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Preface

P.1 Abstract

Models with a warped extra dimension, so-called Randall-Sundrum models, pro-
vide an appealing solution to the gauge and flavour hierarchy problems of the
Standard Model. After introducing the theoretical basics of such models, we con-
centrate on a specific model whose symmetry structure is extended to protect the
T parameter and the ZbLb̄L coupling from large corrections. We introduce the
basic action and discuss in detail effects of electroweak symmetry breaking and
the flavour structure of the model. Then we analyse meson-antimeson mixing and
rare decays that are affected by new tree level contributions from the Kaluza-Klein
modes of the gauge bosons and from the Z boson in an important manner. After
deriving analytic expressions for the most important K and B physics observables,
we perform a global numerical analysis of the new effects in the model in question.
We confirm the recent findings that a stringent constraint on the model is placed
by CP-violation in K0 − K̄0 mixing. However, even for Kaluza-Klein particles in
the reach of the LHC an agreement with all available data can be obtained without
significant fine-tuning. We find possible large effects in either CP-violating effects
in the Bs − B̄s system or in the rare K decays, but not simultaneously. In any
case the deviations from the Standard Model predictions in the rare B decays are
small and difficult to measure. The specific pattern of new flavour effects allows
to distinguish this model from other New Physics frameworks, which we demon-
strate explicitly for the case of models with Minimal Flavour Violation and for the
Littlest Higgs model with T-parity.

P.2 Zusammenfassung

Modelle mit einer gekrümmten Extradimension, sog. Randall-Sundrum Modelle,
bieten eine ansprechende Lösung zum Hierarchieproblem und zum Flavour-Problem
des Standardmodells. Nach einer Einführung in die theoretischen Grundlagen
dieser Modelle konzentrieren wir uns auf ein spezifisches Modell mit erweiterter
Symmetriestruktur, in dem der T Parameter und die ZbLb̄L Kopplung vor großen
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Korrekturen geschützt sind. Wir führen die zugrundeliegende Wirkung ein und
diskutieren detailliert die Effekte der elektroschwachen Symmetriebrechung und
die Flavour-Struktur des Modells. Dann analysieren wir die Meson-Antimeson-
Mischung sowie seltene Zerfälle, die wichtige neue Beiträge auf dem Tree-Niveau,
generiert durch die Kalzua-Klein-Moden der Eichbosonen und durch das Z Bo-
son, erhalten. Nach der Ableitung analytischer Formeln für die wichtigsten Ob-
servablen der K und B Physik führen wir eine globale numerische Analyse der
neuen Effekte in diesem Modell durch. Wir bestätigen, dass CP-Verletzung in
der K0 − K̄0 Mischung eine besonders strikte Einschränkung des Modells liefert.
Dennoch ist es selbst mit Kaluza-Klein-Teilchen, die am LHC beobachtet wer-
den können, möglich, ohne relevantes Fine-Tuning Übereinstimming mit allen
verfügbaren Daten zu bekommen. Wir finden mögliche große CP-verletzende Ef-
fekte im Bs − B̄s System sowie in den seltenen K Zerfällen; diese sind aber nicht
gleichzeitig möglich. Die Abweichungen von den Standardmodellvorhersagen bei
seltenen B Zerfällen sind in jedem Fall klein und schwierig zu messen. Das spezi-
fische Muster der neuen Flavour-Effekte erlaubt, dieses Modell von anderen Neue
Physik Szenarien zu unterscheiden. Dies demonstrieren wir explizit am Beispiel
von Modellen mit minimaler Flavourverletzung und am Littlest Higgs Modell mit
T-Parität.
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sità di Roma Tre und an der Cornell University. Letzterer Aufenthalt hat sicher

ii



P.3 Danksagung

entscheidend dazu beigetragen, dass ich ab Oktober diesen Jahres an der Cornell
University als PostDoc tätig sein werde. Schließlich möchte ich Herrn Hollik für
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PostDoc-Bewerbungen. Grazie mille!

Genauso danke ich Gino Isidori für die stets guten Kontakte sowie die Unterstützung
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Grossman zu danken, die mir die Möglichkeit gegeben haben, in ihren Gruppen in
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1 Introduction

Although the Standard Model (SM) of elementary particle physics is so far in
intriguing agreement with essentially all available data, it leaves several important
questions of today’s particle physics unanswered.

First of all, while strong and electroweak interactions are included in the SM,
gravity, described by Einstein’s theory of general relativity, remains external to this
theory. One of the consequences of this lack of a complete theory of all fundamental
forces is the emergence of the so-called gauge-hierarchy problem. While electroweak
symmetry breaking (EWSB), described by the Higgs mechanism in the SM, takes
place at the scale v = 246 GeV, the fundamental Planck scale of gravity is by 16
orders of magnitude larger, MPl ≃ 1019 GeV. One may assume then that the SM
is valid below that scale and must be extended only to include a quantum theory
of gravity above MPl. However, as the Higgs potential in the SM is not protected
by any symmetry principle, it receives quadratically divergent contributions at the
loop level that would naturally lead to a Higgs mass of the order of the Planck
scale, and EWSB would be associated to this scale. Barring the possibility of a
tremendous fine-tuning required to keep the EWSB scale in the sub-TeV range,
this observation leads to the immediate conclusion that at least the Higgs sector
of the SM is incomplete and needs to be extended at the TeV scale. In fact this
reasoning underlies our hopes to observe New Physics (NP) phenomena at future
facilities such as the LHC.

The vast hierarchy between the electroweak and the Planck scale is however not the
only hierarchy that remains unexplained in the SM. A very hierarchical pattern,
often referred to as the flavour hierarchy problem, appears also in the flavour
sector of the SM, where the charged fermion masses range from ∼ 0.5 MeV for the
electron to ∼ 170 GeV for the top quark [1]. Similarly, also flavour violating effects
in the quark sector exhibit a very hierarchical pattern, with the off-diagonal CKM
elements describing the interactions between the various generations given by [2]

|Vus| ≃ 0.226 , |Vcb| ≃ 0.041 , |Vub| ≃ 0.0038 . (1.1)

While also these hierarchies have to be put by hand in the SM Lagrangian, in
contrast to the gauge hierarchy, the flavour hierarchies are protected by the ap-
proximate chiral symmetry of the model and therefore stable against radiative
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corrections1. Consequently one might consider the flavour hierarchy problem as
less severe than the gauge hierarchy problem; still however it contradicts the natu-
ralness hypothesis that all parameters of a fundamental theory should be of O(1).

Many attempts have been undertaken to provide solutions to these two problems.
While the most famous approach to address the gauge hierarchy problem is super-
symmetry [3–5], other interesting NP models exist providing alternative solutions.
For instance in Technicolour models [6] EWSB is achieved by the condensate of a
strongly coupled sector. The large hierarchy of scales is then traced back to the
logarithmic running of the new strong coupling constant. In models with large
extra dimensions [7] on the other hand, gravity is allowed to propagate in one or
more extra dimensions of TeV−1 size, while gauge and matter fields are confined
to the usual 4dimensional (4D) world. A large effective 4D scale of gravity then
arises naturally, being enhanced with respect to the fundamental scale of gravity
by the large volume of the extra dimensions.

In order to solve the flavour hierarchy problem usually some kind of flavour sym-
metry is imposed. While the concept of Minimal Flavour Violation [8–12], in
which the U(3)3 flavour symmetry is exclusively broken by the SM Yukawa cou-
plings, can only explain the smallness of NP effects in flavour changing neutral
current (FCNC) processes, models based on the Froggatt-Nielsen [13] mechanism
that interpret flavour as a spontaneously broken symmetry, can also explain the
hierarchies in the SM Yukawa couplings. Other kinds of flavour symmetries have
been proposed e. g. in [14–18]. In any case it must be realised that flavour cannot
be an exact symmetry, as it is broken already in the SM.

While either of the two hierarchy problems in the SM can quite straightforwardly
be addressed in the presence of NP, a simultaneous solution appears to be more
involved. Efforts in this direction have been made e. g. by extensive studies of
supersymmetric flavour models (see e. g. [19–22]). However bringing such models
in simultaneous agreement with all available flavour physics data turns out to be
a highly non-trivial task [23,24].

Over the last decade a very appealing alternative solution to the gauge and flavour
hierarchy problems has been developed. It is based on the observation by Randall
and Sundrum [25] that by introducing a warped spatial extra dimension that is
confined between two branes, the gauge hierarchy problem can be solved. To this
end they placed the SM matter fields on the 4D brane called IR or TeV brane
on which the effective energy scale is not MPl, but O(1 TeV) thus protecting the
scale of EWSB. Soon it has been realised however that this simple setup is in
conflict with electroweak precision data. In addition the flavour problem can not

1The residual logarithmic cut-off dependence does not introduce a fine-tuning problem even for
Λ ∼ O(MPl), being suppressed by the loop factor 1/16π2.

2



be addressed.

Interestingly the above drawbacks can be circumvented by allowing the gauge and
matter fields to propagate in the 5D bulk [26–30], while only the Higgs sector has to
be confined to the IR brane. Then not only the stringent constraints from higher-
dimensional operators can be avoided, but also the T parameter [31–33] and the
ZbLb̄L coupling [34] can be protected by a slightly extended bulk symmetry group.
Together with the latter coupling, at the same time all ZdiLd̄

j
L couplings turn

out to be protected from large anomalous contributions [35–37], with important
implications for flavour phenomenology [36].

In addition, the exponential localisation of fermion zero modes along the 5D bulk,
depending on their bulk mass, provides a neat explanation of the hierarchies in
the flavour sector [29, 30, 38, 39]. As the overlap of the fermion shape functions
with the Higgs on the IR brane depends exponentially on the bulk mass param-
eters, choosing them to be O(1) numbers but slightly different from each other,
the observed hierarchical Yukawa couplings can be generated without introducing
unnaturally small parameters. In this manner the flavour hierarchy problem can
be traced back to a geometric origin of flavour; however in order to obtain a theory
predicting the observed masses and flavour mixings, a model explaining the 5D
bulk masses is still missing. Consequently in the present versions of RS models
with bulk fermions flavour hierarchies appear natural, but the actual values of
parameters can not be explained – rather the number of parameters in the flavour
sector is significantly increased.

In this thesis we present one of the simplest realisations of RS models with custo-
dial protection of the T parameter and the ZdiLd̄

j
L couplings, whose details have

been worked out in [40]. Subsequently, we perform an extensive phenomenological
analysis of meson-antimeson mixing in the neutral K and Bd,s meson sectors and
of rare K and B decays in the model in question. These studies have also been
published in [35,36].

The remainder of this work is organised as follows. In chapter 2 we introduce
the basic Randall-Sundrum framework and show that the underlying metric is a
solution to the 5D Einstein equations. We demonstrate explicitly how the gauge
hierarchy problem can be solved in this framework. Due to the tension of the
original RS1 framework with electroweak precision data, we then work out the
formalism to describe bulk fields in a warped background, based on the Kaluza-
Klein (KK) expansion of the 5D fields. We briefly review the constraints on the
RS model with the SM gauge group in the bulk and show how they can be avoided
by enlarging the bulk symmetry by an additional factor SU(2)R and a discrete
SU(2)L ↔ SU(2)R symmetry. Based on these observations, in chapter 3 we
introduce a fully realistic RS model in the reach of the LHC. After presenting
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1 Introduction

the full 5D action of this custodially protected RS model, we analyse its gauge
symmetry breaking pattern, putting particular emphasis of the effects of EWSB.
Subsequently we turn to the flavour sector of the model, showing how the observed
hierarchies in fermion masses and CKM mixings can naturally be explained in this
model by different localisations of the fermion zero modes along the 5D bulk. Si-
multaneously to the quark masses, all flavour violating effects are suppressed by the
same exponential hierarchies, giving rise to the so-called RS-GIM mechanism [39].
Chapter 4 is devoted to the study of the implications of this model on flavour
physics observables in the K and B meson systems. To this end we work out all
flavour violating couplings of neutral gauge bosons that appear already at the tree
level in the model in question. We also discuss tree level flavour violating Higgs
couplings that turn out to be strongly chirally suppressed and therefore negligible.
Then we study the impact of the new tree level FCNCs on observables related to
K0−K̄0 and Bd,s−B̄d,s mixings and to rare K and B decays. After calculating the
relevant effective Hamiltonians describing ∆F = 2 and ∆F = 1 processes we pro-
vide analytic formulae for the most interesting observables related to these sectors.
An extensive numerical analysis of all these observables is presented in chapter
5. After analysing the pattern of NP contributions to ∆F = 2 processes, we focus
on the CP-violating observable εK which yields the most stringent constraint on
the RS parameter space. We show that even for low KK masses M ≃ (2− 3) TeV
an agreement with the data can be obtained without significant fine-tuning in the
5D Yukawa couplings. The other ∆F = 2 constraints are naturally fulfilled in the
model in question, so that a simultaneous agreement with all available data is pos-
sible. At the same time large new CP-violating effects can be present in Bs − B̄s

mixing. We then extend our analysis to include the most interesting rare K and B
decay branching ratios. Also here we start by analysing the pattern of NP effects,
thus obtaining a feeling for the expected relative size of effects. Subsequently we
determine the possible deviations from the SM in the various branching ratios and
analyse possible correlations between the observables in question. We show how
the specific pattern of new flavour violating effects encountered in the custodially
protected RS model can help to distinguish this model from other NP scenarios,
such as models with Minimal Flavour Violation or the Littlest Higgs model with
T-parity [41–48]. In chapter 6 we summarise our results and give a brief outlook.
Some technical details are relegated to an appendix.
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2 Warped extra dimensions

2.1 The original RS1 model

2.1.1 The RS metric

During the last decade, models with a warped extra dimension have attracted a
lot of attention, both theoretically and phenomenologically. While it is possible
to deduce the Randall-Sundrum (RS) [25] geometry from a stringy origin, see
e. g. [49–51], we do not follow this route here, but merely sketch how the RS
metric can be obtained from the 5dimensional (5D) Einstein equations, following
the original derivation in [25].

We start by considering a 5D space-time, where the usual infinite 4D space-time is
extended by a finite interval 0 ≤ y ≤ L. The endpoints of this interval are so-called
3-branes, that we call ultraviolet (UV) brane for y = 0 and infrared (IR) brane for
y = L, for reasons that will become clear later on.1 The 5D space-time between
the two branes (0 < y < L) is also referred to as the 5D bulk. The classical action
for this set-up is given by

S = Sbulk + SUV + SIR , (2.1)

where the three addends generally read

Sbulk =

∫

d4x

∫ L

0

dy
(

Lbulk +
√
G(2M3R− Λ)

)

, (2.2)

SUV =

∫

d4x
(

LUV −
√
GVUV

)

δ(y) , (2.3)

SIR =

∫

d4x
(

LIR −
√
GVIR

)

δ(y − L) . (2.4)

For the moment we set Lbulk,LUV,LIR = 0, i. e. we neglect the back-reaction
of the actual theory on the geometrical background. Λ is the 5D cosmological
constant and M the fundamental 5D scale of gravity. R is the curvature or Ricci

1Sometimes they are also referred to as Planck and TeV brane, respectively.
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2 Warped extra dimensions

scalar, being a complicated function of the metric gMN (M,N = 0, 1, 2, 3, 5), and
G = det(gMN) is introduced in order to obtain an invariant integration measure.
For details of calculating in a warped space-time geometry, see Appendix A.1.
Further, VUV and VIR are the 4D cosmological constants, also referred to as the
brane tensions on the UV and IR branes, respectively.

Solving the 5D Einstein’s equations for the above action, we find [25]

ds2 = gMNdx
MdxN = e−2kyηµνdx

µdxν − dy2 , (2.5)

where ηµν = diag(1,−1,−1,−1) is the 4D Lorentz metric, and

k =

√

−Λ

24M3
(2.6)

is the curvature scale of the extra dimension. This solution holds only if the
additional condition

VUV = −VIR = 24M3k (2.7)

is satisfied.

Clearly the above solution is meaningful only in the case Λ ≤ 0. While in the case
Λ = 0 a flat extra dimension is recovered, in the case Λ < 0 the 5D bulk 0 < y < L
is a slice of 5D Anti-de-Sitter space (AdS5). Note that for fixed y the metric (2.5)
respects 4D Poincaré invariance.

As a side-remark let us mention that it is also possible to consider the RS warp
mechanism as an alternative to compactification [52]. In that scenario, the IR
brane is absent (L→ ∞), so that the extra dimension is restricted to the half-line
0 ≤ y < ∞ rather than to a compact interval 0 ≤ y ≤ L. Contrary to the näıve
expectation, this non-compact 5D space-time turns out to be in accordance with
present experimental tests of Newton’s and Einstein’s gravity. In the remainder of
this thesis we will however not pursue this interesting route any further, but restrict
ourselves to the RS1 geometry, with the space-time metric in (2.5) restricted to
the interval 0 ≤ y ≤ L.

2.1.2 Effective energy scales and the hierarchy problem

At low energy scales µ corresponding to length scales much larger than the size
of the extra dimension, 1/µ ≫ L, we can obtain an effective 4D theory by inte-
grating over the extra dimension. To this end we insert the solution (2.5) into the
fundamental 5D action (2.1), obtaining for the curvature term

S4D ⊃
∫

d4x

∫ L

0

dy 2M3e−2ky
√

−ḠR̄ , (2.8)
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2.1 The original RS1 model

where Ḡ = det ḡµν , and R̄ denotes the 4D Ricci scalar constructed out of ḡµν . Here

ḡµν(x) = ηµν + hµν(x) (2.9)

is the four-dimensional metric describing local gravitational fluctuations hµν(x)
around the vacuum ηµν . In other words hµν(x) is the physical 4D graviton field.
As this low energy effective field is independent of y, we can perform the integration
over y explicitly and obtain for the effective 4D Planck scale of gravity

M2
Pl =

M3

k

(

1 − e−2kL
)

≃ M3

k
. (2.10)

We see immediately that MPl depends only very weakly on the actual size of the
extra dimension L, so that in the limit kL ≫ 1 the effective scale of gravity is
solely determined by M and k.

Let us now determine what happens to energy scales in the matter Langrangian LIR

on the IR brane. To this end we consider the case of a fundamental scalar H (that
will be identified with the Higgs boson) living on the IR brane and developping a
vacuum expectation value (VEV) 〈H〉 = v0. Its effective 4D action is given by

S4D ⊃
∫

d4x
√

−GIR

(

gµνIR∂µH
†∂νH − λ(H†H − v2

0)
2
)

, (2.11)

with gµνIR = gµν(y = L) = e2kLηµν , and GIR = det(gIR)µν = −e−8kL. In order to
canonically normalise H, we absorb a factor e−kL into its definition, H → ekLH,
and thus obtain

S4D ⊃
∫

d4x
(

ηµν∂µH
†∂νH − λ(H†H − e−2kLv2

0)
2
)

. (2.12)

We observe that interestingly the effective symmetry breaking scale is not given
by v0, but instead by

v ≡ e−kLv0 . (2.13)

These findings have profound implications: While the effective gravity scale MPl

is determined by M and k irrespective of the length of the interval L, the sym-
metry breaking scale v is exponentially suppressed by a factor e−kL with respect
to the fundamental scale v0. If we now assume M,k, v0 ∼ O(MPl), i. e. avoiding
large hierarchies in the fundamental parameters, we deduce that a fairly moderate
hierarchy kL ∼ 35 is enough to obtain

v ∼ 10−16v0 ∼ O(1 TeV) , (2.14)

the scale of electroweak symmetry breaking.
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2 Warped extra dimensions

The RS geometric background thus offers an intriguing solution to the gauge hier-
archy problem – the vast hierarchy of 16 orders of magnitude between the Planck
scale MPl and the electroweak symmetry breaking scale v is traced back to a small
hierarchy of ∼ 35 between the curvature k of the extra dimension and its length L.
We stress that the metric in (2.5) has not been merely “invented” for this purpose,
but as we have seen is a solution to 5D Einstein’s equations with negative bulk
cosmological constant Λ < 0 and properly adjusted brane tensions VUV and VIR.

Clearly in order to complete this theoretical framework, the following issues need
to be addressed successfully:

1. Can one ensure the required relation between Λ, VUV and VIR?

2. Can the length of the interval L be stabilised in spite of gravitational fluc-
tuations, i. e. is the hierarchy kL ∼ 35 stable?

Obviously in order to address these questions it is not sufficient to treat the RS
space-time as a static geometrical background, but its dynamical origin has to
be investigated. Therefore in what follows we will not pursue these issues any
further; instead we will assume the presence of a static RS background with
0 ≤ y ≤ L ∼ 35/k and the metric given in (2.5). In particular we will ne-
glect possible back-reactions of the dynamical field content in the model on the
5D space-time via gravitational effects. As gravity is fully negligible compared to
the other fundamental forces at low energy scales, this assumption is generally well
justified.

2.1.3 The SM on the IR brane: phenomenological constraints

We have seen that by placing the Higgs sector of the SM on the IR brane of an
RS background, the gauge hierarchy problem can be reduced to a quite moderate
hierarchy between the curvature k and the length L of the extra dimension. The
most straightforward extension of the SM making use of this concept is certainly
to confine all SM fields to the IR brane and let only gravity propagate in the 5D
warped bulk. Then the effective cut-off scale of the SM is not given by Λ0 ∼MPl,
but by the effective “warped-down” cut-off

Λeff(y = L) = e−kLΛ0 . (2.15)

so that the scale of EWSB appears to be natural provided Λeff(y = L) ∼ 1 TeV.

On the other hand, not only the quadratically divergent contributions to the Higgs
potential depend on the cut-off scale of the theory, but also the size of non-
renormalisable operators, that are suppressed by powers of the cut-off scale Λeff

according to their dimension. Experimentally such higher-dimensional operators

8



2.1 The original RS1 model

are strongly constrained by EW precision data and FCNC processes. Generically
EW precision constraints imply a lower bound

Λeff ∼> (5 − 10) TeV (2.16)

on the NP scale, giving rise to the so-called little hierarchy problem that is common
to most extensions of the SM.

While such a hierarchy of one order of magnitude, albeit not perfectly natural,
is still acceptable, the flavour physics constraints in particular from the neutral
K meson sector are much more severe. Flavour and CP-violating effects in the
K0−K̄0 mixing are found to be in astonishing accordance with the SM predictions2,
so that generic new flavour violating operators have to be suppressed by [56]

Λeff ∼> (104 − 105) TeV , (2.17)

where the strongest constraint arises from CP-violating left-right operators con-
tributing to the εK observable. Barring the possibility of strong accidental cancel-
lations between various contributions, some non-trivial flavour structure is required
to cope with such stringent experimental FCNC constraints.

There is however a way to avoid this tension between the naturalness constraint
from EWSB and the lower bounds from precision and flavour data. Note that the
latter put constraints only on the fermion and gauge boson fields in the SM, while
the Higgs due to its non-observation is fairly unconstrained. On the other hand,
a low cut-off scale is required only for the Higgs sector in order to maintain natu-
ralness. Thus if it is possible to construct a model in such a way that the effective
cut-off scales for the Higgs sector and the matter sector of the SM differ from each
other, the problem of dangerously large contributions from higher-dimensional op-
erators can be bypassed.

Indeed, models with a warped extra dimension offer a neat tool to explain the
presence of different cut-off scales in the theory. To this end we recall that effective
energy scales depend exponentially on the localisation along the extra dimension,

Λeff(y) = e−kyΛ0 . (2.18)

By placing the SM matter fields in the 5D bulk (y < L), the effective cut-off scale
suppressing their higher-dimensional interactions can be significantly larger than
the one regularising the Higgs sector. Therefore in what follows we will consider
RS models in which only the Higgs boson is confined to the IR brane, while the
fermion and gauge fields are 5D fields that propagate along the extra dimension.

2Recent hints for a possible non-negligible NP contribution to the CP-violating parameter
εK [53–55] do not qualitatively change this picture.
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2 Warped extra dimensions

2.2 Bulk fields in RS and KK decomposition

The first steps to consider bulk fields in the RS background have been undertaken
in [26–30]. While in [26, 27] only gauge fields were allowed to propagate in the
bulk with the fermion fields still confined to the IR brane, the model considered
in [28] went one step further and included also 5D fermion fields. There it was
shown that in the absence of a 5D bulk mass term, the zero modes are localised
exponentially towards the IR brane. Subsequently the impact of non-zero bulk
masses on the fermion zero mode localisation has been investigated in [29]. The
authors observed that depending on the value of the bulk mass, the fermion zero
modes can be localised at very different places along the 5D bulk, either close to
the IR or to the UV brane, and exponentially suppressed on the other. These
findings have an important impact on the description of flavour in RS models, as
we will see later on, and provide a natural origin of the split fermion scenario [57].
Finally a very detailed study of the different types of RS bulk fields has been
presented in [30].

2.2.1 Equation of motion

While the full 5D action of the model under consideration will be presented in
chapter 3, for the derivation of the 5D bulk equations of motion (EOMs) it is
sufficient to consider the free field action Sfree of a gauge and a fermion field, that
is given by

Sfree =

∫

d4x

∫ L

0

dy
√
G

[

− 1

4
FMNF

MN+
1

2
ψ̄

(

iΓM(∂M + ωM) − ck
)

ψ
]

+h.c. ,

(2.19)
where FMN = ∂MAN − ∂NAM and m = ck is the fermion bulk mass. ΓM and ωM
are the Dirac matrices and spin connection in curved space-time, respectively, as
described in appendix A.1.2. As usual the interaction terms present in a realistic
weakly coupled model will be treated perturbatively.

Following [30] the bulk EOMs can now straightforwardly be obtained from the
variation principle δSfree = 0, which yields generally

[

−e2kyηµν∂µ∂ν + esky∂5(e
−sky∂5) −M2

Φ

]

Φ(xµ, y) = 0 . (2.20)

In the case of gauge fields, Φ ≡ Aµ, s = 2 and M2
Φ = 0, and we chose to work in

the gauge ∂µA
µ = 0, A5 = 0. In the case of fermions, ψL,R has to be rescaled by

Φ ≡ e−2kyψL,R, s = 1, and M2
Φ = c(c± 1)k2 for left-/right-handed modes.
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2.2 Bulk fields in RS and KK decomposition

Eq. (2.20) can be solved by making the ansatz3

Φ(xµ, y) =
1√
L

∞
∑

n=0

φ(n)(xµ)f (n)(y) , (2.21)

which is called the Kaluza-Klein (KK) decomposition of Φ(xµ, y). From the 4D
point of view this infinite sum corresponds to a tower of 4D KK states φ(n)(xµ),
each being multiplied by the corresponding function f (n)(y) that can be interpreted
as its bulk profile or shape function along the 5th dimension. Denoting the mass
of the n-th KK mode by mn, we have

ηµν∂µ∂νφ
(n)(xµ) = −m2

nφ
(n)(xµ) . (2.22)

Consequently the shape function f (n)(y) has to obey
[

∂2
y − sk∂y −

(

M2
Φ − e2kym2

n

)]

f (n)(y) = 0 . (2.23)

Like every second order differential equation, a solution to (2.23) is unambiguously
determined only after specifying two additional conditions, that we choose to be
the boundary conditions (BCs) at the endpoints y = 0 and y = L of the interval.
While more general BCs are possible [58–60], in the present thesis we concentrate
on the two most simple and straightforward cases:

• Dirichlet (−) BC: The first obvious possibility is to demand that Φ(xµ, y),
or equivalently f (n)(y) for all n, vanishes on the respective brane.

• Neumann (+) BC: Alternatively we can also require the derivative ∂5Φ(xµ, y)
to vanish on the brane.

Indeed it turns out that by appropriately choosing + and − BCs for the field
content of the model, realistic scenarios in agreement with the currently avail-
able data can be constructed. One of the most famous examples, the RS model
with implemented custodial protection of the T parameter and the flavour diag-
onal and non-diagonal ZdiLd̄

j
L couplings is presented in chapter 3, and its flavour

phenomenology is studied subsequently (see also [35,36,40]).

As (2.23), together with the specified BCs, is a so-called linear boundary value
problem, its solutions f (n)(y) form a complete set of orthogonal functions. This
orthogonality is an important feature of the KK decomposition (2.21) and will
turn out to be relevant for phenomenology.

We will now discuss the solution of (2.23) separately for the cases of gauge and
fermion fields living in the RS bulk.

3Due to the rescaling Φ ≡ e−2kyψL,R the fermionic KK decomposition contains an additional
factor e2ky, see (2.35).
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2 Warped extra dimensions

2.2.2 Gauge fields

Solving (2.23) for the case of gauge fields, i. e. s = 2 and M2
Φ = 0, we obtain for

the gauge KK modes [30]

f (0)
gauge(y) = 1 , (2.24)

f (n)
gauge(y) =

eky

Nn

[

J1

(mn

k
eky

)

+ b1(mn)Y1

(mn

k
eky

)]

(n = 1, 2, . . . ) , (2.25)

where Jα(x) and Yα(x) are the Bessel functions of first and second kind. Note that

f
(0)
gauge(y) exists only for (++) BCs, i. e. Neumann BCs on both branes (see (2.27)).

The resulting gauge boson zero mode is massless, m0 = 0. The shape functions
f

(n)
gauge(y) satisfy the orthonormality condition

1

L

∫ L

0

dy f (n)
gauge(y)f

(m)
gauge(y) = δnm . (2.26)

b1(mn) and mn are then determined through the choice of BCs on the branes.

We observe that while the zero mode profile f
(0)
gauge(y) is flat along the extra di-

mension, this is not the case for the KK profiles f
(n)
gauge(y) (n = 1, 2, . . . ) that are

exponentially peaked at the IR brane.

For fields obeying (++) BCs, which means

∂yf
(n)
gauge(y)

∣

∣

∣

y=0,L
= 0 , (2.27)

one obtains [30]

b1(mn) = −J1(mn/k) +mn/k J
′
1(mn/k)

Y1(mn/k) +mn/k Y ′
1(mn/k)

= b1(mne
kL) . (2.28)

This condition can only be solved numerically for mn and b1(mn). For large values
of n, the result can be well approximated by [30]

b1(mn) = 0 , mgauge
n ≃

(

n− 1

4

)

πke−kL (n = 1, 2, . . . ) , (2.29)

however, for small values of n it is safer to use the exact numerical result. Numer-
ically one finds

mgauge
1 (++) ≡M++ ≃ 2.45f , (2.30)

with f = ke−kL.

For fields obeying (−+) BCs, meaning

f (n)
gauge(y)

∣

∣

∣

y=0
= ∂yf

(n)
gauge(y)

∣

∣

∣

y=L
= 0 , (2.31)
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2.2 Bulk fields in RS and KK decomposition

one finds instead

b1(mn) = −J1(mn/k)

Y1(mn/k)
= −J1(mne

kL/k) +mne
kL/k J ′

1(mne
kL/k)

Y1(mnekL/k) +mnekL/k Y ′
1(mnekL/k)

. (2.32)

The numerical solution yields a ∼ 2% suppression of mgauge
1 in that case, with

respect to the (++) one:

mgauge
1 (−+) ≡M−+ ≃ 2.40f . (2.33)

We do not consider gauge fields with a Dirichlet BC on the IR brane here, as this
choice of BCs does not appear in our model and is therefore irrelevant for the
subsequent analysis. Note that the BCs for a gauge field Vµ imply automatically
opposite BCs for its 5th component V5. Throughout this analysis we choose to
work in the gauge V5 = 0 and ∂µV

µ = 0. This is generally possible as long as no
gauge field Vµ is assigned (−−) BCs. In this latter case a physical massless zero
mode V5 would exist that can not be gauged away. The V5 KK modes, on the
other hand, serve as the Goldstone bosons eaten by the corresponding KK modes
of Vµ and can therefore be gauged away.

Finally, Nn has to be determined from the normalisation condition (2.26). For
fields (also fermions) with a Neumann BC the IR brane, Nn is approximately
given by [30]

Nn ≃ ekL/2√
πLmn

. (2.34)

Note that this approximation is however not valid in case of a Dirichlet (−) BC
on the IR brane.

2.2.3 Fermion fields

Due to the rescaling of ψL,R, by a factor e−2ky, the KK decomposition reads in this
case

ψL,R(xµ, y) =
e2ky√
L

∞
∑

n=0

ψ
(n)
L,R(xµ)f

(n)
L,R(y) . (2.35)

Inserting this into (2.23) and using s = 1 and M2
Φ = c(c ± 1)k2, we find for the

left-handed fermionic KK modes [30]

f
(0)
L (y, c) =

√

(1 − 2c)kL

e(1−2c)kL − 1
e−cky , (2.36)

f
(n)
L (y, c) =

eky/2

Nn

[

Jα

(mn

k
eky

)

+ bα(mn)Yα

(mn

k
eky

)]

(n = 1, 2, . . . ) , (2.37)
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2 Warped extra dimensions

where α = |c+1/2|. Again a massless zero mode f
(0)
L (y, c) 6= 0 exists only for (++)

BCs for the left-handed mode. The shape functions f
(n)
R (y, c) for the right-handed

modes can be obtained by replacing c by −c in the above formulae,

f
(n)
R (y, c) = f

(n)
L (y,−c) . (2.38)

Consequently a right-handed massless zero mode is present in the spectrum if the
corresponding BCs are (++).

The f
(n)
L,R(y, c) satisfy the orthonormality condition

1

L

∫ L

0

dy ekyf
(n)
L,R(y, c)f

(m)
L,R (y, c) = δnm , (2.39)

determining the normalisation constant Nn.

Again bα(mn) and mn are determined through the BCs on the branes. In the case
of left-handed fermions, a − BC means

f
(n)
L (y, c)

∣

∣

∣

brane
= 0 , (2.40)

while the + BC is modified with respect to the gauge fields and reads

(∂y + ck)f
(n)
L (y, c)

∣

∣

∣

brane
= 0 . (2.41)

For right-handed fields, the replacement c→ −c has to be made.

bα(mn) and mn are then derived in a completely analogous manner with respect to
the gauge case. Also here the resulting equations can only be solved numerically.

As left- and right-handed modes are coupled by the massive Dirac equation, the
BCs for the right-handed modes are not independent of the left-handed ones. In
fact it is straightforward to see that the right-handed mode has to obey automat-
ically opposite BCs. Consequently three scenarios with fundamentally different
phenomenological implications arise:

1. The left-handed modes obey (++) BCs, so that the spectrum contains a
massless left-handed zero mode. As the right-handed modes then have to
obey (−−) BCs, no right-handed zero mode is present.

2. The left-handed modes obey (−−) BCs. While in that case no left-handed
zero mode arises, the right-handed modes have to obey (++) BCs and a
massless right-handed zero mode is present.

3. Mixed BCs, i. e. (−+) or (+−), are chosen for the left-handed modes. Then
also the right-handed modes obey mixed BCs, and consequently the spectrum
contains no zero mode.
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2.2 Bulk fields in RS and KK decomposition

While the precise values of the KK masses mn also depend on the choice of BCs,
it is common to all three cases that in addition to the possible chiral zero mode
an infinite tower of massive KK modes with approximately vectorlike couplings
exists. Like in the case of KK gauge bosons, also the bulk profiles of KK fermions
are exponentially localised towards the IR brane.

A comment on the zero mode bulk profile is in order. While we have seen in
(2.24) that the gauge boson zero mode profile is flat along the extra dimension,
this is not the case for fermionic zero modes. Instead from (2.36) we observe that
the latter bulk profile depends exponentially on the bulk mass parameter c. By
performing some trivial field redefinitions it is possible to re-write the fermionic
action with respect to the flat tangent space metric ηAB = diag(1,−1,−1,−1,−1).
The resulting left-handed fermionic zero mode profile reads [29,30]

f
(0)
flat,L(y, c) =

√

(1 − 2c)kL

e(1−2c)kL − 1
e(

1
2
−c)ky . (2.42)

Having at hand f
(0)
flat,L(y, c) it is easy to deduce how the localisation of fermion zero

modes along the 5D bulk depends on the bulk mass parameter c. We distinguish
the following cases:

• For c > 1/2 the normalisation factor in (2.42) is O(1) and f
(0)
L (y, c) is peaked

around y = 0, i. e. fermions with bulk mass parameter c > 1/2 are placed
close to the UV brane. At the same time their overlap with fields on or near
the IR brane is exponentially suppressed.

• For c < 1/2 the second term in the denominator of (2.42) can be neglected
and we obtain

f
(0)
flat,L(y, c) ≃

√

(1 − 2c)kL e( 1
2
−c)k(y−L) . (2.43)

Thus the shape function is strongly peaked towards y = L, i. e. the IR brane.
Consequently the overlap with fields on or near the IR brane is O(1).

• In the limiting case c = 1/2 the shape function is flat, so that the zero mode
fermion is delocalised in the 5D bulk. Interestingly, due to the orthonormality
condition for gauge fields (2.26) this mode does not couple to the heavy KK
gauge bosons.

In case of a right-handed zero mode f
(0)
flat,R(y, c) analogous comments apply, with c

replaced by −c.
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2 Warped extra dimensions

2.3 Electroweak constraints on the RS bulk standard

model

2.3.1 General remarks

We are now prepared to consider the most straightforward extension of the SM in
terms of RS bulk fields. Consider a warped extra dimension with the SM gauge
symmetry SU(3)c × SU(2)L × U(1)Y in the bulk. A Higgs doublet H is intro-
duced on the IR brane that develops a VEV v0 and therefore leads to electroweak
symmetry breaking. In order to reproduce the SM field content in the low-energy
limit we introduce the following 5D quark fields:

Qi(++) =

(

ui

di

)

(++) , U i(−−) , Di(−−) , (2.44)

where the BCs are those for the left-handed modes, and i = 1, 2, 3 is the flavour
index. Consequently, the spectrum contains a left-handed zero mode doublet and
two right-handed zero mode singlets per generation, in agreement with observation.

Following the strategy outlined in section 2.2, it is possible to obtain a purely
4D theory by performing the KK decomposition of the fundamental 5D action. In
particular Feynman rules can be derived and corrections to low-energy observables
can be evaluated.

Particularly stringent constraints arise from the measurements of electroweak pre-
cision observables that show the SM in surprisingly good agreement with the data.
While a complete analysis of all these constraints requires a simultaneous fit of
all oblique and non-oblique corrections, see e. g. [1, 61–70], such an analysis is
clearly beyond the scope of this work. Rather we focus here on the most stringent
constraints, coming from the Peskin-Takeuchi parameters S and T [61] and the
anomalous ZbLb̄L coupling. Electroweak precision constraints on the RS bulk SM
have been studied extensively in the literature [31, 71–75], most recently in [76].
In what follows we will briefly review these results.

2.3.2 The S parameter

We start by considering the S parameter, defined as [1]

α(MZ)

4 sin2 θW cos2 θW
S =

Πnew
ZZ (M2

Z) − Πnew
ZZ (0)

M2
Z

− cos2θW − sin2 θW
cos θW sin θW

Πnew
Zγ (M2

Z)

M2
Z

−
Πnew
γγ (M2

Z)

M2
Z

, (2.45)
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2.3 Electroweak constraints on the RS bulk standard model

where α(MZ) and θW are the corresponding MS values at the scale MZ . Here
Πnew
ij (q2) denotes the NP contribution to the self-energy of the gauge bosons i, j =

W,Z, γ at the scale q2. Thus S is associated to the difference of the Z boson
self-energies at q2 = M2

Z and q2 = 0.

Assuming mH = 117 GeV and U = 0, a combined analysis of electroweak precision
measurements leads to the constraint [1]

S = −0.04 ± 0.09 , (2.46)

which induces severe constraints on the parameter space of many NP models. For
instance, new strong dynamics at the TeV scale generically induces a positive O(1)
correction (for a recent analysis, see [77]) to S, in vast disagreement with the data.
One should however keep in mind that the corrections to S are not calculable in
such kinds of models, being non-perturbative, and therefore can only be estimated.

With the help of the AdS/CFT correspondence [78] certain strongly coupled 4D
theories can be interpreted as weakly coupled 5D models in the RS background.
Then it is possible to perturbatively calculate the corrections to the S parameter.
In case of the RS bulk SM, such calculations yield [31]

S ≃ 12πv2

M2
, (2.47)

which, together with (2.46), yields the lower bound

M ∼> (2 − 3) TeV , (2.48)

with M being the mass of the first gauge KK modes.

We note that the bound (2.48) depends only weakly on the detailed structure of
the RS model under consideration and is also valid in case of the RS model with
custodial protection discussed later on.

2.3.3 The T parameter

Another powerful constraint is given by the T parameter, conveniently defined
as [1]

α(MZ)T =
Πnew
WW (0)

M2
W

− Πnew
ZZ (0)

M2
Z

, (2.49)

measuring the violation of custodial symmetry in the electroweak sector. In this
case the LEP data yield [1]

T = 0.02 ± 0.09 , (2.50)
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2 Warped extra dimensions

again determined for mH = 117 GeV and U = 0.

In the RS bulk SM custodial symmetry is violated already at the tree level by the
presence of the heavy gauge KK modes and their mixing with the respective zero
modes. It then turns out that the constraint (2.50) is even more severe than the
one from the S parameter (2.46) and yields the constraint [31]

M ∼> 10 TeV . (2.51)

Consequently electroweak precision constraints push this simple extension of the
SM to the RS bulk far beyond the reach of the LHC.

Fortunately the situation can be significantly ameliorated by extending the sym-
metry structure of the model to include an intrinsic custodial symmetry in the
Higgs sector of the model. To this end, the bulk gauge symmetry needs to be
enlarged to [31–33]

SU(3)c × SU(2)L × SU(2)R × U(1)X . (2.52)

In order to maintain the correct low-energy limit of the theory, on the UV brane
the breaking

SU(2)R × U(1)X → U(1)Y (2.53)

has to be achieved by appropriately chosen BCs. As the Higgs field lives on
the IR brane and does not feel this breaking directly, the custodial symmetry in
the Higgs sector is approximately preserved. Therefore the corrections to the T
parameter turn out to be safely small even for KK gauge bosons at the (2−3) TeV
scale [31–33,75,79–81].

2.3.4 The anomalous ZbLb̄L coupling

Finally let us consider the RS contributions to the anomalous ZbLb̄L coupling.
Experimentally, such flavour non-universal contributions are bounded by [1]

−2 · 10−3 ∼< δgZbLb̄L ∼< 6 · 10−3 (95% C.L.) . (2.54)

In order to understand the importance of this constraint for RS scenarios with
bulk fermions as considered here, let us briefly anticipate the flavour structure of
such models, discussed in detail in section 3.4. We have seen in section 2.2.3 that
the localisation of a fermionic zero mode depends exponentially on its bulk mass
parameter c. Consequently, for c > 1/2 (c < −1/2 for right-handed modes) the
overlap of the fermion shape function with the Higgs boson living on the IR brane
is exponentially suppressed, while it is O(1) else. As the strength of the effective
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2.3 Electroweak constraints on the RS bulk standard model

fermionic Yukawa couplings to the Higgs depend on this overlap, the hierarchical
pattern of the SM Yukawa couplings can be reduced to appropriately chosen O(1)
values for the respective bulk mass parameters. Clearly, in order to account for
its large mass, the top quark has to be localised close to the IR brane. However,
as the left-handed top quark tL resides in an SU(2)L doublet together with the
left-handed bottom quark bL, also the latter one is necessarily localised close to
the IR brane.

Since the KK gauge bosons, similar to all KK modes, are strongly localised to-
wards the IR brane (see section 2.2.2), they couple much more strongly to bL than
to the other down-type quarks. As in the process of EWSB discussed in detail in
section 3.3 the Z boson zero mode mixes with its heavy KK excitations, this non-
universality in the gauge couplings is transmitted also to the SM Z boson. Simi-
larly, mixing between fermionic zero and KK modes generates non-universalities in
the Z couplings, with the latter effect being however subleading [35–37]. Typically
for low KK scales M ≃ (2 − 3) TeV then a correction to δgZbLb̄L at the percent
level is obtained, in conflict with the data (2.54).

Interestingly, in [34] it has been pointed out that the custodial symmetry (2.52) can
straightforwardly be used to protect not only the T parameter from unwantedly
large corrections, but at the same time to keep also the corrections to δgZbLb̄L
under control. To this end an additional discrete Z2 symmetry

PLR : SU(2)L ↔ SU(2)R (2.55)

needs to be introduced, that interchanges the two SU(2) factors of the gauge group
(2.52). Clearly, in order to construct a PLR-symmetric theory the gauge couplings
of SU(2)L and SU(2)R have to be equal,

gL = gR ≡ g , (2.56)

and the fermion fields (2.44) have to be embedded into enlarged PLR-symmetric
representations, with bL being an eigenstate of PLR.

Before presenting in chapter 3 the details of such a PLR-symmetric model, we show
explicitly, following [34], how this simple symmetry can help to protect the ZbLb̄L
coupling from large corrections. To this end we consider the general structure of
the Z boson coupling:

gZ =
g

cos θW

(

Q3
L −Qem sin2 θW

)

. (2.57)

As U(1)em is an exact symmetry, corrections to gZ can only arise from the first
term in (2.57). While a priori Q3

L = T 3
L holds, this equality can receive corrections

in the process of EWSB,
Q3
L = T 3

L + δQ3
L . (2.58)
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2 Warped extra dimensions

On the other hand the diagonal subgroup SU(2)V of SU(2)L × SU(2)R is left
unbroken even after EWSB, so that its isospin T 3

V is conserved. Consequently we
have

δQ3
V = δQ3

L + δQ3
R = 0 . (2.59)

Furthermore an unbroken PLR symmetry ensures that for fermions embedded as
PLR eigenstates

δQ3
L = δQ3

R . (2.60)

This immediately yields
δQ3

L = 0 , (2.61)

so that the coupling of the respective fermion to the Z boson is protected from
anomalous contributions.

By now we have collected all necessary ingredients to construct a realistic RS
model in the reach of the LHC that passes electroweak precision tests. Alterna-
tive realisation of this type of models have been worked out and analysed in the
literature [82–84]. In the next chapter we will present one of the simplest versions,
based on [84], whose electroweak and flavour structure has been discussed in detail
in [40], where also a complete set of Feynman rules has been derived. Subsequently
in chapters 4 and 5 its phenomenological impact on K and B physics observables
will be discussed in detail, based on the analyses presented in [35,36].
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3 The custodially protected model

3.1 Preliminaries

We have seen in the previous chapter that the simple RS model with bulk fields
and only the SM gauge group in the bulk has severe problems to pass electroweak
precision constraints unless the lowest lying KK modes are heavier than about
10 TeV. However KK modes in the reach of the LHC, i. e. M ≃ (2 − 3) TeV, are
still possible if the bulk symmetry of the model is extended to

Gbulk = SU(3)c × SU(2)L × SU(2)R × PLR × U(1)X . (3.1)

In the present chapter we introduce one of the simplest realisations of this gauge
group. To this end we follow the top-down approach and first give the complete
5D action of the model, and discuss its details and implications subsequently. An
extensive theoretical description of the model considered has been presented by us
in [40], to which we refer the reader for further details.

3.2 Fundamental 5D action

The fundamental 5D action of the custodially protected RS model under consid-
eration can be decomposed as

S =

∫

d4x

∫ L

0

dy (Lgauge + Lfermion + LHiggs + LYuk) . (3.2)

Lgauge, describing the kinetic terms for the SU(3)c × SU(2)L × SU(2)R × U(1)X
gauge fields, is discussed in section 3.2.1. The fermion representations present in
the theory as well as their kinetic and bulk mass terms Lfermion are introduced in
section 3.2.2. LHiggs contains the Higgs kinetic term and its potential, leading to
EWSB, see section 3.2.3. Finally the fermion Yukawa couplings to the Higgs boson
are contained in LYuk and discussed in section 3.2.4.
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3 The custodially protected model

3.2.1 Gauge sector

The kinetic terms for the gauge fields are given by

Lgauge =
√
G

[

−1

4
GA
MNG

MN,A − 1

4
LaMNL

MN,a − 1

4
Rα
MNR

MN,α − 1

4
XMNX

MN

]

,

(3.3)
where the SU(3)c field strength tensor is given by

GA
MN = ∂MG

A
N − ∂NG

A
M − gsf

ABCGB
MG

C
N (A = 1, . . . , 8) . (3.4)

gs is the 5D strong coupling constant, and fABC are the SU(3) structure constants.
Note that due to the antisymmetric structure of GA

MN the two terms involving the
Christoffel symbols (A.3) cancel each other. Similarly the SU(2)L and SU(2)R
field strength tensors read

LaMN = ∂MW
a
L,N − ∂NW

a
L,M − gεabcW b

L,MW
c
L,N (a = 1, 2, 3) , (3.5)

Rα
MN = ∂MW

α
R,N − ∂NW

α
R,M − gεαβγW β

R,MW
γ
R,N (α = 1, 2, 3) . (3.6)

Note that due to the PLR symmetry the gauge couplings g of SU(2)L and SU(2)R
are equal. Finally the field strength tensor of the Abelian gauge group factor
U(1)X is

XMN = ∂MXN − ∂NXM , (3.7)

with the U(1)X gauge coupling constant denoted by gX . Here and throughout this
work the coupling constants gs, g and gX are understood to be the fundamental
5D ones that are not dimensionless. In the absence of brane kinetic terms (see
e. g. [35, 85] and section 3.2.5 for details), the effective 4D coupling constants can
then be determined via the simple tree level matching condition

g4D =
g√
L
, (3.8)

and analogous relations holding for g4D
s and g4D

X .

We denote SU(2)L indices by small Latin letters a, b, c and SU(2)R indices by
small Greek letters α, β, γ. SU(3)c indices are denoted by capital Latin letters
A,B,C, but are usually made implicit in order to simplify the notation.

In order to obtain the correct low energy spectrum, the gauge group (3.1) has to
be broken by appropriate BCs on the UV brane (y = 0) to the SM gauge group,
i. e.

SU(3)c × SU(2)L × SU(2)R × PLR ×U(1)X
UV brane−−−−−−→ SU(3)c × SU(2)L × U(1)Y .

(3.9)
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3.2 Fundamental 5D action

This breakdown is achieved by the following assignment of BCs1

GA
µν(++) , W a

Lµ(++) , Bµ(++) , (3.10)

W β
Rµ(−+) , ZXµ(−+) , (3.11)

where as usual the first (second) sign denotes the BC on the UV (IR) brane: +
stands for a Neumann BC while − stands for a Dirichlet BC, see section 2.2.2.
Furthermore A = 1, . . . , 8, a = 1, 2, 3 and β = 1, 2. The fields Bµ and ZXµ are
orthogonal linear combinations of W 3

Rµ and Xµ and given in terms of the original
fields as follows:

ZXµ = cosφW 3
Rµ − sinφXµ , (3.12)

Bµ = sinφW 3
Rµ + cosφXµ , (3.13)

where
cosφ =

g
√

g2 + g2
X

, sinφ =
gX

√

g2 + g2
X

. (3.14)

The 5D gauge coupling gY of the resulting gauge group U(1)Y , corresponding to
the gauge boson Bµ in (3.13), is then given by

gY = g sinφ = gX cosφ . (3.15)

3.2.2 Fermion Sector

Quarks

In the quark sector the following PLR-symmetric fermion representations are in-
troduced [84]

(ξi1)aα =

(

χui(−+)5/3 qui(++)2/3

χdi(−+)2/3 qdi(++)−1/3

)

2/3

, (3.16)

ξi2 = ui(−−)2/3 , (3.17)

ξi3 = (T i3)a ⊕ (T i4)α =





ψ′i(+−)5/3

U ′i(+−)2/3

D′i(+−)−1/3





2/3

⊕





ψ′′i(+−)5/3

U ′′i(+−)2/3

Di(−−)−1/3





2/3

. (3.18)

They transform as (2,2)2/3, (1,1)2/3 and (3,1)2/3 ⊕ (1,3)2/3, respectively, under
SU(2)L × SU(2)R × U(1)X . Again SU(2)L indices are denoted by Latin letters

1These BCs can be naturally achieved by adding a scalar SU(2)R doublet with QX = 1/2
charge on the UV brane, that develops a VEV vUV → ∞ (see [58,60] for details).
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3 The custodially protected model

while SU(2)R indices are denoted by Greek letters. Note that in the notation of
(3.16), SU(2)L acts vertically while SU(2)R acts horizontally,

ξi1 → ULξ
i
1U

T
R (UL ∈ SU(2)L, UR ∈ SU(2)R) . (3.19)

The subscripts of the various components indicate their electric charge. All these
multiplets transform as triplets under SU(3)c. The signs in brackets indicate the
boundary conditions (BCs) for the left-handed fermion mode on the UV and IR
brane, respectively, where “+” denotes a modified Neumann BC and “−” stands
for a Dirichlet BC, as discussed in section 2.2.3. The corresponding right-handed
modes, that are necessarily present in a 5D theory, obey opposite BCs. As only
fields with (++) BCs contain a massless zero mode, the low energy spectrum will

contain a left-handed doublet (q
ui(0)
L , q

di(0)
L ) and two right-handed singlets u

i(0)
R and

D
i(0)
R for each quark generation i = 1, 2, 3, reproducing precisely the field content

of the SM.

In our phenomenological analysis we mostly neglect the impact of the fermionic
KK modes, as their effect turns out to subleading and therefore negligible [35–38].
In order to keep the notation as transparent as possible, the zero modes are then
simply denoted by Qi

L = (uiL, d
i
L) and uiR, diR.

We note that χui , qdi and ui are eigenstates of the PLR transformation. Conse-
quently, the couplings of the corresponding zero and KK modes to the Z boson
are protected from EWSB corrections [34]. In particular this leads to the phe-
nomenologically relevant protection of the anomalous ZbLb̄L coupling as well as of
all flavour conserving and violating ZdiLd̄

j
L vertices [35–37].

The fermionic Lagrangian then reads

Lfermion =
1

2

√
G

3
∑

i=1

[

(ξ̄i1)aαiΓ
M(D1

M)ab,αβ(ξ
i
1)bβ + (ξ̄i1)aα(iΓ

MωM − ciQk)(ξ
i
1)aα

+ ξ̄i2(iΓ
MD2

M + iΓMωM − ciuk)ξ
i
2

+ (T̄ i3)aiΓ
M(D3

M)ab(T
i
3)b + (T̄ i3)a(iΓ

MωM − cidk)(T
i
3)a

+ (T̄ i4)αiΓ
M(D4

M)αβ(T
i
4)β + (T̄ i4)α(iΓ

MωM − cidk)(T
i
4)α

]

+ h.c. ,

(3.20)

where summation over repeated indices is understood. Details on the Dirac gamma
matrices ΓM and the spin connection ωM in curved space-time are collected in
Appendix A.1.2. Writing out the “+h.c.” term explicitly, one finds that the terms
including the spin connection ωM cancel each other [59]. Note that throughout
this analysis we work in the special basis in which the bulk mass matrices cQ,u,dk
are real and diagonal.
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3.2 Fundamental 5D action

The covariant derivatives Di
M in (3.20) are given by

(D1
M)ab,αβ = (∂M + igst

AGA
M + igXQXXM)δabδαβ

+ ig(τ c)abW
c
L,Mδαβ + ig(τ γ)αβW

γ
R,Mδab , (3.21)

D2
M = ∂M + igst

AGA
M + igXQXXM , (3.22)

(D3
M)ab = (∂M + igst

AGA
M + igXQXXM)δab + gεabcW c

L,M , (3.23)

(D4
M)αβ = (∂M + igst

AGA
M + igXQXXM)δαβ + gεαβγW γ

R,M . (3.24)

tA = λA/2 (A = 1, . . . , 8) are the generators of the fundamental representation of
SU(3)c, where λA are the known Gell-Mann matrices. τa = σa/2 (τα = σα/2) are
the generators of the fundamental SU(2)L (SU(2)R) representations, respectively,
where σa, σα are the Pauli matrices, and −iεabc and −iεαβγ are the generators of
the adjoint triplet representations of SU(2)L and SU(2)R, respectively. Recall that
despite having the same matrix structure, the SU(2)L and SU(2)R generators act
on different internal spaces.

Finally we would like to caution the reader that the components of the T i3,4 triplets,
as given in (3.18), are not those components associated to a, α = 1, 2, 3. Instead

(T i3)a =





1√
2
(ψ′i +D′i)

i√
2
(ψ′i −D′i)

U ′i



 , (T i4)α =





1√
2
(ψ′′i +Di)

i√
2
(ψ′′i −Di)

U ′′i



 . (3.25)

Recall that the same structure appears also in the gauge sector, where W 1,2
L,R are

related to W±
L,R via

W±
L,R =

W 1
L,R ∓ iW 2

L,R√
2

. (3.26)

Leptons

In order to preserve the minimality of the model, we take the lepton sector in
complete analogy to the quark sector. The resulting lepton representations can be
found in [40]. Basically the only necessary modifications are:

1. Leptons transform as singlets under SU(3)c, i. e. the coupling to gluons,
+ igst

AGA
M in (3.21)–(3.24), has to be removed.

2. In order to obtain correct electric charges for the leptons, QX = 0 has to be
imposed, so that leptons do not couple to the XM gauge boson of U(1)X .
Effectively thus also the + igXQXXM term in (3.21)–(3.24) is absent in the
case of leptons.
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3 The custodially protected model

An immediate consequence of this PLR-symmetric realisation of the lepton sector
is that also the couplings ZℓiLℓ̄

j
L and ZνiRν̄

j
R are protected from large corrections,

with possibly profound implications on lepton flavour violating observables.

For completeness sake we note that in principle other implementations of the lep-
ton sector are possible and in agreement with the data. First of all, the lepton
sector does not necessarily have to preserve the PLR symmetry, as the leptons, due
to their small masses, are localised far enough in the UV anyway to fulfil exper-
imental constraints on their couplings. Therefore the left- and right-handed SM
leptons may as well be embedded into (2,1) and (1,2) representations, respec-
tively. Another possibility would be to implement the right-handed neutrinos as
complete gauge singlets, (1,1)0, and add Majorana mass terms in the bulk and/or
on the branes.

3.2.3 Higgs Sector

The Lagrangian describing the Higgs dynamics reads

LHiggs = δ(y − L)
√
G

[

(DµH)†aα(D
µH)aα − V (H)

]

, (3.27)

with the covariant derivative given by

(DµH)aα = ∂µHaα + ig(τ c)abW
c
L,µHbα + ig(τ γ)αβW

γ
R,µHaβ . (3.28)

Furthermore
V (H) = −µ2H†H + λ(H†H)2 (3.29)

is the Higgs potential that for µ2 > 0 leads to EWSB. The Higgs field transforms
as a self-dual bidoublet (2,2)0 under the electroweak gauge group. Its degrees of
freedom can be parameterised as

H =

(

π+/
√

2 −(h0 − iπ0)/2

(h0 + iπ0)/2 π−/
√

2

)

, (3.30)

where again SU(2)L acts vertically and SU(2)R horizontally. The Goldstone
bosons eaten by the gauge boson zero modes of W±

L and Z are denoted by π± and
π0, while h0 is the physical Higgs boson whose VEV eventually leads to EWSB.

Although in [40] we considered the more general case of a bulk Higgs boson, in the
present thesis we will restrict ourselves to the case of a 4D Higgs field confined to
the IR brane. As in order to maintain the solution to the gauge hierarchy problem,
the Higgs has to be localised close to the IR brane anyway, the phenomenology of
the model depends only weakly on the actual form of the Higgs profile considered.

The kinetic term in LHiggs is responsible for the effects of EWSB in the gauge
sector. Those will be discussed in detail in section 3.3.
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3.2.4 Yukawa Sector

The most general Yukawa coupling including the Higgs bidoublet H and the quark
fields ξi1,2,3 is given by

LYuk = δ(y − L)
√
G

3
∑

i,j=1

[√
2λuij(ξ̄

i
1)aαHaαξ

j
2 (3.31)

− 2λdij
[

(ξ̄i1)aα(τ
c)ab(T

j
3 )cHbα + (ξ̄i1)aα(τ

γ)αβ(T
j
4 )γHaβ

]

+ h.c.
]

,

where again summation over repeated indices is understood. The normalisation
factors and the overall signs of the two contributions are chosen for later conve-
nience.

Interestingly, while the first coupling, proportional to λuij, contributes, after EWSB,
only to the mass matrix of +2/3 charge quarks, the second term, proportional to
λdij, contributes to all +5/3, +2/3 and −1/3 mass matrices. Explicit expressions
for these matrices, including zero and first KK modes, can be found in [40].

We note that λu,dij , being 5D couplings, are not dimensionless, but carry mass
dimension −1. In order to maintain perturbativity of the model at least up to the
second KK level

∣

∣

∣λ
u,d
ij

∣

∣

∣ k ∼< 3 (3.32)

has to be fulfilled. See e. g. [39,85] for an NDA estimate of this bound.

3.2.5 Additional brane terms

Sections 3.2.1 and 3.2.2 describe the most general bulk Lagrangian consistent with
the symmetry (3.1) and including the fermion representations (3.16)–(3.18). How-
ever the presence of the two branes at y = 0 and y = L would allow us to extend
the theory by brane-localised Lagrangians including the fields with + BCs on the
respective brane, and invariant under the symmetry that is unbroken on this brane,
i. e.

UV brane: SU(3)c × SU(2)L × U(1)Y , (3.33)

IR brane: SU(3)c × SU(2)L × S(2)R × PLR × U(1)X . (3.34)

Herewith one should keep in mind that even if such terms are not introduced at
tree level, they will be unavoidably generated by radiative corrections.

However in order to keep the presentation as simple as possible and to omit in-
troducing additional sets of new parameters, in the present work we neglect such
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3 The custodially protected model

brane localised Lagrangians. While the general picture of flavour violating effects
in the RS model in question is independent of such additional terms, we note that
quantitatively some of the results presented in chapter 5 depend on this assump-
tion.

In particular the presence of brane kinetic terms for the gauge fields modifies
the simple tree level matching relation (3.8). As the strengths of the zero mode
couplings is determined experimentally, this in turn modifies the necessary 5D
gauge coupling constants, and consequently also the coupling strength of the KK
gauge bosons. This consequently affects the size of NP effects in flavour violating
observables which are dominantly induced by the presence of the heavy KK gauge
bosons. For further details we refer the reader to [35,85].

3.3 Electroweak symmetry breaking

3.3.1 Symmetry breaking pattern

We have seen already in section 3.2.1 that the bulk gauge group Gbulk in (3.1)
is broken to the SM gauge group by means of appropriately chosen BCs on the
UV brane. Consequently the custodial symmetry SU(2)V and the discrete PLR
symmetry are broken on this brane, so that the protection of the T parameter and
the ZdiLd̄

j
L couplings is no longer exact. On the other hand the Higgs sector, being

localised on the IR brane, feels this symmetry breaking only indirectly. Therefore
the tree and one-loop corrections to the T parameter and the ZbLb̄L coupling turn
out to be consistent with electroweak precision data [80,81,86].

Now, due to the potential V (H) given in (3.29) the Higgs boson develops a vacuum
expectation value (VEV)

〈H〉 =

(

0 −v0/2
v0/2 0

)

, (3.35)

with 〈h0〉 = v0 being the fundamental Planck scale Higgs VEV. The scale of EWSB
is then given by (see section 2.1.2)

v = e−kLv0 ≃ 246 GeV . (3.36)

The Higgs VEV (3.35) induces the breakdown

SU(2)L × SU(2)R
v−−→ SU(2)V (3.37)

on the IR brane. We notice that the custodial symmetry SU(2)V and consequently
also the PLR symmetry remains unbroken in the Higgs sector. Therefore the pro-
tection mechanism for the T parameter and the ZdiLd̄

j
L couplings is active.
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3.3 Electroweak symmetry breaking

SU(2)L × SU(2)R

×PLR × U(1)X

SU(2)L × U(1)Y

Planck brane TeV brane

SU(2)V × U(1)X

×PLR

Figure 3.1: EWSB pattern of the RS model with custodial protection (figure taken
from [87]).

Together with the symmetry breaking by BCs on the UV brane,

SU(2)L × SU(2)R × PLR × U(1)X
UV brane−−−−−−→ SU(2)L × U(1)Y , (3.38)

in the low energy limit effectively the SM structure of EWSB

SU(2)L × U(1)Y → U(1)em (3.39)

is recovered. The symmetry breaking pattern in the RS model with custodial
protection is schematically displayed in figure 3.1.

In order to discuss the impact of EWSB on the gauge boson masses and mixings
in the next section, it will be useful to follow [88,89] and define the following fields

W±
Lµ =

W 1
Lµ ∓ iW 2

Lµ√
2

, W±
Rµ =

W 1
Rµ ∓ iW 2

Rµ√
2

, (3.40)

and

Zµ = cosψW 3
Lµ − sinψBµ , (3.41)

Aµ = sinψW 3
Lµ + cosψBµ , (3.42)

where again sinψ is given in terms of gauge couplings (see (3.14) for the definition
of φ)

cosψ =
1

√

1 + sin2 φ
, sinψ =

sinφ
√

1 + sin2 φ
. (3.43)
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3 The custodially protected model

It turns out that Aµ is unaffected by EWSB, so that its zero mode A(0) corresponds
to the massles photon. On the other hand W±

Lµ, W
±
Rµ and Zµ feel the effects of

EWSB, so that the zero modes W
(0)
L and Z(0) mix with the KK modes W

(n)
L , W

(n)
R

and Z(n), Z
(n)
X , with corrections appearing first at the level O(v2/M2). We will

now analyse this mixing in more detail.

3.3.2 Impact on gauge boson masses and mixings

In the absence of EWSB the gauge boson mass matrices are diagonal with the
only non-vanishing entries given by the gauge boson KK masses. Consequently
the gauge boson zero modes W

(0)
L , Z(0), A(0) and G(0)A are exactly massless at this

stage, and the several modes do not mix with each other.

After EWSB, however, the mass matrices for charged and neutral weak gauge
bosons receive corrections to both their diagonal and off-diagonal entries at or-
der O(v2) [88]. Restricting ourselves to the zero modes and first KK level for
simplicity2, these matrices are defined by

(

W
(0)+
L W

(1)+
L W

(1)+
R

)

M2
charged







W
(0)−
L

W
(1)−
L

W
(1)−
R






, (3.44)

1

2

(

Z(0) Z(1) Z
(1)
X

)

M2
neutral





Z(0)

Z(1)

Z
(1)
X



 . (3.45)

Inserting the Higgs VEV (3.35) into the Higgs kinetic term (3.27), we find

M2
charged =











g2v2

4L
g2v2

4L
I+

1 −g2v2

4L
I−

1

g2v2

4L
I+

1 M2
++ + g2v2

4L
I++

2 −g2v2

4L
I−+

2

−g2v2

4L
I−

1 −g2v2

4L
I−+

2 M2
−− + g2v2

4L
I−−

2











, (3.46)

M2
neutral =











g2v2

4L cos2 ψ

g2v2I+
1

4L cos2 ψ
−g2v2 cosφI−

1

4L cosψ

g2v2I+
1

4L cos2 ψ
M2

++ +
g2v2I++

2

4L cos2 ψ
−g2v2 cosφI−+

2

4L cosψ

−g2v2 cosφI+
1

4L cosψ
−g2v2 cosφI−+

2

4L cosψ
M2

−− +
g2v2 cos2 φI−−

2

4L











, (3.47)

2The effects of higher KK levels are suppressed by their masses mn > M (n > 1) and therefore
have a subleading phenomenological impact. More explicitly, the results obtained taking
into account only the first massive KK level deviates from the exact result at the 10% level
[35,40,85,90]. In view of other theoretical uncertainties it is thus well justified to neglect the
higher KK modes.
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3.3 Electroweak symmetry breaking

where we defined M++ and M−+ in (2.30) and (2.33), respectively. The mixing
angles φ and ψ in the neutral gauge boson sector are given in (3.14) and (3.43),
respectively. Finally the gauge boson overlaps I±

1 and I ij2 with the Higgs field are
given by

I+
1 = g(y = L) , I−

1 = g̃(y = L) , (3.48)

I++
2 = g(y = L)2 , I−−

2 = g̃(y = L)2 , I−+
2 = g(y = L)g̃(y = L) , (3.49)

where we introduced the short-hand notation

g(y) = f (1)
gauge(y, (++)) (3.50)

for the bulk shape function of Z(1) and W
(1)
L , as well as for the KK gluons G(1)A

and photon A(1), and

g̃(y) = f (1)
gauge(y, (−+)) (3.51)

for the bulk shape function of Z
(1)
X and W

(1)
R .

The mass matrices M2
charged and M2

neutral in (3.46), (3.47) can be diagonalised
by means of orthogonal transformations. In order to obtain transparent expres-
sions for mass eigenvalues and mass eigenstates we introduce first the following
parameterisation

M2
++ = M2 + av2 , M2

−− = M2 − av2 , (3.52)

I−−
2 = I2 , I−+

2 = I2

(

1 + δ−+ v
2

f 2

)

, I++
2 = I2

(

1 + δ++ v
2

f 2

)

, (3.53)

where numerically the parameter a = O(1) for f = O(1 TeV), and the coefficients
δij turn out to be much smaller than unity.

Further we introduce the function

B(ζ) =
√

16a2L2 cos2 ζ + 8aLg2I2 sin2 ζ + g4I2
2 cos2 ζ . (3.54)

In order to evaluate tree level contributions to FCNC processes discussed in chapter
4 to the level O(v2/f2), it is sufficient to evaluate O(v2/f2) corrections to the
couplings of W± and Z but only O(1) couplings involving heavy gauge boson mass
eigenstates. The latter contributions in Feynman diagrams will be suppressed by
their large masses in the propagators. It turns out then that to this order in v2/f2

the coefficients δ−+ and δ++ can be set to zero so that only a universal I2 will
enter the expressions below.
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3 The custodially protected model

The resulting mass eigenstates in the charged gauge boson sector then read

W± = W
(0)±
L − g2v2

4LM2
I+

1 W
(1)±
L +

g2v2

4LM2
I−

1 W
(1)±
R , (3.55)

W±
H =

g2v2

4LM2

(

I+
1 cosχ− I−

1 sinχ
)

W
(0)±
L + cosχW

(1)±
L + sinχW

(1)±
R , (3.56)

W ′± = − g2v2

4LM2

(

I+
1 sinχ+ I−

1 cosχ
)

W
(0)±
L − sinχW

(1)±
L + cosχW

(1)±
R , (3.57)

where the O(1) mixing between the heavy KK modes W
(1)
L and W

(1)
R is parame-

terised by the mixing angle

cosχ =

√

1

2
− 2aL

B(0)
, sinχ =

√

1

2
+

2aL

B(0)
. (3.58)

Note that in the limit of exact PLR symmetry a → 0, so that maximal mixing
χ = 45◦ between the two KK states appears. As however PLR is violated by the
different BCs for W

(1)
L and W

(1)
R on the UV brane, χ deviates from this limit by

roughly 10%.

The masses of W±, W±
H and W ′± are given by

M2
W =

g2v2

4L
− g4v4

16L2M2

(

(I+
1 )2 + (I−

1 )2
)

, (3.59)

M2
WH

= M2 +
v2

4L

(

g2I2 −B(0)
)

, (3.60)

M2
W ′ = M2 +

v2

4L

(

g2I2 +B(0)
)

. (3.61)

Similarly the neutral electroweak gauge bosons in the mass eigenbasis are

Z = Z(0) − g2v2I+
1

4LM2 cos2 ψ
Z(1) +

g2v2I−
1 cosφ

4LM2 cosψ
Z

(1)
X , (3.62)

ZH =
g2v2

4LM2 cos2 ψ

(

I+
1 cos ξ − cosφ cosψ I−

1 sin ξ
)

Z(0) + cos ξZ(1) + sin ξZ
(1)
X ,

(3.63)

Z ′ = − g2v2

4LM2 cos2 ψ

(

I+
1 sin ξ + cosφ cosψ I−

1 cos ξ
)

Z(0) − sin ξZ(1) + cos ξZ
(1)
X .

(3.64)

Here the mixing between Z(1) and Z
(1)
X is parameterised by the angle ξ, defined
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3.3 Electroweak symmetry breaking

through

cos ξ =

√

B(ψ) cosψ − 4aL cos2 ψ − sin2 ψg2I2

2B(ψ) cosψ
, (3.65)

sin ξ =

√

B(ψ) cosψ + 4aL cos2 ψ + sin2 ψg2I2

2B(ψ) cosψ
. (3.66)

These expressions deviate from the result obtained in the limit of exact PLR sym-
metry,

cos ξ =
cosφ√

2
, sin ξ =

1√
2 cosψ

, (3.67)

again by roughly 10%.

The corresponding masses read

M2
Z =

g2v2

4L cos2 ψ
− g4v4

16L2M2 cos2 ψ

(

(I+
1 )2

cos2 ψ
+ (I−

1 )2 cos2 φ

)

, (3.68)

M2
ZH

= M2 +
v2

4L

(

g2I2 −
B(ψ)

cosφ

)

, (3.69)

M2
Z′ = M2 +

v2

4L

(

g2I2 +
B(ψ)

cosφ

)

. (3.70)

3.3.3 Comment on the perturbative approach

Throughout this work, we follow the perturbative approach to treat the effects
of EWSB, i. e. we first solve the bulk EOMs in the absence of the Higgs VEV,
as discussed in detail in section 2.2. The effects of EWSB, due to the presence
of the Higgs VEV v, are then treated as a small perturbation of the previously
obtained KK mass matrices. Consequently the zero modes corresponding to the
broken symmetry receive non-vanishing masses, and O(v2/M2) corrections to the
KK masses appear. Furthermore, as the Higgs VEV generates off-diagonal entries
in the mass matrices in question, mixing between the various modes appears (see
section 3.3.2). We will see in section 4.2 that this mixing leads to flavour non-
universalities and consequently tree level FCNCs mediated not only by the heavy
gauge KK modes, but also by the Z boson.

The effects of EWSB can in principle also be treated exactly. To this end the
Higgs VEV is included already for the derivation and solution of the bulk EOMs,
by appropriately modifying the BCs on the IR brane. This implies distortions of
the wave functions and shifts in the masses of the zero and KK modes, with respect
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3 The custodially protected model

to the unbroken case. On the other hand due to the orthogonality of the bulk wave
functions, in this approach no mixing between the various modes appears.

While the perturbative approach is more intuitive and therefore most widely used
in the literature (see e. g. [40, 88, 89, 91]), in various analyses the exact approach
has been exploited [58, 73, 74, 76, 92]. In two recent independent analyses [40, 93]
it has been shown explicitly that in fact the perturbative approximation is valid
here and the two approaches lead to equivalent results.

3.4 Fermion masses and the flavour structure

3.4.1 Effective 4D Yukawa couplings

In section 3.2.4 we have constructed the most general Yukawa coupling (3.31)
consistent with the symmetries and the field content of the custodially protected
RS model. For the moment we restrict ourselves to only the fermionic zero modes
(uiL, d

i
L), uiR and diR (i = 1, 2, 3). The impact of taking into account also the

fermionic KK modes will briefly be discussed in section 3.4.4. In contrast to the
phenomenologically important mixing between gauge boson zero and KK modes
discussed in section 3.3.2, it turns out that the effect of KK fermions, albeit of a
similar origin, turns out to be a subleading effect and therefore phenomenologically
negligible in most cases [35,37].

At the zero mode level the Yukawa interactions (3.31) result, after EWSB, in
non-vanishing masses for the fermionic zero modes uiL,R and diL,R (i = 1, 2, 3). In
addition the flavour misalignment between the Yukawa coupling matrices λu and
λd leads to the CKM mixing apparent in charged current interactions.

Inserting the Higgs representation (3.30) and the fermionic KK decomposition into
(3.31), performing the (trivial) integral over the extra dimension 0 ≤ y ≤ L and
restricting ourselves to the fermion zero modes, we find for the effective 4D Yukawa
interactions

L4D
Yuk = − h0

√
2L

3
∑

i,j=1

[

λuijf
(0)
L (y = L, ciQ)f

(0)
R (y = L, cju) ū

i
Lu

j
R

+λdijf
(0)
L (y = L, ciQ)f

(0)
R (y = L, cjd) d̄

i
Ld

j
R

]

+ h.c.

≡ − h0

√
2L

3
∑

i,j=1

[

λuijf
Q
i f

u
j ū

i
Lu

j
R + λdijf

Q
i f

d
j d̄

i
Ld

j
R

]

+ h.c. , (3.71)

where we introduced the short hand notation fQ,u,di for the relevant fermion shape
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e
(0)

t(0)

Planck brane TeV brane

Higgs

Figure 3.2: Localisation of fermionic zero modes, leading to exponentially sup-
pressed overlaps with the Higgs field living on the IR brane (figure taken
from [87]).

functions on the IR brane.

The mass matrices for the fermionic zero modes are then given by

mu
ij =

v√
2
Y u
ij , md

ij =
v√
2
Y d
ij , (3.72)

where we introduced the effective 4D Yukawa coupling matrices

Y u,d
ij =

ekL

L
λu,dij f

Q
i f

u,d
j . (3.73)

The factor ekL enters when replacing the Higgs field h0 by its VEV v0 = ekLv.

We observe that the effective 4D Yukawa coupling matrices Y u,d depend on both
the fundamental 5D Yukawa couplings λu,d and on the overlap of the zero mode
bulk profiles with the Higgs living on the IR brane, fQ,u,d. Consequently even for
naturally large 5D Yukawa couplings λu,dk ∼ O(1) it is possible to obtain very
hierarchical Y u,d matrices if the fermionic overlaps with the IR brane are very
small. In order to illustrate this effect, we sketch in figure 3.2 the fermionic bulk
profiles for the top quark and the electron. We observe that while the top quark
needs to be localised close to the IR brane, the light quarks and leptons live close
to the UV brane and are exponentially suppressed on the IR brane. Consequently
their overlap with the Higgs boson in exponentially small.
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3 The custodially protected model

The fermion mass matrices mu,d in (3.72) have to be diagonalised by means of
bi-unitary transformations

diag(mu,mc,mt) = U †
Lm

u UR , (3.74)

diag(md,ms,mb) = D†
Lm

dDR , (3.75)

where UL,R and DLR are unitary 3 × 3 matrices parameterising the field trans-
formations in the left- and right-handed up and down sectors, respectively. The
misalignment between left-handed up- and down-type quarks is then given by the
CKM matrix

VCKM = U †
LDL . (3.76)

Note that in contrast to the SM, where only VCKM is physical, in RS models with
bulk fermions due to the flavour non-universal gauge couplings all four matrices
UL,R, DLR are physical.

3.4.2 Analogy with the Froggatt-Nielsen scenario

Having a closer look at the effective 4D Yukawa couplings Y u,d in (3.73), we observe
[35, 76] that their structure is completely analogous to that analysed by Froggatt
and Nielsen (FN) [13] in the context of a spontaneously broken flavour symmetry.

In that pioneering work a global U(1)F flavour symmetry has been introduced,
under which the various quark fields carry different charges while the SM Higgs
H is neutral under U(1)F . In order to allow for non-vanishing flavour mixing, the
flavour symmetry is spontaneously broken by the VEV of a scalar Φ, the so-called
flavon field, that transforms as gauge singlet, but is (singly) charged under U(1)F .
In order to obtain small flavour violating effects consistent with observation, the
flavon VEV 〈Φ〉 has to be much smaller than its mass mΦ ∼ Λ. The effective
flavour violating parameter is then given by ǫ = 〈Φ〉/Λ ≪ 1.

The case of bulk fermions in the RS background can in fact be quite easily related to
the case of a U(1)F FN-symmetry [35]. This straight correspondence is summarised
in table 3.1. We see that the flavour U(1)F symmetry corresponds to translations
along the extra-dimensional coordinate 0 ≤ y ≤ L, under which the metric is self-
similar. The Higgs field, living on the IR brane, is external to this self-similarity of
the bulk. The fermions, on the other hand, are localised along the extra dimension
by means of their bulk mass parameters cQ,u,d, i. e. the bulk mass parameters can
be interpreted as charges under self-similarity transformations. Self-similarity is
broken explicitly by the presence of the IR brane, giving rise to the symmetry
breaking parameter e−kL ≪ 1.

Due to this nice one-to-one correspondence, having at hand the formulae of [13],
it is easy to derive analytic expressions for the quark masses and flavour mixing
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3.4 Fermion masses and the flavour structure

Froggatt-Nielsen symmetry bulk fermions in RS

U(1)F symmetry self-similarity along y

U(1)F charges QF = ai, bi, di bulk mass parameters ciQ,u,d

VEV of scalar Φ (QF = 1) IR brane at y = L

ǫ = 〈Φ〉/Λ ≪ 1 warp factor e−kL

Table 3.1: Correspondence between FN symmetry and bulk fermions in RS [35].

matrices UL,R,DL,R in terms of the fundamental flavour parameters of the model.
The result can be found in appendix A.2 [35,76]. These formulae make the depen-
dence on the Yukawa couplings λu,d and in particular their complex phases explicit
and consequently improve the formerly used näıve estimates [38,39] significantly.

3.4.3 Flavour hierarchies and the RS-GIM mechanism

In order to understand the generic hierarchical structure of quark masses mu,d
i and

mixing matrices UL,R,DL,R, we now have a closer look at the estimated results
[38, 39] that can be obtained from the expressions in appendix A.2 in the limit of
completely anarchic, i. e. structureless, Yukawa couplings λu,d. Then the formulae
in question simplify to

mu,d
i ∼ v√

2

ekL

L
λ̄u,d fQi f

u,d
i , (3.77)

where λ̄u,d is the average value of the (anarchic) 5D Yukawa couplings, and

(UL)ij, (DL)ij ∼
fQi
fQj

, (UR)ij ∼
fui
fuj

, (DR)ij ∼
fdi
fdj

(i < j) . (3.78)

We observe that the required hierarchical pattern of the quark masses and CKM
angles can be explained by the hierarchies [38,39]

fQ1 ≪ fQ2 ≪ fQ3 , fu1 ≪ fu2 ≪ fu3 , fd1 ≪ fd2 ≪ fd3 (3.79)

in the fermionic shape functions. In fact this hierarchical pattern can naturally be
obtained from O(1) bulk mass parameters fulfilling

c1Q > c2Q > 1/2 , c3Q < 1/2 , (3.80)

c1u < c2u < −1/2 , c3u > −1/2 , (3.81)

c1d < c2d < c3d < −1/2 . (3.82)
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Here |c3Q,u| < 1/2 is required in order to account for the large top quark mass.

Now it is crucial for the flavour structure of the RS model in question (as well as
for all FN-like scenarios) that the hierarchy in the fermionic bulk profiles (3.79)
needed to explain the hierarchical quark masses immediately leads to hierarchical
flavour mixing matrices UL,R,DLR, as can be seen from (3.78). As all flavour
violating effects are proportional to off-diagonal elements of the flavour mixing
matrices in question, we can thus conclude that the strong suppression of fermion
masses with respect to the EW scale directly leads to an exponential suppression
of all FCNC processes in the model in question. This mechanism is known as
the RS-GIM mechanism [39] and helps to suppress most flavour observables below
their current experimental bounds, see e. g. [35, 36, 39, 74, 85, 94–99]. A problem
arises however in the K0−K̄0 mixing sector, where for M ≃ (2−3) TeV the generic
CP-violating effects are by roughly two orders of magnitude too large [35, 85, 98].
We will study this and other K and B physics constraints on the RS model with
custodial protection in detail in chapter 5.

To summarise we have seen that with slight hierarchies in the bulk mass parameters
the observed hierarchical pattern in quark masses and mixings can be reproduced
without the need for exponentially small parameters. In other words, the origin of
the flavour hierarchies in the SM is traced back to the 5D bulk mass parameters.
Clearly, while the hierarchies in the flavour sector are thus naturally explained, for
a complete interpretation of flavour a theory predicting the actual values of the
bulk mass parameters cQ,u,d and also the Yukawa couplings λu,d is still missing.

3.4.4 Impact of fermionic KK modes

Taking into account also the fermionic KK modes originating from all degrees of
freedom of the multiplets ξi1,2,3 and restricting onesself to the first KK excitation,
it is straightforward to derive explicit expressions for the mass matrices of Qem =
+5/3, Qem = +2/3 and Qem = −1/3 quarks. Those are found to be 9× 9, 18× 18
and 12 × 12 matrices, respectively, that have been presented in [40].

Even at tree level these higher KK fermion modes thus affect flavour observables
through their mixing with the SM fermions. Depending on the particular structure
of the Yukawa interactions, like-charged fermions of any KK level mix with each
other. Consequently non-unitarity effects in the 3 × 3 mixing matrices UL,R,DLR

are induced. Besides that, the small admixture of higher KK fermion modes to
SM fermions modifies their gauge couplings since SM fermions and KK fermion
modes couple in general differently to the various gauge boson modes. This is true
not only for the heavy KK gauge bosons, but in particular also for the Z boson,
as fermions with different weak isospin mix with each other.
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Recently it has been claimed [76,99] that the effects of fermionic KK modes are non-
negligible and and have an important impact on the results obtained. Therefore
we have studied this effect numerically by diagonalising the fermion mass matrices
given in [40]. In opposition to [76, 99] but in agreement with most of the existing
literature (see e. g. [38] for a näıve analytic estimate) we find that the impact of
the fermionic KK modes on FCNC observables constitutes in general a small effect
below the 10% level. In view of other uncertainties, such as the neglect of higher
KK gauge boson modes, we therefore do not consider these effects any further,
but restrict our attention to the fermionic zero mode sector. For further details
we refer the reader to [35,36].

Inspired by these observations, in [37] the effects of the fermionic KK modes have
been studied analytically by integrating out the heavy fields and thus reducing
the flavour sector to an effective 3 × 3 structure. In accordance with our results
in [35, 36] also this analytic approach showed that the effects of KK fermions on
FCNC observables are generally small.

3.5 Parameters of the model

3.5.1 Parameter counting

After presenting in section 3.2 the fundamental 5D action of the custodially pro-
tected RS model in question, and analysing in sections 3.3 and 3.4 the gauge and
flavour sectors of the model, we now quantify the new parameters present in the
theory.

Geometry. In principle the RS1 set-up introduced two geometric parameters,
namely the curvature scale k and the length L of the extra dimension. However
as we aim to explain the hierarchy between the Planck and the EWSB scale,
ekL ∼ O(1016) is required. Consequently in order to simplify our phenomenological
analysis in chapter 5, we fix ekL = 1016 and treat

f = ke−kL (3.83)

as the only free parameter coming from space-time geometry. This approximation
is justified as physical observables depend only weakly on the exact value of kL. We
note that recently it has been observed [100] that abandoning the aim to solve the
gauge hierarchy problem and allowing ekL ∼ O(103) can solve some of the generic
problems of RS models and allow for a smaller gauge KK scale in accordance with
electroweak precision constraints. On the other hand, the authors of [101] claim
that the “εK problem” [35,85,98] can not be solved in this Little RS scenario.
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3 The custodially protected model

Gauge sector. As the PLR symmetry relates the gauge couplings of SU(2)L and
SU(2)R to each other, in spite of the larger gauge group Gbulk in (3.1), we have as
in the SM three independent gauge couplings

gs , g , gX , (3.84)

for SU(3)c, SU(2)L × SU(2)R and U(1)X , respectively.

As already mentioned in section 3.2.1, throughout this work gs, g and gX denote
the 5D gauge couplings that are not dimensionless. Neglecting the impact of brane
kinetic terms, the simple tree level matching condition

g4D =
g√
L

(3.85)

relates the fundamental 5D to the effective 4D gauge coupling constants, with
analogous relations yielding g4D

s,X .

Higgs sector. As in the model in question we have introduced an elementary
Higgs boson confined to the IR brane (see section 3.2.3), the Higgs sector is com-
pletely analogous to the one of the SM. In particular it is completely described by
the two parameters µ and λ entering the Higgs potential.

Thus in summary, outside the flavour sector the custodially protected RS model
introduces only one new parameter, namely the new physics scale f in (3.83).

Flavour parameters. In the SM the quark flavour sector is completely deter-
mined by the up- and down-quark Yukawa couplings, which can efficiently param-
eterised by the six quark masses and the three mixing angles and a single complex
phase of the CKM matrix.

In the RS model in question the flavour sector is more complicated. In addition
to the 3 × 3 complex 5D Yukawa coupling matrices

λu , λd (3.86)

also the three hermitian 3 × 3 bulk mass matrices

cQ , cu , cd (3.87)

are present and constitute new sources of flavour violation.

In order to determine the number of physical parameters in the flavour sector,
we make use of the flavour symmetries of the theory [39]. As λu,d are arbitrary
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3.5 Parameters of the model

complex matrices, they come along with 9 real parameters and 9 complex phases
each. Furthermore the bulk mass matrices cQ,u,d are hermitian, containing each
6 real parameters and three phases. Altogether this counting leads to 36 real
parameters and 27 complex phases. Not all of these however are physical and some
of them can be eliminated by the flavour symmetry U(3)3 of the 5D theory which
exists in the limit of vanishing λu,d and cQ,u,d. Note that this flavour symmetry is
identical to the one present in the SM, and as in the SM 9 real parameters and 17
phases can be eliminated by making use of this symmetry. One phase cannot be
removed as it corresponds to the unbroken U(1)B baryon number symmetry.

We are then left with 27 real parameters and 10 complex phases to be compared
with 9 real parameters and one complex phase in the SM. Evidently the new 18
real parameters and 9 phases come from the three bulk mass matrices cQ, cu and
cd.

As the lepton sector has been implemented in a completely analogous manner, see
section 3.2.2, the same counting of parameters applies also to the latter sector.

3.5.2 Explicit parameterisation of the RS flavour sector

Finally, in order to allow for an efficient parameter scan of the 5D theory, as
described in section 5.2, we derive an explicit parameterisation of the RS flavour
sector in terms of physical parameters only which was first presented in [35]. To
this end we choose to work in a basis where the bulk mass matrices are real and
diagonal,

cQ,u,d = diag(c1Q,u,d, c
2
Q,u,d, c

3
Q,u,d) . (3.88)

Note that this can always be achieved by appropriate field redefinitions of ξi1,2,3.
The challenge is now to find a parameterisation of the 5D Yukawa couplings λu,d

in this particular basis.

We start by a singular value decomposition of the 5D Yukawa matrices,

λu =
1

k
eiφuU †

uDuVu , λd =
1

k
eiφdUdDdVd , (3.89)

where the Du,d are real and diagonal, and Uu,d, Vu,d ∈ SU(3). The factor 1/k has
been included in order to make Du,d dimensionless. The singular value decomposed
representation contains redundancies which we get rid of in the following.

In order to parameterise the matrices Uu,d, Vu,d we use the Euler decomposition for
SU(3) matrices [102]

U(α, a, γ, c, β, b, θ, φ) = eiλ3αeiλ2aeiλ3γeiλ5ceiλ3βeiλ2beiλ3θeiλ8φ , (3.90)

41



3 The custodially protected model

where λi (i = 1, . . . , 8) are the Gell-Mann matrices. We notice that a, b, c are
real mixing angles and α, γ, β, θ, φ are complex phases, with their physical ranges
given by [0, 2π) and [0, π/2), respectively. In the following we work out which of
the phases in Uu,d, Vu,d are indeed physical.

In the basis in which cQ,d,u are diagonal and real we still have the freedom to make
the following diagonal rephasing

QL → eiλ3αUde−iλ8φUuQL , (3.91)

uR → e−iφue−iλ3θVue−iλ8φVuuR , (3.92)

dR → e−iφde−iλ3θVde−iλ8φVddR . (3.93)

Furthermore the unitary matrices U, V in a singular value decomposition are de-
fined only up to an internal diagonal rephasing

UDV = (Ueiλ3A+iλ8B)D(e−iλ3A−iλ8BV ) = U ′DV ′ . (3.94)

Using this freedom and an additional rephasing of the quark fields, we find the
equivalence

λuk = U †
u(0, aUu

, γUu
, cUu

, βUu
, bUu

, θUu
, 0)Du Vu(αVu

, aVu
, γVu

, cVu
, βVu

, bVu
, 0, 0)

= U †
u(0, aUu

, γUu
+ r, cUu

, βUu
− r, bUu

, θUu
, r/

√
3)Du

Vu(αVu
, aVu

, γVu
+ r, cVu

, βVu
− r, bVu

, 0, r/
√

3) . (3.95)

The entries r/
√

3 can again be rotated to zero due to the freedom to rephase the
quark zero modes. Using this invariance parameterised by r allows us to choose
γUu

= 0. We can now define λu and λd in terms of physical parameters only

λuk = U †
u(0, aUu

, 0, cUu
, βUu

, bUu
, θUu

, 0)Du Vu(αVu
, aVu

, γVu
, cVu

, βVu
, bVu

, 0, 0) ,

(3.96)

λdk = Ud(0, aUd
, γUd

, cUd
, βUd

, bUd
, 0, 0)Dd Vd(αVd

, aVd
, γVd

, cVd
, βVd

, bVd
, 0, 0) ,

(3.97)

with Du = diag(y1
u, y

2
u, y

3
u) and Dd = diag(y1

d, y
2
d, y

3
d). Altogether we thus find 18

real parameters and 10 physical phases contained in the 5D Yukawa couplings.
Together with the 9 real parameters contained in the bulk mass matrices cQ,u,d,
this confirms the counting of section 3.5.1.
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4 Implications for flavour physics

4.1 Preliminaries

Having presented in chapter 3 the details of the RS model with custodial pro-
tection, we are now prepared to study its impact on flavour physics observables.
To this end we first discuss the origin of FCNC processes mediated at the tree
level in the model in question. Subsequently we evaluate in sections 4.3 and 4.4
the various new contributions to observables related to K0 − K̄0 and Bd,s − B̄d,s

mixings and to rare K and B decays, respectively. A detailed numerical analysis
of all these observables follows in chapter 5. Our extensive study of ∆F = 2 and
∆F = 1 observables in the custodially protected RS model has also been published
in [35,36], to which we refer the reader for further details.

4.2 Flavour changing neutral currents at tree level

4.2.1 General structure

In section 2.2.3 we have seen that the bulk profiles of the zero mode fermions
are not flat along the fifth dimension, but depend exponentially on the respective
bulk mass parameters. This exponential dependence has been used in section 3.4
to naturally generate the observed hierarchies in the SM flavour sector, i. e. to
explain the strong hierarchies in the quark masses and CKM mixings without the
need for exponentially small parameters.

The different localisations of fermion zero modes leads not only to flavour depen-
dent overlaps with the Higgs field, but also to flavour non-universal couplings to
the KK modes of the gauge bosons present in the theory. With the bulk pro-
files g(y) and g̃(y) derived in section 2.2.2 (see (3.50), (3.51)), we find that these
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4 Implications for flavour physics

couplings depend on the overlap integrals

I+
L,R(cψ) =

1

L

∫ L

0

dy f
(0)
L,R(y, cψ)2g(y) , I−

L,R(cψ) =
1

L

∫ L

0

dy f
(0)
L,R(y, cψ)2g̃(y) ,

(4.1)
for a given fermion ψ and for gauge bosons with (++) or (−+) BCs, respectively.

Here I+
L,R(cψ) enters the couplings of G(1)A, A(1) and Z(1), while the Z

(1)
X couplings

are proportional to I−
L,R(cψ). As g(y) and g̃(y) are only slightly different from each

other, due to the different BCs for the respective gauge bosons on the UV brane, it
turns out that I+

L,R(cψ) and I−
L,R(cψ) differ from each other only at the O(1%) level.

Note that in the flavour eigenbasis the couplings to KK gauge bosons are flavour
diagonal but non-universal. As the KK gauge bosons are localised exponentially
towards the IR brane, the overlap integrals can be approximated by

I±
L,R(cψ) ∼

√
kL f

(0)
L,R(y = L, cψ)2 , (4.2)

where the geometric enhancement factor
√
kL appears due to the numerical value

of the gauge KK profile on the IR brane. While this estimate turns out to be
very useful to understand the rough size of NP effects, in our numerical analysis
in chapter 5 we will of course evaluate the necessary overlap integrals exactly.

When transforming the fermion sector to the mass eigenbasis by means of the
unitary transformation matrices UL,R,DL,R defined in (3.74), (3.75), we find the
couplings of the neutral gauge KK modes to down-type quarks, relevant for K and
B physics, to be proportional to

∆̄ij±
L = (D†

L)ik I±
L (ckQ) (DL)kj , (4.3)

∆̄ij±
R = (D†

R)ik I±
R (ckd) (DR)kj , (4.4)

where summation over k = 1, 2, 3 is understood. Similar expressions hold in the
case of up-type quarks. We observe that flavour non-diagonal couplings i 6= j
are generated already at the tree level, despite the unitarity of the flavour mixing
matrices DL,R. This is a direct consequence of the flavour non-universality of the
overlap integrals I±

L,R(cψ).

It is interesting to consider the size of the flavour violating couplings in question.
In section 3.4 we have estimated the off-diagonal elements of DL,R to be

(DL)ij ∼
fQi
fQj

, (DR)ij ∼
fdi
fdj

(i < j) . (4.5)

Together with the approximation in (4.2) we thus find for the size of ∆̄ij±:

∆̄ij±
L ∼

√
kL fQi f

Q
j , ∆̄ij±

R ∼
√
kL fdi f

d
j . (4.6)
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4.2 Flavour changing neutral currents at tree level

This structure clearly reminds us of the structure of the effective Yukawa couplings
Y u,d in (3.73). In fact the main difference is that the flavour violating gauge
couplings are proportional to two fermion shape functions of the same chirality,
while in the Yukawa couplings both chiralities are present. As in order to explain
the observed quark mass and CKM pattern, hierarchical bulk profiles of both left-
and right-handed quarks are required, both ∆̄ij±

L and ∆̄ij±
R turn out to be strongly

suppressed, in particular when light quarks are involved in the interaction,

∆̄sd±
L,R ≪ ∆̄bd±

L,R ≪ ∆̄bs±
L,R ≪ 1 . (4.7)

This hierarchical pattern constitutes another explicit manifestation of the RS-GIM
mechanism [39] discussed already in section 3.4.3.

While the flavour non-universal interactions of the gauge boson KK modes lead
to tree level FCNCs, the zero mode gauge profiles of G(0)A, A(0) and Z(0) are flat
along the 5D bulk, so that the relevant overlap integrals reduce to the normalisation
condition of the fermion zero modes. Consequently the corresponding couplings
are flavour universal. As QCD and QED are unaffected by the Higgs VEV, the
zero mode gluons and photon are already in their mass eigenbasis. Therefore the
unitarity of the mixing matrices DL,R is effective in this case, and no tree level
FCNCs mediated by the SM gluons or photon arise. The case of the Z boson
however is different, as here EWSB induces mixing with the heavy KK modes Z(1)

and Z
(1)
X , see section 3.3.

Having collected the basic ingredients, we are now ready to discuss the tree level
flavour violating couplings of KK gluons and photons and the electroweak gauge
bosons Z, ZH and Z ′. As in our phenomenological analysis we are interested in K
and B physics observables, we focus on the tree level flavour violating couplings
of down-type quarks, given in (4.3) and (4.4).

4.2.2 KK gluons

Let us start by considering the case of KK gluons, as these turn out to yield im-
portant NP contributions to meson-antimeson mixing discussed in section 4.3. As
SU(3)c is unaffected by EWSB, the gluonic KK tower does not receive corrections
to their masses. Consequently no mixing between the various modes appears. The
flavour violating couplings of the first KK gluon modes can therefore directly be
deduced to be

G(1)A
µ d̄iL,Rd

j
L,R : −iγµtA∆ij

L,R(G(1)) , (4.8)

where tA are the SU(3)c generators and we have defined

∆ij
L,R(G(1)) =

gs√
L

∆̄ij+
L,R . (4.9)
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4.2.3 KK photon

The case of the first KK mode of the photon is equally straightforward. Again
A(1) is already a mass eigenstate, so that its flavour violating coupling is given by

A(1)
µ d̄iL,Rd

j
L,R : −iγµ∆ij

L,R(A(1)) , (4.10)

with

∆ij
L,R(A(1)) =

Qeme√
L

∆̄ij+
L,R . (4.11)

We observe that this coupling is suppressed by the electric charge Qem = −1/3
of down-type quarks and by the smallness of the (5D) electromagnetic coupling e
with respect to the KK gluon coupling.

4.2.4 Electroweak gauge bosons Z, ZH and Z′

The derivation of flavour violating couplings of the electroweak gauge bosons Z,
ZH and Z ′,

Vµ d̄
i
L,Rd

j
L,R : −iγµ∆ij

L,R(V ) (V = Z,ZH , Z
′) , (4.12)

is complicated by the fact that these gauge bosons are linear combinations of the
gauge eigenstates Z(0), Z(1) and Z

(1)
X . While the Z(0), being a gauge zero mode,

does not contribute to the flavour violating couplings in question, the couplings of
Z(1) and Z

(1)
X , given by

∆ij
L,R(Z(1)) =

g√
L cosψ

(

T 3
L −Qem sin2 ψ

)

∆̄ij+
L,R , (4.13)

∆ij
L,R(Z

(1)
X ) =

g√
L cosφ

(

T 3
R − (T 3

R +QX) sin2 φ
)

∆̄ij−
L,R , (4.14)

are flavour changing and therefore relevant. Here the angles ψ and φ have been de-
fined in (3.43) and (3.14), respectively. Further, the required electroweak quantum
numbers of dL,R quarks are collected in table 4.1.

In order to determine the flavour violating couplings of the mass eigenstates Z,
ZH and Z ′, we have to make use of the gauge boson mixing worked out in section
3.3.2. We then obtain

∆ij
L,R(Z) =

M2
Z

M2

[

−I+
1 ∆ij

L,R(Z(1)) + I−
1 cosφ cosψ∆ij

L,R(Z
(1)
X )

]

, (4.15)

∆ij
L,R(ZH) = cos ξ∆ij

L,R(Z(1)) + sin ξ∆ij
L,R(Z

(1)
X ) , (4.16)

∆ij
L,R(Z ′) = − sin ξ∆ij

L,R(Z(1)) + cos ξ∆ij
L,R(Z

(1)
X ) , (4.17)
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4.2 Flavour changing neutral currents at tree level

T 3
L T 3

R QX Qem

dL −1/2 −1/2 2/3 −1/3

dR 0 −1 2/3 −1/3

Table 4.1: Electroweak quantum numbers of down-type zero modes. T 3
L,R are the

third component weak isospins of SU(2)L,R and QX is the U(1)X charge.
The electric charge is then defined as Qem = T 3

L + T 3
R +QX .

where we neglected the KK fermion contributions that turn out to be subleading
and therefore irrelevant in all cases [35,37].

Let us have a look at these couplings in the limit of exact PLR symmetry. In this
limit I+

1 = I−
1 ≡ I1, ∆̄ij+

L,R = ∆̄ij−
L,R ≡ ∆̄ij

L,R, and ξ is given by (3.67). Inserting this
into (4.15)–(4.17), we find

∆ij
L,R(Z) =

M2
Z

M2

g√
L
I1 cosψ

(

T 3
R − T 3

L

)

∆̄ij
L,R , (4.18)

∆ij
L,R(ZH) =

g√
2L

(

T 3
L cosφ cosψ + T 3

R

cosφ

cosψ
−QX

sin2 ψ(1 + cos2 φ)

cosφ cosψ

)

∆̄ij
L,R ,

(4.19)

∆ij
L,R(Z ′) =

g√
2L

(

T 3
R − T 3

L

)

∆̄ij
L,R . (4.20)

From (4.18) and (4.20) we can see that in the limit of exact PLR symmetry the
flavour violating couplings of Z and Z ′ both depend on the difference T 3

R − T 3
L.

Consequently, as already discussed for the Z boson in section 2.3.4, if the fermion in
question is an eigenstate of the PL,R symmetry, requiring in particular T 3

L = T 3
R, its

flavour changing couplings to the Z and Z ′ bosons are protected and vanish in the
limit of unbroken PLR symmetry. As we can see from the fermion representations in
(3.16)–(3.18) and more explicitly in table 4.1, this is the case for left-handed down-
type quarks diL, but not for right-handed down-type quarks diR. Consequently,
while the ZdiLd̄

j
L and Z ′diLd̄

j
L couplings are protected by PLR, the couplings ZdiRd̄

j
R

and Z ′diRd̄
j
R are not. In the case of ZH we find that the emerging structure is more

complicated, see (4.19), and T 3
L,R and QX would have to satisfy a complicated

triple correlation in order to make this coupling vanish. Therefore we deduce that
both ZHd

i
Ld̄

j
L and ZHd

i
Rd̄

j
R are not protected by the PLR symmetry.

In order to estimate the efficiency of the PLR symmetry, let us finally have a look
by how much the couplings of Z and Z ′ are suppressed in the case of PLR symmetry
broken by BCs on the UV brane. On the one hand we find that ∆̄ij±

L,R deviate from

each other by roughly 1%, while I+
1 = I−

1 holds at the level O(10−4). Consequently
∆ij
L (Z) is suppressed by roughly two orders of magnitude with respect to the
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unprotected case. On the other hand in the case of Z ′ the dominant PLR breaking
effect appears in the mixing angle ξ that receives corrections at the O(10%) level.
Therefore the custodial protection mechanism is less effective in that case and
∆ij
L (Z ′) turns out to be suppressed by only one order of magnitude. Our numerical

analysis in section 5.4.1 confirms these findings.

We note that the above conclusions are not affected by the inclusion of the effects of
KK fermions, which has been checked both analytically [37] and numerically [35].

4.2.5 Higgs boson

Finally we consider tree level FCNCs mediated by the Higgs boson. In the SM the
Higgs Yukawa coupling matrices are diagonalised simultaneously with the fermion
mass matrices, so that in the mass eigenbasis for fermions all Higgs couplings are
necessarily flavour conserving. In the so-called zero mode approximation, i. e. when
neglecting the fermionic KK modes as done in the present analysis, the situation
is completely analogous, so that tree level Higgs FCNCs are absent in this limit.

However the situation changes when the effects of KK fermions are taken into
account, as due to the presence of their KK masses, the mass matrices are no
longer proportional to the respective Yukawa coupling matrices. Therefore both
matrices are no longer diagonalised simultaneously and tree level flavour changing
Higgs couplings arise.

While in most other cases the impact of KK fermions has been found to be a
sub-leading effect, the case of Higgs FCNC is potentially different as here new
∆F = 2 and ∆F = 1 operator contributions are generated, that can have an
important impact on predictions for FCNC observables. The most prominent
example are the rare decays Bs,d → µ+µ− whose branching ratios can receive
large enhancements only in the presence of scalar operators. Therefore we now
estimate the size of the relevant Higgs vertices by making use of the mass insertion
approximation describing the mixing of fermion zero modes with their heavy KK
partners [35]. We note that this simple estimate qualitatively agrees both with the
explicit analytic derivation [37,76] and with the exact numerical result [35].

To this end we consider diagrams with one heavy-light transition on a fermion
line (denoted by +), see figure 4.1. As the Higgs vertex in that case contains a
PR = (1 + γ5)/2 projector, while the heavy-light mass insertion comes along with
a PL = (1 − γ5)/2, the leading contribution from the 1/M part of the fermion
propagator vanishes, and only the non-leading /p /M2 contribution survives. When
acting on the external fermion, the additional /p /M results in the strong chiral
suppression md

i /M .
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+

qdL
j

qdL
i

d
(1)k
R

h
/p ∼ λdjk(λ

d)†ki
ekL

kL
fQi f

Q
j
vmd

i

M2 .

Figure 4.1: Leading KK fermion contribution to flavour violating Higgs couplings.

When considering also diagrams with two mass insertions on the fermion lines,
it turns out that for such contributions the chiral suppression is even stronger,
so that the above contribution of a single mass insertion is indeed the dominant
one [35]. We thus conclude that in the model in question where the Higgs field
is confined to the IR brane, Higgs contributions to FCNC processes are strongly
chirally suppressed, in addition to the usual RS-GIM suppression, and therefore
negligible.

4.3 Meson-antimeson mixing

4.3.1 ∆F = 2 processes in the SM

In the SM particle-antiparticle mixing in the neutral K and Bd,s meson systems
is governed by box diagrams with virtual W± bosons and up-type quarks running
in the loop. The resulting effective Hamiltonian describing K0 − K̄0 mixing reads

[

H∆S=2
eff

]

SM
=

G2
F

16π2
M2

W

[

λ(K)
c

2
η1Sc + λ

(K)
t

2
η2St + 2λ(K)

c λ
(K)
t η3Sct

]

(s̄d)V−A(s̄d)V−A ,

(4.21)

where λ
(K)
i = V ∗

isVid is the relevant CKM factor, and St, Sc and Sct are the one-loop
box functions that can be found for instance in [103]. The factors ηi are QCD cor-
rections evaluated at the NLO level in [104–108]. Note that in writing

[

H∆S=2
eff

]

SM
we neglected the poorly known long-distance (LD) contributions arising from vir-
tual intermediate pion states. As the latter are CP-conserving, they influence only
the mass difference ∆MK but not the CP-violating parameter εK . Here and in
the following we adopt the notations and conventions of [109] in order to allow for
an easy comparison with the results obtained in the Littlest Higgs model with T-
parity (LHT) [109–111]. An explicit numerical comparison is presented in section
5.5.3.

We stress that in the SM, and also in the LHT model, only a single operator

(s̄d)V−A(s̄d)V−A = [s̄γµ(1 − γ5)d] ⊗ [s̄γµ(1 − γ5)d] (4.22)
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contributes to K0 − K̄0 mixing. In the next section we will see that this situation
changes drastically in the presence of the new RS tree level contributions.

The SM contribution to the off-diagonal mixing amplitude MK
12 is then obtained

as

(

MK
12

)

SM
=

G2
F

12π2
F 2
KB̂KmKM

2
W

[

λ(K)
c

∗2
η1Sc + λ

(K)
t

∗2
η2St + 2λ(K)

c

∗
λ

(K)
t

∗
η3Sct

]

.

(4.23)
All relevant numerical input parameters are collected in table 5.2.

The SM contribution to Bd,s−B̄d,s mixings can be found in a completely analogous
manner. It reads

(M q
12)SM =

G2
F

12π2
F 2
Bq
B̂Bq

mBq
M2

W

[

(

λ
(q)∗
t

)2

ηBSt

]

(q = d, s) , (4.24)

where both charm quark and LD contributions are negligible in this case.

4.3.2 RS tree level contributions

The new tree level contributions to meson-antimeson mixing arising in the presence
of RS KK modes have been considered at numerous places in the literature [39,74,
85,94–97]. The first complete analysis of these effects, including also the effects of
electroweak gauge bosons and performing the full renormalisation group analysis
at next-to-leading order has been presented by us in [35], on which the subsequent
presentation is based. In order to allow for a transparent notation, we concentrate
here on the case of K0−K̄0 mixing. The respective formulae relevant for Bd,s−B̄d,s

mixings can then straightforwardly be obtained by properly adjusting all flavour
indices.

The new RS tree level contributions from the exchange of KK gluons, ZH and Z ′

gauge bosons and the KK photon lead to the effective new Hamiltonian

[

H∆S=2
eff

]

KK
=

1

4M2

[

CV LL
1 (M)QV LL

1 + CV RR
1 (M)QV RR

1

+ CLR
1 (M)QLR

1 + CLR
2 (M)QLR

2

]

, (4.25)

with the Wilson coefficients evaluated at a scale µ = O(M). Here we work in the
operator basis used in [112] which is defined as

QV LL
1 = (s̄γµPLd) (s̄γµPLd) , (4.26)

QV RR
1 = (s̄γµPRd) (s̄γµPRd) , (4.27)

QLR
1 = (s̄γµPLd) (s̄γµPRd) , (4.28)

QLR
2 = (s̄PLd) (s̄PRd) , (4.29)
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Figure 4.2: Tree level contribution of KK gluons to K0 − K̄0 mixing. Similar dia-
grams contribute to Bd,s − B̄d,s mixings.

with PR,L = (1 ± γ5)/2 being the chirality projectors. The Wilson coefficients are
then given by the sums of the various contributions

Ci(M) = Ci(M)G + Ci(M)ZH ,Z
′

+ Ci(M)A , (4.30)

with the various contributions discussed in what follows. The case of Bd,s − B̄d,s

is completely analogous.

We have seen that due to the mixing between the various gauge boson modes, also
the tree level Z couplings become flavour violating. Näıvely one might now think
that these couplings yield the dominant contribution to ∆F = 2 processes, as the
Z propagator is not suppressed by the KK mass 1/M2. However we have found
in section 4.2 that the flavour violating Z vertex is suppressed by an additional
factor M2

Z/M
2 with respect to the KK gauge boson vertices. Consequently, as a

∆F = 2 Feynman diagram contains two such vertices, the Z contributions are
suppressed with respect to the KK gauge contributions by an additional factor
M2

Z/M
2. In addition the left-handed Z couplings are further suppressed thanks

to the custodial protection mechanism. Consequently the Z boson contributions
to meson-antimeson mixing in the custodially protected RS model are negligible
with respect to the dominant KK contributions. Explicit expressions for the Z
contributions to the Wilson coefficients in question have been derived in [35]. Z
contributions to ∆F = 2 processes in the model without protection have also been
considered in [74].

KK gluon contributions. We start by evaluating the tree level contributions of
the KK gluons, that have been assumed to yield the dominant effect in most of
the existing literature, see e. g. [39,85,101]. To this end we consider the Feynman
diagrams shown in figure 4.2. Using the flavour violating KK gluon couplings
derived in section 4.2, see (4.9), we find for the contribution of the first gluonic
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KK mode to the ∆S = 2 effective Hamiltonian
[

H∆S=2
eff

]G
=

1

2M2

[

(

∆sd
L (G(1))

)2
(s̄Lγµt

adL) (s̄Lγ
µtadL)

+
(

∆sd
R (G(1))

)2
(s̄Rγµt

adR) (s̄Rγ
µtadR)

+ 2∆sd
L (G(1))∆sd

R (G(1)) (s̄Lγµt
adL) (s̄Rγ

µtadR)
]

. (4.31)

This Hamiltonian has to be translated to the operator basis (4.26)–(4.29) with the
help of appropriate Fierz transformations. A straightforward calculation yields

CV LL
1 (M)G =

2

3

(

∆sd
L (G(1))

)2
, (4.32)

CV RR
1 (M)G =

2

3

(

∆sd
R (G(1))

)2
, (4.33)

CLR
1 (M)G = −2

3
∆sd
L (G(1))∆sd

R (G(1)) , (4.34)

CLR
2 (M)G = −4∆sd

L (G(1))∆sd
R (G(1)) . (4.35)

ZH and Z′ contributions. We now turn to the contributions of the heavy elec-
troweak gauge bosons ZH and Z ′ to K0 − K̄0 mixing. As to leading order their
masses are equal, MZH

= MZ′ = M , it is most straightforward to consider their
contributions simultaneously. To this end we have to evaluate diagrams similar to
those shown in figure 4.2, but with ZH and Z ′ being exchanged. Making then use
of the relation

cos2 ξ + sin2 ξ = 1 , (4.36)

the explicit dependence of ξ drops out of the formulae in question, and we can
write the result in terms of ∆sd

L,R(Z(1)) and ∆sd
L,R(Z

(1)
X ) defined in (4.13), (4.14).

We have

CV LL
1 (M)ZH ,Z

′

= 2

[

(

∆sd
L (Z(1))

)2

+
(

∆sd
L (Z

(1)
X )

)2
]

,

CV RR
1 (M)ZH ,Z

′

= 2

[

(

∆sd
R (Z(1))

)2

+
(

∆sd
R (Z

(1)
X )

)2
]

,

CLR
1 (M)ZH ,Z

′

= 4
[

∆sd
L (Z(1))∆sd

R (Z(1)) + ∆sd
L (Z

(1)
X )∆sd

R (Z
(1)
X )

]

,

CLR
2 (M)ZH ,Z

′

= 0 . (4.37)

We note that the calculation of the relevant Feynman diagrams in this case leads
directly to an effective Hamiltonian in the basis (4.26)–(4.29), without the ne-
cessity of Fierz transformations. Consequently, in contrast to the case of KK
gluon exchanges, no contribution to the Wilson coefficient CLR

2 (M) is generated.
This result has important implications for the interplay of various contributions
in K0 − K̄0 and Bd,s − B̄d,s mixings, analysed in detail in section 5.3.1.
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4.3 Meson-antimeson mixing

KK photon contributions. Evaluating finally the contributions of the KK pho-
ton to the ∆S = 2 effective Hamiltonian, we find

CV LL
1 (M)A = 2

[

∆sd
L (A(1))

]2
, (4.38)

CV RR
1 (M)A = 2

[

∆sd
R (A(1))

]2
, (4.39)

CLR
1 (M)A = 4∆sd

L (A(1))∆sd
R (A(1)) , (4.40)

CLR
2 (M)A = 0 , (4.41)

where ∆ij
L,R(A(1)) has been defined in (4.11). Also in this case we observe that no

contribution to CLR
2 (M) is generated.

Combination of contributions. Having determined the various KK contributions
to K0 − K̄0 mixing, we can now combine them by means of (4.30). Analogous
results hold in the case of Bd − B̄d and Bs − B̄s mixings, where in all formulae
“sd” has to be replaced by “bd” and “bs”, respectively.

In order to estimate the size of EW contributions when compared to the KK
gluon exchanges we add the various KK contributions and evaluate the respective
couplings. This leads to

CV LL
1 (M) = (0.67 + 0.02 + 0.56)

g2
s

L
(∆̄ij

L )2 = 1.25
g2
s

L
(∆̄ij

L )2 , (4.42)

CV RR
1 (M) = (0.67 + 0.02 + 0.98)

g2
s

L
(∆̄ij

R)2 = 1.67
g2
s

L
(∆̄ij

R)2 , (4.43)

CLR
1 (M) = (−0.67 + 0.04 + 1.13)

g2
s

L
∆̄ij
L ∆̄ij

R = 0.50
g2
s

L
∆̄ij
L ∆̄ij

R , (4.44)

CLR
2 (M) = (−4 + 0 + 0)

g2
s

L
∆̄ij
L ∆̄ij

R = −4
g2
s

L
∆̄ij
L ∆̄ij

R , (4.45)

where the three contributions correspond to KK gluon, KK photon and combined
ZH and Z ′ exchanges respectively. In order to obtain these expressions, we have
neglected the small difference between ∆̄ij+

L,R and ∆̄ij−
L,R, and the running of the

electroweak gauge couplings between the electroweak scale MZ and the KK scale
M . As already mentioned, the Wilson coefficient CLR

2 (M) receives only KK gluon
contributions at the scale µ = O(M).

We observe that the electroweak contributions are dominated by ZH and Z ′ ex-
changes1 and in the case of CV LL

1 , CV RR
1 and CLR

1 amount to +87%, +150% and
−175% corrections to the KK gluon contribution. In particular the sign of CLR

1 (M)
is reversed. On the other hand the A(1) contributions turn out to be negligible in
all cases, being suppressed by the small electromagnetic coupling and the electric

1In fact, due to the custodial protection of Z ′di
Ld̄

j
L couplings it is the ZH that dominates.
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4 Implications for flavour physics

charge of down-type quarks. We conclude that the electroweak gauge boson con-
tributions to the Wilson coefficients CV LL

1 , CV RR
1 and CLR

1 at µ = M are of the
same order as the KK gluon contributions and have to be taken into account. At
first sight this finding may seem surprising. One should remember however that
KK gluon contributions similarly to electroweak contributions are suppressed by
their large masses M and the main difference between these contributions results
from gauge couplings, colour factors and weak charges. Our analysis shows that
with the exception of CLR

2 (M) all these effects conspire to make the electorweak
heavy gauge boson contributions to be as important as the KK gluon contributions
in the effective ∆F = 2 Hamiltonian.

4.3.3 Renormalisation group evolution

Having calculated the effective ∆F = 2 Hamiltonian at the KK scale µ = M , we
now have to perform its renormalisation group evolution down to a low energy
scale µ0, where the relevant hadronic matrix elements can be evaluated with the
help of lattice QCD.

As the SM operator (s̄d)V−A (s̄d)V−A does not mix with the other ∆F = 2 opera-
tors present in H∆S=2

eff , we can perform the renormalisation group running sep-
arately for the SM effective Hamiltonian [H∆S=2

eff ]SM and the KK contribution
[H∆S=2

eff ]KK. The same statement applies of course to the case of Bd,s−B̄d,s mixing.

Performing then the renormalisation group evolution for [H∆S=2
eff ]KK, one finds that

QV LL
1 and QV RR

1 renormalise without mixing with other operators and that their
evolution is the same as QCD is a non-chiral theory. On the other hand QLR

1

and QLR
2 mix under renormalisation so that the RG evolution operator is a 2 × 2

matrix. The outcome of this analysis is an effective Hamiltonian relevant at the
low energy scale µ0

[

H∆S=2
eff

]

KK
=

1

4M2

[

CV LL
1 (µ0)QV LL

1 + CV RR
1 (µ0)QV RR

1

+ CLR
1 (µ0)QLR

1 + CLR
2 (µ0)QLR

2

]

, (4.46)

with analogous expressions for the ∆B = 2 Hamiltonians.

In order to determine then the new KK contribution to the off-diagonal mixing
amplitude MK

12 ,

2mK

(

MK
12

)∗
KK

= 〈K̄0|
[

H∆S=2
eff

]

KK
|K0〉 , (4.47)

one has to evaluate the hadronic matrix elements

〈K̄0|Qi(µ)|K0〉 ≡ 〈Qi(µ)〉 , (4.48)
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4.3 Meson-antimeson mixing

µ0 B1 B4 B5

K0 − K̄0 2.0 GeV 0.57 0.81 0.56

Bd,s − B̄d,s 4.6 GeV 0.87 1.15 1.73

Table 4.2: Values of the parameters Bi in the MS-NDR scheme obtained in [113]
(K0 − K̄0) and [114] (Bd,s − B̄d,s). The scale µ0 at which the Wilson
coefficients Ci are evaluated is given in the second column.

which are conveniently parameterised as follows:

〈QV LL
1 (µ)〉 = 〈QV RR

1 (µ)〉 =
2

3
m2
KF

2
KB

V LL
1 (µ) , (4.49)

〈QLR
1 (µ)〉 = −1

3
RK(µ)m2

KF
2
KB

LR
1 (µ) , (4.50)

〈QLR
2 (µ)〉 =

1

2
RK(µ)m2

KF
2
KB

LR
2 (µ) . (4.51)

Here the non-perturbative parameters Bi can be determined on the lattice. They
are related to the parameters B1, B5 and B4 calculated in [113,114] as follows

BV LL
1 (µ) ≡ B1 , BLR

1 (µ) ≡ B5 , BLR
2 (µ) ≡ B4 , (4.52)

and their numerical values are given in Table 4.2. It should be stressed that Bi(µ)
are not renormalisation group invariant parameters in contrast to B̂K in (4.23).
However having at hand the results of [112–114] it is easier to use them in this
way.

Finally the matrix elements of the left-right operators QLR
1,2 receive the chiral en-

hancement factor

RK(µ) =

(

mK

ms(µ) +md(µ)

)2

, (4.53)

which yields an O(20) enhancement of the QLR
1,2 contributions with respect to

QV LL
1 ,QV RR

1 . Additionally QLR
2 is also strongly enhanced by the effects of renor-

malisation group running.

Collecting all these results we can determine the new tree level contributions to
the off-diagonal element MK

12 . We find (µL = 2 GeV)

(

MK
12

)

KK
=
mKF

2
K

12M2

[

(

CV LL
1 (µL) + CV RR

1 (µL)
)

BK
1

− 1

2
RK(µL)CLR

1 (µL)BK
5 +

3

4
RK(µL)CLR

2 (µL)BK
4

]∗
. (4.54)
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In the case of Bd,s − B̄d,s mixings, a completely analogous calculation yields (q =
d, s)

(M q
12)KK =

mBq
F 2
Bq

12M2

[

(

CV LL
1 (µb) + CV RR

1 (µb)
)

Bq
1

− 1

2
Rq(µb)C

LR
1 (µb)B

q
5 +

3

4
Rq(µb)C

LR
2 (µb)B

q
4

]∗
, (4.55)

where the hadronic matrix elements are evaluated at the scale µb = 4.6 GeV.

We note that in the latter case the chiral enhancement of the left-right-operators
is much less effective,

Rq(µ) =

(

mBq

mb(µ) +mq(µ)

)2

∼ O(1) . (4.56)

We would like to caution the reader that in (4.54) and (4.55) we omitted explicit
flavour indices K, q for the Wilson coefficients Ci, although they differ from each
other as different ∆ij are involved. In addition the scales µL and µb are different
from each other.

The values for Bi in the MS-NDR scheme that we will use in our analysis have
been extracted from [113] and [114] for the K0−K̄0 system and B0

s,d−B̄0
s,d system,

respectively. They are collected in Table 4.2, together with the relevant values of
µ0.

The final results for M i
12 in the custodially protected RS model are then given by

M i
12 = (M i

12)SM + (M i
12)KK (i = K, d, s) , (4.57)

with (M i
12)SM given in (4.23), (4.24), and (M i

12)KK in (4.54), (4.55).

4.3.4 Observables in the ∆F = 2 sector

The physics of particle-antiparticle mixing in the neutralK andBd,s meson systems
is completely described by the off-diagonal mixing elements

M i
12 −

i

2
Γi12 (i = K, d, s) , (4.58)

where the dispersive part M i
12 has been evaluated above, and the absorptive part

Γi12 in unaffected by the new RS contributions. Note that in the case of Bd,s− B̄d,s

mixings Γ12 ≪ M12. Phenomenological observables related to meson-antimeson
mixing thus depend on |M i

12| and arg(M i
12), and in certain cases also Γi12.
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4.3 Meson-antimeson mixing

Below we collect all formulae for ∆F = 2 observables that we use in our numerical
analysis. We would like to emphasise that, although physical observables are phase
convention independent, some of the formulae collected in this section depend on
the phase convention chosen for the CKM matrix and yield correct results only if
the standard phase convention is consistently used.

Let us start with the K0 − K̄0 system. The mass splitting between the two eigen-
states KL and KS is given by

∆MK = 2
[

Re
(

MK
12

)

SM
+ Re

(

MK
12

)

KK

]

(4.59)

and is a CP-conserving observable. Unfortunately the SM contribution is sub-
ject to considerable theoretical uncertainties, stemming from poorly known long-
distance dynamics. The CP-violating parameter

εK =
κεe

iϕε

√
2(∆MK)exp

[

Im
(

MK
12

)

SM
+ Im

(

MK
12

)

KK

]

, (4.60)

extracted from K → ππ decays, is theoretically much cleaner and consequently
provides stringent constraints on the NP flavour structure [56]. Here ϕε = (43.51±
0.05)◦ and κε = 0.92± 0.02 [53] takes into account that ϕε 6= π/4 and includes an
additional effect from the imaginary part of the 0-isospin amplitude in K → ππ.

In the B0
d,s − B̄0

d,s systems it is useful to define the parameterisation [115]

M q
12 = (M q

12)SM + (M q
12)KK = (M q

12)SMCBq
e2iϕBq , (4.61)

where

(

Md
12

)

SM
=

∣

∣

(

Md
12

)

SM

∣

∣ e2iβ , β = − arg(Vtd) ≃ 22◦ , (4.62)

(M s
12)SM = |(M s

12)SM| e2iβs , βs = − arg(−Vts) ≃ −1◦ . (4.63)

For the mass differences in the B0
d,s − B̄0

d,s systems we then have

∆Mq = 2 |(M q
12)SM + (M q

12)KK| = (∆Mq)SMCBq
(q = d, s) . (4.64)

The CP-violating phases of M q
12 can be determined by measuring the time depen-

dent CP-asymmetries in Bd → ψKS and Bs → ψφ decays, respectively. As these
decays are tree-dominated in the SM and therefore free from direct CP-violation
also in the presence of new KK contributions, they serve as a theoretically clean
probe of CP-violation in Bd − B̄d and Bs − B̄s mixings, respectively. From the
data one can then extract the coefficients

SψKS
= sin(2β + 2ϕBd

) , (4.65)

Sψφ = sin(2|βs| − 2ϕBs
) (4.66)
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of sin(∆Mdt) and sin(∆Mst) in the time dependent CP-asymmetries in question.
In the presence of non-vanishing ϕBd

and ϕBs
these two asymmetries do not mea-

sure β and βs but (β + ϕBd
) and (|βs| − ϕBs

), respectively.

The last quantities we will consider in this section are the width differences ∆Γs
and the semileptonic CP-asymmetry AsSL, related to Bs − B̄s mixing, and defined
respectively as

∆Γs = ΓsL − ΓsH , (4.67)

AsSL =
Γ(B̄s → ℓ+X) − Γ(Bs → ℓ−X)

Γ(B̄s → ℓ+X) + Γ(Bs → ℓ−X)
. (4.68)

Width difference and semileptonic CP-asymmetry are obtained by diagonalising
the 2 × 2 Hamiltonian which describes the Bs − B̄s system. Neglecting terms of
O(m4

b/m
4
t ), they can simply be written as

∆Γs = −∆Ms Re

(

Γs12
M s

12

)

, AsSL = Im

(

Γs12
M s

12

)

. (4.69)

Theoretical predictions of both ∆Γs and AsSL thus require the calculation of the off-
diagonal matrix element Γs12, subject to non-perturbative QCD effects. Important
theoretical improvements have been achieved thanks to advances in lattice studies
of ∆B = 2 four-fermion operators [114] and to the NLO perturbative calculations
of the corresponding Wilson coefficients [116, 117]. In our numerical analysis we
will use [116]

Re

(

Γs12
M s

12

)SM

= −(2.6±1.0) ·10−3 , Im

(

Γs12
M s

12

)SM

= (2.6±0.5) ·10−5 . (4.70)

In the presence of new CP-violating phases beyond the CKM one we can then
write

∆Γs
Γs

= −
(

∆Ms

Γs

)exp
[

Re

(

Γs12
M s

12

)SM
cos 2ϕBs

CBs

− Im

(

Γs12
M s

12

)SM
sin 2ϕBs

CBs

]

,(4.71)

AsSL = Im

(

Γs12
M s

12

)SM
cos 2ϕBs

CBs

− Re

(

Γs12
M s

12

)SM
sin 2ϕBs

CBs

. (4.72)

It is important to note that with Re(Γs12/M
s
12) ≫ Im(Γs12/M

s
12), even a small

ϕBs
can induce an order of magnitude enhancement of AsSL relative to the SM.

Simultaneously a non-vanishing ϕBs
would result in a suppression of ∆Γs/Γs

Finally, we recall the correlation between AsSL and Sψφ [118,119]

AsSL = −|∆Γs|
∆Ms

Sψφ
√

1 − S2
ψφ

, (4.73)
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where we assumed (∆Γs)SM > 0. A similar expression has been pointed out earlier
in [120, 121]. As this correlation is valid in any NP model in which Γs12 is not
affected by NP contributions and the Bs → ψφ decays are free from direct CP-
violation, we will see below that the correlation in question also exists in the RS
model considered here. It has been observed also in the LHT model analysed
in [109,111,122].

4.4 Rare K and B decays

4.4.1 General remarks

Having derived analytic expressions for the most important ∆F = 2 observables
in the custodially protected RS model, we now analyse the new tree level contri-
butions to rare K and B decays in this model. While partial studies of the new
RS effects on rare decay branching ratios have been presented in [39,94,96], a first
complete analysis of these effects in the custodially protected RS model has been
given by us in [36]. The following discussion of the new RS effects in K → πνν̄,
B → Xd,sνν̄, KL → π0ℓ+ℓ− (ℓ = e, µ), KL → µ+µ− and Bd,s → µ+µ− is based on
the latter publication. Throughout this section, we use the notations and conven-
tions of the corresponding analysis performed in the LHT model [122,123].

4.4.2 The K → πνν̄ system

The K → πνν̄ decays, being theoretically very clean and extremely suppressed in
the SM, are known to be one of the best probes of NP in the flavour sector. Recent
reviews of these decays both in and beyond the SM can be found in [124,125], here
we just quote for completeness the presently available SM predictions, obtained at
the NNLO level,

Br(KL → π0νν̄)SM = (2.76 ± 0.40) · 10−11 [126,127] (4.74)

and

Br(K+ → π+νν̄)SM = (8.5 ± 0.7) · 10−11 [128] . (4.75)

Unfortunately the K → πνν̄ decays are experimentally very challenging, so that
for Br(KL → π0νν̄) only an upper bound [129]

Br(KL → π0νν̄)exp < 6.7 · 10−8 (90% C.L.) (4.76)
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Z,Z ′, ZH

s

d

ν

ν

Figure 4.3: Tree level contributions of Z, Z ′ and ZH to the s → dνν̄ effective
Hamiltonian.

is available, while the present measurement of Br(K+ → π+νν̄) [130]

Br(K+ → π+νν̄)exp = (17.3+11.5
−10.5) · 10−11 (4.77)

is still plagued by large uncertainties.

While a significant deviation of any of these branching ratios on its own from the
respective SM prediction would already be a spectacular sign of NP, it is even more
interesting to study both decays simultaneously. In [131] we have pointed out that
the stringent two-branch correlation observed e. g. in the LHT model [122, 123]
and in the minimal 3-3-1 model [132] provides a clean test of the universality of
CP-violating phases in K0 − K̄0 mixing and the K → πνν̄ system. In fact one
of the most common reasons for the absence of such correlation is the presence of
the new QLR

i operators contributing to the ∆S = 2 effective Hamiltonian.

In order to calculate the K → πνν̄ branching ratios we have to consider the
effective Hamiltonian [Hνν̄

eff ]K governing the s → dνν̄ transition. In the SM it is
given as follows

[Hνν̄
eff ]

K
SM = g2

SM

∑

ℓ=e,µ,τ

[

λ(K)
c Xℓ

NNL(xc) + λ
(K)
t X(xt)

]

(s̄d)V−A(ν̄ℓνℓ)V−A + h.c. ,

(4.78)

where xi = m2
i /M

2
W , λ

(K)
i = V ∗

isVid and Vij are the elements of the CKM ma-
trix. Xℓ

NNL(xc) and X(xt) comprise internal charm and top quark contributions,
respectively. They are known to high accuracy including NNLO QCD correc-
tions [126,127,133]. For convenience we have introduced the effective coupling

g2
SM =

GF√
2

α

2π sin2 θW
. (4.79)

In the custodially protected RS model the couplings of the Z boson and the new
heavy modes ZH and Z ′ are flavour violating already at the tree level, see sec-
tion 4.2. Consequently new contributions to [Hνν̄

eff ]K mediated by these gauge
bosons exist, shown by the diagram in figure 4.3. On the other hand the KK
gluons and photon cannot contribute to the effective Hamiltonian in question, as
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4.4 Rare K and B decays

they do not couple to neutrinos. Evaluating then the diagram in figure 4.3 we find
the new contributions to [Hνν̄

eff ]K with i = Z,ZH , Z
′

[Hνν̄
eff ]

K
i =

∆νν
L (i)

M2
i

[

∆sd
L (i)(s̄Lγ

µdL) + ∆sd
R (i)(s̄Rγ

µdR)
]

(ν̄LγµνL) + h.c. . (4.80)

The flavour violating couplings ∆sd
L,R(Z), ∆sd

L,R(ZH) and ∆sd
L,R(Z ′) have been calcu-

lated in section 4.2. The flavour conserving neutrino couplings ∆νν
L (Z), ∆νν

L (ZH)
and ∆νν

L (Z ′) are collected in appendix A.3. Note that ∆νν
R (i) ≡ 0, as the right-

handed neutrinos are introduced as pure gauge singlets.

Combining then the new contributions of Z, ZH and Z ′ in (4.80) with the SM
contribution in (4.78),

[Hνν̄
eff ]

K
= [Hνν̄

eff ]
K
SM + [Hνν̄

eff ]
K
Z + [Hνν̄

eff ]
K
ZH

+ [Hνν̄
eff ]

K
Z′ , (4.81)

we find for the total effective Hamiltonian mediating the s→ dνν̄ transition

[Hνν̄
eff ]

K
= g2

SM

∑

ℓ=e,µ,τ

[

λ(K)
c Xℓ

NNL(xc) + λ
(K)
t XV−A

K

]

(s̄d)V−A(ν̄ℓνℓ)V−A

+ g2
SM

∑

ℓ=e,µ,τ

[

λ
(K)
t XV

K

]

(s̄d)V (ν̄ℓνℓ)V−A + h.c. . (4.82)

In order to allow for a transparent presentation of our analytic results we have
introduced the functions

XV−A
K = X(xt) +

∑

i=Z,ZH ,Z′

(XK
i )V−A , (4.83)

XV
K =

∑

i=Z,ZH ,Z′

(XK
i )V . (4.84)

This structure generalises the one encountered in the LHT model, where due to the
specific operator structure of that model only the functionXV−A

K was present [123].
The various contributions i = Z,ZH , Z

′ are given by

(XK
i )V−A =

1

λ
(K)
t

∆νν
L (i)

4M2
i g

2
SM

[

∆sd
L (i) − ∆sd

R (i)
]

, (4.85)

(XK
i )V =

1

λ
(K)
t

∆νν
L (i)

2M2
i g

2
SM

∆sd
R (Z) . (4.86)

Note that, as we have seen in section 3.3, to leading order in v2/M2 the masses of
ZH and Z ′ are equal,

MZH
= MZ′ = M . (4.87)
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4 Implications for flavour physics

Having at hand the effective Hamiltonian for s→ dνν̄ transitions (4.82) it is now
straightforward to obtain explicit expressions for the branching ratios Br(K+ →
π+νν̄) and Br(KL → π0νν̄).

We observe that while in the SM only a single operator (s̄d)V−A(ν̄ν)V−A is present,
in the RS model in question also the operator (s̄d)V (ν̄ν)V−A contributes. This
is a direct consequence of both the ∆sd

L (i) and ∆sd
R (i) couplings being non-zero.

Indeed in section 5.4.1 we will see that in most cases ∆sd
R (Z) yields the dominant

contribution.

Therefore both matrix elements 〈π|(s̄d)V−A|K〉 and 〈π|(s̄d)V |K〉 have to be eval-
uated. Fortunately, as both K and π are pseudoscalar mesons, only the vector
current part contributes and we simply have

〈π|(s̄d)V−A|K〉 = 〈π|(s̄d)V |K〉 . (4.88)

This means that effectively, as in the LHT model, the NP contributions can be
collected in a single function that generalises the SM one X(xt). Denoting this
function by

XK ≡ XV−A
K +XV

K ≡ |XK |ei θ
K
X , (4.89)

we can make use of the formulae of Section 3.3 in [123] to analyse the impact of
new contributions on the branching ratios for K+ → π+νν̄ and KL → π0νν̄. The
expressions for the branching ratios in question then read

Br(K+ → π+νν̄) = κ+

[

r̃2A4R2
t |XK |2 + 2r̃P̄c(x)A

2Rt|XK | cos βKX + P̄c(x)
2
]

,(4.90)

Br(KL → π0νν̄) = κLr̃
2A4R2

t |XK |2 sin2 βKX , (4.91)

where [126–128,134],

κ+ = (5.36 ± 0.03) · 10−11 , κL = (2.31 ± 0.01) · 10−10 , (4.92)

P̄c(x) =

(

1 − λ2

2

)

(0.42 ± 0.05) , (4.93)

r̃ =

∣

∣

∣

∣

Vts
Vcb

∣

∣

∣

∣

, A =
|VcdV ∗

cb|
λ3

, Rt =

∣

∣

∣

∣

VtdV
∗
tb

VcdV ∗
cb

∣

∣

∣

∣

, (4.94)

with Pc(x) including both the NNLO corrections [126–128] and long-distance con-
tributions [135]. Finally we have defined

βKX = β − βs − θKX . (4.95)

Note that, in contrast to the real function X(xt), the new function XK is com-
plex implying new CP-violating effects that can be best tested in the correlation
between the two K → πνν̄ modes.
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4.4 Rare K and B decays

4.4.3 B → Xsνν̄ and B → Xdνν̄

Having at hand the effective Hamiltonian (4.82) governing s→ dνν̄ transitions, it
is straightforward to generalise it to the case of b → qνν̄ (q = d, s). To this end
we only have to properly adjust all flavour indices. In addition the charm quark
contributions can safely be neglected in this case, being suppressed by mc ≪ mt

and the relevant CKM factors. The effective Hamiltonian for b → qνν̄ is then
given as follows:

[Hνν̄
eff ]

Bq = g2
SM

∑

ℓ=e,µ,τ

[

λ
(q)
t XV−A

q

]

(b̄q)V−A(ν̄ℓνℓ)V−A

+ g2
SM

∑

ℓ=e,µ,τ

[

λ
(q)
t XV

q

]

(b̄q)V (ν̄ℓνℓ)V−A + h.c. , (4.96)

with

XV−A
q = X(xt) +

∑

i=Z,ZH ,Z′

(Xq
i )
V−A , (4.97)

XV
q =

∑

i=Z,ZH ,Z′

(Xq
i )
V (4.98)

and (i = Z,ZH , Z
′)

(Xq
i )
V−A =

1

λ
(q)
t

∆νν
L (i)

4M2
i g

2
SM

[

∆bq
L (i) − ∆bq

R (i)
]

, (4.99)

(Xq
i )
V =

1

λ
(q)
t

∆νν
L (i)

2M2
i g

2
SM

∆bq
R (i) . (4.100)

Again all relevant ∆bq
L,R(i) can be found in section 4.2.

The effective Hamiltonian for b→ qνν̄ governs exclusive decays like B → Kνν̄ and
B → K∗νν̄ and the inclusive modes B → Xs,dνν̄. A recent model-independent
study [136] showed that a combined analysis of all these channels can provide
important information on the NP operator structure. Unfortunately however the
decays in question are experimentally challenging. In addition our analysis in [36]
revealed that the NP effects in the exclusive modes B → Kνν̄ and B → K∗νν̄ are
small within the custodially protected RS model. Therefore in the present work
we focus only on the inclusive modes B → Xs,dνν̄.

From the effective Hamiltonian we can easily derive the expressions for Br(B →
Xs,dνν̄. As in the inclusive modes B → Xs,dνν̄ there is no interference between
left- and right-handed contributions, the formulae of [123] generalise to

Br(B → Xqνν̄)

Br(B → Xqνν̄)SM

=

∣

∣

∣XV−A
q +

XV
q

2

∣

∣

∣

2

+
∣

∣

∣

XV
q

2

∣

∣

∣

2

X(xt)2
(q = d, s) . (4.101)
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4 Implications for flavour physics

In the SM and models with Constrained Minimal Flavour Violation (CMFV) [11,
12,121], in which all flavour violation is governed by the CKM matrix and only SM
operators are relevant, the decays K → πνν̄ and B → Xs,dνν̄ are governed by a
single real and flavour universal function X. In the custodially protected RS model
on the other hand the functions XV−A,V

K,d,s depend on the quark flavours involved,

through the flavour indices in the ∆ij
L,R (i, j = s, d, b) couplings and through the

1/λ
(q)
t (q = K, d, s) factor in front of the new RS contributions. These factors

introduce also new sources of CP-violation, so that XV−A,V
K,d,s are generally complex

in the model in question. Consequently the universality of NP effects in K → πνν̄
and B → Xs,dνν̄ can be badly violated in the model in question, being a clear sign
of physics beyond the CMFV hypothesis. We will elaborate more on this issue in
section 5.5.2.

4.4.4 The KL → π0ℓ+ℓ− decays

We now turn our attention to rare decays with charged leptons in the final state,
starting with the KL → π0ℓ+ℓ− decays which are dominated by CP-violating
contributions. In the SM the main contribution comes from the indirect (mixing-
induced) CP-violation and its interference with the directly CP-violating contri-
bution [137–139]. Both direct CP-violation alone and the CP-conserving con-
tribution are suppressed by roughly one order of magnitude. As the dominant
indirectly CP-violating contributions are practically determined by the measured
decays KS → π0ℓ+ℓ− and the parameter εK , the decays in question belong to
the theoretically cleanest rare K decays, although they cannot compete with the
K → πνν̄ ones in this aspect. In addition they are not as sensitive to new directly
CP-violating contributions, that are very clearly exposed in the KL → π0νν̄ decay.
Still as pointed out in [140], in the presence of large new CP-violating phases the
direct CP-violating contribution can become the dominant contribution and the
branching ratios for KL → π0ℓ+ℓ− can be enhanced by a factor of 2 − 3 with the
effect being stronger in the case of KL → π0µ+µ− [139]. In addition the correlation
between the two branching ratios in question can provide important information
on the operator structure of the NP flavour sector [139,141,142].

First of all we recall that in the SM neglecting QCD corrections the top quark
contribution to the effective Hamiltonian governing s→ dℓ+ℓ− transitions reads

[

Hℓℓ̄
eff

]K

SM
= −g2

SM

[

λ
(K)
t Y (xt)

]

(s̄d)V−A(ℓ̄ℓ)V−A

+4g2
SM sin2 θW

[

λ
(K)
t Z(xt)

]

(s̄d)V−A(ℓ̄ℓ)V + h.c. . (4.102)

Here Y (xt) and Z(xt) are one-loop functions, analogous to X(xt), that result from
various penguin and box diagrams. The charm contributions and QCD corrections
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Z,Z ′, ZH , A(1)

s

d

ℓ

ℓ

Figure 4.4: Tree level contributions of Z, ZH , Z ′ and A(1) to the s→ dℓ+ℓ− effec-
tive Hamiltonian.

are irrelevant for the discussion presented below and will be included only in the
numerical analysis later on. We also remark that in principle also dipole operators
could be included here, but that in K decays, as discussed in [143], they can be
fully neglected due to their suppression by ms. Finally, the operator basis chosen
in (4.102) differs from the one used to study QCD corrections [143] but is very
suitable for the discussion of modifications of the functions Y (xt) and Z(xt) due
to NP contributions which we will consider next.

Similarly to [Hνν̄
eff ]K in (4.82) also

[

Hℓℓ̄
eff

]K

receives tree level contributions of the

gauge bosons Z, ZH and Z ′, and as now charged leptons appear in the final state,
also the KK photon A(1) contributes. The relevant Feynman diagrams are shown
in figure 4.4. We note that the flavour violating s̄d vertices are the same as already
encountered in the case of s → dνν̄ transitions. The leptonic couplings of Z, ZH ,
Z ′ and A(1) can be found in appendix A.3.

The evaluation of the diagrams in figure 4.4 gives then (i = Z,ZH , Z
′, A(1))

[

Hℓℓ̄
eff

]K

i
=

1

M2
i

[

∆bs
L (i)(s̄Lγ

µdL) + ∆bs
R (i)(s̄Rγ

µdR)
]

·
[

∆ℓℓ
L (i)(ℓ̄LγµℓL) + ∆ℓℓ

R(i)(ℓ̄RγµℓR)
]

+ h.c. , (4.103)

which contains additional operators relative to (4.102). Also in this case to the
desired O(v2/M2) level of accuracy

MZH
= MZ′ = MA(1) = M . (4.104)

Again, as in the case of s → dνν̄, the complete effective Hamiltonian governing
s→ dℓ+ℓ− transitions is given by the sum of the various contributions,

[

Hℓℓ̄
eff

]K

=
[

Hℓℓ̄
eff

]K

SM
+

[

Hℓℓ̄
eff

]K

Z
+

[

Hℓℓ̄
eff

]K

ZH

+
[

Hℓℓ̄
eff

]K

Z′

+
[

Hℓℓ̄
eff

]K

A(1)
. (4.105)
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Defining then the functions Y V−A,V
K and ZV−A,V

K through

Y V−A
K = Y (xt) +

∑

i=Z,ZH ,Z′,A(1)

(Y K
i )V−A , (4.106)

ZV−A
K = Z(xt) +

∑

i=Z,ZH ,Z′,A(1)

(ZK
i )V−A , (4.107)

Y V
K =

∑

i=Z,ZH ,Z′,A(1)

(Y K
i )V , (4.108)

ZV
K =

∑

i=Z,ZH ,Z′,A(1)

(ZK
i )V , (4.109)

with the contributions of the various gauge bosons (i = Z,ZH , Z
′, A(1)) given by

(Y K
i )V−A = − 1

λ
(K)
t

[

∆ℓℓ
L (i) − ∆ℓℓ

R(i)
]

4M2
i g

2
SM

[

∆sd
L (Z) − ∆sd

R (i)
]

, (4.110)

(ZK
i )V−A =

1

λ
(K)
t

∆ℓℓ
R(i)

8M2
i g

2
SM sin2 θW

[

∆sd
L (i) − ∆sd

R (i)
]

, (4.111)

(Y K
i )V = − 1

λ
(K)
t

[

∆ℓℓ
L (i) − ∆ℓℓ

R(i)
]

2M2
i g

2
SM

∆sd
R (i) , (4.112)

(ZK
i )V =

1

λ
(K)
t

∆ℓℓ
R(i)

4M2
i g

2
SM sin2 θW

∆sd
R (i) , (4.113)

we finally find for the effective Hamiltonian governing s→ dℓ+ℓ− transitions

[

Hℓℓ̄
eff

]K

= −g2
SM

[

λ
(K)
t Y V−A

K

]

(s̄d)V−A(ℓ̄ℓ)V−A

+ 4g2
SM sin2 θW

[

λ
(K)
t ZV−A

K

]

(s̄d)V−A(ℓ̄ℓ)V

− g2
SM

[

λ
(K)
t Y V

K

]

(s̄d)V (ℓ̄ℓ)V−A

+ 4g2
SM sin2 θW

[

λ
(K)
t ZV

K

]

(s̄d)V (ℓ̄ℓ)V + h.c. . (4.114)

From (4.114) one can now easily obtain the branching ratios for the KL → π0ℓ+ℓ−

decays. As in the case of K → πνν̄ also here the relation (4.88) for the matrix
elements in question holds. Consequently the formulae valid in the LHT model
[123] are valid also here, when we define

YK = Y V−A
K + Y V

K ≡ |YK |eiθ
K
Y , (4.115)

ZK = ZV−A
K + ZV

K ≡ |ZK |eiθ
K
Z . (4.116)
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One then finds (see [138,139,141–143] for a derivation of these formulae)

Br(KL → π0ℓ+ℓ−) =
(

Cℓ
dir ± Cℓ

int |as| + Cℓ
mix |as|2 + Cℓ

CPC

)

· 10−12 , (4.117)

where

Ce
dir = (4.62 ± 0.24)(ω2

7V + ω2
7A) , Cµ

dir = (1.09 ± 0.06)(ω2
7V + 2.32ω2

7A) ,

(4.118)

Ce
int = (11.3 ± 0.3)ω7V , Cµ

int = (2.63 ± 0.06)ω7V , (4.119)

Ce
mix = 14.5 ± 0.05 , Cµ

mix = 3.38 ± 0.20 , (4.120)

Ce
CPC ≃ 0 , Cµ

CPC = 5.2 ± 1.6 , (4.121)

|as| = 1.2 ± 0.2 (4.122)

with

ω7V =
1

2π

[

P0 +
|YK |

sin2 θW

sin βKY
sin(β − βs)

− 4|ZK |
sin βKZ

sin(β − βs)

]

[

Imλ
(K)
t

1.4 · 10−4

]

, (4.123)

ω7A = − 1

2π

|YK |
sin2 θW

sin βKY
sin(β − βs)

[

Imλ
(K)
t

1.4 · 10−4

]

. (4.124)

Here P0 = 2.88 ± 0.06 [143] includes NLO QCD corrections and

βKY = β − βs − θKY , βKZ = β − βs − θKZ (4.125)

with θKY , θ
K
Z defined in (4.115), (4.116), respectively.

The effect of the NP contributions is mainly felt in ω7A, as the corresponding
contributions in ω7V cancel each other to a large extent.

The present experimental bounds

Br(KL → π0e+e−)exp < 28 · 10−11 [144] , (4.126)

Br(KL → π0µ+µ−)exp < 38 · 10−11 [145] (4.127)

are still by one order of magnitude larger than the SM predictions [142]

Br(KL → π0e+e−)SM = 3.54+0.98
−0.85

(

1.56+0.62
−0.49

)

· 10−11 , (4.128)

Br(KL → π0µ+µ−)SM = 1.41+0.28
−0.26

(

0.95+0.22
−0.21

)

· 10−11 . (4.129)

The values in parentheses correspond to the destructive interference between di-
rectly and indirectly CP-violating contributions. A recent discussion of the the-
oretical status of this interference sign can be found in [146] where the results
of [139, 141, 147] are critically analysed. From this discussion, constructive inter-
ference seems to be favoured though more work is necessary.

67



4 Implications for flavour physics

4.4.5 Short-distance contribution to KL → µ+µ−

Another interesting rare K mode is the decay KL → µ+µ−, whose short-distance
(SD) contributions are governed by the effective Hamiltonian (4.114). In contrast
to the decays discussed until now, the SD contribution calculated here is only a
part of a dispersive contribution to KL → µ+µ− that is by far dominated by the
absorptive contribution with two internal photon exchanges. Consequently the SD
contribution constitutes only a small fraction of the branching ratio. Moreover,
because of long-distance (LD) contributions to the dispersive part of KL → µ+µ−,
the extraction of the SD part from the data is subject to considerable uncertainties.
The most recent estimate gives [148]

Br(KL → µ+µ−)SD ≤ 2.5 · 10−9 , (4.130)

to be compared with (0.8 ± 0.1) · 10−9 in the SM [149].

When evaluating the SD contribution to KL → µ+µ− two simplifications occur.
First when evaluating the relevant hadronic matrix elements 〈0|(s̄d)V−A|KL〉 and
〈0|(s̄d)V |KL〉 only the axial part contributes, as KL is pseudoscalar, so that

〈0|(s̄d)V |KL〉 = 0 . (4.131)

Then, due to the conserved vector current the vector component of the µµ̄-vertex
drops out as well and as in the SM only the axial current component of the µµ̄-
vertex is relevant. Therefore the only SD operator contributing to KL → µ+µ− is
the SM (V − A) ⊗ (V − A) one. Consequently following [140] in the custodially
protected RS model we find

Br(KL → µ+µ−)SD = 2.08 · 10−9
[

P̄c (YK) + A2Rt

∣

∣Y V−A
K

∣

∣ cos β̄KY
]2
, (4.132)

where we have defined

β̄KY ≡ β − βs − θ̄KY , |Vtd| = Aλ3Rt , (4.133)

P̄c (YK) ≡
(

1 − λ2

2

)

Pc (YK) , (4.134)

with Pc (YK) = 0.113 ± 0.017 [149].

4.4.6 Bs → µ+µ− and Bd → µ+µ−

The last rare decays on our list are the leptonic modes Bs → µ+µ− and Bd →
µ+µ−. In contrast to the decay KL → µ+µ− considered previously, these decays
are short-distance dominated. As in the SM their branching ratios receive a strong
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4.4 Rare K and B decays

chiral suppression, they can be largely enhanced in models where scalar operator
contributions are generated for which the chirality suppression in absent. This
happens for instance in the MSSM and other two Higgs doublet models at large
tan β. In the RS model in question however it turns out that flavour violating
Higgs couplings are strongly chirally suppressed in addition to the usual RS-GIM
suppression, see section 4.2. In addition the flavour conserving Hµ̄µ vertex is
suppressed by the small muon mass. Consequently Higgs contributions in this
case are completely irrelevant and the branching ratios in question are governed
by the new tree level Z, ZH , Z ′ and A(1) contributions, in addition to the SM Z
penguin and box diagrams.

The effective Hamiltonians for b → qℓ+ℓ− transitions can then straightforwardly

be obtained from
[

Hℓℓ̄
eff

]K
in (4.114) by properly adjusting all flavour indices. We

note that, in contrast to the s → dℓ+ℓ− transition, now also the dipole operator
contributions mediating the decay b → qγ become relevant. The new RS contri-
butions to the corresponding operators Q7γ and Q8G appear first at the one-loop
level and consequently are beyond the scope of this work. In the following we will
denote the total contribution of the dipole operators to the effective Hamiltonian
in question simply by Heff(b→ qγ). We then find (q = d, s)

[

Hℓℓ̄
eff

]Bq

= Heff(b→ qγ) − g2
SM

[

λ
(q)
t Y V−A

q

]

(b̄q)V−A(ℓ̄ℓ)V−A

− g2
SM

[

λ
(q)
t Y V

q

]

(b̄q)V (ℓ̄ℓ)V−A

+ 4g2
SM sin2 θW

[

λ
(q)
t ZV−A

q

]

(b̄q)V−A(ℓ̄ℓ)V

+ 4g2
SM sin2 θW

[

λ
(q)
t ZV

q

]

(b̄q)V (ℓ̄ℓ)V + h.c. . (4.135)

In analogy to Y V−A,V
K , ZV−A,V

K defined in (4.106)–(4.113), the relevant functions
can be obtained from the latter formulae by making the index replacements

K −→ q , sd −→ bq . (4.136)

Since the dipole operators Heff(b → qγ) do not contribute to the Bd,s → µ+µ−

decays, we can now evaluate the new RS contributions to the branching ratios in
question. To this end we notice that as in the case of KL → µ+µ− effectively only
the SM (V − A) ⊗ (V − A) operators contribute. Consequently the only relevant
functions are Y V−A

q and we find (q = d, s)

Br(Bq → µ+µ−) = τ(Bq)
G2
F

π

(

α

4π sin2 θW

)2

F 2
Bq
m2
µmBq

√

1 − 4
m2
µ

m2
Bq

∣

∣

∣λ
(q)
t Y V−A

q

∣

∣

∣

2

.

(4.137)

69



4 Implications for flavour physics

Consequently the deviations from the SM predictions are simply given by

Br(Bq → µ+µ−)

Br(Bq → µ+µ−)SM

=
|Y V−A
q |2
Y (xt)2

. (4.138)
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5.1 Goals

We are now ready to present a global numerical analysis of the ∆F = 2 and ∆F = 1
observables calculated in the previous chapter within the custodially protected RS
model. Therefore, after presenting some technical details of the parameter scan
and collecting the experimental and theoretical input used throughout our analysis,
we will turn our attention to observables related to meson-antimeson mixing in the
model in question. In that context we will address the following questions:

1. What is the generic structure of the NP contributions?

2. Is it possible to obtain a simultaneous agreement with all ∆F = 2 data, in
particular with the εK parameter?

3. How much fine-tuning in the fundamental 5D Yukawa couplings is necessary
in order to achieve this?

4. Can possible slight tensions in the SM, in particular between various CP-
violating observables, be resolved?

5. What amount of CP-violation in Bs − B̄s mixing is predicted?

Subsequently, we will study the impact of the new RS contributions on rare K
and B decay branching ratios. In this context the following questions will be of
interest:

6. Which of the various NP contributions is the most important one? What
pattern of deviations from the SM can therefore be expected?

7. How would this pattern change if the custodial protection mechanism was
absent?

8. By how much do the various K and B meson decay rates deviate from their
SM predictions?

9. What are the correlations among various observables predicted in this frame-
work?

10. Are simultaneous large NP effects in the various meson systems possible?
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After having successfully addressed all of these topics, we will compare our results
with those found within minimal flavour violating (MFV) models and within the
Littlest Higgs model with T-parity (LHT), with the latter being an example of
models with new sources of flavour and CP-violation but only SM operators. We
will see that the specific patterns of flavour and CP-violating effects observed can
help to distinguish between these models and more generally between the various
frameworks of flavour violation beyond the SM.

5.2 Numerical strategy

Before presenting the answers to all the questions listed above, in this section we
briefly summarise how the numerical analysis has been performed. The strategy
for this analysis has been developed in [35] for the study of NP effects in ∆F = 2
observables. For further details on the parameter scan, we refer the reader to that
paper. The straightforward extension to include also ∆F = 1 observables has been
presented in [36].

In order to be able to determine the size of NP effects in the model under consid-
eration, we have to restrict ourselves to those regions of the parameter space of the
model that reproduce the experimentally observed quark masses and CKM mixing
parameters and are consistent with the data on electroweak precision observables.

Due to the explicit custodial symmetry of the model, the electroweak precision
data can be fulfilled for

M ∼> (2 − 3) TeV (5.1)

with only moderate constraints on the fermion bulk mass parameters c. Therefore
throughout our numerical analysis, we set

f = 1 TeV =⇒ M ≃ 2.5 TeV , (5.2)

so that the first KK modes should be detectable via direct searches at the LHC.
Furthermore the bulk mass parameter of the third generation left-handed quark
doublet c3Q is chosen randomly in the range

0.1 ≤ c3Q ≤ 0.5 . (5.3)

Similarly the parameters of the 5D Yukawa couplings λu, λd in the parameterisation
of section 3.5.2 are varied over their physical ranges, with the restriction

∣

∣

∣λ
u,d
ij

∣

∣

∣ k ≤ 3 (5.4)

in order to maintain the perturbative calculability of the model at least up to the
first two KK excitations [39,85]. See [35] for further technical details.
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5.2 Numerical strategy

µ = 2 GeV µ = 4.6 GeV µ = 172 GeV µ = 3 TeV

mu(µ) 3.0(10) MeV 2.5(8) MeV 1.6(5) MeV 1.4(5) MeV

md(µ) 6.0(15) MeV 4.9(12) MeV 3.2(8) MeV 2.7(7) MeV

ms(µ) 110(15) MeV 90(12) MeV 60(8) MeV 50(7) MeV

mc(µ) 1.04(8) GeV 0.85(7) GeV 0.55(4) GeV 0.45(4) GeV

mb(µ) — 4.2(1) GeV 2.7(1) GeV 2.2(1) GeV

mt(µ) — — 162(2) GeV 135(2) GeV

Table 5.1: Renormalised quark masses at various scales, evaluated using NLO run-
ning. The 1σ uncertainties are given in brackets.

In order to perform the parameter scan efficiently, instead of randomly choosing the
remaining bulk mass parameters c1,2Q , c1,2,3u and c1,2,3d , we make use of the Froggatt-
Nielsen-like formulae of appendix A.2 in order to determine their values necessary
to fit the quark masses collected in table 5.1 and the CKM parameters given in
table 5.2. Having thus fixed a specific parameter point, we check numerically
whether the SM quark masses and CKM parameters are indeed reproduced within
their experimental 2σ ranges.

For those parameter points passing this test1, we subsequently evaluate all relevant
∆F = 2 observables, using the analytic results of section 4.3. All necessary input
parameters can be found in table 5.2. In particular we analyse the pattern of NP
effects in K0−K̄0 and Bd,s−B̄d,s mixings and determine the amount of fine-tuning
required to fit the data on εK and other ∆F = 2 observables. After that we restrict
the parameter space to those regions that fulfil, in addition to the SM quark masses
and CKM mixings, also all available ∆F = 2 constraints simultaneously. For those
regions we determine the possible size of deviations in those ∆F = 2 observables
that have not been measured so far: the CP-asymmetries Sψφ and AsSL and the
width difference ∆Γs.

Throughout the analysis of ∆F = 2 processes we show the results obtained in
terms of density plots rather than scatter plots, as the former carry the additional
information of how likely a certain effect is, i. e. we get a notion of the typical size
of effects within the RS model with custodial protection.

1Scanning for RS parameter points that are able to reproduce the SM quark masses and mixing
angles in fact turns out to be the most time-consuming part of the numerical analysis. There-
fore in order to avoid this sophisticated step, in [40] an alternative parameterisation of the
RS flavour sector has been presented. In contrast to the parameterisation used throughout
the present analysis, in the latter case the SM quark masses and CKM parameters appear as
explicit parameters and do not need to be fitted. The remaining flavour parameters, apart
from the 5D bulk masses, can then be expressed in terms of the mixing angles and complex
phases of the flavour mixing matrices DL, UR and DR.
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λ = |Vus| = 0.226(2) GF = 1.16637 · 10−5 GeV−2

|Vub| = 3.8(4) · 10−3 MW = 80.403(29) GeV

|Vcb| = 4.1(1) · 10−2 [2] α(MZ) = 1/127.9

γ = 75(25)◦ sin2 θW = 0.23122

∆MK = 0.5292(9) · 10−2 ps−1 m0
K = 497.648 MeV

|εK | = 2.232(7) · 10−3 [1] mBd
= 5279.5 MeV

∆Md = 0.507(5) ps−1 mBs
= 5366.4 MeV [1]

∆Ms = 17.77(12) ps−1 η1 = 1.32(32) [104]

SψKS
= 0.671(24) [150] η3 = 0.47(5) [105,106]

m̄c = 1.30(5) GeV η2 = 0.57(1)

m̄t = 162.7(13) GeV ηB = 0.55(1) [107,108]

FK = 156(1) MeV [151] FBs
= 245(25) MeV

B̂K = 0.75(7) FBd
= 200(20) MeV

B̂Bs
= 1.22(12) FBs

√

B̂Bs
= 270(30) MeV

B̂Bd
= 1.22(12) FBd

√

B̂Bd
= 225(25) MeV

B̂Bs
/B̂Bd

= 1.00(3) [152] ξ = 1.21(4) [152]

τ(Bs) = 1.470(26) ps αs(MZ) = 0.118(2) [1]

τ(Bd) = 1.530(9) ps [1]

Table 5.2: Values of the experimental and theoretical quantities used as input pa-
rameters.

In order to extend the analysis to include also ∆F = 1 rare decays, we again
restrict ourselves to those regions of the parameter space that are consistent with
the experimental ∆F = 2 constraints. For those points we determine the size
of NP effects in the ∆F = 1 observables discussed in section 4.4. The results
of this analysis are shown as blue points in the figures of section 5.4. As we are
primarily interested in that potion of the parameter space which is only moderately
fine-tuned, we will show in orange those points for which the constraint on the fine-
tuning measure ∆BG(εK) < 20 is satisfied. Accordingly the statements in the text
concerning the possible size of NP effects correspond to the points with moderate
fine-tuning.

Apart from determining the typical size of NP effects, we are mainly interested
in studying possible correlations among the various observables and looking for
specific patterns of effects that can help to distinguish this model from other NP
frameworks. As examples we discuss in some detail how the custodially protected
RS model can be distinguished from the class of models with (constrained) MFV
and from the LHT model.
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Figure 5.1: Left: Re(MK
12)KK/Re(MK

12)SM and Im(MK
12)KK/ Im(MK

12)SM, plotted on
logarithmic axes. Right: Re(M s

12)KK and Im(M s
12)KK, normalised to

|(M s
12)SM| and plotted on logarithmic axes.

5.3 ∆F = 2 observables and fine-tuning

5.3.1 Pattern of NP contributions

In order to understand the impact of RS physics on ∆F = 2 observables, we first
consider the effect on the off-diagonal mixing amplitudes M i

12 (i = K, d, s). We
recall that these amplitudes are affected in a significant manner by tree level KK
gluon and ZH exchanges, while the effects of Z ′, Z and the KK photon turned out
to be additionally suppressed and therefore irrelevant. Consequently, in addition
to the SM operator QV LL

1 also the new operator QV RR
1 and the chirally enhanced

QLR
1,2 ones receive relevant NP contributions, with the contribution to QLR

2 being
generated exclusively by KK gluon exchanges.

As a starting point we show in figure 5.1 the pure KK contributions to MK
12 and

M s
12, normalised to the SM short-distance contributions. Specifically, in the left

panel, Im(MK
12)KK/ Im(MK

12)SM is plotted as a function of Re(MK
12)KK/Re(MK

12)SM.
We observe that while specific regions of the parameter space predict NP contri-
butions to Re(MK

12) by several orders of magnitude above the SM contribution and
therefore in clear conflict with the data on ∆MK , typically the RS contribution
to Re(MK

12) is of comparable size to the SM short-distance contribution. Conse-
quently, thanks to the poorly known long-distance SM contributions, an agreement
with the data on ∆MK can naturally be obtained. The situation appears to be
very different in the case of Im(MK

12), where the KK contribution typically exceeds
the SM contribution by almost two orders of magnitude. While the KK contribu-
tion to MK

12 generically has an arbitrary O(1) complex phase, so that Re(MK
12)KK

and Im(MK
12)KK are expected of comparable size, the situation in the SM is funda-
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Figure 5.2: The ratio of the contribution of only QLR
1,2 and only QV LL

1 to (MK
12)KK

(left) and (M s
12)KK (right), as a function of (M i

12)KK/(M
i
12)SM (i =

K, s).

mentally different. Here, while Re(MK
12)SM is dominated by the purely real charm

quark contributions, Im(MK
12)SM can only be generated by top contributions that

are highly suppressed due to the smallness of Im(λ
(K)
t ). Consequently the CP-

violating effects in K0 − K̄0 mixing generated by KK gauge boson exchanges are
generically way too large, giving rise to the so-called εK problem [85] that is indeed
common to many NP models in which the chirally enhanced left-right operators
are present [56].

In the right panel of figure 5.1 we show Re(M s
12)KK and Im(M s

12)KK, normalised
to |(M s

12)SM|. We observe that the absolute value of the KK gauge boson contri-
bution is generically of roughly the same size as the SM contribution. In addition
Re(M s

12)KK and Im(M s
12)KK turn out to be generally comparable in size, as the

phase of (M s
12)KK is arbitrary in contrast to the small phase 2βs ∼ −2◦ of (M s

12)SM.
Consequently we can deduce already from this figure that while the experimental
constraint on ∆Ms can quite easily be satisfied, large new CP-violating effects in
Bs − B̄s mixing should be possible. Indeed in section 5.3.4 we will see that such
effects remain possible even after imposing all existing constraints from ∆F = 2
observables simultaneously.

Next in figure 5.2 we aim to analyse in more detail the operator structure of
K0 − K̄0 and Bs − B̄s mixing. To this end we show the ratio of the contribution
of only the QLR

1,2 operators and only the QV LL
1 one to (M i

12)KK, as a function of
(M i

12)KK/(M
i
12)SM, with i = K in the left panel and i = s in the right panel.

We observe that the KK contributions to K0 − K̄0 mixing are generally fully
dominated by the QLR

1,2 operator, while the QV LL
1 contribution appears only at

the percent level. As the dominant left-right contribution is due to the operator
QLR

2 , which is generated only by KK gluon contributions, we conclude that the
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5.3 ∆F = 2 observables and fine-tuning

NP effects in K0−K̄0 mixing are dominated by tree level exchanges of KK gluons,
while the contributions of ZH and Z ′ turn out to be subleading and in most cases
irrelevant.

The situation turns out to be different in the Bs − B̄s system. Here the QV LL
1

and QLR
1,2 contributions appear to be competitive in size, with QV LL

1 even slightly
dominant over QLR

1,2 . Consequently, as the KK gluon and ZH contributions to QV LL
1

are comparable, it turns out that the latter effects, although usually neglected in
the literature, have to be taken into account.

The origin of this different pattern of contributions is in fact easy to understand.
First of all, the matrix elements of the left-right operators are proportional to the
chiral enhancement factors RK(µL) ∼ 20 in (4.53) and Rq(µb) ∼ 1 in (4.56), re-
spectively. Second, the QLR

2 contributions are significantly enhanced when running
from the KK scale M ≃ 2.5 TeV down to the scale µ0, where the matrix elements
of the relevant operators can be evaluated by lattice QCD. As µ0 = 2.0 GeV in
the case of K0 − K̄0 mixing, while µ0 = 4.6 GeV in the case of Bs − B̄s mix-
ing, the renormalisation group enhancement is weaker in the latter case. Finally,
the flavour violating effects are much weaker for right-handed b quarks than for
left-handed ones, as the third generation left-handed quark doublet needs to be
localised much further in the IR than the right-handed one, in order to account
for the large top quark mass. This additionally suppresses the QLR

1,2 operator con-
tribution with respect to the QV LL

1 one in the Bs− B̄s system, while the analogous
effect in the K0 − K̄0 system is much less pronounced. All these effects thus
help to generate the observed pattern of contributions: While K0 − K̄0 mixing is
fully dominated by the QLR

2 contribution and therefore by KK gluon exchanges,
in the Bs− B̄s system QV LL

1 and therefore also the ZH contributions are relevant.
Note that the Z ′ contributions to QV LL

1 are strongly suppressed by the custodial
protection mechanism and therefore negligible. Similarly the KK photon contri-
butions are small, being suppressed by the electromagnetic coupling constant and
the electric charge of down-type quarks.

Finally, in both K0 − K̄0 and Bs − B̄s mixings, the contributions of the operator
QV RR

1 turn out to be negligible and we do not show them explicitly. This is due
to the fact that the right-handed down-type quarks are generally localised further
away from the IR brane than the left-handed ones.

The situation in the Bd − B̄d system is very similar to the one encountered in the
Bs − B̄s system, as shown in the right panels of figures 5.1 and 5.2 and discussed
in detail above. Therefore we omit to show the corresponding plots.
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Figure 5.3: Left: The fine-tuning ∆BG(εK) plotted against εK, normalised to its
experimental value. The blue line displays the average fine-tuning as a
function of εK. Right: The same, but displaying only the phenomeno-
logically interesting region 0.1 < |εK/(εK)exp| < 10.

5.3.2 The εK constraint and fine-tuning

We have deduced already from figure 5.1 that the experimental constraint on εK
is problematic for the RS model in question. Indeed this constraint has been used
in [85] to derive a lower bound on the KK scale M ∼> 20 TeV, assuming completely
anarchic Yukawa couplings. We confirm this bound2, see [35], by requiring that
the average fine-tuning in the 5D Yukawa couplings, required to obtain εK in
agreement with the data, does not exceed the bound ∆BG(εK) = 20. Herewith the
Barbieri-Giudice (BG) [153] measure of fine-tuning, quantifying the sensitivity of
a given observable O to small variations in the model parameters pj (j = 1, . . . ,m)
is defined by

∆BG(O) = max
j=1,...,m

{∆BG(O, pj)} , (5.5)

with

∆BG(O, pj) =

∣

∣

∣

∣

pj
O

∂O

∂pj

∣

∣

∣

∣

. (5.6)

The normalisation factor pj/O appears in order not to be sensitive to the absolute
size of pj and O.

Here we follow a different approach and ask by how much the 5D Yukawa couplings
have to deviate from the anarchic ansatz in order to satisfy the experimental
constraint on εK for low KK masses in the reach of the LHC. Therefore we use,
as throughout our whole numerical analysis, M ≃ 2.5 TeV and determine random
sets of 5D Yukawa parameters that predict the correct quark masses and CKM

2Another independent confirmation has been obtained in [98], making use of the 4D two-site
approach to study the model in question.
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mixings. In figure 5.3 we show the fine-tuning ∆BG(εK), plotted against εK with
the latter normalised to its experimental value. The blue curve displays the on
average required fine-tuning in order to obtain a given value of εK . We find that
while the generic prediction for εK is roughly by two orders of magnitude too large,
in agreement with the findings in [85,98], there exist regions of the parameter space
of the model, for which εK is in agreement with the data. We also see that while
for εK ∼ 100(εK)exp the necessary fine-tuning is generally small, ∆BG(εK) ∼ 20,
it rapidly increases with decreasing εK , so that for εK ∼ (εK)exp a fine-tuning of
order 700 is needed on average. However we also observe that there exist regions
of parameter space for which the data on εK can be fulfilled without significant
fine-tuning. In other words we find that natural solutions to the εK problem are
possible. Stating this we are aware of the fact that due to the O(1) 5D Yukawa
couplings, the model is close to the perturbative limit, so that loop corrections
to the tree level processes considered in this work are potentially sizable. While
taking into account also these effects would certainly lead to modified predictions
for given points of the parameter space, we do not expect the overall picture to be
modified at the qualitative level.

5.3.3 Effects in other ∆F = 2 observables

After considering in detail the potentially dangerous NP effects on CP-violation
in the K0 − K̄0 system, we now turn our attention to other ∆F = 2 observables
that have been measured with high precision. Specifically we consider the mass
differences ∆MK , ∆Md and ∆Ms, measuring CP-conserving effects in theK0−K̄0,
Bd − B̄d and Bs − B̄s systems, respectively. Furthermore we have a look at the
CP-asymmetry SψKS

, measuring the CP-violating phase in Bd − B̄d mixing.

Let us begin with ∆MK which, being sensitive to Re(MK
12), is the CP-conserving

counterpart to εK ∝ Im(MK
12). We concluded already from figure 5.1 that, in

contrast to the case of εK , in the case of ∆MK the KK gauge boson contributions
do generally not give rise to unwantedly large contributions. In order to quantify
this result, we consider in figure 5.4 the fine-tuning ∆BG(∆MK) plotted against
∆MK , with the latter normalised to its experimental value. We observe that in this
case the generic RS prediction is in good agreement with the data3. Furthermore
we find that in this case the required fine-tuning is generally much smaller than in
the case of εK , ∆BG(∆MK) ∼< 20, with its minimum reached for values of ∆MK

consistent with the data. We thus conclude that ∆MK is not subject to any
naturalness problem in the model in question.

3As in our numerical analysis we did not include the SM long-distance effects which are subject
to large theoretical uncertainties, deviations of O(30%) from the experimental value can be
attributed to this additional contribution.
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Figure 5.4: The fine-tuning ∆BG(∆MK) plotted against ∆MK, normalised to its
experimental value. The blue line displays the average fine-tuning as a
function of ∆MK.
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Figure 5.5: The fine-tuning ∆BG(SψKS
) plotted against SψKS

. The blue line dis-
plays the average fine-tuning as a function of SψKS

.
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Next we consider the CP-asymmetry SψKS
, measuring CP-violating effects in Bd−

B̄d mixing, being measured with high precision and theoretically clean. As in the
cases of εK and ∆MK we consider the fine-tuning ∆BG(SψKS

) as a function of
SψKS

. The result is shown in figure 5.5. We observe that also in this case the
RS prediction is generically in good agreement with the data and the associated
fine-tuning is small, typically ∆BG(SψKS

) ∼< 5. On the other hand, we can also see
that possible slight deviations from the SM prediction, as discussed at numerous
places in the literature, can easily be accounted for by the RS model with custodial
protection.

As the corresponding plots for ∆Md and ∆Ms are very similar to the ones discussed
previously, we do not show them explicitly, but merely summarise briefly the result.
Also for these two observables, the RS prediction is generically in good agreement
with the data and the associated fine-tuning is small.

In summary thus the only problematic ∆F = 2 observable is εK , which generically
requires a large KK scale or significant fine-tuning of the 5D model parameters.
However we have seen that also in that case there exist regions of the parame-
ter space where the RS contribution is in agreement with the data without the
necessity for large fine-tuning.

Until now we have considered only one ∆F = 2 observable at a time, not taking
into account the experimental constraints from the other observables. As it was
one of our main goals to find whether all ∆F = 2 constraints can be fulfilled
simultaneously, we now impose also these constraints, in addition to the ones
coming from the SM quark masses and CKM mixings, that have already been
taken into account so far. We find that the figures shown and discussed above
do not change qualitatively when the other ∆F = 2 constraints are imposed on
the parameter space, although the number of valid parameter points of course
decreases when more constraints are imposed. We also find that indeed it is
possible to fulfil all available ∆F = 2 simultaneously, although large portions of the
parameter space are excluded by this simultaneous analysis. As can be expected
from our previous discussion, it turns out that the εK constraint is indeed the most
restrictive one and excludes already on its own a major part of the parameter space.

5.3.4 CP-violation in Bs − B̄s mixing

Having restricted our numerical analysis to only those regions of the parameter
space that are consistent with all available ∆F = 2 constraints, we are now pre-
pared to consider those observables that have not yet been measured with high
precision. In the ∆F = 2 sector, these are the CP-asymmetry Sψφ, the semi-
leptonic CP-asymmetry AsSL and the width difference ∆Γs. In all models where
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Figure 5.6: Left: AsSL, normalised to its SM value, as a function of Sψφ. In addition
to the requirement of correct quark masses and CKM mixings, also the
available ∆F = 2 constraints are imposed. Right: The same, but in
addition the condition ∆BG(εK) < 20 is imposed.

NP does not affect the absorptive part of the off-diagonal mixing amplitude, Γs12,
and where the decay Bs → ψφ is dominated by the SM tree level effects [118–121],
any deviation of the data from the SM prediction would be a clear signal of new
CP-violating effects in Bs − B̄s mixing. Consequently, if the above conditions are
satisfied, the NP effects in Sψφ, A

s
SL and ∆Γs are strongly correlated, so that find-

ing one of these observables significantly different from its SM value would open
the road towards large NP effects also in the other observables. On the other
hand if the model-independent correlations of [118–121] are falsified by the data
one day, we would have gained the interesting insight that either Γs12 is affected by
NP contributions in a significant manner or the decay Bs → ψφ receives relevant
NP contributions that lead to directly CP-violating effects in this mode. We note
though that in most of the realistic NP models this is not the case so that the
correlation in question is indeed predicted.

The situation recently became particularly interesting, as the data from the CDF
and DØ experiments hint at the possibility that indeed the CP-violating effects in
Bs − B̄s mixing are enhanced by an order of magnitude with respect to their SM
predictions [154–156]. Model-independent theoretical analyses have been presented
in [157,158].

In figure 5.6 we show the correlation between Sψφ and AsSL that emerges after
imposing all available ∆F = 2 constraints. We observe that Sψφ can reach any
value between −1 and +1, so that the recent data can easily be accounted for.
Due to the strong correlation with AsSL the latter asymmetry can be enhanced by
as much as two orders of magnitude. Comparing the left and right panels of figure
5.6 to each other, we find that imposing in addition the naturalness constraint
∆BG(εK) < 20 on the parameter space, the overall picture is not modified and
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Figure 5.7: left: ∆Γs/Γs as a function of Sψφ. In addition to the requirement
of correct quark masses and CKM mixings, also the available ∆F = 2
constraints are imposed. right: The same, but in addition the condition
∆BG(εK) < 20 is imposed.

large NP effects in the two CP-asymmetries are still possible. The only relevant
change is the reduction of the number of points by roughly a factor of 3, while the
distribution of points remains essentially the same.

We close our numerical analysis of ∆F = 2 observables in the custodially protected
RS model by considering the correlation between Sψφ and ∆Γs/Γs shown in figure
5.7. Due to the model-independent correlation between these two observables, a
future accurate measurement of ∆Γs could help to distinguish between scenarios
predicting large or small NP contributions to Sψφ. We note however that this test is
limited by the theoretical uncertainties in the SM prediction for ∆Γs and therefore
becomes effective only if Sψφ is enhanced by more than an order of magnitude
with respect to the SM. On the other hand an accurate measurement of ∆Γs will
significantly reduce the present theoretical uncertainties in the correlation between
Sψφ and AsSL [118], so that the assumptions underlying the model-independent
correlation (4.73) between these two observables can eventually be tested with
high precision.

5.4 Rare decay branching ratios

5.4.1 Pattern of Z, ZH and Z′ contributions

Before turning our attention to the phenomenology of rare K and B decays in the
custodially protected RS model, we now analyse the relative sizes of Z, ZH and
Z ′ contributions to the ∆F = 1 processes in question.
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The NP contributions to the functions X, Y and Z calculated in section 4.4 turned
out to be a product of three main components: the coupling of the respective
gauge boson to the down-type quarks, the gauge boson’s coupling to leptons,
and finally its propagator in the low energy limit q2 ≪ M2. For a given meson
system characterised by (ij) there are six distinct contributions from the three
gauge bosons Z, ZH and Z ′ coupling to left- and right-handed down-type quarks4,
∆ij
L,R(Z) ,∆ij

L,R(ZH) ,∆ij
L,R(Z ′). In section 4.2 we have seen that two of them, the

couplings of Z and Z ′ to the left-handed quarks are suppressed by the custodial
symmetry. Now we will analyse the numerical impact of this protection.

Flavour violating couplings to quarks: Let us start with considering the hierar-
chy in the flavour violating gauge couplings to SM quarks. As the flavour mixing
matrices DL, DR enter the Z, ZH and Z ′ couplings in the same way, and in addi-
tion the gauge boson shape functions g(y) and g̃(y) are roughly equal, the source
of the hierarchy in question is the mixing of gauge bosons into mass eigenstates
and the suppression of ZdiLd̄

j
L and Z ′diLd̄

j
L induced by the custodial protection.

Numerically, we find for the left-handed quark couplings

∆ij
L (ZH) : ∆ij

L (Z ′) : ∆ij
L (Z) ∼ O(104) : O(103) : 1 . (5.7)

As the right-handed down-type quarks are no PLR-eigenstates, the custodial pro-
tection mechanism is not effective in the case of ∆ij

R(Z) and ∆ij
R(Z ′). Consequently

their hierarchy is solely determined by the mixing of gauge bosons into mass eigen-
states. It is given by

∆ij
R(ZH) : ∆ij

R(Z ′) : ∆ij
R(Z) ∼ O(102) : O(102) : 1 , (5.8)

where the above hierarchies hold for the K, Bd and Bs systems likewise, that is
for ij = sd, ij = bd and ij = bs, respectively.

Clearly in the presence of an exact protective PLR symmetry the flavour violating
couplings ∆ij

L (Z) and ∆ij
L (Z ′) would vanish identically. In this limit the same

linear combination of Z(1) and Z
(1)
X enters the Z and Z ′ mass eigenstates, so that

the same cancellation of contributions is effective. Taking into account the PLR
symmetry breaking effects on the UV brane, the custodial protection mechanism
is not exact anymore, but still powerful enough to suppress ∆ij

L (Z) by two orders

of magnitude. In the case of Z ′, the mixing angles for Z(1) and Z
(1)
X are modified

by roughly 10% when including the violation of the PLR symmetry, see section 3.3.
Accordingly, the protection is weaker in the case of Z ′ and ∆ij

L (Z ′) is suppressed
only by one order of magnitude compared to the case without protection.

4We note that in case of the Y and Z functions also the KK photon A(1) contributes. However
its couplings to fermions are suppressed by the smallness of the electromagnetic coupling e
and the electric quark charge, so that its contributions turn out to be small (if not absent)
in all cases.
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5.4 Rare decay branching ratios

Flavour conserving couplings to leptons: Since leptons are significantly lighter
than quarks of the same generation, we choose them to be localised towards the
UV brane and set the bulk mass parameters to c = ±0.7 for left- and right-handed
leptons, respectively. The assumption of degenerate bulk masses is well motivated
by the observation that the flavour conserving couplings depend only very weakly
on the actual value of c, provided c > 0.5 (c < −0.5 for right-handed fermions). As
the couplings of gauge boson mass eigenstates are dominated by the Z(0) and Z(1)

contributions5, it turns out that their hierarchy does not depend on the particular
handedness or species of leptons involved. In contrast to the ZH and Z ′ couplings,
the Z coupling to the lepton sector is not suppressed by an overlap integral of
shape functions and hence is found to be dominant. Numerically,

∆νν,ℓℓ
L,R (ZH) : ∆νν,ℓℓ

L,R (Z ′) : ∆νν,ℓℓ
L,R (Z) ∼ O(10−1) : O(10−1) : 1 . (5.9)

This hierarchy enters in a universal manner in the rare K, Bd and Bs decays.

Gauge boson propagators: To leading order in the v2/M2 expansion, the heavy
neutral gauge bosons ZH and Z ′ are degenerate in mass. Consequently their
contribution to the functions X, Y and Z is suppressed by a factor M2

Z/M
2 ∼

O(10−3) with respect to the Z contribution.

Having at hand these considerations, we are now able to weight the contributions
of Z, ZH and Z ′ coupling to left- and right-handed quarks. It is obvious that the
contributions from the ZH and Z coupling to left-handed quarks are comparable
in size, while the corresponding contribution from Z ′ is clearly negligible. The
contribution from couplings to right-handed quarks is strictly dominated by the Z
boson.

To finally determine the dominant overall contribution, we compare ∆ij
L (Z) and

∆ij
R(Z), which is shown for ij = sd and ij = bs, respectively, by the blue points

in figure 5.8. Note that the points shown in this figure fulfil all existing ∆F = 2
constraints. We observe that in general the Z boson couples much more strongly
to right-handed quarks than to left-handed quarks, which is a consequence of the
custodial protection mechanism suppressing the latter couplings by roughly two
orders of magnitude. More explicitly, we observe:

• ∆sd
R (Z) is larger than ∆sd

L (Z) for a dominant part of the allowed points and
is on average larger than ∆sd

L (Z) by two orders of magnitude.

• The dominance of ∆bs
R (Z) over ∆bs

L (Z) is less pronounced, but still on average
∆bs
R (Z) is larger than ∆bs

L (Z) by one order of magnitude.

5This is due to the fact that the overlap integral of a (++) gauge boson with UV localised
fermions is much larger than the corresponding overlap integral for a (−+) gauge boson.
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Figure 5.8: |∆ij
L (Z)| versus |∆ij

R(Z)| for ij = sd (left) and ij = bs (right). The blue
points are obtained in the custodially protected model after imposing all
constraints from ∆F = 2 observables. The purple points show the effect
of removing the custodial protection. The solid lines display the equality
|∆ij

L (Z)| = |∆ij
R(Z)|.

• The values of ∆bs
R (Z) are on average larger than ∆sd

R (Z) by one order of
magnitude, as the (bR, sR) system is localised closer to the IR brane than
the (sR, dR) system.

The case of ∆bd
L,R(Z) constitutes an intermediate scenario, and we do not show

the corresponding plot explicitly. In summary we find that in the RS model with
custodial protection the NP effects in ∆F = 1 rare decays are dominated by the
Z boson couplings to right-handed down-type quarks

Finally let us mention how the pattern identified above changes when the custodial
protection mechanism is removed. To this end we simply remove the effects of the
Z

(1)
X gauge boson from all couplings, so that effectively an RS model with the SM

gauge group in the bulk is recovered. The impact of this change is shown by the
purple points in figure 5.8. We observe that now the left-handed couplings ∆ij

L (Z)
are enhanced by two orders of magnitude, as they are not protected by a symmetry
any longer. At the same time ∆ij

R(Z) decrease by roughly one order of magnitude,

as they previously were dominated by the Z
(1)
X contribution but are now suppressed

by an additional factor Qem sin2 θW . Therefore in the RS model without custodial
protection the rare decay branching ratios will be dominated completely by the
Z boson coupling to left-handed quarks. Consequently the flavour phenomenology
of the latter model turns out to be very different from the one of the custodially
protected model, and in particular significantly larger effects in rare Bd,s decays
are possible. For further details, we refer the reader to [36, 99]. We stress that a
consistent analysis of the RS model without custodial symmetry requires not only
the removal of the additional gauge degrees of freedom, but that in this case a
simultaneous analysis of electroweak precision and flavour constraints is necessary.
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5.4 Rare decay branching ratios

5.4.2 Comparison of K and Bd,s systems

Before studying in detail the phenomenological implications for specific K and
B decay branching ratios, we now aim to predict the average relative size of NP
contributions in the K and B systems. On the one hand, having a closer look at
the NP contributions to the functions XV−A,V

i , Y V−A,V
i and ZV−A,V

i (i = K, d, s),
we observe that the possible size of NP effects depends crucially on the factors

1

λ
(K)
t

∼ 2500 ,
1

λ
(d)
t

∼ 100 ,
1

λ
(s)
t

∼ 25 (5.10)

for K, Bd and Bs systems, respectively, so that if the NP effects by themselves
would not exhibit any specific hierarchy, largest effects could be expected in K
physics observables, while the effects in rare Bd,s decays should be moderate. In
fact this structure has been encountered within the LHT model, where spectacular
effects in rare K decays have been found [122,123,159–161]. A detailed comparison
of the LHT results with the predictions of the custodially protected RS model will
be given in section 5.5.3.

On the other hand in the custodially protected RS model the hierarchies given in
(5.10) are partially compensated by the hierarchical structure of ∆sd,bd,bs

R (Z). As
however the amount of flavour violation needed to explain the SM quark masses
and CKM parameters is much smaller in the right-handed sector than in the left-
handed one, the hierarchies of (5.10) are only partly compensated. Having at
hand numerical results for ∆sd,bd,bs

R (Z) for a large number of parameter sets, we
can quantify the average relative size of NP contributions in the K and B systems.
We find that the size of the NP contributions on average drops by a factor of four
when going from the K to the Bd system and by another factor of two when going
from the Bd to the Bs system.

In fact this pattern of NP effects can be verified numerically by considering the
NP effects in the functions Xi, as defined in (4.89). In the left panel of figure 5.9
we show the absolute values |XK | and |Xs|. We observe that while |XK | can be
sizably enhanced or suppressed with respect to its SM value, the corresponding
effects turn out to be small in the Bs system. In the case of |Xd| that we do not
show in the figure, the effects turn out to be somewhat larger, and numerically we
find

0.60 ≤ |XK |
X(xt)

≤ 1.30 , 0.90 ≤ |Xd|
X(xt)

≤ 1.12 , 0.95 ≤ |Xs|
X(xt)

≤ 1.08 .

(5.11)
This pattern implies much larger CP-conserving effects in theK than in the Bd and
Bs systems, where NP effects are found to be disappointingly small. Interestingly,
in contrast to the CMFV models, large effects inK and B decays do not necessarily
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Figure 5.9: Left: Breakdown of the universality between |XK | and |Xs|. The solid
thick line represents the CMFV relation |Xs| = |XK | and the cross-
ing point of the three solid lines indicates the SM prediction. Right:
Breakdown of the universality between θKX and θsX and new sources of
CP-violation. In the SM and in MFV models, θKX = θsX = 0.

appear simultaneously in the RS model considered, and in fact simultaneous large
effects in both systems appear to be unlikely. Consequently the flavour universality
of the function X predicted in the SM and in all models with CMFV, displayed
by the black line, can be strongly violated.

In the right panel of figure 5.9 we plot the new CP-violating phases θKX and θsX
against each other. We observe that while large new CP-violating effects are
possible in the K system, the effects are much less pronounced in the Bs system.
The Bd system again constitutes an intermediate scenario. We find the ranges

−45◦ ≤ θKX ≤ 25◦ , −9◦ ≤ θdX ≤ 8◦ , −2◦ ≤ θsX ≤ 7◦ . (5.12)

We note that non-vanishing complex phases can only occur in the presence of new
sources of CP-violation beyond the standard CKM one and therefore constitute a
clear sign of NP beyond the MFV hypothesis. The possible deviations from MFV
in the RS model considered will be described in more detail in section 5.5.2.

The pattern of NP effects in the functions Yi and Zi (i = K, d, s) is similar to the
one encountered above, although the overall size of effects is more pronounced in
these cases, due to the SM hierarchy

X(xt) > Y (xt) > Z(xt) . (5.13)

Numerical ranges for the possible NP contributions to the functions Yi and Zi can
be found in [36].
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5.4 Rare decay branching ratios

Figure 5.10: Br(KL → π0νν̄) as a function of Br(K+ → π+νν̄). The shaded area
represents the experimental 1σ-range for Br(K+ → π+νν̄). The GN-
bound is displayed by the dotted line, while the solid line separates the
two areas where Br(KL → π0νν̄) is larger or smaller than Br(K+ →
π+νν̄). The black point represents the SM prediction.

5.4.3 Rare K decays: K → πνν̄, KL → π0ℓ+ℓ−,

KL → µ+µ−

We have seen that large effects are to be expected in rare K decay branching
ratios. Therefore we now turn our attention to the most prominent examples of
this class, namely Br(K+ → π+νν̄), Br(KL → π0νν̄), Br(KL → π0ℓ+ℓ−) and
Br(KL → µ+µ−).

We have seen in section 4.4 that the K → πνν̄ decays are among the most sensitive
channels for NP searches, and in addition the correlation between both decay rates
can provide useful information on the correlation between ∆S = 2 and ∆S = 1
flavour violation [131]. Therefore we show in figure 5.10 Br(KL → π0νν̄) as a
function of Br(K+ → π+νν̄). We observe that the K+ → π+νν̄ decay rate can
be enhanced by up to a factor of 2, which could be welcome one day if the central
experimental value stays around 15 · 10−11 and its error decreases. KL → π0νν̄
turns out to be even more sensitive to RS effects, and it can be increased by as
much as a factor of 3 over its SM prediction. Interestingly, no visible correlation
between the two decay rates is found, so that for a given value of Br(K+ → π+νν̄)
all values for Br(KL → π0νν̄) consistent with the Grossman-Nir (GN) bound [162]
can be reached. As discussed in detail in [131], this non-correlation originates in
the fact that in the RS model with custodial protection, the new CP-violating
phases in K0 − K̄0 mixing and the rare K decays turn out to be independent of
each other, being a result of the QLR

2 contribution dominating K0 − K̄0 mixing.
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Figure 5.11: Br(KL → π0µ+µ−) as a function of Br(KL → π0e+e−), assuming
constructive interference. The black point represents the SM predic-
tion.

Figure 5.12: Br(KL → π0e+e−) (upper curve) and Br(KL → π0µ+µ−) (lower
curve) as functions of Br(KL → π0νν̄). The corresponding SM pre-
dictions are represented by black points.

Next we consider the correlation between Br(KL → π0µ+µ−) and Br(KL →
π0e+e−), that we show in figure 5.11. We observe that these two decays are
very strongly correlated in the model in question, and both branching ratios can
be enhanced by up to a factor of 1.5. As pointed out and analysed in detail
in [139, 141, 142], accurately measuring the two branching ratios in question pro-
vides interesting information on the operator structure entering rare K decays.
Eventually finding the correlation seen in 5.11 violated would not only rule out
the RS model with custodial protection, but at the same time all NP models with
no relevant scalar operator contributions to the KL → π0ℓ+ℓ− decays.

In figure 5.12 we show the correlation between Br(KL → π0ℓ+ℓ−) and Br(KL →
π0νν̄) that has first been studied in [123] in the context of the LHT model. Also in
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5.4 Rare decay branching ratios

Figure 5.13: Correlation between KL → µ+µ− and K+ → π+νν̄. The black point
represents the SM prediction.

the RS model with custodial protection, we observe a strong correlation between
the decay rates in question. This can easily be understood by noting that the
KL → π0νν̄ mode is purely CP-violating and the KL → π0ℓ+ℓ− decays are by
far dominated by CP-violating effects. Therefore, as in the RS model in question
the CP-violating phases entering these decays are universal, a strict correlation
emerges.

The fourth interesting K decay mode is KL → µ+µ−. While it receives significant
long-distance contributions and is therefore theoretically much less under control, a
useful upper bound on the short distance (SD) contribution, Br(KL → µ+µ−)SD <
2.5 · 10−9, can be derived [148], as mentioned already in section 4.4. In figure 5.13
we show the SD contribution to KL → µ+µ− as a function of Br(K+ → π+νν̄).
We observe that while in most cases the bound on Br(KL → µ+µ−)SD is satisfied
by the RS model in question, it can in principle be violated. However such large
enhancements appear only if Br(K+ → π+νν̄) is suppressed with respect to its
SM prediction, which is disfavoured by the data anyway. As both K+ → π+νν̄
and KL → µ+µ− are CP-conserving decays, a non-trivial correlation emerges also
between these two modes. Interestingly, in contrast to the roughly linear corre-
lations seen in figures 5.11 and 5.12, the correlation between Br(KL → µ+µ−)SD

and Br(K+ → π+νν̄) appears to be an inverse one, so that for Br(K+ → π+νν̄)
close to the experimental central value, Br(KL → µ+µ−)SD is close to zero. The
origin of this correlation is easy to see: In the model in question ∆F = 1 pro-
cesses are governed by right-handed flavour changing Z couplings, generating the
current (s̄d)V+A in addition to the SM (s̄d)V−A one. As KL, K+ and π+ are pseu-
doscalar mesons, the relevant matrix elements can be straightforwardly related to
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Figure 5.14: Br(Bs → µ+µ−) versus Br(Bd → µ+µ−). The straight line represents
the CMFV correlation and the black point the SM prediction.

each other, and one finds

〈π+|(s̄d)V+A|K+〉 = 〈π+|(s̄d)V−A|K+〉 , (5.14)

〈0|(s̄d)V+A|KL〉 = −〈0|(s̄d)V−A|KL〉 . (5.15)

Consequently, while SM and NP contributions interfere constructively in the case
of K+ → π+νν̄, they interfere destructively in the case of KL → µ+µ−. The
correlation between KL → µ+µ− and K+ → π+νν̄ thus provides an interesting
possibility to disentangle whether NP induces dominantly left- or right-handed
FCNC contributions. Unfortunately though the power of this test is limited by
the sizable theoretical uncertainties in Br(KL → µ+µ−), and progress on this field
would be very welcome.

5.4.4 Rare B decays: Bd,s → µ+µ−, B → Xs,dνν̄

The discussion of section 5.4.2 let us anticipate that the effects in rare B decays
are much less pronounced than in the case of rare K decays discussed so far. In
what follows we will restrict our attention mainly to the decays Bs,d → µ+µ− and
B → Xs,dνν̄. We remark that also the decays B → Xsγ and B → Xsℓ

+ℓ− have
received a lot of attention during the last years and a lot of progress has been
made both on the experimental and theoretical side. As these modes are affected
by potentially large one-loop contributions to the dipole operators [39, 98], we
leave a discussion of these modes within the RS model with custodial protection
for future work.

In figure 5.14 we show the correlation between the purely leptonic decays Bs →
µ+µ− and Bd → µ+µ−. We observe that their branching ratios can deviate by

92
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Figure 5.15: Correlation between Br(B → Xsνν̄) and Br(B → Xdνν̄). The
black line represents the universal CMFV result given by the ratio
|Vtd|2/|Vts|2, and the black point the SM prediction.

at most ∼ 10% and ∼ 20%, respectively, from their SM predictions. This can be
understood from the custodial protection mechanism being more powerful in B
than in K physics. In addition in the custodially protected RS model no scalar
operator contributions are generated that would lead to potentially large effects in
the decays in question. Consequently it will be very challenging for experimental-
ists to disentangle a possible effect of the custodially protected RS model in these
modes. Still it would be interesting to measure precisely the two branching ratios
in question, as any deviation from the black line in figure 5.14 would signal flavour
non-universalities and therefore the presence of a NP flavour structure beyond the
CMFV hypothesis6.

The picture emerging in the case of Br(B → Xsνν̄) and Br(B → Xdνν̄) is quite
analogous, see figure 5.15. Also here the custodial protection mechanism turns out
to be extremely powerful, so that the branching ratios in question can be affected
by at most ∼ 5% and ∼ 10%, respectively. At the same time, flavour universality
can be strongly broken.

5.4.5 Correlations between K and B physics observables

The results presented so far lead to the conclusion that the effects of the custodi-
ally protected RS model are generally much more pronounced in K physics than
in B physics. An exceptional role is herewith played by CP-violating effects in the

6A similarly strong correlation has been observed in the more general MFV framework, in which
new operators are allowed [163].
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Figure 5.16: Br(KL → π0νν̄) as a function of Sψφ. The black point represents the
SM prediction.

Bs − B̄s system, observable through the time-dependent CP-asymmetry Sψφ. In
the latter asymmetry, and consequently also in the semi-leptonic asymmetry AsSL,
spectacularly large effects are possible. While we have so far considered correla-
tions only among various observables in either the K or in the B system, the aim
of the present section is to study possible correlations between the two systems.

To this end, we start by considering two of the most interesting flavour observables
in the model in question: In figure 5.16 we show Br(KL → π0νν̄) as a function
of Sψφ. While we can see also from this plot that large effects can emerge in
either Sψφ or the KL → π0νν̄ decay, the apparent cross-like structure shows that
simultaneously large effects in both observables turn out to be extremely unlikely.
Therefore if eventually the present hints for a large value of Sψφ are confirmed,
Br(KL → π0νν̄) is predicted by the custodially protected RS model to be close
to its SM value, and finding this decay rate significantly enhanced would put the
model in question in serious trouble. On the other hand, a SM-like Sψφ would open
the road towards potentially large effects in the KL → π0νν̄ decay. The reason
behind this exclusive structure is in fact easy to identify: While the rare K decays
are fully dominated by the flavour non-universal effects in the right-handed quark
sector, Bs − B̄s mixing is roughly equally affected by the operators QV LL

1 and
QLR

2 , i. e. large flavour non-universal effects are required in the left-handed sector.
Clearly large flavour breaking effects require the corresponding quark sector to
be placed closer towards the IR brane. As the scale of 5D Yukawa couplings is
fixed to O(1), in order to generate the observed pattern of quark masses, this
automatically implies that the oppositely-handed quark sector has to live further
in the UV, so that the flavour breaking effects in this system decrease.

Next in figure 5.17 we consider the correlation between Br(K+ → π+νν̄) and
Br(Bs → µ+µ−)/Br(Bs → µ+µ−)SM. Again we observe that the RS affects can
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Figure 5.17: Br(Bs → µ+µ−)/Br(Bs → µ+µ−)SM as a function of Br(K+ →
π+νν̄). The shaded area represents the experimental 1σ-range for
Br(K+ → π+νν̄) and the black point shows the SM prediction.

be much larger in the rare K decay than in the Bs one. We also find that if
a sizable NP contribution enters Br(K+ → π+νν̄), the non-standard effects in
Br(Bs → µ+µ−) become even smaller and typically below ∼ 5% for Br(K+ →
π+νν̄) close to its experimental central value. We note however that the cross-like
structure, excluding simultaneous large NP effects, is much less pronounced in this
case than in case of KL → π0νν̄ and Sψφ considered before. This is due to the fact
that now the RS effects in both K+ → π+νν̄ and Bs → µ+µ− are dominated by
right-handed currents.

Finally in figure 5.18 we showBr(KL → µ+µ−)SD as a function ofBr(Bs → µ+µ−).
We find that due to the much more pronounced effects in KL → µ+µ−, the flavour
universal prediction of models with CMFV, displayed by the black line, can be
significantly violated.

5.5 Comparison with other new physics frameworks

5.5.1 Pattern of effects in the custodially protected RS model

So far we have concentrated on the possible NP effects in various ∆F = 2 and
∆F = 1 flavour violating observables predicted by the RS model with custodial
protection. In this context we have identified a specific pattern of effects that
should help to distinguish this model from other NP frameworks. In particular we
have seen that:
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Figure 5.18: Br(KL → µ+µ−)SD as a function of Br(Bs → µ+µ−). The dashed
line indicates the upper bound on Br(KL → µ+µ−)SD. The solid line
shows the CMFV prediction, while the black point represents the SM.

• Large effects are possible in CP-violation in Bs− B̄s mixing, allowing for the
full range −1 ≤ Sψφ ≤ 1. Simultaneously spectacular effects are found in
the semileptonic CP-asymmetry AsSL.

• Large effects are also possible in rare K decay branching ratios, enhancing
K → πνν̄ and KL → π0ℓ+ℓ− by up to factors 2 − 3 and 1.5, respectively,
and the SD contribution to KL → µ+µ− up to its present upper limit.

• Interesting correlations appear between the variousK decay channels, specif-
ically:

– A strong linear correlation appears between KL → π0e+e− and KL →
π0µ+µ−, and between KL → π0νν̄ and KL → π0ℓ+ℓ−.

– The correlation between K+ → π+νν̄ and the SD contribution to KL →
µ+µ− is an inverse one.

– No visible correlation appears in the K → πνν̄ system.

• Large effects in Sψφ and the rare K decays can not appear simultaneously.

• The effects in rare B decays are predicted to be small.

• The flavour universality between effects in the K, Bd and Bs systems can be
strongly violated.

In order to demonstrate how this pattern of effects can serve as a tool to distinguish
the RS model in question from other popular extensions of the SM, we will now
show in explicit terms how such a distinction can be made in practice. To this
end we concentrate on two NP frameworks. First we discuss the class of models
with MFV, both constrained and general. After that we turn our attention to the
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Figure 5.19: sin 2βKX / sin(2β + 2ϕBd
) as a function of Sψφ. The departure from

unity (solid line) measures the size of non-MFV effects. The black
point represents the SM prediction.

LHT model, a model that contains new sources of flavour and CP-violation but
generates only contributions to the SM operators.

5.5.2 Minimal flavour violation

In MFV models all flavour violation is exclusively generated by the SM Yukawa
couplings, so that no new sources of flavour and CP-violation beyond the CKM
ones are present [8–10]. In the constrained version of this class of models, in
addition the requirement holds that no new operators mediate FCNCs beyond the
ones already relevant in the SM [11,12,121].

It is common to both versions of MFV that no new CP-violating phases appear.
Consequently one finds immediately

(Sψφ)MFV = (Sψφ)SM ≃ 0.04 , (5.16)

so that confirming one day the present hints for a large Sψφ would not only rule
out the SM, but at the same time the whole class of MFV models. As we have seen
before, the RS model with custodial protection is one candidate model to explain
such large effects.

As in MFV models the phase of the CKM matrix is the only source of CP-violation
entering universally K, Bd and Bs systems, interesting correlations among various
CP-violating observables appear. One particularly clean test of this universality
is given by comparing CP-violating effects in Bd − B̄d mixing, measured in SψKS

,
to CP-violation in the K → πνν̄ system. In the latter case, the phase βKX defined
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Figure 5.20: The ratio r of (5.19) as a function of Sψφ. The black point indicates
the SM and CMFV value.

in (4.95), can be determined from the measurement of both branching ratios. In
the SM and all MFV models, the function XK is real and therefore

SψKS
= sin 2β = (sin 2β)K→πνν̄ , (5.17)

holds to very good approximation [164, 165]. Consequently any deviation of the
ratio

(sin 2β)K→πνν̄

SψKS

=
sin 2βKX

sin(2β + 2ϕBd
)

(5.18)

from unity would signal the presence of new sources of CP-violation beyond the SM
and MFV one. In figure 5.19 we show the ratio in (5.18) as a function of Sψφ. We
observe that in the custodially protected RS model, large deviations from unity for
the ratio (5.18) are possible, and even its sign can be reversed. Such spectacular
effects are however only possible if Sψφ is SM-like. However, even for large values
of Sψφ, deviations of up to 50% from the MFV prediction are possible albeit very
unlikely. Clearly, as the SM prediction for SψKS

is in good agreement with the
data and therefore ϕBd

is restricted to be small, such large effects are only possible
if NP affects the K → πνν̄ decays in a significant manner.

While the general MFV hypothesis can be best tested via the comparison of var-
ious CP-violating effects, additional strong correlations appear in its constrained
version also among CP-conserving observables. Several examples for tests of this
flavour universality have been indicated already by the solid lines in figures 5.9,
5.14, 5.15, 5.18, where deviations from this universality line would be a clear signal
of physics beyond the CMFV framework.
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Another powerful probe of the CMFV hypothesis is given by the relation

Br(Bs → µ+µ−)

Br(Bd → µ+µ−)
=
B̂Bd

B̂Bs

τ(Bs)

τ(Bd)

∆Ms

∆Md

r , r =

∣

∣

∣

∣

Ys
Yd

∣

∣

∣

∣

2
CBd

CBs

, (5.19)

with r = 1 in CMFV models [166] but generally different from unity. Here CBs,d

has been defined in (4.61). In figure 5.20 we show the ratio r as a function of Sψφ.
We observe that in the RS model with custodial protection

0.6 ∼< r ∼< 1.3 (5.20)

is possible, with this range being quite insensitive to the actual value of Sψφ.

Furthermore, also the possible size of effects can be used to distinguish the CMFV
class of models from scenarios beyond this hypothesis, such as the RS model con-
sidered here. As in the CMFV framework flavour violating effects enter the various
meson systems in a universal manner, the constraints on the already measured de-
cays B → Xsγ and B → Xsℓ

+ℓ− can be used to put upper bounds on other rare
decay branching ratios, under the quite reasonable assumption that the NP effects
are dominantly mediated by Z-penguins while the box contributions are sublead-
ing [167]. Including in addition also the the flavour conserving constraint from
the ZbLb̄L coupling, the respective bounds become even stronger and one finds the
allowed ranges

4.29 · 10−11 ≤ Br(K+ → π+νν̄) ≤ 10.72 · 10−11 , (5.21)

1.55 · 10−11 ≤ Br(KL → π0νν̄) ≤ 4.38 · 10−11 , (5.22)

1.17 · 10−9 ≤ Br(Bs → µ+µ−) ≤ 6.67 · 10−9 , (5.23)

0.36 · 10−10 ≤ Br(Bd → µ+µ−) ≤ 2.03 · 10−10 (5.24)

at the 95% confidence level [168]. We observe that while the NP effects in the
rare K decays are much more restricted in the CMFV models, the situation is
opposite in case of Bd,s decays, where the CMFV framework generally allows for
larger effects than the custodially protected RS model.

Finally let us mention that also the mass differences ∆Md and ∆Ms by them-
selves can provide a useful test of the CMFV hypothesis, if the non-perturbative

uncertainties in the relevant hadronic parameters FBd

√

B̂Bd
and FBs

√

B̂Bs
will be

significantly reduced by future lattice calculations. Finding then ∆Md < (∆Md)SM

and/or ∆Ms < (∆Ms)SM would be a clear signal of either new sources of flavour
and CP-violation, or new operators in addition to the SM QV LL

1 one, or the pres-
ence of new Majorana fermions or new heavy U(1) gauge bosons contributing only
at the loop level [169]. Clearly, as the RS model in question provides the first two
conditions, a suppression of ∆Ms,d could indeed be explained in that context.
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5 Global numerical analysis

5.5.3 Littlest Higgs model with T-parity

Having discussed in detail how the RS model with custodial protection can be
distinguished from the MFV class of models, we now turn our attention to models
in which new sources of flavour and CP-violation are present, but no new operators
are generated. A prime example of this class of models is the Littlest Higgs model
with T-parity (LHT). Therefore let us briefly recall the basic structure of this
particular model.

The Little Higgs class of models [41,42] aims to address the little hierarchy problem
by introducing an enlarged global and local symmetry structure. The Higgs boson
then arises as a pseudo-Goldstone boson, when this symmetry is spontaneously
broken at the NP scale f ∼ 1 TeV. In order to keep the Higgs potential stable
against radiative corrections, the symmetry breaking has to appear collectively.
One of the most economical realisations of this concept is the Littlest Higgs model
(LH) [45], which is based on an SU(5) → SO(5) global symmetry breaking pattern.
Here, in addition to the SM gauge and matter fields new heavy gauge bosons W±

H ,
ZH and AH , the heavy top partner T and a scalar triplet Φ with O(1 TeV) masses
are present. Reviews can be found in [43,44].

When studying electroweak precision observables, it turns out that an additional
discrete symmetry, called T-parity [46,47], is needed in order to allow for the new
particles below the 1 TeV scale. Under this symmetry, the SM particles and the
heavy top partner T+ are even, while W±

H , ZH , AH and Φ are odd. A consistent
implementation of T-parity requires also the introduction of mirror fermions – one
for each quark and lepton species – that are odd under T-parity [48]. A detailed
description of the LHT model has been presented in [123], where also a complete
set of Feynman rules can be found7.

While the LH model without T-parity belonged to the CMFV class of models,
implying generally small effects in flavour violating observables [171,172], the mir-
ror quarks in the LHT model introduce new sources of flavour and CP-violation,
parameterised by the new mixing matrix VHd [110, 173]. Potentially large de-
viations from the SM and CMFV predictions in FCNC processes can thus ap-
pear [109,111,119,122,123,159,161,170,174,175]. A brief review of these analyses
can be found in [160]. Interestingly however, as the couplings between SM quarks
and mirror quarks, mediated by the heavy T-odd gauge bosons, are purely left-
handed, no new operators beyond the SM ones arise [109, 123]. Consequently a
very specific pattern of flavour violating effects emerges.

In what follows we will concentrate on those K and B physics predictions of the
LHT model that can best be used to distinguish this model from the RS model

7Some corrections to these rules have been pointed out in [122,161,170].
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Figure 5.21: Correlation between Sψφ and AsSL in the LHT model. The light blue
point shows the contribution of the T-even sector, and the black point
represents the SM prediction. The corresponding result in the custo-
dially protected RS model has been presented in figure 5.6.

with custodial protection. For further details and a recent numerical update we
refer the reader to [122].

In figure 5.21 we show the correlation between the CP-asymmetries Sψφ and AsSL

predicted by the LHT model. The observed strong correlation between these two
observables is analogous to the one encountered in case of the custodially protected
RS model in figure 5.6 and reflects the fact that both models do not induce directly
CP-violating effects in the Bs → ψφ decay8. We can see that LHT dynamics can
hardly generate |Sψφ| ∼> 0.2. Consequently confirming one day the present hints
for values as large as Sψφ ∼> 0.4 [154–156] would put the LHT model under pressure
and favour the custodially protected RS model.

A second clean possibility to distinguish between RS and LHT physics is offered by
the correlations among the various rare K decays. While the correlations between
KL → π0ℓ+ℓ− and KL → π0νν̄ and within the KL → π0ℓ+ℓ− system look similar
in both models, the situation is completely different in case of the K → πνν̄
system. While in the custodially protected RS model (see figure 5.10) no visible
correlation between the two branching ratios appeared, we observe now in figure
5.22 that the LHT model gives rise to a strong correlation. Essentially only two
branches of possible points are allowed: one with approximately SM-like KL →
π0νν̄ and one parallel to the GN bound. The origin of this striking correlation
has been analysed in a model-independent manner in [131]. In the LHT model
flavour and CP-violating effects in the ∆S = 2 and ∆S = 1 systems are strongly

8The somewhat more stringent correlation observed in figure 5.21 can be attributed to the more
sophisticated error analysis performed in [111,122], compared to the simplified error analysis
performed here and in [35,36] in the custodially protected RS model.
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Figure 5.22: Correlation between Br(K+ → π+νν̄) and Br(KL → π0νν̄) in the
LHT model. The experimental 1σ rage and the model independent
GN-bound are indicated. The light blue point shows the contribution
of the T-even sector, and the black point represents the SM prediction.
The corresponding result in the custodially protected RS model has
been presented in figure 5.10.

correlated, and no new operators can spoil this structure. Consequently the CP-
phases governing K0 − K̄0 mixing and the K → πνν̄ decays are approximately
equal to each other (apart from a trivial factor 2). The correlation found in the
K → πνν̄ system is thus a remnant of the strong experimental constraint on the
CP-violating parameter εK . A similar correlation can be expected in most other
NP models in which no new operators beyond the SM ones are present. The
situation is fundamentally different in the custodially protected RS model. In that
case K0 − K̄0 mixing is dominated by the chirally enhanced operators QLR

1,2 , that
cannot affect the rare K decays. Consequently in the latter model CP-violating
effects inK0−K̄0 mixing and in theK → πνν̄ system are independent of each other
and no correlation between Br(K+ → π+νν̄) and Br(KL → π0νν̄) arises. Thus
finding one day the two branching ratios in question outside the range observed in
figure 5.22 would not only rule out the LHT model, but would be a strong hint for
new operator contributions to K0− K̄0 mixing that dilute the correlation between
∆S = 2 and ∆S = 1 CP-violating effects. We note that apart from the RS model
with custodial protection, another famous candidate for this type of NP would be
the MSSM with general flavour and CP-violating interactions.

We have seen already in section 5.4.4 that the NP operator structure can be
tested also by means of the correlation between Br(K+ → π+νν̄) and Br(KL →
µ+µ−)SD, where we show the LHT prediction in figure 5.23. While in figure 5.13 we
could observe that the RS model in question predicts an inverse correlation between
these two modes, in the LHT model a linear correlation is found. As already
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Figure 5.23: Correlation between Br(K+ → π+νν̄) and Br(KL → µ+µ−)SD. The
light blue point shows the contribution of the T-even sector, and the
black point represents the SM prediction. The corresponding result in
the custodially protected RS model has been presented in figure 5.13.

discussed in section 5.4.4 this correlation provides a clear test of the handedness
of the new flavour violating interactions. While in the custodially protected RS
model the rare K decays are dominated by the flavour changing Z couplings to
right-handed quarks, flavour violating effects in the LHT model are purely left-
handed, thus explaining the linear correlation found in figure 5.23.

In many other cases the structure of flavour violating effects appears to be similar
in the LHT model and in the custodially protected RS model. Specifically:

• Effects inK physics are generally larger than inB physics, with the exception
of Bs − B̄s CP-violation.

• Simultaneous large effects in K and B physics observables appear to be
unlikely, although not rigorously excluded.

• Flavour universality can be strongly violated. As a consequence, correla-
tions between various observables can differ significantly from their (C)MFV
predictions.

On the other hand we have identified the following clean ways to distinguish the
custodially protected RS model from the LHT model:

• The RS model in question allows for larger effects in the CP-asymmetries
Sψφ and AsSL than the LHT model.

• The LHT model predicts a striking correlation in the K → πνν̄ system,
while no visible correlation emerges in the RS model.

• The correlation between Br(K+ → π+νν̄) and Br(KL → µ+µ−)SD is funda-
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mentally different in the two models.

Measuring one day all these observables will therefore provide a powerful tool to
distinguish between these two models.
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6 Summary and outlook

The Randall-Sundrum geometric background provides an appealing solution to the
gauge hierarchy problem, by reducing the vast hierarchy between the electroweak
and the Planck scale to a moderate hierarchy between the curvature scale k and
the length L of the extra dimension. While to this end the Higgs sector needs
to be placed on or near the IR brane, the gauge and fermionic matter content
has to be promoted to the 5D bulk in order to avoid stringent constraints on
higher-dimensional operators. For each field living in the 5D bulk then a full
tower of massive (TeV scale) Kaluza-Klein states arises, in addition to the light
zero mode corresponding to the respective SM field. These KK excitation are
then accessible to direct searches at the LHC experiments Atlas and CMS. In
addition their presence also leads to modified predictions of low-energy precision
observables, both in the electroweak and in the flavour sector.

In the present thesis we have studied in detail the RS model with custodial pro-
tection of the T parameter and the flavour diagonal and non-diagonal ZdiLd̄

j
L cou-

plings. While the stringent bounds from electroweak precision observables do not
allow for RS physics with only the SM gauge group in the 5D bulk in the reach
of the LHC, these constraints can be avoided by enlarging the gauge group by
an additional factor SU(2)R and a discrete PLR symmetry. The gauge group is
then broken to the SM one by appropriate boundary conditions on the UV brane.
Having introduced the full 5D action of the custodially protected RS model, we
analysed in detail its various sectors.

Herewith particular emphasis has been put on the flavour sector of the model. Bulk
fermions in the RS background provide an interesting interpretation of flavour.
With slightly different 5D bulk mass parameters the observed hierarchies is the
SM quark masses and CKM mixing parameters can be explained so that the flavour
hierarchy problem is reduced to the problem of appropriately chosen O(1) bulk
mass parameters and fundamental Yukawa couplings. Together with the exponen-
tial suppression of the effective Yukawa couplings also all flavour violating inter-
actions turn out to be suppressed by the same flavour hierarchies. This so-called
RS-GIM mechanism helps to suppress most of the otherwise dangerously large tree
level FCNC contributions induced by the presence of the gauge KK modes.

After classifying the various flavour violating couplings present already at tree level
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6 Summary and outlook

in the model in question, we have studied their impact on particle-antiparticle
mixing in the neutral K and Bd,s meson sectors. Subsequently we have evaluated
the new tree level contributions to the most interesting rare K and Bd,s decays.
The study of decays like B → Xsγ and B → Xsℓ

+ℓ− requires the calculation of
the new RS contributions to the dipole operators Q7γ and Q8G that appear first
at the one-loop level, and is thus left for future work.

Having at hand analytic formulae for the ∆F = 2 and ∆F = 1 processes in
question, we have performed an extensive numerical analysis of the new RS effects
in the various observables. To this end we have performed a scan over the full
parameter space of the model, with KK gauge bosons in the reach of the LHC,
and fitting all quark masses and CKM parameters to their observed values.

In the ∆F = 2 sector we focused mainly on the mass differences ∆MK , ∆Md

and ∆Ms related to the K0 − K̄0, Bd − B̄d and Bs − B̄s systems, respectively, as
well as on the CP-violating parameter εK , the CP-asymmetries SψKS

and Sψφ, the
semileptonic asymmetry AsSL and the width difference ∆Γs, probing new mixing-
induced CP-violation in the various meson systems. We also analysed the required
fine-tuning necessary to bring the new RS contributions to the various observables
in agreement with the data. Our findings in the ∆F = 2 sector can be summarised
as follows:

1. The new RS effects in K0 − K̄0 mixing are dominated by the contributions
of the operators QLR

2 that receive a strong chiral and QCD enhancement.
Consequently tree level exchanges of KK gluons are most important.

2. The enhancement of QLR
2 is weaker in the case of Bd,s− B̄d,s mixings, so that

the contributions of the operator QV LL
1 are equally important. Consequently

the electroweak gauge bosons ZH and Z ′ contribute significantly to ∆B = 2
observables and have to be taken into account.

3. Z contributions on the other hand are negligible in all ∆F = 2 observables,
being of higher order in the v2/M2 expansion. Furthermore their left-handed
flavour violating couplings are strongly suppressed by the custodial PLR sym-
metry.

4. A stringent constraint is placed by the CP-violating observable εK , which in
the case of completely anarchic 5D Yukawa couplings leads to the constraint
M ∼> 20 TeV. However also for low scales M ≃ (2 − 3) TeV in the reach
of the LHC an agreement with the data can be obtained, if the completely
anarchic ansatz is partly abandonned.

5. Generically for such low values of M a large amount of fine-tuning is required
in order to obtain agreement with the εK data, although there exist regions
in the parameter space where only a moderate tuning ∆BG(εK) is necessary.

6. All other ∆F = 2 constraints can be naturally fulfilled, and a simultaneous
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fit of all available data is possible.

7. Thanks to the presence of new CP-violating phases, possible slight tensions
between the tree level determination of Vub and the observed values for the
CP-asymmetry SψKS

and the parameter εK arising in the SM can easily be
resolved in the custodially protected RS model.

8. At the same time large deviations of the CP-asymmetry Sψφ from its tiny
SM value 0.04 are possible, allowing for the full range −1 < Sψφ < 1. Due to
the strong correlation with the semileptonic asymmetry AsSL also the latter
observables can be enhanced by more than two orders of magnitude.

Subsequently we quantified the size of effects in various rare decays that remain
possible after imposing all existing constraints from the ∆F = 2 sector analysed
previously. To this end we concentrated on the branching ratios for KL → π0νν̄,
K+ → π+νν̄, KL → π0ℓ+ℓ− (ℓ = µ, e), KL → µ+µ−, B → Xs,dνν̄ and Bs,d →
µ+µ−. Apart from determining the size of NP effects, we also studied possible
correlations between the various rare K decays, between rare K and B decays,
and also between ∆F = 1 and ∆F = 2 observables. Specifically the main results
of this analysis are:

9. The new contributions to the rare decay branching ratios in question are
dominated by the flavour violating Z boson couplings to right-handed down-
type quarks. This is due to the custodial protection of ZdiLd̄

j
L couplings and

to the geometric suppression ∼ 1/(kL) of the KK gauge boson contributions.

10. Consequently a very specific pattern of effects arises, with possible large
effects in rare K decays, but much smaller in rare B decays. This pattern is
very different from RS models without custodial protection, where effects of
roughly equal size are expected.

11. Br(KL → π0νν̄), Br(K+ → π+νν̄), Br(KL → π0ℓ+ℓ−) and Br(KL →
µ+µ−)SD can be enhanced by a factor 2− 3 with repsect to their SM values.
Such large effects are however excluded if Sψφ is found significantly different
from its SM prediction.

12. Interesting correlations appear between the various rare K modes. In par-
ticular:

• The K → πνν̄ decay rates appear to be totally uncorrelated, being a
result of the chirally enhanced left-right contributions to εK that spoil
the connection between ∆S = 2 and ∆S = 1 CP-violating phases.

• Strict linear correlations are observed between the decays KL → π0νν̄,
KL → π0µ+µ− and KL → π0e+e−. Those are a remnant of the absence
of scalar operator contributions and test the universality of CP-violating
phases in various rare K decays.
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• An inverse correlation is found between K+ → π+νν̄ and the short-
distance contribution to KL → µ+µ−. While this correlation in prin-
ciple provides a clean test of the handedness of the relevant flavour
violating interactions, it is shadowed by the poor theoretical knowledge
of the long-distance contributions dominating KL → µ+µ−.

13. Effects in rare B are small, typically below (10− 20)% of the SM prediction,
and therefore extremely challenging for future experiments.

14. Flavour universality between the K, Bd and Bs systems is generally strongly
violated.

This specific pattern of NP effects identified in the custodially protected RS model
and summarised in 1.–14. allows for a clear distinction of this model from other NP
frameworks. For instance observing new sources of CP-violation in Sψφ, K → πνν̄
and KL → π0ℓ+ℓ− would provide a definite hint for physics beyond the MFV hy-
pothesis. Similarly the breakdown of universality visible in the correlation between
K and B physics observables of the same kind would put (C)MFV models under
pressure.

The distinction from other NP models with new sources of flavour and CP-violation
is more involved, although still possible as we showed explicitly for the case of the
LHT model. Important information is herewith provided by the size of the CP-
asymmetry Sψφ and the correlations in the rare K sector that, due to the different
operator structure of the models in question, turn out to be very different.

Consequently a detailed and precise study of flavour physics observables is com-
plementary to high-energy experiments searching directly for new particles and
interactions. Important information will be provided on both sides during the
coming years. On the one hand the high-energy experiments Atlas and CMS at
the LHC will search directly for new particles and interactions, and on the other
hand the flavour precision experiments like LHCb, SuperB and the rare K de-
cay searches will provide further insights on the flavour structure of New Physics.
Clearly in order to eventually get a definite answer what kind of New Physics lies
beyond the Standard Model information from both sides are necessary.
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Appendix

A.1 Warped geometry

A.1.1 Basics of differential geometry and general relativity

In this appendix we collect some basic formulae known from differential geometry
that are required for calculations in curved space-times. The necessary ingredients
to study fermions in a warped background are summarised in A.1.2.

A space-time is generally described by its metric

ds2 = gMNdx
MdxN , (A.1)

where M,N = 1, . . . , n are summed over the number of space-time dimensions.
In the case of the RS metric given in (2.5) M,N = 0, 1, 2, 3, 5. Depending on the
actual form of gMN the space-time considered may be flat or curved. In case of
the curved RS space-time the flat tangent space is the 5D Minkowski space-time
with the metric

ηAB = diag(1,−1,−1,−1,−1) . (A.2)

In order to be able to define covariant derivatives acting on vector or tensor fields,
the Christoffel symbols

ΓNMK =
1

2
gNR(∂KgMR + ∂MgKR − ∂RgMK) (A.3)

have to be introduced. A covariant derivative of e. g. a free vector field V M is then
given by

DNV
M = ∂NV

M + ΓMNKV
K . (A.4)

The curvature of a space-time described by the metric gMN can be quantified by
the Riemann tensor

RK
LMN = ∂MΓKLN − ∂NΓKLM + ΓKPMΓPLN − ΓKPNΓPLM . (A.5)
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A flat space-time is characterised by RK
LMN ≡ 0. The Ricci tensor is then given

by the contraction
RLN = RK

LKN , (A.6)

and the Ricci or curvature scalar is defined as

R = gLNRLN . (A.7)

A space-time is called flat if R ≡ 0.

The Einstein equations of general relativity relate the geometry of space time to
its energy content, given by the energy-momentum-tensor TMN . They read

RMN − 1

2
gMNR + ΛgMN = κTMN , (A.8)

with Λ the cosmological constant and κ the strength of gravitational couplings.

A.1.2 Fermions in a warped background

As the Dirac matrices are related to the space-time metric via the Clifford algebra

{ΓM ,ΓN} = 2gMN , (A.9)

they have to be modified with respect to those known from the flat space-time. It
can straightforwardly be checked that the warped Clifford algebra (A.9) is satisfied
by the warped space Dirac matrices

ΓM = EM
A γ

A , γA = {γµ,−iγ5} . (A.10)

Here, γµ and γ5 = iγ0γ1γ2γ3 are defined in the usual 4D way. EM
A is the inverse

vielbein defined through
gMN = EM

A E
N
B η

AB , (A.11)

i. e. it connects the warped space to the flat tangent space. In the case of the RS
metric (2.5), we have

EM
A =











1 for A = M = 5 ,

eky for A = M = µ ,

0 else ,

(A.12)

and the vielbein eAM is given by

eAM =











1 for A = M = 5 ,

e−ky for A = M = µ ,

0 else .

(A.13)
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A.2 Explicit formulae for quark masses and flavour mixings

The spin connection ωM is needed to define the covariant derivative

DM = ∂M + ωM (A.14)

acting on free spinor fields. It is defined through

ωM = eAN(∂ME
N
B + ΓNMKE

K
B )
σA

B

2
, (A.15)

with σAB = 1
4
[γA, γB] and ΓNMK the Christoffel symbols introduced in (A.3). In

case of the RS metric (2.5) ωM is simply given by

ωM =

{

i
2
ke−kyγµγ

5 for M = µ ,

0 for M = 5 .
(A.16)

A.2 Explicit formulae for quark masses and flavour

mixings

In section 3.4.1 we have seen that the effective 4D Yukawa couplings Y u,d can be
written in terms of the fundamental 5D Yukawa couplings λu,d and the fermion
shape functions fQi , f

u
i , f

d
i (i = 1, 2, 3) as given in (3.73), where the hierarchies in

the 4D Yukawas arises through the hierarchies in fQ,u,d.

Making use of the similarity to the FN scenario [13], as discussed in section 3.4.2,
we can derive explicit expressions for the quark masses and flavour mixing matrices
[35,76]. Keeping only the leading terms in the hierarchies fQ,u,di /fQ,u,dj (i < j), we
obtain for the quark masses

mb =
v√
2
λd33

ekL

L
fQ3 f

d
3 , (A.17)

ms =
v√
2

λd33λ
d
22 − λd23λ

d
32

λd33

ekL

L
fQ2 f

d
2 , (A.18)

md =
v√
2

det(λd)

λd33λ
d
22 − λd23λ

d
32

ekL

L
fQ1 f

d
1 , (A.19)

and analogous expressions for the up-type quark masses mt,c,u, with only replacing
“λd” by “λu” and “fd” by “fu”.

Similarly, for the flavour mixing matrices DL,R defined in (3.75) we find

(DL)ij =



















ωdij
fQ

i

fQ
j

(i < j)

1 (i = j)

ωdij
fQ

j

fQ
i

(i > j)

, (DR)ij =















ρdij
fd

i

fd
j

(i < j)

1 (i = j)

ρdij
fd

j

fd
i

(i > j)

. (A.20)
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Analogous expressions hold for UL,R in (3.74) with replacing “d” by “u”. Here we
introduced the notation

ωdii = 1 , ωd12 =
λd33λ

d
12 − λd13λ

d
32

λd22λ
d
33 − λd23λ

d
32

, ωd13 =
λd13
λd33

, ωd23 =
λd23
λd33

, (A.21)

ωd21 = −
(

ωd12
)∗
, ωd31 = −

(

ωd13
)∗ −

(

ωd23
)∗
ωd21 , ωd32 = −

(

ωd23
)∗
. (A.22)

ρdii = 1 , ρd12 =

(

λd33λ
d
21 − λd31λ

d
23

λd22λ
d
33 − λd23λ

d
32

)∗

, ρd13 =

(

λd31
λd33

)∗

, ρd23 =

(

λd32
λd33

)∗

,

(A.23)

ρd21 = −
(

ρd12
)∗
, ρd31 = −

(

ρd13
)∗ −

(

ρd23
)∗
ρd21 , ρd32 = −

(

ρd23
)∗
. (A.24)

The expressions for ωuij and ρuij, that enter the formulae for UL,R, are obtained by
replacing “d” by “u”.

Finally, making use of VCKM = U †
LDL, we obtain

Vus = α12
fQ1

fQ2
, Vub = α13

fQ1

fQ3
, Vcb = α23

fQ2

fQ3
, (A.25)

with

αij =

j
∑

k=i

(ωuki)
∗ ωdkj . (A.26)

We would like to stress that the formulae given above are valid at leading order in
fQ,u,di /fQ,u,dj (i < j), but are exact in the entries of the 5D Yukawa couplings λu,d.

Finally, we comment on the complex phases in the above formulae. It can straight-
forwardly be seen that in general the quark masses, as given in (A.17)–(A.19), are
complex quantities. In order to obtain positive and real values for the quark
masses, the unphysical phases in (A.17)–(A.19) have to be removed by suitable
phase redefinitions, which will then also affect the phases of the flavour mixing
matrices UL,R,DL,R. Similarly, suitable phase redefinitions have to be performed
in order to work with the standard phase convention for the CKM matrix [1].

A.3 Leptonic couplings of Z, ZH, Z′ and A(1)

In this appendix we collect the couplings of the gauge bosons Z, ZH , Z ′ and A(1)

to the leptonic zero modes which are relevant for the study of rare K and B decays
evaluated in section 4.4. To this end we neglect lepton flavour violating effects as
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T 3
L T 3

R QX Qem

νL 1/2 −1/2 0 0

νR 0 0 0 0

ℓL −1/2 −1/2 0 −1

ℓR 0 −1 0 −1

Table A.1: Electroweak quantum numbers of lepton zero modes. T 3
L,R are the third

component weak isospins of SU(2)L,R and QX is the U(1)X charge. The
electric charge is defined as Qem = T 3

L + T 3
R +QX .

these are irrelevant for the present analysis. The flavour violating quark couplings
of Z, ZH , Z ′, A(1) and G(1)A have already been collected in section 4.2. A complete
set of Feynman rules including all gauge couplings of the zero and first KK modes
has been derived in [40], to which we refer the reader for further details.

The couplings of Z to νν̄ and ℓ+ℓ−are given by

Zµνν̄ : −iγµ∆νν
L (Z)PL , (A.27)

Zµℓℓ̄ : −iγµ
(

∆ℓℓ
L (Z)PL + ∆ℓℓ

R(Z)PR
)

, (A.28)

where PL,R = (1 ∓ γ5)/2 are the chirality projectors, and we have introduced

∆νν
L (Z) =

1

2

g√
L cosψ

, (A.29)

∆ℓℓ
L (Z) =

g√
L cosψ

(

−1

2
+ sin2 ψ

)

, ∆ℓℓ
R(Z) =

g√
L cosψ

sin2 ψ . (A.30)

Using the matching relation g4D = g/
√
L and ψ ≃ θW they can be reduced to the

known SM expressions.

The couplings of ZH , Z ′ and A(1) can be obtained from (4.16), (4.17) and (4.11)
by using the quantum numbers collected in table A.1. Note that the right-handed
neutrinos are introduced as gauge singlets, so that all their gauge couplings vanish.
Further for ∆̄ij±

L,R one has to insert

∆̄ℓℓ+
L,R, ∆̄

νν+
L −→ 1

L

∫ L

0

dy f
(0)
L,R(y, cψ)2g(y) ≃ 1√

kL
, (A.31)

∆̄ℓℓ−
L,R, ∆̄

νν−
L −→ 1

L

∫ L

0

dy f
(0)
L,R(y, cψ)2g̃(y) ≃ 0 , (A.32)

where in our numerical analysis we use cψ = ±0.7 for all left-/right-handed leptons
collectively. Note that for cψ > 0.5 (cψ < −0.5 for right-handed leptons) the
overlap integrals in (A.31), (A.32) depend only very weakly on the actual choice
of cψ.
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