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Abstract

Reinforcement learning in partially observable environments constitutes an
important and challenging problem. Since many value function-based meth-
ods have been shown to perform poorly and even to diverge in non-Markovian
settings, direct policy search methods may hold more promise. The aim of
this thesis is to advance the state-of-the-art in direct policy search and black
box optimization. Its contributions include a taxonomy of reinforcement
learning algorithms and four new algorithms: (1) a novel algorithm which
backpropagates recurrent policy gradients through time, as such learning
both memory and a policy at the same time with the use of recurrent neural
networks, in particular Long Short-Term Memory (LSTM); (2) an instan-
tiation of the well-known Expectation-Maximization algorithm adapted to
learning policies in partially observable environments; (3) Fitness Expectation-
Maximization, a new black box search method derived from first principles;
(4) Natural Evolution Strategies, an alternative to conventional evolutionary
methods that uses a Monte Carlo-estimated natural gradient to incremen-
tally update its search distribution. Experimental results with these four
methods demonstrate highly competitive performance on a variety of test
problems ranging from standard benchmarks to deep memory tasks to fine
motor control in a car driving simulation.
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Chapter 1

Introduction

The problem of reinforcement learning (RL) is characterized by an agent
which acts in an environment, while adapting its behavior in order to op-
timize the scalar reinforcement or reward/punishment signals that the en-
vironment emits in response to the agent’s actions. In control theory, the
agent is called the controller, while the environment is called the plant, but
apart from naming conventions, the basic framework is essentially the same.
The task of a reinforcement learning agent is to maximize some long-term
measure of these rewards by learning an appropriate (preferably optimal)
policy by trial and error. Learning generally® takes place in episodes, during
which, at every time step, the agent perceives an observation produced by
the environment, performs an action, and subsequently receives a reinforce-
ment signal. After an episode is ended, the environment and the agent are
both reset, and a new episode commences.

Actions performed in the environment are drawn from the agent’s policy,
conditioned upon its history of current and previous actions and observations
(e.g. a robot’s position, the angles of a robot arm or even some representa-
tion of its visual input). The goal of reinforcement learning is to learn this
policy so as to optimize its rewards, but rewards may be delayed, that is,
rewards may have to be accredited to actions many time steps past, which
complicates learning considerably.

It is easy to see the general potential applicability of this general frame-
work to various real world problems, ranging widely from robot control and
investment decision making to medical treatment schemes and rocket guid-
ance. Reinforcement learning, in theory, could replace manual programming
labor, or could be used to fine-tune already-preprogrammed behaviors. Both
constitute profitable usages of this technology. Consequently, the past three
decades have seen considerable research effort being directed to the general

1Some reinforcement learning problems are cast as life-long, infinite-horizon problems
where an agent needs to optimize average reward. However, in this thesis I only consider
the more usual, episodic case.
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problem of reinforcement learning.

Reinforcement learning methods have indeed met with some small mea-
sure of success. Notable examples include game play (e.g. Tesauro’s TD-
Backgammon algorithm (Tesauro, 1994)), fine motor control for robotic
arms (Peters and Schaal, 2008b) and helicopter flight control (Ng et al.,
2003). Disappointingly, however, RL methods have not actually found
widespread acceptance in the application to real world domains. This may
be due to various reasons. First, RL methods generally do not scale well
to large and complex environments. Second, they show difficulty in dealing
with continuity in both observation representation and multidimensional ac-
tion representation. Third, they do not cope well with partial observability,
which is a common characteristic of numerous realistic applications.

Having emphasized the potential benefits of powerful reinforcement learn-
ing algorithms, the apparent lack of more real world applications of RL
inspires this thesis’ aim to advance the state-of-the-art in reinforcement
learning by developing new algorithms that seek to alleviate some of the dif-
ficulties most reinforcement learning algorithms have in dealing with realistic
situations, such as partial observability and continuous action/observation
representations.

Interestingly, there exist two very distinct approaches to solving rein-
forcement learning problems. One is the more conventional, ontogenetic
approach which trains an agent to act in an environment by updating its
policy-defining parameters at every time step — lifetime learning. The phy-
logenetic approach, on the other hand, learns across lifetimes, and uses a
general ‘fitness’ measure, acquired after each trial episode, to update its
policies. Both phylogenetic and ontogenetic algorithms have their own spe-
cific advantages and disadvantages. Ontogenetic algorithms typically do not
cope well with both partial observability and continuity, while most phyloge-
netic approaches (most notably neuroevolutionary methods) work well only
in low-stochasticity environments and are rather ad-hoc in nature.

Another important common distinction between reinforcement learning
algorithms pertains to their classification as being either value-based or,
alternatively, an instantiation of direct policy search. Value-based methods
aim to estimate or predict the value of world states and indirectly infer
(near-)optimal policies from those values, while direct policy search amounts
to changing policies directly without using value estimates. Since value-
based methods are known to suffer from several severe limitations (hard
to tune, divergence using function approximators such as neural networks,
slow learning in low-complexity environments), the focus of this thesis is on
studying the potential of direct policy search methods, extending them so
as to be able to properly deal with partial observability and continuity.

In this thesis, I will present four new algorithms, two phylogenetic and
two ontogenetic, to solve reinforcement problems in partially observable en-
vironments (note that all algorithms in this thesis, including benchmarks,
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are available as part of the PyBrain library: www.pybrain.org). Instead of
deriving the algorithms from either value function-based methods or from
evolutionary algorithms, I derive all four algorithms from first principles.
Two well-established parameter-update methods are used — gradient ascent
and Expectation Maximization — in order to determine policies. In sum-
mary, I aim to demonstrate that, in contrast to what seems to be the case
for conventional value-based methods, one can derive powerful reinforcement
learning algorithms that are in fact simple, efficient and convergent.

1.1 Thesis Overview

The chapters in this thesis can largely be read independently of one an-
other. Chapter 2 provides a perspective on and taxonomy of both reinforce-
ment learning algorithms and reinforcement learning problems, specifying
the varying problem characteristics that require different types of solution
techniques. In addition to classifying the various types of reinforcement
learning algorithms, Chapter 2 will make a case for the class of algorithms
studied in this thesis, direct policy search methods.

In Chapter 3 I present a novel algorithm, Recurrent Policy Gradients
(RPGs), which constitutes the first ontogenetic approach to solve the hard
non-Markovian double pole balancing task. It uses a Monte Carlo-estimated
gradient in policy space to update the parameters of its memory-capable pol-
icy representation, the Long Short-Term Memory recurrent neural network
architecture (Hochreiter and Schmidhuber, 1997). RPGs also exhibit highly
competitive performance on various other benchmarks that emphasize dif-
ferent aspects of reinforcement learning problem characteristics.

Black box (‘phylogenetic’) search methods applied to RL, especially neu-
roevolution, have met with a considerable amount of success solving rather
impressive tasks with partial observability (Gomez and Miikkulainen, 1997;
Stanley and Miikkulainen, 2002). This is especially striking when compared
to conventional, temporal difference approaches such as those based on al-
gorithm families such as Q-learning and actor-critic. Chapter 4 presents
Natural Evolution Strategies (NES), a novel phylogenetic search method
resembling evolutionary search. In contrast to evolutionary methods, how-
ever, this method uses a clean derivation to update its search distribution
using an evolution gradient, and applies the concept of natural gradients to
aid the efficiency of its policy search. NES is shown to exhibit competitive
results on the standard benchmark functions. Moreover, its performance on
the hard non-Markovian double pole balancing task constitutes one of the
best results reported in the literature, as far as the author is aware.

Chapter 5 introduces Fitness Expectation Maximization (FEM), a phy-
logenetic method derived from Expectation Maximization and even simpler
than NES.



CHAPTER 1. INTRODUCTION 4

Chapter 6 presents the episodic Logistic Reward-Weighted Regression
(LRWR) algorithm, which, like FEM, is derived from Expectation Maxi-
mization. This is an ontogenetic method, however, which uses full episodic
information to self-model its better behaviors. Reasonable results are shown
on a batch of small discrete POMDP benchmark tasks.

Chapter 7 presents comparative results on the presented algorithms, and
the concluding Chapter 8 discusses the advantages, disadvantages and future
prospects of the new direct policy search algorithms that are introduced in
this work. The thesis concludes with a discussion on the relative merits of
value search methods versus direct search methods, and argues that hybrid
solutions are likely to yield the most promising results.



Chapter 2

A Perspective on
Reinforcement Learning

This chapter first presents a discussion and formal introduction to the rein-
forcement learning framework as used in this thesis, then proceeds to provide
a taxonomy of reinforcement learning problems according to their respec-
tive properties and appropriate solution algorithms, and then discusses the
possible advantages of the particular family of RL solutions investigated in
this thesis, direct policy search.

2.1 The Reinforcement Learning Framework

As defined by Sutton and Barto, any algorithm that can solve a reinforce-
ment learning problem is a reinforcement learning algorithm (Sutton and
Barto, 1998). This section introduces the reinforcement learning framework
used in this thesis and its corresponding notation in more formal terms. As
usual, an agent is considered that interacts with its environment in discrete
time. The environment has state g; at every time step t. Transitions from
state to state are governed by a probability distribution unknown to the
agent but dependent upon, on the one hand, the current action a; and all
previous actions ag.¢—1 = (ag,ai,...,a;—1) executed by the agent, and, on
the other hand, the current and previous states go.+ = (9o, g1, - - .,9g:) of the
underlying system. Let r; be the reward assigned to the agent at time ¢,
and let o; be the corresponding observation produced by the environment.
Both quantities are governed by fixed distributions, solely dependent on
environment state g.

In the most general reinforcement learning setting, the environment is
partially observable, which means that the state of the environment is not
directly observable. Rather, an observation is produced at every time step
which is associated with the state, but may be ambiguous and/or stochastic.
The concept of partial observability typically requires the agent to memorize



CHAPTER 2. A PERSPECTIVE ON RL 6

its experiences from the previous time steps in order to produce optimal
actions.

Often, the issue of partial observability versus full observability is framed
in terms of MDPs (Markov Decision Processes) versus POMDPs (Partially
Observable Markov Decision Processes). A Markov Decision Process is a
formalism that describes the interactions of an agent with the world. It
consists of a number of world states the agent can be in, a number of actions
the agent can perform in combination with the state-transition probabilities
for every action, and a reward-function. An MDP can be formally described
as a tuple M = (S, A, T,r) where

S is a set {g1,92,...,9Kx} of world states

A is a set {aj,a9,...,a4} of actions

T:8xAxS —[0,1] is a probabilistic state-transition function. For
every state, action, and possible successor state, T'(g, a, ¢g') denotes the
probability of ending in the successor state ¢’ given the start state g
and action a.

e r: S — Ris a (possibly stochastic) local reward function. For every
state, r(g) produces a local reward for being in state g, according to
a probability distribution over real values.

The MDP generates, at every time step t = 0,1,2,..., a state g; after
execution of action a;_1 in state g;_1. Additionally, the reward r; is given at
every time step, in accordance with the reward function r(g;). An important
notion in MDP theory is the Markov property. It is assumed that, in the
MDP, states are Markovian, i.e., consistent and stationary. When a state is
Markov, the next state is only dependent on the current state of the world
and the action taken from there. It does not depend on other historical
information. In other words, the state gives a complete description of the
agent’s situation in the world. More formally,

P(9t+1 = glag, g, at—1, Gi—1, - - - 90) = P(ge+1 = glar, 91),

which means that the observable state g fully describes the state of the
system. This implies that, in order to produce optimal actions, one need
only look at the current state observed by the agent, and one can ignore
the history of states and actions before that. Now that it is clear that the
agent’s actions in an MDP are dependent solely upon the current state, one
can supplement the MDP with the definition of the agent’s policy

e m:S — Ais the agent’s policy, which is a (possibly stochastic) as-
signment of actions to states.
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In an MDP — the fully observable case — the agent’s observation simply
equals the environmental state, that is, o = ¢¢. In contrast, a POMDP
utilizes a complex observation function which may not be wholly informa-
tive. In a POMDP, an agent does not have direct access to the state. In
order to predict the next-step observation and reward, one may have to
take into account its entire preceding history of actions, observations and
rewards. This means that a simple memoryless policy mapping observations
to actions may no longer be sufficient, and POMDP solution algorithms will
generally have to employ some form of agent memory.

One can define the observed history' h; as the string or vector of ob-
servations and actions up to moment t since the beginning of the episode:
ht = (09, ag,01,a1,...,01—1,a;—1,0¢). The complete history H of length T
includes the unobserved states and is given by H = (hp_1, go.7—1). For any
time step t, one can define the return as

T-1
t—k
Ry = g TRy
=t

where T denotes the length of the episode, and 0 < « < 1 represents the
temporal discount factor used, that is, the extent to which future rewards are
exponentially discounted in comparison to the current reward. A discount
factor v close to 0 would place emphasis on immediate rewards only, while
a v closer to 1 would attribute more significance to later rewards in the
reinforcement learner’s perspective. Using the extreme of setting v = 1
would indicate valuing all rewards equally, irrespective of the time step they
were received.

The expectation of this return R; at time ¢ = 0 is also a measure of the
quality of the policy 7 and, thus, the objective of reinforcement learning is
to determine a policy which is optimal with respect to the expected future
discounted rewards or expected return

T—1
Z g w] .
t=0

An optimal or near-optimal policy in a partially observable environment
requires that action a; is taken depending on the entire preceding observed
history. However, in most cases, it is not necessary to store the whole
sequence of events but only sufficient statistics M (h;) of the events which can
be called the memory of the agent’s past. Thus, a stochastic policy 7 can be
defined as m(alh;) = p(a|M(hy); 0) where € denotes the parameters of policy
7. This forms a probability distribution 7 (h; @) over actions, from which
actions a; are drawn a; ~ w(h; 0) (henceforth, the explicit dependence of 7

J =E|[Ro|r] = E

!Note that such histories are also called ‘path’ or ‘trajectory’ or ‘episode’ or ‘trial’ in
the literature.
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on # will be omitted for the purpose of brevity). Policy 7 can be implemented
and represented in various ways, for example as a finite state automaton,
or, as is the case throughout this thesis, as a recurrent neural network with
weights vector # and stochastically interpretable output neurons.

2.2 A Taxonomy of Reinforcement Learning

Now that the RL framework is introduced, a taxonomy of reinforcement
learning problems and algorithms can be considered. Reinforcement learning
problems come in many sizes and flavors, as do the algorithms for solving
them. It is not clear which types of reinforcement learning algorithms are
best suited to solve which kinds of reinforcement learning problems. In this
section I present some dimensions along the axes of which problems and
algorithms can be varied to help distinguish them from each other. Based
on results and arguments in the literature, I present some conjectures as to
what algorithms should work best for particular types of problems.

In the last few decades, a wide variety of algorithms have been used to
successfully solve RL problems in different guises. Surprisingly, these algo-
rithms are based on very different principles. This is possibly due to the
fact that they have been proposed and are actively studied within separate
academic communities (e.g. machine learning, computational intelligence
and control theory). There has been limited communication between these
research fields, leading to insufficient analysis of the differences and similar-
ities between these algorithms.

At the same time, a large variety of RL problems has been defined and
studied, varying from real-world continuous control problems to abstract
discrete toy problems. It is well known that some RL algorithms work well
for some problems where other algorithms fail, but in many cases it is not
clear what algorithms perform best under what conditions. The principal
dimensions along which RL problems can vary are listed below.

The purpose of this section is to discuss some distinctions between types
of reinforcement learning problems and reinforcement learning methods, es-
pecially between, on the one hand ontogenetic and phylogenetic methods,
and, on the other hand, between direct policy search and value-based meth-
ods; discuss relevant issues prevalent in reinforcement learning research, and
to make some conjectures about what types of methods would work best on
what types of problems.

2.2.1 RL Problem Dimensions

e Discrete vs. Continuous. The environment’s state, action and
observation spaces can each be discrete, continuous or mixed.

e Size and Dimensionality. The state, action and observation spaces
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can be represented in a varying number of dimensions. E.g., the state
can be represented by a single integer or by a visual scene. The size
of discrete dimensions can vary from small (binary) to large.

e State Space Structure. There can be varying degrees of structure
in the state space: many benchmarks assume a certain locality (i.e.
state transitions reach only a neighborhood of states). That structure
is not necessarily ergodic, which thus allows for ‘catastrophic’ actions
after which the agent cannot return to parts of the state space (e.g. a
tabletop robot might fall off the table).

e Stochasticity. The state transitions can have varying degrees of
stochasticity. E.g., a robot’s wheels might slip, so it does not know
how far it will move when trying to move forward.

e Observability. The environment can be fully observable, where the
underlying state is directly accessible to the agent, or partially observ-
able, where the agent can only make indirect, potentially stochastic
observations of the state. This can impose a memory requirement on
the agent as the only way to reliably infer the current state. In ad-
dition, observations can have varying degrees of redundancy, which in
turn can make learning harder.

e Generalization. The observation representation might have mean-
ingful structure, encapsulating aspects of the transition model and
enabling generalization to similar states.

e Reward Regime. Rewards can vary from a single signal at the end
of an episode (e.g. when winning a game) to many informative inter-
mediate rewards (which can correspond to subtasks).

e Episodic vs Life-long. In case the task can be reset to a (distribution
of) start state(s), one usually speaks of episodic RL, otherwise of life-
long infinite horizon RL. Often, a temporal discount factor v is used
in RL problems, in order to give more weight to earlier rewards rather
than later rewards (a v < 1 is typically necessary in order to make J
well-defined).

2.3 Issues in Reinforcement Learning

As alluded to in the above sections, most reinforcement learning algorithms
suffer from severe problems that hinder their acceptance as a usable tool in
the development of decision making algorithms. This section will describe
some of the main issues associated with reinforcement learning that need to
be addressed in order to increase the viability of the reinforcement learning
framework.
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2.3.1 The Temporal Credit Assignment Problem

In order to learn a policy well, the agent has to adapt its actions so as to
maximize future rewards. However, because of possibly delayed rewards,
it is not always easy to determine which actions are responsible for which
reinforcements that are obtained. Especially when a policy is not satisfac-
torily learned yet, it is not easy to infer which actions in what situations
contributed most to what rewards. Not all actions contribute equally to
rewards, and often rewards are obtained despite having executed some bad
actions. This problem of credit inference is called the temporal credit as-
signment problem.

2.3.2 Partial Observability

Most reinforcement learning research is directed towards fully observable
environments, that is, environments in which the agent has access to the
full environmental state as if it were simply an observation. In this case,
the observation effectively equals the environmental state. However, this is
a highly unrealistic assumption in many real world domains. For example,
a robot’s sensors might only provide approximate distances in a few direc-
tions, which would not constitute enough information to deduce its exact
location in a room. It is therefore necessary to stress the importance and
frequent occurrence of partial observability, that is, where the agent does not
observe the environment directly, but rather observes an incomplete, pos-
sibly stochastic and/or ambiguous representation of the current state. The
fact that different states might map to the same observations, combined
with the issue of stochasticity or noisiness in observations, necessitates the
use of some form of memory by the agent. This memory would maintain an
internal state, incorporating and integrating previous observations, which
the agent’s policy can then utilize for its decisions.

Many POMDP solution techniques, judging the full problem too hard,
assume knowledge of an environment model describing state transition prob-
abilities and known state-observation mappings. Assumptions such as these
are often unrealistic. In this thesis, therefore, I will only consider model-free
POMDP approaches, where reinforcement learning algorithms have to try to
find an optimal policy without having a perfect a priori given world model.
When assuming a model-free approach, the agent has to either learn some
approximation of a world model online while acting in the world, or it has
to find a sufficiently powerful memory representation scheme that can be
used to map memory states to actions directly without knowing the precise
world dynamics.

Unfortunately, problems abound when attempting to learn a memory-
based model or memory-based policy. Several trainable architectures have
been proposed to deal with memory in an RL setting, most prominently



CHAPTER 2. A PERSPECTIVE ON RL 11

among them hidden Markov models (e.g., Chrisman, 1992), decision trees (e.g.,
McCallum, 1995) and recurrent neural networks (e.g., Lin, 1993; Bakker,
2002a). However, due to the problem of wvanishing gradient (Hochreiter
et al., 2001), events that are more than 4 or 5 time steps apart in history
can typically not be related in practice. One method purposely designed to
overcome this limitation is Long Short-Term Memory (LSTM: Hochreiter
and Schmidhuber, 1997; Gers et al., 2002), and this is indeed the memory
architecture I will use in the research of this thesis to represent memory-
capable policies. Nevertheless, it might be fair to say that one of the main
reasons why POMDP research has underachieved in the last few years, is
the fact that suitable machine-learnable architectures are mostly lacking.

2.3.3 Observation Representation

Many environments are not characterized by small enumerable discrete state
spaces and/or observation spaces, but rather have high-dimensional contin-
uous representations. E.g., consider the orientation of a robot arm where
the various angles, speeds and positions together form the representation of
the environmental state. In order to be able to deal with continuous ob-
servations, policy 7 needs to be able to map continuous observation vectors
or sequences of continuous vectors (histories) to actions. This has to be
accomplished using some form of machine-learned function approrimator.
This function approximator will have to be able to generalize across states
or (continuous) observations. Artificial neural networks constitute one of
the most frequently used function approximators (or, in case of partial ob-
servability, recurrent neural networks), and various successes (e.g., Tesauro,
1994; Bakker, 2002a) have been reported in the literature. Function ap-
proximator training is, however, difficult and requires great tuning skill.
Worse, it can even prove unstable — fail to converge — in the case of value-
function based reinforcement learning methods (Baird, 1995). Great care
must therefore be taken in appropriately choosing and training a function
approximator.

2.3.4 Value Functions vs Direct Policy Search

Most reinforcement learning solution techniques can be classified as value-
based methods, as opposed to direct policy search methods. Value function
methods associate environmental states or state-action pairs directly with
values, that is, expected returns when following the current policy. After
having constructed a value function, all an agent has to do is select the
action which has the highest estimated value. Numerous methods have been
developed to learn and approximate this value function, most noteworthy
among them TD(\)-learning (Sutton, 1988), Q-learning (Watkins, 1989),
and SARSA (Rummery and Niranjan, 1994).
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In TD(A)-learning, the value V7 (g) of a state g in this MDP with pol-
icy m is defined to be the expected future discounted reward (also called
return) received from starting in state g and following policy 7 from there
afterwards:

V™(g) = Elri+yre1 +9750 + g = g, 7)
-1
— E[> 7 nilg = g.7
i—t

Likewise, for Q-learning and SARSA-learning every state-action pair (g, a)
has an associated quality or Q-value Q™ (g, a) defined as

Q"(g9,a) = Elri+7re +rie+ -9 = 9,00 = a,7)
T—1 '
- E[Z Vz_tri’gt =g,at = a,w]

i=t

These types of values offer a clean and insightful methodology for learn-
ing and analyzing policies in a reinforcement learning framework. However,
one significant drawback of value-based methods pertains to its difficulty
in constructing function approximators that do not diverge while learning
the value function. The fact that even linear function approximators have
been shown to diverge on especially constructed environments (Baird, 1995)
does not inspire confidence in the usage of value-based methods in general,
even though recent work (Sutton et al., 2009) addresses this issue some-
what satisfactorily. Sutton’s work suggests that a clean solution to the issue
of unstable function approximators in the fully observable case is possible.
This might render value function methods viable for some real world tasks,
but still does not address the divergence problem for partially observable
settings. Nevertheless, in spite of these difficulties, carefully tuned neural
networks used as value function approximators have been shown to perform
well on a number of tasks.

For partially observable domains, using value functions is equally precar-
ious. Even on simple partially observable environments, value methods can
diverge catastrophically (Singh et al., 1994), as such significantly exacerbat-
ing the problems that value function methods already have using function
approximators in the fully observable case. In fact, one might be tempted
to say that whenever value function methods work well, this is either due
to careful tuning, or luck, or prodigious hacking skills.

Direct policy search constitutes a wholly different paradigm. In direct
policy search techniques, the algorithm searches directly in the space of pol-
icy representations to find a good policy, without estimating values for par-
ticular states or state-action pairs. Constructing good policies is often easier
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than constructing correct value functions, because small and simple policy
representations can work well in complex environments. This is especially
true in partially observable environments, where the state space structure is
actually unknown, which makes learning a value function particularly diffi-
cult. For POMDPs, bypassing the need to learn an approximately correct
(memory-based) environmental model that can be used to represent values
might be particularly helpful. A direct search in policy space appears to be
more promising in numerous cases.

2.3.5 Action Representation

Some environments have the additional complication of having a continuous
action structure. This might involve high-dimensional fine-tuned commands,
such as muscle control in a robot arm or steering commands for car racing
tasks. Unfortunately, it is as of yet very difficult to represent continuous ac-
tion structure using most value function methods. This is so because value
function methods typically have to be able to choose the action with max-
imum expected value, and since in continuous spaces there are in effect an
infinite amount of possible actions, one has to perform a function optimiza-
tion operation on the function approximator that is used as value function.
In fact, recent techniques using evolutionary computation have done just
that with reasonable results (personal communication, 2009), but neverthe-
less, dealing with continuous high-dimensional action spaces remains rather
cumbersome for most reinforcement learning approaches.

2.4 A Taxonomy of RL Methods

A large number of algorithms have been devised to solve reinforcement learn-
ing problems. These can be broadly divided into ontogenetic algorithms and
phylogenetic algorithms. In biology, ontogeny refers to the development of
an organism during its lifetime, while phylogeny refers to the relatedness
between groups of individuals, hence across multiple lifetimes. Phyloge-
netic algorithms (neuroevolution, for example) are those that only use the
environment’s fitness function f to update its policy-defining parameters 6.
This fitness function is typically some measure of rewards accrued during
one or more episodes, and may be completely unknown to the algorithm.
Phylogenetic methods notably do not keep track of the particular states
visited each episode, and typically (but not always) retain a ‘population’
of several policies. Since phylogenetic methods do mot make use of the
particular information obtained during episodes, these methods are often
referred to as ‘black box’ methods. In contrast, ontogenetic algorithms (Q-
learning, for example) can take into account the full information on which
states/observations were visited and which states yielded which rewards,
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PHYLO. INITTIALIZE()
repeat
6 — PHYLO.GENERATE_POLICY()
reset environment
t—0
fitness «— 0
repeat
observe o;
draw action a; ~ w(h:|0)
execute action a;
obtain reward r;
t—t+1
until episode’s last time step
fitness « accumulate_fitness(rg ... 7;—1)
PHYLO.REPORT_FITNESS(fitness)
until stopping criterion met

Algorithm 2.1: The phylogenetic reinforcement learning frame-
work. The ‘PHYLO’ object abstractly represents a phylogenetic reinforce-
ment algorithm. As can be seen in this pseudocode, the phylogenetic rein-
forcement framework only allows for fitness values to be provided to the RL
algorithm. Updates of the policy are only made after an episode has finished,
based on the resulting fitness. Note that the ‘accumulate_fitness’ function
must be defined, e.g., it could simply be calculating the future discounted
reward as is usual in ontogenetic RL, or it could be any other arbitrary
measure of policy quality. Evolutionary algorithms for control constitute a
popular type of phylogenetic RL algorithm.

and typically update a single policy, instead of operating on a population of
policies.

Phylogenetic approaches

Phylogenetic methods treat the RL problem as a black box optimization
problem, optimizing a policy for maximal accumulated reward over one or
several episodes. In principle, any black box optimization method could be
used, including local search methods such as hill climbing and simulated
annealing. More commonly, however, evolutionary algorithms like evolu-
tion strategies and genetic algorithms are used for phylogenetic RL. These
algorithms work by maintaining a population of policies. Each policy is as-
signed a fitness based on the accumulated reward over one or more episodes.
Less fit policies are then removed from the population and replaced with new
policies, constructed through combining and varying more fit policies. Some
algorithms from swarm intelligence, e.g. particle swarm optimization, work
according to similar principles and can also be used for phylogenetic RL.
Since phylogenetic approaches do not estimate value functions, all phyloge-
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0 < ONTO.INITTALIZE()
repeat
reset environment
t—0
repeat
observe o;
draw action a; ~ m(h|0)
execute action a;
obtain reward 7
6 «— ONTO.UPDATE_POLICY(0s,a:,7¢)
t—t+1
until episode’s last time step
f «— ONTO.UPDATE_POLICY_LAST_STEP()
until stopping criterion met

Algorithm 2.2: The ontogenetic reinforcement learning frame-
work. This pseudocode abstractly depicts the framework of ontogenetic
reinforcement learning. The ‘ONTO’ object represents the particular on-
togenetic RL algorithm instantiated. From the code, it is clear that on-
togenetic algorithms can potentially change the policy-defining parameters
0 after every time step. Also, it should be noted that the ‘ONTO’ object
is given all information on which actions, observations and rewards were
processed at each time step, this in stark contrast to phylogenetic methods
which are provided with a fitness value only. Popular examples of ontoge-
netic reinforcement learning include Q-learning and policy gradient methods.
For Q-learning, for example, # would be comprised of all Q-values and the
exploration rate.

netic techniques are direct policy search methods. Algorithm 2.1 presents
the phylogenetic reinforcement learning framework in pseudocode. In this
thesis, I will present two novel phylogenetic direct policy search methods,
namely, Natural Evolution Strategies (Chapter 4) and Fitness Expectation
Maximization (Chapter 5).

Ontogenetic approaches

A formal depiction of the ontogenetic reinforcement learning framework
is provided in Algorithm 2.2. As is obvious from the pseudocode, ontogenetic
algorithms, in contrast to phylogenetic methods, can update the policy at
every time step during execution, and the algorithm has full access to which
observations, actions and rewards have been encountered.

The value function algorithms described in the discipline-defining book
Reinforcement Learning (Sutton and Barto, 1998), (such as Q-learning and
SARSA), are all ontogenetic. At each time step, the action with the high-
est associated value is chosen (according to the value function). Based on
rewards received from the environment, the value function is updated each
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time step using temporal difference methods.

Not all ontogenetic methods are value function-based, though. A differ-
ent family of ontogenetic RL algorithms are those based on policy gradient
ascent, which directly learn a policy without estimating state-dependent
value functions. In the policy gradient framework (Williams, 1992; Bax-
ter et al., 2001; Peters and Schaal, 2008a), policies are stochastic and their
parameters are updated directly using a gradient in the direction of better
expected return. These methods, when applied to function approximators
like neural networks (Wierstra et al., 2007), constitute an alternative to
value-based methods that is more similar to phylogenetic methods in that
they typically do not need to use value functions and are able to repre-
sent policies directly, and also since they implicitly represent a distribution
of policies (instead of a single greedy policy) because of their inherently
stochastic actions. In this thesis, I will present two novel ontogenetic direct
policy search methods that can deal with function approximators in par-
tially observable environments. These algorithms, Recurrent Policy Gradi-
ents (Wierstra et al., 2009, 2007) and the episodic Logistic Reward Weighted
Regression algorithm (Wierstra et al., 2008b), will be discussed in Chapters 3
and 6, respectively.

2.4.1 Which algorithms work best?
For which problems?

There does not seem to be any particular RL algorithm that performs better
than other algorithms on all problems, at least in practice: certain universal
RL methods can be proven to be optimal, however, these are either incom-
putable (Hutter, 2005) or currently suffer from insurmountable computation
overhead that prevent their practical use (Schmidhuber, 2006). Different al-
gorithms have different strengths and weaknesses, many of them currently
unknown. However, the literature contains a number of theoretical argu-
ments and empirical results suggesting the superiority of some families of
algorithms over others. Table 2.1 provides a schematic taxonomy of repre-
sentative reinforcement learning algorithms in their corresponding subcate-
gories of value-based ontogenetic methods, direct policy search ontogenetic
methods, and phylogenetic methods.

Phylogenetic methods do not have satisfying convergence guarantees
even in fully observable domains, whereas ontogenetic methods do (e.g.,
Bertsekas and Tsitsiklis, 1996). Phylogenetic methods also suffer more
severely from the credit assignment problem, especially in stochastic or large
domains, since only one single fitness measure is attributed to an entire
episode roll-out, whereas ontogenetic methods can utilize all information en-
countered during a trajectory, including observations and rewards received
at specific time steps. For phylogenetic approaches, many reruns of the same
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’ \ Value-based \ Direct policy search ‘

Ontogenetic | actor-critic recurrent policy gradients (RPG)
Q-learning logistic reward-weighted regression (LRWR)
SARSA finite policy graphs

Phylogenetic evolutionary methods:

— evolution strategies (ES)
— covariance matrix adaptation (CMA-ES)
— enforced sub-populations (ESP)
— cooperative synapse evolution (CoSyNE)
hillclimbing
particle swarm optimization (PSO)
fitness expectation maximization (FEM)

Table 2.1: A taxonomy of some conceptually important reinforce-
ment learning algorithms. The two broad categories are phylogenetic
and ontogenetic. Whereas all (currently known) phylogenetic methods are
said to be direct policy search methods, ontogenetic methods can be divided
into value-based and direct policy search methods. The methods presented
here include covariance matrix adaptation (CMA-ES) (Hansen and Oster-
meier, 2001), particle swarm optimization (Kennedy and Eberhart, 2001),
ESP (Gomez and Miikkulainen, 1997), CoSyNE (Gomez et al., 2006), and
finite policy graphs (Meuleau et al., 1999). The four novel algorithms pre-
sented in this thesis, Natural Evolution Strategies (NES, Chapter 4), Re-
current Policy Gradients (RPG, Chapter 3), Fitness Expectation Maximiza-
tion (FEM, Chapter 5) and Logistic Reward-Weighted Regression (LRWR,
Chapter 6) span both the phylogenetic and the ontogenetic framework, but
all four methods fall within the category of direct policy search.

genome may be required to reliably estimate the true fitness of the genome
in case there is any stochasticity or noise inherent in the environment. Onto-
genetic methods do not suffer from this limitation as they can more reliably
(at least in the fully observable case) attribute rewards and value to exactly
those states that have actually been visited during an episode. One example
would be the case where a robot arm must be trained to pick up an object
from a tabletop, irrespective of where it is located. A phylogenetic method’s
fitness measure can only be approximated by repeating many episodes using
the same policy with the object in different locations, which may result in
an unreasonable amount of real world experience required for just one piece
of information — one single fitness value. On the other hand, an ontogenetic
method is by definition allowed to use all history information contained in
one episode (observations, actions, rewards), and to use that information
to update its policy after every single trial and even after every time step.
It can attribute failure or success to only those situations that have actu-
ally been visited instead of having to approximate one broad, high-variance
fitness measure. This, in principle, should be significantly more efficient.
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Another limitation of phylogenetic approaches is that the difficulty grows
with the size of the policy parameter space. For example, typical phyloge-
netic algorithms (such as evolution strategies) typically cannot evolve more
than a few hundred parameters, whereas ontogenetic methods scale well
with the number of states (Bertsekas and Tsitsiklis, 1996). In summary,
there are good arguments that in fully observable discrete state spaces that
are either large or that have inherent state transition stochasticity, ontoge-
netic approaches would outperform phylogenetic ones.

As sketched above, many value-based ontogenetic approaches diverge
and /or are hard to train using function approximators, especially when using
neural networks (Baird, 1995). Recent advances in function approximation
such as neural fitted Q iteration (Riedmiller, 2005) and Sutton’s gradient
TD (Sutton et al., 2009) have somewhat lessened this problem. Neverthe-
less, reasonable performance for most ontogenetic algorithms that operate
in partially observable environments remains elusive in practice (Lucas and
Togelius, 2007). Phylogenetic approaches on the other hand, among which
neuroevolution features most prominently, have been fairly successful and
robust in practice on various domains (Gomez et al., 2008; Stanley, 2004;
Igel, 2003; Gomez et al., 2008; De Nardi et al., 2006). They generally do not
suffer as much from function approximator fine-tuning problems as value-
based ontogenetic approaches do (Whiteson et al., 2007), and do not have
the same divergence properties, especially in POMDP settings. One reason,
one might presume, is that it is easier to find a good policy than an approxi-
mately correct value function. Note that even approximated value functions
that have low error may still yield very inappropriate policies, and many
partially observable environments have simple optimal policies but complex
value functions.

Solving POMDPs using value-based ontogenetic methods is theoretically
unsound, exceedingly hard and requires prodigious fine-tuning skills, espe-
cially when using memory-capable function approximators such as recurrent
neural networks. There is one class of ontogenetic methods, however, which
I will demonstrate in this thesis — Recurrent Policy Gradients — that can
easily and naturally deal with both partial observability and continuous
environments without divergence. This method constitutes an ontogenetic
direct policy search approach.

2.4.2 Some Conjectures on Reinforcement Learning

Considering the above arguments, I conjecture that phylogenetic direct
search methods such as neuroevolution generally outperform ontogenetic
methods on problems with continuous state spaces and /or partial observabil-
ity, especially when the number of trainable policy parameters can be kept
comparatively small. On the other hand, some ontogenetic methods with
value functions, such as Q-learning and SARSA, are unbeatable on problems
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with discrete state spaces and full observability. For environments with sig-
nificant stochasticity, ontogenetic techniques will almost certainly prove to
have a competitive edge over phylogenetic methods, since the stochasticity
requires phylogenetic algorithms to rerun one policy many times to gain a
reliable fitness estimate, while ontogenetic methods can do proper tempo-
ral credit assignment onto the states and actions actually visited. In larger
parameter spaces, the performance of phylogenetic methods may start do
degrade faster than that of ontogenetic methods. Since both phylogenetic
methods and value-based ontogenetic methods are likely to meet with rather
serious problems as the complexity and size of the domains scale up, I con-
jecture that direct policy search ontogenetic methods may constitute one of
the more promising research directions in the long run.

2.4.3 Reinforcement Learning Benchmarks

Reinforcement learning benchmarks have obvious relevance to a taxonomy
of reinforcement learning algorithms. Many attempts have been made to
compare different RL methods on benchmark problems. These include open
competitions (e.g., Loiacono et al., 2008), and efforts to standardize simple
benchmarks through source code sharing. However, each of these efforts
typically only compare a few algorithms on a single problem, leading to
contradictory results regarding the merits of different RL methods.

An approach to more exhaustive reliable characterization of methods
would be to create benchmarks that could be varied along as many as pos-
sible of the problem dimensions listed above. Through tuning benchmark
parameters, one could then corroborate, falsify or qualify hypotheses about
relative method performance. In this thesis I will use a set of various bench-
marks that embody several problem dimensions that have been discussed
so far — discrete vs continuous observations, discrete vs continuous actions,
state transition stochasticity, problem dimensionality, state space structure,
partial observability — in order to demonstrate the strengths and weaknesses
of new algorithms on different types of environments.

2.5 Direct Policy Search

The aim of this research is to advance the state-of-the-art in reinforcement
learning algorithms for partially observable, continuous environments, as
that constitutes the most generally applicable, and arguably most impor-
tant case. Having discussed the various classes of reinforcement learning
algorithms in existence today, one can guess with some confidence that the
most promising research direction would lead one to investigate direct policy
search techniques as applied to POMDPs, whether they be phylogenetic or
ontogenetic.
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gradient EM
ontogenetic RPG LRWR
phylogenetic | NES FEM

Figure 2.1: The categorical properties of NES, FEM, RPG and
LRWR. This figure depicts a schematic algorithm categorization of Natural
Evolution Strategies (NES, Chapter 4), Recurrent Policy Gradients (RPG,
Chapter 3), Fitness Expectation Maximization (FEM, Chapter 5) and Lo-
gistic Reward-Weighted Regression (LRWR, Chapter 6). Of the four new
RL algorithms, two are phylogenetic, two ontogenetic. Two methods are
gradient ascent based, two are based on Expectation Maximization (EM).

In this thesis, I present four new RL algorithms, two phylogenetic, two
ontogenetic. Two methods are gradient ascent based, two are based on
Expectation Maximization. Figure 2.1 presents a schematic depiction of the
categorical properties of these four algorithms.

The first algorithm, Recurrent Policy Gradients, is discussed in Chap-
ter 3 and represents a policy gradient method applied to LSTM recurrent
neural networks. This ontogenetic search method backpropagates history-
dependent eligibilities through time, as such obtaining gradient estimates
for updating the policy.

The second algorithm, Natural Evolution Strategies, is presented in
Chapter 4 and takes on reinforcement learning from a phylogenetic per-
spective, and in effect constitutes an alternative to evolutionary methods
derived from first principles (i.e. significantly less heuristic). As a gradient-
based method, it uses the natural gradient (Amari, 1998) rather than the
plain ‘vanilla’ gradient, and so avoids some of the adverse problems that
regular gradient methods usually experience.

Chapter 5 discusses the third algorithm, Fitness Expectation Maximiza-
tion, which is an instantiation of the well-known Expectation Maximization
framework for parameter optimization. As it is derived from Expectation
Maximization, this phylogenetic method represents, as is the case for Nat-
ural Evolution Strategies, a principled alternative to regular evolutionary
methods.

The fourth, the episodic Logistic Reward-Weighted Regression algorithm,
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is an ontogenetic technique that instantiates a form of Expectation Maxi-
mization, using self-modeling to improve upon its own experiences. Chap-
ter 6 discusses the algorithm and the experimental results.

As can be gathered from the comparative results presented in Chap-
ter 7, these four new techniques have different strengths and weaknesses in
different types of environments. Nevertheless, I hope to demonstrate with
the work and good results in this thesis that the direct policy search frame-
work constitutes a viable alternative to value-based methods in partially
observable domains.



Chapter 3

Recurrent Policy Gradients

Reinforcement learning in partially observable environments is a challenge
as it requires policies with an internal state. Traditional approaches suffer
significantly from this shortcoming and usually make strong assumptions on
the problem domain such as perfect system models, state-estimators and
a Markovian hidden system. Recurrent neural networks (RNNs) offer a
natural framework for dealing with policy learning using hidden state and
require only few limiting assumptions. As they can be trained well using
gradient descent, they are suited for policy gradient approaches.

In this chapter, I follow (Wierstra et al., 2009, 2007) and present a new
policy gradient method, the Recurrent Policy Gradients (RPGs) algorithm
which constitutes a model-free ontogenetic reinforcement learning method.
It is aimed at training memory-based stochastic policies on problems which
require long-term memories of past observations. The approach involves
approximating a policy gradient for a recurrent neural network by back-
propagating return-weighted characteristic eligibilities through time. Using
a “Long Short-Term Memory” recurrent neural network architecture, RPGs
are able to outperform previous ontogenetic RL methods on three important
benchmark tasks with different properties regarding the extent of stochastic-
ity, continuity and partial observability. Furthermore, I introduce history-
dependent baselines and show that they help reducing estimation variance
significantly, thus enabling the approach to tackle more challenging, highly
stochastic environments.

3.1 Introduction

For partially observable and non-Markovian problems, an optimal policy will
require a policy representation with an internal memory. Among all function
approximators with internal state, recurrent neural networks appear to be
the method of choice and can make a big difference in reinforcement learning
problems. However, only few reinforcement learning methods are theoreti-

22
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cally sound when applied in conjunction with such function approximation
(see Chapter 2), and catastrophic divergence of traditional methods can be
shown in this context (Singh et al., 1994).

Policy gradient (PG) algorithms constitute an exception, as these di-
rect policy search methods allow for learning policies even with noisy state
information (Baxter et al., 2001), work in combination with function approx-
imation (Sutton et al., 2001; Bhatnagar et al., 2007), are compatible with
policies that have internal memory (Aberdeen, 2003), can naturally deal
with continuous actions (Peters and Schaal, 2008a; Kohl and Stone, 2004),
and are guaranteed to converge at least to a local minimum. Furthermore,
most successful algorithms for solving real world reinforcement learning tasks
are in fact applications of PG methods. See, for example, (Benbrahim and
Franklin, 1997; Moody and Saffell, 2001; Prokhorov, 2007; Baxter et al.,
2001; Peters and Schaal, 2006, 2008b) for an overview. Provided the choice
of policy representation is powerful enough, PGs can tackle quite complex
RL problems.

At this point, policy gradient-based reinforcement learning exhibits two
major drawbacks from the perspective of recurrent neural networks, i.e., (i)
the lack of scalability of policy gradient methods in the number of parame-
ters, and (ii) the small number of algorithms that were developed specifically
for recurrent neural network policies with large-scale memory. Most PG ap-
proaches have only been used to train policy representations with maximally
a dozen parameters, while RNNs can have hundreds or thousands. Surpris-
ingly, the obvious combination with standard backpropagation techniques
has not been extensively investigated (a notable exception being the SRV
algorithm (Gullapalli, 1990, 1992), which was, however, solely applied to
feedforward networks). In this chapter, I address this shortcoming, and
show how PGs can be naturally combined with backpropagation, and back-
propagation through time (BPTT: Werbos, 1990) in particular, to form a
powerful RL algorithm capable of training complex neural networks with
large numbers of parameters.

Work on policy gradient methods with memory has been scarce so far,
largely limited to finite state controllers. Strikingly, memory models based
on finite state controllers perform less than satisfactorily, even on quite
simple benchmarks. Illustratively, single pole balancing without velocity in-
formation (see section 3.4.3) cannot be learned beyond 1000 time steps (Ab-
erdeen, 2003; Meuleau et al., 1999), whereas evolutionary methods and the
algorithm presented in this chapter manage to balance the pole 100,000+
steps. One could conjecture that, for finite state controllers, the reason is
that a stochastic memory state model must be learned in conjunction with
a policy, which is prohibitively expensive. In this chapter, I extend policy
gradient methods to more sophisticated policy representations capable of
representing memory using an RNN architecture called Long Short-Term
Memory (LSTM) for representing the policy (Hochreiter and Schmidhuber,
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1997). A new reinforcement learning algorithm is developed that is aimed
specifically at RNNs that can effectively learn memory-based policies for
deep memory POMDPs. This algorithm, the Recurrent Policy Gradient
(RPG) algorithm, backpropagates the estimated return-weighted eligibili-
ties backwards through time using recurrent connections in the RNN. As
a result, policy updates can become a function of any event in the history.
The presented method is shown to outperform other RL methods on three
important RL benchmark tasks with different properties: first, continuous
control in a non-Markovian double pole balancing environment; second, dis-
crete control on the deep memory T-maze task (Bakker, 2002a), which was
designed to test an RL algorithm’s ability to deal with extremely long term
dependencies; and third, the still-unsolved (up to human-level performance)
stochastic 89-state maze task. Moreover, promising results in a complex
car driving simulation are shown, which is challenging for humans. Here,
real-time improvement of the policy is demonstrated, something which has
been largely unachieved in reinforcement learning for such complex tasks.

The chapter is organized as follows. The next section briefly reviews
LSTM’s architecture. The subsequent sections introduce the derivation of
Recurrent Policy Gradient algorithm, and present experimental results using
RPGs with memory. The chapter concludes with a discussion on possible
future extensions of the method.

3.2 LSTM as Policy Representation

Recurrent neural networks are designed to deal with issues of time, such
as approximating time series. A crucial feature of this class of architec-
tures is that they are capable of relating events in a sequence, in principle
even if placed arbitrarily far apart. A typical RNN 7 maintains an inter-
nal state M (h;) (or memory) which it uses to pass on (compressed) history
information to the next moment by using recurrent connections. At every
time step, the RNN takes an input vector o; and produces an output vec-
tor m(M(h:)) from its internal state M (h:). Since the internal state M (hy)
of any step is a function m of the previous state and the current input
signal M (h:) = m(o¢, M (ht—1);60) where 6 represents the RNN’s parame-
ters/weights, it can take into account the entire history of past observations
by using its recurrent connections for recalling events. Not only can RNNs
represent memory, they can, in theory, be used to model any dynamic sys-
tem (Siegelmann and Sontag, 1991). Like conventional neural networks, they
can be trained using a special variant of backpropagation, backpropagation
through time (BPTT: Werbos, 1990; Williams and Zipser, 1989).

Usually, BPTT is employed to find the gradient VyFE in parameters 6
(that define m and ) for minimizing some error measure E, e.g. summed
squared error. This is done by first executing a forward pass through the
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Figure 3.1: The Long Short-Term Memory cell. The figure shows an
LSTM cell with a net input, a Constant Error Carousel (CEC), an input
gate, a forget gate and an output gate. The cell has an internal state CEC
and a forget gate that determines how much the CEC is attenuated at each
time step. The input gate controls access to the state by the external inputs
and the outputs of other cells, and the output gate determines how much
and when the cell fires. Figure designed by J. Schmidhuber (©.

RNN from the beginning of the sequence all the way to the end of the
sequence, at every time step unfolding the RNN, reusing parameters 6 for the
recurrent connections, producing outputs, and computing the errors J; for
all time steps. Then a (reverse) backwards pass is performed, computing the
gradient backwards through time by backpropagating the errors. Usually,
this is done in a supervised fashion, but here this technique is applied to a
reinforcement learning setting.

RNNs have attracted some attention in the past decade because of their
simplicity and potential power. However, though powerful in theory, they
turn out to be quite limited in practice due to their inability to capture
long-term time dependencies — they suffer from the problem of vanishing
gradient (Hochreiter et al., 2001), the fact that the gradient signal vanishes
as the error signal is propagated back through time. Because of this, events
more than 10 time steps apart can typically not be related.

One method purposely designed to avoid this problem is Long Short-
Term Memory (LSTM: Hochreiter and Schmidhuber, 1997; Gers et al.,
2002), which constitutes a special RNN architecture capable of capturing
long term time dependencies. The defining feature of this architecture is
that it consists of a number of differentiable memory cells, which can be



CHAPTER 3. RECURRENT POLICY GRADIENTS 26

used to store activations arbitrarily long. Access to the internal state of
the memory cell (the Constant Error Carousel or CEC) is gated by gating
units that learn to open or close depending on the context. Three types of
(sigmoidal) gates are present: input gates that determine the input to the
memory cell, forget gates that control how much of the CEC’s value is trans-
ferred to the next time step, and output gates which regulate the output of
the memory cell by gating the cell’s output. See Figure 3.1 for a depiction
of LSTM’s structure.

The gates also receive inputs from other neurons, and a function over
their inputs determines whether they open or close. The amount each gate
gi of memory cell i is open or closed at time t is calculated by

)=¢ Zw y]t—l —|—Zwk:pk ,
glforget t _g waorget ) +waorget ’

out out out
—§Ewwyj —i-gwkmk ,

{in,forget,out} .

where w;; is the weight from the output y; of cell j to gate 1,
;{,Zn Jorget.outy 4o the weight from external input zp to the gate i, and ¢ is

the familiar logistic sigmoid function ¢(z) = 1/(1 + exp(—z)). The external
inputs to the cell are added up in net;(t):

net;( Z wfje”y] t—1)+ Z wiay (t
k

The internal state of cell 7 is calculated by copying the state from the previ-
ous time step modulated by the forget gate’s output, and allowing additional
inputs to enter the state by multiplying the input gate to the cell’s net input:

si(t) = net;(£)g}" (t) + ! ()it — 1)
The output gates modulate the cell outputs y;:

yi(t) = g7 (£)si(2).

The above formulas describe the forward pass of the LSTM architecture in
the BPTT algorithm. The entire architecture as is used for BPTT is more
fully described and discussed in detail in (Graves and Schmidhuber, 2005).

LSTM networks have been shown to outperform, in supervised learn-
ing settings, other RNNs on numerous time series requiring the use of deep
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memory (Schmidhuber, 2004). Therefore, they seem well-suited for usage
in policy gradient algorithms for complex tasks that require deep memory.
Whereas LSTM networks have usually been used to predict, here it is used
to control an agent directly, to represent a controller’s policy receiving ob-
servations and producing action probabilities at every time step. Note that
in this thesis, for comparison purposes, all four presented algorithms use the
LSTM network architecture as its controller, and all approaches operate on
LSTM’s weights to find better policies.

3.3 Recurrent Policy Gradients

In this section, I first formally derive the Recurrent Policy Gradient frame-
work. Subsequently, history-dependent baselines are introduced, and the
section is concluded with a description of the Recurrent Policy Gradient
algorithm.

3.3.1 Derivation of Recurrent Policy Gradients

The type of RL algorithm employed in this chapter falls in the class of
policy gradient algorithms, which, unlike many other (notably temporal
difference) methods, update the agent’s policy-defining parameters 0 directly
by estimating a gradient in the direction of higher (average or discounted)
reward. This makes this algorithm a direct policy search algorithm.

Now, let R(H) be some measure of the total reward accrued during a
history. R(H) could be the average of the rewards for the average reward
case, or the discounted sum for the discounted case. Let p(H|6) denote the
probability of a history given policy-defining weights 6. The quantity the
algorithm should be optimizing is

J = / p(H|0)R(H)dH.
H
This, in essence, indicates the expected reward over all possible histories,
weighted by their probabilities under policy 7. In order to be able to apply
gradient ascent to find a better policy, one has to find the gradient VyJ,
which can then be used to incrementally update parameters 8 of policy 7 in

small steps. Since it is clear that rewards R(H) for a given history H do not
depend on the policy parameters 6 (that is, VoR(H) = 0), one can write

Vol = V, /H p(H|0) R(H)dH
_ /H Vop(H|0) R(H)dH.

Now, using the “likelihood-ratio trick” one finds
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Vol = / Vop(H)R(H)dH

p(H)
/ MVQP(H)R(H)CZH

- / p(H)V g log p(H) R(H)dH.

Taking the sample average as Monte Carlo (MC) approximation of this
expectation by taking N trial histories one gets

VoJ = Epg [Ve IOgP(H)R(H)}

Q

N
1
~ 2 Vologp(H")R(H").
n=1

which is a fast approximation of the policy gradient for the current policy.

Probabilities of histories p(H ) are dependent on an unknown initial state
distribution, on unknown observation probabilities per state, on unknown
state transition function p(gs+1|ao:t, go:t), and on known action probabilities
given the agent’s policy. The environment’s properties are considered to be
unknown, but at least the agent knows its own action probabilities, so the
log derivative for agent parameters € in Vylog p(h) can be acquired by first
realizing that the probability of a particular history is the product of all
actions and observations given subhistories:

T-1

p(Hr) = p((00,90)) [ p(0t ge)he—1, ar—1, gou)m(ae—1|he—1)
t=1

Taking the log-derivative results into transforming this large product into a

sum
T-1

log p(Hr) = (const) + Z log 7(a¢lhy)
=0

where most parts are not affected by 0, i.e., are constant. Thus, when taking
the derivative of this term, the following is obtained:

T—

Vologp(Hr) = Y Vglogm(alhe).
t=0

—_

Substituting this term into the MC approximation results in a gradient es-
timator which only requires observed variables. However, making use of the
fact that future actions do not depend on past rewards, one can omit these



CHAPTER 3. RECURRENT POLICY GRADIENTS 29

terms from the gradient estimate. Thus, an unbiased gradient estimator is
given by

| X T(H™)—1
vgijnZl ; Vo log 7 (as|h') RY

which yields the desired gradient estimator which only has observable vari-
ables.

3.3.2 History-dependent Baselines

Nevertheless, an important problem with this Monte Carlo approach is the
often high variance in the gradient estimate. For example, if R(h) = 1 for all
h, the variance can be given by 02 = E[Y.(Vglogm(a;|h}))?] which grows
linearly with 7. One way to tackle such problems and reduce this variance
is to include a constant baseline b — first introduced in Williams (1992) —
into the gradient estimate
1L

n=1

(H™)—1
S° Vologm(adh)(Ry - b).
t=0

Baseline b is typically taken to be the expected average return and subtracted
from the actual return, such that the resulting quantity (R; — b) intuitively
yields information on whether the return was better or worse than expected.
Due to the likelihood-ratio trick

/p(H)Vg logp(H)bdH = Vg/p(H)de
= Vpl
0,

it can be guaranteed that

E

N
Y logp(HZ“)b] =0,
n=1

and, thus, the baseline can only reduce the variance but not bias the gradient
in any way.

Whereas previously a constant baseline was used, one can in fact extend
the baseline concept to include subhistory-dependent function approxima-
tors B(hy) parameterized by w. The correctness of this approach can be
realized by applying the same trick [ Vg (alh;)B(h;)da = 0 for every pos-
sible subhistory h;. Now the baseline B(h;) can be represented as an LSTM
RNN receiving observations and actions as inputs, trained to predict fu-
ture return given the current policy 7. This construct closely resembles the
concept of value functions in temporal difference methods. However, note
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that one cannot use temporal difference methods for training the history-
dependent baseline network, since such updates can be arbitrarily bad in
partially observable environments (Singh et al., 1994). Instead, supervised
training is applied using simply the actually experienced returns as targets
for every time step. Using non-constant, history-dependent baselines, the al-
gorithm now uses two separate RNNs: one policy m parameterized by 6, and
one baseline network B parameterized by w. Using the extended baseline
network, the gradient update for the policy now becomes

N T
1 n n n
Vol ~ nz::l ;ve log (a|hy'; 0) (R — B(h|w)).

3.3.3 The Recurrent Policy Gradients Algorithm

Typically, PG algorithms learn to map observations to action probabili-
ties, i.e. they learn stochastic reactive policies. As noted before, this is
clearly suboptimal for all but the simplest partial observability problems.
One would like to equip the algorithm with adaptable memory, using LSTM
to map histories or memory states to action probabilities. Unlike earlier
methods, our method makes full use of the backpropagation technique while
doing this: whereas most if not all published and experimentally tested PG
methods (as far as the author is aware) estimate parameters 6 individually,
RPGs use eligibility-backpropagation through time (as opposed to standard
error-backpropagation or BPTT (Werbos, 1990)) to update all parameters
conjunctively, yielding solutions that better generalize over complex histo-
ries. Using this method, one can map subhistories (all observations and
actions experienced in the episode so far) to actions instead of observations
to actions.

In order to estimate the gradient for a history-based approach, one maps
histories h; to action probabilities by using LSTM’s internal state representa-
tion. Backpropagating return-weighted eligibilities (Williams, 1992) affects
the policy such that it makes histories that were better than other histories
(in terms of reward) more likely by reinforcing the probabilities of taking
similar actions for similar subhistories.

Recurrent Policy Gradients are architecturally nearly equal to super-
vised RNNs, however, the output neurons are interpreted as a probability
distribution. It takes, at every time step during the forward pass of BPTT,
as input observation o;. Together with the recurrent connections, these pro-
duce outputs 7(h¢), representing the probability distribution on actions.

Only the output part of the neural network is interpreted stochastically.
This allows us, during the backward pass, to only estimate the eligibilities
of the output units at every time step. The gradient on the other parame-
ters 6 can be derived efficiently via eligibility backpropagation through time,
treating output eligibilities as normal errors in an RNN trained with gradient
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descent. Also, by having only stochastic output units, computing compli-
cated gradients on stochastic internal (belief) states such as done in (Ab-
erdeen, 2003; Meuleau et al., 1999) is unnecessary — eligibility backpropaga-
tion through time disambiguates relevant hidden state automatically, when
possible.

3.4 Experiments

Here I present empirical results on four fundamentally different problem
domains. The first task, double pole balancing with incomplete state in-
formation, is a continuous control task that has been a benchmark in the
phylogenetic RL community for many years. In fact, RPGs constitute the
very first ontogenetic RL task to solve this problem, as far as the author is
aware. The second task, the T-maze, is a difficult discrete control task that
requires remembering its initial observation until the end of the episode.
On this task, RPGs outperformed the second-best method by more than
an order of magnitude for longer corridors. The third task, the 89-state
maze, is a highly stochastic POMDP maze task which has yet to be solved
up to human level performance. On this task, RPGs outperform all other
(model-free) algorithms.

Last, I show promising results on a complex car driving simulation
(TORCS) which is challenging for humans. Here, real-time improvement
of the policy is shown, something which has been largely unachieved in re-
inforcement learning for such complex tasks.

All experiments were carried out with 10-cell LSTM recurrent neural
networks, with initial weight range between —0.01 and 0.01. The constant
baseline estimator used was simply a moving average of the returns from
the last 100 episodes, except for the 89-state maze task, where an additional
LSTM network was used to estimate a history-dependent baseline.

3.4.1 Non-Markovian Double Pole Balancing

Pole balancing is a task which involves trying to balance a pole hinged on a
cart that moves on a finite track. The single control consists of the force F
applied to the cart (in Newtons), and observations include the cart’s position
x, the pole’s angle 3 and velocities & and 3. Tt provides a perfect testbed for
algorithms focussing on learning fine control in continuous state and action
spaces. The challenging version of this task has no velocity information
T and ,6’ such that the problem becomes non-Markovian. Additionally, a
second pole can be included on the same cart, of length 1/10th of the original
one. Both poles must then be balanced simultaneously. This yields non-
Markovian double pole balancing (Wieland, 1991), which can be considered
a difficult benchmark task for control optimization. I use the implementation
as found in (Gomez and Miikkulainen, 1997).
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B

Figure 3.2: The non-Markovian double pole balancing task. This
task consists of a moving cart on a track, with two poles of different lengths
(Im and 0.1m) hinged on top. The controller applies a (continuous) force
F to the cart at every time step, after observing pole angles 31 and (2. The
objective is to keep the poles from falling for at least 100,000 time steps (or
one half hour in simulated time).

Markov non-Markov
1 pole 756 + 227 2087 + 607
2 poles | 5218 £ 1236 | 6139 4 1425

Table 3.1: RPG results on the pole balancing tasks. The table
shows the results for RPGs on the pole balancing task, for the four possible
cases investigated in this chapter: 1 pole Markov, 2 poles Markov, 1 pole
non-Markov, and 2 poles non-Markov. The results show the mean and
standard deviation of the number of evaluations until the success criterion
was reached, that is, when a run lasts more than 100, 000 time steps. Results
are computed over 200 runs. All runs achieved the objective within 100,000
trials.

I applied RPGs to the pole balancing task, using a Gaussian output
structure for the LSTM recurrent neural network, consisting of two output
neurons: a mean u (which was interpreted linearly) and a standard deviation
o (which was scaled with the sigmoidal logistic function between 0 and 1
in order to prevent variances from being negative) where eligibilities were

calculated using the fact that, for the Gaussian policy, V,logm = % and

Vslognm = (a_“a)# I utilize a learning rate proportional to the variance
ao? — as suggested in (Williams, 1992) — to prevent numerical instabilities
when variances tend to 0, and use learning rate a = 0.001, momentum = 0.9
and discount factor v = 0.99. Initial parameters 6 were initialized randomly
between —0.01 and 0.01. Reward was always 0.0, except for the last time

step when one of the poles falls over, where it is —1.0.
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Figure 3.3: The T-maze task. The agent observes its immediate surround-
ings and is capable of the actions goNorth, goEast, goSouth, and goWest. It
starts in the position labeled ‘S’, there and only there observing either the
signal ‘up’ or ‘down’, indicating whether it should go up or down at the end
of the alley. It receives a reward if it goes in the correct direction, and a
punishment if not. In this example, the direction is ‘up’ and N, the length
of the alley, is 35.

A run was considered a success when the pole(s) did not fall over for
100,000 time steps. Table 3.1 shows results averaged over 200 runs. RPGs
clearly outperform earlier PG methods (for a comparison, see (Meuleau
et al., 1999)’s finite state controller, which cannot balance a single pole in a
partially observable setting for more than 1000 time steps, even after 500,000
trials). RPGs constitute the only published ontogenetic approach published
in the literature that can satisfactorily solve this problem. See Chapter 7 for
comparisons to other (phylogenetic) algorithms, including two other novel
algorithms published in this thesis, NES (Chapter 4) and FEM (Chapter 5).

3.4.2 Long Term Dependency T-maze

The second experiment was carried out on the T-maze (Bakker, 2002a) (see
Figure 3.3). Designed to test an RL algorithm’s ability to correlate events
far apart in history, it involves having to learn to remember the observation
from the first time step until the episode ends. At the first time step, it starts
at position S and perceives the X either north or south — meaning that the
goal state G is in the north or south part of the T-junction, respectively.
Additionally, the agent perceives its immediate surroundings. The agent has
four possible actions: North, East, South and West. These discrete actions
are represented in the network as a softmax layer, which extends Williams’
sigmoid units as Ve, logm = a; — p; where unit ¢’s firing probability is
exp(net;)
> ; exp(net;)
unit ¢, and a; indicates whether the i-th action was chosen (a; = 1.0) or not
(a; = 0.0). When the agent makes the correct decision at the T-junction, i.e.
go south if the X was south and north otherwise, it receives a reward of 4.0,
otherwise a reward of -0.1. In both cases, this ends the episode. Note that
the corridor length N can be increased to make the problem more difficult,
since the agent has to learn to remember the initial ‘road sign’ for N + 1
time steps. In Figure 3.3, an example T-maze with corridor length N = 35

calculated as p; = , where net; represents the net input to output
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is shown.

Corridor length N was systematically varied from 10 to 100, and for
each length 100 runs were performed. Discount factor v = 0.98 was used.
For best results, training was performed in batches of 20 normalizing the
gradient to length 0.3 (alternatively, using the more ‘standard’ settings used
elsewhere of learning rate a = 0.001 and momentum = 0.9 without gradient
normalization produced results that learned roughly twice as slow, reliably
up to corridor N = 70). In Figure 3.4 the results are displayed, in addition
to other algorithms’ results (RL-Elman and RL-LSTM) taken from (Bakker,
2002a), of which the results on RL-LSTM were the best results reported so
far. One can see that RPGs clearly outperform these value-based methods,
even by more than an order of magnitude in terms of iterations for corridor
lengths longer than 40. Additionally, RPGs are able to reliably solve this
task up to N=90 (at N=100, it failed to find the optimal policy 22 of of 100
runs), while the second best algorithm, RL-LSTM, solves it up to N=>50.
The large performance gain on this task for Recurrent Policy Gradients
might be due to the difference in complexity of learning a simple (memory-
based) policy versus learning unnecessarily complex value functions. The
impressive performance advantage of RPGs over value-based methods on
this domain could indicate a possibly significant potential for the application
of Recurrent Policy Gradients to other deep-memory domains.

3.4.3 The 89-state Maze

In this highly stochastic benchmark task (see Figure 3.5; see (Littman et al.,
1995) for a complete description) the aim for the agent is to get to the
goal as fast as possible — at the goal the reward is 1, other locations have
reward 0 — from a random starting position and orientation, but within
251 time steps. For reward attribution, discount factor v = 0.98 is used.
The agent has not only a position, but also an orientation, and its actions
consist of moving forward, turning left, turning right, turning about, and
doing nothing. State transactions are extremely noisy. Observations, which
consist of 4 bits representing adjacent wall information — wall (represented
1.0) or no wall (represented 0.0) — are noisy and are inverted with probability
10%, which sets the chance of getting the correct observation somewhere
between 0.65 and 0.81, depending on the agent’s location. It is interesting
to note that, to the author’s knowledge, this domain has as of yet not been
satisfactorily solved, that is, solved up to human-comparable performance.
Humans still greatly outperform all algorithms that the author is aware of.
Therefore, the performance on this challenging benchmark task might be
considered, to a large extent, indicative of the subjective ‘strength’ of a
given POMDP algorithm.

Because of the random starting position, this task is extremely difficult
without the use of any history-dependent baseline, since the agent might
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Figure 3.4: T-maze results for RPGs. Elman-based Value Iteration
(Elman VI) starts to degrade after corridor length N = 10, LSTM Value
Iteration (LSTM VI) falters after N = 50, while Recurrent Policy Gradients’
performance starts to degrade at length N = 100. The plot shows the
number of average iterations required to solve the task, averaged over the
successful runs. RPGs clearly outperform other RL methods on this task,
to the best of the author’s knowledge. The results for the Value Iteration
based algorithms are taken from (Bakker, 2002a).

start close to the target or not, which influences the expected rewards ac-
cordingly. That is why I apply a history-dependent baseline for this task,
trained one step with a = 0.001 and momentum = 0.9 after every episode.
20 runs were performed to test the performance of the algorithm, using a
history-dependent baseline which was trained on actually received returns
using a separate LSTM network with 10 memory cells with the same inputs
as the policy network including a bias. Each run was executed for 30, 000, 000
iterations. After that, the resulting policy was evaluated. The median num-
ber of steps to achieve the goal (in case the goal is achieved) was 58, and
the goal was reached in 95% of the trials (calculated over 1000 roll-outs).
This compares favorably with the second best other (model-free) method the
author is aware of, Bakker’s RL-LSTM algorithm (Bakker, 2004) with 61
steps and 94%, respectively. See Table 7.3 in Chapter 7 for a comparison to
other algorithms, including Fitness Expectation Maximization (Chapter 5)
and Natural Evolution Strategies (Chapter 4) that are introduced in this
thesis. In (Littman et al., 1995) the median human performance of 29 steps
with a 100% success rate is highlighted, which again underlines the difficulty
and importance of the task as a benchmark. However, the fact that RPGs
outperform all other algorithms on this task might indicate that the appli-
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Figure 3.5: The 89-state maze. In this highly stochastic maze, the
agent has a position, an orientation, and can execute five different actions:
forward, turnleft, turnright, turnabout, and doNothing. The agent starts
every trial in a random position. Its goal is to move to the square labeled
‘G’. Observations comprise the local walls but are noisy (there is a high
probability of observing walls where there are none and vice versa). Action
outcomes are noisy and cannot be relied on. See (Littman et al., 1995) for
a complete description of this problem domain.

cation of Recurrent Policy Gradients to RNNs, especially in combination
with history-dependent baselines!, might indeed be fruitful.

3.4.4 Car Racing with Recurrent Policy Gradients

In order to demonstrate what this algorithm could do in a complicated
setting which is also difficult for humans, I have carried out experiments on
the TORCS car racing simulator (Torcs, 2007). TORCS is an advanced open
source racing game with a graphical user interface and simulated simplified
physics which provide a challenging experience for game play. Additionally
to being open source, the game was specifically designed for programming
competitions between steering agents, and the code framework allows for
easy plug-ins of code snippets for competitions between preprogrammed
drivers. As such, it provides a perfect testbed for reinforcement learning
algorithms that aims to go beyond the current benchmark standards.

I trained the RPG agent on one single track (see Figure 3.6), on which
it has to learn to drive a Porsche GT1 and stay on the road while achieving
high speed. Whenever the car gets stuck off the road, a learning episode
ends, the car is put back on track and a new episode begins. The steering
outputs of the RNN, which were executed at a rate of 30 frames per second,
are interpreted as a Gaussian with one output neuron interpreted linearly (y,
the mean) and one output neuron interpreted logistically between 0 and 1 (o,
the standard deviation) to ensure it is nonnegative. The four observations

Note that history-dependent baselines are necessary for good performance on this task.
Using simply a constant baseline, computed as an average over the last 1000 episodes, but
otherwise using the same learning settings, results in the policy reaching the goal 85% of
the time, with a median of 70 steps, which is significantly worse than the performance of
RPGs using the history-dependent baselines.
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Figure 3.6: The TORCS racing car simulator.

provided by the TORCS environment were (experimentally, using human
driving experience) normalized around 0 with standard deviation 1, and
include the speed, the steering angle, position on the road and look-ahead-
distance (which was linearly varied with speed), and a bias of 1.0. Its rewards
consist of speed measurements (in km/h) at every time step, and the agent
receives negative rewards for spending time off track (penalty —100). A large
penalty is inflicted upon the car getting stuck off track (penalty —1000),
which ends an episode. The car’s speed starts off at 10 km/h, which is
linearly increased over time to reach 70 km/h after 30 minutes of simulated
driving.

I performed 10 runs on this lap using the same learning settings and 10-
cell network as applied to the non-Markovian double pole balancing task.
Training was executed and the (average) baseline was updated after every
1000 time steps. It was found that the agent learns, for all runs, to con-
sistently steer and stay on the road after just under 2 minutes of real-time
behavior. In all runs, the car first drives off the track immediately four or
five times, then learns to stay on track until it hits the first curve, where it
slides off again. Within two minutes, however, it drives nearly perfectly in
the middle of the road, and learns to ‘cut curves’ slightly when the speed
is increased gradually to 70 km/h after 30 minutes. The agent can learn to
drive safely — not getting off track — up to 70 km/h, after which its behav-
ior destabilized in all runs. Future work will investigate how to make the
behavior more robust and how to cope with higher speeds. This will have
to include speed control and braking by the network as well, which could
be actualized using additional (softmax) output neurons for gears, brakes
and gas. The fastest lap time achieved after 30 minutes of training was just
under 3 minutes, which is, unfortunately, still twice as slow as a trained
human player or the preprogrammed agent.

To conclude, the car driving agent learns fast, in real-time (2 minutes),
to steer correctly and keep the vehicle on the road. This is about as fast
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as a novice human player learns to stay on the road. Moreover, it reaches
high speeds of up to 70 km/h within 30 minutes of online training time.
Learning to drive relatively well relatively quickly can be done by RPGs
because it is an ontogenetic algorithm, updating its policy online step by
step. Although rigid preprogrammed speed control destabilizes the agent
with higher speeds, the fast learning suggests this approach might be worth
investigating when dealing with real-time learning problems in continuous
robot control.

3.5 Conclusion and Future Work

In this chapter, I have introduced Recurrent Policy Gradients, an elegant
and powerful method for dealing with reinforcement learning in partially
observable environments. The algorithm, an RNN-based policy gradient
method equipped with memory capable of memorizing events from arbitrar-
ily far in the past, involves computing and backpropagating action eligi-
bilities through time with ‘Long Short-Term Memory’ memory cells, thus
updating a policy which maps event histories to action probabilities. RPGs
constitute the first ontogenetic reinforcing learning method to solve the non-
Markovian double pole balancing task, and the approach outperformed other
ontogenetic RL methods on three important benchmarks with different char-
acteristics. It is not unlikely that Recurrent Policy Gradients would consti-
tute both one of the simplest, and one of the most efficient RL algorithms
to date for difficult non-Markovian tasks.

Future investigations may involve the use of natural gradients (Peters
and Schaal, 2006, 2008b) and other gradient optimization methods to opti-
mize performance (e.g., Schraudolph et al., 2006). Extending the estimation
of history-dependent baselines to include temporal difference methods could
constitute another profitable line of research.



Chapter 4

Natural Evolution Strategies

This chapter presents Natural Evolution Strategies to optimize unknown
‘fitness’ functions in order to perform phylogenetic reinforcement learning.
Natural Evolution Strategies form a novel algorithm that constitutes a prin-
cipled alternative to standard black box optimization methods such as evo-
lutionary search. It maintains a multinormal search distribution on the set
of solution candidates. The natural gradient is used to update the distribu-
tion’s parameters in the direction of higher expected fitness. Using fitness
baselines and importance mixing (a procedure adjusting batches with mini-
mal numbers of fitness evaluations), the algorithm yields competitive results
on a number of black box benchmarks as well as on the hard non-Markovian
double pole balancing RL task.

4.1 Introduction

Evolutionary algorithms and other black box optimization algorithms aim
to optimize a ‘fitness’ function that is either unknown or too complex to
model directly. They allow domain experts to search for good or near-
optimal solutions to numerous difficult real-world problems in areas ranging
from medicine and finance to control and robotics. In particular, these al-
gorithms can be applied in phylogenetic reinforcement learning to learn a
controller’s parameters directly, for example, by using the evolved genome to
a recurrent neural network which takes observations as inputs and produces
actions as outputs, and by using a fitness measure which corresponds to the
experienced returns of episode roll-outs. By estimating a controller’s pa-
rameters directly, one can circumvent the need to estimate a value function
(see Chapter 2).

A variety of algorithms has been developed within this framework, in-
cluding methods such as the cross-entropy method (Rubinstein and Kroese,
2004), simultaneous perturbation stochastic optimization (Spall, 1999), hill
climbing, particle swarm optimization (Kennedy and Eberhart, 2001) and

39
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the class of evolutionary algorithms, of which evolution strategies (ES, Rechen-
berg, 1971; Beyer and Schwefel, 2002; Beyer, 1996), and in particular its co-
variance matrix adaption instantiation (CMA-ES: Hansen and Ostermeier,
2001), are most relevant to the work presented in this chapter.

Evolution strategies, so named because of their inspiration from natural
evolution, generally produce consecutive batches (‘generations’) of samples
(‘genomes’). During each generation, a batch of samples is generated by
perturbing the parents’ parameters — mutating their genes, if you will !
A number of samples is selected, based on their fitness values, while the
less fit individuals are discarded. The winners are then used as parents for
the next generation. This process typically leads to increasing fitness over
the generations. The basic ES framework, though simple and heuristic in
nature, has proven to be very powerful and robust, spawning a wide variety
of algorithms.

Evolution strategies generally generate mutations using a normal dis-
tribution with specific mutation sizes associated with every objective pa-
rameter. One of the major research topics in evolution strategies concerns
the automated adjustment of the mutation sizes for the production of new
samples, a procedure generally referred to as self-adaptation. Obviously,
choosing mutation sizes that are too large will produce debilitating muta-
tions and ensure that convergence to a sufficiently fit region of parameter
space will be prevented. Excessively small mutation sizes tend to lead to
overly slow and premature convergence. Generally the mutation size must
be chosen from a small range of values specific to both the problem do-
main and to the distribution of current individuals on the fitness landscape.
Evolution strategies must therefore adapt mutation during evolution, based
on the progress made on the recent evolution path. Often this is done by
simultaneously evolving both objective parameters and the corresponding
mutation sizes. This has been shown to produce excellent results in a num-
ber of cases (e.g., Beyer, 1996).

The covariance matrix adaptation algorithm CMA-ES constitutes a more
sophisticated approach. CMA-ES adapts a variance-covariance mutation
matriz 3 from which mutations are drawn. This enables the algorithm to
generate correlated mutations, speeding up evolution significantly for many
real-world fitness landscapes. Self-adaptation of this mutation matrix is then
achieved by integrating information on successful mutations on its recent
evolution path, by making similar mutations more likely. CMA-ES performs
excellently on most standard benchmark tasks. One of the problems with
the CMA-ES algorithm, however, is its ad-hoc nature and relatively complex
or even contrived set of mathematical justifications and ‘rules of thumb’.

'note that ES generally uses asexual reproduction: new individuals typically are pro-
duced without using crossover or similar techniques that are prevalent in the field of genetic
algorithms
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Another problem pertains to its sensitivity to local optima.

Typically, three objectives have to be kept in mind when developing
evolutionary algorithms—one wants (1) robust performance; (2) few (po-
tentially costly) fitness evaluations; (3) easy tuning of hyperparameters.

In this chapter, Natural Evolution Strategies (NES: Wierstra et al.,
2008a; Yi et al., 2009b,a) are presented, a new class of evolutionary al-
gorithms less ad-hoc than traditional evolutionary methods.

The NES algorithm, like CMA-ES, maintains and iteratively updates a
multinormal mutation distribution. Parameters are updated by estimating
a natural evolution gradient, i.e. the natural gradient on the parameters of
the mutation distribution, and following it towards better expected fitness.
Well-known advantages of natural gradient methods include isotropic con-
vergence on ill-shaped fitness landscapes (Amari and Douglas, 1998). This
avoids drawbacks of ‘vanilla’ (regular) gradients which are prone to slow or
premature convergence (Peters and Schaal, 2008b). In conjunction with the
techniques of fitness baselines and fitness shaping this yields robust perfor-
mance (objective 1).

To reduce the number of potentially costly evaluations (objective 2),
we utilize the recently introduced method of importance mizing, a type
of steady-state enforcer which keeps the distribution of the new population
conformed to the current mutation distribution, while allowing the algorithm
to recycle old samples, as such significantly reducing the number of required
new samples in order to make an update.

An additional advantage of importance mixing is that it renders the
algorithm relatively insensitive to the batch size. This, combined with the
fact that a learning rate of 1 is nearly optimal for natural gradients, makes
the algorithm easy to work with in practice (objective 3).

The resulting algorithm, Natural Evolution Strategies, is elegant, re-
quires no additional heuristics and has few parameters that need tuning.
It performs consistently well on both standard unimodal and multimodal
benchmarks, and shows highly competitive performance on the difficult non-
Markovian double pole balancing task and other phylogenetic RL settings
(see Chapter 7).

The chapter is organized as follows. The next section provides a quick
overview of the general problem framework of black box function optimiza-
tion. The ensuing sections describe the derivation of the ‘vanilla’ gradient
approach, the concept of ‘fitness shaping’, importance mixing and the nat-
ural gradient instantiation of the algorithm. The section on experimental
results describes NES’ performance on the standard comparison set of uni-
modal and multimodal benchmark problems used in the literature, as well
as its results on the pole balancing benchmark. The chapter concludes with
a discussion, and points out some possible directions for future work.
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Figure 4.1: The evolution, over four generations, of Gaussian-
generated sample points and the ellipsoids representing their cor-
responding mutation covariance matrices on a 2-dimensional fit-
ness landscape.

4.2 Algorithm Framework

In this section, first the algorithm framework and the corresponding notation
are introduced. The objective is to optimize the d-dimensional continuous
vector of objective parameters x for an unknown fitness function f : R —
R. The function is unknown or ‘black box’, in that the only information
accessible to the algorithm consists of function measurements selected by
the algorithm. The goal is to optimize f(x), while keeping the number
of function evaluations — which are considered costly — as low as possible.
This is done by evaluating a number 1 ... N of separate individuals z; . ..zy
each successive generation g, using the information from fitness evaluations
[(z1) ... f(zn) to adjust both the current candidate objective parameters x
and the mutation sizes. Figure 4.1 shows what a hypothetical search might
look like.

In conventional evolution strategies, optimization is achieved by mim-
icking natural evolution: at every generation, parent solution x produces
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Initialization

Updating Sampling from
Search Search
Distribution Distribution

Evaluating fitnesses
of samples

Figure 4.2: A schematic depiction of the black box framework as
used in phylogenetic reinforcement learning. First, samples are pro-
duced (e.g., the weights of an RNN representing a policy). Then, fitness
evaluations are performed for the newly produced samples. Depending on
the fitness values found, the search distribution (‘population’) is adjusted
towards producing likely more fit individuals.

offspring zi ...zx by mutating string x using a multivariate normal distri-
bution with zero mean and some variance o. After evaluating all individuals,
the best M individuals are kept (selected), stored as candidate solutions and
subsequently used as ‘parents’ for the next generation. This simple process
is known to produce excellent results for a number of challenging problems.
A schematic depiction of the black box framework is given in Figure 4.2.

4.3 ‘Vanilla’ Gradients for Evolution Strategies

NES is different from conventional evolution strategies in one important
respect. Instead of ‘wasting’ information by discarding low-fitness samples,
it aims to use all available fitness values, even the bad ones, to generate a
gradient for updating the population.

The core idea is that one wants to optimize expected ‘fitness’ J =
E,[f(z)] of the next generation. At every generation g, a population 7(9)
parameterized by 6 = (x,X) is assumed, representing the current candidate
solution (‘parent’) x and mutation matrix ¥ used for producing the next
generation of search points.

In order to adjust parameters § = (x,X) towards solutions that are
likely more fit, we estimate a gradient on 6 for the expected fitness. Now let
f(z) be the fitness at a particular search point z, and, utilizing the familiar
multivariate normal distribution, let
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g1
initialize population parameters (9 = (x, X = ATA)
repeat
for k=1...N do
draw zj ~ 7(x, X)) using importance mixing
evaluate cost of f/(zy)
Vilogn (zx) = 271 (2 — x)

Vs logm (zy) =
1 1
52_1 (z)y — %) (z —x) T 271 — 52_1

Valogm(zy) = A {Vg log 7 (zx) + Vs logm (zk)T}
Vxlogn(z1) Valogn(z) 1
@ = s s :
Vxlogm(zy) Valogm(zy) 1
R=[f(z1),..., [ (z5)]"
50 = (@T®) '®TR
et 99 _ .50
g—g+1
until stopping criterion is met

Algorithm 4.1: Pseudocode for the Natural Evolution Strategies
algorithm.

m(z]0) = N(z|x,X)

1 1 Ty —1
= Wexp |:—2(Z—X) > (Z—X)

denote the probability density of search point z given the current population
0 = (x,¥). Expected fitness can then be expressed as

J = E.[f(2)]
= /7r(z|9)f(z)dz.

Taking the derivative of J with respect to 6 of population 7, one can write

Vod = VyE,[f(z)]

— [ Vorat) f(a)d
n(29)
/W(Zw)er(zW)f(z)dz

- /w(z|9)V910g7r(Z|9)f(Z)dz
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using the ‘likelihood-ratio’ trick. Taking a Monte Carlo approximation of
this expectation by choosing N search points yields

VoJ = E;[Vglogn(z|0)f(z)]
N

% > Volog m(zi|0) f (zk).
k=1

Q

The population parameter vector § = (x,X) is comprised of both the cur-
rent candidate solution center and its mutation matrix, concatenated in one
single vector. In order to calculate the derivatives of the log-likelihood with
respect to individual elements of 6 for this mixture of multivariate normal
distributions, first note that

1
logm (z]x,¥) = glog(27r)—§logdet2

1
- Q(zfx)TE_1 (z — x).
Obtaining its derivatives will be necessary, that is, Vxlog (z|x,X¥) and
Vs logm (z]x, X). The first is simply

Vylogm (zx, %) = 7! (z — x),
while the latter is
1 1
Vs logm (z|0) = 52—1 (z—x)(z—x)T271 - 52—1.

Mutation matrix 3 needs to be constrained, though, in order to preserve
symmetry, ensure positive variances and to keep it positive semi-definite.
One can accomplish that by representing 3 as a product ¥ = ATA. Instead
of using the log-derivatives on Vylogw (z) directly, the derivatives with
respect to A can be computed as

Valogm(z;) = A [Vz log (z) + Vi log 7 (zx) ¥

Using these derivatives to estimate VyJ, one can then update parameters
0= (x,2=ATA) as
0 — 0+ aVyJ

using learning rate o. This produces a new candidate solution x(1) each
generation of IV sample points, and simultaneously self-adapts the associated
mutation matrix to XY, This simple update rule, which covers both
candidate parameters and mutation parameters in one single framework,
is in marked contrast to the complicated and ad-hoc and overly heuristic
nature of most ES algorithms such as CMA-ES.
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4.4 Fitness Shaping

For problems with wildly fluctuating fitnesses, the gradient is dispropor-
tionately distorted by extreme fitness values, which can lead to premature
convergence or numerical instability. To overcome this problem, we use
fitness shaping, an order-preserving nonlinear fitness transformation func-
tion (Wierstra et al., 2008a). The choice of (monotonically increasing) fit-
ness shaping function is arbitrary, and should therefore be considered to be
one of the tuning parameters of the algorithm. It was empirically found
that ranking-based shaping functions work best for all problems that were
tackled. The shaping function used for all experiments in this thesis was
fixed to f/(z) = 2i — 1 for i > 0.5 and f/(z) = 0 for i < 0.5, where i denotes
the relative rank of f (z) in the population, scaled between 0. .. 1.

4.5 Importance Mixing

At each generation, one evaluates N new individuals generated from popula-
tion 7 (z]@). However, since small updates ensure that the Kullback-Leibler
divergence between consecutive mutation distributions is generally small,
most new individuals will fall in the high density area of the previous mu-
tation distribution 7 (z|#’). This leads to redundant fitness evaluations in
that same area.

One solution to this problem is a procedure called importance mizring in-
troduced in (Yi et al., 2009b,a), which aims to reuse fitness evaluations from
the previous generation, while ensuring the updated population conforms to
the new mutation distribution.

Importance mixing works in two steps: In the first step, rejection sam-
pling is performed on the previous population, such that individual z is
accepted with probability

min {1, (1=m) :((Zz’\;)/)) } ‘

Here n € [0,1] is the minimal refresh rate. Let N, be the number of individ-
uals accepted in the first step. In the second step, reverse rejection sampling
is performed as follows: Generate individuals from 7 (z|60) and accept z with

probability
m (20
1_
m“{”’  (29)

until N — N, new individuals are accepted. The N, individuals from the
old generation and N — N, newly accepted individuals together constitute
the new population. Note that only the fitnesses of the newly accepted
individuals need to be evaluated. The advantage of using importance mixing
is twofold: On the one hand, it reduces the number of fitness evaluations
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required in each generation, on the other hand, if ones fixes the number of
newly evaluated fitnesses, then many more fitness evaluations can potentially
be used to yield more reliable and accurate gradients.

The minimal refresh rate n lower bounds the expected proportion of
newly evaluated individuals p = E [N YVN “} , namely p > n, with the equality
holding iff # = ¢’. In particular, if n = 1, all individuals from the previous
generation will be discarded, and if = 0, p depends only on the distance
between 7 (z|0) and 7 (z]|6’). Normally one should set 7 to be a small positive
number, e.g. 0.01 (as utilized throughout this work), to avoid too low an
acceptance probability at the second step when 7 (z|0') /7 (z|0) ~ 1.

The updated population conforms to the mutation distribution = (z|f).
In the region where (1 —n)7 (z|0) /7 (z|0') < 1, the probability that an
individual from previous generations appears in the new population is

7 (2|0) - (1 —n) 7w (2|0) /7 (2]0') = (1 —n) 7 (2]0).

The probability that an individual generated from the second step entering
the population is n7 (z]6@), since

max {n,1 —m (z[0') /7 (2]0)} = n.

So the probability of an individual entering the batch is just 7 (z|f) in
that region. The same result is valid for the region where it holds that
(1= )7 (210) /7 (2]6) > 1.

Measuring the usefulness of importance mixing (Yi et al., 2009b,a), it
was empirically found that it reduces the number of required fitness eval-
uations for all experiments by at least a factor 3. Additionally, it reduced
the algorithm’s sensitivity to both the learning rate and the population
size. Using larger populations has the effect that more samples tend to get
reused simply because more sample points in the new region will be avail-
able. Using smaller learning rates has the same effect, since more samples
will then fall in the overlapping high density area of consecutive parameter
sets. While importance mixing does not render NES parameter-free, the
near-desensitization to both batch size hyperparameter N and learning rate
« makes the application of NES rather convenient to the user: in effect, only
the initial search region defined by 6 and the fitness shaping function need
to be determined.

4.6 Natural Evolution Strategies

Standard gradient methods have been shown to converge slowly on fitness
landscapes with ridges and plateaus. An ad-hoc and often-used method
for overcoming this would be the use of momentum. Natural gradients
constitute a more principled approach, however. First introduced by Amari
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Figure 4.3: Vanilla gradients and natural gradients on a valley-
shaped landscape. The vanilla gradients zigzag around the valley, while
the natural gradient points towards the steepest descent.

in (Amari, 1998), natural gradients have numerous advantages over ‘vanilla’
gradients (see Figure 4.3 for a schematic depiction of a vanilla and a natural
gradient on the same landscape).

The traditional gradient VJ simply follows the steepest descent in the
space of the actual parameters. While this might be a good idea in many
problems, the main drawback comes if one needs to maintain uncertainty
as it generates the necessary exploration for the solutions. In this case, one
needs to stay close to the presented type of solutions while maximizing the
fitness. As the solutions are produces as random samples, it is necessary to
use a measure of distance D(6'||) between probability distributions 7y (z)
and 7y (z). The natural measure distance between two probability distribu-
tions is the Kullback-Leibler divergence. In this case, a special case of the
natural gradient is considered with natural gradient update §6 calculated as

max J (0 + 60) = 50TV J,
such that D (0 +00||0) = e,

where J (6) is the expected fitness of population 7 parameterized by 6, 56
is the direction of constrained steepest descent, V.J is the steepest descent
or gradient, D (6 + d6||0) a measure of closeness on probability distributions
(the Kullback-Leibler divergence) and ¢ a small increment size.

The constraints impose a geometry on ¢ which differs from the Euclidean
one. If one uses this gradient, the Kullback-Leibler divergences between
updates on the search distribution tend toward constancy as the learning
rate goes down. For a simple Gaussian, this would mean that a large step
on the mean would correspond to a smaller step on the variance, and vice
versa. Intuitively, this constitutes a very favorable exploration-exploitation
trade-off in black box optimization: if the mean is close to the optimum,
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exploration is automatically reduced for finetuning, while if it is not, the
algorithm keeps exploring by maintaining larger variances.
If D (0 + 660]|9) is the Kullback-Leibler divergence, it follows that

D (6 + 66||0) = 66T F (#) 66 + (const),
for small 60 — 0, where
F (0) = /W(Z)Vlogw(z)VIOgﬂ'(z)T dz,
=E [V log 7 (z) Vlog  (z)T

is the Fisher information matrix which yields the natural gradient 0 defined
by the necessary condition

F ()50 = aVJ,

with « being the learning rate. Additionally, one can introduce a fitness
baseline b (analogously to the one introduced in Chapter 3) as

VJZ/VTI'(Z)f(Z)dZ‘l-O

:/Vﬂ(z)f(z)dz—l—bV/w(z)dz

- [Vr@ @i+ [ Vr@as
:/W(z) [f (2) — b dz

= [r @) Viogm ) [f ()~ 3] do
=E([Viogr (z)[f (z) —b]].

Thus, the fitness baseline parameter b is obtained, which can be used to
reduce the estimation variance Var [V log7 (z) [f (z) — b]]. Note that

Var [Vlog 7 (z) Cf (z)] = Var [Vlog 7 (z) f (z)] C2,

that is, the variance grows quadratically with the average magnitude of the
fitnesses. It can be significantly reduced if a proper fitness baseline is used,
reducing the number of samples required to correctly estimate the gradient.
This changes the equation to
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with ¢ (z) = Vlog (z) with one open parameter b. Fitness baseline b can
be obtained by realizing the lower bound

Var (¢ (z) [f (2) — b]]

(f(2) = ])
7

> B [0(2)6 (2)7] + Var [6 (=) [ - b]].

= f2Var | ¢ (2) + Var [(Z)(z) [f—b]],

where f = E[f (z)]. Thus, the minimum is at b = f, that is, the average
fitness. As E[¢(z)] = 0, it follows that
0+b=E[f (2),
E[¢(2)]" 66 +b=E[f (2)].

Now, this yields the equation system

E [6(2)6(2)"] 80+ Elo(2))] = E[6(2) ] (2)]
E[6 (2)]" 60+ b=E[f (2)].
This system can be solved straightforwardly as a linear regression problem

using the pseudoinverse, and when replacing the E[-] by sample averages,
this yields the general natural gradient estimator

50 = (2T®)'@TR
where
Vo logm(z1) 1
P = :
Vo logm(zy) 1
R = [f(z1)..... f(zn)]"

The resulting Natural Evolution Strategies algorithm is outlined as pseu-
docode in Algorithm 4.1

4.7 Experiments

The tunable parameters of Natural Evolution Strategies are comprised of
the population size N, the learning rate «, the refresh rate n (always set to
0.01) and the fitness shaping function. In addition, the initial search region
must be specified by setting 3 and x to appropriate values.

Empirically it was found that a good and robust choice for the learning
rate « is 1.0 for all problems. Therefore, the only parameter that needs tun-
ing in practice is the batch size N, which is dependent on both the expected



CHAPTER 4. NATURAL EVOLUTION STRATEGIES ol

Figure 4.4: The evolution of the mutation matrices over the genera-
tions for the Rastrigin benchmark. Shown are the ¥-defined ellipsoids
that correspond to 0.5 standard deviations of the consecutive mutation dis-
tributions imposed on the fitness landscape of the multimodal Rastrigin
benchmark (note that the optimum is at (0,0)).

ruggedness of the fitness landscape and the problem dimensionality. N was
taken to be 15 times the problem dimensionality d, and it was empirically
found that this setting, in combination with importance mixing, led to near-
optimal results for all experiments in this thesis as compared to other batch
sizes and/or learning rates.

4.7.1 Standard Benchmark Functions

The algorithm was empirically tested on the 8 unimodal and 4 multimodal
functions out of the set of standard benchmark functions that are typically
used in the black box optimization literature (see, e.g., Suganthan et al.,
2005; Hansen and Ostermeier, 2001), both for comparison purposes and
for competitions. The initial guess was chosen randomly at average dis-
tance 1 from the optimum. In order to prevent potentially biased results,
following (Suganthan et al., 2005), the functions’ inputs were consistently
transformed (by a combined rotation and translation), making the variables
non-separable and avoiding trivial optima (e.g. at the origin). This proce-
dure immediately renders many other methods virtually useless, since they
cannot cope with correlated mutation directions. NES, however, is invariant
under translation and rotation. In addition, the rank-based fitness shap-
ing makes it invariant under order-preserving transformations of the fitness
function.
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Figure 4.5: Results for NES on the unimodal benchmark functions.
Left: results for NES experiments on the unimodal benchmark functions
with dimensionality 5. Right: results for the unimodal benchmark functions
with dimensionality 15. Shown are averages over 200 runs.
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’ Name ‘ Type ‘ Function
Sphere unimodal E;lzl zJ2
, 2

Schwefel unimodal 2?21 {Zizl zjw

. d
Tablet unimodal (100027)? + z; =2 ZJQ
DiffPow unimodal 2?21 |2 P00

i— 2

Ellipsoid | unimodal | Y24, (100057

. d
SharpR unimodal —z1+ 100\/ > i ZJZ

. d
ParabR unimodal —z1 + 1(?0 D i z]2- .
Cigar unimodal 22 + > j— (10002;)
Rastrigin multimodal | 10n + Z;l:l z]2- — 10 cos (27z;)

. d
Ackley multimodal | —20exp (—0.2\/5 ijl ZJQ)
—exp (é Z;l:1 cos(2772j)> +20+e

Weierstrass | multimodal Z;-lzl 2;0:0 0.5% cos(2m3%(z; + 0.5))
Griewank | multimodal Z;l:l 4(2)% — H?:1 cos(%) +1

Table 4.1: Standard benchmarks for black box optimization. Shown are
the the 8 unimodal and 4 multimodal standard benchmark functions (for
d dimensions) that are frequently used in competitions and for comparison
purposes.

4.7.2 Performance on Benchmark Functions

NES was tested on the set of unimodal benchmark functions (see Table 4.1)
with dimensions 5 and 15, using learning rate o = 1.0, initial mutation
matrix ¥ = I and x ~ N(0,I), and using a target fitness precision of 10710,
Figure 4.5 shows the average performance over 200 runs for each benchmark
function. Note that SharpR and ParabR are unbounded functions, which
explains the abrupt drop-off.

For the experiments on the multimodal benchmark functions, the dis-
tance of the initial guess to the optimum was varied between 0.1 and 1000.
Some runs were performed on dimension 2 with a target precision of 0.01,
since here the focus was on avoiding local optima. Figure 4.6 shows, for all
tested multimodal functions, the proportion of 200 runs where NES found
the global optimum (as opposed to it getting stuck in a local extremum)
conditioned on the distance from the initial guess to the optimum. Addi-
tionally, it shows a similar experiment where the dimensionality 2...5 was
varied while keeping initial distance fixed to 1.
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Figure 4.6: Results for NES on the multimodal benchmark func-
tions. Left: results varied with the dimensionality with fixed initial distance
of 1. Right: results varied with distance, with dimensionality 2. The data
were recorded for 200 runs. Note that in the left graph, the performance
curves of the Ackley and Griewank functions overlay each other.

4.7.3 Non-Markovian Double Pole Balancing

Used as the optimizer in phylogenetic reinforcement learning, NES was ap-
plied to the same four pole balancing benchmarks as described in Chapter 3.
Fitness values were the lengths of the trials until the pole(s) fell over, and
as policy representation the same recurrent LSTM network was chosen as
used for RPGs, however, using only two memory cells in order to keep the
number of weights low. Results on the pole balancing task are given in Ta-
ble 4.2. As can be seen from Table 7.4 in Chapter 7, NES’ results for the
double-pole, non-Markovian case constitutes nearly the best performance

Markov non-Markov
1 pole 232 £+ 65 538 + 134
2 poles | 1150 + 426 | 1443 + 521

Table 4.2: NES results on the pole balancing tasks. The table shows
the results for NES on the pole balancing task, for the four possible cases
investigated in this chapter: 1 pole Markov, 2 poles Markov, 1 pole non-
Markov, and 2 poles non-Markov. The results show the mean and stan-
dard deviation of the number of evaluations until the success criterion was
reached, that is, when a run lasts more than 100,000 time steps (the equiv-
alent of one half hour of simulated time). Results are computed over 200
runs. All runs achieved the objective within 100,000 trials.
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on this difficult benchmark — significantly better than CMA-ES, and only
slightly worse than the CoSyNE (Gomez et al., 2006) algorithm.

4.8 Conclusion and Future Work

NES is a novel alternative to conventional evolutionary algorithms, using
a natural evolution gradient to adapt the population distribution. NES
constitutes a competitive, theoretically well-founded and relatively simple
method for phylogenetic reinforcement learning. Good results on standard
benchmarks and the non-Markovian double pole balancing task affirm the
promise of this research direction.

Unlike most evolutionary algorithms, NES boasts a relatively clean deriva-
tion from first principles. Using a full multinormal mutation distribution
and fitness shaping, the NES algorithm is invariant under translation and
rotation and under order-preserving transformations of the fitness function.

Comparing the empirical results to CMA-ES (see Chapter 7), considered
by many to be the ‘industry standard’ of evolutionary computation (Hansen
and Ostermeier, 2001), it is apparent that NES is competitive on both uni-
modal and multimodal benchmarks. These results, together with the results
on the non-Markovian double pole balancing task, collectively show that
NES can compete with state-of-the-art evolutionary algorithms.

Its theoretical relationship to the field of policy gradients (Williams,
1992; Peters and Schaal, 2008a), and in particular natural actor-critic (Pe-
ters and Schaal, 2008b), should be clear to any reader familiar with both
fields. In recent work carried out independently from the work in this the-
sis, the similarities between policy gradient methods and evolution strategies
have also been pointed out (Heidrich-Meisner and Igel, 2008), which suggests
there might be fruitful future interaction between the two fields.

Future work will have to address problem of automatically determining
good population sizes and dynamically adapting the learning rate, perhaps
differentiated for mean and mutation matrix. Moreover, one could consider
the possibility of combining this algorithm with other methods (e.g. estima-
tion of distribution algorithms) to accelerate the adaptation of covariance
matrices, improving performance on fitness landscapes where directions of
ridges and valleys change abruptly. It may be worthwhile to investigate
whether the use of heavy tail distributions (e.g. Cauchy) instead of the reg-
ular multinormal distribution is useful. Moreover, investigating the use of
multimodal distributions could lessen the sensitivity of NES to local optima
on more difficult phylogenetic tasks with complex policy representations.
Last, the investigation of the theoretical relationship between CMA-ES and
NES might constitute a promising research direction, as both algorithms,
while entirely different in both approach and derivation, utilize a covariance
matrix for producing samples.



Chapter 5

Fitness Expectation
Maximization

In this chapter, Fitness Expectation Maximization (FEM) is presented, which
is, like NES (Chapter 4) a novel method for performing ‘black box’ func-
tion optimization and phylogenetic reinforcement learning. FEM searches
the fitness landscape of an objective function using an instantiation of the
well-known Expectation Maximization (EM) algorithm, producing search
points to match the sample distribution weighted according to higher ex-
pected fitness. FEM updates both candidate solution parameters and the
search policy, which is represented as a multinormal distribution. Inheriting
EM’s stability and strong guarantees, the algorithm avoids overly greedy
updates and early convergence. The method is both elegant and compet-
itive, and performs especially well as a phylogenetic reinforcement learner
on the challenging non-Markovian double pole balancing task.

5.1 Introduction

As explained in Chapter 4, real-valued ‘black box’ function optimization is
one of the major topics in modern applied machine learning research (e.g.,
Spall et al., 2006). It concerns itself with optimizing the continuous pa-
rameters of an unknown (black box) objective fitness function, the exact
analytical structure of which is assumed to be unknown or unspecified. Spe-
cific function measurements can be performed, however. The goal is to find
a reasonably high-fitness candidate solution while keeping the number of
function measurements limited. The black box optimization framework is
crucial for many real-world domains, since often the precise structure of a
problem is either not available to the engineer, or too expensive to model or
simulate. Numerous realistic problems can be treated as real-valued black
box function optimization problems. In order to illustrate the importance
and prevalence of this general setup, one could point to a diverse set of tasks
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such as the classic nozzle shape design problem (Klockgether and Schwefel,
1970), developing an Aibo robot gait controller (Kohl and Stone, 2004) and
non-Markovian control (Gomez and Miikkulainen, 1999).

Now, since exhaustively searching the entire space of solution parameters
is considered to be infeasible, and since one cannot assume to have access to a
precise model of the fitness function, one is is forced to settle for trying to find
a reasonably good solution that satisfies certain pre-specified constraints.
This, inevitably, involves using a sufficiently intelligent heuristic approach,
since in practice it is important to find the right domain-specific trade-off
on issues such as convergence speed, expected quality of the solutions found
and the algorithm’s sensitivity to local suboptima on the fitness landscape.

One can postulate the similarity and actual equivalence of black box
function optimization and one-step reinforcement learning. In the attempt
to create a viable optimization technique based on reinforcement learning,
one can fall back onto a classical goal of reinforcement learning, i.e., the
search for a way to reduce the reinforcement learning problem to a super-
vised learning problem. In order to do so, it is profitable to re-evaluate the
recent result in machine learning, that reinforcement learning can be reduced
onto reward-weighted regression (Peters and Schaal, 2007) which is a novel
algorithm derived from Dayan & Hinton’s Expectation Maximization (EM)
perspective on RL (Dayan and Hinton, 1997). It can be shown that this
approach generalizes from reinforcement learning to fitness maximization to
form Fitness Expectation Maximization (FEM).

This algorithm is tested on the standard set of unimodal and multimodal
benchmark functions (see Chapter 7 for comparative results). Similar to
NES, a defining feature of FEM is its adaptive search policy, which takes the
form of a multinormal distribution that produces correlated search points in
search space. Its covariance matrix makes the algorithm invariant across ro-
tations in the search space, and enables the algorithm to fine-tune its search
appropriately, resulting in arbitrarily high-precision solutions. Furthermore,
using the stability properties of the EM algorithm, the algorithm seeks to
avoid catastrophically greedy updates on the search policy, thus preventing
premature convergence in many cases.

The organization of this chapter is as follows. The next section describes
the derivation of the EM-based algorithm and the online instantiation of
the algorithm. The ensuing experiments section shows initial results with
a number of unimodal and multimodal benchmark problems. Furthermore,
phylogenetic reinforcement learning results on the non-Markovian double
pole balancing problem are presented. The last section discusses the algo-
rithm’s properties and offers some possible directions of future research.
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5.2 Expectation Maximization for Black Box Func-
tion Optimization

At every point in time while running the algorithm, one wants to optimize
the expected fitness J = E,[f(z)] of the next batch, given the current batch
of search samples. It is assumed that every batch g is generated by search
policy 7(9) parameterized by § = (x, ¥), representing the current candidate
solution x and covariance matrix 3.

In order to adjust parameters § = (x, ¥) towards solutions with higher
associated fitness, we match the search distribution to the actual sample
points, but weighted by their utilities. Now let f(z) be the fitness at a par-
ticular search point z, and, utilizing the familiar multivariate normal distri-
bution, let 7(z|0) = N(z|x,X) = W exp [—3(z — x)TE "1 (z — x)]
denote the probability density of search point z given the current search
policy m. Expected fitness

T = Eulf(2) = [ nalt)(a)ia

indicates the expected fitness over all possible sample points, weighted by
their probabilities under policy 7.

5.2.1 Optimizing Utility-transformed Fitness

While an objective function such as the above is sufficient in theory, algo-
rithms which plainly optimize it have major disadvantages. They might
be too aggressive when little experience — few sample points — is avail-
able, and converge prematurely to the best solution they have seen so far.
On the opposite extreme, they might prove to be too passive and be bi-
ased by less fortunate experiences. Trading off such problems has been a
long-standing challenge in reinforcement learning. However, in decision the-
ory, such problems are surprisingly well-understood (Chernoff and Moses,
1987). In that framework it is common to introduce a so-called utility
transformation u (f(z)) which has to fulfill the requirement that it scales
monotonically with f, is semi-positive and integrates to a constant (note
the similarity /near-equivalence to fitness shaping introduced in Chapter 4).
Once a utility transformation is inserted, an expected utility function is
obtained given by

Ju (6) = / p(zlf)u (f(2)) da.

The utility function u (f) is an adjustment for the aggressiveness of the
decision making algorithms, e.g., if it is concave, its attitude is risk-averse
while if it is convex, it will be more likely to consider a fitness more than a
coincidence. Obviously, it is of essential importance that this risk function
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is properly set in accordance with the expected fitness landscape, and it
should be regarded as a metaparameter of the algorithm.

Empirically it was found that ranking-based shaping functions work best
for various problems, also because they circumvent the problem of extreme
fitness values disproportionately distorting the estimation of the search dis-
tribution, making careful adaptation of the algorithm during search unnec-
essary even for problems with wildly fluctuating fitness. In this chapter,
the simple rank-based utility transformation function also used as NES’
shaping function is considered (see Chapter 4), the piecewise linear uj =
u(f(zg)|f(zk-1),..., f(zr—n)) which first ranks all samples k — N,... k
based on fitness value, then assigns zero to the N — m worst ones and as-
signs values linearly from 0...1 to the m best samples.

5.2.2 Fitness Expectation Maximization

Analogously as in (Peters and Schaal, 2007; Dayan and Hinton, 1997), one
can establish the lower bound

log J, (0) = log/q(z)p(z

= Flq,0),

due to Jensen’s inequality with the additional constraint 0 = [ ¢(z)dz — 1.
This points us to the following EM algorithm:

Proposition 1. An Expectation Maximization algorithm for optimizing both
the expected utility as well as maximizing raw expected fitness is given by

B-Step: ggn1(2) = fﬁ(ggg FonE (5.1)
M-Step Policy: 8441 = argméix/ng(z) log p(z|6)dz. (5.2)

Proof. The E-Step is given by
q = argmax,F (q,0)
while fulfilling the constraint 0 = [ ¢(z)dz — 1. Thus, one has a Lagrangian
L(\q) =F(q,0)— A

When differentiating L (A, ¢) with respect to ¢ and setting the derivative to
zero, one obtains

q¢"(2z) = p(z|0)u (f(2)) exp (A —1).
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Inserting this back into the Lagrangian obtaining the dual function

L(\q") = /q*(z)dz - A

Thus, setting dL (X, ¢*) /d\ = 0 yields

A=1-log [ plalp)u(f(2) da
and solving for ¢* implies Equation (5.1). The M-steps compute
Og+1 = argmaxyF (qg+1,0) -
O

In practice, when using a multinormal search distribution parameterized
by 09 = (x,X), the EM process comes down to simply fitting the samples
in every batch to the Gaussian, weighted by the utilities.

5.3 Online Fitness Expectation Maximization

In order to speed up convergence, the algorithm can be executed online,
that is, sample by sample, instead of batch by batch. The online version
of the algorithm can yield superior performance since updates to the policy
can be made at every sample instead of just once per batch. Crucial is that
a forget factor a is now introduced to modulate the speed at which the
search policy adapts to the current sample. Batch size N is now only used
for utility ranking function u which ranks the current sample among the N
last seen samples. The resulting FEM algorithm pseudocode can be found
in Algorithm 5.1.

use shaping function u, batch size N, forget factor «
k—1
initialize search parameters %) = (x, )
repeat
draw one sample zj ~ m(x,X)
evaluate fitness f(zy)
compute rank-based fitness shaping ux = u(f(2zr)|f(2x-1),- .-, f(Zx—nN))
x — (1 — aug)x + qupzy
S (1—aup)T + auy, (x — zi) (x — z5) "
k—k+1
until stopping criterion is met

Algorithm 5.1: Fitness Expectation Maximization.
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Figure 5.1: Results for experiments on the unimodal benchmark
functions. Top: dimensionality 5, bottom: dimensionality 15.
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Figure 5.2: Results for experiments on the multimodal benchmark
functions. Left: results varied with the dimensionality, right: results varied
with distance. The data are recorded for 200 runs. Note that in the left
graph, the performance curves of the Ackley and Griewank functions overlay
each other. It can be seen that FEM fares especially badly on the Weierstrass
and Rastrigin functions.

5.4 Experiments

5.4.1 Standard benchmark functions

In order to prevent potentially biased results, and to avoid trivial optima
(e.g. at the origin), I again follow (Suganthan et al., 2005) as in Chapter 4
and consistently transform (by a combined rotation and translation) the
functions’ inputs in order to make the variables non-separable. This im-
mediately renders many evolutionary methods virtually useless, since they
cannot cope with correlated search directions, unlike FEM and NES.

The tunable parameters of the FEM algorithm are comprised of batch
size N, the fitness shaping function u applied on the fitness function f and
forget factor . The parameters should be chosen by the expert to fit the
expected ruggedness of the fitness landscape. The forget factor must be
low enough such that it does not too quickly forget earlier successful search
points. The shaping function must be chosen such that enough randomness
is preserved in the search policy after every update, which entails including
the less fit samples in utility attribution.

FEM was run on the set of unimodal benchmark functions with dimen-
sions 5 and 15 using a target precision of 10719, Figure 5.1 shows the average
performance over 200 runs on the unimodal functions. The parameter set-
tings for dimensionality 5 were identical in all runs: @ = 0.1 and N = 50, m
for selecting the shaping function’s top m samples, was set at m = 5. The
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Markov non-Markov
1 pole 103 + 37 [200/200] 235 £ 48 [200/200]
2 poles | 1203 £ 632 [164/200] | 1304 801 [152/200]

Table 5.1: FEM results on the pole balancing tasks. The table shows
the results for FEM on the pole balancing task, for the four possible cases
investigated in this chapter: 1 pole Markov, 2 poles Markov, 1 pole non-
Markov, and 2 poles non-Markov. The results show the mean and stan-
dard deviation of the number of evaluations until the success criterion was
reached, that is, when a run lasts more than 100,000 time steps. Results
are computed over 200 runs, only counting the successful ones. The table
shows the number of successful runs (out of 200) in brackets.

parameter settings for all runs in dimensionality 15 were: o = 0.02, N = 25
and m = 10. All runs converged to the optimum.

On the multimodal benchmark functions experiments were performed
while varying the distance of the initial guess to the optimum between 1
and 100. Those runs were performed on dimension 2 with a target precision
of 0.01, since here the focus was on avoiding local maxima. Figure 5.2 shows,
for all multimodal functions, the proportion of runs where FEM found the
global optimum (as opposed to it getting stuck in a local suboptimum)
conditioned on the distance from the initial guess to the optimum. The
proportions are computed over 200 runs.

To summarize, the experiments on these standard black box optimization
benchmarks indicate that FEM is competitive with other high-performance
algorithms in black box optimization on the selected high-precision unimodal
test functions. See Chapter 7 for a comparison to both NES and CMA-ES.

5.4.2 Non-Markovian Double Pole Balancing

As in Chapter 4, the FEM algorithm can be used to phylogenetically opti-
mize the parameters of the controller of the cart in the pole balancing tasks.
The controller is again implemented as a 2-cell LSTM recurrent neural net-
work.

The algorithm’s parameters were set as follows: piecewise linear shaping
function with m = 5 top 5 selection, forget factor & = 0.05 and batch
size N = 50. A run was considered a success when the poles did not fall
over for 100,000 time steps. For non-Markovian double pole balancing, the
results on a total of 200 runs are, on average, 1,304 evaluations until success
(standard deviation: 801). Not included in these statistics are 48 out of
200 runs that did not reach success within the limit of 100,000 evaluations.
Table 7.4 in Chapter 7 shows results of other premier algorithms applied
to this task, including CMA-ES, RPGs and FEM. FEM outperforms all
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other methods except CoSyNE — with the disadvantage that it prematurely
converges (fails) in roughly 25% of runs. Since the algorithm both performs
well and is derived from first principles (that is, it is less heuristic in nature
than the other methods), the algorithm can be expected to do well on future
real-world experiments with many deceptive local suboptima.

5.5 Conclusion and Future Work

In this chapter Fitness Expectation Maximization was introduced, which,
like Natural Evolution Strategies, constitutes a novel algorithm to tackle
the important class of real-valued black box function optimization problems
with an application to phylogenetic reinforcement learning. Reframing black
box optimization as a one-step reinforcement learning problem led to the
development of a method similar in spirit to Expectation Maximization.
Using a search policy which matches samples weighted by their utilities,
FEM performs competitively on a standard benchmark set of unimodal and
multimodal functions and non-Markovian double pole balancing control.
Fitness Expectation Maximization constitutes a simple, principled ap-
proach with a rather clean derivation from first principles. Its theoretical
relationship to the field of reinforcement learning and in particular reward-
weighted regression should be clear to any reader familiar with both fields.
It can be anticipated that rephrasing the black box optimization problem
as a reinforcement learning problem solvable by RL methods will spawn a
whole series of additional new algorithms exploiting this connection.
Taking into account the good results on the pole balancing task, the
experimental evidence indicates that FEM may become a serious competitor
in the field of black box function optimization. It may be argued, though,
that a method such as Fitness Expectation Maximization should be used
only for problems with relatively small dimensionality, since the number of
parameters in 6 grows with the square of the parameters to be optimized.
One needs a sufficient number of samples per batch before executing an
update step. Alternatively, if the parameter space becomes infeasibly large,
one could use only the variances instead of the entire covariance matrix.
Future work on FEM will include a systematic study that must determine
whether it can be made to outperform other search methods consistently on
other typical benchmarks and real-world tasks. One might suggest extend-
ing the algorithm from a single multinormal distribution as search policy
representation to a mixture of Gaussians (which is a common procedure
for ‘vanilla’ EM), thus reducing its sensitivity to local suboptima. Another
pressing matter involves the theoretical analysis of the utility function, which
should ideally be made to adapt automatically based on the data instead of
tuned manually. Problematic to FEM’s application is its need for parameter
fine-tuning, in contrast to Natural Evolution Strategies which are trivial to



CHAPTER 5. FITNESS EXPECTATION MAXIMIZATION 65

tune. Future research should investigate the possibility to automate this
and derive a reasonable way of adjusting hyperparameters.



Chapter 6

Episodic Reinforcement
Learning by

Logistic Reward-Weighted
Regression

It has been a long-standing goal in the adaptive control community to reduce
the generically difficult, general reinforcement learning problem to simpler
problems solvable by supervised learning. While this approach is today’s
standard for value function-based methods, fewer approaches are known that
apply similar reductions to direct policy search methods. Recently, it has
been shown that immediate RL problems can be solved by reward-weighted
regression, and that the resulting algorithm is an Expectation Maximization
algorithm with strong guarantees. In this chapter, this algorithm is extended
from the one-step case to the episodic case and it is shown that it can
be used in the context of LSTM recurrent neural networks. The resulting
RNN training algorithm is equivalent to a weighted self-modeling supervised
learning technique. In this chapter it is shown that this new reward-weighted
logistic regression technique, used in conjunction with an RNN architecture,
can solve simple standard benchmark POMDPs.

6.1 Introduction

In order to apply reinforcement learning to real-life scenarios it is often essen-
tial to deal with hidden and incomplete state information. While such prob-
lems have been discussed in the framework of partially observable Markov
decision problems for a long time, this class of problems still lacks a sat-
isfactory solution (Kaelbling et al., 1998). Most known methods to solve
small POMDPs rely heavily on knowledge of the complete system, typically
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in the form of a belief-estimator or filter. Without such important informa-
tion, the problem is considered intractable even for linear systems, and is
not distinguishable from non-Markovian problems (Aoki, 1967). As a result,
both POMDPs and non-Markovian problems largely defy traditional value
function based approaches.

While policy search based approaches can be applied even with incom-
plete state information (Baxter and Bartlett, 1999), they cannot yield an
optimal solution unless the policy has an internal state (Wierstra et al.,
2007). As the internal state only needs to represent the features of the be-
lief state and not all of its components, a function approximator with an
internal state would be the ideal representation of a policy, and a recur-
rent neural network constitutes one of the few choices. It offers an internal
state estimator as a natural component and is well-suited for unstructured
domains.

However, the training of recurrent neural networks in the context of
reinforcement learning is non-trivial as traditional methods often do not
easily transfer to function approximators, and even if they do transfer, the
resulting methods such as policy gradient algorithms do no longer employ
the advantages of the strong results obtained for supervised learning. As a
way out of this dilemma, one falls back onto a classical goal of reinforcement
learning, i.e., one searches for a way to reduce the reinforcement learning
problem to a supervised learning problem where a multitude of methods
exists for training recurrent neural networks. In order to do so, one can again
use the recent result in machine learning (see Chapter 5), that reinforcement
learning can be reduced onto reward-weighted regression (Peters and Schaal,
2007) which is a novel algorithm derived from Dayan & Hinton’s Expectation
Maximization perspective on RL (Dayan and Hinton, 1997). We show that
this approach generalizes from immediate rewards to episodic reinforcement
learning to form episodic Logistic Reward-Weighted Regression (LRWR).

As a result, a novel, general learning method is obtained for training
memory-based policies in model-free partially observable environments, that
is, a method that does not require prior knowledge of any of the dynamics
of the problem setup. Using similar assumptions as in (Peters and Schaal,
2007), it can be shown that episodic reinforcement learning can be solved as
a utility-weighted nonlinear logistic regression problem in this context, which
greatly accelerates the speed of learning. A reinforcement learning setup is
obtained which is well-suited for training LSTM recurrent neural networks,
using the E-step of the algorithm to generate weightings for training the
memory-capable LSTM network in the M-step. Intuitively, the network is
trained to imitate or self-model its own actions, but with more successful
episodes weighted more heavily than the unsuccessful ones, resulting in a
convergence to an ever better policy. LRWR is evaluated on a number of
standard POMDP benchmarks, and it is shown that this method provides
a viable alternative to more traditional RL approaches.



CHAPTER 6. LOGISTIC REWARD-WEIGHTED REGRESSION 68

6.2 Logistic Reward-Weighted Regression for Re-
current Neural Networks

Intuitively, it is clear that the general reinforcement learning problem is re-
lated to supervised learning problems as the policy should match previously
taken motor commands such that episodes are more likely to be reproduced
if they had a higher return. The network is trained to imitate or self-model
its own actions, but with more successful episodes weighted more heavily
than the unsuccessful ones, resulting in a convergence to an ever better pol-
icy. In this section, this approach is solidified based on (Peters and Schaal,
2007), and extended from the previous results and a single-step, immediate
reward scenario to the general episodic case.

First, the basic assumptions are discussed. Subsequently, it is shown how
a utility-weighted mean-squared error emerges from the general assumptions
for an Expectation Maximization algorithm. Finally, the entire resulting
algorithm is presented.

6.2.1 Optimizing Utility-transformed Returns

Let the return R(H) be some measure of the total reward accrued during
a history (e.g., R(H) could be the average of the rewards for the average
reward case or the future discounted sum for the discounted case), and let
p(H|0) be the probability of a history given policy-defining weights 6, then
the quantity the algorithm should be optimizing is the expected return

J = / p(H|0)R(H)dH. (6.1)
H

This, in essence, indicates the expected return over all possible histories,
weighted by their probabilities under policy .

While a goal function such as found in Eq. (6.1) is sufficient in theory,
algorithms which plainly optimize it have major disadvantages. They might
be too aggressive when little experience is available, and converge prema-
turely to the best solution they have seen so far. On the opposite extreme,
they might prove to be too passive and be biased by less fortunate expe-
riences. Trading off such problems has been a long-standing challenge in
reinforcement learning. As in Chapter 5, it is useful to introduce a so-called
utility transformation w, (R) which has to fulfill the requirement that it
scales monotonically with R, is semi-positive and integrates to a constant.
Once a utility transformation is inserted, one obtains an expected utility
function given by

1.(0) = [ ol (R(H)) d

The utility function u, (R) is an adjustment for the aggressiveness of the
decision making algorithms, e.g., if it is concave, its attitude is risk-averse



CHAPTER 6. LOGISTIC REWARD-WEIGHTED REGRESSION 69

while if it is convex, it will be more likely to consider a reward more than a
coincidence. Obviously, it is of essential importance that this risk function
is not manually tweaked but rather chosen such that its parameters 7 can
be controlled adaptively in accordance with the learning algorithm.

In this chapter, one simple utility transformation function will be con-
didered, the soft-transform u, (r) = 7Texp(7r) also used in (Peters and
Schaal, 2007).

6.2.2 Expectation Maximization for Reinforcement Learning

Analogously as in the case for Fitness Expectation Maximization (Chap-
ter 5), one can establish the lower bound

Jur (R(H))

q(H)
p(H|0)u, (R(H))

> /q(H)log o(H) dH
- / G(H) llog p(H|0) + log ur (R(H)) — log g(H)| dH
= ‘7:(%977_)7

due to Jensen’s inequality with the additional constraint 0 = [ ¢(H)dH —1.
This points one to the following EM algorithm:

dH

log J,, (0) = log/Q(H)p(Hw

Proposition 2. An Expectation Maximization algorithm for optimizing both
the expected utility as well as the reward-shaping is given by

B-Step: g (H) = p(H|O)ur (R(H))

| (i 16)ur (R(E)) di
M-Step Policy: Op41 = argméix/qu(H) logp(H|0)dH,
(6.3)

(6.2)

M-Step Utility Adaptation: T = arg mTaX/qu(H) logu, (R(H))dH.
(6.4)
Proof. The E-Step is given by
q = argmax,F (q,0,7)
while fulfilling the constraint 0 = [ ¢(H)dH —1. Thus, one has a Lagrangian
L(\q) =F(q,60,7)— A\

When differentiating L (A, ¢) with respect to ¢ and setting the derivative to
zero, one obtains

¢"(H) = p(H|9)u, (R(H)) exp (A — 1).
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Inserting this back into the Lagrangian yields the dual function

LA\ g*) = /q*(H)dH Y
Thus, by setting dL (X, ¢*) /d\ = 0, one obtains
A= 1 log [ p(HI8)ur (R(H)) dH.
and solving for ¢* implies Equation (6.2). The M-steps compute

[Oks1, Tir1]” = argmaxy , F (qes1,0,7) -

One can maximize
F (qrs1,0,7)

for 6, 7 independently, which yields Equations (6.3,6.4). O

6.2.3 The Utility-Weighted Error Function for the Episodic
Case

For every reinforcement learning problem, one needs to establish the cost
function F (gx+1,60,7) and maximize it in order to derive a policy. For
episodic reinforcement learning, first the general settings need to be re-
capped. One can denote the probabilities p(H|6) of histories H by

T(H)—1

p(H|0) = p((00,90)) [ plor: ge)lhe-1,ai-1, gr:)m(as—1|he—1)
=1

which are dependent on an unknown initial state and observation distribu-
tion p((0g, go)), and on unknown state transition function. However, the
policy 7(a¢|ht) with parameters 6 is known, where h; denotes the history
which is collapsed into the hidden state of the network.

It is clear that the expectation step has to follow by simply replacing the
expectations by sample averages. Thus, one has

Qo1 (H;) = ]\?T (R(H:)

ijl Ur (R(HJ))

as E-step. Here, Uy = Zjvzl ur (R(H;)) is defined as the summed utility of
all N histories.

The maximization or M-step of the algorithm requires optimizing # such
that F (qx+1, 0, 7) is maximized. In order to optimize 6 one must realize that
the probability of a particular history is simply the product of all actions and
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observations given subhistories (Eq. 6.2.3). Taking the log of this expression
transforms this large product into a sum

T(H)-1
log p(H|6) = (const) Z log 7(a¢|ht)

where most parts are not affected by policy-defining parameters 6, i.e., are
constant, since they are solely determined by the environment. Thus, when
optimizing 6, this constant can be ignored, and one can purely focus on the
outputs of the policy, optimizing the expression

N

F (qh+1,0,7) ZQIH-I ;) log p(H;|0) = Z(U](V Z log m(ay|hy),
i=1

where a! denotes an action from the complete history 7 at time ¢ and hl
denotes the collapsed history ¢ up to time-step t.

6.2.4 Logistic Reward-Weighted Regression for LSTMs

As it seems prudent to use recurrent neural networks as policies while avoid-
ing the vanishing gradient problem, an LSTM recurrent neural network is
again used as policy m(a¢|hy) with parameters 6. Here, one still conditions
on the history h; of the sequence up to time step t as it is collapsed into the
hidden state of the network. A standard LSTM architecture is used where
the discrete actions are drawn from a softmax output layer, that is:

exp(v(ag, h

m(arlhe) = =z (oA, 1u))
> a1 exp(v(a, hy))

for all A actions where the net inputs of the neurons are v(a¢, hy). We

can compute the cost function F (qx11,6,7) for this policy and obtain the

utility-weighted conditional likelihood function

N T(z) 1
ur (R(H,;))
F (qk41,0,7) = E E (atv al, hi) —log g exp(v(a, ht)) ) .
i=1 t=0

This optimization problem is equivalent to a weighted version of logistic re-
gression (Kleinbaum et al., 2002). As v(a, ht) is linear in the parameters of
the output layer, these can be optimized directly. The hidden state related
parameters of v(a, hy) can be optimized using supervised learning with back-
propagation through time (BPTT) of the LSTM architecture. Both linear
and nonlinear logistic regression problems cannot be solved in one single
shot. Nevertheless, it is straightforward to show that the second-order ex-
pansion simply yields a linear regression problem which is equivalent to a
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Newton-Rapheson step on the utility-weighted conditional likelihood. As a
result, one has an approximate regression problem

T(z) 1
u’T

— m(ailhi))?,

Mz

F(qut1,0,7)
=1 t=0

which is exactly the utility-weighted squared error. Optimizing this expres-
sion by gradient descent allows one to use standard methods for determin-
ing the optimum. Nevertheless, there is a large difference in comparison
to regular reward-weighted regression where the regression step can only
be performed once — instead we can perform multiple BPTT training steps
until convergence. In order to prevent overfitting the common technique
of early stopping is used, assigning the sample histories to two separate
batches for training and validation. While this supervised training scheme
requires a relatively large demand in computation per sample history, it
also reduces the number of episodes necessary for the policy to converge.
Lastly, the update of 7 optimizing Eq. 6.2 follows (Peters and Schaal, 2007)

oLy ur(R(H:))

)

as Tg+1 = =N YR(H:)
played in Algorithm 6.1.

o (AU, The complete algorithm pseudocode is dis-
=17

Initialize 0, training batch size N, 7 =1, k = 1.

repeat
fori=1...N do
Sample episode H; = (0g, ag,01,a1,...,07_2,ar_2,0r_1) using policy 7.

Evaluate return for ¢t = 0: R(H;).
Compute utility of H; as u,(R(H;)).
Train weights 6 of policy 7 until convergence with BPTT to minimize

N T()—1
ur (R(H;)) i i17,3))2
Flas )~y == == > (ai = m(ailhi)",
i=1 t=0
using validation sample histories for early stopping.
N
; +(R(H;
Recompute 7 «— NZl:lu (R(H.)) .
i1 ur (R(H:))R(H;)

k—k+1
until stopping criterion is met

Algorithm 6.1: Episodic Logistic Reward-Weighted Regression.

6.3 Experiments

In order to test the LRWR algorithm, empirical experiments were performed
on small discrete POMDP benchmarks commonly used in the literature.
McCallum’s CheeseMaze, the Tiger problem, Chrisman’s Shuttle Docking
benchmark and the 4x3Maze are all classic POMDP problems which range
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Figure 6.1: The CheeseMaze POMDP benchmark. The agent’s obser-
vation consists of a four-dimensional vector indicating walls or the absence
of walls in directions N, E, S and W. The agent starts every episode in
either one starting location labeled ‘S’, and the goal is to reach target ‘I’
(the ‘cheese’) where a reward of 1.0 is given (thus ending the episode), using
actions N, E, S and W. Bumping into a wall is punished with —1.0.

from 2 to 11 states, with 2 to 7 observations, with varying degress of stochas-
ticity regarding action stochasticity and observation noise. Additionally, ex-
periments were again performed on the T-maze (see Chapter 3) with limited
hallway lengths 3, 5 and 7.

6.3.1 McCallum’s CheeseMaze

This classical partially observable maze task was one of the first problems
that model-free POMDP algorithms were applied to (McCallum, 1993).
States: The agent’s unobservable state is its location in the grid (see Fig-
ure 6.1). Starting states are randomly chosen from the two states denoted
with ‘S’, and the goal state that ends the episode is indicated with “T".
Actions: Actions are N, E; S, W. Bumping into a wall leaves the agent in
its place.

Observations: The agent observes ‘wall’ or ‘no-wall’ in directions N, E, S
and W from its locations, encoded with 1.0 and —1.0, respectively.
Rewards: The agent is rewarded 1.0 for reaching goal state ‘I’, and pun-
ished —1.0 if its bumps into a wall. A discount factor of v = 0.7 is used.

6.3.2 The Tiger problem

The Tiger problem (Littman et al., 1995) was designed to study the infor-
mation gain problem in POMDPs. That is, some actions do not change
the state of the environment but cause the agent to gain information which
it can use to act better under uncertainty. The setup is as follows. There
are two doors, and behind one is a penalty (the tiger: penalty —100) and
behind the other is a reward (410). You can open either one of the doors,
or decide to listen. If you listen and the tiger is behind the left door, then
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with probability 85% you hear the tiger on the left and on the right with
probability 15%, and vice versa. Listening causes a small penalty (—1). The
problem is iterated — after opening the door, the setup is reset and the tiger
replaced randomly behind one of the two doors.

States: There are two possible situations: the tiger is either behind the left
or behind the right door.

Actions: There are three possible actions: open left, open right, and listen.
Note that listening gives the correct observation only 85% percent of the
time.

Observations: The tiger is observed behind either the left or the right
door, which is encoded using two inputs as (1,—1) or (—1,1).

Rewards: Opening the door with the tiger causes a penalty of —100. Open-
ing the correct door yields a reward of 10. Listening costs —1. A discount
of v =0.75 is used.

6.3.3 Chrisman’s Shuttle Docking Benchmark

Chrisman’s Shuttle Docking benchmark — see (Chrisman, 1992) for a more
complete description — involves a spaceship that moves cargo between two
space stations. The task is small but highly stochastic, with unreliable
actions and noisy observations. The agent’s (underlying, unobservable) state
indicates whether the agent is docked to either one space station, whether
it is in between the two stations or in front of a station. Additionally, it
indicates which space station the ship is facing, and what the target station
is (it needs to load/unload the stations alternately). Rewards are given
for successfully alternately moving between stations, and the objective is to
yield a high future discounted reward this way, over 1000 time steps.
States: The problem can be encoded using 8 states, taking the symmetry
of two space stations into account. The initial state is docked.

Actions: There are three actions, GoForward, TurnAround and Backup.
TurnAround causes the ship to turn around to face the other space ship.
GoForward either deattaches the ship from the dock, launches into the free
space between the stations, or causes the ship to bump into the station if it
is right in front, yielding a penalty of —3. The backup action, which must be
done facing the other station, is used for docking, but fails with probability
30% (in which case it moves forward instead).

Observations: The observations comprise whether it sees a space station
or empty space, and whether it it docked or not. There is a probability
30% that the indicator station/empty space is toggled. If it sees a station,
it also observes an ‘accepting deliveries’ sign whether this is the current
target station. It also observes whether it received a reward (for successfully
docking to the correct station) in the last time step. These five possible
observations are encoded using five inputs, one of which is 1.0, the others
0.0
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Figure 6.2: Parr and Russell’s 4x3Maze. This deterministic task
consists of a partially observable 4x3 gridworld where the agent can only
observe whether there are walls left or right of it. The ‘4’ goal state indicates
a reward 1.0 and ends the episode, the ‘-’ state gives a penalty of —1.0. The
agent starts every episode in a random location.

Rewards: A penalty —3 is given for bumping into a station, and 410 is
provided for successfully docking. A discounting factor of v = 0.9 is used.

6.3.4 Parr and Russell’s 4x3Maze

This stochastic 4x3Maze task (Parr and Russell, 1995) comprises a 4 by 3
grid world with a single obstacle and two reinforcement states indicated ‘+’
and ‘" in Figure 6.2. The task is stochastic since actions are unreliable.
States: There are 11 states in this gridworld. The starting state is chosen
randomly each episode.

Actions: Four actions are available: N, E, S and W. Executing an action
leads to the desired movement 80% of the time. 20% of the actions leads
the agent to slide sideways in one of the two directions perpendicular to the
intended one, with equal probability. Bumping into walls does not, however,
lead to punishment.

Observations: The agent only observes whether there are walls to the east
and west of it. Additionally, it can observe the ‘4+’ and ‘-’ states, which
leads to six possible observations which are encoded using six inputs, one of
which is 1.0, the others 0.0.

Rewards: The agent receives a +1.0 reward at the ‘+’ state (which ends
the episode) and a punishment —1.0 at the ‘- state. No discounting is used
(i.e., v = 1), but every state other than the ‘4’ or ‘- states yield —0.04, as
such inducing the agent to reach the goal as fast as possible.

6.3.5 Bakker’s T-maze

The last experiment that LRWR, was tested on was the T-maze (see Chap-
ter 3 for a more complete description), which was designed to test an RL
algorithm’s ability to correlate events far apart in history (Bakker, 2002a).
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It involves having to learn to remember the observation from the first time
step until the episode ends. Its difficulty, depending on corridor lengths, can
be adjusted. LRWR's performance was investigated on the T-maze, using
corridor lengths 3, 5 and 7.

6.3.6 Settings and Results

Task ‘ Hand Random Normal Greedy
Tiger 0.67 -36 —6.5+4.9 —5.7+7.4
Shuttle Docking 1.69 -0.31 0.709 + 0.059 0.0+£0.0
4x3Maze 0.27 0.056 0.240 +0.085  0.246 + 0.092
CheeseMaze 0.257 0.072 0.177 £ 0.032 0.212 4+ 0.057
T-Maze3 1.0 0.166 0.917 + 0.043 1.0+0.0
T-Magzeb 0.667 0.046 0.615+0.032  0.662 + 0.021
T-Maze7 0.5 0.002 0.463 +0.008  0.484 + 0.090

Table 6.1: Logistic Reward-Weighted Regression results. This table
shows results averaged over 25 runs. Displayed are the average rewards and
standard deviations obtained for the trained policy (Normal) after 100 EM
steps, its greedy variant (Greedy) which always takes the learned policy’s
most likely action, and both a randomized policy (Random) and a hand-
crafted (Hand) policy as a reference. Shown results include statistics for
T-mazes with corridor lengths 3, 5 and 7. Note that for the Shuttle Docking
benchmark only the results for the successful runs are shown. Shown results
were calculated using the average of 200 roll-outs.

The policy was, as elsewhere in this thesis, represented as an LSTM
network, with input layer size dependent on the observational encoding, a
hidden layer containing 2 LSTM memory cells, and a softmax output layer
with size dependent on the number of actions applicable to the environment.
One tunable parameter, batch size IV, was always set to 30, except for the
CheeseMaze and the T-maze, where it was set to 75. One third of all batch
sample episodes was used for validation in an early stopping scheme to
prevent overfitting.

Every batch was trained until convergence using early stopping — for
Tiger, the Shuttle Docking and the 4x3Maze were trained on 20 episodes
and validated on the remaining 10 episodes, while for the CheeseMaze and
the T-mazes 50 episodes were used for training using 25 episodes for valida-
tion. The LSTM network was initialized with weights uniformly distributed
between -0.1 and 0.1. It was trained using the standard BPTT procedure
for LSTM (Graves and Schmidhuber, 2005) with learning rate 0.002 and
momentum 0.95, while sample reweightings were used that are proportional
to the self-adapting soft-transform w, (r) = 7exp (77), but normalized such
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that the maximal weighting in every batch was always 1.0. All experiments
consisted of 100 consecutive EM-steps, and were repeated 25 times to gain
some statistics.

The results are shown in Table 6.1. One can see that all problems con-
verged quickly to a good solution, except for the Shuttle Docking benchmark
where 13 out of 25 runs failed to converge to an acceptable solution (i.e. the
shuttle does not dock at all). This might be due to the problem’s inher-
ently stochastic nature, which possibly induces the algorithm to converge
prematurely. The T-maze results for LRWR are significantly less impressive
than for RPGs found in Chapter 3 and the algorithm presented in (Bakker,
2002b), where corridor lengths of 90 and 70 are reached, respectively. How-
ever, it can be argued that the solving T-maze length 7 in less than 100 EM
steps with batch size 75 constitutes a reasonable result.

The results were obtained without much fine tuning. This encourages

one to expect that extensions of the approach will produce a rather general
POMDP solver.

6.4 Conclusion and Future Work

In this chapter, a novel, surprisingly simple EM-derived episodic reinforce-
ment learning algorithm was presented that learns from temporally delayed
rewards. The method can learn to deal with partially observable environ-
ments by using LSTM, the parameters of which are updated using utility-
weighted logistic regression as supervised training method. The successful
application of this algorithm to a number of small POMDP benchmarks
shows that reward-weighted regression might constitute a promising re-
search direction for episodic reinforcement learning in non-Markovian set-
tings. Nevertheless, the relatively high computational cost of supervised
learning, combined with results that are significantly less impressive than
those achieved by more mature approaches such as Recurrent Policy Gradi-
ents (see Chapters 3 and 7), makes one realize that there is much room for
future improvements in this domain.

Future work should include the application of history-dependent base-
lines analogous to those used in Chapter 3 for the Recurrent Policy Gradi-
ent algorithm, in order to alleviate some of the credit assignment problem.
Moreover, extensions to continuous actions can be considered, using a su-
pervised regression method on both the means and variances of the actions.
Extensions could also include the properly re-weighted reuse of informa-
tion from previous batches, resetting network weights for every EM step,
and various improvements to the supervised learning scheme. Future work
can involve the investigation of the possibility of the use of value-functions
and other time-specific reward-attributions to alleviate estimation variance
problems, by shifting responsibilities from entire sequences to single actions.



Chapter 7

Comparisons

This chapter summarizes some comparative results for the algorithms pre-
sented in this thesis. For black box optimization, it compares NES and
FEM with CMA-ES (Hansen and Ostermeier, 2001) on the standard uni-
modal and multimodal benchmark functions. Furthermore, all algorithms
are tested on a suite of small discrete POMDP tasks, and RPGs, NES and
FEM are discussed in the context of the hard non-Markovian double pole
balancing benchmark.

7.1 Black Box Optimization: Unimodal

In this section I present a comparison between, on the one hand, FEM
and NES, and on the other hand CMA-ES (Hansen and Ostermeier, 2001),
the industry standard in black box optimization. Figures 7.1 and 7.2 show
the results plotted for the standard unimodal benchmark functions. These
standard benchmark functions, that are regularly used in competitions in
evolutionary computation, are chosen to test black box optimization algo-
rithms’ behavior on various problem characteristics, such as convergence
speed and sensitivity to ill-shaped fitness landscapes. Generally, it is found
that algorithms that do well on this suite of problems, do well on realistic
problem settings (Beyer, 1996).

On low dimensionalities (dimension 5), FEM outperforms NES (see Chap-
ters 4 and 5). But on higher dimensions, such as the displayed 15-dimensional
benchmark functions, results are less clear-cut. CMA-ES converges faster
than FEM and NES on the Sphere function, but on Tablet, DiffPow and
Ellipsoid, which are more ill-shaped and therefore harder, NES clearly out-
performs CMA-ES and FEM. Note that follow-up work that we published
on NES (Yi et al., 2009a,b) shows how a more computationally efficient im-
plementation of NES, Efficient NES, scales up well with dimensionalities up
to 100.
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Figure 7.1: Comparative results for the standard unimodal bench-
mark functions on FEM, NES and CMA-ES, dimensionality 15.
This figure shows results for the Sphere, the Schwefel function, the Cigar
function and the Tablet function, calculated over 200 runs.
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Figure 7.2: Comparative results for standard unimodal benchmark
functions on FEM, NES and CMA-ES, dimensionality 15. Shown
are the DiffPow, Ellipsoid, SharpR and ParabR benchmarks, calculated over

200 runs.
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7.2 Black Box Optimization: Multimodal

Figure 7.3 shows results for NES, FEM and CMA-ES on multimodal func-
tions, and displays how the performance of these algorithms varies with both
problem dimensionality and the initial distance to the optimum. The left
figures show how the proportion of successful runs scales with increased ini-
tial distances to the global optimum when the dimensionality is kept fixed
at 2. The right figures show how these proportions vary with problem di-
mensionality with fixed initial distance of 1.0. Note that the number of
deceptive local suboptima grows rapidly with dimensionality. The top row
show results on NES, the middle row shows results on FEM, the bottom
row shows results on CMA-ES, the main algorithm used in the black box
optimization community on continuous optimization. Note that the behav-
ior of CMA-ES and NES is quite comparable, despite their very different
algorithm structures, while FEM’s performance quickly deteriorates with
increased dimensionality.

7.3 Reinforcement Learning Comparisons

This section provides a succinct comparative overview of the empirical re-
sults on reinforcement learning in partially observable environments for the
four algorithms introduced in this thesis. Table 7.1 provides an overview of
the properties of the discrete POMDPs tackled in this work, and Table 7.2
shows the comparative results for RPGs, NES, FEM and LRWR on the
smaller discrete POMDPs.

To obtain results for NES, FEM and RPGs, an equal number of episodes
were allowed to all algorithms as for LRWR’s results in Chapter 6. FEM
and NES were used with their standard settings equal those of the double
pole balancing benchmark, except that the batch size (window size) was set
to equal that used for LRWR. All policies used the same 2-cell LSTM ar-
chitecture. Shown results were computed using 200 policy roll-outs. Fitness
values for NES and FEM were taken to be simply the episodes’ returns.
Note that for NES and FEM I did not aggregate multiple roll-outs in order
to obtain a reliable fitness estimate. In practice, aggregating returns did
not improve performance given the limited number of evaluations allowed
in this comparison.

McCallum’s CheeseMaze: This maze was one of the first tasks that were
used to demonstrate the abilities of model-free POMDP algorithms. On this
small, deterministic POMDP task, Recurrent Policy Gradients achieved op-
timal performance. Both ontogenetic algorithms RPGs and LRWR achieved
better results than phylogenetic FEM and NES, which is surprising given
the conjecture stated in Chapter 2 that suggests that phylogenetic meth-
ods should tend to outperform ontogenetic methods on small, deterministic
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Task |S| | A] |O| observation noise action noise long-term dep.
Shuttle 8 3 5 yes yes no
CheeseMaze 11 4 7 no no no
Tiger 2 3 2 yes no no
4x3Maze 11 4 6 no yes no
T-maze7 18 4 6 no no yes
89-state maze | 89 5 17 yes yes yes

Table 7.1: Discrete POMDP properties. This table provides an overview of
the characteristics of the discrete POMDP mazes used in this thesis. |S)|
indicates the number of states, |.A| indicates the number of actions and |O|
denotes the number of possible observations. Also shown is whether the
POMDP has noise in the observations and actions. ‘Long-term dep.’” is a
subjective measure that is introduced here that indicates whether, in order
to achieve a policy reasonably close to optimal, one needs to remember
events from more than 5 time steps ago.

tasks.

The Tiger Problem: The two-state Tiger problem was introduced to
check whether POMDP algorithms have the ability to choose actions for
their information gain. Its actions are deterministic, but the listening ac-
tion has a substantial probability of producing the wrong observation. RPGs
achieve near-optimal performance, and again ontogenetic LRWR outper-
forms both NES and FEM substantially, which corroborates the hypothe-
sis that stochasticity hampers the performance of phylogenetic algorithms.
Most likely, in order to obtain optimal results using either NES or FEM,
unreasonably large batch sizes would be required.

Chrisman’s Shuttle Docking Benchmark: This task is small yet highly
stochastic, both with respect to its (noisy) observations and its actions.
RPGs and LRWR again outperform NES and FEM, though LRWR fails to
converge to an acceptable policy about half the time, while the other three
algorithms always produce reasonable (though not optimal) policies.

Parr and Russell’s 4x3Maze: The 4x3Maze task has deterministic (par-
tially observable) observations but slightly stochastic actions. The starting
location is random, which makes the fitness calculation in a phylogenetic
settings cumbersome — many trials must be ‘wasted’ to obtain one single
fitness value. RPGs achieve near-optimal performance. Surprisingly given
the stochasticity of the initial position, phylogenetic methods NES and FEM
do not fare significantly worse than ontogenetic LRWR.

The T-maze: The T-maze is deterministic. What makes this task hard is
the requirement to ‘memorize’ the first time step’s observation all the way to
the end of the episode. On this task, all four algorithms perform similarly,
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Task | Hand RPG ~ LRWR FEM NES
Tiger 0.67 0.67 —-6.5 —134 -15.6
Shuttle Docking 1.69 1.31 0.709* 0.34  0.45
4x3Maze 0.27 0.27 0.240  0.246 0.21
CheeseMaze 0.257  0.257 0.177  0.112  0.10
T-Maze3 1.0 1.0 0.917 1.0 098
T-Maze5 0.667  0.667 0.615  0.667 0.64
T-Maze7 0.5 0.5 0463  0.485 0.455

Table 7.2: Discrete POMDP benchmarks: comparative results. This
table shows results averaged over 25 runs. Displayed are the average rewards
obtained for the four algorithms LRWR, RPGs, NES and FEM. Note that
for LRWR, only the Shuttle Docking results for policies that converged are
shown. The same batch sizes are used as in Chapter 6 to obtain the results
for NES and FEM, and all algorithms were given an equal number of episode
evaluations. RPGs were trained using learning rate 0.001 and momentum
0.9, with the baseline being the average return from the previous batch.
Shown results were calculated using the average of 200 roll-outs.

at least up to maze length 7. After length 10, NES, FEM and LRWR. do no
better than the simple memoryless policy (average reward less than 0.177)
— always moving right except when it reaches the end of the hall, where it
will randomly move either up or down. RPGs can learn the optimal policy
of hall lengths up to nearly 100 (see Chapter 3).

The 89-state maze: This highly stochastic maze is interesting because
no algorithm as of yet has achieved human level performance. A human
(Michael Littman) trained on a simulator and managed to achieve success
in all trials, while to date no POMDP algorithm exists that can approach
this level of performance. The task has 89 states, noisy observations and
unreliable actions. The symmetry of its floor plan requires the agent to
capture long-term time dependencies if it is to find the goal quickly. Chap-
ter 3 describes the result for RPGs, and results for NES and FEM were
obtained using the same number of evaluations, a batch size of 100, and 250
episodes per aggregated fitness computation. NES and FEM operated on a
2-cell LSTM policy architecture (larger architectures had too many train-
able parameters, making both NES and FEM unreasonably slow). Table 7.3
shows comparative results. Running phylogenetic algorithms on this task
has proved to be nearly pointless, most likely because of the task’s inherent
stochastic nature and relatively large state space. The author did not man-
age to get the phylogenetic algorithms to achieve better results even than
the simple memoryless SARSA(\) policy. RPGs, however, perform quite
well, though after a significant amount of training (30,000,000 iterations).
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Algorithm goal% median steps
Random Walk 26 > 251
Human (Michael Littman) 100 29
Linear Q (seeded) 84 33
Memoryless SARSA()) 7 73
RL-LSTM 94 61
RPGs 95 o8

NES 67 101
FEM 72 92

Table 7.3: 89-state maze: comparative results. This table provides
an overview of the performance of several algorithms on the 89-state maze.
Shown are the percentage of policy roll-outs that reached the goal within
251 steps, and the median number of steps to task completion. Results for
algorithms other than RPGs, NES or FEM are taken from (Littman et al.,
1995) and (Bakker, 2004).

While NES and FEM do well on black box optimization tasks, their limita-
tion pertains to the limited number of parameters that can be trained at one
time (maximally a few dozen, in practical experience). RPGs do not suffer
as severely from this problem since it can use BPTT to attribute changes
to individual weights.

Non-Markovian double pole balancing: This is a hard task that
most conventional reinforcement learning algorithms cannot solve. In fact,
RPGs constitute the first ontogenetic method to solve this task. Table 7.4
shows the results on the non-Markovian double pole balancing benchmark
for various algorithms, including RPGs, NES and FEM. On this task, which
is continuous, RPGs actually perform considerably worse than both NES and
FEM, which are among the best known algorithms for this problem except
for the evolutionary algorithm CoSyNE (Gomez et al., 2006). This reaffirms
the assumption that continuous control has not been satisfactorily solved in
an ontogenetic setting, especially if the task is deterministic. Nevertheless,
RPGs constitute the first ontogenetic algorithm to solve this task at all,
and future research may further improve its performance. It must be noted
that since this is a noise-free, completely deterministic task, phylogenetic
approaches may have a natural advantage over ontogenetic methods (see
Chapter 2).

7.4 Summary

The comparative results for NES and FEM for black box optimization in-
dicate that NES is a highly competitive black box algorithm on par with
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’ Method ‘Evaluations

SANE 262,700
ESP 7,374
RPGs 6,139
CMA-ES 3,521
CoSyNE 1,249
FEM 1,304
NES 1,443

Table 7.4: Non-Markovian double pole balancing. Shown are the reported
average numbers of evaluations for SANE (Moriarty and Miikkulainen,
1996), ESP (Gomez and Miikkulainen, 1997), RPGs, CMA-ES (Hansen and
Ostermeier, 2001; Igel, 2003), CoSyNE (Gomez et al., 2006), FEM (Wier-
stra et al., 2008c), and NES. Note that the results for FEM only include
successful runs, since FEM failed to find the optimum controller in 48 out
of 200 trials, while NES always found the solution.

CMA-ES, especially on the harder ill-shaped unimodal functions and multi-
modal benchmark functions. Interestingly, NES’ performance on the double
pole balancing benchmark is significantly better than CMA-ES’. The devel-
opment and optimization of the CMA-ES algorithm took nearly 10 years,
which leads one to suspect that similarly stepwise improvements should be
possible for NES as well.

Unfortunately, FEM’s performance, while good on the double pole bal-
ancing benchmark, is not as satisfactory. FEM’s performance is more sen-
sitive to its settings (learning rate, batch size) than NES and needs tuning.
This disadvantage hampers its application to more interesting applications.
Nevertheless, its simplicity might be an indication of room for possible com-
plexifying future enhancements.

On the discrete reinforcement learning benchmarks, Recurrent Policy
Gradients always outperform the other algorithms. RPGs even produce the
best known result on the difficult and highly stochastic 89-state maze, which
is an interesting benchmark since human-level performance has not yet been
achieved by any algorithm. The ontogenetic nature of RPGs allows it to
profitably use all information in an episode, while FEM and NES cannot —
and as such, the phylogenetic algorithms underperform (compared to RPGs)
on these tasks. The relatively bad performance of ontogenetic LRWR can
likely be attributed to the fact that all information to update a policy must
be present in every batch. In the presence of stochasticity, in order to achieve
reasonable results, these batches must then be very large.

In sum, the results both on standard black box benchmarks and on an
array of POMDP problems with significantly varying properties, suggest
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that both RPGs and NES constitute highly competitive algorithms for both
reinforcement learning and black box optimization.



Chapter 8

Conclusion

The main objective of this thesis was to develop new methodologies for tack-
ling reinforcement learning in partially observable environments. Within one
unifying framework four new algorithms were presented for solving this im-
portant yet elusive task. Two phylogenetic algorithms and two ontogenetic
algorithms were developed, two derived from EM and two gradient-based.
The main focus was on direct policy search methods, as this constitutes a
promising and under-studied approach quite disparate from the algorithms
developed in the regular reinforcement learning community. Unlike most
common reinforcement learning algorithms, all four methods are in principle
direct policy search methods and as such circumvent many of the problems
associated with temporal difference methods.

Recurrent Policy Gradients (RPGs, Chapter 3) are a method that back-
propagates a policy gradient through time using a recurrent neural network
architecture, which in the case of this thesis was consistently taken to be an
Long Short-Term Memory network. The ontogenetic gradient-based nature
of the approach enabled the algorithm to make use of all available infor-
mation, including time-specific observations. Long Short-Term Memory’s
ability to relate events far apart in history aided the algorithm’s ability to
tackle POMDPs, especially hard ones such as the 89-state maze. It must be
noted that, although this approach is in principle not a value-based method,
the use of a history-dependent baseline may be seen as the use of value in
some sense. Although baselines do not bias the gradient, they do help per-
formance, even significantly in the case of the 89-state maze. A hybrid
approach, using direct policy search in combination with value estimation
techniques from temporal difference methods, seems to be rather promis-
ing. Recurrent Policy Gradients achieve excellent performance on important
benchmarks including both the deep-memory T-maze and the stochastic 89-
state maze where it outperformed all other known algorithms. Moreover,
RPGs turn out to be the only ontogenetic reinforcement learning algorithm
that can solve the non-Markovian double pole balancing task.

88
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The Natural Evolution Strategies algorithm (NES, Chapter 4) consti-
tutes a simple yet competitive gradient-based alternative to the industry
standard for black box optimization and phylogenetic reinforcement learn-
ing, CMA-ES. Since this early instantiation of the algorithm already has
such competitive performance on both black box optimization and phyloge-
netic reinforcement learning, it is to be expected that future versions will
outperform CMA-ES, which has been incrementally developed over the last
10 years.

Fitness Expectation Maximization (FEM, Chapter 5), the second phy-
logenetic approach presented in this thesis, also performs well, especially on
the double pole balancing benchmark. Unfortunately, FEM does not, as of
yet, achieve as robust results as NES on unimodal and multimodal black box
benchmark functions, and is highly sensitive to parameter tuning. Future
work will have to address these problems.

Logistic Reward-Weighted Regression (LRWR, Chapter 6) is, in its cur-
rent state, the weakest of the presented algorithms. It is an ontogenetic ap-
proach derived from Expectation Maximization that uses supervised training
techniques to self-model successful episodes of experience. Although inter-
esting in conception as a clean derivation from Expectation Maximization,
its implementation will have to be tweaked so as to include rank estimation
and a more powerful utility transform function for it to be able to perform
well on POMDP tasks. It is also the only of these four algorithms to only
work with discrete actions. The extension to continuous action modeling is
an obvious next step.

Of the four algorithms, Recurrent Policy Gradients seem to be the most
versatile and generally applicable to reinforcement learning. Its elegant in-
corporation of history-dependent baselines promises the fruitful collabora-
tion with value-based techniques in hybrid form. One might say that RPGs
constitute one of the best POMDP solvers existent today. However, in do-
mains that have low stochasticity and require high precision, such as the
non-Markovian double pole balancing task, FEM and NES both outperform
RPGs. Unfortunately, LRWR is still to immature in its development to be
considered a good algorithm of choice for solving POMDP tasks. However,
future investigations might accommodate this by introducing time-variant
baselines analogously as done with RPGs, and by making learning online
instead of batch-based.

Since both NES and FEM perform competitively with (even better than,
in some cases) CMA-ES, it is logical to explore the application of NES
and FEM to other black box problems, not only phylogenetic reinforcement
learning. Both their elegant and clean derivations, and their surprisingly
good performance could inspire future research on the possibility to incor-
porate various ‘tricks’ that have been successful at speeding up CMA-ES
into NES and FEM. Hopefully this will spawn a new class of successor al-
gorithms in the phylogenetic framework.
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In summary, this thesis presented four new algorithms for black box op-
timization and reinforcement learning in partially observable environments,
both from a phylogenetic and ontogenetic perspective. All four methods fall
within the class of direct policy search methods, and the good results that
were obtained can be viewed as corroborative evidence that direct policy
search methods will form a viable alternative to more traditional reinforce-
ment learning techniques such as temporal difference methods.
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