Networks Adjusting Networks

Technical Report FKI-129-90, 1990

Jiirgen Schmidhuber*

Institut fur Informatik
Technische Universitat Miinchen
Arcistr. 21, 8000 Miinchen 2, Germany
schmidhu@tumult.informatik.tu-muenchen.de

Revised November 1990

Abstract

This paper describes extensions of previous ‘adaptive critics’ which have been one-
dimensional, acyclic, and suited only for feed-forward controllers. The extensions address
the following issues:

1. Feed-forward adaptive critics for fully recurrent probabilistic control nets.

2. Recurrent adaptive critics.

3. Vector-valued adaptive critics based on a system identification component.

Furthermore an idea is described for approximating recurrent back propagation with
a 3-network method which is local in time.

In one experiment a linear adaptive critic adjusts a recurrent network such that it solves
a non-linear task (a ‘delayed XOR’-problem). In another experiment a four-dimensional
adaptive critic quickly learns to solve a complicated pole balancing task.

Introduction

Note: This is the revised and expanded version of an earlier report from February 1990.

Reinforcement learning can be applied in cases for which supervised learning is not de-
signed, namely, when there is no well-informed instructive teacher to provide target outputs
for each time tick, but only an evaluative teacher who sometimes states whether a system
controlled by the network is in a desireable state or not.

A few methods are designed for reinforcement learning with recurrent neural networks,
including ‘extended REINFORCE’ algorithms [20], the ‘Neural Bucket Brigade Algorithm’
[9], and model-building recurrent neural controllers based on system identification (e.g. [11]).
None of these algorithms includes an adaptive critic component, although adaptive critics have
proven to be very useful in the case of feed-forward networks [3][14][1]. Adaptive critics are
based on ‘Temporal Difference (TD-) Methods’ [15] and are closely related to concepts from
dynamic programming. TD-methods use differences of successive predictions about future

*Research supported by a scholarship from STIEMENS AG



Networks adjusting networks 2

events to generate error signals for the predictor. Thus TD-methods are an example of ‘self-
supervised’ learning. With adaptive critics, the TD-error signals also serve as reinforcement
signals for a neural controller.

One of the adaptive critic extensions below may be viewed as an application of TD-
methods [15] to the temporal evolution of recurrent networks. Another extension of the
adaptive critic principle combines ‘gradient descent through a frozen model network’ with a
vector-valued adaptive critic. (Previous adaptive critics have been scalar). The scheme is in-
tended to provide better scaling for multi-dimensional actions and sensory ‘pain’ or ‘pleasure’
perceptions (e.g. for robot control).

It must be noted that no theory of adaptive critics exists so far. (The existing theory of
TD-methods does not address the on-line learning problems of reinforcement learning systems
based on TD-methods.) Thus it remains unclear under which conditions on-line algorithms
based on the adaptive critic principle actually converge to the desired solutions. However,
first steps towards a theory of on-line learning actor/critic systems have been made recently
[21].

Locality in Space and Time

An important aspect of the algorithms described in this paper is their applicability to on-line
learning tasks. There is no need for storing past activations except for the most recent ones.
Yet the credit assignment process during training can in principle bridge arbitrary time lags.

Locality in Space and Time. In this paper a learning algorithm for dynamic neural net-
works is said to be local in time if for given network size (measured in number of connections)
during on-line learning the peak computation complexity at every time step is O(1), for
arbitrary durations of sequences to be learned.

A learning algorithm for dynamic neural networks is said to be local in space if during
on-line learning for limited durations of learned sequences and for arbitrary network sizes
(measured in number of connections) and for arbitrary network topologies the peak compu-
tation complexity per connection at every time step is O(1).

A learning algorithm for dynamic neural networks is said to be local if during on-line
learning for arbitrary durations of sequences to be learned and for arbitrary network sizes
(measured in number of connections) and arbitrary network topologies the peak computation
complexity per connection at every time step is O(1).

For example, the ‘unfolding in time’ method (e.g. [7]) is not local in time. The IID-
Algorithm [6] (also called the RTRL-Algorithm in [22]) is local in time but not in space.

The first algorithm to be considered below performs only computations local in space and
time. The second algorithm employs a supervised learning algorithm for recurrent networks
and is local in time, but not in space. The approach to supervised learning in recurrent
networks again is local in space and time.

A TD-algorithm for Reinforcement Learning in Dynamic Re-

current Networks

Here we describe the discrete time version of an algorithm for adjusting a recurrent network
in order to let it solve tasks by delayed reinforcement learning (i. e. tasks where an external



Networks adjusting networks 3

teacher indicates only once in a while whether the system is in a desireable state or not,
without providing detailed knowledge about the desired outputs at each time tick).

The algorithm can be viewed as an application of ‘Temporal Difference Methods’ (TD-
methods) [15] to the temporal evolution of recurrent networks. The fully recurrent control
network consists of linear input units and binary probabilistic non-input units. Its state
vector at time ¢ is called x(%). We consider the case where the learning phase is dividable into
‘episodes’. An episode starts with the initialization of the system’s activations and is finished
when the final reinforcement, R, becomes known. Here is a description of the algorithm:

First all weights are randomly initialized with real values.

For all episodes:

In the beginning of each episode, at the first time tick, the activations of input units of the
recurrent control network are initialized with values determined by sensory perceptions from
the environment, and the activations of hidden and output units are initialized with 0. For all
following time ticks, until there is external reinforcement R (a real number) indicating failure
or success :

At a given time tick t:

1. The critic (a static network with one output) receives as input the complete activation
vector x(t — 1) of all units of the control network. The dimensionality of the input vector of
the critic is therefore equal to the number of units in the control network. Its one-dimensional
output, r, is interpreted as a prediction of the final reinforcement to be received in the future
[3][14][1]. In the case of a linear critic, its output is given by r = x* (t — 1)v(t), where v(t) is
the critic’s current weight vector.

2. The control network performs one update-step: FEach probabilistic non-input unit i
1
1+e™ ™
gives the probability that the activation x;(t) becomes 1 or 0. Each unit i also stores its last

which

sums its weighted inputs. This sum is passed to the logistic function I(z) =

activation x;(t — 1). Output units may cause an action in the environment, this may lead to
new activations for the input units. So besides the internal feedback, there may exist external
feedback through the environment.

3. If there is external reinforcement R (which indicates the end of the current episode)
then the variable v’ is set equal to R.

Otherwise r' is defined to be a new estimation of final reinforcement, obtained by letting the
critic evaluate the new state of the control network. In case of a linear critic v’ =z (t)v(t).

Using its static learning algorithm (e.g. the generalized delta rule) the critic associates the
last activation vector z(t — 1) of the recurrent network with ', thus ‘transporting expectation
back in time’ for one time step. So the critic’s error is given by v’ — r. Its weight vector is
updated according to the rules of gradient descent; the result is the new weight vector v(t+1).

4. Bach directed weight w;;(t) from unit i to unit j of the recurrent network is immediately
altered according to Aw;j(t) = A(r' —r)zi(t — 1)z;(t) (with X being a positive constant), thus
encouraging (or discouraging) the last transition.

The differences computed by the critic determine the learning rate for a Hebb-like rule [13].
State transitions from states associated with low expectation of reinforcement leading to states
with a higher evaluation are encouraged. State transitions from states associated with high
expectation of reinforcement leading to states with a lower evaluation are discouraged. So the



Networks adjusting networks 4

learning algorithm implements Samuel’s principle for delayed reinforcement, as described in
the context of learning to play checkers [8]: “We are attempting to make the score, calculated
for the current board position, look like that calculated for the terminal board position of the
chain of moves which most probably will occur during actual play.”

To use the terminology of continuous time: The temporal derivative of the expectation of
future reinforcement is the actual reinforcement.

It should be noted that the learning rule of step 4 is only the most simple representative
of a set of applicable reinforcement learning rules. For instance, the learning rule may be
modified such that unlikely transitions are credited more strongly [1]:

Awij(t) = Ar' = r)zi(t — 1)(x;(t) = P(z; = 1] z(t — 1), w(t — 1))),

where w(t — 1) is the last weight vector. Another candidate for the learning rule in step 4 is
Barto and Anandan’s Ag_p rule [2].

An Experiment: Delayed XOR with Stationary Inputs

In a simple experiment we wanted a completely recurrent network to solve a delayed XOR
task with static inputs. The critic consisted of a single linear unit adapted by the delta-rule.
For the duration of one episode, two of three input units of the control network were clamped
with randomly chosen stationary binary values, the third input unit was set to 1, thus serving
as a threshold provider. The task for the control network was to run for a predefined number,
k, of time ticks and then to emit the XOR of the two random inputs in a single output unit.
The learning scheme depicted above led to successful learning of this task, for various numbers
of hidden units and for various time delays. For instance, test runs were conducted with a
random weight initialization between —0.1 and 0.1, £ = 3, 3 hidden units, and with both the
learning rate for the critic and A set equal to 0.2. In some test runs, about 2000 training
episodes per pattern led to about 99 percent correct classifications. In these cases, by making
a deterministic network out of the stochastic network (i.e. by modifying the activation rule
after the learning phase such that always the most likely activations were selected) 100 percent
correct classifications were obtained.

Note that a linear critic was sufficient to achieve this result, even though the task to be
solved was of the ‘non-linearly separable’ type. This is possible because the task of the critic
is somewhat easier than the task of the recurrent non-linear network. The non-linear network
has to implement the XOR-mapping, while the critic only has to implement the mapping
from network states to future reinforcement. In general the mapping from network states to
reinforcement can be a non-linearly separable function by itself. However, if the recurrent
network already has learned to produce the correct responses to a subset of the possible input
patterns, the critic’s task becomes easier. In fact, after a perfect solution has been found,
the critic’s output becomes trivial: In that case, as long as the recurrent network runs, the
critic’s output always equals the final reinforcement, which is 1. This final trivial mapping
can be implemented with simply a heavy-weighted connection from the unit that is always
on to the critic. In fact, this kind of connection was exactly what was observed in some cases
after the training phase.



Networks adjusting networks )

Differences to Anderson’s system.

It is worth noting some differences to Anderson’s system [1]. In contrast to Anderson we did
not use a back-propagation network but a single linear unit for the critic. We also did not
use a static feed-forward network for computing output actions, but a continually running
recurrent network. We also did not use different learning rules for hidden and output units.



Networks adjusting networks 6

Finally, while Anderson’s time ticks involve multi-layer activation spreading and back
propagation of errors, the system described above performs only one-layer operations within
one tick. (Here we view the update of the recurrent network as a one-layer operation.) So
the basic operations performed by our system are much simpler than the basic operations
of Anderson’s. Note that there is a delay of at least 2 time ticks between inputs that have
to be transformed in a non-linear fashion, and the corresponding actions. With reactive
environments this means that a new input can be available before the response to the last
one is computed.

Recurrent Critics

There are tasks where a linear or a static feed-forward critic is not sufficient. But why should
not the critic’s own output directly depend on past states of the recurrent reinforcement learn-
ing system? Although the control network is able to memorize information about past states
by means of its recurrent links, one should expect advantages by introducing a continually
running, self-supervised recurrent critic. We now describe one scenario for such a system
consisting of two interacting recurrent networks. The basic principle is similar to the one of
the algorithm described in the first section. However, the algorithm aims at maximizing the
cumulative sum of reinforcement to be received at all future times [14].

There is a continually running recurrent control network with external and internal feed-
back, and a critic whose task is to predict the cumulative sum of (discounted) reinforcement
to be received in the future. However, now the critic itself is a continually running recurrent
network whose input at a given time is the complete current state of the control network
(including the current environmental input). One of the critic’s non-input units is interpreted
as the predictive output.

The critic again learns in a ‘self-supervised’ manner. Its learning algorithm should be
local in time, so the on-line version [22] of the IID-Algorithm [6] can be applied. According
to TD-methods, the desired value for the critic’s output unit at a given time tick is given by
the sum of the external reinforcement and its own (discounted) output at the next time tick.

The critic’s error is also the reinforcement for the reinforcement learning algorithm of the
control network. The latter needs to consider only the last and the present state, as above,
but it also might be an on-line version of Williams’ ‘extended REINFORCE’ algorithms [20].

Here is the description of the algorithm:

First, all weights are randomly initialized with real values.

For all episodes:

In the beginming of each episode, at the first time tick, the activations of input units of
the reinforcement learning control network are initialized to values determined by sensory
perceptions from the environment, and the activations of the probabilistic hidden and output
units are initialized to 0. All unit activations of the recurrent critic also are initialized with
0. The dimensionality of the input vector of the critic is equal to the number of units in the
control mnetwork. The critic receives as input the complete activation vector of all units of
the recurrent metwork, and performs one initializing update step: Each non-input unit sums
the weighted activations of its source units and passes the sum through a sigmoid function to
obtain its activation. One of the critic’s units is called its output unit. The variable r is set



Networks adjusting networks 7

equal to the activation of this output unit and is interpreted as a prediction of the cumulative
discounted reinforcement to be received in the future.

For all following time ticks:

At a given time tick t:

1. The control network performs one update-step: FEach probabilistic non-input unit i sums
its weighted inputs, this sum is passed to the logistic function which gives the probability that
the activation x;(t) becomes 1 or 0. Each unit i also stores all information needed by the
reinforcement learning algorithm to be applied in step 3. Output units may cause an action
in the environment, this may lead to new activations for the input units.

2. The critic performs one update step. Its new activations depend on x(t) and on past
activations of its hidden and output units.

The variable r' is defined to be the sum of the current external reinforcement R(t) and the
new estimation of final reinforcement, obtained by multiplying the value P(t) of the critic’s
output unit with a discount factor 0 <y < 1: ' := yP(t) + R(t).

The error for the critic’s output at time t — 1 is given by v’ —r. Credit assignment for the
critic takes place immediately according to Williams and Zipser’s version [22] of Robinson’s
supervised learning algorithm [6].

3. The critic’s error at the same time is the reinforcement for the reinforcement learning
algorithm of the reinforcement learning network.

4. 7 is set equal to P(t).

Again the computation of error signals for the critic’s output is very much inspired by
Sutton’s TD-methods. TD methods, however, require two successive predictions during the
same time tick in order to remove dependencies on weight changes. Since the recurrent critic’s
output already depends on past states (by means of its internal feedback) and also on past
weights, the scheme described above makes only one critic update at a time. In [12] (in the
section on ‘useful extensions’) a more complicated recurrent critic based on ‘gradient descent
through a frozen model network’ is described (see also the next section).

Vector-Valued Adaptive Critics and System Identification

The critic above as well as adaptive critics described by other authors are one-dimensional.
Their prediction refers to a single scalar value, namely, the cumulative future reinforcement.
One single internal reinforcement signal is used to modify all controller weights in an unspecific
fashion. There are no ‘“individually tailored reinforcement signals’ [20].

No difference is made between different kinds of reinforcement. This seems to contrast
with the reinforcement signals of biological systems. The latter usually make use of a wide
variety of ‘pain’ and ‘pleasure’ sensors. We will now introduce a vector-valued adaptive critic
system which includes an adaptive model of the dependency of internal reinforcement vectors
on (possibly multi-dimensional) ouput actions.

Which are the advantages to be expected by such a system? To speak intuitively: A
detailed model of the expected consequences of certain actions should allow their informed
modification. If one knows how much influence a particular output node had on which com-
ponents of the internal reinforcement vector, one can use this knowledge for ‘individually
tailored” modifications of the controller weights. Furthermore, it may be easier to learn a



Networks adjusting networks 8

mapping from states/actions to vector-valued reinforcement than to learn a mapping from
states/actions to the corresponding scalar reinforcement.

Three Interacting Networks

One possibility for implementing a detailed model of actions and corresponding internal rein-
forcement is the following one: We introduce a third feed-forward network M [10] which at a
given time step sees the input vector and the output vector of the controller C'. The system
to be identified by M is the process which maps state/action pairs to internal reinforcement
vectors. At a given time M is trained to predict the difference between the current and the
next prediction of the critic. This difference is equal to the current internal reinforcement
vector. Using back-propagation, the difference between the desired and the actual internal re-
inforcement vector is propagated back through M and through C’s output units down into C.
C’s output units are thereby considered to be the hidden units of the model/controller com-
bination (C’s outputs are identified with the corresponding inputs of M.) Only C’s weights
change, M’s weights remain fixed. (This is the approach of ‘gradient descent through frozen
model networks’, see e.g. [4] and [18]). However, to be able to use the back-propagation
method we have to get rid of the ‘all-or-nothing’-character of the probabilistic units used
above, so we make C a feed-forward back-propagation network with semilinear units. Con-
ventional back-propagation networks are deterministic. Since we need explorative capabilities,
we introduce a differentiable probability distribution for C’s outputs: Each output unit is re-
placed by two units, one computing the mean and the other computing the variance of a
random number generator which provides the final output of the corresponding probabilistic
unit. Now we may apply Williams’ method of ‘back-propagation through random number
generators’ [19].
Note that both C and M may be replaced by recurrent networks.

Making Two Networks out of Three

To simplify the whole system we may collapse the three-network system above into a similar
two-network system. We introduce a network M AC' which at the same time fulfills the task
of the of the Model network and the Adaptive Critic above. M AC receives as an input
the current input and output of C. Instead of predicting differences between successive
critic predictions, M AC learns to predict the critic output itself, by looking at its own next
prediction (as feed-forward adaptive critics always should do): M AC’s error function at time
tis

Pt,v(t) - ’7Pt+1,7)(t) - R(t + 1)a

where P, ;) is M AC’s prediction based on the controller input and output at time ¢ and
M AC’s weight-vector v(s) at time s, R(t) is the external reinforcement vector at time ¢, and
0 < v < 1 is the discount factor for avoiding predictions of infinite sums. (Thus M AC' takes
over the function of the critic). Errors for the controller are generated analogously to the
three-network system described in the last subsection. Since M AC does not evaluate just a
state but a state/action pair, it is similar to the approaches described in [16] and [5].

MAC and C may be recurrent: Here is the point where the current report and [12]
converge. In [12] (in the section on ‘useful extensions’) a detailed description of an extension
of the C/M AC approach is given which is based on two interacting fully recurrent networks.



Networks adjusting networks 9

One of these networks is used partly for predicting the next controller inputs and partly for
predicting the sum of future cumulative reinforcement vectors.

Pole Balancing with a Vector-Valued Adaptive Critic

The task we chose was to test the ideas of the preceeding section to a pole balancing task
described in [1]. Programming and tests were conducted by Klaus Bergner, a student at
TUM.

The outputs of the control network served to control forces applied to a cart to which
a rigid pole was hinged. The cart was able to move on a one-dimensional track. The cart
pole system was modeled by the equations given in the appendix. The task was to learn to
balance the pole as long as possible without hitting the edges of the track.

Unlike with many other pole balancing tasks, there was no teacher to give the desired
outputs at given time ticks. The only goal information available to the system was negative
reinforcement whenever one of the critical conditions above was violated, which also meant
the end of the current ‘episode’. Within an episode the external reinforcement vector was
equal to 0, so the system faced a spatio-temporal credit assignment task.

Following [1] we made the task more difficult than the similar task described in [3], where
a prewired decoder was used to provide binary 162-dimensional input to a single-unit ‘net-
work’, with all components being zero except for one. Instead the input was real-valued, and
additionally scaled in an asymmetric manner (see appendix), in order to force the system to
discover a non-trivial internal representation by itself. (Using the input variables directly,
without scaling, makes the task easier [1]. Anderson identifies the reason as a symmetry of
optimal actions referring to positive and negative values of the state variables.)

Both C' and M AC were standard 3-layer feed-forward networks. C had 4 input units for
the 4 “visible’ scaled state variables z, i, 6, (defined in the appendix). In addition, C' had 5
logistic hidden units and one output unit. C’s output unit was probabilistic and consisted of
one linear unit (with slope 1) for mean generation, one linear unit (with slope 1) for variance
generation, and a random number generator. At a given time, the contribution of the variance
generator to the final output was its current activation multiplied by

1
~in(— 1),

where rnd was a random variable uniformly distributed between 2}—6 and 1. At a given time,
the activation of the output unit was interpreted as the force (measured in Newtons) to be
applied to the cart.

MAC had 5 input units (one for C’s output, 4 for the scaled state variables), 5 logistic
hidden units and 4 linear output units (with slope 1) for predicting four different kinds of
‘pain’: ‘cart bumps against left edge’, ‘cart bumps against right edge’, ‘pole angle exceeds
maximal value’, and ‘pole angle below minimal value’. In case of failure the ‘pain contribution’
for the corresponding prediction was 1.0. An additional ‘true’ unit which was always on was
connected to all non-input-units of the C'/ M AC-system in order to provide a modifiable bias.
For scaling reasons there was a connection with a fixed weight of 0.1 between C’s output unit
and M AC’s corresponding input unit. Of course, this fixed weight was taken care of during
the error-propagation phases from M AC down into C.

At the beginning of each episode, z was randomly initialized between -2.4m and +2.4m, 6
was randomly initialized between -0.21 and 0.21, & was randomly initialized between -1.5m/s



Networks adjusting networks 10

and +1.5m/s, and 0 was randomly initialized between -2.0/s and 4+2.0/s. Between two time
steps C’s input changed according to a simulation of the cart-pole system by Euler’s method
with a time step of 0.02s.

C’s learning rate was equal to 100, M AC’s learning rate was equal to 0.2, the discount
factor v was equal to 0.95. Weights were randomly initialized between —0.05 and 0.05. Five
test runs were conducted. The episodes needed to achieve the first episode of more than
30000 time ticks were counted. (If output actions were selected randomly, then the average
time until failure was less than 20 time steps. The longest run reported by Anderson [1] took
28407 time steps, more than 7000 failures had to be experienced to achieve that result.)

The results of the five test runs were 713, 486, 536, 614, and 513.

Within less than 800 failures the system always produced an episode with more than
30000 time steps balancing time. Similar results with a one-dimensional critic could not be
obtained.

Using the input variables directly (without scaling) led to even better results: Here the
corresponding five numbers were 174, 180, 144, 119, and 155.

It is expected that the concept of multi-dimensional M AC’s will prove to be superior,
particularily when it comes to complex tasks where there are multi-dimensional action vectors
and multi-dimensional ‘pain’ or ‘pleasure’ vectors. We have started to apply vector-valued
M AC’s to industrial robot control.

An Approach to Local Supervised Learning in Recurrent Net-
works

In this section we propose a local learning scheme for supervised learning in continually
running recurrent networks, where each unit at each time receives an individual error signal.
The method is based on back-propagation (BP) [17] in recurrent networks unfolding in time
[7]. The global error measure to be minimized is the sum of all errors received at the output
units over time. The important difference will be that the method is local in space and time,
while conventional BP is not. In conventional BP each unit needs a stack for remembering
past activations which are used to compute contributions to weight changes during the error
propagation phase. Starts and ends of sequences have to be indicated by an external teacher.

Instead of allowing unlimited storage capacities in the form of stacks, we introduce a
second adaptive but static network (again termed the ‘critic’). Its task is to associate states
of the recurrent (primary) network with error-vectors.

The behavior of both interacting networks can be described like this: Activations spread
through the primary network in the same manner as with conventional BP. At each discrete
time tick the critic receives as input the state vector of the non-input units of the primary
network. The sum of the critic’s output and the error observed at certain output-units is used
as an error-vector. This error-vector is propagated backwards through the primary network,
but only one step ‘back into time’. (So each unit of the primary network has to store its
last activation.) The involved weights are changed immediately afterwards, assuming that
the learning rate is sufficiently small to avoid instabilities. (Immediate weight changes are
also employed by Williams and Zipser [22] who tested another learning algorithm for fully
recurrent networks - first described by Robinson and Fallside [6] - which is local in time but
not in space.) Immediate weight changes at the expense of deviating from true gradient
descent make it unnecessary to accumulate a sum of weight changes for each weight,



Networks adjusting networks 11

The new error-vector received at the non-input units after the one-step back-propagation
phase, becomes associated with the last state of the primary network. This association has
to be done by the static learning algorithm of the critic, which can be a Boltzmann machine,
or a feed-forward BP network, or something else.

A critical assumption of this scheme is that the state of the non-input units at a given
time uniquely represents the history which led to this state. Two different histories leading
to the same internal state cannot be distinguished by the critic. In such cases it is likely that
incorrect error vectors are one-step-back-propagated during further training. A self-healing
effect could be that weight modifications caused by this process lead to new errors which
in turn split ‘critical’ states into two or more distinguishable states representing different
histories. However, the precise nature of the interactions between two networks like those
described above is currently unclear.

The advantage of the scheme is that it is both local in space and local in time: At
every time tick the system in principle performs the same local operations, there is no need
for storing past activations (except for the last ones), and there is no such thing as epoch
boundaries.

For several reasons the method does not implement exact gradient descent. Two of them
have been mentioned above: There are continuous weight changes, and different histories
leading to the same state will cause incorrect error vectors. Another (pragmatic) reason is
that the critic often will not exactly mirror the relations between primary states and error
vectors, since its learning algorithm will not be perfect either. ‘Similar’ primary states will
produce ‘similar’ error-vectors, where the measure of similarity depends on the complexity of
the critic. It remains to be verified whether such a learning scheme will face serious problems
or whether the inertia of the static network could even lead to beneficial effects, comparable to
the effects induced by momentum terms in conventional BP. In some preliminary experiments
with a constrained linear critic (modified with the delta-rule) the system sometimes learned,
but more often failed to learn a dynamic task (the dynamic delayed XOR problem as described
in [22]). An interesting point is, again, that the linearity of the critic did not necessarily
prevent the recurrent network from eventually solving its task. Yet it is expected that a
non-linear critic will lead to better performance, since in general the error is a non-linearily
separable function of the primary system’s states.

Conclusion

The common aspect of the methods described above is that they all include a component
which learns to associate states of a control network with appropriate error information, in
order to allow goal directed weight changes in the control network.

A main motivation behind the presented ideas was the desire for learning algorithms
local in space and time. A related step in that direction was undertaken in [9], where a
completely local learning method for neural networks based on Holland’s bucket brigade was
described. Unlike the methods described above, the ‘Neural Bucket Brigade’ does not depend
on explicit evaluation of complete activation states at any time. A potential drawback of this
‘weaker’ approach was a great sensibility to fluctuations of activation at the unit level. The
introduction of a network which judges the whole state of a recurrent network was partly
motivated by the desire to escape the instabilities caused by such unit-level fluctuations.

I believe that the concept of network-adjusting networks can be helpful in a variety of



Networks adjusting networks 12

contexts. The main idea is: A system which has to learn to perform some task should build a
model of what is wrong with its current performance. It should use the hypotheses generated
by the model to change its behavior. A model which does not lead to improved performance
has to be discarded or at least modified such that it generates better hypotheses concerning
the successes or failures to be expected.

Acknowledgements

Thanks to Klaus Bergner for conducting the pole balancing experiments. Thanks to Mark
Ring for providing useful comments on a draft of the paper.

Appendix: Details of Cart-Pole Simulation

The cart-pole system, taken from [3], [14], and [1], was modeled by the equations

— F—mlf?sinf+p.sgn(z) pipl

i gsinf + cosf P -
B l(i _ mcosQG) ’
3 Mme+m

5 F 4+ ml(2sinf — Gcosh) — pesgn(z)
N Me+ M

where —0.21 < 6 < 0.21 (angle of pole with the vertical), —2.4m < z < 2.4m (position of
cart on track), g = 9.8%7 (gravitational acceleration), m. = 1kg (mass of cart), m = 0.1kg
(mass of pole), I = 0.5m (half pole length), p. = 0.0005 (coefficient of friction of cart on
track), pp, = 0.000002 (coefficient of friction of pole on cart), F' € [-25N,25N] (force applied
to cart’s center of mass, parallel to track). (Note that there is a typing error in the equations
given in [3], [14], and [1]: There the gravitational constant is given as g = —9.875 ).

: : 57— 2424 3 _ 415 g _ 64021 4 _ 642
The scaled input variables were z = 255=, 2 = 552, 0 = 5=, 0 = ==,

References

[1] C. W. Anderson. Learning and Problem Solving with Multilayer Connectionist Systems.
PhD thesis, University of Massachusetts, Dept. of Comp. and Inf. Sci., 1986.

[2] A. G. Barto and P. Anandan. Pattern recognizing stochastic learning automata. IEEE
Transactions on Systems, Man, and Cybernetics, 15:360-375, 1985.

[3] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that
can solve difficult learning control problems. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-13:834 846, 1983.

[4] M. I. Jordan. Supervised learning and systems with excess degrees of freedom. Technical
Report COINS TR 88-27, Massachusetts Institute of Technology, 1988.

[6] M. I. Jordan and R. A. Jacobs. Learning to control an unstable system with forward
modeling. In Proc. of the 1990 Connectionist Models Summer School, in press. San
Mateo, CA: Morgan Kaufmann, 1990.



Networks adjusting networks 13

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

A. J. Robinson and F. Fallside. The utility driven dynamic error propagation network.
Technical Report CUED/F-INFENG/TR.1, Cambridge University Engineering Depart-
ment, 1987.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations
by error propagation. In Parallel Distributed Processing, volume 1, pages 318-362. MIT
Press, 1986.

A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal
on Research and Development, 3:210 229, 1959.

J. Schmidhuber. The Neural Bucket Brigade: A local learning algorithm for dynamic
feedforward and recurrent networks. Connection Science, 1(4):403-412, 1989.

J. Schmidhuber. Additional remarks on G. Lukes’ review of Schmidhuber’s paper ‘Re-
current networks adjusted by adaptive critics’. Newral Network Reviews, 4(1):43, 1990.

J. Schmidhuber. Learning algorithms for networks with internal and external feedback.
In D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, editors, Proc. of
the 1990 Connectionist Models Summer School, pages 52—61. San Mateo, CA: Morgan
Kaufmann, 1990.

J. Schmidhuber. Making the world differentiable: On using fully recurrent self-supervised
neural networks for dynamic reinforcement learning and planning in non-stationary en-
vironments. Technical Report FKI-126-90 (revised), Institut fiir Informatik, Technische
Universitat Miinchen, November 1990. (Revised and extended version of an earlier report
from February.).

J. Schmidhuber. Recurrent networks adjusted by adaptive critics. In Proc. IEEE/INNS
International Joint Conference on Neural Networks, Washington, D. C., volume 1, pages
719 722, 1990.

R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis,
University of Massachusetts, Dept. of Comp. and Inf. Sci., 1984.

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 3:9 44, 1988.

C.J.C.H Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Oxford,
1989.

P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behav-
toral Sciences. PhD thesis, Harvard University, 1974.

P. J. Werbos. Building and understanding adaptive systems: A statistical/numerical
approach to factory automation and brain research. IEFEE Transactions on Systems,
Man, and Cybernetics, 17, 1987.

R. J. Williams. On the use of backpropagation in associative reinforcement learning. In
IEEE International Conference on Neural Networks, San Diego, volume 2, pages 263—
270, 1988.



Networks adjusting networks 14

[20] R. J. Williams. Toward a theory of reinforcement-learning connectionist systems. Tech-
nical Report NU-CCS-88-3, College of Comp. Sci., Northeastern University, Boston, MA,
1988.

[21] R. J. Williams and Leemon C. Baird. Draft: A mathematical analysis of actor-critic
architectures for learning optimal controls through incremental dynamic programming.
Technical report, College of Comp. Sci., Northeastern University, Boston, MA, 1990.

[22] R. J. Williams and D. Zipser. Experimental analysis of the real-time recurrent learning
algorithm. Connection Science, 1(1):87 111, 1989.



