
Networks Adjusting NetworksTechnical Report FKI-129-90, 1990J�urgen Schmidhuber�Institut f�ur InformatikTechnische Universit�at M�unchenArcistr. 21, 8000 M�unchen 2, Germanyschmidhu@tumult.informatik.tu-muenchen.deRevised November 1990AbstractThis paper describes extensions of previous `adaptive critics' which have been one-dimensional, acyclic, and suited only for feed-forward controllers. The extensions addressthe following issues:1. Feed-forward adaptive critics for fully recurrent probabilistic control nets.2. Recurrent adaptive critics.3. Vector-valued adaptive critics based on a system identi�cation component.Furthermore an idea is described for approximating recurrent back propagation witha 3-network method which is local in time.In one experiment a linear adaptive critic adjusts a recurrent network such that it solvesa non-linear task (a `delayed XOR'-problem). In another experiment a four-dimensionaladaptive critic quickly learns to solve a complicated pole balancing task.IntroductionNote: This is the revised and expanded version of an earlier report from February 1990.Reinforcement learning can be applied in cases for which supervised learning is not de-signed, namely, when there is no well-informed instructive teacher to provide target outputsfor each time tick, but only an evaluative teacher who sometimes states whether a systemcontrolled by the network is in a desireable state or not.A few methods are designed for reinforcement learning with recurrent neural networks,including `extended REINFORCE' algorithms [20], the `Neural Bucket Brigade Algorithm'[9], and model-building recurrent neural controllers based on system identi�cation (e.g. [11]).None of these algorithms includes an adaptive critic component, although adaptive critics haveproven to be very useful in the case of feed-forward networks [3][14][1]. Adaptive critics arebased on `Temporal Di�erence (TD-) Methods' [15] and are closely related to concepts fromdynamic programming. TD-methods use di�erences of successive predictions about future�Research supported by a scholarship from SIEMENS AG1

Networks adjusting networks 2events to generate error signals for the predictor. Thus TD-methods are an example of `self-supervised' learning. With adaptive critics, the TD-error signals also serve as reinforcementsignals for a neural controller.One of the adaptive critic extensions below may be viewed as an application of TD-methods [15] to the temporal evolution of recurrent networks. Another extension of theadaptive critic principle combines `gradient descent through a frozen model network' with avector-valued adaptive critic. (Previous adaptive critics have been scalar). The scheme is in-tended to provide better scaling for multi-dimensional actions and sensory `pain' or `pleasure'perceptions (e.g. for robot control).It must be noted that no theory of adaptive critics exists so far. (The existing theory ofTD-methods does not address the on-line learning problems of reinforcement learning systemsbased on TD-methods.) Thus it remains unclear under which conditions on-line algorithmsbased on the adaptive critic principle actually converge to the desired solutions. However,�rst steps towards a theory of on-line learning actor/critic systems have been made recently[21].Locality in Space and TimeAn important aspect of the algorithms described in this paper is their applicability to on-linelearning tasks. There is no need for storing past activations except for the most recent ones.Yet the credit assignment process during training can in principle bridge arbitrary time lags.Locality in Space and Time. In this paper a learning algorithm for dynamic neural net-works is said to be local in time if for given network size (measured in number of connections)during on-line learning the peak computation complexity at every time step is O(1), forarbitrary durations of sequences to be learned.A learning algorithm for dynamic neural networks is said to be local in space if duringon-line learning for limited durations of learned sequences and for arbitrary network sizes(measured in number of connections) and for arbitrary network topologies the peak compu-tation complexity per connection at every time step is O(1).A learning algorithm for dynamic neural networks is said to be local if during on-linelearning for arbitrary durations of sequences to be learned and for arbitrary network sizes(measured in number of connections) and arbitrary network topologies the peak computationcomplexity per connection at every time step is O(1).For example, the `unfolding in time' method (e.g. [7]) is not local in time. The IID-Algorithm [6] (also called the RTRL-Algorithm in [22]) is local in time but not in space.The �rst algorithm to be considered below performs only computations local in space andtime. The second algorithm employs a supervised learning algorithm for recurrent networksand is local in time, but not in space. The approach to supervised learning in recurrentnetworks again is local in space and time.A TD-algorithm for Reinforcement Learning in Dynamic Re-current NetworksHere we describe the discrete time version of an algorithm for adjusting a recurrent networkin order to let it solve tasks by delayed reinforcement learning (i. e. tasks where an external

Networks adjusting networks 3teacher indicates only once in a while whether the system is in a desireable state or not,without providing detailed knowledge about the desired outputs at each time tick).The algorithm can be viewed as an application of `Temporal Di�erence Methods' (TD-methods) [15] to the temporal evolution of recurrent networks. The fully recurrent controlnetwork consists of linear input units and binary probabilistic non-input units. Its statevector at time t is called x(t). We consider the case where the learning phase is dividable into`episodes'. An episode starts with the initialization of the system's activations and is �nishedwhen the �nal reinforcement, R, becomes known. Here is a description of the algorithm:First all weights are randomly initialized with real values.For all episodes:In the beginning of each episode, at the �rst time tick, the activations of input units of therecurrent control network are initialized with values determined by sensory perceptions fromthe environment, and the activations of hidden and output units are initialized with 0. For allfollowing time ticks, until there is external reinforcement R (a real number) indicating failureor success :At a given time tick t:1. The critic (a static network with one output) receives as input the complete activationvector x(t� 1) of all units of the control network. The dimensionality of the input vector ofthe critic is therefore equal to the number of units in the control network. Its one-dimensionaloutput, r, is interpreted as a prediction of the �nal reinforcement to be received in the future[3][14][1]. In the case of a linear critic, its output is given by r = xT (t� 1)v(t), where v(t) isthe critic's current weight vector.2. The control network performs one update-step: Each probabilistic non-input unit isums its weighted inputs. This sum is passed to the logistic function l(x) = 11+e�x whichgives the probability that the activation xi(t) becomes 1 or 0. Each unit i also stores its lastactivation xi(t� 1). Output units may cause an action in the environment, this may lead tonew activations for the input units. So besides the internal feedback, there may exist externalfeedback through the environment.3. If there is external reinforcement R (which indicates the end of the current episode)then the variable r0 is set equal to R.Otherwise r0 is de�ned to be a new estimation of �nal reinforcement, obtained by letting thecritic evaluate the new state of the control network. In case of a linear critic r0 = xT (t)v(t).Using its static learning algorithm (e.g. the generalized delta rule) the critic associates thelast activation vector x(t� 1) of the recurrent network with r0, thus `transporting expectationback in time' for one time step. So the critic's error is given by r0 � r. Its weight vector isupdated according to the rules of gradient descent; the result is the new weight vector v(t+1).4. Each directed weight wij(t) from unit i to unit j of the recurrent network is immediatelyaltered according to �wij(t) = �(r0 � r)xi(t� 1)xj(t) (with � being a positive constant), thusencouraging (or discouraging) the last transition.The di�erences computed by the critic determine the learning rate for a Hebb-like rule [13].State transitions from states associated with low expectation of reinforcement leading to stateswith a higher evaluation are encouraged. State transitions from states associated with highexpectation of reinforcement leading to states with a lower evaluation are discouraged. So the

Networks adjusting networks 4learning algorithm implements Samuel's principle for delayed reinforcement, as described inthe context of learning to play checkers [8]: \We are attempting to make the score, calculatedfor the current board position, look like that calculated for the terminal board position of thechain of moves which most probably will occur during actual play."To use the terminology of continuous time: The temporal derivative of the expectation offuture reinforcement is the actual reinforcement.It should be noted that the learning rule of step 4 is only the most simple representativeof a set of applicable reinforcement learning rules. For instance, the learning rule may bemodi�ed such that unlikely transitions are credited more strongly [1]:4wij(t) = �(r0 � r)xi(t� 1)(xj(t)� P (xj = 1 j x(t� 1); w(t � 1)));where w(t� 1) is the last weight vector. Another candidate for the learning rule in step 4 isBarto and Anandan's AR�P rule [2].An Experiment: Delayed XOR with Stationary InputsIn a simple experiment we wanted a completely recurrent network to solve a delayed XORtask with static inputs. The critic consisted of a single linear unit adapted by the delta-rule.For the duration of one episode, two of three input units of the control network were clampedwith randomly chosen stationary binary values, the third input unit was set to 1, thus servingas a threshold provider. The task for the control network was to run for a prede�ned number,k, of time ticks and then to emit the XOR of the two random inputs in a single output unit.The learning scheme depicted above led to successful learning of this task, for various numbersof hidden units and for various time delays. For instance, test runs were conducted with arandom weight initialization between �0:1 and 0:1, k = 3, 3 hidden units, and with both thelearning rate for the critic and � set equal to 0.2. In some test runs, about 2000 trainingepisodes per pattern led to about 99 percent correct classi�cations. In these cases, by makinga deterministic network out of the stochastic network (i.e. by modifying the activation ruleafter the learning phase such that always the most likely activations were selected) 100 percentcorrect classi�cations were obtained.Note that a linear critic was su�cient to achieve this result, even though the task to besolved was of the `non-linearly separable' type. This is possible because the task of the criticis somewhat easier than the task of the recurrent non-linear network. The non-linear networkhas to implement the XOR-mapping, while the critic only has to implement the mappingfrom network states to future reinforcement. In general the mapping from network states toreinforcement can be a non-linearly separable function by itself. However, if the recurrentnetwork already has learned to produce the correct responses to a subset of the possible inputpatterns, the critic's task becomes easier. In fact, after a perfect solution has been found,the critic's output becomes trivial: In that case, as long as the recurrent network runs, thecritic's output always equals the �nal reinforcement, which is 1. This �nal trivial mappingcan be implemented with simply a heavy-weighted connection from the unit that is alwayson to the critic. In fact, this kind of connection was exactly what was observed in some casesafter the training phase.

Networks adjusting networks 5Di�erences to Anderson's system.It is worth noting some di�erences to Anderson's system [1]. In contrast to Anderson we didnot use a back-propagation network but a single linear unit for the critic. We also did notuse a static feed-forward network for computing output actions, but a continually runningrecurrent network. We also did not use di�erent learning rules for hidden and output units.

Networks adjusting networks 6Finally, while Anderson's time ticks involve multi-layer activation spreading and backpropagation of errors, the system described above performs only one-layer operations withinone tick. (Here we view the update of the recurrent network as a one-layer operation.) Sothe basic operations performed by our system are much simpler than the basic operationsof Anderson's. Note that there is a delay of at least 2 time ticks between inputs that haveto be transformed in a non-linear fashion, and the corresponding actions. With reactiveenvironments this means that a new input can be available before the response to the lastone is computed.Recurrent CriticsThere are tasks where a linear or a static feed-forward critic is not su�cient. But why shouldnot the critic's own output directly depend on past states of the recurrent reinforcement learn-ing system? Although the control network is able to memorize information about past statesby means of its recurrent links, one should expect advantages by introducing a continuallyrunning, self-supervised recurrent critic. We now describe one scenario for such a systemconsisting of two interacting recurrent networks. The basic principle is similar to the one ofthe algorithm described in the �rst section. However, the algorithm aims at maximizing thecumulative sum of reinforcement to be received at all future times [14].There is a continually running recurrent control network with external and internal feed-back, and a critic whose task is to predict the cumulative sum of (discounted) reinforcementto be received in the future. However, now the critic itself is a continually running recurrentnetwork whose input at a given time is the complete current state of the control network(including the current environmental input). One of the critic's non-input units is interpretedas the predictive output.The critic again learns in a `self-supervised' manner. Its learning algorithm should belocal in time, so the on-line version [22] of the IID-Algorithm [6] can be applied. Accordingto TD-methods, the desired value for the critic's output unit at a given time tick is given bythe sum of the external reinforcement and its own (discounted) output at the next time tick.The critic's error is also the reinforcement for the reinforcement learning algorithm of thecontrol network. The latter needs to consider only the last and the present state, as above,but it also might be an on-line version of Williams' `extended REINFORCE' algorithms [20].Here is the description of the algorithm:First, all weights are randomly initialized with real values.For all episodes:In the beginning of each episode, at the �rst time tick, the activations of input units ofthe reinforcement learning control network are initialized to values determined by sensoryperceptions from the environment, and the activations of the probabilistic hidden and outputunits are initialized to 0. All unit activations of the recurrent critic also are initialized with0. The dimensionality of the input vector of the critic is equal to the number of units in thecontrol network. The critic receives as input the complete activation vector of all units ofthe recurrent network, and performs one initializing update step: Each non-input unit sumsthe weighted activations of its source units and passes the sum through a sigmoid function toobtain its activation. One of the critic's units is called its output unit. The variable r is set

Networks adjusting networks 7equal to the activation of this output unit and is interpreted as a prediction of the cumulativediscounted reinforcement to be received in the future.For all following time ticks:At a given time tick t:1. The control network performs one update-step: Each probabilistic non-input unit i sumsits weighted inputs, this sum is passed to the logistic function which gives the probability thatthe activation xi(t) becomes 1 or 0. Each unit i also stores all information needed by thereinforcement learning algorithm to be applied in step 3. Output units may cause an actionin the environment, this may lead to new activations for the input units.2. The critic performs one update step. Its new activations depend on x(t) and on pastactivations of its hidden and output units.The variable r0 is de�ned to be the sum of the current external reinforcement R(t) and thenew estimation of �nal reinforcement, obtained by multiplying the value P(t) of the critic'soutput unit with a discount factor 0 <
 < 1: r0 :=
P (t) +R(t).The error for the critic's output at time t� 1 is given by r0� r. Credit assignment for thecritic takes place immediately according to Williams and Zipser's version [22] of Robinson'ssupervised learning algorithm [6].3. The critic's error at the same time is the reinforcement for the reinforcement learningalgorithm of the reinforcement learning network.4. r is set equal to P (t).Again the computation of error signals for the critic's output is very much inspired bySutton's TD-methods. TD methods, however, require two successive predictions during thesame time tick in order to remove dependencies on weight changes. Since the recurrent critic'soutput already depends on past states (by means of its internal feedback) and also on pastweights, the scheme described above makes only one critic update at a time. In [12] (in thesection on `useful extensions') a more complicated recurrent critic based on `gradient descentthrough a frozen model network' is described (see also the next section).Vector-Valued Adaptive Critics and System Identi�cationThe critic above as well as adaptive critics described by other authors are one-dimensional.Their prediction refers to a single scalar value, namely, the cumulative future reinforcement.One single internal reinforcement signal is used to modify all controller weights in an unspeci�cfashion. There are no `individually tailored reinforcement signals' [20].No di�erence is made between di�erent kinds of reinforcement. This seems to contrastwith the reinforcement signals of biological systems. The latter usually make use of a widevariety of `pain' and `pleasure' sensors. We will now introduce a vector-valued adaptive criticsystem which includes an adaptive model of the dependency of internal reinforcement vectorson (possibly multi-dimensional) ouput actions.Which are the advantages to be expected by such a system? To speak intuitively: Adetailed model of the expected consequences of certain actions should allow their informedmodi�cation. If one knows how much in
uence a particular output node had on which com-ponents of the internal reinforcement vector, one can use this knowledge for `individuallytailored' modi�cations of the controller weights. Furthermore, it may be easier to learn a

Networks adjusting networks 8mapping from states/actions to vector-valued reinforcement than to learn a mapping fromstates/actions to the corresponding scalar reinforcement.Three Interacting NetworksOne possibility for implementing a detailed model of actions and corresponding internal rein-forcement is the following one: We introduce a third feed-forward network M [10] which at agiven time step sees the input vector and the output vector of the controller C. The systemto be identi�ed by M is the process which maps state/action pairs to internal reinforcementvectors. At a given time M is trained to predict the di�erence between the current and thenext prediction of the critic. This di�erence is equal to the current internal reinforcementvector. Using back-propagation, the di�erence between the desired and the actual internal re-inforcement vector is propagated back throughM and through C's output units down into C.C's output units are thereby considered to be the hidden units of the model/controller com-bination (C's outputs are identi�ed with the corresponding inputs of M .) Only C's weightschange, M 's weights remain �xed. (This is the approach of `gradient descent through frozenmodel networks', see e.g. [4] and [18]). However, to be able to use the back-propagationmethod we have to get rid of the `all-or-nothing'-character of the probabilistic units usedabove, so we make C a feed-forward back-propagation network with semilinear units. Con-ventional back-propagation networks are deterministic. Since we need explorative capabilities,we introduce a di�erentiable probability distribution for C's outputs: Each output unit is re-placed by two units, one computing the mean and the other computing the variance of arandom number generator which provides the �nal output of the corresponding probabilisticunit. Now we may apply Williams' method of `back-propagation through random numbergenerators' [19].Note that both C and M may be replaced by recurrent networks.Making Two Networks out of ThreeTo simplify the whole system we may collapse the three-network system above into a similartwo-network system. We introduce a network MAC which at the same time ful�lls the taskof the of the Model network and the Adaptive Critic above. MAC receives as an inputthe current input and output of C. Instead of predicting di�erences between successivecritic predictions, MAC learns to predict the critic output itself, by looking at its own nextprediction (as feed-forward adaptive critics always should do): MAC's error function at timet is Pt;v(t) �
Pt+1;v(t) �R(t+ 1);where Pt;v(s) is MAC's prediction based on the controller input and output at time t andMAC's weight-vector v(s) at time s, R(t) is the external reinforcement vector at time t, and0 <
 < 1 is the discount factor for avoiding predictions of in�nite sums. (Thus MAC takesover the function of the critic). Errors for the controller are generated analogously to thethree-network system described in the last subsection. Since MAC does not evaluate just astate but a state/action pair, it is similar to the approaches described in [16] and [5].MAC and C may be recurrent: Here is the point where the current report and [12]converge. In [12] (in the section on `useful extensions') a detailed description of an extensionof the C/MAC approach is given which is based on two interacting fully recurrent networks.

Networks adjusting networks 9One of these networks is used partly for predicting the next controller inputs and partly forpredicting the sum of future cumulative reinforcement vectors.Pole Balancing with a Vector-Valued Adaptive CriticThe task we chose was to test the ideas of the preceeding section to a pole balancing taskdescribed in [1]. Programming and tests were conducted by Klaus Bergner, a student atTUM.The outputs of the control network served to control forces applied to a cart to whicha rigid pole was hinged. The cart was able to move on a one-dimensional track. The cartpole system was modeled by the equations given in the appendix. The task was to learn tobalance the pole as long as possible without hitting the edges of the track.Unlike with many other pole balancing tasks, there was no teacher to give the desiredoutputs at given time ticks. The only goal information available to the system was negativereinforcement whenever one of the critical conditions above was violated, which also meantthe end of the current `episode'. Within an episode the external reinforcement vector wasequal to 0, so the system faced a spatio-temporal credit assignment task.Following [1] we made the task more di�cult than the similar task described in [3], wherea prewired decoder was used to provide binary 162-dimensional input to a single-unit `net-work', with all components being zero except for one. Instead the input was real-valued, andadditionally scaled in an asymmetric manner (see appendix), in order to force the system todiscover a non-trivial internal representation by itself. (Using the input variables directly,without scaling, makes the task easier [1]. Anderson identi�es the reason as a symmetry ofoptimal actions referring to positive and negative values of the state variables.)Both C and MAC were standard 3-layer feed-forward networks. C had 4 input units forthe 4 `visible' scaled state variables �x; �_x; ��; �_� (de�ned in the appendix). In addition, C had 5logistic hidden units and one output unit. C's output unit was probabilistic and consisted ofone linear unit (with slope 1) for mean generation, one linear unit (with slope 1) for variancegeneration, and a random number generator. At a given time, the contribution of the variancegenerator to the �nal output was its current activation multiplied by�ln(1rnd � 1);where rnd was a random variable uniformly distributed between 1216 and 1. At a given time,the activation of the output unit was interpreted as the force (measured in Newtons) to beapplied to the cart.MAC had 5 input units (one for C's output, 4 for the scaled state variables), 5 logistichidden units and 4 linear output units (with slope 1) for predicting four di�erent kinds of`pain': `cart bumps against left edge', `cart bumps against right edge', `pole angle exceedsmaximal value', and `pole angle below minimal value'. In case of failure the `pain contribution'for the corresponding prediction was 1.0. An additional `true' unit which was always on wasconnected to all non-input-units of the C/MAC-system in order to provide a modi�able bias.For scaling reasons there was a connection with a �xed weight of 0.1 between C's output unitand MAC's corresponding input unit. Of course, this �xed weight was taken care of duringthe error-propagation phases from MAC down into C.At the beginning of each episode, x was randomly initialized between -2.4m and +2.4m, �was randomly initialized between -0.21 and 0.21, _x was randomly initialized between -1.5m/s

Networks adjusting networks 10and +1.5m/s, and _� was randomly initialized between -2.0/s and +2.0/s. Between two timesteps C's input changed according to a simulation of the cart-pole system by Euler's methodwith a time step of 0.02s.C's learning rate was equal to 100, MAC's learning rate was equal to 0.2, the discountfactor
 was equal to 0:95. Weights were randomly initialized between �0:05 and 0:05. Fivetest runs were conducted. The episodes needed to achieve the �rst episode of more than30000 time ticks were counted. (If output actions were selected randomly, then the averagetime until failure was less than 20 time steps. The longest run reported by Anderson [1] took28407 time steps, more than 7000 failures had to be experienced to achieve that result.)The results of the �ve test runs were 713, 486, 536, 614, and 513.Within less than 800 failures the system always produced an episode with more than30000 time steps balancing time. Similar results with a one-dimensional critic could not beobtained.Using the input variables directly (without scaling) led to even better results: Here thecorresponding �ve numbers were 174, 180, 144, 119, and 155.It is expected that the concept of multi-dimensional MAC's will prove to be superior,particularily when it comes to complex tasks where there are multi-dimensional action vectorsand multi-dimensional `pain' or `pleasure' vectors. We have started to apply vector-valuedMAC's to industrial robot control.An Approach to Local Supervised Learning in Recurrent Net-worksIn this section we propose a local learning scheme for supervised learning in continuallyrunning recurrent networks, where each unit at each time receives an individual error signal.The method is based on back-propagation (BP) [17] in recurrent networks unfolding in time[7]. The global error measure to be minimized is the sum of all errors received at the outputunits over time. The important di�erence will be that the method is local in space and time,while conventional BP is not. In conventional BP each unit needs a stack for rememberingpast activations which are used to compute contributions to weight changes during the errorpropagation phase. Starts and ends of sequences have to be indicated by an external teacher.Instead of allowing unlimited storage capacities in the form of stacks, we introduce asecond adaptive but static network (again termed the `critic'). Its task is to associate statesof the recurrent (primary) network with error-vectors.The behavior of both interacting networks can be described like this: Activations spreadthrough the primary network in the same manner as with conventional BP. At each discretetime tick the critic receives as input the state vector of the non-input units of the primarynetwork. The sum of the critic's output and the error observed at certain output-units is usedas an error-vector. This error-vector is propagated backwards through the primary network,but only one step `back into time'. (So each unit of the primary network has to store itslast activation.) The involved weights are changed immediately afterwards, assuming thatthe learning rate is su�ciently small to avoid instabilities. (Immediate weight changes arealso employed by Williams and Zipser [22] who tested another learning algorithm for fullyrecurrent networks - �rst described by Robinson and Fallside [6] - which is local in time butnot in space.) Immediate weight changes at the expense of deviating from true gradientdescent make it unnecessary to accumulate a sum of weight changes for each weight,

Networks adjusting networks 11The new error-vector received at the non-input units after the one-step back-propagationphase, becomes associated with the last state of the primary network. This association hasto be done by the static learning algorithm of the critic, which can be a Boltzmann machine,or a feed-forward BP network, or something else.A critical assumption of this scheme is that the state of the non-input units at a giventime uniquely represents the history which led to this state. Two di�erent histories leadingto the same internal state cannot be distinguished by the critic. In such cases it is likely thatincorrect error vectors are one-step-back-propagated during further training. A self-healinge�ect could be that weight modi�cations caused by this process lead to new errors whichin turn split `critical' states into two or more distinguishable states representing di�erenthistories. However, the precise nature of the interactions between two networks like thosedescribed above is currently unclear.The advantage of the scheme is that it is both local in space and local in time: Atevery time tick the system in principle performs the same local operations, there is no needfor storing past activations (except for the last ones), and there is no such thing as epochboundaries.For several reasons the method does not implement exact gradient descent. Two of themhave been mentioned above: There are continuous weight changes, and di�erent historiesleading to the same state will cause incorrect error vectors. Another (pragmatic) reason isthat the critic often will not exactly mirror the relations between primary states and errorvectors, since its learning algorithm will not be perfect either. `Similar' primary states willproduce `similar' error-vectors, where the measure of similarity depends on the complexity ofthe critic. It remains to be veri�ed whether such a learning scheme will face serious problemsor whether the inertia of the static network could even lead to bene�cial e�ects, comparable tothe e�ects induced by momentum terms in conventional BP. In some preliminary experimentswith a constrained linear critic (modi�ed with the delta-rule) the system sometimes learned,but more often failed to learn a dynamic task (the dynamic delayed XOR problem as describedin [22]). An interesting point is, again, that the linearity of the critic did not necessarilyprevent the recurrent network from eventually solving its task. Yet it is expected that anon-linear critic will lead to better performance, since in general the error is a non-linearilyseparable function of the primary system's states.ConclusionThe common aspect of the methods described above is that they all include a componentwhich learns to associate states of a control network with appropriate error information, inorder to allow goal directed weight changes in the control network.A main motivation behind the presented ideas was the desire for learning algorithmslocal in space and time. A related step in that direction was undertaken in [9], where acompletely local learning method for neural networks based on Holland's bucket brigade wasdescribed. Unlike the methods described above, the `Neural Bucket Brigade' does not dependon explicit evaluation of complete activation states at any time. A potential drawback of this`weaker' approach was a great sensibility to
uctuations of activation at the unit level. Theintroduction of a network which judges the whole state of a recurrent network was partlymotivated by the desire to escape the instabilities caused by such unit-level
uctuations.I believe that the concept of network-adjusting networks can be helpful in a variety of

Networks adjusting networks 12contexts. The main idea is: A system which has to learn to perform some task should build amodel of what is wrong with its current performance. It should use the hypotheses generatedby the model to change its behavior. A model which does not lead to improved performancehas to be discarded or at least modi�ed such that it generates better hypotheses concerningthe successes or failures to be expected.AcknowledgementsThanks to Klaus Bergner for conducting the pole balancing experiments. Thanks to MarkRing for providing useful comments on a draft of the paper.Appendix: Details of Cart-Pole SimulationThe cart-pole system, taken from [3], [14], and [1], was modeled by the equations�� = gsin� + cos��F�ml _�2sin�+�csgn(_z)mc+m � �p _�mll(43 � mcos2�mc+m) ;�z = F +ml(_�2sin� � ��cos�)� �csgn(_z)mc +mwhere �0:21 < � < 0:21 (angle of pole with the vertical), �2:4m < z < 2:4m (position ofcart on track), g = 9:8ms2 (gravitational acceleration), mc = 1kg (mass of cart), m = 0:1kg(mass of pole), l = 0:5m (half pole length), �c = 0:0005 (coe�cient of friction of cart ontrack), �p = 0:000002 (coe�cient of friction of pole on cart), F 2 [�25N; 25N] (force appliedto cart's center of mass, parallel to track). (Note that there is a typing error in the equationsgiven in [3], [14], and [1]: There the gravitational constant is given as g = �9:8ms2).The scaled input variables were �z = z+2:44:8 , �_z = _z+1:53 , �� = �+0:210:42 , �_� = _�+24 .References[1] C. W. Anderson. Learning and Problem Solving with Multilayer Connectionist Systems.PhD thesis, University of Massachusetts, Dept. of Comp. and Inf. Sci., 1986.[2] A. G. Barto and P. Anandan. Pattern recognizing stochastic learning automata. IEEETransactions on Systems, Man, and Cybernetics, 15:360{375, 1985.[3] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements thatcan solve di�cult learning control problems. IEEE Transactions on Systems, Man, andCybernetics, SMC-13:834{846, 1983.[4] M. I. Jordan. Supervised learning and systems with excess degrees of freedom. TechnicalReport COINS TR 88-27, Massachusetts Institute of Technology, 1988.[5] M. I. Jordan and R. A. Jacobs. Learning to control an unstable system with forwardmodeling. In Proc. of the 1990 Connectionist Models Summer School, in press. SanMateo, CA: Morgan Kaufmann, 1990.

Networks adjusting networks 13[6] A. J. Robinson and F. Fallside. The utility driven dynamic error propagation network.Technical Report CUED/F-INFENG/TR.1, Cambridge University Engineering Depart-ment, 1987.[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representationsby error propagation. In Parallel Distributed Processing, volume 1, pages 318{362. MITPress, 1986.[8] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journalon Research and Development, 3:210{229, 1959.[9] J. Schmidhuber. The Neural Bucket Brigade: A local learning algorithm for dynamicfeedforward and recurrent networks. Connection Science, 1(4):403{412, 1989.[10] J. Schmidhuber. Additional remarks on G. Lukes' review of Schmidhuber's paper `Re-current networks adjusted by adaptive critics'. Neural Network Reviews, 4(1):43, 1990.[11] J. Schmidhuber. Learning algorithms for networks with internal and external feedback.In D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, editors, Proc. ofthe 1990 Connectionist Models Summer School, pages 52{61. San Mateo, CA: MorganKaufmann, 1990.[12] J. Schmidhuber. Making the world di�erentiable: On using fully recurrent self-supervisedneural networks for dynamic reinforcement learning and planning in non-stationary en-vironments. Technical Report FKI-126-90 (revised), Institut f�ur Informatik, TechnischeUniversit�at M�unchen, November 1990. (Revised and extended version of an earlier reportfrom February.).[13] J. Schmidhuber. Recurrent networks adjusted by adaptive critics. In Proc. IEEE/INNSInternational Joint Conference on Neural Networks, Washington, D. C., volume 1, pages719{722, 1990.[14] R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD thesis,University of Massachusetts, Dept. of Comp. and Inf. Sci., 1984.[15] R. S. Sutton. Learning to predict by the methods of temporal di�erences. MachineLearning, 3:9{44, 1988.[16] C.J.C.H Watkins. Learning from Delayed Rewards. PhD thesis, King's College, Oxford,1989.[17] P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behav-ioral Sciences. PhD thesis, Harvard University, 1974.[18] P. J. Werbos. Building and understanding adaptive systems: A statistical/numericalapproach to factory automation and brain research. IEEE Transactions on Systems,Man, and Cybernetics, 17, 1987.[19] R. J. Williams. On the use of backpropagation in associative reinforcement learning. InIEEE International Conference on Neural Networks, San Diego, volume 2, pages 263{270, 1988.

Networks adjusting networks 14[20] R. J. Williams. Toward a theory of reinforcement-learning connectionist systems. Tech-nical Report NU-CCS-88-3, College of Comp. Sci., Northeastern University, Boston, MA,1988.[21] R. J. Williams and Leemon C. Baird. Draft: A mathematical analysis of actor-criticarchitectures for learning optimal controls through incremental dynamic programming.Technical report, College of Comp. Sci., Northeastern University, Boston, MA, 1990.[22] R. J. Williams and D. Zipser. Experimental analysis of the real-time recurrent learningalgorithm. Connection Science, 1(1):87{111, 1989.

