INFORMATIK H

O-O-O—0710—]
O-O—0-010—]

O-0-0—O1r—0]
—0-0-0-010—

Effiziente Algorithmen

Complexity Analysis of Tries and Spanning Tree Problems

Bernd Stefan Eckhardt

Vollstédndiger Abdruck der von der Fakultat fir Informatik der Technischen Universitat Miinchen
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. J. Schlichter
Prufer der Dissertation:
1. Univ.-Prof. Dr. E. W. Mayr
2. Univ.-Prof. A. Kemper, Ph. D.

Die Dissertation wurde am 13.12.2007 bei der Technischen Universitat Miinchen

eingereicht und durch die Fakultat fur Informatik am 23.11.2009 angenommen.

i

Abstract

Much of the research progress that is achieved nowadays in various scientific fields has its
origin in the increasing computational power and the elaborated mathematical theory which
are available for processing data. For example, efficient algorithms and data structures play
an important role in modern biology: the research field that has only recently grown out
of biology and informatics is called bioinformatics. String and prefix matching operations on
DNA or protein sequences are among the most important kinds of operations in contemporary
bioinformatics applications. The importance of those operations is based on the assumption
that the function of a gene or protein and its sequence encoding are strongly related. Clearly,
not all kinds of data that appear in bioinformatics can be modeled as textual data, but in
many situations data are more appropriately modeled by networks, e.g., metabolic networks
or phylogenetic networks. For such kinds of data algorithmic network analysis, i.e., applying
graph algorithms to compute the relationship between the networks elements, is an indis-
pensable tool in bioinformatics. In this thesis, we consider two fundamental computational
problems which are important in this and other contexts.

In the first part of this thesis we try to give an answer to the following question: given
a graph, how well can the distance metrics induced by the graph be approximated by the
distance metrics induced by its spanning trees? More precisely, the combinatorial optimization
problem which we study is the following: given a real-valued similarity measure rating the
degree of correct approximation of the distance metrics of a graph by the distance metrics of
a spanning tree, find for an input graph G a spanning tree 7" which is optimal with respect to
the given similarity measure. We consider the standard matrix norms |||, (for 1 < p < 00),
Il 2,005 |I-l1, and ||.|| applied to the distance matrix of the tree and to the difference of the
distance matrix of the tree and the graph as similarity measures. We also consider the vector
norms ||.||, applied to the difference of the closeness centrality vector of the graph and the
tree as similarity measure. We prove that all versions of the problems which we consider are
hard. For one version we give a polynomial-time 2-approximation algorithm. Distances and
centralities are fundamental measures for network analysis. Besides this, approximating graph
metrics by tree metrics has applications in network design and combinatorial optimization:
we particularly consider an application from the area of bioinformatics, i.e., a version of the
multiple sequence alignment problem.

In the second part of this thesis, we consider a fundamental data structure, i.e., the trie,
which is frequently being used for text processing tasks, particularly for string and prefiz
matching. Tries (and trie-like data structures) are among the most basic and simple data
structures for such tasks and nevertheless are very efficient in practice. Therefore, they are
being used in many applications, ranging from IP-package classification in routers and fast
string sorting over the inverted index in search engines to bioinformatics applications such as
homology searches in (distributed) DNA data bases. Given the good practical performance of

il

v

tries even on non-random data, e.g., DNA sequences or words in the dictionary of a natural
language, one is interested in a mathematically sound explanation for these findings. The
most crucial parameter of a trie is its height which is according to experimental findings
approximately logarithmic in the number of items stored in the trie although it is unbounded
in the worst-case. Previous average-case analyses only can give such an explanation under
the assumption that the inputs are generated by some random mechanism. Typically, an
analysis which requires weaker assumptions is more sound and therefore desirable. Thus,
the two questions that we try to answer in this context are: can we give an explanation for
the practical findings without making any assumptions about the existence of a (stationary
and ergodic) random source that approximates the inputs but instead of this under weaker
assumptions? How well do tries perform on inputs that are near worst case? To answer these
questions, we perform a smoothed analysis of trie height. The perturbation model subject
to which the smoothed analysis is performed is based on (Mealy-type) probabilistic finite
automata. The result of our smoothed analysis supports the practical findings and also yields
that worst case inputs are isolated peaks in the input space: namely, we show that small
random perturbations suffice to turn worst-case inputs into such inputs for which a trie has
logarithmic expected height and we quantify the relation between the smoothing parameters
and the trie height.

Acknowledgments

First and foremost, I thank my advisor Ernst W. Mayr for his support throughout the time of
research and writing this thesis at the Lehrstuhl fiir effiziente Algorithmen. Furthermore, I am
thankful to all my research colleagues and the current and former members of this facility. I
appreciate the numberless discussions with Matthias Baumgart, Klaus Holzapfel, Riko Jacob,
Moritz Maafs, Johannes Nowak, Sebastian Wernicke, and, particularly, with Sven Kosub and
Hanjo Taubig. Also, I thank my father and all colleagues involved for proof reading. Finally,
I am deeply grateful to my wife Sophie, my parents, and all my friends for their personal
support during this time.

vi

Contents

Introduction

1.1 Analysis of tries and spanning tree problems
1.1.1 Approximating graph metrics by tree metrics
1.1.2 Understanding the practical performance of tries

1.2 Thesis outline

1.3 Publications

Preliminaries

2.1 Analysis and complexity of computational problems.
2.1.1 Ageneral setup
2.1.2 Asymptotic analysis
2.1.3 Analysis of algorithms
2.1.4 Complexity of computational problems

2.2 Notation and elementary concepts
2.2.1 Mathematical preliminaries
2.2.2 Graphs
2.2.3 Strings and regular languages
2.2.4 Tries and alike data structures

2.3 Generating functions of regular specifications

Approximating graph metrics by tree metrics
3.1 Imtroduction L
3.1.1 Motivation and problem statement
3.1.2 Our contribution
3.1.3 Chapter outline
3.2 Theresultsindetail
321 Gadgets
3.2.2 Distance-minimizing spanning trees
3.2.3 Distance-approximating spanning trees
3.2.4 Centrality-approximating spanning trees
3.3 Approximating DMST
3.4 An application to bioinformatics 0oL
3.5 Bibliographic notes
Appendix 3.A Detailed proof of Lemma 3.2

vil

10
10
13
15
15
16
17
19
20

viii CONTENTS
4 Smoothed analysis of trie height 57
4.1 Introduction 57
4.1.1 Motivation 57

4.1.2 Ouwur contribution 58

4.1.3 Chapteroutline 59

4.2 Towards smoothed trie height 00000 59
4.2.1 Previous studies: the height of random tries 59

4.2.2 From average-case to smoothed complexity 62

4.2.3 Smoothed trie height L 62

4.2.4 Perturbations by probabilistic finite automata 62

4.3 Comparison to previous random string models 67
4.4 Main result: star-like perturbation functions L. 69
4.4.1 A dichotomous-type of result L. 69

4.4.2 A quantitative analysis Lo 70

4.5 The proof: star-like perturbation functions 71
4.5.1 A tail bound for smoothed trie height 71

4.5.2 Proof of Theorem 4.1 73

4.5.3 Prerequisites: computations of star-like PFAs 75

454 Bounding ®(t,m,d) 76

455 Bounding W(t,m,d) 85

4.6 Extensions 87
4.6.1 Upper and lower bounds for semi-read deterministic perturbation functions 87

4.6.2 Smoothed trie height for restricted input sets 93

4.6.3 Smoothed height of b-tries 95

4.7 Bibliographic notes 98
Appendix 4.A A detailed proof of Lemma 4.5. 99

5 Conclusions 101
Appendices 103
Appendix A Mathematical facts 103
Bibliography 105
Index 117

List of Figures

2.1

3.1

3.2

3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5

Example of a 4-ary trie 20
[lustration: difference between DMST and DAST with respect to the L,

MatTixX-NOTM. o e 27
Mustration: difference between DMST and DAST with respect to the L.

MatTixX-NOTM. o e e 28
Graph representation of X3C. oL 30
Graph representation of 2HS instance 33
An illustration of the cycle assembly operation. 43
Twisted 2HS instance 45
Substitution PFA 64
Insertion PFA 65
Deletion PFA 65
Convex combination PFA 66
Non-mixing PFA 67

ix

LIST OF FIGURES

Chapter 1

Introduction

MabOnpatwyv @povTLle LAANOY XPNUEATWY - TX YXP LXOMUaT evmopel T& XPNUXTX

1.1 Analysis of tries and spanning tree problems

During the last three or four decades the amount of data that is being produced in the
various scientific fields has tremendously increased. Much of the research progress that is
achieved nowadays has its origin in the increasing computational power and the elaborated
mathematical theory which are available for processing these data. For example, efficient
algorithms and data structures play an important role in modern biology: the research field
that has only recently grown out of biology and informatics is called bioinformatics. String
(and prefix) matching operations on DNA or protein sequences are among the most important
kinds of operations in many bioinformatics applications. The importance of those operations
is based on the assumption that the function of a gene or protein and its sequence encoding are
strongly related. Clearly, not all kinds of data that appear in bioinformatics can be modeled as
textual data, but in many situations data are more appropriately modeled by networks. This
holds particularly for relational data such as phylogenetic networks or metabolic networks. For
such kinds of data algorithmic network analysis, i.e., applying graph algorithms to compute
the relationship between the network elements, is an indispensable tool in bioinformatics.
In this thesis, we consider two fundamental computational problems which are important in
this and other contexts. The thesis is organized into two main parts. In the first part, we
consider the complexity of finding spanning trees that approximate the distance metrics of a
given graph. In the second, we consider a fundamental data structure, i.e., the trie, which is
frequently being used for string matching operations, and perform a smoothed analysis of its
most important parameter, i.e., its height.

The further parts of this introduction are organized as follows: in Section 1.1.1, we give
a more detailed overview on some of the potential applications and our results on spanning
trees. In Section 1.1.2, we describe some applications where string matching operations are
important, argue why previous average-case analyses are often insufficient to explain the good
practical performance, and describe the goals and results of our smoothed analysis.

'Philemon of Syracuse, around 300 B.C.

2 CHAPTER 1. INTRODUCTION

1.1.1 Approximating graph metrics by tree metrics

Networks appear in many different contexts in contemporary sciences. Informally, a network
is a pair consisting of a set of elements (sites) together with a set of relations (links) between
the elements (connecting the sites). It is natural to represent a network as a graph G = (V, E)
consisting of a set V' of vertices, representing the elements, and a set E of edges connecting
pairs of vertices, representing the relations between the elements. In the first part of this
thesis we try to give an answer to the following question: given a graph, how well can the
distance metrics induced by the graph be approximated by the distance metrics induced by its
spanning trees? More precisely, the combinatorial optimization problem which we study is the
following: given a real-valued similarity measure rating the degree of correct approximation
of the distance metrics of a graph by the distance metrics of a spanning tree, find for an input
graph G a spanning tree 1" which is optimal with respect to the given similarity measure.
Particularly, we consider the standard matrix norms ||.||r, (for 1 < p < 00), ||.||L,00, II-]l1,
and ||.||lcc applied to the distance matrix of the tree and to the difference of the distance
matrix of the tree and the graph as similarity measures. We also consider the vector norms
||l.|l, applied to the difference of the closeness centrality vector of the graph and the tree as
similarity measure. Distances and centralities are fundamental measures for network analysis.
Besides this, approximating graph metrics by tree metrics has applications in network design
and combinatorial optimization.

1.1.1.1 Motivation

Abstracting networks for network analysis Many complex biological relationships are
modeled as biological networks: examples are phylogenetic networks or metabolic networks.
For the latter kind of networks there are various kinds of elements (molecules, proteins) and
relations (metabolic interactions) between these elements. An important contribution of infor-
matics in order to understand the functionality of those networks is the (algorithmic) network
analysis (see [BEO5S] for an introduction): such an approach aims at applying algorithms, usu-
ally graph algorithms, to compute the relationship between the network’s elements on different
levels of aggregation. Depending on the functionality of the network that one is interested in,
various measures have been proposed relevant: an example for a (local) network measure is
the centrality of a site, where there are several centrality concepts, e.g., betweenness central-
ity or closeness centrality. Knowing the centrality of an element helps in understanding how
important the element is in the network. Also, many characteristics of networks are expressed
in their distance matrix. Typical questions that are answered in the context of network anal-
ysis are: what is the functionality of a specific molecule in a metabolic network? What is
the evolutionary distance between two species in a phylogenetic network? In many settings
it is desirable to consider instead of the whole network a sub-network which captures the
essential parts of the given network. Finding such network backbones is a non-trivial algorith-
mic problem, which can be stated as the following combinatorial network abstraction problem
(cf. [EKM™05a]): let P be a class of pattern graphs and let o be a real-valued similarity
measure rating the degree of correct approximation of a given graph G by a subgraph H C G.
For a fixed pattern class P and a fixed similarity measure g, the optimization problem is to
find for an input graph G a subgraph H which belongs to P such that o(H,G) is minimal.
Examples for the class P are trees, planar graphs, k-connected graphs or graphs not having
a specific graph minor. Notably, the dual problem of fixing o(H,G) and finding a graph class

1.1. ANALYSIS OF TRIES AND SPANNING TREE PROBLEMS 3

P that meets this constraint has been considered extensively in literature under the notion
of so-called graph spanner problems. From an algorithmic point of view trees are particu-
larly interesting as pattern class because many of the algorithmic problems are easier on trees
than on arbitrary network topologies. Clearly, network models are important in many other
contexts besides bioinformatics, particularly in social science: examples of social networks are
scientific collaboration networks or co-authorship networks. Here, essentially the same kinds of
questions have to be answered, e.g.: what is the distance between two scientists in a scientific
collaboration network? Another important application for the problems which we consider is
the design of infrastructure networks.

Network design Computer networks (see [Tan96| for an introduction) provide the infra-
structure over which many different communication tasks can be accomplished. Most of these
tasks can be abstracted as message exchanges or data flows between different sites. Basic
questions that one is faced with in network design are: along which paths should messages be
sent through the network (Routing)? How should the data flow be organized once the paths
are fixed (Transmission)? How should the network topology be designed in order to meet cer-
tain requirements? In reality, it is very difficult — if not impossible — to completely re-organize
an existing computer network, and therefore questions of the last kind are particularly inter-
esting for the design of so-called overlay networks. One of the important characteristics of
overlay networks is that the topology of the underlying network is invisible to the applica-
tions that run on top of them. Therefore, it is possible to organize overlay networks in an
almost arbitrary manner, i.e., using an arbitrary topology. Peer-to-peer (P2P) file-sharing
networks, distributed hash tables (DHTS), or virtual private networks (VPNs) are examples
of overlay networks. Spanning subnets — also called spanners — are one important tool in
this context: those constructions usually are evaluated along the three worst-case measures
space, approximation quality and construction time. Besides this, the topology of a network
is important for efficient communication. Spanning trees not only are the sparsest subnets
and therefore extremely space efficient, but they have additional advantages over other graph
structures, e.g., with respect to routing: for example, Thorup and Zwick [TZ01] have shown
that it is possible to route in a tree on n vertices such that the routing information at the
packages, i.e., their routing label size, is (1 4+ o(1)) logy n, no additional routing information
is required and a routing decision at an intermediate computer takes constant time. Now,
since communication cost can be expressed in terms of path lengths, it is desirable to choose
spanning trees which minimize path lengths. Such spanning trees have been considered un-
der the notion of minimum route cost spanning trees (MRCT) and optimum communication
spanning trees (OCT) [Hak64, Hu74| and it is known that both problems are hard, i.e., their
decision versions are NP-complete [JLRK78|. There exists a polynomial-time approximation
scheme for the MRCT problem which is due to Wu et al. [WLC"98|. For those problems, the
quality of a spanning tree is measured by 3, ,cy 7(u,v) - dr(u,v), where 7: V' x V' — IR} is
a requirement function and dr(u,v) measures the distance in 7" between u and v. A last field
where the problems which we consider find applications is combinatorial optimization.

Combinatorial optimization and bioinformatics Graphs are frequently used within
problem reductions in combinatorial optimization: representing mathematical optimization
problems or their solution spaces as graphs in order to solve the original problems by solving
the corresponding graph problems or by searching their solution spaces in a more efficient

4 CHAPTER 1. INTRODUCTION

manner is a standard approach. Again, it is often desirable to consider spanning trees which
approximate the graph metrics: one example which fits into this framework is the (2— %)—factor
approximation algorithm for the multiple sequence alignment problem by Gusfield [Gus93],
which extends upon an approach originally developed by Feng and Doolittle [FD87|: the graph
which is considered there is the complete graph on all sequences to be aligned. The construc-
tion of the approximate alignment is guided by a center-star spanning tree on this graph.
This was improved by Pevzner [Pev92] to 2 — 2 and by Bafna, Lawler and Pevzner [BLP97]
to 2 — = for any fixed r, again using the connection between the MRCT problem and multiple
sequence alignments.

1.1.1.2 Ouwur contribution: approximating graph metrics by tree metrics

We give a short informal overview of the results which we present in Chapter 3: the norms
which we use to measure the similarity between the distance matrix of the tree and the distance
matrix of the graph are reviewed in Section 2.2.1. In the context of network analysis we
contribute the following with respect to the above defined combinatorial network abstraction
problem: we consider trees as pattern class, and we focus on distance-based similarity measures
computed by the standard matrix norms applied to the difference of the distance matrix of the
tree and the graph. The problems are hard with respect to all norms. We also consider the
problem of finding a spanning tree which approximates the closeness centrality vector of a given
graph. Note that the closeness centrality vector of a graph can be defined as a function of the
distance matrix of the graph and therefore these problems fit into the introduced framework
of similarity measures based on distance metrics. Unfortunately, we can not break the curse
of NP-completeness and have not (yet) found an approximation algorithm for any version
of those problems. Our contribution to network design and the mentioned combinatorial
optimization problem is the following: we generalize the hardness results of the MRCT problem
to spanning trees which minimize routing costs under the measures computed by the standard
matrix norms applied to the distance matrix of the tree. All versions are hard, except for
the version with respect to the |[.||r 00 matrix norm which has already been considered in
the literature under the notion of minimum diameter spanning trees. We give an efficient,
i.e., O(n?logn + nm) time, 2-approximation algorithm for the version with respect to the
||l.||zp norms for arbitrary 1 < p < co. Besides the fact that these versions of the problems
are interesting from the network design point of view, they are particularly interesting for the
mentioned combinatorial optimization problem from the area of bioinformatics: in Section 3.4,
we show how a version of the multiple sequence alignment problem under a generalized sum-
of-pairs objective can be modeled and solved using our framework of distance minimizing
spanning trees with respect to the ||.||z , matrix norms.

1.1.2 Understanding the practical performance of tries

Relational data, which as we described can often be modeled by networks, constitutes an
important class of data in bioinformatics and other sciences. Thanks to the increasing com-
putational power and elaborated mathematical theory of networks many different tasks can
be accomplished using this type of representation. Yet, there are many cases in which data
are not of relational type but are given as or can be modeled as textual data. Therefore,
understanding the efficiency of data structures which are used in such tasks is indispensable.
Tries are among the most basic and simple data structures for string matching. The most

1.1. ANALYSIS OF TRIES AND SPANNING TREE PROBLEMS 5

crucial parameter of such data structures is their height which is according to experimental
and practical findings approximately logarithmic in the number of items stored in the data
structure although it is unbounded in the worst-case. Previous average-case analyses only
can give such an explanation under the assumption that the inputs are generated by some
random mechanism. Typically, an analysis which requires fewer assumptions is more sound
and therefore desirable. Thus, the two questions that we try to answer in this context are:
can we give an explanation for the practical findings without making any assumptions about
the existence of a (stationary and ergodic) random source that approximates the inputs but
instead of this under weaker assumptions? How well do tries perform on inputs that are near
worst case? To answer these questions, we perform a smoothed analysis of trie height. In the
following, we give some motivations why these questions are interesting and shortly sketch the
goals and results of our smoothed analysis.

1.1.2.1 Motivation

String matching in computer networks and bioinformatics Textual data are ubig-
uitous in modern computing: on the one hand, this clearly holds for the enormous amount
of text documents, which are nowadays mainly accessed, distributed, processed, and orga-
nized on top of computer networks. On the other hand, this also holds for the equally large
collection of DNA or protein sequences from various kinds of organisms that are stored in
DNA or protein data bases. From an abstract point of view those documents are nothing
but collections of strings over finite sets of symbols. Along the most fundamental of all text
processing operations are string and prefix matching. For the first kind of matching, we are
given a string ¢ and a collection of strings S, and we want to determine whether t exactly
matches one of the strings in S. For the second kind of matching, we are interested whether
or not there is a string s € S such that ¢ is a prefix of s. In computer networks, these
matching operations are either user triggered or automatically performed by the class of al-
gorithms that run the network: examples of user triggered string matching operations are
queries that are sent to search engines like Google?; string or prefix matching tasks which
are performed automatically include IP-package classifications at routers in the network layer
of the Internet [NK99, Tan96, GTO01], detection of malicious code in intrusion detection sys-
tems [Mar99, CSTVO04], routing in Content Addressable Networks (CANs), where messages
are not necessarily routed through the overlay network using IP-addressing, but where it is
possible to address computers and perform routing by more or less arbitrary strings, and
searching in peer-to-peer file sharing applications like Napster® or Gnutella. In bioinformat-
ics, such tasks are frequently found in homology searches in DNA or protein databases. See,
e.g., |Gus97| for an introduction into string processing and its applications in bioinformatics.
Note that nowadays these data bases are no longer located on one computer, but there are
efforts being made to implement distributed versions (see, e.g., [SOUMO5| for an example of
such a distributed P2P-based architecture for homology searching).

Tries: practical findings and analytical investigations Tries and trie-like data struc-
tures such as b-tries, level-compressed-tries (LCP tries), PATRICIA trees and suffix trees are
among the most basic and simple data structures for such tasks and nevertheless are very

http:/ /www.google.com
3http://www.napster.com
*http://www.gnutella.com

6 CHAPTER 1. INTRODUCTION

efficient in practice: clearly, trie-like data structures can be used to implement the inverted
index of a search engine or a data base for homology searches. Notably, tries and LCP-tries
even were used for an efficient implementation of IP-routing tables in [DBCP97, NK99]. Be-
sides this, most fast string sorting algorithms are based on tries [BS97, SZ03, AN98|. Tries
have the obvious advantage over hash tables that they allow for prefix matching and range
queries, whereas the latter only support exact string matches because they are designed to
distribute the keys equally over the whole hash table. Clearly, tries also suffer some drawbacks
when compared to other data structures for text processing tasks. This particularly concerns
their size: according to experimental investigations ordinary tries consume up to 100% more
memory than, e.g., hash tables. Nevertheless, there are efficient implementations which do
no longer suffer this drawback: Heinz, Zobel and William [HWZ02| have implemented b-tries
and (experimentally) have shown that their version consumes only 25% more memory than a
hash table. Another more serious obstacle with tries is that — theoretically — the worst-case
performance of the retrieval operation is very poor.

In analytic models a trie is usually built over a set S of n infinite (identically distributed)
random strings over a finite alphabet. See [Szp01] for an introduction into the analytic average
case analysis of text processing algorithms and data structures. The parameters of a trie,
e.g., its size, average depth, or height, can be viewed real-valued random variables over the
probability space generated by finite prefixes of the random strings in the set S. For example,
the height Hg of a trie built over the set S then equals the length of the longest common prefix

of any two strings in S. Most analytic studies of random tries suggest that Hg whp c-loggn
for two positive constants ¢ and d which depend on the parameters of the random string
model and the version of the trie being analyzed. We review some of these approaches when
we perform our smoothed analysis of trie height in Chapter 4. Note that even better upper
bounds of ©(loglogn) and O(log* n) are known for random LCP-tries [AN93, Dev01, DS05].

These findings are in contrast to a worst-case height of Q(n).

Depending on the real world application, the previous analyses of trie height and other trie
parameters do give a mathematically sound explanation for the good practical performance
of these data structures: e.g., Markovian sources or hidden Markov models have been used
to produce random time series which approximate the statistical characteristics of real-world
time series such as natural language, DNA sequences, or the time series of various climatic
parameters [BW90, MLMBACO05]. Thus, if some statistical information is known then one can
model the respective real-world sequence using an appropriate random source and perform an
average-case analysis with respect to that source. But it is not immediately clear that the
mentioned analytic results can utterly explain the fact that in many practical settings where
nothing is known about the statistics of the input sequences the height is still approximately
logarithmic in the number of strings. Besides this, even for situations in which such models
exist, the average-case analyses (and even the results that give sharper bounds on the higher
moments of the distribution of Hg) cannot predict the performance of such data structures on
an input that is very close to worst-case. An analysis of trie parameters which yields essentially
the same results without making any assumptions about the existence of a random source that
approximates the inputs but which is performed with respect to some weaker assumption seems
desirable. This leads us to the already mentioned questions that are addressed in the second
part of this thesis: can we give a sound explanation for the practical findings which requires
fewer assumptions? How well do tries perform on inputs that are near worst case?

1.2. THESIS OUTLINE 7

1.1.2.2 Ouwur contribution: smoothed analysis of trie height

To answer to these questions, we perform a smoothed analysis of the most basic data-structure
for text processing, i.e., the trie, where we focus on trie height as the most important param-
eter. The paradigm of smoothed analysis is relatively new and seems to be suitable to answer
our questions. When performing a smoothed analysis of an algorithm one measures the maxi-
mum over all inputs of the expected performance of the algorithm under slight random pertur-
bations of the respective input. The purpose of such an approach is to find out if worst-case
inputs are isolated peaks in the input space or plateaus. A positive answer to this question
then allows for conclusions about the performance on real-world inputs, particularly, if those
inputs are subject to random influences. Also, it does not require any assumptions about the
distribution function of the inputs, but instead of this only a reasonable perturbation model:
a perturbation function should be such that it assigns higher probabilities to inputs which are
in the proximity of the perturbed input, i.e., it should be concentrated around this input. This
implicitly assumes the existence of some distance metrics defined over the input space.

For strings, a natural distance metrics is edit distance. The perturbation functions which
we consider are based on, i.e., can be represented by, Mealy-type star-like probabilistic finite
automata (PFAs). On the one hand, they generalize a natural class of string perturbation
functions, namely random edit operations. For a reasonable choice of the perturbation pa-
rameters the conditional distribution function generated by such perturbations is concentrated
around the perturbed input under the edit distance metrics. On the other hand, the pertur-
bation functions are general enough such that the random influences which strings in different
real-world settings are subject to can be modeled. The main technical contribution of this
chapter is a characterization of the smoothed trie height depending on the transition prob-
abilities of the representing PFA: for a star-like perturbation automaton, it is logarithmic if
and only if certain conditions for the automaton’s transitions hold; if the conditions do not
hold then the height is unbounded (see Theorem 4.1). The logarithmic-unbounded height
dichotomy is certainly not surprising, but the conditions are very easy to check. Also, we give
a more precise quantitative characterization. The theorem can be applied to rather complex
perturbation models for which an ad-hoc analysis using existing random string models is either
quite involved or even out of reach. A direct consequence of the theorem is a proof of the log-
arithmic smoothed trie height under convex combinations of random edit perturbations (i.e.,
insertions, deletions, substitutions) if and only if the convex combination does not collapse to
deletions. The results of these findings substantiate that worst-case inputs, i.e., sets that force
tries into worst-case behavior, are isolated peaks in the input space, and even small deviations
suffice to yield logarithmic expected trie height.

1.2 Thesis outline

In Chapter 2, we first review some basic concepts of the analytic approach to the analysis of
algorithms: worst-case and average-case complexity, NP-completeness, and the O-Notation.
We also give a brief introduction into the relatively new paradigm of smoothed analysis.
Thereafter, we introduce the necessary notation. Finally, we give a short introduction into
the subject of rational generating functions.

In Chapter 3, we consider the complexity of finding spanning trees of a given graph that
approximate the distance metrics induced by the graph. We show the NP-completeness of

8 CHAPTER 1. INTRODUCTION

our problems by reduction using two gadgets. Reductions using the first gadget are from
X3C (ExXAcT-3-COVER). The other reductions are from 2HS (2-HITTING SET, also know as
VERTEX COVER). Both problems are well-known to be NP-complete [GJ79].

In Chapter 4, we perform our smoothed analysis of trie height. We assume that all strings
are perturbed independently by the same perturbation function. After the exposition of the
perturbation model, we show that the semi-random string model that results from random
perturbations of non-random inputs is not trivially included in previous purely random string
models. Previous analyses heavily rely on the fact that the sources satisfy the (strong) mixing
property [Bra05] which implies the existence of the Rényi’s Entropy of second order for
sub-strings. As this assumption does not hold in general for the semi-random model which
we consider, we can not follow the vein of previous calculations, but we have to develop a
new machinery: to do so, we use multivariate rational generating functions to express the
computations of the perturbing PFA. This approach, which is called the weighted words
model (cf. [FS07]) seems to fit best the requirements of our analysis. This proof certainly is
the technically most challenging of all the proofs that we present in this thesis.

1.3 Publications

The results of Chapter 3 have been published under the title “Combinatorial network abstrac-
tion by trees and distances” as technical report [EKM105b]. An extended abstract with the
same title has been published in the conference proceedings of ISAAC [EKM™05a]. Addi-
tionally to the NP-completeness results which are presented in this thesis these publications
include also some non-approximability results for a restricted version of the DAST problems,
called fized-edges DAST problems. Particularly, for those versions it is assumed that a part
of the edges must be in the spanning tree. These results, which are achieved by a recursive
application of the 2HS gadget, were mainly derived by my co-author Sebastian Wernicke.
Also, the proof of Lemma 3.2 is also due to this co-author. A journal version has been sub-
mitted to THEORETICAL COMPUTER SCIENCE and is subject to revision. First results on
the smoothed analysis of trie height which we present in Chapter 4 have been published as
technical report [EKNO7].

Chapter 2

Preliminaries

People who analyze algorithms have double happiness. First of all they experience the sheer beauty
of elegant mathematical patterns that surround elegant computational procedures. Then they
receive a practical payoff when their theories make it possible to get other jobs done more quickly
and more economically

2.1 Analysis and complexity of computational problems

In this section, we review the basic concepts of the complexity analysis of algorithms and
computational problems.

2.1.1 A general setup

Computers are machines which solve computational problems by means of algorithms and
data-structures. An algorithm is a step-by-step procedure to solve a specific computational
problem where the individual steps are either elementary (basic) computer operations or
invocations of other algorithms. To this end, an algorithm takes some input and produces
some output. A data-structure is a systematic way of organizing data which supports a set
of operations to access and change the data that is organized in the data structure. When
analyzing algorithms and data-structures, one measures their resource consumptions. For an
algorithm the measures are computation time and memory consumption. For a data structure
the measures are space requirement, initialization time, and running times of the supported
operations.

Usually, the resource consumption of an algorithm or a data-structure is given as a func-
tion of the size of its input. How exactly the size on an input is defined, depends on the
computational problem which is analyzed. For problems involving graphs, as the one which
we consider in Chapter 3, the input size is given by a pair of numbers — the number of vertices
and the number of edges. For the problem which we consider in Chapter 4 — building a trie
over a set of virtually infinite strings — the size of the input is given by the cardinality of the
set of strings over which the trie is built.

Now, computational problems are of different complexities: the complexity of a computa-
tional problem is given by the resource consumption of the best possible algorithm or data-
structure for this problem and upper bounded by the best known algorithm or data-structure
for this problem. An algorithm is said to be efficient if the algorithm operates economically

9

10 CHAPTER 2. PRELIMINARIES

with the computational resources. Analogous to that, a data structure is an efficient data
structure, if the operations which it supports are efficient and the space requirements are
appropriate.

In the analytic approach to the analysis of algorithms and data-structures, the efficiency
of an algorithm or a data-structure is not measured in absolute values, i.e., micro-seconds,
processor cycles or mega-bytes on a certain existing computer. Rather, one fixes a computer
model which supports a set of primitive operations and “implements” the algorithm or the
data-structure in a pseudo-code using the respective primitive operations. Each of the primi-
tive operations should be such that it can be executed on a real computer in constant time.
The advantages of such an approach are obvious: first, it makes the analysis more robust be-
cause it is independent from the operating system, the processor speed, the word-size or other
technological characteristics and environmental facts; second, it makes the analysis easier.

Here, we adopt the wuniform cost model, where we assume that all memory locations are
of the same size and all numbers and other items which are involved in the computations fit
into a constant number of memory locations. Then, a primitive operation is an operation that
involves a constant number of operands each of which fits one memory location. Another cost
model is the logarithmic cost model, in which the cost of a primitive operation depends on
the number of bits of the involved operands. This makes particularly sense when numbers can
get arbitrarily large which is not the case in the computational problems considered in this
work.

2.1.2 Asymptotic analysis

In most settings, one in not interested in the exact number of primitive operations but rather
in the asymptotic behavior of the function measuring this number as a function of the input
size. From an analytic point of view this can be justified by the fact that in almost every
analysis upper (or lower) bounds are used. Besides this, constant factors do not depend on the
input instance, but rather on the exact computational model which is used, the representation
in which the instance is given, or the actual implementation in pseudo-code. Thus, one makes
use of the O-notation. A formal definition of the terms involved in the O-notation is given
below. Let f,g: INy — IR be two functions.

e f(n) is said to be in O(g(n)), if there exists constants ¢ € IRy and ng € INy such that
for all n > ng it holds that f(n) < c-g(n). g(n) is said to be in Q(f(n)) in this case.

e f(n) is said to be in o(g(n)) if for every constant ¢ € IR, satisfying ¢ > 0 there exists a
constant nyg € IN; such that for all n > ng it holds that f(n) < c¢- g(n). Equivalently,
f(n) is in o(g(n)) if lim, o f(n)/g(n) = 0. In this case g(n) is said to be in w(f(n)).

e If both f(n) in O(g(n)) and g(n) in O(f(n)) then f(n) is said to be in O(g(n)).
The asymptotic cost of an algorithm is then given by a function f such that its cost function
isin X(f(n)) for X € {0,0,w,Q,O}.
2.1.3 Analysis of algorithms

Worst-case and average-case analysis To ease the presentation, we assume in this section
that the measure we are interested in is the asymptotic running time of an algorithm. For the
other cost measure, i.e., space requirement, similar considerations apply. Clearly, the running

2.1. ANALYSIS AND COMPLEXITY OF COMPUTATIONAL PROBLEMS 11

times of an algorithm on two different inputs of the same size may vary tremendously. In order
to analyze its behavior, there are two main approaches: worst-case analysis and average-case
analysis. The two corresponding measures are called worst-case running time and average-
case running time, respectively. In order to explain precisely the difference between these two
measures, we need to introduce the following notation: let I be the set of all inputs, also called
the input space, of an algorithm A and let 1™ be the set of all inputs that have size n and let
C : I — IRy be the function measuring the running time of A. Then the worst-case running
time of A is defined as

WC4(n) =ger max C(x)
xel(™)

and the average-case running time of A is defined as
AC4(n) =qet E[C()].

Here, the expectation is taken with respect to some probability measure p : I — [0,1]. To
perform a worst-case analysis, one needs a good understanding of the algorithm and the
structure of the computational problem. Nevertheless, this kind of analysis is generally much
easier than average-case analysis which is often quite involved even under the oversimplified
assumption that all instances are equiprobable.

A new paradigm: smoothed analysis The meaning of worst-case analysis is clear. For a
meaningful average-case analysis a knowledge of what constitutes a realistic instance is indis-
pensable. Since this knowledge is hard to acquire and the unknown distribution over the input
space has to be approximated, average-case analysis often suffers from the drawback that it
is dominated by valid instances that are practically irrelevant. One approach to overcome
these kinds of problems, that has been pioneered in the works of Santha and Vazirani [SV86],
Blum and Spencer [BS95|, and Feige [FKOla| on semi-random input models, has been intro-
duced by Spielman and Teng in their seminal paper [STO01] (see also the journal version of
the paper [ST04]): the paradigm of smoothed analysis was introduced, in order to explain the
good practical performance of the shadow-vertex simplex algorithm, which is not inferable
from results about its average complexity and which is opposed to its poor worst-case com-
plexity. The worst-case running time of the simplex method is exponential, but nevertheless
it performs well on many instances. Before, a number of researchers had shown that the
average-case running time is polynomial for various probability distributions over the input
space. Some of these authors had not only shown that the average-running time is polynomial,
but they had derived even stronger results by giving sharper bounds on the higher moments
of the distribution of the running time.

Nevertheless, all these analyses do not give a sound mathematical explanation for the
practical findings. There are two drawbacks: first, with instances being purely random, there
is a high proportion of unrealistic instances. Second, even knowing the tails of the distribution
of the running time does not allow to draw conclusion on the “shape of the input space”. Thus,
even if almost all possible inputs are such that the algorithm behaves well on them, this does
not give a clue about how the algorithm behaves on a typical input. As we already mentioned,
it is very difficult to give a probability distribution which prefers typical inputs. Therefore, in
smoothed analysis one aims at answering the following sightly different question: are instances
that cause an algorithm to perform poorly plateaus in the input space, or are they isolated

12 CHAPTER 2. PRELIMINARIES

peaks? To answer this question, one defines the smoothed running time on an algorithm A as

SCa(n) = max E[C(P(z))],

where P : I — [is a random mapping from the input space to the input space and for
each z € I the expectation is taken with respect to the probability measure on I that is
generated by the random mapping P on input x. In this context, P is called a perturbation
function. In the context of the simplex algorithm Spielman and Teng have chosen P such that
it produces small Gaussian perturbations of the input matrix. An informal definition of the
smoothed complexity of an algorithm is the following.

Definition 2.1 (Smoothed complexity). The smoothed complexity of an algorithm is given
by the mazximum over all inputs of the expected running time of the algorithm under slight
random perturbations of the respective input, where the value of the smoothed complexity is
then measured as a function of both the input size and a perturbation parameter, which gives
a quantitative measure of the term “slight”.

Coming back to the original task of giving a mathematical framework to better understand
the behavior of an algorithm on a typical input, we must now argue that smoothed analysis
provides such a framework. Clearly, performing a smoothed analysis as described above we
cannot claim to produce a more relevant probability distribution, i.e., one that prefers typical
instances to atypical ones. But knowing that the maximum over all inputs of the expected
running time of the algorithm under slight random perturbations of the respective input
is asymptotically much smaller than the worst-case running time does indeed allow for the
following conclusion: the running time on a typical input is likely to be asymptotically near
its smoothed complexity and thus much smaller that its worst-case running time. This holds
particularly under the assumption that typical inputs are subject to perturbations and are
not designed such that they force the algorithm into the worst-case scenario.

By performing the smoothed analysis under Gaussian perturbations of the inputs, Spiel-
man and Teng gave such a mathematical framework to better understand the good practical
performance of the simplex method because they showed that the shadow-vertex simplex al-
gorithm has polynomial smoothed complexity, i.e, its running time is polynomial in the size
of the input and the standard deviation of the (Gaussian) perturbation. In this particular
case, the smoothed complexity is claimed to explain the good practical performance fairly
well, because numerical inputs are likely to be subject to errors of different types.

Clearly, the paradigm of smoothed analysis is not limited to numerical computational
problems, but it can also be applied to purely combinatorial problems. The only ingredients
necessary to perform a meaningful smoothed analysis are: an adequate perturbation model
and a thorough analysis of the expected running times under slight random perturbations
using the respective perturbation model. What exactly constitutes an adequate perturba-
tion function depends on the problem considered and is being subject to discussions [ST03a].
For the case of numerical data small Gaussian perturbations, which account for the random
noise that real world inputs are subject to, could be a reasonable model of perturbations:
nevertheless, the reader should also note that it has been criticized that the effects of the
Gaussian perturbations which yield the good analytic results do often smooth the input in
such a way that the problem specific characteristics of many LP-formulations are severely
destroyed. In other settings, particularly in combinatorial settings, perturbation functions

2.1. ANALYSIS AND COMPLEXITY OF COMPUTATIONAL PROBLEMS 13

should be preferred that preserve the most-significant properties of the input. In all cases, the
random perturbations should resemble those random influences which real world inputs are
typically subject to. A number of different works concerning the smoothed analysis of linear
programming problems, numerical problems, and variants of the simplex algorithm followed
the original work of Spielman and Teng. (see, e.g., [BD02, ST03b, SST06, AV06, Ver06] and
the references therein). The smoothed analysis paradigm has also been applied to purely
discrete optimization problems, particularly to ILPs (see, e.g., [BV06, RV07]). Additionally,
the smoothed complexity of various more specific algorithmic problems, e.g., the height of bi-
nary search trees [MRO5|, ordering problems, such as left-to-right maxima counting, shortest
path, and quicksort [BBMO3|, online algorithms [BLMS*03, SS05], computational geome-
try [DadHR 103, BadHS04, DS04|, and bi-criteria optimization problems [ANRV07] has been
investigated.

From an analytic point of view, there are two more points that should be added: first, that
smoothed analysis interpolates between average-case and worst-case analysis because choosing
as the perturbation function the identity gives the latter complexity measure and choosing as
the perturbation function any probability distribution on [(") that is independent from the
respective input z € I gives the former complexity measure; second, that smoothed com-
plexity can also be explained very well in the following adversary model: assume we are given
an oblivious adversary that has full information about the algorithm and the perturbation
function, but no control over the random perturbations; then the smoothed complexity is the
expected complexity under exactly this adversary model.

2.1.4 Complexity of computational problems

Knowing about the complexity of an algorithm for a specific computational problem may give
some insight into the structure of the problem or even into the complexity of a number of
closely related algorithms for the same or very similar computational problems. But, from
this kind of “local analysis” one can only infer that the problem can be solved at least as
efficiently as the most efficient known algorithm can solve it. Nevertheless, there might either
be an unknown but much more efficient algorithm that solves the problem, or an optimal
algorithm is known, but it is not known to be an optimal algorithm. A more “global analysis”
is given by the complexity of a computational problem, i.e., by the two functions that are
an upper bound on the complexity of the best known algorithm and a lower bound on the
complexity of the best possible algorithm that solve the problem.

A “(computational) problem” is formally expressed in terms of a relation P C I x S, where
the set [is called the a set of problem instances or inputs and the set S of problem solutions.
For x € I and y € S, (z,y) € P may then be interpreted as y is a solution to the instance
x. In the most simple setting, one only wants to decided on input x € I whether or not there
exists a solution y € S such that (x,y) € P. Those kinds of problems are called decision
problems. The answer is either Yes’ or 'No’. In a search problem, the task is only little more
complicated: one is not only interested in the answer, but also in a respective solution if the
answer is 'Yes’. The third scenario is that of an optimization problem: here, the task is to
find on input = € I the best solution y* € S of all solutions y such that (z,y) € P, where the
quality is with respect to some measure.

Complexity of decision problems One approach to get a better understanding of the
complexity of decision problems is to establish relations between the different problems. To

14 CHAPTER 2. PRELIMINARIES

this end, reductions, complexity classes, and completeness are the basic tools. We review the
basic concepts in this paragraph. For the case of decision problems, one makes use of the
theory of formal languages': let ¥ be a finite alphabet. Given a decision problem P C I x S,
we may interpret 3* as the set of all possible instances, i.e., I = ¥*. Let £ C ¥* be a language
with the following characteristic function: for x € ¥*,

1 if@yes) (zy) eP
xc(w) —{ 0 if (vzeS) (w,Z) ¢ P

The language £ completely characterizes P. Let f : INy — IN, and let £ C ¥* be some
language. L is said to be decided in time O(f(n)) by an algorithm A, if for every z € X* it
holds that A stops in time O(f(|x|)) and outputs A(x) =1 if z € £ and A(z) = 0, otherwise.

Definition 2.2 (Complexity class). Let f : Ny — IN,. The class TIME(f(n)) is the collection
of all languages for decision problems which are decided by an algorithm in time O(f(n)).

The problems in the following class are considered to be solvable efficiently.

Definition 2.3 (P). Let P’ be a decision problem with corresponding language L. L is is said
to be in P, if there exists an algorithm which decides L in time O(n*) for some fived k € IN.
This is, P = U2 TIME(n¥).

Certificates are strings which testifies that a word is in a language. As an example, let
L be the language of all boolean formulas in CNF. A certificate for an element = € L, i.e.,
a boolean formula x, is a assignment y for the variables which makes x true. A werification
algorithm is an algorithm which takes as input two strings, one ordinary input string x and
one certificate y. Such an algorithm is said to verify an input string x if there exists some
certificate y such that A(z,y) = 1. The language that is verified by a verification algorithm is

L ={x X" : there exists y € ¥* such that A(x,y) = 1.}
Note that the algorithm must only return A(x,y) = 1 if y is a certificate for x.

Definition 2.4 (NP). Let P’ be a decision problem with corresponding language L. L is said
to be in the class NP if there exist a polynomial-time verification algorithm A and a constant
c such that

L={xeX" : there exists a y satisfying |y| € O(|x|°) such that A(z,y) = 1}

A reduction from a language £; to a language L9 enables us to establish a relation between
the corresponding decision problems. A total function f : 3* — 3* is said to be polynomial-
time computable, if there is an algorithm that, given z € ¥*, produces the output f(x) such
that the asymptotic running time of the algorithm is polynomial in |z| and |f(z)].

Definition 2.5 (Polynomial-time reduction). Let £1 € ¥* and Lo € ¥* be two languages. L4
1s said to be polynomial-time reducible to Loy if there exists an polynomial-time computable
function f : 3* — ¥* such that for all x € X* it holds that

$€£1<:>f($)€£2.

'see Section 2.2.3 for a formal definition of the terms language and characteristic function

2.2. NOTATION AND ELEMENTARY CONCEPTS 15

Clearly, if £ is polynomial-time reducible to Lo, then L9 € P implies that £; € P. The
same applies for two problems in NP.

Definition 2.6 (NP-Completeness). Let P’ be a problem with corresponding language L'. L'
is said to be NP-complete if L' is in NP and for every problem P" with corresponding language
L" such that L is in NP there exists a polynomial-time reduction from L" to L'.

The expositions given in this paragraph are based on the expositions given in [Sch94].

Approximations of optimization problems For the case of optimization problems we
assume that there exists some function f : § — IRy measuring the cost or the quality of a solu-
tion: for example, in the graph theoretic decision problem VERTEX COVER (see Section 3.2.1
for a formal definition), the inputs are of type (G, k) and one is asked whether or not the given
graph G has a vertex cover of size at most k. The corresponding optimization problem is: given
a graph G, find the smallest k € {1,...,n} such that G has a vertex cover of size k. This is a
minimization problem, i.e., we seek to find a solution y* € S such that f(y*) = minyeg f(y).
Clearly, there are also mazimization problems where we seek to find a solution y* € S such
that f(y*) = maxyes f(y). Given an optimization problem P C I x S equipped with some
measure f, we say that an algorithm A is a polynomial time c-approxzimation algorithm for
the problem P if A has running time polynomial in the size of the input x € I and returns a
feasible solution y € S such that

. <f<(§i)>? %D =

where y* € S is the optimal solution.

2.2 Notation and elementary concepts

2.2.1 Mathematical preliminaries

Throughout this work, let IN = {0,1,2...} be the set of natural numbers and denote by
IN, = IN\ {0} the set of positive natural numbers. Also, let IR be the set of reals and denote
the set of all positive reals by IR. For a finite set A denote its cardinality by ||A|| and let P4
be the set of all subsets of A. For two reals x,y satisfying x < y, the closed interval between
x and y is denoted by [z,y], the open interval between = and y is denoted by (z,y) and the
two half-open intervals between x and y are denoted by (z,y] and [z,y), respectively.

In Chapter 3, we measure the similarity between a graph and its spanning trees by evaluat-
ing different kinds of matrix norms of distance matrices. To this end, we consider the following
classical matriz and vector norms: for an n-dimensional real vector x = (x1,...,z,) € R",
the L,-norm for 1 < p < +o00 is defined as

n 1/P
[%]lp =det (Z \xi!p> :
=1

For an n x n matrix A = (a;j) 1<i<n € R™™, the L, norm for 1 < p < 400 is defined as
1<5<m

1/p

n m
ANy =det | Y2 lail”

i=1 j=1

16 CHAPTER 2. PRELIMINARIES

Letting p — 400, we arrive at the Ly, norm which is defined as

”AHLOO =def Max !aij_
1<i<n
1<j<m

Finally, we consider the maximum-column-sum norm and the maximum-row-sum norm which

are defined as
n
| Al =det max (;laijl)
1=

and
m
[Alloo =det Dax Zl\aij\ :
‘7:

respectively. A number of well-known mathematical facts which we use in our calculations is
given in the Appendix A.

2.2.2 Graphs

The basic notation concerning graphs can be found almost any text-book which deals with
graphs and graph algorithms (see, e.g., [GT01, CLRO1, Die05]).

Graphs An undirected unweighted graph G = (V, E) is a pair such that V is a finite set of
elements, called the verter set, and F is a subset of all 2-elementary subsets of V', called the
edge set. An undirected (positive) weighted graph G = (V, E,w) is an undirected unweighted
graph G = (V, E) together with a function w : E — IR, called the weight function. In this
thesis, we only consider positive weighted graphs. A labeled graph G = (V, E, 1) is given by
an unweighted graph G = (V| E) together with some function [: E — A mapping edges to
some countable set A, called the labeling function. Labeled graphs appear most often in the
context of trees.

For an unweighted graph G = (V| F) and an edge {u,v} € E the vertices v and v are
called the endpoints. For a vertex v € V', the number of incident edges is called the degree of v
in G. Two vertices u,v € V are said to be adjacent if {u,v} € E. For two vertices vy,vx € V
an undirected path from v; to vg in G is a sequence (vy,...,vx) such that {ve,...,vx_1} are
distinct vertices and such that for all i € {1,...,k — 1} it holds that {v;,v;11} € E. The
vertex vy is called the starting point of the path and the vertex vy is called the end point. The
length of a path in an unweighted graph is defined as the number of edges which constitute
the path. The length of a path in a weighted graph is defined as the sum of the weights of its
constituent edges. If the starting point of a path equals its end point, but all other vertices
appear at most once in the sequence, then the path is called a (simple) cycle.

A graph G = (V, E) is connected if for all pairs u,v € V| there exists a path from u to v in
G. For a connected graph G = (V, E), either weighted or unweighted, and two vertices u,v € V
the distance between u and v in G is defined as the minimum over all the lengths of all paths
from w to v in G and is denoted by dg(u,v). If u = v then dg(u,v) = 0. Let V = {vy,...v,}.
For a graph G there exists a corresponding square matrix Dg = (dg(v;, vj))1<i<j<n, called the
distance matriz of G. For undirected graphs, this matrix is symmetric with all entries being
non-negative. The problem of computing the distance matrix of a given undirected positive
weighted graph is called the All-Pairs-Shortest-Path problem is is well-known to be solvable

2.2. NOTATION AND ELEMENTARY CONCEPTS 17

in time O(n?logn + nm) (cf. [CLRO1]). Yet, there are some faster algorithms but for our
purposes the given running time suffices.

A graph G' = (V', E’) is a subgraph of a graph G = (V, E), denoted by G’ C G, if both
subset relations V' C V and E' C F hold. A graph G’ = (V' E’) is said to be a spanning
subgraph of a connected graph G = (V, E) if G’ is a subgraph of G such that V' =V and G’
is connected. For a undirected graph G = (V, E) and a spanning subgraph G’ = (V, E’) it
clearly holds that

Vu,v € V) dg(u,v) < dg/(u,v).

Trees A graph is a tree, if it contains no cycles. A cycle-free spanning subgraph is called
a spanning tree. We denote the set of all spanning trees of a graph G by SP(G). It is a
well-known fact that a tree on n vertices has exactly n — 1 edges. Also, in a tree T' = (V, E)
there exists for each pair of vertices u,v € V' ezactly one path in T. A rooted tree T = (V, A)
consists of a vertex set V' and a subset A of all ordered pairs of elements from V', called arcs,
and a designated vertex r € V such that for every vertex u € V' \ {r} there is a directed path
in T from r to v: a directed path from r = v to u = v is a sequence (vy,...,vy) of distinct
vertices such that for all 4 € {1,...,k — 1} it holds that (v;,v;+1) € A. For an arc (u,v), u
is called the parent of v and u is called a child of v. A vertex that has no children is called
a leaf of external verter and vertices that have at least one child are called internal vertices.
The depth of a vertex v € V is defined as the number of edges on the directed path between
the root and v in T'. The height of a rooted tree T is defined as the maximum depth of any
external vertex in 7.

2.2.3 Strings and regular languages

Strings In this work A denotes a finite set called the alphabet. The elements of A are called
the symbols of the alphabet. For m € IN and 1 < i < m, the finite sequence s = (a,...,anm)
of symbols a; € A is called a finite string over A of length m, denoted by |s|. If m = 0 then
the string is called the empty string and is denoted by e. An infinite sequence s = (a1, ag, . ..)
of symbols such that for ¢ € INy it holds that a; € A is called and infinite string. In this
case, we set |s| = +o00. We note here that |.| is used in two different meanings within this
work: if z € IR, then |z| denotes the modulus-function and if s is a string, then |s| denotes
the length of s. This “operator-overloading” will never cause any uncertainty, because it will
be clear from the context which is the correct meaning.

A string s = (a) of length one will be abbreviated by a. For a finite string s of length

m and i € {1,...,m} we access the i-th element a; by s[i], where for every string s it holds
the s[0] = e. For a finite string s and 4,7 € {1,...,]|s|} satisfying i < j, the subsequence
(a;,...,a;) is called a substring of s and is accessed by s[i...j]. Here, for i,5 € {1,...,m}

satisfying ¢ > j we define s[i...j] = € as the access to the empty string. If s is infinite, we
access the infinite substring starting at the i-th position of s by s[i...].

For a symbol a € A and a string s over the same alphabet we denote by |s|, the number of
occurrences of the symbol a in s. For a finite string s € A, it clearly holds that [s| = > 1 |s]a.
For a natural number m we denote by A™ the set of all strings over .4 that have length exactly
m and by A="" the set of all strings that have length at most m. Further, A> denotes the
set of all infinite strings over A, A<>° denotes the set of all finite strings over A, and A=*°
denotes the set of all strings over A.

18 CHAPTER 2. PRELIMINARIES

Two non-empty strings s,t over the same alphabet are identical, denoted by s = t, if

|s| = |t| and for all indices i € {1,...,|s|} it holds that s[i] = t[i]. Note that this includes the
identity of infinite strings. A string s is a prefiz of a string ¢, if |s| < |t| and for all indices
i€{l,...,|s|} it holds that s[i] = t[i]. We write s C ¢ in this case. A prefix s of ¢ is a proper

prefiz, if |s| < |t|. We write s C ¢ in this case. Note that for the empty string €, e C ¢ for every
string ¢ with [¢t| > 0.

Given two strings s,t over an alphabet A, the longest common prefiz of s and t is the
longest string r over A that is a prefix of both s and t. We define the following function
lep : A= x A= — IN, where lcp measures the length of the longest common prefix of two
strings:

lep(s,t) =max(j € IN @ s[0...5]C¢)

This function is particularly important in the setting of tries and trie-like data structures.
For two strings s,t such that s is finite, the sequence r = (sy,.. Sl t1s e .) is called the
concatenation of s and t and is denoted by r = s t.

Regular languages Let A be an alphabet. A language £ C A= is a collection of strings
over A. Given a language £ C A= the function x, : A=*° — {0, 1} such that for every

w € A= it holds that
(w) = 1 ifwel
XeWI =10 ifwe L

is called the characteristic function of L. A language £ C A= is called a regular language
over A if all elements — in this particular case called words — of £ are described by regular
expressions over A: formally, given an alphabet A the following are regular expressions over A:

e For all a € A, ’a’ is a regular expression. The language corresponding to this regular
expression is {a}.

e For two regular expressions R and @) with corresponding languages R and @, 'R | Q’ is
a regular expression with the corresponding language R U Q.

e For two regular expressions R and @) with corresponding languages R and @), 'R @)’ is a
regular expression with the corresponding language

{w : w=wvforue Rand v e Q}.

e For a regular expression R with corresponding language R, "R’ is a regular expression
with language

{wi wy ... wy, : meIN; and for all i € {1,...,m}, w; € R}.

e For a regular expression R with corresponding language R, R*’ is a regular expression
with language

{e}U{w; wy ... wy, : me N, and for all i € {1,...,m}, w; € R}.

2.2. NOTATION AND ELEMENTARY CONCEPTS 19

2.2.4 Tries and alike data structures

A trie is a fundamental data structure for storing and retrieving data. Let A = {aq,...,an}
be an alphabet and let S C A= be a non-empty set of n distinct strings over A such that
no string in S is a prefix of another string in S.

Definition A N-ary retrieval tree over S (for short an N-ary trie) is an arc-labeled rooted
N-ary tree T' = (V, E/,1) which can be defined via the following recursive procedure: if ||S|| < 1
then T' = ({v},{},{}). If ||S]| > 1 then the set S is partitioned in r subsets Si,..., S, such
that for i € {1,...,r},

Si={seS : aCs}

For each such set S; which is non-empty, let S} be the set of all strings in S;, where for each
string the first symbol is deleted, i.e.,

Si={s[2...] : s€S5;}.

Let T; = (V;, E;,1;) be the trie over S; and let v; be the root of T;. Then T = (V, E,l) is
defined as

v

N
U viu{v}
510

and

C=

E= U (EiU{(v;,v)})

i=1
5,70
with the labeling function | : E — A that assigns each arc (v,v;) € E the label 'a;” and each
arc e € UN_, E; the label I;(e) . We may omit the term N-ary because it corresponds with

5,0
the cardinality of the alphabet.

Retrieval Now, in order to retrieve a given string s, one follows the directed path of arcs
labeled s[1], s[2], s[3], ... starting from the root as long as either an external vertex is reached,
or such a path can no longer be followed in T because an internal vertex has no child with an
appropriately labeled arc. In the first case the respective string is found and in the latter case
it is not present in T, at all.

Efficiency issues We are not interested in the details of constructing tries, but we are more
concerned with the efficiency of the retrieval operation. It is easy to see a retrieval operation
takes time O(d), where d denotes the depth of the first external vertex on the retrieval path
for a string. Thus the retrieval operation takes time O(h), where h denotes the height of
the trie. For the sake of completeness it should be mentioned that a trie can be constructed
incrementally by inserting one string in S at a time.

Enhancements A PATRICIA tree is a trie, where paths of vertices of degree one are con-
tracted into one arc and labeled by the string that results by concatenating the labels on the
path in the direction starting with the label that is nearest to the root of the trie. PATRICA
is the acronym for “Practical Algorithm to Retrieve Information Coded in Alphanumeric”.

20 CHAPTER 2. PRELIMINARIES

a g
o'/ ° \0 o'/ \c
Figure 2.1: An example of a 4-ary trie built over the set

{aaaa, aata, aagce, acct, ateg, cagt, cctg, cgaa, gtaa, gecaa, gegg, ggac}. The symbols and
their respective edges are drawn in different colors: a,1,c¢, g.

This enhancement was introduced by Morrison [Mor68|. Level- and path-compressed (LCP)
tries are an enhancement of ordinary (binary) tries which were introduced by Andersson and
Nilsson [AN93, AN94]|: given a rooted binary tree T', we denote the set of vertices at depth i
by L;. The level- and path-compressed version of 7" is then constructed by the following re-
cursive procedure: let i be maximum complete level in T, i.e., i maximum such that ||L;|| = 2°
and ||Liy1| < 27+, The subtree of T induced by the vertices in U;":()Lj is then a complete
binary tree. In the LCP trie corresponding to 7', this subtree is replaced by a root having 2
child vertices, where the arc between the root and the j-th child is labeled by the é-bit binary
representation of the number j. This compression is then applied recursively to the subtrees
rooted at the 2¢ child vertices. Additionally to the arc-labelings, at each vertex a value bit
is stored such that the degree of a vertex equals 2 **. In order to retrieve a string s that is
stored in the LCP trie T', one again follows a labeled path in T starting from the root. Only
this time, the labels are s[1... k1], s[k1 +1...ks],..., where k; — k;—1 + 1 (with kg = 1) equals
the size of the bit-value of the i-th vertex on this path. Finally, a b-trie over an alphabet A is
a rooted || A|-ary arc-labeled tree such that every leaf is capable of storing up to b strings. All
strings that are stored in a leaf have the same common prefix, which equals the concatenation
of the labelings on the path from the root to the respective leaf in the b-trie.

2.3 Generating functions of regular specifications

In our analyses, particularly in Chapter 4, we make use of the theory of generating functions
in order to evaluate sums of probabilities. The theory is much too involved to give a com-
plete introduction within the preliminaries of a PhD thesis. We nevertheless review those
parts of the theory that are crucial for the understanding of the calculations performed in
this thesis. For an introduction, the reader is referred to the book of Graham, Knuth and
Patashnik [GKPO5] or the book of Wilff [Wil94|. For a very thorough reading, the book of
Flajolet and Sedgewick [FS07| is recommended. The expositions in this overview follow the
expositions given in [FS07].

Given a finite or denumerable set of elements A, called a combinatorial class, such that
the size |.| : A — INy is defined and such that the number of elements of a given size is finite,
the sequence (A;)i>0, where 4; = [{a € A : |a| = i}|, is called the counting sequence of

2.3. GENERATING FUNCTIONS OF REGULAR SPECIFICATIONS 21

the class A. The ordinary generating function (OGF) A(z) corresponding to the sequence
(A;)i>1 is the following formal power series.

Alz) = iAi -2t
=0

where we implicitly assume that z is such that the power series converges and we can consider
them as algebraic objects (with some care!). Given a formal power series, we are interested in
the coefficient at 2™ because it equals the number A,,. To extract the coefficient, we use the
operator

Regular specifications A class of well-understood combinatorial objects are those sets for
which there exists a regular specification. The simplest combinatorial classes that are given
by a regular specification are the empty set A = {} and the singleton set A" = {a}. The
corresponding generating functions are A(z) = 1 and A’(z) = 2. Let A and B be a two
combinatorial classes with corresponding OGFs A(z) and B(z).

e The Cartesian product is the combinatorial class
A X B =4 {(a,8) : a€ Aand € B},

where the size |(«, 3)| = |a|+]|5|. The OGF corresponding to the combinatorial product
is A(z) - B(2).

o Let © and & be two distinct markers. The combinatorial sum is defined as
A+ B =aet {(V,0) 1 ac AyU{(W,0) : §€B},
where |(©,)| = |a| and |(#, B)| = |B]. The corresponding OGF is A(z) + B(z).
e Finally, let A be non-empty. The sequence construction is the combinatorial class
A =gt {}+ A+ AXA) + (AXxAXA)+...,

where |(aq,...,0)| = |ai| + ... + |ag|. The corresponding OGF is

(1—-A@R) =D A() -4
=0

Definition 2.7 (Regular specification). A specification for a combinatorial class that involves
only singleton sets, Cartesian products, combinatorial sums and sequence constructions is
called a regular specification.

Note that for every combinatorial class with regular specification which involves the singleton
sets {a1},...,{ay}, there is a corresponding regular language over the alphabet {a1,...,a,}.

Fact 2.1. Let A be a combinatorial class which has a reqular specification. Then the corre-
sponding OGF A(z) is a rational function.

22 CHAPTER 2. PRELIMINARIES

Note that the construction of the rational OGF corresponding to a combinatorial class with
regular specification is straightforward: each symbol of the corresponding regular language is
translated into the variable z and the operations are then transformed as follows:

e a; a;j (which corresponds to Cartesian product in the regular specification) becomes z- z,

e a; | aj (which corresponds to combinatorial sum in the regular specification) becomes
z+ z and

e o’ (which corresponds to the sequence construction in the regular specification) becomes

1/(1 = 2).

Sometimes, it is more convenient to use a multivariate generating function (MGF).
Let A be a combinatorial class with regular specification which involves the singleton sets
{a1},...,{an}. The multivariate generating function corresponding to the class A is given
by the multivariate function f(z,us,...,u,) which results from the following construction:
consider the corresponding regular language over the alphabet {aq,...,a,}.

® a; a; becomes 2% - Uj,
® a; | aj becomes u; - z + u; - z and

e af becomes 1/(1 —u; - z).

Here, the variable z is said to mark size. Assume that a weight \; € IRy is attach to
every atomic element a;, 1 < ¢ < n, in the regular specification and let an element in the
combinatorial class have the following weight:

e for an atomic element a;, 1 < i < n, in the regular specification, w(a;) =get As,
e for an element which is formed by a Cartesian product, w((«, 3)) = w(«) - w(f),

e for an element which is formed by a combinatorial sum, w((©,a)) = w(a) and

k
e for an element which is formed by a sequence construction, w((aq,...,ar)) = [] w(a).
1=1

The weight of a set equals the sum over all weights of its elements. Let A be a combinatorial
class which has a regular specification involving n atomic elements and assume that a weight
is attached to each element as described above. Let A(z,u1,...,u,) be the corresponding
MGF. The weight of the set A™ = {z € A : |z| =n},

z€AM)

can be derived from the coefficient at 2™ of the MGF A'(z) = A(z, A1,...,\,). This is,

w(A™) = [2" A(z, A1, ..., An).

2.3. GENERATING FUNCTIONS OF REGULAR SPECIFICATIONS 23

Coefficient extraction In order to extract the coefficient at z™ of a rational function, we
make use of the following result on the expansion of rational functions.

Theorem 2.1 (Expansion of rational functions). [Theorem IV in [FS07|| If f(z) is a rational
function that is analytic at zero and has poles at z1 < zo < ... < 2, then its coefficients are a
sum of exponential polynomials: there exist k polynomials I11(2), ..., (z) such that for m
larger than some fized my,

k 1 m
M) = mm) (£
J
Furthermore, the polynomial I1; has degree equal to the order of the pole at z; minus one.

For the sake of completeness, we give a proof for the above theorem. The proof follows the
proof in [FS07].

Proof. First note that since f(z) is a rational functions it admits a partial fraction decompo-
sition. For i € {1,...,k} let mult(i) be the multiplicity of the pole of f at z;. The partial
fraction decomposition is

k mult(s) N
=0 +> Y ﬁ
i=1 j=0 ¢

where @(z) is a polynomial of degree ng := N — D if f = N/D and the ¢; ;’s are constants.
Now, according to Newton’s expansion, for i € {1,...,k} and j € {1,... , mult(7)},

=] (z —1zi)j - ((;zl))j 12" (1 —1§)j N (_Z?j <mj+—j1_ 1> (%)m’

where the binomial coefficient clearly is a polynomial of degree j — 1 in m. Now, collecting
the terms associated with a given z; and summing over all i € {1,...,k} yields the statement
of the theorem. O

24

CHAPTER 2. PRELIMINARIES

Chapter 3

Approximating graph metrics by tree
metrics

A fool sees not the same tree that a wise man sees.

3.1 Introduction

3.1.1 Motivation and problem statement

In this chapter, we study how well the distance metrics of a given undirected simple graph can
be approximated by the distance metrics of its spanning trees. Clearly, the distance metrics
of a graph is expressed in its distance matriz. If not explicitly otherwise stated, we assume for
a graph G = (V, E) that its vertex set is V' = {v1,...,v,} and its edge set has size ||E|| = m.
Also, we remind the reader that Dg = (d(;(?}i, vj)) 1<ij<n is the distance matrix corresponding
to G and that D¢ is symmetric with all entries being non-negative. Furthermore, for every
spanning tree 7' C G and all v;,v; € V it holds that Dr[i, j] > Dgli, j]. We study different
versions of the following combinatorial optimization problem: given a real-valued similarity
measure rating the degree of correct approximation of the distance matrix of a graph by the
distance matrix of a spanning tree, find for an input graph G a spanning tree T" which is
optimal with respect to the given similarity measure. Particularly, we consider as similarity
measure o(G,T') the following functions:

e the standard matrix norms |||z, (for 1 < p < 00) ||.||1,00, ||-]1 and ||.||s applied to the
distance matrix D7 of the T'.

e the standard matrix norms |||z, (for 1 < p < 00) ||.||1,00, ||-]1 and ||.||sc applied to the
difference (D7 — Dg) of distance matrix of 7" and G.

e the standard vector norms ||.||, applied to the difference (cg — c¢r) of the closeness
centrality vector of G and T,

where the closeness centrality vector cg of a graph G is defined as cg = (cg(v1), .., cq(vn))T
and for i € {1,...,n} the closeness centrality [Sab66, Bea65| of the vertex v; is defined as

G (Vi) =det (f: de(vi, Uj)) o (3.1)

=1

25

26 CHAPTER 3. APPROXIMATING GRAPH METRICS BY TREE METRICS

Note that for any graph G and any subgraph G’ C G we have c¢g(v) > cqr(v) for all vertices
v € V. We systematically study the impact of the matrix norm on the complexity of the
following optimization problems: first, we consider spanning trees that minimize distances.

PROBLEM: Distance Minimizing Spanning Tree (DMST) with respect to ||.||,.
INPUT: A connected graph G.
TASK: Find a spanning tree T' of G such that ||Dr||, is minimal.

In order to make clear the connection to the similarity measure which we introduced, note that
in the above case the similarity measure p,(G,T) = ||Dr||,. Some variants of this problems
have already been considered in the literature: for the L1 norm the tree achieving the minimum
is known as the minimum average distance tree (or, MAD-tree for short) [JLRK78, DDGS03];
for the L, norm the tree realizing the minimum is known as the minimum diameter spanning
tree [CGM80, HT95]. Also, these problems correspond to the MRCT problem, i.e., the special
version of the OCT problem where r(u,v) = 1 for all pairs of vertices, which we mentioned in
the introduction. Second, we consider spanning trees that approximate distances.

PROBLEM: Distance Approximating Spanning Tree (DAST) with respect to ||.||,.
INPUT: A connected graph G.
TASK: Find a spanning tree T" of G such that | Dy — D¢||, is minimal.

Here, the similarity measure o(G,T) = ||[Dr — Dg||,. It is mainly this version of the problem
from which the term ’similarity measure’ originally emerged: instead of merely optimizing
the distance matrix of the tree as such, we here aim at finding a tree that approximates the
distance matrix of a given graph. This constitutes the key ingredient of what we refer to
as combinatorial network abstraction in the introduction. With respect to the L; norm, the
DAST and the DMST problem are similar in the sense that there is an affine transformation
between the measures of the different problems. Thus, DAST with respect to the L; norm
again reduces to looking for MAD-trees. By contrast, for the L., norm the two variants differ
tremendously and here we are this time looking for a tree that, for all vertex pairs, does not
exceed a certain amount of additive increase in distance. Such trees are know as additive tree
spanners [KLM103]. As it was already mentioned, we do not only deal with matrix-norm-
based similarity measures, but we also consider here a slight variation of the DAST problem.
Namely, we consider the problem of finding a spanning tree that approximates centralities.

PROBLEM: Centrality Approximating Spanning Tree (CAST) with respect to |||,
INPUT: A connected graph G.
TASK: Find a spanning tree 7" of G such that |cg — c¢r||, is minimal.

Note that except for the Li matrix-norm, distance-minimizing spanning trees and distance-
approximating spanning trees typically cannot be used to provide good approximate solutions
for each other: the different underlying matrices drastically affect the cost of an optimal
solution as well as the structure of the corresponding spanning tree. An example for this
(with respect to the Lo, norm) is given in Figure 3.2. Whilst the upper spanning tree T'
provides a minimum diameter spanning tree for G, it approximates an optimal distance-
approximating spanning tree only by a factor of ©(¢) = ©(||V||). The lower spanning tree
T’ is an optimal distance-approximating spanning tree for G' — whilst being suboptimal with

3.1. INTRODUCTION 27

by by brt2
ce “ o The "Shovel Graph" G
o with parameters ¢ and k
a1 Ak Qk+2
e —0 single-center tree
... ¢—e@—¢@ solution for G
br errl

- —@ - A multi-center tree
*—o—0 Qr Gri1 solution for G

with parameter r

Figure 3.1: An illustration for the difference between distance minimization and distance
approximation for L, matrix-norms.

respect to minimizing || Dr||1 0. Note that there is no spanning tree for G which provides an
optimal solution to both problems. Figure 3.1 gives another example that separates optimal
solutions for distance approximation and distance minimization for L,. For arbitrary k and
¢ =2P(2k +4) + 1, the distance-minimizing spanning tree is the single center tree, which is
not optimal with respect to distance approximation. Conversely, the best possible distance-
approximating spanning tree is a multi-center tree for some r with 0 < r < k which, however,
is not optimal for distance minimization. When increasing ¢ to 2(2k + 3)P + 1, the single
center solution is optimal for both distance approximation and distance minimization. This
shows that distance approximation, to a certain degree, prefers locally good solutions over
globally good solutions. When p increases, the “shaft” of the “shovel” can be made even longer
compared to the “blade”. Hence, a large p amplifies the local influence. Throughout this
chapter, the graphs which we consider are simple, unweighted, and undirected.

3.1.2 Owur contribution

In order to study the impact of the norm on the complexity of the described combinatorial
optimization problems, we consider the decision versions of the above optimization problems.
For computing distance-minimizing spanning trees, it is known that it is NP-complete to de-
cide on input (G,) whether there is a spanning tree T of G such that || Dr||z,; <~ [JLRKTS].
Moreover, there exists a polynomial-time algorithm for computing a minimum diameter span-
ning tree [HSP78, KH79, CGMS80, HT95]. However, for computing distance-approximating
spanning trees in general graphs, even for L1 and L., no such complexity results are known
to the best of our knowledge.! Research in this area has more focused on proving the
(non-)existence of certain distance approximating trees for special graph classes (see, e.g.,
[Pri97, BCDY99, FK01b, KLM*03]). These existence theorems are usually complemented with

'Note that in contrast to some claim in the literature the results in [LS93] do not provide a proof for the
NP-completeness of deciding whether there is a spanning tree T' with || Dr — Dg||1,00 (G) < 7, neither does an
easily conceivable adaption.

28 CHAPTER 3. APPROXIMATING GRAPH METRICS BY TREE METRICS

V1 V11 V31 U3¢
U2y V21 V41 Vy4p

o—eo—o ...9—e@—e@ A spanning tree T of G with
¢ I D100 =20+ 2 and
e A spanning tree T” of G with
g I D100 =20+ 4 and
D7 — Dallz,00 = 2

Figure 3.2: An illustration for the difference between distance minimization and distance
approximation for the L., matrix-norm.

polynomial-time algorithms for finding the guaranteed trees. Unfortunately, we cannot break
the curse of NP-completeness for our optimization problems. We contribute the following:

e We prove that for any given instance (G,), deciding whether there is a spanning tree T
such that ||Dr|, < 7 is NP-complete for all the matrix norms within our framework
where complexity has been unknown so far.

e We prove that for any given instance (G,), deciding whether there is a spanning tree T
of G such that |Dy — Dg|| < is NP-complete for all matrix norms within our frame-
work, i.e., essentially for all standard norms with the exceptional case of the spectral
norm which is left open. This is somewhat surprising, since at least in the case of L,
one might have hoped for a polynomial-time algorithm building up on the polynomial-
time algorithms for computing minimum diameter spanning trees. Even worse, the
polynomial-time algorithm for computing the minimum diameter spanning tree cannot
be used for approximating miny || Dr — D¢gl|1,0o within reasonable factors as already
shown by the example in Figure 3.2.

e We prove that, with respect to closeness centrality, for any given instance (G, ~), decid-
ing whether there is a spanning tree T such that |cg — er||, < v is NP-complete for
the Ly vector-norm.

e We present an O(n?logn-+nm) time 2-approximation algorithm for the problem DMST
with respect to the ||.||z,, norm for 1 < p < oo.

o We show how the 2-approximation algorithm translates into a 2-approximation algorithm
for a version of the multiple sequence alignment problem under a generalized sum-of-
pairs objective.

3.2. THE RESULTS IN DETAIL 29

3.1.3 Chapter outline

The detailed presentation of the results in this chapter is organized as follows: in Section 3.2.1,
we introduce the gadgets, namely the X3C gadget and the 2HS gadget, which we use in the
reductions to follow. In Section 3.2.2, we consider the DMST versions of our problems:
the NP-completeness results for these versions are without exception derived by reductions
using modifications of the X3C gadget. In Section 3.2.3, we consider the DAST versions
of our problems: the problem DAST with respect to the ||.||1 0 matrix norm is shown to
be NP-complete using a reduction which involves the 2HS gadget and a problem specific
construction which we call cycle assembly. The hardness of the other DAST problems is
again shown by reductions using “different versions” of the X3C gadget. In Section 3.2.4, we
prove the hardness of the CAST problem with respect to the ||.||; matrix norm by modifying
the X3C gadget once more. Section 3.3 contains the presentation of the approximation
algorithm and Section 3.4 deals with its application to the MSA problem. In Section 3.5, we
give some bibliographic notes.

3.2 The results in detail

For all of the problems which we consider in this section, we will establish NP-completeness
results. In order to establish these results, we need the decision versions of the above opti-
mization problems. We will give the formal definitions of these problems at the beginning of
the respective Sections 3.2.2, 3.2.3 and 3.2.4. We start the detailed exposition of our results
by first defining the gadgets which are necessary in the reductions.

3.2.1 Gadgets

We will prove the NP-completeness of the considered spanning tree problems by reduction
from two problems, i.e., X3C and 2HS, whose NP-completeness is well known. To this aim,
we show that we can construct for each instance of the respective problems a graph such that
there is a spanning tree for the graph having a prescribed similarity to the graph, if and only
if the respective instance of the problem from which we reduce has a solution of a certain
quality. Since a tree is a cycle-free graph, this means that in order to find a spanning tree,
one needs to delete a certain amount of edges from the graph. Every such deletion results in
an increase of the distance between some pairs of vertices (at least the distance between to
two endpoints of the deleted edge increases). By carefully constructing the respective graphs,
one can control these increases, i.e., one can assure that for some edges the penalty is larger
and for some edges it is less than for others, and thus assure that only those spanning trees
have small penalties which correspond to solutions of the corresponding problem.

3.2.1.1 Graph representation of X3C instances

The following decision problem is well-know to be NP-complete [GJ79].

30 CHAPTER 3. APPROXIMATING GRAPH METRICS BY TREE METRICS

LM ek K L X

Figure 3.3: The graph G473(C, L) fOI' C = {{ll, lg, 14}, {lg, l4, 15}, {12, lﬁ, 17}, {15, lg, lg}, {17, lg, lg}}
and L = {l1,l,13,l4,15,16,17,13,l9}. The edges of the solution tree Ty of G43(C,L) corre-
sponding to the solution V = {C1,C3,C5} are drawn red.

PrROBLEM: EXAcT-3-COVER (X3C).

INPUT: A family C = {C1,...,Cs} of 3-element subsets of a set
L = {ll, o 7l3m}-

QUESTION: s there a subfamily V C C of pairwise disjoint sets
such that Ugey = L7

A subfamily V satisfying the required properties is called an admissible solution to an instance
(C,L). Let a and b be arbitrary natural numbers. Extending a construction from [JLRK78|,
we define the graph G, 4(C, L) to consist of the vertex set

V=4 CULURUXUK,

where R =ger {r1,...,7a}, X = {x}, K =get U?:m1 K% and for all i € {1,...,3m}, K' =4
{ki,....kl}. The edge set of G,(C, L) is

E =4t {{rpaz} :pef{l,...;a} } U {{Cua} : pe{l,....s} } U
U{{lnC} : l,eC } u{{lub}: pre{l,....3m}} U
U{{kt 0} - ped{l,....;3m}and v e {1,...,b} }.

This construction is illustrated in Figure 3.3. The following two propositions capture some im-
portant relations between the graph G, (C, L), a corresponding instance (C, L), an admissible
solution V to (C, L) and the spanning trees of G 4(C, L).

3.2. THE RESULTS IN DETAIL 31

Proposition 3.1. Let (C,L) be an X3C instance and let a,b be natural numbers. Suppose T
is a spanning tree of the graph G,p(C, L).

1. For all pe{1,...,a}, T contains the edge {r,,z}.
2. Forallpe{l,....,3m} and v € {1,...,b}, T contains the edge {kl;,1,}.

3. If for some p € {1,...,s}, T does not contain the edge {C,,x}, then we have
dr(Cp,mv) > 4 and dr(Cp, 1) 2 dg, yc,0)(Cusrv) +2 for allv € {1,...,a}.

4. If for some p € {1,...,3m}, the vertex l, is not adjacent in T to any C, € C,
ve{l,...,s}, then for all k € {1,...,a} and X\ € {1,...,b} we have dp(lu,rs) > 4,
dT(k‘g,Tﬁ) > 9, dT(lu,m) > dGayb(C,L)(luvrn)_‘_l: and dT(k‘g,Tﬁ) > dGa’b(aL)(k‘g,Tﬁ)—l-l.

Given an admissible solution S to an X3C instance (C, L), we can identify a corresponding
spanning subgraph T’s called solution tree in G,(C, L) through the edge set

E(Ts) = {{rpaz} : pef{l,...;a} } U {{Cua} : pefl,....s} } U
U{{uC} :1l,eCandC, €S } U
U{{kt 1) - ped{l,....;3m}and v € {1,...,b} }.

The edges of the solution tree corresponding to the unique solution of the graph G43(C, L)
are drawn as red lined in Figure 3.3.

Proposition 3.2. Let (C, L) be an X3C instance having an admissible solution S C C, let a
and b be natural numbers and let T's be a solution tree in Go(C, L) that corresponds to S.

1. For all p € {1,...,s}: If C,, € S, then C, has four neighbors in Ts, otherwise C,, has
only one neighbor in Ts.

2. For all vertices u € RUX and v € V, drs(u,v) = dg, ,(c,r)(u,v)-
8. For all p,v € {1,...,s}, drs(Cu, Cy) = dg, ,(c,0)(Cp, Cv)-

The following lemma gives necessary and sufficient conditions for a spanning tree to be a
solution tree. In the reductions to follow, we frequently make use of the characterizations
given in this lemma. Moreover, all the NP-completeness proof that rely upon this gadget,
follow the same vein and thus it is natural to capture the essential ingredients of these proofs
into a Lemma, which we therewith do.

Lemma 3.1. Let (C, L) be an X3C instance, a,b € IN, and let T be any spanning tree of the
graph Go(C,L). There exists an admissible solution S C C such that T = Ts if and only if
the following conditions are satisfied:

1. For all p e {1,...,s}, the tree T contains the edge {Cy,x}.
2. Forallp e {1,...,3m}, thereis av € {1,...,s} such that T contains the edge {l,,,C,}.
3. For all p € {1,...,s}, the vertex C,, has either four neighbors in T or one.

Proof. Clearly, the three conditions are necessary for a tree Tis to correspond to an admissible
solution §. For the other direction, suppose the tree T satisfies all conditions. By the first

32 CHAPTER 3. APPROXIMATING GRAPH METRICS BY TREE METRICS

and second conditions, for p,v € {1,...,3m} (with p # v), there exist K, A € {1,...,s}
such that the path (I,,Cx,x,Cy,l,) exists in T'. Thus, the edges {l,,l,} do not belong to T
Consequently, using the third condition, we obtain an admissible solution by defining S to
consist of all C, having exactly four neighbors in T'. O

Before we expose our second gadget, the meaning of the two parameters a and b should
be made (at least a little bit) clear. Loosely speaking, a and b have some amplifying effects:
to this aim, let G 4(C, L) be a graph and assume for the moment that the norm considered
is the L, norm and the considered measure is ¢,(T,G) = ||Dr||p. Let T be some spanning
tree of G (C, L) and assume that dr(l,,z) = 3 for some vertex [, € L. We are interested in
how much the value of ||Dr||, increases due to the fact that the distance between [, and x
is equal to 3 in T (instead of being equal to 2 as in G,;(C, L)). For a = 0, the increase (with
respect to the value ||Dg, ,c,0)llL,p) is clearly 2(37 + b - 4P) —2(2P + b - 37) and for a > 0 the
increase is a-2(3” +a-4P +b(4P +a-5)) —2(2P +a- 3P+ b(3P + a-4P)). Now, by choosing the
appropriate parameter values, we can control the penalty a tree suffers if it does not satisfy
some sought-after properties. This idea will be made more explicit within the detailed proofs
where we specify the exact values for a and b.

3.2.1.2 Graph representation of 2HS

The problem 2-HITTING SET(2HS) is known to be NP-complete [GJ79|. Also, it is commonly
better known as VERTEX COVER. In order to avoid overusing the terms “vertices” and “edges”,
we have decided to use its less frequently used name.

PROBLEM: 2-HITTING SET (2HS).
INPUT: A family € = {Ey,..., E,} of 2-element subsets of a set
V ={v1,...,v,} and a number k € {1,...,n}.
QUESTION: [s there a subfamily V' C V such that |V'|| < k
and for each p € {1,...,m} the set E, NV # 0?7

A subset V' C V having the required properties is called an admissible solution to a 2HS
instance (€, V, k). For a given 2HS instance (€, V, k), we define the graph G(€,V) as follows:

e For each s, € V, we introduce a [literal gadget G, consisting of the two connection
vertices s,,t, and the vertices ef, ..., ean and If',...,ll,. Moreover, s, is connected
to t, via two paths: the first path (su,e’f, .. .,eﬁﬁl,tu) is called elongation path and
has length equal to m + 2, whereas the second path (s, I}, ..., I, t,) of length m + 1
is called the literal path.

e We introduce the three vertices a’,a”, V.

e For eachi € {1,...,n—1}, we connect the successive connection vertices t; and s; 41 via
an edge. Also, we introduce the edges {a’,a”},{a”,s1} and {t,,V'}.

e For each E, = {v,,v.}, we introduce a clause path of length 2n(m + 2) that connects
the vertices [} and [}, and a safety path of length 2n(m + 2) that connects the vertices
a’ and [}, (Here, we assume w.lo.g. that v < k).

3.2. THE RESULTS IN DETAIL 33

(— elongation path literal gadget for vl\
litaral path

= clause paths
— - safety paths

er e es el el e}
81 131
I} 13 % % 1}
/ /
—_ V4 Y
L S - y,

Figure 3.4: Graph representation G(E,V) of the 2HS instance (€,V,2) =
({{v1,va}, {v1,v3}, {v2, va}, {vs, va}, {v1, 04} }, {v1, v2,v3,v4},2)

The whole construction is exemplified in Figure 3.4. The main idea behind the gadget is that
for each literal gadget, its elongation path is tuned such that it is exactly one edge longer than
its literal path, and further that the path

! n 1 1 1 n /
(@' a", 81,07, oyl t1,82, ooy Sy by ooy bt D)

is a shortest path between o' and ¥ in G(€,V) and all detours leading along clause paths or
safety paths are very long. In any spanning tree the cycles induced by the clause paths can
only be broken by destroying a certain amount of literal paths — ignoring for a moment the
possibility of destroying clause paths. Thus, the distance between the two vertices a’ and b’
increases by one for every such broken literal path in the tree. This is captured in the following
lemma.

Lemma 3.2. Let (€,V,k) be an instance of 2HS. Then
dg(g’y)(a/, b,) =n- (m = 2) + 2.

Further, there exists an admissible solution V' C V to (E,V,k) if and only if there exists
a spanning tree T of G(E,V) containing all edges in the clause paths such that dp(a’,b’) —
doe,vy (@', V) < k.

The proof is given in the appendix. In our NP-completeness proofs, we use a slightly
modified gadget, where we twist the gadget into a cycle. This enables us to show not only

34 CHAPTER 3. APPROXIMATING GRAPH METRICS BY TREE METRICS

the hardness of the decision version of the problem DAST with respect to the ||.||1 00 matrix
norm, but also gives at hand an alternative proof for the hardness of a restricted version of
the maximum-stretch spanning tree problem considered in [Cai94, CC95].

3.2.2 Distance-minimizing spanning trees

In this section, we consider the problem of computing spanning trees of given graphs that
minimize distances among the vertices of the graph under certain matrix norms. It turns out
that all versions of the problem considered here are NP-complete. In order to perform the
reductions necessary of these proofs, we define the decision versions of the problem.

PrOBLEM: DMST (with respect to ||.|,).
INPUT: A connected graph G and an algebraic number ~.
QUESTION: Is there a spanning tree T of G with ||Drpl|, <~?

We begin with our study by proving that computing distance-minimizing spanning trees is
computationally hard under the L, matrix-norm for all 1 < p < co. Note that the case p =1
corresponds to the MAD-tree problem which was shown to be NP-complete in [JLRKT7S].

Theorem 3.1. DMST with respect to || - |1, is NP-complete for all p € IN,.

Proof. First note that the containment in NP is obvious. We prove the hardness by reduction
from X3C using the graph representation Go0(C,L) for any instance (C,L). We fix our
parameters in an appropriate manner in a moment, so that (C, L) has an admissible solution
S C Cif and only if G,,0(C, L) has a spanning tree 7" such that |[Dr||7 , < 7. Define

N =def Z dGa’o(C,L) (’LL, ’l))p.

u,v€V and
u€RUX or vE RUX
Suppose S C C is an admissible solution to instance (C,L). Let Ts be the corresponding
spanning tree of G,0(C,L). By Proposition 3.2, Property 2, N remains unchanged if the
distance in G4,0(C, L) are replaced by the distances in T's. Next, define

M =def Z dTS (u,v)p.
u,veCUL

Clearly, || Drgllrp = (N+M) YP The definition of the parameter M as a function of T's seems
contradictory at first sight, because the reduction should only depend on the instance (C, L)
and not on a specific solution §. Nevertheless, there is no contradiction in this particular case:
the value M is fully specified only through the size of the instance (C, L), i.e., its independent
of a specific solution S, and can be calculated in time polynomial in the size of the instance.
Now we are ready to set the necessary parameters as follows:

def M
a = 4p — 3p

7 &y

3.2. THE RESULTS IN DETAIL 35

Note that the parameters are indeed well-defined, because a only depends on the instance (C, L)
and the parameter p of the matrix norm, and once a is fixed, v is well-defined, too. It is easy
to check that ||Dry H*Zp = N + M = ~P. Thus, Ts is a spanning tree of G,0(C, L) having the
desired distance property.

Now, suppose T is a spanning tree of G 0(C, L) such that ||DT||I£,p < 4P. We apply the
characterization of a solution tree given in Lemma 3.1 and show that all conditions are satisfied
and thus T is indeed a solution tree. Note that, by Proposition 3.2, N is a lower bound for
the p-distance sum between vertices in R U X.

e Assume to the contrary that the first condition of Lemma 3.1 does not hold, i.e., for
some pu € {1,...,s}, the edge {Cy,x} is not in 7. Then, d7(Cy,x) > 3 and for all
v e {l,...,a}, dr(Cy,r,) > 4. Thus, |Dr|7, > N — 17 — 2Pa + 3P + 4Pa and we
conclude

Dol — 7 >3 —1a@ —27) - M>1+ M=) sy
L,p = 4p — 3p ’

a contradiction. We have just seen how the parameter a amplifies the effect of a small
increase in the distance between C), and z.

e Assume to the contrary that the second condition of Lemma 3.1 does not hold, i.e., there
is a vertex [, not adjacent to any C, in 7. Then, HDTHIip > N —2P —3Pq+ 3P + 4Pq
and we conclude

(@ - 3)

IDrllf, =77 =8 =2 +a(4" = 3") = M > 1+ M=—F—=

—M =1,

a contradiction.

e Note that, if the first and second condition in Lemma 3.1 are both satisfied, then all
edges but those between C and L are already fixed by now and the distances in 1" and
Ga,0(C, L) are the same except for those between vertices in L (between L and C, each
l,, has p-distance one to exactly one C, and 3P, otherwise). Let g be the number of
pairs (l,,,1,) such that edges {l,,C.} and {l,,Cy} exist in T". The total number of pairs
is 9m? — 3m. We obtain

3m 3m

SN dr(lu,)P = 2Pg + 47 (9m® — 3m — g).
p=1v=1

The maximum possible value of g is 6m which corresponds to the case that the third
condition in Lemma 3.1 is satisfied. Assume to the contrary g < 6m. Then we have

ID7|[2 | —~7 > —~276m — 47 (9m> — 9m) + 2Pg + 47(9m® — 3m — g) =
= (6m — g)(4P — 2P) > 1,
a contradiction.
This proves the theorem by applying Lemma 3.1. O

Next we state that distance-minimizing spanning trees are hard to find under the maximum
column-sum norm and thus, maximum row-sum norm as well.

36 CHAPTER 3. APPROXIMATING GRAPH METRICS BY TREE METRICS

Theorem 3.2. DMST with respect to || - ||1 is NP-complete.

Proof. Containment in NP is obvious. Again, NP-hardness is proved by reduction from X3C
using the graph representation G, 0(C, L) for a given X3C instance (C, L) and an appropriate
choice of the parameters a and 7. We will fix the parameter later, so that (C,L) has an
admissible solution & C C if and only if G, (C, L) has a spanning tree T" such that || Dr||; < 7.

Suppose S C C is an admissible solution to (C,L). Let T's be the corresponding spanning
tree in the graph G, (C, L). The vertices in the sets R, X, and L all have the same column
sums. We calculate for p € {1,...,a} and v € {1,...,s}:

> drg(rpv) = 2a+2s+9m—1

veV

ZdTS(x,v) = a+s+6m

veV

> dr(ly,v) = 3a+3s+12m —8
veV

For C, we have to make a distinction between vertices with one neighbor in Ts or four:

2a +2s+9m —1 if C,, has one neighbor in 7.
Z drs(Cpy v) = { ! s p

2a +2s+9m — 7 if C, has four neighbors in Ts
veV

We define our parameters as follows:

a =def s+ 12m + 8
Y =def 68+ 48m + 16

Clearly, we have ||[Drgl||1 = 6s + 48m + 16 = . Thus, Ts is a spanning tree in G, 0(C, L)
having a distance property as desired.

Suppose T' is a spanning tree in G (C, L) satisfying || Drl[j; <. We apply the character-
ization of a solution tree given in Lemma 3.1 and show that all conditions are satisfied.

e Assume to the contrary that the first condition in Lemma 3.1 does not hold, i.e., for
some p € {1,...,s}, the edge {C},z} does not belong to T'. We obtain

ZdT(C’u,v)24a+23+6m—5:6s+54m+27>7,
veV

a contradiction.

e Assume to the contrary that the second condition in Lemma 3.1 does not hold, i.e., there
is a vertex [, not adjacent to any vertex C, in T". Then

> dr(ly,v) > da+ 25+ 3m 42 = 65+ 51m + 34 > ,
veV

a contradiction.

3.2. THE RESULTS IN DETAIL 37

e Assume to the contrary that the third condition in Lemma 3.1 does not hold, i.e., there
is a vertex U}, having two or three neighbors in 7', and remember that the first two
conditions imply that there is no edge between any two vertices in L. Let [, be one of
C}’s neighbors in T'. We calculate

> dr(ly,v) = 3a+3s+12m — 5 = 65+ 48m + 19 > 7,
veV

a contradiction.

This proves the theorem by Lemma 3.1. O

Remark 3.1. Both constructions in Theorem 8.1 and Theorem 3.2 do not rely on using the
edges between the vertices in L of the graph representation of an X3C instance. Consequently,
the constructed graphs are planar (if we assume that all clauses in the X3C instance are
distinct). This means that computing distance-minimizing spanning trees for these norms is
NP-hard already in planar graphs.

3.2.3 Distance-approximating spanning trees

We turn to the problem of finding spanning trees approximating the distances in a graph
reasonably well under a certain given matrix norm.

PrOBLEM: DAST (with respect to ||.|).
INPUT: A connected graph G and an algebraic number .
QUESTION: Is there a spanning tree T' of G with ||Dr — Dg||, < ~?

Independent of the norm, we show all problems to be NP-complete. In was already men-
tion in the introductory section to this chapter that with respect to L; matrix-norm, com-
puting distance-minimizing and optimal distance-approximating spanning trees is equivalent.
An immediate consequence is NP-completeness under L; matrix-norm (from Theorem 3.1 or

[JLRK78)).

3.2.3.1 DAST with respect to the | -|1, and || - ||; matrix norms

Theorem 3.3. DAST with respect to || - ||, is NP-complete for all p € IN,.

Proof. Containment in NP is obvious. NP-hardness is proved by reduction from X3C using
the graph representation G,0(C, L) for a given X3C instance (C, L) and an appropriate choice
of the parameters a and . We will fix the parameter later, so that (C, L) has an admissible
solution § C C if and only if G 0(C, L) has a spanning tree T such that || D¢, ,(c,r) —DTH‘ZP <
Y.

Suppose § C C is an admissible solution to (C, L). Let Ts be the corresponding spanning
tree in G 0(C,L). By Proposition 3.2, we only have drg(lu,1l) — da, oc,0)(lp; 1) > 0 and

38 CHAPTER 3. APPROXIMATING GRAPH METRICS BY TREE METRICS

dTS (ll“ Cy) — dGa,o(C,L)(l,w Cl,) > 0. Thus,

9m? — 9
1D, oe.ny — Drsll?, =2 | 273m(s —m) + 3m(m — 1) +3m + 37—

CtoL

LtoL

This can be seen as follows: there are 6ms ordered pairs of vertices, where one vertex is in
C and the other in L. For 6m such pairs, the distance in 1" does not increase at all. For
another 6m(s —m) of these pairs, the p-distance increases by 2P for each pair and for the rest
it increases by one. Also, there are 9m? ordered pairs of vertices, such that both are in L. For
6m such pairs, the p-distance increases by one and for the rest of the pairs it increases by 3P.
We now set our parameters as follows:

a =def 7Y

Y =daet | Dg,o(c.z) — Drsllep

Note that computing v (and thus @) in polynomial time is possible, since all information
needed is already given in the input: as it was the case in the reduction used in Theorem 3.1,
the difference || D¢, ,(c,z) — D1sllLp does not depend on a particular solution S, but only on
the size of (C,L). Now, by definition, T is a spanning tree in G4,0(C, L) having the desired
distance property.

Suppose T is a spanning tree in G, 0(C, L) satistying || D¢, ,(c,z) — DTHZP < ~P. We apply
the characterization of a solution tree given in Lemma 3.1 and show that all conditions are
satisfied.

e Assume to the contrary that the first condition in Lemma 3.1 does not hold, i.e., for
some p € {1,...,s}, the edge {Cy,xz} does not belong to T'. This implies d7(Cy,x) >
dGa,o(C,L)(Cua$) +2and forallv e {1,...,a}, dp(Cp,ry) > dGa,o(C,L)(CmTu) + 2. Thus,

1D, o(c.L) — DTHZP > (a+1)2P > AP,
a contradiction.

e Assume to the contrary that the second condition in Lemma 3.1 does not hold, i.e., there
is a vertex [, not adjacent to any vertex C,, in T'. We obtain dr(l,, ¥) > da, ,(c,0) () +
Land for all v € {1,...,a}, dr(l, 1) > dg, oc,r)(lu, 7)) + 1. This gives

IDG, o,y = Drllf, > a+1>17P,
a contradiction.

e Note that, if the first and second condition in Lemma 3.1 are both satisfied, then all
edges but those between C and L are already fixed by now and the distances in T" and
Ga,0(C, L) are the same. For the distances from vertices in C to vertices in L we have

da, o(c,L) (1, Cy) if edge {l,,c,} isin T
dr(ly,Cy) = § da,oe,n) (s Cv) + 1 if edge {l,, ¢, } is not in T and [, ¢ C,,
da, oc,)(lus Cv) + 2 if edge {l,, ¢} is not in T"and [, € C,

3.2. THE RESULTS IN DETAIL 39

Let h; be the number of vertices C), having exactly ¢ neighbors in 7. It clearly holds
h1 4+ ho + hs + hy = s and ho + 2h3 + 3hy = 3m. Moreover, we have

3m s
Z Z (dGa,o(C,L)(lm Cy) — dr(ly, CV))p =2(3s(m — 1) +2°(3h1 + 2ho + h3)) .
pn=1v=1

For the distances between vertices in L, we obtain for u,v € {1,...,3m} and pu # v,

dg,o(c,0)(lusb) + 1 if edges {l,, Cx} and {l,, Cx} belong to T
dr(ly, 1) = for some k € {1,...,s}
dGa,o(C,L)(lua l,)+3 otherwise

Let g be the number of pairs (,,[,) such that 4 # v and for some x € {1,...,s}, the
edges {l,,Cy} and {l,,Cy} exist in T. We calculate

3m 3m

> (dag oy lus) — dr(lu, 1)) = g + 37(9m? — 3m — g).
p=1v=1

The maximum possible value of g is 6m and that of hy is s both values simultaneously
corresponding to the case that the third condition in Lemma 3.1 is satisfied. Assume to
the contrary g < 6m and hy < s. Then we have

I1Da, o,y — Drllt, =" =
—6s(m — 1) — 6m — 3P(9m? — 9m) 4 6s(m — 1) + 2PT1 4 g 4+ 3P(9m? — 3m — g)
= 2P+ 1 (3P —1)(6m — g) > 1,

a contradiction.

This proves the theorem by Lemma 3.1. U
Theorem 3.4. DAST with respect to || - |1 is NP-complete.

Proof. Containment in NP is obvious. We prove NP-hardness by reduction from X3C using
the graph representation G, ;(C, L) for a given X3C instance (C, L) and an appropriate choice
of the parameters a,b and v. We will fix the parameter later, so that (C, L) has an admissible
solution § C C if and only if G, 5(C, L) has a spanning tree T such that || Dg, ,c,)—Drl1 <7
We may suppose that s > 1 and thus m > 1. For each pu € {1,...,3m}, let h(u) denote the
number of sets of C in which [, appears, i.e., h(n) = |[{v : [, € C,}|. Define hpmazr =det
max,, h(f).

Suppose S C C is an admissible solution to (C,L). Let T's be the corresponding spanning
tree in G4 (C, L). The vertices in the sets R, X, L, and K all have the same column sums.
We calculate for p € {1,...,s}, v €{1,...,3m}, and k € {1,...,b}:

Z dr(ry,v) —da, ,c,0)(rp,v) = 0
veV

Z dr(z,v) —dg, ,c,)(x,v) = 0

veV

40 CHAPTER 3. APPROXIMATING GRAPH METRICS BY TREE METRICS

> dr(ly,v) = dg, en)(l,v) = s+ h(v) +9m — 9+ b(9m — 7)
veV

> drkyrv) = da, ,c,0)(kvw,v) = s+ h(@)+9m —9+b(9m —7)
veV

For vertices in C we have to make a distinction between vertices with one neighbor in T" and
vertices with four neighbors in 7. We obtain for p € {1,...,s}:

B [3m+3)(b+1) if C, has one neighbor in Ts
Z dr(Cy,v) = dg, ,c,1)(Cp, v) = { (3m —3)(b+1) if C, has four neighbors in Ts

veV

We set our parameters in the following way:

a =g 7+1
b =gt s+1
Y =def S + hmax +9m —9 + b(9m — 7)

This gives [|Dg, ,c,0) — Drlli = s+ hmax +9m — 9+ b(9m — 7) = . Consequently, Ts is a
spanning tree of G, ;(C, L) having the desired distance property.

Suppose T is a spanning tree in G, ;(C, L) satisfying ||DGa,b(ch) — Drlj1 <. We apply
the characterization of a solution tree given in Lemma 3.1 and show that all conditions are
satisfied.

e Assume to the contrary that the first condition in Lemma 3.1 does not hold, i.e., for
some p € {1,...,s}, the edge {C),,z} does not belong to T". Then

> dr(Cu,v) = dg, yc,0)(Cpurv) > 4a > 7,
veV

a contradiction.

e Assume to the contrary that the second condition in Lemma 3.1 does not hold, i.e., there
is a vertex [, not adjacent to any vertex C, in T. Then

Z dT(luav) - dGa,b(C,L) (l/“'l)) >a>",
veV

a contradiction.

e Note that, if the first and second condition in Lemma 3.1 are both satisfied, then all
edges but those between C and L are already fixed by now and the distances in T" and
Gop(C, L) are the same. Assume to the contrary that the third condition in Lemma 3.1
does not hold, i.e., there is a vertex €, having two or three neighbors in T". Let [, be a
neighbor of such a vertex C), and let deg(C),) denote the number of neighbors of C), in
T. Then, we conclude

Z dr(ly,v) —dg, ,c,L)lv,v)
veV

= s+h(l,) —2+degp(Cy) — 2+ 3(3m — degp(Cp) +1)(b+ 1)
= Y—5—hmae —IM+9—b9m —T7)s+ h(l,) — 4+ degp(C,) +

3.2. THE RESULTS IN DETAIL 41

+3(3m — degp(Cy) +1)(b+1)
= v+ (h(ly) = himax) + 8 — 2degp(Cp) + b(10 — 3degy(C))
> y—s5+b > 7,

a contradiction.

This proves the theorem by Lemma 3.1. O

3.2.3.2 DAST with respect to the ||.||1 - norm

We next consider the DAST problem with respect to the ||.||f0c norm. As we have al-
ready mentioned, this version of the DAST problem is also known as the k- ADDITIVE-TREE-
SPANNER problem and its complexity has been unknown till now to the best of our knowledge.
Unfortunately, we have not been able to adapt the X3C gadget (which has been used in all
other reductions in this chapter) in order to proof the NP-completeness of this problem and
therefore we had to introduce the second gadget, i.e., the graph representation of 2-HITTING
SET (2HS).

Before we actually prove the NP-completeness, we first need the following lemma, which
states that forcing some of the edges into the spanning tree does not change the nature
of the problem: assume that we are given a graph G = (V| E) and a parameter k € IN,
k > 3. Let {v,w} be an arbitrary non-bridge edge in G. Let G’ be the graph that results
from attaching a path (v,uq,...,ug,w) to G. Then it holds that G has a spanning tree T’
that contains the edge {v,w} such that [|[Dr — D¢z, < k if and only if G’ contains a
spanning tree 7" such that || Dy — Dg||L.co < k. Moreover, every such 7" must contain the
edge {v,w}. A similar technique with two cycles was used in [Cai94, Lemma 3| to guarantee
that any minimum ¢-spanner (i.e., a spanning subgraph with smallest number of edges such
that dg(u, v) < t-dr(u,v) for all u,v € V') contains a certain edge. However, this construction
does not work in the context of additive distance growth and trees.

Lemma 3.3 (Cycle assembly). Let G = (V, E) be any graph and let {v,w} be an arbitrary non-
bridge edge in G. For k > 3, let G' be the graph resulting from adding a path (v,uy, ..., ug, w)
to G where u, ¢ V for all € {1,...,k}. There exists a spanning tree T of G which includes
the edge {v,w} and satisfies |Dr — Dal|n,00 < k if and only if there exists a spanning tree T’
Of G, such that ”DT/ — DG’”Lyoo < k.

Proof. For any spanning tree T" of a graph G = (V, E), we define d7(v) =gef maxyey (dp (v, u)—
dg(v,u)). Let P be the path (v, uq, ..., ur, w) to be added to the graph G = (V, E') with respect
to the edge {v,w}. That is, G' = GU P. We prove the two directions separately.

(=) Suppose there is a spanning tree T' of G such that | Dy —Dg||1,00 < k and edge {v, w}
belongs to T'. Without loss of generality, we assume that dp(v) < ép(w). Define 7”7 to be the
spanning tree in G’ with edge set E(T) U E(P) by removing the edge {uL%J,u(%]} in the
middle of P. We have two cases.

e Suppose d7(v) < k. We have the following bounds on distance changes in 7" with respect
to G'.

— For 2,y € V(G) we have dp(z,y) < de(z,y) + k

— For z,y € V(P) we have dp(x,y) < deg/(z,y) + k.

42 CHAPTER 3. APPROXIMATING GRAPH METRICS BY TREE METRICS

— For pe{l,...,[%]} and y € V(G) we find

dT’ (u/u y) - dG’ (u/u y) = dT’(uua U) + dT’ (U7 y) - dG/ (u/u U) - dG’(Ua y)
= dT’(va) - dG’(va) < k.

— For p e {[&],...,k} and y € V(G), we have a similar inequality, if the shortest
path from w, to y in G’ contains vertex w. Otherwise, we obtain

dr (u/uy) —dgr (u/uy) = dp (uuav) + dp (U7y) —dgr (umv) —dg (U,y)
= 1+ dT/(U,y) - dgf(’l),y) < 1+ (k - 1) = k.

This completes the first case.

e Suppose dp(v) = dp(w) = k. For k > 0 and for any vertex z € V, define B_j(z) =qef
{r eV : dp(x,z) —dg(z,z) = k}. First, we consider vertices z,y € B_j(v) U B_g(w)
and claim that

— either dp(v,x) = dp(w,z) + 1 and dp(v,y) = dp(w,y) + 1

— or dp(w,z) = dr(v,z) + 1 and dp(w,y) = dr(v,y) + 1.
Assume to the contrary that this is not true, i.e., we have dr(v,z) = dr(w,z) + 1
and dr(w,y) = dr(v,y) + 1 (which indeed constitutes the contrary to the assumption,
because |dr(v,x) — dp(w,x)| = 1 for every vertex x € V and adjacent z,w. Also, by

symmetry, it is enough consider this situation.) Now we may conclude that a path from
x to y in T must pass v and w where x is nearer to w and y is nearer to v. Hence,

(z,y)

z,w)+ 1 +dr(v,y) —da(z,y)

dr(z,w) + 1+ dp(v,y) — de(z,w) —dg(v,y) — 1 (by triangle inequality)
dr(z,w) —dg(z,w) + dr(v,y) — da(v,y) — 2 (edge {v,w} belongs to T')
2k —4 (since z,y € B_j(v) U B_i(w))

dr(z, y) da
dr(z,

AVARAVARIV]

For k > 4 this leads to a contradiction and thus, our claim is true in this case. The case
k = 4 will be treated separately below.

So, without loss of generality, we suppose that dr(v,z) = dp(w,z) + 1 and dr(v,y) =
dr(w,y) + 1. We obtain the following distance changes in 7" with respect to G’
— For z,y € V(G) we trivially have dp(uy,y) < der(uy,y) + k.
— For p e {1,..., L%J} and y € V(G), the shortest path between u, and y visits v.
ThUS, dT’ (u/u y) S dG’ (u/u y) + k
— For pp € {[52] +1,...,k} and y € V(G), the shortest path between u, and y
visits w. Thus, dg(uu,y) < dor(uy,y) + k.

— For pu = [57 and y € B_y(v) U B_j(w) we know from above that the shortest
path between w, and y visits w and hence, dp/(u,,y) < dgr(uy,y) + k. For y &
B_j(v) U B_(w) we obtain

dr(up,y) — dG (up,y) = dp(up,v) + dpr (v,9) — der(w, v) — der (v, y)

3.2. THE RESULTS IN DETAIL 43

< 14+(k-1) = &k

Finally, for k& = 4, note that dr(uy,v) = dg(uyu,v) and dp(u,, w) = dg(uy, w), if
we remove the edge {ug,us}. Hence,

dT’(u,uv y) - dG’(uuv y) = min (dT(U7 y) - dG(”» y)v dT(W, y) - dG(wv y)) < k.
This completes the second case.

(<) Suppose there is a spanning tree 7" for G’ with ||Dpr — D¢y || 100 < k. We show that for
any such tree, the edge {v,w} must be in 7. Note that {v,w} is in at least two cycles in G,
where one is a cycle with P and another one is the cycle making {v,w} a non-bridge-edge
in G. These cycles must be broken in order for 7" to be a tree. We show that there is only
one possibility to break these cycles (see Figure 3.5 for an illustration):

(c) (d)

Figure 3.5: An illustration of the cycle-assembly operation as described in Lemma 3.3 for
k = 6. Assume that removing the edge {z,y} results in a tree containing the edge {v,w}
which satisfies the distance constraints. Part (a)T: the red lines indicate a cycle in the original
graph, the blue lines indicate the newly attached cycle of length 6. Part (b): after deleting
the edges {us,us} and {v,w} in some tree T, it clearly holds that dp(z,y) > dg/(z,y) + k.
Part (c): after deleting the edges {v,w} and {z,y} in some tree T, it clearly holds that
dr(us,ug) > dgr(us,ug) + k. Part (d): after deleting the edges {us,us} and {z,y} in some
tree T, all distance constraints are again satisfied.

e Breaking the cycle in P at {u,,u,11} and the cycles in G at {v,w} yields

drr (s Upg1) — dar (U, up1) = dr (g, upr1) — 1

44 CHAPTER 3. APPROXIMATING GRAPH METRICS BY TREE METRICS

= dp/(uy,v) +dp(v,w) + dpr (w, upq1) — 1
dr(uy, v) + 2+ dr (w, upgr) — 1
k+1 > k,

v

a contradiction.

e Breaking the cycles in P at {v,w} and any of the other one at an arbitrary edge, say
{z,y} with y ¢ {v,w} yields

dr(z,y) —dg/(v,y) = dp(z,y)—1
dr (a:,v) + dp (U7w) + dp (w7y) -1
> dp(z,0)+k+1 > k,

again a contradiction.

It follows that when breaking the cycle in G at any edge e # {u,w} and the cycle with P at
the edge {UL% J,u[%]}, we can “reverse”’ the assembly - that is we can omit the part of T”
that spans P, and thus obtain a tree T" of G for which || Dy — Dg||1,00 < k and {v,w} is an
edge in T'. This proves the lemma. O

Theorem 3.5. DAST with respect to || - ||1,00 is NP-complete

Proof. The containment in NP is obvious. We prove the hardness by reduction from 2HS
using the graph representation G(&,V). Let (£,V, k) be an instance of 2HS and define

’y:dof2N—|—3+n(m—|—2)—|—k,

where N is the number of edges of the graph G(€,V). Define the graph G = (V, E) such that
V consists of the vertices of the graph G(&,V) and additionally two vertices a and b and two
vertex sets {ai,...,an} and {b1,...,by} and such that F consists of all edges in G(&,V) and
additionally the edges {a,b}, {a,a’} and {b,b'} and the edge sets

Ha,a1},{an,a'}}U{{ai,aip1} + i€ {l,...,N —1}}

and
{{b, b1}, {bn, b}y U{{b;,bis1} - i€ {1l,...,N —1}}.

Let A = (a,aq,...,an,d’) and A = (b,by,...,by,b") be the two respective paths. The con-
struction is illustrated in Figure 3.6. Let F be the set of all edges in all clause paths and in
the paths A and B. We claim thatG has a spanning tree T' containing all edges in F such that
|Dr — D¢||1,00 < 7y if and only if (£,V, k) has an admissible solution V' of size ||V'|| < k. Ac-
cording to Lemma 3.5, we may force edges into spanning trees by a cycle assembly of length ~.
Thus, the requirement that edges in F must be included in the solution spanning tree of G is
not a restriction with respect to the requirement that |D7 — Dg||1.00 < 7.

Claim 3.1. Let (£,V,k) be an instance of 2HS. Then the graph G has a spanning tree T
containing all edges in F such that || Dr—Dg||L.0o < 7 if (E,V, k) has an admissible solution V'
of size |V'|| < k

3.2. THE RESULTS IN DETAIL 45

AL .
e —_

Figure 3.6: Twisted graph representation G(£,V) of the 2HS instance (£,V,2) =
({{v1,va}, {v1,v3}, {ve, va}, {vs, va}, {v1, 04} }, {v1, v2,v3,v4},2)

Proof. Suppose V' is an admissible solution to (£, V, k), i.e., ||[V'|| < k. Construct the spanning
tree T' of G as follows: for the part of G which corresponds to the graph G(&,V) let Ty be
the solution tree corresponding to the admissible solution V' such that T)» contains all edges
in all clause paths and such that

dr,, (a/,b') <n-(m+2)+2+k.

Such a Ty exists according to Lemma 3.2. Let Eq,, the edge set of Ty. Then the edge set Er
of the spanning tree T is composed of all edges in the paths A and B and the edges in Er,,.
By construction no edge in any clause path was removed and also no edge in either of the
paths A and B and so this requirement is met. Second, all cycles in GG are broken. Now, the
unique path from a to b in T leads along the path A to the vertex a’, along the shortest path
from o’ to b’ in G(€,V), along the path B to finally arrive at b. Together we have

dT(CL, b) = 2(N + 1) + dTv’ (a', b/)
< 142(N+1)+n(m+2)+2+k—1
= dg(a,b) +17.
All that is left in order to prove the claim is to show that dr(a,b) — dg(a,b) determines the
value ||Dr —Dg||1,00: to this end, first note that for all pairs of vertices u and v from the set of

vertices induced by the paths A and B not including a and b we have that dr(u,v) < dr(a,b)
and dg(u,v) > dg(a,b) = 1. Therefore we have

dr(u,v) —dg(u,v) < dr(u,v) —dg(a,b) < dr(a,b) — dg(a,b).

For vertices u and v in G which are not contained in the set of vertices induced by the two
paths A and B (including a and b), we have that dr(u,v) < N —1 < 2N < dr(a,b) and

46 CHAPTER 3. APPROXIMATING GRAPH METRICS BY TREE METRICS

da(u,v) > dg(a,b) = 1 and again
dT(“? U) - dG(“? U) < dT(“? U) - dG(a7 b) < dT(CL, b) - dG(a7 b)
Therefore dr(a,b) —dg(a,b) determines the value || Dy — D¢|| 1,00 Which proves the Claim. O

Claim 3.2. Let (£,V,k) be an instance of 2HS. Then (E,V, k) has an admissible solution V'
of size ||[V'|| < k if the graph G has a spanning tree T containing all edges in F such that

|Dr — Dgllr,0c0 < -

Proof. Suppose T is some spanning tree of G containing all edges of all clause paths and all
edges in the paths A and B satisfying | Dr — dg||1,00 < 7-

First, assume that T' contains all three edges {a, b}, {a’,a”} and {t,,b'}. We claim that this
implies that | Dr—Dg| 1,00 > 7, a contradiction. To this end, let T" be such a tree that contains
all three edges {a,b}, {d’,a"} and {t,,b'} and consider the clause path corresponding to the
clause E,;, = {v,, v, } from I}, to %,. This path is not broken in 7' by assumption. Consider the
shortest induced cycle in G that contains the paths A, B, the edges {a, b}, {da’,a"} and {t,,b'}
and the respective clause path from If;, to [%,. It has length at least 2n(m +2) +2(N + 1) + 4
and must be broken in 7" at some edge other that {a,b}, {a’,a”"} and {t,,b'}. Thus, for the
two endpoints of this edge, say u and v, it holds that

dr(u,v) —dg(u,v) > 2n(m+2) +2(N +1) +3 > v,

a contradiction. Thus, one of the three edges {a,b}, {a’,a”} and {t,,b'} is not contained in
T, but the other two edges are (this is necessary for T' to be a spanning tree). We consider
the following cases.

(i) Assume that 7' does not contain the edge {a,b}. The value of ||[Dr — D¢||10 is again
determined by the distance between a and b in T by the same reasoning as in the proof
of the previous claim. Now, suppose that dr(a,b)—dg(a,b) <~y =2N+n(m+2)+3+k.
Since

dr(a,b) =2(N +1) +dr(a’,V) <2N +n(m+2) +3+k+ 1,

it follows that
dr(a,b)<2+n-(m+2)+k.

Further, the part of 7" which is induced by vertices in G(V,) gives a spanning tree T’
for G(V, &) such that
(', V) — da.e) < k.

From Lemma 3.2 we know that such if such a spanning tree T’ exists then there is a
solution V' for the instance (£, V, k) such that |V'| < k, which can easily be read off the
broken literal paths.

(ii) Assume that T contains the edge {a,b} and exactly one of the edges, either {a’,a”} or
{tn,b'}: then for the respective pair of vertices of the other edge the same considerations
apply as in case (i) for the pair a and b: their increase in distance determines the value
of ||Dr — Dg||1,00 and from the shortest path connecting them in 7" we can read off the
corresponding hitting set V.

This proves the claim. O

3.2. THE RESULTS IN DETAIL 47

This proves the theorem. O

The above gadget also gives at hand an alternative proof for the hardness of the fol-
lowing variant of the mazimum-stretch spanning tree problem: decide on input an undi-
rected graph G = (V, E) and an algebraic number whether or not there exists a spanning
tree T'= (V, Er) of G such that

max_dp(u,v)/dg(u,v) < 7.
(u,v)EE

The NP-completeness of the above decision problem follows readily from Claims 3.1 and 3.2
and the next observation.

Observation 3.1. Let (£,V,k) be an instance of 2HS. For every solution tree T of the
graph G considered in the proof of Theorem 3.5 we had

|Dr — Dg||lr,co = max dr(u,v)/dg(u,v) — 1.
(u,w)EE

Remark 3.2. Note that the construction given in the original NP-completeness proof for the
above problem [Cai94, CC95] is such that the other direction, i.e., the NP-completeness of
DAST with respect to ||.||1,00, does not directly follow, nor is there an easy modification which
yields the result.

3.2.4 Centrality-approximating spanning trees

Finally, we consider the problem of finding a spanning tree of a graph that approximates the
centralities vector cg of the graph. Remember that for a graph G and a vertex v € V, the
closeness-centrality is defined as

ca (V) =def <Z dg(u,v)) _1.

ueV

(see (3.1)) and for any graph G and any subgraph G’ C G we have that c¢g(v) > ¢ (v) for
all vertices. For the case of centrality approximating spanning trees, we particularly consider
the decision versions with respect to the L, wvector norm.

PrOBLEM: CAST (with respect to |[|.[|,).
INPUT: A connected graph G and an algebraic number .
QUESTION: Is there a spanning tree T' of G with ||cg — cpll, <77

Theorem 3.6. CAST with respect to || - ||1 is NP-complete.

Proof. Containment in NP is obvious. We prove NP-hardness by reduction from X3C using
a graph representation slightly different to the one we used so far. The difference lies in the
following: the graph representation G, 4(C, L) for an X3C instance (C, L) has edges {l,,1,}

48 CHAPTER 3. APPROXIMATING GRAPH METRICS BY TREE METRICS

for all pairs of literal vertices. In our new graph representation G ,(C,L) = (V*, E*) we omit
these edges, i.e., we have

Ve =V
E* = E\{{ly,L} : pwre{l,....,3m} and p # v}

where G, (C,L) = (V,E). It is easy to see that Lemma 3.1 also holds for the new graph
representation. Later we will set the parameters a,b and v in a way that (C,L) has an
admissible solution § C C if and only if Gz’b(C , L) has a spanning tree 7" such that HCG; (€L~
crlli < 7. In the following we may restrict ourselves to the cases where m > 5. Y

Suppose S C C is an admissible solution to (C,L). Let T's be the corresponding spanning
tree in G, (C,L). We obtain

25+ 33+ 4b)m+2a — 1 ifveRr

s+32+30)m+a ifveX

ere(v)) = 25+3B3+4b)m+2a—-6(b+1)—1 ifveS
S 2s+3(3+4b)m +2a—1 ifveC\S

35+ 3(4 + 5b)m + 3a — 8(b + 1) ifvel

4s+3(5+6b)m+4a—80b+1)—1 ifveK

We set our parameters as follows:

a =gef 3s(b+1)+3m(s—1)(b+1)+3m(m—1)(b+1)>
b =ger 9s+1

Y =def HCG L(C.L) — crs 1

Again, i.e., as in the reduction used in Theorem 3.1, the value of v can be calculated in time
polynomial in the size of (C, L). Although at first sight it seems that there is some dependency
on the solution S, it (again) is easy to seen that all solutions (if they exists) have exactly the
same value, which only depend on the size of (C, L).Thus, Ts is a spanning tree of szb(C ,L)
having the desired centrality property.

Note that all parameters and the graph representation G;b(C,L) can be computed in
polynomial time in the size of (C,L). In particular, it is not necessary to know exactly the
vertices of S.

Suppose that T is a spanning tree of Gz’b(C,L) satisfying HCGZ,b(C’L) —crlh <. We
compare the centrality of each vertex in the tree T' with its centrality in a hypothetical solution
tree for the X3C instance (C,L). For v € V, define imitating centralities ¢(v) as follows: if
v € V'\ C, then ¢(v) is equal to the values crg from above; for vertices v € C, we define

-1 2s+3(B3+4b)m+2a—-6(b+1)—-1 ifve{C,...,Cph}
¢(v)™" =det -
25+ 3(3+4b)ym +2a — 1 if ve{Cns1,...,Cs},

i.e., the clause vertices Ci,...,C,, simulate an admissible solution to (C,L). Note that
e .y — €t = 7. We apply the characterization of a solution tree in Lemma 3.1 (in
the version suitable for the graph representation G ,(C, L)) and show that all conditions are
satisfied.

e Assume to the contrary that the first condition in Lemma 3.1 does not hold, i.e., for
some p € {1,...,s}, the edge {C,,,z} does not belong to T. Simple calculations yield
the following bounds on deviations from the imitating centralities.

3.2. THE RESULTS IN DETAIL 49

— For v € RU X we obtain ep(v)™! > é(v)~! +2. Note that this inequality is crucial
in getting a contradiction as it holds for a 4+ 1 vertices.

— For v € C we obtain cr(v)™! > é(v)™! — 6(b+1).
— For v € LUK, we have cp(v) ™! > é(v)™' —2(s — 1) — 6(m — 1)(b + 1).

1 Y

Thus, using the identity mL—l—y) which is at least true whenever = > 0 and

y # —x, the total centrality of T' can be estimated as

. 2(a +1) A
ZCT(’U) < (Z C(’”)) T late)(ate) + (2a + c3)(2a + c4)

veV veV

where ¢1, ¢9, c3, ¢4 and A are appropriate positive integers (that depend on s, m, and b).
It is clear that the latter sum in the inequality is negative for a large enough. Inspecting
the concrete values

g = s+3(2+3b)m

co = s+3(2+3b)m+2

3 = 25s+3(3+4b)m—6(b+1)—1

¢4 = 25s+3(3+4b)m—12(b+1)—1

A = 6s(b+1)+6m(s—1)(b+ 1)+ 18m(m — 1)(b+ 1)2,

we see that 0 < ¢; < c¢3 and 0 < ¢y < ¢4 for m > 5. Thus, our choice of a from above is
appropriate. Hence,

||CG;7b(C,L) —crll > HCG;’b(C,L) —elh=n,
a contradiction.
e The second condition of Lemma 3.1 holds because T" is a spanning tree of G% ,(C, L).

e Note that, if the first and second condition in Lemma 3.1 are both satisfied, then all
edges but those between C and L are already fixed by now and the distances in T" and
Gop(C, L) are the same. Assume to the contrary that the third condition in Lemma 3.1
does not hold, i.e., there is a vertex C), having two or three neighbors in 7. Let degs(v)
denote the degree of vertex v in T'. We consider several cases:

— For v € RU X we clearly obtain ep(v)™! = é(v)~t.

— For v € C we have cp(v)™ > é(v)™t = 6(b+ 1).

— For v € L it suffices to have ep(v)™t > é(v)~1.

— For v € K we obtain cp(v)™' > é(v)™t 4 2(b + 1)(4 — degp(u)) where u € C and
T contains edges {v,w} and {w,u} for some w € L. Note that since there is a
vertex in C with at most three neighbors in T, there are at least b vertices in K
such that cr(v)™! > é(v)™! + 2(b + 1). This is the crucial inequality in getting a
contradiction.

50 CHAPTER 3. APPROXIMATING GRAPH METRICS BY TREE METRICS

1 _ 1 Yy

Using the identity e =] from above once more, we get the following esti-

mation for the total centrality:

X 6s(b+1) _
D er(v) < (Z Cw)) T o) T w) T~ 66 1)

veV veV

2(b+ 1)b
é(up)1(e(ug)~t +4(b+ 1))’

where vy € C and ug € K. An easy estimation of the relation between é(vg)~' and
¢(up) ™! shows that, for m > 5, the latter difference is at most
18s(b+1) —2(b+1)b
é(ug)~Heé(ug) T+ 4(b+ 1))

<0,

by our choice of b. Hence,
leas .y —erll > lleas e,y — €l =,
a contradiction.

This proves the theorem by Lemma 3.1. O

Remark 3.3. Observe that the graph representation used in the proof of Theorem 3.6 always
produces planar graphs if X3C instance are assumed not to contain two or more identical
clauses. That is, CAST with respect to || - ||,1 is NP-complete even when restricted to planar
graphs.

3.3 Approximating DMST

In this section, we present an efficient and simple polynomial-time 2-approximation algorithm
for the optimization problem DMST with respect to the ||.||z, matrix norm for 1 < p < oco.
From now on, we assume that graphs are simple and undirected but not necessarily unweighted.

Theorem 3.7. Let p € IRy satisfying 1 < p < 4o00. Given an undirected non-negative
weighted simple graph G = (V, E,w) with [|[V| = n and ||E| = m, we can find in time
O(n?logn 4+ nm) a spanning tree T of G such that

IDrllzp <21 Dallzp <2+ [DoptllL.p,
where Topy is an optimal spanning for the problem DMST with respect to ||| 1 p-
Proof. Let G = (V, E) be undirected and simple. For every spanning trees T' of G it clearly

holds that
Z dp(u,v)? > Z de(u,v)P. (3.2)

u,veV u,veV

Let V= {vy,...,v,} and let Xy,..., X, be a collection of shortest-path trees rooted at
V1,...,0,. Let u € {1,...,n} be such that

deu(vu,u)p = min dei(vi,u)p.

1<i<n
ueV ueV

3.4. AN APPLICATION TO BIOINFORMATICS o1

Note that for every two spanning trees X and Y rooted at the same vertex r and all u € V it

holds that dx (r,u) = dy(r,u) = dg(r,u). We have that

n- Z dx, (v, u)? < Z Z dx,(vi,u)? = Z de(u,v)P. (3.3)

ueV i=1 ueV u,veV
Now,
1/p
HDX,U,HLJ’ = Z qu(u’,U)P
u,veV
1/p
S Z (dX,u,(u7 U,U«) + dX,,L(’U,U,a,U))p (34)
u,veV
1/p 1/p
< | D dx,)P |+ DD dx, (v v)? (3.5)
u,veV u, eV
1/p
= 2- (n Z dXM(vM,U)p>
ueV
1/p
< 2) dalu,v)P (3.6)
u,veV
= [1Dg||Lp;

which proves the first inequality. Here, (3.4) follows from the triangle inequality, (3.5) from the
Minkowski Inequality (Fact A.3) and (3.6) from Inequality (3.3). Now, let T, be a spanning
tree such that ||DT0pt||L,p = minpegp(q) |Dr|lL,p- Then (3.2) implies that HDToptH > ||DallLp

which gives the second inequality. The collection of shortest-path trees Xi,..., X, can be
computed in time O(n?logn +nm) using Dijkstra’s Algorithm and the minimum tree X , can
be found in time O(n?). The theorem follows. O

3.4 An application to bioinformatics

We close our investigations of the complexity of finding trees that approximate graph metrics
under various similarity measures by giving an application to bioinformatics. Let A be a
finite alphabet and let S = (s1,...,sx) be a set of finite strings over A. A multiple sequence
alignment (MSA) for S is given by a set S = (31,...,58) over the alphabet B = AU {-}
such that all strings in S have the same length and such that for all i € {1,...,k} the string
which results from deleting all occurrences of the symbol '—’ from §; equals the string s;. The
sum-of-pairs cost (SP) of a multiple sequence alignment is defined as

koK
C(S) =der Z Z w(5;,55),

i=1 j=i+1

52 CHAPTER 3. APPROXIMATING GRAPH METRICS BY TREE METRICS

where w(5;, 5;) denotes the cost of the pair wise alignment of (5;,5;) (where it is assumed that

w(—,—) =0). An optimal MSA for S under the SP cost function C' is an MSA S* such that
C(5*) = min (C(S) : Sisa MSA for S)

A natural extension of the sum-of-pairs cost function is given by weighting specific pairs
which may be of particular interest. Another possibility of weighting is given by the following
generalized sum-of-pairs (gSP) cost function: let p € IRy satisfying 1 < p < +oo. Then for

an MSA S,
c®(S _dfz Z

=1 j=1+1

The reasoning behind such a function is to enforce more balanced MSAs. We now describe
how the 2-approximation algorithm from the last section can be used to find an 2-approximate
solution to the MSA problem under the gSP objective for fixed p: for an input S let G =
(S, E,w) be the complete weighted graph on the input set S such that for all s,t € S,
w(s,t) equals the cost of the optimal alignment for the pair (s,t). Let T' = (S, E7) be some
spanning tree of G. A tree-driven alignment for T is an alignment S such that for all (s;, s;) €
Er it holds that (5;,5;) is an optimal alignment for the pair (s;,s;) with cost w(s;,5;) =
w(s;, sj). Note that for the cost of any tree driven alignment S and all $;, $; € S it holds that
ﬁ)(s_i, 5;) < dr(s;, s5) for any reasonable choice of the pair wise alignments cost function (See,
., [Gus97]).

Let T be spanning tree of G such that | Dr|r, < 2-||Dg||Lp. Such a tree can be found
in time O(||S||®) by Theorem 3.7. Now, for the gSP cost of the alignment Sy which is driven
by the tree T it holds that

On the other hand, for the optimal alignment S*P under the gSP cost function we have that

1
> dr(s:5)" = GlIDr] L

1<4,5<k

l\’)l}—t

- 1
CP(57) > 1Dl z.p-
Together, this gives
1 _
CcW(Sr) < —HDTHva <2-5lDgllzp =2 (%),

Therefore, the cost of the tree-driven MSA for the tree 7" is at most twice the cost of the optimal
MSA. Note that the cost of computing an optimal alignment for a pairs of strings (s,t) of
length 1 is O(1?). Thus, the graph G can be constructed efficiently.

3.5 Bibliographic notes

In this section, we review some related work that has not yet been mentioned in the course
of our examinations. In addition to the already mentioned minimum diameter spanning
trees [CGMS80, HT95] and MAD-trees [JLRK78, DDGSO03], there are several notions of distance-

approximability by trees that have been considered in the literature. One variant is obtained

3.5. BIBLIOGRAPHIC NOTES 53

by considering the stretch dr(u,v)/dg(u,v) over all distinct vertices u,v € V. If the stretch
is at most ~y, then the tree is called y-multiplicative tree spanner (see, e.g., [Pri97]). Finding
a minimum maximum-stretch tree is NP-hard even for unweighted planar graphs [FKO01b],
and cannot be approximated by a factor better than (1 + /5)/2 unless P = NP [PRO1]. An
O(log n)-approximation algorithm has been proposed by Emek and Peleg [EP04b|. The prob-
lem of finding the minimum average-stretch tree is also NP-hard [JLRK78]. The best know ap-
proximation algorithm for the OCT problem (optimum communication spanning tree) has an
approximation ratio of O(log? nloglogn) and is due to Emek, Spielman and Teng [EESTO05].

Recently, combinations of additive and multiplicative tree-spanners have been proposed
in [EP04a|. Another approach is based on (pseudo-)isometric trees [BCD99, KLM™03], where
the minimization is not over spanning trees but over all trees having the same number of
vertices as the network in question. Since this loses a direct linkage between the tree and the
network, we do not follow this vein.

Bartal [Bar96, Bar98| considered a variant, where a set of dominating tree metrics is
used together with a probability distribution such that for every pair of vertices the expected
stretch is at most a given constant «. Such a pair is called an a-probabilistic approximation of
the original metric. He showed how to find an O(logn loglogn)-probabilistic approximation
in polynomial time. This was improved later on to O(logn) by Fakcharoenphol, Rao an
Talwar [FRT03]. Note that the trees of Bartal and Fakcharoenphol et al. are no spanning
trees as they are not necessarily subgraphs of G. Alon, Karp, Peleg and West [AKPW95]
gave a comparable result with the stronger requirement that trees are spanning trees, which
was then significantly improved by the already mentioned approximation algorithm for the
problem OCT problem.

Spanning subgraphs (not only trees) with certain bounds on distance increases have been
intensively studied since the pioneering work of Awerbuch [Awe85], Peleg and Ullman [PU89|
and Chew [Che89|. Most of these problems are typically motivated by problems in network
design (see, e.g., [PS89, CC95, VRM 97| and the surveys [Soa92, Epp00| for applications).
The most general formulation of a spanner problem is due to Liestman and Shermer [LS93]:
a spanning subgraph H of G is an f(z)-spanner for G if and only if dg(u,v) < f(dg(u,v))
for all u,v € V(G). As examples, for f(z) = ¢t + x we obtain additive ¢t-spanners, and for
f(z) =t - x we obtain multiplicative t-spanners. The computational problem then is to find
an f(x)-spanner with the minimum number of edges, a problem somewhat dual to ours (as it
fixes a bound on the distance increase and tries to minimize the size of the subgraphs, whereas
we fix the size of the subgraph and try to minimize the bounds). Combinations of additive and
multiplicative spanners — not necessarily trees — have also been considered, e.g., in [BKMPO05|.

In a series of papers, the hardness of the spanner problems has been exhibited [PS89,
Cai94, BH98, Kor(01|. The version of this problem that is probably the closest to the problems
we consider is to ask for a given graph G and two given parameters m,t if there exists is an
additive t-spanner for G with no more than m edges. This problem is NP-complete [LS93].
In the case that m = n — 1 is fixed, the problem considered in [LS93] becomes the problem
of finding the best possible distance-approximating spanning tree with respect to || - |1 c0-
However, their NP-completeness proof relies heavily on the number of edges in the instance
and hence a translation to an NP-completeness proof for the tree case is not obvious. We
resolved this issue here.

The 2-approximation algorithm which we presented is an adaption of the 2-approximation
algorithm for the minimum route cost spanning tree problem given by Wong [Won80].

o4

CHAPTER 3. APPROXIMATING GRAPH METRICS BY TREE METRICS

Appendix 3.A Detailed proof of Lemma 3.2

Lemma (Lemma 3.2) Let (£,V, k) be an instance of 2HS. Then

dg(gyv)(a,, b/) =n: (m = 2).

Further, there exists an admissible solution V' C V to (£,V,k) if and only if there exists
a spanning tree T of G(€,V) containing all edges in the clause paths such that dp(a’,b") —
dg(gyv)(a/, b,) < k.

Proof. Let (€,V,k) be an instance of 2HS. Clearly, we have that

dg(gy)(a,, b/) =2+ n(m + 2).

We prove the two directions of the Lemma separately.

=)

Suppose V' is an admissible solution to (&,V,k), i.e., ||V'|| < k. Construct a spanning
tree Ty from G(E,V) as follows:

— For each set E, = {v,,v,} € € do the following: if v, € V', then break the literal
path at I, i.e., remove the edge {lz_l, Z} If v, € V', then break the literal path at

I, i.e., remove the edge {l;’j_l, i1}. Here, we identify If = s, and Iff = s,. If both,
v, and vy, are in V', then remove an arbitrary edge from the safety path connecting
a” and Ij,.

— For each v, € V' remove the edge {ll,t,}.

— For each v, ¢ V' break the elongation path, i.e., remove the edge {s,,€/'}.

First note that no edge in any clause path was removed. Second, it was assured that
all cycles induced by literal paths and elongation paths are broken by the third and
forth construction rules. Those cycles induced by literal paths and clause paths are
also broken: by the second and third construction rules, for each set E, = {v,,v.} €
&, at least one of the sets {{l;;_y,{;;},{l},,tu}} and {{I;_1, {3}, {l5,, tx}} is completely
removed. Therefore either [u or l/’j is no longer reachable from s, or t, s, or i,
respectively, via a clause path. Also, an edge from the safety path connecting a” to

[, is removed, except if both sets {{l;_;, 0}, {l}, .t }} and {{l}j_y, 03} {0, tx}} are
removed, an thus neither /) nor [jj are reachable via clause paths from any of the vertices
Sy, tu, Sk, tx. Now, all possible cycle have been broken and any path from a’ to ¢/ in Ty
leads along an interchanging sequence of elongation and literal paths. By means of

construction, elongation paths are one edge shorter than literal paths and therefore
dry, (a',) =24 (n = [V[)(m +2) + [V (m +3) < dae) (@ V) + k.
This proves the first direction.

Suppose T is some spanning tree of G(&,V) containing all edges of all clause paths
satisfying dr(a’,b') — dgeyy(a’,b') < k. By means of construction, clause paths are
such long, that the shortest path cannot lead via any clause path. Hence, the shortest
path must lead along a sequence of elongation and literal paths. Now, since any non-
broken elongation path has length m + 2 and the shortest path between a’ and V' in

3.A. DETAILED PROOF OF LEMMA 3.2 55

G(e,v) leads along literal paths, only, it is clear that the shortest path in 7' leads over
at most k elongation paths. Let V' be those elements v, for which the literal path
(su, 11, ..., U, t,) has been broken in 7. This is exactly the set of elements for which
the shortest path leads over an elongation path. For all other elements v, ¢ V', the
literal path is still intact in 7. Assume that for some set E,, = {v,,v,} € € it holds that
E, NV’ = (). The corresponding clause path connects [, to I} and from {vy, vpappa}nV’ =
(0 it follows that the vertex lZ is connected to the vertex t, is connected to the vertex
S, 1s connected to the vertex [} is connected to [;; which clearly gives a cycle. This is a
contradiction to T being a tree. Thus V' is a set hitting all elements of £ at least once.

O

56 CHAPTER 3. APPROXIMATING GRAPH METRICS BY TREE METRICS

Chapter 4

Smoothed analysis of trie height

Tries are general purpose data structures for text processing and information retrieval. Also, the
principle of recursive decomposition based upon successive bits of data items can be found in many
other applications

4.1 Introduction

4.1.1 Motivation

In this chapter, we consider a fundamental data structure for string processing, i.e., the trie.
Experimental findings suggest that worst-case inputs, i.e., sets for which the height of the trie
is unbounded, are isolated peaks in the input space and even small deviations from worst-case
inputs yield logarithmic trie height. This holds particularly in the case of non-random data:
for example, Nilsson and Tikkanen [NT02]| have experimentally investigated the height of
PATRICIA trees, or path-compressed tries, and other search structures. There, the height of
a PATRICIA tree, built over a set of 50,000 unique random uniform strings was 16 on average
and at most 20. For non-random data consisting of 19,461 strings from geometric data, of
16,542 ASCII character strings from a book, and of 38,367 strings from Internet routing tables,
the height of a path-compressed trie, built over these data sets, was on average 21, 20 and
18, respectively, and at most 30, 41 and 24, respectively; another recent experimental study
of an efficient implementation of b-tries is due to Heinz, William and Zobel [HWZ02], and
Sinha and Zobel [SZ03]; again, there is a strong evidence that tries perform very well even on
biological data like DNA sequences. In this chapter, we try to give an analytical explanation
of these findings which requires fewer assumptions with respect to the random model than
previous analyses. Clearly, the goal of such an approach is the support the practical findings,
i.e., finding that logarithmic trie height holds even under weaker assumptions. To this end,
we perform a smoothed analysis of the most important parameter of tries, i.e., its height.

In order to perform a meaningful smoothed analysis of trie height, we present a new
semi-random model for strings: the set of input strings is chosen in advance by an oblivious
adversary and then strings are randomly perturbed independently using the same perturbation
functions. The oblivious adversary has full information on the parameters of the perturbation
function but has no control over the random perturbations and the parameters once the input
set is chosen. This model fits into the framework of smoothed analysis. A somewhat stronger
model for semi-random sources was considered by Santha and Vazirani in [SV86], though

o7

o8 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

it was not in the context of tries but in the context of random and quasi-random number
generators: there, an adaptive adversary had (limited) control over each of the biases in a
sequence biased coin flips and full knowledge over the previous history. The class of string
perturbation functions which we consider, can be represented by (Mealy-type) probabilistic
finite automata. Probabilistic finite automata are a standard tool for modeling unreliable
deterministic systems. Also, they provide a compact representation for a very natural class of
string perturbation functions, namely, random edit operations, which occur in those settings
and thus resemble some of the typical random influences that strings are subject to. To the
best of our knowledge, we are the first to perform a smoothed analysis of trie parameters.

4.1.2 Our contribution
In summary, we contribute the following;:

e We introduce a class of perturbation functions based on (Mealy-type) probabilistic finite
automata (PFAs). Our model provides a convenient mathematical framework to rep-
resent a class of very natural string perturbation functions, namely edit perturbations,
and perturbation functions which are convex combinations of them. Edit perturbations
and their convex combinations belong to the class of star-like perturbation functions
because their representing PFAs are star-like graphs. We show that for a string which
results from a star-like perturbation of an non-random input string, the Rényi’s Entropy
of second order for sub-strings does not exist in general. Thus, the semi random string
model is not trivially included those previous models for which this limit exists.

e The main result of this chapter is a dichotomous-type of result: Theorem 4.1 gives a set
of necessary and sufficient conditions for an arbitrary star-like perturbation function
such that the smoothed trie height over an arbitrary input set is logarithmic in the num-
ber of strings if those conditions are satisfied and is unbounded, otherwise. Moreover,
the conditions can easily be verified by looking at the transition probabilities of the
representing PFA. A dichotomous-type of result on the height of random tries was also
given in [Dev84|. It follows readily from Theorem 4.1 that the smoothed trie height un-
der convex combinations of edit perturbations of arbitrary binary strings is logarithmic
if and only if the convex combination does not collapse to deletions.

e We do not only derive the mentioned dichotomous-type of result, but we also investi-
gate the quantitative influence of the “perturbation parameter” on the smoothed trie
height (Theorem 4.2): in our model the parameter is characterized by the transition
probabilities of the representing PFA.

e We study some extensions of our analysis: first, we derive quantitative lower and up-
per bounds for read-semi-deterministic perturbation functions. The second extension
regards the perturbation model: before, we had assumed that the set of strings that
were subject to perturbations was arbitrary. This accounted for the max-operator in
the definition of smoothed complexity, or more intuitively speaking for the power of
the adversary providing the input. Clearly, for many practical settings, at least some
assumptions on the “shape” of the input space can be made, i.e., the power of the ad-
versary can be restricted and some inputs can be excluded at the beginning as being
irrelevant. We show that one can trade off these restrictions on the input set against
the conditions on the transition probabilities of the perturbing PFA such that again

4.2. TOWARDS SMOOTHED TRIE HEIGHT 59

the smoothed trie height is logarithmic even if these PFA do not yield a logarithmic
smoothed trie height over arbitrary input sets (Theorem 4.5). The last extension is an
analysis of the smoothed height of b-tries (Theorem 4.6).

4.1.3 Chapter outline

This chapter is organized as follows: in Section 4.2 we first review some of the previous random
string models, subject to which the analyses of random tries and related data-structures have
been performed; second, we formally introduce smoothed trie height and state our perturbation
model, which is based on (Mealy-type) probabilistic finite automata (PFAs). In Section 4.3,
we compare the semi-random string model which results from star-like perturbations of non-
random inputs to previous purely random string models and show how our model extends
upon memory-less random sources. In Section 4.4 we state the main results of the chapter, i.e.,
Theorems 4.1 and 4.2, which we prove in Section 4.5. We derive the result by a detailed analysis
of the computations of star-like PFAs using an approach that relies on rational generating
functions and the weighted words model(cf. [FS07]). In Section 4.6, we drive upper and lower
bounds for the trie height under read-semi-deterministic perturbation functions: the lower
bounds are relatively easily derived, as those perturbation functions “simulate” memory-less
random sources for specific inputs. Also, we extend our analysis to restricted input sets and
b-tries.

4.2 Towards smoothed trie height

4.2.1 Previous studies: the height of random tries

The Model for the analysis of random tries Let A= {aj,...,an} be a finite alphabet
of cardinality N > 2 and let S C A be a set of ||.S|| = n distinct strings. We assume without
loss of generality that a; = A and that ay = Z. The parameters of interest for a trie are:

e the depth Dg(m) of the m-th leaf in the trie,
e the average depth Dg =1 3°" | Dg(m).

e the external path length Lg = > 7" | Dg(m).

e the shortest path hg = minj<;<, Dg(m) and
e the height of the trie Hg = maxj<;<, Ds(m),

which is undoubtedly the most interesting parameter, because all other parameters can be
upper bounded by Hg. For the average-case analysis, let Z be a random variable taking
values from A and let {Z;}°, be a one-sided infinite sequence of suchlike valued random
variables. The sequence {Z;}3°, can be considered an infinite random string over A generated
by a random mechanism, called the random source, where the random source determines
the probabilities P{Z; = a} for all i € IN; and a € A. Now consider the probability space
(2,8, 1) generated by the random sequence {Z;}°,, where Q = A and § consists of all finite
sets A™ for m € IN, and p is a probability measure defined on § such that for s € A™,
p(s) =11t P{Z; = s[i]}. A set of n infinite random strings is then given by n suchlike one-

sided infinite sequences {Zi(1 EaBT ;7 }521. In the analysis of random tries it is usually

60 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

assumed that the random strings are independent and identically distributed and thus one can
easily define the probability space (Q("),s("), ,u(”)) consisting of the n-dimensional product
space

O = A® x ... x A®,
—_— ————

n times

and §™ consisting of all subsets of S C A™ for m € IN, satisfying ||S|| = n, and p(™ the
probability measure given by the product of the individual probabilities of the n strings, i.e.,
™M (S) = [T, u(si) for S = {s1,...,s,}. To analyze its behavior, Hg is viewed a random
variable over the above sample space Q. It is well-known that in the worst-case Hg is
unbounded for standard tries and Q(n) for PATRICIA trees and other path-compressed tries.
By fixing some probability measure u, one can analyze the expected value of Hg and many
more asymptotic properties, e.g., its asymptotic distribution. This has been done for various
kinds of random sources: for independent identically distributed strings, the random source
completely characterizes the probability space (Q("),g(“), ,u(”)).

The height of random tries The oldest model is the memory-less random source, were
each symbol corresponds to a possible outcome of a Bernoulli trial. This means, we are given
a parameter vector p = (py,...,pn) € (0,1)" and for all i € IN; and j € {1,..., N} it holds
that P{Z; = a;} = p;. For the height Hg(n) of a random trie over a set of n independent
strings produced by a memory-less random source with parameter vector p € (0, 1)N and
Q2 = (p? + ...+ p%)~! it holds that

Hg(n) VP g logg, 1,

where the rate of convergence is O(n®). The convergence of Hg(n) to 2logg, n can also shown
to be asymptotically almost surely, but we do not discuss this issue here.

Another model for random strings that is discussed intensively in the literature are Marko-
vian sources: whereas the successive symbols in a string produced by a memory-less random
source are independent, there is a Markovian dependency between those symbols in this model:
a string can be considered the outcome of transitions of a finite and ergodic Markov chain with
state space A which has reached its stationary distribution 7 = (71,...,7x) € (0,1)" and has
transition matrix P = (p;;)1<s, j<n: thisis, for i > 2 it holds that P{Z;11 = a;|Z; = ai} = px;,
where it is implicitly assumed that P{Z; = a;} = m;. For the height Hy(n) of a random trie
over a set of n independent strings produced by a stationary and ergodic Markovian source with
transition matrix P and Apy the largest Eigenvalue of the Schur product Po P = (p?j)lgi,jgr

and Q2 = (M) "' it holds that
HM(n) W._h;p. 10gQ2 n,

where the rate of convergence is O(n®). Again, asymptotically almost sure convergence can
be shown.

Pittel [Pit85, Pit86| considered the growth of different types of random trees under the
assumption that the underlying random process {Z;}5°, satisfies the mizing property: the
sequence {Z;};>1 satisfies the mixing property, if there exists ng € IN and positive constants
c1,cg such that for all 1 <m <m+ng<nand AcF}" and B F it holds that

n
m-+ng

c1-P{A}P{B} < P{ANB} < ¢, - P{A} P{B}, (4.1)

4.2. TOWARDS SMOOTHED TRIE HEIGHT 61

where for 1 <k </, SL denotes the o-field generated by the subsequence {Zl}i:k Under this
assumption, the following limit, called Rényi’s Entropy of second order for sub-strings, exists!

n_ 2
h— lim —In) o4 P{Z] = a}

n— oo 2n ’

(4.2)

where Z7' = (Z1,...,Zy), and the height Hyv(n) of a random trie built over a set of n
independent strings produced by a mixing source satisfies

Hyim(n) AP hl—n
h
Remark: it can be shown that both the memory-less random source and the Markovian
source satisfy the mixing property and furthermore that the Rényi’s Entropy of second order
for sub-strings exists (cf. [Szp01]). This provides an alternative proof for the height of random
tries under those models for random strings.

The following model for random strings is particularly interesting as it presents a di-
chotomous result and considers strings with unlimited dependency: Devroye [Dev82, Dev84,
Dev92b| has introduced the Density Model, where each string can be considered the fractional
binary expansion of a random variable from [0, 1) and all n random variables are assumed to
be independent having identical density. Let f : [0,1] — [0,1] be a density function. For
1 <i <2k k>0, the dyadic intervals Zy ; of [0, 1] are [’2_—,}, 2’—k) For a random string {Z;}°,
over the alphabet {0,1} and i € IN, let 7(Z}) = 23:1 Z; - 273, Then for the random string
{Z;}32, which equals the fractional binary expansion of the random variable which is drawn
according to f it holds that

P{Z =0} = f(z)dx
i)

IZ,T(qu’.

and

P{Z =1} = . f(z)dz.

i,7(Z])+1

Particularly, it was shown that the height Hpy(n) of a random trie under the density model
satisfies

1 < liminf E[Hpu ()] — 29 < limsup BlHou(n)] — 2EC <1 (43)

n—oo In2 n—oo In2 -

2 12
if [f2(z)dz < oo and is unbounded, otherwise. Here, o = nfw;ﬂ and e = 2.718... is
Euler’s constant.

Another model, that allows for unlimited dependency is are symbolic dynamical systems
which were introduced by Valleé [Val01] as a very general model for random strings.

Loriginally referred to as hs in [Pit85, Pit86] but we drop the subscript

62 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

4.2.2 From average-case to smoothed complexity

Now, there are many inputs for which some random mechanism is known that produces
strings which approximate the statistical characteristics of the respective inputs. In those
cases it seems appropriate for the analysis to assume that the input strings are prefixes of an
infinite sequence of symbols generated by such a mechanism. But it is unclear if for every
non-random real-world input there is such a mechanism. An analysis of trie parameters which
yields essentially the same results without making any assumptions about the existence of
a random source that approximates the inputs but which is performed with respect to some
weaker assumption seems desirable. This weaker assumption is informally described as follows:
we assume that an arbitrary input — worst-case or not, comprised of a set of strings such that
some statistics are known or not — is constructed by an oblivious adversary but thereafter
slightly perturbed randomly. The question which results from this setting is straightforward:
how much must the input be perturbed such that the expected height of a trie which is built
over the input is logarithmic, and how is the quantitative relation between the perturbation
parameters and the expected trie height? To answer these questions, it seems appropriate to
perform a smoothed analysis and to model a string by means of a semi-random string model,
where non-random inputs are subject to slight random perturbations. We initiate this line of
research by performing a smoothed analysis of trie height

4.2.3 Smoothed trie height

Having motivated the need of a smoothed analysis of trie parameters, we now turn to the
formal definition of the smoothed trie height H(S,n,X). Here, S and X denote the input
set and the string perturbation function, respectively, and n is the number of strings that are
stored in the trie. For our smoothed analysis, the input set S can either be arbitrary, i.e., the
set of all infinite strings A, or restricted. We consider both variants. In Section 4.4 we will
assume that the inputs are unconstrained. This then restricts the perturbation functions that
yield logarithmic trie height. In Section 4.6.2, we revise this setting and restrict the input
set such that even perturbation functions that are less restricted yield logarithmic trie height.
The smoothed trie height is formally defined as follows.

Definition 4.1. Let A be a finite alphabet and let S C A be some non-empty set of infinite
strings over A. Given a perturbation function X : AS*° — A= the smoothed trie height for
n strings over the set S under the perturbation function X, denoted by H(S,n, X), is defined
by

H(S,n, X) =at max E|maxlep(X(s), X())

llAfl=n
(Vs,teA) s#t

Note that we assume that strings are perturbed independently. Now, we are ready to introduce
our perturbation model.

4.2.4 Perturbations by probabilistic finite automata

In this section, we present our perturbation model which is based on probabilistic finite au-
tomata. In order to perform a meaningful smoothed analysis, we propose to consider per-
turbation functions that locally manipulate strings by random substitutions, insertions and

4.2. TOWARDS SMOOTHED TRIE HEIGHT 63

deletions and by a class of perturbation functions that generalize these operations. Those
perturbation functions do resemble random influences which inputs undergo.

4.2.4.1 (Mealy-type) probabilistic finite automata

A probabilistic finite automaton [Paz71, Rab63] is a standard way to model an unreliable de-
terministic system or a communication channel. We suggest to consider random perturbation
functions representable by probabilistic automata. It is not our aim to develop a general the-
ory of automata-based perturbation functions. Instead, we use probabilistic finite automata
as a compact, but nevertheless fairly general representation for string perturbation functions.
We will define the probabilistic finite automata in a slightly non-standard way by separating
input states from output states. This provides an easy way to describe automata computing
non-length-respecting input-output relations.

A (Mealy-type) probabilistic finite automaton (PFA) over a finite alphabet A is a tuple
X = (R7 W, iR, pw 0) where:

e R is a non-empty, finite set of input states.
e W is a non-empty, finite set of output states.

e up : Rx Ax (RUW) — [0,1] is the transition probability function for input states
satisfying

(Vg€ R)(Vac A) Y pr(gap) =1
peE RUW

The semantics of the function pp is: if the PFA X is in input state ¢ and the symbol a is
read, move into state p with probability ug(q,a,p). Note that possibly ur(q,a,q) > 0.

o uw W xAx (RUW) — [0,1] is the transition probability function for output states
satisfying

(Vge W)(Vae A) Z pw (g, a,p) = 1.
peERUW

The semantics of the function uyy is: if the PFA X is in output state ¢, with probability
uw (g, a, p), write the symbol a and move into state p. Note that possibly uw (g, a, q) > 0.

e 0: RUW —[0,1] is the initial probability distribution satisfying quRUW o(q) = 1.

String perturbations based on PFAs We will identify with a PFA X over the alphabet
A a random mapping X : AS>® — A= mapping finite of infinite strings to finite or infinite
strings. A computation of a PFA X on an input symbol a € A starts in some input state
and stops when X moves into an input state, again. The (possibly empty) output of the
computation is composed by concatenating all output symbols of transitions leaving output
states along which X moved during the computation. A computation of X on an input
string ¢t € A=* is composed by the concatenation of the computations on the successive
symbols of the string ¢, where the computation of X on the symbol ¢[i + 1] starts in that input
state in which the computation of X on the symbol ¢[i] stopped. The computation stops when
X reaches an input state and there is no more input symbol left to read. If ¢ is infinite the

64 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

computation never stops. The output of the computation is composed by concatenating all
outputs of the computations on the individual symbols ¢[1],¢[2],.... A computation of X is
said to have output length m if the output has length m and is said to have input length [if
it has read [symbols of the input.

Drawing PFAs In all figures to follow, states in circles are input states and states in
boxes are output states and as usual transitions are only drawn if their probability is strictly
positive. Transitions are labeled by a tuples “a/z” where a € A and 0 < z < 1. The
semantics is as follows: for a reading transition, a/x means “if we read symbol a then we move
along the respective transition with probability z”; for a writing transition, “a/x” means “with
probability x we move along the respective transition and write a”. Rarely, transitions will also
by labeled by “al|... |a* /2", where for i € {1,...,k} it holds that a’ € A and again 0 < = < 1.
This kind of labeling is mainly introduced to improve the presentation of the figures. It is an
abbreviation for k transitions that are labeled with the tuples a’/x for i € {1,...,k}.

4.2.4.2 Edit perturbations of binary strings

Edit operations, i.e., substituting, deleting or inserting symbols, are among the most fun-
damental operations for locally manipulating strings. Therefore, a smoothed analysis with
respect to perturbation functions that resemble these operations provides a better under-
standing of the practical performance of tries. We say that a perturbation function on strings
is an edit perturbation if it perturbs the input by randomly substituting, inserting or deleting
symbols. The PFAs which we introduced above are on the one hand a compact representation
for edit perturbations, but on the other hand they also provide a convenient mathematical
framework to model and analyze the smoothed trie height under a broad class of natural
string perturbation functions. In order to ease the presentation, we assume for the moment
that all strings are binary. We give PFAs for all edit perturbations. Finally, we give a PFA
representations for the convexr combination of the individual edit perturbations on binary
strings.

Substitutions Let p € (0,1) and let SUB, be the PFA visualized in Figure 4.1. The
semantics is as follows: if we are in input state s and read a symbol a € {0,1} then we move
into writing state g, and move back to state s writing a with probability 1 — p and a symbol
other than a with probability p. The automaton perturbs an input string by performing
random substitutions on it.

1/1—p\ /0/1—p
@ |=—1/1 —@— 0/0 —=| o
0/19/ \1/1)

Figure 4.1: Substitution PFA with initial state distribution o(s) =1 and o(qp) = o(q1) = 0.

Insertions Let p,q € (0,1) and let INS,, ; be the automaton depicted in Figure 4.2. It scans
an input string s € {0,1}* and randomly inserts symbols with probability p. The inserted

4.2. TOWARDS SMOOTHED TRIE HEIGHT 65

symbol is 0 with probability ¢ and 1 with probability 1 — gq.

0/pq 0/pq
&\ /1/1 KO/l_ (j
q1 qo0
4
A T it

/p—pq
Figure 4.2: Insertion PFA with initial state distribution o(s) = 1, o(go) = o(q1) = 0.

Deletions. For p € (0,1) let DEL, be the automaton depicted in Figure 4.3 that while
scanning an infinite binary string deletes the symbol at a certain position with probability p,
independently.

Convex-combinations of edit perturbations Let pg,pr,qr,pp € (0,1) be the respective
parameters for the edit perturbations and let v = (vs,vr,vp) € [0,1]% such that vs + vy +
vp = 1 be the parameter vector for the convex combination. We say that a perturbation
function Y : {0,1}=% — {0,1}=% is the convex combination of the binary edit perturbations,
if Y can be represented by the PFA depicted in Figure 4.4.

4.2.4.3 Star-like perturbation functions

All of the perturbations considered in the last section have in common that there is exactly
one input state and that the computations on the individual symbols never move between
distinct output states. We now formally define a class of perturbation functions which are
characterized by exactly these properties. Since their representation is a directed star graph
with multi-edges and loops, where the unique input state is the center vertex, the set of output
states is the set of terminal vertices, and the transitions having strictly positive probability
gives the set of edges, we call those PFAs and their respective perturbation functions star-like.

1/p
1/1—p 0/1
a1 q0
1/1 0/1—p

0/p

Figure 4.3: Deletion PFA with initial state distribution o(s) =1 and o(qy) = o(¢q1) = 0.

66 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

0/prar w (0/prar
k I~ —1 1o ’/
/__/\1/1—171 0/1—pr /\—\

L/pr — prar 1 for 1/pr — prar

O/’U]

D,
0/vp(1—pp) /vp(1=pp) 1/1

0/1

0/vp 1/vppp
Dy
0/1:y1/vs 0/s
Sy — 1/ps 1/1-ps —{ Sy

Figure 4.4: PFA Y representing the convex combination of the PFAs INS, ,,, SUB,, and
DEL,,,: the part corresponding to INS,, 4, is drawn red, the part corresponding to DEL,,, is
drawn green and the part corresponding to SUB,,, is drawn black.

Definition 4.2 (Star-like automata). Let A be finite a alphabet and let X = (R, W, ug, pw,0)
be a PFA over A. X is said to be star-like if the following hold:

(1) IR =1, i.e., R = {s}.

(2) The function uy is such that

(Va,q e W,q # ¢')(Yae A) pw(q,a,q¢') =0,

i.e., the graph induced by the vertex set W and the edge set {{q,¢'} : (Ja €
A) nw(q,a,q) > 0} consists of a number of connected components each of which is
a single verter.

(3) For all ¢ € W it holds that)~ 4 pw(q,a,q) <1, i.e., the probability that X loops at q
18 strictly less than one.

Further, we consider a strict subclass of the star-like perturbation functions, namely the
class of those perturbation functions which are such that for each symbol a € A there is exactly
one output state, say ¢a, that can be reached from s with positive probability when reading
a. If additionally to this the perturbation functions are non-deleting, i.e., there are no loops
at s, then we say that they are read-deterministic perturbation functions. Otherwise, i.e., if
there are symbols a which are deleted with positive probability, we say that the perturbation
functions are read-semi-deterministic.

4.3. COMPARISON TO PREVIOUS RANDOM STRING MODELS 67

Definition 4.3 (Read-(semi-)deterministic automata). Let A be a finite alphabet and let
X = {s},W,ur, pw, o) be a star-like PFA over A. X is said to be read-semi-deterministic
if for all a € A there exist a constant p, € [0,1] and exactly one output state q, such that
Ur(s,a,8) = pa and pugr(s,a,qa) =1 — pa. Further, X is said to be read-deterministic, if for
allae A, p, =0, i.e., ur has no loops at s.

It is easy to verify that all edit perturbations are star-like perturbation functions and
further that the functions INS,, and SUB, are read-deterministic and the function DEL, is
read-semi-deterministic.

4.3 Comparison to previous random string models

One property that the sequences from most random sources possess is the mizing property
(see |Bra05| for a survey on the different definitions of mixing), which as we mentioned implies
that the Rényi’s Entropy of second order, i.e., the limit (4.2), exists. We show that this
assumption does not hold in general for sequences which result from the perturbation of a
non-random input sequence by means of a star-like perturbation function. Furthermore, we
show that the limit (4.2) depends on the input string.

%/9\
/

—|N Q
~ D=
o
s c/3 T b/3 ™
¢ [=-—cl|d/1 a\b/%—» %
alb/¢

Figure 4.5: Example: a PFA over the alphabet A = {a,b,c,d,e, £} whose respective pertur-
bation function is not mixing.

Proposition 4.1. For the PFA X over the alphabet A = {a,b,c,d,e,f} depicted in Fig-
ure 4.5, there is no ng € INL such that there exist two constants 0 < ¢1 < co such that for all
possible input strings t € A, the sequence which results from the perturbation of t by means of
X is mizing, i.e., satisfies (4.1).

Proof. The proof is by contradiction: assume that there are ng € INy and 0 < ¢; < ¢o such
that for all ¢ € A it holds that the sequence {Z;};>1 which results from the perturbation of a
string ¢ € A by means of X is mixing, i.e., for all 1 <m <m +ng <n and all A € " and
B € 8, 4n, it holds that

c1-P{A}P{B} <P{ANB)} < ¢, - P{A} P{B}, (4.4)

68 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

where for 1 < k <1, SL denotes the o-field generated by the subsequence {Zl}i:k Now, chose
an arbitrary n > ng and define the events A € §1,B € F37 and C € F37 as follows:

] A:{SEAOO : er{qd}‘s[l...n”x:n},
[] B = {S € AOO . er{a,b} |S[2TL + 1... 3n]|m = n} and
o C={seA™ : Y ctory|s2n+1...3n][z =n}.

Let t € A satisfying ¢[1...3n] € {a,b}>" and ¢[3n + 1...5n] € {c,d}*" and t[5n +1...] €
{e,£}*°. For A to hold, X must delete the first 3n symbols of ¢, for B to hold, X must not
delete any of the first 3n symbols, and for C' to hold, X must again delete the first 3n symbols
of t. It can readily be verified that P{A} = (1/6)?’”, P{B} = (5/6)3n, P{ANB} =0,
P{C} = (1/6)3n, and P{ANC} =P{A} = (1/6)?’”. Therefore, we have

P{ANB} _, . P{ANC}

P{AP(B] plap(0) 0"

Thus, the sequence {Z;};>1 is not mixing, i.e., it does not satisfy (4.4) and the proposition
follows. O

Thus, it is not possible to choose an n large enough in the analysis of H (A, n,X) such
that one can consider sub-strings as though they were independent, which is a key ingredient
in many average-case analyses. Nevertheless, Theorem 4.1 which we present in the next
section implies that that H(A*,n,X) € O(logn). For a semi-read-deterministic PFA X =
({s}, W, ur, pw,o) and a € A, let

Qa = (ﬂW(Qa, A7 qa) + /LW(Qa, A7 8)7 e a/JJW(qav 27 qa) + IUW(qEn 27 8)) € (07 1)N

Proposition 4.2. Let | € INy and let X = ({s}, W, ur, pw, o) be a read-semi-deterministic
perturbation function over A in canonical form and let t € A be such that t[1...1] € {a}'.
For k € {1,...,l}, let Ey be the event that | X (t[1...1])| > k. Then for alli € {1,...,k} and
all j € {1,...,N} it holds that

P{X ()] = a; | Ex} = Qalj],

i.e., conditioned on the event Ej that the computations of input length | have output length at
least k, the pair (t, X) induces the same probability measure on A* as a memory-less random
source with parameter vector Q.. Further, if | = +oco then for all i € Ny and all j €
{1,..., N} it holds that P{X (t)[i] = a;} = Qal[j].

Proof. Note that t is an infinite string that starts with [repetitions of the symbol a. To proof
the proposition, assume that Ej holds and let ¢; € {s,qa.} be the state in which X is after
having written X (t)[i — 1] and let b € A. We must consider two cases. First assume that
1 = 1: since X is given in canonical form, we have that ¢; = s and therefore

P{X(t)[i]] = a; | Ex} = pw(qa,b,¢a) + pw(ga, b, s) = Qalj].

Now, assume that ¢ > 1: in this case we have to consider the two conditional probabilities
P{X(t)[i] =a; | Ex Nqi = ¢a} and P{X(t)[i] = a; | Ex Aq; = s}. The latter probability has
already been considered in the case ¢ = 1. For the former we have

P{X(t)[i] =a; | Ex N = ¢a} = pw(qa,b,qa) + 1w (ga, b, 8) = Qalj].

4.4. MAIN RESULT: STAR-LIKE PERTURBATION FUNCTIONS 69

Together, this implies that for all i € {1,... k},
P{X(0)li] = a; | Ex} = Qalj] - P{ei = ¢a} + Qalj] - P{a; = s} = Qalj].

The second claim of the proposition follows from the same reasoning whereat we can omit the
conditioning on Fj. This proves the proposition. O

The last proposition has two consequences: it implies that for a sequence which is the
output of a perturbation of an arbitrary string by a star-like PFA the limit (4.2) does not
exist in general: let X be a semi-read-deterministic PFA such that for two distinct symbols a
and b it holds that Q. # Qv. Then a standard calculation [Szp01] for the simulated memory-
less random source gives that

~In(C e P{X (a2)[1...n] = a}?)

. _ (2)
nlirrgo o In Q" /2
and)
—1 ZP{X((b..)[1...n]=

n—oo 2n

where for i € {a,b}, QZ(?) = ((Q:[1))? + ...+ (Q;[N])?). Besides this, the last proposition also
enables us to give a lower bound on the smoothed trie height under a read-semi-deterministic
perturbation function. The respective result is given in Section 4.6.

4.4 Main result: smoothed trie height under star-like pertur-
bation functions

In this section we resent the main results of this chapter.

4.4.1 A dichotomous-type of result

Let X be a star-like perturbation function with representing PFA X = ({s}, W, ur, pw, o),
where W = {q1,...,qm}. Let A ={A, ..., Z}. To ease the analysis we make the reasonable
assumption that the perturbation starts in the input state s with probability one, i.e., that
o(s)=1and foralli e {1,...,M}, o(¢;) = 0. We say that such a perturbation function is in
canonical form. We prove the following dichotomous-type of result for star-like perturbation
functions over arbitrary input sets in Section 4.5.

Theorem 4.1 (Smoothed trie height for arbitrary input sets). Let X be a star-like string
perturbation function over the finite alphabet A in canonical form, represented by the PFA
X = ({s},W,ugr, pw,0) such that for all a € A it holds that pr(s,a,s) < 1. Then the
following statements are equivalent.

(1) (Va,b € A) pr(s,a,s) + Y ,cw 1r(s,2,9) - (tw (g, b,q) + pw(g,b,s)) <1
(2) H(A*®,n,X) € O(logn).

Before we discuss the meaning of the above theorem, we note that it directly yields the
following corollary concerning the smoothed trie height under convex combinations of edit
perturbations of arbitrary binary strings.

70 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

Corollary 4.1 (Smoothed trie height under convex combinations of edit perturbations). Let
ps,p1,q1,pp € (0,1) and let v = (vs,vr,vp) € [0,1] be such that vs + v; +vp = 1 and let
Y be the string perturbation function which is computed by the PFA depicted in Figure 4.4.
Then H({0,1}*°,n,Y) € O(logn) if and only if vp < 1. This is, the smoothed trie height
under convex combinations of the edit perturbations is logarithmic if and only if the convex
combination does not collapse to deletions.

In general, statement (1) of the theorem gives a set of necessary and sufficient conditions
such that the smoothed trie height H (A, n,X) is logarithmic in n if those conditions are
satisfied and unbounded, otherwise. These conditions are especially appealing, because they
can be verified easily and efficiently by looking at the transition probability function of the
representing PFA. For general star-like perturbation functions, the verification can be done
algorithmically in time O(N? - M). For read-semi-deterministic perturbation functions, the
verification can be done even faster, i.e., in time O(N - M), which holds particularly because
for such a perturbation function one can associate with each input symbol exactly one output
state. Note, that the additional constraint regarding the deletion probabilities, i.e., that
for all a € A it holds that pgr(s,a,s) < 1, cannot be dropped: let a € A be such that
ur(s,a,s) =1 and let ¢t = aaa.... Since X (a) = € with probability one, it becomes obsolete
to speak of smoothed trie height in this particular case.

4.4.2 A quantitative analysis

When performing a smoothed analysis it is usual to quantify the influence of the parameters of
the perturbation function on the smoothed complexity of a problem. Let X ({s}, W, ugr, uw, o)
be a star-like PFA over the finite alphabet A in canonical form. For the sake of exposition we
define the following abbreviations: for j € {1,..., M} the return probability from state g; is
defined as

N
1j =def Z NW(qja a;, 3)-

i=1
Forae Aand je{l,...,M},
Paj =def MR(S,2,j)
and

Pa =def NR(S7 a, S)'

We can give the following quantitative upper bound on the smoothed trie height under arbi-
trary star-like perturbation functions.

4.5. THE PROOF: STAR-LIKE PERTURBATION FUNCTIONS 71

Theorem 4.2. Let X be a star-like string perturbation function over a finite alphabet A in
canonical form, represented by the PFA X = ({s}, W, ug, pw, o), where W = {q1,...,qu},
such that for all a € A it holds that pa < 1 and such that Statement (1) of Theorem 4.1 holds
with 6 < 1 fora € A, i.e.,

M
0 = max | pa + ; paj + (w(a;,b,q;5) + pw(gj, b, 5))

Let Z be the pole of minimum modulus of the function

—1

B B L _M5a',0aj'77j'z
ZX(z)—H 1— 9, Pa Z—

acA =l =)oz
Then for n sufficiently large and all € > 0 it holds that

H(A* n,X)<2-[(1+4¢)logsn] + o(1).

4.5 The proof: smoothed trie height under star-like perturba-
tion functions

In this section, we prove Theorem 4.1. We start with a result which holds for arbitrary string
perturbation functions.

4.5.1 A tail bound for smoothed trie height

Using basic inequalities, we can show that H(S,n, X) grows at most as 2log; /v T if the coin-
cidence probability of length m of two independent perturbations of the same string s € S, i.e.,
P{lep(X(s), X(s)) > m}, can be bounded from above by 4™ for some v < 1. Our approach
to upper bound the smoothed trie height can be best compared to the approach taken by Sz-
pankowski in [Szp91] (see Lemma 4) to upper bound the order statistics maxi<;<j<y lep(si, s5),
where s1,...,s, are not necessarily independent random strings, using generalizations of the
results on order statistics of suchlike distributed random variables given in [LR78]. The fol-
lowing lemma holds for arbitrary string perturbation functions.

Lemma 4.1 (Tail-bound for smoothed trie height). Let A be a finite alphabet and let mg € IN
and v € R satisfying 0 < v < 1. Let X : AS®° — A= be a perturbation function and let
S € A be a non-empty set of infinite strings. Let n > ~v~"0/2_ If there is a polynomial 11
of fized degree d € IN, such that for all s € S and all m > mg it holds that the coincidence
probability of length m of two independent perturbations of s satisfies

P{lep(X(s), X(s)) = m} <II(m) - ™,
then for all € > 0 it holds that

H(S,n,X) <2-[(1+¢)logy/,n] +o(1).

72 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

Proof. Let S be a non-empty set of infinite strings over a finite alphabet A. Let ¢ > 0 and let
k € IN; be arbitrary. Then

H(S,n, X) = max E[ﬂgﬁlCP(X()7X(t)):|
lAll=n

= \21%(‘_IP{ggﬁlcr)(X(s), X (t)) 21}

- .
< > max Pl ep(xX(), X(0) 2 1}
=1 HAH—”
< k+ | max P{ggﬁlcp(X(s),X(t)) > z} (4.5)
i=k+1 HAH—”
< P{l X(t) > i} 4.6
< Z;lggg {lep(X (s), X (1)) > i} (4.6)

Inequality (4.6) follows from Boole’s Inequality and (4.5) holds, because the in sum of
probabilities each addend of the first £ addends can by bounded by one. Now we expand each
addend of the right-hand side and apply Cauchy’s Inequality in its standard from (Inequal-
ity (A.1)):

max P{lep(X(s), X()) =i} = max > PlaC X(s)}-Pla L X(0)

ac Al
< P{a T X(s)}2. P{a T X ()2
< mg\/ZA {0 T X(s)) ZA {a T X(H)}

< P{a T X(s)}2
< max gi {a C X(s)}

= maxP{lep(X(s), X(s)) = i} -

Now, we have that for all £ € INy it holds that

H(S,n,X) <k+mn?. Z maxP{lcp((s),X(s)) >i}.
i=k+1

Let d € INL and let II be a polynomial of degree d such that the assumption of the theorem
holds. Set k = 2-[(1+¢)logy/, n] > mg. Then

H(S,n,X) < k+n*: g manP{lcp(X(s),X(s)) > i}
sE
i=k+1

< 2-[(1+e¢)logy), n| + Z I1(7) - n? - ~*
i=2-[(1+¢) logy /., n]+1

It is easy to see that the latter term is in o(1):

[e.e]

Z H(Z) .n2. ,72' — ZH(Z' ((1 + 6) 10g1/~, n-| + Z) .n2. 72-((1—}—&) logy /., n] oy
i=2-[(1+¢) logy /-, n]+1 i=1

4.5. THE PROOF: STAR-LIKE PERTURBATION FUNCTIONS 73

o
< ZH(Q “[(1+¢)logyyn] +1) - n?-n"2% 4 € o(1).
i=1
This proves the lemma. O

4.5.2 Proof of Theorem 4.1

Proof. Let X = ({s}, W, ugr, pw,0) ,where W = {q1,...,qum}, be a star-like PFA over the
alphabet A = {A,...,Z} in canonical form. In order to prove the equivalence of the two
statements, we claim that (2) = (1) and that (1) = (2). The theorem then follows.

Claim 4.1. In the setting of Theorem 4.1, it holds that (2) = (1).

Proof. We prove the claim by contraposition: to this end assume that (1) does not hold, i.e.,
there are symbols a,b € A such that

M
pa+ Y paj - (uw(gjb,q5) + pw(gj,b,8) = 1.

i=1

Thus P{bC X(a)} =1 — pgr(s,a,s). Let t = aa... and let s =bb.... Then X maps ¢ to s
with probability one. Therefore, H(A>, n, X) is unbounded. The claim follows. O

The second claim is less easy to prove: in order to show that (1) = (2), we prove that (1)
is a sufficient condition such that the tail-bound (Lemma 4.1) can be applied. Particularly,
we show that under the assumption that (1), there are a polynomial IT of degree at most N,
a constant v satisfying 0 < v < 1, and a constant my € INy such that for arbitrary ¢t € A
and m > mg,

P{lep(X (1), X (1)) = m} = > P{a T X()}* <Ti(m) 4™
acA™

Definition 4.4 (ux(a,t)). For a,t € A<, let px(«,t) be the probability that a computation
of X ont having input length |t| has the sting « as prefic.

Then, for t € A* and a € A<,

P{a CX(t)} =Y px(ot[l...1])

=1

and thus for m € IN,,

P{lep(X (). X(10) > m) = Y (3 et 1))

acA™ =1

Next, we split the right-hand side of the above equation into two suitable parts by an appli-
cation of Cauchy’s Inequality in the form of Inequality (A.2): let d € IR+ be a constant to be
defined in a moment. Then

> (X nxlastft..)

aceA™ [=1

74 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

[d-m] o0 2
= Z (Z wx (o t[l...0]) + Z ,uX(oz,t[l...l])>
acAm N =1 I=[d-m]+1
[d-m] oo
<2 Y (T pxtat) +2- X (X axloti) @)
acA™ =1 acA™ |=[d-m]+1

Then, we prove an exponentially decreasing upper bound on each of the two addends in (4.7)
under the assumption that (1). To this end, we define for m € IN;, d € R and t € A®

[dm]
O (t,m,d) =qet 2.2 (Z IuX(Oz,t[l...l]))Z
acA™ =1

and

itomd) = 223 (Y ,ux(a,t[l...l])>2.

acA™ |=[d-m]+1
Particularly, we claim.

Claim 4.2. Assume that (1) holds with 64 < 1 for a € A, i.e.,

M
0 = max | pa + Zl paj + (hw(g;, b, ;) + pw(gj, b, 5))
‘]:

Let d € IRy be arbitrary but fized and let Z1 be the pole of minimum modulus of the function

=1

= . . _M 5a'paj'77j'z
Zx(2) = [[| 1-0a-pa—d> 2L U2

A Tl -z
Then
(1) Z2 > 1 and
(2) there exists a polynomial I1 of degree at most N and my € IN such that for all m > my,

®(t,m, d) < T(m) - <i>m

21

Claim 4.3. For a star-like perturbation function X as in the setting of Theorem 4.1, there
exist constants c¢,d € IRy such that for m € INy,

W(t,m,d) < c- <l>m

21
where Zy is defined as in Claim 4.2.

We postpone the proofs of the two claims to Sections 4.5.5 and 4.5.4. The following claim is
a consequence of the the above claims.

4.5. THE PROOF: STAR-LIKE PERTURBATION FUNCTIONS 75

Claim 4.4. Assume that the conditions of Theorem 4.1 (Theorem 4.2) hold. There are con-
stants ¢,d € Ry and mg € INy and a polynomial 11 of degree at most N such that for every
string t € A% and all m > my,

Pllep(X (£), X(£)) > m} < U(t,m, d) + &(t,m, d) < (c + [I(m)) - <z_11>m .

Thus we may apply the tail-bound (Lemma 4.1). Together this shows the sought-after claim.
Claim 4.5. In the setting of Theorem 4.1 it holds that (1) = (2).

This proves Theorem 4.1. O

Remark: Claim 4.4 together with Lemma 4.1 directly implies Theorem 4.2.

All that is left to prove the two Theorems, is to prove Claims 4.2 and 4.3.

4.5.3 Prerequisites: computations of star-like PFAs

Before we prove the two claims, we show how to express the term) 4m px(a, t[1...1]), i.e.,
the probability that a computation of input length [on the prefix of ¢ has output length at
least m, subject to the transition probabilities of X.

Lemma 4.2. Let X = ({s}, W, ur, uw, o), where W = {q1,...,qm}, be a star-like PFA over
the finite alphabet A in canonical form and let t € A andl € ;. Let f : IN — {0,1} the
following defined function: for x € IN,

_ 1 ifx=0
F(@) =aet { 0 otherwise.

The function f is used to indicate deleted symbols in the computations of X. Then

l M
> pxlontll)</ 3 TL(F0m) e+ Q= Fma)) Y pgami@—ny)™),

aeA™ mi+...+m;=mi=1 j=1

where 1) = minj<j<pr n; denotes the minimum return probability.

Proof. Remember, the term which we seek to bound is the probability that the computation
of X on t of input length [has output length at least m. Since X is star-like and given in
canonical form, each computation of X on ¢ starts in the input state and then moves into
some output state, from which it writes the output, before it moves into the input state again,
where it reads the next symbol of the input and continues the computations as described
above. Thus, each computation can be decomposed into the computations on the successive

individual symbols of t. For a computation of input length [and output length m, there are
m—+l—1
("5

they give a computation of output length m: this equals the number of decompositions of

m into [non-negative addends, where addends might be equal to zero because computations
might have output length equal to zero. The computations on the first [— 1 input symbols
must return into the input state, whereas the computation on the /-th and last input symbol

) possibilities to concatenate [such computations on the individual symbols such that

76 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

may either loop at its output state or return back into the input state after having written
the m-th and last symbol of the output.

Now, consider a fixed decomposition mj+...-+m; = m into possibly empty computations.
For i € {0,...,l}, if m; = 0 then the probability that the computation of X on the symbol
t[7] has output length zero is

P{X (t[i]) = e} = pypy- (4.8)

Fori e {1,...,1—1}, if m; > 0 then the probability that the computation of X on the symbol
t[i] has output length ezxactly m; is equal to

> P{X(Hi]) = a} = Zpt —)"t (4.9)

aeA’!?Ll

and the probability that the computation of X on the symbol ¢[l] has output length at least
m; > 0 is equal to

> PlaC X(tI)} = Zﬂt[z]; (1 —ny)m™t. (4.10)
acA™ Jj=1

Let) = minj<j<ar 1; be the minimum return probability. The term (4.10) can be bounded as

Zpt)yt <1/ Zpt[z]j my - (1= m;)™ (4.11)

j=1

Now, we use the indicator function f to choose for i € {1,...,1}, the i-th (product-)addend
in the product which bounds the probability that the computation of X on ¢ of input length [
that can be decomposed as mj + ...+ m; = m has length at least m: if m; = 0 then (4.8) is
the appropriate addend; if m; > 0 and i € {1,...,1— 1} then (4.9) is the appropriate addend;
finally, if ¢ = [and m; > 0 then (4.11) is the appropriate addend: thus,

M

l
H(+ (1= f(mg)) - Zpt[i]j ;- (1= nj)mi_l)

J=1

is the desired upper bound on the respective probability. Summing over all possible decom-
positions, we get

M
> opx(astl) <1/ Y H((i) pygiy+ (1= F(ma)) > pygigymi (L—m;)™ ™ 1>,
acA™ mi+..4+my=mi=1 j=1
which proves the lemma. O

4.5.4 Bounding ®(t,m,d)
In order to prove an exponentially decreasing upper bound on

[dm]

O(t,m,d) =2- Z(Z,uxat))

aceA™ =1

4.5. THE PROOF: STAR-LIKE PERTURBATION FUNCTIONS 7

for arbitrary but fixed d € IR; an thereby prove Claim 4.2, we first apply Cauchy’s inequality
and then bound by counting over all possible [€ IN,:

[dm] [d-m]

2. Z (Z ,uX(a,t[l...l])>2 < 2[dm] - Z Z px (o, t[1. 1))

acAm =1 acA™ [=1

< 2[dm] i > px (o[l 1)) (4.12)

=1 acA™

A crucial lemma The next Proposition follows from the definition of pux(«,t[k...l]) and
the fact that for a star-like PFA the computations can be decomposed into the computations
on the individual input symbols

Proposition 4.3. Let j, k,l € IN+ satisfying k < j <1 and a € A™. Then
px (o, t[k ZP{X tlk...3]) = 0...q]} - px(afi+1...m],t[j+1...1]).

Lemma 4.3. Let X = ({s}, W, ug, pw, o) be a star-like PFA in canonical form over the finite
alphabet A. For a € A let

ba =max | pat D paj - (1w (g, 4;) + pw (g, b, 9)) (4.13)
j=1

and let & = miill 0a. Then for all infinite strings t € A and all k,1,m € INL it holds that
ac

l
> plentlk.. 0)* < (1/9) H Y otk D)) (4.14)

aeA™ aeAm

Proof of Lemma 4.3. Let X be a star-like PFA and let ¢t € A be an arbitrary input string

and let § = mljl da. For a € A and o € A=™ satisfying |a| > 1 we have
ac

|a

Y P{X(a)= Y = P{X(a)=e}+P{X(a)=0[l]} +...
=0
< P{X(a)=¢} +P{a]l]C X(a)}
< ba (4.15)

We prove the lemma by induction on the length ¢ =1 — k 4 1 of the part of ¢t which is read.
First note that for [< k the left and the right hand side of Inequality (4.14) are equal to zero.
This holds particularly, because X is given in canonical form. Therefore we may without loss
of generality assume that [> k holds.

Induction basis: for ¢ = 1 it holds that

D px (o tll])® < Gy /0) - > (o[l

agA™ acAm

78 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

because probabilities are less than one.
Induction step: assume that (4.14) holds for [— k < ¢ — 2. By Proposition 4.3 we get

2
> px (o tlk = > (ZP{X [0...i]}-,uX(oz[z'—I—l...m],t[k‘+1...l])>

acA™ aEA™ Ni=
We apply Jensen’s Inequality: let zo, ..., Zm, Yo, .-, Ym € IRT. Then
(Sa) = () By < () (Bat) o
i=1 i=0 Ylizo % i=0

For i € {0,...,m} we set
=P{X(t[k]) = al0...4]}
and
yi = px(ali +1...m], t[k+1...0))

in Inequality (4.16). Additionally we know from Inequality (4.15) that

> xi=> P{X(tk])=al0...i} < &y
=0 =0

Together, we get that
(o) < () - (k) < - (z ra?)
i=0 =0 =0

which after re-translating gives

2
> (ZP{X [0...1’]}-,uX(a[z'—H...m],t[k+1...l])>
acA™ M=
< > Gy > PLX(HE) =al0...i]} - px(ali+1...m], tk+1.. 1)
aceA™ =0

Now we proceed as follows:

ORITE ZP{X —al0... i)} px(afi +1...m],tlk + 1...0))?

aceA™

ag€AM—1

I
&
\ER

~
]
e

>

(t[k:])al}) (5 ,uX(ag,t[z'—i-l...l])z)
z
ZP{X(t[k])m})'((l/g)' IT 6 D Mx(az,t[k?+1---l]))

J=k+1 azedAm—i

Il A

= =

— =

RS
S Tz]
-

=

(> P{X(t[k;])al}) : (> ux(az,t[k+1---l]))

aj eA? agEAM—L

4.5. THE PROOF: STAR-LIKE PERTURBATION FUNCTIONS 79

= 1/(5 H(St[J Z ,uX «, t])

aceA™

where the inequality follows from the induction hypothesis. Altogether, we have shown

Z wx (o, tlk. < (1/6) H‘St[J Z px (o, tfk. . 1)) .

acA™ acAm

This proves the lemma. O

Remark 4.1. Lemma 4.3 holds irrespectively of the conditions given by Statement (1) of
Theorem 4.1.

By the above lemma and Lemma 4.2, we can bound the inner sum of (4.12) as follows:

Z px (o, 1. .1])?

acA™

< (1/6) H% > px (e[l) (4.17)
aceAm™
M

< 1/i- Z H(m;) 5t pt[z]+ (1—f(m;)) Z i]Ptfi ﬂ]g (1- Uj)mi_1>7(4-18)

mi+...+my=mi=1 j=1

where 77 = minj<;j<pn; and f : IN — {0, 1} is the indicator function for deleted letters in the
computation of X.

Valid words and expressions Call each non-zero addend in the above sum (4.18) a walid
expression of X on t. A valid expression is said to be of input length [if it corresponds to a set
of computations of input length [and is said to be of output length m if its corresponding set of
computations has output length m. Each valid expression is a product over the set of variables
{Ony- 302,00y, P2y PALy - - s PZM s M5 - - - s 1 - The products have a regular structure which
we exploit in order to bound the term (4.18): to this end, let B be the following alphabet,
where we interpret variables as letters (we intentionally use the term ’letter’ for an element of
the alphabet and 'word’ for a sequence of letters in order to avoid confusion)

B =qet {0n,...,02}
U {T]j : jE{l,,M}}U{(l—T]]) : jE{l,,M}}
U {paj : jE{1,....M}andae A}U{p, : a€ A}.

Each valid expression in (4.18) can readily be identified with a word w over the alphabet B:
e.g., the word

0a Pa Ob Po 0a pa2 (1 —n2) (1 —n2) (1 —m2) m2

corresponds to a valid expression of X on ¢t = aba... of input length 3 and output length 4
and thus to a set of computations of X on ¢, where each computations deletes the first two
letters and then moves into state go after having read the letter a, whereupon it loops three
times at ¢ and then moves back to the input state again. Clearly, not all words over B are

80 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

valid expression of X on ¢t. Call a word a valid word if it is. Let W;’l’m) be the set of all valid
words over B that correspond to a valid expression of X on t that has the respective input
and output lengths.

W;’l’m) =get {w € B : w is a valid word having input length [and output length m},

To see that the words in the above language have indeed a regular structure, we first consider
the following regular language

Wi ={ w eB=
w = W1 W2 PN VV[
Wi =61y ooy | Sy pepr e (L =m0)" [+ oo [Sy peqyne e (1 — maa)”
Wi =0 puy | 0wy pegpn m (L —m1)" | -+ | Sy pegar e (L —mar)"}
Here, we use Wy, ... ,W; as placeholders for the above defined regular expressions. Now, it
holds that
t,1,m) (t) &l
Wg(={we Wy’ : Z(|w|m + |w|(1_nj)) =m}
j=1

and further that

(vw e WD) S fwls, = 1.
acA

In order to evaluate the term (4.18) using the framework of valid words, we follow the weighted
words model: we define the weight m(w) of a word w € B<> as the product of all letters which
constitute w, where the multiplicity of a letter in the product equals the number of times it
occurs in the word w:
W) =gt Yol
zeB
E.g., for
w' = 6a pa Ob po 0a paz (L —12) (1 —12) (1 —12) 2

the example word from above we have that
N o 52 3
m(w') =063 0 pa- po- paz- (L —12)" 12,
as |w'l(1-n,) = 3 and |[w']s = [y, = |W'[s = [W']p, = [W'|p = W], = 1. Also, the weight of

a set is defined as the weight of all elements in the set. The weight of a valid word equals the
value of its corresponding valid expression. Thus

7T<W§§’l’m)) = Z H< M) Oyp) ey + (1= £ (M) Z5t[z][)t[z]g77g(1 ;)™ 1>

mi1+..+m=mi=1 j=1

Note that for I,1” € IN, satisfying [# I’ it holds that ng-’l’m) ﬁwgf-’ll’m) = (). The consequence
of the preceding calculations is captured in the next proposition.

4.5. THE PROOF: STAR-LIKE PERTURBATION FUNCTIONS 81

Proposition 4.4.

oo I -
ZH&M- Z px (o, t[l...0]) < (1/7) Zw<w(t,l,m)

I=1i=1 acA™ =1
Proof.
oo
S T 0w - D wxtastfi...0)
1=1 i=1 acAm

o0

M
< (W) > H< LRSI (1—f(mz))'z5t[i]pt[i]ﬂ71(1—77j)m"_l>

=1 \mit+...+my=mi=1 7=1

- ().

This proves the proposition. O

= 1/77

||M8

Reordering valid words In order to evaluate the sum over the weights of all valid words
of output length m over all input lengths, i.e., > ;2,7 (Wg’l’m)>, we first construct a family

727m

of structurally simpler sets y(“’m y(t .. such that
o for [,I' € IN, satisfying [# I’ it holds that Y{"*™ n Y™ = ¢ and

. . . L (t,1,m) (t,l,m)
e for each | € IN, there exists a weight preserving bijection g between Wy and Vy .

Then the sum over all weights of all sets y(bm) over all [is equal to the sum over all weights
of all sets W;’l’m) over all [. To this end, let for l € N, and i € {1,...,N},

L= [t[1...0]a,

be the number of occurrences of the symbol a; in the prefix ¢[1...[]. The following regular

(t.0)

language is derived from W' by reordering the constituent sub-words.

ygﬁ’” ={ w € B=>

w = Y1 Y2 e Yz

Y1 = da; Pay | 0a; Pail M (1 - 771)* | | Oay PaiM MM (1 - 77M)*

Vi, :=0a pay |0ay paytm (L—=m)" | ... | day payns mar (1 —1nnr)”
Y41 = 0ay Pay | Oay Pastm (L —m1)" | ... | Oay paynr mar (1 —nar)”
Y11+12 = 5a2 Pas ’ 5a2 Paz1 M (1 - 771)4< ’ ’ 5a2 Pas M TIM (1 - 77M)*

YE—IN—H = 5aN Pan | 5aN Pan1 T (1 _771)4< | | 5aN PanyM TIM (1 - nM)*}

82 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

Yi = 0ay Pan | Gay paytm (L=m1)" | oo | Gay paynr mar (1= mar)7}
Now, define
! ! .
t,l,m t,
VR =aer {w € UKV D (fwly, + folag)) = m}.
j=1

It follows readily that there exists a bijection g between ygﬁ’” and W;’l) such that for every
word w € y§§’” there exists a word w' € ng-’l) which is composed of the same set of letters
and thus 7(w) = 7(w’). Further, this bijection is also a bijection between yﬁ’l’m) and ng—’l’m).
This yields the next proposition.

Proposition 4.5.

>r (W) = 3 (04)

=1 =1

Embedding Still, the sum over the weights of these structurally simpler sets depends on the
structure of the input string ¢, which is unknown. Thus, in order to get rid of this dependency
on t, we define another regular language Vx:

yX:{ w € B=®
w =Y1Y ...Yy

Vi == (0apalonpmm (L—m)"| ... [0n pans naa (1 —mnr)")*
Vv = (0z pz |0z pz1m (L—m)" | ... |0z pzas mar (1 —nae)™)"}
Again, Y7,...,Y] are placeholders for regular expressions. Define
M
J{E(m’ =def {w € Yx : Z(lem + [w](1—-p)) = m}.
i=1

We have that
Y™ — f e YU+ for all a € A it holds that |w]s, = [¢[1...1]|a}

and for every t € A% and all m € IN, it holds that
U yg,l,m) c yg(m)
=1

Thus we get the following proposition.

Proposition 4.6. For every t € A> and all m € INy it holds that

f: T (yﬁ’l’m)) = (G y§7l7m)> <w <37_§<m)> .

=1 =1

4.5. THE PROOF: STAR-LIKE PERTURBATION FUNCTIONS 83

Altogether, we have established the following relation between the sum over all terms (4.17)
over all [€ IN; and the weight of the set yﬁ(m)

Lemma 4.4. Form € IN, and t € A%,

o0 !
S > T owiextenti) < (/) (¥F7).

=1 acA™ i=k
Proof.
oo 00
ZH(SW] Z px (o, t[l...0) = (1/7) Z T (W(t’l’m > by Proposition 4.4
I=1i=1 acAm I=1
[e.e]
= (1/n)- Z T (yg hm) by Proposition 4.5
=1
< (1/n)7 (y " > by Proposition 4.6
This proves the lemma. O

Bounding 7 (J{g{m)) using the expansion of rational generating functions In order to

get a bound on the term 7 (y&m)) , we proceed as follows: after having given the regular speci-

fication of the set Vx, we translate this specification into the language of generating functions,
where we use the variable z to mark the length, i.e., the number Zf\il(]w]m + |wl(1—p,)) for a
word w € Vx. Also, we symbolically use the letters as variables. A regular specification for a
set of combinatorial objects translates into a invariably positive rational generating function,
where we have the following relationship between the operators of the regular description and
the algebraic operators: let a,b € B. Then wunion, i.e., 'a|b’, corresponds to 'a+ b’, Cartesian
product , i.e., 'a b’, corresponds to 'a - b’ and sequence building, i.e., 'a*’, corresponds to
1/(1—a) (where a # €). Thus, the regular specification of the language Vx readily lends itself
to the following ordinary multivariate generating function, where the atomic elements of the

regular specification are treated as variables. A formal proof is given in the Appendix 4.A.

Lemma 4.5 (MGF of valid words). The ordinary multivariate generating function corre-
sponding to the language Vx is

-1

M
= . z : 5a’paj’77j'
5777/7)_H 1 53. pa 1_(1_77])

acA j=1
where

L4 ﬁ:(7717"'777M7(1_771)7"'7(1_771\/[));

-

(] (5:((51;,...,(52) and

L4 ﬁ: (pAa'-'aPLPAl,...pZM)_

Here the variable z marks the number Zi]\il(|w|m + |wl(1—p,)) and the other variables mark
the number of occurrences of the respective letters.

84 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

In order to evaluate = (J/g(m)), we follow the weighted words model: this is, the former

variables are treated as parameters in the new generating function. The respective function

is then
-1

> N . . al 5a'paj'77j'2
Ze(2) =[] [1-tapa—>

acA j=1 L= (1 —m)-z

We use the following result on the expansion of rational functions (Theorem 2.1) given in the
preliminary Section 2.3.

Theorem (Ezxpansion of rational functions) If f(z) is a rational function that is analytic at

zero and has poles at 21 < 2z < ... < 2z, then its coefficients are a sum of exponential
polynomials: there exist k polynomials IT;(z),...,IIx(2) such that for m larger than some
fixed my,
k 1\™
A = o mym) - ()
j=1

Furthermore, the polynomial II; has degree equal to the order of the pole at z; minus one.

Clearly, Z x(z) is analytic at zero. By construction of the regular language Vx, all poles
of Z are of order at most N (where N is the cardinality of A). Let Z; < ... < %, where
r" € {1,...,N}, be these poles (which have not yet been specified) and let Z; the pole of
smallest modulus. Then according to the above theorem we have that

w (V) = 27 2x = iz:;nxm) (2) =(2)" gm(m), (419)

where for i € {1,...,7'} II; is a polynomial of degree at most equal to the order of the pole
at z; minus one. We claim that the pole of minimum modulus of Zx(z) is strictly larger than
one. This proves (1) of Claim 4.2.

Claim 4.6. Assume that for all i € {1,..., N} it holds that pa, < 1 and 0a; < 1. Then the
pole of minimum modulus Z1 of the function Zx(z) satisfies zZ1 > 1.

Proof. To see that Z; > 1, consider the i-th addend of the product sum for i € {1,...,N}.
Its denominator is a function f; of the form

LA NP
fil2) = 10 pa — Y Pl U

- —m)2
M
Z Paij (1 5 5az"(1 — pai)'nj'z>
= N — Oa; "Pa; —)
i.e., it is a convex combination of a family of functions f;1,..., fi ;r, where fori € {1,..., M},

5ai'(1_pai)'nj'z
1—(1—mnj)- 2

fij(z) =1 =64 - pa; —

4.5. THE PROOF: STAR-LIKE PERTURBATION FUNCTIONS 85

has its (unique) root at

1 — 0a,pa;
— 0a;pa; — (1 — 5ai)77j
and is positive in [0, z; ;). Note that for all j € {1,..., M}, z;; > 1 holds particularly because
both d,, < 1 and p,, < 1. For any convex combination Z]J‘/il Aj - fij(2) with Zj\il Aj=1it
holds that the root z; of the convex combination satisfies

. (1 — pa;0a;) -
S R) .
%2 1£gl‘l§nM{zz’]} <11SI;E%}J(V[(1 - pai5ai) - (1 - 5ai)77j =

Zi’jzl > 1

5 N
Now, the pole Z; of smallest modulus of Zx(z) = [] f.%z) satisfies
i=1""

-1
~ (1 — paiéai) — (1 — 5ai)77j
Z1 2 (g@)}(v (1= pod) > 1.

1<5EM

This proves the claim. O
Now, we are in a position to prove the exponentially decreasing upper bound on ®(¢,m, d).

Proof of Claim 4.2. First note that (1) follows from Claim 4.6. To see that (2) holds:

[dm]
o(t,m,d) = 2- Z (Z ,uX(oz,t[l...l])>2 (Def.)
aceA™ =1
< 20dm] >0 Y px(entl.. 1)? (Ineq. (4.12))
=1 ac A™
oo 1
< 2[dm))/(0)> [6ua- D wx(at]l...0]) (Lem. 4.3)
=1 1i=1 aceA™
< (2[dm))/(#3) = (yﬁg”’) (Lem. 4.4)
= (2[dm])/(70)- [2™] Zx(2) (Lem. 4.5)
< (2[dm))/(7b)- ZHZ-(Z) . <§—11>m (Thm. 2.1 and Ineq. (4.19))

for all m > myg, where my is the constant given by Theorem 2.1. Since [dm] < (d+1)-m the
claim follows with II(z) = (2(d + 1)m)/(76) - Z’;l IL;(2). O
4.5.5 Bounding ¥(t,m,d)

In this section, we show that the for d € IR sufficiently large and all m € IN,

Ut m,d) < c- <i>m

Z1
where Z; is defined as in Claim 4.2. To this end, fix

d=gqef min{d € R : (Ve pmax <1) A (e-(d +1) - (pmax)? ~+ < 1/71)},

86 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

where ppax = maxge 4 pq Was the maximum deletion probability. Set

d+\1/_
C4.3 =def =
¢ (- d+\/_ pmax)

Here, e =~ 2.718... is the base of the natural logarithm and 7 = mingew n,. We prove
Claim 4.3 by showing that for the above choice of constants it holds for m € IN, that

1 m
\I,(t7m7d) <c43- <~_> .

<1

Proof of Claim 4.3. Let d and pyay be defined as above. We start as follows:

U(t,m,d) = 2- Z(Z u(omf[lml]))2

acA™ |=[d-m]+1

Z Z (o, t[1...1])

a€A™ [=[d-m]+1

= Z Z,u(atl

I=[d-m]+1 aEA™

IN

This holds particularly, because we deal with probabilities, i.e., quantities less than one. Thus,
we have bounded W(t,m,d) by that part of the probability mass induced by X on input ¢
which corresponds to the cases in which X has read a relatively long prefix of . Next, we
consider the expansion of) im p(a,t[1...]]) for a fixed [> [d-m] + 1 due to Lemma 4.2:

Z (o t[1...1])
acA™
M

l
< 1/77, Z H(f(mz)pt[z}+(1_f(mz))z pt[i}jnj(l—nj)mi*)

mi+...4+mp=mi=1 =1

1/7- (m l+_l1— 1) - (Pmax) ™™ (4.20)

IN

Inequality (4.20) follows from the fact that for [> [d-m] + 1 in every decomposition m =
mi1 + ...+ my of m into | non-negative addends, there are at least [— m indices 4, where
1 <4 < such that m; = 0. For each such m;, it holds that f(m;) = 1 and thus a factor of
Pefi] < Pmax is “added” in the product. Also, there are at most (m+l1 1) such decompositions.
Using Stirling’s Approximation for the binomial coefficient and Fact A.6 we may further bound

as follows:

Z Z N(Oé,t[l...l]) < 1/77 Z <ml+_l1_1> : (pmax)l_m

I=[d-m]+1acA™ I=[d-m]+1
= ([d-m]+m+1
< 1/7- (d=1)m [. l
< 1/ (Pmax) Z m (Pmax)
=0
d+1/g

IN

f] . (€(d+1)(pmax m Z d+\/7 pmax
=0

4.6. EXTENSIONS 87

A (Z\fé-pmx) (e(d+ D (pmax))™ (4:21)

1 m
= (43" <T> .
Z1

Here, (4.21) holds, because e(d + 1)(pmax) @ < % by our choice of d. Hence, Claim 4.3
follows. O

4.6 Extensions

4.6.1 Upper and lower bounds for semi-read deterministic perturbation
functions

4.6.1.1 Arbitrary read-semi-deterministic perturbation functions

For semi-read-deterministic perturbation functions, we can give non-matching lower and upper
bounds. Non-matching upper and lower bounds can also be found in the dichotomous-type
of result of Devroye [Dev84]. The upper bound follows from the last theorem. For the lower
bound, we need the following proposition

Proposition 4.7. Let X = ({s}, W, ur, uw, o) be a read-semi-deterministic PFA over a finite
alphabet A in canonical form and let

N
_ 12

Then for all € > 0,
H(A*n,X) > 2(1 —€)logy/p,n — o(1).

In principle, the proposition follows directly from Proposition 4.2 and the well-known results
on the height of random tries over memory-less sources (cf. Section 4.2.1), if would allow as
input a set of n equal strings each of which is composed of exactly one input symbol. But,
since a trie is built over a set of distinct strings, we have to be a little more carefully: to
overcome this obstacle, we consider an input set composed of n distinct strings each of which
starts with a prefix t € {a}™ for m sufficiently large such that the influence of the suffixes of
the strings can be neglected and the analysis reduces to the classical analysis, i.e., the case of
analyzing tries over memory-less random sources.

Proof. Let X = ({s}, W, ur, pw, o) be a read-semi-deterministic PFA over the finite alphabet
A in canonical form. Let P, be defined as above and let A be a set of n infinite strings each
of which starts with 2n repetitions of a symbol a € A such that

N
Py =Y Qalil*.
=1
Clearly, it holds that

o0 — >
HUAmX) = o B | maxep(X(3). X(0)| > B | ma ep(X (s). X(0)
(Vs!LG‘g_)ns#t

88 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

For 0 < e < 1, let k = 2(1 — ¢)logy/p,n. For every string s € A the probability that
| X (s[1...2n])| > k, i.e., that the computation of X on the prefix of s of input length 2n has
length at least k satisfies

P{|X(s[1...20))| > k}

1 -P{|X(s[1l...2n])| < k}
1 — P{at least 2n — k symbols are deleted}

= 1- ki (in) - (pa)™ "

=0

1—(pa)" - (k (%)k : (pa)”_k>

214@m@@ﬁWWMMw§
= 1-o((pa)").

Now, with probability 1—o((pa)™) the prefix of length & of the output of the computation of X
on s has the same distribution on AF as the prefix of a string that is written by a memory-less
random source with parameter vector P € (0,1)". For such a source and two random strings
s,t it holds for every m € IN that

v

v

P{lcp(s, 1) > m} = Py,

Let A = {s1,...,5,} and for p,v € {1,...,n} let C,, = lep(sy,s,). Now, we can follow
essentially the same vein as in the computations for the memory-less random source (see
Section 4.2.3 in [SzpO01]): since k is exponentially smaller than n, we have for n sufficiently
large that

n2
Si= Y P{C;>k}> T PY - (1= o((pa)"))?

1<i<j<n
and
' n' 2k ny\4 n' 2k
Sy= > P{Cy=kACy =k} < — - PF(1—o((pa)")* < — - P
— 16 16
1<i<j<n
1<e<f<n
{530 {e, f}=0

and

Sy= > P{Cic>kNCe>k}<n® Pf (1—o((pa))")* <n® Pf,

1<i<j<n
1<e<n

where Py = SN Q,[i]?.
Claim 4.7 (Lemma 4.4 in [Szp01]).

N 1/3 N 1/2
7 = <Z Qa[i]3> < <Z Qa[z']2> = 5"
=1 i=1

Let H be the height of a trie which is build over the set A. Using the second moment method,
we arrive at
St

> > -
PUH >k} > S1+ 85+ 54

4.6. EXTENSIONS 89

(1 - o((pa)™))?
4n=2 . Py ¥ 41416 - P§/(n - P3*)
(1 - o((pa)™))?
1+ 4n=2 4+ 16n—=¢
= 1-0(1/n%),

where the last inequality follows from k£ = 2(1 —¢) log; /p, M- The above implies that for every
e >0,

H(A® n,X)>E Jmax lep(X (s4), X (s5))| = E[H] > 2(1 — €)logy p, n — o(1).

This proves the proposition O

Remember that for a semi-read-deterministic perturbation function we can identify with
each input symbol a € A a writing state ga. Let 7, be the corresponding return probability.
The function Z simplifies as follows

B = T (1 by - oo 0= pa) 2
X —i:1 a; " Pa; 1_(1_?7%)'2 :

Here, the pole of the i-th component for i € {1,..., N} is

AN !
Zs = _ . .
’ 1-— 5ai * Pa; "Tas

The pole of minimum modulus of the function Z is z = 1211i<nN Z;. This implies the next
<i<

corollary.

Corollary 4.2. Let X = ({s}, W, ugr, pw,0) be a read-semi-deterministic PFA over a finite
alphabet A in canonical form. For a € A let

56. = Pa + (1 - Pa) . = (NW(Qa7b7Qa) + NW(Qa7b7 S))

ax
cA
and let

* v =max (ZbeA (1w (¢a; b, ¢a) + 1w (a, b, 8))2) and

=1

> . 1-6

e Z—=min (1 — a_ .) .
aEA(1—0a-pa e

Then for all e > 0 it holds that

2(1 —¢)logy/yn —o(1) < H(A®,n,X) <2[(1 +¢)logzn] +o(1).

4.6.1.2 Random substitutions

For the perturbation function SUB, on binary input strings, computed by the PFA depicted
in Figure 4.1, we can even show matching upper and lower bounds on H({0,1}*°,n,SUB,).

90 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

Theorem 4.3. Let p € (0,1) and let SUB,, be the perturbation function corresponding to the
PFA SUB,, (depicted in Figure 4.1). Let Po = (1 —p)? +p?. Then for n sufficiently large and
all e > 0,

2(1 —¢)logy p,n —o(1) < H({0,1}*°,n,SUByp) < 2[(1 +¢)log; ,p, n| + o(1),

Proof of Theorem 4.3. Assume that p € (0,1).
For the upper bound note, that SUB,, is a length-preserving perturbation function, i.e., for

all a,t € {0,1}=% we have that |[SUB,(t)| = |¢| and
P{SUB,(t) = a} = (1 —p)lI-@0pd),
where d(a, t) denotes the Hamming distance between o and ¢. Thus for m > 1 we have

P{lecp(SUB,(t),SUB,(t)) >m} = > P{aLSUB,®)}’
ae{0,1}™

= i > P{aLCSUB,(1)}?

1=0 «a€{0,1}™
d(o,t)=1

= i <T> (1 - p)2m=ip

1=0
= (A-p+pH)"

The upper bound follows from the tail-bound, i.e., Lemma 4.1, where mgo = 1, v = P» and
II(z) = 1. The lower bound follows from Proposition 4.7. This proves the Theorem. O

The analysis of the function SUB,, is also interesting from a second perspective: for p € (0,1)
and an arbitrary input string ¢ € A%, one has

lim — ln (ZO‘GA” P{SUB,(t)[1...m] = a}2>

m— 00 2m

=In(p” + (1-p)?)/2,

which equals the Rényi’s entropy of second order for sub-words produced by a biased memory-
less random source with parameter vector P = (p,1 — p) € (0,1)2. Thus, for this particular
case out analysis nicely coincides with the known results. For the function INS,, an analogous
result seems already out of reach. Yet, there is also a direct analysis for the smoothed trie
height H({0,1}°°,n,INS,,) which does not require the machinery of star-like automata.

4.6.1.3 A direct analysis of random insertions

For the perturbation function INS,,, computed by the PFA depicted in Figure 4.2, the fol-
lowing result can be shown without using the machinery of star-like automata.

Theorem 4.4. Let p,q € (0,1) and let INS,, be the perturbation function corresponding
to the PFA INS,, (depicted in Figure 4.2). Let Q = 1/(pv/(1 —q)2 +¢*> + (1 — p))2
Pr = (pq)® + (1 — pq)® Then for n sufficiently large and all € > 0,

and

2(1 —¢)logy/p,n —o(1) < H({0,1}*°,n, X) < 2[(1 +¢)logg n] + o(1).

4.6. EXTENSIONS 91

In order to prove the theorem, we define a binomial coefficient on strings. Let o and 3 be two
strings over the same alphabet such that their lengths satisfy |a| = m < |3|. We define the
binomial coefficient, which counts the number of different occurrences of «a as a substring of

(g) =def [{(i1,- . im) 1 1 <iy < --- <y < |B] and Blix] ... blin] = a}].

The next lemma will be very useful.
Lemma 4.6. For all « € {0,1}=%, m € IN, and z,y € R

g _ _ m _
Z glBhi=leliylBlo=lelo — (z + y)™ 1o,

a |

|8|=m
Proof. First, we give a recursive definition of the generalized binomial sum.
Toae:8) =t 32 ()t -t
=m

For arbitrary b € {0,1}, we can decompose Ty, op(2,y) as

Ta) = 30 (1 Jaloh ey oo

1Bl=m
. BOY L1801~ fabls B0lo-lablo 4 (P1Y IB11~labls, 81le~lablo
ab ab
Bj=m—1
- ¥ OY @ —p) (7)) zioh—tabh ylaoio—latio |
Blamet ab @

+ BIZZ:_l <<(fb> + b(g)) $|61|1_‘ab|1y‘51\0—|ab\0

- ¥ (5) (218 —lodlay 14+18lo=lablo 51+ —labl1y |Blo—lablo) 4

|Bl=m—1
- <§>(xﬁl1—a|1ylﬁo—lao)((1_b)x‘byb+bx1‘by—(1—b))
|Bl=m—1
= (w + y)Tm—l,ab(xy y) + Tm—l,oz(xy y) (422)
Now we can proof the lemma by induction on m: for m = |a] > 0, we obviously have

Tm.o(z,y) = 1. Now suppose that the claim is true for m — 1 and all &/ with |o/| < m — 1.
Let o = o/b. We get

Tm,a (‘7:7 y) = Tm,a’b(xy y)
= @+ Y Tn-1.05@) + Trn-1,0(2,9) (4.23)
= (z+vy) <m|;| 1> (z +y)m el 4 <|7Z| __11> (2 +y)™ el (4.24)

= ()eror

92 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

Here, Equality (4.23) follows from the the recursion, i.e., Equality (4.22), and Equality (4 24)
from the induction hypothesis. The last line follows from the identity (Z) = (";1) + (o 1) for
binomial coefficients. This proves the lemma. O

Having proved the lemma, we are now able to prove the Theorem concerning the smoothed
trie height under the perturbation function INS,,.

Proof of Theorem 4.4. For an input string ¢ € {0,1}* and a fixed output string a € {0,1}"
we get2

n o . . — g)lali—ltl.d
P{a CINS,,(t)} = Z <t[1 o 2]) (1=p)pm—. -9 —— (4.25)
=0

lajo—[t[1...4]]o
(g)

Here, Equality (4.25) can be seen as follows: since INS,, is a elongating mapping, a fixed
prefix a is the result of a computation of INS,, on input ¢[1. ..], where 1 <4 < m. For a prefix
of fixed length i, there are exactly (t[flﬂi]) ways to choose the ¢ positions at which the original

symbols t[1],...,t[i] appear in a. Then, the symbol 1 must be inserted ||y — [¢[1...1]|1 times
and the symbol 0 must be inserted |ajop — |¢[1...4]|o times, where for a fixed choice the order
of insertions is fixed and thus the probability is (1 — q)'o“l_'t[l"ﬂ‘1q“’|0_|t[1"'i”0. Using this we
get that

P{lcp(INS,4(t),INSp4(t)) > m}
=) P{aLCINS,}’
ae{0,1}™
q)lah—lt[l---i}h

= X <§: <t[1.a..i]>(1_p)ipm_i. ((1q_a|o—t[1---ﬂ|o)—1 >2

ae{0,1}m “i=0
S 2 (1 = g)2lehi—2l1.:
1-q)
= +1) p)*p*m- ”(“ .>-(4.26
< ae‘{og:l}mm ; t[l...1] (qz\a|0—2|t[1...m0)—l ()
- 1 — g)2lehi—2lL.dlh
< _|_1 2z 2(m z)(« >(497
- ae{%;}mm zzg (> ¢1...4] (q2\a|o—2|t[1---iﬂo)_l (427)

(1 — g)2eh=2ltl1-

= (m+1) Z(> p)? P Z (t[l,a,.z‘]) (qz\alo—2\t[1~~i]|0)_1

ac{0,1}™

— (mt) f:< > p)ip2m=1) (T‘) (1—q?+g)" (4.28)

< (m+1) ((1—q)? +q2—|—(1—p))2)m.

Here, Inequality (4.26) follows from Cauchy’s Inequality. Inequality (4.27) holds because
(t[lé{..i]) < (T) and Equality (4.28) is an application of Lemma 4.6. The upper bound then
follows from the Tail bound, where mg =1, v = 1/Q and II(z) = 1- z + 1. The lower bound
follows from Proposition 4.7. This proves the theorem. O

2In order to make the formulas shorter, we write 721 in stead of a - b.

4.6. EXTENSIONS 93

4.6.2 Smoothed trie height for restricted input sets

Theorem 4.1 gives necessary and sufficient conditions for a perturbation function X over an
alphabet A such that H(A*,n, X) € O(logn) if and only if the conditions are satisfied. Cer-
tainly, these conditions are quite restrictive in the sense that they require X to be absolutely
perturbing: for every symbol b € A it is required that there are at least two distinct symbols
that occur with positive probability as prefix of the non-empty computation X (b). In order to
account for a more realistic situation, we now show that the requirement of being absolutely
perturbing can be weakened. We assume that the alphabet A is composed of two distinct
alphabets Ap and Ap, where the subscripts stand for non-perturbing and perturbing, re-
spectively. The semantics is the following: let A = Ap U Ap. Assume that the perturbation
function X : A — A is such that the restriction on Ap is the identity, i.e., for all @ € A it holds
that P{X(a) = a} = 1, and the restriction on Ap is absolutely perturbing. Clearly, in this
setting H (A, n, X) is unbounded, because for every string ¢ € .A‘]% it holds that X maps ¢
onto t, deterministically. We therefore consider only inputs from a subset £ C A°° which is
such that for all ¢ € £ and every sufficiently long substring of ¢ there is at least one symbol from
the set Ap in the substring. In this revised setting, we can prove that H(L,n, X) € O(logn)
if and only if the restriction of X on Ap satisfies the conditions of Theorem 4.1. Note that
in the proof of Lemma 4.3, it is not claimed that the ¢’s are strictly less than one. It is easy
to see that if for all sufficiently long sub-strings of the input a constant fraction of the §’s is
strictly less than one then we can amortize those d’s over all other §’s which are equal to one.

Theorem 4.5. Let Ap and Ap be distinct finite alphabets and let A = ApUAp. Let L C A*®
be a set of infinite strings such that there exists a constant T = 7(L) such that for all t € L
and i,7 € IN such that j > 7 it holds that

> It i+ glla > 1

acAp

Let X = ({s}, W, ug, pw,0) be a star-like perturbation function over A in canonical form,
which is equal to the identity when restricted on Ap and assume that for all a € Ap it holds
that p, < 1. Then the following statements are equivalent.

(1) (Va€ Ap)(Ya € A) pa+ D cw Pag - (tw(a,0,q) + pw(g,b,s)) < 1.
(2) H(L,n,X) € O(logn).

Proof. Let Ap = {A',...,Z'} and Ap = {A,...,Z} be distinct finite alphabets and let A =
ApUAp and let £ and 7 be the set of strings with its corresponding constant.

In order to prove the equivalence of the two statements, we claim that (2) = (1) and that
(1) = (2). Then, the theorem follows. The first claim follows from the same reasoning as the
respective claim in the proof of Theorem 4.1.

Claim 4.8. In the setting of Theorem 4.5, it holds that (2) = (1).

Proof. We prove the claim by contraposition: to this end assume that (1) does not hold, i.e.,
there are symbols a € Ap and b € A such that

pr(s as)+ > nr(s,a,q) - (w(ab,q) + pw(,b,s) = 1.
qeW

94 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

Thus P{b C X(a)} =1 — pgr(s,a,s). Let t = aa... and let s =bb.... Then X maps ¢ to s
with probability one. Therefore, H(A>, n, X) is unbounded. The claim follows. O

The proof of the second claim is along the lines with the proof of the respective claim in
the original theorem: we have

P{lep(X (), X (t)) > m} < ®(t,m,d) + V(t,m,d),

where for m € Ny, d € IRy and t € L,

[d-m]
O(t,m,d) = 2Z<Z,uxat))
acA™ =1

and

witmd)= 2. Z px(a,t[l...l]))z.

Q€A™ I=[dm]+1
Claim 4.9. Assume that (1) holds with 6 < 1, i.e.,

0= max | pat D paj - (1w (1, 0,05) + pw (g,b5)

acA
beA J=1

Let d € Ry be arbitrary but fived and let v = (8)'/7. Then there exists a polynomial I1(z) of
degree at most || A|| and a constant my € IN; such that for all m > my,

Proof. Let d € IRy be arbitrary, but fixed. From Lemma 4.3 and Cauchy’s Inequality, we get

oo 1
o(t,m,d) < (2[dm])/6- > [[6ug D wx(etl...1]),

1=11=1 aEA™

where 0y = ... =0z =1 and for a € Ap, J, < § < 1. By averaging we find that for [€ IN,,
Hétm S pxlantl) <4176 3 pxlant]l.). (4.29)
acA™ acA™

Let Z; be the pole minimum modulus of

-1

Zx(2)= [| 1= ee - Z T

acA 1 B 77]

Now, for m > mg, where mg is the constant from Theorem 2.1, and II(z) the polynomial of
degree at most ||A|| corresponding to the expansion of the function the sum of the right-hand

side of (4.29) can be bounded by

Y et <0Gy (£

acA™

4.6. EXTENSIONS 95
By Claim 4.6 (i.e., that v < 1 and for all a € A, p, < 1) it follows that Z; > 1. Therefore

d(t,m,d) < 2(d+1)m/s* - (m) - <i>m

Z1
which proves the claim. O

Now, by Claim 4.3 we have that for suitable constants ¢,d € IR, it holds that for all m € IN,,

U(t,m,d) < c- <i>m

Together this gives that for m > my,
1 m
P{lep(X(t), X (t)) > m} < U(t,m,d) + ®(t,m,d) < (c+ 2(d + 1)m/5? - TI(m)) - <~—> :
21
Thus we may apply the tail-bound.
Claim 4.10. In the setting of Theorem 4.5, it holds that (1) = (2).
This proves Theorem 4.5 O

4.6.3 Smoothed height of b-tries

In this section, we study the smoothed height of b-tries (see the preliminary Section 2.2.4 for
a formal definition of b-tries). For sp,...,sp41 € A5 let

lep(s1y vy Sp+1) =der max (j € IN ¢ (Vi€ {2,...,0+1}) s1[0...j] C s;)
be the function that measures the length of the longest common prefix of s1,..., Sp11-

Definition 4.5. Let b € IN, and let A be a finite alphabet and let S C A be some non-
empty set of infinite strings over A. Given a perturbation function X : A — A= the

smoothed b-trie height for n strings over the set S under the perturbation function X, denoted
by H(S,n,X), is defined by

H(b)(S,n,x) =def MAX E| max lep(X(t1),...,X(tp+1))

ATan t1,..tpr1€A

We can bound the height of a b-trie using a generalized version of Lemma 4.1. Before, we
need the following lemma.

Lemma 4.7. Let k € IN, and let b € IRy satisfying b > 1 and let by + ... + b = b be a
decomposition of b into strictly positive real addends. Let ai i, ..., a1, Q% 1,--.,0n € R4

such that for all j € {2,...,k},
n n
Dl =) aj,
i=1 =1

Then
n n
b b
E apy ol < g a({ﬂ- (4.30)
i=1 i=1

96 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

Proof. The proof is by induction over k:

Induction basis: for k =1, (4.30) holds with equality.

Induction Step: let £ > 1 and assume that (4.30) holds for all decompositions of b into up
to £ — 1 addends. Then

by, b—by
n)) n . b b n) b b b
doala < (D)t | Do e) (4.31)
=1 =1 i=1
by, b—by,
n b n b
b b
S <Z al’i> . (Z al’i> (432)
i=1 =1
n
b
= D_dl;
=1

Here, Inequality (4.31) is an application of Holder’s Inequality (Fact A.4) and (4.32) follows
from the induction hypothesis and the assumption, i.e., that > i ; alii >S5 az ;- This
proves the lemma. O

Lemma 4.8 (Tail-bound for smoothed b-trie height). Let b € INy and let A be a finite alphabet
and let my € IN and v € IR satisfying 0 < v < 1. Let X : A= — A= be a perturbation
function and let S € A® be a non-empty set of infinite strings. Let n > ~~™0/(®+D) " If there
is a polynomial T1(2) of fized degree d € IN, such that for all s € S and all m > myq it holds
that the coincidence probability of two independent perturbations of s satisfies

> P{a T X(s)}"" <T(m) 4™,
aeA™

then for all € > 0 it holds that

H®(S,n,X) < (b+1)-[(1+¢)logy/,n] +o(1).

Proof. The proof follows the same vein as the proof of Lemma 4.1. Let S be a non-empty set
of infinite strings over a finite alphabet A. Let € > 0 and let k¥ € IN; be arbitrary. Then from
Boole’s Inequality, we arrive are

e e}

HO(S,n,X) <k+n" Y- . max _ P{lep(X(t),.., X(th1)) > i} (4.33)
i=k+1 Lorntotd

Now, we can expand each addend of (4.33) as

max SP{lcp(X(tl), ooy, X(tprr)) > 1}

t1,. o tpp1€

= max Z P{OzEX(tl)}'...'P{OZEX(tl)}

tl,...,tb+1es acAi

IN

P{a C X(t)*H!
Igleag;i {a T X))},

4.6. EXTENSIONS 97

where the last inequality follows from Lemma 4.7. Let d € IN; and let II(z) be a polynomial of
degree d such that the assumption of the theorem holds. Set k = (b+1)-[(1+¢)log;,, n] > mo.
Then

(b) < b+1 | - b+1
HY(Sn,X) < k+n Z %%XZP{Q—X@)}

i=k+1 ac At
o0

< (b+1)-[(1+¢e)log,/,n] + > (i) - n . o
i=(b+1)-[(1+¢) logy /., n]+1

Again, it is easy to see that the latter term is in o(1):

[e.e]

Z H(Z) . nb—l—l . ’Yi

i=(b+1) [(1+¢) logy ., n]+1
= ZH((b +1) - [(L+¢)logy), n] +1) - ptt1 . DT logrys nl L i (1),
i=1

This proves the lemma. O

Theorem 4.6. Let b € IN. and let X be a star-like string perturbation function over a
finite alphabet A in canonical form, represented by the PFA X = ({s}, W, ur, uw, o), where
W ={q,-..,qum}, such that for all a € A it holds that p, < 1 and such that Statement (1) of
Theorem 4.1 holds with 0, < 1 fora € A, i.e.,

M
da =max | pa+ > paj + (1w (a5, 05) + uw (g5, b,5))
j=1

Let Z be the pole of minimum modulus of the function

—1

N 3 L _M5a',0aj-77j'z
ZX(z)—H 1— 9, Pa Z—

acA P U A
Then for P = (2)!+D/2] and n sufficiently large and all € > 0 it holds that

HO®(A® n,X) < (b+1) - [(1+¢)logpn] +o(1).

Proof. Let b € IN;. If the conditions of the Theorem hold, then there according to Claim 4.4
there are constants c¢,d € IRy and mg € IN; and a polynomial II of degree at most N such
that for all m > mg and all s € A% it holds that

Z P{aC X(s)}""" < Z Pla C X(s)}2L0+D/2]

aceA™ aceA™

(L[(b+1)/2]
> PlaCX <s>}2>

acA™

(e 1) (1>m> s

The theorem then follows readily from Lemma 4.8. U

IN

IN

98 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

4.7 Bibliographic notes

A profound introduction into the average-case analysis of algorithms on strings can be found
in the book of the same title by Szpankowski [Szp01|. Tries were first introduced and analysed
by Fredkin [Fre60] and Knuth (the actual version of the book is [Knu97]).

The height of random tries built over n independent strings produced by an unbiased
memory-less source has been analysed, e.g., in [Knu97, Fla83|, where the authors of [FO82,
Fla83, FS86] used methods from complex analysis to derive the asymptotic distribution of
the height of random tries. The techniques therein were then generalized to binary strings
produced by a biased memory-less source by the authors of [JR86]. Szpankowski [Szp91],
Szpankowski and Jacquet [JS91a| and Szpankowski and Apostolico [AS92] have examined the
height of random tries under different premises using a completely different methodology than
the previous authors: instead of using methods which are nowadays subsumed under the notion
of combinatorial analysis, i.e., generating functions, integral and Mellin transforms, saddle
point methods and suchlike, they used probabilistic tools, such as bounds on order statistics
of (nearly arbitrarily distributed) random variables and the second-moment-method [ASO00]
to derive sharp estimates for the expected trie height. Szpankowski [Szp91|, Szpankowski and
Jacquet [JS91a| and Szpankowski and Apostolico [AS92] have examined the height of random
tries under strings produced by a Markovian source. Clément, Valleé and Flajolet [CFV01]
have analysed the height and other parameters of random tries under the symbolic dynamical
systems. Additionally studies of the height of random tries can be found, e.g., in [Dev02,
Dev05].

The height and other parameters of random PATRICIA trees and other trie-like data
structures has also been analyzed: clearly, the height of a PATRICA tree over a set of strings
is bounded from above by the height of a trie over the same set of strings. Sharper results
on the asymptotic distribution function of the various parameters of PATRICIA trees have
been derived. Particularly, the height of a PATRICA tree is on average 50 percent smaller
(see, e.g., [Pit85, FS86, Szp88, Szp9l, Dev92a, Dev02, Dev05| and references therein). In
contrast to PATRICIA tries and ordinary tries, where the average height is in ©(logn) for
many string density functions, the average height of a LCP trie over a set of n independent
binary strings produced by a memory-less source can be shown to be in O(loglogn) in the
biased case and O(log* n) in the unbiased (or symmetric) case. The theoretical enhancement
which is achieved by the level- and path-compression technique over ordinary tries and has
been analysed in [AN93, AN94, Dev01, DS05|. Suffix trees have been analysed under memory-
less sources in [JS91b, Szp91, AS92, DSR92, JS94| and under the assumption that the random
source satisfies the mixing condition in [Szp93b, Szp93a).

4.A. A DETAILED PROOF OF LEMMA 4.5 99

Appendix 4.A A detailed proof of Lemma 4.5

Lemma (Lemma 4.5) The ordinary multivariate generating function corresponding to the
language Vx is

—1

M
2 R,
Zx(2,0,1,p) = I I 1—6a-pa Z a*Paj 1

acA j=1 1—(1—773‘)’2
where 7 = (gu,...,m(L—=m),....(d—=mm)), 6 = (On,...,07) and § =
(Pas- - P2y PAL, - - - pzar). Here the variable 2 marks the number SN (|w|, + [w|(1—p,))

and the other variables mark the number of occurrences of the respective letters.

Proof. In order to make the proof more readable, we mark the number of occurrences of a
letter by a variable with the corresponding Latin symbol.

e Fori e {l,...,N}, 6,5, is marked by d;.

e Forie {1,...,N}, pa, is marked by 7;.

e Forie {1,...,N} and j € {1,..., M}, pa,; is marked by 7; ;.
e For j € {1,..., M}, n; is marked by e; and

e For je{1,...,M}, (1—n;) is marked by (1 — ;).

Also, z marks the number Z£1(|w|m + |w|(1—p,)). Consider the i-th addend in the product
for i € {1,... N}. The {0a, pa,} is generated by the multivariate generating function (MGF)

9i(di,ri) = di -1y
For j € {1,..., M}, the set of words
{5211' Pa;j 77j,5a1~ Pa;j nj(l_"?j)’éai Pa;j nj(l_nj)(l_nj)7 .- }
is generated by the MGF

di-rii-e; 2
fij(z’diari,j,ej,(l—ej)): i Tij " €5

Now i € {1,..., N} the words corresponding to the regular expression
(0a; pa; | 0a; pastm (L=m)" | ... [0a; pa,n x (1=701)")" (4.34)
are generated by the function
filz,diyrisrin, ... i, et ... enm, (1—er), ..., (1—en))

-1

M
= | 1= gi(di,ri) =D fij(z,dirij e, (1=¢)))
=1

100 CHAPTER 4. SMOOTHED ANALYSIS OF TRIE HEIGHT

-1
di-ri7j~ej-z

M
S 5 T AP Y e
" Zl—(l—ej)'z

i=1

Now, the set Vx, which is defined by a regular expression that is the concatenation of the
regular expression (4.34) for each input symbol a; for i € {1,..., N} is generated the the
product over the corresponding MGF’s. Re-substituting the respective variables proves the
Lemma. O

Chapter 5

Conclusions

per aspera ad astra

In Chapter 3, we have studied the complexity of finding spanning trees whose metrics ap-
proximate graph metrics under various similarity measures, computed by applying different
matrix norms to the distance matrix of the tree and the graph. We could show that all
problems are NP-complete independent of the norms used, except for the case of minimizing
distances with respect to the L., matrix-norm which is the polynomial-time solvable minimum
diameter spanning tree problem [CGMS80, HT95|. For the DMST problem with respect to
the ||.]|1,, matrix norm, we could give an efficient polynomial time 2-approximation algorithm
for all 1 < p < oo. This version of the problem is particularly interesting for network design
and besides this has potential applications in combinatorial optimization. We have given an
example from the area of bioinformatics and have shown how the 2-approximation algorithm
can be used to find a 2-approximate solution for the multiple sequence alignment problem
under the generalized sum-of-pairs objective. For p > 1 those alignments tend to be more
balanced because large distances contribute much more to the objective than small ones do,
due to the convexity of the polynomial functions. For the DAST problems the version with
respect to the ||.||; o matrix norm was particularly interesting because it equals the problem
of finding an additive tree spanner. To the best of our knowledge we are the first to prove
the hardness of this problem. In order to be able to use such trees in the context of network
analysis, i.e., as combinatorial network abstractions, it is inevitable to look for approximation
algorithms, exponential algorithms with small bases, or fixed-parameter algorithms. Techni-
cally, an interesting problem is left open: no results are known with respect to the spectral
norm || - |2, i.e., ||A]l2 = Amax(A) where A\pax(A) is the largest eigenvalue of a symmetric ma-
trix A € IR"*". Notice that for a symmetric matrix A, we have ||A|l2 < ||A||L.00 < [|A]/L,p for
all p € INy and ||A|2 < |Al|z,00 < [|A]l1 = ||Allc- Can we expect that computing distance-
minimizing spanning trees with respect to || - ||z is polynomial-time solvable (in the light that
NP-completeness appears with coarser norms)?

In Chapter 4, we performed a smoothed analysis of trie height under star-like string per-
turbation functions. Our analysis gives a better analytical explanation to the practical per-
formance of tries and suchlike data structures on non-random inputs. For previous analyses
it was necessary to assume that the input strings are generated by some common random
mechanism. Our smoothed analysis of trie height shows that this assumption is though suf-
ficient not necessary. Moreover, a much weaker assumption turned out to be sufficient: even

101

102 CHAPTER 5. CONCLUSIONS

if an input is a worst case input then slight perturbations of that input suffice to turn it into
a “good” input. This is particularly interesting for biological sequences because such data
are frequently perturbed by mutations. More technically, it has turned out that worst-case
inputs are not only very rare in the input space — which already was known from the pre-
vious average-case analyzes — but moreover that they constitute isolated peaks in the input
space. The extensions of our analysis towards trading off restrictions of the input against
conditions for the perturbation functions has shown that it suffices to have very few random
perturbations in order to find a logarithmic trie height. Our analysis of the upper bound is
asymptotically relatively tight except for one step: the application of Jensen’s Inequality in
Lemma 4.3. For the other steps, particularly for the over-counting according to Lemma 4.4
and the resulting evaluation of the rational generating function, it does not seem that there is
an asymptotically tighter way. Besides this, the extension towards the analysis of b-trie height
shows that by increasing the number of strings that can be stored in each leaf of a trie, one
can easily diminish the expected height of the data structure and therefore from a practical
point of view showing a sightly smaller base at the cost of an even more involved analysis does
not seem worthwhile.

The analyses which we performed are only a first step, as they leave many new and chal-
lenging research problems, notably, the smoothed analysis of other trie parameters, and the
smoothed analysis of parameters of related data structures for information retrieval, e.g., LCP-
tries and suffix trees. Besides this, a further line of research is clearly directed towards more
general perturbation functions: star-like string perturbation functions only constitute a small
sub-class of all possible PFA-based string perturbation functions: particularly, in the model
which we have considered, “failures” are independent of earlier failures. For some situations
this assumption is unrealistic. Thus it is desirable to consider more general string perturbation
functions represented by arbitrary PFAs. Besides this, it is clear that not all possible string
perturbation functions can be modeled by PFAs: e.g., transpositions of unlimited length re-
quire a stronger model of automata. From this point of view, probabilistic push-down automata
are interesting, because they provide a way to model such random transpositions, which occur
frequently in non-random data such as DNA sequences.

Appendix A

Mathematical facts

In this section, we give a number of well-known facts which were used in our calculations.

Probability and combinatorics

Fact A.1 (Multinomial Expansion). Let ai,...,a, € R4. Then

|
n n: k
(4. +am)" = D g% . ofm,
kil k!
ki+..4+km=n

General inequalities

Fact A.2 (Cauchy’s Inequality). Let aq,...,an,b1,...,b, be real numbers. Then

(T ait) < (S a?) - (T ®). (A1)

We also make use of the following form:

(Criw) <neSa. (A2)

Fact A.3 (Minkowski Inequality). Let ay,...,an,b1,...,b, be real numbers and let p > 1.
Then

1 1

(Shalos)" < (Shalad?)” + (St i)

Fact A.4 (Holder’s Inequality). Let aq,...,an,b1,...,b, be real numbers and let p,q > 1
satisfying % + % =1. Then

o

1

2 im1 laabif? < (Z?=1 |ai|p) v (Z?:l |bi|q) .

103

104 APPENDIX A. MATHEMATICAL FACTS

Fact A.5 (Stirlings Approximation). Let n,m € IN;. Then

nl = v27n - (g)n <1+@<%>>.

Particularly, we have for the Binomial Coefficient that

n\m n e-mn\m
G = ()= (5"
m m m
where e = 2.7182... is the base of the natural logarithm.

Fact A.6. Let n € R. Then

1 n 1 n+1
<1+—> <e<<1+—> 5
n n
where e = 2.71... is the base of the natural logarithm.

Fact A.7 (Jensen’s Inequality). Let f : [a,b] — IR be a continuous function that is convex in
the interval [a,b], i.e., for all X € (0,1) and all x,y € [a,b] it holds that f(A-z+ (1 —X)-y) <
A f(x)+ (1 =N f(y). Let zy,...,2, € [a,b] and let \y,..., \, € RT. Then

D iy i fl%) S f(@)
i < ok)T Sk

Bibliography

[AKPW95]

[ANO3]

[AN94]

[ANOS]

[ANRV07]

[AS92]

[AS00]

[AV06]

[Awe85]

[BadHS04]

Noga Alon, Richard M. Karp, David Peleg, and Douglas West. A graph-
theoretic game and its application to the k-server problem. SIAM Journal
on Computation, 24(1):78-100, 1995.

Arne Andersson and Stefan Nilsson. Improved behaviour of tries by adaptive
branching. Information Processing Letters, 46(6):295-300, 1993.

Arne Andersson and Stefan Nilsson. Faster searching in tries and quadtrees - an
analysis of level compression. In Proceesings of the 2nd Furopean Symposium
on Algorithms (ESA’94), volume 855 of Lecture Notes in Computer Science,
pages 82-93. Springer-Verlag, Berlin, 1994.

Arne Andersson and Stefan Nilsson. Implementing radixsort. The ACM Journal
of Experimental Algorithmics, 3, 1998.

Heiner Ackermann, Alantha Newman, Heiko Roglin, and Berthold Vocking.
Decision making based on approximate and smoothed pareto curves. Theoret-
ical Computer Science, 378(3):253-270, 2007.

Alberto Apostolico and Wojciech Szpankowski. Self-alignments in words and
their applications. Journal of Algorithms, 13(3):446-467, 1992.

Noga Alon and Joel Spencer. The Probabilistice Method. Wiley-Interscience
Series in Discrete Mathematics and Optimization. John Wiley, New York, NY,
2nd edition, 2000.

David Arthur and Sergei Vassilvitskii. Worst-case and smoothed analysis of
the icp algorithm, with an application to the k-means method. In Proceedings
of the 47rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), pages 153-164. IEEE Computer Society, 2006.

Baruch Awerbuch. Complexity of network synchronization. Journal of the

ACM, 32(4):804-823, 1985.

Vikas Bansal, Friedhelm Meyer auf der Heide, and Christian Sohler. Labeling
smart dust. In Proceedings of the 12th European Symposium on Algorithms
(ESA’04), volume 3221 of Lecture Notes in Computer Science, pages T7-88.
Springer-Verlag, Berlin, 2004.

105

106

[Bar96|

[Bar98|

[BBMO3]

[BCDYY]

[BD02]

[BDLLO4|

[BEOS]

[Bea65]

[BHOS]

[BKMPOS5]

[BLMS*03]

[BLP97]

BIBLIOGRAPHY

Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic
applications. In 37th Annual Symposium on Foundations of Computer Science
(FOCS’96), pages 184-193. IEEE Computer Society, 1996.

Yair Bartal. On approximating arbitrary metrics by tree metrics. In Proceedings
of the 30th Annual ACM Symposium on the Theory of Computing (STOC’98),
pages 161-168. ACM Press, New York, NY, 1998.

Cyril Banderier, René Beier, and Kurt Mehlhorn. Smoothed analysis of three
combinatorial problems. In Proceedings of the 28th International Symposium
on Mathematical Foundations of Computer Science(MFCS’03), volume 2747
of Lecture Notes in Computer Science, pages 198-207. Springer-Verlag, Berlin,
2003.

Andreas Brandstddt, Victor Chepoi, and Feodor Dragan. Distance approxi-
mating trees for chordal and dually chordal graphs. Journal of Algorithms,
30(1):166-184, 1999.

Avrim Blum and John Dunagan. Smoothed analysis of the perceptron algo-
rithm for linear programming. In Proceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’02), pages 905 — 914. ACM Press,
New York, NY, 2002.

Andreas Brandstddt, Feodor F. Dragan, Hoang-Oanh Le, and Van Bang Le.
Tree spanners on chordal graphs: complexity and algorithms. Theoretical Com-
puter Science, 310(1-3):329-354, 2004.

Ulrik Brandes and Thomas Erlebach, editors. Network Analysis: Methodological
Foundations, volume 3418 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 2005.

Murray A. Beauchamp. An improved index of centrality. Behavioral Science,
10:161-163, 1965.

Ulrik Brandes and Dagmar Handke. NP-completeness results for minimum pla-
nar spanners. Discrete Mathematics and Theoretical Computer Science, 3(1):1-
10, 1998.

Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. New
constructions of («, 3)-spanners and purely additive spanners. In Proceedings of
the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’05),
pages 672-681. ACM Press, New York, NY, 2005.

Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, Guido
Schéfer, and Tjark Vredeveld. Average case and smoothed competitive analysis
of the multi-level feedback algorithm. In Proceedings of the 43rd Annual IEEE
Symposium on Foundations of Computer Science (FOCS’03). IEEE Computer
Society, 2003.

Vineet Bafna, Eugene L. Lawler, and Pavel Pevzner. Approximation algorithms
for multiple sequence alignment. Theoretical Computer Science, 182(2):233~
244, 1997.

BIBLIOGRAPHY 107

[Bra05|

[BSO5]

[BSO7]

[BV03]

[BVO6]

[BW90]

[Caio4]

[Cam78|

[CC5)

[CDO0]

[CFVO01]

[CG82]

[CG84]

[CGMSO]

[CGMS3]

Richard C. Bradley. Basic properties of strong mixing conditions. A survey and
some open questions. Probability Surveys, 2:107-144, 2005.

Avrim Blum and Joel Spencer. Coloring random and semi-random k-colorable
graphs. Journal of Algorithms, 19(2):204-234, 1995.

Jon L. Bentley and Robert Sedgewick. Fast algorithms for sorting and searching
strings. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’97), pages 360 — 369. ACM Press, New York, NY, 1997.

René Beier and Berthold Vocking. Random knapsack in expected polynomial
time. In Proceedings of the 35th Annual ACM Symposium on Theory of Com-
puting (STOC’03), pages 232-241. ACM Press, New York, NY, 2003.

René Beier and Berthold Vocking. Typical properties of winners and losers in
dicrete optimization. STAM Journal on Computing, 35(4):855-881, 2006.

Timothy C. Bell and Tan H. Witten. Source models for natural language.
International Journal of Man-Machine Studies, 32(5):545-579, 1990.

Leizhen Cai. NP-completeness of minimum spanner problems. Discrete Applied
Mathematics, 48(2):187-194, 1994.

Paolo M. Camerini. The min-max spanning tree problem and some extensions.
Information Processing Letters, 7(1):10-14, 1978.

Leizhen Cai and Derek G. Corneil. Tree spanners. SIAM Journal on Discrete
Mathematics, 8(3):359-387, 1995.

Victor Chepoi and Feodor Dragan. A note on distance approximating trees in
graphs. European Journal of Combinatorics, 21(6):761-766, 2000.

Julien Clément, Philippe Flajolet, and Brigitte Vallée. Dynamical sources in
information theory: a general analysis of trie structures. Algorithmica, 29(1-
2):307-369, 2001.

Paolo M. Camerini and Giulia Galbiati. The bounded path tree problem. SIAM
Journal on Algebraic and Discrete Methods, 3(4):474-484, 1982.

R. A. Cuninghame-Green. The absolute centre of a graph. Discrete Applied
Mathematics, 7(3):275-283, 1984.

Paolo M. Camerini, Giulia Galbiati, and Francesco Maffioli. Complexity of
spanning tree problems: Part I. Furopean Journal of Operational Research,
5(5):346-352, 1980.

Paolo M. Camerini, Giulia Galbiati, and Francesco Maffioli. On the complexity
of finding multi-constrained spanning trees. Discrete Applied Mathematics,
5(1):39-50, 1983.

108

[CGMS84|

[Che89]

[CLRO1]

[CSTVO4]

[DadHR*03]

[DBCPY7]

[DDGS03]

[DE00)

[Dev82]

[Dev84]

[Dev92al

[Dev92b|

[Dev01]

BIBLIOGRAPHY

Paolo M. Camerini, Giulia Galbiati, and Francesco Maffioli. The complexity
of weighted multi-constrained spanning tree problems. In Proceedings of the
Colloguium on the Theory of Algorithms, volume 44 of Colloquia Mathematica
Societatis Jdnos Bolyai, pages 53-101, 1984.

L. Paul Chew. There are planar graphs almost as good as the complete graph.
Journal of Computer and System Sciences, 39(2):205-219, 1989.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. The MIT Press, Cambridge, MA, 2nd edition, 2001.

Brad Calder, Timothy Sherwood, Nathan Tuck, and George Varghese. Deter-
ministic memory-efficient string matching algorithms for intrusion detection. In
Proceedings the 23rd Annual Joint Conference of the IEEE Computer and Com-
munications Societies (IEEEINFOCOM’04), pages 2628-2639. IEEE Computer
Society, 2004.

Valentina Damerow, Friedhelm Meyer auf der Heide, Harald Récke, Christian
Scheideler, and Christian Sohler. Smoothed motion complexity. In Proceed-
ings of the 11th European Symposium on Algorithms (ESA’03), volume 2832
of Lecture Notes in Computer Science, pages 161-171. Springer-Verlag, Berlin,
2003.

Mikael Degermark, Andrej Brodnik, Svante Carlsson, and Stephen Pink. Small
forwarding tables for fast routing lookups. In Proceedings of the ACM SIG-
COMM 97 Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication, pages 3—14. ACM Press, New York, NY,
1997.

Elias Dahlhaus, Peter Dankelmann, Wayne Goddard, and Henda C. Swart.
MAD trees and distance-hereditary graphs. Discrete Applied Mathematics,
131(1):151-167, 2003.

Peter Dankelmann and Roger Entringer. Average distance, minimum degree,
and spanning trees. Journal of Graph Theory, 33(1):1-13, 2000.

Luc Devroye. A note on the average depth of tries. Computing, 28:367-371,
1982.

Luc Devroye. A probabilistic analysis of the height of tries and the complexity
of triesort. Acta Informatica, 21(3):229-237, 1984.

Luc Devroye. A note on the probabilistic analysis of patricia trees. Random
Structures and Algorithms, 3(2):203-214, 1992.

Luc Devroye. A study of trie-like structures under the density model. Annals

of Applied Probability, 2(2):402-434, 1992.

Luc Devroye. Analysis of random LC tries. Random Structures and Algorithms,
19(3-4):359-375, 2001.

BIBLIOGRAPHY 109

[Dev02]

[Dev05]

[DHO4]

[Die05]

[DLMO6]

[DPK82]

[DS04]

[DS05]

[DSR92]

[EESTO5]

[EKM™05a]

[EKM*05b]

[EKNO7]|

Luc Devroye. Laws of large numbers and tail inequalities for random tries
and PATRICIA trees. Journal of Computational and Applied Mathematics,
142(1):27-37, 2002.

Luc Devroye. Universal asymptotics for random tries and PATRICIA trees.
Algorithmica, 42:11-29, 2005.

Dov Dvir and Gabriel Y. Handler. The absolute center of a network. Networks,
43(2):109-118, 2004.

Reinhard Diestel. Graph Theory. Graduate Texts in Mathematics. Springer-
Verlag, Berlin, 3rd edition, 2005.

Mauro Dell’Amico, Martine Labbé, and Francesco Maffioli. Complexity of
spanning tree problems with leaf-dependent objectives. Networks, 27(3):175—
181, 1996.

Narsingh Deo, G. Prabhu, and M.S. Krishnamoorthy. Algorithms for generating
fundamental cycles in a graph. ACM Transactions on Mathematical Software,

8(1):26-42, 1982.

Valentina Damerow and Christian Sohler. Extreme points under random noise.
In Proceedings of the 12th European Symposium on Algorithms (ESA’04), vol-
ume 3221 of Lecture Notes in Computer Science, pages 264-274. Springer-
Verlag, Berlin, 2004.

Luc Devroye and Wojciech Szpankowski. Probabilistic behavior of asymmetric
level compressed tries. Random Structures and Algorithms, 19:185-200, 2005.

Luc Devroye, Wojciech Szpankowski, and Bonita Rais. A note on the height of
suffix trees. SIAM Journal on Computing, 21(1):48-53, 1992.

Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng. Lower-
stretch spanning trees. In Proceedings of the 37th Annual ACM Symposium on
Theory of Computing (STOC’05), pages 494-503. ACM Press, New York, NY,
May 2005.

Stefan Eckhardt, Sven Kosub, Moritz G. Maaf, Hanjo Taubig, and Sebastian
Wernicke. Combinatorial network abstraction by trees and distances. In Pro-
ceedings of the 16th International Symposium on Algorithms and Computation
(ISAAC’05), volume 3827 of Lecture Notes in Computer Science, pages 1100
1109. Springer-Verlag, Berlin, 2005.

Stefan Eckhardt, Sven Kosub, Moritz G. Maaf, Hanjo Taubig, and Sebastian
Wernicke. Combinatorial network abstraction by trees and distances. Technical
Report TUM-10502, Technische Universitdt Miinchen, Institut fiir Informatik,
2005.

Stefan Eckhardt, Sven Kosub, and Johannes Nowak. Smoothed analysis of trie
height. Technical Report TUM-10715, Technische Universidt Miinchen, Institut
fiir Informatik, 2007.

110

|[Eme03]

[EP04a]

[EP04b)

[Epp00]

[FD87]

[FK98|

[FKO1a]

[FKO1b|

[Fla83]

[Fla06]

[FLS02]

[FO82)

[FPZWO4]

[Fre60]

BIBLIOGRAPHY

Yuval Emek. Low stretch spanning trees. Master’s thesis, Dept. of Computer
Science and Applied Mathematics, Weizmann Institute of Science, Rehovot,
Israel, October 2003.

Michael Elkin and David Peleg. (1 + ¢, 3)-spanner constructions for general
graphs. SIAM Journal on Computation, 33(3):608-631, 2004.

Yuval Emek and David Peleg. Approximating minimum max-stretch spanning
trees on unweighted graphs. In Proceedings of the 15th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’04), pages 261-270. ACM Press,
New York, NY, January 2004.

David Eppstein. Spanning trees and spanners. In Jorg-Riidiger Sack and Jorge
Urrutia, editors, Handbook of Computational Geometry, pages 425-461. Else-
vier, 2000.

Da-Fei Feng and Russell F. Doolittle. Progressive sequence alignment as a
prerequisite to correct phylogenetic trees. Journal of Molecular FEvolution,

25(4):351-360, 1987.

Sandor P. Fekete and Jana Kremer. Tree spanners in planar graphs. In
Graph-Theoretic Concepts in Computer Science, 24th International Workshop
(WG’98), volume 1517 of Lecture Notes in Computer Science, pages 298-309.
Springer-Verlag, Berlin, June 1998.

Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. Journal
of Computer and System Sciences, 63(4):639-671, 2001.

Sandor P. Fekete and Jana Kremer. Tree spanners in planar graphs. Discrete
Applied Mathematics, 108(1-2):85-103, 2001.

Philippe Flajolet. On the performance evaluation of extendible hashing and
trie searching. Acta Informatica, 20(4):345-369, 1983.

Philippe Flajolet. The ubiquitous digital tree. In Proceedings of the 23rd Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS’06),
volume 3884 of Lecture Notes in Computer Science, pages 1-22. Springer-
Verlag, Berlin, 2006.

Matteo Fischetti, Giuseppe Lancia, and Paolo Serafini. Exact algorithms for
minimum routing cost trees. Networks, 39(3):161-173, 2002.

Philippe Flajolet and Andrew Odlyzko. The average height of binary trees and
other simple trees. Journal of Computer and System Sciences, 25(2):171-213,
1982.

Arthur M. Farley, Andrzej Proskurowski, Daniel Zappala, and Kurt Windisch.
Spanners and message distribution in networks. Discrete Applied Mathematics,

137(2):159-171, 2004.

E. H. Fredkin. Trie memory. Communications of the ACM, 3:490-500, 1960.

BIBLIOGRAPHY 111

[FRTO03]

[FS82

[FSS6]

[FS07]

[GJ79]

[GKPOS5)

[GTO1]

[Gus93]

[Gus97]

[Hak64]

[Hal02]

[Han99|

[HLO4]

[HLCWO1]

[Hoc96]

Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on ap-
proximating arbitrary metrics by tree metrics. In Proceedings of the 35th An-
nual ACM Symposium on Theory of Computing (STOC’03), pages 448-455.
ACM Press, New York, NY, 2003.

Philippe Flajolet and Jean-Marc Steyaert. A branching process arising in dy-
namic hashing, trie searching and polynomial factorization. In Proceedings of
the 9th International Colloguium on Automata, Languages and Programming
(ICALP’82), volume 140 of Lecture Notes in Computer Science, pages 239 —
251. Springer-Verlag, Berlin, 1982.

Philippe Flajolet and Robert Sedgewick. Digital search trees revisited. SIAM
Journal on Computing, 15:748-767, 1986.

Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Web edition,
9th edition, 2007.

Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik. Concrete Math-
ematics. Addison-Wesley Publishing Co., Reading, MA, 2nd edition, 2005.

Michael T. Goodrich and Roberto Tamassia. Algorithms Design: Foundations,
Analysis, and Internet Examples. John Wiley, New York, NY, 2001.

Daniel M. Gusfield. Efficient methods for multiple sequence alignment with
guaranteed error bounds. Bulletin of mathematical biology, 55(1):141-154,
1993.

Dan Gusfield. Algorithms on strings, trees, and sequences: computer science
and computational biology. Cambridge University Press, Cambridge, 1997.

S. Louis Hakimi. Optimum locations of switching centers and the absolute
centers and medians of a graph. Operations Reseach, 12(3):450-459, 1964.

Eran Halperin. Improved approximation algorithms for the vertex cover prob-
lem in graphs and hypergraphs. SIAM Journal on Computation, 31(5):1608—
1623, 2002.

Dagmar Handke. Graphs with Distance Guarantees. Doctoral dissertation, Uni-
versitdt Konstanz, Fakultéat fiir Mathematik und Informatik, December 1999.

Refael Hassin and Asaf Levin. Minimum restricted diameter spanning trees.
Discrete Applied Mathematics, 137(3):343-357, 2004.

Jan-Ming Ho, D. T. Lee, Chia-Hsiang Chang, and C. K. Wong. Minimum
diameter spanning trees and related problems. SIAM Journal on Computation,

20(5):987-997, 1991.

Dorit S. Hochbaum. Approximation algorithms for geometric problems. In
Approzimation Algorithms for NP-hard Problems. PWS Publishing, 1996.

112

[HSP78]

[HT95]

[Hu74]

[HWZ02)

[JLRK78|

[JRS6]

[JS91a

[JS91D)

1594]

J597]

[KHT79

[KLM*03]

[KNJ04|

[Knu97|

BIBLIOGRAPHY

S. Louis Hakimi, Edward F. Schmeichel, and J. G. Pierce. On p-centers in
networks. Transportation Science, 12(1):1-15, 1978.

Refael Hassin and Arie Tamir. On the minimum diameter spanning tree prob-
lem. Information Processing Letters, 53(2):109-111, 1995.

T.C. Hu. Optimum communication spanning trees. SIAM Journal on Compu-
tation, 3(2):188-195, 1974.

Steffen Heinz, Hugh E. William, and Justin Zobel. Burst tries: a fast, efficient
data structure for string keys. ACM Transactions on Information Systems,
20(2):192-223, 2002.

David S. Johnson, Jan Karel Lenstra, and Alexander H. G. Rinnooy Kan. The
complexity of the network design problem. Networks, 8:279-285, 1978.

Philippe Jacquet and Mireille Régnier. Trie partitioning process: limiting dis-
tributions. In Proceedings of the 11th colloguium on trees in algebra and pro-
gramming (CAAP’86), volume 214 of Lecture Notes in Computer Science, pages
196-210. Springer-Verlag, Berlin, 1986.

Philippe Jacquet and Wojciech Szpankowski. Analysis of digital tries
with markovian dependency. IEFEE Transactions on Information Theory,

37(5):1470-1475, 1991.

Philippe Jacquet and Wojciech Szpankowski. What can we learn about suffix
trees from independent tries? In Proceedings of the 2nd Workshop on Al-
gorithms and Data Structures (WADS’91), number 519 in Lecture Notes in
Computer Science, pages 228-239. Springer-Verlag, Berlin, 1991.

Philippe Jacquet and Wojciech Szpankowski. Autocorrelation on words and
its applications : Analysis of suffix trees by string-ruler approach. Journal on
Combinatorial Theory, Series A, 66(2):237-269, 1994.

Svante Janson and Wojciech Szpankowski. Analysis of an asymmetric leader
election algorithm. The Electronic Journal of Combinatorics, 4(1), 1997.

Oded Kariv and S. Louis Hakimi. An algorithmic approach to network location
problems. I: the p-centers. STAM Journal on Applied Mathematics., 37(3):513—
538, 1979.

Dieter Kratsch, Hoang-Oanh Le, Haiko Miiller, Erich Prisner, and Dorothea
Wagner. Additive tree spanners. SIAM Journal on Discrete Mathematics,
17(2):332-340, 2003.

Dong-Hee Kim, Jae Dong Noh, and Hawoong Jeong. Scale-free trees: The
skeletons of complex networks. Physical Review E, 70(046126), 2004.

Donald Ervin Knuth. The Art of Computer Programming, volume Vol. 3: Sort-
ing and Searching. Addison-Wesley Publishing Co., Reading, MA, 3rd edition,
1997.

BIBLIOGRAPHY 113

[Knu00]

|[Kor01]

[KP94|

[LR78]

[LS91]

[LS93)

[Maf73]

[Mar99|

[Min81]

[MLMBdACO5]

[Mor68|

[MRO5]

[MSS5]

[NK99)

[NRO3]

Donald Ervin Knuth. Selected Papers on Analysis of Algorithms. Number 105
in CSLI Lecture Notes. Cambridge University Press, Cambridge, 2000.

Guy Kortsarz. On the hardness of approximating spanners. Algorithmica,

30(3):432-450, 2001.

Guy Kortsarz and David Peleg. Generating sparse 2-spanners. Journal of
Algorithms, 17(2):222-236, 1994.

Tze Leung Lai and Herbert Robbins. A class of dependent random variables
and their maxima. Probability Theory and Related Fields, 42(2):89-111, 1978.

Arthur L. Liestman and Thomas C. Shermer. Additive spanners for hypercubes.
Parallel Processing Letters, 1:35—-42, 1991.

Arthur L. Liestman and Thomas C. Shermer. Additive graph spanners. Net-
works, 23(4):343-363, 1993.

Francesco Maffioli. On constrained diameter and medium optimal spanning
trees. In Proceedings of the 5th Conference on Optimization Techniques, vol-
ume 4 of Lecture Notes in Computer Science, pages 110-117. Springer-Verlag,
Berlin, May 1973.

Roesch Martin. Snort: Lightweight intrusion detection for networks. In Pro-
ceedings of the 13th Conference on Systems Administration (LISA’99), pages
229-238. USENIX, 1999.

Edward Minieka. A polynomial time algorithm for finding the absolute center
of a network. Networks, 11(4):351-355, 1981.

L. Mora-Lopez, R. Morales-Bueno, and M. Sidrach de Cardona. Modeling time
series of climatic parameters with probabilistic finite automata. Environmental

Modelling & Software, 20(6):753-760, 2005.

Donald G. Morrison. PATRICIA - practical algorithm to retrieve information
coded in alphanumeric. Journal of the ACM, 15(4):514 — 534, 1968.

Bodo Manthey and Riidiger Reischuk. Smoothed analysis of binary search trees.
In Proceedings of the 16th International Symposium on Algorithms and Com-
putation (ISAAC’05), Porceedings, volume 3827 of Lecture Notes in Computer
Science, pages 483-492. Springer-Verlag, Berlin, 2005.

Burkhard Monien and Ewald Speckenmeyer. Ramsey numbers and an approx-
imation algorithm for the vertex cover problem. Acta Informatica, 22(1):115—
123, 1985.

Stefan Nilsson and Gunnar Karlsson. [P-address lookup using LC-tries. IEEE
Journal on Selected Areas in Communications, 17(6):1083-1092, 1999.

Rolf Niedermeier and Peter Rossmanith. On efficient fixed-parameter algo-
rithms for weighted vertex cover. Journal of Algorithms, 47(2):63-77, 2003.

114

[NT02]

[Pap94|

[Paz71]

[PBMMP93]

[Pec9s|

[Pev92]

[Pit85]

[Pit86]

[PRO1]

[Prio7]

[PS89]

[PUST|

[PUSY

[Rab63]

[Reg8l]

[RVOT]

BIBLIOGRAPHY

Stefan Nilsson and M. Tikkanen. An experimental study of compression meth-
ods for dynamic tries. Algorithmica, 33(1):19-33, 2002.

Christos H. Papadimitriou. Computational Complexity. Addison-Wesley Pub-
lishing Co., Reading, MA, 1994.

Azaria Paz. Introduction to Probabilistic Automata. Computer Science and
Applied Mathematics. A Series of Monographs and Textbooks. Academic Press,
1971.

Dionisio Pérez-Brito, Nenad Mladenovic, and José A. Moreno-Pérez. A note on
spanning trees for network location problems. Yugoslav Journal of Operations
Research, 8(1):141-145, 1998.

Peter H. Peeters. Some new algorithms for location problems on networks.
FEuropean Journal of Operational Research, 104(2):299-309, 1998.

Pavel Pevzner. Multiple alignment, communication cost, and graph matching.
SIAM Journal on Applied Mathematics., 52(6):1763-1779, 1992.

Boris Pittel. Asymptotical growth of a class of random trees. Annals of Prob-
ability, 13(2):414-427, 1985.

Boris Pittel. Paths in a random digital tree: Limiting distributions. Advances
in Applied Probability, 18(1):139-155, 1986.

David Peleg and Eilon Reshef. Low complexity variants of the arrow distributed
directory. Journal of Computer and System Sciences, 63(3):474-485, 2001.

Erich Prisner. Distance approximating spanning trees. In 14/th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS’97), volume 1200
of Lecture Notes in Computer Science, pages 499-510. Springer-Verlag, Berlin,
1997.

David Peleg and Alejandro A. Schéffer. Graph spanners. Journal of Graph
Theory, 13(1):99-116, 1989.

David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hyper-
cube. In Proceedings of the Sixth Annual ACM Symposium on Principles of
Distributed Computing (PODC’87), pages 77-85. ACM Press, August 1987.

David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube.
SIAM Journal on Computation, 18(4):740-747, 1989.

Michael O. Rabin. Probabilistic automata. Information and Control, 6(3):230—
245, 1963.

Mireille Régnier. On the average height of trees in digital search and dynamic
hashing. Information Processing Letters, 13:64—66, 1981.

Heiko Roglin and Berthold Vécking. Smoothed analysis of integer program-
ming. Mathematical Programming, 110(1):21-56, 2007.

BIBLIOGRAPHY 115

[Sab66]

[Sch94]

[Sco69]

[Shi92]

[Soa92]

[SOUMO5]

3S97]

SS05]

[SST06]

[STO1]

[ST03a]

[STO3D)

[ST04]

Gert Sabidussi. The centrality index of a graph. Psychometrica, 31:581-603,
1966.

Uwe Schoening. Theretische Informatik — kurzgefaft. Spektrum-
Hochschultaschenbuch. Spektrum Akademischer Verlag, Heidelberg, 3rd edi-
tion, 1994.

Allen J. Scott. The optimal network problem: Some computational procedures.
Transportation Research, 3(2):201-210, 1969.

Paul C. Shields. Entropy and prefixes. Annals of Probability, 20(1):403-4009,
1992.

José Soares. Graph spanners: a survey. Congressus Numerantium, 89:225-238,
1992.

Hiroshi Sunaga, Toshiyuki Oka, Kiyoshi Ueda, and Hiroaki Matsumura. P2P-
based grid architecture for homology searching. In Proceedings of the Fifth
IEEE International Conference on Peer-to-Peer Computing (P2P’05), pages
148 — 149. IEEE Computer Society, 2005.

Jacque Sakarovitch and Imre Simon. Combinatorics on Words, chapter 6, pages
121-134. Cambridge Mathematical Library. Cambridge University Press, Cam-
bridge, 1997.

Guido Schéfer and Naveen Sivadasan. Topology matters: Smoothed competi-
tiveness of metrical task systems. Theoretical Computer Science, 341(1-3):216—
246, 2005.

Arvind Sankar, Daniel A. Spielman, and Shang-Hua Teng. Smoothed analysis
of the condition numbers and growth factors of matrices. SIAM Journal on
Matriz Analysis and Applications, 28(2):446-476, 2006.

Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms:
why the simplex algorithm usually takes polynomial time. In Proceedings of
the 33rd Annual ACM Symposium on Theory of Computing (STOC’01), pages
296-305. ACM Press, New York, NY, 2001.

Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis (motivation and
discrete models). In Proceedings of the 8th International Workshop on Al-
gorithms and Data Structures (WADS’03), volume 2748 of Lecture Notes in
Computer Science, pages 256-270. Springer-Verlag, Berlin, 2003.

Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of termination
of linear programming algorithms. Mathematical Programming, Series B, 97(1-
2):237-404, 2003.

Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms:
why the simplex algorithm usually takes polynomial time. Journal of the ACM,
51(3):385 — 463, 2004.

116

[SVs6]

5703

[Szp88|

[Szpal]

[Szp93a|

[Szp93b]

[Szp01]

[Tan96|

[TZ01]

[ValO1]

[Ver06|

[VRM*97]

[WC04]

[Wil94]
[WLCH98]

BIBLIOGRAPHY

Miklos Santha and Umesh V. Vazirani. Generating quasi-random sequences
from semi-random sources. Journal of Computer and System Sciences,
33(1):75-87, 1986.

Ranjan Sinha and Justin Zobel. Efficient trie-based sorting of large sets of
strings. In Proceedings of the 26th Australasian computer science conference,
volume 35 of ACM International Conference Proceeding Series, pages 11-18.
ACM Press, New York, NY, 2003.

Wojciech Szpankowski. Some results on V-ary asymmetric tries. Journal of
Algorithms, 9(2):224-244, 1988.

Wojciech Szpankowski. On the height of digital trees and related problems.
Algorithmica, 6:256-277, 1991.

Wojciech Szpankowski. Asymptotic properties of data compression and suffix
trees. IEEE Transactions on Information Theory, 39(5):1647-1659, 1993.

Wojciech Szpankowski. A generalized suffix tree and its (un)expected asymp-
totic behaviors. SIAM Journal on Computing, 22(6):1176-1198, 1993.

Wojciech Szpankowski. Awverage Case Analysis of Algorithms on Sequences.
Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wi-

ley, New York, NY, 2001.

Andrew S. Tanenbaum. Computer Networks. Prentice Hall, Upper Saddle
River, NJ, 3rd edition, 1996.

Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proceedings of
the thirteenth annual ACM symposium on Parallel algorithms and architectures

(SPAA’01), pages 1-10. ACM Press, New York, NY, 2001.

Brigitte Vallée. Dynamical sources in information theory: Fundamental inter-
vals and word prefixes. Algorithmica, 29(1-2):269-306, 2001.

Roman Vershynin. Beyond hirsch conjecture: Walks on random polytopes and
smoothed complexity of the simplex method. In Proceedings of the 47rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS’06), pages 133~
142. IEEE Computer Society, 2006.

G. Venkatesan, Udi Rotics, M. S. Madanlal, Johann A. Makowsky, and
C. Pandu Rangan. Restrictions of minimum spanner problems. Information
and Computation, 136(2):143-164, 1997.

Bang Ye Wu and Kun-Mao Chao. Spanning trees and optimization problems.
Dicrete Mathematics and its Applications. Chapman & Hall/CRC, 2004.

Herbert S. Wilff. Generatingfunctionology. Academic Press, 2nd edition, 1994.

Bang Ye Wu, Guiseppe Lancia, Kun-Mao Chao, R. Ravi, and Chuan Yi Tang.
A polynomial time approximation scheme for minimum routing cost spanning
trees. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete

BIBLIOGRAPHY 117

Algorithms (SODA’98), pages 21-32. ACM Press, New York, NY, January
1998.

[Won80] Richard T. Wong. Worst-case analysis of network design problem heuristics.
SIAM Journal on Algebraic and Discrete Methods, 1(1):51-63, 1980.

Index

algorithm, 9 data structure, 10
2-approximation for DMST, 50 n;j(return probability), 70
polynomial-time approximation, 15

analysis gadget
average-case, 11 2-HITTING SET, 32
of algorithms, 10-13 ExAcT-3-COVER, 29
smoothed, 11-13 generating function
WOI‘St-CaSG, 11 of valid WOI'dS, 83

approximation generating functions
of optimization problems, 15 coefficient extraction, 23

expansion of rational functions, 23, 84

closeness centrality, 25 of regular specifications, 20-22

complexity weighted words model, 80
average-case, 11 graph
of decision problems, 15 definition, 16-17
of computational problems, 13-15
of decision problems, 13 inequality
smoothed, 12 Cauchy’s, 72, 73, 77, 92, 94
worst-case, 11 Holder’s, 96

complexity class, 14 Jensen’s, 78

computation of a PFA, 63 Minkowski, 51

computational problem input size
decision problem, 13 graph problems, 9
optimization problem, 13 trie analysis, 9

cost

MAD tree, 26

multiple sequence alignment, 51-52
generalized sum-of-pairs-cost, 52
sum-of-pairs-cost, 51

logarithmic cost model, 10

asymptotic cost, 10

uniform cost model, 10
cycle assembly, 41

network, 2
biological, 2
combinatorial network abstraction, 2

data structure, 9
distance matrix, 16

edit perturbation network analysis, 2—3
convex combinations, 65 network design, 3
random deletions, 65 norm
random insertions, 64 Lo, 16
random substitutions, 64 L,, 15
efficient matrix, 15
algorithm, 9 maximum-column-sum, 16

118

INDEX
maximum-row-sum, 16
vector, 15

O-notation, 10
output length of a computation, 64

perturbation function, 12
edit perturbations, 64—65

read-semi deterministic star-like, 66

star-like, 65

probabilistic finite automata
definition, 63
string perturbations by, 63

random source
non-mixing, 67
random source
density model, 61
Markovian, 60
memory-less, 60
mixing, 60
symbolic dynamical system, 61
reduction, 14
regular language
definition, 18
of valid words, 82-83
regular specification, 21
Cartesian product, 21
combinatorial sum, 21
sequence construction, 21
Rényi’s Entropy, 61, 69
pa(deletion probability), 70
paj(transition probability), 70

smoothed b-trie height
definition, 95
smoothed trie height

arbitrary star-like perturbations, 69
convex combinations of edit perturbations,

69

definition, 62
spanning tree

definition, 17

minimum diameter, 26
spanning tree

additive tree spanner, 41

centrality-approximating, 47-50

distance minimizing, 34-37

distance-approximating, 37-47
minimum average distance, 26
minimum route cost, 3
optimum communication, 3
string matching, 5
strings
definition, 17-18
random string models, 60-61
semi-random string model, 62

tail bound

for smoothed trie height, 71
tail-bound

for smoothed b-trie height, 96
tree

definition, 17
tries

applications, 5

b-trie, 20

definition, 19

enhancements, 19

height, 59

LCP trie, 20

PATRICIA tree, 19

valid expression, 79
valid words, 80

119

