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Abstract

In leptogenesis the evolution of a cosmological baryon asgtry is usually studied

by means of momentum integrated Boltzmann equations. Esiigate the validity of

this approach, we solve the full Boltzmann equations, wittibe assumption of kinetic
equilibrium and including all quantum statistical factoBeginning with the full mode

equations, we derive the usual kinetic equations for thietfiginded neutrino number
density and integrated lepton asymmetry, and show eXglitie impact of each assump-
tion on these quantities. We investigate also the effecssattering of the right-handed
neutrino with the top quark to leading order in the Yukawaptimgs by means of the
full Boltzmann equations. On a later stage we extend ouliesuih an alternative sce-
nario in which the asymmetry is generated via decays of tRetodightest right-handed

neutrino. Here we provide a restriction on the valid paramspace.

Zusammenfassung

Die Entwicklung einer kosmologischen Baryonenasymmetvied in der Leptoge-
nese Ublicherweise mittels impulsintegrierter Boltzmglrichungen untersucht. Zur
Uberpriifung dieser Vorgehensweise losen wir die vollealtZBnanngleichungen,
ohne die Annahme kinetischen Gleichgewichts und unteru@eichtigung aller
guantenstatistischen Faktoren. Wir leiten die integgiettinetischen Gleichungen fur
rechtshandige Neutrinos und die Leptonenasymmetrieunerzeigen den Einfluss der
fur die Integration gemachten Annahmen auf diese GroBes.Weiteren untersuchen
wir die Auswirkungen von Streuprozessen rechtshandigertihos an Quarks in erster
Ordnung der Yukawakopplung mittels der vollen Boltzmaeiajiungen. Zuletzt unter-
suchen wir ein alternatives Szenario, in dem eine AsymmatriZerfallen des zweit-
leichtesten rechtshandigen Neutrinos erzeugt wird umdas&en den gultigen Para-
meterbereich innerhalb dieses Szenarios ein.
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Chapter 1

Introduction

1.1 Matter-antimatter asymmetry

In the last years our knowledge of the history of the earlywerse has grown consid-
erably, and a cosmological standard picture, the Lambdd Oark Matter ACDM)
Model has emerged. This model suggests the possibilitystiatly after the Big Bang
a period of exponential expansion, which is called inflafipjy took place. Immedi-
ately after the inflationary phase, the energy content ofitiiegerse was dominated by
radiation, i.e., all particles species were in chemicalldmgium contributing to the ther-
mal bath of the universe. Thereon the universe expandedaoiddcdown, entered the
phase of matter domination at a temperature-of0 eV, and finally began a stage of
accelerated expansion at a temperature of a few meV [2].darEil.1 today’s energy
budget of the universe is shown. Experimentally, the vabfabe various components
are determined by the angular distribution of the tempeeaiuctuations of the cosmic
microwave background (CMB) together with large scale stmgcand Supernova Type
la observations. The observation that the expansion ofriiverse is accelerating today
indicates that the dominant contribution to the overallrgndudget, about 70%, is pro-
vided in the form of a yet unknown un-clustered componertedalark energy [3, 4].
The simplest way to explain dark energy is by adding an Eimst@smological constant
A in the Friedman equation. But also dynamical models mad/étom particle physics
are considered [5, 6]. Another 23% of the energy densityisbosa cold, non-baryonic
matter component that is called dark matter. Theories kyba Standard Model of
particle physics (SM) provide several candidates: thetdigihsupersymmetric particle
(neutralino, gravitino), axion, sterile neutrino, lightkaluza—Klein boson, and many
other. Further, a part of 4% of the energy budget is made upgvbp&yons and a small
fraction of~ (0.1 — 2)% is contributed by the (dark) neutrino background. It is réma
able that there is no antimatter contributing to the thel tetergy budget. In general,
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Figure 1.1: The energy budget of the universe.

one could think that the universe in total is matter-anttaratymmetric and that there
exist distinct regions that are entirely made of antimaftben one would expect matter-
antimatter annihilations to occur at the border region$ait emission of high energy
photons. The absence of such a photon flux indicates thatyhgafaxy clusters consist
of matter. Nevertheless, there remains the possibility bagon symmetric universe
on scales larger than clusters of galaxies (tens of Mpc)¢hvigéquires a mechanism to
explain the segregation on these scales [7, 8].

The observed excess of matter over antimatter in the usiveas be conveniently
expressed as the net baryon to photon number ratio. The wmstée measurement for
this value comes from the CMB by the WMAP satellite [11]:

nSME — ”%ﬂ = (6.225 + 0.17) x 1071°. (1.1)
Y

About 380 000 years after the Big Bang, when the temperature of the urdvesmss
T ~ 0.3 eV, electrons and protons combined to form neutral hydregeh in turn, pho-
tons decoupled from the thermal bath forming the nowadaygemwked CMB. In the
angular power spectrum of the CMB the amount of baryons casebe due to their
gravitational interactions with photons: the attractivavitational force pulls baryons
together, but the radiation pressure of the thermal bathhermther hand, drives them
apart. These acoustic oscillations of the photon-baryad #itithe time of decoupling

are observed in the temperature anisotropies of the CMBigr€ 1.2 we show the de-
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Figure 1.2: Temperature anisotropies of the CMB [9]. The solid blacle Igihows
the best fit in theACDM-Model compared to data, whereas variations of the bary-
onic matter content lead to the dashed blue and pointedrresl. li

pendence of the CMB temperature anisotropies on the bagyonraetrynz compared
to data.

Another powerful test of the standard cosmological pictsriae formation of light
elements in Big Bang Nucleosynthesis (BBN) [12] taking platl” ~ 1 MeV in the first
3 minutes after the Big Bang. The formation and resultinghdlamces of light elements
can be calculated using well-known SM physics and the depaedof the abundances
onnp is shown in Figure 1.3. The consistency of BBN predictiordeigd confirms that
the thermal bath of the universe has had a temperdtuseMeV.

From BBN the following value of the baryon asymmetry can beéuded [13]:

4.7 x 10710 < pBBN <65 x 10710 at  95%CL. (1.2)

Thus, two independent observations taking place at diffee@ergy scales point to a
baryon asymmetry of the same order of magnitude.

The explanation of this baryon asymmetry is one of the chgitey problems of
modern cosmology and particle physics and will be the stilgéthe present thesis.
Of course, one could simply impose a baryon asymmetry asitial icondition of the
universe. The observed flathess and homogeneity of thersai@wever, strongly sug-
gest that the earliest epochs were governed by an inflatigreaiod. Thereby, any pre-
existing asymmetry would have been strongly diluted. Asresequence of this it is nec-
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Figure 1.3: Observed abundances of light elements compared to BBN/CMB p
dictions that depend on the baryonic matter content of tlivetse [10]. The larger
boxes indicatet-20 statistical and systematical errors, the smaller yelloxels@o
statistical errors.

essary to create the baryon asymmetry dynamically afteretheating process, what is
called baryogenesis. In general, any baryogenesis mesrhasfiould start from a matter-
antimatter symmetric state and lead to an universe with Aargbn number.

In the SM one could consider the annihilations of baryons amtitbaryons into
pions at aroun@2 MeV. The annihilation rate is given by ~ n;%(co|v), wheren;*
is the equilibrium number density of baryonscorresponds to the relative velocities
of the involved baryons and anti-baryons, dadlv) ~ 1/m?2, m, ~ 135MeV, is the
thermally-averaged annihilation cross-section. Aftex fleeze-out of the annihilation
process, the baryon to photon ratio is given by

ny 1 —18
™~ q0718,
Ny Ty
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which is far below the measured value. On the other handpthisess does not explain
the excess of baryons over anti-baryons since the anmimtafreeze-out, leaving the
same abundances for baryons and anti-baryons. From tlspgumive, the standard Big
Bang cosmology is unable to explain the baryon asymmetrijeimiverse and partic-
ular baryogenesis models have to be considered in its domtek967 Sakharov set up
three conditions [14] that have to be satisfied by a baryajsmeodel:

1. Violation of baryon number ( B) conservation
Beginning at a state witl? = 0, it is instantaneously clear that in order to end up
with a B # 0 state,B has to be violated.

2. Violation of charge conjugation (C) and the combined charge and parity
symmetries (C P)
If + denotes the state following@P transformation of the stateand M (i — b)
is the matrix element for the process+ b, then the principle of detailed balance
applies if a theory is invariant undérP andT transformations,

M@E—=b)=M(i—b)=M(Ob—1i).

Hence, it is impossible to reach an universe with# 0, i.e.,n, # nz, starting
with a matter-antimatter symmetric state whefe= n-.

3. Departure from thermal equilibrium
The time evolution of a system in thermal equilibrium can kgressed with the
help of a density matriyp(t) = e #H:

(B(t)) = tr (e*ﬂH B(t)) — tr (e*ﬁH e iBHL B(0) eiﬁHt) — (B(0)),

i.e., an initial state with vanishingg that remains in thermal equilibrium cannot
produce any baryon numbér # 0.

1.2 Baryogenesis in the SM
All three Sakharov conditions are fulfilled in the SM of pelei physics.

1. Baryon number is violated in anomalous processes. Thesmalies are due to
the chiral nature of the electroweak theory [15]. There ggdiield configurations
exist that represent saddle-point solutions (sphalerfi@) of the equations of
motion. The sphalerons carry topological charges, cooredipg to the Chern—
Simons numbers. In the SMU (2) sphalerons lead to an effective 12-fermion
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interaction

Opyr, = H (qriqri qrilri)-
i=1--3

The sphaleron energy,

8

Esph = ?U(T)v
wherewv(T) is the temperature dependent vacuum expectation valug ¢ieke
Higgs field, separates the topologically different vacugheftheory. Transitions
from one vacuum to another violate lepton numtieand baryon numbenB,
but preserveB — L. The tunnelling rate between different vacua is determined
by the instanton actiot$;,s;, and is highly suppressed at zero temperature [15]:
= = 0 (107'%). This rate is so small thaB and L are sep-
arately conserved to a very good approximation in acceleetperiments [17].
However, if the system is coupled to a thermal bath, the itians between differ-
ent gauge vacua do not happen by tunneling but rather thribiegimal fluctuations
over the energy barrier [18]. For temperatures higher thard0 GeV, the elec-
troweak symmetry is restored, i.e., the Higgs vacuum exstiect value vanishes.
Hence, the barrier separating different vacua disappeatsghaleron transitions
are no longer suppressed. Therefore, in the expandingrsritiee3 + L violating
reactions can be in equilibrium and occur with a significater By a combina-
tion of analytical and lattice techniques [19], the sphatdransition rate has been
calculated for the symmetric phase of the SM. Here, we wil give the temper-
ature range in which the sphaleron processes are in thegugibeium [19-23]:

T~ e_Sinst —e

Tew ~ 100 GeV < T < 10'? GeV.

This seems to imply that for temperatufés> Trw any existingB+ L asymmetry
will be washed out. But, since only left-handed fields couplsphalerons, in the
symmetric, high-energy phase a non-zero valu®ef L can persist if there is a
non-vanishingB — L asymmetry.

. In the electroweak theory charge conjugat(@ris violated. Furthermore, in the
quark sector of the SM the combined charge and parity cotiprgd&' P is vi-
olated in the K and B meson systems. ThI$ violation is due to a complex
phase in the Cabibbo—Kobayashi—-Maskawa (CKM) matrix [84, &hich gives
the couplings of the charged currei® to the left-handed up-and down-type
quarks. The CKM matrix connects the electroweak eigerstitelown, strange,
and bottom quarks with their mass-eigenstates. It3s>a3 unitary matrix that



1.2 Baryogenesis in the SM 7

can be parametrized by three mixing angles and the CP-viglahase. Th&'P
violation in the kK — & -system is measured to be tiny [13],

leckm| ~ 2.33 x 1073,

3. Departure from thermal equilibrium can occur during tleetoweak phase tran-
sition. For baryogenesis within the SM it is important thastphase transition
is strongly first order. First order means that a thermodyoayoantity, the or-
der parameter, changes discontinuously. In the electiowesory this leads to a
condition on the change of the Higgs vev at the critical terapgesTt,

Av(T)

1.
T ~

During the transition, two separate thermodynamical phaseexist in thermo-
dynamical equilibrium. This means that two ground statetheftheory exist: a
high temperature ground state, described by a vacuum exjmecivalue of the
SM Higgs fieldv = 0, and a low temperature state with+# 0. These states
are separated by an energy barrier. At the critical temperdt,., both states are
equally favored energetically. But when the temperatuopsibelowl, the state
described by # 0 becomes the global vacuum of the theory and quantum tun-
nelling from the false vacuumy(= 0) to the true vacuumy( # 0) begins. This
leads to the nucleation of bubbles of the 0 state in a sea described by the- 0
vacuum. Eventually, these bubbles grow until they fill upspthce, completing the
phase transition. When the bubble walls pass each poinatesphe order param-
eterv changes rapidly leading to a departure from thermal eqjuifito.

Putting all three ingredients together leads to a baryajsmaechanism dubbed
electroweak baryogenedig6, 27]. HereC' P violation occurs in the transitions from the
false vacuum to the true vacuum during the bubble nucleaBorce the sphaleron pro-
cesses are in equilibrium f@r > Tgw, a baryon numbeB in the false vacuumu(= 0)
can lead to a net baryon number in the true vacuurg (0) when the phase transition
is faster than the sphaleron transition rate. However,ritstiout that this mechanism
does not work for two reasons. First, tha” violation in the quark sector is not large
enough [28] to account for the observed value of the barygmasetry. The second
reason is that in the SM a Higgs particle mass < 45 GeV [29] is needed in order to
have a strong enough first order phase transition. This @lglaot compatible with the
lower bound on the Higgs masss = 114 GeV [13] coming from the LEP Il experi-
ment. Therefore, a successful baryogenesis is not possithlan the framework of the
SM.
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1.3 Beyond the SM

In order to achieve successful baryogenesis, a potentiahson of the SM must in-
troduce new sources @f P violation and provide a departure from thermal equilibrium
during the expansion history of the universe. A possibiktyo modify the electroweak
phase transition. To achieve this, a two Higgs doublet m{&igjl can be considered.
Here, the Higgs potential has additional parameters, dotcimg additional sources of
C'P violation. Another well motivated model is the minimal supenmetric standard
model (MSSM). In the MSSM there exists a supersymmetricngarfor each particle
of the SM. These superpartners are of bosonic type for SMiéesrand of fermionic
type for SM bosons. Hence, the field content of the MSSM is thmliscompared to
the SM. Consequently, this demands a second Higgs doublletiteisupersymmetric
partner to achieve an anomaly free theory. If one allows fonglex parameters, there
are, in turn, additional sources 6fP violation. A strong first order phase transition is
then provided if a light scalar particle couples stronglyhe Higgs boson whose mass
is constrainedng < 130...150GeV [31]. In the MSSM the stop, the superpartner of
the top quark, couples with the strength of the top Yukawapling to the Higgs and
provides a strong enough first order phase transition if @&ssms not larger than the top
mass [32]. Combined with conditions on the Higgs masstandb, i.e., the ratio of the
vacuum expectation values of the two Higgs doublets, tldgddeo a narrow window
in the MSSM parameter space that allows for successfulreleeak baryogenesis and
might be tested experimentally at the Large Hadron Collid¢tC) soon. However,
going beyond the field content of the MSSM, e.g., the next taimmeal supersymmetric
standard model (nMSSM) with an additional singlet supetfi¢he parameter space
broadens up leaving more possibilities for successiupersymmetric electroweak
baryogenesi$33—-35].

Another baryogenesis model relying on supersymmetry ansidn of the SM is
Affleck—Dine baryogenesi86, 37]. In unbroken supersymmetry some combinations
of scalar slepton, quark, or Higgs fields might not contebtd the scalar potential,
describing so-called flat directions of the potential. Ehdéglds can develop large
vacuum expectation values during inflation. After inflatios come to an end, these
fields and their combinations start coherent oscillatiamgiiad the potential minimum
when the expansion rate of the univefédecomes comparable to their masses. If these
scalar fields carry baryon or lepton number, a baryon asymnean be produced in
these oscillations when the fields decay to lighter degrés@dom?

A lepton asymmetry produced by lepton number carrying figlisid be transformed to a baryon
asymmetry via sphaleron processes, cf. Section 1.2.
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A more general class of baryogenesis models relies on graiféedi theories
(GUTSs). These theories provide an elegant way to unify theygaheories of the elec-
troweak and strong interactions of particle physics at ldghrgies. The gauge group
of the SM, SU(3)¢ x SU(2)r, x U(1)y, is then incorporated in a higher dimensional
gauge group, which, in the minimal case, is of rank 5, i.e.,S&4h(5). An impor-
tant prediction of grand unified models is the decay of thegoroThe SU (5)-GUT
models are nearly ruled out because they cannot explainotigeVity of the proton,
T > 2.1 x 10?” years [38]. To dynamically generate the observed baryomamstry in
GUTs, the first attempts relied on the (out-of-equilibriupayyon and lepton number vi-
olating decays of heavy colored triplets of Higgs parti¢&®-41]. These particles have
to be heavier than about'? GeV to explain the long proton lifetime, which makes
their production very difficult in the post-inflationary werse [42]. Another problem
comes from theB + L violating nature of the simplest GUTS, whereds- L is con-
served. Hence, the SM sphaleron processes would washypt@stuced asymmetry at
temperatures below0'? GeV where sphalerons are in equilibrium.

Generally,SO(10) is one of the most promising GUT candidates since it cont&ins
addition to thel5 Weyl fermions of the SM, right-handed neutrinos that car gise to
the small neutrino masses via thee-sawnechanism [43]. They are the main ingredient
in the baryogenesis framework basedleptogenesig42], which is the main subject
of this investigation. Typically, in thos§O(10) models the gauge group is broken at
an energy scale of 10'6 GeV. This finally leads, potentially after several steps of
symmetry breaking, to the SM gauge group with an additiéh@l) symmetry, whose
breaking at a scale ab® — 10'® GeV gives rise to Majorana masses for the heavy-right-
handed neutrinos.

1.4 Neutrinos and the see-saw

We mentioned the see-saw mechanism as the origin of neutrasses in the context
of GUTs at the end of the last section. Since leptogenesis raechanism to create
the baryon asymmetry in the early universe is a natural cuesee of the see-saw
mechanism, we will discuss the see-saw mechanism and meatasses in more detail.

1.4.1 Experimental results

Neutrino oscillation experiments give clear evidence feutnno masses. These oscilla-
tions stem from the fact that in electroweak processes geiggestates,, a = ¢, i, 7,
and not mass eigenstates 1 = 1,2, 3, are involved. A unitary transformation relates
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the two eigenstate bases:

3
va) = Uz, |vi), (1.3)
i=1

i.e., each gauge eigenstate is a linear combination of tle® tihass eigenstates. The
unitary lepton mixing matriXJ is a3 x 3 matrix consisting of three real mixing angles
and six phases. It is known as tRentecorvo—Maki—Nakagawa—SakgRBMNS) matrix.

If the neutrinos are Majorana fermions, three of these haar be rotated away by a
redefinition of the fields. The PMNS matrix is usually expeskas the product of three

rotation matrices and a diagonal factor,

1 0 0 C13 0 si3 e 10
U= 0 C93 5923 0 1 0
0 —s23 c93 —s13€ 0 c13

crz2 s12 0 . .
x| =519 12 0 xdiag(eﬂ%,eﬂf,l), (1.4)
0 0 1

wheres;; = sinb;;, ¢;; = cos6;;. Here,0;; are the real mixing angles, is the so-
called Dirac phase, an#; » are the Majorana phases that, in contrast,tare only
different from zero if neutrinos are Majorana fermions. titee phases are sources of
C'P violation. Thus, one can write for the transition probabibf a neutrino travelling

a distancel. with an energyF from a flavor statev to a flavor states

AmZ L
P(va = vg) =005 —4 Y Re (Uk; Uaj Ug; Up;) x sin® ( — >

3 AR
- s (1.5)
m..
+2 ) Im (U; Uaj Ui Ug;) % sin® < v ) ’
1>]

whereAmg; = m? —m?.
The parameters measured by oscillation experiments areatiged in Table 1.1,
completed by data received from non-oscillation experia@md cosmology [45]. We

will shortly explain these parameters.

Solar anomaly.

In the 1960’s R. Davis led the first experiment detecting meo$ coming from the sun

in the Homestake mine in South Dakota [46]. This experimesich had an energy
thresholdF, > 0.814 MeV, was based on a radiochemical technique using Chlorine.
In contradiction to the electron neutrino flux predicted bghBall [47], the observed
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Table 1.1: Summary of present information on neutrino masses and gsxin
accounts for the use of a different nuclear matrix elemean tine one calculated
in [44].

oscillation parameter central value

solar mass splitting Am?, = (8.04£0.3)107° eV?
atmospheric mass splitting |Am3;] = (2.5 +0.2) 1073 eV?
solar mixing angle tan?61o = 0.45 £ 0.05
atmospheric mixing angle sin?26y; = 1.02 +0.04
‘CHOOZ’ mixing angle sin?260;3 = 0+0.05

non-oscillation parameter probed by  experimental limit

(mtm)el? p-decay m,, < 2.0 eV
ee-entry ofm 0028 mee < 0.38h eV
3

Z m; CosmOIOQy Mecosmo < 0.6 eV
i=1

flux was about three times smaller. Later, radiochemicaégrpents using Gallium, as
SAGE [48] (located in Baksan, Russia) and GALLEX/SNO [49,&kran Sasso, Italy),
both having an energy threshold, > 0.233 MeV, confirmed this deficit. The water
Cerenkov experiments Kamiokande [51, 52] and Super—Kaamnidé (Kamioka, Japan)
also measured the disappearance of electron neutrinoswgdnam the sun. In both
experiments solar neutrinos are detected via scatterifiggeotronsv, , - e — v, - €,
where the kinetic energ¥, and the direction of the scattered electrons are measured,
it could be verified that the counted neutrinos come from tire ®ue to background
radiation, the energy cut-off is set @ > 5MeV. In the SNO experiment [53, 54]
(Sudbury, Canada), a wat&erenkov detector using heavy water with additional salt,
where neutrinos interact via elastic scatterings, chagedent, and neutral current
interactions, the/, andv,, - fluxes were measured separately and the Standard Solar
Model was consistently tested. In the Borexino experimébi [Gran Sasso, Italy),

the real time flux of’Be neutrinos has been measured in agreement with the Solar
Standard Model for the first time. That the disappearancelagtren neutrinos is
indeed caused by the transitions — v, was shown by the scintillator experiment
KamLAND [56, 57], measurin@, with an energy threshold,, > 2.6 MeV emitted by
nuclear reactors. Together with the solar neutrino expamisithe best fit parameters,
shown in Table 1.1, are derived.
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Atmospheric anomaly.

Atmospheric neutrinos are generated in charged pion deedysh themselves are
produced when primary cosmic rays hit the upper part of th#h'saatmosphere.
Atmospheric neutrinos gave rise to the first neutrino cstidilh evidence in 1998 in
the Super—Kamiokande experiment [58] that has originaflgrbdesigned to measure
the proton lifetime. It uses a cylindrical 50 kiloton wateetelctor surrounded by
photon multipliers to measure atmospheric neutrinos inrgeth current scatterings
off nucleons. In addition to a deficit in the muon neutrino flitkmeasured a zenith
angle dependence rendering the — v, oscillation with quasi-maximal angle the
most convincing explanation. This has been confirmed by tRK Bxperiment where
a pulsedv, beam has been sent from the KEK collider in Japan to the 250i&tand
Super—Kamiokande detector. Super—Kamiokande can dissimdpetween atmospheric
neutrinos and neutrinos produced at KEK. Together with m@ezenkov detectors close
to the neutrino source at KEK, the neutrino oscillationriptetation, i.e., the transition
v, — vr, was confirmed [59]. The similarly designeduNli experiment (Fermilab)
measures pulseq, produced at Fermilab with the iMos detector that is located at a
distance of 735 km in the Soudan mine in Minnesota, pointg@rato the oscillation
explanation [60]. The best-fit parameters of K2K andNfll are shown in Table 1.1.

‘CHOOZ’ mixing angle :

The CHOOZ experiment looked at the disappearanag, pfoduced in nuclear reactors
in France at a distance oL 1 km from the detector. CHOOZ gives the most stringent
upper limit on the angl@,3 [61] that, together with atmospheric and K2K data, gives
the value shown in Table 1.1.

(B-decay.

Since oscillation experiments only measure mass-squaffedetices, they are insensi-

tive to the absolute neutrino mass scale. On the other ltaddcay experiments looking

at the tail of the energy spectrum in the Kurie-plot give adithandle on the absolute

neutrino mass scale, probing}, = (m - m') =" |Vj|m?. The most stringent limits
(3

are derived from the tritiuns-decay:

SH—-3He+e +7, with Q=18.6keV, (1.6)

where( is the total energy released in tifedecay. For this process the most recent
results are obtained by the AWz experiment [62] and the ROITSK experiment [63,
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64]:

m2, = -06+22+21eV? MAINZ
m?, = -23+25+20eV? TROITSK. (1.7)

A combination of these constraints leads to the value showiable 1.1. The approved
upcoming experiment KTRIN [65], having an energy resolution d&V, is expected to
reach a sensitivity down ta,. ~ 0.35eV.

Ov23-decay

Doubles-decay of *Ge has been observed with a lifetime of abtart! years. If neutri-
nos are Majorana particles, the observation of neutrisalesibleg decay (v23-decay)
seems feasible. The rate faw23-decay can be expressed as

F0u26 =G- |-/\/10|2 : |mee/h|2a (18)

where(G is a known phase space factdr| is the nuclear matrix element, see e.g. [44],
andmee = > Ve%mZ The factorh = M, /M accounts for the uncertainty in the calcu-

lation of M énd isO(few). To test thé)v23-decay rate, in the Heidelberg—Moscow [66]
and the IGEX [67, 68] experimertGe has been used. The most stringent bound comes
from the QuoORICINO experiment, which use$’Te, giving the value forn,.. shown

in Table 1.1. In a reanalysis of the Heidelberg—Moscow datéspof the collaboration
claim a 4 discovery signal [69, 70], corresponding #@,, < 0.19 — 0.68 eV, with

the uncertainty due the nuclear matrix element calculatiuture experiments like
GERDA [71], MAJORANA [72], and CUORE [73] will have a sensity in the

50 meV range.

Cosmology

The observation of the CMB and the data from large scaletstreidormation imply a
bound on the total energy densif}, contained in neutrinos. Both probes are sensitive
to the free-streaming character of relativistic particl€Bis gives the dominant upper
bound on the sum of the neutrino mass. However, this boundsvaith the data sets
included in the analysis. In Table 1.1 we take the somewhatawative bound derived
in [74].

Conclusior

Both, direct and indirect measurements indicate a neutmnass-scale in the sub-eV
range, i.e., six orders of magnitude smaller than the @ratnass. From a theoretical
perspective, it cannot be understood why the Yukawa cogplof neutrinos should be
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that small (to get a neutrino mass, ~ 0.01 eV the coupling should be of the order
h ~ 10713,

1.5 The see-saw explanation

The see-saw mechanism provides a natural explanation dosrtialiness of neutrino
masses in grand unification theories at high energies [4F,8]5As already mentioned
in Section 1.3, al$O(10)-GUT contains right-handed neutrinos as part béapinorial
representation and is anomaly free. The unification gaugepgis then broken down to
the SM gauge group at some high scale of ortlg? — 10'¢ GeV. The right-handed
neutrinos obtain Majorana masses since they are not sngteter theSO(10) gauge
group and couple to some Higgs representation that devale@suum expectation value
during this phase transition. Furthermore, as SM gaugdeimtheir masses are not
protected by the SM gauge symmetries, i.e., they can ngturalsignificantly larger
than the SM symmetry breaking scale.

In the minimal (type-l) see-saw model, gauge singlet fermaiith Majorana masses
M couple to the massless lepton doublet and the Higgs doubliéteoSM through
Yukawa couplings. These Yukawa couplings then generaterac@nass relating the
heavy singlets to SM neutrinos upon spontaneous symmedaking of the electroweak
gauge symmetry. The weakly-interacting neutrinos devshopll masses- m? /M as
we will explain in the following. For the type-l see-saw manfsm the most general
gauge invariant renormalizable Lagrangian is given by

— - 1—
L= Lsn+ iVridvRi — lnaMvaVri® — §sziMMiVRz’ + h.c. (1.9)

Here, we added= 1, 2, 3 right-handed neutrinasg; to the SM with threedq = e, i, 7)
light generations. The Lagrangighcontains in addition to the SM Lagrangian the ki-
netic energy and Majorana mass term for the right-handettines as well as Yukawa
interactions),,, between right-handed neutrino singlets;, left-handed lepton dou-
bletslr.., and the Higgs boson scalar doublet= (®°, & ). The covariant derivative in
the kinetic energy term for the right-handed neutrinos ceduoD,, = 9, because these
are SM singlets. Lepton number violating Majorana masssera additionally allowed
by the gauge symmetries. The Majorana mass mafijx is a3 x 3 complex symmetric
matrix and has eigenvalues 6f(M). The charge conjugate of the chiral fermion field,
which appears in the Majorana mass term, is definegéhy= Cvg;’. Furthermore),

is the3 x 3 matrix of neutrino Yukawa couplings. (Note, that one couist jput in the
Majorana mass term by hand and does not necessarily need a@bddding.) After
electroweak symmetry breaking the term containing the Yakeouplings between left-
and right-handed neutrino states provides a Dirac massf@rmeutrinos,mp = Av,
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wherev = 174 GeV is the vacuum expectation value of the Higgs field. Théipathe
Lagrangian containing Yukawa couplings and the right-legndeutrino Majorana mass
term can then be written as

1 _ 0 mp I/E
Ly = —= (71, 7% . 1.10
v = —5 (7L, 7r) <mg MM> (VR> (1.10)

The typical see-saw mechanism assumes that the elemehts ifjorana mass matrix
are much larger than the Dirac mass matrix entfiég, > mp,. The mass matrix in
Eqg. (1.10) can then be block-diagonalized and, at leadidgroone can distinguish two
neutrino mass eigenstates:

aright-handed state:R = vp + vy

and a left-handed stater = v, + vf. (1.12)
The mass matrix of the left-handed state is suppressed Wyghesnergy scal#,
My, = 0*Xip Myt A (1.12)

Thus, with the above mentioned mass sdale 102 —10'4 GeV one gets light neutrino
masses in the sub-eV range without demanding particularbllsyukawa couplings.

Adding a fermionic singlet representation (type-l) howeisenot the only extension
of the SM that leads to a successful see-saw mechanism. typtedl see-saw [78—80]
a scalar triplet and in the type-lll see-saw [81, 82] a femiddriplet is added. All of
these mechanisms have in common that the resulting neutr@sses are suppressed by
a higher mass scale.

In this thesis we concentrate on the right-handed neutdddsd in a type-l see-saw
setting. In the next chapter we introduce the leptogeneaimdwork as a mechanism
that creates the matter-antimatter asymmetry of the wsgvén Chapter 3 we provide a
calculation of the lepton asymmetry generated in heavyrimeutiecays using a network
of momentum mode equations. The use of single mode equatitiniead to signifi-
cant differences in the final asymmetry compared to the usaafhentum integrated
Boltzmann equations that are conventionally used in leptegis calculations. In Chap-
ter 4 we include scattering of right-handed neutrinos vika¥ua couplings off quarks in
our calculation. In leptogenesis these scatterings areritaupt since, on the one hand,
they provide an additional production channel for rightddhed neutrinos and lead to a
more efficient equilibration of their distribution functis. On the other hand, as an ad-
ditional lepton number violating interaction, they cobtiie to the wash-out of the pro-
duced asymmetry. Finally, in Chapter 5 we apply the calmiatf the matter-antimatter
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asymmetry with our treatment of complete Boltzmann equatim an alternative sce-
nario of leptogenesis in which the lepton asymmetry is gatrerin the decays of the
next-to-lightest right-handed neutrino.

In Appendix A we show how scattering processes can be impitadan the mo-
mentum integrated Boltzmann equations, whereas in ApgeBigve provide a method
to implement scattering processes in the complete modediegsaln Appendix C the
evolution of the top Yukawa coupling from high scales to Iamales is calculated.

The main results of Chapters 3 and 4 are based on the resegreh[B3], whereas
in Chapter 5 we present unpublished material.



Chapter 2

Baryogenesis via leptogenesis

Relying on the type-l see-saw mechanism to create smallesdssthe SM neutrinos,
leptogenesis [42] provides an attractive explanation etiiryon asymmetry of the uni-
verse. The ingredients of this mechanism are simple: thebeaguilibrium decay of the
heavy neutrino states into leptons and Higgs particlesitgsC P, from whence a lepton
asymmetry can be generated. This lepton asymmetry is théallyetransformed into a
baryon asymmetry by anomalous processes of the SM callediesphs [16], introduced
earlier in Section 1.2. In this way the three Sakharov caomitare fulfilled and leptoge-
nesis turns out as a consequence of the see-saw mechanighs. pgint we will shortly
sketch how to calculate th@ P asymmetry in the decays of a heavy neutrino sféte
We will continue with the discussion of the out-of-equilion condition and at the end
of this section summarize the ideas of the standard theepsddgenesis scenario.

2.1 CP asymmetry

Figure 2.1: CP violation in interference of tree-level with one-loopagliams.

In general, the total decay width of a right-handed neutgeaeration/V; at tree-
level is given by:

_ |
Lo, =Y (D(N; = @ +110) + D(Ni = B +11a)) = o (AU)ii M, (2.1)

«Q
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where the sum is taken over the single decay rates into ldjataor o.. The CP asymme-
try in lepton flavora is then defined as

T'(N; = ®+11o) —T(N; = @ +114)
F(Ni —)q)—i-lL)—i-F(Ni —)6+ZL) .

Eia =

2.2)

This asymmetry is due to the interference of the tree-lengblaude and the one-loop
vertex and self-energy contributions shown in Figure 2He inhdicesi and o denote
the generation of the decaying right-handed neutrino aedfldvor of the produced
lepton, respectively. Accounting for different lepton geations, the” P asymmetry is
a diagonal matrix in flavor space [84]:

i
2
— “ (af ; 2.4
wherez; = M?/M? and the functiort is defined as [85]

fz%x[ﬂ+xﬂ%(lzx>—2_$} (2.5)

1—=x

For simplicity, we will assume a hierarchical mass spectfomthe heavy right-
handed neutrinos with a diagonal mass mafvix,, i.e., M; < M,, M3, called the
Ni-dominated scenario. With this assumption & asymmetry can be calculated to
be [84, 86]:

3 M,y
= ————Im{\} oA . 2.6
€1 167 (ATA)U 02 m{ al (mu )al} ( )

Neglecting the lepton-flavor structure of the” asymmetry, i.e., summing over all lep-
ton flavors,e; = > €14, One can derive an upper bound on the tatdP asymme-
«

try [87, 88]:

6r1nax (Mla M1, Mmin, mma,x) = 5r1naX(M1) /B (mla mma,x) > (27)
2
<mmax — Mmin\/ 1+ mﬁi—tlm>

with B (ﬁLl, Mmin, mmax) = S 1

, (28)

Matm

wWheremam = VAm3; — Am2, = Mmax — mmin [85]. The quantitym, is the ef-
fective neutrino mass and we will discuss it later on. The imakvalue for the asym-
metry, i.e.,5 = 1, is reached for fully hierarchical neutrinos with,;, = 0, implying
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Mmax = \/ MZm and is given by:

3 Mimam _ M, Matm
max _ _ 2 ~ 10~6 ( ) . 2.9
L 0" Totcev) \0.05ev (2.9)

2.2 Deviation from thermal equilibrium

The out-of-equilibrium dynamic that is necessary for sestd leptogenesis is provided
by the expansion of the universe. Interactions are cladgifiéoe in (or out-of) equilib-
rium by comparing their rates to the expansion rate of theause /. Concerning lep-
togenesis, one usually compares the total decay rate ofghehanded neutrino state
given in Eqg. (2.1) to the expansion rate at temperatilires M,

H(T = M;) = \/Ar?g* /45 (M; [/ Mp1) , (2.10)

whereMp; = 1.221 x 10'? GeV is the Planck mass, and = 106.75 corresponds to
the number of relativistic degrees of freedom in the SM atperatures higher than the
electroweak scale. For this purpose one introduces theyderameter as the ratio of
the decay rate, Eq. (2.1), over the expansion rate of theetsgvEq. (2.10)
_ TIp m;
TTHOM) T my

(2.11)

It proves useful to introduce at this point two dimensiosleariables to connect the
decay parameter to the neutrino mass scale:
Theeffective neutrino mag89]:

T
- MmpMmDp)ii
Thy = % (2.12)
wheremp,; = Ay,; v, cf. Eq. (1.10). And thequilibrium neutrino mass
5
16m2/g% v?
m, = TV 0T 08 x 10 eV, (2.13)

3vh  Mp

It has been shown [90] that the effective neutrino mass ®ligitest right-handed state
is always larger than the mass of the lightest SM neutrini st&.,/m1 > Mmin.

The decay parameter controls whether the right-handedineutecays in equilibrium
(K; > 1) or out of equilibrium ; < 1) and is a key quantity for the dynamics of
leptogenesis.
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2.3 Thermal leptogenesis

In the standard scenario of thermal leptogenesis the hightted neutrinos are produced
in the early universe via inverse decays ane> 2 scatterings with the top quark and
electroweak gauge bosons. As initial condition one supmptisa after the period of in-
flation the thermal bath of the universe is produced in theathg process when the
heavy scalar field responsible for inflation decays intotlideégrees of freedom. The
temperature of the thermal bath at the beginning of the tiadi@ominated phase of the
universe is denoted as the reheating temperalyie Restricting the discussion to the
Ni-dominated scenario, it has been shown in [90, 91] that th&wa coupling that de-
scribes the right-handed neutrino decay via the decay mesntq. (2.11), alone leads
to a sufficient abundance of heavy neutrinos for leptogsriedie successful. Inverse de-
cays and lepton number violatirig«+ 2 scatterings, on the other side, contribute to the
total wash-out of the lepton asymmetry that was produceldrheavy neutrino decays.
This makes the dynamics of leptogenesis more involved amtiest by means of Boltz-
mann equations are needed. In general, the baryon asympnethyced by leptogenesis
can be written as [92]
_ 3o

4 f
Here, s is the final efficiency factor that parametrizes the amourdsyimmetry that
survives the competing production and wash-out procelises direct result of solving
the relevant Boltzmann equations for leptogenesis. Inithé bf vanishing wash-out
and a thermal initial abundance for the right-handed neaitrihe efficiency factor has
a final values s = 1. The factorf = 2387/86 accounts for the dilution of the baryon
asymmetry due to photon production from the onset of leptegis till recombination
and the quantityvsph = 28/79 is the conversion factor of thB — I asymmetry into a
baryon asymmetry by the sphalerons processes, see Se@ion 1

Note that, using the maximal CP asymmetry Eqg. (2.9), one eamala lower bound

on the heavy neutrino magd; since the produced baryon asymmetry has to be larger
(equal) to the observed valugi®* > nSM B yielding the constraint

nB erkf=derky ~0.96 x 1072 ¢ Kf. (2.14)

| 1l6m o g

N d 3 TMatm Hf

CMB
ng 0.05eV\ _;
~ 6.5 x 10 GeV ) 2.15

For a successful production of the baryon asymmetry thisesponds to a lower bound
on the initial temperature of leptogenesis [92], i.e.,

My > Mnin

Tru > 1.5 x 10° GeV. (2.16)
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In the context of supersymmetric theories this might leatiéoso-called gravitino prob-
lem. The gravitino is the gauge field of local supersymmetny iés thermal production
rate [93, 94] is increasing with the reheating temperaitiyg. If the gravitino is not the
lightest supersymmetric particle, a too large abundancgasfitinos might lead to prob-
lems with BBN since the decay products of the gravitino castrdg the light nuclei
produced in BBN, cf. Figure 1.3. If the gravitino mass is derahen20 TeV, this leads
to an upper bound on the reheating temperature [95]

Tru < 10° GeV. (2.17)

On the other hand, if the gravitino is the lightest superswtnim particle, its abundance
is limited by the amount of observed dark matter in the usieect. Figure 1.1, leading
again to an upper bound ark[93, 96, 97]

Tru < 107 — 10° GeV. (2.18)

From this perspective, it seems very challenging to realtamdard thermal leptoge-
nesis in the local supersymmetric framework. Within thdrieptogenesis the bound
in Eg. (2.15) can be circumvented assuming a quasi degenmads spectrum for the
right-handed neutrinos, i.e\f; ~ My ~ Mj. For such a degeneracy thg”? asymmetry
exhibits a resonance and is remarkably enhanced. As a amrsas| the production of
the observed value of the baryon asymmetry in this so-cafleoihant leptogenesj98—
100] scenario is possible down to the TeV scale.

Another possibility to reduce the lower bound gy is provided innon-thermal lep-
togenesig87, 101-104], where the right-handed neutrinos are prediuc the decays
of some heavy scalar field, e.g., the inflaton. The right-kdnukeutrino contribute then
the dominant part of the energy budget of the universe, d¢aldominant initial abun-
dance [105]. Depending on the coupling of the scalar fieldthaedight-handed neutrino
Yukawa coupling, successful leptogenesis in this scesatémmands [106]

Tru > 10° GeV. (2.19)

Finally, we want to mention the supersymmetric scenarisofifleptogenesig07-109],
where theC'P violation is not due to flavor physics but to the supersymynbteaking
terms. AC'P violation is induced in the mixing of two neutral sneutrinates. For a
certain choice of parameters the lower bound on the relpédimperatures is again
given by Eg. (2.19) [105].






Chapter 3

Mode equations for leptogenesis

In the recent past a huge step forward has been made towaddsstanding in detail
the processes of leptogenesis that have been introducdek itast section. Relevant
studies include leptogenesis in a supersymmetric cordééktthermal effects [105, 110],
analytic formulae for the final efficiency factor [92], thdegof flavor [111-114], as well
as leptogenesis with' P violation coming only from the measurable low-scale PMNS
matrix [115]. Furthermore, it has been pointed out that thesical Boltzmann equations
are insufficient to describe the transition region betwéerflavored and the unflavored
regimes [116]; a full quantum-mechanical description imig of density matrices is
necessary. On this front, the quantum-mechanical KadaBaffm equations have been
investigated for toy models in extreme out-of-equilibrigituations [117, 118].

On a different front, the classical Boltzmann equationsehasen solved for the first
time for single momentum modes [119]. As one of Sakharowsl@@ns [14], departure
from thermal equilibrium is crucial for the dynamic creatiof a baryon asymmetry. In
the leptogenesis scenario, out-of-equilibrium condgianre achieved when interactions
are no longer able to maintain the momentum distributiorction of the right-handed
neutrino at its equilibrium value as the universe expandssimplify the calculation,
this non-equilibrium process is traditionally studied bgans of the integrated Boltz-
mann equations [89, 105, 120, 121], whereby the equationstibn for the distribution
functions of all particle species involved are integratgdranomentum such that only
the evolution of thenumber densitiess tracked. However, in order for the integrated
equations to be in a closed form, it is necessary to negleuttgm statistical behaviors
(e.g., Pauli blocking) and assume kinetic equilibrium fibiparticle species, including
the right-handed neutrino. For particle species with ganigeactions these assumptions
seem justifiable. For the right-handed neutrino howeveir thalidity is not immediately
obvious.

To estimate the effects of kinetic equilibrium and quantuatistics, the Boltzmann
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equations for the individual momentum modes have been dofv§l19], taking into
account only the decay and inverse decay of the right-handattino within the unfla-
vored framework. More recently, the mode equations hava beed to study the effect
of a pre-existing asymmetry and the soft leptogenesis siceragain including only
decays and inverse decays [122]. In the present thesis, terecean these previous stud-
ies by considering also scattering processes of the rightiéad neutrino with the top
quark [83].

3.1 Particle kinematics

Boltzmann equations encode the time evolution of the distion function of parti-
cle species. Here, we will give a short derivation of the Bolnn equation for a par-
ticle species¥ in an isotropic and spatially homogeneous universe desitrity the
Robertson—Walker—Metric [2],

dr?
1 — kr2

ds? = dt? — a(t)? { + r2d9? + r? sin® 19d¢2} , (3.1)
wherea(t) is the cosmic scale factor, which describes the expansidheofiniverse,
k = £1, 0 specifies the curvature, aift r, 19, ¢) are the comoving coordinates.

The trajectory of a particld with massmy > 0 moving in a gravitational field is
given by the geodesic equations of motion [123]:

dpy Y o

d—:l + Fﬁaplll by = 07 (32)
dxt
d—:f = ply. (3.3)

Sinces = my 7 is the eigen-time of the particle,is fixed andp” is the momentum of a
particle ¥,
In the Robertson—Walker—Metric the= 0 component of Eq (3.2) is given as:
dp,

a o . )
h - h =, A4
I + apq, 0, with & (3.4)

Writing pY, dp%, = |pw|d|pw/, this leads to:

|pvla +alpy| =0

d
o =0
= (pola)

1
&|pw| = const. x —. (3.5)
a
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Therefore the 3-momentum scaleslés.

In general, the Liouville operator describing the evolntad a point particle’s phase
space in a gravitational field is given by,
5 4 0

Pl (3.6)

0
L=7p" apo

ort - Faﬁ’)’p

With this operator the equations of motion (3.2) and (3.3) lba written for the momen-
tum as

o
B L, 3.7)
dr
and for the space-time one has
w
. (3.8)
dr

Furthermore, it is known that the time derivative of the ghapace distribution of a
non-interacting gas vanishes, i.e.,
df (z,p)

== (3.9)

Using now the equations of motion for the particle one olstélie Boltzmann equations
for the non-interacting particle speci@s

L{fu(z,p)] = 0. (3.10)

Since we are assuming a Robertson—Walker universe, whisbti®pic and homoge-

neous, the distribution functiofiy depends only on and |py|. Therefore, the Boltz-

mann equation can be written as [2]
Ofw

L{fy] = E\IJW — H|py|

2 Ofv

where we have not written all the arguments to keep the ootatearer.
Sincep? = m% and because of the spatial isotropy of the Robertson-Walker
Metric, one has

Ofw ofw
2= =F : 3.12
Pl 0y v [pul Aipel (3.12)
After dividing by Fy, Eq. (3.11) gets the following form
Ofw ofw
r =——-H —. 1
[fu] 5 Pu| Jipu] (3.13)
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Interactions can now be introduced on the right-hand sida bgllision termC'[fy]
which drives the distribution function towards its equilibm. Now, the complete Boltz-
mann equation reads

I lfo] = 53— HIpol 510 = C fa). (314

Thus, the Boltzmann equation in a Robertson—Walker urevees the form of a par-
tial differential equation. However, in the radiation doraied phase of the universe, in
which leptogenesis takes place, Eq. (3.14) can be writtan asdinary differential equa-
tion by transforming to the dimensionless coordinates my /T andyy = |pw|/T.
Using the relationdT’/dt = —HT, the differential operato;, — |py|H 9|, becomes
zH d,, and consequently [124]

dfalzy) 2
oz H(mw) Cp [fu(zy)]. (3.15)

with H (my) given in Eq. (2.10). Now, the Boltzmann equation can be pasilved
numerically on a grid for specific rescaled momemnta

3.2 Leptogenesis set-up

In this thesis we concentrate mainly on the simplest casevaifilla leptogenesis”, in
which a lepton asymmetry is established from the decay aatiesmg of the lightest
heavy right-handed neutrin; . We neglect the decay of the two heavier neutrino states
Ny 3 [125], assuming that any lepton asymmetry produced froraetliecays will be
efficiently washed out by tha'; interactions. This is called th¥,; -dominated scenarid.
Therefore we will drop the subscript “1”, and refer to thenligst right-handed neutrino
simply asN in the following. Furthermore, we will work in the one-flavapproximation
since flavor effects do not change the kinetic considerdtiothe mode equations.

As shown in the previous section, the Boltzmann equatiorafaght-handed neu-
trino (RHN) in a Friedman—Lemaitre—Robertson—Walkemfeavork can be written as

afNa(f 1 H(ZM) (Colfn(z )]+ Cslfn(zy) .- (3.16)

On the right-hand side, the collision integrély [fx] andCs [ fn] encode respectively
the interactions of the RHN due to decays into leptons andy$1{@) and scattering
processes via Yukawa interactions with the top qu&bk (

The Boltzmann equation for leptons (anti-leptons) withgghapace distributiorf
(f;) has a similar form to Eq. (3.16), save for the replacemgnts— f; (fx — f})

For a different scenaridy,-dominated leptogenesis, see Chapter 5.
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andyny — y; (yn — 3;). Since we are interested in the asymmetry between leptuhs a
antileptons, it is convenient to define

fii=hi — 1 (3.17)
and the corresponding Boltzmann equation

aflfi(zay) z

9z H(M) (Cplf_i(z:9)] + Cslfy (2 9)]) , (3.18)

whereCp s [f, ;] = Cp,s[fil—Cp,s [f;]- Integratingf, ; over the lepton phase space,
i.e.,

_ 9
= oy / &*pi f, s (3.19)

with g; = 2, gives us the lepton asymmetry per comoving photon,

i (3.20)

whereni! = (¢(3)/7?)g, T3, with g, = 2, is the equilibrium photon density.
This lepton asymmetry is translated into a baryon asymniesgghaleron processes,
cf. Section 1.2, giving [126]

Qsph
Np = agon Ng_, = —2— N, ;, (3.21)
a’sph —1

with agp, = 28/79. The Boltzmann equations (3.16) and (3.18) encode how arlept
asymmetry is generated and washed out in an expanding seigéren some specific
particle interactions.

3.3 Decay and inverse decay

In this section, which is based on the research paper [83]camsider the simplest
possible scenario of thermal leptogenesis, in which orgydiacay and inverse decay of
the RHN into leptori and Higgs® pairs contribute to the evolution gy, i.e., we set
Cs = 01in EQgs. (3.16) and (3.18). The decay and inverse decay of lthé Rolate C' P
through interference of the tree-level and the one-loogrdias (cf. Figure 2.1).

The collision integral for the RHN in the decay—inverse gepiture has the fol-
lowing form:

1 d3pl d?’p@ 4 ¢4
2m)" o —p— 3.22

X [fo fi (1= fn) (IMasn]? + Mg nl?)
—fn =) (L+ fa) (IMnsel® + My eil®) ]

Cplfn] =
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where E; andp; are, respectively, the energy and 4-momenta of the padpeies,
and M 4 denotes the matrix element for the procds#\t tree-level, the squared matrix
element summed over all internal degrees of freedom for doayd of the RHN into a
pair of lepton and Higgs particles is given by
1.
mpmp)i1

IMya]® =2 %ﬁzpm (3.23)

where the neutrino mass matrix; has been defined in Section 1.5.
The integral (3.22) can be readily reduced to a one dimeakform [127]

MTp (En+pn)/2

CplfNl= dps [fofi(l — fn) — fn(1 = fi)(1 + fa)], (3.24)
EN|PN| J(Bx—pn)/2
where
Tp= 2;%2 (3.25)

is the total decay rate in the RHN’s rest frame written in tewhthe effective neutrino
mass (cf. Eqg. (2.12)).

For leptons participating in the same decay and inverseydqeoaesses, the collision
integral is given by

1 dgpN dgpq) 4 o4
2m)" 0" (pn —p1 — 3.26
2F /2EN(27T)3 2Es(27)3 (2m) (pn — 1 — Do) ( )

x [fxv (1= f1) (1+ fo) IMNSail?
— fo fi (1= fn) IMasn|?].

Cplfi] =

An analogous expression for the anti-leptons can be detiwedeplacing f; — f7,
Mnyar = My_ 5 aNd Mgy — Mgy, - Some useful relations exist between
the matrix elements following fror@' PT-invariance [120]:

IMy—arl” = [Mgi, vl = IMof” (1 +e), (3.27)
My _a1l” = IMarsn]? = [IMol* (1 —¢), (3.28)

where| M, |? is the tree-level matrix element given in Eq. (3.23).

The collision integral (3.26) suffers from the problem thakepton asymmetry is
produced even in thermal equilibrium. This can be remediethdéluding contributions
from the resonant part of thAL = 2 scattering processd « [® [105,120]. We
implement this remedy following the method developed irf][8Rd add to the collision
integral (3.26) the term

fof; (1= fn) Mg yloww = fofi (1= f8)IMars 2w, (3.29)
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Table 3.1: Scenarios considered in the decay/inverse decay pictutdhair as-

sociated assumptions. Case D1 corresponds to the comvantitegrated Boltz-
mann approach, while Case D4 was previously investigatdgblshall and Hannes-
tad [119].

Case Assumption of kinetic equilibrium  Including quantutatistics  Section

D1 Yes No 3.3.1
D2 No No 3.32
D3 Yes Yes 3.3.3
D4 No Yes 3.3.4
with
|Mq>Z—)N|§ub = |M|2AL:2 —€ |M0|23 (330)
(Mai I3 = [MIAL—s + [ Mo, (3.31)

where|M|% ; _, is negligible forM < 10 GeV [128]?

In the following subsections, we review first the derivatwfnthe conventional in-
tegrated Boltzmann equations, which neglects quanturistitatand assumes kinetic
equilibrium for the RHN. We then remove step by step thesamaptons, in order to
examine their effects on the efficiency factarThe scenarios to be examined and their
associated assumptions are summarized in Table 3.1.

3.3.1 Case D1: integrated Boltzmann equations

In the integrated approach conventionally used in thedlitee [92, 105, 120], the time
evolution of number densities; are tracked in favor of the phase space distributions
fi- This is achieved by integrating the Boltzmann equations6)3and (3.18) over mo-
mentum. However, the integrated equations have no closetsfanless we make cer-
tain simplifying assumptions: First, we neglect factomnatning from Pauli blocking
for fermions and induced emission for bosons, i.e., we appraie 1 + f; ~ 1 [120].
Second, all SM particles are taken to be in thermal equilibrdue to their gauge inter-
actions and their distribution functions approximated dylaxwell-Boltzmann distri-
bution, ;% = e=Fi/T.

2Reference [122] includes terms in addition to Eq. (3.29)ritieo to avoid asymmetry production in
thermal equilibrium. However, the same analysis also shibasthe quantitative difference between this
and our approach is negligible.
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With these assumptions and using energy conservation, ae fin

fof = e~ (Ba+E)/T _ —En/T _ o (3.32)

so that the collision integral (3.24) simplifies to

Cplfn] =

MT (En+pn)/2
D /( dps [ — fn] - (3.33)

EnpN JEy—py)/2

Integrating (3.33) oveps and inserting into Eq. (3.16), the Boltzmann equation fer th
RHN distribution function becomes

ofn zIp M

9z  H(M)Ey (N = 1) (3.34)

To make further inroads, we assume kinetic equilibrium &dlat the RHN, i.e., its
distribution functionfy can be expressed ds /f5' =~ ny/n’y, whereny is the RHN
number density. Then one can easily integrate Eq. (3.34)tbeeRHN phase space to
obtain

(95;\7 =K <E—A]4V> (n?\(} — nN) , (3.35)
where K = 'p/H(M) (cf. Eqg. (2.11)), and I'p(M/Ey) =

(Tp/nSy) [d®pn/(27)? fit (M/EN) is the thermal average of the decay rate [120].
The thermally averaged dilation factor is given by the raifothe modified Bessel
functions of the second kind of first and second ord&f/ En) = K1 (z)/ K2 (z).

Dividing Eq. (3.35) by the equilibrium photon density, we obtain the Boltzmann
equation for the quantity = ny/n5* [92],

ONN

5 T D (Ny — N3y, (3.36)
with
M
D=:K <E_N> (3.37)
and
Ny'(z) = gz2K2 (2). (3.38)

Here, an inconsistency in the integrated approach is eisiall particles, i.e..N, [
and @, are assumed to follow the Maxwell-Boltzmann distributimmction. How-
ever, when calculatingVy', we must use a Fermi-Dirac distribution for the RHN,
ny = [3¢(3) gnTM?/(87?)] Ka(2), with ¢(3) ~ 1.202 andgy = 2, in order to
reproduce a realistic equilibrium RHN to photon densityoraThis leads to an extra
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prefactor(3/4)¢(3) in the definition of N compared to a strictly Maxwell-Boltzmann
approach.

For the lepton asymmetry, Egs. (3.18), (3.26) and (3.29)uioento give the Boltz-
mann equation for the lepton distribution functions,

8 Z
fl - K/ Ly v g Lo fig =2 (v = )], (3.39)

whereéy = En/T. Using energy conservation and assuming kinetic equilibrfor
the RHN, Eq. (3.39) can be integrated oyer to give [119]

af 3 22 K 7z2+4y12 ny — neq

We further assume that kinetic equilibrium prevails for liygtons such that

fleilf = ¢ B=m/T _ o= (BT oy 9 (4/T) e B1/T, (3.41)

s~ 2 (u/T) ), (3.42)
g _

flff ~ neq e yl, (343)

with chemical potentials < 1 andn;” the lepton equilibrium number density. Thus,
integrating over the lepton phase space, we obtain theiequaitmotion for the number
density

2 eq
0z 21 Ny

on. - 3 3 . _ e

n_p_  z°KT Ki(2) [E_%:(n]v nN>], (3.44)

where K (z) is the modified Bessel function of first kind. Following [92fwewrite
Eqg. (3.44) in terms of the lepton asymmetry per comoving @hot

ON, ;

(9,; L= -WipN, ;+eD(Ny — Ny, (3.45)

where

1N
27 NI

1
WIDEZKZ?’Kl( )— (346)
quantifies the strength of the wash-out due to inverse deaagsV, = 3/4. Note that,
as with the RHN, when evaluatinyj; it is necessary to use a Fermi-Dirac distribution
for the leptonsy;® = (3/4) (¢(3)/7?)g/ T3, with g; = 2, to ensure a realistic lepton to
photon density ratio.

Figure 3.1 shows the final efficiency factoy, defined in Eq. (2.14), as a function of
K for several different initial RHN abundances [106].
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Figure 3.1: Final efficiency factor for different scenarios of thermaldanon-
thermal leptogenesis. Shown argfor a thermal (dashed/red), a vanishing (dot-dot-
dash/light green), and several cases of dominant initidNRbundance. A dominant
initial abundance is realized if a scalar field responsibleriflation decays exclu-
sively into the RHN, which then dominates the energy derdityre universe. The
coupling strength between the scalar field and the RHN carteected to an en-
ergy scale10? GeV (solid/blue)5 x 10® GeV (dashed/dark greerd.,75 x 10® GeV
(dot-dash/purple) anth® GeV (dot-dash-dash/taupe). The RHN mass has been set
to M = 10° GeV [106].

It can be seen that thermal leptogenesis is independentahitial conditions on
the RHN abundance in the strong wash-out regifie % 1). Actually, this statement
holds even for scenarios of non-thermal leptogenesis, eviter RHN abundance is es-
tablished in the decays of a heavy scalar field, e.g., thaamflahich is responsible for
the exponential expansion at the beginning of the univeésier the decay of the scalar
field, the RHN dominates the energy density of the univeesizing a dominant initial
abundance. The thermal bath of the radiation dominatedepbfithe universe is then
established in the subsequent decays of the RHN into lightegds of freedom. If the
coupling between the RHN and the scalar field, correspontdirggn energy scale, is not
too weak to account for efficient wash-out, non-thermaldgphesis yields the same ef-



3.3 Decay and inverse decay 33

ficiency factor as thermal leptogenesis for2> 4. This is true for couplings between the
RHN and the inflaton corresponding to energy scales largar the RHN mass [106].
In the weak wash-out regime, however, different initial ditions on the RHN lead to
final efficiency factors varying by several orders of magidtbbetween the different sce-
narios. Therefore, we will focus from now on on the case of riskang initial RHN
abundance.

3.3.2 Case D2: dropping the assumption of kinetic equilibtim

Since the RHN is very heavy—its mass scale corresponds teitiggerature of the ther-
mal bath during the period of leptogenesis—it is agbriori obvious that decays and
inverse decays would occur fast enough to establish kimgfiglibrium. Thus the as-
sumption of kinetic equilibrium for the RHN might lead to aide deviations from an
exact treatment. In this section we drop this assumptiorumcalculation of the effi-
ciency factor. We retain however our other assumptions:athaquilibrium distribution
functions are of the Maxwell-Boltzmann form, and quantuatistical factors are neg-
ligible.

Dropping the assumption of kinetic equilibrium for the RHNams that it is now
necessary to solve Eq. (3.34), rewritten here as

8f_N 22K

9z = gN (](i?_fN)a (347)

individually for all possible values of the dimensionleddRenergy€&y . For the calcu-
lation of the lepton asymmetry, the relevant equation is(Bg9) which we reproduce
here:

. 2 00

agzl -z y;( / dyy 85 [fa Sy =22 (I = 13)]. (3.48)
Again, this equation must be solved for all possible valdeb® lepton momentury,,
and the resulting, ;(y;) summed according to Eq. (3.20) to gi& ;. Alternatively,
using energy conservation and assuming kinetic and chéeigglibrium for the SM
particles, we can integrate Eq. (3.48) over the lepton plsasee to obtain a single
equation of motion forV,_;,

ON_; 22K [® [ y . .
oz 4 /0 dy. /2442,,2 dyn ¢ - [N Iy —2e (fv = f)] - (3.49)
Y1

We find the second approach to yield more stable results.
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3.3.3 Case D3: Boltzmann equations with quantum statistiddactors

In Case D3 we reinstate Pauli blocking factors for fermiond factors due to induced
emission for bosons, but adopt again the assumption ofi&iaqtilibrium for the RHN.
Consistency requires that we use the Fermi—Dirac and the-Hisstein distribution
functions respectively for fermions and bosons in therngglilbrium, instead of the
classical Maxwell-Boltzmann distribution function.

With these assumptions in mind, we integrate the collisiwegral (3.24) ovepg to
obtain the Boltzmann equation for the RHN,

ofy _ 2 22K nN—an [smh(( )/2)]
0z ENyn sinh ((Ex +yn) /2)

where we have usefly/fxy' = (1 + €V)fn =~ ny/ny. Integrating over the RHN
phase space and normalizing to the photon number densltdsyie
8NN K e / e [sinh((EN—yN) /2):|
—— =_——— (Ny — Ny dyy 5 ' lo . (351
0z Ky (2) (N V) 0 yN f sinh ((Ex +yn) /2) (3:51)

We note that the integral over the RHN phase space has nossanplytic form. There-
fore it remains necessary to perform the integration nuraéyi

The Boltzmann equation for the lepton asymmetry includihg@antum statistical
factors and assuming kinetic equilibrium for all particfesies has the following form:

afl . Z K

(3.50)

W I 2 S+ o) = 2 B 130+ o).
ny "N
(3.52)

whereF™ = f, + f; = 2 f. After integrating over the lepton phase space and normal-
izing to the photon number density we arrive at

aN 22
K / dy, (3.53)

NN 4 NN
xﬂ dyNE [( N ) <§Nl_z+26> e —251\]]6\;1 Y1+ fe)

4yl

with N given in Eq. (3.38).

3.3.4 Case D4: complete mode equations

Here we include all statistical factors and make no assumjti kinetic equilibrium for
the RHN. Integrating Eq. (3.24) ovps gives the Boltzmann equation for the RHN,

oy _ . 2 , [sb(Ex =) /2)

_ En
o _KgNyN N( L+ fn+e fN) sinh((5N+yN)/2)

(3.54)
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The numerical integration of Eq. (3.54) over the RHN phasespesults in the time
evolution of the number density ;. The equation for the lepton asymmetry in this case
is similar to Eq. (3.52), except we do not assume kineticldgjitim for the RHN,

0 f 22 K
o= o o+ )y g+eFT) =20 (14 fo)]
(3.55)
Integrating over the lepton momentum yields
ON. 2
al I _ K/ dy; (3.56)

X ﬁ24yl‘z dyn EN [(f(l)"‘fN) <%Nll+28> fleq—zef]v (1+ fa)

4y

where we have assumed, as usual, thermal equilibrium fdBkh@articles.

3.3.5 Results and discussions
Right-handed neutrino

Figure 3.2 shows the time evolution of the comoving humbessiies of the RHN for
the four different cases described above, assuming a vagistitial RHN abundance.
We have picked three values for the decay parameteK (& 0.1, lying in the weak
wash-out regime, is shown on the upper panel Kii}= 1, marking the transition regime
between the weak and the strong wash-out regime, is showheomiddle panel, and
(i) K = 10, lying in the strong wash-out regime, is shown on the lowerghaFor
reference, we also plot the time evolution of the RHN eqillilm number densityV !
The general behavior of the RHN abundance evolution is amfdr all four cases.
In the weak wash-out regime, there is a net production of RiNhberse decays at
high temperatures < 1. At z ~ 4, the RHN abundance overshoots the equilibrium
density and continues to grow until~ 5, when a net destruction of RHN by decays
into [® pairs begins to push its abundance slowly back down to thiileium value.
Equilibrium is reached finally at ~ 20, beyond which the RHN abundance falls off
exponentially withz, as expected for all non-relativistic particle specieshartnal equi-
librium. In the transition regime, all RHN number densitle=come nearly identical at
z ~ 3. At the same point they overshoot the equilibrium densitywiever, RHN de-
cays force the number densities back to their equilibriufnevalready at ~ 10 from
whence the RHN abundances fall off exponentially again.ti@stingly, in the strong
wash-out regime, the stronger coupling brings the RHN ahooe to its equilibrium
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Figure 3.2: Time evolution of the comoving RHN number density; and of the
absolute value of the lepton asymmetVy ;, assuming three different coupling
strengthsK = 0.1,1,10, ande = 10~%. The four scenarios within the decay—
inverse decay only framework are shown: Solid/red line ten&ase D1, long
dashed/green D2, dotted/blue D3, and short dashed/maDdntaee Table 3.1 for
a short summary of each scenario. For reference, we alscaiedihe equilibrium
RHN number densityV; in dot-dash/cyan.
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value already at ~ 1. Its subsequent evolution is then simply governed by dagjuili
rium statistics: at ~ 4 the RHN becomes nonrelativistic and hence its abundance is
suppressed byxp(—M/T).

In all three cases, the weak wash-out, the transition, amsttbng wash-out regimes,
the difference between Cases D1 and D2, which exclude qguestatistical factors, and
their counterparts Cases D3 and D4, which include quantatistits, is most visible
atz < 1. The RHN abundance is almost an order of magnitude largédreitatter two
cases than in the former. This is because during the highamtye RHN production
phase, using the correct Bose—Einstein equilibrium tigtion function for the Higgs
bosonfs substantially enlarges the phase space available for Wieesim decay process
®l — N at low Fg. This effect is far stronger than the phase space restriclie@ to
Pauli blocking by the final-state RHN, as can be seen from Hase space factors in
Eq. (3.24). As the temperature drops and the RHN becomeslatinistic, the effects
of quantum statistics also diminish, since kinematics noevents the low energ$ and
[ states from contributing to the collision integrals.

Interestingly, the assumption of kinetic equilibrium Iead no visible effects in ei-
ther the weak, the transition or strong wash-out regime. @oing Cases D1 and D2
(both assume Maxwell-Boltzmann statistics), their RHNralauinces are virtually iden-
tical. The same is true for Cases D3 and D4, which include tyuaustatistical factors.

Lepton asymmetry

The time evolution of the corresponding absolute value ®f¢pbton asymmetry is shown
in the right panel of Figure 3.2. A negative lepton asymmistgroduced at high temper-
atures by RHN production from inverse decayszAt 5 in the weak wash-out regime
(z ~ 1 if strong wash-out), decays come to dominate over inversayde thus revers-
ing the direction of the asymmetry production, and evehtuéipping the sign of the
asymmetry to positive. When the RHN abundance begins tofaéxponentially, the
asymmetry also asymptotes to a final, constant value.
In the weak wash-out regimé{ = 0.1) the asymmetries produced in Cases D3 and

D4 which include quantum statistical factors are alwaygdain magnitude than those
produced in Cases D1 and D2 which assume Maxwell-Boltzmgatistics throughout
the whole temperature range considered. The change of Isigioecurs slightly earlier
in D3 and D4. These effects can be understood as follows. Fean Eq. (3.55), we
see that the production of a negative lepton asymmetry atteignperatures by inverse
RHN decays is significantly enhanced when we take propeatod the Bose—Einstein
statistics for the Higgs boson. Like the case of the RHN ahunoé, this effect dominates
over the phase space suppression due to the Fermi—Direstissatdf the lepton and the
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Figure 3.3: The final efficiency factok ; as a function o for the four scenarios
within the decay—inverse decay picture, assuming a vamgsimitial RHN abun-
dance. Solid/red line denotes Case D1, long dashed/greedditgd/blue D3, and
short dashed/magenta D4.

RHN. As we progress to lower temperatures, RHN decays begitominate over in-
verse decays, thereby reversing the direction of the leasymmetry evolution. Since
guantum statistics speeds up RHN production and bringditedance up to the equi-
librium threshold earlier, the transition from decay todrse decay domination—and
hence the turning point in the asymmetry evolution—alsoplkeap earlier. As a result,
the asymmetry flips sign a little earlier in Cases D3 and D# theD1 and D2, and has
more time to grow to a larger positive value before the exptakfall-off of the RHN
abundance shuts down the asymmetry production.

In the transition regimeK = 1) the asymmetry in Cases D3 and D4, where quantum
statistics is used, is again always larger than in Cases @Danhowever, with a smaller
difference than fo’ = 0.1 The change of sign is slightly moved to higher temperatures
due to the wash-out becoming more efficient.

In the strong wash-out regim&{(= 10), a similar behavior is also visible at< 1.

As we progress to lower temperatures, however, Cases D3 4eddup producing less
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asymmetry than Cases D1 and D2. This is becaus&Tfor 1, the wash-out rate plays
a dominant role in determining the final asymmetry. Herenta statistics enlarges
the phase space of the wash-out term frégrf, ; in Eq. (3.48) to(fs + fn)f, ; in
Eq. (3.55), thus forcing the lepton asymmetry to flip signreearlier than fork = 1,
and continuing on to dampen it to a slightly smaller positiatie.

Again, as with the RHN, the assumption of kinetic equilibmibas virtually no effect
on the asymmetry evolution: the differences between Cadearid D2, and between
Cases D3 and D4 are generally at the percent level, onlyleigithe middle panel of
Figure 3.2 in the transition regime fé¢f = 1.

Finally, Figure 3.3 summarizes the lepton asymmetry predun the four cases, in
terms of the final efficiency factot; defined in Eq. (2.14), as a function of the decay
parameterK. For all values ofK considered, the assumption of kinetic equilibrium
can be seen to produce a minute (%) difference inx; between Cases D1 and D2
and between Cases D3 and D4. Quantum statistics, on thelahdr has a generally
stronger effect on the final lepton asymmetry. In the weakhwag regime £ < 1),
inclusion of quantum statistical factors (Cases D3 and Ddipaces:, by a factor of
~ 1.5 relative to Cases D1 and D2 which assume Maxwell-Boltzmaatisscs. In the
strong wash-out regiméy( 2 1), the effect of quantum statistics is to suppregdy up
to 20% at K ~ 10, but reduces to the percent levelfat~ 100.






Chapter 4

Mode equations with scattering

4.1 Scattering processes

In this chapter we enlarge our picture of thermal leptogisnesinclude tree-level scat-
tering processes of the RHN with the top quark, eMjl,— ¢t, shown in Figure 4.1,
which are ofO (h7X?). These interactions lead to an additional production cékfun
the RHN and contribute to the wash-out processes. Untihtgcehese scattering pro-
cesses have only been considered using the integratedr2woltz equations [92, 105].
In [83] we provided for the first time a solution of the full s#tBoltzmann equations at
the mode level taking into account the full energy spectriitheinteractions. This leads
to sizable effects on the final asymmetry since small mormemiodes can be produced
disproportionally compared with an equilibrium distrilaurt, in turn leading to differ-
ences in the number densities after integration over the entum phase space. Fur-
thermore, the inclusion of quantum statistical Pauli-kiog factors modifies the phase
space accessible for the scattering interactions. We wilfront our findings with the
results obtained with mode equations in the decay—invessaydpicture in Section 3.3.4
and with the integrated treatment including scatteringsgussed in the following sec-
tion.

p1 P3
N - - i

.

Figure 4.1: Scattering processes with the top quark

We do not consideAL = 1 violating interactions with gauge bosons (in spite of
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go > hy at10'° GeV), nor includeC' P violation in2 — 2 or 1(2) — 3 processes, which
are of higher order in the Yukawa couplingsP violation from these processes was
considered in [100, 112, 129, 130], where it was shown thdtigit temperature§’ P
violation from scattering is the main source of lepton asyetrgnproduction. However,
the final asymmetry depends also on the strength of the watsprocesses; it turns out
that in the weak wash-out regimé&( < 1) C'P violation in the scattering processes
tends to suppress the asymmetry production, while in thesitian (K ~ 1) and strong
(K > 1) wash-out regimes its contribution is small to negligitMée do concentrate our
considerations in this thesis on the tree-level Yukawa loge in order to distinguish
in detail the effects of quantum statistics and kinetic lopiiim on the final asymmetry.
Since the inclusion of several new phenomena would dilutedteffects, we compare
our results with the findings obtained in [92] providing a sistent study of Yukawa
interactions at tree-level.

Including scattering processes based on the Yukawa cgupiith the top quark, the
basic Boltzmann equation for the distribution functiontod RHN is given by

(z )aazzv = Cp [fn]+2Css [fn] +4Csy[fn]. (4.1)

The right-hand side of Eq. (4.1) contains two collision greds from scattering pro-
cesses coming respectively from scattering in ¢fehannel and in thé-channel. One
factor of 2 stems from contribution from processes invajvamti-particles, and another
factor of 2 in thet-channel term originates from thechannel diagram. The decay—
inverse decay collision integral, is given in Eq. (3.22), the-channel scattering inte-
gral is

dpZ
Ul = 57 /H i )8 o+ == ) M

(L= fN)A = f)fefq— INfill=f)L = f9],  (42)

and a similar expression exists for thehannel scattering integréls ; [ f x|, but with the

appropriate matrix elemeuit,, and the replacemenfs < f,. The explicit expressions

of the squared matrix elemerits1; ;|> can be found in the Appendices B.1 and B.2.
The analogous equation for the lepton asymmetry is

OFf -
H(Z]M) % =Cp [fl_z] + 205',5 [fl_i] + 4057t [fl—Z] ’ (4.3)

whereCp [f, ;] = Cp[fi] — Cp [f;] can be constructed from Eq. (3.26), and

_dp? 454 2
CSS fl 1 :QE/ H 27r32E (2m)%0 (pl-I—pN—pq—pt) | M|

szfi (v (fe+fq—1) = fifq)- (4.4)
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Table 4.1: Scenarios including scattering with the top quark and thegociated
assumptions. Case S1 corresponds to the conventionatatgdgBoltzmann ap-
proach, while Case S2 involves solving the full set of Bolirm equations at the
mode level.

Case Assumption of kinetic equilibrium  Including quantutatistics ~ Section

S1 Yes No 411
S2 No Yes 4.1.2

ReplacingM, with M, and f; <> fy in Eq. (4.4) yields the integral's; [f,_;].

In the following we first recall the treatment of scatterimggesses in the integrated
picture, before we proceed to write down the full set of modeations including the
relevant scattering terms. Table 4.1 summarizes the asmmapf these two scenarios.

4.1.1 Case S1: scattering in the integrated picture

As done in section 3.3.1 when considering decays and inwisays only, we derive
here the integrated Boltzmann equations for leptogenesgjteating in the collision in-
tegrals, Egs. (4.2) and (4.4), quantum statistical eff@ctsassuming kinetic equilibrium
for all particle species.

Along the lines of a general derivation of scattering ratesas in Appendix A, the
integrated Boltzmann equations can be recast in the faligdiarm [92],

ONy

5, = (D+5) (Ny — Ny, (4.5)
ON,_;
8;—1 =eD(Ny - NY) -WN,_;, (4.6)

whereS accounts for the production of RHNs from scattering proegsand the wash-
out ratelV contains also a contribution from these processes. TheegogtratesS itself
consists of two terms§ = 25, + 4 .5;, coming respectively from scattering in the
channel and in thée-channel.

The scattering rates for the and¢-channel, respectively, are defined as

Ly
Sep = == 4.7
s,t HZ, ( )

where

M T
Fs t ot

T B g 7 Ka(e) (4.8)
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Note that an additional factor af/(3) ¢(3) appears in this definition compared to the
definition of reference [92]. This is due to the Fermi—Dirgatistics used for the equi-
librium number density in our derivation. The quantify, is an integral, defined in
Eq. (A.9),

o0
T,, = / AV G, (D) VT K (V) (4.9)
22
of the reduced cross-section ;, given by [91]
. 3h? Mm
6ot = Tt g Xst(®), (4.10)

wherez = ¥/z2, andh; = hy(T) is the top Yukawa coupling, to be evaluated at the
relevant energy scale (or temperatufedy solving the renormalization group equation,
cf. Appendix C. Taking the value of the Yukawa coupling at ealem, = 90 GeV
overestimates the general influence of the scattering psesddy about a factor 2 as we
show later in Section 4.2. The functions :(x) are part of the reduced cross-section,
Eq. (4.10), see also Eq. (A.8), and for the RHN scatteringagffquarks they are calcu-
lated to be [91]
2
Xs() = (3’"_ 1) : (4.12)

xr

-1 —-24+2 1-2 -1
xt(z) = z z + 2o + h log 7 +an , (4.12)
T z—14+ayp, z—1 ap,

using the explicit expressions for the squared matrix efgmtor thes- and¢-channel
scatterings given in Egs. (B.3) and (B.69). We have intredug, = mg/M as an
infrared cut-off for thet-channel diagram, where.s is the mass of the Higgs boson
which presumably receives contributions from interactiaith the thermal bath, i.e., its
value does not correspond to that potentially measurectdtHfiC. The value ofng can
in principle be deduced from a thermal field theoretic treathof leptogenesis, and the
analysis of [105] foundng (T") ~ 0.4 T'. However, some open questions still remain and
hence in the present work we prefer to adopt a value,0& 10~°, used first by Luty
in [131].

It is convenient to rewrite the- and-channel scattering rates; ; in terms of the
functions f, ; defined as

[ d¥ o (7/22) VT K, (V)

ey AP : (4.13)

fsp(z) =

such that

K
Ss,t = m fs,ta (4-14)
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Figure 4.2: The decayD, scatteringS, and wash-out ratd§” andW; , as functions
of z in the integrated approach, assumikig= 0.1 anda;, = 10~°.

and the total scattering rate is given by

2K,
S=gery (@) +24u2)). (4.15)
where
K, = %, (4.16)

with 7y given by Egs. (2.12), and [92]
An? an
m = N M, (4.17)
wherem, has been defined in Eq. (2.13).
Since the scattering processes with the top quark chandegta number by one
unit, they contribute also to the wash-out of the asymmadthe total wash-out rate is
given by

W =Wip + War-=1, (4.18)
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where W;p denotes the contribution from inverse decay defined in Egl6]3 and
War,—1 from scattering in the- and¢- channels,

War—1 = Ws+2W,, (4.19)
with
Ny TL Ny Ny
and
ri Ny
=t — . 4,21
W Hz N Sy (4.21)

The lepton scattering rates are givenltly, = N3!/N;/T, ;. Using Eq. (3.46), the two
contributionsW;, andWa - are related by

1 (N
War=1 =2Wip5 (Nﬁ,fl S+ 2 St> (4.22)
so that
1 (. N
W =Wip [1 5 < Néfl S, +4St>] (4.23)

gives the total wash-out rate.

Figure 4.2 shows the various rates S, W, andW;p as functions of: assuming
K = 0.1. For other choices ok, the corresponding rates evolve within a similar
fashion, but with magnitudes scaling wik.

4.1.2 Case S2: complete mode equations including scattegin

In this section, which is based on the work done in [83], wevaethe complete set of
mode equations for leptogenesis, including the tree-lsgattering processes with the
top quark. On that account, we shall solve the collisiongrdks given in Egs. (4.2) and
(4.4).

The collision integrals are nine-dimensional and can becged analytically down
to two dimensions. Since this is a rather formal and techpicacedure, we provide in
Appendix B the full reduction scheme, following the methdd93, 94], as well as the
final reduced integrals The resulting two-dimensional integrals have the gerferat

Z 3T h? M 1,
u267T3ENyN v?

u(Bnigs) . EENLL) L
x / " aB, / U dE g AN T
( I

= = (s,t) (s,
w(EN,1,q,t) ENi,q,t)

Cs s, [fn] =

)
t

1A general treatment of scattering kernels in kinetic equmstican be found in [132].
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for the RHN and

Z 3T h? My

Cs (s.t) [fl*i] - 2673 E? v’

I

w(Bngge) k(Enitg) . o
X / " dEy /( B AL 1) (4.25)
I

w(En1,4.0) Exigt)

for the asymmetry. The functionsg 0 and Agi_t;) denote the phase space factors for
the RHN (lepton) scatterings in tBe and¢-channel, respectively. The integration limits
u, w, k, andl depend on the energies of the particles involved in theantams and give
the distinct integration ranges for each integrand in thressaf Eqgs. (4.24) and (4.25).
The integrands consist of the phase space factors and tl}eicaadeiunctionsl("s e Both
depend on the energies of the particles involved in the gsodeor thes-channel diagram
the sum contains six terms for the RHN and the lepton asynymaett for thet-channel
diagram one counts four terms each. As mentioned abovediie expressions can be
found in Appendix B. Inserting Egs. (4.24) and (4.25) in th@tBmann equations (4.1)
and (4.3) yields the complete set of differential equatitinbke integrated numerically.
Once the Boltzmann equations for the distribution functiare solved, one can perform
the integration over the RHN (lepton) phase space to obt@imtiimber densities and, in
turn, the final efficiency factos.

Numerical implementation

Since the direct integration of Egs. (4.1) and (4.3) is vametconsuming, we briefly
outline our strategy. In order to receive the distributiandtions in dependence of mo-
mentum and temperature, we solve the Boltzmann equatioaswa-dimensional grid
consisting of 500 momentuny,) and 5000 temperature)(bins, respectively. The large
number ofz-bins is necessary in order to obtain stable results foelamues of the
decay parameteK at low temperatures (large). For each momentum bin we use a
Runge—Kutta algorithm to integrate the 5000 different@haions between the differ-
entz-bins. The most time consuming part is now the two-dimeraiortegration of the
collision integrals Egs. (4.24) and (4.25) that have to bopmed for each step in the
Runge—Kutta integration. In order to reduce the run-time therefore first integrate all
parts of Egs. (4.24) and (4.25) that do not depend gror f,_;, respectively, for each
point on the {;, z)-grid and store the result in a separate file. When solviegdiffer-
ential equations with the Runge—Kutta algorithm, we thead+im the solutions of the
collision integrals corresponding to the specific pointioa @;, z)-grid. In order to find
the exact £) position in the Runge—Kutta algorithm, we interpolate résgd-in solutions
between the twa-bins corresponding to the explicit initial and final tenggere of the
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Figure 4.3: Snapshots of the RHN distribution functig / f 3 atz = 0.2, 1, 5, and
the RHN abundancef]\;/N]‘iﬁl as a function of, assumingK = 0.1. Solid/red line
denotes Case D1, long dashed/green D4, dotted/blue Slhartdlashed/magenta
S2. See tables 3.1 and 4.1 for a summary of the scenarios.

Boltzmann equations. Doing so, instead of solving 20 twoatisional integrals during
the integration of the differential equations, we only hawveead-in the files containing
the solution of the collision integrals once and performittierpolation for each step in
the Runge—Kutta algorithm.

4.1.3 Results and discussions
Scattering vs decay—inverse decay

Figure 4.3 shows snapshots of the RHN distribution funciio@ase S2 relative to an
equilibrium Fermi—Dirac distribution at time = 0.2, 1, 5, as well as the RHN number
density normalized to its equilibrium value as a functiorr 8r an interaction strength
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Figure 4.4: Same as Figure 4.3, but fé¢f = 1.

of K = 0.1. These are compared with their counterparts assuming dewaynverse
decay only (Case D4). Figures 4.4 and 4.5 are similar, eXoe = 1 and K = 10,
respectively. Clearly, including scattering processe=edp up the equilibration of the
RHN distribution function, especially at high temperatute < 1). This effect is more
significant for small values oK since for largeK values decays and inverse decays are
already fast enough to establish equilibrium.

Looking at the time evolution of the RHN number density, we aecorresponding
increase inNVy at high temperatures when scattering is included (Casecg)pared
to the case with decays and inverse decays only (Case D4)equikbrium density is
also reached at an earlier time (or higher temperature)irftbgrated approach shows a
similar behavior, with Case S1 predicting a large RHN abuodat high temperatures
and hence faster equilibration than Case D1.

Figure 4.6 shows the time evolution of the lepton asymmetggin for the three
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Figure 4.5: Same as Figure 4.3, but féf = 10.

characteristic values of the decay paraméter= 0.1, 1,10. As discussed earlier, we
have explicitly ignored” P violation in the scattering processes, so that they have no
direct influence on the lepton asymmetry. This assumptitimeiseason why, in the weak
wash-out regimeK = 0.1), the asymmetry evolution at high temperatures<( 1) in
Case S2isvirtually identical to that in its decay—inverseay only counterpart Case DA4.
The same behavior can also be seen when comparing Cases B1.ahele, decays and
inverse decays of the RHN alone source the creation of anegggmmetry. Since for

K < 1the asymmetry evolution at high temperatures hinges piiyr@r inverse decays
and is as yet unaffected by such external factors as the RidNdalnce and wash-out
processes, the inclusion of scattering processes hasibteeffect onV,_;.

However, scattering can still affect the asymmetry prodactn two indirect and
competing ways: (i) the larger RHN abundance produced atexing processes at high
temperatures forces the lepton asymmetry to flip sign eattiereby generating a larger
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Figure 4.6: Time evolution of the absolute value of the lepton asymmg¥y ;| for
three different coupling strengths. Shown are the two cases including scattering
processes S1 (dotted/blue) and S2 (short dashed/magenthjywo scenarios D1
(solid/red) and D4 (long dashed/green) within the decaserse decay only frame-
work. For reference we also plot the RHN equilibrium aburogafdot-dash/cyan).
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positive lepton asymmetry, and (ii) scattering leads tatamithl wash-out of the lepton
asymmetry. The first effect dominates for coupling stregdging in the weak wash-out
regime (K < 1), eventually leading to a larger asymmetry in Cases S1 anddd2pared
with their decay—inverse decay only counterparts D1 and€xhawn in Figure 4.6. For
stronger couplingsK > 1), the second effect dominates; in fact, Figure 4.6 showts tha
the additional wash-out due to scattering suppressesfitenlasymmetry production in
Cases S1 and S2 already at high temperaturesl, compared with the decay—inverse
decay only scenarios D1 and D4. In the transition regime beitwveak and strong wash-
out, for K = 1, the two effects compete with each other: the lepton asymyniethe
Cases D4, S1 and S2 reach almost an identical final valueel8a&lses S1 and S2 this is
due to the sign flip happening at the same time, earlier théimeimecay—inverse decay
only scenarios D1 and D4. In Case D4, however, the changgofsicurs only slightly
later and the asymmetry grows later on to nearly the samevaince it is not altered
by wash-out due to scatterings.

Complete treatment vs integrated approach

The complete treatment differs from the integrated apgraathat in the latter case we
assume kinetic equilibrium for the RHN and neglect all quanstatistical factors. As
we saw in Section 3.3.5, the assumption of kinetic equililaritends to underestimate
by a tiny amount the RHN abundancezat: 1. This can be understood from Figures 4.3
to 4.5 as a result of the more efficient production of low motaenRHN states, which
in turn contribute more to the momentum integral.

Quantum statistics, on the other hand, has very differeéiecesf on the scattering
and the decay—inverse decay collision terms. As we saw itidpe®.3.5, in the decay—
inverse decay scenario, quantum statistics always enbaineénteraction rates through
the enlarged Higgs boson phase space delfisitit low E. For the scattering processes,
since all participants are fermions, the role of quanturtisttes is to reduce the phase
space and hence suppress the interaction rates. In gdmaradyer, we expect quantum
statistics to be more important for decay/inverse decay thascattering. This is be-
cause in the decay-inverse decay case the enhanced phesealspaofs at low Eg
can in principle be infinite, while Pauli blocking for fernmis participating in scattering,
e.g.,1 — f;, suppresses the phase space by at most a factgeof

The difference between the RHN abundance and the leptonnasimnevolution in
the complete and the integrated treatments can then bestodérin terms of a compe-
tition between the three aforementioned effects.

Consider first the RHN abundance. Ak 1 the dominant RHN production chan-
nel is scattering. Here, suppression of the production dat to quantum statistical
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factors competes with the small enhancement due to our ohgppe assumption of
kinetic equilibrium. The net result is that both Cases S1%8djive very similar RHN
abundances as shown in Figures 4.3 to 4.6z At 0.3, decay/inverse decay becomes
comparable to scattering (see Figure 4.2). Here, the epdatecay rate due to quantum
statistics in Case S2 pushes up RHN production relative & G4.. This effect is more
prominent in the weak wash-out regime than in the strong veastiegion since in the
former case the RHN abundance is further away from equilibriProgressing further
in z, we see that the RHN abundances in Cases S1 and S2 beconadlyvidentical
already before reaching the equilibrium value. This is arlstontrast with the decay—
inverse decay only scenarios, where the RHN abundancessies@l and D4 clearly
cross the equilibrium threshold at different times.

Consider now the evolution of the lepton asymmetry (rightgbaof Figure 4.6).
Comparing Cases S1 and S2 in the weak wash-out redgiime ().1), quantum statistics
in the latter scenario enhances the production of a negkgjpten asymmetry at high
temperatures. This effect is due solely to phase space esmamts in the inverse decay
term since we have assumed explicitly that scattering doesialate CP. At z ~ 4,
the production of lepton asymmetry reverses direction ablBetays begin to dominate
over inverse decays. As mentioned earlier, quantum statisauses this reversal to hap-
pen earlier in the decay—inverse decay only scenario byimgnthe RHN abundance
to the equilibrium threshold at an earlier time. When inalgdscattering, however, the
RHN abundances in both Cases S1 and S2 cross the equilidmieshbld at almost the
same time, as discussed in the previous paragraph. Thissrtiesgtrihe evolution of their
corresponding lepton asymmetries also turns around ahhptige same time. Since at
the time of the turn-around Case S2 has a more negative adyyntian Case S1, the
net effect is that the asymmetry in Case S2 flips sign at atsligater time than in Case
S1, and subsequently grows to a smaller positive value.

The effects of quantum statistics on the lepton asymmetojudon in the strong
wash-out regime = 10) can be similarly understood, except that we must consider
also the role of the wash-out terms. At< 1, the wash-out rate is dominated by scat-
tering. However, as shown in Figure 4.2, decay/inverse ydbeaomes comparable to
scattering at ~ 0.3 and is the dominant wash-out process at 1. Thus, fromz ~ 1
onwards, the net effect of quantum statistics is to enhameavash-out rate. This effect
can be seen at the turn-around of the lepton asymmetry ealdlhe stronger wash-out
rate in Case S2 forces the lepton asymmetry evolution tasewdirection at a slightly
earlier time than in Case S1. However, since at the time ofuimrearound Case S2 has
a more negative asymmetry than S1, the asymmetries in bséis @nd up flipping signs
at almost the same time and grow to nearly identical values.
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Figure 4.7: The final efficiency factor ; without and with scattering terms: D1
(solid), D4 (long dashed), S1 (dotted), and S2 (short dgshed

Having discussed the evolution of the lepton asymmetryeémtbak and in the strong
wash-out regime, its evolution in the transition regini& £ 1) can be understood in a
similar fashion. Front ~ 1 on the same argumentation than in the strong wash-out is
viable: the stronger wash-out in Case S2 forces the leptgmrmagtry to turn around at
an earlier time than in Case S1. But since it has grown to @larglue, the change of
sign happens at almost the same time leading to nearly @fithal values.

Finally, Figure 4.7 shows the final efficiency factors as afiom of K for the inte-
grated approach and the complete mode treatment, bothdingland excluding scatter-
ing. For Cases S1 and S2 which include scattering, we notéhbia difference is rather
large in the weak wash-out regimg& (< 1), with the integrated approach overestimating
ks by up to a factor 1.5 at K ~ 0.01 compared to solving the complete mode equa-
tions. But this difference decreases as we incréésAt K > 3 the integrated approach
underestimates ; by less thanv 10%.

Itis also interesting to note that the relative contribatid scattering processes to the
final efficiency factor is smaller in the complete mode caltioh than in the integrated
approach. In the weak wash-out regime, including scagexithances the final efficiency
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Figure 4.8: The evolution of the top Yukawa coupling from the electrolwsaale
up to the GUT scale.

factor from decays and inverse decays by up to a facter & in the integrated scenario.
In the complete mode calculation, however, the enhanceisemtly a factor of~ 15.
Similarly, in the strong wash-out regime, scattering resuc, by up to20% in the
integrated picture, compared to bel@@26 in the complete treatment.

4.2 Influence of energy dependent top Yukawa coupling

In this section we will discuss the influence of the evolutidithe top Yukawa coupling
on the final efficiency factor. For this purpose, the renoimasibn group equation for
the top Yukawa coupling is set up in Appendix C and the rasgiléivolution ofh,(T) is
shown in Figure 4.8 from the electroweak scale up to the Gldilesc

As the top Yukawa coupling is a function of temperature, ri@usion in the cal-
culation of the efficiency factor depends on the RHN mass Mesin the Boltzmann
equations the dimensionless variable= M /T is used to parametrize the time evolu-
tion 2. The dynamics relevant for leptogenesis take place in tiegvial 2 € [0.01, 100].

%For valuesM < 10" GeV, the efficiency factok (1, z) is a function of/m; and z only since
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Figure 4.9: Effect of the evolution of the top Yukawa coupling on the fiefiiciency
factors s: hy fixed atT' = m (point-point-dashed/red (T') with M = 10'° GeV
(dashed/cyan) antd,(T) with M = 10'2 GeV (pointed/grey). For referencey is
shown for Case D4 (long-dashed/green).

Supposing the RHN mass to be in the rang&GeV < M < 10'? GeV, this implies
106GeV < T < 10' GeV. For the calculations in the previous sections we chaose
value M = 10'° GeV. As can be clearly seen in Figure 4.8, the coupling at tlades
T = 10'° GeV has only about half the strength than at the electroweale sin turn,
the difference at the initial value = 0.01 can be as large as 20% when changing\/
by four orders of magnitude. These differences imply that iinportant to include the
overall evolution of the top Yukawa coupling from the elegteak scale up to the scale
where thermal leptogenesis is viable, i€.2> 10° GeV.

To study the effects of the evolution of the coupling on thalfiasymmetry, we
performed different calculations in the Case S2, using thrapiete set of Boltzmann
equations. In Figure 4.9 we compare the final efficiency facadculated with the top
Yukawa coupling fixed at the electroweak sc@le= m; with the efficiency factor ob-

the wash-out due t\L. = 2 scatterings with a heavy neutrin®; » 5 in the s- and ¢-channel can be
neglected [128].
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tained with a running coupling for chosen values\éf= 10'° GeV andM = 102 GeV,
respectively, in dependence of the decay paranf€tdfor reference, the decays/inverse
scenario D4 is shown as well.

The final efficiency factor calculated with a coupling constéixed at the elec-
troweak scale is a factor 3 larger in the regime of weak wash-out compared to the
scenarios where the evolution of the coupling is accoursedrhis is due to the more
effective RHN production for stronger couplings. For largalues of the decay param-
eter, however, the influence of the coupling evolution beeiess important and at
K ~ 1 the final efficiency factors become virtually identical ih s¢enarios. Then, in
the regime of strong wash-ouf is reduced by less than 10% when the evolution of
hy is neglected. This is due to the additional wash-out in tlatsgng processes that be-
comes sizable for larger values/gf Concentrating on more realistic scenarios in which
the coupling strength depends on the energy scale, we seehtinaging the RHN mas
by two orders of magnitude from/ = 10'° GeV toM = 10'? GeV leads to a reduction
of ky of 15% in the regime of weak wash-out. However, alreadyat- 0.3 the effi-
ciency factors in both cases become virtually identicathin strong wash-out regime,
for K > 1, the difference is below the percent level. Overall, thicdssion shows that
it is important, especially in the regime of weak wash-ootiake the evolution of the
top Yukawa coupling into account. Whereas, changing théatxgalue of A/ and hence
the explicit leptogenesis scale by two orders of magnitudeg leads to minor € 15%)
changes in the final efficiency factor.






Chapter 5

No-dominated leptogenesis

5.1 The matrix and different scenarios of leptogenesis

In this thesis we considered up to now leptogenesis exdlysin the N;-dominated
scenario. Qualitatively, this scenario can be realizedrassy M; < My, M3. By im-
plication, theC P asymmetries produced in the decays of the heavier sfétgsare
small, i.e.,|e2 3] < |e;|, as a consequence of light particles running in the loop ef th
self-energy and vertex corrections to the tree-level deliagram. This can be seen ex-
pressing the P asymmetry, Eq. (2.3), summed over flavor as [84, 133]

ameg = MO [ () s ()] e

8 =123 (ATA);; M7 M?

J#L

where the functiongy and fs describe, respectively, the vertex and self-energy contri
butions. Indeed, in the limit of massless particles runmmipe loop, the corresponding
C'P asymmetry vanishes. Furthermore, dueMp interactions following the decay of
the heavier right-handed stat®s 3, a substantial part of the produced lepton asymme-
try will presumably be washed-out, especially in the regohstrong wash-out.

To understand how specific scenarios can be realized, we gotbahe see-saw
mechanism, cf. Section 1.5, and recast the light neutrinesrmaatrix, Eq. (1.12),

1 T
my = —mp—mp,

M

with mp = Av. Here, itis always possible to choose a basis in which theyhesautrino
mass matrix is diagonal); = diag(My, M5, M3). Using an unitary matriX/, one can
simultaneously diagonalize the light neutrino mass matrix

Dy, =—-U"m, U*, (5.2)
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where D,,, = diag(m,mso, m3). If one does not account for the running of neutrino
parameters from the electroweak scale to the see-saw Se135], the matrix/
corresponds to the PMNS matrix, earlier introduced in Eqt)(IWith the help of an
orthogonal matrix?, the Dirac neutrino mass matrix can be written in the soedall
Casas—lbarra parametrizatiof136],

mp = U\/ DmQ\/ DM (53)

The Dirac neutrino mass matrix is fully described by 18 patars: the mixing matrix
U contains six parameters (three mixing angles and threeephabe diagonal matri-
cesD,, and D,; contain three neutrino masses each, and the orthogonakninis
described by six real (three complex) parameters. It canriilewas a product of three
rotational matrices [125, 137]

Q (w21, w31, ws2) = Rz (w21) Ri3 (w31) Raz (ws2), (5.4)
with
\/ 1 - w%l — w1 0
R12 = w1 vV 1- w%l 0 ) (55)
0 0 1
\ 1- wgl 0 —w31
Ry3 = 0 1 0 , (5.6)
w31 0 \/ 1- w%l
and
1 0 0
Ros =10 1 - w§2 —w32 . (5.7)

0 w32 \ 1-— w§2

In general, one can state that Eq. (5.3) is divided into twisp#é) a measurable low-
energy part, containing the PMNS matfixand the light neutrino massés,, (cf. Sec-
tion 1.4.1), and (ii) a high-scale part, consisting of thinogonal() matrix and the heavy
neutrino massed ), which is not accessible by current experiments.

The Ny-dominated scenario can now be realized assuming the heaigino mass
matrix to be hierarchical, i.el/; < M, 3, together with a specific choice of tieP
asymmetries implemented by a special form ofthmatrix [125, 137]:

e ForQ = Ry3, theC'P asymmetry inNV, decays vanishes, i.e3 = 0, while g is
maximal.
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e ForQ) = Rys, theC' P asymmetry, is suppressed compared to its maximal value,
Eq. (2.7), andes| oc (M1/Ms>) |e1| is negligible within a strong mass hierarchy

In Figure 3.1 we have seen that the-dominated scenario proves independent of the
initial conditions in the regime of strong wash-out. Howeva the weak wash-out
regime the final asymmetry production depends sensibly eriritial conditions on
the Ny abundance. Furthermore, as discussed in Section 2.3,dhkptogenesis sets a
lower limit of M; > 10° GeV, cf. Eq. (2.15), on the mass of the lightest right-handed
neutrino in order to explain successfully the observedesalfithe baryon asymmetry
of the universe. This bound is consequently translated antower bound on the re-
heating temperature after inflation, cf. Eq. (2.16). Theseel bounds not only have
an issue with the cosmological abundance of gravitinos,tiomeed in Section 2.3, but
also cause some specific problems in GUTs based on flavor sadgleine of these
models assume a grand unified symmetry between up-quarkeeartidnos. The neu-
trino Yukawa couplings are then connected with the up-qialkawa matrices leading
to right-handed neutrino masses which are proportionah¢osgjuare of the up-quark
masses [138, 139]. Typical values for the mass of the lighigist-handed state fall in
the rangel0° — 107 GeV, see e.g., [140, 141], and massés > 10 GeV need a specific
choice of parameters [142, 143]. This makes thermal lepiegje difficult to reconcile
with this class of models.

In order to circumvent these issues, th&-dominated scenario was proposed
in [137]. Indeed, forQ2 = Ry3 one can have a maximdl'P asymmetrye, coming
from N, decays whiles; vanishes. This means thaf; is totally decoupled from the
heavier states while in th¥; decay the heavy third stat&s, is running in the loop. To-
gether with a mass hierarchy in the heavy neutrilésdominated leptogenesis can be
realized if the wash-out fronV; interactions does not deplete the produced asymmetry.
With the above choice d® the effective neutrino mass of the lightest right-handetest
is fixed torm, = m;. Thus, for hierarchical light neutrino masses Mginteractions can
be forced to be in the weak wash-out regime whiére < m* ~ 1073 eV. It is worth
noticing that, if the/V, interactions are in the weak wash-out regime, itg.,< m*, then
the Ny interactions are constrained to be in the strong wash-gime i.e., /o > m*.
This is due to the orthogonality of tHe matrix [137]. Therefore No-dominated lep-
togenesis is independent of the initial conditions/énbut might still be down to the
initial conditions onN;. In order to achieve a large enough” asymmetry, the lower
bound on the mas&f; can be directly translated into a bound on the msswhereas
the lower bound on the reheating temperature remains ugekaihe bound oM, is
then obsolete and/; can be remarkably smaller. However, allowing for small ctaxp

Nf My ~ M, bothC' P asymmetries should be taken into account.
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rotationsR;» and Ry 3, both of these bounds become increasingly more stringadirig
to a point beyond which th&/>-dominated scenario is not viable anymore.

5.1.1 Note on flavor

Including flavor effects may substantially change the patemranges in which the
scenarios discussed above are valid. It has been shownnthem, the flavor structure
of the lepton asymmetry and the wash-out is tracked, it isiplesto generate a large
enough lepton asymmetry iN, decays even ifV; interactions are effective [143, 144].
The general idea here is that asymmetries in different tefievors, 1, ande do not
mix through interactions in the thermal bath before the washdue toN; interac-
tions becomes effective. The asymmetries in differentolegtavors will then only be
washed-out by theV; interactions in the corresponding flavor. When tle decays
in the two-flavor regime at temperaturés’ GeV < 7' < 10'2 GeV, where only the
7 Yukawa interactions are in equilibrium, or in the unflavoredime at temperatures
T > 10'2GeV, parts of the lepton asymmetry in a distinct flavor aretqmied from
N; wash-out [9, 144, 145]. Furthermore, in the first sectionhig thapter we did not
mention the effect of flavor on th@ P asymmetry. In Eq. (2.3) we wrote tliéP asym-
metry as a matrix in flavor space. Indeed, the hierarchy Bfasymmetries, following a
mass hierarchy of particles running in the loop, does no¢ssarily hold when flavored
asymmetries are considered [114]. In contrast to the untahvecenario, whers is sup-
pressed by\/; /M, compared ta, there is the possibility of having a non-negligible
asymmetnyey,, that, in turn, eventually extends the range of ¥Miedominated scenario.

5.2 Mode equations inlNy-dominated leptogenesis

In the last section we discussed the possibility of goingobeythe usually considered
N;-dominated scenario of leptogenesis. We have shown th#t,angpecial choice of
the 2 matrix, the possibility of aVs-dominated scenario exists. In this section we want
to discuss the effect the complete set of mode equationse(Say have in theV,-
dominated scenario. Here, the wash-out dueViointeractions is (i) enhanced using
mode-equations with decays/inverse decays alone andnfireed considering scat-
terings with the top quark. For th®¥,-dominated scenario to be realized we will take
the following working assumptions [146]: First, a sizalllé®> asymmetry=, has been
generated at the scale ~ M that is not altered by, generated at the later stage
T ~ M, when the lightest right-handed state decaySecond, the wash-out due Ay
interactions does not erase the asymmetry producéd idecays.

2For clarity we keep track of indices correspondingMoand Vs in this section
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Figure 5.1: Lepton asymmetry generated iy, decays for maximal’ P violation
and different values oi,: (i) M, = 10'3 GeV, solid line, (ii)M, = 10" GeV,
long-dashed line, (ii\/, = 10'' GeV, dashed line, (iv)/, = 10'° GeV, point-
point-dashed line, and (W)/, = 1.9 x 10° GeV, point-dashed line. Within the con-
sidered scenario, the shaded region indicates where tdeged baryon asymmetry
exceedg)SMB.

We will not focus on the first point of an exact evaluation of'fleed C'P asymme-
tries within special choices of theé matrix but rather discuss the second point within
our treatment of complete kinetic equations. The leptomesgtry that can be gener-
ated inN, decays is shown in Figure 5.1 in dependence of the decay p&gak, for
values ofM; varying betweer.9 x 10° GeV and10'3 GeV. The shaded area marks the
region where the final asymmetry exceeds the measured 1@1@% givenin Eq. (1.1).
For My < 2 x 10° GeV theC P asymmetry generated iN, decays is too small to ac-
count for the observed value of the matter—antimatter asstmyn? On the other hand,
for My > 10'® GeV one has to account faxZ, = 2 violating scattering processes with
the N, in the s- and¢-channel. Being an additional contribution to the wash-thése
processes tend to reduce the final amount of asymmetry [TB8]two vertical lines in

3This bound differs from Eq. (2.15) since for a vanishingialiabundance:; < 1.
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Figure 5.2: Time evolution of the absolute value of the normalized RHNnnAu

ber densityNy, /NR% and the lepton asymmetty, ;| for three different coupling
strengthsK; in the Ny-dominated scenario for an initial asymmetriyﬁ%hn =

10~ and M; = 107 GeV. Shown are the two cases including scattering processes
S1 (dotted/blue) and S2 (short dashed/magenta), and tvmarscge D1 (solid/red)

and D4 (long dashed/green) within the decay—inverse detgyf@mework.
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Figure 5.1 correspond to the solar and atmospherics newdale, respectively. Con-
sidering thelV, interactions to be in the strong wash-out regime in the windeferred
by neutrino oscillation data demand$, > 10'! GeV to explain the observed value of
the baryon asymmetry, Eq. (1.1).

The lepton asymmetry generatedN¥h decays is altered by the subsequent wash-out
due to interactions of the lightest right-handed neutrvio According to the consid-
erations of [122], wheréVy-dominated leptogenesis has been addressed by means of
mode equations within the decay—inverse decay only see(@dase D4), we choose the
following initial conditions atz; = M7 /T to calculate the effect of wash-out on an ini-
tially produced asymmetry: (i) We takiéfl]\ghn = 1077 as initial value of the lepton
asymmetry generated N, decays, (i) assume a zero initidl, abundance, and (iii) set
¢1 =~ 0. The third condition can be achieved by supposing a smalkvaf theN; mass.
Anyway, smallC'P asymmetries stemming from different generations add wgaliy
and an additional asymmetey would not modify our consideration on thé -induced
wash-out effects. We choosé; = 107 GeV in the numerical implementation in order
to fix the evolution of the top Yukawa coupling.

Figure 5.2 shows on the left panel the time evolution of thenadized N; number
density for the Cases D1, D4, S1, and S2 in dependenee. dthese plots correspond
to the lower right plots in Figures 4.3 to 4.5 save for theatdhce that for the Cases S1
and S2 we choos&f; = 107 GeV here, instead af/; = 10'° GeV as in Section 4.1.2.
On the right panel the time evolution of the lepton asymmetying N; wash-out is
shown for the same scenarios. Thus, in addition to the dismusn [122], we include
Cases S1 and S2 here. In the weak wash-out regithe< 0.1), the asymmetry is only
slightly reduced in the Cases D4, S1, and S2 compared to tigrétied approach in the
decay/inverse decay only scenario, Case D1. The net wasbi-the initial asymmetry
is less than 10%. However, alreadyf@t ~ 1 the strength of the wash-out in the dif-
ferent scenarios becomes distinguishablez/At- 1 wash-out becomes effective and is
strongest in Case S2 where the complete set of Boltzmanniegsiancluding scatter-
ings with the top quark is considered. The difference in @pdn asymmetry between
Case D4 and Case S2, both using mode equations, is aboubrdattio. However, the
net reduction of the initial asymmetry is still less than ander of magnitude. Compar-
ing Case S2 with Case S1, we see that the influence of the @ualitivash-out factor
fn,, present in the mode equation, cf. Eq. (3.55), is larger thanwash-out due to
scatterings in the integrated approach that is presentse Ga. In the strong wash-out
regime, fork; = 10, the initial asymmetry is depleted by up to six orders of niagie,
with the strongest wash-out again in Case S2. Consideriagnibmentum integrated
scenarios, the reduction in Case S1 is two orders of magniurder than in Case D1.
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Figure 5.3: Amount of initial asymmetry that has to be generatedVin decays

in order to survive the subsequent wash-outMyinteractions. The mass of the
lightest right-handed neutrino was sett, = 107 GeV and theC'P asymmetry
generated inV; decays was set; = 0. The asymmetry in the grey shaded region
cannot be generated M, decays and the area right of the arrow is excluded due to
N7 wash-out.

Concerning the scenarios in which mode equations are usedontribution of the scat-
terings amounts to one order of magnitude as can be seen lpyacoig Case S2 with
Case D4. In general, it can be stated that the wash-out ismeatianore by the use of
mode equation than by the inclusion of scattering procdasstdecome important only
for valuesK; > 1.

Figure 5.3 shows the amount of initial asymmetry generatetisi decays that is
needed to account for the observed value of the baryon asymnafeer wash-out due
to Ny interactions in dependence &f,. The green colored region corresponds to the
value of the baryon asymmetry deduced in BBN within 95% camfa level, Eq. (1.2),
and the dashed-line within this region represents the vafube baryon asymmetry
deduced from CMB measurements, Eq. (1.1). Whgrinteractions fall into the weak-
wash-out regimeK; < 1), almost all of the initial generated asymmetry survivesng)
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|Nl]g|in ~ 3 x 108, i.e., the same limit as can be seen in Figure 5.1. Howe\@gasing
the strength of théV; interactions, wash-out becomes more and more effectivédand
K, =10 aninitial vaIue|Nl]g|in ~ 1 is needed to account for the observed value of the
baryon asymmetry. Though, as can be seen in Figure 5.1,svafube asymmetry lying

in the shaded area above the horizontal dashed Iimb’l]é%n = 1.7 x 10* cannot be
generated inV, decays. Therefore, for thi¥;-dominated scenario to be successful, the
N, interactions are restricted #6; < 5. The upper bound on the initial asymmetry cor-
responds to valued/l, = 10'3 GeV andK, ~ 0.3. For values ofK, lying in the strong
wash-out regime that is preferred by neutrino oscillatiatedthe generated asymmetry
is roughly one order of magnitude smaller, leadindsto < 3. When choosing conserva-
tive values, M ~ 10" GeV andks; ~ 1072, the scenarios are forced £, < 2.4 This
corresponds to values df; typically needed inSO(10) inspired GUTs where flavor
effects are included. For the limiting scenaridy ~ 2 x 10° GeV, theN; interactions
strengthK; has to vanish [147].

4Using typical assumptions, the study in [122] found a lifit < 3.






Chapter 6

Conclusions

The absence of antimatter in the universe provides one ohtst intriguing problems of
particle physics and cosmology. In leptogenesis the eafilam of the matter—antimatter
asymmetry is connected with the nature of observed neutriasses via the see-saw
mechanism. Here, heavy right-handed neutrino states gigea light-neutrino masses
in the sub-eV range. At the same time a lepton asymmetry mayeherated in their
decays. This lepton asymmetry is then partially transfarimeo a baryon asymmetry
by so-called sphaleron processes, an anomaly present 8tahdard Model of particle
physics. The creation and subsequent partial depletioregtan asymmetry is usually
studied by means of momentum integrated Boltzmann equsastorce the processes
involved in leptogenesis are typically close-to-equilibn.

In this thesis we have studied leptogenesis by means of thBdlizmann equa-
tions incorporating all quantum statistical terms withthé assumption of kinetic equi-
librium, and including scatterings of the right-handed trieo with quarks. This is of
particular relevance for the creation of the cosmologi@lybn asymmetry due to the
required deviation from thermal equilibrium and the enedgpendence of all interac-
tions. As the simplest possible set-up to study these sffe have first considered only
an asymmetry being created by the lightest right-handettinetand have neglected po-
tentially important flavor effects. To this end, in Chaptev@provided a thorough study
of leptogenesis taking into account exclusively decays ianerse decays where one
Yukawa coupling alone controls the production and lateagls©f right-handed neutri-
nos.

In the conventional approach, i.e., neglecting quantunistital factors and assum-
ing kinetic equilibrium, considering only decays and irseedecays is known to give
a rather precise approximation of the final baryon asymmiattire interesting strong
wash-out regime. At the same time, this case also offersdhsilpility to study the in-
fluence of various effects separately and in detail.
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Interestingly enough, dropping the assumption of kinegjgikbbrium has almost no
effect on the evolution of the right-handed neutrino nundeersity and the lepton asym-
metry. Taking the full energy dependence of interactions account changes the final
efficiency factor by 5% at the most.

Including all quantum statistical factors has somewhadaeffects. These factors
tend to enlarge the phase space available for neutrino ptiodwby inverse decays, thus
significantly boosting the right-handed neutrino abuneéaared the “wrong-sign” asym-
metry being produced at high temperatures. Further, thay tie an earlier domination
of decays over inverse decays, thus speeding up the produwattithe final asymmetry.
In the weak wash-out regime this leaves more time for theymiioh of an asymmetry,
thus leading to a boost in the final asymmetry~a§0%.

In the strong wash-out regime, on the other hand, the finahawtry is suppressed
by between 20% ak = 10 and 1% atK = 100. This is again due to the enlarged
phase space of inverse decay processes which act as watgnrosit thus reducing the
asymmetry compared to the case where quantum statistatar$aare neglected.

In the case of scatterings of right-handed neutrinos offkgjaonsidered in Chap-
ter 4, in contrast to decays and inverse decays, quantuististdtfactors reduce the
phase space available, since all external particles irethexesses are fermions. Hence,
guantum effects generally tend to reduce the importandeeskt scatterings.

Nonetheless, at high temperatures<( 1) scattering processes increase the amount
of right-handed neutrinos being produced, thus makingtgatesis more efficient. On
the other hand, at low temperatures £ 1) they act as wash-out terms thereby re-
ducing the produced asymmetry. The first effect, i.e., theenadficient production of
right-handed neutrinos dominates in the weak wash-outmregihus leading to a larger
final lepton asymmetry compared to the case where only deraysnverse decays are
included. In the strong wash-out regime the effect fromaased wash-out dominates,
i.e., including scatterings leads to a somewhat reducetimgyry here.

This is qualitatively in line with results obtained in theegrated picture, i.e., ne-
glecting quantum statistical factors and assuming kinegigilibrium. However, since
guantum statistical factor enhance decays and inversgsieddle suppressing scatter-
ings of right-handed neutrinos with quarks, the net infl@asfdhese scattering processes
is reduced when quantum factors are included. This significaeduces the spread of
results for the final efficiency factor, particularly in theak wash-out regime.

In general, when including scattering processes of rigimdled neutrinos with
quarks, it is important to account for the evolution of thp ¥ukawa coupling from the
electroweak scale to the scale of baryogenesis. This emmpgndence might change
the coupling strength by a facter 2, which, in turn, changes the final asymmetry by
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a factor~ 3. However, changing the right-handed neutrino mass, whitlrthines the
precise energy scale of baryogenesis, by up to four ordensaghitude leads only to
minor (< 15%) changes in the final asymmetry.

Finally, in Chapter 5, we studied leptogenesis in an alter@acenario in which the
lepton asymmetry is created in the decays of the next-tudij right-handed neutrino
state N,. Here, the additional wash-out present in the complete fsgtoole equations
leads to a more efficient depletion of the lepton asymmetigtaractions of the lightest
right-handed neutringVy; these interactions follow the asymmetry generation in the
decays of the heavier state. In order to account for the wvbderalue of the matter-
antimatter asymmetry, the possible values of the decaynpeasK; and K, of the
two right-handed states can be restricted. From the maxamalunt of asymmetry that
is achievable inV, decays, the decay parameter of the lightest right-handetline is
forced toK; < 5. Furthermore, demanding the decay paraméigto be in the strong
wash-out regime favored by neutrino oscillation data, whbe asymmetry generation
is independent of the initial conditions @y, sets the more stringent limit; < 2.






Appendix A

Scattering reaction rates in the
Integrated approach

In this section we derive the integrated Boltzmann equdtom heavy particle species
¥ interacting via the scattering proceBst a <+ b+ ¢ with light degrees of freedom that
are supposed to be in thermal equilibrium. The Boltzmanratop for the distribution
function in the radiation dominated epoch is given as (cf.(BdL5))

H(my) Ofw _
5, — Clfel, (A.1)
wherez = my /T and
Clfe] = 2By / H 27T 32E (2m)*0* (pw + pa — b — pe) IM (T + a ¢ b+ ) |?
[(lif\y)(lifa) fofe = fufa (L £ fo) (1 £ fo)].- (A.2)

Here the '+’ sign corresponds to bosonic and the ’-’ sign tonienic type of particles.
In order to receive the Boltzmann equation for the numbessitheran integration of
Eq. (A.1) over the phase space of the partiglbas to be performed. For this purpose it
proves useful to introduce the reaction density, which fined as the number of reac-
tions per time and volume element. The reaction densityh®proces¥ +a — b + ¢,
then reads

dp} 44
Y (T +a—b+c) / ng @) 322E (27)°6% (pw + Pa — Py — Pe)
1=

X MU +a—b+c)|?fofa (A.3)

!Since herg M|? is summed over all internal degrees of freedom, the faggois included in the
definition (A.2).
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Here, we already neglected phase space factors stemmimgPaali blocking and Bose
emission, assumin@l + f;) ~ 1. The reaction density for the inverse process can anal-
ogously be recast by the replacemefits’, — fif.. Assuming kinetic equilibrium for
the heavy specie¥, the reaction density can be written in terms of the equilior
reaction density and the heavy particle’s number density,ny /ng! v°9, with

d
ed (\I/—I—a — b-l- / H 2 ]?322E 271')454(17\11 + Pa — Do _pc)
i=W¥,a,b,c ﬂ-

X MU +a—b+c) | fglfe
dp}
/ 1T oo/ £ 1594/ (o - pa)? — mim2 o(s),

(A.4)

wheres = (py + p,)? and the zero temperature cross-section is denotesi by For
the flux-factor one can write [148]

4\/(;0@ pa)’ —mdm2 = 2\/(3 — (my +ma)2> (8 — (my — ma)2>

=24/A(s,m3,m2). (A.5)

With the help of the flux factor and the auxiliary varialle= 2, we can write for the
equilibrium reaction density [149]

_dpl (BT |
(T +a—b+c) /H 27T32E vtEa)/T 9 A (s,m%,m2) o(s)

= / (6214?4 (2 ) 6(Q —pv —pa) © (3 — (my + ma)2>

dp} —(Eg+E)|T \/—2
/H o) 3Z2E‘ vtFa)/T o A (s,m%,m2) o(s)

= / g;c)i (2m)t e (s — (my + ma)2)

x e~@0/T 9, /) (s,m2,m2) o(s) ®(s). (A.6)

Here we introduced the phase space volume eledgrtthat is accessible for particles
in the entrance channel,

9=/ 1 S (0m)'5(Q—pu —p (A7)

= % (s — (mw +ma)2> (3 — (mw — ma)2> = % A (s, mw, mg).
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With the help of®(s), the cross-sectioa(s) can be related to the reduced cross-section

dp}
_871-@) /H Qﬂ. SZQE 27T)46(p\11+pa_pb_pc) |M(\I/+a—>b+c)|2

=81 ®(s) 24/ A (s,m%,m2) o(s) = M o(s). (A.8)

Thus one finds, after introducing another auxiliary vagapl= /1 + Q?/s, for the
equilibrium reaction density the 1-dimensional integral

T +a—b+c) = 8;/%(9(3—(771\1,—1—77%)2) e /T 5(5)

oo

—am [ dselos / N/ —Te ST (A9)

1

(my4ma)?

o0
T* . T4
= / 40 6(0) VI K, (\/E) = T,

(m?I,er?z)/T

where U = s/T? andZ contains the integral expression. Eq. (A.9) is valid also fo
the inverse proceds+ ¢ — ¥ + o because there is no preferred direction in thermal
equilibrium. Furthermore, the reaction density for theeirse process is as well given by
Eqg. (A.9),ie.y(b+c— ¥ +a) =7*(b+c— ¥+ a), since, when integrating over
the phase space of the incoming particles in Eq. (A.3), thidcp@ species andc are
assumed to be in thermal equilibrium.

Then the Boltzmann equation for the time evolution of the hamdensity of the
particle specie¥ reads

dny . z Ny oq eq) _ z ~®4 q
dz _ H(my) < 28T ) T Himg) 050 (nw = n3)
Ied

z
= Hma) rea (nq, - ni’;) = (nq, — n?lfl) , (A.10)

where we used the relatios= ~/ny to relate the reaction density to the reaction rate
andH(myg) = H/z%. The Boltzmann equation for the comoving number denigy
can be recast dividing Eq. (A.10) by the equilibrium photamiver density.






Appendix B

Reduction of the scattering collision
Integrals

B.1 s-channel

B.1.1 Right-handed neutrino

The full collision term for thes-channel in Eq. (4.1) is

d*p; 4 2 A (N
Csslfn] = Yo /H ) 32E (2m)* 6" (pn + 1 = pr = pg) IMG A (Fv, £ fis £o)

(B.1)

with phase space factng ) given by

NN i o fg) = 1= f)( = f) fufg = (L= f) (L= f)]. (B.2)

The matrix elemeniM is summed over all internal degrees of freedom of the pesicl
in the initial and final states, including color and isosgind is given by

M

|M|? = 24 b} —,
U S

wherem; = (mEmD) /M is the effective neutrino mass [89}, = 174 GeV the
vacuum expectation value of the Higgs field ajdthe top Yukawa coupling given in
Appendix C.

We work in the center-of-mass frame, i.e.,

PN +P =Pt +Pg=q. (B.4)
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In general, the 4-vector delta function can dealt with usiregrelation

0 (p} = M) = 0 (Bf = (Ipil” + M7))

o (Bi— I+ M2) 6 (Ei+\JIpil2+M2) )\ (B5)
_|_ .
24/ |pi|> + M? 2./ |pi|> + M?

Using this relation, and the fact that we consider all plsiexcept the RHN to be
massless, i.e.,

Bt = Pl (B.6)
Ex = /Ipn|? + M?,

we can integrate over the quark energy,
d? §(Ey —
/2—5‘1 O (pn +p1—pi—py) = /qu d* p, % O(E,) §(Ex + B - B, - E,)
q

x 0° (pN + Pi — Pt — Pg)

_ 5(EN+El_Et_|pN+pl_pt|) @(EN+El_Et)

2|py + pi — pi
_ BB -Bi—la-pl) g L p g
2|q — pil
=0 ((Ex + B — E)* — la—p|*) O(En + B — Ey).
(B.7)
Similarly, we can rewrite
d’py 6 (B = |pi]) 3
— = | dE,————20(E))d
2El / [ 2|Pl| 6( l) Y4
= /dEl5 (E} - Ipi?) O(E) d*py (B.8)

— [ 415 (8 - la— paf?) O(B) &',

where the last equality follows from changing the varialbtafp; toq = px + p;, and
henced®p; to d3q, and the integration is over the lepton enefgy
We choose an explicit coordinate system,

q=q/(0,0,1),
PN = |pN| (07 sinn, cos 77)7 (Bg)
Pt = Ey(cos ¢ sindd, sin ¢ sind, cos9),
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and obtain the following quantities:

s=(pn+m)° = (pr +py)° = (Ex + E)* —|a*,

8= M?
PNPL = 2 )
S
PgpPt = 2’ (8.10)

la—pi* = laf* + |pe]> — 2q - py = |a|* + E} — 2|q| E; cos Y,
la—pnl* =la?*+|p~]* —2a-pn = |a* + |pn|* - 2]|d] [pN] cos .

The matrix element in these coordinates reads

sz1 (En + B)* — M” — |q|”

|M|? = 6h
(Ex + E)” - |qf?

(B.11)

’

and the delta functions are given by
5 ((By +Bi— B)? —la—pif?) =6 ((Bx + B - B)? — [af* - B? + 2l By cos )

1 E?2 —(Ex +E - E)? 2
— 6 COS'l9 _ t ( N + l t) + |q| ,
2|q| E; 2|q| E;

0 (B} = la—pn|*) =0 (B} — |a* — |p~|* + 2|al[pn| cosn)

1 2_E2 2
5 (Cosn _ Ipwl ;. tldl > _

~ 2|q]/pn] 2|q| [pw]
(B.12)
Collecting all terms, we get for the collision integral
C / osd dE dE;d’q M
5ol =g g | e g A i e M

2 _ g2 2 E2 — (B, + Ex — E,)? 2
><5<cosv7 IpN| z+|<1|>5(0819_ i — (B + En t)+IQI>
2|q| |pn| 2|q| E;

XA (fNaflaftafq) O(FE) ©O(E) O(E, + En — Ey)

_ 2
_m/dcosﬁdcosndEtdEl d|q| |[M;]

2— E?+|qf E} — (B + Ex — E))° + |q
><5((30877_|I)N| 7+ |d )5 cos — Lt (E1+ En — Ey)” +|q
2|q| [pw| 2|q| E;

N (fn, fis fir fo) O(E) ©(Ey) O(E, + Ex — Ey).

(B.13)

Here, in the first equality, we také&p, = E?dE; dcosd d$, and average over the di-
rection of the incoming RHN by integrating ovéf2 /(47), wheredQ2y = df d cos n,
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because of rotational invariance (cf. Eq (B.9)). In the seéc@quality, we take
d®q = 47 |q|*d|q|, and integrate over all azimuthal angles.
The two remaining angle$ andy run in the range

cosd,cosn € [—1,1]. (B.14)

Since apart from the delta functions the integrand does eyatiad on either angle, inte-
grating over these ranges effectively lead to new integmdtimits for theg-integral:

cosd =1 = q€[E+ En,—E;— EN+2FE],
cosd=—-1 = q€[-E —EnN,E + Ey—2E}],

(B.15)
cosn=1 = q€[-E+pn,E +pnl,
cosn=-1 = q€[-E —pn,E —pn]
wherepy = |pn|, andg = |q|. Putting these conditions together we get
sup [|2E, — By — EN|[,|E; — pn|] < ¢ < inf[E; + En, E; + pn] . (B.16)
SinceF; + Enx > E; + py this reduces to
sup[|2E; — By — En|,|E; — pN|] < ¢ < B + pn. (B.17)

Thus, the integration ovetos nn andcos ¢ effectively gives rise to a combination 6f
functions in the remaining-dimensional integral. Together with existifgfunctions in
Eq. (B.13), we define

N=0(q—-2E, - E —Ey|) O(¢— |E —pn~|) ©(E+pnv —q)O(E; + Exn — Ey)
(B.18)

to collectively denote al® functions appearing in the remaining integral. Note that we
have omitted writing ou®(E;)©(E,), since positive particle energies are understood.
Next, we use the relations

©(q— 2B, — E; — En|) =1 -0 (2B, — E; — En| — q), (B.19)
and
O(2E; — E; — En| —q) ©(Ej+py —q) =O(]2E; — E; — Ex|—q), (B.20)

the latter following from the fact that{) in Eqg. (B.18) vanishes unless
|2E; — E; — En| < E; + py. With these we split the functiof into two parts (i.e.,
Q=0 +Q):
Q= @(El + Eyn — Et) © (q — |El —pN|) €] (El +pN — q) R (BZl)
Q=-0O(E+Ey-E)O(¢—|E —pn|) O(2E, — E— Ex|—q). (B.22)
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Equation (B.21) can be further split into two part€afy — | F; — py|) using the relation

O(E —pN)+0O(py — E) =1, (B.23)

from which we find

Q. =0O(E +Ex —E) ©(q— (B —pn)) ©(E +py—q) ©(E —pnN),
(B.24)

Qpy=0O(E +Exy —E;)©(q— (pv — E1) © (£ +pv —q) ©(py — E),
(B.25)

so that®2; = Qq4 + Q4p.
Similarly, Eg. (B.22) can be split at® (¢ —|F; —py|) into two parts,

Qo = Qo + 9y, by way of the relation (B.23):

Do =—-O(E;+En —E) ©(q— (B, —pn)) O (2E; — E; — Exn| —q) © (B —pN),

(B.26)
Qop = - O(E1 + Exy — Ey) © (g — (py — E1)) © (2B — E; — En|—q) © (py — E) .
(B.27)
One further split is possible & (|2E; — E; — Ex| — g) using
O (E 4+ Ey —2E,) +© (2E, — E;, — Ey) = 1. (B.28)

Putting this relation in Egs. (B.26) and (B.27), we find thenbinations

©(¢—(E—pn)) OB+ En —2E,—q) = E, < - (Ex +pn),

—_ Do | =

©(¢— (B —pn)) ORE, - E,—Ey —q) = E; > - (2E; + (En — pN)),

©(q—(pv — E) O(E;+ Exn —2E;, —q) = E; < - (2E;+ (Ex — pN))

DN = DN = D

O(q— (pv — E)) ©RE; — Exn — E;—q) = E; > - (En +pnN) ,

(B.29)
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with which we can write down the four parts Qb:

Oani = = 0 (5B +pv) = 1) O~ (B~ px) O (Fr+ By 26 )

x O(E; — pn), (B.30)
Qpaii = — O(F, + By — Fy) © <E‘t — (@ + By - pN)> O (2E, - B, - By — q)

x O (q— (E; —pn)) O(E —pN), (B.31)
Qop; = — O (%(2El + EN —pN) — Et> O (E + Ey —2E; — q)

x ©(q— (py — E1)) O(pny — EY) , (B.32)
Qopii = — O(E + Exy — E;) © <Et — %(EN +pN)> ©(2E,— FE;— En —q)

x O (q— (py — E1)) Opy — E), (B.33)

such thatdo, = Qa4 + Qog i @ANAQg, = Qo i + Qop s
Finally, collecting all terms we obtain the relation

Q= Z Qu = Qg + Qi + Qogi + Dogii + Qops + Qop s, (B.34)
n

so that the remaining-dimensional integration in the collision integral (B.1&n be
equivalently written as

1
CsoliM =3 e Ton] / AEy By dq | M[* AL (fx. fis fr. fq) Q- (B.35)
I

The phase space factor reads

efitét (—1+ fy + €N fy)
(14 eft) (L4 eft) (ef1+en +eft)’

AgN) (fNaflaftafq) = - (836)

where we have used energy conservation, and Fermi—Dirstisgfor the leptons and
quarks.

The integration ovey can now be performed analytically, reducing the dimensions
of the collision integrals to two. These final integrals musievaluated numerically and
then summed to giv€'s ;[ fn],

Csslin]=CH + @ +c® + oW 4+ 0P 4 ¢, (B.37)

6)

The integralsCél “ are as follows:

)
sS
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e The first integral comes from evaluating tBefunction €24, and we have defined

q=q/T:
o~ 3T hi M / g / T g, A 1) (B.38)
S,s 2613 gN YN 02 n l 0 t fig s .

/EH-Z/N dd (5N + 5l)2 _ Z2 _ 62
&—yn (Ex+ &) —§
dyn (& +En) + 22 log [(‘SN_?/N) (251+5N—yw)}

(En+yn) 26 +En+yn)
) B.39
2(&+En) (B.39)
e The second integral comes from evaluatiorfgf:
o _ 3T  hiMiw / ™ e / T e AN 10 (B.40)
S,s 2671_3 gNyN UQ 0 I 0 t idg s .
Eityn 2,2 =2
I,E):/ d(j(gN+gl) Qz ~q
yn—& (EN + gl) -
46 (Ei+EN) + 22 log [ ety |
_ ! ! N g (2gl+5N)27y]2v (B 41)
2 (El + EN) '
e The third integral comes from the,, ; term:
5 5 (En+un)
@ ___ 3T h%Mml/ood /2(N d&, AN 1) (B.42
OS,S - 2613 EN yN 2 x El 0 gt s s ( . )

~
~
w
N2
Il

/51+5N—25t . (SN + gl)Q N 22 o q~2
- q ~
E—yn (En + 51)2 - ¢?

2 (6 +En) (En = 26+ yw) + 2 log [ E T
2 (& +En) '

(B.43)

e Integral four originates from th@,, ;; term:
2 E+EN
i = — 33T hy M i / &) / dg, AN 1D (B.44)
’ 22T EN YN v? YN % 26 +EN—YN)
I§4) _ /2&5 &— dq (€N+5l) _Z _q
E1—yn (gN +‘€l) -q
2 (51 + SN) (2 E+EN—2& — yN) — 22 log (Ertin &) R&+EN —yn)

& (En+uyn)
2(&+En)
(B.45)
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e Integral five relates t6y, ;:

~ L@e&a+en—uyn)
() _ 3T  hiMm /yN /2( l A 1)
CS,S - 2671_3 EN YN ,UQ 0 dgl 0 dgt s s

(B.46)
E+EN—2E 2 9 9
I§5):_/l N tdq(EN—i-gl) _22 N_q
yn—E& (gN +€l) -
o 2 (E+EN) RE+EN—2& —yn) — 2% log wﬁENEf()&ng?fzj;‘)SNin)
2(& +EN)
(B.47)
¢ Finally, the sixth integral derives froy, ;;:
YN E+EN
0263 _ . 33T ht Mml / / dgt ( ) [3(6)’ (B48)
’ 2w EN YN v? L (En+yn)
2E—& ~2
[§6):_/ e dq(EN—i—El) — 2 ~—q
yn—E&; (SN + gl) — ¢

2 (E1+En) (Ex — 26 +yn) — 2 log | LBt Eniu)
2(&+€n)

(B.49)

B.1.2 Lepton asymmetry

The s-channel collision term in Eq. (4.3) for tracking the leptmsymmetry is

CSs fl 7 2E/ H 27T32E (2m) 64(pl+pN Pq — pt)|M | Al ) (fl lafNaftatq)

7

(B.50)
with phase space factor
-0 (fl_jafNaftatq) = fl—i (fN (ft + fq - 1) - ftfq)a (B-51)

and matrix elementM given by Eq. (B.11). As in Section B.1.2 we work in the center-
of-mass frame Eq. (B.4)

PN +P =Pt +Pg=q. (B.52)
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and integrate first over the quark enetjy as in Eq. (B.7) and rewrite

P 5 (Ey —/pd + M2)
_ /dEN Newr 0

_ / By § (Ex — (p% + M?)) O(Ex) d*py

(En) d’pn

2EN
(B.53)

_ / By § (B2 — lq - pif? — M2) ©(Ey) dq,

where the last equality follows from changing the varialstafpy to q = pxy + pi»
and hencel’py to d*¢, and the integration is over the RHN enetfy;.
Again we choose an explicit coordinate system and use oottinvariance

q=1q/(0,0,1),
p = E; (07 sin7), cos 77)7 (854)
pt = Fy(cos ¢ sindd, sin ¢ sind, cos ).

In Eq. (B.10) we have the modifications

la—pil* = |al* + Ipe)* — 2q - pr = |a|” + E} — 2|q| B} cos (B.55)
la—pi” = laf* + P> — 2q - pr = |af® + E} — 2|a| E; cos.

The matrix element in theses coordinates is still given in Bgll) and for the delta
function in Eq. (B.53) one gets:
) (E]2v —la-pi* - M2) =4 (E]2v —|af> = E? +2|q|E; cosn — M2)
1 E2 _ B2 1 M2 2 (B.56)
5<cosv7— L e —|—|q|>.

- 2|qE 2|q| E;

Following the same procedure as in Section B.1.1, we redoeecdllision inte-
gral (B.50) to

1
Cs,slfi_7l = m/dcosﬁdcosndﬂg dEN dq|/\/ls|2 (B.57)
E? — E% + M + |q? E? — (E;+ Ex — Ey)? +q?
x 8 [cosn— —L N >(5 cos ) — —L
< ! 2lalB, 2lalB;

x A (3, I fiotg) © (Ex) © (B) © (By+ By — By,
with phase space element

eft (1+ (efFen —1) fu)
(1 + 65’5) (651+5N + 65’5) ’

Agliz) (fl_ZafNaftatq) = _fl_z (858)
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using as usual energy conservation, and Fermi—Diractitatfer the leptons and quarks.
In analogy to Section B.1.1, we further reduce the collisiiagral (B.57) to a sum
of six integrals with distinct integration ranges,

Csslfyil = C{) + ) + )+ ¢ + o) + ) (B.59)

S S s?

to be integrated numerically over two remaining degreesesfdom. To account for the
difference to Section B.1.1, we have to replace the intemratverd £, by an integration

overdE which leads to
Ey > pn = Ey <\/E} + M?

and ElgpN:>EN2\/E12+M2. (BGO)

The explicit integrals in Eq. (B.59) are:

e Firstintegral

~ N EZ+22 E+EN -
1y _ 3T hi M 1y ! -1 7(1
Css = 96,3 g w2, dEn ; dé; ALY 1Y,

(B.61)

WhereI,El) is given by Eq. (B.39).
Second integral witl1'§2) given by Eq. (B.41):

2 ~ 00 E+E _
o - 3T hiMm / dEn / TN e AU 1. (B62)
S5 T 9643 gl2 2 JE 0 s s

Third integral (¥ given by Eq. (B.43)):

3T  h: My [V 1 (Entun) (-1

cy) ) 1), (B.63)

Fourth integral (§4> given by Eg. (B.45)):
3T  hi My /\/8?+z2 . /slmv ) )
1

~I

d& A

ci) =
»S 6.3 ¢2 2
221 & v z 5 2&+En—yn)

Fifth integral ¢\” given by Eq. (B.47)):

3T K2 Mn o0 L&+ En—yn) -
o) = 3T hi M / dEx / : de, AL 16),
2073 & v NG R 0

(B.65)

sixth integral (§6) given by Eg. (B.49)):

T h2 M 7 00 E+ENn _
) = ; RSl / dEn / dg, A0 1) (B.66)
s 20w v? VEP+22 5 (En+yn)
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B.2 t-channel

B.2.1 Right-handed neutrino

The collision integral for the-channel process appearing in Eqg. (4.1) is given by

N
Coalfn) = 57 /H Gy )8 o+ v =) M ALY (v S i ).

(B.67)

with phase space factor

AtN) (fNafqaflaft) = [(1 - fN)(]' - fq)ftfl - foq(l - ft)(]- - fl)]a (868)

and

o Mmy1 pNDIDgPL

2
=24
|Mt| h 2 +2

(B.69)

is the matrix element.
The reduction of the collision integral proceeds in the samag as for the analogous
s-channel collision integral in Section B.1. We use the motuen

k=pnx — P =Pg — Pt» (B.70)

and integrate over the quark energy,

d? S(E, —
/ Qgt 5*(pn +pg—p1— 1) = /dEt d?’ptw O(E) 0(EN + Eq — B, — Ey)

x 0° (PN + Pg — P1 — Pt)
_0(EN+Ey— E — [pN +Pg —

) O(Ex + E, — E)

2|py +pPg — P
5(EN+Eq_El - |k’|‘Pq|)
= OFENy+E,— E
2k VN B B
=6 ((Exn + Ey — E)? — |k +pg|*) O(En + B, — E)).
(B.71)
Similarly, we can rewrite
d*p; 6 (B — |pil) 3
ik LS E
o8, / T O(E) d’p
— [ a1 (8 - i) ©(E) P (B.72)

— [ 415 (87 ~ Iy — KP?) O(B) %,
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where the last equality follows from changing the variabtefp; tok = py — p;, and
henced®p; to d*k, and the integration is over the lepton enefgy
As for the s-channel we stick to a specific coordinate system

k = |k[(0,0,1),
Pq = Eq (0,sinn, cosn), (B.73)
Py = |pn|(cos ¢ sindd, sin ¢ sind, cos ),
and obtain the following quantities:
t=(pn—p)° = (pg—p)° = (Ex — Ey)* — |k,
_t=M?
PNDI = 2 >
t
PgPt = 3 (B.74)
k + pgl” = [k|> + |pgl|* + 2k - pg = |k|* + E + 2k| E, cosn,
)k —pn|® = [k]” + |pn|* — 2k - pnv = [k|* + |pn|” — 2 k| [pw] cos 9.
The matrix element in these coordinates reads
M, (Ey — E)? — M? — k|2
M2 = g p2 2 (B — B) Ly (B.75)

(Ex — Ep)* = k|2

Averaging over the incoming RHN direction and integratingoall azimuthal angles
leads to the following 5-dimensional integral:

1
Cslfn] = T B o /dcosﬁdcosnqu dE; d|k| | M;|?
(Ex + Eq - E)’ - E2 - |k?| E? — B3 + M — |K?|
X 0 (cosn — oK 7, 0| cosd — 2k o]
x A (fxs fos Fis £2) © (Eq) © (BY) © (B + B, — By),
(B.76)
with
El-l-gq _1 En
(N) _ et (14 fy + e fy)
At (fN?f(]?fl?ft) - _(1 _|_ 651) (1 +68‘1) (681 _|_ 651+5‘q)? (B77)

assuming thermal equilibrium for the standard model padic

The two remaining angle$ andy run in the range

cosd,cosn € [—1,1], (B.78)

)
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and the integrals ovatosn andcos) in Eq. (B.76) can be readily performed. In the
process, integration limits are derived for the integradrdv= |k|:

cosp=1 = k‘G[EN—El,El—EN—2Eq],
cosn=—-1 = ke[-Ex+E;,2E,+ Ex — E|],

(B.79)
cosdv=1 = ke|[-E +pn,E +pn],
cosd=-1 = ke [El—pN,—El—pN],
wherepy = |pn|, andk = |k|. Putting these conditions together we get
sup [|EN — El|, |El —pNH <k< 1nf[|2Eq + En — El|aEl +pN] . (B80)
Since
Ei=En+FE;,—E >0
= -Enx—-E;+E <0
= —Ey —2E,+ E; <0,
this reduces to
sup [|EN — El|, |El —pNH < k < inf [2Eq + Ex — E, E) -|-pN] . (B.8l)

Thus, the integration ovetos n andcos ¢ effectively gives rise to a combination 6f
functions in the remaining-dimensional integral. Together with existifgfunctions in
Eq. (B.76), we define

Q= @(EN —|-Eq —El) @(QEl - (EN —pN)) @(2Eq + Eny — B — |pN - El|)
x O (k—|Ex — E|)© (k- [pn — Ei) (B.82)
X @(El+pN—k) @(2Eq—|—EN—El—k)
to collectively denote al® functions appearing in the remaining integral. Note that we

have omitted writing ou®(E;)O(FE,), since positive particle energies are understood.
The functions

@(2El — (EN—pN)) and @(QEq—i-EN—El— |pN—El|)
have been introduced to assure that the upper limit @always larger than the lower
limit.
Now we use the following relations to eliminate the absolatieies

1=O(Ey-E)+O(E,—Ey), 1=0(pNn—-E)+O(E —pn), (B.8I)
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and can now writé) = Q; + Q9 + Q3 + Q4, with:

Q0 =6 (Ey+E;—E) ©(Ex — E) ©(py — E)) ©2E,— (EN —pN))
XxO(2E,+ENy —E — (pn — Ey)) O(E +pN — k)
x ©(2E; + Exy — E — k) © (k- (Ex — E})) © (k= (py — E}))
=0 (py — E)) © (2B, — (Ex —pn)) © (3py — EN)
X O (B +py —k) ©(2E, + Ex — E— k) © (k- (Ey — ).
(B.84)

At this point we introduce® (3py — En) to assure thapy > Ex — py and used
O(Exy —E) ©(py —E) =0 (py — E)).
Further we have
Q=0 (Exv+E;, - E;) ©(Ey—E) O(E —py) OQ2E — (Exy —pN))

X O (2E, +Ey — E — (E;—pn)) © (£ +pN — k)
x ©(2E; + Exy — E;— k) © (k- (En — E})) © (k= (E; — pn))
=0 (Ey —E) ©(E; —pn) ©O2E, — (Exy —pN))
X0 (2E,+Ey— E — (E;—pn)) ©(E +pN — k)
X @(2EQ+EN—El —k‘) @(k— (EN—El)) @(k— (El —pN)),

(B.85)

AW =0(Exn+E,-E)O(E,—EN)©(pny—E) ©QRE,— (Ex —pnN))
XxO(2E;+Ey—E — (pn — E)) O(E +pn — k) (B.86)
X ©(2E;+Ey —E —k) O (k- (E, — En)) © (k- (pny — E)),
and
Q=0 (Ex + By — E) ©(E, - Ey) © (B —pn) O (2E — (Ex —pn))
(2B, + Exn — B — (Ei —pN)) © (B +py — k)
2Eq+En — E— k) ©(k— (B, — En)) © (k- (B —pn))
E — En) © (Eq — (E; — En)) © (2B, — (2B, — Ex — pn)) (B.87)
E +pyv—k) © 2B+ Exy — E; — k) © (k — (E; — pn))
E,—EyN) ©(2E, — (2E; — Ex —pnN)) O (E; +pN — k)
2E,+Ex—E; — k) ©O(k—(E;—pnN)).
Here we used

©(E, - EN) ©(E; —pn) =O(E - Ey).
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We see instantaneously thag gives no contributions since it3-functions lead to the
wrong conditionEy < E; < py.
In €4 to 24 we encounter for the upper limit dnthe function

@(El-l-p]v—k)@(QEQ—I-EN—El—k).

With a short calculation

E +pvsS2E;+ Ey — E
2E; — Ey +pN S 2E,, (B.88)
follow the combinations
O (2B, + Ex — E; — k) © (2E, — Ex + pn — 2E,) (B.89)
and
O (E +pv—k)©2E; - (2E, — Exy +pN)) - (B.90)
So we can split th€-functions further up:
FirstQ;:
Qo =0 3py — En) O (py — E;) © (2E, — (Ex — pN)) (B.91)
O ((2E, — (2E; — Ex +pnN)) O (k= (Ey — E})) © (E; +pn — k)
le = @ (3pN EN) (pN El) @ (2 (EN — pN)) (892)

X@(2El—EN—|—pN—2E) (k (EN—El))@(QEq—i-EN—EZ—k).

In 5 the situation is slightly more involved since we have to aeut the lower limit
onk, finding

Ok —(Ey — E)) ©(k— (B —pN)) O (EN — E) ©(E —pnN) (B.93)
O (k- (Ex — Ey)) © (Ex +pn — 2E;) © (B — pN)
O (k— (B —pn)) ©(2E; — (Ex +pN)) O (ENn — E)).
Using Eq. (B.93), we splif2; for the lowerk-limit into two parts

Q2= 0O (Ex +pn —2E1) © (E; —pN) O (2E; — (Ex — pN))
X@(qu—(QEl—EN—pN)) @(El+pN—k) (894)
x ©(2E,+ Eyx — E — k) © (k- (Ex — E}))
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and
N5 =0 (Exn — E;) ©(2E, — (Ex +pn)) © (2E, — (2E; — Ex — pN)) (8.95)
X O(E +py—k)©ORE;+En—E —k)©(k—(E —pn)).
In €5 ; we encounter
© (E; —pn) © (2E; — (En —pN))
leading with the condition8py < Exn — py to the two combinations
Q; = © (Bpy — Ex) © (B —pn) © (B +py — 2E)
X O ((2E, — (2B, — Exy —pn)) © (Ej +pn — k)
X O (2B, +Exy —E — k) © (k— (Ey — E)) (B.96)
=0 (3py — EN) O (E; —pn) O (ENy +pN — 2E)
x O (E +py —k) ©2E,+ Ex — E — k) ©(k — (Ex — E)))
and
0} =0 (Ey —3py) © (2E; — (Ex —pn)) O (Ex +pn — 2E))
X O (2E; — (2E; — Ey —pN)) O (B +pNn — k)
X O 2E,+Eyx —E — k) © (k- (Exy — E))) (B.97)
=0 (Ex —3pn) ©(2E;, — (Exy —pn)) O (En +pN — 2E))

@(El+pN—k)@(2Eq+EN—El—k)G(k—(EN—El)).

Now we can use Egs. (B.89) and (B.90) to specify the uppegiat®n limits onk for

3pny — En) © (E; —pn) O (Exy +pn — 2E)) (B.98)

2Eq — (2B, — Ex +pn)) O (k= (Exy — 1)) © (E; + pn — k)

3pn — En) © (B — pN) © (EN +pN — 2E))

k—(En — Ep)) ©(E +py — k)

Q) 4, = O (3py — En) O (E; —pn) © (Exy + py — 2E)) (B.99)
X0 (2E —Ex+pv—2E) ©(k—(Exn —E;) ©2E,+Ex — E — k).

and
Q35 = O (Ex — 3pn) © (En +py — 2E;) © (2B, — (Ex — pw)) (B.100)
x 0O (2E, — (2E;, — Ex +pn)) O (k — (Ex — E})) O (E; +pNy — k)
QL =0 (Ey —3py) © (Ex +py — 2E)) © (2B, — (Ex — pn)) (B.101)
X @(2El —EN+pN—2Eq) @(k— (EN—El)) @(2Eq+EN—El—k).
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Then with Egs. (B.89) and (B.90) we spi¥, ;; to get

DWoiia = O (En — E;) © (2E, — (En +pn)) © (2E, — (2E; — En + pn))
X0 (2E,— (2E, — Ex —pn)) O(k— (E; —pn)) O(E +pN — k)
=0 (Ey — E) ©(2E, - (Exn +pN)) ©(2E, — (2E; — Ex + pN))
x O (k— (B, —pn)) © (B +pn — k) (B.102)
Qo iip = O (Exn — E;) ©(2E, — (Exy +pN)) © (2E; — Exy +pN — 2E'q) (B.103)
x 0 (2B, — (2F, — Ex —px)) © (k — (B — p)) © (2B, + Ex — B — k).

For Q4 we use again directly Egs. (B.89) and (B.90) for specifyimg wpper limit ork

Qo = O (E; — EN) © (2E; — (2B, — En — pN)) (B.104)
x © (2E; — (2B, — Ex +pn)) © (k — (E; — pn)) © (B +pNy — k)
= 0O (E; — En) ©(2E, — (2E; — Ey +pnN)) © (k= (E; —pN)) © (B +py — k)
Q=0 (E —En) ©(2E; — (2E; — Ex —pN)) O (2E; — Ex +pN — 2E)
xO (k- (E —pn)) O©2E,+ENx —E — k). (B.105)

Several of these equations are equal apart of the limif,giso we can write

Q' = Q0+ Q5 4, + 5%,
= {0 (3pn — En)
x [©(py — Ei) © (2E; — (Ex —pn)) + © (Ex +py — 2E;) O (B — py)]
+ O (Ey —3pn) © (2B, — (Exy —pN)) O (EN +pN — 2E))}
xO(2E;, - (2E, — Exy +pn))O (k- (Exn — E})) © (E; +pNn — k)
={0@Bpy — En) O (2E; — (Ex —pn)) © (EN +pN — 2E))
+ O (Ex —3pn) © (2B — (Ex —pN)) © (Ex +pnv — 2E))}
X0 (2E,—(2E,— Ex +pn))O (k— (Ex — E))) © (E;j +pNv — k)
=0 (2E;, — (Ex —pn)) © (Exy +pN — 2E))
x O (2B, — (2B — Ey +pn)) © (k — (En — E})) © (B +py — k),
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0? _le+92 Z,,+Q2 ib (B.106)
= {0 (3pn — En)
x [0 (py — E1) © (2B, — (Ex —pN)) + O (En +pN — 2E)) © (E; — pN)]
+ O (Ex —3pny) ©(2E; — (Exy —pN)) © (EN +pN — 2E)}
x 0O (2E,— Enx +py —2E,)O (k- (Ex — E})) ©(2E, + Exy — E; — k)
={0(pn — En) © (2E; — (Ey —pn)) O (EN +pN — 2E))
+ 0O (Exy —3pn) © (2F; — (Ex —pn)) © (Ex +pNy — 2E))}
><@(ZEl—EN—l—pN—QEq)@(k—(EN—E'l)) @(QEq—i—EN—El—k)
=0 (2B, — (En —pn)) © (En +pN — 2E))
X O (2E,— Enx +pNn —2E,)O (k- (Ex — E))) ©(2E,+ EN — E; — k),

Q% = Qojia + QUa (B.107)
= [0 (Ex — Ei) © (2E; — (ENy +pN)) + O (B — EN)]
X O (2B, — (2B — Ey +pn)) © (k — (E; —pn)) © (B + py — k)
= O (2E; — (En +pn))
x © (2E; — (2E; — Ex +pn)) © (k — (B —pn)) © (B, +py — k),

and finally

Q' = Qo + Qup (B.108)
=[0(Enx — E;) ©(2E; — (En +pn)) + O (E; — Ey)]

x © (2El — FEn+pNn — 2Eq) C) (2Eq — (2El — Ey —pN))
(

O (k = (i — pn)) © (2B, + B — By — k)

=0 (2B, — (En +pn))

X O (2E, — Ex + py — 2E,) © (2E, — (2E, — Ex — px))
« O (k- (Ey —py)) © (2B, + Ex — B — k).

Summing all these terms up, we obtain

0= o=0"+0*+0*+ 0 (B.109)
w

and the collision integral (B.76) can equivalently be veritias

Csalfn] = ZW [ BB M A By fofif) 9. (8110
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As it turns out, there are two possible lower limits for theintegration:
kmin,1 = Exy — E; andkmine = E; — py. Here, a comment on the infrared cut-off is
in order. In the integrated picture, a divergence occurhiénintegral over att = 0,
whose regulation requires the introduction of a Higgs masthé propagator, i.e.,
|IMy? oc 1/t = [My|? < 1/(t —m3). In the full treatment, the matrix element has
the form | M, |2  1/((Ex — E;)* — |k?), so that the equivalent divergence occurs in
the integration ovek atk = Ey — Ej, i.e., atk = knyiy,1. This divergence can be
avoided simply by modifying by hand the integration Iinﬁggnim1 — fkmin’ﬁm@. There
are no changes for those integrals With, = kmin 2.

It is also possible to regulate the divergence by intrody@nHiggs mass in the
propagator, such as in the integrated picture. This modHimtegration ovek not only
for Ex > Ej (i.€.,kmin = kmin,1), butalso forE; > py (i.€.,kmin = kmin,2). In physical
terms this procedure corresponds to giving the Higgs pardienass whose magnitude
can vary from zero up to possible thermal contributions, Q.e< mg/M < 0.4T/M,
wheremq (T) ~ 0.4T is the thermal Higgs mass [105]. In the temperature regime
relevant to leptogenesis, electroweak symmetry is unibr@hel therefore leptons are
massless.

Since we have so far not included thermal corrections in thegnt work, for con-
sistency we prefer not to use the thermal Higgs mass. Funtbrer, in a full thermal
treatment, RHN decay into a lepton and Higgs pairs becomenatically forbidden at
high enough temperatures, and the decay of a Higgs pantitcieai neutrino and lepton
pair becomes viable [105]. Thus, in addition to determirttmgvalue of the infrared cut-
off there is also the question of its interpretation. In vieixthese issues, we choose to
deal with the infrared divergence using the simpler methazlitiing off the integration
overk atkmin = kmin,1 + mae, With a;, = me /M = 107°. In turn one has to add, in
the corresponding conditions féf, and E;, where the changes i1 are propagated.

After integrating overkcos n andcos 4, the original integral (B.76) is now split into
four parts

Csulfn] = CS +C5) +CF) + ¢S, (B.111)

where the constituent integrals are as follows:
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e Firstintegral (withk = k/7T):

o _ 3T h2 Mny [2ENFuN) e 3(26—En+yw) ge AN 7O
St T 96p3 € 2 ! L, gt fe oo
NYN v 5(5N*yN+ahZ) 5ah2
(B.112)
2E,+EN—E& _ _ 2 2 1.2
It(l):/ q di (SN 51) 2Z - k
En—=&E+apz (SN - gl) - kQ
2(En = &) (26, — m2) — 2 log | el
B 2 (En - &) .
e Second integral:
9 3T h2 M, [3En+un) o0 N) (2
c?) = e R / d&/ g, AV 12,
™ NYN v %(EN—yN—I—ahz) %(251—51\1-1-2/1\1)
(B.113)
1(2) B /SH-Z/N i (En — 51)2 — 2 k2
t 2 7.2
En—=&+apz (SN - gl) -k
2 (Ex — &) (28 — & _ 2 (] —apz (En+yn)
- (En = &) 26 = En +yn —anz) — 27 (108 | mrzg—0n) N £ 7o)
2 (En = &) .
e Third integral:
3 3T hZ My [ 2 (2Ei=Entum) N)
Cé,z T 26538 : 2 / d&/ d&, Ag ) It( )v
TCNYN U (En+yn) 3(26—En—ynN)
(B.114)
264+EN—E _ 2 2 712
It(S):/ a di (EN El) 22’ - k
&1—yn (gN - gl) — k?
2(En — &) (En +yx +2(E — £0) + 22 (log [~ prrpmitfrn 1)
h 2 (Ex — &) '
e Fourth integral:
4 3T h2 M mi o0 o N 4
) = — L= ﬁ dé, ﬁ dg, A 1
NYN v 5 (En+yn) 5(E—En+yn)
(B.115)

Styn _ 2 2 712
Lf4>:/ ai = E o2
E1—yn (EN - gl) — k2
En— En—yn —2&
4 (En — &) yn + 2* log [%s&% E€Z+zx—2€m
2 (Ev—&) .




B.2 t-channel 97

B.2.2 Lepton asymmetry

Thet-channel collision integral for the lepton asymmetry etiolu is

_dp} -1
Coplfy 7l = 2E‘/ H (27)3 2E, (2m)* 5" (o1 + pg — P — Pe) M2 )(fl,z,ft,fNafq)a

7

(B.116)

with
-7 (fip fo Insfg) = fig (fg (Fe+ v = 1) = fufn)- (B.117)

The matrix element is the same as for the RHN given in Eq. (B&% we use the
momentum

k =p; — P~y = Pg — Pt» (B.118)

and Eq.(B.5) to integrate over the top-energy. We rewrigeitibegration over now the
RHN energy, respectively:

d S(E, —
/25 5 (01 + pg — o3 — 1) =/dEtd3ptw O(Ey) 3(Fy + By ~ Ey — E)

x 8% (1 + Py — PN — P1)

_ 0 (Ei+E; — Ey — |pi + P — PN]) o
2|p; + Py — PN

_0(E+Ey— Ey — k+pqg|)

El-l-Eq —EN)

G(El +Eq - EN)

2k + pgl
=6 (B, + Ey— En)* — |k +pg|?) O(E, + E, — Ey).
(B.119)
Similarly, we can rewrite
By . 0 (EN —VIpN2+ M2> o(Ey) i
2Ey _/ N o /IpNE + M2 NIEPN
(B.120)

= /dE‘N(S (EX — [pn|? — M?) O(EN) d*pn
/dENci( — |pi — k|* = M?) dEN d°F,

where the last equality follows from changing the variabanfpy tok = p; — pw,
and hencel®py to d*k, and the integration is over the RHN enerfy.
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We specify an explicit coordinate system

k = [k| (0,0, 1), (B.121)
py = E, (0,sinn,cosn),
P = Ej (cos ¢ sind, sin ¢ sin, cos ),

to get the absolute values of the momentum differences (Weduote quantities that
differ from that in Eq. (B.74) )

k + pgl* = [k + [pg|* + 2kpy = [k|> + E; + 2k| B, cosn

(B.122)
Ipr — k|? = |k|” + |pi|* — 2kp; = |k|* + E} — 2|k| E} cos®

and the delta-functions:
5 ((El +E,— Ey)? — |k + pq|2> — ((E, + By — Bx)? — B2 — k|2 — 2k| B, cos n)

1 ( (By+ E, - En)* - E} - |k|2>
0| cosn—

2K B, 2IK[ B,
0 (EJQV - M’ - |py —k|2) =4 (E]2v — M? - E} — k> + 2[k|E cos )

E2 — E? — M? — |k|?
5 9 N l
<cos + 2|k|El >

1
- 2|k E
(B.123)

Following the method of the previous sections, we reducedntiegral (B.116) to

1
Csulfil = PR /dcosﬁdcosnqu dEy d|k||M;/|?
l
(E, + E, — Ey)* — E2 — |K?| E% — E? — M? — |K?|
5 _ q N !
X (cosn 2k B, ) <cos19 + 2k >
x AV (f iy fos fs o) © (By) © (Ey) © (B + B, — Ex),
(B.124)
with
1 e (et (=14 fn) — e fn
AN s Ino fa) = Fia ( ) (B.125)

(1 + efa) (efn + efatér)
as the phase space factor.

In analogy to Section B.2.1, we integrate oves n andcos 1) to get the integration
ranges ork, but compared to Section B.1.2 here the situation is mom@ved.
Again, the two angle# andy run in the range

cosd,cosn € [—1,1], (B.126)
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and the explicit derived integration limits for the intelgoaer k = |k| are:

cosn=1 = ke[E —En,Ey—E —2FE],
cosn=-1 = ke|Ey—FE,2E,+ E; — En]|,
U By = Bi, 2B + B = Bn] (B.127)
cosd =1 = ke€l[E —pn,E +pn]
cosd=—-1 = ke[-E +pn,—FE —pn]
wherepy = |pn|, andk = |k|. Putting these conditions together and demanding0
andE; > 0 we get

sup [|EN - El|, |El —pNH S k S inf [2Eq - EN - ENaEl —|—pN] . (8128)

Compared to Eq. (B.81) one of the upper integration limits:dras changed since we
interchanged?; and E'y in the final and initial state, respectively. Together witiséng
O functions in Eq. (B.124), we now define

Q=0(E +E,— Ey) ©(2E, - (Ey —pn)) © (2B, + E; — Ey — [py — Ei)
x O (k—|Ex — E|)© (k- [py — Ei) (B.129)
x O (E +pn —k) ORE,+ E;, — Exy — k),

to collectively denote alb functions appearing in the remaining integral. Note again,
that we have omitted writing o (En)©(E,), since positive particle energies are un-
derstood. The functions

© (2B, - (Exy —pn)) and O (2E; + E; — Ey — |py — Ey)
have been introduced to assure that the upper limit @always larger than the lower
limit.
Heron, the reduction of Eq. (B.129) goes in analogy to Seddi®.1 with some modifi-
cations:
e O(2E,+ E; — Ex — |pn — Ej|) reduces to
© (2B, — (EN —pN)) (B.130)
wheneverE; > py.

e For the upper limit we encounter now

O(E +pn —k) ©(2E,+ E, — Ex — k), (B.131)
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leading to the combinations
©(2E,+ E, — Ex — k) ©(Ex +pN — 2E,) (B.132)
and

© (Ei+pn — k) ©(2E; — (En +pnN)) - (B.133)

¢ With the above modifications we arrive again at for case$Xor- Q*. Now, we
have to change the integration limits éhto limits on £y, where we find

4F? + M?

0 (251 — (Ey — p)) © (By +py - 28) = 0 (L2 )

(B.134)

and
AE? + M2>

B.135
1L ( )

O (Exy +pNy —2E;) =0 <EN

At this point we can write down the four parts@f, = >~ = Q! + Q2 + Q% 4+ Q*:
n

AE? 4+ M?
Q! =0 <EN — l7> © (2Eq — (EN —|—pN))
AiE,
% 0 (k- (Ex — F1) © (Fy +py — k) (B.136)
5 AE} + M?
0° =06 EN—T @(Eq—(EN—El))@(EN+pN—2Eq)
x O (k- (Ex — E)) ©(2E, + B — Ex — k), (B.137)

4E? + M?
03 -0 <17 — EN> © (2E, — (Enx +pnN))

4F;
%O (k— (Ei—p)) © (i + px — k) (8.138)
and
' =6 (w - By ) © (28, — (By —px) © (By +px 28,
%@ (k— (Fi—px)) © (Fi + px — ). (8.139)

As in Section B.2.1 we cut-off the integrand@fﬁz andcgz by addingay, in the lower
integration limit ofk ( modifying the limits of £/, and E'x accordingly) .
The collision integral (B.124) can then equivalently betten as

1
Csy[f, 7] = Zm/dﬂ] dEy dlk| |[M* A (fi, fgr f, fr) Q. (B.140)
I
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The four integrals have again to be integrated numericaltythe summed up to give
Coulf,_i) = C5) + S+ C§) + ¢, (B.141)
with:

e Firstintegral:

1
L 3T KM, [ 3(Entyn) =) (1
cy) = . /( dé’Nfg €, A7V 1,

s 2671-35 U2 251—ahz)2+z2 1
NYN 23, anz) N781+§ahz

(B.142)

R &)’ — = K
En—=&E+apz (EN — 51)2 — kQ

E
2 (gN B gl) (2 (EN B Sq B gl) + ahz) + 2 log [(5q*51v+51)?Qa(}éjvffl)Jrahz)

|

2 (Ev - &)

e Second integral:

T  hiMmy [ o0 0
Cézz _ 3 7 m1ﬁ dENﬁ de, Agz 0) It(2)7

H 2671-3 ,02 le,ahz)2+22
Enyn 2(28; —ap=) 2 (En+yn)

(B.143)

Eityn B _ 2 2 k2
1@ = / ai En &) — 2
En—E&+apz ((S‘N - (S‘l) - k'2

2 (En — &) (26— EN +yn — apz) — 27 log [(le —

—En+yn) (2(En—&)+an2)

2 (En - &)

e Third integral:

4S2+z2

2 7 ; LEn+yn) -
Cé?,t) _ 3T hi M m / 4z dEx /2 i, Aglil) It(?’)’
’ 20 Enyn v? z L(En—uyn)

(B.144)

e [T e b) 2 I
E—yn (gN - El)Q — k2

2 (En — &) (26, — En +yn) + 22 log [“Eé}v‘f’gggif\; ;@;fv)]
2 (Ev - &) '




102 App. B: Reduction of the scattering collision integrals

e Fourth integral:

g7 422

2 ~ — 00 -
CF;Z S ;’)T h; Mzml/ 4g, dEN/ de, Agl—l) It(4)’
T ®m vy v : L(En+un)

(B.145)

E+yn _ 2 .2 712
10 / gy —&) — = -k
€

I—YN (gN - El)2 - %2

En—26—yn) (En—
4 (En — &) yn + 2° log ng_gngrzx;EgZJrZZﬂ

2 (En - &)




Appendix C

Evolution of the top Yukawa
coupling

To determine the gauge and Yukawa couplings at some eneagp/se= log (7'/mz),
we use the renormalisation group equation
g} _ a4

— ! c.1
il (C.1)

wherei denotes the corresponding gauge group of the Standard Mblgelconstants
for the gauge couplings are

41 5 16
(c1,c2,¢3) = (E "3 —7> . (C.2)
At one loop the solution of (C.1) for the gauge couplingsdgel
(C.3)

Neglecting contributions from the bottom and charm Yukawaptings, the renormal-
ization group equation for the top Yukawa coupling at ongl@ogiven by [150]

— =—h; |hj——=-=91— =95 — — . C.A4

dy — 8n2 t t T g 391 292 993 (C.4)
The evolution ofh; from the electroweak scale up to the GUT scale is shown in Fig-
ure 4.8.

A detailed study of the evolution of quantities relevantlé&ptogenesis can be found
in [151].
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