
Reinforcement Learning with Interacting ContinuallyRunning Fully Recurrent NetworksIn Proc. INNC International Neural Network Conference, Paris, volume 2, pages 817-820, 1990.J�urgen Schmidhuber�Institut f�ur InformatikTechnische Universit�at M�unchenArcisstr. 21, 8000 M�unchen 2, Germanyschmidhu@tumult.informatik.tu-muenchen.deAbstractWe describe an on-line learning algorithm for attacking the fundamental credit assignmentproblem in non-stationary reactive environments. Reinforcement and pain are consideredas special types of input to an agent living in the environment. The agent's only goal isto maximize cumulative reinforcement and to minimize cumulative pain. This simple goalmay require to produce complicated action sequences. Supervised learning techniques forrecurrent networks serve to construct a di�erentiable model of the environmental dynamicswhich includes a model of future reinforcement. While this model is adapted, it is concurrentlyused for learning goal directed behavior. The method extends work done by Munro, Robinsonand Fallside, Werbos, Widrow, and Jordan.IntroductionConsider an agent whose movements are controlled by the output units of a neural network, calledthe control network, which also receives the agent's sensory perception by means of its input units.The agent potentially is able to produce actions that may change the environmental input (externalfeedback caused by the `reactive' environment). By means of recurrent connections in the networkthe agent is also potentially able to internally represent past events (internal feedback).The agent sometimes experiences di�erent types of negative reinforcement or `pain' by meansof so-called reinforcement units or pain units that become activated in moments of `pain' (e.g.the experience of bumping against an obstacle with an extremity). The agent's only goal is tominimize cumulative pain. The agent is autonomous in the sense that no intelligent externalteacher is required to provide additional goals or subgoals for it.A pain unit is treated as a special type of input unit which possesses conventional outgoingconnections to other units. Unlike normal input units pain units can have desired activation valuesat every time. For the purpose of this paper we say that the desireable activation of a pain unitis zero for all times. In the sequel we assume a discrete time environment with `time ticks'. At agiven time the quantity to be minimized is Pt;i yi(t) where yi(t) is the activation of the ith painunit at time t, and t ranges over all remaining time ticks still to come.Pain corresponds to negative reinforcement. The reinforcement learning agent faces a verygeneral spatio-temporal credit assignment task: No external teacher provides knowledge aboute.g. desired outputs or `episode boundaries'. In this paper we demonstrate how the agent canemploy a combination of two recurrent self-supervised learning networks in order to satisfy its goal.As Munro [3] has pointed out in the case of stationary environments and feedforward networks,one does not necessarily have to employ a `pure' reinforcement learning algorithm for reinforcement�This work was supported by a scholarship from SIEMENS AG1

learning. (`Pure' reinforcement learning algorithms (or reinforcement comparison algorithms) fortemporal credit assignment in non-stationary environments have been described in [1], [11], [7]and [8].) A supervised learning algorithm can be applied to build a model of the relationshipsbetween environmental inputs, output actions of the agent, and corresponding reinforcement. Anadaptive model network representing the model can be used to propagate gradient informationback into the control network in order to maximize reinforcement.Robinson and Fallside described an extension of Munro's static approach to dynamic recurrentnetworks in time-varying environments [6]. (Nguyen and Widrow [4], Jordan [2], and Werbos [10]also use model networks for constructing a mapping from output actions of a control network totheir e�ects in in `task space' [2]. The same principle as used in Munro's work serves to provideerror signals for the control network, in order to improve performance on a given control task.)As in Munro's approach, the only aspect of the external world which is explicitly describedby Robinson and Fallside's recurrent model network is the reinforcement's dependency on pastinputs and outputs. There is no model for the dependency of (non-reinforcement) inputs on pastoutputs (or on past inputs which again may have been caused by past outputs). This makes themodel for the reinforcement itself incomplete: Paths for credit assignment leading `through theenvironment' can not be considered.The system described in the next section (see also [9]) employs an adaptive model of theenvironmental dynamics for computing gradients of the control network's pain. Both the controlnetwork and the model network are fully recurrent.Unlike Robinson and Fallside's approach our approach includes credit assignment passes thatlead from pain units back to output units back to all input units and so on. There are also creditassignment paths that lead from input units back to the input units themselves, and from thereto the output units. The latter paths are important in the common case when the environmentcan change even if there are no recent output actions.The On-Line AlgorithmThe discrete time algorithm below concurrently adjusts the fully recurrent model network andthe fully recurrent control network. Williams and Zipser's on-line version [12] of Robinson andFallside's In�nite-Input-Duration learning algorithm for fully recurrent networks [5] is used fortraining both networks. The algorithm is a particular instantiation of a more general form and isbased on the logistic activation function for all non-input units. Notation (the reader may �nd itconvenient to compare with [12]):C is the set of all units of the control network, A is the set of its output units, I is the set of its`normal' input units, P is the set of its pain units, M is the set of all units of the model network, Ois the set of its output units, OP � O is the set of all units that predict pain, H =M [Cn(I [P),WM is the set of variables for the weights of the model network, WC is the set of variables forthe weights of the control network, yknew is the variable for the updated activation of the kth unitfrom M [C, ykold is the variable for the last value of yknew , wij is the variable for the weightof the directed connection from unit j to unit i, pkijnew is the variable which gives the current(approximated) value of @yknew@wij , pkijold is the variable which gives the last value of pkijnew , �C is apositive constant, the learning rate for the control network, �M is a positive constant, the learningrate for the model network.j I [P j=j O j, j OP j=j P j. For each k 2 OnOP there is exactly one i 2 I such that yknewpredicts the value of yinew , which also is called xknew . For each k 2 OP there is exactly one i 2 Psuch that yknew predicts the value of yinew , which also is called xknew . Each unit from I[P [A hasone forward connection to each unit from H. Each unit from M is connected to each other unitfrom M . Each unit from Cn(I [P) is connected to each other unit from this set. Each weight ofa connection leading to a unit in M is said to belong to WM . Each weight of a connection leadingto a unit in Cn(I [P) is said to belong to WC . Each weight wij 2 WM needs pkij-values for allk 2M . Each weight wij 2 WC needs pkij -values for all k 2 H.First we will describe the algorithm, then some comments will be given.2

INITIALIZATION:For all wij 2 WM [WC : begin wij random, for all possible k: pkijold 0; pkijnew 0 end,for all k 2 H : ykold 0; yknew 0:For all k 2 I [P : Set ykold by environmental perception, yknew 0:FOREVER REPEAT:1. A. For all i 2 H : yinew 11+e�Pj wijyjold ,for all i 2 I [P : Set yinew by environmental perception.B. Execute all motoric actions based on activations of units in A.2. A. For all wij 2 WM ; k 2M : pkijnew yknew(1� yknew)(Pl2M wklplijold + �ikyjold)B. For all wij 2 WM : wij wij + �MPk2O(xknew � yknew)pkijnew :3. A.For all k 2 O begin yknew xknew , for all wij 2WM : pkijnew 0 end.B. For all wij 2 WC ; k 2 H: pkijnew yknew(1� yknew)(Pl2H;wkl exists wklplijold + �ikyjold)C. For all wij 2 WC : wij wij � �CPk2OP pkijnew :4. For all k 2M [C : ykold yknew ,For all wij 2WM [WC and for all possible k: pkijold pkijnew .General comments on the algorithm. 1. In step 2 the model network is updated in order tobetter predict the input (including pain) for the controller. Since the control network continuesactivation spreading based on the actual inputs instead of using the predictions of the modelnetwork, `teacher forcing' [12] is used in the model network (step 3.A).2. In step 3 the weights of the control network are updated in order to minimize the cumulativeactivations of the pain units. In the version above no teacher forcing is used for the control network.Here the philosophy is that a little pain may be informative for the agent, and may have an explicitin
uence on future actions.3. The algorithm assumes that from one time tick to the next the environment changes in afashion that is predictable by linearily separable mappings from past states. If there is a `higherdegree of environmental non-linearity' then the algorithm has to be modi�ed in a trivial mannersuch that the involved networks tick at a higher frequency than the environment. In any case itsu�ces if there are four network ticks for each environmental tick. This is due to the fact that4-layer-operations in principle are enough to arbitrarily approximate any desired mapping.Comments on the on-line nature of the algorithm. Since we want an on-line learning procedurewe deviate from true gradient descent in several respects:1. Instead of accumulating contributions to weight changes over time and actually changingthe weights after activation spreading, the weights are changed immediately. Immediate weightchanges allow to renounce on information about `episode boundaries' [12].2. The weight changing mechanism of the controller acts as if the model network already wasa perfect predictor (with �xed weights) which could replace the environment. However, the modelmay be imperfect:2A. Jordan [2] as well as Robinson and Fallside [6] note that a model network does not needto be perfect to allow increasing performance of a control network. If the error for the controlnetwork is not given by the di�erence of the desired input for the control network and the modeloutput but by the di�erence of the desired input and the actual input of the control network,then the minima of this di�erence still are �xpoints of the weight changing mechanism, as long asthe model network already has reached a local minimum. The zero-points of the controller's errorare �xpoints even if the model network has not yet found a local minimum. The minima of theerror for the control network can be found if the inner products of the approximated gradients forthe control network's weights and the exact gradients (according to a perfect model) tend to bepositive.2B. Note that the pkij 's of the model network change independently from the pkij 's of the controlnetwork. A situation where the control network experiences pain and where its weights are basedon an inaccurate model will not remain stable, as long as not both the model network and thecontrol network are trapped in local minima. If we assume that the model network always �nds a3

zero-point of its error function (which means that it sooner or later always will correctly predictfuture inputs no matter how the controller behaves), then over time we can expect the controlnetwork to perform gradient descent in pain according to a perfect model of the visible parts ofthe real world. As long as the model is inaccurate the controller partly functions as a randomexplorer who rather uninformedly causes situations that help the model network to collect newdata about the environmental dynamics, in order to `make the relevant dynamics of the worlddi�erentiable'.Experiments with a di�cult control task. The algorithm is currently being tested on a compli-cated pole balancing problem (the di�erential equations modelling the cart-pole system describedin [1] are employed). Unlike with previous pole balancing tasks no prewired decoder is used topre-process the inputs from the environment. Additionally, unlike with previous pole balancingtasks no information is provided about temporal derivatives of the environment's state variables(pole velocity, etc.). The agent is forced to extract this kind of information by itself, by meansof the recurrent connections of its model network. An additional di�culty is that no externalteacher provides information about `trial boundaries'. Thus the agent faces a complex and realisticspatio-temporal credit assignment task. The results of preliminary test runs are very encouraging,however, the experiments have not yet been completed.Extensions to the system. In [9] it is discussed how the two recurrent networks can be used forplanning future action sequences by performing gradient descent in predicted pain instead of actualpain. It is also hinted at the possibility of using probabilistic output units for the controller, thusproviding the agent with explicit explorative capabilities. Furthermore it is noted that a perfectmodel which also predicts the controller's output can be used for `meta-learning' (`learning howto learn').Concluding RemarksThe weights of a network with �xed topology may be considered as its program. One of the mostinteresting aspects of many connectionist algorithms is that program outputs are di�erentiablewith respect to programs. A simple program generator (the gradient descent procedure) allows toproduce increasingly successful programs, if the desired outputs are known.In typical reinforcement learning situations the environment is not a priori represented in adi�erentiable form. So the main reason for connectionist world models in the style above can beseen in `making the world di�erentiable'. Thus even program inputs can become di�erentiablewith respect to programs. A di�erentiable world model allows the program generator an informedsearch for better goal directed programs.The degree of informedness of this search for suitable programs is a main di�erence betweenthe very general approach presented in this paper and other reinforcement learning algorithms.References[1] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that cansolve di�cult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics,SMC-13, 834-846, 1983.[2] M.I. Jordan. Supervised learning and systems with excess degrees of freedom. Technical ReportCOINS TR 88-27, Massachusetts Institute of Technology, 1988.[3] P.W. Munro. A dual back-propagation scheme for scalar reinforcement learning. Proceedingsof Ninth Annual Conference of the Cognitive Science Society, Seattle, WA, 1987.[4] Nguyen and B. Widrow. The truck backer-upper: An example of self learning in neuralnetworks. In IJCNN International Joint Conference on Neural Networks, Vol 2, 1989.[5] A. J. Robinson and F. Fallside. Static and dynamic error propagation networks with applicationto speech coding. Proceedings of Neural Information Processing Systems, American Institute ofPhysics, 1987.[6] T. Robinson and F. Fallside. Dynamic reinforcement driven error propagation networks withapplication to game playing. In Proceedings of the 11th Conference of the Cognitive Science4

Society, Ann Arbor, 1989.[7] J. H. Schmidhuber. The neural bucket brigade. In R. Pfeifer, Z. Schreter, Z. Fogelman, andL. Steels, editors, Connectionism in Perspective, Amsterdam: Elsevier, 1988.[8] J. H. Schmidhuber. Temporal-Di�erence-Driven Learning in Recurrent Networks. In ICNCInternational Conference on Parallel Processing in Neural Systems and Computers, D�usseldorf,1990.[9] J. H. Schmidhuber. Making the world di�erentiable: On using supervised learning recurrentneural networks for dynamic reinforcement learning and planning in non-stationary environments.FKI-Report, Institut f�ur Informatik, Technische Universit�at M�unchen, 1990.[10] P. J. Werbos. Building and understanding adaptive systems: A statistical/numerical approachto factory automation and brain research. IEEE Transactions on Systems, Man, and Cybernetics,17, 1987.[11] R. J. Williams. Toward a theory of reinforcement-learning connectionist systems. TechnicalReport NU-CCS-88-3, College of Comp. Sci., Northeastern University, Boston, MA, 1988.[12] R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrentnetworks. Technical Report ICS Report 8805, Univ. of California, San Diego, La Jolla, 1988.

5

