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Abstract—The problem of maximizing weighted sum rate
in the MIMO multiple access channel with individual power
constraints is considered. The optimum is achieved by successive
interference cancellation, where the covariances are found by
iterative water-filling. As successive interference cancellation
implies long decoding delays, we consider linear approaches with
zero-forcing constraints. To avoid the associated non-convex and
combinatorial optimization, we allocate successively data streams
to users, while keeping transmit filters and user allocations of
previous steps fixed. The transmit filters are determined based
on two lower bounds for the weighted sum rate. The algorithms
converge to the optimum linear solution for infinite transmit
powers in many scenarios at low computational complexity.

I. INTRODUCTION

Weighted sum rate maximization constitutes an important
problem in wireless communication systems. By varying the
weights, different points on the convex hull of the attainable
rate region can be achieved. Furthermore, the weights can
consider priorities of the different users. In this paper, we
focus on the Multiple-Input Multiple-Output (MIMO) Multiple
Access Channel (MAC), where each user has an individual
power constraint. The optimum covariance matrices for the
weighted sum rate maximization in the MIMO-MAC can
be obtained with the well-known iterative water-filling algo-
rithm [1], [2]. However, it relies on the principle of Successive
Interference Cancellation (SIC), which implies long decoding
delays. We therefore use linear filters at the transmitters and
the receiver to mitigate the interference in this paper such that
all data streams can be decoded in parallel. By additionally
introducing zero-forcing constraints, the resulting power al-
location reduces to simple scalar water-filling. It seems that
the problem of weighted sum rate maximization with linear
transceivers has not been covered so far. A different problem
in the MAC, namely Signal-to-Interference-and-Noise-Ratio
(SINR) balancing, is considered in [3]. In this paper, however,
we do not restrict to single stream communication as in [3].
In contrast, for the MIMO broadcast channel, many algo-
rithms aiming at maximizing a weighted sum rate using
linear transceivers can be found in the literature. Some of
them can be applied straightforwardly to the MAC. When
the number of antennas at the base station is larger than the
total number of antennas at the user terminals, the concept
of Block Diagonalization [4] can be applied to the MAC as
well, where individual power constraints must be considered
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instead of the sum power constraint. When the base station
has less antennas, each user cannot get as many data streams
as it has antennas with zero-forcing constraints, leading to a
combinatorial optimization problem. To approach the optimum
solution as close as possible, greedy algorithms are used [5],
[6], [7]" in the broadcast channel, where the data streams are
successively allocated to users. The methods from [6], [7]
have been proposed for Multiple-Input Single-Output (MISO)
systems, the extension to MIMO is possible by fixing the filters
at the terminals a priori by the corresponding singular vectors
of the channel matrices as proposed in [8]. By furthermore
using the pseudo-inverse of the effective channel at the base
station as receive filters, the application of these algorithms to
the MAC is straightforward. In [5], the filters at the terminals
are included into the successive optimization, where in each
step the filters at the terminals for data streams allocated in
previous steps are kept fixed. These filters are determined
based on a lower bound for the weighted sum rate, whose
derivation is based on the power allocation in the broadcast
channel with a sum power constraint. As the power allocation
in the MAC with individual power constraints is different, the
bound cannot be used for the problem considered in this paper.
We therefore present algorithms in the following that succes-
sively allocate data streams to users in the MAC and determine
the corresponding transmit filters based on two novel lower
bounds for the weighted sum rate. The first bound is tighter,
but leads to a more complex optimization problem than the
second looser bound. The presented algorithms outperform the
straightforward extensions of greedy broadcast algorithms in
terms of performance and complexity.

II. SYSTEM MODEL

We consider a MIMO MAC with individual power con-
straints. The channel matrix of user k£ is denoted as Hj €
CMrxx Mk where Mgy, and My i, are the number of receive
antennas and the number of transmit antennas at user k,
respectively. We assume that all matrices H, are perfectly
known at the receiver, and the resulting transmit filters can be
perfectly signaled to the corresponding terminals.” The signal

'[7] considers only the case of equal weights for all users.
2The problem of feedback of precoders generally arises for the optimized
MAC.
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3, € C% received at the base station from the k-th user is
given by

K
S = GI,;IH]CTJCPES)Q + Z G?H@T@P? Sy + G?n, (1)
o
where s, € C* G} € C**Mv and 5y € CMe denote the
data vector and the receive filter for user k£ and the additive
white Gaussian noise, respectively. All components of the
noise vector have unit variance and are uncorrelated among
each other as well as with all signals. T € CMrorXd
denotes the beamforming matrix of user %, which has unit
norm columns. The power distribution over the data streams
of user k is collected in the diagonal matrix P; € R% ¥k,
where d;, denotes the number of data streams user k transmits.
Furthermore we do not apply SIC at the receiver, that is why all
other users are treated as interference in (1). In the following
we are considering the problem of maximizing the weighted
sum rate Zi;l i Ry with non-negative weights p in the
MIMO MAC under individual power constraints, where the
k-th user’s power limit is denoted as P, i.e.,

K
max E pe R = max
{Tw,Pr,Gr}r=1, {Tk,Pr,Gr}r=1

..... Kk:l
£
Zﬂklogz
S

st tr (TkPkTI,;I) = t(Py,) < Py, Vk. )

G?Gk + Zle GEH{T@P@T?HEG/C’

GG+ GEHgTePeT?H?Gk’

III. ALGORITHMS

Problem (2) constitutes a highly non-convex optimization
problem. In order to find a near optimum, but computationally
efficient solution to this problem, we propose to make the
following simplifications, similar to the ones proposed for the
broadcast channel with a sum power constraint in [5].

A. Zero-Forcing

As a first simplifying step we suppress the interference
between different users as well as between different data
streams of the same user completely by linear transmit and
receive signal processing. The filters at the receiver are then
given by the pseudo-inverse of the composite channel matrix,
i.e.,

GY B

1
H
HY .. 3

—Hf - (Hgmpﬂcomp)

N comp
H

Gk

where the composite channel matrix H .oy, is given by

1 1
Heomp = [HlTIPf ...HKTKPE(} —

where diag(e) constructs a diagonal matrix with its arguments.
Then the Signal-to-Noise-Ratio (SNR) of the j-th subchannel
computes according to

1 pj
SNR; = 2 = R 2
T Bl e frs,|

2

where e; denotes the j-th canonical unit vector and the
powers p; are determined by waterfilling [9] of the P, over
all subchannels of the corresponding user k. The pseudo-
inverse exists only, if dp < Mgy for all users k and
Zszl dr < Mpgx. As in most practical scenarios, setting
dy, = M, Vk does not fulfill the latter requirement, finding
that optimum allocation of data streams to users becomes a
combinatorial optimization problem.

B. Successive Allocation

To circumvent the exhaustive search for determining the op-
timum dj,, we propose to follow a greedy approach [5], [6], [7],
[10]. This implies that data streams are allocated successively
to users. Thus, we initially set all d,’s to zero, i.e., di, = 0, Vk.
In each step, the user to which a data stream is allocated to
and the corresponding transmit filter are determined such that
the increase in weighted sum rate becomes maximum, where
the direction of the transmit filters and user allocation from
previous steps are kept fixed. Mathematically the problem for
the allocation of the i-th data stream reads as

{m(i),t;} = argkntlax R\(,f,)SR(k,t), st.tt =1,  (5)

RsN)SR(kvt) =
i—1 D
. inax Zuﬂ(j) log, | 1+ . 1; 2 +
GIi=1, 0 ~ (21—
J=1 EJT |:Hcomp 7Hkt}
2
i logy | 1+ el
= (i—1)
‘ eiT |:Hc:>mp ,Hkti|
2
st Y pj < P VE (6)
Jim(5)=k

. . =~ (i—1
Note that for notational convenience the columns of H Eimp)

are not sorted user-wise as in (4) but stream-wise such that

= (i-1)

H,\, = [Hrty, . Hegnytioa]

m(i) € {1,...,K} is the user which the i-th data stream
is allocated to. In case R\(,é)SR(w(i),ti) is smaller than the
weighted sum rate obtained in the previous step, the allocation
is stopped and the user (i) will not receive a further data

A . 1 1 tream. Otherwise, d ;) is increased by one and T,y = t;

— Hempdiag (P7,..., Py, 4 S e, dri n() = ti

comp 18\ T K @ in case user 7(i) receives a data stream for the first time,
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otherwise T';(;) is enlarged by ¢; as a further column.
For ¢ = 1, (6) simplifies to

RS;R(kv t) = Hk Ing(l + PktHHEHkt).

Thus, each user’s rate is maximized by taking the left and
right singular vector belonging to the principal singular value
of that user’s channel matrix as receive and transmit vectors,
respectively. For ¢ > 1, however, Problem (5) is still non-
convex.

C. Maximization of a Lower Bound

To simplify (5) further, we propose to use a lower bound
for the weighted sum rate, which is derived in the appendix
and is given by

i—1
RS’»Z/)SR(kvt) 2 R&SR,lb(kat) = ZMW(J') + bk
j=1

i—1
21 Ho(5) + Mk
=

. (([gg:‘,m;x ma] ) e [ﬁggm;aﬂktr)

log,

(N
The matrix §2;(k) is diagonal and given by
P (1) A (1) (F)
Pr1)
Qt(k) - P'-rr(ifl)d-rr(ifl)(k)
Pri-1)
P (di+1)
Py
_ | 92i-1()
= [ (k)| ®)
dj,j # k,

where d;(k) = . As only the denominator

dj +1,7=F.
in the argument of the logarithm in (7) depends on the transmit
filters, we first determine the transmit filters ¢; (k) for each user
k that maximize the lower bound for the weighted sum rate if
the ¢-th data stream is allocated to user k, i.e.,

ti(k) =
(i—1)
lItl2=1
Similar to [11], where the broadcast channel is considered,

1
we use the QR decomposition of Hfomp) =Q,_R;_1, and
obtain after some modifications

t;i(k) = argmax )
lIl2=1

tHHII;I(I— Qile? VH it
t" (i (k)1 + HYQ, RN 2 (R QL H ) ¢

where «;(k) has been implicitly defined in (8). Problem (9)
can be solved via a generalized eigenvalue problem. After

\H
argmin tr [([Hcomp ,Hkt} ) 2;_1(k) {Hizm;)’Hkt} ]

determining the transmit filters ¢;(k) for each candidate user,
these filters are used to compute the achievable weighted sum
rates for each user, where the accurate formula from (6) is
used, and the user 7(7) is finally chosen according to

(i) = argmax Rke (k, ti(k)).
k
To avoid the necessary generalized eigenvalue decompositions,
choosing transmit filters ¢;(k) according to

ti(k) = = argmaXtHHII;I(I - Qile?fl)Hkt
lItll2=1

(10)

maximizes a looser lower bound for the weighted sum rate.
That is because the denominator in (9) can be upper bounded
by

max (ai(k) + pr (HEH ) (RS20 (RTY))

which can be derived similarly as Equation (17) in [10], and
where p;(A) denotes the maximum eigenvalue of the matrix
A. Equation (10) leads to different transmit filters, but requires
the solution of an ordinary eigenvalue problem instead of a

" generalized eigenvalue problem for each candidate user.

IV. COMPLEXITY REDUCTION

From a computational point of view (generalized) eigen-
value decompositions are still cost-intensive. To avoid explict
computations of eigenvalues for all users in each step as re-
quired by (9) and (10), a user preselection can be applied sim-
ilar to the one proposed for weighted sum rate maximization
in the broadcast channel in [5]. During user preselection, users
are identified, which will not maximize the objective function
R\(;})SR(k,t) in step ¢ based on simple computations. For the
sake of simplicity, we use the lower bound R\(,j)SR n(k,t) as

an approximation of the objective function R&,)SR( t) for the
b _ =Q,_;Ri_1, we have

(@

comp

user preselection. With (9) and H

R\(N)SRlb(pl(Ck)) = ”nﬁax RWSR b ZNW(J) + bk

1—1

Z Har(5) T Hk
]_

tr (R;_}llni—l(k)R;—l) +oen

log,

which is a monotonically increasing function in
pl(Ck), where Cj = (Oél(k)I + Bk)_lAk,
A, = H!I - Q_,Q.)H, and B, =

HIQ, R 192, (k)R Q! H,. From [5, Appendix
Cl, p1(C}) can be bounded as follows:
tr(Ag)
Oéz(k) + tI‘(Bk)
Users ¢ with

< p1(Ck) < tr(Ayg). (1n

tr(A
R\(V)SRlb(tr(Aé)) < maXRWSRlb (m) (12)

Smax Rxs)R‘lb(Pl(Ck))
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will certainly not maximize R\(XZ,)SR’lb(pl(C ) with respect to k
as even with an upper bound for p; (C/) the objective function
is smaller than the maximum lower bound for the objective
function over all users. Hence users ¢, for which (12) holds,
can be excluded from the allocation with simple computations
of traces avoiding the numerically intensive determination of
eigenvalues and eigenvectors. Only the remaining users are
then considered for the allocation of the next data stream.
Despite the conservative bounds in (11), this kind of user
preselection turns out to be very effective in practice.

V. ASYMPTOTIC ANALYSIS

In this section we will show that in case the channel
matrices of all active users have full rank, the columns of the
channel matrices of all active users are linearly independent,
and the sum of transmit antennas of the active users is equal
to the number of receive antennas, the proposed successive
algorithms achieve the optimum solution to (2) in the limit
of infinite transmit powers P, = a3 P, with P — oo and
finite avg,. In [12], it is shown that the asymptotically optimum
data stream allocation is solely determined by the weights piy,
i.e., first the user with the highest weights receives as many
data streams as it has transmit antennas, then the user with
the second highest weight is treated the same way and so
forth until the number of allocated data streams is equal to
the number of receive antennas. In the asymptotic limit the
weighted sum rate in (6) is dominated by the terms depending
on P such that

i—1
Ry (k. t) ~ > (i) 1oga (P) + i logy (P),
j=1

as long as d; < My ; for all users j. Consequently in the
asymptotic limit the successive allocation proposed in this
paper will lead to the same data stream allocation as the
optimum. Additionally, in case the assumptions listed above
are fulfilled, the asymptotically optimum transmit covari-
ance matrices are scaled identity matrices, i.e., TkPkTH =
Py, /My . I. As shown in [5] for a similar filter computation
in the broadcast channel, the filters ¢; and t; with j # ¢
obtained from (9) or (10) are orthogonal to each other, if the
corresponding data streams are allocated to the same user,
ie., t;{ti = 0,Vm(i) = 7(j),Vi # j. As we are furthermore
considering the case that all active users receive as many
data streams as they have transmit antennas, the transmit
filters T';, are orthonormal, i.e., TkTIk{ = I. As additionally
water-filling converges to an equal power distribution in the
asymptotic limit, the transmit covariances obtained from our
algorithms are scaled identity matrices and thus asymptotically
optimum. To complete the proof of asymptotic optimality for
the case described above it remains to show that also the
receive filters G, from (3) are asymptotically optimum. In
general, using the MMSE filters Gy, = +/Pi/Mux (I +
Zfil HiH?PZ—/]VITX_,i)_lHk at the receiver is optimum with
scaled identity matrices as covariance matrices at the transmit-
ters. With infinite transmit powers, first the matrix inversion

lemma is applied to the G, then the identity matrices can be
neglected, such that the composite matrix of the receive filters
of the active users reads as

G} )
~ H ~ ~ H -

. = Hcomp (HcomPHcomp) =

H
Gy,

—1

~ H ~ ~H ~ 4+

(Hcomp Hcomp) Hcomp = Hcompv

where, for simplicity reasons, the active users are indexed by
1,...,k and

- [ P [ P
Homp = —H,, ..., Hy|,
P My 1 ! My 1 r

which is due to our initial assumptions invertible. This com-
pletes the proof of asymptotic optimality of the proposed
successive approaches.

VI. SIMULATION RESULTS

Fig. 1 shows the weighted sum rates averaged over 1000
channel realizations, where each channel matrix has contained
independent identically proper Gaussian distributed entries
with zero mean and unit variance. There are K = 3 users in
the system, each equipped with Mty ;, = 4 transmit antennas,
Mgy = 8 antennas can be found at the base station. The weight
for user 1 is twice as high as the weights for users 2 and 3
such that ;11 = 2 and po = s = 1. The SNR on the abscissa
denotes the ratio of transmit power to noise variance for one
terminal, where it is assumed that those values are equal for
all terminals. The optimum curve has been obtained with the

12,

- - - Optimum (with SIC)
—6—Successive Approach e
10| —— Simplified Successive Approach v D
—#*—SVD transmitters ‘

Weighted sum rate

5
SNR (dB)

Fig. 1. Average sum rates in a Rayleigh fading environment with K = 3
users, Mty = 4 transmit antennas at each user and Mrx = 8 receive
antennas, 11 = 2, 2 = pu3 = 1.

iterative water-filling algorithm from [2]. Note that it therefore
relies on successive interference cancellation, whereas with
our successive approach interference suppression is solely
achieved by linear transceivers. Using simplified receivers
according to (10) leads to no visible performance losses. When
the transmit filters are chosen to be the left singular vectors
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of the channel matrices, i.e. they are not optimized, but the
data stream allocation is done in the same greedy manner
as described above, slight performance degradations can be
observed. However, it should be noted that the complexity of
this approach is even higher, as for each data stream allocation,
ZMT,(,;C tests for the maximum increase in weighted sum
rate are required and, as in the broadcast channel, almost
no complexity reductions can be achieved through a user

preselection.
Fig. 2 shows the rate regions of the different algorithms in
a K = 2 user scenario, each equipped with My = 4

antennas and there are Mgy = 8 antennas at the base station.
Each transmitter can use a power of P, = P, = 100, which
corresponds to 20dB transmit SNR. The order of performance
is the same as in Figure 1. Furthermore a simple Time Division
Multiple Access (TDMA) scheme is outperformed clearly by
all approaches.

- % - Optimum (with SIC)
101 —e—Successive Approach
Simplified Successive Approach| ™.

51| —#—SVD transmitters S
‘‘‘‘‘ TDMA ~ ‘<
0 i i i i i . Y i
0 5 10 |1R5 20 25 30

Fig. 2. Rate region for K = 2 users, Mty j = 4 transmit antennas at each
user and Mgy = 8 receive antennas, P, = P> = 100.

APPENDIX

We derive a lower bound for the weighted sum rate
Ryor (1(0), £2) = 3251 fin(s) Lo (1 -+ 0y (7(0), ), where

the weighted sum rate

7
Ry (1(0),t:) = 3 iay)
j=1

1 ()
i (Pt X S £ nct
n:mw(n)=n(j) ( ) =1
log — A (m(i), )
QE (i) (7 (1) )t
@ & Zl Ha (5)
]:
2 Z“ﬂ(i) logy | = oo
J=1 > 5 (1)) o ()
I=1 X, ((@),t0) (Pﬂ(j)+k'w(k§iw(g) m)
0 & ]; Hx ()
> D ha( 108y | - :
Jj=1 Z 5 (7 () o () 1

Pr 5 Aj(m(i).t:)

j=1
where (a) stems from the inequality between weighted har-
monic and weighted geometric mean [6, Lemma 1] and
(b) holds, since all Ap(w(i),t;) > 0. Using the equality
and replacing 7 (7) with k and ¢; with ¢ leads to (7).
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