AN ‘INTROSPECTIVE’ NETWORK THAT CAN LEARN TO RUN ITS OWN WEIGHT

CHANGE ALGORITHM

In Proc. of the Intl. Conf. on Artificial Neural Networks, Brighton, pages 191-195. IEE, 1993.

J. Schmidhuber

Technische Universitat Miinchen
Germany

Abstract. Usually weight changes in neural networks
are exclusively caused by some hard-wired learning al-
gorithm with many specific limitations. 1 show that
it is in principle possible to let the network Tun and
improve its own weight change algorithm (without sig-
nificant theoretical limits). I derive an initial gradient-
based supervised sequence learning algorithm for an ‘in-
trospective’ recurrent network that can ‘speak’ about its
own weight matriz in terms of activations. It uses spe-
cial subsets of its input and output units for observing
its own errors and for explicitly analyzing and manipu-
lating all of its own weights, including those weights re-
sponsible for analyzing and manipulating weights. The
result is the first ‘self-referential’ neural network with
explicit potential control over all adaptive parameters
governing its behavior.

INTRODUCTION

Usually weight changes in artificial neural networks are
exclusively caused by some fized hard-wired learning
algorithm with many specific limitations. In contrast,
humans can reflect about their own learning behavior
and modify it and tailor it to the needs of various types
of learning problems.

The thought experiment in this paper is intended to
show the theoretical possibility of ‘self-referential’ neu-
ral networks that can learn to run and improve their
own weight change algorithm. The first step is the
design of a general finite-size hard-wired ‘introspec-
tive’ architecture with access to performance evalua-
tions and with the potential to analyze and modify
its own weight matrix. The second step is the de-
sign of an initial learning algorithm that finds useful
self-manipulating algorithms (weight matrices) for the
architecture, where ‘usefulness’ is strictly defined by
performance evaluations provided by the environment.

The paper is structured as follows: Section 2 starts
with a general finite, ‘self-referential’ architecture in-
volving a sequence-processing recurrent neural-net (see
e.g. Robinson and Fallside [2], Williams and Zipser [§],
and Schmidhuber [3]) that can potentially implement
any computable function that maps input sequences
to output sequences the only limitations being un-
avoidable time and storage constraints imposed by the
architecture’s finiteness. These constraints can be ex-

tended by simply adding storage and/or allowing for
more processing time. The major novel aspect of the
system is its ‘self-referential’ capability. The network is
provided with special input units for explicitly observ-
ing performance evaluations (external error signals are
visible through these special input units). In addition,
it is provided with the basic tools for explicitly read-
ing and quickly changing all of its own adaptive com-
ponents (weights). This is achieved by (1) introduc-
ing an address for each connection of the network, (2)
providing the network with output units for (sequen-
tially) addressing all of its own connections (including
those connections responsible for addressing connec-
tions) by means of time-varying activation patterns,
(3) providing special input units whose activations be-
come the weights of connections currently addressed
by the network, and (4) providing special output units
whose time-varying activations serve to quickly change
the weights of connections addressed by the network.
It is possible to show that these unconventional fea-
tures allow the network (in principle) to compute any
computable function mapping algorithm components
(weights) and performance evaluations (e.g., error sig-
nals) to algorithm modifications (weight changes) the
only limitations again being unavoidable time and stor-
age constraints. This implies that algorithms running
on that architecture (in principle) can change not only
themselves but also the way they change themselves,
and the way they change the way they change them-
selves, etc., essentially without theoretical limits to
the sophistication (computational power) of the self-
modifying algorithms.

Connections are addressed, analyzed, and manipu-
lated with the help of differentiable functions of acti-
vation patterns across special output units. This al-
lows the derivation of an ezact gradient-based initial
weight change algorithm for ‘introspective’ supervised
sequence learning. The system starts out as tabula
rasa. The initial weight change procedure serves to find
improved weight change procedures it favors algo-
rithms (weight matrices) that make sensible use of the
‘introspective’ potential of the hard-wired architecture,
where ‘usefulness’ is solely defined by conventional per-
formance evaluations (the performance measure we use
is the sum of all error signals over all time steps of all
training sequences).

A disadvantage of the algorithm is its high computa-
tional complexity per time step which is independent

of the sequence length and equals O(nconnlognconn),
where n.onn is the number of connections. Another
disadvantage is the high number of local minima of the
unusually complex error surface. The purpose of this
paper, however, is not to come up with the most effi-
cient ‘introspective’ or ‘self-referential’ weight change
algorithm, but to show that such algorithms are possi-
ble at all.

THE ‘INTROSPECTIVE’ NETWORK

Throughout the remainder of this paper, to save in-
dices, I consider a single limited pre-specified time-
interval of discrete time-steps during which our net-
work interacts with its environment. An interaction
sequence actually may be the concatenation of many
‘conventional’ training sequences for conventional re-
current networks. This will (in theory) help our ‘self-
referential’ net to find regularities among solutions for
different tasks.

The network’s output vector at time ¢, o(t), is com-
puted from previous input vectors z(7), 7 < t, by a dis-
crete time recurrent network with n; input units and
n, non-input units. A subset of the non-input units,
the ‘normal’ output units, has a cardinality of n, < n,,.

zr is the k-th unit in the network. y; is the k-th
non-input unit in the network. zj; is the k-th ‘nor-
mal’ input unit in the network. oy, is the k-th ‘normal’
output unit. If 4 stands for a unit, then f, is its differ-
entiable activation function and u’s activation at time
t is denoted by u(t). If v(¢) stands for a vector, then
vg(t) is the k-th component of v(t).

Each input unit has a directed connection to each
non-input unit. Each non-input unit has a directed
connection to each non-input unit. There are (n; +
Ny)Ny = Meonn connections in the network. The con-
nection from unit j to unit ¢ is denoted by w;;. For
instance, one of the names of the connection from the
j-th ‘normal’ input unit to the the k-th ‘normal’ out-
put unit is wy, ;. w;;’s real-valued weight at time ¢ is
denoted by w;;(t). Before training, all weights w;;(1)
are randomly initialized.

The following features are needed to obtain ‘self-
reference’. Details of the network dynamics follow in
the next section.

1. The network receives performance information
through the eval units. The eval units are special input
units which are not ‘normal’ input units. ewal}, is the
k-th eval unit (of neyq; such units) in the network.

2. Each connection of the net gets an address. One
way of doing this is to introduce a binary address,
adr(w;j), for each connection w;;. This will help the
network to do computations concerning its own weights
in terms of activations, as will be seen later.

3. anay is the k-th aenalyzing unit (of nepn, =
ceil(loganconn) such units, where ceil(z) returns the
first integer > x). The analyzing units are special non-

input units which are not ‘normal’ output units. They
serve to indicate which connections the current algo-
rithm of the network (defined by the current weight
matrix plus the current activations) will access next
(see next section). A special input unit for reading
current weight values that is used in conjunction with
the analyzing units is called val.

The network may modify any of its weights. Some
non-input units that are not ‘normal’ output units or
analyzing units are called the modifying units. mod;,
is the k-th modifying unit (of nmeq = ceil(loganconn)
such units). The modifying units serve to address con-
nections to be modified. A special output unit for mod-
ifying weights (used in conjunction with the modifying
units, see next section) is called A. fa should allow
both positive and negative activations of A(t).

‘SELF-REFERENTIAL’
OBJECTIVE FUNCTION

DYNAMICS AND

I assume that the input sequence observed by the net-
work has length n¢jme = nsn, (where ng,n, € N) and
can be divided into ns equal-sized blocks of length n,
during which the input pattern z(¢) does not change.
This does not imply a loss of generality it just means
speeding up the network’s hardware such that each in-
put pattern is presented for n, time-steps before the
next pattern can be observed. This gives the archi-
tecture n, time-steps to do some sequential processing
(including immediate weight changes) before seeing a
new pattern of the input sequence.

In what follows, unquantized variables are assumed
to take on their mazximal range. The network dynamics
are specified as follows:

net,, (1) = 0,
Vi>1:
Yi(t) = fy. (nety, (),
VE>1: mety, () =Y wyu(t—-DIE-1), (1)
l

zp(t) «— environment,

The network can quickly read information about its
current weights into the special vwal input unit accord-
ing to

val(1) =0, Vt>1:

val(t +1) = Zg[llana(t) — adr(wi;)|*Jwi; (t), (2)

where | .. .|| denotes Euclidean length, and g is a dif-
ferentiable function emitting values between 0 and 1
that determines how close a connection address has to
be to the activations of the analyzing units in order
for its weight to contribute to val at that time. Such
a function g might have a narrow peak at 1 around
the origin and be zero (or nearly zero) everywhere else.
This essentially allows the network to pick out a sin-
gle connection at a time and obtain its current weight
value without receiving ‘cross-talk’ from other weights.

The network can quickly modify its current weights
using mod(t) and A(t) according to

Vi>1: ’wi]‘(t+1) =

= wiy(t) + A1) gl adr(wsy) — mod(®)[*). (3)

Again, if g has a narrow peak at 1 around the origin and
is zero (or nearly zero) everywhere else, the network
will be able to pick out a single connection at a time
and change its weight without affecting other weights.

Objective function and dynamics of the eval units.
As with typical supervised sequence-learning tasks, we
want to minimize

E'tl(n,m,),
where ,
Bol(r) = 3 B(r),
r=1
where .
E(t) = 3 %:(ev(llk(t +1))%,
where

evalp(1) =0, Vt>1:eval(t+1)=

=dy(t) — or(t) if di(t) exists, and 0 else. (4)

Here di(t) may be a desired target value for the k-th
output unit at time step .

INITIAL LEARNING ALGORITHM

The following algorithm' for minimizing E*'* is

partly inspired by (but more complex than) conven-
tional recurrent network algorithms (e.g. Robinson and
Fallside [2]).

Derivation of the algorithm. We use the chain rule
to compute weight increments (to be performed after
each training sequence) for all initial weights w,;(1)
according to

6Et0tal(nrn3)

awab(l) (5)

wWap(1) — wap(l) — 7
where 7 is a constant positive ‘learning rate’. Thus we
obtain an ezact gradient-based algorithm for minimiz-
ing E'* under the ‘self-referential’ dynamics given
by (1)-(4). To reduce writing effort, I introduce some
short-hand notation partly inspired by Williams [7].
For all units u and all weights wgp, w;; we write

Pan(t) = 811)[”,(1)7(1“"()= Owap(1)” (6)

11t should be noted that in quite different contexts, previous
papers have shown how ‘controller nets’ may learn to perform
appropriate lasting weight changes for a second net (see Schmid-
huber [4] and Méller and Thrun [1]). However, these previous
approaches could not be called ‘self-referential’ — they all in-
volve at least some weights that can not be manipulated other
than by conventional gradient descent.

To begin with, note that

6Etotal(1) o
Owg(1) 7

8Etotal(t)
Vt>1: 75111115(1) =

8Etof,al(t o 1)

= Tb(l) — zk:evalk(t +1D)p%t). (7

Therefore, the remaining problem is to compute the
poy(t), which can be done by incrementally computing
all p2k(t) and ¢2 (t), as we will see. At time step 1 we
have

pii(1)=0.

For t > 1 we obtain the recursion

(8)

pop(t+1)=0,
P (t 1) =

= —poi(t), if di(t) exists, and 0 otherwise,
pei'(t+1) =

Z{ q;Jb(f)q[Hana(f) — (Ld’l‘(?l)ij)||2)] +

+wii(t) [g'(llana(t) — adr(wi;)|*)

x2 Z(anam(t) —adrmy (wiz))pg, ™ (t) 1} (10)

(where adrp, (w;;) is the m-th bit of w;;’s address)

Pay(t+1) =

Fon(nety, (8 +1)) Y wya(D)py (1) + 1)l (1), (1)
l

where
qub(l) =1if wep = w4j, and 0 otherwise, (12)
Vi>1: gh(t) =gt —1)+
+piy (t = 1)g(|lmod(t — 1) — adr(wy;)|*)+
124 (¢ — 1) o (lmod(t — 1) — adr(wiy)]*) %
(13)

Y [mod, (t — 1) = adry, (wi;)|ply ™ (t = 1).

According to equations (8)-(13), the p'zlb(t) and qub(t)
can be updated incrementally at each time step. This
implies that (5) can be updated incrementally at each
time step, too. The storage complexity is independent
of the sequence length and equals O(n?2,,,,). The com-

putational complexity per time step (of sequences with
arbitrary length) is O(n?2,,,,,109Mconn)-

CONCLUDING REMARKS

The network I have described can, besides learning to
solve problems posed by the environment, also use its
own weights as input data and can learn new algo-
rithms for modifying its weights in response to the
environmental input and evaluations. This effectively
embeds a chain of ‘meta-networks’ and ‘meta-meta-...-
networks’ into the network itself.

Due to the complexity of the activation dynam-
ics of the ‘self-referential’ network, one would expect
the above error function to have many local minima.
Schmidhuber [6] describes a variant of the basic idea
(involving a biologically more plausible weight manipu-
lating strategy) which is less plagued by the problem of
local minima (and whose initial learning algorithm has
lower computational complexity than the one above).
[5] describes a more general but less informed and less
complex reinforcement learning algorithm.

This paper does not focus on experimental evalua-
tions; the thought experiment presented in this paper
is intended only to show the theoretical possibility of
certain kinds of ‘self-referential’ weight change algo-
rithms. Experimental evaluations of alternative ‘self-
referential’ architectures will be left for the future.

ACKNOWLEDGEMENTS

Thanks to Mark Ring, Mike Mozer, Daniel Prelinger,
Don Mathis, and Bruce Tesar, for helpful comments.
This research was supported in part by a DFG fel-
lowship to the author, as well as by NSF award IRI

9058450, grant 90-21 from the James S. McDonnell
Foundation, and DEC external research grant 1250.

References

[1] K. Méller and S. Thrun. Task modularization by
network modulation. In J. Rault, editor, Proceed-
ings of Neuro-Nimes ’90, pages 419 432, November
1990.

[2] A. J. Robinson and F. Fallside. The utility driven
dynamic error propagation network. Technical Re-
port CUED/F-INFENG/TR.1, Cambridge Univer-
sity Engineering Department, 1987.

[3] J. Schmidhuber. A fixed size storage O(n?) time
complexity learning algorithm for fully recurrent
continually running networks. Neural Computation,

4(2):243 248, 1992.

[4] J. Schmidhuber. Learning to control fast-weight
memories: An alternative to recurrent nets. Neural

Computation, 4(1):131 139, 1992.

[5] J. Schmidhuber. Steps towards “self-referential”
learning. Technical Report CU-CS-627-92, Dept.

of Comp. Sci., University of Colorado at Boulder,
November 1992.

J. Schmidhuber. On decreasing the ratio between
learning complexity and number of time varying
variables in fully recurrent nets. Technical re-
port, Institut fiir Informatik, Technische Univer-
sitdt Miinchen, 1993. In preparation.

R. J. Williams. Complexity of exact gradient com-
putation algorithms for recurrent neural networks.
Technical Report Technical Report NU-CCS-89-27,
Boston: Northeastern University, College of Com-
puter Science, 1989.

R. J. Williams and D. Zipser. A learning algo-
rithm for continually running fully recurrent net-
works. Neural Computation, 1(2):270-280, 1989.

