
In J. A. Meyer and S. W. Wilson, editors, Proc. ofthe International Conference on Simulation of Adaptive Be-havior: From Animals to Animats, pages 222-227. MITPress/Bradford Books, 1991.

1

A Possibility for Implementing Curiosity and Boredom inModel-Building Neural ControllersJ�urgen Schmidhuber�Institut f�ur InformatikTechnische Universit�at M�unchenArcisstr. 21, 8000 M�unchen 2, Germanyschmidhu@tumult.informatik.tu-muenchen.deAbstractThis paper introduces a framework for `curious neuralcontrollers' which employ an adaptive world model forgoal directed on-line learning.First an on-line reinforcement learning algorithm forautonomous `animats' is described. The algorithm isbased on two fully recurrent `self-supervised' continuallyrunning networks which learn in parallel. One of the net-works learns to represent a complete model of the envi-ronmental dynamics and is called the `model network'. Itprovides complete `credit assignment paths' into the pastfor the second network which controls the animats phys-ical actions in a possibly reactive environment. The an-imats goal is to maximize cumulative reinforcement andminimize cumulative `pain'.The algorithm has properties which allow to implementsomething like the desire to improve the model network'sknowledge about the world. This is related to curios-ity. It is described how the particular algorithm (as wellas similar model-building algorithms) may be augmentedby dynamic curiosity and boredom in a natural manner.This may be done by introducing (delayed) reinforcementfor actions that increase the model network's knowledgeabout the world. This in turn requires the model networkto model its own ignorance, thus showing a rudimentaryform of self-introspective behavior.1. IntroductionIn the sequel �rst an on-line algorithm for reinforcementlearning in non-stationary reactive environments is de-scribed. The algorithm heavily relies on an adaptivemodel of the environmental dynamics. The main contri-bution of this paper (see the second section) is to demon-strate how the algorithm may be naturally augmentedby curiosity and boredom, in order to improve the worldmodel in an on-line manner.Consider an `animat' whose movements are controlledby the output units of a neural network, called the control�This work was supported by a scholarship from SIEMENS AG

network, which also receives the animat's sensory percep-tion by means of its input units. The animat potentiallyis able to produce actions that may change the environ-mental input (external feedback caused by the `reactive'environment). By means of recurrent connections in thenetwork the animat is also potentially able to internallyrepresent past events (internal feedback).The animat sometimes experiences di�erent types ofreinforcement by means of so-called reinforcement unitsor pain units that become activated in moments of re-inforcement or `pain' (e.g. the experience of bumpingagainst an obstacle with an extremity). The animat 'sonly goal is to minimize cumulative pain and maximizecumulative reinforcement. The animat is autonomous inthe sense that no intelligent external teacher is requiredto provide additional goals or subgoals for it.Reinforcement units and pain units are similar to otherinput units in the sense that they possess conventionaloutgoing connections to other units. However, unlike nor-mal input units they can have desired activation values atevery time. For the purpose of this paper we say that thedesired activation of a pain unit is zero for all times, otherreinforcement units may have positive desired values. Inthe sequel we assume a discrete time environment with`time ticks'. At a given time the quantity to be minimizedby the learning algorithm isPt;i(ci � yi(t))2 where yi(t)is the activation of the ith pain or reinforcement unit attime t, t ranges over all remaining time ticks still to come,and ci is the desired activation of the ith reinforcementor pain unit for all times.The reinforcement learning animat faces a very gen-eral spatio-temporal credit assignment task: No externalteacher provides knowledge about e.g. desired outputs or`episode boundaries' (externally de�ned temporal bound-aries of training intervals). In the sequel it is demon-strated how the animat may employ a combination oftwo recurrent self-supervised learning networks in orderto satisfy its goal.Munro [2], Jordan [1], Werbos [12], Robinson and Fall-side [6], and Nguyen and Widrow [4] used `model net-works' for constructing a mapping from output actions2

of a control network to their e�ects in in `task space'[1]. The general system described below (an improvedversion of the variants described in [8] and [10]) also em-ploys an adaptive model of the environmental dynam-ics for computing gradients of the control network's in-puts with respect to the controller weights. The modelnetwork is trained to simulate the environment by mak-ing predictions about future inputs, including pain andreinforcement inputs. Training of the controller worksas follows: Since we cannot propagate input errors (e.g.di�erences between actual pain signals and desired zeropain signals) `through the environment', we propagatethem through the combination of model network andcontroller. Only the controller weights change duringthis phase, the weights of the model network have toremain �xed. (Actually, we do not really propagate er-rors through the networks. We use an algorithm whichis functionally equivalent to `back-propagation throughtime' but uses only computations `going forward in time'.So there is no need for storing past activations.)Both the control network and the model network arefully recurrent. The algorithm di�ers from algorithms byother authors in at least some of the following issues: Itaims at on-line learning and locality in time, it does notcare for `epoch-boundaries', it needs only reinforcementinformation for learning, it allows di�erent kinds of re-inforcement (or pain), and it allows both internal andexternal feedback with theoretically arbitrary time lags.Unlike with Robinson and Fallside's approach (which isthe one that bears the most relationships to the one de-scribed here) `credit assignment paths' are provided thatlead from pain units back to output units back to all inputunits and so on. There are also credit assignment pathsthat lead from input units back to the input units them-selves, and from there to the output units. The latterpaths are important in the common case when the envi-ronment can change even if there were no recent outputactions.The discrete time algorithm below concurrently adjuststhe fully recurrent model network and the fully recurrentcontrol network. An on-line version of Robinson and Fall-side's In�nite-Input-Duration learning algorithm for fullyrecurrent networks [5] (�rst implemented by Williamsand Zipser [14]) is used for training both the model net-work and the combination of controller and model net-work. The algorithm is a particular instantiation of amore general form and is based on the logistic activationfunction for all non-input units.In step 1 of the main loop of the algorithm actionsin the external world are computed. Due to the inter-nal feedback, these actions are based on previous inputsand outputs. For all new activations, the correspond-ing derivatives with respect to all controller weights areupdated.In step 2 actions are executed in the external world,

and the e�ects of the current action and/or previous ac-tions may become visible.In step 3 the model network tries to predict these ef-fects without seeing the new input. Again the relevantgradient information is computed.In step 4 the model network is updated in order tobetter predict the input (including pain) for the con-troller. Finally, the weights of the control network areupdated in order to minimize the cumulative di�erencesbetween desired and actual activations of the pain andreinforcement units. Since the control network continuesactivation spreading based on the actual inputs insteadof using the predictions of the model network, `teacherforcing' [14] is used in the model network.One can �nd various improvements of the systems de-scribed in [8] and [10]. For instance, the partial deriva-tives of the controller's inputs with respect to the con-troller's weights are approximated by the partial deriva-tives of the corresponding predictions generated by themodel network. Furthermore, the model sees the lastinput and current output of the controller at the sametime.Notation (the reader may �nd it convenient to comparewith [14]):C is the set of all non-input units of the control net-work, A is the set of its output units, I is the set of its`normal' input units, P is the set of its pain and rein-forcement units, M is the set of all units of the modelnetwork, O is the set of its output units, OP � O is theset of all units that predict pain or reinforcement, WM isthe set of variables for the weights of the model network,WC is the set of variables for the weights of the controlnetwork, yknew is the variable for the updated activationof the kth unit from M[C[I[P , ykold is the variable forthe last value of yknew , wij is the variable for the weightof the directed connection from unit j to unit i, pkijnew isthe variable which gives the current (approximated) valueof @yknew@wij , pkijold is the variable which gives the last valueof pkijnew , if k 2 P then ck is k's desired activation forall times, �C is the learning rate for the control network,�M is the learning rate for the model network.j I [P j=j O j, j OP j=j P j. If k 2 I [P , thenkpred is the unit from O which predicts k. Each unitfrom I [P [A has one forward connection to each unitfrom M [C. Each unit from M is connected to eachother unit from M . Each unit from C is connected toeach other unit from C. Each weight of a connectionleading to a unit in M is said to belong to WM . Eachweight of a connection leading to a unit in C is said tobelong to WC . Each weight wij 2 WM needs pkij-valuesfor all k 2 M . Each weight wij 2 WC needs pkij-valuesfor all k 2M [C [I [P .3

INITIALIZATION:For all wij 2WM [WC :begin wij random,for all possible k: pkijold 0; pkijnew 0 end.For all k 2M [C : ykold 0; yknew 0:For all k 2 I [P :Set ykold by environmental perception, yknew 0:FOREVER REPEAT:1. For all i 2 C : yinew 11+e�Pj wijyjold .For all wij 2WC ; k 2 C:pkijnew yknew(1� yknew)(Pl wklplijold + �ikyjold)For all k 2 C:begin ykold yknew ,for all wij 2 WC : pkijold pkijnew end .2. Execute all motoric actions based on activations ofunits in A. Update the environment.For all i 2 I [P :Set yinew by environmental perception.3. For all i 2M : yinew 11+e�Pj wijyjold .For all wij 2WM [WC ; k 2M :pkijnew yknew(1� yknew)(Pl wklplijold + �ikyjold):For all k 2M :begin ykold yknew ,for all wij 2 WC [WM : pkijold pkijnew end.4. For all wij 2 WM :wij wij +�MPk2I[P (yknew � ykpredold)pkpredijold :For all wij 2WC :wij wij + �CPk2P (ck � yknew)pkpredijold :For all k 2 I [P :begin ykold yknew , ykpredold yknew ,for all wij 2 WM : pkpredijold 0,for all wij 2 WC : pkijold pkpredijold end.By employing probabilistic output units for C and byusing `gradient descent through random number gener-ators' [13] we can introduce explicit explorative randomsearch capabilities into the otherwise deterministic algo-rithm. In the context of the IID algorithm, this works asfollows: A probabilistic output unit k consists of a con-ventional unit k� which acts as a mean generator anda conventional unit k� which acts as a variance gener-ator. At a given time, the probabilistic output yknew iscomputed by yknew = yk�new + zyk�new ;where z is distributed e.g. according to the normal dis-tribution. The corresponding pkijnew have to be updatedaccording to the following rule:pkijnew pk�ijnew + yknew � yk�newyk�new pk�ijnew :

By performing more than one iteration of step 1 andstep 3 at each time tick, one can adjust the algorithmto environments that change in a manner which is notpredictable by semilinear operations (theoretically threeadditional iterations are su�cient for any environment).The algorithm is local in time, but not in space. See[8] for a justi�cation of certain deviations from `pure gra-dient descent through time', and for a description of howthe algorithm can be used for planning action sequences.See [7] and [9] for two quite di�erent entirely local meth-ods.2. Implementing Dynamic Curiosity andBoredomOnly if the model network is a good predictor of the en-vironmental dynamics we can expect the controller toconverge. In the current section we motivate the in-troduction of the `explicit desire to improve the worldmodel' and show a possibility for implementing it in on-line model-building systems as the one described in thelast section.Many biological learning systems, particularily themore complex ones, show an interplay of goal-directedlearning and explorative learning. In addition to certainpermanent goals (like avoiding pain), goals are generatedwhose immediate purpose solely is to increase knowledgeabout the world. So far this interplay has not been ad-dressed at all in the connectionist literature.The explorative side of learning (related to somethingthat usually is called curiosity) is not completely unsu-pervised, as it is sometimes assumed. Curiosity helps tolearn how the world works, which in turn helps to satisfycertain goals. However, the goal-directedness of curiosityis less obvious than the goal-directedness of the algorithmdescribed above (and of less general algorithms describedin other papers on goal-directed learning).Curiosity is related to what one already knows aboutthe world. One gets curious as soon as one believes thatthere is something that one does not know. However,the goal of learning how the world works is dominatedby other goals (like avoiding pain): One does not knowexactly how it feels putting one's hand into the meatgrinder. However, one does not want to know.Since curiosity makes sense only for systems that canhave dynamic in
uence on what they learn, and sincecuriosity aims at minimizing a dynamically changingvalue, namely, the degree of ignorance about something,it makes sense only in on-line learning situations wherethere is some sort of dynamic attention.Thus the precondition of curiosity is something like ouron-line learning algorithm described above. This algo-rithm builds a world model in order to use the worldmodel for goal-directed learning of the controller. Thecontroller's potential for dynamic attention is given by4

the external feedback. The world model adapts itself towhatever the controller focusses on (see [11] for an appli-cation of similar adaptive control techniques to the prob-lem of learning selective attention). The direct goal of cu-riosity and boredom is to improve the world model. Theindirect goal is to ease the learning of new goal-directedaction sequences. The contribution of this section is toshow one possibility for augmenting the algorithm by cu-riosity and by its counterpart, which is boredom.The basic idea is simple: We introduce an additionalreinforcement unit for the controller (see �gure 1.). Thisunit, hereafter called the curiosity unit, gets activated bya process which at every time step measures the Euclidiandistance between reality and prediction of the model net-work. The activation of the curiosity unit is a functionof this distance. Its desired value is a positive numbercorresponding to the ideal mismatch between belief andreality. The e�ect of the algorithm described in the �rstsection is that there is positive reinforcement wheneverthe model network fails to correctly predict the environ-ment. Thus the usual credit assignment process for thecontroller encourages certain past actions in order to re-peat situations similar to the mismatch situation.As soon as the model network has learned to correctlypredict the environment in former `mismatch situations',actions leading to such situations automatically are de-reinforced. This is because the activation of the curiosityunit goes back to zero. Boredom becomes associated withthe corresponding situations.The important point is: The same complex mechanismwhich is used for `normal' goal-directed learning is usedfor implementing curiosity and boredom. There is noneed for devising a separate system which aims at im-proving the world model.The controller's credit assignment process is aimed atrepeatedly entering situations where the model network'sperformance is not optimal. It is important to observethat this process itself makes use of the model network!The model network has to predict the activations of thecuriosity unit. Thus the model network partly has tomodel its own ignorance, it has to learn to know that itdoes not know certain details.What is the ideal mismatch mentioned above? Inconventional AI the saying goes that a system can notlearn something that it does not already almost know.If we want to adopt this view, then a consequence isthat the function that translates mismatches into rein-forcement is not a linear one. Zero reinforcement shouldbe given in case of perfect matches, high reinforcementshould be given in case of `near-misses', and low rein-forcement again should be given in case of strong mis-matches. This corresponds to a notion from `esthetic in-formation theory' which tries to explain the feeling of`beauty' by means of the quotient of `subjective com-plexity' and `subjective order' or the quotient of `unfa-

miliarity' and `familiarity' (measured in an information-theoretic manner). This quotient should achieve a certainideal value. (See Nake [3] for an overview of approachesto formalizing `esthetic information'. Interestingly, thenumber 1e plays a signi�cant role in at least some of theseapproaches.) However, at the moment the precise natureof a good mapping between (mis)matches and reinforce-ment is unclear and subject of ongoing research.Currently some experimental research is going on inorder to answer the following questions: What are use-ful learning rates (it is assumed that the model networkshould learn clearly faster than the controller)? Whatare useful relative strengths of pure goal-directed rein-forcement and `curiosity reinforcement'? And what arethe properties of a good mapping from mismatches toreinforcement?Although these questions are still open, in some pre-liminary experiments with a linear mapping from mis-matches to reinforcement it already has been demon-strated that errors of the model network can be reducedby generating curiosity reinforcement in an on-line man-ner.Concluding RemarksThe basic idea of implementing curiosity and boredom isnot limited to the particular algorithm described in the�rst section. Every model-dependent on-line algorithmfor learning goal directed behavior might be augmentedby a similar implementation of `the desire to improve theworld model'. The basic motivation is: Instead of us-ing some separate mechanism for improving the worldmodel, we want to make use of the capabilities of thegoal-directed learning algorithm itself.The interesting side e�ect is: Since the learning algo-rithm depends on the model network, the model networkhas to make a prediction about its own current predic-tion capabilities. The activations of the model networkare (partly) interpreted as a statement about the currentweights of the model network. Note that this is already arudimentary form of self-introspective behavior! The au-thor believes that extensions of these rudimentary formsof introspective neural algorithms will be the key to learn-ing systems which are much more sophisticated than theones we know so far.

5

Figure 1. An animat controlled by a recurrent control network is shown. For simplicity, only one `normal' inputunit (IN), one `normal' reinforcement input unit (R), one hidden unit and one output unit (OUT) are depicted. Arecurrent model network is trained to emulate the environmental dynamics by predicting the control network's input(PREDIN and PREDR).An additional reinforcement unit CUR for the control network gets activated by `ideal mismatches' between expec-tations of the model network and reality. The model network needs an additional output unit (PREDCUR) forpredicting CUR. It models its own ignorance, thus showing a rudimentary form of self-introspective behavior. Themodel network helps to encourage action sequences of the controller which lead to unfamiliar situations.
6

References[1] M. I. Jordan. Supervised learning and systems withexcess degrees of freedom. Technical Report COINSTR 88-27, Massachusetts Institute of Technology,1988.[2] P. W. Munro. A dual back-propagation scheme forscalar reinforcement learning. Proceedings of theNinth Annual Conference of the Cognitive ScienceSociety, Seattle, WA, pages 165{176, 1987.[3] F. Nake. �Asthetik als Informationsverarbeitung.Springer, 1974.[4] Nguyen and B. Widrow. The truck backer-upper:An example of self learning in neural networks. InProceedings of the International Joint Conference onNeural Networks, pages 357{363. IEEE Press, 1989.[5] A. J. Robinson and F. Fallside. Static and dy-namic error propagation networks with applicationto speech coding. Proceedings of Neural InformationProcessing Systems, American Institute of Physics,1987.[6] T. Robinson and F. Fallside. Dynamic reinforcementdriven error propagation networks with applicationto game playing. In Proceedings of the 11th Con-ference of the Cognitive Science Society, Ann Arbor,pages 836{843, 1989.[7] J. Schmidhuber. The Neural Bucket Brigade: A lo-cal learning algorithm for dynamic feedforward andrecurrent networks. Connection Science, 1(4):403{412, 1989.[8] J. Schmidhuber. An on-line algorithm for dynamicreinforcement learning and planning in reactive envi-ronments. In Proc. IEEE/INNS International JointConference on Neural Networks, San Diego, vol-ume 2, pages 253{258, 1990.[9] J. Schmidhuber. Recurrent networks adjusted byadaptive critics. In Proc. IEEE/INNS InternationalJoint Conference on Neural Networks, Washington,D. C., volume 1, pages 719{722, 1990.[10] J. Schmidhuber. Reinforcement learning with inter-acting continually running fully recurrent networks.In Proc. INNC International Neural Network Con-ference, Paris, volume 2, pages 817{820, 1990.[11] J. Schmidhuber and R. Huber. Learning to generatefocus trajectories for attentive vision. Technical Re-port FKI-128-90, Institut f�ur Informatik, TechnischeUniversit�at M�unchen, 1990.

[12] P. J. Werbos. Backpropagation and neurocontrol: Areview and prospectus. In IEEE/INNS InternationalJoint Conference on Neural Networks, Washington,D.C., volume 1, pages 209{216, 1989.[13] R. J. Williams. On the use of backpropagation in as-sociative reinforcement learning. In IEEE Interna-tional Conference on Neural Networks, San Diego,volume 2, pages 263{270, 1988.[14] R. J. Williams and D. Zipser. Experimental analysisof the real-time recurrent learning algorithm. Con-nection Science, 1(1):87{111, 1989.

7

