
Technische Universität München
Fakultät für Informatik

Lehrstuhl III – Datenbanksysteme

Community-Driven Data Grids

Diplom-Informatiker Univ.
Tobias Scholl

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Hans Michael Gerndt

Prüfer der Dissertation:
1. Univ.-Prof. Alfons Kemper, Ph. D.
2. Univ.-Prof. Dr. Dieter Kranzlmüller,

Ludwig-Maximilians-Universität München

Die Dissertation wurde am 17.09.2009 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 01.03.2010 angenommen.

To my daughter Julia Sophie

Abstract

E-science communities and especially the astronomy community have put tremendous ef-
forts into providing global access to their distributed scientific data sets to foster vivid data
and knowledge sharing within their scientific federations. Beyond already existing huge data
volumes, the collaborative researchers face major challenges in managing the anticipated data
deluge of forthcoming projects with expected data rates of several terabytes a day, such as the
Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), the Large Synoptic
Survey Telescope (LSST), or the Low Frequency Array (LOFAR).

In this thesis, we describe and investigate community-driven data grids as an e-science
data management solution. Community-driven data grids target at domain-specific federations
and provide a scalable, distributed, and collaborative data management. Our infrastructure
optimizes the overall query throughput by employing dominant data characteristics (e. g., data
skew) and query patterns. By combining well-established techniques for data partitioning and
replication with Peer-to-Peer (P2P) technologies, we can address several challenging problems:
data load balancing, efficient data dissemination and query processing, handling of query hot
spots, and the adaption to short-term query bursts as well as long-term load redistributions.

We propose a framework for investigating application-specific index structures to create
locality-aware partitioning schemes (so-called histograms) and to find appropriate data map-
ping strategies. We particularly investigate how far mapping strategies based on space filling
curves preserve query locality and achieve data load balancing depending on query patterns in
comparison to a random mapping.

An efficient data dissemination technique for the anticipated large data volumes is important
for several use cases within scientific federations, including initial data distribution and data
replication. A scalable solution should neither induce a high load on the transmitting servers
nor create a high messaging overhead. Optimizing data distribution with regards to latency and
bandwidth is infeasible in our scenario. Therefore, we propose several strategies that optimize
network traffic, use chunk-based feeding, and improve data processing at receiving nodes in
order to speed up data feeding.

In the face of different typical submission scenarios, we show how community-driven data
grids can adapt their query coordination strategies during query processing. We explore the
impact of uniform of skewed submission patterns and compare multiple strategies with regards
to their usability and scalability for data-intensive applications. Our techniques improve query
throughput considerably by increased parallelism and data load balancing in both local as well
as wide area deployments.

Addressing skewed query workloads, so-called query hot spots, by query load balancing and
directly meet the requirements of a data-intensive e-science environment is another interesting
and challenging task. We enhance our data-driven partitioning schemes to trade off data load
balancing against handling query hot spots via splitting and replication. We use a cost-based
approach for workload-aware data partitioning. Based on these workload-aware partitioning
schemes, we use master-slave replication to compensate for short-term peaks in query load and
address long-term shifts in data and query distributions by partitioning scheme evolution.

Our research prototype HiSbase realizes the concepts described within this thesis and offers
a basis for further research shaping the data management of future scientific communities.

iii

Acknowledgements

First of all, I am grateful to my advisor Prof. Alfons Kemper, Ph. D., for giving me the opportu-
nity to pursue this thesis under his guidance. During many discussions, he provided invaluable
advice, comments, and encouragements. I also thank Prof. Dr. Dieter Kranzlmüller from the
Ludwig-Maximilians-Universität München for serving as reviewer for my thesis.

During my time at the database group at TUM, I enjoyed working with my colleagues, es-
pecially Dr. Angelika Reiser who coordinated our efforts in the AstoGrid-D project and had
an inexhaustible supply of knowledge and experience. For their help, the pleasant working at-
mosphere, and insightful discussions, I thank Martina-Cezara Albutiu, Stefan Aulbach, Veneta
Dobreva, Dr. Daniel Gmach, Prof. Dr. Torsten Grust, Benjamin Gufler, Sebastian Hagen, Dean
Jacobs, Ph. D., Stefan Krompaß, Dr. Richard Kuntschke, Manuel Mayr, Jessica Müller, Fabian
Prasser, Jan Rittinger, Andreas Scholz, Michael Seibold, Dr. Bernhard Stegmaier, Dr. Jens Teub-
ner, and Dr. Martin Wimmer. I particularly thank Evi Kollmann, our secretary.

Several students offered their support and devotion to implement our research prototype
HiSbase. I thank Daniel Weber for supporting the development of the first prototype. Bernhard
Bauer helped implementing and evaluating the quadtree-based histograms and the workload-
aware partitioning schemes. Achim Landschoof implemented parts of our framework for com-
paring histograms and Dong Li implemented a statistics component to measure network traffic.
Ella Qiu implemented the query coordinator selection strategies during her RISE internship,
which was sponsored by the DAAD and TUM. Tobias Mühlbauer was a great support during
the implementation and evaluation of the data feeding strategies. I also thank my colleagues
Benjamin Gufler and Jessica Müller for their contributions to the HiSbase project.

The HiSbase project is part of the AstroGrid-D project and is funded by the German Fed-
eral Ministry of Education and Research (BMBF) within the D-Grid initiative under contract
01AK804F. I thank Dr. Thomas Fuhrmann for providing access to the PlanetLab test bed and
the LRZ Grid team for their great support and resources.

Finally, I thank my wife Nina and my parents Elisabeth and Hartmut for their love, support,
and endurance throughout the years.

Munich, September 2009 Tobias Scholl

v

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Application Setting . 2
1.3 Our Approach and Contributions . 6
1.4 Outline . 7

2 HiSbase 9
2.1 Locality Preservation . 10

2.1.1 Data Skew . 10
2.1.2 Histogram Data Structures . 11

2.2 Architectural Design . 13
2.2.1 Training Phase (Histogram Build-Up) 13
2.2.2 HiSbase Network . 14
2.2.3 Data Distribution (Feeding) . 15
2.2.4 Query Processing . 16
2.2.5 Query Load Balancing . 17
2.2.6 Evolving the Histogram . 17
2.2.7 HiSbase Evaluation . 18

2.3 Related Work . 21
2.3.1 Distributed and Parallel Databases . 21
2.3.2 P2P architectures . 21
2.3.3 Scientific and Grid-based Data Management 23

3 Community Training: Selecting Partitioning Schemes 27
3.1 Training Phase . 27
3.2 Data Structures . 28
3.3 Evaluation of Partitioning Scheme Properties 29

3.3.1 Duration . 31
3.3.2 Average Data Population . 31
3.3.3 Variation in Data Distribution . 31

vi Contents

3.3.4 Empty Partitions . 34
3.3.5 Size of the Training Set . 36
3.3.6 Baseline Comparison . 36
3.3.7 Discussion . 38

3.4 Related Work . 39
3.5 Summary . 39

4 Community Placement: Better Serving Locality with Space Filling Curves 41
4.1 Random or Space Filling Curves . 41
4.2 Placement Evaluation . 42

4.2.1 Data Load Balancing . 43
4.2.2 Query Locality . 45

4.3 Summary and Future Work . 46

5 Feeding Community-Driven Data Grids 47
5.1 Feeding Scenarios . 47

5.1.1 Initial Load . 48
5.1.2 New Node Arrival . 48
5.1.3 Planned Node Departure . 48
5.1.4 Unplanned Node Departure . 48
5.1.5 Replicating Data to Other Nodes . 48

5.2 Pull-based and Push-based Feeding Strategies 49
5.2.1 Pull-based Feeding . 49
5.2.2 Push-based Feeding . 50

5.3 An Optimization Model for Feeding . 51
5.3.1 Network Snapshots . 51
5.3.2 A Model for Minimum Latency Paths 53
5.3.3 A Model for Maximum Bandwidth Paths 55
5.3.4 Combining Latency and Bandwidth 57
5.3.5 Conclusions . 57

5.4 Optimization by Bulk Feeding . 58
5.4.1 Traffic Optimizations . 58
5.4.2 Chunk-based Feeding Strategies . 59
5.4.3 Optimizing Imports at Receiving Nodes 60

5.5 Feeding Throughput Evaluation . 61
5.5.1 Initial Load Evaluation . 61
5.5.2 Replication Evaluation . 62
5.5.3 Discussion . 63

5.6 Related Work . 63
5.7 Summary and Future Work . 64

6 Running Community-Driven Data Grids 65
6.1 Query Processing . 65

6.1.1 Data Access Patterns . 66
6.1.2 Query Coordination Strategies . 68
6.1.3 Evaluation of Query Coordination Strategies 72
6.1.4 Summary and Future Work . 77

6.2 Throughput Measurements . 78

Contents vii

6.2.1 General Definitions . 78
6.2.2 Evaluations in a Local Area Network 79
6.2.3 Evaluations with AstroGrid-D and PlanetLab Instances 80
6.2.4 Discussion . 82

7 Workload-Aware Data Partitioning 83
7.1 Load Balancing Techniques . 84
7.2 Region Weight Functions . 86

7.2.1 Point Weight . 86
7.2.2 Query Weight . 87
7.2.3 Combining Data and Query Weights 87
7.2.4 Adding Query Extents . 89
7.2.5 Cost Analysis . 90

7.3 Evaluation . 90
7.3.1 Partitioning Scheme Properties . 91
7.3.2 Throughput Evaluation . 99
7.3.3 Summary . 101

7.4 Related Work . 102
7.5 Summary and Future Work . 103

8 Load Balancing at Runtime 105
8.1 Short-term Load Balancing . 105

8.1.1 Replication Priority . 105
8.1.2 Monitoring Statistics . 107
8.1.3 Master-Slave Replication . 107

8.2 Long-term Load Balancing . 108
8.2.1 Partitioning Scheme Evolution . 109
8.2.2 Data Dissemination during Histogram Evolution 110

8.3 Summary and Future Work . 111

9 Outlook and Future Challenges 113

A Example Execution of the Minimum Latency Path Algorithm 115

Bibliography 117

ix

List of Figures

1.1 Database access within AstroGrid-D via the OGSA-DAI middleware 3
1.2 A multi-wavelength view on the milky way 4
1.3 The observational data set and query set . 5
1.4 The uniform data set Pmil from the Millennium simulation 6

2.1 Architecture for community-driven data grids 10
2.2 Sample data space with skewed data distribution 11
2.3 Application of the Z-quadtree to the data sample 12
2.4 Mapping of the quadtree of Figure 2.3 to multiple nodes 14
2.5 Histogram evolution . 17
2.6 The HiSbase GUI . 19
2.7 Simulated and distributed evaluation environments on FreePastry 20

3.1 Partitioning scheme with 1 024 partitions based on quadtrees with regular de-
composition and with median heuristics. 29

3.2 Duration of the training phase . 32
3.3 Average population of a partition in comparison to the partition with the highest

population . 33
3.4 Median-based quadtree for Pmil with 212, 213, and 214 partitions 34
3.5 Variation in data distribution . 35
3.6 Empty partitions . 35
3.7 Effect of decreasing sample ratio, Pobs . 37
3.8 Baseline comparison for the standard quadtree, Pobs, and 1 024 partitions 38

4.1 Data load balancing for the Pobs data set on 1 000 nodes 44
4.2 Query locality on 100 nodes with varying partitioning schemes 45
4.3 Query locality for varying network sizes with 16 384 partitions 45

5.1 Example for geometric predicate optimization with only minor improvements . 49
5.2 Tuple-based feeding strategy (TBFS) . 50
5.3 “Wolf”-based feeding strategy (WBFS) . 50

x List of Figures

5.4 Overview of network snapshots . 52
5.5 Result of Algorithm 5.1 for G∗ and s as source node 54
5.6 Communication pattern for creation of region-to-node mapping during data re-

plication . 58
5.7 Buffer-based feeding strategy (BBFS) . 59
5.8 File-based feeding strategy (FBFS) . 60
5.9 Results for the initial load scenario . 62
5.10 Results for the replication scenario . 63

6.1 Portal-based query submission . 66
6.2 Institution-based query submission . 66
6.3 Example to illustrate query processing . 68
6.4 Key for the Figures 6.5 and 6.6 . 69
6.5 Message exchange for coordination strategies where the submitting peer (PS) is

the coordinator . 70
6.6 Message exchange for coordination strategies where a region with relevant data

(D1) is coordinator . 71
6.7 Percentage of queries that require data from different number of partitions . . . 73
6.8 Average number of routed messages per strategy with workload Qobs and portal-

based query submission (sp) . 74
6.9 Average number of routed messages per strategy with Qscaled and portal-based

query submission (sp) . 74
6.10 Average number of routed messages per strategy with Qscaled and institution-

based query submission (si) . 75
6.11 Network traffic statistics for workload Qobs and institution-based query submis-

sion (si) . 75
6.12 Lorenz curves of the coordination load distribution on 3 000 nodes and portal-

based query submission (sp) . 76
6.13 Lorenz curves of the coordination load distribution on 3 000 nodes and institution-

based query submission (si) . 77
6.14 Query throughput results for the standalone database and single node configu-

ration . 79
6.15 Throughput comparison of the multi-node instance with the projected values of

the single-node configuration . 80
6.16 Throughput for 32 nodes with MPL=500 for workload Qobs and Qeval_scaled . . 81
6.17 Fraction of nodes contributing 90% of the overall queries when intreasing the

network size . 82

7.1 Balancing query load (gray query rectangles) via splitting and replication . . . 84
7.2 Impact of skew on the height of the leaves . 85
7.3 Impact of splitting a leaf on its ratio to a query area 85
7.4 The observational data and workload . 92
7.5 Percentage of queries in Qobs that are answered by consulting more than one

partition . 93
7.6 Quadtree-based partitioning schemes of Pobs with 16 384 regions 93
7.7 Lorenz curves for Pobs for partitioning schemes with 4 096 regions and weight

functions wp and wpq . 94
7.8 Comparison of the Gini coefficients for different training workload sizes for Qobs 95

List of Figures xi

7.9 Comparison of the percentage of regions that receive no queries from Qobs . . . 95
7.10 Communication overhead for partitioning schemes of Pobs in comparison to a

centralized setting . 96
7.11 Data load of Pmil for quadtree-based partitioning schemes with 4 096 partitions

for the data-based weight function (wp) and the heat-based weight function (wpq) 97
7.12 Region load of Pmil for quadtree-based partitioning schemes with the 4 096 par-

titions for the data-based weight function (wp) and the heat-based weight func-
tion (wpq) . 98

7.13 Partitioning with 1 024 regions for Pmil . 98
7.14 Throughput of deployments with 16 and 32 nodes 100
7.15 Throughput on the observational query workload with simulated networks . . . 100
7.16 Throughput for the region-uniform query workload 101

8.1 Evolution of histograms within HiSbase . 109
8.2 Example time line for the transition of histograms 110

A.1 Example graph G∗ . 115
A.2 Minimum latency path between node s and node v3 115
A.3 Example execution of Algorithm 5.1 on G∗ 116

xiii

List of Tables

1.1 Size of current astronomical data sets . 3
1.2 Estimated data grow rates for upcoming e-science projects 4

3.1 Parameters for the training phase evaluation 30
3.2 Sizes of the used training samples . 36

4.1 General parameters for the evaluation of mapping strategies 43
4.2 Additional space required by placing partitions randomly on 32 nodes 44

5.1 Parameters for the evaluation of feeding strategies 61

6.1 General parameters for the evaluation of coordination strategies 73

7.1 Categorization of regions for the replication-aware weight function 86
7.2 Overview of region weight functions in Section 7.2.3 88
7.3 General parameters for the evaluation of workload-aware partitioning schemes . 91
7.4 Weight function specific parameters . 91

xv

List of Algorithms

2.1 Z-quadtree implementation of lookupArea(h,a) 13
2.2 Publish data in HiSbase . 13
2.3 Query data in HiSbase . 14
2.4 Handling node arrivals . 15
5.1 Minimum latency path . 53
6.1 Algorithm for submitQuery . 66
6.2 Algorithm for coordinateQuery . 67
6.3 Algorithm for processPartialQueryMsg . 67
6.4 Algorithm for processPartialAnswerMsg . 68

1

CHAPTER 1

Introduction

E-science projects of many research communities, e. g., biology, the geosciences, high-energy
physics, or astrophysics, face huge data volumes from existing experiments. Due to the expected
data rates of upcoming astrophysical projects, e. g., the Panoramic Survey Telescope and Rapid
Response System (Pan-STARRS)1, producing several terabytes a day, current centralized data
management approaches offer only limited scalability.

Combining and correlating information from various experiments or observations are the
key to finding new scientific insights. Mostly, the institutions conducting the experiments pro-
vide the data results to the whole community by hosting the data on their own servers. This
approach of autonomous data management is not well-suited for the application scenario just
described as each data source needs to be queried individually and (probably large) intermediate
results need to be shipped across the network.

In astronomy, for example, most often the individual projects provide interfaces to their own
data set for interactive or service-based data retrieval. These service interfaces are standardized
by the International Virtual Observatory Alliance (IVOA)2 in order to ensure interoperability
between the various interfaces. User queries can consume only a limited amount of CPU re-
sources, have a result size limit, and the number of parallel queries per user is restricted in
order to allow fair use and to avoid overloading the servers. Examples of such restrictions are
query cancellation after 10 minutes running time or a maximum result size of 100 000 rows.
Batch systems (such as CasJobs (O’Mullane et al., 2005)) offer less restrictive access to the
data sources and sometimes even a private database for later processing or sharing the results
with colleagues. However, some queries might suffer from long queuing times.

Furthermore, we observe that in many e-science communities, data sets are highly skewed
and scientific data analysis tasks exhibit a large degree of spatial locality. Dealing with data
skew while preserving spatial locality is fundamental to realize a scalable information infra-
structure for these communities. Section 1.2 gives a more detailed scenario from the astro-
physics domain exhibiting these characteristics.

1http://pan-starrs.ifa.hawaii.edu
2http://www.ivoa.net

http://pan-starrs.ifa.hawaii.edu
http://www.ivoa.net

2 1. Introduction

To avert the scalability issues of their current systems, communities investigate different
technologies. The adaption to domain-specific data and query characteristics is fundamental
for these approaches to result in benefits for the researchers. These characteristics can include
properties such as data skew and complex multi-dimensional range queries.

Future e-science communities require the efficient processing of data volumes that central-
ized data processing or a data warehouse approach cannot sufficiently scale up to. Centralized
data processing, where researchers ship data on demand from the distributed sources to a pro-
cessing site—most often their own computer—has the deficiency of high transmission cost. On
the other hand, a data warehouse does not cope with the high query load and the demanding
throughput requirements.

1.1 Problem Statement
In order to deal with the sheer size of their resulting data, researchers within a community
join forces in Virtual Organizations and build infrastructures for their scientific federations, so-
called data grids (Venugopal et al., 2006). These data grids interconnect dedicated resources
using high-bandwidth networks and enable researchers to share and correlate their data sets
within the community. In order to ensure reproducibility, published data sets are not changed.
Instead, new additional versions are made available. Moreover, an increasing popularity within
the user community puts high demands on the various architectural design choices, such as
providing high query throughput. Further challenging aspects are skewed data distributions in
the data sets as well as query hot spots.

E-Science communities need support for building an infrastructure for data sharing that 1)
is able to directly deal with several terabytes or even petabytes of data, 2) integrates the existing
high-bandwidth networks with several hundred nodes within the communities, and 3) offers
high throughput to cope with a steadily growing user community. Given these requirements,
how can we provide a scalable infrastructure that is capable of using the shared resources and
performs data as well as query load balancing?

1.2 Application Setting
In astrophysics as well as in other scientific communities we expect exponential data growth
rates in addition to already existing enormous data volumes. Furthermore, the increasing access
rates by researchers to these information systems support the need for a scalable and efficient
data management. The correlation and combination of observational data or data gained from
scientific simulations (e. g., covering different wave bands) is the key for gaining new scientific
insights. The creation of likelihood maps for galaxy clusters (Carlson et al., 2007; Schücker
et al., 2004) or the classification of spectral energy distributions (Kuntschke et al., 2006) are
examples for such applications. Together with our cooperation partners from the AstroGrid-D
community project (Enke et al., 2007) within the D-Grid initiative, we construct a grid envi-
ronment that supports users in bringing their everyday science to the grid. Many typical as-
trophysical applications have been identified and in order to successfully port them to the grid,
we developed a collection of grid tools and services. These applications range over distributed
computation-intensive simulations or data-analysis tasks, steering robotic telescopes, and com-
plex parallel workflows. Our main focus are data-intensive applications that access scientific
databases from the grid or use grid-based data stream management (Kuntschke et al., 2006).

1.2 Application Setting 3

Figure 1.1: Database access within AstroGrid-D via the OGSA-DAI middleware

Catalog Number of objects Approx. object size Size
SDSS (DR5) 215 million 14 KB 3.6 TB
TWOMASS 471 million 2 KB 1 TB
USNO-B1.0 1 000 million 0.9 KB 0.08 TB

Table 1.1: Size of current astronomical data sets

We therefore use data and workloads from the domain of astrophysics, though the techniques
presented in this thesis are also applicable to other domains.

Within AstroGrid-D, we access persistent data, such as scientific databases, using the com-
ponents developed by the Open Grid Services Architecture – Data Access and Integration
(OGSA-DAI) project (Antonioletti et al., 2005). The OGSA-DAI project integrates with the
Globus Toolkit and participates in the standardization process of the Open Grid Forum (OGF)
Data Access and Integration Services (DAIS) working group (Antonioletti et al., 2006). OGSA-
DAI offers a unified way of accessing and integrating distributed, heterogeneous data resources
using web services or grid services. The flexible OGSA-DAI interface allows for integration of
resources such as files, RDF graphs, and relational and XML databases in particular.

Figure 1.1 gives an overview of the main OGSA-DAI components and how they are used
within AstroGrid-D. Integrated into a Globus Web Service Container, OGSA-DAI publishes
a Data Service interface that allows web service or grid service clients to interact with Data
Service Resources. These data service resources are databases exposed via the data service.
OGSA-DAI can therefore hide the complexity of the individual database (e. g., driver, connec-
tion URL) from the grid user, the database resources can be kept behind institutional firewalls,
and database access is secured using the mechanisms based on certificates provided by the
Globus Toolkit. If communities want to integrate a new type of resource, they can define an
interface for that resource via the OGSA-DAI activity-framework.

To give an idea of the future scalability challenges, Table 1.1 summarizes the number of
objects, the approximate size of an individual object, and the complete size for three of the major
current astrophysical data sets, the Sloan Digital Sky Survey (SDSS)1, the Two Micron All Sky
Survey (TWOMASS)2, and the USNO-B1.0 3 catalog. Assuming a uniform distribution of the
catalogs in Table 1.1 to a thousand dedicated nodes of an astrophysics community grid, each
node covers about 5 GB of data and thus the data sets fit almost completely in main memory.

1http://www.sdss.org/dr5/
2http://www.ipac.caltech.edu/2mass/
3http://www.nofs.navy.mil/data/fchpix/cfra.html

http://www.sdss.org/dr5/
http://www.ipac.caltech.edu/2mass/
http://www.nofs.navy.mil/data/fchpix/cfra.html

4 1. Introduction

Project Data growth rate
Per day Per year

Pan-STARRS 10 TB 4 PB
LSST 18 TB 7 PB
LOFAR 33 TB 12 PB
LHC 42 TB 15 PB

Table 1.2: Estimated data grow rates for upcoming e-science projects

(a) Optical wavelength

(b) X-ray wavelength

Figure 1.2: A multi-wavelength view on the milky way (source: http://mwmw.gsfc.nasa.gov/)

These data sets still could be managed at a single site, although with restrictions such as
high transmission costs or limited resource availability. Upcoming e-science projects (see Ta-
ble 1.2) in astrophysics and high energy physics face a data deluge which will be distributed
across several sites. Examples for such upcoming projects beyond the Pan-STARRS project
are the Large Synoptic Survey Telescope (LSST)1 and the Low Frequency Array (LOFAR)2 in
astrophysics as well as the Large Hadron Collider (LHC)3 in high energy physics.

Researchers usually access and analyze logically related subsets of these data volumes. The
restrictions of such subsets are mostly based on specific data characteristics. Typical access
patterns over astrophysical data sets are point-near-point queries, point-in-region queries, and
nearest-neighbor-searches. Such queries are usually region-based, i. e., they process data within
certain regions of the sky. These regions are specified by the two-dimensional celestial coor-
dinates, right ascension (ra) and declination (dec). Region-based queries can, of course, also
contain predicates on attributes other than the celestial coordinates. In case of celestial objects,
other attributes might comprise detection time, catalog-identifier, temperature, or energy level.
We use cross-match queries (Gray et al., 2006) as example for such region-based queries. As-
trophysicists use cross-matching to determine whether data points from different archives are
likely to stem from the same celestial object. Researchers take several point sources from an
area (e. g., the milky way in Figure 1.2) in one data set and look for matching sources in other
data sets.

Our astrophysics cooperation partners provided us with several data samples of some of the
major observational catalogs in order to develop our system. The observational data set Pobs
comprises about 137 million objects from subsets of the ROSAT (25 million objects), SDSS
(84 million objects), and TWOMASS (28 million objects) catalogs and has a size of about
50 GB. Figure 1.3(a) shows the actual distribution of the three data samples, displaying the right
ascension on the x-axis and the declination on the y-axis. The value range for right ascension

1http://lsst.org/
2http://www.lofar.org/
3http://lhc.web.cern.ch/lhc/

http://mwmw.gsfc.nasa.gov/
http://lsst.org/
http://www.lofar.org/
http://lhc.web.cern.ch/lhc/

1.2 Application Setting 5

(a) The observational data set Pobs consisting of data samples from three catalogs
showing data skew, i. e., a combination of densely populated areas wit data from
all catalogs and areas without any data

(b) The observational query set Qobs exhibiting query hot spots, i. e., several areas
with many queries such as the intersection of the three catalogs

Figure 1.3: The observational data set and query set

and declination is [0◦,360◦[and [−90◦,90◦], respectively.
For Pobs, we constructed the corresponding observational query set Qobs from real queries

submitted to the web interface1 of the SDSS catalog in August 2006.2 We translated the original
cone searches (with a circular search area) to queries having a square search area. For each
query, we used the same midpoint and an edge length corresponding to the diameter of the
circular search area. Queries using the default search parameters of the web interface make up
12% of the entire query log. Thus, we removed that particular query from our query set and
used the remaining 1 100 000 queries during our evaluation. Figure 1.3(b) shows the queried
areas and we clearly see that the workload is non-uniform and exhibits many query hot spots.
Remarkably, these hot spots are in areas where the catalogs overlap.

The second data sample Pmil (Figure 1.4) originates from the Millennium simulation con-

1http://cas.sdss.org/astrodr7/en/tools/search/
2The query trace was kindly provided by Milena Ivanova and Martin Kersten from CWI, Amsterdam. It is the

same workload used for their experience report on migrating SkyServer on MonetDB (Ivanova et al., 2007).

http://cas.sdss.org/astrodr7/en/tools/search/

6 1. Introduction

Figure 1.4: The uniform data set Pmil from the Millennium simulation

ducted by Springel et al. (2005) and consists of 160 million objects that are uniformly distributed
on the area [−45◦,45◦]× [−45◦,45◦]. This uniform data set allows us to create different work-
loads in order to investigate how histograms perform on uniform data and the impact of skewed
query workloads without being influenced by data skew.

Throughout the discussion and in our prototype we use the relational data model and SQL
for several reasons. First, large parts of the scientific data sets are stored within relational
databases, though most data providers offer additional, e. g., form-based, interfaces for re-
searchers not familiar with SQL. Moreover, the current specification for the IVOA Astronom-
ical Data Query Language (ADQL) is based on the SQL standard SQL92. ADQL specifies
additional functions that are fundamentally important for astrophysics research and require uni-
fication across several implementations.

1.3 Our Approach and Contributions
Community-driven data grids enable communities to individually address the two major issues,
high-throughput data management and correlation of distributed data sources.

Scalable data sharing for e-Science grids

With HiSbase, our prototypical implementation of a community-driven data grid, we explore
design alternatives for data grids between the both extremes of a centralized community ware-
house and a fully-replicated data grid. We propose a decentralized and scalable approach to sci-
entific data management using the existing available capacities—both CPU and main memory—
of the community network resources. Based on distributed hash tables (DHTs), we partition
data according to predominant query patterns and not according to the original data source.
The symmetry of these networks, i. e., the fact that nodes act as servers (providing data) and
as clients (issuing queries), offers increased fault-tolerance and robustness. In a DHT system,
nodes automatically detect node failures and fix the overlay communication.

Preserving locality and handling data skew through domain specific partitioning

We suggest to reconsider static partitioning schemes as an application domain specific hash
function to allow scalable information management in e-science communities. Occasionally,
this hash function is updated to accommodate better load-balancing, just like database systems
regularly update query optimizer statistics. In case of multi-dimensional data, space filling

1.4 Outline 7

curves preserve the spatial locality between closely related data. HiSbase targets collaborative
communities having vast data volumes with fairly stable data distributions. Long-term distribu-
tion changes can also be leveled by reorganizing the histogram.

Increased Query Throughput by parallelism and workload-awareness

We investigate the potential offered by P2P networks for increasing query throughput in data-
intensive e-science applications. Achieving sufficient query throughput constitutes one of the
main deficiencies of centralized data management. Moreover, by enhanced workload-awareness
during the creation of the partitioning scheme and during runtime additional throughput im-
provements are possible.

1.4 Outline
In Chapter 2, we provide the reader with a general overview of HiSbase and describe the general
design choices and decisions. Parts of this section have been presented at BTW 2007 (Scholl
et al., 2007b), VLDB 2007 (Scholl et al., 2007a), and in an overview article in the FGCS jour-
nal (Scholl et al., 2009a).

The following chapters provide a more detailed discussion about the individual parts that
orchestrate the data management infrastructure in community-driven data grids. The Chapters 3
through 6 describe the basic building blocks.

Chapter 3 focuses on the training phase where the partitioning scheme for distributing the
data among the resources is built. This material has been presented at the IEEE e-Science
Conference 2007 (Scholl et al., 2007c).

We describe how the data partitions are mapped to the nodes participating in a community-
driven data grid in Chapter 4 and present our bulk feeding techniques for efficient data dissem-
ination in Chapter 5.

Chapter 6 describes collaborative query processing and coordination and presents the setup
and results of our throughput experiments within a community-driven data grid. The evaluation
of the different coordination strategies has been presented at HPDC 2009 (Scholl et al., 2009c).

How the training phase can be extended to address also workload-awareness is described in
Chapter 7. The results have been presented at EDBT 2009 (Scholl et al., 2009b).

We then describe our concepts for achieving further load balancing within community-
driven data grids during runtime (Chapter 8). Parts of this chapter have been presented in the
Datenbank-Spektrum (Scholl et al., 2008) and the Proceedings of the VLDB Endowment (Scholl
and Kemper, 2008).

8 1. Introduction

9

CHAPTER 2

HiSbase

This chapter gives an overview of the basic principles behind community-driven data grids. It
provides enough background to selectively choose one of the following chapters to receive more
detailed information about a particular aspect.

Our prototype HiSbase defines a distributed information infrastructure that allows the shar-
ing of CPU resources and storage across scientific communities to build a community-driven
data grid. We distribute data across nodes according to predominant query patterns to achieve
high throughput for data analysis tasks. Therefore, most processing tasks can be performed
locally, achieving high cache locality as nodes mainly process queries on logically related data
hosted by themselves as illustrated in Figure 2.1. In the figure, the same geometric shapes de-
note logically related data originating from (possibly) different distributed sources. HiSbase
partitions and allocates data fed into the system by means of community-specific distribution
functions, called histograms. Thereby, related data objects of various sources are mapped to the
same nodes. The original archive servers, which still serve as data sources, are complemented
by our HiSbase infrastructure for high throughput query processing. In Section 2.1, we show a
candidate data structure that preserves spatial locality and adapts to the data distribution.

HiSbase builds on the advances and maturity of distributed hash table (DHT) implementa-
tions (e. g., Stoica et al., 2001) which were devised in order to provide a scalable and failure-
resilient data management for large-scale, distributed information systems. Objects and nodes
are randomly mapped to a one-dimensional key space, e. g., by using a secure hash algorithm
on either the IP address of a node or on a checksum of the content of an object. Nodes are
responsible for a subspace of the key space and thus data load balancing is achieved. The initial
versions of these protocols only offer scalable query access for exact-match queries.

HiSbase partitions multi-dimensional e-science data across an initial set of nodes for data
load balancing. Later on, of course, additional resources (data and nodes) can be added to the
community network, which is constructed as follows.

• We precompute the histogram of the actual data space in a preparatory training phase
based on a training set and pass it to the initial HiSbase node during startup (Section 2.2.1).

10 2. HiSbase

Figure 2.1: Architecture for community-driven data grids

• Additional nodes subsequently joining the network receive their own local copy of the
histogram from a neighboring HiSbase node.

• HiSbase allocates data according to the precomputed histogram (Section 2.2.2) and uses
the histogram as a routing index. Data archives feed data into HiSbase by sending their
data to any HiSbase node which routes the data to the responsible node (Section 2.2.3).

• Every HiSbase node accepts queries and routes them to a coordinator node which may
own (some of) the data needed to process the query. If the coordinator does not cover
all the data relevant to the query, it guides cooperative query processing among all nodes
contributing to the query result (Section 2.2.4).

In order to position HiSbase within the context of related scientific results from the literature,
we conclude this chapter with a general discussion of related work (Section 2.3). We focus
especially on works that are comparable in general and discuss specific related results within
the individual chapters wherever appropriate.

2.1 Locality Preservation
To allow efficient query processing on logically related data sets we need to preserve the locality
of data. Data locality is especially important for the performance of data analysis tasks in
astrophysics. Distributing data objects randomly across a global information network severely
impairs the performance of astrophysical query patterns.

2.1.1 Data Skew
Many application domains have highly skewed data sets. This skew originates from data spaces
with a mix of densely and sparsely populated regions. The differences in data density may arise
from the original data distribution or from the fact that some regions have been investigated
more extensively than others, i. e., more data has been collected and is available. In astrophysics,
celestial objects are not distributed uniformly over the sky, e. g., considering high data density
in the galactic plane or a supernova. We use an abstract skewed data sample (Figure 2.2) for
illustration.

In HiSbase, we preserve spatial proximity to efficiently process region-based queries (Sec-
tion 2.2.1) while addressing the imbalance of the data distribution. HiSbase achieves this goal

2.1 Locality Preservation 11

Figure 2.2: Sample data space with skewed data distribution

by calculating a histogram that equips the data grid with a community-specific data distribution.
Among others, we describe the Z-quadtree histogram data structure that we designed to preserve
spatial locality for astrophysics data sets. Z-quadtrees are quadtrees whose leaves correspond
to histogram buckets and are linearized on the key space of the DHT using a space filling curve.
These trees provide efficient access to histogram buckets (regions) while balancing the data load
across data nodes.1 Section 2.2.5 outlines how we additionally consider query load balancing
within HiSbase.

2.1.2 Histogram Data Structures
HiSbase enables communities to design data structures for distributing their data across several
nodes and to adapt to data and query characteristics of that particular community. We call these
data structures histograms for their similarities to standard histograms. Histograms are, for
example, commonly used in relational database management systems as means for selectivity
estimations (Poosala et al., 1996).

Within HiSbase, a histogram is used in order to look up multi-dimensional areas and data
points.

lookupArea(h,a) : S This function plays a central part during query processing. Given a multi-
dimensional data area a, lookupArea returns the set S of region identifiers of the his-
togram h which intersect with a.

lookupPoint(h,p) : r Mainly used during data distribution, lookupPoint returns the region
identifier r of the histogram h which contains a multi-dimensional data point p.

Most of the following histogram data structures are inspired by the intensive research con-
ducted by the computer science community on locality-aware data structures developed for ac-
cessing and efficiently storing multi-dimensional data (Gaede and Günther, 1998; Samet, 2006).
The individual community is free to choose any data structures implementing the interface re-
quired by HiSbase. Therefore, we are strengthening the histogram-related aspect rather than the
aspect of indexing multi-dimensional data.

Z-quadtree: A Histogram Based on Quadtrees

The shape of data partitions defined by candidate data structures should be simple (e. g., squares).
This allows simple (SQL) queries to retrieve data during the process of integrating new nodes
(Section 2.2.2).

1In the following, we use the terms regions and histogram buckets interchangeably. The leaves of a Z-quadtree
represent the histogram buckets for that particular histogram data structure.

12 2. HiSbase

(a) (b) (c)

Figure 2.3: Application of the Z-quadtree to the data sample: (a) the Z-quadtree regions, (b) the
corresponding quadtree, and (c) the linearization of its leaves

In the following, we describe the Z-quadtree as our preferred data structure, which is in-
spired by quadtrees (Samet, 1990).

A Z-quadtree partitions the data space according to the principle of recursive decomposition.
For a d-dimensional data space, a Z-quadtree node is either a leaf with a d-dimensional data
region or an inner node with 2d children. The leaves of the quadtree correspond to the histogram
buckets. After the Z-quadtree buckets are calculated they are linearized using the Z-order space
filling curve (Orenstein and Merrett, 1984).

The linearization is then used to map the buckets on the key space of the underlying fabric.
We use a space filling curve instead of a random mapping as the curve preserves spatial prox-
imity if one node covers several buckets. If buckets are adjacent, they are likely to be managed
by the same node.

Starting with a single leaf covering the entire data space, we sequentially insert the training
set into the tree (Section 2.2.1). If the number of objects in the area of a leaf exceeds a predefined
threshold, representing its capacity, the leaf is split into 2d subareas according to the quadtree
splitting strategy. Inner nodes forward the objects to the corresponding child. In Figure 2.3(a),
we show the decomposition of our two-dimensional example data set of Figure 2.2 using a
leaf capacity of two objects. After the complete training set is inserted, each leaf is assigned a
region identifier using a depth-first search (Figure 2.3(b)). This immediately gives the desired
leaf linearization which is shown in Figure 2.3(c). While using the Z-order is the canonical
leaf linearization, other space filling curves such as the Hilbert curve (Hilbert, 1891) are also
applicable.

Algorithm 2.1 describes how the set S of region identifiers that intersect with a query area
a is retrieved in a Z-quadtree h. Starting at the root node, lookupArea is executed recursively.
If the region rn of a leaf n intersects with query area a, its region identifier rn.id is added to the
result set S. Intersecting inner nodes invoke lookupArea on every subtree. The method to find
the region which contains a data point, lookupPoint, can be realized similarly.

Z-quadtrees use the same concept as linear quadtrees (Gargantini, 1982), a data structure
used in image encoding. Using a lower resolution for sparsely populated data subspaces in
Z-quadtrees corresponds to compressing the representation for common subpixels of the linear
quadtrees.

In contrast to the original quadtree, which is a spatial index structure, the Z-quadtree is used
for data dissemination, as a routing index, and during query processing. The actual training data
used to create a histogram is not stored in the data structure distributed to all nodes.

We present a detailed discussion of several histogram data structures in Chapter 3.

2.2 Architectural Design 13

Algorithm 2.1: Z-quadtree implementation of lookupArea(h,a)
Input: Z-quadtree h with root node nroot , query area a
Output: Set S = {regionid r.id | region r intersects with a}

S ←{}
n ← nroot
if region rn of n intersects with a then

if n is leaf then
S ← S∪{rn.id}

else /* n is inner node */
for all subtrees hchild of n do

S ← S∪ lookupArea(hchild,a)
end for

end if
end if

Algorithm 2.2: Publish data in HiSbase
Input: Histogram h, multi-dimensional data point p

Region id r ← lookupPoint(h, p)
Send newPointMessage(p) to r.

2.2 Architectural Design
The architectural design of HiSbase offers scientific researchers a framework for data and re-
source sharing within their community. Algorithms 2.2 and 2.3 formally define the interface for
data publication and access within HiSbase.

In this section, we outline the creation of histograms during the training phase and the
information maintained at HiSbase nodes. Finally, we describe data publication and node col-
laboration during query processing.

2.2.1 Training Phase (Histogram Build-Up)
Extracting the training samples, defining the partitioning of the data space, and distributing the
partitions to the data nodes comprise the three steps of our training phase.

For constructing the histogram, data from each data source is taken into account. We can
either use the entire data archive or a representative subsample. However, transmitting the en-
tire data archive for histogram extraction is presumably prohibitive. For example, the subset
could be extracted using a random sample. During our experiments, we achieved good his-
tograms using 10% data samples in our a priori analysis. The data distribution does not change
significantly very often (e. g., once a year), which makes such an a priori analysis applicable.

After the training set is inserted into the histogram, we serialize the histogram structure for
distribution within the network. The training data itself is discarded.

The resulting histogram is passed to the initial node in the HiSbase network. Nodes subse-
quently joining the network receive the histogram from any other node in the network, mostly
from one of their neighboring nodes. Hence, each node keeps a copy of the histogram.

The number of histogram regions is determined before the training phase. In our experi-
ments, we used histograms with up to 250 000 regions in order to enable a flexible distribution

14 2. HiSbase

Algorithm 2.3: Query data in HiSbase
Input: Histogram h, multi-dimensional query area a.

Set SR of relevant region ids ← lookupArea(h,a)
Select coordinator rc from SR
Send newQueryMessage(a,SR) to rc.

Figure 2.4: Mapping of the quadtree of Figure 2.3 to multiple nodes

of the individual data regions. The memory requirements of a histogram are small compared
to the amount of data transmitted during query processing. As nodes presumably get their his-
togram from a physical neighbor, histogram distribution adds little overhead to the setup phase
of the HiSbase network.

2.2.2 HiSbase Network
While the overall design of HiSbase abstracts from the underlying DHT implementation, we
use the DHT infrastructure Pastry (Rowstron and Druschel, 2001) to manage nodes and route
messages in HiSbase. Like Chord (Stoica et al., 2001), Pastry maps data and nodes to a one-
dimensional key ring. In contrast to Chord, Pastry optimizes the initial phase of routing by
preferring physical neighbors to speed up communication within the overlay network.

Mapping Nodes to Regions

The histogram regions are uniformly mapped onto the DHT ring identifiers. Due to this uni-
form distribution, all regions are mapped to a node with equal probability regardless of their
individual size. The size of regions might vary due to the adaption to data skew. The nodes get
a random identifier and are responsible for regions close to their identifier. Pastry, for example,
uses 160-bit identifiers and ordinary comparisons in order to determine the closeness of identi-
fiers. Figure 2.4 illustrates the evenly distributed regions (0–6) and their mapping to randomly
distributed nodes (a, b, c, d) on the DHT key space. We use the routing of the underlying DHT
system to automatically assign regions to nodes. To ensure that messages destined for a specific
region are received by the appropriate node, we use the region identifiers for message routing.

We prefer to use the key-based routing functionality of the underlying DHT infrastructure
over using a direct mapping of histogram buckets on nodes or using a centralized directory for

2.2 Architectural Design 15

Algorithm 2.4: Handling node arrivals
Node p covers a set P of regions. Let Pnew be the set of regions which node p is
responsible for after a new node has arrived. The area ai is the area of region i.

if Pnew 6= P then
find Pmove = P\Pnew
for all r ∈ Pmove do

ar = getArea(r)
redistribute data from ar to region r

end for
end if

the histogram in combination with a histogram cache at the individual nodes. A direct mapping
would require every node to maintain the complete list of participating nodes and also the map-
ping of the individual histogram buckets to the nodes. Using the key-based routing, each node
stores only O(logn) neighbors and the mapping is done automatically by the underlying fabric.
Updating a histogram via a distributed broadcast is not more expensive than distributing an up-
dated histogram from a central site. Furthermore, we reuse functionality already implemented
by the Peer-to-Peer (P2P) substrate and leverage the increased flexibility and the automatic han-
dling of node failures. In Chapter 4, we present a detailed comparison between several mapping
strategies with regards to data load balancing and query locality.

Node Arrival

When a node joins the HiSbase network, the active histogram will be transmitted to that node
and the node needs to receive the data according to its responsibilities. For this purpose, HiS-
base reuses the mechanisms of the DHT structure to determine the arrival of new nodes. In
Pastry (Rowstron and Druschel, 2001), nodes are notified if the leaf set (the nodes which have
similar identifiers) changes. Algorithm 2.4 describes how a notified node determines the data it
is no longer responsible for. For this purpose, it compares its set of regions before and after the
notification. The node then redistributes the moveable data and the newly joined node updates
its database.

Node Departure

HiSbase is developed for an environment where the participating servers are quite reliable. High
churn is currently not in our focus as distributing the envisioned amounts of data across unreli-
able nodes is not very useful. Nonetheless, some nodes might temporarily fail. As mentioned
in the introduction of this chapter, HiSbase does not replace but complement the “traditional”
data centers since these also serve as data sources for distributing the data in HiSbase. If a node
leaves the network its direct neighbor nodes take over part of its data. The neighboring nodes
refetch that data from the appropriate archives.

2.2.3 Data Distribution (Feeding)
Connected data centers directly feed data into HiSbase as illustrated by Figure 2.1. In HiSbase,
the histogram is used to determine how to allocate data on nodes. All nodes maintain the data

16 2. HiSbase

objects which are in their histogram buckets, independently from the archive the data comes
from. HiSbase abstracts from the specific database system, which allows the use and evaluation
of various traditional as well as main memory database systems.

Data archives that want to publish their data in HiSbase connect to any HiSbase node, prefer-
ably to a node nearby or to a node that has a high network bandwidth. Proceeding according to
Algorithm 2.2, the contacted node uses the lookupPoint method of its histogram to locate the
histogram bucket that contains a data object. Then it routes the object to the DHT identifier of
this region. The message contains the data object and information about the data source. Via
the underlying DHT mechanism, the data item arrives at the responsible node, which updates
its database.

Distributing each data item individually results in a very high overhead. The precomputed
histogram allows us to optimize the feeding stage by introducing bulk feeding. A node that feeds
data into the network buffers multiple objects for the same region until a threshold is reached.
Time-based as well as count-based thresholds are applicable.

Integrating new data sets is achieved by feeding them into the network as described above
after the according tables are created at each node. If the new data set is a detailed survey of
a sky region that has not yet been covered by any existing archive in the community network,
it might be appropriate to create a new histogram in order to improve the data load balancing
(Section 2.2.5). In that case, a data sample of the survey is extracted and integrated into the
training phase. Chapter 5 discusses data feeding in more detail.

2.2.4 Query Processing

Region-based queries are submitted to any node of the HiSbase network. The node extracts
the multi-dimensional area A from the query predicate. It selects an arbitrary identifier rc from
the set of intersecting regions, which is determined by lookupArea. The node pc which is
responsible for region rc is the coordinator. The coordinator collects intermediate results and
performs post-processing tasks (e. g., duplicate elimination).

Let us assume a region-based query was issued at node d in Figure 2.4. The area of the query
is marked with the thick-lined rectangle in Figure 2.3(a). Thus, relevant to our example query
are regions 1 and 3. If node d covers regions relevant to the query, it becomes the coordinator
itself. This is not the case in our example. We select region 1 as rc and thus node a becomes
the coordinator. Node d forwards a coordination request to node a. The coordination request
contains the query and the relevant regions. After node a receives the coordination request, it
issues the query to its own database (as it covers relevant regions) and sends the query to all
other relevant regions. Node b also participates in the query processing in our example as it
covers region 3. It sends its intermediate results back to the coordinator, node a. After having
received all intermediate results, node a returns the complete result to node d.

Nodes may cover several regions. As region identifiers are used for submitting queries,
nodes can receive the same query several times. Each node stores a hash of currently processed
queries to avoid multiple evaluations of the same query. Results and error messages are di-
rectly transmitted to the coordinator or the submitting node without using the overlay routing
algorithm. Chapter 6 discusses more details on query processing and query coordination within
community-driven data grids and presents the evaluation results from our query throughput
measurements.

2.2 Architectural Design 17

Figure 2.5: Histogram evolution

2.2.5 Query Load Balancing
There are several techniques for combining our data load balancing approach described so far
with query load balancing techniques to efficiently handle query hot spots. In order to achieve
this, we extend the use of our training phase and employ techniques that redistribute load at
runtime.

We enhance the training phase with query statistics such as earlier workloads. Based on
these statistics, the data partitioning can be modified to enable the application of query load
balancing techniques such as replication or load migration. For a detailed discussion about this
workload-aware data partitionings, we refer the reader to Chapter 7.

Using two parallel Pastry rings with different histograms increases the data availability
within the HiSbase network. By changing the offset (or the space filling curve) of the map-
ping process from Section 2.2.2, the second histogram stores the data on different nodes and
both copies are available during query processing.

We also introduce a master-slave hierarchy, where idle nodes can support overloaded nodes
by offering their storage and compute resources. These may be necessary to cope with short-
term changes in query load distribution. Whether a node is overloaded or constitutes a potential
slave-node is determined based on workload statistics collected during run-time. These statistics
can also augment the training phase for the next histogram evolution.

2.2.6 Evolving the Histogram
The histogram serves HiSbase as a partitioning function, defining the data set which a node is
responsible for. HiSbase nodes maintain three histograms and their accompanying data sets to
improve load balancing or level long-term data shifts. From our perspective, three data copies
offer a good data availability at a reasonable management overhead for e-science scenarios.
Each pair of histogram and data set can evolve during the lifetime of a HiSbase instance and
has one of the following three functionalities: the in-progress, active, and passive functionality.

in-progress The currently running feeding process, which is described above, distributes data
according to the in-progress histogram. After a new histogram has been distributed, the
HiSbase nodes build this in-progress data set and store it on disk.

active Once the build-up phase of the in-progress histogram is completed, they become the

18 2. HiSbase

active histogram and data set. Both are used during query processing and nodes keep
them completely (or at least the relevant parts) in main memory. Furthermore, HiSbase
nodes use the active histogram for messaging.

passive The completely updated data set is additionally kept on disk as backup for the active
data set. This preserves the active data set beyond the lifetime of the current network and
can be used if a node is restarted with the same identifier.

Figure 2.5 illustrates a scenario where the in-progress histogram contains additional regions
while the active and passive histograms are the same as in Figure 2.4.

Any of the participating nodes can be used to inject an updated version of a histogram by
broadcasting it to the HiSbase network. Our concepts for query load balancing at runtime are
discussed in Chapter 8.

2.2.7 HiSbase Evaluation
We use three different evaluation settings in order to measure the features of community-driven
data grids: a set of tools to analyze various characteristics of partitioning schemes, HiSbase
instances running within an overlay network simulator, and deployments in various test beds.

The analysis of the individual partitioning scheme characteristics provides us with valuable
insights for comparing and choosing different candidate data structures. Simulated instances
allow us to explore systematically the network flow or communication patters under various
conditions. Finally, the distributed instances are the key to test our system in a realistic environ-
ment and to evaluate the merits for scientific users.

Partitioning Schemes

Although many e-science communities require a scalable data management, they mostly have
slightly different types of analysis tasks and therefore a wide range of requirements for the
data management infrastructures. The scientific researchers require support and simple tools
that help them to find an optimal partitioning scheme for their particular interest. Our testing
framework developed within the HiSbase project enables the researchers to compare various
candidate partitioning schemes based on several properties and to choose the one partitioning
scheme which fits best their needs. Among these tools is a graphical user interface (GUI,
shown in Figure 2.6) which allows for comparing different histogram data structures. Moreover,
the GUI supports query submission and query analysis and shows status information on the
connected HiSbase nodes.

The FreePastry Library

For the implementation of our prototype we use FreePastry1, the open source Java-implementation
of Pastry (Rowstron and Druschel, 2001), currently maintained by the Max-Planck-Institut for
Software Systems. FreePastry provides the underlying key-based routing fabric and P2P-based
multicast communication (i. e., Scribe by Castro et al., 2002).

FreePastry provides an implementation of the Common API (Dabek et al., 2003), which
describes a common interface for DHT-based implementations. During our implementation,
we aimed at programming only against those interfaces in order retain as much independence
from the underlying overlay network implementation as possible.

1http://freepastry.org/

http://freepastry.org/

2.2 Architectural Design 19

Figure 2.6: The HiSbase GUI

20 2. HiSbase

(a) FreePastry Simulator (b) Distributed FreePastry

Figure 2.7: Simulated and distributed evaluation environments on FreePastry

Simulation Environment

Moreover, FreePastry provides enough abstraction from the underlying network layers, in order
to use our application unmodified for both simulation and distributed deployments. Reusing
the same code in both environments was one of our major incentives to favor this simulator
over other prominent simulators such as ns-21. In Figure 2.7(a), we give an coarse overview
of the simulator environment within FreePastry. The simulator uses discrete events and thus
allows non-linear execution to speed-up simulations considerably. It also provides a module
with various topologies to model network latency, e. g., Euclidean or spherical networks or
explicit latency matrices. Above this layer, FreePastry has its network layer and allows to run
several thousand nodes within a single Java virtual machine. The simulator does not model
network bandwidth, message loss, nor varying latency due to congested network resources. As
HiSbase aims at grid-based community infrastructures having dedicated resources and we also
perform evaluations in real deployments, the benefits of using a single code base outweighs the
missing features of the simulator.

Distributed Instances

Due to the simplifications within our simulation environment, we consider it as very important
to deploy our prototype also in real test beds. Tests in real deployments exemplify actual benefits
for the research communities. Figure 2.7(b) shows the communication layers for the distributed
scenario.

We deployed HiSbase on several nodes within our lab. Measurements with these nodes
show the performance using high bandwidth networks and low latency within a single institu-
tion. Our measurements using nodes of the AstroGrid-D test bed represent the performance of
our community-driven approach within a nation-wide data grid using high-bandwidth networks
to interconnect dedicated, powerful resources. Finally, we used PlanetLab2 for performing ex-
periments. PlanetLab is a test bed for distributed applications. Though the test bed rather targets
projects that evaluate distributed algorithms or protocols, we integrated several PlanetLab nodes
into a network with our AstroGrid-D resources, reaching up to one hundred nodes.

1http://nsnam.isi.edu/nsnam/index.php/Main_Page
2http://planet-lab.org/

http://nsnam.isi.edu/nsnam/index.php/Main_Page
http://planet-lab.org/

2.3 Related Work 21

2.3 Related Work

The HiSbase approach provides several benefits to e-science communities by addressing domain-
specific data and query characteristics. HiSbase offers high throughput via parallelization,
higher cache locality, and load balancing across several sites compared to centralized data man-
agement. HiSbase enables scalable sharing of decentralized resources within a community as it
uses the DHT mechanism of key-based routing for data distribution and message routing. Us-
ing these techniques, new nodes can be easily added to the network and heterogeneous database
management systems can be integrated with little effort as each HiSbase node only maintains
its own local database configuration.

In the following, we present related work from areas such as distributed databases, P2P
architectures, and scientific data management.

2.3.1 Distributed and Parallel Databases

Using parallelism and data partitioning to increase query throughput are well-established tech-
niques from distributed and parallel databases which motivated us to use them as pillars for the
architectural design of community-driven data grids. For example, Özsu and Valduriez (1999)
describe in depth the general concepts and algorithms for distributed databases.

Kossmann (2000) provides a detailed survey of query processing techniques within dis-
tributed systems. Intelligent query processing and well-designed data placement are key tech-
niques for realizing scalable data management solutions such as an information economy (Brau-
mandl et al., 2003).

The field of parallel databases (e. g., Abdelguerfi and Wong, 1998) has brought up valu-
able insights in the area of query parallelization and infrastructure designs. A shared-nothing
approach (DeWitt and Gray, 1992) where each node has an individual data storage and nodes
communicate only via a shared network is considered the most scalable technique.

Compared to HiSbase, distributed databases run in a more homogeneous setting whereas
parallel databases are not designed for world-wide distributed resources. Autonomous database
systems (Pentaris and Ioannidis, 2006) also deal with the correlation of several data sources.
However, data is not distributed across participating servers (adhering to the nodes’ autonomy)
and thus correlation needs to be done at the client sites which leads to additional data traffic.

Another important aspects induced by the vast number of distributed data sources are het-
erogeneity and provenance. Recently, a new pay-as-you-go approach (Salles et al., 2007) within
so-called dataspaces (Franklin et al., 2005) was identified. As opposed to data integration sys-
tems (Naumann et al., 2006; Rahm and Bernstein, 2001), data co-existence is possible in datas-
paces. Monitoring data provenance becomes increasingly important within distributed systems
integrating data from various sources on demand, e. g., to ensure reproducibility of results. Re-
cent work on provenance in databases includes, for example, Buneman and Tan (2007) and
Davidson et al. (2007). A further treatment of data integration, dataspaces, or provenance is
beyond the scope of this thesis. We therefore assume that data being fed into HiSbase either
adheres to a common schema or has already been transformed properly.

2.3.2 P2P architectures

DHT architectures such as CAN (Ratnasamy et al., 2001), Chord (Stoica et al., 2001), Pastry
(Rowstron and Druschel, 2001), and Tapestry (Zhao et al., 2004) overcome the limitations of

22 2. HiSbase

centralized information systems by storing data in a distributed one-dimensional key space (ex-
cept for CAN which uses a d-dimensional torus). While these systems achieve load balancing
by randomly hashing data and peers to their key space, they neither support multi-dimensional
range queries nor preserve spatial locality. HiSbase work is reminiscent of the achievements in
P2P-based query processing (Huebsch et al., 2003).

Instead of DHTs, other proposals build distributed tree-based structures that already incor-
porate range query capabilities for one-dimensional data. For example, Jagadish et al. (2005)
describe a distributed balanced binary tree, BATON. If the target node of a message is not within
the subtree of the sender, the message is routed towards the root of the tree. In order to reduce
the routing overhead on the nodes close to the root of the tree, BATON also builds “vertical”
routing paths. Ranges can be queried by seeking the start of the range and then perform an
in-order traversal until the range is completely processed. P-Grid (Aberer et al., 2003) uses a
trie-based infrastructure and performs routing along these prefixes. Besides additional support
for replication, Datta et al. (2005) describe a “shower” algorithm on P-Grid in order to trade an
improved response time for range queries for more messages.

A large variety of systems have been proposed to augment DHTs in order to support (multi-
dimensional) range queries (Banaei-Kashani and Shahabi, 2004; Ganesan et al., 2004b; Shu
et al., 2005; Tanin et al., 2007) or to address data (or execution) load balancing in P2P envi-
ronments (Aspnes et al., 2004; Crainiceanu et al., 2007; Ganesan et al., 2004a; Pitoura et al.,
2006). These systems are predominantly designed for settings that are very dynamic, i. e., data
hot spots and the data itself change very frequently and the systems have a very high churn.
This flexibility comes at the price of dealing with each data object (of several hundred million
data objects) individually. We exemplify some of these systems below and discuss how they
relate to HiSbase.

One approach (Banaei-Kashani and Shahabi, 2004) uses Voronoi diagrams in order to parti-
tion the data space and to support queries on multi-dimensional data. Independently, the MURK
system (Ganesan et al., 2004b) uses k-d trees to realize a similar idea. In these systems, peers
covering large data partitions have more neighbors, while in HiSbase the number of neighbors
is independent from the number and size of covered regions. SCRAP (Ganesan et al., 2004b)
directly applies a space filling curve to the data and assigns one-dimensional ranges to peers. In
HiSbase, the submitting peer exactly determines the histogram regions in the multi-dimensional
data space and only these peers are contacted during query processing while SCRAP can only
approximate a multi-dimensional query range using multiple one-dimensional ranges.

The distributed quadtree index (Tanin et al., 2007) is a distributed data structure for objects
with multi-dimensional extents and supports range queries. Each quadtree node is represented
by its centroid and these are randomly placed on the key space of an underlying DHT structure
(e. g., Chord). Two levels of the distributed quadtrees can be configured to limit where objects
are stored: one level (fmin) defines the minimum depth, the other level (fmax) defines the maxi-
mum depth. Thus, distributed quadtrees aim both at avoiding the bottleneck of congested nodes
in layers above layer fmin and too much fragmentation by storing objects in layers below layer
fmax. When HiSbase applies the Z-quadtree as partitioning scheme it only maps the leaves to
the key space and does this equidistantly according to a space filling curve. Thus a peer covers
data from neighboring regions which then can be stored in the same database with a higher
probability than in the distributed quadtree. Each peer within the distributed quadtree caches
direct links to the children of the quadtree nodes it is covering. Thus, it takes O(logn) hops to
find an fmin-node and then a constant number of steps to reach the relevant leaves. These steps
also have to be processed with data objects without an extent which are stored at level fmax.

2.3 Related Work 23

In HiSbase, no additional routing steps are necessary. HiSbase discovers the relevant region
directly and routes to the responsible peer using O(logn) messages.

Shu et al. (2005) describe an online balancing algorithm for frequent changes in data hot
spots which is also based on quadtrees. The quadtree leaves are mapped on a skip graph (Asp-
nes and Shah, 2003) layer using a space filling curve. Aiming at data sets with high update
rates, the authors devise algorithms that require an initial phase such as the training phase of
HiSbase and each peer only needs partial knowledge of the complete data distribution. How-
ever, peers are only allowed to manage regions on the same Z-level while in HiSbase there is
no such restriction. Accounting for the rather stable data sets of e-science communities, these
communities benefit more from techniques increasing the query throughput of data management
infrastructures than from such an approach.

How to achieve load balancing in one-dimensional, range-partitioned data is described
in (Aspnes et al., 2004; Ganesan et al., 2004a). Ganesan et al. (2004a) show that load balanc-
ing schemes for range-partitioned data in highly dynamic P2P networks either need to adjust
the load between neighbors or need to change peer positions within the range. SCRAP is an
extension of (Ganesan et al., 2004a) to multi-dimensional data. Aspnes et al. (2004) only main-
tain representative values of the data ranges in the skip graph. Load balancing between these
data ranges is achieved by arranging less-filled (open) buckets close to full (closed) buckets.
HotRod (Pitoura et al., 2006) addresses query hot spots on one-dimensional data by replicat-
ing popular data ranges on additional rings. Data is stored on the DHT using order preserving
hash functions and as soon as access statistics show that a peer is increasingly accessed HotRod
replicates (hot) data to other virtual rings. While HotRod determines the ranges to be replicated
during runtime, HiSbase has opted for replicating the partitioning scheme (the histogram) to all
participating nodes, as the overall data distribution is fairly stable. Moreover, HiSbase allows a
high flexibility regarding the actual histogram used by a particular community.

P-Ring (Crainiceanu et al., 2007) approaches data skew in an orthogonal manner in compar-
ison to HiSbase. While HiSbase adapts the buckets of the histogram data structure to data skew
and distributes these across the cooperating peers, P-Ring has the notion of “helper peers” that
support peers which are overloaded by skewed insertions either by data redistribution between
neighbors or by merging their data into a neighbor’s range. Considering multi-dimensional
range queries, P-Ring would need to approximate the query area with multiple one-dimensional
intervals. Using the insertion rate of 4 data items per second as in the simulation study of
P-Ring, importing 80 million objects would last 33 weeks (20 million seconds), which is inap-
propriate for e-science communities having terabyte-scale data sets.

2.3.3 Scientific and Grid-based Data Management

Within many scientific communities, data management challenges propelled and are still trig-
gering many innovative ideas and technologies in order to ease the day-to-day experience of
the researchers. The D-Grid initiative accommodates several community-driven efforts in or-
der to build scalable grid-based infrastructures in various research areas. The research-specific
services offered by the individual communities range from user-friendly secure grid access in
medical applications by MediGRID (Krefting et al., 2009) to a collaborative data and processing
grid for the climate community provided by C3Grid (Kindermann et al., 2007). Together with
AstroGrid-D, these communities have also identified synergies within the individual data man-
agement services (Plantikow et al., 2009). Other groups within the framework of D-Grid also
focus on security (Gietz et al., 2009) and VO management (Kirchler et al., 2008) aspects which

24 2. HiSbase

are important to ensure the acceptance of grid-based solutions within the scientific community.
Several areas have been identified (Foster and Iamnitchi, 2003; Ledlie et al., 2003) where P2P
technologies and grid computing can be combined in order to provide scalable infrastructures.
We agree that this combination indeed fosters interesting options for the data management de-
sign and, with this in mind, we designed community-driven data grids accordingly. In the
following, we describe other proposals for scientific data management.

MAAN (Cai et al., 2004) adds multi-attribute and range-queries to grid information systems.
While string-attributes are still randomly hashed on the key space, they use a locality preserv-
ing hash function (and if the distribution function is known, a uniform locality preserving hash
function) for numerical values. Query processing is done in an iterative way (by querying
each attribute individually, or using a single-attribute dominated query processing algorithm).
According to each attribute, the data objects are inserted. So if a data object consists of 140 at-
tributes, it is stored 140 times in the overlay network. This amount of redundancy is prohibitive
for large multi-attribute e-science data sets. HiSbase additionally accelerates query processing
by contacting the relevant nodes in parallel.

VoroNet (Beaumont et al., 2007) creates a P2P overlay network based on Voronoi tessella-
tions of high dimensional data spaces and offers poly-logarithmical routing performance with
regards to the data objects. It builds the overlay network between the data objects which store
interconnections to objects close-by (with regard to a distance metric) and a far-distant in order
to get short-cuts for routing. It is required that all nodes know the total number of objects for
which the system was optimized in order for routing algorithms to function properly. Although
they can handle data skew via the Voronoi tessellations, data remains on the publishing nodes
which can result in an imbalance, e. g., if one node shares more data with the community than
others. The experiments were conducted with up to 300 000 two-dimensional objects from both
skewed and uniform distributions. Their flexibility in changing the tessellation comes at the
price that each data object is treated individually. It is unclear how the approach scales with
several millions of objects and if the expected number of objects is guessed wrong.

GIME (Zimmermann et al., 2006) takes a different approach to geotechnical information
management in federated data grids. The system adheres to the data autonomy of the partici-
pating institutions and uses a replicated index (based on quadtrees or R-trees) for managing the
bounding boxes of participating archives. Thus, it reduces the number of messages by submit-
ting the query only to such archives whose minimum bounding box actually intersects the query
area. Load imbalance can arise for data archives covering a large area. These archives have to
process more queries than small archives and several data sets cannot be combined directly
on-site. AstroPortal (Raicu et al., 2006) combines digital images from several astronomical
archives by offering a grid-based stacking service in order to create a “complete picture”.

OGSA-DAI is widely used as data access interface in several Grid communities world wide.
Therefore, OGSA-DAI would be the perfect candidate to offer Grid-based access to HiSbase in
a production system. Kottha et al. (2006) have conducted a performance evaluation of OGSA-
DAI within the MediGrid project for medical applications.

Several inspiring ideas with regards to scientific data management have been proposed in
the context of a technique called Bypass-Yield Caching (Malik et al., 2005). The goal of this
technique is to cache results from federated scientific archives close to the user in order to
reduce network traffic and shorten response times. Based on the estimated result set size of
a query the cache decides whether to cache a result. The result size estimation uses query
templates (Malik et al., 2006) extracted from the query history. For selectivity estimations,
Malik and Burns (2008) propose a technique which exploits the workload information and query

2.3 Related Work 25

feedback by applying a recursive least square algorithm in order to minimize the estimation
errors. When the scientific partners retain data autonomy, a distributed join has to be scheduled
across several sites. In order to increase the throughput in such scenarios, Wang et al. (2007)
propose algorithms based on spanning tree approximations for optimizing the scheduling of
the distributed joins. It is an interesting issue for future research to combine their caching
techniques with our throughput optimizing infrastructure and to evaluate synergies.

26 2. HiSbase

27

CHAPTER 3

Community Training: Selecting Partitioning Schemes

This chapter provides an in-depth discussion of the training phase, where the partitioning
scheme for a community-driven data grid is created (Section 3.1). We discuss a variety of candi-
date data structures for such a partitioning scheme, ranging from traditional multi-dimensional
indexes to application domain-specific data structures (Section 3.2). In Section 3.3, we de-
scribe several criteria for comparing such partitioning data structures and apply these criteria
during the evaluation of the variants described in Section 3.2. Related work (Section 3.4) and a
summary (Section 3.5) conclude this chapter.

3.1 Training Phase
We use a training phase to create and distribute partitioning schemes that describe how data
objects from various archives are to be partitioned. The training phase comprises three steps:

1. Extract the training samples,

2. Create the partitioning scheme, and

3. Distribute data according to the partitioning scheme.

The training samples are representative subsets from all data archives that are to be dis-
tributed within the network. Given the size of existing and anticipated data sources (several
terabytes each), it is not feasible to perform the training on the complete data sets. We use
functionality provided by relational database systems to extract random samples. Based on
these training samples, we build the partitioning scheme. The created partitioning scheme is
then evaluated considering the identified application-specific data and query properties. After
having selected a partitioning scheme, we create the individual data partitions from the partici-
pating data archives. These data partitions are then distributed to the shared resources within the
data grid, e. g., using GridFTP or our data feeding techniques from Section 5. At the resources,
the data is loaded into a database and made accessible via the middleware infrastructure.

28 3. Community Training: Selecting Partitioning Schemes

Quadtrees and the zones index are the two data structures we compare in the following with
regard to their fitness for being used as a partitioning scheme for community-driven data grids
in astrophysics.

3.2 Data Structures
In quadtree-based partitioning schemes, the partitions correspond to the leaves of a quadtree.
Quadtrees (Finkel and Bentley, 1974; Samet, 1990) are a well-known spatial data structure and
use the principle of recursive decomposition to partition a d-dimensional data space. Quadtrees
are recursively defined to be either a leaf with a d-dimensional hypercube data region or an
inner node with 2d subtrees. In a 2-dimensional data space, an inner node has four children
(quadrants) that cover equal-sized convex data regions.

In particular, communities having skewed data sets can benefit from the capability of quad-
trees to adapt to the data distribution. Sparsely populated areas of the data space are represented
by leaves covering a large data region and densely populated areas are partitioned into several
leaves covering small areas. Thus, the amount of data within each leaf, and therefore within
each partition, can be held approximately equal. In very pathological cases, however, where
data is concentrated in a very small area, quadtrees degenerate to a tree having many empty
leaves. Partitioning schemes without empty leaves are preferable in our setting because they
allow us to directly map data partitions to shared resources.

One approach to address the issue of empty leaves is a median-based heuristics that splits
a leaf at the median instead of at the center. For our astronomical example, the heuristics
determines the split point (mra,mdec) by computing the median for ra-coordinates and dec-
coordinates independently. Our heuristics is similar to the technique used by optimized point
quadtrees (Finkel and Bentley, 1974), which only compute the median in the first dimension and
thus guarantee that no leaf contains more than half the data of the original leaf. Our heuristics,
which computes the median in all dimensions independently, offers a better data distribution in
the average case. Figures 3.1(a) and 3.1(b) show a quadtree with regular decomposition and a
quadtree using our median heuristics, respectively, both built during our evaluation.

Quadtrees can be created either top-down or bottom-up. Both approaches start with a single
empty quadtree leaf. During top-down creation, the training sample is sequentially inserted into
the leaf until a predefined threshold for the leaf capacity is reached. The leaf is split up and its
data is distributed among its new subtrees. In the bottom-up approach, leaves have an unlimited
capacity and all data is inserted into the initial leaf first. In the following, the biggest leaf is split
in turn until a predefined number of partitions has been reached.

We prefer the bottom-up approach over the top-down approach for several reasons. Building
quadtrees top-down requires to guess the leaf capacity in advance, which is hard for highly
skewed data sets. Furthermore, building the partitioning scheme bottom-up is a requirement for
other splitting strategies to work properly. For example, the median-based heuristics depends
on all points within a leaf and would be inaccurate if calculated incrementally when the leaf
threshold is reached. We furthermore consider it easier to give a rough estimate of the number
of nodes participating in a network than providing a good guess for the leaf capacity.

The zones index (Gray et al., 2006) is an index structure developed in order to improve
the performance of typical query patterns in astrophysics such as points-in-region queries, self-
match queries, and cross-match queries. The principle behind the zones index is to divide the
data space into zones of equal height h. The zone identifier of a point (ra, dec) is calculated by
f loor((dec+90.0)/h) because the domain of the declination coordinate is [−90.0,+90.0]. Due

3.3 Evaluation of Partitioning Scheme Properties 29

(a) without median heuristics (b) with median heuristics

Figure 3.1: Partitioning scheme with 1 024 partitions based on quadtrees (a) with regular de-
composition and (b) with median heuristics

to their simplicity, zones are efficiently implemented directly in SQL and thus exhibit very good
performance in tracking down relevant zones for a particular task. Applying the zones index
to the algorithm for finding maximum-likelihood brightest cluster galaxies (Nieto-Santisteban
et al., 2005) is a very good example for increased performance by implementing an algorithm as
close as possible to the data: directly inside the database. The zones algorithm preserves spatial
locality by grouping data elements from the same area in the sky into the same zone. Using
zones as a clustered index, which also defines the physical layout of data besides accelerating
data access, allows database optimizers to efficiently determine the query result.

We limit our discussion to these three data structures—the two variants of the quadtree and
the zones—and refer the interested reader to the survey by Gaede and Günther (1998) or the
book by Samet (2006) on multi-dimensional and metric data structures for more information on
multi-dimensional access methods.

3.3 Evaluation of Partitioning Scheme Properties

We evaluated the fitness of the three different data structures described in the previous section
by collecting several statistics. For the evaluation, we used our Java-based prototype of the
HiSbase system, which also employs a training phase.

We drew training samples from the skewed observational data set Pobs and the uniformly
distributed simulation data set Pmil provided by our cooperation partners and both described in
the introduction (Section 1.2). The samples are roughly of equal size in order to specifically
study the impact of data skew on the partitioning schemes. We varied the size s of the training
samples to benchmark the quality of results obtained from small data samples. Finally, we
generated partitioning schemes of different sizes n, with n varying from 16 (24) to 262 144 (218)
partitions. If the partitioning scheme generates only non-empty partitions, we may generate as

30 3. Community Training: Selecting Partitioning Schemes

Parameter Value(s) Description
P Pobs, Pmil Data set used for training sample extraction

s 0.01%, 0.1%, 1%, 10% Size of the training set

n 24,25,26,27,28,29,210,211, Size of the partitioning scheme
212,213,214,215,216,217,218

Table 3.1: Parameters for the training phase evaluation

many partitions as we have distributed grid servers available for distributing the data. If the
construction method cannot guarantee the absence of empty partitions (which is generally the
case), it is better to generate more partitions and assign multiple partitions to a server. We chose
218 partitions as upper limit, since partitioning schemes at this scale offer us high flexibility with
regards to transferring the partitions and gives a good ratio between number of partitions and
number of nodes. We refrained from building a partitioning scheme, if the desired sizes would
lead to splitting empty partitions due to a data sample with too little data. Therefore, as we
will discuss in Section 3.3.5, we did not construct partitioning schemes with more than 16 384
(214) partitions from the 0.01% training sample and more than 131 172 (217) partitions from the
0.1% training sample, respectively, as this would have resulted in further splitting completely
empty partitions. Table 3.1 summarizes the evaluation parameters.

During the training phase, we gathered the following information: 1) the duration, 2) the
data distribution across partitions (measured in comparison to the partition storing the largest
amount of data), 3) the variance in data population, 4) the number of empty partitions, 5) the
differences among the results of training sets of varying size, and 6) the accuracy obtained
during the training phase in comparison to calculating the partitioning schemes on the complete
data set. The rationale behind investigating these characteristics is as follows.

1) Duration The duration1 of the training phase provides a notion of how long it takes to get a
good partitioning scheme. We observe that in many e-science communities, data sets are
updated only every few months or on a yearly basis. Due to the invariance of the data, the
training phase merely is a one-time cost.

2) Average data population The average data population in comparison to the biggest leaves
gives a notion about how similar the data distribution is among the individual leaves.

3) Variance in partition population The variance is similar to the average data population. A
low variance implies that all partitions contain approximately the same number of objects.

4) Empty partitions Without empty partitions, we can directly map data partitions to the shared
servers. In cases where we cannot avoid empty leaves, we can create more partitions than
the anticipated number of servers and assign multiple partitions to a server.

5) Size of the training set If outcomes of a small training set are comparable to the results of
a large training set, we can use the smaller one and thus reduce the cost of the training
phase.

1We performed the evaluation of the training phase on a Linux server equipped with four Intel Xeon processors
at 2.33 GHz and 16 GB of RAM.

3.3 Evaluation of Partitioning Scheme Properties 31

6) Baseline comparison Computing the histogram on the complete data set would generate the
exact partitioning scheme. However, in many circumstances this is not feasible due to the
enormous data volumes.

3.3.1 Duration
The graphs in Figure 3.2 show the duration of the training phase (in seconds) for both quadtree
variants and for the zones on the different training sets for the 0.01%, 0.1%, 1%, and 10%
training samples, respectively. The runtime of computing the zones is invariant to the data dis-
tribution and can be computed very fast by providing the partition cardinality. For partitioning
schemes which consider data distribution, the duration increases with the number of partitions.
The larger the training sample, the more the duration is dominated by the processing of the
training sample. Therefore, the influence of a higher number of partitions is less prominent in
Figure 3.2(d) compared to Figure 3.2(a)–(c).

For median-based quadtrees, the training phase lasts longer than for standard quadtrees. In
addition to finding the biggest leaf, which is necessary in both cases, the median needs to be
calculated. This is more expensive than only splitting a leaf. The duration increases similarly
for both variants, as we use the O(n) order statistics algorithm (Cormen et al., 2001) to compute
the median instead of an O(n logn) sorting-based algorithm. The order statistics algorithm
basically only continues partitioning that range which contains the desired element.

3.3.2 Average Data Population
The covered area of the data partitions can differ in size either due to the data distribution
(quadtrees increase the resolution for highly populated data regions) or position (zones close to
the poles cover a smaller area than regions close to the equator). When inserting the training
samples into the data structures, each data object is assigned to a containing partition. We
call the data objects that are assigned to a partition p, the population of p. Having defined
the population of a partition, we now can compare the average data population (ADP) to the
maximum population among the partitions. A more homogeneous data distribution results in a
higher ADP. If the ADP is 100% then all partitions are equally populated.

The ADP graphs for the quadtree variants for different training samples and the graph for
the zones on the complete data set are shown in Figure 3.3. Constructing quadtrees bottom-up
only considers the data distribution for selecting the most populated leaf. Therefore, results for
all training sets are very similar. In conjunction with the median heuristics, quadtrees achieve
a very good average population in both data sets, especially in Pmil . The significant drops
of the ADP for median-based histograms on Pmil for uneven powers of 2 can be explained
by the example shown in Figure 3.4. The figure shows the histograms for 4 096 (212), 8 192
(213), and 16 384 (214) partitions, respectively. In order to divide all 4 096 partitions equally,
four times more, that is 16 384, leaves are necessary. Therefore, the partitioning algorithm is
“still underway” during the uneven powers of two, such as 8 192 partitions. Zones achieve a
good ADP in homogeneous environments, whereas in skewed data sets, the ADP is lower in
comparison to the quadtree variants.

3.3.3 Variation in Data Distribution
Next, we measured the standard deviation for each partition. The larger the deviation, the
more diverse is the distribution of data points among the partitions. The graphs in Figure 3.5

32 3. Community Training: Selecting Partitioning Schemes

 0

 0.5

 1

 1.5

 2

 2.5

 3

 16 64 256 1024 4096 16384

tr
ai

n
in

g
 p

h
as

e
(s

ec
o

n
d

s)

partitions

center splitting (Pobs)

median splitting (Pobs)

center splitting (Pmil)

median splitting (Pmil)

zones (Pobs, Pmil)

(a) 0.01% training sample

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 16 64 256 1024 4096 16384 65536 262144

tr
ai

n
in

g
 p

h
as

e
(s

ec
o

n
d

s)

partitions

center splitting (Pobs)

median splitting (Pobs)

center splitting (Pmil)

median splitting (Pmil)

zones (Pobs, Pmil)

(b) 0.1% training sample

 0

 10

 20

 30

 40

 50

 60

 16 64 256 1024 4096 16384 65536 262144

tr
ai

n
in

g
 p

h
as

e
(s

ec
o

n
d

s)

partitions

center splitting (Pobs)

median splitting (Pobs)

center splitting (Pmil)

median splitting (Pmil)

zones (Pobs, Pmil)

(c) 1% training sample

 0

 50

 100

 150

 200

 250

 16 64 256 1024 4096 16384 65536 262144

tr
ai

n
in

g
 p

h
as

e
(s

ec
o

n
d

s)

partitions

center splitting (Pobs)

median splitting (Pobs)

center splitting (Pmil)

median splitting (Pmil)

zones (Pobs, Pmil)

(d) 10% training sample

Figure 3.2: Duration of the training phase

3.3 Evaluation of Partitioning Scheme Properties 33

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 16 64 256 1024 4096 16384

av
er

ag
e

d
at

a
p

o
p

u
la

ti
o

n
 (

%
)

partitions

center splitting (Pobs)

median splitting (Pobs)

center splitting (Pmil)

median splitting (Pmil)

(a) 0.01% training sample

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 16 64 256 1024 4096 16384 65536 262144

av
er

ag
e

d
at

a
p

o
p

u
la

ti
o

n
 (

%
)

partitions

center splitting (Pobs)

median splitting (Pobs)

center splitting (Pmil)

median splitting (Pmil)

(b) 0.1% training sample

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 16 64 256 1024 4096 16384 65536 262144

av
er

ag
e

d
at

a
p

o
p

u
la

ti
o

n
 (

%
)

partitions

center splitting (Pobs)

median splitting (Pobs)

center splitting (Pmil)

median splitting (Pmil)

(c) 1% training sample

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 16 64 256 1024 4096 16384 65536 262144

av
er

ag
e

d
at

a
p

o
p

u
la

ti
o

n
 (

%
)

partitions

center splitting (Pobs)

median splitting (Pobs)

center splitting (Pmil)

median splitting (Pmil)

(d) 10% training sample

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

 16 64 256 1024 4096 16384 65536 262144

av
er

ag
e

d
at

a
p

o
p

u
la

ti
o

n
 (

%
)

partitions

zones (Pobs)

zones (Pmil)

(e) Complete data

Figure 3.3: Average population of a partition in comparison to the partition with the highest
population

34 3. Community Training: Selecting Partitioning Schemes

Figure 3.4: Median-based quadtree for Pmil with 212, 213, and 214 partitions

depict the standard deviation on a logarithmic scale. The median-based heuristics decreases the
deviation for both data sets, especially for the uniform data. Generating 4 096 partitions from
the 10% training sample results in a standard deviation of 1 432 and 92 for the median-based
variant and of 1 827 and 446 for the standard quadtree for Pobs and Pmil , respectively. In each
graph, the variance decreases because the size of the training set is kept constant and therefore
the amount of data objects for each partition is reduced. The standard deviation of the zones
approach (not shown) develops similar to the standard deviation of the quadtree. Due to the
adoption to the data distribution, the deviation of the quadtree-based partitioning schemes is
slightly (by a factor between 3 to 10) lower than the standard deviation of the zones.

3.3.4 Empty Partitions

The next comparison deals with the number of empty partitions. The results are presented in
Figure 3.6 as percentage of all partitions. While Pobs has large areas with no data (Figure 1.3(a)
on page 5), Pmil does not. For both small samples (0.01% and 0.1%), however, the number of
empty leaves increases significantly for both datasets from 16 384 partitions onwards (see Fig-
ure 3.6(a)). We discuss this deficiency of small data samples in the following section. For Pobs,
all zones configurations have about 7% empty partitions. Roughly 13 ◦ of 180◦ at the bottom
of Figure 1.3(b) contain no data, i. e., 7% of the declination domain are empty. As the zones
divide the data space regularly, this ratio remains constant. For Pmil , no empty zone partitions
exist. For the 1% and 10% training samples of Pobs (the latter is shown in Figure 3.6(b)), from
2 048 partitions onwards the percentage of empty partitions steadily decreases for the standard
quadtree. The highest percentage of empty partitions is for the standard quadtree with 128
leaves. This is due to the fact that the percentage of additional spits that result in additional
empty partitions is the highest when going from 64 to 128 partitions. From that on, the empty
areas (the “withe space”) of our data sample have been roughly approximated and additional
empty regions only appear at the “edges” of dense data areas, which explains our measurements
for Pobs. The median heuristics completely eliminates empty regions. In Figure 3.6(b), we do
not show the graphs for the samples of the uniform data set Pmil as all three data structures
created no empty partitions if the training sample is sufficiently large.

3.3 Evaluation of Partitioning Scheme Properties 35

 0.1

 1

 10

 100

 1000

 16 64 256 1024 4096 16384

st
an

d
ar

d
 d

ev
ia

ti
o

n

partitions

center splitting (Pobs)

median splitting (Pobs)

center splitting (Pmil)

median splitting (Pmil)

(a) 0.01% training sample

 0.1

 1

 10

 100

 1000

 10000

 16 64 256 1024 4096 16384 65536 262144

st
an

d
ar

d
 d

ev
ia

ti
o

n

partitions

center splitting (Pobs)

median splitting (Pobs)

center splitting (Pmil)

median splitting (Pmil)

(b) 0.1% training sample

 1

 10

 100

 1000

 10000

 100000

 16 64 256 1024 4096 16384 65536 262144

st
an

d
ar

d
 d

ev
ia

ti
o

n

partitions

center splitting (Pobs)

median splitting (Pobs)

center splitting (Pmil)

median splitting (Pmil)

(c) 1% training sample

 1

 10

 100

 1000

 10000

 100000

 1e+06

 16 64 256 1024 4096 16384 65536 262144

st
an

d
ar

d
 d

ev
ia

ti
o

n

partitions

center splitting (Pobs)

median splitting (Pobs)

center splitting (Pmil)

median splitting (Pmil)

(d) 10% training sample

Figure 3.5: Variation in data distribution

0%

5%

10%

15%

20%

25%

30%

35%

 16 64 256 1024 4096 16384 65536 262144

em
p

ty
 p

ar
ti

ti
o

n
s

(%
)

partitions

center splitting (Pobs)

median splitting (Pobs)

center splitting (Pmil)

median splitting (Pmil)

(a) 0.1% training sample

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

 16 64 256 1024 4096 16384 65536 262144

em
p

ty
 p

ar
ti

ti
o

n
s

(%
)

partitions

center splitting

median splitting

zones

(b) 10% training sample, Pobs

Figure 3.6: Empty partitions

36 3. Community Training: Selecting Partitioning Schemes

Sample size Pobs Pmil
0.01% 14 103 16 851

0.1% 138 590 169 058
1% 1 382 150 1 692 883

10% 13 837 271 16 938 822

Table 3.2: Sizes of the used training samples

3.3.5 Size of the Training Set

We now discuss the effect of the sample size on the quality of quadtree-based partitioning
schemes. To capture the quality of data samples for particular partitioning scheme sizes is
helpful for the choice of the sample size. Table 3.2 shows the cardinality of the training samples
for Pobs and Pmil , respectively. In the following, let the sample ratio rs

P(n) = |s-% sample of P |
n

be the number of objects per partition if the data is uniformly distributed, i. e., the size s of a
training sample of a data set P divided by the number n of partitions. For example, the sample
ratio r0.01

obs (1024) = 14103/1024 ≈ 13.8.
Using the sample ratio, we can explain the high percentage of empty partitions for small

(0.01% and 0.1%) samples when creating large partitioning schemes. In Figure 3.7 we com-
pared the four sample ratios (a) r0.01

obs , (b) r0.1
obs, (c) r1

obs, and (d) r10
obs, respectively. In order to

better identify the correlation between sample size and the percentage of empty partitions, we
also depicted the empty partitions of both quadtree variants.

In Figure 3.7(a), the first curve is r0.01
obs , the sample ratio for the 0.01% training sample of Pobs.

Increasing the number of partitions, we have about as many (or fewer) objects as partitions, i. e.,
the sample ratio (shown on the left-hand axis) decreases. Thus, with decreasing sample ratio,
a partition is empty with increasing probability. The both other curves are the empty partitions
of the quadtree variants, showing how the percentage of empty partitions raises. Therefore, our
implementation did not construct partitioning schemes when a completely empty partition was
split further.

The observations for the 0.1% training sample (Figure 3.7(b)) are similar for both data sets.
As soon as the sample ratio decreases below 10 (on the left-hand axis), the number of empty
partitions increases significantly. Even for the 1% training sample (Figure 3.7(c)) this effect
is visible when comparing the two last partitioning schemes evaluated with those from the
10% training sample (Figure 3.7(d)). Between the last partitioning schemes the sample ratio
r1

obs drops below 10 (r1
obs(131072) ≈ 10.5 and r1

obs(262144) ≈ 5.3) and there are more empty
partitions. The ratio r10

obs stays constantly above 10 and thus the number of empty partitions
remains undistorted. To summarize, a training set is only suitable for the training phase, if its
sample ratio is sufficiently high (> 10).

3.3.6 Baseline Comparison

To evaluate the quality of partitioning schemes generated during the training phase, we com-
pared the partitioning schemes obtained from our training samples with the partitioning scheme
computed using the complete data as training sample, the baseline histogram. For illustration,
we discuss the results for the quadtree-based partitioning schemes of Pobs with 1 024 partitions.
The partitioning schemes determined on the basis of the different training samples (0.01%,
0.1%, 1%, and 10%) were almost identical to the scheme computed on the basis of the com-

3.3 Evaluation of Partitioning Scheme Properties 37

 0.1

 1

 10

 100

 1000

 16 64 256 1024 4096 16384
0%

5%

10%

15%

20%

25%

30%

35%

40%

sa
m

p
le

 r
at

io

em
p

ty
 p

artitio
n

s (%
)

partitions

sample ratio

empty partitions (center)

empty partitions (median)

(a) 0.01% training sample

 0.1

 1

 10

 100

 1000

 10000

 16 64 256 1024 4096 16384 65536 262144
0%

5%

10%

15%

20%

25%

30%

35%

sa
m

p
le

 r
at

io

em
p

ty
 p

artitio
n

s (%
)

partitions

sample ratio

empty partitions (center)

empty partitions (median)

(b) 0.1% training sample

 1

 10

 100

 1000

 10000

 100000

 16 64 256 1024 4096 16384 65536 262144
0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

sa
m

p
le

 r
at

io

em
p

ty
 p

artitio
n

s (%
)

partitions

sample ratio

empty partitions (center)

empty partitions (median)

(c) 1% training sample

 10

 100

 1000

 10000

 100000

 1e+06

 16 64 256 1024 4096 16384 65536 262144
0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

sa
m

p
le

 r
at

io

em
p

ty
 p

artitio
n

s (%
)

partitions

sample ratio

empty partitions (center)

empty partitions (median)

(d) 10% training sample

Figure 3.7: Effect of decreasing sample ratio, Pobs

38 3. Community Training: Selecting Partitioning Schemes

0%

0.05%

0.1%

0.15%

0.2%

0.25%

0.3%

0.35%

 0 200 400 600 800 1000

p
ar

ti
ti

o
n

 p
o

p
u

la
ti

o
n

 (
%

)

partitions (ascending order)

0.01% sample

0.1% sample

1% sample

10% sample

complete data set

(a)

-0.01%

0%

0.01%

0.02%

0.03%

0.04%

0.05%

0.06%

0.07%

 0 200 400 600 800 1000

p
o

p
u

la
ti

o
n

 d
if

fe
re

n
ce

 t
o

 b
as

el
in

e
h

is
to

g
ra

m
 (

%
)

partitions (ascending order)

0.01% sample

0.1% sample

1% sample

10% sample

complete data set

(b)

Figure 3.8: Baseline comparison for the standard quadtree, Pobs, and 1 024 partitions

plete data. Thus, in this particular case (quadtrees, Pobs, 1 024 regions), all our training sets yield
very good partitioning schemes. Figure 3.8(a) shows the population of each individual partition
relative to the size of the corresponding training sample, sorted in ascending order. We can see
that the training samples are indeed representative because the distribution of the population is
similar for all samples as well as for the original data. That is, the first partition contains no data
and the last partition contains between 0.25% and 0.31% (for the 0.01% training sample) of the
samples or the complete data set, respectively. In Figure 3.8(b), we see that the differences com-
pared to the baseline histogram are negligible. The histogram created with the 0.01% training
sample has the most differences, but the maximum deviation is at 0.07%. Note that comput-
ing partitioning schemes based on complete data sets is prohibitively expensive when dealing
with very large current or future data sets, especially if verifying the median heuristics. Thus, a
baseline comparison as the one above is infeasible under such circumstances.

3.3.7 Discussion
We shortly summarize the observations made during our evaluation. The training phase itself
does not take very long, so it could be worthwhile comparing several training sets. Generating
all 250 partitioning schemes1 lasted about 120 minutes in our evaluation setup. This, for ex-
ample, allows the detection of non-representative samples, if the curve in Figure 3.8 diverges
too much from the curve of the complete data set. If a baseline comparison is infeasible, for
example when using partitioning schemes such as median-based quadtrees, outliers can at least
indicate differences between the drawn data samples. If training samples have a sufficiently high
sample ratio, comparatively small data samples already provide good partitioning schemes. In
our evaluation, using 10-times more data objects than partitions provided a good rule-of-thumb
for reliable results. For our skewed data sample, median-based quadtrees achieved the best
load-balancing and had quite homogeneous average data populations. Depending on the data
structure, the number of partitions influences the data distribution characteristics. For example,
2-dimensional quadtrees should be generated with powers of 4 as partition cardinalities. Be-
sides the parameters used in our evaluation, there are several other means to compare the data

1To avoid splitting empty partitions, we created only 11 quadtree-based histograms from the 0.01% training
sample and only 14 histograms for the 0.1% sample, respectively. Thus, we created 2 · (11+14+15+15) = 110
histograms for each quadtree variant and 2 ·15 = 30 zone-based histograms.

3.4 Related Work 39

structures and further properties of the data or queries that can be relevant for choosing the best
partitioning scheme. If the partitioning scheme changes frequently and is transmitted regularly,
the size of the data structure is also relevant for the decision process. Furthermore, considering
a typical workload during the training phase can give further valuable insights as we will discuss
in Chapter 7.

3.4 Related Work
Creating general purpose or application-driven multi-dimensional index structures has been and
continues to be an active field of database research. Besides the survey of Gaede and Günther
(1998), the book by Samet (2006) provides an encyclical source for index data structures. On
the application-driven side, Csabai et al. (2007) compared the performance of k-d trees and
Voronoi diagrams for scientific data sets. They also experienced boxes of multi-dimensional k-
d trees to elongate along the second and higher dimensions, a similar effect as in Figure 3.1(b).

3.5 Summary
In this chapter, we describe a flexible framework for investigating community-specific index
structures used as a partitioning scheme for data grid federations. Distributing the data across
several grid resources to level skewed data distributions while preserving spatial locality yields
improved throughput and better load balancing for data-intensive applications. We evaluated
quadtree variants and the zones algorithm and their capabilities to partition data from several
repositories for federated data grids. Our criteria can be applied or extended in many other
e-science communities. The choice of mapping the data partitions to the grid nodes is up to the
community. Possible options are random distribution or using space filling curves in order to
further preserve data locality. The trade-offs between these various choices are discussed in the
following chapter.

40 3. Community Training: Selecting Partitioning Schemes

41

CHAPTER 4

Community Placement: Better Serving Locality with
Space Filling Curves

Within this chapter, we discuss how the data partitions are mapped to the nodes within the
community-driven data grid. We especially want to focus on which data mapping strategy
improves query processing throughput.

We focus on two general options for achieving a data mapping to the nodes: random distri-
bution and using a space filling curve (Section 4.1). After discussing the rationales for either
choice, we evaluate the different placement strategies (Section 4.2). From our results, we con-
clude that using a space filling curve for data placement is preferable to a random assignment
in many application scenarios.

4.1 Random or Space Filling Curves
While the previous section focused on balancing the data load on the partitions from our parti-
tioning scheme, we discuss now the options for mapping those partitions to data nodes.

Within a central cluster environment, it is common practise to distribute the data partitions
randomly on the individual nodes in order to achieve a good data load balancing. This is par-
tially also motivated by the high-bandwidth interconnections which render the communication
between the nodes a less important bottleneck as in a distributed scenario. Assuming a uniform
workload with queries that have a high data locality, such random placement introduces a high
parallelism. However, this comes at the cost of sacrificing the spatial locality between neigh-
boring data areas. Changes in the access patterns, e. g., the researchers are interested in larger
sky areas, might result in increased communication overhead.

Space filling curves aim at preserving this spatial locality to some extent while providing
a linearization or a one-dimensional mapping for multi-dimensional data objects (as shown in
Figure 2.3 on page 12 in our overview section). Closeness within the data space should result in
a low distance within the identifier space. Space filling curves have been discussed extensively
in the literature (e. g., Samet, 2006) and we therefore only consider the most prevalent, the Z-

42 4. Community Placement: Better Serving Locality with Space Filling Curves

order (Orenstein and Merrett, 1984) and the Hilbert curve (Hilbert, 1891). Range queries in
multi-dimensional space are translated to several interval-queries for the one-dimensional map-
ping. Asano et al. (1997) propose a space filling curve for squared queries in two-dimensional
space which is optimal in the sense that it guarantees to need only three one-dimensional in-
tervals to answer a query. Remarkably, new interesting insights about space filling curves and
their locality properties have been investigated very recently by Haverkort and van Walderveen
(2008).

Besides the fundamental aspect of preserving spatial locality, other factors can also influ-
ence the data mapping, such as the workload characteristics or the individual node capacities.
For example, distributing popular data on multiple data nodes in order to increase the query
parallelism is widely used in parallel databases and current data center layouts. In our opinion,
preserving locality is the key in order to achieve a high throughput.

For the choice of the correct data placement, again properties of the partitioning scheme
play an important role, e. g., the size of individual partitions. For community-driven data grids,
small partitions enable us to migrate or copy partitions between nodes either for compensating
a node failure or for replication purposes. For our quadtree-based partitioning schemes, the
partitions are approximately of the same size by the adoption to data distribution. We therefore
achieve data load balancing by placing roughly the same number of partitions on each node.

Within community-driven data grids, we prefer inter-query parallelism over intra-query par-
allelism and we therefore aim at sending queries to a single host where all data is locally avail-
able. We achieve this goal, if a query only requires one data region, as these regions are the
most atomic data building block and guaranteed to be completely on a single node. When
queries span multiple partitions and these partitions are all managed by a single node, no ad-
ditional overhead is necessary in order to merge or transmit intermediate results. Otherwise a
coordination node needs to be selected during query processing, as discussed in Section 6.1.

As described in the architectural overview (Section 2.2), our HiSbase prototype realizes the
data mapping by using the key-based routing functionality of an overlay network. The region
identifiers are uniformly mapped to the one-dimensional key ring. When a node arrives at the
network for the first time, it receives a random identifier. During the join process, the arriving
node is informed about its both neighbors and thereby can compute the range of identifiers, it is
responsible for. The data is then transferred to this node by employing one of the dissemination
techniques (either via data feeding or direct extraction from an archive) which are discussed in
Section 5. Should a node return to the network, it reuses its previous identifier as it already has
stored the relevant data locally.

4.2 Placement Evaluation
During our experiments, we evaluated how the various mapping options affect the data load
balancing and query locality of our queries. We used the quadtree-based partitioning schemes
created during the evaluation of the training phase presented in the previous chapter. Data
load balancing and preservation of query locality are the two criteria to assess our various data
placement strategies. A good data load balancing is achieved if all nodes manage the same
amount of data. With regard to query locality, we evaluate how many nodes are required in
order to answer a single query.

Queries that intersect a single partition are answered by a single node and thus have optimal
query locality. We note that this is independent of the placement strategy because a partition is
not further split across multiple nodes. However, queries spanning multiple partitions that are

4.2 Placement Evaluation 43

Parameter Value(s) Description
P Pobs, Pmil Data set used for training sample

extraction

Q Qobs, Qmil′ Query workload used for query locality
evaluation

s 0.1%, 1%, 10% Size of the training set

m Z-order, Hilbert curve, random Mapping strategy

p 42, 43, 44, 45, 46, 47, 48, 49 Size of the partitioning scheme

n 10, 30, 100, 300, 1 000, 3 000, 10 000 Network size

r 1 000 Number of runs

Table 4.1: General parameters for the evaluation of mapping strategies

distributed to multiple nodes introduce the overhead described above (i. e., additional messages
and intermediate results). With a good placement strategy, many of these (multi-region) queries
can still be answered by a single node.

Compared to the evaluation setup of the training phase, we only used histogram sizes, which
could be created directly from quadtrees (i. e., powers of 4 in our application scenario). The
network size was changed between 10 and 10 000. As data sets we used both the observational
data set Pobs and the simulation data set Pmil . We used our observational query set Qobs and a
synthetic workload Qmil′ to test query locality. Qmil′ consists of one million queries with a hot
spot in the center area and search radii taken uniformly from 0.5 arc min, 1 arc min, 4 arc min,
1◦ and 4◦. This set of radii was suggested by Nieto-Santisteban et al. (2007) as parameters for
cone searches. By using the simulated data set with a workload that also contains larger queries,
we can especially evaluate the effect on spatial locality.

For each mapping method–Z-order, Hilbert curve, and random placement—we performed
1 000 runs for each histogram size, data set, and network size combination. The figures show
the average taken from these 1 000 runs and we report only on our findings from the 10%
data sample. Furthermore, we consider only partitioning schemes whose size is larger than
the number of nodes. With fewer partitions, the size of the individual partition increases and
thus the transmission takes longer, e. g., if the partition needs to be transferred to another node.
Table 4.1 summarizes the various evaluation parameters.

4.2.1 Data Load Balancing
We only discuss the data load balancing results of the observational data set Pobs as the results
of the simulation data set showed a similar trend.

In the data load balancing part, we only discuss the result on the observational data set Pobs,
as the trend in the results of the simulation data set Pmil was similar. Furthermore, the results
for both space filling curves were the same with regards to data load balancing capabilities.

In Figure 4.1(a), we compare how the Pobs data load of 1 024 partitions is distributed across
1 000 nodes using a Lorenz curve (see Pitoura et al., 2006). On the x-axis we ordered the nodes
according to the amount of data they are responsible for. For a system that optimally (uniformly)
balances the data load, the Lorenz curve is close to the diagonal. For the shown configuration,
we see that a high percentage (between 28% and 35%) of the nodes cover no data at all. Random

44 4. Community Placement: Better Serving Locality with Space Filling Curves

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.2 0.4 0.6 0.8 1

ac
cu

m
u
la

te
d

 d
at

a
lo

ad

proportion of nodes

uniform load balancing

Z-order, Hilbert (center splitting)
Z-order, Hilbert (median splitting)
Random (center splitting)
Random (median splitting)

(a) 1 024 (45) partitions

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.2 0.4 0.6 0.8 1

ac
cu

m
u
la

te
d

 d
at

a
lo

ad

proportion of nodes

uniform load balancing

Z-order, Hilbert
Random

(b) 262 144 (49) partitions

Figure 4.1: Data load balancing for the Pobs data set on 1 000 nodes

Minimum Maximum Total
Z-order 162 MB 3.8 GB 44 GB

Random 828 MB 13 GB 129 GB
Space increase 511% 342% 293%

Table 4.2: Additional space required by placing partitions randomly on 32 nodes

strategies are slightly worse than the strategies based on space filling curves. Due to the random
placement of peers and the low region-to-node ratio, it is very likely that nodes do not cover any
data region at all. We see a small benefit for the median based approach, as it adapts slightly
better to the data load balancing.

In Figure 4.1(b), we show the distribution of 262 144 partitions to the same 1000 nodes. We
see that the data load distribution improved for both space filling curves, as the curve is closer
to the diagonal and less nodes cover no data. Placing the partitions randomly on the nodes is
close to the optimal data distribution. We attribute this to skew that spans multiple partitions
(neighbor partitions that have all little or all much data) which is potentially preserved by a
space filling curve whereas random placement “shuffles” these regions.

With regards to completely partitioned data management, random placement clearly offers
the best data load balancing. However, especially for our cross-matching scenario, random
placement introduces a considerable storage overhead. For cross-matches, a small overlap at
the borders of the partitions is necessary in order to find corresponding matches that are just
“beyond the border”. If a node covers many neighboring regions this overlap is not necessary
for the “interior” borders, i. e., for borders between regions that are covered by the node itself.
A concrete comparison for a network with 32 nodes is given in Table 4.2. By adding a small
border of 0.1 degrees to each of the 262 144 partitions, the storage requirements triples for all
node databases in total. The size of the smallest partition is even increased by a factor of five.
Similar scaling-relationships were found when comparing the size of the CSV files for each
node.

4.2 Placement Evaluation 45

0%

1%

2%

3%

4%

5%

6%

7%

256 1024 4096 16384 65536 262144

q
u
er

ie
s

sp
an

n
in

g
 m

u
lt

ip
le

 n
o
d
es

 (
in

 %
)

partitions

Z-order
Hilbert
Random

(a) Qobs

0%

10%

20%

30%

40%

50%

60%

70%

256 1024 4096 16384 65536 262144

q
u
er

ie
s

sp
an

n
in

g
 m

u
lt

ip
le

 n
o
d
es

 (
in

 %
)

partitions

Z-order
Hilbert
Random

(b) Qmil′

Figure 4.2: Query locality on 100 nodes with varying partitioning schemes

0%

0.5%

1%

1.5%

2%

2.5%

3%

10 30 100 300 1000 3000 10000

q
u
er

ie
s

sp
an

n
in

g
 m

u
lt

ip
le

 n
o
d
es

 (
in

 %
)

nodes

Z-order
Hilbert
Random

(a) Qobs

0%

10%

20%

30%

40%

50%

60%

10 30 100 300 1000 3000 10000

q
u
er

ie
s

sp
an

n
in

g
 m

u
lt

ip
le

 n
o
d
es

 (
in

 %
)

nodes

Z-order
Hilbert
Random

(b) Qmil′

Figure 4.3: Query locality for varying network sizes with 16 384 partitions

4.2.2 Query Locality
Besides data load balancing, we also evaluated the preservation of query locality for the map-
ping strategies. Figure 4.2 shows the percentage of queries that span multiple nodes during
query processing while increasing the histogram size for a network with 100 nodes. For the
observational workload Qobs (Figure 4.2(a)), the queries exhibit a high degree of locality and
when using space filling curves, only a tiny fraction needs data from several nodes. This query
ratio increases for random placement when the partitioning scheme contains more partitions up
to 6.4% percent. Though the queries span multiple regions when increasing the histogram size,
the space filling curves ensure that the overall level of locality remains stable. Put differently:
space filling curves are better in keeping the work on a single node.

This observation holds also for the simulation data set Pmil and query set Qmil′ , although on
a different scale (Figure 4.2(b)). This workload has 30% queries spanning multiple nodes and
both space filling curves are good in keeping the ratio stable. When used with 262 144 partitions,
randomly placing the partitions on nodes results in 70% of the queries to span multiple nodes.
The results for other network sizes show similar trends.

Above results suggest that it is reasonable to create a partitioning scheme with many parti-
tions, even if the initial number of nodes is small. The locality-preservation by the space filling

46 4. Community Placement: Better Serving Locality with Space Filling Curves

curves will still keep queries on a single node. Thereby, HiSbase can accommodate situations
when institutions join with several nodes at once. As a side effect the size of the partitions
becomes even smaller.

Figure 4.3 again shows the percentage of queries that require data from multiple nodes. In
contrast to Figure 4.2, the histogram size is fixed at 16 384 partitions and shows the evolution
when additional nodes join the network. The more nodes are added, the more both space filling
curves approach the values of the random partitioning.

4.3 Summary and Future Work
Achieving good data load-balancing as well as preserving query locality is important for scal-
able data management solutions in e-science environments. Therefore the choices of partition-
ing scheme and of mapping strategy contribute significantly to how well the initial setup of
the community grid will scale. From our experiments we draw two conclusions as advice for
building community-driven data grids: 1) create a partitioning scheme with many partitions
and 2) use space filling curves for mapping the partitions on the available nodes. Through this
combination the query locality remains stable for a network with fixed size. When adding more
nodes to a running setup the query locality for a fixed partitioning scheme remains higher than
for placing the partitions randomly. In very restricted application scenarios, e. g., when queries
are extremely local (one partition) and no “boundary data” is necessary, random placement of-
fers a reasonable choice as the data load balancing capabilities are amenable to their full extent.
Further studies which apply advanced space filling curves (e. g., Asano et al., 1997; Haverkort
and van Walderveen, 2008) probably will provide additional insights.

47

CHAPTER 5

Feeding Community-Driven Data Grids

Scientific archives currently provide access to already existing huge data sets. Moreover, re-
cently started scientific instruments, such as LOFAR and LHC, generate data at an enormous
speed and scale. In order to cope with this data deluge, scalable high-throughput data manage-
ment infrastructures, such as HiSbase, need to employ efficient data dissemination techniques.

Within this chapter, we discuss how to efficiently distribute data within community-driven
data grids. First, we describe several scenarios where we apply data feeding to transmit data
between the collaborating data nodes (Section 5.1). Then, we compare a pull-based approach,
where each client pulls the required data, with two basic push-based techniques, where the
archives publish the data to the clients either tuple-wise or the complete data at once (Sec-
tion 5.2). We identify the major limitations of these approaches in the face of the require-
ments of e-science data grids and propose efficient bulk feeding techniques that transmit data in
chunks. In order to tune our feeding strategies, we describe a model that optimizes data feeding
by using paths with minimal latency and maximum bandwidth (Section 5.3). As we cannot
use an optimal solution due to the problem’s complexity, we present our chunk-based feeding
techniques. We describe how to optimize the network traffic, the configuration of the feeding
strategies, and the data processing at the receiving nodes in Section 5.4. Our evaluation re-
sults (Section 5.5) show that our bulk feeding techniques considerably accelerate data feeding.
We conclude this chapter with related work (Section 5.6) and give an outlook on future issues
(Section 5.7) in the context of data dissemination within scientific data grids.

5.1 Feeding Scenarios

In the following, we discuss five exemplary use cases for data feeding within community-driven
data grids. They range from the initial feeding to node arrivals, node departures, and to data
distribution according to an additional histogram. Nodes that receive feeding messages in our
scenarios directly store the data in their local database.

48 5. Feeding Community-Driven Data Grids

5.1.1 Initial Load

The initial load scenario distributes data from an archive for the first time into the community-
driven data grid. Although some archives maintain a few globally distributed mirrors in order
to provide redundant access to the public data set, we only use one data copy during our initial
feeding. For each catalog, one node contacts an archive and transfers the data to the network
nodes.

5.1.2 New Node Arrival

Whenever a new node joins the network, it will get two direct neighbor nodes (one clock-wise,
the other counter-clock-wise). By the underlying key-based routing fabric, these nodes are
notified about the arrival of the new node. Both neighbor nodes determine the data subset,
which is relevant for the new node, by the histogram and information extracted from the update
message which is triggered by the arrival. The neighbors extract this subset and send it to the
new node. Once the new node has received all its data, the node participates in query processing.

5.1.3 Planned Node Departure

The planned node departure is the symmetric event to the arrival of a new node. In contrast to
both previous scenarios, now the databases at the receiving nodes already contain data. When a
node leaves the network in a controlled manner, its data need to be transmitted to its neighboring
nodes. Based on the identifiers of its both neighbors, the leaving node can identify the data
which is added to the database of either node. Once it has finished the feeding process, the node
leaves the network.

5.1.4 Unplanned Node Departure

In case of an unplanned node departure the former neighbor nodes are again notified using the
underlying key-based routing system. At this point in time, both neighbors share the responsi-
bility for the data regions once covered by the disappeared node. In cases where the outage of
the node cannot be resolved within a predefined time frame the data needs to be retransmitted
to the affected nodes. In this case, we extract from the archive only the regions that have been
covered by the node that has left the network.

5.1.5 Replicating Data to Other Nodes

Once the data is distributed among the network nodes, their databases can serve as data sources
for further data transfers. This is particularly useful when redistributing data for load balancing
purposes. Chapter 8 describes the actual load balancing mechanisms in more detail. Here, we
only discuss how to replicate all available data, e. g., in order to increase the data availability by
an additional copy. Obviously, the redistribution is determined by a second, different histogram.
Otherwise, all nodes would manage the same data twice and send the data to themselves.

5.2 Pull-based and Push-based Feeding Strategies 49

Figure 5.1: Example for geometric predicate optimization with only minor improvements

5.2 Pull-based and Push-based Feeding Strategies
For the following discussion, we summarize the expected figures for the number of data sets
and their accumulated size, the number of nodes, and the anticipated number of data partitions
within a community-driven data grids. We assume that our data grid will serve about 3–300
data sets whose accumulated size will comprise several terabytes up to petabytes. We anticipate
that the networks will start with several nodes at the beginning and if new institutions join they
will bring a considerable amount of nodes into the network. Thus, the network size is about
ten times larger than the number of catalogs (30–3 000 nodes). In order to anticipate network
growth, the number of partitions is a factor of hundred higher than the number of nodes. Thus,
histograms have between thousands and hundreds of thousands of regions. Moreover, we get a
reasonable size for the individual histogram region, e. g., for a petabyte data set the size of one
region out of 300 000 regions would be in the gigabytes. To sum up, we expect to have far more
regions than nodes and more nodes than individual catalogs.

5.2.1 Pull-based Feeding
For delivering the data from the catalogs stored at the original data sources (archives) to the
individual nodes within a community-driven data grid, nodes could pull their data to their local
database. This approach follows a traditional client-server model: the nodes are the clients and
the archives act as servers. When a node requests its data sets, it first generates the SQL query
for each catalog from the dimensions of its covered regions. It then submits the query to the
database on the archive server, retrieves the results, and stores the data in its local database.
Pull-based feeding has the advantage that it is easy to implement and all nodes directly com-
municate with the archive servers. Direct communication denotes, that receiver and sender are
connected directly using a TCP/IP connection, and not necessarily a direct physical wire. On
the downside, the approach burdens a high load on the nodes serving the data sets. In the initial
load scenario, for example, all nodes request the data at once and in parallel. Furthermore, if
nodes cover many regions query predicates potentially get too complex for the query optimizer
of the database system. For example, a node within a 100-node network using a histogram with
300 000 regions would cover about 3 000 regions. For our running astrophysics example, this
would result in an SQL query with 6 000 range predicates (one predicate for the right ascen-
sion attribute and one for the declination attribute for each region). Simplifying predicates by
geometric optimizations is in general applicable for quadtree-based histograms. For example,
the four predicates of adjoining square regions could be combined to two predicates (defining a
rectangle). In the worst case, as shown in Figure 5.1, this technique can yield only minor sim-
plifications. Due to these limitations of the pull-based approach, we now discuss push-based
dissemination techniques.

50 5. Feeding Community-Driven Data Grids

Figure 5.2: Tuple-based feeding strategy (TBFS)

Figure 5.3: “Wolf”-based feeding strategy (WBFS)

5.2.2 Push-based Feeding

For push-based feeding strategies, the feeder, i. e., the sending node, actively publishes its data
to the network. All push-based strategies have in common that they determine receivers with
our histogram and hence considerably simplify the database queries at the feeding node. For
example, during the initial load, the feeder simply performs a sequential scan on the complete
catalog in order to retrieve the relevant data.

Tuple-based Feeding Strategy (TBFS)

For the tuple-based feeding strategy, the feeding node feeds each individual tuple into the net-
work after it has determined the region for the tuple. This basic transmission process is depicted
in Figure 5.2. If partitions have an overlap at the border to their neighbors, tuples falling into
that border are replicated to both nodes.

Related P2P information systems (e. g., Crainiceanu et al., 2007; Ganesan et al., 2004a),
which primarily scale with network size and are designed for a highly volatile network, use this
data dissemination technique. While the TBFS offers good flexibility for low data volumes, this
approach does not scale for the anticipated data set sizes as it introduces too many messages—
one message for each tuple.

The messages are small and directly sent via the P2P overlay network. However, data is
extracted fast from the archive and therefore we need to fine-tune the message handling. If the
feeding speed is not configured correctly, the outgoing queues at the feeder will be swamped
and either will get very large or messages will be discarded. To devise a good deceleration of
the feeding nodes, i. e., fixing the frequency of outgoing messages, is difficult and prolongs the
feeding process further.

5.3 An Optimization Model for Feeding 51

“Wolf”-based Feeding Strategy (WBFS)

The “wolf”-based feeding strategy (WBFS) distributes the data for each node in a single big
message and is depicted in Figure 5.3.1 Assuming that the positions of the nodes are known
in advance, this strategy uses a single sequential scan on each catalog in order to extract the
individual tuples. Similar to the TBFS, this strategy identifies tuples which need to be sent to
multiple nodes. Instead of creating a message for each such tuple, this strategy stores all tuples
for a specific node in appropriate data files (e. g., CSV files). These files are then transmitted to
the data nodes using a suitable protocol such as scp, rsync, or GridFTP. Each node compiles its
own database based on these data files.

Using the WBFS, we increase the parallelism of the data extraction at the sources and of the
database creation at the receivers. Additionally, feeders and receivers use direct communication.
However, the WBFS still has some major drawbacks. Although the WBFS is push-based, it
requires a high storage capacity at the feeders in order to create the data files for all nodes in
parallel. Furthermore, this strategy performs data extraction as a blocking operator. Only if
all files for a particular catalog are completed, the data files are transferred to the appropriate
nodes.

We see from the two basic push-based strategies, TBFS and WBFS, that is critical to define
an appropriate size for data chunks, i. e., to define how many objects are combined into a single
message. Using only one tuple per messages induces too many messages and sending all data
at once offers only a limited parallelism and pipelining. We need to trade off high parallelism
against network overhead when designing our bulk feeding techniques. For this purpose, we
analyze how to optimize these feeding strategies by a mathematical model. Although the op-
timal solution is not applicable in our context, we derive several useful indications that have
influenced our feeding strategies.

5.3 An Optimization Model for Feeding

In order to optimize the feeding process, efficient data transfers are required to reduce both the
load and space requirements on the archive nodes as well as the messaging overhead during
transmission. The efficiency and speed of our feeding strategies is therefore determined by the
latency and bandwidth constraints within the network. For creating a model which allows us
to describe the latency and bandwidth constraints, we require a network snapshot of the current
network configuration.

5.3.1 Network Snapshots

In oder to find the appropriate abstraction of the network configuration, we compare different
views of the communication network of community-driven data grids as shown in Figure 5.4.

In general, we use the key-based routing protocols of the overlay network (Figure 5.4(a)).
However, we cannot directly derive the properties of the physical network—such as latency,
bandwidth, or closeness between nodes—from the overlay network links. Overlay links abstract
on purpose from the actual network and this fact renders this view of the network as infeasible
for building a mathematical model for latency and bandwidth constraints.

1Due to the fact that nodes get a single “big bite”, we denoted this strategy “wolf”-based inspired by the verb
to wolf: to eat greedily (source: http://www.merriam-webster.com/dictionary/wolf).

http://www.merriam-webster.com/dictionary/wolf

52 5. Feeding Community-Driven Data Grids

(a) Network snapshot using over-
lay paths

(b) Physical network snapshot as
complete undirected graph
G′ = (V ′,E ′, l′,b′)

(c) Physical network snapshot
as undirected graph G =
(V,E, l,b) with transit nodes
(inner nodes)

Figure 5.4: Overview of network snapshots

In the following, we will use specific network snapshots that enable us to better describe the
physical network configuration:

Definition 5.1 (Network Snapshot) A network snapshot is a graph G = (V,E, l,b) that de-
scribes a static view of a physical network. Let V be the set of nodes within the physical
network and E the set of communication links (i, j) between two nodes i, j ∈V . Then let func-
tion l : E → R+ define the latency of an edge and function b : E → R+ define the bandwidth of
an edge, respectively. ¤

One example of such view of the physical network is the complete undirected graph, as
shown in Figure 5.4(b). This model represents the direct communication paths between all
nodes participating in the common data grid. The graph is complete, as we can assume that all
nodes within a community data grid allow for direct communication, i. e., all nodes within the
network can establish pairwise connections. Furthermore, the graph is undirected, as data grids
usually use bidirectional, high-bandwidth communication links. Unfortunately, this view does
not capture cross-traffic, i. e., traffic between two independent pairs of nodes that will influence
each other’s performance as they share a common subpath in the physical network.

We will therefore use network snapshots that include transit nodes and that enable us to
create a more realistic network model. Transit nodes represent those routing nodes that connect
several nodes within the same institution or campus to the other nodes within the data grid
infrastructure. If two nodes share a common transit node, they compete for the transit node’s
bandwidth and influence each other. For example in Figure 5.4(c), node i and node j share a
common transit node.

In order to create network snapshots, one needs to measure connection channels between
nodes. In order to collect latency and bandwidth information network, nodes could ping other
nodes or transmit sample data, respectively. Transit nodes on the communication paths could
be identified using tools such as traceroute. Caching the information of previous transfers could
also be a suitable mean to collect such network snapshots. We refrained from modelling further
aspects such as failing nodes or skewed demand on the individual links as these would further
add to the complexity of the problem.

Thus, we use network snapshots with transit nodes for our model in order to identify optimal
paths for data dissemination. We consider a path optimal, if it offers both low latency and high
bandwidth.

5.3 An Optimization Model for Feeding 53

5.3.2 A Model for Minimum Latency Paths
First, we construct a model based on a network snapshot G = (V,E, l) that only uses the latency
function. During data feeding, messages should be sent on paths that offer the lowest latency
possible. We show one approach for finding minimum latency paths based on Algorithm 5.1 and
our network snapshot. The algorithm is a modified version of the Dijkstra-Algorithm (Cormen
et al., 2001). Within the algorithm, we denote the set of nodes adjacent to a node subset S ⊆V
as the neighborhood of S in network snapshot G.

Definition 5.2 (Neighborhood N(G,S)) For any node set S ⊆ V , we define the neighborhood
of set S in network snapshot G as N(G,S) = { n ∈V | ∃ s ∈ S : (s,n) ∈ E }. ¤

Algorithm 5.1: Minimum latency path
Data: Network snapshot G = (V,E, l), latency function l : E → R+, node s ∈V
Result: Latency L(v) of a minimum latency path for all nodes v ∈V reachable from s
begin1

S ←{s}2

L(s) ← 03

L(v) ← ∞ ∀v ∈V \{s}4

for v ∈ N(G,S) do5

L(v) ← l((s,v))6

end for7

while N(G,S)\S 6= /0 do8

Choose vmin ∈ N(G,S)\S with L(vmin) = min{ L(v) : v ∈ N(G,S)\S }9

for v ∈ N(G,{vmin})\S do10

L ← min{ L(v), max{ L(vmin), l((vmin,v)) } }11

end for12

S ← S∪{vmin}13

end while14

end15

Theorem (Minimum Latency Path) Let G = (V,E, l) be an undirected graph with the latency
function l : E → R+ and s ∈ V be an arbitrary source. Algorithm 5.1 solves the problem of
minimum latency paths by annotating nodes v ∈V with the latency L(v) of a minimum latency
path from s to v. Using a depth-first search that purges edges e with l(e) > L(v) starting in s
determines the actual minimum latency path.

PROOF: Let Si be the set S in step i. We show that in every step of the algorithm, L(v)with v∈V
is the latency of a minimum latency path from s to v that only uses intermediate nodes from Si.
In proof of the theorem we use induction over |S| = i+1:

Base Case: For |S| = 1, set S0 only contains node s and all nodes v in the neighborhood of s
(i. e., v ∈ N(G,s)) are initialized with the latency L(v) = l((s,v)) of the direct edge to s
(line 6 of Algorithm 5.1). All remaining nodes—those which are not in the neighborhood
of s—are not reachable, because s is the only possible intermediate node (S0 = {s}) at
this point. Hence we label these nodes with ∞. Therefore, the current minimum latency
paths, i. e., the direct edges, from the source s are correctly identified.

54 5. Feeding Community-Driven Data Grids

Inductive Step: Let the hypothesis hold for set Sn−1 = {s,v1,v2, . . . ,vn−1} for the inductive
step. Therefore L(v), with node v ∈ V , denotes the latency of a minimum latency path
from s to v with intermediate nodes in Sn−1. The next step adds vn to the set Sn−1.
For all nodes v ∈ Sn−1, we have L(vn) ≥ L(v), because L(vn) is the minimal latency
annotation of nodes not in Sn−1 and latency annotations are monotonically increasing. If
now there exists a node v∗ /∈ Sn = {s,v1,v2, . . . ,vn} for which exists a path using only
intermediate nodes in Sn that yields a lower latency annotation than L(v∗), this node must
be a neighbor of node vn. The hypothesis states that the labels L(v1),L(v2), . . . ,L(vn−1) do
not change in step n. In step n, therefore, a path from s to v∗ that uses only nodes in Sn−1
as intermediate nodes cannot lead to a lower value for L(v∗) than the one that is set after
step n− 1. Thus, the minimum latency path from source s to node v∗ with intermediate
nodes in Sn is made up of a minimum latency path from s to vn with intermediate nodes
only in Sn−1 and latency l((vn,v∗)). According to the base case, the latency L(v∗) is
max{ L(vn), l((vn,v∗)) }. This is exactly the way label updates are handled in line 11 of
Algorithm 5.1. Hence the hypothesis is justified.

For a proof of correctness for the pruning depth-first search algorithm to determine the
actual minimum latency path we refer the reader to the respective literature (Cormen et al.,
2001). ¥

Running Time Algorithm 5.1 runs the outer while-loop |V | times as in each round a node is
added to set S (|S| is increased by 1) and set S initially only contains node s. In the worst
case, the inner for-loop cycles |V | times for a complete graph. Therefore the running time of
Algorithm 5.1 is in O

(
|V |2

)
. A depth-first search has a worst case running time of O(|V |+ |E|).

Hence, the running time to find minimum latency paths is in O
(
|V |2

)
.

Example 5.1 We execute Algorithm 5.1 on the example graph G∗ depicted in Figure 5.5(a)
using s as a source node. For the sake of simplicity, edges are labeled with integer values
instead of real latency values. Appendix A provides a stepwise execution of the algorithm. The
resulting graph with latency annotations is depicted in Figure 5.5(b).

.

.

. ...v1v2

...sv3 .

. ...v4v5

.0

.∞ .∞

.∞

.∞ .∞

.4

.1

.5

.3

.8

.3
(a) Undirected graph G∗

.

.

. ...v1v2

...sv3 .

. ...v4v5

.0

.4 .5

.5

.1 .3

.4

.1

.5

.3

.8

.3
(b) Result of Algorithm 5.1 for s as source

node

Figure 5.5: Result of Algorithm 5.1 for G∗ and s as source node

We assume that sending individual messages has only a negligible influence on the latency
of the link. This allows us to reuse a network snapshot for all messages. We therefore create

5.3 An Optimization Model for Feeding 55

the network snapshot by running Algorithm 5.1 once for each node. Every time a message
is ready for sending and we need to determine a minimum latency path, we only perform a
depth-first search in the annotated network snapshot. We briefly sketch how to optimize our
algorithm further by replacing the depth-first search with simple lookups. The basic idea of this
optimization is to annotate nodes with their predecessor on a minimum latency path with regard
to the specific source during the execution of Algorithm 5.1. For retrieving the path, we only
need to trace the path from the target back to the source.

5.3.3 A Model for Maximum Bandwidth Paths
While the previous model only considered the latencies of the network, we now define a
model which focuses on finding maximum bandwidth paths from a given network snapshot
G = (V,E,b). This problem is more complex than finding minimum latency paths because
sending a message on a channel does influence the available bandwidth for other messages.
We choose flow networks in order to model the information flow during the data feeding in
our data grid infrastructure. To be more precise, we will consider our scenario as instance of
the multicommodity flow problem. The multicommodity flow problem describes multiple dif-
ferent commodities that are transferred from their sources to their sinks through a common
network (Awerbuch and Leighton, 1993). Thereby, our flow network G has the following prop-
erties:

Vertices V = N ∪W : The vertices v∈V in our model are either data grid nodes n∈N or transit
nodes w ∈W . We assume transit nodes do not participate in the data grid infrastructure,
i. e., they only forward intermediate traffic.

Edges E: Edges are communication channels that can be used to transfer messages used during
our data feeding. We assume that every network connection is bidirectional and offers
equal bandwidth for both directions as assumed for e-science data grids in Section 5.3.1.

Bandwidth b: Each edge (u,v) ∈ E, with nodes u,v ∈V is assigned a non-negative bandwidth
b((u,v)) ≥ 0. All edges that do not exist (u′,v′) /∈ E have bandwidth b((u′,v′)) = 0. We
assume that each node is also connected with itself and no bandwidth restrictions exist in
this case: ∀v ∈V ∃(v,v) ∈ E : b((v,v)) = ∞.

Commodities C = {c1,c2, . . . ,ck}: For modelling data feeding processes within community-
driven data grids, commodities represent the individual messages used to transfer objects
from the different catalogs (e. g., ROSAT, SDSS, or TWOMASS). Each commodity is
specified by the triple ci = (si, ti,di), 1 ≤ i ≤ k, defining the source si and sink ti of the
packet, and its demanded bandwidth flow value di. How many commodities are used
depends on how many objects are grouped together.

Sources S = {s1,s2, . . . ,sl} ⊆ N: Considering data sources s ∈ S, each node can be a potential
source (feeder) of data. The exact number of sources depends on the specific feeding
scenario discussed in Section 5.1. For example, we have as many sources as catalogs in
the initial load scenario whereas all nodes are sources in the replication scenario.

Sinks T = {t1, t2, . . . , tm} ⊆ N: Just as for sources, every node can be a sink (receiver) for mes-
sages. We note that sources can simultaneously be sinks for either commodities they
induce to the network or messages from other feeding nodes.

56 5. Feeding Community-Driven Data Grids

Connectivity of G: We further assume that the graph G is connected. This property states, that
for all nodes v ∈V , all sources s ∈ S, and all sinks t ∈ T a path s ; v ; t exists.

Definition 5.3 (Bandwidth Flow Functions) Using our flow network G we can now define the
bandwidth flow functions for commodities ci ∈C, 1 ≤ i ≤ k : fi : V ×V → R as follows:

Bandwidth capacity: ∀u,v ∈ V : ∑k
i=1 fi(u,v) ≤ b((u,v)). This states that all flows must not

surmount the available bandwidth of the network links.

Skew symmetry: ∀u,v ∈V : fi(u,v) = − fi(v,u)

Flow conservation: No node should retain a commodity if it is not its sink. Thereby, the in-
flow must be equal to the out-flow on such nodes: ∑u∈V fi(v,u) = 0, for u ∈ V that are
neither a source nor a sink for commodity ci. In particular this constraint must hold for all
transit nodes w ∈W because they do not participate in the data grid and therefore cannot
act as a sink.

Demand satisfaction: To satisfy the specified demand for all commodities, the source must
have an accumulated outflow in size of the bandwidth in demand: ∀ci = (si, ti,di) :
∑v∈V fi(si,v) = di, 1 ≤ i ≤ k. ¤

Our goal is to maximize the aggregated bandwidth flow in our flow network. Hence we
maximize the demand for all commodities, so that each can be satisfied and the aggregated flow
is maximized:

max
k

∑
i=1

di = max
k

∑
i=1

∑
v∈V

fi(si,v), with si being the source for commodity ci ∈C (5.1)

When all nodes are centrally coordinated such that only a single feeding message is sent
through the network, finding a maximum bandwidth flow is straight-forward. Messages corre-
spond to commodities in our model, and therefore this case is a one-commodity flow problem
and we can compute an optimal solution, e. g., by applying the Ford-Fulkerson Algorithm (Cor-
men et al., 2001). However, performing feeding according to this scenario would deteriorate
the overall performance significantly.

According to the literature, our model for maximizing the bandwidth flow corresponds to the
undirected maximum multicommodity real flow problem. Finding a polynomial-time algorithm
for more than two commodities causes major difficulties (Even et al., 1975). The only known
efficient way to compute the exact maximum bandwidth flow for our scenario according to
Equation (5.1) is to solve a linear program because there are likely more than two commodities.
Even though we can solve linear programs with polynomial-time algorithms (Cormen et al.,
2001), the solution needs to be recomputed every time a message was transferred successfully
or is about to be sent. Furthermore, all nodes in the optimal flow plan are involved in the
calculation of routing decisions and usable bandwidth.

Awerbuch and Leighton (1993) describe a local-control approximation for multicommodity
flow. The introduced algorithm is faster than solving a linear program. As it is a local-control
approach, routing decisions do not have to be delegated to other nodes. The algorithm’s running
time is bound by O

(
|E|3|C|5/2Lε−3 log |C|

)
where L is a parameter that bounds the maximum

path length of any flow from source to sink and ε−1 defines the accuracy of the approximated
result.

5.3 An Optimization Model for Feeding 57

5.3.4 Combining Latency and Bandwidth
Both models for the individual targets of minimizing the latency and maximizing the bandwidth
show that quite an effort is necessary in order to provide an optimal solution. Solving both
problems at once requires to solve two objective functions. However, solving the combined
problem is even harder, as both parameters are not necessarily correlated. High bandwidth
communication links not always have a low latency, such as satellite links. Thus, meticulous
tuning is required in order to achieve an optimal solution.

5.3.5 Conclusions
Based on these findings, we aim for using our chunk-based techniques, which we describe in
the following, instead of striving for an optimal solution. Nonetheless, we can draw several
conclusions from the discussion so far.

Enabling Direct Communication to Nodes

Using the overlay routing fabric for data transfers during feeding incurs a high messaging over-
head and probably results in sub-optimal dissemination paths. This implies that feeding nodes
are required to generate a region-to-node mapping before they start feeding. Therefore, we need
to communicate the mapping information efficiently between the nodes of our data grid. Once
the mapping information is complete, the feeders can create data chunks according to nodes.
Moreover, building the chunks based on nodes and not based on regions simplifies duplicate
eliminations at the end of the feeding process. If the regions of a node are known, the feeder
can ensure that objects that lie within the border of two regions of the same node are not sent
twice.

Enable Parallelism and Pipelining during Feeding

Currently each project stores its data set in a separate database. Thus, the individual catalogs
are prevalently stored at different sites. Therefore, we can use one node per catalog to dissem-
inate the data into the network and use the available bandwidth of that node optimally for a
single catalog. As these catalogs can be processed independently, the data distribution time is
dominated by the distribution time of the largest catalog. If one node feeds several catalogs,
e. g., during the replication scenario, it is reasonable to feed catalog by catalog as this favors to
use the complete bandwidth for a single catalog. Once a node has finished its first catalog it can
immediately begin to publish the next catalog.

Choosing a good chunk size improves the pipelining within the feeding process. Once a
chunk has the configured size it can be forwarded to the receiving node for processing while
the feeder already prepares the next chunk (potentially for a different node). We do not further
consider other thresholds at the feeder side such as time thresholds, as these can be expressed
by a size limit. Given a time threshold, we can compute the message size which is generated by
the feeder in the given time and use that size as limit.

Flow Control at the Feeder

Finally, we implement flow control at the feeding nodes, as these can directly influence the
amount of data within the network. Other strategies, such as buffering data at intermediate
nodes, would ultimately need to stop the inflow at feeders requiring sophisticated congestion

58 5. Feeding Community-Driven Data Grids

Figure 5.6: Communication pattern for creation of region-to-node mapping during data repli-
cation

control protocols. The aggregated network flow depending on the outflow at the sources in
Equation (5.1) states that we should optimize the outflow at the feeding nodes as good as pos-
sible. Moreover, many feeding processes are likely to run in the background (except for the
initial load). Therefore, we limit the number of parallel connections between two nodes as well
as all outgoing parallel connections of a single node. Once one of these thresholds is reached
the according feeder pauses feeding until the load is reduced.

5.4 Optimization by Bulk Feeding
In the following, we describe our different design choices with regards to optimizing the net-
work traffic, the different chunk-based strategies, and the process of importing data at the re-
ceiver side.

5.4.1 Traffic Optimizations
One conclusion from Section 5.3.5 was to enable direct communication during the feeding
process. For this purpose, a feeding node caches the region-to-node mapping, the so-called
CoveredRegionMap locally. In order to exchange the mapping information at the beginning
of a feeding process, the nodes communicate via a multicast-channel that transmits broadcasts
efficiently.1 The receivers of the broadcast return their covered interval of the key ring as ac-
knowledgement. Thus the initiator of the broadcast can verify that all nodes have received its
message. Based on these acknowledgement messages, the feeder builds its CoveredRegionMap.

We can further improve the exchange of mapping information during the replication process.
All nodes will work as feeders and receivers, concurrently. In order to avoid the overhead for
each node requiring the CoveredRegionMap, we identify a single node as feeding coordinator.
This feeding coordination node initiates a data replication and realizes a Two Phase-Commit

1Scribe (Castro et al., 2002) is one such multicast-implementation based on the Pastry system.

5.4 Optimization by Bulk Feeding 59

Figure 5.7: Buffer-based feeding strategy (BBFS)

(2PC)-like communication pattern as described in Figure 5.6. The feeding coordinator builds
the CoveredRegionMap from the coverage information of all remaining nodes. The created
CoveredRegionMap and the feeding configurations (e. g., what catalogs to feed) are distributed
to all nodes. Once the other feeders receive the request, they can start their local feeding process
and receive the messages from other nodes accordingly.

Besides enabling direct communication with the CoveredRegionMap, we tune TCP buffers
and using several parallel streams which have been identified to be important factors for im-
proving dissemination throughput (Yildirim et al., 2008).

5.4.2 Chunk-based Feeding Strategies
For our bulk feeding, we propose two chunk-based feeding strategies in more detail: a buffer-
based and a file-based feeding strategy. The two strategies differ in the way how data objects
are combined and transmitted between feeders and receivers.

Buffer-based Feeding Strategy (BBFS)

For the buffer-based feeding strategy, we extract a tuple from the archive and examine histogram
and CoveredRegionMap to which node the tuple should be transmitted. If tuples are in the
border areas of regions on different nodes, tuples are added to the buffers of all nodes affected.
Once a buffer reaches the size limit it is transmitted to the according receiver. This process is
depicted in Figure 5.7. The BufferManager ensures that if the number of parallel connections
in general or to a particular node have been reached, the feeding is paused. Once it is notified
that resources have been freed again, it resumes feeding.

60 5. Feeding Community-Driven Data Grids

Figure 5.8: File-based feeding strategy (FBFS)

File-based Feeding Strategy (FBFS)

The file-based feeding strategy is similar to the previously described feeding strategy using
buffers. Instead of keeping the chunks in memory, a chunk-file per node is created on disk.
As soon as a file reaches the size limit, it is transmitted to the receiving node. As Figure 5.8
shows, the process is similar to the BBFS. In comparison to the WBFS which transmitted the
whole database at once, it allows for better pipelining as the data is now split up into several
files which are transmitted consecutively.

5.4.3 Optimizing Imports at Receiving Nodes

Database vendors and implementations have been very active in order to improve the perfor-
mance of their bulk loading tools as this is an important and critical step e. g., during the data
staging into a data warehouse for business analytical processing. Therefore the performance
of these tools is superior to a series of individual insert-statements or even several blocked in-
sert-statements.1. Therefore, once data is transmitted to the receiving node, it is converted into
a CSV file and the database load utility is used for import. So whenever multiple rows are in-
serted into a database, we use the load utility of the database. In general, of course, it is possible
to adapt the import strategy to the amount of data which needs to be imported.

1A blocked SQL insert-statement combines several tuples in a single command, i. e., insert into values (. . .),
(. . .).

5.5 Feeding Throughput Evaluation 61

Parameter Value(s) Description
f TBFS, WBFS, BBFS, FBFS Feeding strategy

P Pobs Data set

p 262144 Size of the partitioning scheme

n 16, 32 Network size

u initial load, replication Feeding use case

c 512 KB, 4 MB, 32 MB Chunk size

Table 5.1: Parameters for the evaluation of feeding strategies

5.5 Feeding Throughput Evaluation
In the following, we present the evaluation results for the different push-based feeding strategies
introduced in this chapter.1 Table 5.1 summarizes the evaluation parameters. As use cases
for our evaluation, we selected the initial load scenario and the scenario for replicating all
data. Based on the observational data set Pobs, we created a partitioning scheme with 262 144
partitions. We used two network setups: The first used 16 nodes from our lab and the second
setup consisted of 32 nodes from the AstroGrid-D and the PlanetLab test bed. For the chunk-
based techniques, we used chunk sizes of 512 KB, 4 MB, and 32 MB in order to evaluate the
importance of the chunk size for the feeding process.

5.5.1 Initial Load Evaluation
In the following, we present runtime results for initially loading data into our community-driven
data grid.

Running Time for the “Wolf”-based Feeding Strategy

For the “wolf”-based strategy, we ran the export of the three observational catalogs in paral-
lel. Hence, the biggest archive determined the complete running time for the initial step. After
creating the CSV files, we combined these files into a database for each node. This complete
database was finally copied to the participating nodes either with scp or GridFTP. The extrac-
tion of the CSV files lasted 1 hour for the SDSS archive and 30 minutes for the ROSAT and
TWOMASS archives, each. As we extracted the data in parallel, this step lasted 1 hour and the
data was extracted with roughly 23 000 tuples per second. Copying the data to the nodes, lasted
up to 4 hours (depending on the node bandwidth). Finally, the creation of the node databases
lasted about 3 hours, depending on the total number of nodes. Therefore, the whole process
required about 8 hours in total.

Running Time for the Tuple-based Feeding Strategy

For the tuple-based implementation, we set the frequency to 1 000 tuples per second. This
configuration was necessary in order to keep the underlying FreePastry implementation from

1The TBFS, BBFS, FBFS, and the pull-based strategy have been integrated into the HiSbase prototype. Only
the WBFS is realized as an external program because we mostly use it to prepare databases offline, e. g., for the
PlanetLab nodes.

62 5. Feeding Community-Driven Data Grids

0

1

2

3

4

5

512 KB 4 MB 32 MB

ru
n
n
in

g
 t

im
e

(h
o
u
rs

)

chunk size

FBFS

BBFS

(a) 16 nodes

0

1

2

3

4

5

6

7

512 KB 4 MB 32 MB

ru
n
n
in

g
 t

im
e

(h
o
u
rs

)

chunk size

FBFS

BBFS

(b) 32 nodes

Figure 5.9: Results for the initial load scenario

dropping messages. Based on the fixed frequency we can compute the actual duration. The
duration for our initial load scenario was about 23 hours. Crainiceanu et al. (2007), for example,
used an insertion rate of 4 items per second during their experiments. However, feeding our
SDSS sample (80 million objects) at that speed would last 33 weeks.

Running Time for the Chunk-based Feeding Strategies

Figure 5.9(a) shows the results for the buffer-based (BBFS) and file-based (FBFS) strategies on
our 16 nodes setup with different chunk sizes. Both strategies are faster than the WBFS as now
all tasks (extraction, distribution, and data import) are performed in parallel. In addition, initial
feeding is accelerated by using chunk sizes in the megabytes compared to the 512 KB chunk.
However, the difference between 4 MB and 32 MB was not significant. The BBFS creates
buffers in memory and submits them as serialized messages to the receiving nodes. Creating
the CSV files for the database import is executed on the receiver side. Therefore the feeders
can generate the next chunk faster and BBFS outperforms FBFS regardless of chunk size by
approximately one hour. The results for the 32 nodes are similar though some measurements
(especially those for the FBFS with 4 MB chunks) were distorted due to high loads on PlanetLab
nodes which run several experiments in parallel.

5.5.2 Replication Evaluation

For the evaluation of the replication scenario, we used the databases created during the previous
experiment as data sources. In order to ensure that all nodes redistribute their data, we assigned
nodes with new key space identifiers.

Running Time for the Tuple-based Feeding Strategy

For the TBFS, we estimated the runtime using the largest databases on individual nodes. Of
course, the exact size varies depending on the setup. Using the 1 000 tuples per second from the
initial load scenario, our network with 16 (32) nodes was replicated in 6 hours and the 32-node
network in 3.5 hours.

5.6 Related Work 63

0

0.5

1

1.5

512 KB 4 MB 32 MB

ru
n
n
in

g
 t

im
e

(h
o
u
rs

)

chunk size

FBFS

BBFS

(a) 16 nodes

0

0.5

1

1.5

2

2.5

512 KB 4 MB 32 MB

ru
n
n
in

g
 t

im
e

(h
o
u
rs

)

chunk size

FBFS

BBFS

(b) 32 nodes

Figure 5.10: Results for the replication scenario

Running Time for the Chunk-based Feeding Strategies

From Figure 5.10(a) we see, both strategies greatly reduce the overall running time to 1 hour
due to the increased parallelism. Again, the buffer-based strategy is slightly better, however
both strategies are now more comparable. The results for 32 nodes, shown in Figure 5.10(b),
are in accordance with those of our local setup. The result for 32 MB chunks of the BBFS must
again be attributed to the high load on the PlanetLab resources.

5.5.3 Discussion
To summarize, the buffer-based strategy outperforms the file-based strategy in our measured
scenarios as it introduces further parallelism by migrating tasks to receiving nodes. This is
especially beneficial for settings where only a small number of sources feed their data into the
system. Based on the current results, we suggest to use a chunk size of 4 MB. The differences
between the measurements with 4 MB and 32 MB, respectively, were not significant and feeders
complete 4 MB chunks faster. We plan further experiments with chunk sizes in the gigabytes
and currently redo the experiments with 32 nodes in a setup with dedicated resources.

5.6 Related Work
P-Ring (Crainiceanu et al., 2007) and online load balancing (Ganesan et al., 2004a) are exam-
ples for extremely scalable P2P based infrastructures which achieve good load balancing for
dynamic data distributions. Both show that two operations—either splitting existing data parti-
tions or moving them—are required in order to achieve provable load balancing guarantees for
data load balancing. However, the fact that they perform tuple-based insertion introduces an
overhead which is too high for data-intensive e-science workloads.

Silberstein et al. (2008) propose a bulk insertion technique for range partitioned data storage
used in hosted data services, such as PNuts (Cooper et al., 2008). Similar to our work, they
propose to use a initial phase in order to achieve a good data load balancing among the storage
nodes to spread the insert load across multiple machines. During their planning phase, data
samples approximate the actual data distribution and a mapping from partitions to nodes is
computed. The authors show that it is NP-hard to find a perfect mapping (by defining the

64 5. Feeding Community-Driven Data Grids

vector packing problem, a variant of the bin packing problem) and propose a technique that
offers provable, approximative guarantees by repartitioning and moving partitions before data
is actually inserted. Similar to the techniques proposed for P-Ring and for online load balancing,
PNuts repartitions and moves data. An interesting concept are so-called staging servers, where
new data is randomly partitioned to in order to sample data sets and increase the throughput
during the insertion by parallelism. While HiSbase enables different applications to access the
same data and thus enable cross-application data sharing, PNuts keeps different applications
separated, e. g., offering users flexible service level agreements. As a final difference, PNuts
maintains the complete data set at each cluster that participates within the distributed storage
whereas our work partitions the data across institutional boundaries.

BitTorrent (Cohen, 2003) is probably one of the most prominent P2P infrastructures. Its
design aims at improving the overall systems throughput by using not only the download ca-
pacity but also the upload bandwidth by participating nodes. In contrast to HiSbase, however,
BitTorrent clients, which cooperate in a download session, download the complete content. In
HiSbase, we partition the content across multiple nodes.

Related work in high-performance computing has also investigated how to improve the data
distribution throughput. Proposals range from using TCP in combination with deadlock-free
routing in order to increase the overall throughput (Hironaka et al., 2009) to shaping the data
transfer rates by increasing the TCP buffer sizes and using several parallel streams (Yildirim
et al., 2008).

Rehn et al. (2006) report on their experience for providing a data distribution service PhEDEx
to one of the LHC experiments and what challenges still need to be addressed in order to make
data transfer architectures robust and scalable. For full integration into Grid middleware, the
method of choice for data transfers is GridFTP (Allock et al., 2005). It offers certificate-based
authorization and authentication as well as striping data transfers across multiple channels. Gu
et al. (2006) describe their distributed storage system Sector using a UDP-based protocol for
large message transfers.

Query processing on radio frequency identification (RFID) data, such as tracking the paths
of different items along a production line also benefit from bulk data transfers. Krompaß et al.
(2007) have identified considerable benefits of bulk data staging compared to tuple-wise staging
when transferring RFID reader events from on-line caches to a data warehouse.

5.7 Summary and Future Work
In this chapter, we presented several push-based data dissemination techniques that use data
chunks in order to accelerate data feeding compared to tuple-based or pull-based data distribu-
tion. Interesting topics for future work includes further increasing the parallelism of the initial
feeding phase, e. g., using several staging servers as in PNuts. Improving the handling of border
data when multiple feeders send the same catalog is another optimization which could yield
interesting insights and benefits. Feeders, for example, could distinguish between original and
border data. Once all sources have notified a receiving node that they have completed their
feeding, these nodes only need to eliminate duplicates from the border data.

Efficient data dissemination is important for several scenarios within community-driven data
grids, e. g., initially distributing data sets. Once all data sets are distributed, we can perform
query processing and evaluate the throughput of our infrastructure, the topics of the following
chapter.

65

CHAPTER 6

Running Community-Driven Data Grids

Within this chapter, we give more details of the query processing techniques of community-
driven data grids. We present detailed query processing algorithms and discuss various query
coordination techniques applicable for e-science communities (Section 6.1). In Section 6.2, we
present the settings for throughput evaluations of our prototype and demonstrate the increased
query throughput compared to centralized data management.

6.1 Query Processing
Due to the distributed nature of e-science collaborations, query processing will require a node
which coordinates the common effort of data nodes that manage data which is relevant for a
specific query. We denote this node as coordinator and it will collect intermediate results in
order to perform the post-processing, e. g., duplicate elimination or further filtering. Depending
on which node coordinates the query processing, some things might change: the amount of data
which is needed to be transmitted, the distribution of the coordination load, the response time
for the query processing. We will discuss in detail what design choices are relevant for a good
strategy to coordinate the distributed query processing in community-driven data grids.

We describe the various design options for selecting a node as coordinator during query
processing within community-driven data grids. First, we describe the data access patterns and
algorithms of our query processing in Section 6.1.1. We then define five coordination strategies
(Section 6.1.2) that either choose the node that submits the query or a node which contains
relevant data. In our analysis (Section 6.1.3), we evaluate how many messages are required
by each strategy, how much traffic is generated, and how the strategies level the coordination
load among the nodes involved in the query processing based on results from simulation runs.
Our results show that coordination strategies which use the relevant data nodes as coordinators
achieve a good trade-off between fair load-balancing and reducing data-shipping during the
query coordination independent of skew within the workload submission. Besides that, also the
number of messages is significantly lower for such coordination strategies. Only for workloads
with low coordination load, selecting the submitting node as coordinator is a feasible choice.

66 6. Running Community-Driven Data Grids

Figure 6.1: Portal-based query submission Figure 6.2: Institution-based query submis-
sion

Algorithm 6.1: submitQuery
Input: Histogram h, query q, submit node s
Output: query processing is initiated

Multi-dim. query area a ← extractArea(q)
Set R of relevant region ids ← lookupArea(h,a)
Coordinator id rc ← coordStrategy.choose(R∪{s})
if rc 6= s.id then

send PreparedQueryMsg(R,q,s) to rc
else

coordinateQuery(s,R,q,s)
end if

6.1.1 Data Access Patterns
Two access patterns are increasingly popular within communities for scientific data sets: portal-
based and institution-based data access. Portal-based interfaces (Figure 6.1) are getting increas-
ingly popular, because browsers are a well-known “tool” on every researcher’s workbench. Fur-
thermore, the usability of such interfaces has been further increased using technologies such as
AJAX which offers immediate feedback to the users and the barrier for non grid-savvy users
is greatly reduced. Behind the scenes, the portal forwards the queries issued by the clients to
the data grid. As a central component, the portal might be a potential bottleneck, especially if
a service becomes increasingly popular. Therefore communities often employ institution-based
data access, as shown in Figure 6.2. Provided that all data grid nodes offer query submission
capabilities, institutional clients can directly connect to the data node local to the institution.
This data node then initiates the query processing within the data grid. From a community’s
perspective, query coordination strategies (as defined in Section 6.1.2) that perform well regard-
less of the submission pattern are clearly preferable. The community then can deploy (or even
change) the data access interfaces most appropriate for their users.

Histogram-based Query Processing

For the following discussion of the query processing algorithms, we assume that all queries
are region-based. Whenever a HiSbase node s receives a region-based query, it proceeds accord-
ing to Algorithm 6.1. The query predicate defines a multi-dimensional query area A, and node s
determines the set R of relevant data region identifiers with help of the histogram. The query
coordination selection technique selects one node as coordinator. We consider as candidate

6.1 Query Processing 67

Algorithm 6.2: coordinateQuery (processPreparedQueryMsg)
Input: Histogram h, query q, coordinator node c, submit node s, set R of relevant regions,

map P of pending results [q.id → [size: e,submit: s.id, results: Tq]]
Output: query is coordinated

Set L of local regions ←{r ∈ R|r covered by c}
P.put(q.id, [|R|, s, {}])
for all r ∈ R\L do

send PartialQueryMsg(q,c,s) to r
end for
Result set T ← processLocally(q)
processPartialAnswerMsg(T, |L|,q.id,s)

Algorithm 6.3: processPartialQueryMsg
Input: receiving node n, query q, coordinator node c, set R of relevant regions
Output: result of local database is returned to coordinator

Set L of local regions ←{r ∈ R|r covered by n}
Result set T ← processLocally(q)
send PartialAnswerMsg(T, |L|,q.id,s) to c.id

nodes either the submitting node s or any node which covers relevant data, i. e., a node covering
regions whose identifiers are contained in R. The choice depends on the selection strategy as
discussed later on. Either the submit node itself is coordinator and continues coordinating the
query otherwise a PreparedQueryMsg is routed to the coordinator peer. The receiver of the
PreparedQueryMsg also performs the coordinateQuery routine.

According to Algorithm 6.2, the coordinator collects intermediate results (if multiple nodes
are responsible for the relevant data) and performs post-processing of the intermediate results.
The query processing algorithm is designed such that the query is sent to each relevant region
identifier. Thus, each peer keeps track of the queries it received in order to avoid multiple
executions of the same query. This is achieved by storing a hash for each query that currently
runs on a peer. The hash is based on the query, the submitting node, and the timestamp of the
initial submission in order to avoid collisions between queries from different hosts. Furthermore
the coordinator maintains a map P of query identifiers q.id to a data structure which contains
the number of expected replies e, the id of the submit node s.id, and a set Tq of all result sets
already received. The query is only forwarded to those region identifiers that are not covered
locally. Once the node has contacted all regions that are not covered locally, the node submits
the query to its local database and processes its partial result.

All other data nodes proceed according to Algorithm 6.3 and return the local result set to
the coordinator. They compute the number of locally covered regions as weight |L| of the result
set, which is used by the coordinator later on. The result set is the intermediate result from the
local database. Finally, the coordinator is informed to update its query statistics.

Every time, a coordinator receives a PartialAnswerMsg, it updates the local mapping P
according to Algorithm 6.4. It adds the new result set to the set of existing results Tq, and
computes the number of remaining regions based on the weight of the answers received so far.
Once, all partial answers are received, the coordinator performs the post-processing and sends
the assembled result set Tf ull to the submit node, which can forward Tf ull to the client.

68 6. Running Community-Driven Data Grids

Algorithm 6.4: processPartialAnswerMsg
Input: receiving node n, result set T of the partial answer, weight w of the result set, query

identifier q.id, map P of pending results [q.id → [size: e,submit: s.id, results: Tq]]
Output: result T is added to the appropriate query and if all results have been received the

final result set Tf ull is computed and returned to the submit node
Map entry m ← P.get(q.id)
m.size ← m.size−w
m.results.add(T)
if m.size = 0 then

Result set Tf ull ← per f ormPostProcessing(m.results)
send FullAnswerMsg(Tf ull,qid) to m.submit
P.remove(qid)

end if

(a) (b) (c)

Figure 6.3: Example to illustrate query processing: (a) sample data set with exemplary query,
(b) linearization of the histogram, and (c) the mapping of the regions to nodes

Example Query

For the following discussion of query processing, we use Figure 6.3 as a running example. The
histogram regions (Figure 6.3(a)) are mapped to the identifier space preserving the order of
the space filling curve (Figure 6.3(b)). Figure 6.3(c) shows a possible mapping of the seven
partitions (0–6) to the identifier space of a HiSbase network with four nodes (a–d).

Let us assume that the query from Figure 6.3(a)—shown as the thick-lined rectangle—is
submitted at node d. Node d analyses the received query and determines that regions 1, 2,
3, and 4 potentially contain relevant data. In the next section, we discuss now several design
choices, whether node d itself or any of the nodes being responsible for relevant data (nodes a,
b, and c) should coordinate the collaborative query processing.

6.1.2 Query Coordination Strategies
We now provide more details on the query processing within HiSbase. We especially discuss
the various strategies to select a query coordinator that are provided by our framework.

In order to emphasize the various design options, we show the communication patterns for
the various strategies. The used symbols are summarized in Figure 6.4. The node which per-
forms the query coordination, i. e., either the submit node PS or a node with relevant data Di, is
highlighted. We furthermore differentiate between messages that are routed via the underlying
key-based routing mechanism (dashed arrows) or directly between nodes (continuous arrows).

6.1 Query Processing 69

Figure 6.4: Key for the Figures 6.5 and 6.6

In large networks, routed messages may need several hops (indicated by the boxes on the arrow)
as not all nodes store links to the other existing nodes. HiSbase only routes query messages via
the overlay network, as such messages only contain a small payload. The payload of query
messages consists of the SQL query itself and optionally additional information such as the
relevant data regions. The results for those queries can be fairly large and therefore HiSbase
always sends answer messages directly to the recipient. The recipients of answer messages can
either be the coordinator (for building intermediate results) or the submitting node in order to
return the result to the client. Of course, when the submitting node covers all the relevant data
for a query, no additional communication on the HiSbase network is necessary. We now discuss
five different strategies for choosing the coordinator.

SelfStrategy (SS)

The SelfStrategy chooses the submitting node as the coordinator, regardless whether it covers
relevant regions or not. Figure 6.5 shows the message exchange if the SelfStrategy is used. We
distinguish the two cases where either only one region—and therefore only one node (D1)—
contains relevant data (upper part) or the submitting node PS needs to contact several nodes with
relevant data. We start with the simple case first, which is that the query intersects only with
one region that is covered by node D1.

The submitting node PS receives a FullQueryMsg. The node extracts the query area from the
query predicate and determines the identifier of the relevant region from the histogram. As PS is
the coordinator, it sends a PartialQueryMsg to that region identifier and the message gets finally
delivered to the data node D1 which is responsible for the data region. D1 submits the query to
its local database and sends its PartialAnswerMsg back to the coordinator PS. As D1 was the
only node which contained relevant data, the coordinator performs the required post-processing
of the partial answer and sends the result back to the client using a FullAnswerMsg.

When multiple regions contain data relevant for the query, the coordinator routes a Partial-
QueryMsg to all these regions. As in the simple scenario, each node submits the query to its
database and returns the result to the coordinator. The coordinator then combines the interme-
diate results, performs any post-processing, and finally returns the result back to the client.

When the SelfStrategy is used for our running example from Section 6.1.1, node d performs
the role of the coordinator. It routes PartialQueryMsgs to the regions 1, 2, 3, and 4 in parallel.
Via the underlying key-based routing mechanism nodes a (for region 1), b (regions 2 and 3),
and c (region 4) receive the messages and submit the query to their local databases. Finally,
they send their answers directly back to node d. Please note that node b only sends one answer
back to d, although it received two partial queries. Instead, node b informs node d that its result
has a weight of two as it is based on two data regions.

The SelfStrategy achieves a good balancing of the query coordination load across multiple

70 6. Running Community-Driven Data Grids

Figure 6.5: Message exchange for coordination strategies where the submitting peer (PS) is the
coordinator

nodes as each node is responsible for its own queries, when used with institution-based data
access. Moreover, it distributes the coordination load in a fair manner, i. e., the more queries
a node issues into the network the more it needs to coordinate. With portal-based data access,
the portal node needs to do all the query coordination. The routing of all query messages is
done via the underlying key-based routing mechanism. In a network with n nodes, it therefore
potentially involves O(logn) messages in order to route messages to a node even though the
region-based queries have a high locality. With increasing network size, this issue becomes
a serious drawback with regard to the number of messages. Moreover, for queries covering
multiple regions, all intermediate results need to be shipped to the submit node.

Motivated by these observations, all the strategies described in the following have in com-
mon that they select a node maintaining relevant data as coordinator. We therefore call them
region-based strategies in the following. We do not consider selecting a random node from the
whole network. The result of such a strategy would be counterproductive, as now all relevant
data need to be transmitted to the coordinator and then to the submission node.

FirstRegionStrategy (FRS)

The FirstRegionStrategy always picks the node responsible for the first data region as coordi-
nator. This strategy is representative for strategies that choose a fixed (e. g., the first, the last)
region for coordinating the query processing in a simple way.

Figure 6.6 shows the according communication patterns. Like with the SelfStrategy, we first
discuss the case, when the query intersects only one data region and thus only one node contains
the relevant data. The submitting node PS looks up the relevant data region in its histogram.
Instead of coordinating the query processing itself, it now routes a PreparedQueryMsg towards
node D1, which covers the relevant data region. The node performs the local database lookup,
performs the post-processing, and sends the result as a FullAnswerMsg directly to PS, which
simply forwards the message to the issuing client.

6.1 Query Processing 71

Figure 6.6: Message exchange for coordination strategies where a region with relevant data
(D1) is coordinator

If the query area intersects multiple relevant regions, the coordinator submits additional Par-
tialQueryMsgs to the other data regions and receives the PartialAnswerMsgs from the according
nodes, performs the post-processing, and collects them into a FullAnswerMsg.

For our running example query, node d would send the submitted query together with its
relevant regions to region identifier 1, as region 1 is the region with the lowest region identifier
containing relevant data. Therefore, node a becomes the coordinator and informs nodes b and c
about the query. Having received the intermediate results from its local database and from both
other nodes, node a delivers the final result to node d.

As noted in the previous section on the SelfStrategy, collaborating nodes are neighbors on
the identifier space with high probability. This is due to the use of a space filling curve for
mapping the data regions on the identifier space and because the high degree of spatial locality
of the queries. Thus, the coordinator knows the direct link to the other data regions and can route
the messages directly. As our evaluation in Section 6.1.3 shows, this can significantly reduce
the number of messages during query processing. Moreover, this strategy benefits from the
coordinator covering some relevant data which needs not to be transmitted for post-processing.
This benefit is common to all region-based strategies.

SelfOrFirstRegionStrategy (SOFRS)

The SelfOrFirstRegionStrategy is a combination of the both previously discussed strategies.
Whenever the submitting node covers data relevant for the query itself, it performs the query
coordination. Otherwise, the node covering the first region is selected as coordinator.

When issuing our example query, e. g., to node c (instead of node d) using SelfOrFirstRe-
gionStrategy, node c would coordinate the query itself.

The incentive for using the SelfOrFirstRegionStrategy is that if data is already at the sub-
mitting node it would be unreasonable to send that data across the network and returning it after
post-processing. However, the number of regions that an individual node covers decreases with
growing network size when keeping the partitioning scheme fixed. Thus, it becomes less likely

72 6. Running Community-Driven Data Grids

that a submitting node covers any relevant regions itself.

CenterOfGravityStrategy (COGS)

While looking for similar ways to minimize the amount of data shipping like the SelfOrFirstRe-
gionStrategy does, the center of gravity, the average location of the weight of an object, seems to
be the “perfect spot” for minimizing the data transfer. Therefore, we define the CenterOfGrav-
ityStrategy which selects that node as coordinator that covers the partition which contains the
center of gravity for an query area. As regular-shaped query areas (such as circles or rectangles)
are very popular for specifying query areas in many scientific domains (e. g., the cone-searches
in astrophysics) this approach is viable. Assuming, the relevance of data within intersected
partitions is proportional to the intersection area between partition and query, the regions in the
center of the query area cover more relevant data. Regions at the border of the query area are
not completely covered and not that relevant under this assumption.

For our example query, the center of gravity lies within region 3, thus node b is selected as
coordinator. Once node b has received the intermediate results of peer a and c, it creates the
final result and sends it to peer d. In this case, the coordinator even covers most of the relevant
regions (region 2 and 3) which is also good for reducing the amount of data to be shipped.

Unfortunately, the computation of the center of gravity can become quite complex or the
region containing the center of gravity might not even be within the query area (e. g., for an
O-shaped query area).

RandomRegionStrategy (RRS)

The final strategy presented in this section is the RandomRegionStrategy. As its name suggests,
this strategy randomly selects one of the identifiers of the relevant data regions to determine the
coordinator. For the example query any of the nodes a, b, or c could be selected as coordinator
by this strategy. Note, however, that the probability of node b becoming coordinator is twice
the probability of node a and c, respectively. The selection process is based on the number of
relevant regions and therefore nodes covering more regions are more likely to be coordinators.

The strategy reduces the amount of data shipping between collaborative nodes, it only re-
trieves the relevant data regions and it is applicable for query areas of any shape. By design, it
achieves a good trade-off between balancing the coordination load multiple nodes (as each node
having relevant data can be selected) and reducing the data shipping for query coordination (as
it prefers nodes with many regions as coordinator).

6.1.3 Evaluation of Query Coordination Strategies
For our evaluation, we used HiSbase, our Java-based prototype for community-driven data
grids. As histogram data structure we used a quadtree-based partitioning scheme with 262 144
partitions as defined in Chapter 3. The data set, Pobs, consists of 137 million objects from
subsets of the ROSAT, SDSS, and TWOMASS archives as described in Chapter 1.

The network size was varied from 100, 300, 1 000, to 3 000 nodes in order to evaluate the
scalability of the five strategies described in the previous section. In the experiments, we use
two query sets. The first query set, Qobs, comprises about 100 000 queries and was constructed
from real queries issued on the SDSS web interface. The second workload, Qscaled , was created
by scaling all queries of Qobs whose search radii were among the five most frequent search
radii to cover an area of one square-degree. Thus a significant fraction of the workload Qscaled

6.1 Query Processing 73

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2-10 11-100 >100
q
u

er
ie

s
(%

)

partitions

Qobs
Qscaled

Figure 6.7: Percentage of queries that require data from different number of partitions

Parameter Value(s) Description
c SS, FRS, SOFRS, COGS, RRS Coordination strategy

n 100, 300, 1000, 3000 Network size

P Pobs Data set

Q Qobs, Qscaled Query workload

s sp, si Submission characteristic

Table 6.1: General parameters for the evaluation of coordination strategies

will intersect multiple regions. Figure 6.7 shows that while more than 90 % of the workload
Qobs can be answered with data from a single data region (1.2 on average), the majority of the
queries in Qscaled require between 10 and 100 regions (average: 20 regions). Please note that
the scaled workload has still a reasonable degree of locality, as 100 regions are 0.03 % percent
of all histogram regions. As submission characteristics we used the both variants discussed in
the beginning of Section 6.1.1, i. e., we submitted all queries from a single node (the portal-
based characteristic sp) or submitted the queries from a randomly selected node in the network
(the institution-based characteristic si). Table 6.1 summarizes the general parameters of the
evaluation setup.

The results in this section are obtained from running HiSbase instances on the discrete-event
simulator provided by FreePastry. The simulator environment allows to fix the assignment of
nodes to the identifier ring. Thus we were able to use the same mapping for all five strategies in
order to directly see the difference due to the strategy and not due to a different region-to-node
mapping. As a particular region assignment might give advantage to one of the strategies under
evaluation, we created 10 different mappings in total. Measuring 5 strategies, 4 network sizes,
2 workloads, and 2 submission characteristics results in 80 distinct configurations leading to
800 individual measurements. These individual measurements were conducted on the Linux
cluster of the Leibniz-Rechenzentrum (LRZ), using the Globus job submission of the D-Grid
interfaces.

74 6. Running Community-Driven Data Grids

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

100 300 1000 3000

av
g
.

n
o
.
o
f

ro
u
te

d
 m

es
sa

g
es

 p
er

 q
u
er

y

nodes

SS
FRS
SOFRS
COGS
RRS

Figure 6.8: Average number of routed messages per strategy with workload Qobs and portal-
based query submission (sp)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

100 300 1000 3000

av
g

.
n
o

.
o
f

ro
u
te

d
 m

es
sa

g
es

 p
er

 q
u
er

y

nodes

SS
FRS
SOFRS
COGS
RRS

Figure 6.9: Average number of routed messages per strategy with Qscaled and portal-based
query submission (sp)

Query-related Messages

The average number of messages per query is the first aspect we investigated for each query
coordination strategy. We consider a strategy to be better, when it requires less messages during
query processing.

Figure 6.8 shows the average number of query-related routed messages for Qobs using a
single node for submitting all queries (sp). For any network size, all coordination strategies
which select data regions as coordinators need almost the same amount of messages. This is
clearly caused by more than 90% of the queries intersecting only with one data region. In
this case, all region-based strategies are identical. The SelfStrategy requires additional 0.5
messages on average due to the remaining queries which intersect more than one region. The
strategy routes the partial queries from the submission host to the data regions (see Figure 6.5)
and therefore it is likely that all these messages require multiple hops to reach their destination.
In small networks, there is a small probability that the submitting node PS already contains all
relevant data, i. e., PS and D1 are the same, and no messages are required. This explains the 2.7
messages on average for the region-based strategies for a network with 100 nodes.

For the scaled workload Qscaled , the messaging overhead of the SelfStrategy becomes even
more evident, as shown in Figure 6.9 for the portal-based approach. In Figure 6.10 we sub-
mitted the queries from random nodes. Interestingly, all five strategies use the same amount of

6.1 Query Processing 75

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

100 300 1000 3000
av

g
.

n
o
.
o
f

ro
u
te

d
 m

es
sa

g
es

 p
er

 q
u
er

y

nodes

SS
FRS
SOFRS
COGS
RRS

Figure 6.10: Average number of routed messages per strategy with Qscaled and institution-
based query submission (si)

 0

 1

 2

 3

 4

 5

 6

100 300 1000 3000

to
ta

l
tr

a
ff

ic
 (

in
 G

B
)

nodes

SS
FRS
SOFRS
COGS
RRS

(a) total network traffic

 0

 1

 2

 3

 4

 5

 6

SS FRS COGS

to
ta

l
tr

af
fi

c
(i

n
 G

B
)

strategies

PreparedQueryMsg

PartialQueryMsg

PartialAnswerMsg

FullAnswerMsg

(b) traffic details by message type

Figure 6.11: Network traffic statistics for workload Qobs and institution-based query submis-
sion (si) about (a) the total traffic by strategy and (b) the traffic by message type
for a run with 3 000 nodes

messages per query in both submission scenarios.1 The statistics only show the perspective of
the complete network and therefore existing message skew on the network connections is not
visible. Furthermore, the results of Qscaled reveal that the SelfOrFirstRegionStrategy predomi-
nantly uses its “FirstRegion”-part, due to the observation in Section 6.1.2, that it is unlikely for
the submitting nodes to cover relevant data itself in large networks. Finally, both the CenterOf-
GravityStrategy and RandomRegionStrategy perform best for the scaled workload in terms of
query related messages. Both strategies are able to reduce the number of required messages as
anticipated.

Query-related Network Traffic

Besides the number of messages, we also compared the actual message traffic of the various
strategies in our simulation environment. Figure 6.11(a) shows that SelfStrategy has the lowest
overall traffic compared to all region-based strategies. This can be attributed to the fact that the
coordinator does only append the intermediate results and does not perform further data reduc-

1This was also the case for Qobs and si.

76 6. Running Community-Driven Data Grids

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ac
cu

m
u
la

te
d
 c

o
o

rd
in

at
io

n
 l

o
ad

proportion of nodes

uniform load balancing
(Gini coefficient 0)

SS (Gini coefficient 1.00)

FRS, SOFRS (Gini coefficient 0.76)

COGS (Gini coefficient 0.75)

RRS (Gini coefficient 0.74)

Figure 6.12: Lorenz curves of the coordination load distribution on 3 000 nodes and portal-
based query submission (sp)

tion. Therefore, for region-based strategies both PartialAnswerMsgs and FullAnswerMsgs are
transmitted.

When splitting the traffic into the constituents by the different message types, as shown
in Figure 6.11(b), we see the major trade-offs between using the SelfStrategy or region-based
strategies such as FirstRegionStrategy or CenterOfGravityStrategy. Region-based strategies
reduce the traffic during the query initialization phase, i. e., for both region-based strategies
the combined traffic of PreparedQueryMsgs and PartialQueryMsgs is less than the traffic of
PartialQueryMsgs sent by the SelfStrategy. By choosing the coordinator region wisely (Cen-
terOfGravityStrategy), we can reduce data shipping to the coordinator (PartialAnswerMsgs).
However, the overall traffic for region-based strategies increases when the FullAnswerMsg is
built by appending the intermediate results. As a consequence, the traffic by PartialAnswerMsgs
for the SelfStrategy is equal to the traffic by FullAnswerMsgs from region-based strategies.

Coordination Load-Balancing

The last aspect we analyzed in our simulations was the ability of each strategy to balance the
coordination load evenly across multiple nodes. The more nodes are involved the more evenly
the coordination load is distributed. We evaluate the uniformness of the load distribution using
the Lorenz curve and the Gini coefficient (see Pitoura et al., 2006). In our case, the Lorenz curve
accumulates the queries coordinated by all HiSbase nodes in ascending order, i. e., it starts with
nodes which do not coordinate queries and finishes with the node which has the highest load.
The Gini coefficient is defined as the area between the Lorenz curve for the distribution and the
diagonal. The lower the Gini coefficient, i. e., the closer the graph to the diagonal, the more
uniform the load is distributed among the nodes. The final accumulated coordination load is the
complete size of the query workload.

In the setup with portal-based data access, the SelfStrategy does not perform any load-
balancing as all queries are coordinated by the single submitting node. This results in a Gini
coefficient of 1 and therefore the curve is hardly visible in Figure 6.12 as it coincides with the
x-axis and the y-axis on the right-hand side. The coordinator selection strategies based on data
regions have Gini coefficients of around 0.75, the RandomRegionStrategy and CenterOfGrav-
ityStrategy being slightly better than the other two strategies. When submitting queries from
random nodes (Figure 6.13), the SelfStrategy almost evenly distributes the coordination load
while the level of load-balancing of the other strategies remains the same.

6.1 Query Processing 77

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
ac

cu
m

u
la

te
d
 c

o
o

rd
in

at
io

n
 l

o
ad

proportion of nodes

uniform load balancing
(Gini coefficient 0)

SS (Gini coefficient 0.10)

FRS, SOFRS (Gini coefficient 0.76)

COGS (Gini coefficient 0.75)

RRS (Gini coefficient 0.74)

Figure 6.13: Lorenz curves of the coordination load distribution on 3 000 nodes and institution-
based query submission (si)

For both workloads, only a fraction of the histogram partitions (e. g., only 25 % for the Qobs
workload) receives any query, i. e., both workloads exhibit query hot spots. Distributing the
coordination load randomly on all network nodes is not desirable as it would ignore the data
locality during the query processing. However, mitigating such query hot spots by replication
using techniques which we will discuss in Chapter 8 opens the opportunity for more advanced
coordination strategies.

Discussion

Based on the results obtained during the evaluation presented in this section, we gained several
insights. All region-based coordination strategies reduced the number of messages considerably
compared to the SelfStrategy and performed independently from the submission characteristics.
Especially, the CenterOfGravityStrategy and the RandomRegionStrategy even further reduce
the required messages by preferring those nodes as coordinator, which cover a significant part
of the relevant data. Whereas the CenterOfGravityStrategy required less messages than the
RandomRegionStrategy, the latter does not have the restrictions of the CenterOfGravityStrategy
as discussed in Section 6.1.2 (computational complexity, shape of query area).

With regard to network traffic, the SelfStrategy is better suited for queries, when merging the
intermediate results is the predominant part of the post-processing at the coordinator. However,
when the data is further reduced by the coordinator (e. g., in queries with group-by and having-
clauses), a region-based strategy is preferable, as only the relevant data is transmitted to the
submit node.

6.1.4 Summary and Future Work
Region-based queries require the selection of a coordinator during the distributed query pro-
cessing within community-driven data grids, i. e., a node which coordinates the collaboration of
data nodes to extract the relevant data and which performs post-processing.

In this section, we have defined several strategies, that select the query coordinator from the
node submitting the query or from the nodes covering relevant data. We evaluated the query
coordination strategies on a data set from astrophysical observations with actual application
workloads using two of the dominant query submission patterns within scientific communities
like portals or institution-based data access. In our simulation studies we compared how many

78 6. Running Community-Driven Data Grids

messages are sent and how much network traffic is generated by each strategy and how they
balance the coordination load. The results show that strategies that aim at reducing the amount
of data transmitted to the coordinator (CenterOfGravityStrategy and RandomRegionStrategy)
offer the best trade-off between both criteria independently of the submission characteristic. If
coordination load is low (the coordinator performs no complex filtering tasks) then the SelfS-
trategy is the strategy of choice.

In the results of the coordination load-balancing, the influence of query hot spots has been
clearly visible. In order to mitigate query hot spots at runtime, one approach is to replicate the
popular data regions to multiple nodes. To devise a coordination strategy that also considers
replicated data regions during the selection process is an interesting issue for future research.

Furthermore, an interesting direction for further investigations is to analyze the individual
queries in more detail and choose the coordination strategy based on structural properties and
expected coordination workload. The results presented in this chapter provide a solid base for
such developments.

6.2 Throughput Measurements
In the following, we evaluate the throughput performance of our system. We begin with an out-
line of the general definitions used during our throughput experiments. Initially, we compare
a HiSbase instance with one node against a single database server and scale the instance to 16
nodes within our computing lab. In this setting, we achieve a super-linear throughput improve-
ment. We then describe measurements conducted in the AstroGrid-D and PlanetLab test beds
to discuss the impact of coordination strategies on the overall throughput. Based on the findings
of this chapter, we identify the areas that offer further improvements for query throughput.

6.2.1 General Definitions
We measure throughput for varying multi-programming levels (MPLs), i. e., a varying number of
parallel queries in the system, to evaluate at what degree of parallelism a distributed architecture
can outperform a centralized solution. Each run has k nodes, a batch containing l queries, and
an MPL m. MPL=m denotes that each node keeps m parallel queries in the system. At the start
of a run, each node immediately submits m queries. We measure the timestamp sn,q when node
n has submitted its q-th query and the timestamp rn,q when it has received the corresponding
results. After receiving an answer, nodes submit their next query in order to sustain their multi-
programming level.

For measuring the throughput, we only consider queries processed in the time span when
every node is guaranteed to work on MPL=m parallel queries, the saturation phase Isat . The
time interval between the point in time when the last peer has submitted its m-th query and the
first peer has submitted its last query denotes Isat , which is expressed formally as:

Isat =
[

max
1≤n≤k

(sn,m), min
1≤n≤k

(sn,l)
]

(6.1)

Let Isat be the length of the saturation phase in seconds. The throughput per second T is
based on the number of successfully processed queries during the saturation phase Isat :

T =
|{(n,q) | rn,q ∈ Isat ,1 ≤ n ≤ k,1 ≤ q ≤ l}|

Isat
(6.2)

6.2 Throughput Measurements 79

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 2 3 4 5 6 7 8 9 10 20 30 40 60 80 100 120 140 160 180 200 250 300

q
u
er

ie
s

p
er

 s
ec

o
n
d

parallel queries per node

standalone database
single node

Figure 6.14: Query throughput results for the standalone database and single node configura-
tion

We shortly illustrate the case of computing Isat for one single HiSbase node n1. Let MPL=10
and l = 500, then the node submits 10 queries to HiSbase in order to reach the desired degree
of parallelism. In this scenario, Isat starts at s1,10. As soon as a query result is received, a new
query is issued to HiSbase. Finally, the saturation phase Isat ends when the node submits its last
(500th) query at timestamp s1,500. When multiple nodes participate in the HiSbase network, the
last sn,10 and the first sn,500 timestamp determine the saturation phase of the complete network,
as defined in Equation 6.1.

6.2.2 Evaluations in a Local Area Network

Throughput of a Single Node Instance We used a body of 730 cross-match queries for our
evaluation. Cross-match queries determine whether data points from different sources are likely
to stem from the same celestial object. The queries were created from 730 random sources of
the SDSS catalog, using rectangular regions with an edge length of 0.05◦. The size of the query
rectangles is based on realistic values and each query covers approximately an area which is 2

107

of the whole sky. Nodes submit these queries in random order. To this end, we present results
for a quadtree-based histogram with 256 regions using the center splitting strategy.

The first experiment compares the query throughput of a standalone database with the query
throughput of the same database used by a single HiSbase node to measure the overhead in-
troduced by the HiSbase layer. The node is a Linux server with an Intel Xeon processor at
3.06 GHz, 2 GB RAM, and IBM DB2 V8.1. Queries to the standalone database are submitted
via parallel JDBC connections. Figure 6.14 shows the throughput in queries per second of the
standalone database and the single node HiSbase instance. The throughput increases for both
single node setups through higher parallelism until their maximum throughput (sweet spot) is
reached. The maximum throughput of both systems is roughly at 10 parallel queries: 1.17
queries per second at MPL=8 for the standalone database and 0.97 for the single node HiSbase
instance at MPL=9. Although the standalone database performed better than the single HiSbase
node in our evaluation, HiSbase introduces an acceptable overhead as in practice an instance
with multiple (typically hundreds of) nodes is used.

Just to give an impression of current throughput figures, the traffic statistics of the Sky-
Server1 archive show that between August 2008 and August 2009 about 13 000 queries per

1http://skyserver.sdss.org/log/en/traffic/

80 6. Running Community-Driven Data Grids

 0

 5

 10

 15

 20

 25

1 10 20 30 40 60 80 100 120 140 160 180 200 250 300 350 400 450 600

q
u
er

ie
s

p
er

 s
ec

o
n
d

parallel queries per node

single node (projected, 16-fold)
16 nodes

Figure 6.15: Throughput comparison of the multi-node instance with the projected values of
the single-node configuration

month have been submitted to the SQL interface on average. This corresponds roughly to less
than one query per second. However, there are already several occasions where the number of
queries per second is significantly higher.

Throughput of a Multi-Node Instance We tested a multi-node instance in a local area net-
work (LAN) which measures how HiSbase performs in a setting with low latency and high
network bandwidth. The LAN configuration of HiSbase was set up on 16 consumer-class Win-
dows PCs equipped with 1.6 GHz Processors, 512 MB RAM, and again with the IBM DB2 V8.1
database system. Figure 6.15 contrasts the projected throughput of the single node configuration
described above (by multiplying the previous results with 16) and the 16-nodes instance. The
16 nodes achieve a stable super-linear throughput compared to the single peer from MPL=20
onwards. Less data on the individual node and especially a higher cache locality constitute this
throughput improvement as nodes only process similar queries. We did not continue the mea-
surements beyond an MPL=600, which corresponds to 9 600 parallel queries, as the expected
numbers of parallel users are currently below this degree of parallelism.

6.2.3 Evaluations with AstroGrid-D and PlanetLab Instances
In order to verify the scalability of our HiSbase approach, we also conducted benchmarks on
resources within AstroGrid-D and D-Grid as well as on the PlanetLab test bed, as PlanetLab is
widely used for evaluating globally decentralized applications. In PlanetLab, applications run
in so-called slices (virtual machines) and in parallel with several other installed applications.
Within the AstroGrid-D test bed, the resources are more dedicated, reliable, and have high-
bandwidth links. We successfully demonstrated HiSbase using up to 56 resources from our
labs, the AstroGrid-D test bed, and on PlanetLab.

Impact of Coordination Strategies on Query Throughput The following throughput mea-
surements were conducted on distributed HiSbase instances and complement the results for the
coordination strategies SelfStrategy (SS), FirstRegionStrategy (FRS), SelfOrFirstRegionStrat-
egy (SOFRS), CenterOfGravityStrategy (COGS), and RandomRegionStrategy (RRS) presented
in Section 6.1.

We performed the experiments on a total of 32 nodes comprised by 11 resources from the
AstroGrid-D test bed, 16 nodes from our computer lab, and additional 5 close-by resources

6.2 Throughput Measurements 81

 0

 100

 200

 300

 400

 500

 600

32 nodes

q
u
er

ie
s

p
er

 s
ec

o
n
d

SS
FRS
SOFRS
COGS
RRS

(a) Qobs

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

32 nodes

q
u
er

ie
s

p
er

 s
ec

o
n
d

SS
FRS
SOFRS
COGS
RRS

(b) Qeval_scaled

Figure 6.16: Throughput for 32 nodes with MPL=500 for (a) workload Qobs and (b) workload
Qeval_scaled

from PlanetLab. After assigning each node with a random identifier, we distributed the data
according to the same partitioning scheme with 262 144 partitions which was used during the
simulation to evaluate the messaging overhead in Section 6.1.

As query workload we used a subset Qeval of 22 000 queries from the observational work-
load Qobs, which were among the top 20% fastest queries when run against a single DB2 in-
stance containing all data. Those queries—with running times between 1 and 4 ms—would be
penalized most severely from being submitted to a queuing system. Each node permuted the
queries of Qeval for its query batch. In order to measure the throughput for a scaled workload
Qeval_scaled , we applied the same scaling to the queries of Qeval as in Section 6.1 to Qobs. The
queries in the scaled workload consider more data relevant for the cross-matching and therefore
have a much longer running time. The throughput figures presented for this measurements are
the averages built over three evaluation runs. Each node was equipped with an H2 database1 for
performing the local query processing. We decided to use an open source Java-based database
for the evaluation, as it is easily distributed together with the application and does not require
any administrative rights that are necessary to install most of the major database systems and it
is free of licensing issues. We configured each HiSbase node to allow 10 parallel queries on its
local database as suggested from the single instance comparisons above.

The throughput results for both workloads Qeval (Figure 6.16(a)) and Qeval_scaled (Fig-
ure 6.16(b)) show that for small network sizes all query coordination strategies are comparable.
Performing experiments in a distributed environment is important to complement simulation
results as they capture many side effects that can be left aside in simulations. However, all
strategies showed a high variance in throughput across the different runs. To this end, we can-
not determine a significant impact of the coordination strategy on the overall throughput for the
evaluated HiSbase instance.

Impact of Increasing the Network Size During the evaluation in the AstroGrid-D test bed
using the SDSS query log, the presence of query skew became evident. We illustrate this fact
with Figure 6.17. We scaled the network size from 32 and 64 to 128 nodes and counted the
top contributors, i. e., the nodes processing the most queries first, until we reached 90% of the

1http://h2database.com

http://h2database.com

82 6. Running Community-Driven Data Grids

0%

10%

20%

30%

40%

50%

60%

70%

32 64 128

n
o
d
es

 c
o
v
er

in
g
 9

0
%

 o
f

th
e

q
u
er

ie
s

(%
)

nodes

Figure 6.17: Fraction of nodes contributing 90% of the overall queries when intreasing the
network size

queries. While 21 (66%) of the 32 nodes processed 90% of the queries, only 58 (45%) help on
that query share in the 128-node network. The remaining 55% of the nodes were not used to
their full capacity as they received only a small fraction of the queries.

6.2.4 Discussion
So far, community-driven data grids use several techniques in order to improve the query
throughput within e-science collaborations: By partitioning the data space such that dense areas
are partitioned more often, we can achieve data load balancing in community grids and reduce
the amount of data for each individual node. By this parallelism, we can improve the query
throughput. We can further preserve the query locality by using a space filling curve to map
the partitions to the participating nodes and thus achieve a high caching effect as nodes receive
only similar queries.

To further improve the throughput results from our experiments, we will now focus on
query load balancing, as skewed query distributions resulted in a sub-optimal usage of available
processing resources. Our techniques for increasing the workload-awareness during the training
phase (partitioning creation) and at runtime are the subjects for the following two chapters.

83

CHAPTER 7

Workload-Aware Data Partitioning

In the preceding chapters, we have described the core building blocks of community-driven data
grids and how the combination of these building blocks results in an increased throughput dur-
ing query processing. To further improve the throughput gains by our data management infras-
tructure, we now discuss techniques to incorporate workload-awareness into community-driven
data grids. In this chapter, we generalize the data-driven partitioning schemes of community-
driven data grids to a cost-based partitioning in order to address two important challenges in
scientific federations: data and query load balancing.

When some areas of the data space are very popular within the community, data nodes
covering these areas, so-called query hot spots, tend to become the bottleneck during query
processing. In general, query load balancing can be achieved via splitting (partitioning) and
replication (Section 7.1).

For our cost model, we define several weight functions (Section 7.2). Besides data parti-
tionings which consider only data load, we propose weight functions that allow advanced and
workload-aware weighting schemes. One weight function, for example, combines the weight
for points and queries to compute the heat of regions as the product of the associated data points
and queries. Finally, we describe a weight function that decides by using the extent of queries
whether replication is better than splitting a region.

In Section 7.3, we evaluate our approach using quadtree-based partitioning schemes as in-
troduced in Chapter 3. We use a sample of one million queries from an SDSS query trace Qobs
on the skewed, observational data set Pobs and a synthetic workload on the uniform data sample
Pmil from the Millennium simulation, as we have introduced in Section 1.2. We furthermore
perform several throughput measurements on our local resources of the AstroGrid-D testbed as
well as in a simulated network with the various partitioning schemes. The evaluation results
assess the effectiveness and applicability of our load balancing techniques. We discuss related
work in Section 7.4 and conclude this chapter in Section 7.5.

84 7. Workload-Aware Data Partitioning

(a) Splitting (Partitioning) (b) Replication

Figure 7.1: Balancing query load (gray query rectangles) via splitting and replication

7.1 Load Balancing Techniques
Query load balancing is a challenging task in distributed query processing. When dealing with
popular (“hot”) data, two strategies are generally applied in order to reduce the heat at the node
predominantly responsible for the data:

Splitting (Partitioning) By further dividing the partition, parts of the query load can be moved
to a different partition. If that partition is covered by another node, load is balanced be-
tween these nodes. If hot areas are distributed among multiple nodes, good load balancing
is achieved.

Replication Sometimes migration is not possible (e. g., one single data object is “hot”) or de-
sirable (e. g., the query processing would result in more communication overhead). In
such cases, load balancing can only be achieved by making multiple copies of the hot
region at several locations. If all replicas participate equally during query processing, our
design again achieves good load balancing.

Figure 7.1 shows the increased flexibility of load balancing techniques that apply both par-
titioning and replication. Initially, partitioning succeeds in dividing the two hot spot areas de-
noted by several gray query rectangles. The second partitioning step in Figure 7.1(a), however,
would introduce additional communication overhead. In such situations, we can mitigate query
hot spots better by replicating the original data area. Thus, multiple copies are available during
query processing, as illustrated in Figure 7.1(b).

For deciding whether we gain more from replicating a region instead of splitting it, the
following information is considered in our heuristics:

amount of data we still prefer to split those regions first that contain a considerable amount of
data due to the importance of data load balancing,

number of queries regions with many queries should be handled before those regions whose
workload is considerably low for query load balancing reasons,

extent of regions and queries in order to balance query load, we rather replicate regions whose
workload predominantly consists of queries having a large extent, i. e., they cover a large
area compared to the area of the region itself.

Figure 7.2 depicts the basic idea, why it is important to incorporate the relationship between
the extents of regions and queries in a replication-aware weighting scheme. If all data and
queries were uniformly distributed, a quadtree-based partitioning scheme with n regions has a
maximum height of log2d n in the general case and log4 n for our running example. If either

7.1 Load Balancing Techniques 85

Figure 7.2: Impact of skew on the height of the leaves

Figure 7.3: Impact of splitting a leaf on its ratio to a query area

data or queries are skewed, the regions with less “load” are leaves with height h < log4 n (with
a larger area) and those in a hot spot area have h > log4n (with a smaller area). A query area
which covers about 1

16 of a region, will cover 1
4 on the next level and eventually will have the

same size as a region after another split, as shown in Figure 7.3. Thus, the query is very likely
to span multiple regions and to produce additional communication overhead.

In order to take the aspects just described into account, a weight function needs to adhere to
the following heuristics. The weight function distinguishes regions with many data points from
regions with only a few data points. Similarly, it regards workloads with many and few queries
separately and moreover pays attention to whether queries have a small or large extent.

If a region contains little data and only a few queries, it should be neither split nor replicated
as it does not contribute significantly to the overall load of the system.
In case of regions that contain little data which is interesting to many queries, we replicate those
regions that have many big queries. These data partitions can be replicated at several nodes and
then all replica are available for query processing. Partitions with many small queries are further
split, as the resulting partitions possibly will fall into the category with few data points and few
queries.
If a partition contains many data points but is only relevant to few queries, we prefer to split the
partition. The performance of the small queries might increase as they run on smaller data sets
which will even out the additional communication overhead for the big queries with regard to
the overall performance.
The crucial class for the weighting scheme is the forth category of regions which contain much
data as well as many queries. This category requires a good choice between splitting a region
if small queries mainly constitute the workload and replicating the region if the ratio of big
queries is higher.

Table 7.1 summarizes the options to either split or replicate regions based on their associated
number of data points and queries.

After having described the intuition about our criteria for query load balancing, we now
present our approach to create workload-aware data partitionings using weight functions.

86 7. Workload-Aware Data Partitioning

Data points Few queries Many queries
Small Big Small Big

Few – – SPLIT REPLICATE
Many SPLIT SPLIT SPLIT REPLICATE

Table 7.1: Categorization of regions for the replication-aware weight function

7.2 Region Weight Functions
In the following, we define a set of three weight functions for points, queries, and regions. This
enables communities to create partitioning schemes for their data grids with a higher flexibility.

During the course of discussion, we will use several variables for points, queries, and regions
which we will define in this paragraph. While creating our partitioning scheme, in the training
phase, we use a representative training data set P and a training workload Q. The variable p
denotes a data point from P and q is a query from Q. Note that scientific data sets often comprise
many dimensions. For simplicity and ease of presentation, we only consider the projection to
the most predominant attributes from the query patterns (such as the two celestial coordinates
in our astrophysics example) during the training phase. When distributing the data partitions,
the complete data is distributed.

The hyperrectangle Aq describes the boundaries of query q within the data space of the
partitioning scheme. Likewise, we define the area Ar covered by the region r. These areas are
important building blocks for our weight functions.

We consider data points as relevant for query q if they reside within Aq. We further denote
the set of points relevant for query q as Pq and define Qp as the queries for which p is relevant.

Pq = {p ∈ P | p ∈ Aq} (7.1)
Qp = {q ∈ Q | p ∈ Aq} (7.2)

The set Pr of data points within a region r and the set Qr of queries which intersect region r are
defined in a similar fashion.

Pr = {p ∈ P | p ∈ Ar} (7.3)
Qr = {q ∈ Q | Aq ∩Ar 6= /0} (7.4)

7.2.1 Point Weight
If a partitioning scheme is targeted at balancing data skew, the weight of a data point is relevant.
Data skew can originate from data spaces with a mix of densely and sparsely populated regions.
The differences in data density may arise from the original data distribution or from the fact
that some regions have been investigated more extensively than others, i. e., more data has been
collected and is available.

In general, we can define the weight w(p) of a point p as a function of its default weight σ
and the queries Qp it is relevant for:

w(p) = σ + f (Qp) (7.5)

When weighting data points, each point has a default weight σ , e. g., σ = 1. Now, we also
want to consider queries for which a point p is relevant. For example, if a point is relevant for
10 queries, it will have an additional weight of 10. Note that if we set default weight σ = 0,
only data points which are relevant to any query are considered during the training phase.

7.2 Region Weight Functions 87

Example 1: Cardinality Function In the introductory example from above, we used the
function f : Qp 7→ |Qp|. It is a reasonable candidate function: easy to understand, strictly
monotonically increasing, and easy to compute.

Example 2: Scaled Weight Function for Point Data The extent of the actual query hot
spot(s) is unknown during the training phase. While we can locate the positions of query hot
spots with our representative training workload Q, we can only approximate the extent of the
area of the data space that will be subject to high query workload. Cases where only a limited
number of queries is available during training make such estimates more difficult. As a conse-
quence, we try to approximate the actual hot spots by increasing the query area Aq for all queries
q by a scaling factor φ ≥ 1 in every dimension. We denote this area as Aq,φ in the following.1

Also, we introduce a new parameter λ in the weight function of data points in order to scale the
importance of Qp in relation to the default weight σ . Thus, we extend Equation 7.5 to:

wscaled,λ ,φ (p) = σ + λ · |{q ∈ Q | p ∈ Aq,φ}| (7.6)

It is important to note that tuning the parameters φ and λ for wscaled can be quite difficult.
Choosing the wrong scaling factor can yield counterproductive partitioning schemes, which was
confirmed by our experimental results (Section 7.3.1).

7.2.2 Query Weight
The weight for queries is defined in a similar fashion. We assign a default weight γ to each
query, which represents the default processing cost for any query. Depending on the set Pq, we
add an additional query weight g(Pq). In the following, we use g(Pq) = |Pq|.

w(q) = γ + g(Pq) (7.7)

7.2.3 Combining Data and Query Weights
The weight functions for data points (Equations 7.5 and 7.6) and queries (Equation 7.7) consti-
tute the basic building blocks for defining the weight of a region. Based on the weight of the
individual partitions, we always split the partition with the highest weight next. The weight of a
region r depends on a function h of the data points Pr it contains and a function i of the queries
Qr which intersect with its area.

w(r) = h(Pr) ⊗ i(Qr), where ⊗ ∈ {+, ·} (7.8)

In the following, we will only discuss the multiplication of both weights (· is used for ⊗).
Combining the weight functions for points and queries to the weight of a region will result

in partitioning schemes that are optimized for various load balancing goals. Depending on the
combination, a partitioning scheme can achieve load balancing for data, for queries, or for both.
In Table 7.2, we summarize five general patterns of how the weight functions of points and
queries are combined for the weight of a region. We associate the examples discussed in the
following with their corresponding pattern and state their load balancing capabilities.

Weight functions for the first two approaches consider either only the data points or only the
queries for computing the weight of a region. The first (wp) just counts the data points within a
region, the second (wq) only considers the number of queries intersecting with each partition.

1Equation 7.1 and 7.2 are still valid, as Aq,1 = Aq.

88 7. Workload-Aware Data Partitioning

Points Queries Regions Example Load balancing
1 – h(Pr) wp Data
– 1 i(Qr) wq Queries

f (Qp) – h(Pr) wQp Data and queries
– g(Pq) i(Qr) wPq Data and queries
1 1 h(Pr) · i(Qr) wpq Data and queries

Table 7.2: Overview of region weight functions in Section 7.2.3

All remaining three alternatives consider both data and queries for weighting the regions. In
the third and fourth approach (wQp and wPq), the weight of a data region only depends on one of
the building blocks—either points or queries—however the weight of the chosen building block
is influenced by the other, e. g., we weight each data point according to its relevance for queries.
The last weight function wpq computes the heat of a region by multiplying the number of
objects within a region and the number of queries intersecting the region. This weight function
implicitly scales all queries until they cover the entire area of the region(s) they intersect and
assigns more weight to regions that contain lots of data and receive many queries. Thus, this
weight function provides a notion of the overall load based both on data and on queries. If the
region contains no data, its weight is 0 and therefore it is unlikely to be split. If regions receive
no queries, we prefer to split those regions that contain more data. We therefore use (|Qr|+1)
in case of queries. Thus, if a region receives no queries, it still has the same weight as when
using wp.

After we have introduced the five weight functions intuitively, the Equations 7.9–7.13 give
their formal definition.

wp(r) = |Pr| (7.9)
wq(r) = |Qr| (7.10)

wQp(r) = ∑
p∈Pr

w(p) (7.11)

wPq(r) = ∑
q∈Qr

w(q) (7.12)

wpq(r) = |Pr| · (|Qr|+1) (7.13)

The relevance of data points for a particular query q can also be described using the indicator
function 1Aq : P →{0,1}:

1Aq(p) =
{

0 if p /∈ Aq ,
1 if p ∈ Aq .

(7.14)

Equation 7.15 shows that wQp and wPq define the same weight function if we set the default
weights to σ = γ = 0 in Equations 7.5 and 7.7 and f (Qp) = |Qp| and g(Pq) = |Pq|, respec-
tively. Intuitively, counting points weighted by the queries they are relevant for is equivalent to
counting queries weighted by the points that are relevant for them.

wQp(r) = ∑
p∈Pr

w(p) = ∑
p∈Pr

∑
q∈Qr

1Aq(p) = ∑
q∈Qr

w(q) = wPq(r) (7.15)

For the sake of simplicity, we use the weight-factors σ , γ , φ , and λ as constants. Other
scenarios, where σ , for example, is a function that returns the average size of a data point p
depending on the catalog it originates from, are also applicable but are not discussed further.

7.2 Region Weight Functions 89

7.2.4 Adding Query Extents
The pure heat-based weight function wpq captivates with its simplicity. However, if there is
a small hot-spot area, heat-based partitioning may split that area multiple times as it tries to
reduce the query load imbalance. This can lead to communication-thrashing, i. e., too much
communication between nodes covering neighboring partitions to retrieve the complete result.

For example in our two-dimensional quadtree-based partitioning schemes for astrophysics
data, a query area Aq containing the centroid of the region area Ar, would be split into four
subqueries. In the worst case, four different nodes are responsible for these regions. This would
result in four-times overhead, as intermediate results need to be transmitted and the query uses
CPU resources on four nodes. Under such circumstances, we prefer to keep the region as a
whole and rather replicate it with our master-slave approach as described in Chapter 8.

Our replication-aware weight function wAq incorporates the extents of queries and regions
by classifying the queries according to the fraction of the area Aq of query q and the area Ar of
region r. Thus, the weight function wAq realizes the behavior from Table 7.1 in Section 7.1. For
0 < α ≤ β < 1, the sets of small (big) queries Qsmall

r (Qbig
r) are defined in Equations 7.16 and

7.17, respectively.

Qsmall
r = {q ∈ Qr | Aq ≤ α ·Ar} (7.16)

Qbig
r = {q ∈ Qr | Aq > β ·Ar} (7.17)

Based on the classification for Qr, we define the splitting gain for region r, gains(r), as the
number of small queries in r (Equation 7.18). Analogously, we define gainr(r), the replication
gain for region r with the number of big queries intersecting r (Equation 7.19). For the same
reason as in wpq, we add one to both cardinalities to deal with regions that receive no queries or
whose query sets Qsmall or Qbig are empty.

gains(r) = |Qsmall
r |+1 (7.18)

gainr(r) = |Qbig
r |+1 (7.19)

The replication-aware cost function wAq compares gains(r) and gainr(r) to determine whether
a region should be split or not. As long as splitting a region is considered beneficial, only the
value of gains(r) is used. As soon as the “big” queries outnumber the “small” queries, we re-
duce the weight of a region considerably, by multiplying the size of |Pr| with the fraction of the
small queries and big queries. In some application domains it might be desirable to additionally
specify the preference τ for either splitting or replication. This is formalized by Equation 7.20.

wAq,α,β ,τ(r) =

 |Pr| ·
gains(r)
gainr(r)

, if τ ·gains(r) < gainr(r) ,

|Pr| ·gains(r) , otherwise .
(7.20)

The values for α and β strongly depend on workload characteristics of the application
domain, as we realized during our evaluation. At first thought, values like α = 1

4 , β = 3
4 or

α = 1
10 , β = 9

10 seem reasonable. Remarkably, those combinations have a fairly large “blind
angle”, i. e., they ignore queries which have area extents between both thresholds. Especially,
the decision in favor of splitting a region is sensitive to this gap. After having made the decision
to split a region, those “hidden” queries will probably intersect multiple regions causing high
overhead. Thus, we suggest to use the same values for α and β .

90 7. Workload-Aware Data Partitioning

7.2.5 Cost Analysis

The complexity of the weight functions described in the previous sections strongly depends
on the choice of functions f , g, h, and i as well as on the data structures used for storing the
training set P and the training workload Q. A naive approach iterating over all queries in the
workload in order to acquire the weight for all data points would lead to an overall complexity
of O(|P| · |Q|).

The complexity and overhead of maintaining the data points and queries as well as the
complexity of performing the weighting can be reduced via appropriate data structures. We use
hierarchical, tree-like data structures, e. g., quadtrees (Finkel and Bentley, 1974; Samet, 1990)
for creating our partitioning schemes and for storing data points and queries. The leaves of the
quadtree correspond to the individual regions. Trees offer a good pruning capability, i. e., one
can decide quickly whether a point or a query is relevant. We store both, queries and points, in
the same index structure. This allows us to reduce both, the number of data points and queries
which need to be considered for computing the weight of a region.

We decided to redundantly store queries which span multiple regions at the leaf-level, i. e., at
every region, instead of storing them at inner nodes of the tree, e. g., the nodes that fully contain
the bounding box of the hyperrectangle. This further simplifies computing Qp and Qr because
we do not inspect query sets at inner nodes on the path from the root to the leaf-level.1 For
computing weight functions such as wQp or wPq , containment queries are necessary to decide
which query areas contain a data point. These queries can become quite complex, especially if
large query workloads are used. Computing the heat of a region by using the weight function
wpq(r), however, is compellingly simple. We only need to multiply the sizes of the two sets Pr
and Qr in order to compute the weight of a region and avoid the cost for comparing each data
point of Pr with each query in Qr. These adaptions further reduce the complexity to compute
the weight of a region to O(|P|+ |Q|). Only when a region is split, we need to reorganize
the sets Pr and Qr. To summarize, by using a hierarchical data structure for creating the data
partitions, we integrate most of the weighting cost into the tree maintenance and only need
two lookups in order to compute wpq. For the replication-aware weight function wAq , we also
use the maintenance methods of the tree. When splitting a region, its queries are immediately
classified for the newly created leaves into the corresponding sets Qsmall and Qbig by at most two
comparisons. Thus, only two additional counters for storing the values of gains(r) and gainr(r)
are necessary.

7.3 Evaluation

In the following, we will present our analysis of the various workload-aware partitioning schemes
introduced in the previous section. Two aspects were important for our evaluation settings: the
analytical properties of the partitioning schemes and their impact on the overall throughput in
both a simulated and a real deployment. In our opinion, complementing results obtained from
statistical analysis and simulations with experiments of an actually deployed system is funda-
mental for assessing distributed architectures.

7.3 Evaluation 91

Parameter Value(s) Description
P Pobs, Pmil Data sets used for training sample extraction

Q Qobs, Qmil Workloads used for workload-aware training

s 0.1%, 1%, 10% Size of the training set

n 42, 43, 44, 45, Size of the partitioning scheme
46, 47, 48, 49

Table 7.3: General parameters for the evaluation of workload-aware partitioning schemes

Weight function Parameter and value(s)
wQp , wscaled,λ ,φ λ = 0.01, φ = 10,20,40,80 (for Pobs)

λ = 1, φ = 10,50,100,200,400 (for Pmil)
σ = 1 (both data sets)

wAq α , β ∈ { 1
4096 (≈ 0.0002), 1

256 (≈ 0.004),
1

16 (= 0.0625), 1
4 (= 0.25) }, τ = 1

Table 7.4: Weight function specific parameters

7.3.1 Partitioning Scheme Properties
In order to evaluate the analytical properties of the partitioning schemes created with the data-
based (wp), query-based (wQp), heat-based (wpq), and extent-based (wAq) weight functions
outlined in this chapter, we conducted several experiments. We give a detailed description of
the parameters, data sets, and query workloads used during our evaluation. We present and
discuss results with respect to our goal of achieving a workload-aware data partitioning.

For the evaluation, we used our Java-based prototype HiSbase which created partitioning
schemes according to our weight functions, based on a training data sample P and a represen-
tative query workload Q. The remaining queries, not used during training, were used during
testing and evaluating the partitioning schemes. We applied a tenfold cross-validation, which is
a common setup for machine learning techniques (Witten and Frank, 2005). First, we evaluated
the performance of our technique on data samples from three astrophysical catalogs using a
query trace from the SDSS catalog. Afterwards, we assessed the effect of our workload-aware
training on a data sample from astrophysical simulations using a synthetic workload. This gave
valuable additional information, as the simulation data is quite uniformly distributed and so the
impact of some parameters was more clearly visible.

We constructed quadtree-based partitioning schemes using the standard splitting strategy
as well as the median-based heuristics from Chapter 3. Here, we only discuss results with
standard quadtrees. For each approach, we varied the number of partitions to be all powers
of four between 16 (42) and 262 144 (49) as these can be generated exactly by quadtrees and
correspond to the values used in the previous evaluations.

For both data sets used during the evaluation, we drew several training samples of different
sizes (0.1%, 1%, and 10%) to benchmark the quality of results produced from small data sets.
We extracted the random samples with functionality provided by relational database systems.
We report on the results obtained from quadtree-based partitioning schemes using the stan-
dard splitting strategy based on the 0.1% and 1% samples, each containing about 150 000 and

1This is basically the same trade-off as between MX-CIF and extended MX-CIF quadtrees (Samet, 1998).

92 7. Workload-Aware Data Partitioning

(a) Data set Pobs (b) Query set Qobs

Figure 7.4: The observational data and workload

1 500 000 data points, respectively. Table 7.3 summarizes the general parameters used during
the evaluation.

From the weight functions defined in Section 7.2, we used the uniform point (data-based)
weight function wp as a baseline for our comparisons, and the query-based point weight func-
tion wQp with various values for the default weight σ , the importance λ of Qp, and the scaling
factor φ . Furthermore, we used the heat-based weight function wpq and the query extent-based
weight function wAq with τ = 1 and with varying α and β thresholds. Table 7.4 gives a summary
of the used weight function parameters.

Results from the Observational Data Set

We first report on the results from the observational data set Pobs and its accompanying query
workload Qobs as described in Section 1.2 (both shown in Figure 7.4, repeated for convenience).

Parameters for Extent-based Partitioning Schemes The values for the parameters of wAq

are motivated by the observation in Section 7.1 that the fraction between a query and a region
increases four-fold with every split. Analyzing the workload Qobs, we found that the median
of the used search radii in Qobs is at 0.2 arc minutes and 75% of the queries have a radius
smaller than 0.4 arc minutes. This is extremely small, as queries with an 0.2 arc minutes radius
cover only 1

109 of the whole sky. If the queries are at such a small scale, we need to adapt β
accordingly. For example, our smallest value of β , 0.0002, corresponds to 1

46 and classifies
those queries as big that will increase the network load with high probability, when their region
is split an additional six times.1

Spatial Locality and Small Partitioning Schemes During the course of our evaluation, we
made several observations. First of all, the example workload Qobs from the SDSS archive,
shows the expected high spatial locality, as can be seen from Figure 7.5. With all tested par-
titioning schemes, for less than 10% of the queries multiple partitions contain relevant infor-
mation. Communities with such workload characteristics greatly benefit from the high degree
of parallelism within the system. For up to 1 024 histogram regions, the number of one-region
queries is identical and the partitioning schemes only have minor differences. Therefore, par-
titioning data—even with a partitioning scheme which is only based on the data—can migrate

1Each split in quadtree replaces one leave by four new leaves. Thus six splits create 46 leaves.

7.3 Evaluation 93

..0%

.2%

.4%

.6%

.8%

.1024 .4096 .16384 .65536 .262144

.queries intersecting more than one region (%)

.regions

.wp

.wpq

.wAq ,0.0002,0.0002

Figure 7.5: Percentage of queries in Qobs that are answered by consulting more than one parti-
tion

(a) wp (b) wpq

Figure 7.6: Quadtree-based partitioning schemes of Pobs with 16 384 regions

load to different partitions which work in parallel. For uniform query loads and communities
at the very beginning of building their grid infrastructure, data-based partitioning is completely
sufficient.

Adaption to Query Workloads When we compare the partitioning schemes of Pobs in Fig-
ure 7.6 with the original data and query set from Figure 7.4, we can observe the similarity
between the data distribution and the data-based weight function wp and also the heat-based
partitioning wpq and the query load Qobs. Thus, we can see that our weight functions are able
to create workload-aware data partitionings.

Load Balancing Capabilities Figure 7.7 shows that the heat-based weight function wpq dis-
tributes the overall load significantly better across multiple nodes for quadtree-based partition-
ing schemes on the observational data set using the SDSS workload than the weight function
wp which focuses on data load only. We quantitatively evaluated the total query load by cal-
culating the sum of the individual query loads for each region, and the uniformness of the load

94 7. Workload-Aware Data Partitioning

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ac
cu

m
u
la

te
d

 r
eg

io
n
 l

o
ad

proportion of regions

uniform distribution
(Gini coefficient 0)

wpq / wAq,0.25,0.25 (Gini coefficient 0.53)

wAq,0.0002,0.0002 (Gini coefficient 0.67)

wAq,0.004,0.0625 (Gini coefficient 0.54)

wp (Gini coefficient 0.79)

Figure 7.7: Lorenz curves for Pobs for partitioning schemes with 4 096 regions and weight func-
tions wp and wpq

distribution using the Gini coefficient as in (Pitoura et al., 2006). The Gini coefficient is defined
as the area between the Lorenz curve for the distribution and the diagonal.

While wp only achieves a Gini coefficient of 0.79, wpq has a coefficient of 0.53, which is
considered a fair load distribution in distributed systems (Pitoura et al., 2006). The partition-
ing scheme of wAq,0.25,0.25 achieves the same load distribution and wAq,0.004,0.0625 differs only
marginally from the heat-based partitioning. With 0.67, the Gini coefficient of wAq,0.0002,0.0002
lies between wpq and wp.

In the wp approach for data load balancing, 20% of the regions receive 83% of the overall
system load. For our workload-aware technique wpq, these 20% handle less than 60% of the
overall load. When using the extent-based wAq,0.0002,0.0002, 20% of the regions process 68% of
the load, as the weight function recognizes some candidate regions for replication. Thus, the
query load is less balanced as in the wpq partitioning scheme. We will see in the following
that the extent-based approach is preferable to the heat-based technique with regards to other
characteristics.

Stable Results with Varying Training Workload Size Furthermore, we investigated how
the size of our training workload influenced the results. We used 1%, 5%, 10%, and up to 90%
of the queries for training and the remainder for testing. Figure 7.8 shows the results for the
wpq weight function. We see that for partitioning schemes having between 1 024 and 16 384
partitions wpq not only achieves a good load balancing, i. e., Gini coefficients close to 0.5, but
also that most measurements are independent of the size of the training workload. This stability
is an important characteristic as it allows communities to find the trade-offs for using as much
queries as possible during the training phase or keeping enough queries to validate the created
partitioning scheme.

Regions without Queries We furthermore analyzed, how many regions do not take part in
query processing depending on the weight function. The less such regions, the better the weight
function distributes the load to several partitions. wpq always achieves the best result. Up to
65 536 regions, both wpq and wAq are at a comparable level and between 15% and 50% better
than pure data load balancing. In Figure 7.9, wpq always has the lowest number of regions
without queries. The following analysis, however, shows that wpq is too eager in splitting
regions further and further and therefore introduces significant communication overhead.

7.3 Evaluation 95

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90

G
in

i
co

ef
fi

ci
en

t

Percentage of queries used for training

16 regions
64 regions

256 regions
1024 regions
4096 regions

16384 regions

Figure 7.8: Comparison of the Gini coefficients for different training workload sizes for Qobs

..0%

.20%

.40%

.60%

.80%

.100%

.1024 .4096 .16384 .65536 .262144

.regions without queries (%)

.regions

.wp

.wpq

.wAq ,0.0002,0.0002

Figure 7.9: Comparison of the percentage of regions that receive no queries from Qobs

Reduced Traffic by Workload-Awareness In order to investigate the communication over-
head, we compared our partitioning schemes to a scheme where every query could be answered
by a single region. All regions that need to be contacted additionally, increase the communica-
tion overhead of the specific weight function. Based on our observation that typical workloads
exhibit a high degree of spatial locality, we prefer queries that intersect a single region which is
guaranteed to be mapped to one peer. Formally, we compute the communication overhead as

∑q∈Q |{r ∈ R | Aq ∩Ar 6= /0}|
|Q|

(7.21)

Figure 7.10 shows the relative traffic overhead for wp, wpq, and some variations of wAq . We
clearly see that wAq produces lower traffic than wpq. Moreover, with a reasonable choice of α
and β , wAq produces not more traffic than wp.

Results from the Millennium Data Set

Finally, we shortly discuss how the different weight functions performed on the uniform Mil-
lennium data set Pmil (Figure 1.4) with the query workload Qmil .

The query areas for Qmil were artificially generated with their midpoints (px, py) following a
two-dimensional Gaussian distribution with mean (0,0) and variance chosen in such a way that
90% of the midpoints fall into the square area in the center taking 10% of the space. The actual
query areas were then constructed around the midpoints from (px − r, py − r) to (px + r, py + r)

96 7. Workload-Aware Data Partitioning

..100%

.110%

.120%

.130%

.140%

.150%

.160%

.170%

.1024 .4096 .16384 .65536 .262144

.communication overhead (%)

.regions

.wAq ,0.0002,0.0002

.wAq ,0.004,0.0625

.wAq ,0.25,0.25

.wpq

.wp

Figure 7.10: Communication overhead for partitioning schemes of Pobs in comparison to a cen-
tralized setting

with the query “radius” r chosen randomly from {0.025, 0.1, 0.2, 0.25, 0.5} arc minutes, which
correspond to the 5 most frequent query radii from the query workload Qobs, introduced above.
In this way, 11 000 queries were generated for training and testing the resulting partitioning
schemes.

When comparing the data load on each partition (Figure 7.11), the data-based weight func-
tion (wp) achieves, as expected, a good data load balancing for uniform data sets (Figure 7.11(a)).
Each quadtree-based partition contains about 40 data objects from the 0.1% training sample.
Using the median-heuristics further reduces the variation in the amount of data, shown in Fig-
ure 7.11(c) by the “tighter” band of region sizes. For the workload-aware partitioning (wpq),
data distribution is less uniform (Figure 7.11(b)) as the size of the partitions is adapted to the
workload. Especially when looking at the median-based partitioning (Figure 7.11(d)), four
groups of partitions become evident: 4-times larger (about 160 objects), unchanged (40 ob-
jects), 4-times smaller (10 objects), and 16-times smaller (about 3 objects).

In our motivation, we suggested to use the amount of data inside a region as indicator for
whether a region is hot. When looking at the combined load of each region in Figure 7.12,
we see four “flames” of high heat1 for the quadtree-based partitioning schemes with regular
decomposition for both weight functions wp (Figure 7.12(a)) and wpq (Figure 7.12(b)). When
compared to the data-based partitioning (Figure 7.12(a)), however, the heat levels are greatly
reduced when using the heat-based weight function. The results for the splitting strategy based
on our median heuristics (Figures 7.12(c) and (d)) are very similar in Figure 7.12. However, we
show both to demonstrate how a low data load for the heat-based partitioning (Figure 7.11(b)
and (d)) correlates with a high region load for the data-based weighting scheme (Figure 7.12(a)
and (c)).

In Figure 7.13, some of the partitioning schemes of Pmil with 1 024 partitions are shown.
Each region is colored with its heat-based weight (the wpq-value) on a scale from cold (white)
to hot (red), which is normalized over the compared partitioning schemes. The wp-partitioning
scheme, in Figure 7.13(a), is a completely balanced quadtree with 1 024 same-sized partitions
as the data distribution is almost uniform. The hot spot in the center of the data space is also
clearly visible as the query load is not considered. Figure 7.13(b) shows how wQp splits the
hot regions first and the partitioning scheme adapts to the hot spot. As the number of regions
is fixed, regions at the border of the data space are not split further and now contain more data.
From Figure 7.13(c) it becomes obvious why: regions at the border of the hot spot contain

1We see four “flames” instead of a single “bonfire” due to the Z-order space filling curve.

7.3 Evaluation 97

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500 3000 3500 4000

d
at

a
p

o
in

ts

region ID

(a) with regular decomposition, wp

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500 3000 3500 4000

d
at

a
p

o
in

ts

region ID

(b) with regular decomposition, wpq

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500 3000 3500 4000

d
at

a
p

o
in

ts

region ID

(c) with median heuristics, wp

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 500 1000 1500 2000 2500 3000 3500 4000

d
at

a
p

o
in

ts

region ID

(d) with median heuristics, wpq

Figure 7.11: Data load of Pmil for quadtree-based partitioning schemes with 4 096 partitions for
the data-based weight function (wp) and the heat-based weight function (wpq)

98 7. Workload-Aware Data Partitioning

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000 3500 4000

re
g

io
n

 l
o

ad

region ID

(a) with regular decomposition, wp

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000 3500 4000

re
g

io
n

 l
o

ad

region ID

(b) with regular decomposition, wpq

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000 3500 4000

re
g

io
n

 l
o

ad

region ID

(c) with median heuristics, wp

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000 3500 4000

re
g

io
n

 l
o

ad

region ID

(d) with median heuristics, wpq

Figure 7.12: Region load of Pmil for quadtree-based partitioning schemes with the 4 096 parti-
tions for the data-based weight function (wp) and the heat-based weight function
(wpq)

(a) wp (b) wQp , wscaled,λ=1,φ=50 (c) wQp , wscaled,λ=1,φ=400 (d) wpq, wAq

Figure 7.13: Partitioning with 1 024 regions for Pmil

7.3 Evaluation 99

16-times the data than in the wp partitioning but also receive many queries and thus their load
will be too high. Finally, we see in Figure 7.13(d) that the heat-based weighting scheme wpq
approximates the extent of the hot spot very good but does not lose sight of data load balancing.
Actually, the extent-based weight function wAq produced the same partitioning scheme. Note
the four different sizes of regions in our workload-aware partitionings as in Figure 7.11(b): some
regions are 16-times smaller (in the very center of the hot spot), 4-times smaller, unchanged,
and 4-times larger (the cold regions at the border of the data space) than the regions of the wp
partitioning scheme.

7.3.2 Throughput Evaluation
The previous analysis of the histograms was based on the training data and both the training
and testing workloads. The following throughput measurements are conducted on distributed or
simulated HiSbase instances. We intentionally do not use the master-slave replication approach
at runtime as described in Chapter 8 in order to emphasize the throughput variations purely
based on the choice of the weight function.

For the throughput experiments we use the same definitions for saturation phase Isat and
throughput T as in Chapter 6.2. During the throughput evaluation, we used partitioning schemes
created with the data-based (wp), heat-based (wpq), and extent-based (wAq,0.0002,0.0002) weight
functions, respectively. The size of the histogram—4 096 for real and 262 144 for simulated
networks—is chosen to be large enough to ensure that all peers are responsible for data parti-
tions. The results shown are the averages built over three evaluation runs in both (the real and
simulated) cases.

Each single HiSbase node was configured to allow ten parallel queries on its local database,
as suggested in Chapter 6.2. The following evaluation shows that especially higher multi-
programming levels for the HiSbase nodes increase the overall throughput; we report on MPLs
selected from {10, 50, 100, 300, 500}.

Results from the Observational Workload

For our throughput experiments, we used the same 22 000 queries from Qobs as in the throughput
evaluation for coordination strategies in Section 6.2.3. Each node randomly selected 5 000
queries from Qeval for its query batch.

Our 16 computer lab nodes are consumer-class Linux PCs equipped with 1.6 GHz pro-
cessors, 512 MB RAM and running DB2 V9.1.4. For the measurements with 32 nodes, we
additionally used 16 nodes from our local AstroGrid-D resources having between 1 and 4 GB
main memory and 2.8 GHz Intel Xeon CPUs. We used the H2 database for performing the
local query processing. After assigning each node a random identifier, we distributed the data
according to the partitioning scheme.

Figure 7.14 shows the throughput achieved by a HiSbase network using a partitioning
scheme with 4 096 partitions which are distributed among 16 and 32 nodes, respectively. For
16 peers, we see that the wp partitioning scheme surprisingly achieves the highest throughput,
while for the setup with 32 nodes, the extent-based technique wAq outperforms both wp and
wpq. Due to several query hot spots in Qeval , only a fraction of the additional nodes can signifi-
cantly participate during query processing. While wAq increases the throughput in a near-linear
fashion, the gain of wp and wpq is only sub-linear.

We have successfully demonstrated HiSbase (Scholl et al., 2007a) on PlanetLab and we
see great value of PlanetLab for evaluating the algorithmic properties (like messaging over-

100 7. Workload-Aware Data Partitioning

..0

.100

.200

.300

.400

.500

.600

.700

.10 .50 .100 .300 .500 .10 .50 .100 .300 .500

.queries per second

.16 nodes .32 nodes

.MPL

.wp

.wpq.wAq ,0.0002,0.0002

Figure 7.14: Throughput of deployments with 16 and 32 nodes

..0

.500

.1000

.1500

.2000

.2500

.3000

.10 .50 .100 .300 .500

.queries per second

.MPL

.wAq ,0.0002,0.0002

.wpq

.wp

(a) 300 nodes

..0

.2000

.4000

.6000

.8000

.10000

.12000

.10 .50 .100 .300

.queries per second

.MPL

.wAq ,0.0002,0.0002

.wpq

.wp

(b) 1 000 nodes

Figure 7.15: Throughput on the observational query workload with simulated networks

head) of distributed architectures in volatile environments. However, our initial throughput
measurements on 100 PlanetLab nodes showed that the PlanetLab framework is not suitable for
performing throughput evaluations of data-intensive grid applications. Issues like bandwidth-
limited links and limited main memory access (below 160 MB) do not reflect the anticipated
infrastructure for community grids. We therefore abandoned using PlanetLab and evaluated the
throughput trend of larger deployments with FreePastry’s discrete-event simulator instead.

During our simulations, we evaluated three different partitioning schemes (wp, wpq, wAq)
with 262 144 partitions using the MPLs from above on HiSbase networks with 100, 300, and
1 000 nodes, respectively.1 Database accesses were simulated by returning the result set after
a delay extracted from annotations to the queries. The time specified in the annotation corre-
sponded to the running time of the query on the central database server during the selection of
the Qeval queries. The simulation engine does not model running time improvements due to
caching effects or smaller databases at each nodes. Likewise, we assumed that parallel running
queries do not interfere and the annotated running time is also valid for ten parallel queries.
Runs with the same setups like in the distributed scenarios with 16 and 32 nodes verified that
the results of the simulator are realistic. The ratios between the simulated measurements and
the real results were at a reasonable level between 1.07 and 2.25.

The results from the simulations showed a similar trend as in the real deployments. With all
tested partitioning strategies, the extreme query hot spots diminished the load balancing effect
of adding new nodes with all tested partitioning schemes.

1We did not measure the throughput of 1 000 nodes with MPL=500 as current e-science scenarios do not yet
require such high parallelism.

7.3 Evaluation 101

..0

.10000

.20000

.30000

.40000

.50000

.60000

.100 .300 .1000

.queries per second

.nodes

.MPL = 500

.MPL = 300

.MPL = 100

.MPL = 50

.MPL = 10

.linear (MPL = 300)

Figure 7.16: Throughput for the region-uniform query workload

Figure 7.15 depicts that workload-aware partitioning schemes perform better for high MPL
levels (MPL=300 and MPL=500) and large networks with 300 and 1 000 nodes than the pure
data-load approach.

Results from the Region-Uniform Workload

Analyzing the query workload Qeval for the partitioning schemes with 262 144 regions revealed
that only 3% of the regions receive any query (as opposed to the 27% in Figure 7.9 based on the
complete query set Qobs). In order to evaluate the scalability under a uniform query workload,
we generated workloads where 92% of the regions intersect with queries. The 600 000 gener-
ated queries were uniformly distributed among the regions and the query areas were constructed
in a similar fashion as for the Millennium data set (see Section 7.3.1). According to a uniform
distribution, we picked a region identifier and a center point for the query area within that re-
gion. As all histograms achieved similiar results, Figure 7.16 depicts only how the extent-based
histogram balances the query load uniformly in a near-linear and even super-linear through-
put (stressed by the trend line for MPL=300), especially when comparing the 300-node and
1000-node networks.

7.3.3 Summary

In summary, the evaluation corroborates that query hot spots are an important issue in scien-
tific data management. The analytical evaluation showed that our partitioning techniques adapt
to the query workload and that our extent-based technique (wAq) does not raise the message
overhead compared to the data-based distribution but it also offers query load balancing. The
throughput experiments showed that the extent-based partitioning is best in taking advantage
of additional nodes, especially for highly parallel workloads. For all partitioning schemes,
throughput significantly improves when all nodes participate during query processing. In the
presence of query skew, however, this can only be achieved by replication at runtime. There-
fore, employing load balancing at runtime with techniques such as a master-slave approach and
replicating “hot” data based on monitoring statistics are the next important steps towards even
more workload-aware community-driven data grids and are discussed in the following chapter.

102 7. Workload-Aware Data Partitioning

7.4 Related Work

The fact that workloads on astrophysical data sets are mostly spatial queries (selections on
the celestial coordinates or corresponding stored procedures) and that these workloads ex-
hibit a high query skew is supported by an extensive analysis of the traffic for the SDSS
SkyServer (Singh et al., 2006) and an experience report on migrating the SkyServer on Mon-
etDB (Ivanova et al., 2007).

Papadomanolakis and Ailamaki (2004) propose an automatic categorical data partitioning
algorithm based on queries from a representative workload. Categorical partitionings are based
on attributes which take only a small number of discrete values and identify objects, i. e., a
TYPE-attribute within an astrophysical data set having values like “Star” or “Galaxy”. How-
ever, their approach only deals with optimizing the database structure (indices, restructured
tables) within the database of a single node.

In the following, we discuss related work (Crainiceanu et al., 2007; Ganesan et al., 2004a;
Pitoura et al., 2006) investigating techniques of load balancing for P2P networks. The major
difference of these techniques compared to our solution is that load balancing in P2P networks
is designed for networks with highly dynamic data and mostly deals with either skewed data
distributions or skewed query load, but not both. The flexibility needed in such a fast changing
environment comes at the price of dealing with each data object individually, which can result
in prohibitive costs for disseminating vast amounts of data to multiple nodes. Ganesan et al.
(2004a) show that load balancing schemes for range-partitioned data in highly dynamic P2P
networks either need to adjust the load between neighbors or need to change peer positions
within the range. HotRod (Pitoura et al., 2006) addresses query hot spots on one-dimensional
data by replicating popular data ranges on additional rings but does not deal with skewed data
distributions. P-Ring (Crainiceanu et al., 2007) addresses data skew in an orthogonal manner in
comparison to the partitioning-based approach, but does not consider query hot spots. While our
partitioning schemes adapt the regions to data skew and query skew by distributing these across
the cooperating peers, P-Ring has the notion of “helper peers” that support peers which are
overloaded by skewed insertions either by data redistribution between neighbors or by merging
their data into a neighbor’s range. In P-Ring it is required that there are less data partitions
than peers. If P-Ring would be extended in order to support these large data sets by supporting
our notion of regions, that requirement would lead to larger partitions which are not as easily
distributed as the regions created with our workload-aware partitioning schemes. Furthermore,
P-Ring does not perform data replication.

SD-Rtree (du Mouza et al., 2007, 2009) is a Scalable Distributed Data Structure (SDDS)
which targets large data sets of spatial objects. An SDDS has the following characteristics: 1) It
has no central data index, 2) servers are dynamically added to the system when needed, and 3)
the clients access the SDSS through an image which is potentially outdated. SD-Rtrees perform
data load-balancing by data partitioning and reorganization similar to AVL trees. The histogram
in HiSbase differs from the SD-Rtree index in that it is used also for query load balancing and
it uses the multi-dimensional index structure to determine candidate regions for replication.

Related work in sensor networks (e. g., Aly et al., 2005, 2006) illuminates aspects of data
distribution and load balancing from a different perspective where data is created within the net-
work and the predominant goal is to increase quality of data and reduce the power consumption
in order to increase the lifetime of a sensor network. As these solutions also deal with individual
data objects, it is currently unclear whether they can be directly applied to petabyte-scale data
sets of e-science communities. However, it is an interesting question for future investigations.

7.5 Summary and Future Work 103

7.5 Summary and Future Work
Supporting the efforts for building global-scale data management solutions within many e-
science communities such as biology or astrophysics is a challenging task. In this chapter, we
have described several weight functions to create cost-based partitioning schemes for community-
driven data grids that address data skew, query hot spots—each on its own or in combination—
and finally, a weight function that only splits data regions if the gain of doing so is higher than
the gain of replicating that region.

We evaluated our weight functions on a data set from astrophysical observations and data
from an astrophysical simulation with actual application workloads. For small communities,
surprisingly simple partitioning schemes already achieved good load balancing results. With in-
creasing number of partitions, the extent-based weight function outperforms the other schemes
with regards to reduced communication overhead and load balancing. Based on our throughput
evaluation, workload-aware partitioning alone is not sufficient to completely level out query hot
spots. As a consequence, we discuss how to incorporate load balancing techniques such as a
master-slave hierarchy in our data grid infrastructure in the following chapter.

Further interesting open research issues are adaption to heterogeneous nodes with different
capacities or whether the complementary approach of merging cold regions can be included in
our training phase and how communities can benefit from that.

104 7. Workload-Aware Data Partitioning

105

CHAPTER 8

Load Balancing at Runtime

In the previous chapter, we have provided several weight functions for regions. We apply these
region weight functions during data partitioning. Beginning with pure data-based weight func-
tions, we proposed several weight functions that additionally take the workload into account.

In this chapter, we discuss load balancing techniques used in community-driven data grids
at runtime. We distinguish between short-term imbalance due to sudden and transient changes
in the current system workload (Section 8.1) and long-term changes in both data and query
distributions (Section 8.2).

8.1 Short-term Load Balancing

In order to support overloaded nodes at runtime with additional resources, HiSbase builds a
master-slave hierarchy: overloaded nodes are masters while lightly loaded nodes are slaves that
store less data or process fewer queries. Slave nodes offer some of their capacity to master
nodes in order to achieve load balancing. The master-slave relationship is defined with regard
to a single region. Thus, a node can be master for one of its own regions as well as slave for
other regions in parallel. Once connected with a slave node, master nodes send some of their
frequently accessed—so-called hot—data subsets to this node. During query processing all
replicas are available for query load-balancing purposes.

If a region is replicated on another node, this information is stored in a replica dictionary
at the master node. The dictionary uses region identifiers as keys and stores lists of nodes as
values. For a particular region identifier the list contains the nodes with a copy of the region.

8.1.1 Replication Priority

Having distributed the partitions according to the partitioning scheme, we need to ensure at
runtime that we replicate hot regions more often than regions that are likely to be relevant for
only a few queries. By defining a replication priority for each region, we provide a notion

106 8. Load Balancing at Runtime

for the urgency for copying this region to a different node. Regions having a high replication
priority need to be replicated more often.

Initially, the following priorities can be computed based on the information from the training
phase and define a starting point for a static replication. Combined with load monitoring, these
priorities can also be dynamically maintained and thus result in a dynamic data replication.

Training-Based Replication Priority ϕtraining During the training process, we can identify
the replication candidates by our replication-aware weight-function wAq as defined in Equa-
tion (7.20) on page 89. At the end of the training phase, we annotate those regions accordingly.
Nodes then can explicitly prefer those regions for replication. Besides annotating hot regions
we can furthermore annotate empty regions, which received no data during training. Thus, we
can exclude empty partitions from the replication process.

Size-Based Replication Priority ϕsize For defining the replication priority ϕsize, we recon-
sider the heat-based weight-function wpq (from Chapter 7.2.3). The weight function defines the
weight of a region as the product of the number of objects and the number of queries within that
region. Let P and Q be the set of all data points and queries, respectively. Let Pr and Qr denote
the corresponding subsets that reside within region r. Let w be the weight for any region, then

w = 1
w = |P| · |Q|

|P| =
1
|Q|

(8.1)

From Equation (8.1) it becomes evident, that wpq focuses on reducing the overall load for
queries and data on individual regions. The equation states that the number of data objects in
a region is inversely proportional to the number of queries on this region, assuming the load is
evenly distributed over all regions r. The fewer data objects are within a region the more queries
this region receives. In other words: the real amount of data in these regions will be less due to
the increased weight from the queries.

Using Rr as the replica set of a region r, i. e., the set of nodes that maintain a copy of
region r, we define the size-based replication priority ϕsize as

ϕsize(r) =
1

|Pr| · |Rr|
(8.2)

When data set Pr within a region is smaller than a specific threshold, the region is a hot spot with
high probability and needs to be replicated. A good estimate for such a threshold could be the
overall data volume divided by the number n of regions in our partitioning scheme: d|P|/ne · k,
given a node covers k regions. We note that this priority assumes the validity of Equation (8.1),
i. e., the overall load is evenly distributed. Otherwise, the replication priority does not offer
reliable results.

Query-Based Replication Priority ϕquery With ϕquery, we describe the “pressure” on a region
that grows with increasing number of queries and decreases with additional replicas.

ϕquery(r) =
|Qr|
|Rr|

(8.3)

8.1 Short-term Load Balancing 107

For a community-driven data grid with similar resources, we use a global threshold for
the query-based replication priority. However, finding a suitable threshold for the query-based
replication priority is more difficult than for the size-based priority. For heterogeneous environ-
ments, probably more advanced approaches are required. For example, each node can exchange
replication priorities with its neighbors in order to assess which regions are overloaded.

The query-based replication priority ϕquery can even detect new short-term query hot spots
when we combine it with monitoring statistics about queries and the current load on a node.

8.1.2 Monitoring Statistics

In order to monitor the load on each node, we need to store the statistics about the queries
currently running on a node, including their query text and the extracted query area. On a
node, queries can have one of three states: waiting, active, or processed. These states represent
whether a query is currently in the processing queue, actively running, or completely processed.

Queries in the waiting-state are migration candidates. Once an overloaded node has repli-
cated some hot spot regions, it can look for waiting queries that can be migrated to replicas
instead of being processed by itself.

Once processed, all query statistics are persistently stored, e. g., by writing the query statis-
tics to a log file. Even if the responsibility of a node changes, the log files of processed queries
are preserved. An example for such change is if a new node joins the network and overtakes
responsibility for a part of regions managed by the existing node.

Region-specific data collected during monitoring comprises concurrently waiting queries
per region, the size of a region, and the replication dictionary. These query and region statistics
are used to identify the current load of nodes—low load, normal load, or overloaded.

Both monitoring statistics, query log files and region specific data, also deliver important
details for reorganizations, e. g., future histogram evolutions.

8.1.3 Master-Slave Replication

Once we identified an overloaded node, we need to decide which data to replicate, how many
copies to create, and which HiSbase nodes are suited best for managing the replicas.

For these three criteria we need load statistics as well as information about the stability of
the individual data nodes. In the context of community-driven data grids such as HiSbase, load
information might be of primary interest as we can assume dedicated, highly available nodes
with high-bandwidth network interconnections. Such an assumption seems reasonable when
dealing with the anticipated amounts of data. If two machines have the same load profile, i. e.,
based on the load statistics both nodes are candidates for replication, we prefer to replicate the
data of the machine with lower availability.

The number of copies is proportional to the ratio between the load on the overloaded node
and the load of neighboring nodes. If the load on a node is a factor of three higher than the load
on its neighbors, we need to replicate the data three-times in order to level the load between the
individual nodes.

There exist multiple criteria for selecting a node that is responsible for a newly added replica.
In general, we can choose between logical neighbors (nodes that are neighbors on the underly-
ing P2P key space) and physical neighbors (nodes that are close within the physical network).

For the decision, we need to trade off a fast replication that requires high bandwidth, which
physical neighbors can provide, against preserving the query locality, which is achieved by

108 8. Load Balancing at Runtime

replicating data to neighbors on the identifier space. By using logical neighbors, we can preserve
query locality and completely move queries spanning multiple regions to a different node.

Within our master-slave approach, we use physical neighbor nodes for replicating regions as
these large data transfers are presumably faster within a local area network than transmitting the
data over wide area network links. If queries span multiple regions, which are managed by mul-
tiple nodes, using physical neighbors further reduces the communication overhead. As there
also exist P2P-based multicast implementations, e. g., the spanning tree-based Scribe (Row-
stron and Druschel, 2001), HiSbase does not require a centralized component to implement an
efficient communication.

With regards to the master-slave communication, nodes have three states based on their
current load: helper (low data and query load), normal (regular load), and overloaded (too
many queries waiting for being processed). Once a node determines that its current load is
below the helper-threshold it subscribes to a multicast “helper channel”. Once an overloaded
node requires support from a helper node, it sends an anycast on the “helper channel”. In
contrast to broadcasts, the multicast channel stops transmitting an anycast as soon as a helper
node has accepted the request. The helper nodes send their current offers to the requester that
decides which are the most suitable helper nodes based on the distance and available resources.
The master contacts its preferred candidates and transmits the data to be replicated. Once the
replication is successfully completed, the master adds all slaves to the replica dictionary.

During query processing, the master now can balance the load among the several replicas
either by a round-robin or more advanced load-based scheme. If a helper node gets overloaded
itself, it contacts its master(s) and “quits” jobs in order to lower its own load.

Replicated data can be stored at different places inside the database. One choice is to store
replicated data in the same tables as the “own” data of the node. Another choice is to store
replicated data in a separate database. When all data is stored in a single table, we need to
serialize query precessing as our current query processing would induce too many duplicates.
Moreover, queries for data originally covered by the node might be slowed down due to the
additional data. We therefore separate the original and replicated data. Using this approach, a
node can remove replicated data by deleting the separate database.

8.2 Long-term Load Balancing

With a long-term perspective, our load balancing considers changes in the data and query distri-
bution. At runtime, communities can integrate new data sets (e. g., new catalogs or new versions
of existing catalogs) in their data grid as soon as the schema information has been distributed
across all nodes. In this case, however, data load balancing is possibly no longer optimal. Hav-
ing added new data, it is therefore advisable to check whether histogram and data distribution
can be further optimized.

While the master-slave approach addresses short-term query hot spots, new and even stronger
query hot spots can develop and persist for a long-lasting period. The historical data about pro-
cessed queries is particularly useful for extracting a shift in interest. We now describe how
partitioning schemes can evolve during the lifetime of a scientific federation and adapt to long-
term trends in the workload.

8.2 Long-term Load Balancing 109

Figure 8.1: Evolution of histograms within HiSbase

8.2.1 Partitioning Scheme Evolution

During the lifetime of a community-driven data grid, additional data sources might be added or
the interest of a community might shift towards a different area in the data space. Therefore,
we need a mechanism to evolve our histogram. For example, if no previous query logs are
available, a community can start with a histogram that is only based on the data distribution.
Depending on the change characteristics of the community (e. g., every six months or every
year), the data distribution can be reorganized according to the analysis of monitored workloads
using a workload-aware partitioning scheme as described in Chapter 7. Therefore, a histogram
sometimes needs to be recreated and data needs to be redistributed accordingly.

Each HiSbase histogram passes through three development phases: in-progress, active, and
passive. The in-progress histogram is used to distribute the data within the HiSbase network.
As long as the feeding process (see Section 5) has not finished, histogram and data are not used
during query processing. Once the data distribution according to the in-progress histogram is
completed, the histogram and the newly distributed data are activated. Similar to the feeding
process, we coordinate the transitions from the different histogram states at the HiSbase nodes
using the multicast channel. The active histogram and active data are used during query process-
ing; the histogram for retrieving the relevant data regions and the data for the actual database
queries. In order to prolong the use of data once distributed and thus amortize the cost of the
data transfers, each node additionally keeps a passive histogram and a passive data set. The
passive histogram is primarily used in order to provide data availability and as fallback support
during query processing.

Figure 8.1 shows an example for a snapshot within a histogram evolution. The active his-
togram has seven partitions and is used during query processing, while the passive histogram
functions as backup copy. The region mapping to the key space has a different origin for the
passive histogram and therefore is likely to replicate regions to different nodes. The in-progress

110 8. Load Balancing at Runtime

Figure 8.2: Example time line for the transition from histogram H1 to H2. H1′ and H2′ are
modified versions the according histogram, e. g., by using a different space filling
curve.

histogram has (four) additional regions, e. g., due to a newly added data set (in the lower left
corner).

In order to determine the passive histogram and its data set, there are two general design
options: 1) use the outdated active histogram and its according data and 2) use another slightly
modified histogram from the in-progress histogram. Depending on the cause which triggered
the histogram evolution—be it a new data source or additional query hot spots—choosing one
or the other alternative impacts the system differently.

Given the case that a new data source has been integrated into the HiSbase network together
with the in-progress histogram, the outdated (formerly active) histogram does not contain the
new data set. As a consequence, the passive histogram can only provide approximate query
results for updated data regions. If the new data set has already been integrated into the outdated
histogram, the data load balancing according to this histogram might not be optimal—as it
triggered the creation and dissemination of a new histogram—but at least the complete data
is accessible via the outdated histogram. Whenever a new query hot spot triggers the next
histogram evolution, the outdated histogram does not optimally balance query processing load
but it contains all data.

Opposed to option 1), the second alternative builds the passive copy already based on the in-
progress histogram. We use the same partitioning scheme twice and distribute the data twofold.
By rotating the origin of the linearization function (as in Figure 8.1) or by using a different space
filling curve we achieve a twofold data availability. This alternative is applicable for the initial
setup of a HiSbase instance, i. e., if no new data and statistics are available. Distributing the data
for the second copy can be accelerated by our feeding technique for replication as described in
Chapter 5. The decision which copy to use can be based on the monitored load information or
on a round-robin scheme similar to the master-slave replication.

8.2.2 Data Dissemination during Histogram Evolution

In the following, we illustrate the data distribution during histogram evolution. Figure 8.2
depicts a time line that shows the transition for the histograms H1 and H2. At time t1, the
histogram H1 is activated and we use this histogram together with its data for query processing.
In parallel, we replicate the data of H1 according to a slightly modified version of histogram
H1′. For this replication, we can use all nodes as data sources and therefore accelerate the data
transfer. At t2, we have two full distributed copies of the data sets. Assuming we monitor a

8.3 Summary and Future Work 111

long-term shift in interest in our statistics. As a consequence, we create a new histogram H2.
Like at the beginning of this example, we first distribute the new histogram and start a new
feeding process at time t3. At time t4 and time t5, each nodes delete one of the old histograms
and its data set.

8.3 Summary and Future Work
In this chapter, we described several approaches to address load balancing challenges at run-
time of a community-driven data grid. We differentiated between short-term peaks and long-
term trends of query distribution. For short-term load balancing, we propose a master-slave
replication scheme combined with statistics monitoring. For long-term trends, we evolve our
histogram and thereby adapt the histogram to shifts in the data or query distribution.

Our current master-slave replication scheme uses physical neighbors for load balancing.
A further in-depth comparison between choosing physical neighbors or neighbors within the
identifier space for such a replication could provide additional interesting insights. Based on the
described initial replication design for community-driven data grids, more advanced replication
strategies are a challenging issue. While we focused on the replication of individual regions
there might be some benefits from replicating all regions of a node (“region clusters”) at once.
This can reduce the management overhead and further preserve the query locality.

112 8. Load Balancing at Runtime

113

CHAPTER 9

Outlook and Future Challenges

Community-driven data grids provide a scalable, distributed data management solution for e-
science communities. In this thesis, we described the fundamental design choices for such
data grids and evaluated our infrastructure on real-life data and query workloads. In addition
to simulation studies, we deployed and conducted experiments with our infrastructure in the
AstroGrid-D test bed as well as in the PlanetLab framework which helped us to increase the
robustness of our system. We first described the core building blocks of training, feeding, and
running community-driven data grids. From that foundation we built load balancing techniques
such as workload-aware training, master-slave replication, and histogram evolution to shape
community-driven data grids along the changes of the communities themselves.

From our point of view, this thesis offers a starting point for collaborative researchers to
actively explore and design scalable data management solutions. In the following, we give a
few examples of the topics we consider interesting for future research.

In order to directly deal with the existing and envisioned scale of scientific data sets, we
used a training phase to create a partitioning scheme based on the major data characteristics
and predominant query patterns. This approach is viable as the majority of scientific data sets
does not change once published. We envision two aspects that can be further investigated in this
context: 1) Based on an initial histogram from the training phase, how can we locally adapt the
partitioning and replication scheme without creating a new histogram and thus increasing the
dynamics of the system, and 2) how can we achieve data and query load balancing if there is a
high update rate.

Data-driven applications become an increasingly important field in academia as well as in
industrial business applications. Extending the use of community-driven data grids to data
mining tasks beyond pure database queries could extend the number of use cases that benefit
from the scalable infrastructure. Instead of bare queries, data mining tasks would be directed
towards the data sites. Challenges within that area are identifying effective communication
patterns and finding good data distribution schemes.

Dealing with terabyte to petabyte-scale data sets has recently triggered interesting devel-
opments like provenance-aware database systems (Groffen et al., 2007), data-aware batch pro-

114 9. Outlook and Future Challenges

cessing (Wang et al., 2009), and adaptive physical design tools (Malik et al., 2008, 2009). It
would be interesting to deliver the synergies of our technique and their approach to scientific
researchers. Recent work (Raicu et al., 2009, 2008) on data-aware scheduling of scientific
workloads proposes interesting concepts for dynamic resource provisioning and adaptive data
caching. Furthermore, systems like GrayWulf (Simmhan et al., 2009; Szalay et al., 2009) show
interesting developments for designing petascale cluster environments.

Besides scalable data management, exploring the vast amounts of data visually becomes
increasingly important. Both interactive visualizations using grid middleware (Polak and Kran-
zlmüller, 2008) as well as asynchronous collaborative visualizations (Heer et al., 2009) show
interesting proposals in that area. Building virtual laboratories by integrating remote sensors
and instruments (Płóciennik et al., 2008) offers new perspectives for scientific cooperations.

Our work heavily profited from the fact that we had several use cases to derive actual re-
quirements from and that we had the opportunity to evaluate our ideas and prototypes within
a real deployment. How can other computer scientists experience a similar benefit like testing
their research and ideas with real data sets? From the astronomers’ perspective, however, the
researchers see themselves confronted with several data management solutions that hopefully
ease their day-to-day data-intensive research. So how can they eventually validate these sys-
tems? Motivated by the experience that standardized benchmarks such as the TPC series1 or
XMark2 have propelled the research in their area, we proposed a benchmark for astrophysical
work benches (Nieto-Santisteban et al., 2007). This benchmark is envisioned to provide as-
tronomers with a unified setup for testing their environments and to provide computer scientists
with a specific setup to test their systems against. There are additional notable efforts such as
SciDB3 (Stonebraker et al., 2009), which focus on delivering a new database model especially
aimed at scientific data management.

HiSbase, our prototype of community-driven data grids, allows e-science communities to
build up decentralized and cooperative information networks and offers a framework to de-
sign histogram data structures for accommodating specific data characteristics and dominant
query patterns. The histogram data structure defines a partitioning scheme to benefit from high
throughput via parallelism and high cache locality and is also used as routing index for in-
creased flexibility. Given the enormous variety of use cases and applications it is unlikely to
find a single best solution. Working closely with the actual scientists is an effort that not only
fosters great inter-disciplinary collaborations. Furthermore, addressing their challenges allows
us to shape the data management for future e-science communities.

1http://www.tpc.org/
2http://monetdb.cwi.nl/xml/
3http://scidb.org/

http://www.tpc.org/
http://monetdb.cwi.nl/xml/
http://scidb.org/

115

APPENDIX A

Example Execution of the Minimum Latency Path
Algorithm

In this section we will execute Algorithm 5.1 presented in Section 5.3 (page 53) on the example
graph G∗ depicted in Figure A.1. For the sake of simplicity, edges are labeled with integer
values instead of real latency values. In this scenario, the node labeled s denotes the source.
Furthermore, let v1, v2, v4, and v5 be data grid nodes or transit nodes. Assuming that node v3 is
a data grid node, we send a packet from s to v3. In order to find a minimum latency path from s
to v3 (Figure A.2), we compute all minimum latency paths from s by executing the algorithm as
shown in Figure A.3. As latency L(v3) is 5, we know that the minimum latency path from s to
v3 has a latency of 5. A depth-first search on the completely annotated graph G∗ (Figure A.3(f))
yields the path that offers the lowest possible latency between s and v3.

.

.

. ...v1v2

...sv3 .

. ...v4v5

.0

.∞ .∞

.∞

.∞ .∞

.4

.1

.5

.3

.8

.3

Figure A.1: Example graph G∗ with latency of
non-source nodes set to ∞

.

.

. ...v1v2

...sv3 .

.

.0

.4 .5

.5
.4

.5

.3

Figure A.2: Minimum latency path between
node s and node v3

116 Appendix A. Example Execution of the Minimum Latency Path Algorithm

.

.

. ...v1v2

...sv3 .

. ...v4v5

.0

.4 .∞

.∞

.1 .∞

.4

.1

.5

.3

.8

.3
(a) Updating latency for neighbors of s

.

.

. ...v1v2

...sv3 .

. ...v4v5

.0

.4 .∞

.8

.1 .3

.4

.1

.5

.3

.8

.3
(b) Updating latency for neighbors of v4

.

.

. ...v1v2

...sv3 .

. ...v4v5

.0

.4 .∞

.8

.1 .3

.4

.1

.5

.3

.8

.3
(c) Adding v5 to S, but no labels are updated

.

.

. ...v1v2

...sv3 .

. ...v4v5

.0

.4 .5

.8

.1 .3

.4

.1

.5

.3

.8

.3
(d) Updating latency for neighbors of v1

.

.

. ...v1v2

...sv3 .

. ...v4v5

.0

.4 .5

.5

.1 .3

.4

.1

.5

.3

.8

.3
(e) Updating latency for neighbors of v2

.

.

. ...v1v2

...sv3 .

. ...v4v5

.0

.4 .5

.5

.1 .3

.4

.1

.5

.3

.8

.3
(f) Adding v3 to set S and the algorithm termi-

nates as N(G,S)\S = /0

Figure A.3: Example execution of Algorithm 5.1 on G∗ depicted in Figure A.1 (gray nodes are
in S)

117

Bibliography

ABDELGUERFI, M. AND WONG, K.-F.: Parallel Database Techniques. Wiley-IEEE Computer
Society Press, 1998, ISBN 978-0-8186-8398-5.

ABERER, K., CUDRÉ-MAUROUX, P., DATTA, A., DESPOTOVIC, Z., HAUSWIRTH, M.,
PUNCEVA, M., AND SCHMIDT, R.: P-Grid: a self-organizing structured P2P system. SIG-
MOD Record, 32(3):29–33, 2003.

ALLOCK, W., BRESNAHAN, J., KETTIMUTHU, R., LINK, M., DUMITRESCU, C., RAICU,
I., AND FOSTER, I.: The Globus Striped GridFTP Framework and Server. In: Proc. of the
ACM/IEEE SC Conf., Seattle, WA, USA, November 2005.

ALY, M., MORSILLO, N., CHRYSANTHIS, P. K., AND PRUHS, K.: Zone Sharing: A Hot-
Spots Decomposition Scheme for Data-Centric Storage in Sensor Networks. In: Proc. of the
Intl. Workshop on Data Management for Sensor Networks, pp. 21–26, Trondheim, Norway,
August 2005.

ALY, M., PRUHS, K., AND CHRYSANTHIS, P. K.: KDDCS: A Load-Balanced In-Network
Data-Centric Storage Scheme for Sensor Networks. In: Proc. of the ACM Intl. Conf. on
Information and Knowledge Management, pp. 317–326, Arlington, VA, USA, November
2006.

ANTONIOLETTI, M., ATKINSON, M., BAXTER, R., BORLEY, A., HONG, N. C., COLLINS,
B., HARDMAN, N., HUME, A., KNOX, A., JACKSON, M., KRAUSE, A., LAWS, S.,
MAGOWAN, J., PATON, N., PEARSON, D., SUGDEN, T., WATSON, P., AND WESTHEAD,
M.: The design and implementation of Grid database services in OGSA-DAI. Concurrency
and Computation: Practice and Experience, 17(2-4):357–376, 2005.

ANTONIOLETTI, M., ATKINSON, M., KRAUSE, A., LAWS, S., MALAIKA, S., PATON,
N. W., PEARSON, D., AND RICCARDI, G.: Web Services Data Access and Integration -
The Core (WS-DAI) Specification, Version 1.0. http://www.ogf.org/documents/GFD.74.pdf,
July 2006.

http://www.ogf.org/documents/GFD.74.pdf

118 Bibliography

ASANO, T., RANJAN, D., ROOS, T., WELZL, E., AND WIDMAYER, P.: Space-filling curves
and their use in the design of geometric data structures. Theoretical Computer Science,
181(1):3–15, July 1997.

ASPNES, J., KIRSCH, J., AND KRISHNAMURTHY, A.: Load Balancing and Locality in Range-
Queriable Data Structures. In: Proc. of ACM Symposium on Principles of Distributed Com-
puting, pp. 115–124, St. John’s, Newfoundland, Canada, July 2004.

ASPNES, J. AND SHAH, G.: Skip Graphs. In: Proc. of the ACM/SIAM Symposium on Descrete
Algorithms, pp. 384–393, Baltimore, MD, USA, January 2003.

AWERBUCH, B. AND LEIGHTON, T.: A Simple Local-Control Approximation Algorithm
for Multicommodity Flow. In: Proc. of the Annual Symposium on Foundations of Com-
puter Science, pp. 459–468, Palo Alto, CA, USA, November 1993, URL http://doi.
ieeecomputersociety.org/10.1109/SFCS.1993.366841.

BANAEI-KASHANI, F. AND SHAHABI, C.: SWAM: A Family of Access Methods for
Similarity-Search in Peer-to-Peer Data Networks. In: Proc. of the ACM Intl. Conf. on In-
formation and Knowledge Management, pp. 304–313, Washington, DC, USA, November
2004.

BEAUMONT, O., KERMARREC, A.-M., MARCHAL, L., AND RIVIÈRE, É.: VoroNet: A scal-
able object network based on Voronoi tessellations. In: Proc. of the Intl. Parallel and Dis-
tributed Processing Symposium, pp. 1–10, Long Beach, CA, USA, March 2007.

BRAUMANDL, R., KEMPER, A., AND KOSSMANN, D.: Quality of Service in an Information
Economy. ACM Trans. on Internet Technology, 3(4):291–333, November 2003.

BUNEMAN, P. AND TAN, W. C.: Provenance in Databases. In: Proc. of the ACM SIGMOD
Intl. Conf. on Management of Data, pp. 1171–1173, Beijing, China, June 2007.

CAI, M., FRANK, M., CHEN, J., AND SZEKELY, P.: MAAN: A Multi-Attribute Addressable
Network for Grid Information Services. Journal of Grid Computing, 2(1):3–14, March 2004.

CARLSON, A., BÖHRINGER, H., SCHOLL, T., AND VOGES, W.: Finding Galaxy Clusters
using Grid Computing Technology. In: Proc. of the IEEE Intl. Conf. on e-Science and Grid
Computing (demo), Bangalore, India, December 2007.

CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., AND ROWSTRON, A.: Scribe: A large-
scale and decentralized application-level multicast infrastructure. IEEE Journal on Selected
Areas in Communications, 20(8):100–110, 2002.

COHEN, B.: Incentives Build Robustness in BitTorrent. In: Proc. of the Workshop on Eco-
nomics of Peer-to-Peer Systems, Berkeley, CA, USA, June 2003.

COOPER, B. F., RAMAKRISHNAN, R., SRIVASTAVA, U., SILBERSTEIN, A., BOHANNON, P.,
JACOBSEN, H.-A., PUZ, N., WEAVER, D., AND YERNENI, R.: PNUTS: Yahoo!’s Hosted
Data Serving Platform. Proc. of the VLDB Endowment, 1(2):1277–1288, 2008.

CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C.: Introduction to algo-
rithms. MIT Press, Cambridge, MA, USA, second edition, 2001, ISBN 0-262-03293-7.

http://doi.ieeecomputersociety.org/10.1109/SFCS.1993.366841
http://doi.ieeecomputersociety.org/10.1109/SFCS.1993.366841

Bibliography 119

CRAINICEANU, A., LINGA, P., MACHANAVAJJHALA, A., GEHRKE, J., AND SHANMUGA-
SUNDARAM, J.: P-Ring: An Efficient and Robust P2P Range Index Structure. In: Proc. of
the ACM SIGMOD Intl. Conf. on Management of Data, pp. 223–234, Beijing, China, June
2007.

CSABAI, I., TRENCSÉNI, M., HERCZEGH, G., DOBOS, L., JÓZSA, P., PURGER, N., BU-
DAVÁRI, T., AND SZALAY, A.: Spatial Indexing of Large Multidimensional Databases. In:
Proc. of the Conference on Innovative Data Systems Research, pp. 207–218, Asilomar, CA,
USA, January 2007.

DABEK, F., ZHAO, B., DRUSCHEL, P., KUBIATOWICZ, J., AND STOICA, I.: Towards a Com-
mon API for Structured Peer-to-Peer Overlays. In: International Workshop on Peer-to-Peer
Systems (IPTPS), LNCS, vol. 2, 2003.

DATTA, A., HAUSWIRTH, M., JOHN, R., SCHMIDT, R., AND ABERER, K.: Range Queries in
Trie-Structured Overlays. In: Proc. of the IEEE Intl. Conf. on Peer-to-Peer Computing, pp.
57–66, Konstanz, Germany, August 2005.

DAVIDSON, S. B., BOULAKIA, S. C., EYAL, A., LUDÄSCHER, B., MCPHILLIPS, T. M.,
BOWERS, S., ANAND, M. K., AND FREIRE, J.: Provenance in Scientific Workflow Systems.
IEEE Data Engineering Bulletin, 30(4):44–50, 2007.

DEWITT, D. J. AND GRAY, J.: Parallel Database Systems: The Future of High Performance
Database Systems. Communications of the ACM, 35(6):85–98, 1992.

DU MOUZA, C., LITWIN, W., AND RIGAUX, P.: SD-Rtree: A Scalable Distributed Rtree. In:
Proc. of the Intl. Conf. on Data Engineering, pp. 296–305, Istanbul, Turkey, April 2007.

DU MOUZA, C., LITWIN, W., AND RIGAUX, P.: Large-scale indexing of spatial data in dis-
tributed repositories: the SD-Rtree. VLDB Journal, 2009, doi: 10.1007/s00778-009-0135-4.

ENKE, H., STEINMETZ, M., RADKE, T., REISER, A., RÖBLITZ, T., AND HÖGQVIST, M.:
AstroGrid-D: Enhancing Astronomic Science with Grid Technology. In: Proc. of the German
e-Science Conference, Baden-Baden, Germany, May 2007.

EVEN, S., ITAI, A., AND SHAMIR, A.: On the complexity of time table and
multi-commodity flow problems. In: Proc. of the Annual Symposium on Foun-
dations of Computer Science, pp. 184–193, Berkeley, CA, USA, October 1975,
URL http://ieeexplore.ieee.org/search/srchabstract.jsp?arnumber=4567876&isnumber=
4567845&punumber=4567844&k2dockey=4567876@ieeecnfs.

FINKEL, R. A. AND BENTLEY, J. L.: Quad Trees: A Data Structure for Retrieval on Composite
Keys. Acta Informatica, 4:1–9, March 1974.

FOSTER, I. AND IAMNITCHI, A.: On Death, Taxes, and the Convergence of Peer-to-Peer and
Grid Computing. In: International Workshop on Peer-to-Peer Systems (IPTPS), LNCS, vol. 2,
2003.

FRANKLIN, M., HALEVY, A., AND MAIER, D.: From Databases to Dataspaces: A New
Abstraction for Information Management. SIGMOD Record, 34(4):27–33, 2005.

http://ieeexplore.ieee.org/search/srchabstract.jsp?arnumber=4567876&isnumber=4567845&punumber=4567844&k2dockey=4567876@ieeecnfs
http://ieeexplore.ieee.org/search/srchabstract.jsp?arnumber=4567876&isnumber=4567845&punumber=4567844&k2dockey=4567876@ieeecnfs

120 Bibliography

GAEDE, V. AND GÜNTHER, O.: Multidimensional Access Methods. ACM Computing Surveys,
30(2):170–231, June 1998.

GANESAN, P., BAWA, M., AND GARCIA-MOLINA, H.: Online Balancing of Range-
Partitioned Data with Applications to Peer-to-Peer Systems. In: Proc. of the Intl. Conf. on
Very Large Data Bases, pp. 444–455, Toronto, Canada, September 2004a.

GANESAN, P., YANG, B., AND GARCIA-MOLINA, H.: One Torus to Rule them All: Multi-
dimensional Queries in P2P Systems. In: Proc. of the Intl. Workshop on the Web and
Databases, pp. 19–24, Maison de la Chimie, Paris, France, June 2004b.

GARGANTINI, I.: An Effective Way to Represent Quadtrees. Communications of the ACM,
25(12):905–910, December 1982.

GIETZ, P., GRIMM, C., GRÖPER, R., MAKEDANZ, S., PFEIFFENBERGER, H., SCHIF-
FERS, M., AND ZIEGLER, W.: A concept for attribute-based authorization on D-
Grid resources. Future Generation Computer Systems, 25(3):275–280, March 2009, doi:
10.1016/j.future.2008.05.008.

GRAY, J., SANTISTEBAN, M. A. N., AND SZALAY, A. S.: The Zones Algorithm for Finding
Points-Near-Point or Cross-Matching Spatial Datasets. Technical Report MSR-TR-2006-52,
Microsoft Research, Microsoft Cooperation, Redmond, WA, USA, April 2006.

GROFFEN, F., KERSTEN, M. L., AND MANEGOLD, S.: Armada: a Reference Model for an
Evolving Database System. In: Proc. of the GI Conference on Database Systems for Business,
Technology, and Web, pp. 417–435, Aachen, Germany, March 2007.

GU, Y., GROSSMAN, R. L., SZALAY, A., AND THAKAR, A.: Distributing the Sloan Digital
Sky Survey Using UDT and Sector. In: Proc. of the IEEE Intl. Conf. on e-Science and Grid
Computing, p. 56, Amsterdam, The Netherlands, December 2006.

HAVERKORT, H. J. AND VAN WALDERVEEN, F.: Locality and Bounding-Box Quality of Two-
Dimensional Space-Filling Curves. Computing Research Repository, abs/0806.4787, 2008.

HEER, J., VIÉGAS, F. B., AND WATTENBERG, M.: Voyagers and Voyeurs: Supporting Asyn-
chronous Collaborative Visualization. Communications of the ACM, 52(1):87–97, January
2009.

HILBERT, D.: Über die stetige Abbildung einer Linie auf ein Flächenstück. Math. Ann.,
38:459–460, 1891.

HIRONAKA, K., SAITO, H., AND TAURA, K.: High Performance Wide-area Overlay using
Deadlock-free Routing. In: Intl. Symposium on High Performance Distributed Computing,
pp. 81–90, Munich, Germany, June 2009.

HUEBSCH, R., HELLERSTEIN, J. M., LANHAM, N., LOO, B. T., SHENKER, S., AND STO-
ICA, I.: Querying the Internet with PIER. In: Proc. of the Intl. Conf. on Very Large Data
Bases, pp. 321–332, Berlin, Germany, September 2003.

IVANOVA, M., NES, N., GONCALVES, R., AND KERSTEN, M.: MonetDB/SQL Meets Sky-
Server: the Challenges of a Scientific Database. In: Proc. of the Intl. Conf. on Scientific and
Statistical Database Management, p. 13, Banff, Canada, July 2007.

Bibliography 121

JAGADISH, H. V., OOI, B. C., AND VU, Q. H.: BATON: a balanced tree structure for peer-
to-peer networks. In: Proc. of the Intl. Conf. on Very Large Data Bases, pp. 661–672, Trond-
heim, Norway, August 2005.

KINDERMANN, S., STOCKHAUSE, M., AND RONNEBERGER, K.: Intelligent Data Network-
ing for the Earth System Science Community. In: Proc. of the German e-Science Conference,
Baden-Baden, Germany, May 2007.

KIRCHLER, W., SCHIFFERS, M., AND KRANZLMÜLLER, D.: Harmonizing the Management
of Virtual Organizations Despite Heterogeneous Grid Middleware – Assessment of Two Dif-
ferent Approaches. In: Proc. of the Cracow Grid Workshop, pp. 245–253, Cracow, PL, Octo-
ber 2008.

KOSSMANN, D.: The State of the Art in Distributed Query Processing. ACM Computing Sur-
veys, 32(4):422–469, December 2000.

KOTTHA, S., ABHINAV, K., MÜLLER-PFEFFERKORN, R., AND MIX, H.: Accessing Bio-
Databases with OGSA-DAI – A Performance Analysis. In: Proc. of the Intl. Workshop on
Distributed, High-Performance and Grid Computing in Computational Biology, Eilat, Israel,
2006.

KREFTING, D., BART, J., BERONOV, K., DZHIMOVA, O., FALKNER, J., HARTUNG, M.,
HOHEISEL, A., KNOCH, T. A., LINGNER, T., MOHAMMED, Y., PETER, K., RAHM,
E., SAX, U., SOMMERFELD, D., STEINKE, T., TOLXDORFF, T., VOSSBERG, M.,
VIEZENS, F., AND WEISBECKER, A.: MediGRID: Towards a user friendly secured grid
infrastructure. Future Generation Computer Systems, 25(3):326–336, March 2009, doi:
10.1016/j.future.2008.05.005.

KROMPASS, S., AULBACH, S., AND KEMPER, A.: Data Staging for OLAP- and OLTP-
Applications on RFID Data. In: Proc. of the GI Conference on Database Systems for Busi-
ness, Technology, and Web, pp. 542–561, Aachen, Germany, March 2007.

KUNTSCHKE, R., SCHOLL, T., HUBER, S., KEMPER, A., REISER, A., ADORF, H.-M.,
LEMSON, G., AND VOGES, W.: Grid-based Data Stream Processing in e-Science. In: Proc.
of the IEEE Intl. Conf. on e-Science and Grid Computing, p. 30, Amsterdam, The Nether-
lands, December 2006.

LEDLIE, J., SHNEIDMAN, J., SELTZER, M., AND HUTH, J.: Scooped, Again. In: Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS), LNCS, vol. 2, 2003.

MALIK, T. AND BURNS, R.: Workload-Aware Histograms for Remote Applications. In: Data
Warehousing and Knowledge Discovery, pp. 402–412, Turin, Italy, September 2008.

MALIK, T., BURNS, R., AND CHAUDHARY, A.: Bypass Caching: Making Scientific
Databases Good Network Citizens. In: Proc. of the Intl. Conf. on Data Engineering, pp.
94–105, Tokyo, Japan, April 2005.

MALIK, T., BURNS, R., CHAWLA, N. V., AND SZALAY, A.: Estimating Query Result Sizes
for Proxy Caching in Scientific Ddatabase Federations. In: Proc. of the ACM/IEEE SC Conf.,
p. 36, Tampa, FL, USA, November 2006.

122 Bibliography

MALIK, T., WANG, X., BURNS, R., DASH, D., AND AILAMAKI, A.: Automated Physical
Design in Database Caches. In: Proc. of the Intl. Conf. on Data Engineering Workshops, pp.
27–34, Cancun, Mexico, April 2008.

MALIK, T., WANG, X., DASH, D., CHAUDHARY, A., AILAMAKI, A., AND BURNS, R.:
Adaptive Physical Design for Curated Archives. In: Proc. of the Intl. Conf. on Scientific and
Statistical Database Management, pp. 148–166, New Orleans, LA, USA, June 2009.

NAUMANN, F., BILKE, A., BLEIHOLDER, J., AND WEIS, M.: Data Fusion in Three Steps:
Resolving Schema, Tuple, and Value Inconsistencies. IEEE Data Engineering Bulletin,
29(2):21–31, 2006.

NIETO-SANTISTEBAN, M. A., GRAY, J., SZALAY, A. S., ANNIS, J., THAKAR, A. R., AND

O’MULLANE, W. J.: When Database Systems Meet the Grid. In: Proc. of the Conference
on Innovative Data Systems Research, pp. 154–161, Asilomar, CA, USA, January 2005.

NIETO-SANTISTEBAN, M. A., SCHOLL, T., KEMPER, A., AND SZALAY, A.: 20 Spatial
Queries for an Astronomer’s Bench(mark). In: Proc. of the Astronomical Data Analysis Soft-
ware & Systems Conference, London, UK, September 2007.

O’MULLANE, W., LI, N., NIETO-SANTISTEBAN, M., SZALAY, A., THAKAR, A., AND

GRAY, J.: Batch is back: CasJobs, serving multi-TB data on the Web. In: Proc. of the Intl.
Conf. on Web Services, pp. 33–40, Orlando, FL, USA, July 2005.

ORENSTEIN, J. AND MERRETT, T.: A Class of Data Structures for Associative Searching. In:
Proc. of the ACM SIGACT-SIGMOD Symp. on Principles of Database Sys., pp. 181–190,
Waterloo, Ontario, Canada, April 1984.

ÖZSU, M. T. AND VALDURIEZ, P.: Principles of Distributed Database Systems. Prentice-Hall,
1999.

PAPADOMANOLAKIS, S. AND AILAMAKI, A.: AutoPart: Automating Schema Design for
Large Scientific Databases Using Data Partitioning. In: Proc. of the Intl. Conf. on Scientific
and Statistical Database Management, pp. 383–392, Stantorini Island, Greece, June 2004.

PENTARIS, F. AND IOANNIDIS, Y.: Query Optimization in distributed Networks of Au-
tonomous Database Systems. ACM Trans. on Database Systems, 31(2):537–583, June 2006.

PITOURA, T., NTARMOS, N., AND TRIANTAFILLOU, P.: Replication, Load Balancing, and
Efficient Range Query Processing in DHT Data Networks. In: Proc. of the Intl. Conf. on
Extending Database Technology, pp. 131–148, Munich, Germany, March 2006.

PLANTIKOW, S., PETER, K., HÖGQVIST, M., GRIMME, C., AND PAPASPYROU, A.: General-
izing the data management of three community grids. Future Generation Computer Systems,
25(3):281–289, March 2009, doi: 10.1016/j.future.2008.05.001.

PŁÓCIENNIK, M., ADAMI, D., BARCELÓ, Á. D. G., COZ, I. C., DAVOLI, F., GAMBA, P.,
KELLER, R., KRANZLMÜLLER, D., LABOTIS, I., MEYER, N., MONTEOLIVA, A., PRICA,
M., PUGLIESE, R., SALON, S., SCHIFFERS, M., WATZL, J., ZAFEIROPOULOS, A., AND

DE LUCAS, J. M.: DORII – Deployment of Remote Instrumentation Infrastructure. In: Proc.
of the Cracow Grid Workshop, pp. 78–85, Cracow, PL, October 2008.

Bibliography 123

POLAK, M. AND KRANZLMÜLLER, D.: Interactive videostreaming visualization
on grids. Future Generation Computer Systems, 24(1):39–45, January 2008, doi:
10.1016/j.future.2007.03.006.

POOSALA, V., IOANNIDIS, Y. E., HAAS, P. J., AND SHEKITA, E. J.: Improved Histograms
for Selectivity Estimation of Range Predicates. In: Proc. of the ACM SIGMOD Intl. Conf. on
Management of Data, pp. 294–305, Montreal, Quebec, Canada, June 1996.

RAHM, E. AND BERNSTEIN, P. A.: A survey of approaches to automatic schema matching.
VLDB Journal, 10(4):334–350, 2001.

RAICU, I., FOSTER, I., SZALAY, A., AND TURCU, G.: AstroPortal: A Science Gateway for
Large-scale Astronomy Data Analysis. In: Proc. of the TeraGrid Conf., June 2006.

RAICU, I., FOSTER, I. T., ZHAO, Y., LITTLE, P., MORETTI, C. M., CHAUDHARY, A., AND

THAIN, D.: The Quest for Scalable Support of Data-Intensive Workloads in Distributed
Systems. In: Intl. Symposium on High Performance Distributed Computing, pp. 207–216,
Munich, Germany, June 2009.

RAICU, I., ZHAO, Y., FOSTER, I., AND SZALAY, A.: Accelerating Large-Scale Data Explo-
ration through Data Diffusion. In: Proc. of the Intl. Workshop on Data-Aware Distributed
Computing, pp. 9–18, Boston, MA, USA, June 2008.

RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SHENKER, S.: A Scalable
Content-Addressable Network. In: Proc. of the ACM SIGCOMM Intl. Conf. on Data Com-
munication, pp. 161–172, 2001.

REHN, J., BARRASS, T., BONACORSI, D., HERNANDEZ, J., SEMENIOUK, I., TUURA, L.,
AND WU, Y.: PhEDEx high-throughput data transfer management system. In: Proc. of the
Intl. Conf. on Computing in High Energy and Nuclear Physics, Mumbai, India, February
2006.

ROWSTRON, A. I. T. AND DRUSCHEL, P.: Pastry: Scalable, Decentralized Object Location
and Routing for Large-Scale Peer-to-Peer Systems. In: Proc. of the IFIP/ACM Intl. Conf. on
Distributed Systems Platforms (Middleware), pp. 329–350, Heidelberg, Germany, November
2001.

SALLES, M. A. V., DITTRICH, J.-P., KARAKASHIAN, S. K., GIRARD, O. R., AND BLUN-
SCHI, L.: iTrails: Pay-as-you-go Information Integration in Dataspaces. In: Proc. of the Intl.
Conf. on Very Large Data Bases, pp. 663–674, Vienna, Austria, September 2007.

SAMET, H.: The Design and Analysis of Spatial Data Structures. Addison Wesley, 1990, ISBN
0-201-50255-0.

SAMET, H.: Hierarchical Representations of Collections of Small Rectangles. ACM Computing
Surveys, 20(4):271–309, December 1998.

SAMET, H.: Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann,
2006, ISBN 0-12-369446-9.

124 Bibliography

SCHOLL, T., BAUER, B., GUFLER, B., KUNTSCHKE, R., REISER, A., AND KEMPER, A.:
Scalable community-driven data sharing in e-science grids. Future Generation Computer
Systems, 25(3):290–300, March 2009a, doi: 10.1016/j.future.2008.05.006.

SCHOLL, T., BAUER, B., GUFLER, B., KUNTSCHKE, R., WEBER, D., REISER, A., AND

KEMPER, A.: HiSbase: Histogram-based P2P Main Memory Data Management. In: Proc. of
the Intl. Conf. on Very Large Data Bases (demo), pp. 1394–1397, Vienna, Austria, September
2007a.

SCHOLL, T., BAUER, B., KUNTSCHKE, R., WEBER, D., REISER, A., AND KEMPER, A.:
HiSbase: Informationsfusion in P2P Netzwerken. In: Proc. of the GI Conference on Database
Systems for Business, Technology, and Web (demo), pp. 602–605, Aachen, Germany, March
2007b.

SCHOLL, T., BAUER, B., MÜLLER, J., GUFLER, B., REISER, A., AND KEMPER, A.:
Workload-Aware Data Partitioning in Community-Driven Data Grids. In: Proc. of the Intl.
Conf. on Extending Database Technology, pp. 36–47, Saint-Petersburg, Russia, March
2009b.

SCHOLL, T., GUFLER, B., MÜLLER, J., REISER, A., AND KEMPER, A.: P2P-
Datenmanagement für e-Science-Grids. Datenbank-Spektrum, 8(26):26–33, September
2008.

SCHOLL, T. AND KEMPER, A.: Community-Driven Data Grids. Proc. of the VLDB Endow-
ment, 1(2):1672–1677, 2008.

SCHOLL, T., KUNTSCHKE, R., REISER, A., AND KEMPER, A.: Community Training: Parti-
tioning Schemes in Good Shape for Federated Data Grids. In: Proc. of the IEEE Intl. Conf.
on e-Science and Grid Computing, pp. 195–203, Bangalore, India, December 2007c.

SCHOLL, T., REISER, A., AND KEMPER, A.: Collaborative Query Coordination in
Community-Driven Data Grids. In: Intl. Symposium on High Performance Distributed Com-
puting, pp. 197–206, Munich, Germany, June 2009c.

SCHÜCKER, P., BÖHRINGER, H., AND VOGES, W.: Detection of X-ray Clusters of Galaxies
by Matching RASS Photons and SDSS Galaxies within GAVO. Astronomy & Astrophysics,
420:61–74, 2004.

SHU, Y., OOI, B. C., TAN, K.-L., AND ZHOU, A.: Supporting Multi-dimensional Range
Queries in Peer-to-Peer Systems. In: Proc. of the IEEE Intl. Conf. on Peer-to-Peer Comput-
ing, pp. 173–180, Konstanz, Germany, August 2005.

SILBERSTEIN, A., COOPER, B. F., SRIVASTAVA, U., VEE, E., YERNENI, R., AND RA-
MAKRISHNAN, R.: Efficient Bulk Insertion into a Distributed Ordered Table. In: Proc. of the
ACM SIGMOD Intl. Conf. on Management of Data, pp. 765–778, Vancouver, Canada, June
2008.

SIMMHAN, Y., BARGA, R., VAN INGEN, C., NIETO-SANTISTEBAN, M., DOBOS, L., LI,
N., SHIPWAY, M., SZALAY, A. S., WERNER, S., AND HEASLEY, J.: GrayWulf: Scalable
Software Architecture for Data Intensive Computing. In: Hawaii Intl. Conference on System
Sciences, Waikoloa, HI, USA, January 2009.

Bibliography 125

SINGH, V., GRAY, J., THAKAR, A., SZALAY, A., RADDICK, J., BOROSKI, B., LEBEDEVA,
S., AND YANNY, B.: SkyServer Traffic Report – The First Five Years. Technical Report MS-
TR-2006-190, Microsoft Research, Microsoft Cooperation, Redmond, WA, USA, December
2006.

SPRINGEL, V., WHITE, S. D. M., JENKINS, A., FRENK, C. S., YOSHIDA, N., GAO, L.,
NAVARRO, J., THACKER, R., CROTON, D., HELLY, J., PEACOCK, J. A., COLE, S.,
THOMAS, P., COUCHMAN, H., EVRARD, A., COLBERG, J., AND PEARCE, F.: Simulating
the joint evolution of quasars, galaxies and their large-scale distribution. Nature, 435:629–
636, June 2005.

STOICA, I., MORRIS, R., KARGER, D. R., KAASHOEK, M. F., AND BALAKRISHNAN, H.:
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. In: Proc. of the
ACM SIGCOMM Intl. Conf. on Data Communication, pp. 149–160, San Diego, CA, USA,
August 2001.

STONEBRAKER, M., BECLA, J., DEWITT, D., LIM, K.-T., MAIER, D., RATZESBERGER,
O., AND ZDONIK, S.: Requirements for Science Data Bases and SciDB. In: Proc. of the
Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 2009.

SZALAY, A. S., BELL, G., VANDENBERG, J., WONDERS, A., BURNS, R., FAY, D.,
HEASLEY, J., HEY, T., NIETO-SANTISTEBAN, M., THAKAR, A., VAN INGEN, C., AND

WILTON, R.: GrayWulf: Scalable Clustered Architecture for Data Intensive Computing. In:
Hawaii Intl. Conference on System Sciences, Waikoloa, HI, USA, January 2009.

TANIN, E., HARWOOD, A., AND SAMET, H.: Using a distributed quadtree index in peer-to-
peer networks. VLDB Journal, 16:165–178, February 2007.

VENUGOPAL, S., BUYYA, R., AND RAMAMOHANARAO, K.: A Taxonomy of Data Grids for
Distributed Data Sharing, Management, and Processing. ACM Computing Surveys, 38(1):3,
March 2006.

WANG, X., BURNS, R., AND MALIK, T.: LifeRaft: Data-Driven, Batch Processing for the
Exploration of Scientific Databases. In: Proc. of the Conference on Innovative Data Systems
Research, Asilomar, CA, USA, January 2009.

WANG, X., BURNS, R., AND TERZIS, A.: Throughput-Optimized, Global-Scale Join-
Processing in Scientific Federations. In: Intl. Workshop on Networking Meets Databases,
Cambridge, UK, April 2007.

WITTEN, I. AND FRANK, E.: Data Mining. Morgan Kauffmann, second edition, 2005, ISBN
0-12-088407-0.

YILDIRIM, E., YIN, D., AND KOSAR, T.: Balancing TCP Buffer vs Parallel Streams in Ap-
plication Level Throughput Optimization. In: Proc. of the Intl. Workshop on Data-Aware
Distributed Computing, pp. 21–30, Munich, Germany, June 2008.

ZHAO, B., HUANG, L., STRIBLING, J., RHEA, S., JOSEPH, A., AND KUBIATOWICZ, J.:
Tapestry: a resilient global-scale overlay for service deployment. IEEE Journal on Selected
Areas in Communications, 22(1):41–53, January 2004.

126 Bibliography

ZIMMERMANN, R., KU, W.-S., WANG, H., ZAND, A., AND BARDET, J.-P.: A Distributed
Geotechnical Information Management and Exchange Architecture. IEEE Internet Comput-
ing, 10(5):26–33, 2006.

	Title Page
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Application Setting
	1.3 Our Approach and Contributions
	1.4 Outline

	2 HiSbase
	2.1 Locality Preservation
	2.1.1 Data Skew
	2.1.2 Histogram Data Structures

	2.2 Architectural Design
	2.2.1 Training Phase (Histogram Build-Up)
	2.2.2 HiSbase Network
	2.2.3 Data Distribution (Feeding)
	2.2.4 Query Processing
	2.2.5 Query Load Balancing
	2.2.6 Evolving the Histogram
	2.2.7 HiSbase Evaluation

	2.3 Related Work
	2.3.1 Distributed and Parallel Databases
	2.3.2 P2P architectures
	2.3.3 Scientific and Grid-based Data Management

	3 Community Training: Selecting Partitioning Schemes
	3.1 Training Phase
	3.2 Data Structures
	3.3 Evaluation of Partitioning Scheme Properties
	3.3.1 Duration
	3.3.2 Average Data Population
	3.3.3 Variation in Data Distribution
	3.3.4 Empty Partitions
	3.3.5 Size of the Training Set
	3.3.6 Baseline Comparison
	3.3.7 Discussion

	3.4 Related Work
	3.5 Summary

	4 Community Placement: Better Serving Locality with Space Filling Curves
	4.1 Random or Space Filling Curves
	4.2 Placement Evaluation
	4.2.1 Data Load Balancing
	4.2.2 Query Locality

	4.3 Summary and Future Work

	5 Feeding Community-Driven Data Grids
	5.1 Feeding Scenarios
	5.1.1 Initial Load
	5.1.2 New Node Arrival
	5.1.3 Planned Node Departure
	5.1.4 Unplanned Node Departure
	5.1.5 Replicating Data to Other Nodes

	5.2 Pull-based and Push-based Feeding Strategies
	5.2.1 Pull-based Feeding
	5.2.2 Push-based Feeding

	5.3 An Optimization Model for Feeding
	5.3.1 Network Snapshots
	5.3.2 A Model for Minimum Latency Paths
	5.3.3 A Model for Maximum Bandwidth Paths
	5.3.4 Combining Latency and Bandwidth
	5.3.5 Conclusions

	5.4 Optimization by Bulk Feeding
	5.4.1 Traffic Optimizations
	5.4.2 Chunk-based Feeding Strategies
	5.4.3 Optimizing Imports at Receiving Nodes

	5.5 Feeding Throughput Evaluation
	5.5.1 Initial Load Evaluation
	5.5.2 Replication Evaluation
	5.5.3 Discussion

	5.6 Related Work
	5.7 Summary and Future Work

	6 Running Community-Driven Data Grids
	6.1 Query Processing
	6.1.1 Data Access Patterns
	6.1.2 Query Coordination Strategies
	6.1.3 Evaluation of Query Coordination Strategies
	6.1.4 Summary and Future Work

	6.2 Throughput Measurements
	6.2.1 General Definitions
	6.2.2 Evaluations in a Local Area Network
	6.2.3 Evaluations with AstroGrid-D and PlanetLab Instances
	6.2.4 Discussion

	7 Workload-Aware Data Partitioning
	7.1 Load Balancing Techniques
	7.2 Region Weight Functions
	7.2.1 Point Weight
	7.2.2 Query Weight
	7.2.3 Combining Data and Query Weights
	7.2.4 Adding Query Extents
	7.2.5 Cost Analysis

	7.3 Evaluation
	7.3.1 Partitioning Scheme Properties
	7.3.2 Throughput Evaluation
	7.3.3 Summary

	7.4 Related Work
	7.5 Summary and Future Work

	8 Load Balancing at Runtime
	8.1 Short-term Load Balancing
	8.1.1 Replication Priority
	8.1.2 Monitoring Statistics
	8.1.3 Master-Slave Replication

	8.2 Long-term Load Balancing
	8.2.1 Partitioning Scheme Evolution
	8.2.2 Data Dissemination during Histogram Evolution

	8.3 Summary and Future Work

	9 Outlook and Future Challenges
	A Example Execution of the Minimum Latency Path Algorithm
	Bibliography

