.28) and (2.32) are proportional to the position level, because
of the dependency on q̇e in combination with the equation (2.16). The vector h
comprises of unbalance forces, external forces (e.g. control forces) and forces which
act across the system boundary by spring-/damper-elements.

Ansatz Functions

The modeling of the elastic beam is performed using the Ritz method. Within
this method, the vectors which are time- and position-dependent are split up into
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independent factors. Suitable ansatz functions have to be chosen to determine the
matrices and vectors of the equation (2.35). There are the following requirements,
according to [8]

• The geometrical boundary conditions have to be fulfilled.

• The functions have to be independent from each other.

• The determined system of functions has to be a complete set of functions, i.e.
it must be able to represent the complete manifold of all possible solutions.

It is not possible to fulfill the last requirement, as for this it would be necessary to
choose an infinite number of ansatz functions. For this reason we have to strike a
balance between high accuracy caused by a huge number of functions and a good
performance, which implies a limited number of functions.

For the present work B-Spline ansatz functions have been chosen. These piecewise
by polynomials defined functions have been successfully applied on elastic structures
in many cases, e.g. [45]. The polynomial functions are continuous at the connecting
points. The main advantage is that the order of the polynomial functions can be
kept low, due to the independence of the functions.

B-Spline functions of order 3 and 5 have been compared regarding convergence of
the Ritz-ansatz. The assumption of a better convergence of the B-Splines of the
5th order has not yet been confirmed. Therefore, B-Splines of 3rd order with 320
equidistant supporting points have been chosen for the modeling of the flexible rotor
shaft. The functions are two times continuously differentiable. The ansatz functions
have been computed using Maple. For a detailed description of the derivation of
B-Splines see [6] and [48]. For general introduction to B-Splines see [7].

System Reduction

Due to the low order of the ansatz functions many ansatz functions are required for
a good system description. Consequently, the resulting order of the overall system
is high, which causes a high computational effort for simulating the system. For this
reason a modal transformation is performed to reduce the order of the system.

The modal transformation is based on the assumption of linear independent move-
ment patterns of elastic systems. It is assumed that the movement of the system
can be approximated by the eigenmodes of translation and rotation. The oscillation
modes of the transformed system are fully decoupled. For a detailed discussion of
modal analysis and transformation in general see [35].

Starting with the equations (2.24), (2.27) and (2.31) we can derive the eigenmodes
of translation and rotation of the static and undamped system according to the
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following approach:

Mu,B q̈u,B +
(
Ku, V,B +Ku, L,B

)

︸ ︷︷ ︸
Ku,B

qu,B = 0 (2.36)

and

Mu, T q̈u, T +
(
Ku, V, T +Ku, L, T

)

︸ ︷︷ ︸
Ku, T

qu, T = 0, (2.37)

with

Mu,B =ρ

l∫

0

A (z) uuT dz + ρ

l∫

0

Ix (z) u′ u′T dz Mu, T = ρ

l∫

0

Ip (z) w wT dz

Ku, V,B =E

l∫

0

Ix (z) u′′ u′′T dz Ku, V, T = G

l∫

0

Ip (z) w′w′T dz

Ku, L,B =
nBearing∑

i=1

u (zi) cxx, i u (zi)
T

Ku, L, T = 0.

nBearing is the number of supporting points. It is assumed that the support forces
act in one direction only, which means that cxy = cyx = 0.

Now we can calculate the eigenvalues of bending λB, i and torsion λT, i and the
associated eigenvectors xB, i and xT, i. To perform the modal transformation we
summarize fB eigenmodes of bending from bottom to top and fT eigenmodes of
torsion and can write down the reduced modal matrix ˜̄X:

˜̄X =




˜̄XB 0 0

0 ˜̄XB 0

0 0 ˜̄XT




˜̄X ∈ IRnel×2 fB+fT . (2.38)

with

˜̄XB =
[
xB, 1 xB, 2 . . . xB, fB

]
˜̄XB ∈ IRnB×fB

˜̄XT =
[
xT, 1 xT, 2 . . . xT, fT

]
˜̄XT ∈ IRnT×fT

.

We have simplified the system of equations drastically, because after expanding the
matrix products XTB/RMu,B/RXB/R and XTB/RKu,B/RXB/R all resulting matrices
are diagonal matrices. This is a result of the discussed decoupling. To avoid CPU-
intensive numerical inversion, we normalize the eigenvectors so that the mass matrix
becomes an identity matrix, for a detailed discussion of this strategy see [48].
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Equations of Motion

In the following the last steps to receive the equations of motion are performed.
After a transformation to the reference system B we can summarize the equations
of motion for any coordinate system which is rotating with the angular velocity
ΩB.

In a compact form the system of equations is given by

Das sollten Sie nicht lesen können!

B

{
M̄ ¨̄s+

(
Ḡ+ D̄R + D̄L

)

︸ ︷︷ ︸
P̄

˙̄s+
(
K̄V + K̄L + N̄B + N̄D

)

︸ ︷︷ ︸
Q̄

q̄e = h̄
}

, (2.39)

where the bars indicate that the matrices and vectors have been transformed to the
modal space and with

˙̄s = ˙̄qe + W̄ q̄e with W̄ =




0 −ΩBEfB 0
ΩBEfB 0 0

0 0 0


 . (2.40)

The comprised matrices are listed in the following.

Mass Matrix

M̄ =



M̄B 0 0

0 M̄B 0
0 0 M̄T


 = E2 fB+fT (2.41)

with M̄B = ρ
∫

l

(
A ū ūT + Ix ū

′ ū′T
)

dz = EfB

and M̄T = ρ
∫

l

Ip w̄ w̄T dz = EfT .

Gyroscopic Damping Matrix

Ḡ =




0 ḠB 0
−ḠB 0 0

0 0 0


 (2.42)

with ḠB = Ω ρ
∫

l

Ip ū
′ ū′T dz −ΩB M̄B.
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Rayleigh-Damping of the Elastic Structure

D̄R =



D̄R,B 0 0

0 D̄R,B 0
0 0 D̄R, T


 (2.43)

with D̄R,B = di K̄V,B and D̄R, T = di K̄V, T .

Damping of the Supporting Points

D̄L =



D̄L,B 0 0

0 D̄L,B 0
0 0 D̄L, T


 (2.44)

with D̄L,B =
nBearing∑

i=1

dxx, i ū (zi) ū (zi)
T

and D̄L, T =
nBearing∑

i=1

dϑϑ, i w̄ (zi) w̄ (zi)
T .

Stiffness of the Elastic Structure

K̄V =



K̄V,B 0 0

0 K̄V,B 0
0 0 K̄V, T


 (2.45)

with K̄V,B = E
∫

l

Ix ū
′′ ū′′T dz and K̄V, T = G

∫

l

Ip w̄′ w̄′T dz.

Stiffness of the Supporting Points

K̄L =



K̄L,B 0 0

0 K̄L,B 0
0 0 K̄L, T


 (2.46)

with K̄L,B =
nBearing∑

i=1

cxx, i ū (zi) ū (zi)
T and K̄L, T = 0.

Non-conservative Matrix of Acceleration

N̄B =




0 N̄B,B 0
−N̄B,B 0 0

0 0 0


 (2.47)

with N̄B,B = Ω̇ ρ
∫

l

Ip ū
′ ū′T dz .
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Non-conservative Part of the Damping

N̄D =




0 N̄D,B 0
−N̄D,B 0 0

0 0 0


− W̄ D̄L (2.48)

with N̄D,B = Ω D̄R,B.

Due to the modal transformation, K̄V,B and K̄V, T can be written as

K̄V,B + K̄L,B = diag
{
−λ2
B, 1 −λ

2
B, 2 . . . −λ

2
B, fB

}
, (2.49)

K̄V, T + K̄L, T = diag
{
−λ2
T, 1 −λ

2
T, 2 . . . −λ

2
T, fT

}
. (2.50)

The modal input matrix is given by

h̄ =
nInput∑

i=1

F̄ (zi)
T

{
f i
li

}
+ ρ

∫

l

Aε





(
Ω2 cosΦ+ Ω̇ sinΦ

)
ū(

Ω2 sinΦ− Ω̇ cosΦ
)
ū

0





dz (2.51)

with F̄ (z)T =



ū (z) 0 0 0 ū′ (z) 0

0 ū (z) 0 −ū′ (z) 0 0
0 0 0 0 0 w̄ (z)


 ,

ε =
√
ρ2x + ρ2y,

and Φ = γ̂ + arctan
ρy
ρx

with γ̂ = Ω −ΩB.

The deflection and torsion of the shaft at the position of zi is derived by a reverse
transformation out of the modal space:

{
r̄ (zi)
ϕ (zi)

}
= F̄ (zi) q̄e. (2.52)

2.2.2 Active Auxiliary Bearing

The kinematics and the kinetics of the active auxiliary bearing are derived in the
following. A linearization of the equations of motion completes its modeling.

Kinematics

Figure 2.3 shows the geometry of the active auxiliary bearing. There are three joints
and five bodies, only four bodies can move independently. The left lower body and
the right lower body are the stationary masses of the actuators, which only rotate
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by the joints A and B. The upper masses of the actuators are symbolized by two
bodies, which rotate by the joints A and B and move along the linear guiding of the
actuators. The fifth body is the auxiliary bearing which is rigidly fixed to the right
upper mass and coupled to the left upper mass by the joint C. The kinetics of the
system is discussed in the following.
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Figure 2.3: Kinematics of the active auxiliary bearing

The derivation of the kinematic relations is performed in the inertial coordinate
system Iy-Iz. sB0 is the distance from the lower joints A or B to the center of gravity
of both lower bodies. x60 is the displacement of the left actuator, x61 denotes the
displacement of the right one. The choice of identifier of the actuators “60” and “61”
result from the serial numbers of the actuators. sT0 + x60 is the distance between
the joint A and the center of gravity of the left upper mass. sT0 + x61 denotes the
distance between the joint B and the right upper mass. a0 + x60 is the distance
between the left lower joint A and the upper joint C and b0 + x61 is the distance
between the joint B and the hole of the auxiliary bearing, M. sx∗ and sy∗ define the
position of the center of gravity (CG) of the auxiliary bearing with respect to the
center of the hole M. d(x61) is the distance between the right lower joint B and the
upper joint C. Several angles are indicated: α, β1, β2, φ1, φ2.

The following assumptions are made:

• φ1 +φ2 = 180 for the initial position, which means that x60 = x61 = 0. In this
position the auxiliary bearing is concentric with the non-rotating rotor shaft.

• In this initial position AM = BM = b0.
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• The distance CM can be approximated in the operational range by CM =
b0 − a0.

Using the theorem of Pythagoras, d, which depends on x61, is given by

d(x61) = BC =
√

(b0 − a0)2 + (b0 + x61)2. (2.53)

The following trigonometric relations are made:

cos β1 =
−(a0 + x60)2 + c2 + d(x61)2

2 c d(x61)
, (2.54)

sin β2 =
b0 − a0
d(x61)

, (2.55)

cosα =
(a0 + x60)2 + c2 − d(x61)2

2 c (a0 + x60)
, (2.56)

where 2.54 and 2.56 are derived from the law of cosines. Using these equations we
can derive α, β1, β2, φ1 and φ2. β is introduced by β = β1 +β2. A Taylor expansion
is used to approximate and simplify the angles α, β1, β2, φ1 and φ2 for the ongoing
derivation of the equations of motion.

Using the derived relations for the angles, the position vectors, the velocities and
angular velocities of the five bodies are set up.

Kinetics, Equations of Motion

The method of Lagrange 2 [8] is used to derive the equations of motion for this
multibody system

d

dt

(
∂ T

∂ q̇

)
−

(
∂ T

∂ q

)
+

(
∂ V

∂ q

)
= QNC , (2.57)

where T is the sum of the kinetic energy and V the sum of the potential energy of
all bodies. QNC is the vector of the non-conservative forces acting on the system.
The generalized coordinates are composed of the actuator coordinates:

q =

{
x60

x61

}
. (2.58)
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Energy Terms The mass forces and inertia forces are taken into account in the
kinetic energy. For an arbitrary mounted, mass-conservative body the kinetic energy
can be written as

T =
1

2
m ṙTO′ ṙO′

︸ ︷︷ ︸
translational part

+ m ṙTO′ ω × rO′S +
1

2
ωT Θω

︸ ︷︷ ︸
rotational part

, (2.59)

where m is the mass of the body, ṙO′ the velocity of the reference point, ω the
angular velocity of the body, rO′S the vector from the reference point to the center
of gravity and Θ the inertia tensor at the reference point.

The potential energy includes the conservative forces and is given by

V = −m rTS g︸ ︷︷ ︸
potential of inertia

+
1

2
cS ∆s

2

︸ ︷︷ ︸
potential of elasticity

. (2.60)

rS is the position vector to the center of gravity of the body, g the vector of gravity,
cS the stiffness and ∆s the deflection of the spring. By using the center of gravity as
a reference point the equation is simplified by rO′S = 0 and the part in the middle
becomes equal to zero.

By using the equations above and the kinematic relations of the auxiliary bearing,
the terms of energy are derived. There are many examples for such a multibody
system in literature, so the discussion of the derivation is neglected here, e.g. [8],
[52], [60].

The mechanical model of the active auxiliary bearing is shown in Figure 2.4. The
system boundary is drawn at the joints to the baseplate and at the contact between
auxiliary bearing and rotor.

mAuxB, mActT and mActB are the masses of the bodies and IAuxB, IActT and IActB

the inertia tensors. c60 and c61 are the stiffness of the membranes of the actuators.
MFricA, MFricB and MFricC denote the joint friction. Fem60 and Fem61 are the forces
which are applied by the actuators. These forces comprise of the electromagnetic
forces and the permanent-magnetic forces. Fcy and Fcz are the components of a
possible contact forces andMcx is the moment of the contact reaction caused by the
friction.

Non-Conservative Forces Using Jacobian-matrices the non-conservative forces
are transformed to the generalize coordinates. The sum of the non-conservative
forces QNC is given by

QNC =
m∑

i=1

[
∂ vi
∂ q̇

]T
FNC, i +

n∑

i=1

[
∂ ωi
∂ q̇

]T
MNC, i. (2.61)

In the present case QNC comprises of the forces of the actuators, the friction and
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Figure 2.4: Mechanical model of the active auxiliary bearing

the contact force between rotor and auxiliary bearing. The forces of the actuators
act directly in the direction of the generalized coordinates, so one can write QNC ,
which is equal to the vector of the actuator forces F Act:

QNC,Act = F Act =

{
Fem60

Fem61

}
. (2.62)

The contact force between the rotor and auxiliary bearing is included to get a general
description. The center of the auxiliary bearing has been taken as the reference point,
so the non-conservative forces are given by

QNC,Contact =
[
∂ vM
∂ q̇

]T




0
FCy
FCz





+
[
∂ ωAuxB
∂ q̇

]T




MCx
0
0





. (2.63)

The joint friction is approximated to be proportional to the angular velocity:

QNC, Joints = −
[
∂ ωA
∂ q̇

]T
dAωA −

[
∂ ωB
∂ q̇

]T
dB ωB −

[
∂ ωC
∂ q̇

]T
dC ωC , (2.64)

where ωA, ωB and ωC are the relative angular velocities of the joints and dA, dB
and dC the damping i.e. friction coefficients of the particular joints. Note that for
the present case dA = dB.

We can write down the sum of the non-conservative forces

QNC = QNC,Act +QNC,Contact +QNC, Joints. (2.65)
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Summarizing, this yields to the nonlinear equations of motion of the auxiliary bear-
ing

MABq̈ = hAB(q̇,q,t), (2.66)

whereMAB is the mass matrix of the auxiliary bearing and hAB contains all exter-
nal, internal and gyroscopic forces.

Because of the trigonometrical constraints, the equations of motion are nonlinear
of higher order. For certain feedback control strategies a linearized model of the
auxiliary bearing is required. Because of the small actuator deflection compared
to the dimensions of the system we linearize the equation at the initial and static
position of the system. In this position the auxiliary bearing is concentric to the
undeformed rotor shaft. After performing a Taylor expansion and considering only
linear terms, the equations of motion are given by

MAB, lin q̈ +DAB, lin q̇ +CAB, lin q = F Act +QNC,Contact, (2.67)

whereMAB, lin,DAB, lin andCAB, lin are the linearized mass matrix, linearized damp-
ing matrix and linearized stiffness matrix, respectively.

2.2.3 Active Elements

Actuators

Electromagnetic actuators, which have been developed at the Institute of Applied
Mechanics, have been selected for our experiment. These actuators are discussed in
Section 3.3 in detail. The performed modeling for feedback controller development
of the actuators comprises of the stiffness of the membranes, the mass inertia and
the acting forces which are applied to the mechanism. These acting forces consist
of the electromagnetic ones, which are controlled, and the permanent ones, which
are non-controlled.

Drive System

The drive system has been modeled including a moment of inertia and a PID con-
troller, which applies a torque on the motor shaft. To reduce the complexity for the
Simulink® simulation presented in Section 2.6, the PID controller directly controls
the rotational speed, instead of the torque.

The torque, which drives the rotor, is applied to the shaft of the drive system. This
shaft and the elastic rotor shaft are coupled. The torque does not act directly on
the rotor shaft, but arises due to torsion of the coupling. The resulting relation
should be discussed using an analogous model, which is shown in Figure 2.5. cK is
the stiffness of the coupling and dK the damping. JR describes the torque of inertia
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of the rotor and JM the one of the drive system. MM is the torque, which is applied
by the drive system. ϕR is the rotation angle of the rotor and ϕM is the angle of
the drive system.

cK , dK

JM

JR

MMMM

ϕM

ϕR

MR

MR

Figure 2.5: Analogous model of the shaft coupling

The system has two rotational degrees of freedom, ϕM and ϕR. The equations of
motion of this system can be denoted as
{
MM

0

}
=

[
JM 0
0 JR

] {
ϕ̈M
ϕ̈R

}
+

[
dK −dK
−dK dK

] {
ϕ̇M
ϕ̇R

}
+

[
cK −cK
−cK cK

] {
ϕM
ϕR

}
. (2.68)

By cutting free the coupling between drive system and rotor, the acting torque can
be determined:

MR = dK (ϕ̇M − ϕ̇R)− cK (ϕM − ϕR) . (2.69)

2.2.4 Contact Model

To simulate the rotor system during a state of rubbing, the separate systems active
auxiliary bearing and rotor are coupled. In the course of the feedback controller
development a Simulink® simulation has been developed which uses this coupling.
For this purpose the contact law of Hunt & Crossley [29] has been selected. For
a detailed description of the relative kinematics see [48].

Using the contact law of Hunt & Crossley the elasticity and damping of the
contact is modeled by nonlinear and isotropic force laws. In general the contact
force depends on the depth and velocity of penetration:

F C = F C
(
δe, δ̇e

)
=





0
FCy
FCz





, (2.70)

where F C is the force acting at the contact point in normal direction, δe the depth
of penetration and δ̇e the relative velocity of the penetrating bodies at the contact
point in the direction perpendicular to the contact plane. In general, the amount of
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the normal component of the contact force F C is given by

FN = fN (δe)︸ ︷︷ ︸
elasticity

+ gN
(
δe, δ̇e

)

︸ ︷︷ ︸
damping

+FP
(
δe, δ̇e

)

︸ ︷︷ ︸
dissipation

. (2.71)

The dissipative part allows including plastic deformation. In the present case plastic
deformation is neglected, so this part is set to zero.

The elastic part fN is a nonlinear function of the depth of the penetration. This
allows simulating a progressive increase of the force by increasing penetration depth.
This part is calculated according to

fN = cc δ
n
e . (2.72)

The stiffness of the contact cc is very large compared to the stiffness of the overall
system, which is important for the simulation of impacts. Besides, the penetration
of the contacting bodies should be kept low, as it is in reality.

The damping is carried out by energy dissipation of the impacts and is given by

gN =
3

2
α cc δ

n
e δ̇e. (2.73)

The damping coefficient α depends on the coefficient of restitution. Due to the
dependence on the elastic part there is an additional increase of the damping force
with increasing penetration depth. According to the Hertzian theory of contact
pressure the exponent n is set to 3

2
. Summarizing we can write down the contact

force in normal direction in complex notation as

F C = cc δ
3
2
e

(
1 +

3

2
α δ̇e

)
ejϑc . (2.74)

Caused by the friction in the contact point there is also a tangential force, which
is modeled using the Coulomb friction law. The force is directed opposite to the
relative movement of the contacting bodies in the contact points. The tangential
force acting on the auxiliary bearing is given by

F C, T = µ |F C | e
j (ϑc+π2 sgnωrel) ,with ωrel = −ωAuxB +Ω, (2.75)

where µ is the friction coefficient, ϑc the polar angle of the vector from the center
of the rotor to the center of the auxiliary bearing, ωAuxB the angular velocity of the
auxiliary bearing and Ω the angular velocity of the rotor. To avoid problems in the
numerical simulation we smooth the sgn function by using a sat function:

sat x =





sgn x |x| > 1

x |x| ≤ 1
. (2.76)
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Therefore, we can write down the tangential contact force as

F C, T = µ |F C | e
j (ϑc+π2 sat {nc ωrel}), (2.77)

where nc is a coefficient to adopt an optimal behavior of the sat function. The action
line of the tangential forces does not go through the center of the auxiliary bearing,
so we have to include a moment of the tangential force as mentioned above. This
moment is calculated according

MCx =
dF
2
|F C, T | sat {nc ωrel} , (2.78)

where dF is the inner diameter of the auxiliary bearing.

2.3 Cascade Control

The control concept uses a cascade control, see Figure 2.6. qa is the measured
position of the auxiliary bearing and qad the desired one, qr are the coordinates of
the rotor, ic is the control current to drive the actuators and p a Boolean variable
to activate and deactivate the control system. The trajectory computation provides
the target trajectory for the auxiliary bearing. The activation routine observes the
movement of the rotor and for instance in case of a suddenly arising unbalance
the controller is activated automatically if the rotor response is too large. In the
following the feedback control of the actuators and the trajectory computation are
discussed separately.

Activation
routine

Trajectory
computation

Feedback
control

qr qr, qa

p qad

qa

ic

Figure 2.6: Cascade control

There are several challenges to the feedback control concept regarding the proposed
system. The electromagnetic actuators have a very high power output and a high
bandwidth, but the negative stiffness results in a bad controllability. Of course, also
these high-power actuators have a limitation in force, frequency and stroke. Like
every real-time hardware, the selected hardware has a limited computational power,
which results in a limit of the sample time, depending on the computational effort
of the controller. Especially regarding the unilateral contact [44] between rotor and
auxiliary bearing, the time-discrete sampling is a big problem for stability. Therefore,



34 2 Development of the Feedback Controller

stability can be ensured analytically only for a state without contact. For a detailed
investigation of stability of the feedback controller of the present system see [26].

Several strategies for the control of the actuators - linear as well as nonlinear feedback
control techniques - have been investigated:

• PID Controller

• Sliding Mode Control

• Feedback Linearization

First of all, a PID controller was developed, which turned out to be applicable in
general, but with the drawback of a low control quality. The main advantage is
the very low real-time computational effort, which makes implementing the control
strategy on a low-cost microcontroller easier, see [43]. The PID controller is discussed
in section 2.4.1. A general introduction to this common linear feedback control
concept is given in [22].

The second approach was a sliding mode control. This concept has been adapted
to the present system [26]. Although this robust control technique considers inaccu-
racies of the model, it is unsuitable for the proposed control concept. The reason
for this is the inherent switching condition. Even if this condition is smoothed us-
ing a saturation function, the chattering still disturbs the aimed permanent contact.
Therefore, this concept is not discussed in the following.

The third concept is the feedback linearization, which was subject to a large amount
of research in the last years. This method turned out to be superior in control
quality for the present case and is discussed in detail in section 2.4.2. Most of the
experiments have been carried out using this feedback controller.

The development of the trajectory computation followed no established scheme and
is an all-new development. This part of the control system is discussed in section
2.5.

2.4 Feedback Control of the Actuators

2.4.1 PID Controller

One big challenge in the control of the electromagnetic actuators is its stability. The
utilization of strong permanent magnets to generate the bias flux leads to a strong
negative system-stiffness, which results in a bad controllability of the system. Fur-
thermore, the actuator shows a nonlinear force behavior in relation to the control
current and the axial position of the pull-disk. To linearize the nonlinear system
in the whole operating range a nonlinear feed forward mechanism to compensate
the nonlinear effects is applied. Thus, the system gets a linear force characteristic
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Figure 2.7: Feed forward mechanism, compensation of nonlinearity

related to the control current, which is independent to the displacement of the mov-
able pull-disks.

The feed forward mechanism shown in Figure 2.7 is based on the feedback controller
for the used electromagnetic actuators developed by Oberbeck [42]. F c is the
desired control force, which has been determined by the PID controller, ilin(F c,x) is
the linear part of the force-current correlation, x is the displacement of the actuators
and ic is the control current.

The nonlinearity of the actuator is canceled using a map of the force-displacement-
current correlation. This map, see Figure 2.8, contains only the nonlinear part of
the correlation. The linear part is treated with the ilin(F c,x)-function, see Figure
2.7. The map was gained by static measurements, which gave the supporting points
of the field.

Depending on the used real-time hardware, a big disadvantage of the usage of this
map might be the very high computational effort of interpolation. Especially for
the present case using the dSPACE real-time hardware, the computational effort of
interpolation is very high. This fact is unacceptable, because a controller sample rate
as high as possible is preferable. A surface fit has been done to gain a polynomial
function to represent the measured map. The function is of the type

i(Fc,x) = a+bx+cx2+dx3+eFc+fFcx+gFcx
2+hFcx

3+iF 2
c +jF 2

c x+kF
2
c x

2+lF 2
c x

3,

(2.79)

where Fc is the desired actuator force, x the displacement of the actuators and i the
control current. a, b, c, d, e, f , g, h, i, j, k and l are the constant coefficients. The
coefficients of this function have been determined using the online surface fit tool
ZunZun.com 1. The map, which is given by the determined function, is plotted in
Figure 2.9.

1 http://www.zunzun.com
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Figure 2.8: Measured map of the force-displacement-current correlation of the actuator

Using this fitted map the computational effort for the feed forward mechanism has
been reduced by 70 percent.

The linearized equations of motion (2.67), which are derived in Section 2.2, are
simplified by neglecting the contact reactionsQNC,Contact, because the contact forces
should be on a low level during a controlled state of rubbing:

MAB, lin q̈ +DAB, lin q̇ +CAB, lin q = F Act. (2.80)

These linear decoupled equations of motion have two degrees of freedom, which
correspond to the two actuators. The control force F Act is given by

F Act =

{
Fem60

Fem61

}
. (2.81)

In this approach we design two decoupled PID feedback controller for a linear system.
A common PID controller follows the equation:

Femi = Pe+D
de

dt
+ I

∫
edt with i = 60, 61, (2.82)

where Femi is the calculated control force, P , D and I are coefficients and e the
tracking error:

e = yd − y (2.83)
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Figure 2.9: Fitted map of the force-displacement-current correlation of the actuator

where yd is the desired and y the measured position of the actuator. The coefficients
of the control law are chosen for the linearized system according to the Hurwitz
polynomial [22] and were optimized experimentally. Note that in case of contact the
coefficient I for the integral control part is switched to zero.

2.4.2 Feedback Linearization Control

Although linear control is a well-proven method and has a long history of success-
ful industrial applications, we cannot neglect that the present system has strong
nonlinearities. Over the last years much effort has been put into developing several
nonlinear control strategies to improve feedback controllers for nonlinear systems.
The method of feedback linearization has been chosen for present system. A de-
tailed description can be found in [53].
Designing a control system mostly starts with deriving a meaningful model of the
plant, i.e., a model that captures the key dynamics of the plant in the operational
range of interest. Feedback linearization deals with a technique that transforms orig-
inal system models into equivalent models of a simpler form. This differs entirely
from conventional linearization. Feedback linearization is achieved by exact state
transformations and feedback, rather than by linear approximations of the dynam-
ics. The idea, that the form and complexity of a system model depend considerably
on the choice of reference frames or coordinate systems, is well known in mechanics.
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Therefore, we transform the nonlinear model into a linear system, and then use the
well-known and powerful linear design techniques to complete the control design.
The feedback linearization method has been successfully applied to address some
practical control problems, including the control of helicopters, high performance
aircrafts, industrial robots and biomedical devices.

Mathematical Tools

At first some mathematical tools from differential geometry are shortly introduced.
For a detailed description please refer to standard literature in differential geome-
try.

To be consistent with the terminology of this field of mathematics, we shall call a
vector function f : Rn → Rn a vector field in Rn. Furthermore we only investigate
smooth vector fields, which means, that the function f(x) has continuous partial
derivates of any required order.

The gradient of a scalar function h (x) is given by

∇h =
∂h

∂x
=
[
∂h
∂x1

∂h
∂x2
. . . ∂h

∂xn

]
dim∇h = 1× n. (2.84)

Similarly, given a vector field f (x), the Jacobian of f is denoted by

∇f =
∂f

∂x
=




∂f1
∂x1

∂f1
∂x2
. . . ∂f1

∂xn
∂f2
∂x1

∂f2
∂x2
. . . ∂f2

∂xn
...

...
. . .

...
∂fn
∂x1

∂fn
∂x2
. . . ∂fn

∂xn




dim∇f = n× n. (2.85)

The basis for the development of a direct Input- / Output- Relation (e.g. Lin-
earization) is the so-called Lie derivative. The Lie derivative of a smooth scalar
function h (x) , IRn → IR with x ∈ IRn with respect to the smooth vector field
f (x) , IRn → IRn is defined as

Lfh = ∇hf . (2.86)

Thus, the Lie derivative Lfh is simply the directional derivative of h along the
direction of the vector f . Repeated Lie derivatives can be defined recursively

L0
fh = h L1

fh = ∇hf Lifh = Lf
(
Li−1
f h

)
= ∇

(
Li−1
f h

)
f .

If g is another vector field, then the scalar function LgLfh(x) is

LgLfh = ∇ (Lfh) g.
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Using these mathematical tools, it is easy to perform the input-output-linearization
even for complex systems.

Theory of the Input-Output Linearization

A system of equations of motion with m inputs u and the outputs h can be written
in the canonical form

ẋ = f (x) +G (x) u = f (x) +
m∑

j=1

g (x) uj. (2.87)

The output equation is given by

y = h (x) . (2.88)

There is no further requirement to the structure of the vectors f and h and the
matrix G. Therefore, the vectors and the matrix may contain nonlinear terms.

To perform the input-output linearization of (2.87), we have to apply the Lie deriva-
tive to each output yi repeatedly until the break condition

Lgj

[
Lri−1
f hi (x)

]
6= 0 (2.89)

is fulfilled for at least one j = 1 . . . m. The superscript index ri indicates the ri-th
derivative of the i-th output. Performing this for every output of the system, an
explicit relation of each input to one output is obtained. The equation of the direct
input-output relation can be denoted as





y
(r1)
1
...
y(rm)
m





=





Lr1f h1 (x)
...

Lrmf hm (x)





︸ ︷︷ ︸
a (x)

+




Lg1

[
Lr1−1
f h1 (x)

]
. . . Lgm

[
Lr1−1
f h1 (x)

]

...
. . .

...

Lg1

[
Lrm−1
f hm (x)

]
. . . Lgm

[
Lrm−1
f hm (x)

]




︸ ︷︷ ︸
E (x)





u1
...
um





.

(2.90)

Here, with i = 1..2 each output has to be differentiated twice, so ri = 2:



yr11

yr22


 =



Lr1f h1(x)

Lr2f h2(x)


+ E(x)



u1

u2


 (2.91)

The matrix E(x) is called the decoupling matrix and for notation simplification a(x)
has been introduced.

If the control input u is chosen according to

u = E−1(x)[v− a(x)], (2.92)
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where v is the new control input to be determined, the nonlinearity of the system is
canceled and a simple linear double integrator relationship between the output and
the new input v is obtained.

Development of the Feedback Controller using the Input-Output
Linearization

For the design of the feedback controller we use the equations of motion (2.66) of
the auxiliary bearing, which has the dimension 2. To keep the controller as simple
as possible we define the displacement of the actuators as the output of the system,
instead of the position of the auxiliary bearing in y and z.

The control error for each output is defined as

ỹi = yi − yi, d and ˙̃yi = ẏi − ẏi, d i = 1, 2, (2.93)

where yi is the actual output and yi, d the desired output.

The main purpose of the feedback controller is to minimize this control error. A
pole-assignment method according to [49] has been chosen for the design process.

Pole-Assignment

By defining a control law for every output i = 1, 2

ν = −k1 ˙̃y − k0 ỹ, (2.94)

the equations of motion of the closed loop system using the feedback linearization
are given by

ÿ = −k1 ˙̃y − k0 ỹ

= −k1 (ẏ − ẏd)− k0 (y − yd) .
(2.95)

With the help of the Laplace-transformation the transfer function of the closed
loop is derived:

Y

Yd
=
s k1 + k0
s2 + s k1 + k0

. (2.96)

The system is stable if all poles of the transfer function are in the left half s-plane,
i.e., all the poles have negative real parts. Solving the characteristic equation, the
poles can be determined in general:

s1, 2 =
−k1 ±

√
−k2

1 − 4 k0
2

. (2.97)
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Table 2.1: Poles of the designed control system

a b

Actuator 60 -270 50
Actuator 61 -270 50

By defining the coefficients k0 and k1 according

k0 = a2 + b2 and k1 = −2 a (2.98)

the poles a ± j b can be arbitrarily assigned. The quality of control increases by
placing the poles to the left, but this causes high control forces which may lead to
instability. For the present system various simulations and experiments have been
made to determine the optimal poles as given in Table 2.1.

2.5 Computation of the Target Trajectory

The computation of the target trajectory has to obey the control principle, which
has been discussed in Section 2.1. The three-phase control strategy should guaran-
tee a smooth catching of the rotor followed by a state of “synchronous rubbing”. To
keep the principal purpose of an auxiliary bearing in mind, the control scheme also
has to limit the rotor amplitude as a passive auxiliary bearing does. The controller
only needs the position of the auxiliary bearing, the position of the rotor shaft inside
the auxiliary bearing and the information from the shaft encoder as an input.

The operation phases of the control concept are shown in Figure 2.10. The controller
is not activated during normal operation condition (the rotor deflection rN is smaller
than a defined limit rlimit). As soon as the rotor deflection becomes too large, e.g.
due to a suddenly arising unbalance, and rN exceeds rlimit, the controller is activated.
In the first control phase, the movement of the auxiliary bearing is synchronized with
the rotor orbit followed by a smooth transition to a contact. In the second phase, the
feedback control assures a permanent contact in the rubbing state of “synchronous
full annular rub” and a low contact force. The second phase is active as long as
the additional load is present. In the third phase the rotor is separated from the
auxiliary bearing after the additional load has disappeared.
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Rotor

1. 2.

3. 4.

5.

normal operation suddenly arising unbalance,
activation of controller

1st control phase,
synchronisation

2nd control phase,
permanent contact

3rd control phase,
separation

rN

rlimit

Center of the auxiliary bearing without control

Center of the auxiliary bearing (controlled)

Auxiliary bearing without control

Auxiliary bearing (controlled)

Figure 2.10: Principle of the control concept
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In order to define the essential geometrical variables, a cross section of the auxiliary
bearing and the rotor is shown schematically in Figure 2.11. The origin of the coor-
dinate system coincides with the center of the undeformed rotor, rr is the position
vector to the center of the deformed rotor (in the cross section) and ra to the center
of the auxiliary bearing. The air gap in the auxiliary bearing is δ0 and rN repre-
sents the vector from the center of the auxiliary bearing to the center of the rotor.
Modified polar coordinates are used, which allow a negative radius. The angles ϕa,
ϕr and radii ra, rr, rN of the vectors ra, rr and rN are introduced.

Auxiliary bearing

Rotor

y

z
δ0

ϕa

ϕr

rr

ra

rN

gN

Figure 2.11: Contact kinematics

The overall control target of the first and second phase can be specified as

qad = arg min
(q̈,q̇,q)

{
gN
ġN
, (2.99)

with arg min being defined as the values of q̈,q̇,q that minimizes gN and ġN . The
vector q corresponds to the generalized coordinates of the rotor and the auxiliary
bearing, gN is the distance between the contact points and qad the target trajectory
for the auxiliary bearing. Equation (2.99) implies that the relative distance becomes
zero to get a permanent contact and the relative velocity in normal direction should
be as small as possible to get a smooth transition from free rotor motion to the state
of full annular rub.

In the first two phases of the control scheme, the desired position of the auxiliary
bearing is chosen in a way such that the movement of the auxiliary bearing is
synchronized with the orbit of the rotor and the contact point coincides with the
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point of the surface of the rotor which is farthest from the origin of coordinate
system, Figure 2.11. This means that

ϕa desired = ϕr . (2.100)

In case of contact this results in a movement pattern of “synchronous full annular
rub”. The destructive “backward whirl” is avoided.

Furthermore, the desired radius rN desired is needed to determine the desired position
of the auxiliary bearing according the equation

ra desired =

(
ϕa
ra

)
=

(
ϕr

rr − rN desired

)
. (2.101)

Therefore, the 2D problem to control the orbit has turned into a 1D control problem
of the radius rN desired. In the first control phase (free rotor motion), which means
|rN | < δ0, the target position of the auxiliary bearing follows

rN desired = rN +
∫

(vpmax − ṙN)dt = rN +
∫

(A eα|rr| − ṙN)dt, (2.102)

where vpmax is the maximum relative velocity of the contact points. The constant
factors A and α are chosen in such a way that first impact is kept small but also
that the amplitude of the rotor does not exceed δ0, to meet the principal purpose of
an auxiliary bearing.

In the case of a contact (second control phase), which means |rN | = δ0, the radius
rN desired is calculated as

rN desired = δ0 +
1

KP
fperm. (2.103)

fperm is the desired contact force during the permanent contact and 1
KP

is a conver-
sion coefficient. Note that it is necessary to choose a desired contact force, which
is large enough to ensure a permanent contact despite of the uncertainties of the
measurement and control system. As soon as the additional load is over, the rotor
deflection decreases.

The permanent contact is separated when the deflection falls below the limit rlimit.
Then, the auxiliary bearing is moved to a position concentric to the undeformed
rotor shaft.

Another challenge is the latency of the measurement system. Depending on the size
of the time step we have to calculate the position of the rotor from the measured
one, using the velocity:

ϕr = ϕr measured + l ∆t ϕ̇r measured (2.104)
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rr = rr measured + l ∆t ṙr measured (2.105)

The constant factor l accounts for the latency induced by the measurement system.

2.6 SIMULINK® Simulation

For the initial development of the feedback controller a simulation is developed in
Simulink®, which should represent the real system as realistically as possible. The
simulation comprises of the nonlinear characteristics of the active auxiliary bearing
and the rotor, the time and the magnitude discretization and the contact between
the rotor and the auxiliary bearing. Figure 2.12 shows the model, which has been
implemented in this simulation. Besides the components, which have been discussed
in Section 2.2, an active magnetic bearing, which is used to apply various excitations
on the rotor, has been included:
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Figure 2.12: Mechanical model of the rotor system for the Simulink® simulation

• The elastic rotor

• A big disk (rigid)

• A disk, which runs inside the active auxiliary bearing (rigid)

• A disk, which runs inside the active magnetic bearing (rigid)

• The drive system

• The shaft coupling

• The auxiliary bearing
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• The electromagnetic actuators

• The contact between the rotor and the auxiliary bearing

• The developed cascade control

The signals, which are measured in reality, are superposed by white noise. The
simulation runs in multitasking mode, which means, that the rotor and auxiliary
bearing is calculated with another sample frequency than the control system to
better fit reality. A detailed description of the simulation can be found in [48].

2.6.1 Simulation Results without Contact

At first, the feedback control concepts of the actuators are simulated without rotor-
to-stator (i.e. auxiliary bearing) contact. Using the Simulink® model a circular
motion of the auxiliary bearing is simulated. The parameters of the target mo-
tion are summarized in Table 2.2. The frequency is 50 Hz and the radius of the
desired circle is 0.4 mm. The air gap in auxiliary bearings is 0.3 mm, as discussed
in Chapter 3. Regarding the developed “computation of the target trajectory”, the
maximum radius of the auxiliary bearing is a little larger than the nominal air gap
and the motion is a circular motion with the angular velocity of the rotor shaft.

Table 2.2: Parameters of the target motion

Circular motion

Frequency 50 Hz
Amplitude (radius) 0.4 mm

Using this target motion, the two control concepts are compared. In Table 2.3, the
parameters of the PID controller are given. In Table 2.4, the feedback linearization
controller parameters are listed, respectively.

Table 2.3: Parameters of the PID controller

Coefficients P I D

Actuator 60 600 N/mm 1000 N/mms* 1.2 Ns/mm
Actuator 61 1200 N/mm 1000 N/mms* 2.4 Ns/mm

Sample time 0.0002 s

* This coefficient is set to zero in case of contact

The parameters of the PID controller of the actuator 60 and of the actuator 61
differ from each other, because the system is nonlinear and the actuator 61 has to
handle a higher load. In contrast, the feedback linearization controller is applied on
a linearized system, and for that reason, the same poles have been used for both
actuators. Both control systems are simulated at a sample time of 0.0002 s.



2.6 SIMULINK® Simulation 47

Table 2.4: Parameters of the feedback linearization controller

Poles a b

Actuator 60 -270 50
Actuator 61 -270 50

Sample time 0.0002 s

To prove and assure the robustness of the controller, disturbance forces are applied
to the auxiliary bearing in some simulations. These forces match the contact forces,
which arise during the state of controlled rubbing.
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PID Controller without Disturbance

The simulation results show the PID controller without disturbance. In Figure 2.13
the target movement (x60 desired and x61 desired) and the simulated movement (x60

and x61) of the actuator coordinates are plotted. Actuator 60 matches the target
very good, but actuator 61 does not match the target. As the controller already
operates close to the stability limit, it is not possible to increase the coefficients of
this actuator any more, in order to improve the control quality.
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PID Controller with Disturbance

Now the disturbance, which should simulate the contact force during rubbing, is
applied to the same simulation of the PID controller. Figure 2.14 shows the com-
parison of the movement of the auxiliary bearing, Figure 2.15 shows the applied
disturbance forces and Figure 2.16 the actuator forces. The controller is stable de-
spite of the disturbance. Also the forces of the actuators stay within the possible
operation range.
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Feedback Linearization Controller without Disturbance

The same two simulation scenarios (without and with disturbance) have been re-
peated using the feedback linearization controller. We obtain a much better control
quality in general. The control error is almost equal at both actuators, which is
very important. Otherwise, a smooth circular motion during a controlled state of
rubbing is not possible. Figure 2.17 shows a comparison of the target motion and
the simulated motion.
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Feedback Linearization Controller with Disturbance

Now the additional disturbance forces are applied as described above. Figure 2.18
shows the comparison of the movement of the auxiliary bearing, Figure 2.19 shows
the applied disturbance forces and Figure 2.20 the actuator forces. There is a sig-
nificant improvement of the control quality compared to the PID controller. The
controller is stable despite of the disturbance forces and the actuator forces stay in
the operational range.

 

 

 

 

D
is

p
la

ce
m

en
t

in
m

m

D
is

p
la

ce
m

en
t

in
m

m

Time in sTime in s

x

x

x

x
60 desired

60

61 desired

61

0.10.1 0.050.05

0.50.5

-0.5-0.5

00

Figure 2.18: Simulation, feedback linearization controller with disturbance, position



2.6 SIMULINK® Simulation 53

 

 

 

 

F
or

ce
in

N
F

or
ce

in
N

Time in s

Time in s

F

F
Dist x

Dist y

500

500

-500

-500

0.05

0.05

0.1

0.1

0

0

Figure 2.19: Simulation, feedback linearization controller with disturbance, disturbance
forces

 

 

 

 

F
or

ce
in

N
F

or
ce

in
N

Time in s

Time in s

F

F
em60

em61

500

500

-500

-500

0.05

0.05

0.1

0.1

0

0

Figure 2.20: Simulation, feedback linearization controller with disturbance, actuator
forces



54 2 Development of the Feedback Controller

Determination of the Concept to be Applied

Regarding the presented simulation results, the feedback linearization control is
definitely the better concept for this purpose. A disadvantage is the higher compu-
tation effort, but for the given experimental setup, as it is presented in Chapter 3,
the concept is applicable, because the real-time platform is powerful enough. There-
fore, all further discussed experiments and simulations use the feedback linearization
controller.

2.6.2 Simulation Results with Contact

After the determination of the feedback control concept for the electromagnetic
actuators, Simulink® simulations of the complete system including the contact
between rotor and auxiliary bearing have been performed. As discussed above, the
feedback linearization control has been used to control the actuators. The controller
parameters can be found in Table 2.4. The parameters for the model of the rotor
and the auxiliary bearing have been chosen from the test rig with the “12 mm shaft”,
for a detailed description, see Chapter 3.

Rubbing without Control

In the condition “without Control” the active auxiliary bearing works like a con-
ventional auxiliary bearing, which is fixed concentric with the undeformed rotor
shaft.

The rotor runs at a constant rotational frequency of about 11 Hz without contact.
At a time of 1.0 s there is a short-time excitation in form of a radial force, which leads
to contact between rotor and auxiliary bearing. The rubbing turns into backward
whirling with a very high contact force. The orbit of the rotor shaft at the position
of the active auxiliary bearing is plotted in Figure 2.21. At the beginning of the
simulation - without additional excitation - the rotor moves in the middle of the plot
at a very low rotor deflection. After the arise of the radial force, the rotor deflection
increased suddenly, followed by an impact between rotor and auxiliary bearing. After
a few further impacts a rubbing state of backward whirling is established. In Figure
2.22(a) the amount of contact force, which arises between rotor and stator is plotted
versus time. After the first multiple impacts with up to 500 N, there is rubbing with
forces up to 200 N arises. In Figure 2.22(b) the phase angle of the center of the rotor
is plotted versus time. One can identify the beginning of the backward whirling
shortly after the occurrence of the short-time excitation.
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Rubbing with Control

Using the Simulink® simulation, the overall control concept has been proven and
optimized. A simulation is presented, where the rotor is running at a constant
speed of about 11 Hz and the control system is activated. The rotor orbit is plotted
in Figure 2.23. At the beginning, the rotor is running without contact and the
control system is on stand-by and tracks the rotor deflection. At a time of 1.0 s an
excitation in form of a short-time radial force is applied on the rotor. The rotor
deflection increases suddenly and the controller is activated. The active auxiliary
bearing catches the rotor and transforms the rubbing into a smooth rubbing state of
synchronous full annular rub. The contact force, which is plotted in Figure 2.24(a),
remains under 40 N - after the first impact. In Figure 2.24(b) the phase angle of the
center of the rotor shaft is plotted, which indicates the rubbing state of synchronous
rubbing.
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Figure 2.23: Simulation complete system, rubbing with feedback linearization control,
orbit
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3 Design of the Test Rig

A rotor test rig has been developed to experimentally investigate the concept of an
active auxiliary bearing. In Figure 3.1 the CAD drawing of the rotor test rig is
shown.

1

2

3

4

5
6

7

Figure 3.1: CAD drawing of the test rig

The test rig consists of the following components:

1. Rotor shaft

2. Ball bearings on isotropic mounting

3. Big disk

4. Magnetic bearing

5. Active auxiliary bearing

6. Clutch to the drive system

7. Variable mounting device for the active auxiliary bearing.
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The test rig can be assembled in two modifications: a quasi rigid elastic shaft with
40 mm diameter and a flexible one with 12 mm. In both cases, the air gap between
the rotor and the auxiliary bearing is 0.3 mm. A disc-servomotor allows a rotational
speed up to 3500 rpm. The big disk can be moved on the rotor shaft to realize a
variation of the resonant frequency. Masses can be fixed eccentrically on the disk to
apply an unbalance. As shown in Figure 3.2, there is a small disk (2) running inside
the magnetic bearing (1), which is made of ferromagnetic material. The magnetic
bearing is only used to apply various additional excitations during the experiments
and is not used by the control concept.

1

2

Figure 3.2: Detailed drawing of the magnetic bearing; 1: magnetic bearing; 2: ferromag-
netic disk

As discussed in the previous chapters, the active auxiliary bearing consists of an
auxiliary bearing (also called backup bearing or retainer bearing), which is carried
out as a bushing type, and two electromagnetic actuators. A CAD drawing of the
active auxiliary bearing is shown in Figure 3.3. There is a disk running inside the
auxiliary bearing. The contact between rotor and active auxiliary bearing occurs
between the ring of the auxiliary bearing and this disk, which is fixed on the rotor
shaft. The reason for this construction is, that the contact surface of the disk is
much larger than a contact surface between the thin rotor shaft and an auxiliary
bearing. The larger surface results in a much higher life span of the test rig and a
high temperature resistance, to allow widespread experiments.

Every component on the rotor shaft is fixed using clamping sets. Therefore, variable
positions of the disks are possible.
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1
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5
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Figure 3.3: Detailed drawing of the active auxiliary bearing; 1: auxiliary bearing (ring);
2: disk, which is fixed on the rotor shaft; 3: electromagnetic actuators; 4:
clamping set; 5: housing, which allows to fill the auxiliary bearing with a
lubricant; 6: accelerometer
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Several sensors are applied on the test rig. As shown in Figure 3.4, information is
gathered in three planes, which are perpendicular to the rotor shaft:

• At the ball bearing / mounting at the open end of the rotor shaft: measurement
of the acceleration of the bearing housing.

• At the active auxiliary bearing: measurement of the displacement of the rotor
and the auxiliary bearing, measurement of the actuator forces.

• At the ball bearing / mounting beside the clutch: measurement of the accel-
eration of the bearing housing.

The measurement of the accelerations at the ball bearings is only used to determine
the performance of the control system. The signals which are used by the cascade
control are the displacements and forces measured at the position of the active aux-
iliary bearing.

Two eddy current displacement sensors are used to measure the displacement of
the rotor and auxiliary bearing. Load washers in each actuator are measuring the
actuator forces, from which the contact force is determined indirectly.

Figure 3.4: Photo of the assembled test rig
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3.1 Configuration “40 mm Shaft”

At first the assembly with the quasi-rigid rotor shaft with a diameter of 40 mm is
examined. The test rig in this configuration is shown in Figure 3.5. The main
components are marked by numbers and explained in the caption of the figure. A
more powerful magnetic bearing is used in comparison to the configuration with the
12 mm shaft. The main dimensions and parameters are given in the appendix.

1

2

3

4 5

6

7
8

Figure 3.5: Test Rig (1: drive system, 2: magnetic bearing, 3: rotor disk, 4: auxiliary
bearing, 5: electromagnetic actuators, 6: displacement sensors, 7: accelerom-
eter, ball bearing, 8: ball bearing)

3.1.1 Frequency Analysis

To get more information about the frequencies of interest of the rotor, considering
the whole system, a modal analysis has been made with the non-rotating rotor shaft.
The positions of the disks on the rotor shaft of this configuration are given in the
appendix. The first and second resonance frequency, which has been determined by
this dynamic analysis, is given in Table 3.1.

Table 3.1: Resonance frequencies of the configuration “40 mm shaft”

No. Type Frequency

1st bending approx. 110 Hz
2nd bending approx. 367 Hz
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3.1.2 Order Analysis

In contrast to the slander rotor shaft, the used magnetic bearing is not powerful
enough to induce rubbing at every rotational speed. At certain angular velocities,
the deflection of the shaft of this configuration is particularly high. To get more
information about the mechanisms of excitation, an order analysis of the angular
velocity and the rotor deflection has to be performed. The waterfall diagram in
Figure 3.6(a) shows the FFT of the angular velocity for speeding-up from 100 rpm
to 3500 rpm. Inherently, motors of this design have a rotational speed which contains
parts of higher order excitations. Here, the angular velocity mainly consists of terms
of the first four orders. Also the supply frequency and their harmonics are present
in Figure 3.6(a).

Frequency in Hz

Rotational
speed in Hz

1st 2nd 3rd 4th order

50

5 250150 2

(a) Analysis of the angular velocity

Frequency in Hz

Rotational
speed in Hz

1st 2nd 3rd 4th order

58

5 250109.5 2

36.5

(b) Analysis of the rotor amplitude

Figure 3.6: Order analysis of the configuration “40 mm Shaft”

In Figure 3.6(b) an order analysis of the bending of the rotor is shown. There is no
excitation by the magnetic bearing, so there is no contact in the auxiliary bearing
during the speeding-up. Only the radius of the displacement is used as input to the
FFT.

At the rotational speed of about 2230 rpm to 2240 rpm, the third order of the exci-
tation caused by the speed droop of the motor hits the first eigenfrequency. At this
operation point the bending response of the elastic rotor has a significant maximum
during the speeding-up from 100 rpm to 3500 rpm. As a consequence peaks appear
at the first four harmonics of the excitation.

3.1.3 Electromagnetic Bearing

A further component of the test rig is the electromagnetic bearing. This conven-
tional radial bearing is used to apply a large variety of loads on the rotor. The
electromagnetic bearing, which is used in the configuration “40 mm shaft”, features
an air gap of 0.8 mm and forces up to 500 N.
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3.2 Configuration “12 mm Shaft”

The second configuration of the test rig is the assembly with a slender rotor shaft
with a diameter of 12 mm. A photo of the test rig in this configuration is shown
in Figure 3.7. The main components are marked by numbers and explained in
the caption of the figure. The main dimensions and parameters are given in the
appendix.

1

2 3

4
5

6

78

Figure 3.7: Test Rig (1: drive system, 2: magnetic bearing, 3: rotor disk, 4: auxiliary
bearing, 5: electromagnetic actuators, 6: displacement sensors, 7:ball bear-
ing, 8: ball bearing)

The used magnetic bearing in combination with the use of unbalance masses is
powerful enough to cause rubbing at every rotational speed.

3.2.1 Frequency Analysis

A modal analysis has been made with the non-rotating rotor shaft. The positions of
the disks on the rotor shaft of this configuration are given in the appendix. The first,
second and third resonance frequency, which has been determined by this dynamic
analysis is given in Table 3.2.

Table 3.2: Resonance frequencies of the configuration “12 mm shaft”

No. Type Frequency

1st bending approx. 24 Hz
2nd bending approx. 97 Hz
3rd bending approx. 231 Hz

For a detailed discussion of the modal analysis of the presented system, please refer
to [36].
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3.2.2 Electromagnetic Bearing

Another electromagnetic bearing has been applied in this assembly. The electromag-
netic bearing features an air gap of 0.8 mm and it is possible to generate forces up
to 55 N.

3.3 Electromagnetic Actuators

The electromagnetic actuators have been developed at the Institute for Applied
Mechanics, TU Munich, see also [41]. The main components are shown in Figure
3.8. The actuator consists of two pull-disks (the armatures of the magnetic system),
fixed on a shaft and positioned at the ends of a pot-shaped magnet. For a frictionless
support of the shaft, two annular membranes with a high axial flexibility and a high
stiffness in radial direction are used. To realize tensile as well as compressive forces,
two control coils are integrated in the pot-shaped magnet and they are working in
a differential mode.

+

-

-

+

Membrane

Magnetic core

Permanent magnet

Control coil

Pull disk

Shaft

Figure 3.8: Design of the actuator

The main advantage of this type of electromagnetic actuator is a large stroke up
to 1 mm at frequencies up to 250 Hz. Forces up to 1000 N are available. Figure 3.9
shows the characteristic curve (force-field), obtained by variations of the control
current and the displacement. The actuator shows a nonlinear force behavior in
relation to the control current and the axial position of the pull-disk.

Depending on the application of an active auxiliary bearing, the requirements for
the actuators vary strongly. The selection of suitable actuators depends on various
parameters, such as the size of the air gap in the auxiliary bearing and the rotational
speed of the rotor system. Simulations of the presented test rig showed that actu-
ators with a minimum stroke of ±0.3 mm are required, so piezo-electric ones have
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Figure 3.9: Force-field of the actuator

been classified as unsuitable for this application. But, especially for a short-time ap-
plication after an impact load, commercially available piezoelectric actuators seem
to be suitable.

The dynamics and the optimization of the electromagnetic actuator have been inves-
tigated using simulation and experiment in detail in [28] and [42]. Oberbeck [42]
has derived a relation between force, current and displacement as follows:

FActuator (i, x) = ki (i,x) i+ kx (i,x) x (3.1)

with

ki (i,x) = k2
µ (i,x)

4 k1wΘPM [(2RPM + k2 x0) x0 + k2 x2]

k2 [(2RPM + k2 x0) x0 − k2 x2]2
(3.2a)

as force-current-coefficient and the coefficient

kx (i,x) = k2
µ (i,x)

4 k1 [Θ2
PM k2 x0 + w2 i2 (2RPM + k2 x0)]

k2 [(2RPM + k2 x0) x0 − k2 x2]2
(3.2b)

which describes the negative stiffness of the magnetic field. In this coefficient, the
following nomenclature has been used:

• kµ (i,x): a saturation factor, which describes the ratio of the magnetic flux and
the linear approximated induction

• k1 and k2: constant coefficients, which consist of geometric and magnetic
parameters and are used for the description of the magnetic forces

• w: the number of coil windings
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• ΘPM : the magnetomotive force caused by the permanent magnets

• RPM : the reluctance of the permanent magnets

• x0: the initial air gap

• x: the displacement of the actuator.

The ongoing discussion on the electromagnetic actuator will be neglected, for details
please refer to the literature [42]. In the following, the force field shown in Figure 3.9,
is used. This map describes the complex relation of force, current and displacement
of the actuator.

The output of the control system is the desired force, which should be applied to
the auxiliary bearing. Because of the inherent nonlinearity of the actuator, the ratio
of the force and the control current can not only be explained by a proportional
factor. Therefore, the relation is split in a proportional part using a coefficient and
a nonlinear part as follows:

iActuator =
1

ki,lin
FActuator + ic (FActuator, x) , (3.3)

where ki,lin is a proportionality factor, being composed of the maximum force of
the actuator |FActuator|max = 950 N and the maximum allowable current of the con-
trol coils |iActuator|max = 5 A. This coefficient, which is constant and consequently
independent from the displacement of the actuator, is given by

ki, lin =
|FActuator|max
|iActuator|max

= 190 N/A. (3.4)

In equation (3.3) ic (FActuator, x) is the compensating current, which eliminates the
nonlinearity of the actuator. This compensating current is given by a map which
has been determined experimentally.

3.4 Real-Time Hardware

For the experiments, two dSPACE real-time hardware boards have been used. The
main advantage of these single-board hardware is its high flexibility and its high
processing power. With a variety of I/O components and the real-time interface,
which enables a very fast programmability from the Simulink® block diagram en-
vironment, the boards are optimally suitable for rapid control development. The
feedback controller for the actuators is executed on the DS1103 board and the tra-
jectory computation is done on the DS1104 board:

• DS1103 PPC Controller Board, Sample rate: 5000 Hz, Feedback control of the
actuators;

• DS1104 PPC Controller Board, Sample rate: 5000 Hz, Trajectory computa-
tion.
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For testing purposes, the feedback controller has also been implemented on a Mo-
torola MPC 555 microcontroller and tested successfully, but because of the clearly
worse ease of use, the microcontroller is unsuitable for the experimental investiga-
tions, which demands a high amount of flexibility.





4 Experimental Investigation

In this chapter, the experimental investigation of the control concept is presented.
For the experimental investigation of the designed control concept, only the feedback
linearization control (see Section 2.4.2) has been used to control the actuator. This
decision is based on the results of the Simulink® simulation presented in Section
2.6.

Parameter Identification After the assembly of both configurations of the test rig,
the unknown parameters have been determined experimentally. Free vibration decay
tests have been performed to determine stiffness and damping of the mounting of the
ball bearing and of the rotor shaft. For both - shaft and mounting - the tests have
been carried out in the two dimensions perpendicular to the undeformed rotor shaft.
The resonances have also been determined, using these tests. The magnetic bearings,
which are used in both configurations, have been investigated to determine the force
parameters. The parameters of the two assemblies - the 12 mm configuration, i.e.
the shaft has a diameter of 12 mm, and the 40 mm configuration, i.e. the shaft has
a diameter of 12 mm - of the test rig are given in the appendix.

Online Determination of the Contact Force For the analysis of the controller,
it is important to record the contact force between rotor and the auxiliary bearing
during rubbing. It is hardly possible to measure these force directly without inter-
fering the whole system. Therefore the forces of the actuators are measured. The
contact force is determined using the linearized equations of motion of the active
auxiliary bearing (2.67):

QNC,Contact =MAB, lin q̈ +DAB, lin q̇ +CAB, lin q − F Act. (4.1)

For a detailed discussion of the indirect determination of the contact force refer
to [27].
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4.1 Configuration “40 mm Shaft”

The experimental investigations of the configuration “40 mm Shaft”, i.e. the shaft of
the assembly has a diameter of 40 mm, are presented. Some presented experimental
results are comparisons between various states of rotor rubbing with and without
controlled auxiliary bearing. For the condition “without control”, the actuators
positioned the auxiliary bearing concentrically with the undeformed rotor shaft and
the controller is switched to a mode with high stiffness and damping. Therefore, a
passive auxiliary bearing is simulated. Measurements of the rotor deflection and of
the rotor orbit are presented. These measurements have been performed beside the
auxiliary bearing.

4.1.1 General Comparison

The first experiments deal with a general investigation of rubbing without control
and rubbing with control. For both cases the rotor is running at a constant speed
of 2233 rpm and the magnetic bearing applies an excitation which leads to a contact
between rotor and auxiliary bearing. This rotational speed is within a critical range,
as discussed in Section 3.1.2. The excitation for the presented measurements is a
radial force which rotates synchronously with the angular velocity of the rotor shaft
like an unbalance force.
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Figure 4.1: General comparison: rubbing without and with control, constant speed
2233 rpm
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Figure 4.1(a) shows the contact force which occur between the rotor and the auxiliary
bearing versus time, one measurement without control (gray line) and another with
control (black line). Without control the established rubbing state is partial rub with
multiple impacts. The contact force is very high with magnitudes up to 600 N.

Using the actively controlled auxiliary bearing the rotor has a permanent contact
with the auxiliary bearing and is in the desired rubbing state of “synchronous full
annular rub”. The contact force is reduced by 80 percent and remains below 120 N.
There is still an oscillation of the contact force between 20 N and 120 N, which
is caused by periodical errors of the displacement measurement and small control
errors. Therefore, the control target for the contact force - cf. equation (2.103) -
has to be large enough to avoid a loss of contact, which would lead to impacts.
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Figure 4.2: General comparison, constant speed 2233 rpm, orbit of the rotor

In Figure 4.1(b) the rotor deflection versus time for the same experiment is plotted.
Without control the auxiliary bearing limits the rotor deflection to the size of the air
gap - about 0.3 mm - which is the primary purpose of the auxiliary bearing. Using
the developed control system the rotor deflection is reduced by the half and remains
below 0.16 mm. There is a reduced contact force at a reduced rotor deflection.
Therefore, the target of the feedback controller - the reduction of the contact force
at the desired rubbing state of “synchronous full annular rub” - as well as the primary
purpose of an auxiliary bearing in general - the limitation of the rotor deflection -
is fulfilled.

For a detailed investigation of the rubbing process the orbit of the rotor and the
one of the active auxiliary bearing is discussed. Without control, there are multiple
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Figure 4.3: General comparison, constant speed 2233 rpm, orbit of the auxiliary bearing

impacts as one can see in Figure 4.2(a), on which the orbit of the rotor displacement
of 5 rotations is plotted.

By using the proposed control system, a stabilized state of “synchronous full annular
rub” is assured. The orbit of the rotor of this experiment is shown in Figure 4.2(b).
Due to measurement errors and imprecision of the control system the measured orbit
differs a little bit from the desired one, which is a plain circle. But also despite of
this imprecision the control system is able to ensure the desired rubbing state, a
permanent contact and a low rubbing force. The plot shows the measurement of
5 rotations of the test rig.

Figure 4.3 shows the orbit of the active auxiliary bearing with control. The devi-
ation of the nominal desired orbit - which is a plain circle - shows how the active
auxiliary bearing compensates the imprecision discussed above. The plot shows the
measurement of 5 rotations.

4.1.2 Sudden Excitation

For the second presented experiment, the rotor is running at a constant speed with-
out rotor to stator contact. At a time of t=1.0 s the magnetic bearing applies a sud-
denly arising excitation. The excitation is a radial force, which rotates synchronously
with the angular velocity of the rotor shaft. Therefore, a suddenly arising unbalance
is simulated. This excitation leads to rubbing. The measurement in Figure 4.4(a)
shows the contact force versus time without control. The active auxiliary bearing
acts as a conventional auxiliary bearing and the simulated unbalance leads to a state
of partial rub with a high contact force up to 700 N. The same experiment has been
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Figure 4.4: Suddenly arising excitation, constant speed 2235 rpm, contact force

repeated using the feedback control. This measurement is shown in Figure 4.4(b).
The contact force versus time is plotted. The automatic activation system tracks
the position of the rotor and activates the control system just a few milliseconds
after the arising of the unbalance at a time of t=1.0 s. The control system is able
to assure a permanent contact in the desired state of “synchronous full annular rub”
with a very low contact force. In this case the contact force is reduced by 87 percent.
The reduction of the contact force is reflected in the same way in the load on the
bearings and in amplitude of the noise. At the same time, the rotor deflection is
reduced.

4.1.3 Speeding-Up

In Figure 4.5(a) an extract of a speeding-up of the rotor system is shown. The
presented part of the speeding-up ranges from about 2080 rpm to 2350 rpm, in which
the third order of the excitation caused by the speed droop of the motor hits the
first eigenfrequency, as discussed in Section 3.1.2. In this part, the rotor deflection
becomes larger than the nominal air gap, and rubbing occurs. The experiment has
been performed twice, first without control and a second time using the control
system, which is activated and deactivated automatically. For each experiment the
main peaks of the contact force are plotted on the left side and the main peaks
of the acceleration of the ball bearing / mounting on the right side, both versus
the rotational speed. There is a significant reduction of the load by 65 percent,
when using the proposed control system which assures a permanent contact during
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Figure 4.5: Speeding-up, with and without control

rubbing in the state “synchronous full annular rub”. Also the acceleration of the
mounting is reduced drastically, which goes along with a reduction of the load on
the whole system. As soon as the critical speed range is crossed, the controller
is deactivated automatically, and the auxiliary bearing separates from the rotor.
Also the non-controller auxiliary bearing separates autonomously in the presented
experiment.
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4.2 Configuration “12 mm Shaft”

In the following the experiments, which have been performed using the assembly
with the “12 mm Shaft”, are presented. For the case “without control” the auxiliary
bearing is fixed mechanically to be concentric with the undeformed rotor and is
working as a conventional passive auxiliary bearing. Measurements of the rotor
deflection and of the rotor orbit are presented. These measurements have been
performed next to the auxiliary bearing.

Due to the slender shaft and the configuration of the masses, the possibility of a
state of backward whirling is extremely high. In all experiments without control, a
state of backward whirling has occurred.

4.2.1 General Comparison
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Figure 4.6: General comparison: constant speed of 500 rpm, orbit of the rotor

This measurements show a comparison of rubbing with and without control at a
very high friction coefficient, Figure 4.6(a) and 4.6(b). The rotor with a diameter
of 12 mm is running at a constant speed of 500 rpm. At a time of t=1.0 s an addi-
tional excitation in form of a synchronous rotating radial force arises suddenly. This
simulated arise of an unbalance leads to rubbing. The high friction coefficient is
achieved by applying no lubrication at all inside the auxiliary bearing. Figure 4.6(a)
shows the rotor orbit of the experiment without activated control system. A few
revolutions after the first contact the rubbing state turns into “backward whirling”
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with a very high rubbing force and a large deflection. Figure 4.6(b) shows the rotor
orbit of the experiment with control. At the beginning of the experiment - without
the additional unbalance - the rotor is running with a low deflection (inner circle).
When the unbalance arises, the rotor deflection exceeds the normal range and the
controller is activated, catches the rotor and assures a permanent contact (outer
circle) at a low rotor deflection.

4.2.2 Sudden Excitation

In the course of this experiment, the rotor is running at a constant speed without
rotor to stator contact. At a time of t=1.0 s, the magnetic bearing applies a suddenly
arising excitation. The excitation is a radial force, which rotates synchronously with
the angular velocity of the rotor shaft. Therefore, a suddenly arising unbalance is
simulated. This excitation leads to rubbing.
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Figure 4.7: Suddenly arising excitation, constant speed of 500 rpm, contact force

In Figure 4.7(a) the contact force versus time of the experiment without control is
displayed. The active auxiliary bearing acts like a conventional auxiliary bearing.
The simulated unbalance leads to rubbing in the very destructive state of “backward
whirling”. The contact force is very high, up to 5000 N. The same experiment has
been repeated using the control system. This measurement is shown in Figure 4.7(b).
The contact force versus time is plotted. The automatic activation system tracks the
position of the rotor and activates the control system just a few milliseconds after
the arising of the unbalance at a time of t=1.0 s. The control system is able to assure
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Figure 4.8: Suddenly arising excitation, constant speed of 500 rpm, rotor deflection

a permanent contact in the desired state of “synchronous full annular rub” with a
very low contact force. We achieve a reduction of the contact force of 96 percent.

For both experiments, the rotor deflection is shown in Figures 4.8(a) and 4.8(b).
Without control, the rotor deflection is extraordinary high because of the high con-
tact force compared to the stiffness of the auxiliary bearing in this assembly. By
using the control system, the rotor deflection is reduced by 70 percent, below the
amount of the nominal air gap.

4.2.3 Variation of Friction

Next a variation of the friction between rotor and auxiliary bearing is investigated.

The experimental results deal with two different friction coefficients. It is very dif-
ficult to establish a certain friction coefficient at the experimental setup. For this
reason, two extreme conditions are compared - high friction and low friction. For
achieving the high friction, we performed the experiment without any lubrication
inside the auxiliary bearing. The low friction condition is achieved by lubricating
the auxiliary bearing. The procedure of the experiment is the same as in the exper-
iment presented in Section 4.2.2. The 12 mm rotor is running at a constant speed
of 500 rpm without contact. At t=1.0 s an additional excitation, which simulates
an unbalance, arises and leads to rubbing. The control system is activated at all
experiments. Figure 4.9(a), 4.10(a) and 4.11(a) show the measurements with a low
friction coefficient. Figure 4.9(a) shows the contact force vs. time, Figure 4.10(a)
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Figure 4.9: Variation of friction: constant speed of 500 rpm, with control, contact force
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Figure 4.10: Variation of friction: constant speed of 500 rpm, with control, rotor
deflection
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Figure 4.11: Variation of friction: constant speed of 500 rpm, with control, orbit of the
rotor

the rotor deflection versus time. In Figure 4.11(a) the rotor orbit is plotted. The
deflection of the rotor is tracked and when it exceeds a normal range the controller
starts the first phase. In the first phase the auxiliary bearing catches the rotor with
an impact which is as small as possible. After this, the controller assures a per-
manent contact with a low contact force and a rubbing state of “synchronous full
annular rub”. This whole process can be seen in the plot of the orbit, Figure 4.11(a).
The inner circle is the orbit of the rotor without unbalance and contact. The outer
one is the orbit during the second control phase. Figure 4.10(a) shows the rotor
deflection at a low friction. One can see that the deflection is small and it has only
a little fluctuation during the controlled rubbing state. This oscillation is caused by
measurement imprecision. In Figure 4.9(a) we can see that the contact force is kept
very low from the beginning of the arising unbalance.

Figure 4.9(b), 4.10(b) and 4.11(b) show the measurement with the high friction
coefficient. Even under this condition the controlled auxiliary bearing keeps the
contact force very low (Figure 4.9(b)). The force is a little higher compared to
the experiment with low friction. Due to higher peaks of the contact force there
is more oscillation of the rotor deflection, as shown in Figure 4.10(b). The higher
contact force also results in a smaller rotor-orbit, Figure 4.11(b). The orbit is not as
smooth as the orbit of the experiment with low friction. But the controller assures a
permanent contact and avoids a destructive rubbing state, so that the contact force
is kept very low.



82 4 Experimental Investigation

4.2.4 Variation of Rotational Speed

The next experimental results deal with a comparison of various rotational speeds
during controlled rubbing of the 12 mm rotor. The procedure of the experiment is
the same as in the experiment presented in Section 4.2.2.

The control system is activated. Figure 4.12(a) and 4.12(b) show the experiment
with a rotational speed of 200 rpm. Figure 4.13(a) and 4.13(b) show the same
experiment at a rotational speed of 400 rpm and Figure 4.14(a) and 4.14(b) for a
rotational speed of 600 rpm.

With an increasing speed it takes longer to stabilize the rotor in the controlled
rubbing state after the arising of the unbalance. This effect can be also identified
in the plots of the orbits (Figure 4.12(b), 4.13(b) and 4.14(b)). At higher rotational
speeds there is more oscillation around the desired controlled orbit (outer circle).
But in all cases the control system stabilizes the rotor after a few revolutions.
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4.2.5 Impact Load

Finally, the quality of the control system after an impact load is discussed. At first,
results without using the control system are presented. The rotor system is running
at a constant speed of 600 rpm. At a time of t=1.0 s a sudden impact is applied on
the big disc using a hammer.
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Figure 4.15: Impact load: constant speed of 600 rpm, without control
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Figure 4.15(a) shows the contact force versus time, Figure 4.15(b) the rotor deflec-
tion versus time and Figure 4.16 the rotor orbit. At the beginning of the experiment
t<1.0 s the rotor is running in a normal operation mode without contact. The rotor
deflection is below 0.1 mm. Shortly after the impact at t=1.0 s the rotor comes into
contact with the auxiliary bearing and the destructive “backward whirling” with a
very high contact force occurs. The contact force is very high - up to 3200 N. The
deflection of the rotor goes up to 0.5 mm. The high number of revolutions on the
plot of the rotor orbit originates from the high backward whirling speed.

The same experiment (600 rpm, sudden impact at t=1.0 s) has been repeated with
the activated control system. The Figures 4.17(a), 4.17(b), 4.18(a) and 4.18(b) show
the measurements using the active auxiliary bearing. The automatic activation
system tracks the position of the rotor and activates the control system after the
arising of the rotor deflection at a time of t=1.0 s just before the occurrence of the
first contact. The control system is able to avoid “backward whirling” and separates
the auxiliary bearing from the rotor after the impact. The contact force is reduced by
95 percent. At the same time, the rotor deflection is reduced by 40 percent. Figure
4.18(a) shows the rotor orbit during the experiment and Figure 4.18(b) the orbit of
the auxiliary bearing. It should be denoted, that there is no lubrication inside the
auxiliary bearing in both experiments. This results in a very high friction, which is
the “worst case”.
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5 Advanced Simulation

For a practical realization of the proposed control system, the question for a realistic
simulation environment arises. The main requirements to the simulation are:

• Capability to model a full 3D rotor

• Capability to model a general multibody system with standard components

• Interface to import FE data

• Implementation of unilateral contacts

• Cosimulation with Simulink® to integrate feedback controller

• High efficiency to be suitable for optimization

Various simulation environments have been investigated concerning the suitability
for the given simulation task. Simpack as well as other proprietary software turned
out to be unsuitable. The major problem has been the unilateral contact in the
given dimensions, for a detailed discussion of this topic see [70]. The developed
basic rotor simulation, which has been discussed in Section 2.6, does not meet the
demands above - even if it was successfully used for the controller development of
the presented system.
Finally, for the simulation of a controlled rubbing rotor system and the optimization,
the simulation environment MBSim (http://mbsim.berlios.de), which was developed
at the Institute of Applied Mechanics, has been chosen. This simulation library is
licensed under GNU Lesser General Public License (LGPL). The modeling of the
rotor system with the active auxiliary bearing is presented, following by a comparison
between experimental results and simulation.

5.1 Simulation Environment

MBSim is based on a framework for the efficient simulation of multibody sys-
tems with unilateral contacts and elastic elements. The framework comprises of
the description of the system dynamics as well as numerical methods as provided
in [20], [21], [73]. A brief overview will be given in the following. For a more com-
prehensive introduction to the formulation and numerics of non-smooth dynamics
see [10], [57].
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The non-smooth dynamics of the system is described in terms of a measure differ-
ential equation. The dynamics of a bi- and unilateral constrained system can be
expressed by

Mdu = hdt+ WdΛ. (5.1)

The matrix M = M(q) denotes the symmetric, positive definite mass matrix and
depends on the f -dimensional vector of generalized coordinates q ∈ Rf . The vector
u = q̇ denotes the velocity vector. The acceleration measure

du = u̇dt+ (u+ − u−)dη (5.2)

is the sum of the continuous part u̇dt and the discrete parts (u+ − u−)dη. The
second term is the difference of the left and the right limit of the velocities weighted
by the sum of the Dirac delta functions dδi at the discontinuities ti:

dη =
∑

i

dδi, dδi = dδ(t− ti) =

{
∞ if t = ti
0 if t 6= ti

. (5.3)

On the right hand side of equation (5.1) the vector h = h(u,q,t) contains all smooth
external, internal and gyroscopic forces. The reaction measure in the contacts WdΛ
is decomposed by the generalized force directions W = W(q) and the magnitudes
dΛ. In analogy to the acceleration measure, the reaction measure dΛ contains forces
λ due to persisting contacts as well as impulses Λ due to collisions of bodies at the
impact times ti:

dΛ = λdt+ Λdη. (5.4)

Integrating (5.1) under consideration of the Dirac delta (5.3) yields the classical
equations of motion for a constrained system and the impact equations.
The computation of the accelerations u̇ as well as the post-impact velocities u+

i in
equation (5.1) requires the knowledge of the unknown contact reactions λ and Λi,
respectively. Thus, additional contact laws must be constituted. Contacts between
bodies in the system are modeled as discrete point contacts whereby the contact zone
is assumed to be totally rigid. Deformations of elastic components are only regarded
in form of the overall discretization, no local deformation e.g. of a beam cross-section
is modeled. Consequently, a contact corresponds to a constraint. In this context
two different types of contacts are considered, for which different contact laws hold:
persisting contacts which are always closed and contacts that may be open or closed.
In the following, the force laws of the two contact types are explained for smooth
and non-smooth motion. For this, the contact reactions

WdΛ =
(

WN WT

)( dΛN
dΛT

)
=
(

WB WU WT

)


dΛB
dΛU
dΛT


 (5.5)
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are decomposed into components, which are the normal (index N) - split up in
bilateral (B) and unilateral (U) - and tangential component (T) to the contact
plane.

5.2 Dynamics between Impacts

λB

gB

λU

gU

λT

•gT

+ | |μ λN

- | |μ λN

(a) Bilateral constraint (b) Unilateral constraint (c) COULOMB friction

Figure 5.1: Force laws for bi- and unilateral contacts and friction

First of all, only smooth motion is considered, i.e. no impacts occur. Then a bilateral
contact implies a bilateral constraint of the form

gB = 0, λB ∈ R, (5.6)

where gB denotes the normal distance of the interacting bodies in the contact point.
The second type of contact also allows for detachment. The associated unilateral
constraint is given by the Signorini-Fichera-condition

gU ≥ 0, λU ≥ 0, gUλU = 0. (5.7)

The respective force laws are shown in the Figures 5.1(a) and 5.1(b).

For both bi- and unilateral constraints dry friction is considered. In order to es-
tablish Coulomb’s law, the force of a single contact is decomposed in a compo-
nent λN ∈ {λB,λU} normal to the contact plane and – in case of three dimensional
dynamics – tangential components λT in friction direction. Using the relative tan-
gential velocity ġT , Coulomb’s friction law is given by

ġT = 0⇒ |λT | ≤ µ0|λN | (5.8)

ġT 6= 0⇒ λT = −
ġT
|ġT |
µ|λN |. (5.9)

For the planar case, the force law of a tangential frictional contact is shown in
Figure 5.1(c).
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5.3 Impact Dynamics

In contrast to persisting and detaching contacts, a closing contact implies a dis-
continuity in the relative velocities and therewith possibly all generalized velocities.
Therefore impacts must be treated separately. The effect of an impact of a specific
contact may concern all other constraints, the bilateral as well as the unilateral
ones.

The impact law for a bilateral contact is given by

ġ+B = 0, ΛB ∈ R (5.10)

and ensures that relation 5.6 is not violated after collisions. Given on impulsive
level, Newton’s impact law in the formulation of Moreau

ġ+U ≥ 0, ΛU ≥ 0, ġ+UΛU = 0 (5.11)

and Coulomb’s friction law with the normal reaction ΛN ∈ {ΛB,ΛU}

ġ+T = 0⇒ |ΛT | ≤ µ|ΛN | (5.12)

ġ+T 6= 0⇒ ΛT = −
ġ+T
|ġ+T |
µ|ΛN | (5.13)

hold for active contacts with gN = 0 only.

5.4 Elastic Components

The rotor shaft is modeled by a spatial bending-torsional beam using a polyno-
mial finite-element formulation for slender structures [74]. Based on the Euler-
Bernoulli theory with superposed torsion and small deflections, all deformations
are described in rotating reference systems individually attached to each node. The
formulation allows for arbitrary dynamic contact situations as introduced in the pre-
vious section, especially non-smooth dynamics including unilateral contacts and dry
friction. For the present case, rigid disks are bilaterally bound to the shaft; the two
unilateral contacts to the top and bottom circles of auxiliary bearing are modeled
rigid including Coulomb friction.

5.5 Numerical Framework

Two different groups of numerical schemes can be used to integrate unilateral con-
strained equations of motion: event-driven and time-stepping schemes [21]. The
event-driven detects events like detachments or impacts and resolves the exact tran-
sition times. Between these events the motion of the system is smooth and all
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contact laws are reduced to bilateral constraints. Thus the equations of motion can
be integrated by a standard ODE/DAE-integrator with root-finding.
In contrast, time-stepping methods are based on a time-discretization of the system
dynamics including the constraints. A detection of events is not needed and the
discretization can be chosen such that the constraints are fulfilled either on position
or on velocity level. Moreover, a time-stepping algorithm turns out to be very robust
in terms of numerical errors.
The presented multibody simulation uses a time-stepping method on position level.
A detailed description of the numerical framework can be found in [20]. A compre-
hensive review on time integration of non-smooth systems is provided in [57].

5.6 Cosimulation with SIMULINK®

A cosimulation between MBSim and Matlab®/Simulink® is used to integrate the
feedback controller. Matlab® provides an Application Program Interface (API)
called “the Matlab® engine” which allows a C program to call Matlab® as
a computation engine. Matlab® engine programs communicate with a separate
Matlab® process via pipes (in Unix) and through ActiveX on Microsoft Win-

dows® . There exists a library of functions, that allows the program to start and end
a process, send data to and from Matlab® , and send commands to be processed.
Figure 5.2 shows the synchronization of the cosimulation. The feedback controller

MBSim

Matlab®

AAAA BBB

t∆tS

∆tC

Figure 5.2: Cosimulation

is calculated in Matlab® /Simulink® with a fixed time step size of ∆tC using an
Euler discretization as it is used at the experimental test rig. The simulation is cal-
culated with the much lower fixed time step size ∆tS of the time stepping integrator.
The synchronization starts with “A”. The positions and velocities, which are used
by the feedback controller, are transferred to Matlab® and one calculation step of
the controller is started in Matlab® . In the meanwhile the multibody simulation
MBSim is performed until the end of the controller time step ∆tC is reached. With
the synchronization “B” the calculated control force for the actuators is transferred
to MBSim and the actuator force in the multibody simulation is updated.

The advantages of the cosimulation are the following. Since the dSPACE real-
time hardware uses Simulink® for the code generation of the controller, a single
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Simulink® model of the controller can be used for both - simulation and experiment.
So a very rapid controller development and optimization can be achieved. There
exists no error source caused by modeling the test rig controller in another simula-
tion software. Furthermore, the cosimulation takes advantage of recent multi-core-
processors, because between the synchronization steps MBSim and Matlab® are
two independent processes. A detailed discussion about the implementation of the
cosimulation can be found in [34].

5.7 Modeling

The simulation model of the rotor system represents the test rig and comprises of
the flexible rotor, a unilateral contact with friction between the rotor and the aux-
iliary bearing and a cosimulation between MBSim and Matlab® /Simulink® to
integrate the feedback controller. There are three rigid disks - the big disk, one small
disk which is running inside the auxiliary bearing and a disk which is running inside
the magnetic bearing. The disks are rigidly coupled on the elastic rotor. The rotor
is attached to the environment via two spring-damper elements, which represent the
ball bearings and bearing housings. The modeling of the auxiliary bearing is shown
in Figure 5.3 and includes the actuators, the three joints and the joint friction. The
contact between the rotor and the auxiliary bearing is modeled as a rigid contact as
described above. The overall model is a full 3D model of the presented rotor system.
So, one simulation model is able to cover totally free motion, impacts and a state
of permanent contact.
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Figure 5.3: Model of the test rig
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5.8 Experiment vs. Simulation

The 12 mm configuration of the test rig has been taken to compare experiment
and simulation. A measurement with a suddenly arising unbalance, as described in
Chapter 4, is used. The rotor is running at a constant speed of 500 rpm.

After the parametrization of the simulation, several experiments have been com-
pared to the simulation to determine the unknown parameters (e.g. free vibration
decay tests of bending and torsion). Experiments at various rotational speed with
varying excitations, with and without contact, have been performed. Therefore, the
dynamics of the rotor simulation has been aligned with reality in a broad operational
range.

For the analysis of the dynamics of the system, the contact force between rotor
and the auxiliary bearing during rubbing is highly important, because it reflects the
severity of the rubbing. For this reason this force has been taken into account for the
comparison between experiment and simulation. It is nearly impossible to measure
the contact force directly without manipulating the whole system. Therefore it has
been determined indirectly via measurements of the forces of the actuators using
the mechanical model.

The presented results deal with the state “without control” and “with control”. For
the case “without control” the auxiliary bearing is fixed mechanically and is working
as a conventional passive auxiliary bearing. The Figures 5.4 and 5.5 show a com-
parison between experiment and simulation in the case of a deactivated as well as
an activated control system. The contact force versus time is plotted in Figure 5.4.
The experimental results are plotted on the left (Figures 5.4(a), 5.4(c)), the simu-
lation results on the right (Figures 5.4(b), 5.4(d)). For this experiment the rotor is
running at a constant speed without rotor to stator contact. At a time of t=1.0 s
the magnetic bearing applies a suddenly arising unbalance. At first the experiment
has been performed without using the control system. Then the experiment has
been repeated with an activated controller. In the case of “without control” (Fig-
ures 5.4(a), 5.4(b)) rubbing in a state of backward whirling occurs with a very high
contact force up to 5500 N. The simulation shows an excellent agreement with the
experiment.

By using the control system a rubbing state of synchronous full annular rub with a
very low contact force (below 200 N) is assured in the simulation as well as in reality.
The simulation shows a very good agreement. The oscillation of the contact force
of the experiment is caused by measurement errors, which are not covered by the
simulation. As a result the plot of the simulation is smoother than the experimental
measurement. In Figure 5.5 the rotor orbit beside the auxiliary bearing of each
discussed experiment is plotted. Also regarding the orbit plots, there is a very good
agreement between experiment and simulation in case of “without control” as well
as in case of “with control”.
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Figure 5.4: Contact force: the 12 mm rotor runs at a constant speed of 500 rpm, at
t=1.0 s there is a suddenly arising unbalance
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Figure 5.5: Rotor orbit: the 12 mm rotor runs at a constant speed of 500 rpm, at t=1.0 s
there is a suddenly arising unbalance





6 Summary and Conclusion

A new approach to control a rubbing rotor by applying an active auxiliary bearing
has been developed. The control force is applied indirectly using an auxiliary bearing,
in case of rotor rubbing only. The auxiliary bearing is designed as a dry bushing
type bearing and actuated using two unidirectional actuators. During the normal
operation state, the feedback control does not interfere with the rotor system at
all.

A three-phase control strategy has been developed, which stabilizes the rotor system
in case of rubbing and effectively avoids the destructive backward whirling. The
model-based cascade-control consists of a feedback control of the actuators, the
computation of the target trajectory and an activation routine which tracks the
orbit of the rotor. The control system is activated shortly before each occurrence of
an impact, if a contact between rotor and the auxiliary bearing is inevitable. In the
first phase, when the contact is still open, a target trajectory for the movement of
the auxiliary bearing is determined, which synchronizes the auxiliary bearing with
the orbit of the rotor. The synchronization is followed by a smooth transition to
a contact. Thereby, the relative velocity is minimized, depending on the deflection
of the rotor. In the second control phase (during contact) a target trajectory is
determined, which keeps a permanent contact with a low contact force and ensures
a state of synchronous full annular rub. The third phase opens the contact in case of
a short-time load. As soon as the excitation has disappeared, the auxiliary bearing
is separated from the rotor again and the normal operation mode continued.

Furthermore, the controller ensures that the rotor deflection does not exceed the
initial air gap of the auxiliary bearing, to keep its general purpose in mind. The
feedback control of the actuators is based on a feedback linearization and assures
an accurate and robust motion control of the auxiliary bearing throughout the full
range of possible contact forces and impacts.

Only a few signals are required by the control system. The displacement of the
auxiliary bearing and the rotor in the plane perpendicular to the rotor at the location
of the auxiliary bearing are used as input to the controller.

A test rig has been developed to experimentally verify the control system. Various
experiments show the success of the control strategy. In the case of controlled
rubbing, the reduction of the contact force ranges from 74 percent to 96 percent. At
the same time, the rotor deflection is decreased too. The activation and deactivation
of the control system is operated automatically.
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Using the equations of motion, which have been required for the feedback controller
development, a basic simulation has been designed. This simulation has been suc-
cessfully used during the controller design process. However, as the experimental
results show, this simulation is not able to represent the dynamics of a real rotor
system. Therefore, a sophisticated and at the same time highly efficient simulation
framework has been developed, which can be used to configure active auxiliary bear-
ings for future applications. The advanced simulation is based on a framework for
the efficient simulation of multibody systems with unilateral contacts and elastic el-
ements. The simulation comprises of the modeling of a 3D flexible rotor, unilateral
contacts with and without friction between the rotor and stationary parts and an
interface to Matlab® /Simulink® to co-simulate the feedback control of active
elements. The fundamentals of unilateral constraints allow a detailed simulation of
processes like contact/detachment, stick/slip or impacts with and without friction.
The developed simulation environment has been successfully verified using experi-
mental data. One and the same simulation model was able to cover situations of
controlled as well as uncontrolled rubbing.

An industrial application of the proposed control system primarily depends on the
availability of suitable actuators. On the one hand, these actuators have to fulfill the
requirement of high speed. The rotational frequency of the rotor system has to be
met. On the other hand the required force capability depends on the rotor system
to be controlled. Due to the additional costs of actuators and real-time hardware,
the primary focus at the moment lies on applications, which are highly relevant to
security.



A General Parameters

A.1 Dimensions Active Auxiliary Bearing
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Figure A.1: Main dimensions active auxiliary bearing - drawing

A0 appr. 283 mm
B0 appr. 283 mm
C 406.5 mm
α0 appr. 90 deg

Table A.1: Main dimensions active auxiliary bearing - parameters

A.2 Drive System

Parameter Value

Manufacturer Mattke
Type MC27R0006
Maximum speed 3500 rpm
Nominal torque 1430 Ncm

Table A.2: Selected parameters of the drive system
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A.3 Sensors

Measured quantity Manufacturer Type

Force (actuator) Kistler 9021A
Displacement (actuator) Micro-Epsilon U3
Displacement (rotor) Micro-Epsilon S2

Table A.3: Sensors used by control concept



B Configuration “40 mm Shaft”

B.1 Dimensions Rotor
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Figure B.1: Main dimensions rotor - drawing

A 175 mm
B 280 mm
C 430 mm
D 590 mm

Table B.1: Main dimensions rotor - parameters
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B.2 Parameters

Parameter Value

Diameter of the shaft 40 mm
Mass of the big disk 9.6 kg
Mass of the auxiliary bearing disk 1.4 kg
Mass of the magnetic bearing disk 2.6 kg
Stiffness of the ball bearing mounting 6000 N/mm

Table B.2: Selected parameters of the rotor



C Configuration “12 mm Shaft”

C.1 Dimensions Rotor
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Figure C.1: Main dimensions rotor - drawing

A 175 mm
B 280 mm
C 380 mm
D 590 mm

Table C.1: Main dimensions rotor - parameters
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C.2 Parameters

Parameter Value

Diameter of the shaft 12 mm
Mass of the big disk 2.51 kg
Mass of the auxiliary bearing disk 0.791 kg
Mass of the magnetic bearing disk 0.519 kg
Stiffness of the ball bearing mounting 6000 N/mm

Table C.2: Selected parameters of the rotor
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