Analysing the isotopic life history of the alpine ungulates *Capra ibex* and *Rupicapra rupicapra* through their horns

Inês C. R. Barbosa¹; Maximiliane Kley¹; Rudi Schäufele¹; Karl Auerswald¹; Wolf Schröder²; Flurin Filli³; Stefan Hertwig⁴; Hans Schnyder¹

¹ Lehrstuhl für Grünlandlehre, Technische Universität München, Germany

² Fachgebiet Wildbiologie, Technische Universität München, Germany

⁴ Naturhistorisches Museum der Burgergemeinde Bern, Switzerland

ABSTRACT

The horn of ungulate grazers offers a potentially valuable isotopic record of the animals' diet and environment. As yet, however, spatio-temporal variation of the isotopic composition of horns has not been analyzed. We investigated isotopic patterns of carbon (δ¹³C) and nitrogen (δ^{15} N) along and perpendicular to the horn axis in Capra ibex and Rupicapra rupicapra rupicapra to determine effects of animal age, seasonal and inter-annual variation, natural contamination and sampling position on horn isotope composition. Horns of male C. ibex (n = 24) and R. r. rupicapra (one) were sampled longitudinally on front (only R. r. rupicapra) and back sides and surface and sub-surface. R. r. rupicapra horn sides did not differ in δ^{13} C. In both species, the horn surface had a 0.15% lower δ^{13} C and a higher carbon to nitrogen ratio (C/N) than the sub-surface. Washing with water and organic solvents removed these differences. The δ¹⁵N of C. ibex horns increased with age (+0.1‰ year⁻¹), as did the C/N ratio and 13 C discrimination relative to atmospheric CO₂ ($^{\bar{1}3}\Delta$) (+0.03% year⁻¹). Geostatistical analysis of one C. ibex horn revealed systematic patterns of inter-annual and seasonal ¹³C changes, but ¹⁵N changed only seasonally. The work demonstrates that isotopic signals in horns are influenced by natural contamination (δ^{13} C), animal age (δ^{13} A) and δ^{15} N), and seasonal (δ^{13} C and δ^{15} N) and inter-annual variation (δ^{13} C). The methods presented allow distinguishing between these effects.

KEYWORDS

Isotopic archives, behavioural ecology, ontogenetic changes, alpine chamois, alpine ibex.

³ Schweizerischer Nationalpark, Neues Nationalparkzentrum, 7530 Zernez, Switzerland