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Abstract—Both in the signal processing and in the information
theory literature, it is common to assume that the array gain of
antenna arrays grows linearly with the number of antennas. How-
ever, such an assertion is valid only when the antennas are uncou-
pled. When antenna coupling is present and properly taken into
account by the signal processing algorithms, we show that both
the transmit and the receive array gain can grow super-linearly
with the number of antennas. In special cases, the receive array
gain can even grow exponentially with the antenna number. These
results are exciting, for they imply that the potential of radio
communication systems which use more than one antenna at the
receiver or the transmitter, is likely to be much higher than pre-
viously reported.

I. Introduction

When it comes to the analytical treatment of antenna arrays it
is common practice, both in the signal processing and in the
information theory literature, to assume that the individual an-
tennas of the antenna array are uncoupled isotropic radiators
(see, e.g. [1], chapter 7). A consequence of this assumption is
that the array gain grows linearly with the number of antennas
[1]. It has therefore become common knowledge in the infor-
mation theory literature, that the channel capacity of wireless
multi-input single-output (miso), or single-input multi-output
(simo) communication systems grows proportional to the log-
arithm of the number of antennas, when the signal to noise
ratio (snr) is large.
On the other hand, closely spaced antennas will, in general,

exhibit some electro-magnetic coupling [2]. It is an interest-
ing and highly relevant question, how such antenna coupling
in�uences the achievable array gain, and hence, the channel
capacity of multi-antenna radio communication systems, es-
pecially when coupling e�ects are taken into account by the
signal processing algorithms.
In this paper, we demonstrate that both the transmit and

the receive array gain may be substantially increased when an-
tenna coupling is present and taken into account when com-
puting the respective beamforming vectors. For the case of
uniform linear antenna arrays of isotropic radiators, we show
that the array gains can grow super-linearly with the number
of antennas. In case that the receiver noise is of purely thermal
origin, it turns out that the receive array gain even grows ex-
ponentially with the antenna number. Consequently, there are
cases where the channel capacity of a wireless simo communi-
cation system can grow linearly with the number of antennas.
This is a property that has previously been attributed only to
multi-input multi-output (mimo) communication systems.
These results are exciting, for they show that the potential

of multi-antenna wireless communication systems might well
be substantially higher than previously reported. Key to this
increased potential are the physical coupling e�ects of antenna
elements in the array.

II. Transmit Array

Let us start by focusing on a communication system, where
the transmitter is equipped with N isotropic antennas, lined
up into a uniform linear array (ula). The receiver shall pos-
sess a single isotropic antenna. The electric currents that �ow
through the transmit antennas excite an electric �eld which is
turned into an electric voltage by the receive antenna. In the
absence of receiver noise, the input-output relationship can
therefore be written as

v = zT i, (1)

where v ∈ CC ⋅V, is the narrow-band complex envelope of the
receive voltage, while i ∈ CC

N×1 ⋅A, denotes the vector of the
narrow-band complex envelopes of the electric currents �ow-
ing through the transmit antennas. The vector z ∈ CC

N×1 ⋅Ω, is
the transimpedance vector, which depends on the wave prop-
agation between transmitter and receiver. Herein, the super-
script T denotes transposition, while V, A, and Ω, denote the
physical units »Volt«, »Ampere«, and »Ohm«, respectively.

A. Transmit Power

We de�ne as transmit power, the power that is radiated by the
antenna array. In the following we assume that the antenna
array is lossless, such that the electric input power is equal
to the radiated power. As antennas are linear circuit elements,
the relationship between the vector u ∈ CC

N×1 ⋅V, of voltage en-
velopes at the transmit antennas, and the current envelope vec-
tor i, is a linear one: u = Zi, where Z ∈ CC

N×N ⋅ Ω, is the so-
called impedance matrix of the antenna array. Since antennas
are reciprocal, Z = ZT holds true. The transmit power is given
by the expression PTx = E [Re{uH i}], which can also be writ-
ten as:

PTx = E [iHRe{Z} i] . (2)

The symbol E, and the superscript H, hereby denote the ex-
pectation operation, and the complex conjugate transpose, re-
spectively. For a ula of isotropic radiators, the real-part of
the impedance matrix can be computed in closed form [3]:

Re{Z} = R0 ⋅ C (3)

(C)m ,n = sinc(2π ∆
λ
(m − n)) , (3a)

where sinc(x) = sin(x)/x, λ is the wavelength, ∆ is the dis-
tance between neighboring antennas, and R0 ∈ RR+ ⋅Ω, is the
radiation resistance. For convenience, a derivation of (3) and
(3a) is given in the appendix. As we will see, the transmit ar-
ray gain does not depend on the value of R0. What matters
is the relative antenna coupling matrix: C ∈ RR

N×N. As can be
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observed from (3a), only when the element spacing ∆ happens
to be an integer multiple of λ/2, the antennas are uncoupled,
because the C–matrix becomes the identity. For all other spac-
ings, the antennas are coupled.

B. Optimum Beamforming

The transmitter uses its transmit antennas for beamforming:

i = w ⋅ s, (4)

where w ∈ CC
N×1 × A is the beamforming vector, while s ∈ CC,

is a zero-mean, unity variance, random variable, which mod-
els the information signal that should be transfered to the re-
ceiver. The receive antenna is terminated by a resistive load.
Consequently, the receive power is proportional to the average
squared magnitude of the receive voltage envelope:

PRx = γE [∣v∣2] , (5)

= γwH z∗zTw, (5a)

where γ ∈ RR+ ⋅Ω−1, is a positive constant, and (5a) follows by
substituting (4) into (1), and the latter into (5). Herein, z is
assumed to be constant. The optimum beamforming vector,
for a given z, is the one which maximizes the received signal
power for a given transmit power PTx:

wopt = argmax
w

wH z∗zTw, s.t. R0 ⋅wHCw ≤ PTx , (6)

where the constraint follows from putting (3) and (4) into (2).
It can be shown [3], that the receive power under optimum
beamforming is given by:

Pmax
Rx = γE [ ∣v∣2 ∣ w = wopt]
= PTx γ

R0

zTC−1z∗. (7)

C. Transmit Array Gain

If only one transmit antenna, say the n-th one, is excited by
a non-zero electric current, the receive power becomes:

PRx,n = PTx γ

R0

∣zn ∣2 ,
where zn is the n-th component of z. The average received
power over all possible transmit antennas then becomes:

P
single
Rx, avr = PTx γ

N R0

N

∑
n=1

∣zn ∣2 , (8)

The transmit array gain is de�ned as:

ATx = Pmax
Rx

P
single
Rx, avr

. (9)

When we substitute (7), and (8) into (9), it follows that

ATx = N
zTC−1z∗

zTz∗
. (10)

Recall that only when the antennas are spaced an integer mul-
tiple of half the wavelength apart, the antennas are uncoupled,
that is, C = I. For these special spacings only, the transmit ar-
ray gain equals the number N of antennas. All other antenna
spacings make the transmit array gain also depend on the an-
tenna spacing (via C), and on the transimpedance vector z,
that is, on the propagation scenario!
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Figure 1: Transmit array gain in »end-�re« los (θ = 0), as
function of antenna spacing for di�erent antenna numbers.

D. Scaling Law

Let us now look at a line of sight (los) propagation scenario.
We assume that the antenna array is centered in the origin
and aligned with the z-axis of a Cartesian coordinate system.
Because there is just one path connecting receiver and trans-
mitter, and the receive voltage v, is proportional to the electric
�eld strength at the receiver, we see from (1), and (30):

z = γ′ a, (11)

where γ′, is a constant, and

a = [ 1 e−jµ ⋯ e−j(N−1)µ ]T ∈ CC
N×1 , (12)

is the array steering vector, where µ = 2π(∆/λ) cos θ. Herein,
θ is the elevation angle of departure – that is, the angle be-
tween wave propagation towards the receiver, and the array
axis (the z-axis of the coordinate system). When we substitute
(12) into (11), and the latter into (10), we see that the array
gain in a los scenario becomes:

Alos
Tx = aTC−1a∗. (13)
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Figure 2: Transmit array gain in the »front-�re« los (θ = π/2),
as function of antenna spacing for di�erent antenna numbers.
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Figure 3: Circuit-theoretic model of a receive antenna array cascaded with an impedance matching network and the inputs of
the low-noise ampli�ers.

In Figure 1, the array gain that is achievable in the direction
θ = 0, is depicted for di�erent N , as a function of the antenna
spacing. We can observe that the array gain raises quickly as
we reduce the antenna spacing below λ/2. The maximum ar-
ray gain happens to be equal to N 2. That is, the transmit array
gain can grow super-linearly with the number of antennas! Fig-
ure 2 shows the achievable array gain in the direction θ = π/2.
For beamforming in this direction, one has to put the anten-
nas considerably apart, in order to e�ectively use the array for
beamforming. The optimum antenna spacing is larger than
λ/2, but smaller than λ. In this setup, the array gain grows
linearly with the number N of antennas, yet its peak value is
larger than N .

III. Receive Antenna Array

The receive array gain achievable by optimum beamforming,
critically depends on the spatial covariance of receiver noise.
In radio communication systems, it makes sense to distinguish
between intrinsic noise, and extrinsic noise. While the latter
comes from background radiation received by the antennas,
the intrinsic noise originates from components of the radio
frequency front end, most importantly, from the �rst stage of
the low noise ampli�er (lna). When intrinsic noise is the sole
source of noise, it is the state of the art to conjecture that the
receiver noise is spatially white, or at least uncorrelated. How-
ever, such a conjecture is, in general, not correct! While it is
true that the noise sources inside the lnas do generate noise
independently, the individual noise contributions may super-
impose because of coupling e�ects. Coupling occurs in the
antenna array because of the proximity of closely spaced an-
tennas, and because of an impedance matching network that
can frequently be found connected between the antenna array
and the input of the lnas.

Every electronic lna generates two kinds of noise: voltage
noise, and current noise [4]. It turns out that current noise
contributes quite di�erently to the noise covariance than does
voltage noise. Therefore, the noise covariance depends on the
relative intensity of these two kinds of noise contributions. It
is speci�ed by the so-called noise-resistance, which is de�ned
as the ratio of the root-mean-square (rms) noise voltage and
the rms noise current [4]. We show that the lower the noise-
resistance, the higher the receive array gain becomes. A low
noise resistance may therefore be even more important than
a low noise �gure! For the case of noise which is purely of
intrinsic origin, a noise-resistance of zero turns out to let the
receive array gain grow exponentially with the number of an-
tennas. This result is exciting, because it demonstrates the fact
that it is possible for a simo radio communication system, to
have a channel capacity that grows linearly with the number
of antennas, in the high snr regime! Such a linear growth of
channel capacity has previously been reported only for mimo
communications.

A. Circuit-Theoretic System Model

Let us start from the circuit theoretic system model that is
shown in Figure 3. It consists of the following three blocks:
the antenna array, the impedance matching network, and the
inputs of the lnas. The N–antenna receive array is described
as a passive, linear N–port. The received signals are taken care
of by two voltage sources per port: the voltages uS,i , model the
desired received signal, while ũN,i model the received back-
ground noise (extrinsic noise). The impedance matching net-
work is described by:

⎡⎢⎢⎢⎣
uA

uB

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
−j Im{Z} jRe{Z}
jRe{Z} O

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
−iA
iB

⎤⎥⎥⎥⎦ . (14)
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Herein, Z ∈ CC
N×N ⋅Ω, is the impedance matrix of the antenna

array. The two vectors uA ∈ CC
N×1 ⋅V, and uB ∈ CC

N×1 ⋅V, con-
tain the complex envelopes of the voltages at the input and
the output of the matching network, respectively, while the
vectors iA ∈ CC

N×1 ⋅A, and iB ∈ CC
N×1 ⋅A, contain the respective

complex current envelopes. The rationale behind the speci�c
choice of matching network in (14) becomes apparent from:

uB = Re{Z} iB + j (uS + ũN) , (15)

where we have stacked the desired signal voltage envelopes
uS,i , and the extrinsic noise voltage envelopes ũN,i into the
vectors uS ∈ CC

N×1 ⋅V, and ũN ∈ CC
N×1 ⋅V, respectively. As we

can see from (15), the coupling of the matched antenna array
now depends only on the real-part of the impedance matrix
of the antenna array. In this way, we can directly make use of
(3), and (3a). The voltage envelopes in uB are then fed to the
inputs of the lnas. The latter are modeled by a noiseless re-
sistor R, and two sources which model the ampli�er’s current
and voltage noise envelopes, uN,i , and iN,i , respectively. Col-
lecting these envelopes into respective vectors uN ∈ CC

N×1 ⋅V,
and iN ∈ CC

N×1 ⋅A, we �nd the following system equation:

u = Q ( juS + Re{Z} iN + uN + j ũN) . (16)

where u = [ u1 u2 ⋯ uN ]T, is the vector of the output voltage
envelopes, and Q = (IN + Re{Z}/R)−1. Clearly, the ampli�er
noise current iN contributes to the noise portion of u quite
di�erently than the ampli�er noise voltage uN, or the back-
ground noise ũN.

B. Signal Model

Let us focus again on los propagation. The desired received
signal is given by: uS = uS ⋅ a, where a, is the array steering
vector from (12), and uS ∈ CC ⋅V, is the information bearing
signal voltage envelope. By de�ning the receiver noise voltage
vector as the vector of output voltage envelopes for uS = 0:

η = Q (Re{ZA} iN + uN + j ũN) ∈ CC
N×1 ⋅V, (17)

we can rewrite the system equation (16) as:

u = h ⋅ uS + η, (18)

where
h = jQa ∈ CC

N×1 . (19)

In this paper, we assume that all lnas have the same current
noise intensity, but the current noises of di�erent lnas are
uncorrelated, such that E [iN iHN] = β IN , where β ∈ RR+ ⋅A2, is
a constant, speci�c to the lna, and proportional to the noise
bandwidth. Similarly, E [uNu

H
N] = β′R2 IN , where β′ ∈ RR+ ⋅A2,

is a constant, that is speci�c to the lna, and proportional to
the noise bandwidth. For the reason of brevity, we limit the
discussion to the case where there is no background noise,
hence: E [ũNũ

H
N] = O. When we assume that all noise sources

are uncorrelated, we �nd that the receiver noise covariance
Rη = E [ηηH], can be written as:

Rη = βR2Q ( 1

R2
(Re{Z})2+ R2

N

R2
IN)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Υ

Q , (20)

where the noise-resistance is de�ned as:

RN =
¿ÁÁÁÁÀE [∣uN,i ∣2]

E [∣iN,i ∣2] = R
¿ÁÁÀβ′

β
. (21)

C. Optimum Receive Beamforming

The receiver performs linear beamforming, according to:

s = wHu = wHh ⋅ uS +wHη, (22)

where w ∈ CC
N×1 is the beamforming vector, and s ∈ CC ⋅V is

the resulting scalar voltage envelope. The snr becomes:

snr = E [∣uS∣2] wHhhHw

wHRηw
. (23)

It is not too di�cult to derive the maximum achievable snr:

snrmax = E [∣uS∣2] hHR−1η h. (24)

When we substitute (19) and (20) into (24) we arrive at:

snrmax = E [∣uS∣2] aHΥ−1a

βR2
, (25)

where the matrix Υ ∈ CC
N×N is de�ned in (20).

D. Receive Array Gain

If only a single isotropic radiator is present, we see by setting
N = 1 in (25), that the snr becomes

snrsingle = E [∣uS ∣2]
β (R2

0 + R2
N) , (26)

as from (20), Υ = (R2
0 + R2

N)/R2, for N = 1. The receive array
gain ARx, quanti�es how much more snr we can obtain by
using all antennas of the array, compared to a single antenna:

ARx = snrmax

snr single

(27)

= aHΥ−1a
R2
0 + R2

N

R2
. (27a)

In the following, we set the input resistance R of the lnas
equal to the radiation resistance R0 of the isotropic antenna.
As furthermore aHa = N, we �nd for the receive array gain:

ARx = N
aHΥ−1a

aHa
(1 + R2

N

R2
0

) . (28)

Note that Υ depends on the antenna spacing ∆/λ, by virtue
of the matrix Z. It also depends on the noise resistance RN.

E. The Two-Antenna Array

Let us now have a look how much receive array gain can be
obtained by a ula of isotropic radiators. Let us �x the an-
gle θ of the beamforming to the value of θ = 0, which cor-
responds to the direction of the ula line-up – the so-called
»end-�re« direction. For a small array of N = 2 isotrops, we
see in Figure 4, the receive array gain in dB, as function of
antenna separation. As was pointed out earlier, current noise
contributes di�erently to the overall receiver noise than does
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Figure 4: Receive array gain in dB in »end-�re« direction, for
two antennas, as function of antenna spacing.

voltage noise. Figure 4 therefore contains four di�erent curves,
which correspond to di�erent values of the noise resistance. A
noise resistance of zero, means that the noise originates solely
from current noise. This is the case for thermal noise of a re-
sistor. One can therefore argue that zero noise resistance corre-
sponds to the case of having an ideal ampli�er, which does not
introduce any additional noise besides the inescapable ther-
mal noise of the real-part of its input impedance. Hence, as
can be seen from the top most curve in Figure 4, with ideal
ampli�ers, the receive array gain grows unboundedly, as the
distance of the antennas is reduced towards zero. However, as
soon as the noise resistance is even slightly greater than zero,
the receive array gain �rst grows towards a maximum value
as the antenna separation is reduced, and then begins to drop.
We can see from Figure 4, that the peak receive array gain
increases with decreasing noise resistance. For high array gain
it is therefore important, that the lnas are designed such that
current noise dominates over voltage noise. A low noise resis-
tance may be become more important than a low noise �g-
ure! Note that for an antenna separation of half of the wave-
length, or integer multiples thereof, the receive array gain al-
ways equals the number of antennas. This e�ect comes about,
because the antennas are uncoupled for these separations, as
we have pointed out already in Section II-C.

F. The Scaling Law

The noise-resistance also plays a key role in how the receive
array gain scales with the number of antennas. In Figure 5, we
see the receive array gain in dB for the direction of beamform-
ing �xed to θ = 0. For a �xed antenna spacing of ∆ = 0.4λ, we
have drawn �ve di�erent curves, each of which corresponds
to a di�erent noise-resistance. The best and most remarkable
performance is achieved as the noise-resistance is reduced to
zero. As we have discussed in Section III-E, this case models
the ideal ampli�er, which only generates thermal noise inside
the real-part of its input impedance. As we can see from the
top-most curve in Figure 5, the receive array gain grows expo-
nentially with the number of antennas. Because at high snr

the channel capacity grows proportional to the logarithm of

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

RN = 0
R2
N /R2

0 = 10−5

R2
N /R2

0 = 10−3

R2
N /R2

0 = 10−1
RN →∞

Antenna number, N

R
ec
ei
ve

A
rr
ay

G
ai
n
in

d
B

Figure 5: Receive array gain in dB in »end-�re« direction, as
function of the antenna number, for ∆ = 0.4λ.

snr, the exponential growth of the receive array gain with
the number of antennas leads to a linear growth of the chan-
nel capacity with the antenna number. Such a linear growth
has previously been attributed only to mimo communication
systems, which can exploit spatial multiplexing, that is, can
transfer several data streams at the same time using the same
band of frequencies. However, as we have demonstrated, it is
possible to achieve a linear growth of channel capacity with
respect to the antenna number, already with a wireless simo
system, that is, a radio communication system which employs
multiple antennas only at the receiver.
When the noise-resistance is increased, we observe from

Figure 5, that the exponential growth of the receive array gain
with respect to N , starts to �atten out as N is increased over
a certain limit, which depends on the noise-resistance. In the
limit of an in�nite noise-resistance – which just means that
there is only voltage noise present at the receiver –, there is
no longer any exponential growth, but the receive array gain
merely increases linearly with N , just as if the antennas were
uncoupled. In order to enjoy high performance it is necessary
to make sure that we have both a low noise-resistance, and
coupled antennas. The former is a matter of high-frequency
engineering of the lna, while the latter can be achieved by
using antenna spacings below half the wave-length. As can
also be observed from Figure 5, it is by no means necessary
to space the antennas very closely, since a rather moderate
spacing of ∆ = 0.4λ, already shows signi�cant increase of the
receive array gain compared to the »vanilla«, half-wavelength
spaced antenna array.
For �nite noise-resistance which is larger than zero, it turns

out that the receive array gain does not increase monotoni-
cally with the number of antennas, as can be observed from
two of the curves in Figure 5. That is, it can happen that in-
creasing the number of antennas actually leads to a lower re-
ceive array gain. At �rst glance, this e�ect may look surprising,
or even strange. However, it can be understood from the fact
that adding one antenna to an array, changes the way how the
other antennas perceive the channel. To be more speci�c, the
channel vector from (19), usually changes in all of its compo-
nents, when we add one more antenna to the array, because
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the new antenna is located in the near-�eld of its neighbors,
and therefore, usually changes the electro-magnetic �eld per-
ceived by the remaining antennas. This is the reason behind
the fact that adding one antenna may not necessarily improve
performance.
It is interesting to note that there is a fundamental di�er-

ence between receive and transmit array gain, since the trans-
mit array gain only may grow quadratic with N , in a line of
sight propagation scenario. Therefore, it usually does matter
whether the multiple antennas are located at the transmitting
or the receiving end of the link. Especially, note that when
RN = 0, we have from (20) that Υ = C2, for R = R0, such that
from (28) and aHa = N , follows

ARx = aHC−2a.

Comparison with (13) shows the fundamental di�erence in the
two array gains explicitly, because the coupling matrix C ap-
pears in the second inverse power for the receive array gain,
but only in its �rst inverse power for the transmit array gain.
Only when C = I, there is no di�erence.

IV. Conclusion

Receive array gain depends on four factors: 1) the number of
antennas, their radiation characteristics and spacing, 2) the
noise-resistance of the receive ampli�ers, 3) the direction of
beamforming, and 4) the properties of background radiation.
In order to obtain large array gain, the ampli�er current noise
should signi�cantly dominate over its voltage noise and the re-
ceived background radiation. Therefore, a low noise-resistance
may be even more important than low noise-�gure! Large re-
ceive array gains are possible, even increasing exponentially
with the number of antennas. In theory, the channel capacity
of wireless simo systems can therefore grow linearly with the
number of antennas – a property which is usually ascribed
only to multi-input multi-output (mimo) systems.
On the other hand, the transmit array gain depends on two

factors: 1) the number of antennas, their radiation character-
istics and spacing, and 2) the direction of beamforming. In a
line-of-sight scenario, the transmit array gain can come arbi-
trarily close to the square of the number of transmit antennas.
For this to happen, it is essential that the antenna spacing is
below half the wavelength. Exponential growth of transmit ar-
ray gain is, however, not possible in a line of sight propagation
scenario. Consequently, there is, in general, a fundamental dif-
ference between wireless miso and simo communication sys-
tems, which only vanishes in case that the antennas that form
the array are uncoupled. In case of uniform linear arrays of
isotropic radiators, this happens when the antenna spacing is
chosen to be an integer multiple of half of the wavelength.
Antenna array based wireless communication systems may

possess a much higher potential than previously reported. The
key to this increased potential lies in the antenna coupling of
closely spaced antenna arrays, that has to be known and taken
into account by transmit and receive signal processing.
It should be noted, that even though we have used isotropic

radiators for ease of development, the results also hold quali-
tatively for more realistic antennas, as is demonstrated by the
authors in [5], for arrays of Hertzian dipoles.

Appendix

The complex envelope of the electric �eld strength in a dis-
tance r and elevation angle θ, in the far �eld of a ula of
isotropic radiators, located in the origin and aligned with the
z-axis, can be written as (see e.g., [6] on pp 250 and 258):

E = α e−j2πr/λ

r

N

∑
n=1

e−j2π
∆
λ (n−1) cos θ ⋅ in , (29)

where in is the complex envelope of the current �owing into
the n-th radiator, λ is the wavelength, and α is a constant.

De�ning the array steering vector a = [ 1 e−jµ ⋯ e−j(N−1)µ ]T,
where µ = 2π(∆/λ) cos θ, we can rewrite (29) as:

E = α e−j2πr/λ

r
aT i, (30)

where i = [ i1 i2 ⋯ iN ]T. The power density is then given by
(see e.g., [7], eq. (8) on page 571):

S = α′ E [∣E∣2]
= α′ ∣α∣2

r2
E [iHa∗(θ)aT(θ) i] , (31)

where α′ > 0 is another constant. The radiated power is then
obtained by integrating the power density over a sphere in the
far-�eld around the array:

Prad = ∫∫
sphere

S dA

= 4πα′ ∣α∣2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R0

E

⎡⎢⎢⎢⎢⎣i
H( 1

2 ∫
π

0

a∗(θ)aT(θ) sin(θ)dθ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C

i

⎤⎥⎥⎥⎥⎦ .
(32)

Assuming that the radiators are lossless, the radiated power
equals the electric input power from (2), such that the real-
part of the array impedance matrix can be readily obtained
from (32):

Re{Z} = R0 ⋅ C , (33)

where the radiation resistance R0 ∈ RR+ ⋅ Ω, and the coupling
matrix C ∈ RR

N×N , are de�ned in (32). The result (3a) then
follows from (32) and (12) by standard integration:

(C)m ,n = 1

2 ∫
π

0

e j(m−n)2π
∆
λ cos θ sin(θ)dθ (34)

= sinc(2π ∆
λ
(m − n)) . (34a)
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