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ABSTRACT 

Pilot Aided Channel Estimation (PACE) in OFDM 
systems uses training sequences to estimate the channel 
in a subset of the frequency bins, followed by 
interpolation to recover the rest of the non-pilot sub-
channels. Particularly, the Wiener interpolation method 
is based on the knowledge about channel statistics in 
order to find the optimal channel estimate in a frequency 
bin without pilot symbols in the linear MMSE sense. 
Nevertheless, the Wiener interpolation does not utilize 
the other available information at the receiver such as 
the received signals and the knowledge about the 
transmitted symbol alphabet. This paper presents a novel 
Expectation Maximization (EM) algorithm which 
optimally utilizes all available information at the 
receiver and thus enhances the Wiener interpolation. The 
proposed method is tested successfully on MIMO-OFDM 
systems in realistic channel conditions.  

1. INTRODUCTION 

The OFDM system has emerged as a good alternative to 
mitigate the effects of frequency selectivity in wideband 
mobile communication systems. The use of a Cyclic 
Prefix (CP) for preventing inter-block interference is 
known to be equivalent to multiple flat fading parallel 
transmission channels in the frequency domain [1]. 
Wideband communication systems with OFDM 
modulation can be combined with multiple transmit and 
receive antennas (MIMO) to achieve very high data rate 
transmission.  

Typically, channel estimation within the MIMO-
OFDM systems is based on the Pilot Aided Channel 
Estimation (PACE) methods where the pilot symbols are 
periodically transmitted along the time and/or frequency 
directions. The channel estimation in a bin with no pilot 
symbols is then obtained by interpolation. Common 
algorithms use Linear, Sinc or Cubic interpolators [2], 
[3]. The optimal solution in the sense of Minimum Mean 
Squared Error (MMSE) is the Wiener filter [4], [5] which 
relies on the autocorrelation function of the channel over 
time and/or frequency.  Hence, the quality of the channel 
statistical information together with the signal to noise 
ratio (SNR) is crucial to the quality of the interpolation 
process. In addition, the Wiener approach, like all other 
interpolation approaches, does not exploit the other 
available information at the receiver such as the received 

signals in frequency bins without pilot symbols and the 
knowledge about the transmitted symbol alphabet. In the 
Wiener approach, the channel estimates at pilot 
frequency bins are obtained by a simple division of the 
received signal with the transmitted pilot symbol. Hence, 
the interpolation is compromised by the additive 
Gaussian channel noise. 

This paper presents a novel method that enhances the 
channel estimate over all frequencies by exploiting all 
available information at the receiver. The channel 
estimation at the particular frequency bin with no pilots is 
posed herein as a Maximum Likelihood problem with 
missing information, i.e. the transmitted symbols. A 
suitable implementation of the Maximum Expectation 
(EM) algorithm is then derived in order to find the most 
likely channel estimates at the pilot bins.   

The authors of [6], [7] and [8] also developed EM 
based semi-blind methods which estimate the channel not 
only based on the signals in pilot frequency bins, but all 
the received signals. The existing semi-blind approaches 
estimate the channel impulse response in time domain, 
although some of them present the final result in 
frequency domain by simply making a Fourier transform. 
As discussed in [9], these methods suffer from leakage 
problems. Another drawback of these methods is 
transforming between two domains which increases the 
computational complexity. In our approach, channel 
estimation and symbol detection are all done in frequency 
domain. The equations of the EM algorithm are derived 
based on the frequency correlations between the 
subcarriers. The correlation function is determined from 
the long term power delay profile of the channel. Thus, 
the leakage problems are avoided and the signal 
information from all the subchannels is used. 

Another research direction has been proposed in 
[10],[11] where the EM approach has been used for 
estimating the OFDM channel in time varying condition. 
This approach is complementary to ours: while we use 
correlations in the frequency domain to improve the 
channel estimation, the algorithms in [10] and [11] are 
using the temporal evolution for each frequency bin. A 
combination of the two methods would be interesting to 
investigate. On the other hand, in [12] and [13]  the EM 
algorithm is applied to estimate the channel model in 
MIMO-OFDM under the assumption that the spacing of 
the bins with pilot sequences does not satisfy the 



 

sampling theorem, which makes the standard Wiener 
approach infeasible.  

Our approach in this paper deals with uncoded 
systems. In [14], the authors developed an iterative 
channel estimator where coded symbols are decoded at 
the receiver and sent back to the estimator to achieve a 
better estimation. Our method can be extended to such a 
coded system as well. The novelty of our scheme is in the 
estimator part where we enhance the Wiener solution by 
improving the channel estimates at the frequency bins 
with pilot symbols.  

2. WIENER INTERPOLATION ENHACEMENT 

The MSE performance of the Wiener interpolation 
directly depends on the estimation accuracy at pilot bins 
and is, hence, affected by the channel noise. In order to 
improve the MSE estimation performance, we want to 
improve the estimation at pilot bins. Before introducing 
the new methods, we shall first clarify again some basic 
assumptions. 

The transmitted symbols are temporally white. As 
OFDM convert the serial transmitted symbols into 
parallel and transmit through parallel orthogonal sub-
channels, the temporal whiteness is translated into the 
independency between the symbols transmitted in 
different sub-channels.  

Transmitted symbols are chosen from a fixed symbols 
set { S} ={ s1,s2…sM} , and the M-ary modulation scheme is 
known at the receiver side. The probability of each 
symbol realization is known and, for simplicity, we 
assume all symbols to be equally probable. In addition, in 
MIMO systems the transmitted data streams are 
statistically independent. 

We first address SISO-OFDM systems with each 
OFDM sub-channel described by: 
 ,1 , Nnhsx nnnn �=+= η                  (1) 

where n denotes the frequency bin index, and x, h, and η 
are the received signal, channel coefficient and noise 
realization. 

In Wiener interpolation, the channel at non-pilot 
frequency bin is estimated by a weighted linear 
combination of the channel at pilot bins, so that, the 
channel coefficient hn can be estimated as: 
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channels estimated at pilot bins.  

In standard Wiener interpolation, Pĥ is estimated via 

ML approach with the likelihood being defined as: 
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With the assumption of independence of the pilot 
bins, the ML solution is simply given by: 
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where PpP ...1,p Nns n =  are the pilot symbols. 

Insert (2) into (1), we obtain: 

 nnnn sx η+= p
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 For all the N sub-channels of we form the system: 
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 Hence, the optimization of  Ph  can be posed as a 

Maximum Likelihood (ML) optimization with the 

missing data T
Nsss ],[ 21 �=s : here, the observation is 

the received signal, the hidden variable is the transmitted 

symbol, and the parameter is Ph . The likelihood in this 

case is: 

 );(log)( PP hxh pL =                  (7) 

where T
Nxxx ],[ 21 �=x  are the received signals at the 

transmitter at different frequency bins. By comparing (3) 
and (7), we can see that  the likelihood in (7) corresponds 
to a joint probability of the received signal at all 
frequency bins, thus including the information at non-
pilot bins.  
 Due to the independence of the transmitted symbols 
and the orthogonality of the sub-channels in OFDM, the 
received signals should also be independent which leads 
to: 
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where the second sum goes over all symbols in the 
symbol alphabet and where, according to the prior 
assumptions, all prior symbol probabilities are equal. 
 The sum inside logarithm makes an analytical 
solution intractable. The EM algorithm [15] iteratively 
optimizes a lower bound instead of directly maximizing 
the likelihood, in two steps: the Expectation (E) step and 
the Maximization (M) step. Following the approach in 
[16] it can be shown that the solution of the 
maximization in the iteration i is: 
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 Here );|( )(
P
i

nn xsp h  is the posterior probability of the 

transmitted symbol ns  given the received symbol nx  at 

current estimation )(
P
ih , which can be calculated in the 

following way: 
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 If we use PSK modulation, i.e. the transmitted symbol 

has constant transmission power 2
sσ , then equation (10) 

can be simplified as: 
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 From (13), we can see )(wR ss  only depends on the 

Wiener weights, which can be pre-computed and stored. 

Only )(i
xsr  should be updated in each iteration.  

 The EM iteration starts from an initial estimation 
(0)
Ph and iteratively update the estimation until it 

converges. A good initialization is essential for two 
reasons. It is well known that semi-blind/blind methods 
are insensitive to permutation and scaling of the signals, 
consequently the cost functions have several maxima. 
The initialization of the recursions must be made close 
enough to the correct solution so that the algorithm will 
converge to it. Secondly, a good initialization speeds up 
significantly the convergence of the algorithm. A suitable 
initialization is the standard Wiener solution presented in  
(3). In our simulations with pilot bins satisfying the 
sampling theorem we have not observed cases where the 
algorithm converged to a wrong solution. In the case that 
the sampling theorem is not satisfied, the Wiener 
interpolation can not be used and the methods developed 
in [12] and [13] should be applied. Regarding the 
convergence speed, only a few iterations, 2-3, were 
sufficient to achieve the solution. 
 The EM also gives the posterior probability 

);|( )(
P
i

nn xsP h of the transmitted symbol after each 

iteration, which can be used in symbol detection in the 
Maximum a posterior Probability method. 
 The extension of the above scheme to MIMO-OFDM 
systems is possible. In a MIMO system with Mt 
transmitting antennas and Mr receiving antennas, by 
using OFDM, we divide the multipath channel between 
each antenna pair into N orthogonal sub-channels. Then, 
for each sub-channel, their Mr×Mr channel coefficients 
can be written in a matrix H: 
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 Here n is the index denoting the nth sub-channel. 
Each antenna pair can be regarded as a SISO OFDM 
system. Wiener interpolation for the channel between 
antenna pair (mt,mr) can be expressed as: 
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 A common assumption is that for close together 
antennas all the antenna pairs have the same channel 
statistics. Then, we use the same Wiener coefficients, 

nw , for every antenna pairs: 
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 The received signal at mr
th receiving antenna can be 

computed as: 
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 Equation (18) has a very similar form as (5). The 
definition of likelihood and the derivation of EM 
algorithm can just follow (7) to (8). Here, we won’ t repeat 
them, but just give the updating rule for the estimation: 
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3. SIMULATION RESULTS 

For testing the proposed SISO and MIMO OFDM 
channel estimation and equalization we have used a 
realistic frequency selective channel developed by the 
3GPP-SCM group [17]. The main parameters of the 
system and channel are summarized in Table 1. The 
coherence bandwidth of the channel is approximately 
1/1.2sµs = 833kHz. The pilot bins are assigned that two 
pilot bins are inside the coherence band width, i.e. the 
spacing of pilot bins is approximately 416kHz.  

Table 1. Main system and SCM channel parameters: 
Environment Micro-cellular 
Antenna configuration 
(only for MIMO) 

4x4 

Bandwidth 20MHz 
Maximum delay 1.2� s 
Coherence bandwidth 833kHz 
Number of sub-channels 1024 256 
Spacing of pilot bins 22bins 5bins 

 
 Figure 1 shows the MSE performance of Wiener 
Interpolation and EM Based Improvement of Wiener 
Interpolation.  
 

 
Figure 1: Wiener vs EM Improved Wiener in SISO 

   

 
Figure 2: MSE performance: Wiener vs EM improved 

Wiener in MIMO 
  

We can see that by using EM, the estimation performance 
is improved significantly. The advantage of EM improved 
Wiener estimation scheme comes from the fact that the 
pilot bins are estimated together and the statistical 
information from the other bins where no pilots are sent 
is used. In this way the noise is averaged and the 
estimation is more accurate than in the case of the 
standard Wiener. 
 Further results for the MIMO case, where the 
traditional Wiener and the EM improved Wiener 
interpolations are compared, are depicted in Figure 2. 
 The two curves for the standard Wiener interpolation 
are almost overlapping because the pilot bins spacing is 
the same in both cases and accordingly the performance 
of the Wiener interpolation is the same. 
 We can observe that the EM improved Wiener 
interpolation works better in OFDM with 1024 bins, i.e. 
it makes much more improvement over standard Wiener 
interpolation when more bins are available. This is 
reasonable as standard Wiener interpolation only uses the 
input and the output at the pilot bins, the numbers of 
which in both cases are the same, while EM exploits the 
information at non-pilot bins. In OFDM with 1024 bins, 
there are relatively more non-pilot bins available and the 
noise can be therefore better reduced.  

 
Figure 3: BER performance, Wiener vs EM Improved 

Wiener in MIMO. 256 frequency bins. 

 
Figure 4: BER performance, Wiener vs EM Improved 

Wiener in MIMO 1024 frequency bins. 
 



 

 The uncoded bit error rate performance of Wiener 
interpolation and the EM improved Wiener method has 
been compared with the results shown in Figure 3 and 4. 
The modulation alphabet is QPSK. 
 In both cases we see a gain due to the improved 
channel estimation, gain up to 2dB in signal to noise 
ratio. This gain is most significant in the SNR rage 
important for mobile communications, namely between 5 
and 10dB. 

4. CONCLUSION 

In standard Wiener interpolation, only the transmitted 
symbols and received signals at pilot bins are used for the 
channel estimation. By including the information at non-
pilot bins, the estimation performance is largely 
improved. The knowledge of transmitted symbol alphabet 
and the received signal at non-pilot bins is exploited with 
a maximum likelihood approach. Analytical solution 
could not be directly found. Suitable expression has been 
derived to apply the EM algorithm. 
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